Contents for 101 Electronic Projects 1975 Edition

<table>
<thead>
<tr>
<th>Page</th>
<th>Project Title</th>
<th>Page</th>
<th>Project Title</th>
<th>Page</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1 Crystal-Transistor Radio</td>
<td>35</td>
<td>Tape Dubbing Filter</td>
<td>33</td>
<td>69 Angler’s Bite Booster</td>
</tr>
<tr>
<td>20</td>
<td>2 Communications Rebroadcasters</td>
<td>36</td>
<td>Automatic Hi-Fi Shutoff</td>
<td>38</td>
<td>70 Lo-Parts Treasure Locator</td>
</tr>
<tr>
<td>20</td>
<td>3 SWL’s FET Booster</td>
<td>37</td>
<td>Tape Dubber’s Pad</td>
<td>38</td>
<td>71 Lo-Cost Lamp Dimmer</td>
</tr>
<tr>
<td>21</td>
<td>4 Flood Monitor</td>
<td>38</td>
<td>Hi-to-Lo Z Mike Amp</td>
<td>38</td>
<td>72 Light Controlled Relay</td>
</tr>
<tr>
<td>21</td>
<td>5 Pep Up a Pocket BC</td>
<td>39</td>
<td>78’s Him Filter</td>
<td>39</td>
<td>73 Yelp Oscillator</td>
</tr>
<tr>
<td>21</td>
<td>6 Flea Power CB</td>
<td>40</td>
<td>Headphone Control Box</td>
<td>39</td>
<td>74 Commercial Killer</td>
</tr>
<tr>
<td>22</td>
<td>7 Get BC from a CB Antenna</td>
<td>41</td>
<td>Audio Z-Matcher</td>
<td>40</td>
<td>75 AC Motor Power Brake</td>
</tr>
<tr>
<td>23</td>
<td>8 Walkie-T for RC</td>
<td>42</td>
<td>Add-A-Tweeter</td>
<td>40</td>
<td>76 Power Tool Torque Control</td>
</tr>
<tr>
<td>23</td>
<td>9 CB Modulation Lamp</td>
<td>43</td>
<td>Hook Up Remote Speakers</td>
<td>41</td>
<td>77 Fire Up a Nickle</td>
</tr>
<tr>
<td>23</td>
<td>10 Talk Power Booster</td>
<td>44</td>
<td>Remote Volume Control</td>
<td>41</td>
<td>78 Simple Signaller</td>
</tr>
<tr>
<td>24</td>
<td>11 Dynamic Mike Matcher</td>
<td>45</td>
<td>Audio Wattmeter</td>
<td>41</td>
<td>79 Vari-Rev Motor Control</td>
</tr>
<tr>
<td>24</td>
<td>12 SWL’s Crystal Marker</td>
<td>46</td>
<td>Audio Distortion Meter</td>
<td>41</td>
<td>80 Easy Auto-Theft Alarm</td>
</tr>
<tr>
<td>24</td>
<td>13 Parasite CW Monitor</td>
<td>47</td>
<td>RF Probe for VOM</td>
<td>42</td>
<td>81 Fancy Flasher Lamp</td>
</tr>
<tr>
<td>25</td>
<td>14 Basic Color Organ</td>
<td>48</td>
<td>Transistorized FSM</td>
<td>42</td>
<td>82 Doorknob Security Alarm</td>
</tr>
<tr>
<td>25</td>
<td>15 Standard 100-kHz Oscillator</td>
<td>49</td>
<td>RF Probe for VTVM</td>
<td>43</td>
<td>83 Power Failure Alarm</td>
</tr>
<tr>
<td>26</td>
<td>16 No Parts BC Booster</td>
<td>50</td>
<td>Easy Field Strength Meter</td>
<td>43</td>
<td>84 Auto Ignition Maze</td>
</tr>
<tr>
<td>26</td>
<td>17 Hi-Z Earphone Booster</td>
<td>51</td>
<td>Slider for CB Receivers</td>
<td>43</td>
<td>85 Latching Burglar Alarm</td>
</tr>
<tr>
<td>27</td>
<td>18 Earphone Limiter for CW</td>
<td>52</td>
<td>Simple Mod. Monitor</td>
<td>44</td>
<td>86 Foi-A-Burglar Alarm</td>
</tr>
<tr>
<td>27</td>
<td>19 Audio Peak Limiter</td>
<td>53</td>
<td>CB Modulation Monitor</td>
<td>44</td>
<td>87 Slide Show Stopper</td>
</tr>
<tr>
<td>28</td>
<td>20 29e Mag. Phone Filter</td>
<td>54</td>
<td>Appliance Tester</td>
<td>44</td>
<td>88 Photo Print Meter</td>
</tr>
<tr>
<td>28</td>
<td>21 SWL’s Simple Squelch</td>
<td>55</td>
<td>455-kHz Alignment Osc.</td>
<td>45</td>
<td>89 Variable Floodlighting</td>
</tr>
<tr>
<td>28</td>
<td>22 Ham’s Electronic Keyer</td>
<td>56</td>
<td>Test Osc. for Crystals</td>
<td>45</td>
<td>90 Remote Flash Trigger</td>
</tr>
<tr>
<td>28</td>
<td>23 FM Knockout Filter</td>
<td>57</td>
<td>Miladaptor for VTVM</td>
<td>46</td>
<td>91 Action Freeze Photo Trip</td>
</tr>
<tr>
<td>28</td>
<td>24 Stereo Balancer</td>
<td>58</td>
<td>Low Voltage Diode Tester</td>
<td>46</td>
<td>92 Light Power Control</td>
</tr>
<tr>
<td>28</td>
<td>25 Wireless BC Booster</td>
<td>59</td>
<td>Sine Wave Squarer</td>
<td>46</td>
<td>93 Line Regulator</td>
</tr>
<tr>
<td>29</td>
<td>26 AC Emergency Light</td>
<td>60</td>
<td>Budget Scope Calibrator</td>
<td>47</td>
<td>94 Dry-Cell Charger</td>
</tr>
<tr>
<td>29</td>
<td>27 Mike Input Generator</td>
<td>61</td>
<td>Better Scope Calibrator</td>
<td>47</td>
<td>95 Nicad Battery Charger</td>
</tr>
<tr>
<td>29</td>
<td>28 A Budget 800-Hz CPO</td>
<td>62</td>
<td>Scope Your CB Signal</td>
<td>47</td>
<td>96 Basic Power Supply</td>
</tr>
<tr>
<td>29</td>
<td>29 Open Circuit Burglar Alarm</td>
<td>63</td>
<td>Time Base Reference</td>
<td>48</td>
<td>97 Lo-Hum Power Supply</td>
</tr>
<tr>
<td>30</td>
<td>30 Speaker-A-Mike Preamp</td>
<td>64</td>
<td>Magnetizer-Demagnetizer</td>
<td>48</td>
<td>98 Zener Regulator</td>
</tr>
<tr>
<td>31</td>
<td>31 Wide Range Funk Box</td>
<td>65</td>
<td>Active Square Shaper</td>
<td>49</td>
<td>99 Make A Voltage Doubler</td>
</tr>
<tr>
<td>31</td>
<td>32 Fancy Guitar Fuzzbox</td>
<td>66</td>
<td>Useful Tony Oscillator</td>
<td>49</td>
<td>100 A Regal Old Nine</td>
</tr>
<tr>
<td>33</td>
<td>33 Budget Mike Mixer</td>
<td>67</td>
<td>Twang-A-Matic</td>
<td>50</td>
<td>101 12 to 9 for Transistors</td>
</tr>
<tr>
<td>33</td>
<td>34 Hi-Fi Mike Mixer</td>
<td>68</td>
<td>Lights-On Alarter</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

30 Integrated Circuit Projects

<table>
<thead>
<tr>
<th>IC1</th>
<th>IC11 Comm-Press Log Amp</th>
<th>IC21 Porta-Groove Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC2</td>
<td>IC12 Far-Out Gain Control</td>
<td>IC22 Stereo Preamp</td>
</tr>
<tr>
<td>IC3</td>
<td>IC13 Mighty Mite Signal Tracer</td>
<td>IC23 Groove Booster</td>
</tr>
<tr>
<td>IC4</td>
<td>IC14 Electric Butler Intercom</td>
<td>IC24 10X Instrument Amp</td>
</tr>
<tr>
<td>IC5</td>
<td>IC15 Carbon Mike Simulator</td>
<td>IC25 Audio High Pass Filter</td>
</tr>
<tr>
<td>IC6</td>
<td>IC16 The Basic Amplifier</td>
<td>IC26 Protect-A- Volt</td>
</tr>
<tr>
<td>IC7</td>
<td>IC17 Tape Head Preamp</td>
<td>IC27 Bi-Polar Power Supply</td>
</tr>
<tr>
<td>IC8</td>
<td>IC18 Bargain Tape Preamp</td>
<td>IC28 Ten Meter D’eer</td>
</tr>
<tr>
<td>IC9</td>
<td>IC19 C Booster</td>
<td>IC29 CB Power Supply</td>
</tr>
<tr>
<td>IC10</td>
<td>IC20 Notch Filter Oscillator</td>
<td>IC30 5V/3A For Digital Projects</td>
</tr>
</tbody>
</table>

Additional Projects and Departments

<table>
<thead>
<tr>
<th>Page</th>
<th>Project Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A Little Overdone</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Maxiclock</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>Your CB Can Tell Time</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>Oatmeal Box Crystal Radio</td>
<td>92</td>
</tr>
</tbody>
</table>

101 ELECTRONIC PROJECTS 1975
Foam Speaker Grille Kits
Do-it-Yourself kits featuring sculptured-foam speaker grilles for replacement of conventional grille cloth on stereo and hi-fi speakers have been developed by Republic Systems Corp., 9160 S. Green Street, Chicago, IL 60620. In addition to providing a modern "sculptured" look to speakers, the new foam grilles also make stereo and hi-fi systems sound better.

Unlike grille cloth, sculptured-foam does not distort sound, even in higher frequency ranges. The flexible urethane foam is "acoustically transparent," permitting sound to pass through as though there were no grille at all, for pure reproduction. Each kit contains sculptured foam grille, self-sticking attachment material and instructions for fast, easy installation. Available in 15 x 8-in. and 14 x 24-in. sizes, the foam grille can be easily cut with household shears to fit smaller speakers. The foam grilles are a rich black color which blends with any style speaker. Grilles can also be sprayed with latex paint for any color desired. Prices range from $7 to $14.50.

Trucker Sticks
Designed especially to overcome many of the communications problems encountered by the professional trucker, Avanti's new mobile antenna system featuring two 48-in. center-loaded "Fazer" antennas in co-phased arrangement, and mounted to the outside rear view mirrors, the system is said to minimize the problem of a skewed or shifted radiation pattern, and to increase

(Continued on page 6)
Science Fair P-BOX Kits have helped launch 1000's of careers in electronics!

Great for youngsters...
Build and learn like an engineer by "breadboarding" on a unique molded and coded Perfboard chassis. Fun, safe, educational!

FREE New 1975 Radio Shack Catalog
OVER 2000 PRODUCTS EXCLUSIVES ON EVERY PAGE BEAUTIFUL FULL COLOR
Stereo • Quadraphonic • Phonographs
TV Antennas • Radios • Citizens Band Kits • Recorders • Tape • Tools
Auto Tune-Up • Electronic Parts
Test Instruments • More!

164 pages of the finest in home and hobby electronics. Respected brand names like Realistic, Micronta, Archer, Science Fair — and they're available only at Radio Shack stores and dealers nationwide! See what's really new in electronics by getting this catalog now.

SEND FOR YOURS TODAY! FILL OUT COUPON BELOW

Shortwave Radio Kit — a world of excitement
Build your own worldwide radio! Tune in foreign stations, Voice of America, WWV, Amateurs, CB'ers and more on the 4.5-50 MHz band. Regenerative high-gain detector and two audio amplifier stages make it sensitive enough to pick up Moscow, London, Tokyo — almost any spot on the globe! And you can listen privately with the earphone that's included. Like every P-BOX kit, it has all parts, wire and step-by-step instructions for easy assembly. Requires one 9-volt battery. #28-110. There's only one place you can find it... Radio Shack!

There's a P-BOX for every interest!
Electronic Organ
Electronic Metronome
Telephone Amplifier
IC AM Radio
Voice Controlled Relay
Electronic Thermometer
Metal Locator
"Rise-Fall" Siren
Photo Night Light
Wireless AM Mike
Transistor AM Radio
One-Tube AM Radio
2-Transistor FM Radio
Solar-Powered AM Radio
3-Way Code Oscillator
OTL Audio Amplifier
"Goofy-Lite" Flasher
Light Operated Alarm
3" Extension Speaker

Radio Shack
OVER 3000 STORES • 50 STATES • 7 COUNTRIES
Retail prices may vary at individual stores. Prices and products may vary in Canada.
Hey, Look Me Over
(Continued from page 4)

performance approximately 25% over a single antenna mounted in the cab roof. Center loading raises the coil well above the cab roof, so that radiation is over the cab and more in the clear than with a base-loaded antenna. Mirror mounting makes for exceptionally easy installation. The mounting assembly, which clamps securely in place, fits virtually

any rear view bracket arrangement, including west coast types, and is readily removable for transfer from one vehicle to another. The Avanti co-phasing harness used in the Fazer system connects quickly and easily to the mirror mounts. Sells for $39.95. Avanti Research and Development, Inc., 340 Stewart Avenue, Addison, Ill. 60101.

Electronic Stethoscope
A transistorized electronic stethoscope that amplifies sound up to 10,000 times while eliminating extraneous sounds is designed to help one hear better and diagnose more accurately, whether patients are people, sick engines or industrial equipment. Completely portable, the electronic case clips to shirt pocket.

Lots of Spark
Radio Shack has introduced a new completely assembled, ready-to-install electronic ignition system similar to those now being offered on the new 1975 model cars. The Micronta Capacitive Discharge Ignition System is said to help overcome the poor mileage and hard starting characteristics of the 1974 models as well as improving the performance of other cars. The capacitive discharge ignition system delivers 50% more spark energy than conventional systems.

(Continued on page 8)
LIVE IN THE WORLD
OF TOMORROW...TODAY!

And our FREE 180 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items—plus 4,500 finds for fun, study or profl...for everyone member of the family.

A BETTER LIFE
STARTS HERE

He-Ne LASERS...$115.00 UP!
Top quality lasers feature TEMoo mode, internal mirror plasma tubes w/ 10,000 hr. life, self-starting cold aluminum cathodes, low noise & ripple, guaranteed output power stability and more for demanding lab work. 18-35m. fty. 115v. AC. (A) 0.5mW, (B) 0.88 Beam Dia., 1 mRad Diverg. $79.0750P (2.6 x 8.5 x 14.8") $115.00 Ppd. (B) 1.0mW...as above $150.00 Ppd. (C) 4.0mW, 0.8 Beam Dia., 1 mRad Diverg. $79.0750P (3.9 x 5.5 x 15.6") $485.00 Ppd.

ELECTRONIC DIGITAL COMPUTER KIT!

THE MOST POWERFUL SOLAR CELL!
World's biggest (3" dia.), strongest silic-on cell delivers over 1 amp. @ 5v D.C. or ½ W. 5 times more efficient per cost than ever before! Only 1 mi thick. Tab leads for any circuit, 100's of applications. Hook in series for more voltage; parallel—more current. Real breakthrough! No. 42,270BP $19.95 Ppd.
No. 42,145BP 0° DIA. 500 mA. @ 5v...No. 42,145BP 0° DIA. 100 mA. @ 5v...$9.95 Ppd.
PIE-SHAPED ½° DIA. 100 mA. @ 5v...No. 42,145BP 0° DIA. 100 mA. @ 5v...$9.95 Ppd.

3-CHANNEL COLOR ORGAN KIT
Easy to build-low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps (i.e. "low"-"med"-"high")—greens, "highs"—blues. Just connect hi-fi, radio, power amp, etc. & plug. ea. lamp string into own Channel (max. 300w ea.). Kit features 3 neon indicators, color intensity controls, controlled indicator. SCR circuits; isolation transformer; custom plastic housing, instr. Stock No. 41,821BP $18.95 Ppd.

QUALITY DETECTOR UNDER $40
New Edmund developed, fully transis-torized BFO unit capable of locating quarter at 18°—powerful 6 trans. oscillator-amplifier circuit. Easily compares to others priced 50% higher. Aluminum pole and housing—not plastic! 6" water-proof search coil (Faraday shielded to eliminate interference); long 50 hr. battery (BV) life; powerful 2" speaker, 1-knob on-off tune control. Perf-ect balance; lightweight (2 lbs.). Great buy!
Stock No. 80,222BP $39.95 Ppd.

AN ALPHA MONITOR FOR $34.95?
Yes, because you build it! Use your abili-ty to tune in your brainwaves, an aid to relaxation, concentration. Kit incs. everything you need (except 9v trans. batt.) to own a profitable self-set-up. BIC-ALPHA-50 MONITOR, state circuitry; 5 microvolt sensitivity; 1000 reactions & op. manual. With basic electronics knowledge, you can do it! No. 61,069BP... (KIT) $34.95 Ppd.
No. 71,806BP... (FULLY ASSEMBLED) $55.00 Ppd.

CAN'T SLEEP, RELAX? TRY THIS!
Electronic sound conditioner simulates 4 kinds of soothing sounds of ocean surf and rain. "White sound" helps mask unwanted noises, adds restful, intriguing background sound. Quick and easy to your own need; 2 surf, 2 rain; or "while sound," proven by medi-cal tests to have analgesic effects. Great for meditation, restlessness, sleeplessness psychology. (A) No. 71,997BP (7½ x 3½ x 3") 115v AC. $79.95 Ppd.
(B) AS ABOVE BUT "WHITE SOUND" ONLY No. 71,900BP (6" Rd. x 3½" Hi) $28.00 Ppd.

NEW! KIRLIAN PHOTOGRAPHY KIT!
Experiment in the fascinating new field of "Kirlian" electrophotography—images obtained on film without camera or lens by direct recording of electric charge transmitted by animal & inanimate objects. Each "aura" film assembly instruc-said to change corresponding to phys-i-cal changes. Kit includes portable dark-room, double transformer isolated from power source; instrs. Stock No. 71,239BP $49.95 Ppd.
NO. 9126BP... (60-PP, PPBK BK.) $5.00 Ppd.
DELUXE KIRLIAN PHOTOGRAPHY SET Stock No. 72,053BP $399.00 Ppd.

AM RADIO FITS IN!/ON YOUR EAR!
Wear it inconspicuously everywhere, listen as you work (lawn, yard, office), watch (game, beach) or wall. Instant music, news, sports. No 200Hz. Your 6 BEAKS unit has a balanced, 11 transistors, tuned antenna, AM/FM radio dial. Uses normal silver oxide hearing aid batt. (incl.) for approx. 100 hrs. playing. New batt. to slip in window, at drug stores (about 50c). No lengthy wires, bulky cases, or power-packs! Stock No. 42,275BP $14.95 Ppd.

MAIL COUPON FOR
GIANT FREE CATALOG!
180 PAGES! MORE THAN
4500 UNUSUAL BARGAINS

[Address]
City State Zip

EDMUND SCIENTIFIC CO
300 Edscorp Building, Baxton, N.J. 08007

Please Rush Free Giant Catalog gp

COMPLETE AND MAIL WITH CHECK M.O. OR CHARGE NO.
EDMUND SCIENTIFIC CO.
300 Edscorp Building, Baxton, N.J. 08007

[Name]

Card Expiration Date

Signature

Charge my BankAmericard

Charge my Master Charge

*30 Day Money-Back Guarantee

You must be satisfied or return any purchase in 30 days for full refund.

Money order for TOTAL $
Hey, Look Me Over
(Continued from page 6)
systems. This results in more complete combustion for improved mileage, faster starting in cold or wet weather and cleaner exhaust emissions. It also increases plug and point life, reducing the need for tuneups. Installation may be easily accomplished in a few minutes on any 4, 6, or 8-cylinder engine having a 12 VDC negative ground electrical system. No rewiring of the vehicle’s original ignition system is needed, and an In-Out switch permits instant performance comparisons. The Micronta Capacitive Discharge Ignition System is priced at $54.95. Also available in easy-to-assemble kit form under Radio Shack’s ArcherKit brand name for $39.95. Radio Shack has more than 3,000 stores and Authorized Sales Center in all 50 states, Canada and abroad.

High Voltage Probe
Need a self-contained, direct reading, high voltage and current measuring probe providing for the safe measurement of voltage up to 40,000 Volts DC, and for separate current measurements up to 200 mA, DC? Then look at EICO’s Model HVP-5 direct reading, high voltage and current measuring probe. It enables you to accurately measure the high anode voltage of a color picture tube and with a flick of the switch monitor the cathode current drawn by the horizontal output tube or the output stage. The high voltage supply affects the focus and the X-ray emission level of the set. The amount of current drawn by the horizontal output stage determines the life of these components. The EICO HVP-5’s two circuits are completely separate. Only the meter is switched. The EICO HVP-5 cannot be damaged by placing the function switch in a mA position while measuring high voltage. This feature allows the technician to switch from the mA position to the HV position without disrupting the operation of the set under test. List: $29.95. Get all the facts by writing to EICO, Electronic Instrument Co., Inc., 283 Malta St., Brooklyn, NY 11207.

Scientific Calculator
The HP-21 scientific calculator, the first of a new generation of Hewlett-Packard pocket calculators, was introduced today. It is priced at $125. The six-ounce HP-21 is the smallest and lowest priced model in HP’s line. It is designed primarily for scientists, engineers and students. Scientific calculators like the HP-21 also are finding increasing use in marine and aircraft navigation, surveying, medicine and education. The HP-21 has trigonometric and logarithmic functions. In addition, the user can calculate in either degrees or radians; convert from polar to rectangular coordinates and vice versa; format and round the display in either fixed or scientific notation; and perform register arithmetic (+, −, ×, ÷) with the contents of its single addressable memory. Like other HP pocket calculators, the HP-21 features the company’s RPN logic system with a four-memory stack that holds intermediate answers and automatically brings them back when needed in a calculation. The HP-21 comes with an owner’s handbook, soft carrying case and an AC adapter/recharger that allows the calculator to be operated on AC while its batteries are recharging. Optional accessories include a security cradle and a reserve power pack (with batteries). The HP-21, like other HP-

(Continued on page 10)
101 ELECTRONIC PROJECTS
Box 886, Ansonia Station, New York, NY 10023
1975 Edition
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

We would like to know about you. Please help us by placing an "X" in the appropriate boxes. • Do you own a CB transceiver? 76 □ Yes 77 □ No • If your answer is Yes, please check appropriate boxes below if you have one or more of the types indicated. 78 □ Base Station 79 □ Mobile Unit 80 □ Portable • Do you use CB in your work? 81 □ Yes 82 □ No • 83 □ Please enter my subscription for 8 issues at $3.98 and bill me.

Name (print clearly)
Address
City State Zip Code

101 ELECTRONIC PROJECTS
Box 886, Ansonia Station, New York, NY 10023
1975 Edition

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

We would like to know about you. Please help us by placing an "X" in the appropriate boxes. • Do you own a CB transceiver? 76 □ Yes 77 □ No • If your answer is Yes, please check appropriate boxes below if you have one or more of the types indicated. 78 □ Base Station 79 □ Mobile Unit 80 □ Portable • Do you use CB in your work? 81 □ Yes 82 □ No • 83 □ Please enter my subscription for 8 issues at $3.98 and bill me.

Name (print clearly)
Address
City State Zip Code

101 ELECTRONIC PROJECTS
Box 886, Ansonia Station, New York, NY 10023
1975 Edition

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

We would like to know about you. Please help us by placing an "X" in the appropriate boxes. • Do you own a CB transceiver? 76 □ Yes 77 □ No • If your answer is Yes, please check appropriate boxes below if you have one or more of the types indicated. 78 □ Base Station 79 □ Mobile Unit 80 □ Portable • Do you use CB in your work? 81 □ Yes 82 □ No • 83 □ Please enter my subscription for 8 issues at $3.98 and bill me.

Name (print clearly)
Address
City State Zip Code
Hey, Look Me Over
(Continued from page 8)

pocket calculators, will be sold through leading college bookstores and department stores, by direct mail and through HP's calculator sales force. Write to Inquiries Manager, Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, CA 94304.

Super VOM

Tripplett has a new concept in analog VOM, the "Extraexchange" Model 60. No repair bills if you goof on this one. It's drop-proof, burn-out-proof, designed to be super-safe for the user and can be easily maintained in the field. It's the perfect tester for the beginner and professional, be he experimenter, hobbyist,

CIRCLE 22 ON READER SERVICE COUPON

Pocket FET Multimeter comes complete with two test leads and instruction manual. Priced at $119.00. For more information, write to Instrumentation & Controls Division, Hickok Electrical Instrument Co., 10514 Dupont Avenue, Cleveland, OH 44108.

Magnetic Nutdrivers

Four styles of magnetic fixed-handle nutdrivers, each in two sizes, are available from Xcelite. The magnetic line also includes two sizes of interchangeable shanks which fit all their Series 99 handles, both regular and ratchet types. The permanent alnico magnet in the insulated socket holds fasteners firmly for easy, one-hand driving or retrieving upon removal—cuts lost time, motion or fumbling in close quarters. Styles range

CIRCLE 23 ON READER SERVICE COUPON

from a 3½-in. overall midget pocket clip to a super long 20¾-in. driver, all in ¼-in. and ½-in. hex openings. Intermediate lengths are 7-in. and 10-in. The comfort-contoured plastic handles, color-coded red or amber for easy hex opening identification, are designed for maximum torque with minimum pressure. Write to Xcelite for their catalog. They're at Apex, NC 27502.

For the Man on the Go

A new "Super Case" containing 48 professional problem solving tools is now being offered by Vaco. Included are 7 pliers, 2 wrenches, 2 reversible screw drivers, 13 specialty drivers, 7 hollow shaft nut drivers, 4 screw holding drivers, 4 testers, 2 crimping and stripping tools, plus 7 unusual type tools for specific

(Continued on page 101)
So Watt?*

How big you succeed in electronics today—bigger pay...better job...personal enjoyment—depends on how far you take the basics!

*Your reading this page now gives you the head start you need. And we'll match it with a Special Introductory Offer to keep you ahead.

It always has been a matter of knowing the basics. Of the thousands of opportunities that are open to you in the electronics field today, you can be sure that all depend on your understanding of basic electronics theory. New electronic advances are triggered by yesterday's basics...just as tomorrow's amazing breakthroughs will spring from today's fundamentals.

Your taking advantage of the offer shown in the coupon below puts you in a better position to get the rewards electronics gives you today—and will offer you in the years ahead!

For Beginner or Expert—Elementary Electronics is valuable!

It shows a novice where to begin—an expert where to improve: Each issue features a Basic Course in an important area of electronics. Written by experts in an easy-to-follow style, with clear illustrations and diagrams, you get a practical understanding of special circuits...semiconductors...power supplies...transformers...transistors...pulse circuitry, much more. You'll see general rules of electronics, develop trouble-shooting techniques, know how to calculate changing effects.

You may be earning an income now in electronics and hope to increase it soon. Or you may be an electronics hobbyist looking for new ideas to use at home and for recreation. Either way, for pleasure or profit, you shouldn't be without Elementary Electronics.

HI-FI • CB Radio • Shortwave • New Products • Projects in every issue!
You'll find a lot more in Elementary Electronics—a fantastic variety of new and exciting electronic information. More on today's CB activities and Shortwave Listening...expanded coverage of Product Testing from batteries and cells to stereo...new Build-It Projects for home and shop...portable music centers, weekend experiments, new products, bonus construction projects, electronic gadgets for fun and profit.

Try it. Try Elementary Electronics under the no-risk subscription offer shown in the coupon. Just fill in and mail the coupon to Elementary Electronics, P.O. Box 2600, Greenwich, CT 06830. Send in your order TODAY.

PUBLISHER'S DISCOUNT SAVINGS CERTIFICATE

Good for up to $403 off the newsstand price of ELEMENTARY ELECTRONICS

☐ Please send me 9 issues of ELEMENTARY ELECTRONICS for ONLY $4.97! (On the newsstand $9.00; regularly by subscription $9.72.)
☐ New subscription ☐ Renewal subscription

Name: ____________________________
Address: _______________________________________
City: __________________ State: __ Zip: __________

SEND NO MONEY, WE'LL BILL YOU LATER
MAIL TO: ELEMENTARY ELECTRONICS
P.O. Box 2600, Greenwich, CT 06830

101 ELECTRONIC PROJECTS 1975
Enclosed

He distortion too high Your generator, frequency jumps 50 things Amateur stuff, my His Cycles Hertz

(Continued on page 14)

It Was a Long Wait

When will the sunspots be at their lowest?

-A.R., Little Rock, AR

We should hit a low spot in the cycle about summer, 1975. Sun spots vary from day to day, and even at the height of activity a few sun-spot free days may occur permitting DXs that normally would not occur. Sun spots introduce considerable atmospheric noise and, when very active, break down the normal pattern of ionized layers surrounding earth, causing communication havoc.

Getting Started

Hank, what kind of beam antenna should I get? I plan to get involved with SW monitoring.

-T.F., Norfolk, VA

Forget the beam—stick with a long wire until you consider yourself a hotshot. I fooled with a beam for a while until I discovered I spent more time rotating the antenna than listening to DX. Leave the beam stuff to the CIA and sweep in the world of DX with your long wire.

Mighty Low

I have just purchased a new car (an Audi 100LS) and it came with a three-band radio. On one of these three bands, marked “L,” the dial reads 1.5 to 2.9. I have no idea if this might be 150 to 290 kHz or not. Could you please tell me what frequencies these really are? If it was low, how low? If it was high, how high?

—D.A., New York, NY

Let Go of My Shoe

How can I make a clock radio from an electric alarm clock and an electric radio? I would like to wire it some way so that when the alarm goes off the radio will automatically come on and play.

—R.S., Duarte, CA

You're pulling my leg, aren't you? I priced an inexpensive clock-radio on sale for only $19.95 and bought it— the price was right. Considering the time and expense you have to go through on your proposed project, you must be pulling my leg. Let go!

—R.G., Philadelphia, PA

His Cycles Hertz

I'm doing some loudspeaker testing. Amateur stuff, you know, and I find that my signal generator does some strange things at low frequencies. I put about 50 cycles (Hertz to you) in and raise the level. Well, as the sound gets louder, the frequency jumps to 100 cycles above a certain sound level input. My oscilloscope says nothing is wrong with the generator, but my hearing says yes. What am I to believe—my eyes or my ears?

—1.N., Los Angeles, CA

Your ears, because the loudspeaker is doubling the frequency after the level gets too high for the cone to faithfully follow the 50 Hertz (cycles to you) sweep. This is loudspeaker distortion. You'll find this distortion decreases as the frequency increases. Hey, fellah, you're beginning to get into what's wrong with cheap audio systems. Now you'll appreciate the better loudspeakers.

He Wants to Practice

Enclosed you will find a schematic of an electrical stimulator used in acupuncture which I took to a radio parts store for the parts listed. They supplied all the parts listed except the wire coils, and they said the coils would have to be hand wound. What am I to do?

—M.G., Jacksonville, FL

I'm not publishing the schematic because I don't want to lose any readers. As for your patients, Doc, don't build the gadget and you won't lose any, either.

—R.G., Philadelphia, PA

HOW TO SOLVE YOUR STORAGE PROBLEMS WITH A TOUCH OF STYLE

Decorative, sturdy, in rich leatherette. Exclusive design on back is gold tooled on Black, Brown, or Green—sides black. Center divider separates records up to 20 in original jackets. Tape Cases hold 6 tapes in their original boxes.

(Continued on page 14)
LITERATURE LIBRARY

102. International Crystal has a free catalog for experimenters (crystals, PC boards, transistor RF mixers & amps, and other Comm. products).

103. See brochures on Regency's 1975 line-up of CB transmitters & scanner receivers (for police, fire, weather, & other public service emergency broadcasts).

104. Dynascans new B & K catalog features test equipment for industrial labs, schools, and TV servicing.

105. Before you build from scratch, check the Fair Radio Sales latest catalog for surplus gear.

106. Get Antenna Specialists' cat. of latest CB and VHF/UHF innovations: base & mobile antennas, test equipment (wattmeters, etc.), accessories.

107. Want a deluxe CB base station? Then get the spec on Toms super CB rigs.

108. Compact is the word for Xcelite's 9 different sets of midget screwdrivers and nut-drivers with "piggyback" handle to increase length and torque. A handy show case serves as a bench stand also.

109. Turner has colorful booklets on their Signal Kicker antennas, which are computer optimized for CB. Another booklet covers their communications microphones.

110. Midland's line of base & mobile CB equipment, marine transceivers & accessories, and scanner receivers are illustrated in a new full-color 16-page brochure.

111. The EDI (Electronic Distributors, Inc.) catalog is updated 5 times a year. It has an index of manufacturers literally from A to X (ADC to Xcelite). Whether you want to spend $29 bucks for a pilot-light socket or $699.95 for a stereo AM/FM receiver, you'll find it here.

112. Get the all facts on Progressive Edu-Kits Home Radio Course. Build 20 radios and electronic circuits; parts, tools, and instructions included.

113. Get the HUSTLER brochure illustrating their complete line of CB and monitor radio antennas.

114. Teaberry's new 6-page folder presents their 6 models of CB transceivers (base and mobile); 1 transceiver for marine use, and 2 scanner models (the innovative "Crime Fighter" receiver and a pocket-size scanner).

115. CBers, GC Electronic's 8-page catalog offers the latest in CB accessories. There are base and mobile mikes; phone plugs; adaptors and connectors; antenna switchers and matchers; TV1 filters; automotive noise suppressor kits; SWR Power and FS meters, etc.

116. Rolyn International has 4-color 'spec' sheets for each model of their CB (base and mobile) transceivers and monitor-scanner lines.

118. Browning's mobiles and its famous Golden Eagle base station, are illustrated in detail in the new 1975 catalog. It has full-color photos and specification data on Golden Eagle, LTE and SST models, and on "Brownie," a dramatic new mini-mobile.

119. Edmund Scientific's new catalog contains over 4500 products that embrace many sciences and fields.

120. Cornell Electronics' "Imperial Thrift Tag Sale" Catalog features TV and radio tubes. You can also find almost anything in electronics.

121. Radio Shack's 1975 catalog colorfully illustrates their complete range of kit and wired products for electronics enthusiasts. CB, ham, SWL, hi-fi, experimenter kits, batteries, tools, tubes, wire, cable, etc.

122. Get Lafayette Radio's "new look" 1975 catalog with 260 pages of complete electronics equipment. It has larger pictures and easy-to-read type. Over 18,000 items cover hi-fi, CB, ham rigs, accessories, test equipment and tools.

123. Mosley Electronics reports that by popular demand the Model A-311 3-element CB beam antenna is being reintroduced. Send for the brochure.

124. RCA Experimenters' Kits for hobbyists, hams, technicians and students are the answer for successful and enjoyable projects.

125. There are Avanti antennas (mobile & base) for CB and scanner receivers, fully described and illustrated in a new 16-page full-color catalog.

126. Semiconductor Supermax is a new 1975 catalog listing project builders' parts, popular CB gear, and test equipment. It features semiconductors—all from Circuit Specialties.

127. There are over 350 kits described in Heath's new catalog. Virtually every do-it-yourself interest is included—TV, radios, stereo & 4-channel, hi-fi, etc.

128. E. F. Johnson's new full-color catalog for CB transceivers and accessories is now available. Send for a free copy. They also have a free brochure on their line of scanner receivers.

129. If you want courses in assembling your own TV kits, National Schools has 10 from which to choose. There is a plan for CBs.

130. Get the new free catalog from Howard W. Sam's. It describes 100's of books for hobbyists and technicians—books on projects, base electronics and related subjects.

131. SPRAGUE PRODUCTS has L.E.D. readouts for those who want to build electronic clocks, calculators, etc. Parts lists and helpful schematics are included.

132. The latest edition of TAB BOOKS' catalog has an extensive listing of TV, radio and general servicing manuals.

133. Pace Communications has a packet of information for you. The "Citizens two-way radio" answers all the questions from how to operate one to how much they will cost to operate. A booklet on Pace's scan/monitors to keep you informed is included.

134. Shakespeare's new pocket-size catalog lists and describes their full line of fiberglass CB antennas, mounts and accessories offered in 1975.

135. For a packetful of material, send for SBE's material on UHF and VHF scanners, CB mobile transceivers, walkie-talkies, slow-scan TV systems, marine-radios, two-way radios, and accessories.

136. For CBers from Hy-Gain Electronics Corp. there is a 50-page, 4-color catalog (base, mobile and marine transceivers, antennas, and accessories). Colorful literature illustrating two models of monitor-scanners is also available.

137. Cush Craft has a catalog on Citizens Band Antennas for every purpose. The Bongo base antenna is featured, as is the new Superfire 8-element horizontal/vertical power beam.

138. Send for the free NRI/McGrow Hill 100-page color catalog detailing over 15 electronics courses. Courses cover TV-audio servicing, industrial and digital computer electronics, CB communications servicing, among others. G.I. Bill approved, courses sold by mail.

101 Electronic Projects, Box 386
Ansonia Station, New York, N. Y. 10023

Please arrange to have this literature whose numbers I have circled at right sent to me as soon as possible. I am enclosing $5.00 for each group of 5 to cover handling. (No stamps, please.) Allow 4 to 6 weeks for delivery.

Indicate total number of booklets requested.

101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124
125 126 127 128 129 130 131 132 133 134 135 136
137 138 139 140 141 142 143 144 145 146 147 148
149 150

NAME (print clearly)

ADDRESS

CITY 1975 ED.

STATE

ZIP

Not Valid After November 15, 1975
ASK HANK, HE KNOWS!
(Continued from page 12)

will help, I received stations CRK at 2.1 and CCZ at 2.5 and MKP at 2.8 on the dial.

— J.F.R., Pittsburgh, PA

The stations you're hearing are LF air radio beacons. They transmit their calls repeatedly in morse code and are used by planes for checking location and direction. Many of them operate in approximately the 200 to 400 kHz range. Normally a dial marked 1.5 would indicate 1.5 MHz, 1,500 kHz. But apparently in this case, the Audi people intend it to mean 150 to 290 kHz. Incidentally, in Europe, some long-wave broadcasting stations use these frequencies, for example, the one-million-watt Radio Luxembourg outlet on 236 kHz and the BBC’s Drottwich station on 200 kHz.

Needs Lots of Work

Hank, what is the best kind of home study course to take? I know very little about electronics and want to go all the way.

— T.T., Newton Falls, OH

The best course to take is the one you will complete. Too many youngsters begin home study courses and quit after a few lessons when they discover self-education takes work, dedication to their goal, continuous effort, and drive. Get started and stick to it. You’ll thank me in 15 years—you said all the way!

Wrong End

I installed a VU meter on my FM receiver and some of the local FM stations are overmodulating their signals. Should I report them to the FCC?

— F.J., Waco, TX

Save your stamps! A transmitter’s clipping should be measured at the transmitter, and not at your receiver. All you are measuring is volume, and your ears can do the job better.

What Channel?

I saw nude forms and naked women’s bodies on TV late at night. Why does the FCC allow this?

— H.D., Bronx, NY

We may have seen the same program on breast cancer. I believe the FCC allows this because it will save the lives and health of many women. I’m not the kind of guy that goes to X-rated pictures, but this program, and others like it, are A-OK with me.

Dunno

Hank, what is the operating frequency of the Memphis, Tennessee police department? They won’t tell me.

— L.P., Memphis, TN

I won’t either, only because I don’t know. You could go to one of a few services that claim they know, but all they’ll tell you is the frequencies assigned. Let’s say Memphis police have six frequencies. One is a general call channel, two seldom used, and three held in reserve. Which frequency should you buy a crystal for? I dunno. But the guy selling monitor receivers in Memphis does ‘cause he’s selling lots of them. Why not ask him. He’s the guy standing next to a Regency hi/lo band monitor at the local electronics store.

Can You Help Out?

Δ F. H. Heberling has an old, like-new Remler Infradyne Amplifier, Type 700, made by Gray & Danielson Mfg. Co. It takes three tubes which have “Remler Type 50” near the sockets. He needs to know tube types, and what A and B batteries to use. Write to him at Bakers- town, PA 15007.

Δ DXers Radio Club would like to communicate with other clubs as reported by Scott Freiman (11 years old). If interested, write to Scott at 1-26A Pinehurst Dr., Lakewood, NJ 08701.

Δ Fred Caughlin picked up a Skyline Radiophone, Model IA30 and would like information and schematic diagrams of the unit. Write to Fred at 11094 71st Ave. N.E., Brooks, Oregon 79305.

Δ Is there anyone who will etch a printed circuit board and drill holes for a reasonable price from a drawing? If so, write to Peter Retsof, 18 Pierce St., Milton, MA 02186.

Δ If anyone has the schematic diagrams for a Decca DR343 or International Transistor Corp. Model FAP314 (both portable radios), please send them to Emanuel Cattolica, 7861 Barbi Lane, La Palma, CA 90623.

a little overdone

by Jack Schmidt

“I'm going to come back tonight. I have a little hum problem with my kid's mono phonograph.”

“Well, you ought to reach Jimmy Wilson now... our antenna just fell through his roof.”

“What vegetable garden? Your solar cells take up the whole yard!”

“They didn't have your brand tape cleaner so I ran them through the dishwasher.”

“Microwaves flood the driveway and yard so we know when the dog is home!”
Almost every experimenter will acknowledge that the best part of electronics is building his own projects and putting them to use. The fact is, in this day of inflation nothing satisfies as much as discovering that some expensive equipment you must have can be homebrewed for pennies.

Unfortunately, in this age of blister-packed parts, it's not unusual to find the most critical part of a construction project unavailable at any price; and even if you had the schematic for a device that could turn lead into gold, it would be of no use if you couldn't locate the parts.

Well, you won't have the "missing part" problem with the projects in this book. While you won't find a lead-into-gold schematic, you will find more than 100 useful projects which take standard components; items available at just about any moderately-stocked electronic parts distributor.

We have expended considerable effort to make certain every project will work with the components specified and that the components are generally available in your local stores or that direct substitutes are generally available. Every project in this book has been constructed and double-checked. The parts lists have been checked and double-checked to insure no industrial-only component has been used. Where a project originally called for an industrial component, we have searched out a suitable hobbyist equivalent, or we are certain the device is available from the "surplus" dealers, such as a specialized integrated circuit (IC) which is not, as yet, blister-packaged. Many of these surplus dealers advertise in national hobbyist publications such as Electronics Hobbyist and Elementary Electronics, so if you can't find the part at your local store, check the ads in the hobby magazines. (It is a good idea to send away for all the component catalogs you can before you start building projects.)

Most of the projects are non-critical and can be assembled in any type of enclosure, or just on a "breadboard." Where the layout, wiring or enclosure might affect performance, we so specify and suggest the proper techniques. (For safety's sake, all 110 volt leads and terminals should be fully taped and/or insulated.)

The same thing is true for heat sinks and special transistor and IC mounting. When nothing is said about heat sinks or mounting, anything goes. But if specific recommendations are given, they are necessary to avoid self-destruction of the device.

Some of the voltage and current ratings might appear excessive—much greater than needed. But we have allowed for safety factors and a few wiring errors, and the ratings keep possible "disasters" to a minimum. If you decide to make a substitution for a specified component, make certain the device can handle the circuit voltage and has the same general ratings as the specified component. While you can always use higher ratings, never go lower. For example, if the project calls for a silicon rectifier rated 50 PIV at 500 mA, you can substitute 100 PIV at 1 ampere. You should not, however, substitute 25 PIV or 100 mA. Similarly, if a capacitor is rated for 25 VDC, you can use 50 VDC, but do not substitute a capacitor rated less than 25 VDC.

SCRs (silicon controlled rectifiers) are the exception to this rule, because their gate sensitivity often depends upon the reverse voltage (PIV) rating. Always try to use the SCR speci-

Here's how the "CB Modulation Monitor" looks when assembled in a 2 x 2 x 4 inch Minibox. The VU meter has two scales; the one indicated as 0-100 is directly in percent modulation. A pushbutton switch has been substituted for the toggle switch specified in the parts list.

The same IC is often available to the hobbyist in different packages such as the half-minidip (left), DIP or dual-inline (center), or round (right). While many ICs are packaged in two or more styles, at any given time only one type of package might be available on the hobbyist market.
fied or a direct substitute. Check the specifications of the substitute carefully.

Tolerance for Success. Resistor and capacitor values should be exactly as specified. If a 1000-ohm 10% resistor is specified, use 1000 ohms, not 930 or 1100 ohms. You can, however, use a more precise tolerance than specified; for example, you can substitute 5% or 1% resistors for a specified 10% type. But keep in mind that none of the projects will work any better because you have used more expensive components. The only thing a “better quality” component will do is increase the total cost of the project—it will not improve performance. All the projects will work with the tolerances specified; when “precision” parts are required it is so specified in the parts list.

To make construction as goof-proof as possible, two types of capacitor symbols are used in the schematics. The symbol with a straight and curved line—with a “+” over the straight line—means an electrolytic capacitor and it must be wired with the correct polarity, as indicated. The curved line is a warning that the polarity must be double-checked, as the project probably won’t work if the capacitor connections are reversed.

Those capacitors indicated by two straight lines are non-polarized and can be installed without regard to any markings—they have no polarity, although occasionally the “outside foil” may be indicated. This is usually connected to the ground, or negative, point (if, in fact, there is a ground or negative side to the circuit in question).

Quite often a component rating will appear to be completely out of the ballpark, such as a 500 VDC rating for a capacitor going into a circuit powered by a 9-volt battery. In all cases we have tried to specify the least expensive component that will work, so if a 0.001 uF 500 VDC capacitor costs less than a 0.001 uF 10 VDC capacitor, we have specified the 500-volt type.

Since electrolytic capacitors often represent a substantial part of the project’s total cost, always try to use the least expensive capacitors you can find. If the value or type is critical, it is so specified.

Potentiometers can be any type or style unless *audio* or *linear* taper is specified. When battery types are suggested do not substitute one with a smaller current capacity as the current requirements for a battery project have been taken into account, and the battery with the minimum required current capacity has been specified in the parts list. You can always substitute a battery with a higher current capacity (but not higher voltage).

Whoops. There are normal gain variations between solid-state devices of the same type, and these variations might affect a project’s performance. If you build an amplifier that distorts at high level, or an oscillator that fails to “start,” try changing the bias resistor(s) within a ±20 percent range of the specified value.

Integrated circuits require extra care in handling and checkout. Whereas a short circuit or incorrect voltage polarity might damage a transistor, you can almost bet it will instantly *Zap* an IC, with no possibility of a second chance. Before applying power to an IC project, triple-check all power supply connections, capacitor polarities, signal input levels (if the project is an amplifier) and the heat sink (if a sink is called for). Be certain there are no short circuits, and take extra care when using test leads that IC terminals are not accidentally shorted; the briefest short will destroy an IC.

Shop for Components. It was not too many years ago that a hobbyist wanting to build a magazine project could run down to his local radio store, plunk the parts list on the counter, and walk out with every item on the list (as well as with a few suggestions from the counterman on how to build the project, for he was also a hobbyist).

Today, there are no more radio stores, they have become “electronic distributors,” and most of them don’t stock a complete line of hobby parts. The fact is, even the most uncomplicated construction project can take visits to two or three stores plus a couple of orders to mail order houses. And with all this you must still cross your fingers and hope that after you’ve put out ten dollars or so you won’t find the most critical component—the one without which the project can’t work—is permanently out of stock.

But there are some tricks to component shopping which can almost guarantee you’ll get all the parts with the least possible effort, and you

If you have several wires to run from a printed circuit board to a panel switch, you’ll have fewer problems (and the least cross-wire signal leakage) if you mount the board directly behind the switch so short connecting wires can be used.
might save a few dollars as well.

Component shopping is easy if you have a mental or written note on who sells what, for it is virtually impossible for any store to stock everything that's used in hobby projects.

Let's start with transistors because they are getting harder and harder to get if you're looking for a specific type. For example, the popular 2N3391, which is used in many projects, is virtually unavailable outside the larger cities (and soon won't be available in the cities). The reason for this situation is easy to understand. There are now thousands upon thousands of solid-state types, and no distributor can afford to stock even a small sample of everything that's available. Actually, as far as hobbyist and consumer equipment is concerned, maybe a hundred or so substiutes can replace most transistors, for there is not much effective difference between many transistor types other than for narrow-band specialized use. Similarly, a handful of integrated circuits can be used interchangeably in hobbyist projects; for example, in audio applications there is no effective difference between a 741, 741C or MC1741, etc.

Hobby Brands. Because of this "universality" of solid-state devices, several manufacturers and distributors have established a line of general replacements, generally blister-pack ed in quantities of one-per-package. The most extensive line is the Motorola HEP. Unless you have some rare esoteric device there is probably a HEP you can use as a direct substitute in hobbyist projects. The HEP line includes transistors, ICs, SCRs, rectifiers, zener diodes, heat sinks, etc. Just about anything Motorola makes available to industry has a substitute in the HEP line. Another extensive line of solid-state devices is RCA's SK Series. Rather extensive replacement guides are available for the HEP and SK lines, which also include characteristics, should you feel like doing your own designs. The HEP and SK guides should be right at hand when you build a project, as these components are not only available from the mail order houses such as Lafayette and Burstein-Applebee, but also from the larger local electronic parts distributor.

A rather complete line of replacements is also available from Radio Shack, for which they publish their own transistor substitution guide. Radio Shack replacements are available only from Radio Shack stores or franchised dealers.

A more limited selection of replacement transistors is available under the Calectro label; the replacements are geared more closely to the type of solid-state devices used by hobbyists. Calectro is available in local electronic parts stores. Other similar lines are also available in "chain" stores and mail order distributors.

Though a small selection of popular integrated circuits is available in the job-rack lines such as HEP, RCA and Calectro, and under the Radio Shack label, the most complete assortment of specialized ICs is to be found with smaller "surplus" and specialized dealers who usually take small advertisements in the hobbyist publications: Circuit Specialists, Poly-Paks, Solid State Sales, ADVA Electronics, Digi-Key, James, Altaj and Value-Pak. Keep these names in mind because they also handle a good assortment of oddball items such as heat sinks, LEDs, keyboards and capacitors, just to name a few.

Digging Up Caps. Capacitors often represent a substantial part of a project's total cost, and unusual values are not the easiest things to locate. Calectro and Sprague have a rather complete assortment of capacitors from Mylar to ceramic to electrolytic which are job-racked at local parts distributors. Calectro also provides different types of variable capacitors, as does Radio Shack, which has what is probably the most extensive assortment of "hobbyist" capacitor types and values. Large assortments of the usual and not-so-usual "standard brand" capacitors are also available from mail order houses such as Lafayette and Burstein-Applebee.

When your projects require the highest quality capacitor, such as tantalum, there's Allied Electronics, among other standard brand houses, though you will most often get the most for your money from the "surplus" dealers—assuming they stock the values you need.

Coils have always been a problem for the hobbyist, now more than before. If you need to wind your own coils, standard hobbyist needs are to be found among the coil forms in the Calectro and Radio Shack lines, along with experimenter type coils such as

The DIP socket is the easiest to use for the T0-5 ICs. Simply fan out the IC leads into two lines, bend the leads straight with long nose pliers, and then insert the IC straight into the DIP socket.

Heat sinks are rated in terms of "square inches of radiating surface," with the fins providing much of the surface area. The three sizes shown are marked with their rated area. Handbooks usually have tables showing the required area for specific heat dissipation.
transistor IFs, broadcast band ferrite antennas, etc. When you need a specific coil such as the ones from J. W. Miller, which are used in many experimenter projects, you will probably find the one you need in the Lafayette, B-A and Allied Radio catalogs. Each does not necessarily stock the same Miller coils as the others, so you will need catalogs from all three. J. W. Miller also job-racks for local distributors, though the stocking distributors might be few and far between.

If a project you're building calls for a North Hills or Cambion form or coil, head straight for the nearest Miller dealer; he has the necessary cross-index. When it comes to coils and forms, if it's not in the Calectro, Radio Shack and J. W. Miller lines you probably won't be able to get it. If your project calls for an amateur radio type form or coil such as B&W, or a torroid coil, turn to the ads in the back pages of the ham magazines—that's your best bet.

Once you get past the transistors and coils any hobby project should be a piece of cake. Controls of any variety are available from just about any parts source, as are resistors and standard-voltage filament transformers—6.3, 12, 24 (25.5)—which can be used for solid-state power supplies. If you need some special transformer voltage or a high current rating, it's almost a wipe-out. The blister pack outfits have yet to discover any voltage other than the three previously mentioned. Standard brand power transformers of various voltages and current capacities are available from the mail order houses, but at a stiff price. Two sources of unusual power transformers at virtually rock bottom prices are the yellow pages of the B-A catalog and McGee Radio. On the other hand, miniature and sub-miniature transistor audio transformers are now available blister-packed on job-racks, so you should be able to pick them up at your local distributor.

Overruns: Super Cheap. A really inexpensive source for discontinued models and manufacturers' overruns on speakers and relays suitable for hobbyists are B-A and McGee; you'll often find the standard brand you're looking for, for pennies on the dollar. The same applies to meters. If you need a specific meter sensitivity, you can find the popular values in the Lafayette, Calectro and Radio Shack lines, as well as Calectro's "Brand X" label. But if you're willing to take the meter sensitivity needed with some oddball scale calibration, or if you're willing to settle for an older, non-modern case, you can get some outstanding buys from the "surplus" houses which generally advertise in the back of amateur radio magazines. Another terrific source for odd equipment at budget prices is the local "stripers," smaller surplus dealers that buy up military surplus, old test gear, etc., and then strip the items into their components, selling off the screws, switches, jacks, meters, etc. The stuff is used, but often it's the only way to squeeze what is normally expensive hardware into your budget.

For example, you might pick up a ceramic switch suitable for a radio frequency project for a fraction of the

Things do go wrong, so ICs should always be connected into a circuit through a socket. Both sockets shown are for the 14 pin DIP. The one on the left is called low profile. Either serves the purpose as far as the hobbyist is concerned. The low profile model is generally used where space is at a premium.

The complete "Remote Amplifier" including the two 9-volt batteries can be packaged in a 2 x 2 x 4-in. Minibox. If you're not used to "tight-quarters" assembly, use a larger cabinet such as a 3 x 4 x 5 in. size.

This "SWL Booster" can be assembled on a small printed circuit board. The board can then be secured to the metal panel of a standard plastic cabinet, as shown.
price it would cost at an industrial electronic parts distributor (assuming you could meet his minimum order price to begin with). You might also find waterproof switches and jacks which just aren't available to the hobbyist anymore, and possibly instrument cabinets for less than the cost of a modern control knob.

Speaking of cabinets, they are becoming more difficult to obtain, not to mention the cost. Metal cabinets can easily be the most expensive part of a project, assuming you can get what you need. In small sizes there are some excellent cabinet buys from the blister-packers, and standard miniboxes from the mail order houses. But once you get to the larger sizes they are not only almost impossible to get, but extremely expensive (the cost of some popular sizes has doubled in less than a year). Here's where your local surplus dealer comes in handy. From time to time he picks up job lots of cabinets: generally one size, sometimes two. If the cabinets are something like 3 x 4 x 5, 5 x 3 x 7 or 5 x 5 x 7, stock up. These are almost universal sizes—not too small and not too large—and if you can pick them up for less than $3 you'll be way ahead of the game. (The 5 x 3 x 7 is perhaps the most popular hobbyist size and is presently listed for almost $5.)

Speaking of stocking up, you can really save a bundle by buying bargains before you need them. For example, a couple of ordinary 1/2-watt resistors will cost from 25 to 30 cents when blister-packed. But you can often buy an assortment of "standard" resistor values for $2, $3 or $4, depending on whether there's fifty or a hundred pieces in the assortment. Similarly, if you purchase specials, or in reasonable quantity, a 90-cent capacitor becomes 12 or 13 cents. A few capacitor values can handle most solid-state projects. Use a 25 VDC rating and stock up on a few 2.2 µF, 10 µF, 47 (50) µF, 100 µF and perhaps 1000 and 2000 µF for power supplies. You'll be amazed how these few values cover most hobby needs. Sources for capacitor buys in reasonable quantity are Mouser and EDI.

Other Specialties. Special buys in switches, trimpots, panel lamps and other miscellaneous items which often run up a project's expense are available from B&F Enterprises and John Meshna, in addition to the surplus houses mentioned previously.

In short, what we're saying is to get as many "surplus" catalogs as you can, even if you must send a dime or a quarter. The savings will more than pay you back for the postage costs.

Sometimes a project will call for a crystal. Since these must usually be ground for a specific frequency you're better off getting the crystal from a manufacturer or major distributor. International Crystal is one of the best sources for the hobbyist.

And should you still be using tubes in projects, or need some for a repair job, you'll get a real low price from Cornell.

Summing Up. The way to insure that you get all the components you need for a project at the lowest possible cost is to assemble your own purchasing guide. Invest a few dollars in a three ring binder and a hole punch. Then send away for any catalog that's advertised. If a distributor doesn't advertise a catalog, at least ask to be placed on the mailing list. When you receive the catalogs or flyers, run through them for a mental picture of what components are available and from whom. Place small catalogs and flyers in the binder and keep the binder next to your standard catalogs from Lafayette, Allied Electronics, B-A, McGee, etc., so you have a centralized "purchasing library." For maximum convenience, make up a single page list of what is available from whom, so you can go directly to the catalog you need. For example, a few typical entries might be: Digital and Linear ICs—Solid State Sales; Replacement Transistors—HEP, SK, Radio Shack, Caltech; Electrolytics—Mouser; Scientific—Edmund Scientific, etc.

You will find these sources stock virtually any component called for in a hobbyist project, and you'll probably wind up with the least expensive components.

Just ordinary common sense in construction and checkout will insure success. Keep in mind that we'd like to hear from you concerning your favorite projects and circuits, possible modifications you develop through experimentation, and any thoughts you might have on 101 ELECTRONIC PROJECTS.

Now plug in that soldering iron, pick up the long nose pliers and get going—time's a-wasting!
1 Crystal-Transistor Radio

That old favorite, the crystal radio, becomes more than just a weak voice buried in the headphone when it's amplified with a "junk box" amplifier.

Transistor Q1 can be just about any general purpose pnp germanium type such as the 2N107, 2N109, etc. The SK3003 specified gives a little extra gain.

L1 is any ferrite antenna coil for the broadcast band, while E1 must be a magnetic headset for maximum output level. To align the receiver, set C1's dial to the known frequency of a strong local station and adjust L1's slug until you hear the station in the phones.

For reception of weaker signals the receiver should be connected to an earth ground such as the cold water pipe. The longer the antenna, the better the reception. Try 20 feet or more.

To feed the radio's output into an amplifier and speaker, replace the headphone with a 1000-ohm, 1/2-watt resistor. Connect a .1 mfd, 25VDC capacitor from Q1's collector to the amplifier input. Then be sure to connect radio's ground to the amplifier ground.

2 Communications Rebroadcaster

One way to keep an ear on the Amateur or Citizens band while working around the house or searing steaks out on the patio, is to install a lot of remote speakers. An easier way is to feed the audio signal from your CB or amateur receiver into a broadcast band Rebroadcaster and radiate the signals throughout the house and yard. A small transistor pocket radio tuned to the rebroadcaster frequency will alert you instantly if a call is received on your communications gear. Best of all, since the radio travels with you, you're never away from your receiver.

Build the rebroadcaster in a metal cabinet. The power supply can be a transistor radio type 9-volt battery, though a line supply is preferred for more dependable continuous operation. The unit draws about 10 mA. Power input and antenna length are limited by FCC regulations. If the input current exceeds 10 mA, increase the value of R1 in 20% increments until the current is below 10 mA. The antenna wire cannot exceed 10 feet. Adjust slug L1 so the rebroadcaster operates on an unused BC frequency. The audio input connects to the speaker or headphone output of your communications equipment. Adjust the volume on the receiver for a high, undistorted transmission by the rebroadcaster.
3 SWL's FET Booster

Super sensitivity is the feature of this two-transistor shortwave preselector. It provides overall gain as high as 40 dB from 3.5-30 MHz. Diode D1 protects against excess gate voltage caused by nearby transmitters, while Q1 serves as an emitter follower to match the medium output impedance of the FET transistor to the low input impedance of the receiver.

Since Q1 is a MOSFET type with a gate that's very sensitive to static changes, Q1 must be handled with a short-circuit across all leads until just before power is applied. Also, a soldering iron must not be applied to Q1's leads unless they are shorted.

L1's connections are specified in the instructions supplied with the coil. An RG-174U coaxial cable should serve for the output.

4 Flood Monitor

Basements are no longer basements: they are now playrooms, workshops, Ham and CB shacks, and hobby rooms, with a lot of expensive electronic equipment and furnishings that can be damaged if a water pipe breaks or the washing machine overflows.

This flood monitor will warn you instantly of water flooding by sounding an alarm bell. When water mixes with a small pile of salt the resulting puddle shorts the probes, thereby applying a trigger to SCR1's gate. The SCR fires, closing the alarm buzzer or bell circuit. Any sensitive-gate SCR such as the GE C6 series can be used.

The salt can be placed in a small metal can about the size of a small ash tray. Drill a series of holes around the can as close as possible to the bottom. Secure the probes so they are suspended right above the salt. Any water flowing into the can will mix with the salt and cause a conducting puddle that will rise to the probes. The probes can be about 1/4-in. of exposed solid insulated wire. The wires can be taped to the side of the can, just as long at the exposed tips don't contact the can.
5 Pep Up a Pocket BCB

PARTS LIST FOR PEP UP A POCKET BCB
B1—15-volt penlight AA battery
C1—0.005-uF disc capacitor, 25 VDC or better
C2—365-pf miniature tuning capacitor with dial
C3—0.05-uF disc capacitor, 25 VDC or better
270-1430, Calecito KA-501 (or equiv.)
L1—Loopstick for C1
Q1—NPN transistor, HEP-641, Calecto K4-501, or equiv.
R1—39,000-ohm, ½-watt resistor
S1—Spst switch (on-off)

Here's a low cost project that can pack a lot of extra sensitivity into an ordinary transistor pocket radio. You'll be able to do some extensive DX'ing with that pocket portable the bank gave you when you opened an account.

Assemble the unit in a small plastic cabinet with coil L cemented to the side or back of the cabinet; use an adhesive such as General Electric's RTV. Connect from 10 to 80 feet of antenna wire to the input, and position this pocket booster flat against the radio with L1 directly behind the loopstick antenna built into the radio. Tune capacitor C2 to the approximate frequency you want to receive, then turn on the radio and listen to the signals boom in. Keep in mind that the receiver's normal AVC action will mask any boost applied to strong signals.

6 Flea Power CB

PARTS LIST FOR FLEA POWER CB
C1, C2—0.001-uF, 50-VDC disc capacitor
C3—60-pf trimmer capacitor
L1—10 turns #16 enameled wire wound on ¾-in. form, spaced 1 in. end to end
MIC—Carbon microphone element
Q1—HEP-50 npn transistor
R1—47,000-ohm, ½-watt resistor
R2—10,000-ohm, ½-watt resistor
R3—330-ohm, ½-watt resistor
S01—Crystal socket

Small enough to fit into a cigarette pack, this pocket pager produces a low-output signal on the Citizen's Band (27 MHz) suitable for paging inside a building. The signal is strong enough to be heard on a standard transceiver, but not enough to cause receiver overload.

If only one crystal frequency is needed, socket S01 can be eliminated and an over-tone type crystal soldered directly into the circuit. Salvage crystals from junked units. The whip antenna is a standard walkie-talkie three-section replacement type. The carbon microphone can be a telephone transmitter.

To tune, receive the signal on an S-meter-equipped receiver and adjust trimmer C3 for maximum output. Key the transmitter a few times to check crystal activity. If starting is intermittent, slightly alter C3's adjustment until operation is consistent.

The power supply can be a standard 9V (2U6 type) battery.

7 Get BC from a CB Antenna

If you're tired of having your friendly new car dealer knock $100 or so off the trade-in allowance because you drill holes in the body for CB antennas, simply replace the existing auto radio antenna with a cowl-mounted CB whip, install the CB duplexer and no one will know you ever had a CB whip on the car.

Cow-mounted CB whips generally are exact replacements for auto antennas. The duplexer automatically connects the antenna to either the car radio or CB rig. When transmitting on CB the series tuned circuit of C1—L1 passes the RF along to the broadcast band.
antenna, while R1 blocks the RF from feeding through to the car radio. When receiving broadcast stations C1-L1 represents a high impedance, thereby blocking the signals from entering the CB rig where they would short-out. Instead, the broadcast signals pass through R1 to the car radio.

Build the duplexer in a small metal enclosure. Plugs PL1, PL2 and PL3 should match the existing jacks on the radio equipment, usually PL-259 for the CB set and a Motorola-type for the AM or AM/FM auto radio. To adjust C1, connect an SWR meter between PL2 and the transceiver and adjust C1 for minimum SWR.

Walkie-T for RC

![Circuit Diagram]

PARTS LIST FOR WALKIE-T FOR RC

- **B1** - 6-volt lantern battery
- **C1** - 10-µF electrolytic capacitor, 15 VDC or better
- **C2, C3** - 100-µF electrolytic capacitor, 15 VDC or better
- **D1** - Germanium diode, 1N60 or equiv. such as Calectro KA-550
- **Q1, Q2** - NPN transistor, 2N3394
- **R1** - 10,000-ohm potentiometer (Calectro B1-683)
- **R2** - 220,000-ohm, ½-watt resistor
- **R3, R4** - 10,000-ohm, ½-watt resistor
- **R1** - 6-volt relay

CB Modulation Lamp

Less than $2 is all that's needed to be certain that what you put into the mike is really getting to your sky hook. Working directly from a minute sample of the transceiver's RF output, the Modulamp will glow only if there is a carrier output and modulation. So if no one replies to your call and the lamp glows in step with your modulation, you can at least be certain it's not the transceiver that's at fault.

If the unit is built into a small metal box, jacks J1 and J2 should match the existing transmission line connectors. If you build the Modulamp directly into your transceiver, simply connect capacitor C1 to the RF output jack (and forget about J1 and J2). To adjust, simply talk into the mike in your normal voice and adjust trimmer potentiometer R2 until lamp I1 flashes in step with the modulation. If I1 will not flash regardless of R2's adjustment, substitute a higher gain transistor for Q1 (try a 2N3392).

10 Talk Power Booster

If your CB or Ham rig is a little shy on talk power, this 10 dB talk power booster will give your signal that extra edge through the QRM. The input impedance is high enough to handle anything from a low impedance dynamic mike to a crystal or ceramic model. You can run the booster into just about any rig; chances are it will work. Since it's so easy and inexpensive to try out a breadboard model, don't bother worrying about the input impedance of your rig; it's faster to give it a try.

Potentiometer R4 serves as the volume control into your rig; it is adjusted for optimum modulation, as indicated on a modulation meter or other reliable device.

Jacks J1 and J2 match your existing microphone and transmitter connectors. Battery B1 can be the type used for small transistor radios as the current drain is but a few milliamperes. Capacitor C3 must be used regardless of what you use for a power supply. A metal cabinet is suggested to keep hum and RF out of the microphone system.

11 Dynamic Mike Matcher

Good pitching beats good hitting and a good magnetic mike beats a good carbon mike. This one-transistor carbon microphone converter takes a carbon mike input and converts it to the magnetic variety.

Note that no ground connection is used, even if the circuit is built in a metal cabinet. MIC is a replacement-type magnetic element that is substituted for the original carbon element. Using miniature components the entire converter amplifier can also be housed in the original microphone case.

To avoid destruction of Q1, the unit must be connected properly the first time. The "+" lead, which goes to Q1's collector, connects to the carbon mike input that supplies a positive voltage.

12 SWL's Crystal Marker

Can't find that rare, weak SW signal from Lower Slobbovia? You will if you use this SW frequency spotter. Obtain crystals on or near your favorite SW stations, plug 'em into the spotter and you'll transmit power-house markers on the shortwave bands. If your receiver has a BFO it will sound a loud beep when you tune the spotter's signal. With no BFO, simply tune around the frequency until the receiver gets deathly quiet. Either way, you'll calibrate your receiver with great accuracy.

The spotter can be assembled on a small section of perfboard with flea clips for tie points. For good performance, all components must be firmly mounted and well soldered. A common 2U6 9-volt battery in the circuit will last for months, if not for
its total shelf life.

Crystals in this circuit are fundamental type, not overtone. Many low-cost surplus crystals are available, but even if you can't get the correct frequency, 25¢ might get you right next door. A few dollars for a new crystal will put you directly on frequency if you want the utmost accuracy.

A connection between the spotter and receiver is not needed. Simply position the spotter near the receiver antenna and start tuning until you find the marker signal.

Parasite CW Monitor

PARTS LIST FOR PARASITE CW MONITOR
C1—0.05-uF disc capacitor, 50 VDC or better
L1—2 to 6 turns on ½-in. form, see text
Q1—PNP transistor, HEP-253
R1—8200-ohm, ½-watt resistor
T1—Miniature transistor transformer, 500 ohms center tapped to 500 ohms (Calectro D1-728 or equiv.)

Here's a self-powered CW keying monitor that doesn't require a direct connection to the transmitter or transmission line. Simply position coil L1 near the transmitter output tank until you obtain a dependable key-down tone. Then tape the coil in position.

While the signal is generally monitored with headphones, a small monitor amplifier can be used. Simply connect a 2000-ohm, ½-watt resistor in place of the phones, and connect the amplifier input across the resistor. Start with a 2-turn coil made of #16 enameled wire wound on a ½-inch form.

If the signal pickup is not sufficient to produce a steady tone, increase the coil one turn at a time until the tone is steady and reliable. If you cannot obtain any sort of tone with any coil, reverse the primary connections A and B.

Basic Color Organ

This simple color organ is certain to keep your party from becoming a drag. Connected to your hi-fi amplifier's speaker output (across the speaker terminals) it will throb in time to the music. Paint the bulb red or deep blue and your party room will take on the atmosphere of a rock club.

Transformer T1 can be any matching transistor type in the range of 500/500 to 2500/2500 ohms. Note that none of the connections from SCR1 or its components are connected to ground. For safety's sake, you must keep the 117-volt line voltage from the amplifier connections—that's the reason for T1. To adjust, set potentiometer R1 "off" and adjust the amplifier volume control for a normal listening level. Then adjust R1 until lamp I1 starts to throb in step with the beat.
15 Standard 100 kHz Oscillator

Few shortwave receivers below the deluxe class have really accurate dial calibration. But with a 100-kHz frequency standard you'll know with great precision where the receiver is tuned.

The calibrator is a common-base oscillator producing sufficient signal through the air if constructed in a plastic cabinet. With a metal cabinet, a short antenna approximately 12-in. long should be connected to Q1's collector through a 50-pF capacitor. In some instances the antenna will have to be connected to the receiver antenna terminal.

Wiring is not critical and almost any layout will work. If the oscillator doesn't start, change R2's value by approximately 20% until you get consistent oscillator operation. If you want to zero beat the crystal against station WWV, install a 50-pF trimmer in series or in parallel with the crystal. Use whichever connection works since the specific crystal type determines the series or parallel connection.

16 No Parts BC Booster

Just about any transistor radio can be made a "DX hound" with the No Parts BC Booster. Simply bring in the end of an outdoor "longwire" antenna and wrap the end around the radio about 5 times. Even better reception is possible if you open the radio and wrap about 5 turns around the rod antenna immediately adjacent to the antenna coil mounted on the rod. Make certain the ends of the antenna are insulated with glass or ceramic insulators.

17 Hi Z Earphone Booster

Quite often the audio output from small projects is just barely sufficient to produce a recognizable signal in standard experimenter magnetic earphones. Yet a handful of surplus components will provide enough gain to turn that whisper sound into a roar.

Specifically intended for use with magnetic earphones of from 1000 to 5000 ohms impedance, the Headphone Amplifier can do double-duty as an audio signal tracer. Transistor Q1 can be any PNP of the 2N2613 variety. Even the 10-for-a-pack kind will work. Volume control R1 should have an audio taper. Distortion control R3 can have any taper. Make certain C2's polarity is correct; the positive terminal connects to volume control R1 (wiper terminal). Adjust distortion control R3 for best sound quality. If you use a jack and plug to connect your headphones to this amp, you can eliminate on-off switch S1 because power is removed whenever the headphones are disconnected.
Earphone Limiter for CW

Most receivers don't provide automatic volume control on code reception. Thus a CW signal that blows your headphones off one moment might lie buried on the threshold of hearing the next. The Headphone Limiter chops those S9-100 signals down to size until they equalize with weaker signals, giving relatively constant headphone volume. Because the clipping action produces some distortion, the limiter should feed a headphone Q-peaker (described in another circuit).

The value of Rx should match the existing speaker impedance and power. In most cases this will be equal to 4 ohms at 2-5 watts.

Audio Peak Limiter

An effective speech clipper for transmitters and PA systems can be made from only two diodes and a capacitor.

Connect the diodes to the collector of the microphone preamplifier, the stage with at least a 1V peak-to-peak audio output voltage. The diodes clip at approximately .2V, allowing overall amplifier gain to be increased without speech peaks producing over-modulation or excess peak power output.

Capacitor C1's voltage rating must be at least equal to the DC supply voltage at the preamp collector. If the preamp uses a negative supply, reverse C1's polarity. The output level to the rest of the amplifier is determined by R1. If the diodes cause distortion in the preamplifier, add resistor Rx, as shown. Use the necessary value between 1000 and 10,000 ohms.

29¢ Mag. Phone Filter

If you're tired of copying CW signals through the grind without a Q-multiplier on your receiver, the 29¢ Mag. Phone Filter is the next best answer. It's the cheapest route to greater selectivity.

Capacitor C1 plus the inductance of a magnetic headset form a parallel resonant circuit at approximately 1 kHz. All other signals are sharply attenuated so you hear mainly the signal you want. Resistor R1 isolates the resonant circuit to prevent a receiver's low output impedance from reducing the "Q" of the headset circuit.

The exact value of C1 depends on the particular headset. Try different values in the range shown until the desired resonant frequency or peaking action is obtained.

PARTS LIST FOR 29¢ MAG. PHONE FILTER

C1	0.005-0.05-uF capacitor (see text)
E1	2000-ohm magnetic headset (Caelctro J4-825)
R1	100,00-ohm, ½-watt resistor
21 SWL's Simple Squelch

It's almost a universal rule that two-way radios have a squelch control, a device that mutes the background noise until a station is received. Even public service radios now include a squelch, so why put up with ear-jarring noise when listening on your SWL receiver. Just a couple of #47 pilot lamps scrounged from old tube radios and two resistors are all that's needed to squelch your SW receiver. And if you can't scrounge the lamps, they're available at just about every radio parts distributor and service shop. Switch S1 is needed only to bypass the squelch for very weak signals.

In many instances, the circuit will provide a basic attenuation of the noise background, not complete squelch. But it's a substantial squelch considering the low cost and ease of construction. Just about any enclosure, plastic or metal, can be used. The components can even lie on the table.

22 Ham's Electronic Keyer

This is not the equal of a $50 electronic keyer, but it's a lot easier to use than an ordinary hand key.

When the paddle terminal connects to the dot terminal, C1 starts to charge. When C1's voltage causes Q1 to conduct, collector current pulls in relay K1, thereby keying the transmitter. When K1 grounds the paddle terminal, C1 discharges, causing Q1 to stop conducting and dropping out the relay. When K1's paddle connection is restored to ground the cycle repeats until the paddle is released.

Dashes work in similar fashion. Potentiometer R1 sets the dot-dash ratio, potentiometer R2 sets the speed. Potentiometer R5 drops out the relay just before Q1 stops conducting and has a slight effect on the dot-space ratio.

23 FM Knockout Filter

A simple filter is all it takes to remove a strong, local FM signal that is blocking or cross modulating other FM stations. The filter connects in series with the FM antenna's downlead. Just be sure to use the shortest possible length between the filter's inputs.
output and the receiver.

The filter must be assembled in a metal cabinet with ¼-in. access holes so you can adjust the trimmer tuning capacitors. The metal cabinet is grounded to the receiver’s chassis. Switch S1 by-passes the filter for normal operation. If your antenna’s downlead is coaxial cable, only one filter is installed—in series with the center (hot) conductor. To adjust, tune in the offending station and use an insulated alignment screwdriver to adjust trimmer capacitors C1 and C2 for minimum signal strength.

24 Stereo Balancer

One sure way to be certain your stereo system is in perfect electrical balance is to use a power amplifier Stereo Balancer to substitute for guesswork.

Meter M1 can be a zero-center DC milliammeter rated 10–1 mA or less. Alternately, you could use a standard meter but the pointer might be driven off-scale to the left while making adjustments, though the meter won’t be damaged—it will just be an inconvenience.

Play any stereo disc or tape and then set the amplifier to mono. Adjust the left and right channel balance until meter M1 indicates zero; meaning the left and right output level are identical—that’s balance.

![PARTS LIST FOR STEREO BALANCER]

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2</td>
<td>Silicon rectifier rated 100 PIV at any low current</td>
</tr>
<tr>
<td>M1</td>
<td>Zero-center DC mA meter (see text)</td>
</tr>
<tr>
<td>R1, R2</td>
<td>1000-ohm, ½-watt resistor, 5% or 1%</td>
</tr>
</tbody>
</table>

25 Wireless BC Booster

Just about any standard radio can be turned into a DX hound with this easy-to-build wireless broadcast band booster. Transistor Q1 in conjunction with antenna coil T1 provides from 10 to 20 dB extra gain to snare those weak BC stations. The project should be assembled in a metal cabinet as “feedback” from coupling coil L1 to the input will cause oscillation.

Field effect transistor (FET) Q1 is the type with built-in diode protection so you don’t have to worry about strong signals or static discharges.

To use the booster, first set C1 to the approximate frequency of the desired station—C1 is supplied with a calibrated dial. Place coil L1 parallel to the rod antenna inside the radio. L1 can be taped to the back of the radio. Turn the radio on and tune in the desired station; then peak the signal with C1. C1 can also be used to reject excessively strong signals which might be interfering with the desired station. You cannot, however, reject a station close to, or on the same frequency as the desired station.

The antenna can be any length of wire from 3 feet or longer. If you use a metal cabinet connect the antenna into the circuit through an insulated binding post.
26 AC Emergency Light

Next time the power fails there's no need to stumble around in the dark looking for a flashlight, for this emergency light will automatically turn on a battery lamp as soon as the power fails. This same type of emergency lighting is now required in many public buildings.

As long as there's AC on the powerline relay K1 contacts are held open breaking the battery-to-lamp circuit. When power fails the wiper on K1 springs back, closing the battery-to-lamp circuit.

The lamp is one of those inexpensive battery-operated closet lamps sold by mail order houses. They normally work off two C-cells (3 volts), so you'll have to replace the bulb with a 6-volt flashlight or high intensity bulb. Don't try to use the existing batteries and bulb; the C-cells won't run long enough. The lantern battery has a shelf life of about 2-years in standby service. To be sure of lighting when you need it, affix a label to the battery showing the date it should be replaced.

Relay K1 can be any continuous duty 117 VAC model with spst contacts. Note the lighting circuit connects to the relay contacts that are open when K1 is energized.

27 Mike Input Generator

- You can always feed an audio generator into a mike input to check an AF system, but how do you check the mike? Saying "woof, woof, hello, test" gets mighty tiring. Instead, clamp the generator to the front of the mike with a rubber band and you'll send continuous tone through the mike. It lets you take your time checking the mike, connecting cable, jacks, amplifiers, etc.

- The beeper can be built in a small plastic case—nothing is critical. The speaker may be any size from one to three inches.

28 A Budget 800-Hz CPO

Components you have lying about might make this simple, budget CPO (code practice oscillator). Using component values given, the tone frequency is approximately 800 Hz. It can be changed by substituting different values for C1 and C2, but maintain the same capacity ratio. That is, C2 should always be about 10 times larger than C1. Battery current drain is only about 1 milliampere.
29 Open Circuit Burglar Alarm

- This simple electronic latch-up alarm circuit handles normally open protective devices such as concealed floor-mat switches. All protective devices are connected in parallel and the alarm is tripped as soon as any of the devices are closed. There is no standby current and a battery power source will last its shelf life. Either a line powered 6VDC supply or a 6V lantern battery is suggested. Once the alarm is tripped it can only be turned off by opening the master switch S1.

![Diagram of Open Circuit Burglar Alarm]

PARTS LIST

C1—47-uF, 12 VDC electrolytic capacitor (Galexto A1-108 or equiv.)
R1—4700-ohm, ½-watt resistor
R2—1000-ohm, ½-watt resistor
S1—Spst switch
SCR—Silicon controlled rectifier, rated 12 PIV or higher (General Electric C106 series)
V1—6 VDC alarm bell (Audiotex 30-9100)

30 Speaker-A-Mike Preamp

- A speaker can often serve as a microphone in intercoms, "one-way telephones" or as an emergency microphone. All the speaker needs is amplification to raise "voice power" output to normal mike level.

- A small speaker-mike preamp can easily be thrown together with junk box parts and just about any general purpose transistor with a beta of 30 to about 150. While a pnp transistor is shown, an npn type can be substituted if the battery and C1's polarity are reversed. No other changes are needed.

- Q1 is a common base amplifier providing a low impedance input to match a low impedance speaker of 3.2, 4, 6-8, or 16 ohms. The collector output is medium impedance and the .47-uF capacitor at C2 allows the preamp to work into loads of 7000 ohms or higher.

![Diagram of Speaker-A-Mike Preamp]

PARTS LIST FOR SPEAKER-A-MIKE PREAMP

B1—9-V battery
C1—4.7-uF, 25-VDC electrolytic capacitor
C2—0.47-uF, 10-VDC capacitor
Q1—GE-2 pnp transistor
R1—270,000-ohm, ½-watt resistor
R2—27,000-ohm, ½-watt resistor
S1—Spst switch
Spkr—Any PM speaker, 4-10-ohms

31 Wide Range Funk Box

- Fuzz, echo, reverb, big bass. They're all out! The new guitar sound is *funky*, and you'll get with it with the wide-range funk box. Just crank potentiometer R7 and you'll get an extra twang from way down low to way up high. Just about any construction can be used. If you build it in a metal box, use a push switch for switch S1 and you'll be able to key the effect in and out with your foot.

- To adjust the Funk Box simply adjust potentiometer R4 until you hear a whistle (oscillation); then back off R4 until the oscillation just ceases. Connect your guitar to jack J1 and twang away. The effect can be varied from bass to treble by R7.
32 Fancy Guitar Fuzzbox

Add that way-out fuzz sound to any electric guitar by connecting the Fuzzbox between your guitar and amplifier. Potentiometer R3 sets the degree of fuzz, R8 the output level.

Since the fuzz effect cannot be completely eliminated by R3, fuzz-free sound requires a bypass switch from the input to output terminals.

The switch should completely disconnect the fuzzbox output; the input can remain in parallel with the bypass switch.

33 Budget Mike Mixer

Parts list for Budget Mike Mixer:

- **B1** — 9-V battery
- **C1, C2** — 0.1-μF, 50-VDC capacitor
- **C3** — 10-μF, 12-VDC electrolytic capacitor
- **Q1** — NPN general purpose transistor, (GE-2, Calelectro K4-500, etc.)
- **R1, R2** — 2-megohm audio taper potentiometer
- **R3, R4** — 100,000-ohm, ½-watt resistor
- **R5** — 15,000-ohm, ½-watt resistor
- **S1** — Spst switch
Using components often found in an experimenter's junk box, this two-channel mike mixer handles high impedance or dynamic microphones. Level controls R1 and R2 should not be run wide open with hi-Z mikes since the input impedance then becomes the value of R3 and R4, or 100,000 ohms. If a hi-Z mike is loaded by less than 1 megohm, the low frequency response of the mike is attenuated.

Transistor Q1 can be almost any general purpose type such as the 2N107 or 2N217. However, the better the transistor, the better the signal-to-noise ratio. Top quality high-gain transistors should not be used since relatively high leakage current of experimenter-grade transistors provides the base bias current. Transistors with low leakage might produce high distortion because of low "internal" base bias.

Hi-Fi Mike Mixer

For serious recording of anything other than speech and sound effects, two mikes are always better than one. Our hi-fi mike mixer does its mixing after amplification so the amplifiers compensate for the mixer loss first, thereby improving the signal-to-noise ratio as compared with simple mixers that mix first and amplify after the mixer.

![Hi-Fi Mike Mixer Circuit Diagram]

Using FET semiconductors with their high input impedance, this basic mixer can be used with high impedance crystal and ceramic microphones. It does not attenuate low frequency response whatsoever through low impedance loading of the microphone. The mixer's response is 10 to 20,000 Hertz.

Two mixers can be built into the same cabinet for stereo use. Even with two independent (stereo) mixers, current drain is on the order of a few milliamperes and two series-connected transistor 2U6-type batteries can be used.

PARTS LIST FOR HI-FI MIKE MIXER

- **C1, C4** – 0.05-μF, 50-VDC capacitor
- **C2, C5** – 22-μF, 10-VDC electrolytic capacitor
- **C3, C6** – 0.1-μF, 50-VDC capacitor
- **Q1, Q2** – HEP-801 or Calectro K4-634 FET transistor
- **R1, R6** – 2-megohm, 1/2-watt resistor
- **R2, R7** – 6800-ohm, 1/2-watt resistor
- **R3, R8** – 560-ohm, 1/2-watt resistor
- **R4, R9** – 500,000-ohm, audio taper potentiometer
- **R5, R10** – 100,000-ohm, 1/2-watt resistor

Tape Dubbing Filter

Next time a friend asks you to dub his old 78s or worn 45s record collection on tape, don't start telling him how it will come out with more scratch and noise than music. No need to apologize. Just pass his records through the Tape Dubbing Filter and he'll never know why. It's not the noise—it will all be gone.

The filter connects between the signal source such as a record player and your tape recorder. Its cut-off frequency starts at about 5000 Hz, attenuation increasing at the higher noise producing frequencies. Control R2 allows you to shift the "corner" frequency slightly up or down to obtain more or less high frequency attenuation as needed. For proper operation, the recorder input impedance should be at least 100,000 ohms. Some solid state recorders with input impedances less than 100,000 ohms will reduce the degree of high frequency noise filtering. This unit should be built in a metal enclosure.

PARTS LIST FOR THE TAPE DUBBING FILTER

- **C1, C2** – 330-pF disc capacitor, 50 VDC or better
- **R1** – 100,000-ohm, 1/2-watt resistor
- **R2** – 100,000-ohm potentiometer, any taper
learn by doing!

Perform more than 200 exciting experiments with CIE’s fascinating ELECTRONICS LABORATORY PROGRAM!

Put theory... into practice
You get your own Experimental Electronics Laboratory... work with components comparable to those used by industry!

With CIE's Experimental Electronics Laboratory, you'll perform actual experiments and become adept at handling components. This valuable "hands on" experience helps you learn the "how" as well as the "why."

Testing and troubleshooting are an important part of your learning experience. Included in your laboratory is a precision "multimeter" to diagnose electrical and electronic troubles quickly and accurately.

Modern space-age components like this IC (integrated circuit) are professional quality and can be used again and again in many of your projects. Lesson by lesson, piece by piece your knowledge grows!

Prepare now for a rewarding career in Electronics... the Science of the Seventies.

Electronics miracles are changing today's world with breathtaking speed. This growth in electronics technology has generated a need for electronics technicians trained in theory and practice to build the products, maintain them, and troubleshoot them during the Seventies and beyond.

Don't just wait for something to "happen" in your present job. Get ready now for a career you'll really enjoy... with the opportunity for a good income and the chance for advancement.

Practical experience with experiments
"Hands on" experience helps to reinforce basic theory. When you learn by doing, you discover the "how" as well as the "why."

You'll find out for yourself the right way as well as the wrong way to use electronic components and lab equipment. This combination of "hands on" learning locks in your understanding of the crucial principles you'll use on the job in your new career.

And you do it all at home, in your spare time, at your best study pace. CIE's outstanding lesson plan allows you to progress step by step. An instructional technique time-tested for over 40 years of specialized electronics independent home-study training.

Importance of an FCC License and our Warranty
If you want to work in commercial broadcasting... television or AM or FM broadcasting... as a broadcast engineer, federal law requires you to have a First Class Radiotelephone License. Or if you plan to operate or to maintain mobile two-way communications systems, microwave relay stations or radar and signaling devices, a Second Class FCC License is required.

Even if you aren't planning a career which involves radio transmission of any kind, an FCC License is valuable to have as Government certification of certain technical skills. It's a job credential recognized by some employers as evidence that you really know your stuff.

To get an FCC License, you must pass a licensing exam administered by the government. And if you are confident that you can successfully earn your license, if you're willing to put forth an effort, because the vast majority of CIE students have. In fact, based on continuing surveys, close to 9 out of 10 CIE graduates passed their FCC exams!

That's why we can offer this Warranty: when you successfully complete any CIE career course which includes FCC License preparation, you will be able to pass the Government FCC Examination for the License for which the course prepared you or you will be entitled to a full refund of an amount equal to the cash price of tuition for CIE's Course No. 3, "First Class FCC License," in effect at the time you enrolled. This warranty is good from the date you enroll until the last date allowed for completion of your course.

That's it! We warrant that you will get the License you trained for.

You'll have attractive job opportunities
There are already been many exciting developments and breakthroughs in Electronics and some people might assume there will be no new frontiers... no new worlds to conquer. Not so.

Electronics is still growing. In nearly every one of the new and exciting fields of the Seventies you find electronics skills and knowledge in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications. Once you have the solid technical background you need, you can go after the career field you want... work for a big corporation, a small company, or even go into business for yourself.

Yes, Electronics can be the door to a whole new world of career opportunities for you. And CIE training can be your key.

Send for FREE school catalog
Discover the opportunities open to people with electronics training. Learn how CIE career courses can help you build new skills and knowledge and prepare you for a meaningful, rewarding career. We have courses for the beginner, for the hobbyist, for the electronics technician, and for the electronics engineer. Whether you are just starting out in Electronics or are a college-trained engineer in need of updating (or anywhere in between), CIE has a course designed to fit your background, experience, and future goals.

Send today for our FREE school catalog and complete career information. For your convenience, we will try to have a representative call to assist in course selection. Mail reply card or coupon to CIE... or write: Cleveland Institute of Electronics, Inc., 1776 East 17th Street, Cleveland, Ohio 44114. Do it TODAY.

101 ELECTRONIC PROJECTS 1975
Automatic Hi-Fi Shutoff

It happens to just about everyone. One minute you're listening to the hi-fi, the next you're called away to answer the doorbell or a phone call. You forget all about the music, the record plays through, the automatic turntable shuts off—but the amplifier stays on until you happen to pass by and notice the glow from the pilot lamps. Yet, this simple circuit, which you can throw together in less than an hour, will automatically turn off the amplifier when the turntable is off.

The relay coil, voltage is taken from across the phono motor; when the turntable motor is on, relay K1 closes and applies power to AC socket S01; when the turntable shuts off, removing voltage from the motor, K1 opens, disconnecting power from the outlet. Because the turntable automatic shutoff switch might not be able to carry the amplifier load, the AC power for S01 is taken off before the automatic shutoff switch. Switch S1 bypasses the relay contacts and applies power to the socket even when the turntable is off.

Tape Dubber's Pad

Many cassette recorders do not have a high level (aux) input; they are meant only for use with microphones. If you try to dub directly from another recorder's "line" output, or from across the speaker, the relatively high signal level overloads the microphone input, causing severe distortion.

Good dubs can be obtained by attenuating the high level signal almost 50 dB, so the attenuated signal is essentially equal to microphone level. This recorder bridging cord provides about 50 dB attenuation in a single, easy-to-handle assembly. Connect resistor R1 in series with the shielded cable hot lead. Connect the free end of R1 to recorder plug PL2 and one end of resistor R2. Fold R2 back adjacent to R1 and solder the free end to the cable shield. Loop a wire from the shield to the PL2 outside (sleeve) terminal. PL1 should match the output jack of the recorder you dub from.

Hi-to-Lo Z Mike Amp

Many cassette recorders do not have a high level (aux) input; they are meant only for use with microphones. If you try to dub directly from another recorder's "line" output, or from across the speaker, the relatively high signal level overloads the microphone input, causing severe distortion.

Good dubs can be obtained by attenuating the high level signal almost 50 dB, so the attenuated signal is essentially equal to microphone level. This recorder bridging cord provides about 50 dB attenuation in a single, easy-to-handle assembly. Connect resistor R1 in series with the shielded cable hot lead. Connect the free end of R1 to recorder plug PL2 and one end of resistor R2. Fold R2 back adjacent to R1 and solder the free end to the cable shield. Loop a wire from the shield to the PL2 outside (sleeve) terminal. PL1 should match the output jack of the recorder you dub from.

PARTS LIST FOR AUTOMATIC HI-FI SHUTOFF

K1—117-VAC relay with contacts rated at least 5 amperes at 117 VAC (Calectro D1-980 or equiv.)
S1—Switch, Spst (shutoff bypass)
S01—AC socket (Calectro F3-100)

AUTOMATIC SHUT-OFF SWITCH ON PHONOGRAPH

36 Automatic Hi-Fi Shutoff

37 Tape Dubber's Pad

38 Hi-to-Lo Z Mike Amp
Try to run a high impedance mike line for more than 25 feet and you're sure to get high frequency losses and hum pickup. But this simple junk-box project mounted in a small metal enclosure on the mike stand will convert the mike's output to a low impedance that can run for hundreds of feet without hum pickup or losses.

The output can be run into any microphone input-rated from 150-ohms up to high impedance. The circuit serves only to convert high to low impedance; it provides no amplification. A metal enclosure must be used. The Field Effect Transistor, Q1, can be just about any surplus N-channel type.

39 78's Hiss Filter

Old 78-rpm collector's-item records cut back in the early days when performers sang in front of a large horn usually have a peak in the midband that drives the sound into your mind like a fingernail scratched across a blackboard. The overall sound quality is easily tamed, and made more natural and modern, by attenuating the shrill peaks with a Record Restorer, a device that suppresses, by hi-fi standards, the midband frequencies.

The Record Restorer should be assembled in a metal cabinet to prevent hum pickup. Connect the output of your phonograph to the restorer input. Connect the output of the restorer to your tape recorder. Set potentiometer R2 to maximum resistance and adjust potentiometer R3 for the most pleasing sound. If R3's adjustment is too little, or too much as evidenced by a "hole" in the sound quality, trim the restorer with R2 until you get the optimum equalization.

40 Headphone Control Box

Even if your stereo set doesn't have a headphone output you can still get the intimate sound of headphone listening by adding this easy to build stereophone controller. Unlike a simple switching system, the controller has individual level controls for both the left and right cans (phones), thus allowing you to balance phone volume without upsetting the amplifier control settings.

When the speakers are re-connected by switch S1, the amplifier is at its normal volume level. Volume controls R1 and R2 should be wire-wound types rated at least 2 watts if your stereo amplifier has a power output greater than 10 watts. If your amplifier's output is less than 10 watts, R1 and R2 can be any wire-wound type rated 2 watts or less. Resistors R3 and R4 only serve to protect the phones against damage in the event you have the controls set for full volume when you switch to phone operation.
41 Audio Z-Matcher

- Headphone outputs aren't standard. On some equipment the phone output might be low impedance such as for hi-fi type headphones; on other equipment the phone output might be "high-Z" such as 5000 or 10,000 ohms. Connect low-Z phones to a high-Z output and the volume level will fall to nothing, and distortion might soar to unpleasant values.

But use a Z-Matcher, actually a low-to-high matching transformer, and you can use just about any phone on any circuit. Don't let the 4 and 10,000-ohm markings fool you. Any low-Z phone from 4 to 20 ohms connects to the 4-ohm transformer terminals; any high-Z phone connects to the 10,000-ohm terminals. For example, if you are using 8-ohm hi-fi phones and a recorder with a 5000-ohm phone output, connect the 8-ohm phones to the 4-ohm terminals and the 10,000-ohm terminals to the recorder. An exact match isn't critical.

42 Add-A-Tweeter

- Any single-voice coil speaker is hard pressed to handle both low and high frequencies simultaneously—and it's the highs that suffer most. A much cleaner sound can usually be obtained from speakers 6 inches or larger if the highs are pumped through a tweeter. It can be any small speaker rated 4 to 6 ohms of approximately 2 to 3 inches in diameter.

The back-to-back capacitors, C1 and C2, permit only the highs from about 1500 Hz up to pass into the tweeter. By keeping the lows out of the tweeter, the highs come out cleaner, and there's no chance of the greater low frequency power "blowing" the tweeter. Potentiometer R1 is used to match the tweeter's output level to that of the woofer—because small speakers are generally much more efficient than large speakers. If you eliminate R1, the highs will literally scream in your ears.

43 Hook-up Remote Speakers

- Even if your hi-fi amplifier does not have output terminals for remote speakers, it is easy enough to add them without complex switching equipment. With few exceptions, modern solid-state amplifiers have no output transformer and automatically match any speaker impedance between 4 and 16 ohms. The only important consideration is that the total impedance connected to the left and/or right speaker output is never less than 4 ohms, or the amplifier will attempt to deliver so much power output, the output transistors will self-destruct.

If your main speakers have an impedance of 8 or 16 ohms, simply add remote speakers as shown; switch S1 turns the remote speakers on and off. Since transistor amplifiers usually put out more power at 4 ohms than at 8 or 16 ohms, adding the extra speakers does not substantially reduce the volume at the main speakers because the amplifier sees a lower impedance load and attempts to drive more power output into the combined speaker load.

If your speakers are 4 ohms, and you plan to use 4 ohm remote speakers use the circuit modification shown. Switching in the remote speaker will result in the main and remote speakers being series connected for a total load of 8 ohms.
Remote Volume Control

- Your CB rig, or SW receiver, or hi-fi amplifier can do double duty by feeding signals around the house. But to avoid blasting the sound in one location while it's a pipsqueak somewhere else, connect an L pad at each speaker, then run the transceiver gain nearly wide open.

- The L pad is a special impedance-matching volume control that lets you adjust the volume at each individual speaker from full off to full on, without affecting the volume at the other speakers. Regardless of the impedance of the speakers you're using, best results are obtained with 8 ohm L pads.

Audio Wattmeter

- Here's an easy way to measure an amplifier's output power without trying to convert voltage to power measurements. Resistor R1 provides the load for your amplifier and should be rated at least twice the maximum amplifier power output; for example, if your amp puts out 25 watts, R1 should be rated at least 50 watts.

- The meter scale must be hand calibrated, and will take some time and effort, but once done it's done for good. Remove the scale cover from meter M1 and borrow an AC variable autotransformer, or connect a 1000 Hz signal generator to the amplifier output. Connect the output of the autotransformer (or amplifier) to binding posts BP1 and BP2, and connect an AC voltmeter (VOM) across the binding posts. Set R2 to off—full counter-clockwise if correctly wired. Adjust the autotransformer (or amplifier) output until the AC meter indicates 20 V rms—the voltage for 50 watts across 8 ohms.

- Adjust potentiometer R2 for a full scale indication on meter M1. Seal R2's shaft with a drop of Glyptol or nail polish. Reduce the voltage across the binding posts in accordance with the table shown and mark the meter scale accordingly.

Audio Distortion Meter

- This 1-kHz distortion meter is extremely accurate and is handy for measuring the distortion of power amplifiers.

- Resistor Rx is the load resistor for the amplifier; 4, 8 or 16 ohms at the appropriate power rating. The AC meter can be an AC-VIM or a 20,-000 ohms/volt VOM. Adjust the

Parts List for Remote Volume Control

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1, L2</td>
<td>8-ohm L pad (Calectro 52-176 for stereo; Calectro 52-175 for mono, or equivalent)</td>
</tr>
<tr>
<td>PL1</td>
<td>Plug to match your external speaker jack</td>
</tr>
</tbody>
</table>

Parts List for an Audio Wattmeter

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Voltage (V)</th>
<th>Watts at 8 ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1, BP2</td>
<td>Insulated binding posts</td>
<td>20.0</td>
<td>50</td>
</tr>
<tr>
<td>C1, C2</td>
<td>100-uF, 50 VDC capacitors</td>
<td>17.9</td>
<td>40</td>
</tr>
<tr>
<td>D1, D2, D3, D4</td>
<td>1-A, 400-PIV diode</td>
<td>15.5</td>
<td>30</td>
</tr>
<tr>
<td>M1</td>
<td>0-1 mA DC meter</td>
<td>14.1</td>
<td>25</td>
</tr>
<tr>
<td>R1</td>
<td>8-ohm, 100-watt resistor, see text</td>
<td>12.6</td>
<td>20</td>
</tr>
<tr>
<td>R2</td>
<td>5000-ohm linear taper potentiometer</td>
<td>11.0</td>
<td>15</td>
</tr>
</tbody>
</table>

- This 1-kHz distortion meter is extremely accurate and is handy for measuring the distortion of power amplifiers.

- Resistor Rx is the load resistor for the amplifier; 4, 8 or 16 ohms at the appropriate power rating. The AC meter can be an AC-VIM or a 20,-000 ohms/volt VOM. Adjust the
amplifier for the desired power output, set switch S1 to the calibrate position and note the meter reading. Set S1 to the THD (Total Harmonic Distortion) position and adjust both coil L and resistor R for the minimum meter reading.

The percent harmonic distortion is equal to the minimum reading divided by the calibrate reading x 100.

The circuit works by filtering out the 1-kHz fundamental signal with the L1/C1/C2/R1 T-notch filter. What's left is the harmonic content.

PARTS LIST FOR AUDIO DISTORTION METER

- C1, C2—0.01-uF, 100-VDC capacitor, 5%
- L1—UTC VC-15 variable inductor (Do not substitute)
- R1—500,000-ohm pot
- Rx—Amplifier load resistor (see text)
- S1—Dpdt switch

RF Probe for VOM

- C1—500-pF, 400-VDC capacitor
- C2—0.001-uF, disc capacitor
- D1—1N4149 diode
- R1—15,000-ohm, 1/4-watt resistor

Transistorized FSM

- A kilowatt transmitter may pin the needle of regular FSMS (field strength meters), but you need high sensitivity to get readings from low-power oscillators, flea power transmitters and CB walkie-talkies. This simple, amplified FSM has a sensitivity of 150 to 300 times that of ordinary models. It indicates full scale when other meters can’t budge off the pin.

Dependable frequency range is approximately 3 to 30 MHz. A metal enclosure is recommended, with a stiff wire antenna about 6 in. long. For compactness, RFC should be a miniature 2.5-mH choke.

To operate the unit, sensitivity control R1 is adjusted for ½ to ¾-scale reading. Avoid working too close to the top of the scale, since it can saturate transistor Q1, producing full-scale readings at all times. Back off on R1 as you make transmitter adjustments to keep the needle at approximately half scale. Any high-gain npn small-signal transistor can be substituted for Q1.
RF Probe for VTVM

Three components are all that's needed to make a VTVM measure RF voltage up to 200 MHz (depending on the diode used). The probe should be built in a metal can with shielded wire for the connecting lead to the VTVM. Connect the shielded wire to the metal can and solder if possible.

The diode rectifies the RF voltage, while the capacity of the shielded cable provides filtering. The output of the probe is positive, with the VTVM indicating the peak value of the RF waveform. To determine the RMS value, multiply the VTVM reading by 0.707. The maximum RF voltage that can be applied is limited by the diode. A 1N60 is limited to 30V peak RF voltage. For higher voltage-handling capacity, substitute a higher voltage small signal detector diode.

Easy Field Strength Meter

High sensitivity without amplification is obtained when a field strength meter (FSM) is tuned to its operating frequency. With a poly-type miniature capacitor for C1, the FSM can be built in a pocket-size cabinet.

Tuning range is from 1.5 to 144 MHz, depending on the choice of coil L1. The coil can use phone tip jacks for a plug-in connection for band changing. Consult any coil table for L1's winding data since coil construction depends on the type of wire and frequency.

Even greater sensitivity is obtained if a more sensitive meter is used. A 50-µA meter, M1, provides maximum sensitivity combined with reasonably rugged construction.

Slider for CB Receivers

A crystal-controlled CB rig with overtone crystals and an IF of 1300 to 1500 kHz can be converted to full 23-channel tuning with this adapter. It works on circuits where the crystal connects from oscillator grid to ground.

Use a 1-in. wood dowel for L1's form. Wind the coil as tightly as possible and stretch it to a length of 1 inch. Connection is made to the transceiver with the shortest possible length of RG-58A/U coaxial cable. The shield connects to the transceiver's chassis and to the bottom end of L1.

Set C3 so its plates are fully closed, then adjust C2 until channel 1 is received. Depending on the IF frequency, C3 might tune slightly more or less than the full band. If so, change C1's value very slightly to obtain only 23-channel coverage with C3. Making C1 smaller narrows the tuning range.
52 Simple Mod. Monitor

PARTS LIST FOR
SIMPLE MOD. MONITOR
C1-100-pF disc capacitor
D1-1N914 diode
E1-Magnetic headphone, 2000 ohms or better
L1-Coil, 3 turns on 1½-in. dia.
form, use any thin gauge wire

This simple modulation monitor for AM ham transmitters requires no connection to the transmitter. Just position the loop near the final tank or antenna matching coil until the signal is heard in the headphones.

53 CB Modulation Monitor

You can measure CB audio modulation percentage with the accuracy of the local broadcast station—'cause you'll be using the same type system.

In building the circuit, keep R1, D1 and R2's leads as short as possible. Meter M1 must be a high-speed model, such as the Alco P-1000 series. Connect the meter across the transceiver's RF output with a coaxial T-connector in the transmission line. As you key the transmitter, set switch S1 to calibrate and adjust R2 for a full scale reading. Accuracy will be within 10%.

Better accuracy is assured if R2's adjustment and meter calibrating point is compared against a scope modulation pattern. Don't compare this meter against commercial CB modulation meters. On a tone signal, this one is less accurate, but on speech modulation, the commercial models are not as accurate as a circuit of this type.

54 Appliance Tester

A simple circuit consisting of a 50-watt lamp, fuse and power outlet is all that's needed to check out appliances such as toasters and electric coffee pots.

To check for opens, first plug the tester into a live outlet. Next, connect the test leads to the appliance's power supply.

This simple modulation monitor for AM ham transmitters requires no connection to the transmitter. Just position the loop near the final tank or antenna matching coil until the signal is heard in the headphones.

This simple modulation monitor for AM ham transmitters requires no connection to the transmitter. Just position the loop near the final tank or antenna matching coil until the signal is heard in the headphones.
cord; if the lamp lights, the circuit is good (not open). Because the appliance is in series with the lamp, the lamp may not light to full brilliance. You are only interested in whether the lamp lights at all—not the level of brilliance.

If you suspect there is a short from the appliance's motor or heating coil to the appliance frame which can cause a shock hazard, connect one test lead to the appliance frame and connect the other test lead first to one prong of the appliance's plug and then to the other prong. If the lamp lights with either connection there is a short to the frame. If the lamp fails to light at all, the appliance frame is safe.

After the repair is made, try out the appliance by using the fused power outlet, PL1. This way, if the appliance is still defective it will blow fuse F1 rather than a fuse in the basement.

55 455 kHz Alignment Osc.

Using a 455-kHz crystal, this generator provides a signal for testing and aligning radio IF circuits. The unit is built on a perfboard or some other rigid mounting to achieve good circuit stability. A metal cabinet reduces radiation so the signal fed to the receiver will be primarily determined by level control R2.

To align the completed circuit, adjust L1’s slug for maximum S-meter reading in a receiver or connect R2 to an oscilloscope and adjust L1 for maximum output.

Turn the power supply on and off several times to make certain the oscillator starts consistently. If the oscillator fails to start every time, adjust L1’s slug slightly until you obtain immediate and consistent starting each time the power is applied.

56 Test Osc. for Crystals

A fast way to see if the crystal from your transmitter or receiver is properly "active" is to compare its output against that of a known good crystal. This crystal checker will handle both fundamental and overtone type crystals. Socket SO1 should match the pins on your crystals. If you use more than one type of crystal, install two (or more) sockets in parallel. The unit can be assembled in any type of cabinet.
To test a crystal's activity, first plug in a known good crystal, depress push button switch PB1 and note the meter reading. Then install the questionable crystal, press PB1 and note its meter reading; if it's good its output should approximate that of the reference crystal. Take care that you don't compare apples with oranges; the reference crystal should be the exact same type as the crystal to be tested. If good crystals drive the meter off scale, install a 1000-ohm, ½-watt, 10 percent resistor in series with meter M1.

Miladaptor for VTVM

Less than $2 worth of parts is all it takes to convert your VTVM into a DC milliammeter. To use the Miladaptor you simply multiply the VTVM reading by X10, X100 or X1000 to obtain the DC current. For example, if the VTVM indicates 0.1 volt and S1 is set to X100, the current is 0.1 X100 or 10 milliamperes. If the VTVM indicates 0.25 volts and S1 is set to X1000, the current is 0.25 X1000 or 250 milliamperes.

The circuit under test connects to binding posts P1 and P2; the VTVM connects to binding posts P3 and P4. Switch S1 must be the make-before-break type. To avoid damage always start with S1 in the X1000 position and downrange until the VTVM indicates a convenient reading.

Low Voltage Diode Tester

Low voltage signal diodes are easily tested with this "go/no-go" checker. The only restriction is that a diode under test be rated to handle at least 60 mA. Diodes such as the IN34 cannot be checked since test current is too high.

If the diode is good, the lamp will light in one direction, and remain dark when the diode is reversed. If the lamp stays on when the diode is reversed, the diode is shorted. If the lamp stays dark when the diode is reversed, the diode is open.

To test diodes rated under 60 mA, a lower current lamp must be substituted in the checker.

Sine Wave Squarer

Two reverse-parallel diodes of the germanium type provide an emergency square wave generator. Since a germanium diode has an approximate 0.2 V breakover, any sine wave applied to the diodes will be clipped at 0.2 V. It provides a 0.4 peak-to-
peak square wave. It's not perfect since the "rise" of the original sine-wave is still present, as shown in the waveform. To prevent loading and possible distortion of the sine wave input a 1000-ohm resistor should be connected between the squarer and the generator.

60 Budget Scope Calibrator

- You can make accurate voltage measurements with your oscilloscope if you calibrate the vertical input with a Scope Calibrator.
- When the top of zener diode D1 goes negative it conducts and voltage across the diode is essentially zero. When the voltage at the top of the zener goes positive, it builds until it reaches 10 V. At that point the diode conducts, dropping five volts across D1. The result is a square wave which varies from zero to 10 V, as shown.
- The scope's vertical input is connected across the diode and the vertical attenuator control is adjusted so the square wave exactly fills one vertical division. This provides a calibration of 10 V peak-to-peak per division.

Parts List for Budget Scope Calibrator

- D1—10V, 0.4-watt Zener diode—HEP-101
- R1—270-ohm, ½-watt resistor
- T1—117 to 12.6 VAC filament (Calalectro D1-750)

61 Better Scope Calibrator

- Back-to-back zener diodes provide a scope calibrator with a zero reference output. Whether the calibration voltage is fed to a scope's AC or DC input, the baseline will not have to be readjusted.
- When the top of D1 goes positive D1 conducts current through to the D2 cathode. The voltage across D2 builds until 5 V is reached and the output waveform is 5 V positive. The reverse action takes place when the top of D1 goes negative, providing an output waveform of 5 V negative. The total result is a 10 V peak-to-peak square wave to calibrate the scope face.

Parts List for Better Scope Calibrator

- D1, D2—5-V, ½-watt Zener diode
- R1—270-ohm, ½-watt resistor

62 Scope Your CB Signal

- Critical inspection of a transmitter signal and accurate measurement of modulation is possible only with an oscilloscope. Note that you must use your scope's vertical plate connection. The RF signal can't travel through the vertical amplifier unless your scope happens to cost a kilobuck or more. Unfortunately, a CB transmit-
ter's RF output is so low the scope pattern is barely discernible—unless you use this booster.

Since a scope's vertical plate connections operate at a high input voltage, it requires that a CB transmitter's output be fed to a resonant circuit to step up to high RF voltage. The circuit shown will just about fill a 5-in. scope from edge to edge with virtually no loss at the transmitter.

First, wind L2 on the center of a 3/4-in. slug-tuned form. Then wind L1 adjacent to the ground end of L2. Connect L1 across the transmitter output with the CB antenna system also connected.

Adjust L1's slug for minimum standing-wave ratio (SWR). If the coil is correctly made, there should be no change in the antenna system's SWR. Adjust C3 for the desired scope trace height; it may be necessary to reset L1 each time C3 is adjusted.

PARTS LIST FOR SCOPE YOUR CB SIGNAL

- C1, C2—5-pF silver mica capacitor
- C3—60-pF trimmer capacitor (Calectro A1-247)
- L1—3 turns #22 solid, plastic-insulated wire, adjacent to ground end of L2
- L2—4 turns #18 enameled wire, centered on form
- 1—3/4-in. RF slug-tuned coil form (Calectro D1-895 or J. W. Miller 4400-2)

63 Time Base Reference

Operating on exactly 100 kHz, the Scope Calibrator provides a reference for calibrating the variable time base oscillator of general purpose scopes. If the scope is set, for example, so one cycle of the signal fills exactly 10 graticule divisions, each division represents 1 MHz, or 1 microsecond. If the scope is adjusted for 10 cycles on 10 graticule divisions, or 1 cycle per division, each division represents 100 kHz or 10 microseconds. Now if the scope's time base oscillator is sufficiently stable so it doesn't drift to far off, you can make precise measurements of an unknown pulse width, length and frequency.

PARTS LIST FOR TIME BASE REFERENCE

- C1, C3—0.01-uF, 25-VDC capacitor
- C2—0.002-uF, 25-VDC capacitor
- Q1—HEP-720 npn transistor
- R1—100,000-ohm, ½-watt resistor
- R2—1000-ohm, ½-watt resistor
- Xtal—100-kHz crystal

64 Magnetizer-Demagnetizer

Quite often it's most handy to magnetize your tools to start a screw or nut into a blind spot. On the other hand, there are times when your tools must have absolutely no trace of magnetism, such as when adjusting a tape recorder's heads. This easy device can flip your tools either way, at any time. All it takes is the press of a button.

Coil L1 is an ordinary TV focus coil. Using an ohmmeter, locate two pair of leads. Short one lead from each pair together and connect the coil into the circuit as shown. Assemble the unit in a plastic (not metal) cabinet using zip, or lamp, wire about 12-in. long for L1's connections.
To magnetize a tool, place switch S1 in the M position, insert the tool into L1's opening and depress switch PB1 for about 1 second. Release PB1 and then withdraw the tool. To de-magnetize, place the tool inside L1, set S1 to D and depress PB1. While holding PB1 down slowly withdraw the tool from L1. If the unit fails to magnetize reverse the connections of one pair of L1's leads.

65

Active Square Shaper

A quick-and-dirty square wave generator for audio amplifier tests can be fashioned from a standard signal generator and the Square Shaper. Simply drive the Square Shaper with about 1 volt from the generator; the maximum output at jack J1 will be a square wave of about 1 volt peak-to-peak. Just about any general purpose small-signal transistor can be used for Q1 and Q2, and any resistance value reasonably close to 470-ohms will be okay for R2 and R3. You can even substitute some surplus PNP transistors such as the 2N404 and 2N109 by simply reversing the polarity of battery B1.

66

Useful Tone Oscillator

<table>
<thead>
<tr>
<th>PARTS LIST FOR USEFUL TONE OSCILLATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1—9-V battery</td>
</tr>
<tr>
<td>C1, C2—0.02-uf, 25-VDC capacitor</td>
</tr>
<tr>
<td>Q1—n-p-n transistor, HEP-723 (Do not substitute)</td>
</tr>
<tr>
<td>R1—10,000-ohm, ½-watt resistor</td>
</tr>
<tr>
<td>R2—500,000-ohm pot (Calectro B1-666)</td>
</tr>
<tr>
<td>Spkr—3.2-ohm speaker</td>
</tr>
<tr>
<td>T1—Output transformer: 5000-ohm, center-tapped primary to 3.2-ohm secondary (Calectro D1-741 or equiv.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1—1.5-V “C” battery</td>
</tr>
<tr>
<td>C1, C2—0.2 or 0.25-uf, Mylar capacitor (Calectro A1-083 or equiv.)</td>
</tr>
<tr>
<td>C3—47-uf, 3 VDC electrolytic capacitor (Calectro A1-108 or equiv.)</td>
</tr>
<tr>
<td>J1—Phono jack</td>
</tr>
<tr>
<td>Q1, Q2—n-p-n transistor, 2N3394</td>
</tr>
<tr>
<td>R1—100,000-ohm, ½-watt resistor</td>
</tr>
<tr>
<td>R2, R3—470-ohm, ½-watt resistor</td>
</tr>
<tr>
<td>R4—100,000-ohm audio taper potentiometer (Calectro B1-665)</td>
</tr>
<tr>
<td>S1—Spst switch</td>
</tr>
</tbody>
</table>

101 ELECTRONIC PROJECTS 1975
The circuit is a Harley oscillator whose tone is determined by R2's value. Just about any wiring or layout will work, but transformer T1 must be the type used in table radios. A miniature transistor transformer might not oscillate, or if it does, will produce only "clean" high tones, with no raucous or low frequency tones.

For CPO operation connect a hand key across points C and D. For a "make" intruder alarm, connect one or more normally open magnetic switches across points C and D. For a "break" intruder alarm connect a jumper across C and D and connect a series wire circuit across A and B, which disables the oscillator though power is applied. An intruder breaking the series circuit, or a normally closed magnetic switch, causes the alarm to sound off.

For use as a signal generator, connect C and D and attach a shielded test signal lead directly across the speaker terminals.

Service Note: If the unit fails to oscillate, generally due to transistor differences, change C2's value slightly.

Twang-A-Matic

It seems no one cares for the sound of a plain, unadorned guitar. First they added fuzz, then big-boom bass, next it was reverberation and screaming highs. Now the in sound is twang, a guitar sound that more or less approximates a banjo or mandolin. A Twang-A-Matic produces these unusual sounds from an ordinary electric guitar by cutting the bass, severely distorting the midband and highs, and then amplifying the distortion. It might read "bad" to you, but it sure sounds good!

You can assemble the Twang-A-Matic in any type of cabinet. Switch S1 cuts the effect in and out while switch S2 turns the unit on and off. Output control R7 should be set so the Twang-A-Matic has the same volume level as the straight guitar feed-through. Various degrees of twang are obtained by varying the output so the guitar picks up with the level controls built into the guitar.

PARTS LIST FOR TWANG-A-MATIC

- B1—9-volt battery (Eveready 246 or equiv.)
- C1—0.001-μF disc capacitor 25 VDC or better (Caledro A1-125 or equiv.)
- C2—2-μF electrolytic capacitor, 15 VDC or better (Caledro A1-125)
- C3—1-μF electrolytic capacitor, 15 VDC or better
- C4—0.005-μF disc capacitor, 15 VDC or better
- J1, J2—Phone jack
- Q1, Q2—NPN transistor, 2N3394
- R1, R5—1 megohm, 1/2-watt resistor
- R2—10,000, 1/2-watt resistor
- R3—20,000-ohm, 1/2-watt resistor, 5 percent
- R4—18-ohm, 1/2-watt resistor
- R6—4700-ohm, 1/2-watt resistor
- R7—50,000-ohm potentiometer (Caledro B1-685 or equiv.)
- S1—Switch, spdt (twang in-out)
- S2—Switch, spst (on-off)

Lights-On Alerter

No more dead batteries in the morning; the Headlight Minder lets you know, loud and clear, if your lights are on when the ignition is off.

When the ignition only is on, the tone circuit is off since there is no complete power path for Q1. Diode D1 prevents positive battery voltage from flowing through Q1 to the lights. When lights and ignition are on, Q1's collector and emitter are positive and the tone generator remains off. When the lights are on and the ignition is off, Q1's (ground) terminal through R1 and the generator sounds off. You'll know you left the lights switched on.

The unit can be built in a metal cabinet fastened to the car's dashboard so R1 is connected through the cabinet to the car's chassis, thereby completing a negative battery connection.

50 101 ELECTRONIC PROJECTS 1975
PARTS LIST FOR LIGHTS-ON ALERTER

C1—30-uF, 25-VDC capacitor
C2—0.25-uF, Mylar cap (Calectro A1-083)
D1—1-A, 50-PIV rectifier (Calectro K4-555)
Q1—HEP-630 pnp transistor
R1—15,000-ohm, ½-watt resistor
R2—680-ohm, ½-watt resistor
S1—Dost switch
Spkr—8-ohm speaker (Calectro S2-200)
T1—500-ohm CT pri. to 8-ohm sec. output transformer (Calectro D1-712)

Angler’s Bite Booster

Click-click might not sound like much to you but to a fish it’s the dinner bell. That’s the lure of this electronic circuit. Shove the whole works in a watertight container, lower it over the side, and wait for the fish to hit the hooks.

For proper operation T1 must be subminiature type about half as large as your thumb. E1 must be a crystal headphone.

Lo-Parts Treasure Locator

You won’t find Long John Silver’s buried treasure but you will have lots of fun finding bottle caps and uneaten sandwiches at the beach; maybe even some quarters and dimes.

This treasure locator keeps costs down by using a transistor radio as the detector. The unit is assembled on a perf-board, with rigid component mounting a must. It is strapped to a broom handle close to the bottom where the search head is mounted. A transistor radio is mounted near the top of the handle.

With the radio tuned to a “weak
station.” Capacitor C1 is adjusted so the locator oscillator “beats” against the received signal, producing a whistle in the receiver. When the search head passes over buried metal, the metal changes the inductance of L1, thereby changing the locator oscillator’s frequency and changing the “beat tone” in the radio.

The search coil consists of 18 turns of #22 enameled wire scramble wound (which means don’t be neat) on a 4-in. diameter form, which can be a cardboard tube or a wood puck or even plastic—anything but metal. After the coil is wound and checked for proper operation, saturate the coil with coil dope or G.E.’s RTV adhesive. If a single loop of the coil is not firmly cemented the unit will be unstable.

72 Light Controlled Relay

With only a handful of low-cost components this photo relay turns a light on or off according to general room illumination.

Q1 can be any general purpose npn transistor of the 2N109 or 2N217 variety, though greater sensitivity is obtained with the 2N2613 type. Relay K1 is a high-sensitivity type like the Sigmas used by model radio control hobbyists.

Potentiometer R2, part of a voltage divider consisting of photocell PC1, R1 and R2, is set so that with normal illumination falling on PC1 the base bias current (through PC1) is just below the value needed to generate the collector-emitter current required to activate relay K1. When additional light falls on PC1, photocell resistance decreases, thereby increasing the base bias, which causes greater collector current to flow and the relay closes.

This circuit can be controlled by sunlight so K1 drops out at dusk to turn on a night light. Or use a flashlight to trip K1 for “killing” TV commercials by shorting the TV speaker connections.

PARTS LIST FOR LIGHT CONTROLLED RELAY

- **B1**—6-V battery
- **K1**—1000-ohm, 2-3 mA sensitive relay
- **PC1**—RCA 4425 photocell
- **Q1**—SK-3004 (RCA) pnp transistor
- **R1**—120-ohm, ½-watt resistor
- **R2**—5000-ohm potentiometer
- **S1**—Spst switch

PARTS LIST FOR LO-COST LAMP DIMMER

- **C1, C2**—0.068-uF, 200-VDC capacitor
- **I1**—NE-2 neon lamp (Calectro E2-480)
- **I2**—External lamp not to exceed 400 watts
- **Q1**—RCA 40502 Triac
- **R1**—50,000-ohm, pot. (Calectro B1-685)
- **R2**—15,000-ohm, ½-watt resistor
73 Yelp Oscillator

A real screamer! Use a public-address type amplifier and horn under the hood of your car and you'll punch a hole in the tightest traffic jam. (Be certain, of course, that you hold a position that entitles you to a siren.)

Build this yelper in a small box and hold the PA mike 2-3 inches from the 8-ohm speaker. Press push-button switch S2 and the siren starts up, shifting to a higher frequency. Release it and the tone slides down until you press S2. Tone quality is adjusted by changing C2.

If the siren pulsates before S1 is pressed, Q1 is too "leaky."

PARTS LIST FOR YELP OSCILLATOR

- B1—6-V or 12-V battery
- C1—30-μF, 15-VDC electrolytic capacitor
- C2—0.02-μF, 75-VDC capacitor
- Q1—HEP-53 or Calectro K4-506 nnp transistor
- Q2—Motorola HEP-702 pnp transistor
- R1, R2—56,000-ohm, ½-watt resistor
- R3—27,000-ohm, ½-watt resistor
- S1—Spst switch
- S2—N.O. pushbutton switch
 (Calectro E2-142)
- SPKR—8-ohm speaker or PA horn
 (Calectro S2-245/6 or equiv.)

74 Commercial Killer

A flashlight beam stabs out—the irritating TV commercial for underarm deodorant vanishes. Moments later, when the program returns, the flashlight beam stabs out again. The sound snaps back on. Between the flashlight and TV speaker circuit is the light-controlled switch.

When a beam of light strikes the photocell, the voltage across neon lamp NE-1 rises sharply. When conduction voltage is reached NE-1 turns on and fires the SCR. K1 is an impulse relay whose contacts stay in position even after coil current is removed. So the first impulse opens K1's contacts, the second impulse closes them, etc. To prevent ambient light from tripping the photocell, it should be recessed at least an inch inside a metal or cardboard tube.

PARTS LIST FOR COMMERCIAL KILLER

- D1—400-PIV silicon diode (Calectro K4-557)
- K1—Guardian IR-610L-A115 latching relay
- NE—NE-83 neon lamp
- PC1—Clairex photo cell CL505 for
 high light level; CL704 or CL705 photocell for low light level
- R1—22,000-ohm, ½-watt resistor
- R2—1-megohm potentiometer
- R3—100-ohm, ½-watt resistor
- SCR1—GEC6B silicon-controlled rectifier
AC Motor Power Brake

- Give it a shot of direct current, and any AC power tool motor will instantly stop. No more free-running. Give the Power Brake a try. The unit must be assembled in a metal enclosure as the enclosure provides the heat sink for silicon rectifier D1. This diode has only one solder terminal, the case is the second terminal.
- Place a single strip of plastic electrical tape on the bottom of SR1's case, thoroughly coat SR1's case with epoxy adhesive and cement SR1 to the enclosure (heat sink). When the adhesive is dry solder one connecting wire directly to SR1's case, the remaining wire connects to the terminal. Polarity is not important; any wire can go to any SR1 terminal.
- Switch S1 is a center-off, one side spring return. With S1 on, AC will be fed to the motor and the motor will run. To brake the motor, simply press S1 down and a quick shot of DC will instantly stop it. The switch returns to the center off position when released. This Power Brake can only be used with AC motors; it will not brake universal (AC-DC) motors.

Power Tool Torque Control

- As the speed of an electric drill is decreased by loading, its torque also drops. A compensating speed control like this one puts the oomph back into the motor.
- When the drill slows down, a back voltage developed across the motor—in series with the SCR cathode and gate—decreases. The SCR gate voltage therefore increases relatively as the back voltage is reduced. The "extra" gate voltage causes the SCR to conduct over a larger angle and more current is driven into the drill, even as speed falls under load.
- The only construction precaution is an extra-heavy heat sink for the SCR. The SCR should be mounted in a 1/4-in. thick block of aluminum or copper at least 1-in. square; 2-in. if you drill for extended periods.

Fire Up a Nixie

- Using Nixie tubes you can transmit numerical signals or even ball scores over long distances.
- The Nixie—actually a peanut-size tube—has 10 numerical-shaped neon lamps (0 through 9). By shorting the appropriate lead to ground, an internal neon lamp corresponding to that number is illuminated.
- Transformer T1 is 250V center-tapped, providing an output voltage (peak DC) of approximately 200. Though current requirements are very low, D1 and D2 should be line-voltage type silicon rectifiers of 200
mA minimum.
The same power supply can be used for additional Nixies, each connecting to the top of C1. The neon numbers can be turned on either through an 11-position (one position for off) rotary switch or individual toggle switches.

![Diagram of an electronic circuit](image)

78 Simple Signaller

- Using diode switching, a single pair of wires controls two circuits that normally require four wires. Though illustrated here with lamps, the same idea can be used for telephone circuits.
- When polarity-reversing switch S1 is set so the positive battery terminal feeds the top wire, the D1/I1 circuit is operative and only lamp I1 lights up. Lamp I2 remains off because diode D2 blocks the flow of DC to the lamp.
- When battery polarity is reversed, so the top wire is negative, only D2 conducts, illuminating I2. D1 blocks the current flow and I1 is off.
- If a carbon mike is connected in series with the battery and the lamps are replaced with headphones, switch S1 determines which of two headphones receives the signal.

79 Vari-Rev Motor Control

- Old universal appliance motors and shaded-pole induction motors salvaged from inexpensive turntables can be easily converted to slow-speed hobby drills, chemical stirrers, vari-speed turntables, movable display drives, etc. It's done with a full-wave Triac speed controller.
- Unlike other speed controllers, which require an external trigger device, Q1 combines both the Triac and Diac trigger diodes in the same case.
- The motor used for the load must be limited to 6 amperes maximum (or 740 watts). Triac Q1 must be provided with a heat sink, which can be the metal cabinet. Build up a marble-size mound of epoxy on the cabinet and insert Q1's case into the epoxy.
- When the epoxy hardens the Triac's heat is dissipated to the cabinet. Make certain Q1's case is not shorted to the cabinet and is insulated by the epoxy.
- With the component values shown on the parts list, the Triac controls motor speed from full off to full on.

Parts List for Fire Up a Nixie

- **C1**—40-uf, 250-VDC electrolytic capacitor (Calectro A1-180)
- **D1, D2**—1A, 400-PIV silicon rectifier (Calectro K4-555 or equiv.)
- **T1**—117-V primary, 250-V secondary, 25-mA center-tapped power transformer
- **V1**—Neon readout tube (National Electronics NL840 or any high voltage "Nixie" gas discharge-type tube)

Parts List for Simple Signaller

- **B1**—6-V battery, 4 D-cells in series
- **D1, D2**—50-PIV 1A silicon diode (Calectro K4-555 or equiv.)
- **I1, I2**—6.3-V, 0.15-A, #40 pilot lamp (Calectro E2-437)
- **S1**—Dpdt toggle switch

Parts List for Vari-Rev Motor Control

- **C1, C2**—0.1-uf, 200-VDC capacitor
- **Q1**—RCA 40431 Triac-Diac
- **R1**—100,000-ohm linear taper potentiometer (Calectro B1-686)
- **R2**—10,000-ohm, 1-watt resistor
80 Easy Auto Theft Alarm

A single fender-mounted key switch is all that's needed to turn your car's horn and courtesy lights into a burglar or theft alarm! Simply install key switch S1 on the fender, connect one terminal to the horn relay and the other to the courtesy-light door-switch wiring, as shown by the dotted lines.

When S1 is on, anyone entering a car door equipped with a courtesy-light switch will automatically sound the car's horn. The sudden blast of the horn is usually enough to frighten off a potential burglar. If all the car doors are not equipped with switches you can easily install them; switches are available from local auto supply stores.

PARTS LIST FOR EASY AUTO THEFT ALARM

S1—Fender-mounted key switch.

81 Fancy Flasher Lamp

The ballgame is over and your car is buried in the parking lot along with two thousand other cars of the same color. Only yours isn't lost. Sticking above acres of metal is a little lamp going blink-blink-blink.

Mount the No. 49 lamp at the top of the antenna and run two wires down to the control unit inside the car. When switch S1 is turned on the multivibrator makes the lamp blink away. Changing the capacitor's value will vary the blink rate.

PARTS LIST FOR FANCY FLASHER LAMP

B1—6-volt lantern battery
C1—2-uF, 25-VDC electrolytic capacitor (Calectro A1-125 or equiv.)
I1—No. 49 pilot lamp
Q1—nnp transistor, HEP-641
Q2—pnp transistor—HEP-739
R1—470-ohm, 1/2-watt resistor
R2—1-megohm, 1/2-watt resistor
R3—2700-ohm, 1/2-watt resistor
S1—Spst switch

82 Doorknob Security Alarm

Here's security for the traveler. Just connect this alarm to the doorknob of your motel room and a loud buzzer will sound if anyone touches the doorknob.

Transistor circuit Q1 is an oscillator with a connection through binding post BP1 to the doorknob. As long as Q1 oscillates, its rectified output is applied to Q2 which holds the SCR1 gate almost at ground potential. When someone touches the doorknob, hand capacitance "kills" the oscillator, thereby removing that cutoff (holding) bias from the SCR1 gate; the SCR conducts and sounds alarm buzzer BU1. The alarm can only be turned off by opening reset switch PB1.

The alarm should be assembled in a small metal cabinet with insulated binding post BP1 at the top. A small wire loop attached to BP1 secures the alarm to the doorknob—the alarm actually hangs on the knob. To adjust, carefully set C4 in small increments until touching your finger to BP1.
causes the buzzer to sound. If C4 is overadjusted, hand capacitance will not “kill” the oscillator. Best operation is obtained if the door is made of wood.

PARTS LIST FOR DOORKNOB SECURITY ALARM

- **B1** - 6-volt battery, Burgess Z4 or equiv.
- **BP1** - Binding post (Calectro F2-926)
- **BU1** - 6-volt buzzer
- **C1, C2** - 0.05 disc capacitor, 25 VDC or better
- **C3** - 300-pF trimmer (Calectro Al-249)
- **C4** - 50-pF silver mica capacitor (Calectro A1-004 or equiv.)
- **C5** - 500-uF electrolytic capacitor, 25 VDC or better
- **C6** - 50-uF electrolytic capacitor, 25 VDC or better
- **D1** - Diode, 1N914, HEP-156
- **D2** - Diode, 1N60 (Calectro K4-550)
- **Q1** - 2N3394
- **Q2** - 2N3391
- **R1** - 47,000-ohm, 1/2-watt resistor
- **R2** - 10,000-ohm, 1/2-watt resistor
- **R3** - 500-ohm, 1/2-watt resistor
- **R4** - 5000-ohm, 1/2-watt resistor
- **S1** - Switch, spst (on-off)
- **SCR1** - Silicon Controlled Rectifier, General Electric C6U (Listed in EDI Catalog)

Power Failure Alarm

Never fear again that a power failure will knock out your electric alarm clock. The instant the juice fails, the Power Failure Alarm’s raucous buzz lets you know about it, even in the wee hours of the morning.

To keep current consumption (and operating costs) at rock bottom, a very sensitive relay is used for K1. As long as AC power is supplied, K1 is activated and the buzzer contacts are held open. When power fails, K1’s contact springs back, completing the battery connection to the buzzer.

K1 is a “model radio-control” type relay with a pull-in current of approx. 1.5 to 3 mA.

PARTS LIST FOR POWER FAILURE ALARM

- **B1** - 6V dry-cell battery
- **C1** - 20-uf, 150-VDC capacitor (Calectro A1-179)
- **D1** - Silicon diode (Calectro K4-557)
- **K1** - 3000-5000-ohm sensitive relay
- **R1** - 10,000-ohm, ½-watt resistor
- **R2** - 10,000-ohm, ½-watt resistor
- **R3, R6** - 1000-ohm, 1/2-watt resistor
- **R4, R5** - 560-ohm, 1/2-watt resistor
- **S1** - Switch, spst (on-off)
- **SCR1** - Silicon Controlled Rectifier, General Electric C6U (Listed in EDI Catalog)

Auto Ignition Maze

Install a combination lock on your car’s dashboard and a thief would have a better chance playing Russian roulette.

Switches S1 through S5 are spdt rather than spst only to keep all external switch markings the same.

Tracing the circuit will show that only if switches S2 and S4 are down
is the siren disabled. The siren sounds if any other switch is down or if S2 or S4 is up when the ignition is turned on. A simple wiring change lets you set any combination. The switches can be “sporty” auto accessory switches sold individually or in switch banks such as G.C. 35-916. Provide labels such as “Carburetor Heater,” “Window Washer,” etc. and no one will know the car is wired for “sound.”

85 Latching Burglar Alarm

Open a fancy commercial burglar alarm and all you'll find inside is this ordinary relay latching circuit.

The input terminals are connected to parallel-wired normally open (N.O.) magnetic switches, or wire-type security switches stretched across a window that close a bell contact circuit when the wire is pushed or pulled.

When a security switch closes the series battery circuit, relay K1 pulls in. One set of contacts closes the alarm bell circuit, while the second set “latches” the battery circuit. Even if the security switches are opened, the alarm remains on. To disable the alarm, or for reset, install a concealed switch in series with one battery lead.

PARTS LIST FOR LATCHING BURGLAR ALARM

- B1—6-V lantern battery
- BELL—6-VDC alarm bell
- K1—6-VDC dpst relay (Calectro BELL D1-975 or equiv.)
- S1—Spst n.o. switch

86 Foil-A-Burglar Alarm

This professional type burglar alarm can be used to protect windows or glass areas by using window foil that “breaks” a circuit as the glass is broken. It's an alarm that is triggered when the protective circuit is opened. All protective door and window circuits must be normally closed and series connected so that an opening of any protective device will trigger the alarm. Once the alarm is triggered it can be turned off only by opening master switch S1.

The recommended power supply is an AC powered 6 VDC source or a lantern battery; standby current is about 100 μA. To adjust, connect a voltmeter (10 VDC range) across resistor R1, open the protective circuit and adjust potentiometer R2 so the meter indicates a voltage rising towards 1 volt. The alarm bell should ring before 1 volt is reached on the meter. If it does not, there is a wiring error. Finally, set R2 for the 1 volt meter reading, remove the meter and restore the protective circuit.

PARTS LIST FOR FOIL-A-BURGLAR ALARM

- C1—47-uF, 12-VDC electrolytic capacitor (Calectro A1-108 or equiv.)
- Q1—NPN transistor, GE-20 or equiv.
- R1—1000-ohm, ½-watt resistor
- R2—500,000-ohm, pot (Calectro B1-687)
- S1—Spst switch
- SCR1—Silicon controlled rectifier rated 12 PIV or higher (G.E. C106 series or equiv.)
- V1—6 VDC alarm bell (Audiotex 30-9100)
87 Slide Show Stopper

Soundless slide shows are dull, dull, dull! But a stereo recorder can automate the whole show so slides change automatically in step with the commentary.

Record your commentary on the left track. At the instant you want slides to change, record a one-second noise or tone burst on the right track. Connect the programmer between the recorder's right speaker output and the projector's remote control cable. Make a test run to determine the right-track volume setting to make noise or tone bursts activate relay K1. No fancy tone generators needed here. Just give a hearty Bronx cheer into the mike of the left channel only!

Then start the tape from the beginning. The audience will hear your commentary or spectacular music- and sound reproduction through a speaker connected to the recorder's left channel, while the signal on the right channel automatically changes the slides.

88 Photo Print Meter

Every print a good print! That's what you get with the photo print meter.

Meter M1 can be just about anything up to 0-1 DC mA. But if you prefer low light levels and long exposures, install a sensitive meter of 500 μA or less.

When light from the enlarger falls on the solar cell (PC1), a voltage is generated that is in proportion to the amount of light. Sensitivity control R1 allows the user to set the meter indication to a convenient value.

To use the meter, first make a good normal print in your normal manner from a No. 2 or No. 3 negative. Then, do not disturb the enlarger setting, but integrate the light by placing a diffusing disc or opal glass under the lens. Place the solar cell on the easel and adjust R1 for a convenient meter reading, say, full scale. The meter is now calibrated.

When using it, focus the enlarger, use a diffuser, and adjust the lens diaphragm until you get the reference meter reading. Then use the exposure time previously found for the calibration print. Suggested reading: Ilford Manual of Photography, obtainable from any photo store. Also, check Kodak publications available at the same place.

89 Variable Flood Lighting

All the flexibility of a professional photo studio's variable lighting can be yours with this 500-watt lamp dimmer.

Triac Q1 is supplied with a heat sink which must, in turn, be connected to a larger heat sink. The entire unit is assembled in a metal cabinet with Q1's heat sink epoxy-cemented to the cabinet for heat dissipation. Fusing must be employed. Otherwise, the surge current when 500-watt
photo lamps burn out will instantly destroy Q1. Connect an 8AG (fast-action) 5-ampere fuse in series with the lamp or any other fuse of equal action, or faster. In this circuit 3AG fuses cannot be used. Potentiometer R2 will adjust the lamp’s intensity from full off to essentially 100% full on.

Remote Flash Trigger

Even if you spend $18 or $20 for a super-duper professional remote flash tripper, you’ll get little more than this two-component circuit. Price is important if the results are equal.

Transistor Q1 is a light-activated silicon-controlled rectifier (LASC). The gate is tripped by light entering a small lens built into the top cap.

To operate, provide a 6-in. length of stiff wire for the anode and cathode connections and terminate the wires in a polarized power plug that matches the sync terminals on your electronic flashgun (strobelight). Make certain the anode lead connects to the positive sync terminal.

When using the device, bend the connecting wires so the LASC lens faces the main flash. This will fire the remote unit.

No reset switch is needed. Voltage at the flash’s sync terminals falls below the LASC's holding voltage when the flash is fired, thereby turning off the LASC.

Action Freeze Photo Trip

You, too, can take strobe-flash pictures the instant a pin pricks a balloon, a hammer breaks a lamp bulb or a bullet leaves a gun. You’ll need a mini-amp—one of those transistor amplifier modules of 1-watt rating or less. It must have an output transformer. Don’t use an “OTL” (no transformer) amplifier. The amplifier is terminated with a resistor on its highest output impedance, preferably

PARTS LIST FOR VARIABLE FLOOD LIGHTING

- **C1, C2**: 0.01-uF, 300-VDC capacitor
- **D1**: RCA 40583 Diac
- **F1**: Fuse, type 8AG, 5A
- **Q1**: RCA 40638 Triac
- **R1**: 1000-ohm, ½-watt resistor
- **R2**: 100,000-ohm linear taper potentiometer
- **R3**: 15,000-ohm, ½-watt resistor

PARTS LIST FOR REMOTE FLASH TRIGGER

- **Q1**: 300-V light-activated silicon-controlled rectifier (LASC)
- **R1**: 47,000-ohm, ½-watt resistor

PARTS LIST FOR ACTION FREEZE PHOTO TRIP

- **D1**: HEP-154 or Calectro K4-555 50-PIV silicon rectifier
- **R1**: 5000-ohm potentiometer
- **R2**: 2700-ohm, ½-watt resistor
- **SCR1**: GE C106G or Calectro K4-584 silicon-controlled rectifier
- **MIC**: Ceramic microphone
16 ohms. Make certain the connections to the strobe flash sync terminals are correctly polarized.

Darken the room lights, open the camera shutter and break a lamp bulb with a hammer. The sound of the hammer striking the lamp will trigger the flash, and the picture will have been taken at that instant.

Light Power Control

Heavy direct current or DC power is easily controlled without the use of massive power switches and wiring by using a LASCR (light activated silicon controlled rectifier) as an interface between the control and controlled circuits. The LASCR is similar to an SCR except that the gate is tripped by light rather than voltage/current.

The triplamp can be any ordinary flashlight bulb powered by two D cells. When the lamp is turned on the LASCR gate is closed, causing current to flow through the load and the LASCR anode (a) cathode (c) circuit.

A suitable LASCR is one from GE's L8B series. Use one with the appropriate PIV rating. Inexpensive LASCRs are occasionally available from "surplus dealers", though you must make certain the "surplus" unit has the required PIV rating.

Parts List for Light Power Control

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Flashlight bulb or pilot lamp (see text)</td>
</tr>
<tr>
<td>Q1</td>
<td>Light-activated-silicon-controlled rectifier (LASCR, GE—see text)</td>
</tr>
<tr>
<td>R1</td>
<td>47,000-ohm, ½-watt resistor</td>
</tr>
</tbody>
</table>

Line Regulator

Shrinking TV pictures, color shifts, hi-fi amplifiers that don't put out anywhere near their rated power, photographic enlargers requiring extra-long exposures. These are just a few of the symptoms associated with low line voltage. Maybe it's the local electric company "browning" you out because they can't meet the electric surge to power summer cooling (or winter heating), or perhaps your electric wiring capacity is just too low for all the appliances on your line. Whatever, that expensive modern equipment pooping out from low line voltage can be brought back to life with an AC variable transformer, often called a variable autotransformer.

The autotransformer normally has an operating output of from 0 to 150 VAC, so that's a reserve of at least 30 volts. When the power line dips, simply crank up the autotransformer until the meter indicates between 115 and 120 VAC. The device works the same way if your line voltage runs too high; simply crank the transformer down to the desired voltage.

Parts List for AC Line Regulator

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0-150 VAC meter. (Calectro D1-926 or equiv.)</td>
</tr>
<tr>
<td>PL1</td>
<td>AC plug</td>
</tr>
<tr>
<td>T1</td>
<td>AC power line variable autotransformer (Ohmite type or equivalent, see text)</td>
</tr>
</tbody>
</table>

Autotransformers come in many wattage ratings; make certain the one you get can handle the load. As a safety feature, have at least 25 percent reserve capacity. If the load is 150 watts, use an autotransformer rated at least 200 watts.
Dry-Cell Charger

This circuit in a fancy commercial package will cost you about $5. Build a lamp bulb charger yourself and 50¢ may just about do it.

The lamp maintains constant charging of approximately 20 mA through one to four 1.5-volt batteries. But you can go as high as 22.5 volts for either batteries in series or a single battery.

Give small penlight batteries about 10 hours charge, the C and D cells about 20 hours. Yes, you can recharge NiCads stamped with a charge rate of approximately 20 to 25 mA.

NiCad Battery Charger

Providing an adjustable output voltage up to 35 VDC and maximum output current of 500 mA, this battery charger handles just about any NiCad battery used by experimenters and consumer equipment.

Transistor Q1 must be mounted on a heat sink (which can be a metal cabinet). Since Q1's case is also the collector connection it must be insulated from the cabinet.

Basic Power Supply

Though the transformer isn't center-tapped in this circuit, the bridge rectifier provides full-wave rectification with an easy-to-filter DC output. It forms a handy supply for solid-state projects.

The output voltage is equal to the secondary voltage multiplied by 1.4. Or, working backwards, the secondary voltage must be 0.707 times the desired output voltage.

Silicon rectifiers D1 through D4 must have a PIV rating equal to at least the DC output voltage. Their current rating must at least equal the current requirements of the project being powered by the supply.
Lo-Hum Power Supply

Just a handful of components are needed for a line-powered low-voltage low-current supply for powering audio preamplifiers.

The values for different voltage and current outputs are given in the Parts List. Pick the set you need and wire up. D1 and D2 are silicon rectifiers rated at a minimum of 200 PIV at any current (Calectro K4-555).

Parts List for LO HUM Power Supply

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Current (mA)</th>
<th>R1</th>
<th>C1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>43,000-ohm, 1/2-watt</td>
<td>250-μF, 15-VDC</td>
<td>180,000-ohm, 1/2-watt</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>22,000-ohm, 1/2-watt</td>
<td>250-μF, 15-VDC</td>
<td>100,000-ohm, 1/2-watt</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>18,000-ohm, 1/2-watt</td>
<td>250-μF, 30-VDC</td>
<td>180,000-ohm, 1/2-watt</td>
</tr>
</tbody>
</table>

*For lower current, decrease value of R2

Zener Regulator

When the output from an AC power supply is too high for a solid-state project, chop it down to size with a zener diode voltage regulator and keep it on the button.

To calculate R1, first add the load current and 1/20 of the load current for the zener's idling current. Then use Ohm's Law (R = E/I) to calculate R. The resistor's power rating should be twice the calculated power.

The power rating for the zener diode is determined by the voltage across the diode squared, divided by the diode's nominal internal resistance. You can calculate the internal resistance by working backwards from the zener's power rating. As an example: a 9-volt, 1-watt zener would have a nominal internal resistance of R = E^2/W, 81/1, or 81 ohms. It's not precisely accurate, but close enough.

Make A Voltage Doubler

Found in many CB transceivers, the full-wave voltage doubler provides reasonably good regulation with DC output voltage twice the AC input. Capacitors C1 and C2 should be a minimum of 100-μF and rated at twice the DC output voltage. The larger the capacity, the greater will be the filtering.

Parts List for a Voltage Doubler

- C1, C2—100-μF electrolytic capacitor or larger, WVDC should be twice DC output voltage
- D1, D2—500-milliampere (or larger) rectifying diode rated PIV at least twice DC output voltage

101 ELECTRONIC PROJECTS 1975
On the positive half-cycle, C1 is charged through silicon diode D1. On the negative half-cycle, C2 is charged through D2. The DC output voltage is the sum of the charge across C1 and C2.

100 A Regulated Nine

Providing 9 volts at approximately 250 mA, this lab-type power supply will handle many experimenter projects. Actually, T1 can be a 6.3-V imported filament transformer since they usually give approximately 12 V peak at less than 500 mA output. Change the Zener diode to 12 or 6 volts (and possibly the value of R1) and you get a regulated 12- or 6-volt supply.

For 12 volts you must use a 12-V filament transformer. Filtering is very good since the electrical filter capacitor equals the value of C2 times the gain of Q1. It can add up to thousands of uF.

PARTS LIST FOR A REGULATED NINE

- C1—470-μF, 25-VDC electrolytic capacitor
- C2—100-μF, 12-VDC electrolytic capacitor
- D1—Motorola HEP-175 50-PIV diode bridge rectifier
- D2—Motorola HEP-104, 9.1-V Zener diode
- Q1—Motorola HEP-240, 10-watt npn transistor
- R1—560-ohm, ½-watt resistor
- T1—12-V filament transformer (see text)

101 12 to 9 for Transistors

When your auto radio poops out, this regulated voltage adapter keeps you in music from a transistor portable until you're ready to climb under the dash to get at the trouble and fix it.

Power is taken from the 12-volt auto battery through a cigar lighter plug. The zener diode can be anything with an approximate rating of 9 volts. For example, you can use a 9.1-volt unit (common in Zener kits), or even one rated at 8.6 volts. Make certain the Zener is correctly installed; the end marked with a band is the cathode.

The adapter is rated for a current of 12 mA maximum. A good rule of thumb is that a radio powered by a Burgess type 2U6 battery can safely operate on the adapter.

PARTS LIST FOR 12 TO 9 FOR TRANSISTORS

- C1—0.05-μF, 400-VDC capacitor
- D1—1-watt, 9.1-V Zener diode—HEP-104 or Calectro K4-560
- PL1—Cigarette lighter plug (Calectro N4-029)
- R1—150-ohm, ½-watt resistor
IC 1
Hi-Level 4-Channel Mixer

Best signal to noise ratio in a microphone mixer is always obtained if amplification is provided ahead of the loss in the mixer network. You can easily put this idea to work with our mixer—a full-fidelity, professional-grade microphone mixer that contains four independent amplifiers within the integrated circuit.

For simplification, our schematic shows only the connections for one of the four amplifiers; the others are identical to the first.

Note that the power supply is a single-ended 12 VDC (negative grounded); it must be well filtered, or, use a battery supply.

Any 50 to 50,000 ohm dynamic microphone can be used. However, crystal and ceramic mikes won’t work with Pro-Mix; the medium impedance IC’s medium input impedance will excessively load down a high impedance mike, resulting in sharp, low-frequency attenuation.

IC 2
Stereo Balance Meter

By comparing the difference between channel outputs when feeding a mono signal, this differential stereo balancer meter allows you to set your stereo amplifier for precise electrical balance. Wiring is not critical; the circuitry can very easily be battery powered using a bi-polar battery connection as shown.

To use, set your stereo amplifier to mono—then adjust the balance control until meter M1 indicates a null (minimum reading). If you cannot obtain a null it indicates there is a phase reversal—which should be corrected—between the signal input and the speaker terminals. This circuit works on the differential principle. When an
amplifier is in perfect balance there is no difference in mono output voltage between channels. So our differential amplifier indicates zero difference on the meter.

X Using an IC no larger than a fly, Cigar-Size Amplifier delivers almost 250 mW into a 16-ohm speaker. A 50 mV input signal coming from a source whose output impedance is 1000 ohms or lower is required for maximum output. The power supply can be a 9 volt type 2U6 battery; the idling current is no higher than 6 mA. Best way to keep things small is to use a printed circuit board assembly or a mini-mount as shown. Cigar-size amplifier can serve as a general utility amplifier for checking out low-level audio projects, or it can serve as a monitoring amplifier for tape and cassette decks.

IC 3
Cigar-Size Amplifier

Here's a professional performance record remote amplifier suitable for the hobbyist, amateur recordist or professional broadcast engineer. The input is any microphone with an output impedance up to 50,000 ohms, or for professional use, the input can be at line level. Output is 500-ohms at line level with a built-in VU meter indicating output level. When the distance between the remote amplifier and its associated equipment is less than 25 feet the amplifier can be connected to any hi-fi type, high impedance input (10,000-ohms or higher). For long line or professional applications, connect a 500/500 line matching transformer to output jack J2. Capacitor C4 is 0.1 uF for all applications except when used with a line matching transformer. When a

IC 4
Record Remote Amplifier

PARTS LIST FOR STEREO BALANCE METER
B1, B2—Battery, 9V, type 2U6
C1—0.05-uF, 50 VDC capacitor
C2, C3—47-uF, 50 VDC capacitor
C4—50-pF, 100 VDC capacitor
IC1—Motorola MC-1433P
R1, R2, R6—100,000-ohms, ½-watt resistor
R3, R4—10,000-ohms, ½-watt resistor
R5—10-ohms, ½-watt resistor
R7—3,600 ohms (usually with VU meter) resistor

PARTS LIST FOR CIGAR-SIZE AMPLIFIER
C1—5-uF, 10 VDC capacitor
C2—0.005-uF, 10 VDC capacitor
C3—0.003-uF, 10 VDC capacitor
C4—250-uF, 10 VDC capacitor
C5—50-uF, 10 VDC capacitor
IC1—Motorola MFC 4000
R1—1,000-ohms, ½-watt resistor
R2—4,700-ohms, ½-watt resistor
R3—10,000-ohms, ½-watt resistor
transformer is used C4 is 25 uF. Better results can be obtained with a line matching transformer if the transformer primary replaces R4 (eliminating C4).

M1 is a standard VU meter whose internal rectifier has been removed (open the case and unsolder the rectifier). Total current drain is less than 5 mA and the bi-polar power supply can consist of two transistor radio type 9-volt batteries.

IC 5

Microphone Compressor

- Operating directly from microphone level and providing a nominal 1V output, this compressor delivers 20 dB of compression (essentially distortion-free limiting) and will give ultimate talk-power to P.A. systems and ham or CB transmitters. Fact is, some sideband transmitters might not be able to handle the almost continuous “peak power” output of our compressor!

The only restriction on its use is that the microphone, DM1, must be the dynamic type: any impedance from 50 to 50,000 ohms will work. If DM1 can be permanently connected to the circuit, components R2 and C3 can be eliminated. But they must be used if there is any possibility DM1 will be disconnected. No substitution can be made for transistor Q1.

Capacitors C6 and C8 must be installed directly at the IC terminals for instability suppression. Capacitors C5 and C9 can be installed anywhere that’s convenient. A bi-polar 12V

PARTS LIST FOR RECORD REMOTE AMPLIFIER

- C1—220-uF, 12 VDC electrolytic capacitor
- C2, C3—12-uF, 50 VDC electrolytic capacitor
- C4—0.1-uF or 25-uF, 12 VDC capacitor (see text)
- D1, D2, D3, D4—1N60
- IC1—Type 741 operational amplifier
- J1, J2—Shielded jacks
- M1—VU meter with internal rectifier removed (Calectro D1-930 or equiv.)
- R1—50,000-ohm audio taper potentiometer
- R2—100-ohm, 1/2-watt resistor
- R3—15,000-ohm, 1/2-watt resistor
- R4—560-ohm, 1/2-watt resistor

PARTS LIST FOR MICROPHONE COMPRESSOR

- C1—0.25-uF, 10 VDC capacitor
- C2—10-uF, 10 VDC capacitor
- C3, C4, C6, C8, C10—0.1-uF, 75 VDC capacitor
- C5, C9—100-uF, 15 VDC capacitor
- C7, C11—50-pF, 75 VDC disc capacitor
- C12—0.002-uF, 25 VDC capacitor
- IC1—Motorola MC-1433G
- R1—100,000-ohms, 1/2-watt resistor
- R2—47,000-ohms, 1/2-watt resistor
- R3—100-ohms, 1/2-watt resistor
- R4—4,700-ohms, 1/2-watt resistor
- R5—1 megohm, 1/2-watt resistor
- DM1—Dynamic microphone (see text)
- D1, D2—Germanium diode, 1N60 or equiv.
- Q1—FET transistor, type 2N3820 (Texas Instruments)
It takes more
learn about

Bell & Howell Schools introduces three fascinating learn-at-home programs featuring some of the finest equipment available as your "teachers." Choose the program you prefer—then mail card for more details today!

Experience is the best teacher, without a doubt. And when it comes to learning electronics, we feel it's hands-on experience with state-of-the-art equipment that counts the most. That's why with Bell & Howell Schools' learn-at-home programs you work with some of the most up-to-date equipment. Equipment that's being used today—and will be used tomorrow. So the skills and knowledge you acquire will be useful for years to come.

Of course, with all our learn-at-home programs you'll have plenty of lab manuals and basic principles to work with. And you'll also get exciting "teachers" to help make electronics come alive...

Lab Starter Kit gives you hands-on experience with the very first lesson.

We get you started with the basics in an exciting way! At the very beginning you get a fully-assembled volt-ohm meter as well as design panels, modular connectors, experimental parts and battery. So you don't just read about electronics principles, you actually see them at work!

You build your own Electro-Lab® electronics training system.

Whatever program you choose, you get your own home laboratory including oscilloscope, digital multimeter and design console to give you actual experience in wiring, soldering, assembling, testing, trouble-shooting and circuit analyzing.

I. Learn new skills in the field of Home Entertainment Electronics including building the new generation color TV.

What better or more exciting way to learn digital electronics! Once you have the basics under your belt and get into color theory and service, you'll build a 25" diagonal color TV and probe into the digital technology behind digital channel numbers that flash on the screen...a digital clock that flashes the time to the second and an automatic channel selector.

As you put the set together, you'll discover how advanced integrated circuitry works, how to trouble-shoot it and much more. Upon completion of the program you'll have gained the specialized occupational skills to service color TV's plus the principles that you can apply to repair a variety of home electronic equipment. And you'll have the foundation to understand and work with new product applications as they're developed, too!

II. Use professional communications equipment as you delve into Communication Electronics.

Here's how to pick up skills in the vital field of two-way radio, widely used in public safety, marine, industrial and transportation areas. Bell & Howell Schools Communication Electronics Program can help prepare you for the FCC licensing exam, right through to Ist class radiotelephone operator. And teach you skills in two-way radio, radar or commercial broadcasting.

For a refundable deposit, you get to use the special two-way radio equipment lab featuring an FM transceiver, frequency meter, and modulation meter. All regular, first-rate commercial grade test equipment.

"Electro-Lab® is a registered trademark of the Bell & Howell Company. Simulated TV Picture/Test Pattern.
than books to electronics.

III. Digital Trainer helps you learn the latest in Industrial Digital Electronics.

Digital technology is setting new standards of accuracy and beginning a revolution in industry. For example, more precise control in refining, manufacturing plants, food processing and transportation. And now you can learn about this technology with Bell & Howell Schools unique Digital Trainer. You'll analyze and experiment with various types of integrated circuits so you'll have a solid background in modern digital electronics and its applications to industry.

You study at home in your spare time... with help as close as the telephone.

Because these are home study programs, you can learn electronics without missing a day of work or a single paycheck.

You study at your convenience—without being a classroom captive. If you ever have any questions, you can call our toll-free number for help.

You can also meet and talk shop with fellow students and instructors at "help sessions" held in 50 cities at various times throughout the year.

Bell & Howell Schools tries to give you more personal attention than any other learn-at-home program.

Decide which exciting program you're interested in...you can check more than one. Then mail postage-paid card today for full information!

Taken for vocational purposes, these courses are approved by the state approval agency for Veterans' Benefits. Please check box on card for more information. Naturally, we cannot offer assurance of income opportunities.

If card has been removed, please write to:
An Electronics Home Study School
DELOREY INSTITUTE OF TECHNOLOGY
4141 Belmont, Chicago, Illinois 60641
supply (well filtered) is required. Power can be provided by batteries (for total hum-free operation) because the current requirement is approximately 15mA. Any gain controls must come after the output at C10.

IC 6
No-Noise Mike Preamp

Packing a wallop ing 60 dB gain with a 7 volt output, this mike preamp nevertheless is almost dead quiet. The input impedance is about 75,000-ohms; output impedance about 100-ohms. Actual maximum output voltage depends upon the load resistance, ranging from 7 volts output into a 10,000-ohm load to 4 volts output into a 1000-ohm load. Parts layout is not critical and any type of assembly can be used. The power supply current is typically 8 mA, with a maximum of 12 mA.

IC 7
CB Receiver Booster

Connect CB Booster ahead of a low cost receiver, and you'll hear CB signals as if they were coming from your backyard. Using no tuned circuits, the CB Booster delivers approximately 15dB overall gain—that's about 3 S-units! Only restriction is that this little rf amplifier be used with a communications-type receiver having an antenna trimmer. It cannot be used in front of a low-impedance-input type CB transceiver. Seems the low impedance antenna input common to CB units will sharply reduce the booster's gain.

Typical of all RF amplifiers, the booster requires very short connecting leads. In particular, solder capacitor C3 right at pin 4. Integrated circuit IC1 can be soldered directly into the circuit or a socket can be used. Battery B1 is a 6V Z4 type or larger.
Add-on Product Detector

Many an old receiver is still a good receiver except for SSB reception. With a product detector, your old reliable can deliver good SSB reception on a par with many modern solid-state receivers. This product detector can be easily added to most old receivers; the only critical input requirements are an SSB signal input level of 5 to 500 mV and a carrier (BFO) input level of about 300 mV. The output is the demodulated audio. Best results are obtained from a crystal-controlled carrier oscillator, rather than a variable frequency oscillator. A rigid construction is suggested, either printed circuit or on a perf-board with push-in terminal connections. The power supply is bipolar 8 volts, though a bi-polar 9-volt power source can be substituted. Since the current requirement is less than 5 mA, ordinary transistor radio 9-volt batteries can be used as the power source.

Parts List for the Add-on Product Detector

- C1 - 0.47-uF, 25 VDC Mylar capacitor
- C2, C3, C4 - 0.005-uF, 500 VDC ceramic disc capacitor
- C5 - 1-uF, 10 VDC electrolytic capacitor
- IC1 - Motorola MC1596G
- R1 - 51-ohm, 1/2-watt resistor
- R2, R3, R4, R5, R6, R10 - 1000-ohm, 1/2-watt resistor
- R7 - 6800-ohm, 1/2-watt resistor
- R8, R9 - 3900-ohm, 1/2-watt resistor

SCA Adaptor

This simple but very effective SCA Adaptor can be assembled on a section of perfboard about 2-in. x 3-in. in size. All components should be firmly soldered to push-in terminals. The input must connect to the FM receiver's detector output before the de-emphasis network. The SCA output at J1 can be connected to any relatively high-gain amplifier—the output level is about equal to that of a crystal microphone.

The FM receiver must be tuned to a station you know has SCA programming. Then adjust potentiometer R7 for a clean SCA audio output. Potentiometer R7's adjustment is not...
critical—the subcarrier is pulled in when R7's adjustment is near the correct setting. A metal cabinet is suggested. If desired, a pre de-emphasis output jack can be installed on the FM receiver or tuner so that the normal (after de-emphasis) output can feed the hi-fi system independent of the SCA output.

IC 10

Bi-Polar Power Amp

□ It is inconvenient when working with IC preamplifiers requiring bipolar power sources to convert to a single-ended power source for the power amplifier. Our Bi-Polar Amp, however, can be driven from a bipolar power supply. One of the benefits enjoyed by Bi-Polar Amp is that a large, expensive output coupling capacitor isn't needed. Since the device responds well into the high frequency range, capacitors C2 and C3 must be placed directly at the IC terminals to prevent high frequency oscillation. While capacitor C1 can be an electrolytic type, a non-polarized 1 uF is suggested.

The amplifier’s input impedance is 10,000 ohms, a suitable value for solid-state projects. Voltage gain is 36. If less overall gain is required (say, 10X), disconnect pins 2 and 4 and connect pin 5 to ground through capacitor C5.

PARTS LIST FOR BI-POLAR POWER AMP

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1-uF, voltage rating at least equal to peak input voltage from preceding stage, capacitor</td>
</tr>
<tr>
<td>C2, C3</td>
<td>0.1-uF, 10 VDC capacitor</td>
</tr>
<tr>
<td>C4</td>
<td>39-pF, 100 VDC disc capacitor</td>
</tr>
<tr>
<td>C5</td>
<td>10-uF, 10 VDC capacitor</td>
</tr>
<tr>
<td>C6</td>
<td>0.01-uF, 25 VDC capacitor</td>
</tr>
<tr>
<td>IC1</td>
<td>Motorola MC-1554G</td>
</tr>
<tr>
<td>R1</td>
<td>10-ohm, ½-watt resistor</td>
</tr>
<tr>
<td>SPK1</td>
<td>15-ohm speaker</td>
</tr>
</tbody>
</table>

IC 11

Comm-Press Log Amp

□ A log amplifier is a device that takes a large change in input signal and converts it to a small change in output. Hook one into a communications system and both low and loud sounds come out at almost the same level giving you a lot more talk power; it sounds just like the hard-sell commercials on TV. The input level should be about 0.1 volt peak for an output voltage of about 1 volt peak.

Since this is a high frequency device, lead dress and good power supply bypassing at the power supply terminals are required. Keep the

PARTS LIST FOR THE COMM-PRESS LOG AMP

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1-uF, 6 VDC electrolytic capacitor</td>
</tr>
<tr>
<td>C2</td>
<td>10-uF, 6 VDC electrolytic capacitor</td>
</tr>
<tr>
<td>C3</td>
<td>0.1-uF, 75 VDC Mylar capacitor</td>
</tr>
<tr>
<td>D1, D2</td>
<td>Diode, Silicon, 1N914</td>
</tr>
<tr>
<td>IC1</td>
<td>Signetics SE501</td>
</tr>
<tr>
<td>R1</td>
<td>510-ohm, ½-watt resistor</td>
</tr>
</tbody>
</table>
ground leads short. If a microphone preamplifier is used before the log amplifier, connect a volume control before the log amp's input. Some experimentation will be needed for optimum P.A. operation.

Because of the much higher average voice power, a P.A. system using a log amp compressor might appear to be more sensitive to acoustic feedback (howling). Actually, you will have much more voice output before the howling starts.

IC 12

Far Out Gain Control

One of the problems of locating a volume control in a remote location is that of hum and noise pickup; as a general rule, the greater the wire length the greater the hum and noise picked up. With an electronic attenuator the entire problem is eliminated, for the control wires carry only a DC control voltage which causes an integrated circuit amplifier's gain to vary by as much as 90 dB. Hum and noise picked up in the DC control wires are not impressed on the amplified audio signal.

No layout precautions are required and any type of assembly can be used. If desired, the amplifier gain can be voltage controlled by eliminating potentiometer R1 and applying 3.5 to 6 volts DC directly to pin 2. With 3.5 VDC the amplifier works at full gain. The attenuation increases to a maximum of 90 dB as the control voltage is increased to 6 VDC.

IC 13

Mighty Mite Signal Tracer

Featuring extremely high gain suitable for tracing signals directly from microphones and magnetic pickups, our Mighty Mite signal tracer can be made small enough to sit directly on the back of the speaker magnet. Though intended for checking transistor circuits, Mighty Mite can be used with tubed equipment if capacitor C1 has a 600 VDC minimum rating, and if volume control R1 is always started from its off position. Regardless of the size speaker used, Mighty Mite's speaker impedance must be 16 ohms minimum, though higher impedances work better. Power output is approximately 250 mW; more than sufficient output level from a solid-state signal tracer small enough to hide on the back of a speaker magnet.
IC 14 Electric Butler Intercom

Using a miniature 1 watt IC power amplifier, our Electric Butler provides very high sensitivity and a loud, clean output. Wiring and layout is not critical as long as capacitors C4 and C5 are installed directly at IC1's terminals. Capacitor C6 can be as low as 100 uF if you want to cut costs and are willing to give up a little bass response. While S1 can be a standard DPDT switch, a spring-return type will keep the Master station always monitoring the Remote.

The speakers can be any "intercom type" rated from 20 to 45 ohms. Though miniature 16 ohm speakers can be used, they do not have the power handling capacity of the "intercom" speaker. If there appears to be some high frequency instability, use a shielded wire between S1 and R1; make a single-shield ground at R1.

If an AC power supply is used, it must be rated for at least 100 mA drain. If a battery supply is used, figure the 10 mA idling current; the batteries will be able to deliver the 100 mA maximum output peak current. Solder a 1 inch square tin heat sink to IC1's tab during construction.

IC 15 Carbon Mike Simulator

Ever hear a telephone voice on radio or TV? The effect is usually created by passing the signal from a high quality microphone through a bandpass amplifier—a device that attenuates the frequencies on both sides of a selected frequency. Bandpass amplifiers are also effective at providing mid-frequency boost—presence, as it's called in hi-fi terms.

The center frequency of this bandpass amplifier is determined by the values of C1, C2, C3, R2, R3, and R4. The exact frequency can be determined from the formula shown. To start, assign a value of 100,000 ohms to R2 and R3 (use 1/2-watt resistors). To avoid hum pickup, the unit should be assembled in a metal cabinet. Potentiometer R1 serves as the Q-control; it determines the degree of boost at the center frequency. Adjust R1 for the desired effect. R5 connects to the non-inverting (+) input of the IC, R1 between ground and the inverting (−) input. No pin connections are given because the IC is available in many different configurations.
IC 16

The Basic Amplifier

- This general purpose amplifier features a power gain of 100 (20dB) and can be used as a preamplifier for a microphone, receiver, signal tracer, etc. The IC is internally compensated, providing stable performance with a flat frequency response to about 10 kHz with a gradual roll-off to 20 kHz. The overall gain can be reduced to 10 by increasing the value of R2 to 100,000-ohms. IC1 is available in several different packages; use the one most convenient for your particular component layout. R3 connects to the non-inverting (+) input of the IC, R1 between the output and the inverting (-) input. No pin connections are given because the IC is available in many different configurations.

IC 17

Tape Head Preamp

- Is it worth about $20 to have another tape or cassette player? From time to time surplus dealers offer complete tape or cassette mechanisms—everything ready-to-go except for the electronics, and at rock-bottom prices of $10, $15 or $20. All the mechanism needs is this equalized tape head preamplifier. Though the power supply is rated at ±15 VDC, almost optimum results will be obtained with supply voltages as low as ±7 VDC. Two ordinary 9-volt transistor radio batteries will power the preamp for many hours.

The op amp, IC1, is internally compensated and no special wiring practices are needed; the preamp can be built in just about any enclosure, though the connecting wire from the tape head should be shielded. R1 connects to the non-inverting (+) input of the IC, R2 between the output and the inverting (-) input. No pin connections are given because the IC is available in many different pin configurations.

IC 18

Bargain Tape Preamp

- From time to time you'll find bargains at dealers selling tape and cassette deck mechanisms at rock bottom prices—often less than $20! Complete with heads, these decks need only the electronics to get them working. The preamp provides both the amplification and equalization. You can feed its output directly into an amplifier's auxiliary input. Overall frequency response is suitable for cassettes and 3 3/4 IPS reel-to-reel tapes. Since the actual required equalization is determined partially by the playback head characteristics, it might be necessary...
to modify or “tailor” the equalization; this is done by small changes in the value of capacitor C3 and resistor R5.

If assembled on a small printed circuit board, the preamp can be tucked under the tape mechanism’s base plate. The power supply can be anything from 9 to 18 volts at approximately 3 mA. Transistor type radio batteries will do; if batteries are used they must be bypassed with a 25-uF capacitor. And, be sure you observe proper battery polarity.

PARTS LIST FOR Bargain Tape PREAMP

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>25-uF, 6 VDC capacitor</td>
</tr>
<tr>
<td>C3</td>
<td>0.005-uF capacitor</td>
</tr>
<tr>
<td>C4</td>
<td>10-uF, 20 VDC capacitor</td>
</tr>
<tr>
<td>C5</td>
<td>0.001-uF capacitor</td>
</tr>
<tr>
<td>IC1</td>
<td>Motorola MFC-4010</td>
</tr>
<tr>
<td>R1, R4</td>
<td>3,900 ohms, ½-watt resistor</td>
</tr>
<tr>
<td>R2</td>
<td>39,000 ohms, ½-watt resistor</td>
</tr>
<tr>
<td>R3</td>
<td>560,000 ohms, ½-watt resistor</td>
</tr>
<tr>
<td>R5</td>
<td>56,000 ohms, ½-watt resistor</td>
</tr>
</tbody>
</table>

C Booster

□ Suppose you needed a 10,000-uF capacitor; do you think it could squeeze on your project’s printed circuit board? The answer is yes because it need be no larger than a transistor. By using a capacitance amplifier, the value of any capacitor can be boosted by a factor of 1000X. Capacitor Cx is the value to be boosted; the effective capacity appears at the terminals indicated C. If Cx is 10 uF the effective capacity that appears at the output terminals is 1000 x 10 uF or 10,000 uF. Almost any capacity value can be used for Cx.

PARTS LIST FOR C BOOSTER

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>250-pF disc capacitor, 50 VDC or better</td>
</tr>
<tr>
<td>IC1</td>
<td>SE537 Integrated Circuit (Signetics)</td>
</tr>
<tr>
<td>R1, R3</td>
<td>10-megohm, ½-watt resistor</td>
</tr>
<tr>
<td>R2</td>
<td>1000-ohm, ½-watt resistor</td>
</tr>
</tbody>
</table>

Notch Filter Oscillator

□ Every experimenter’s spare parts box has the necessary components for our Notch Filter 1 kHz Oscillator. It’s suitable for testing audio equipment, signal tracing or tape recorder bias adjustments. Integrated circuit IC1 can be just about any operational amplifier sold through “surplus dealers.” The 1 kHz “notch filter” from the amplifier output to the inverting or negative (−) input determines the output frequency. Notch Filter Oscillator’s non-inverting or positive (+) input is grounded.

The power supply is bi-polar; use any voltage up to ±15 VDC. While resistor R5 is not needed in many instances, its use insures your Notch Filter Oscillator project’s success. Potentiometer R1 sets the output level; its maximum value will approach the total power supply voltage. If fine output control is desired, add potentiometer R6.

When your Notch Filter Oscillator is connected to a DC circuit, connect a DC blocking capacitor in series with R6’s wiper arm. If the oscillator is to drive circuits of less than 10K ohm impedance, substitute a 1-uF non-polarized capacitor for C4, rated to the power supply’s voltage.
IC 21

Porta-Groove Amp

Just add a battery-powered motor to our Porta-Groove Amp, and you've made a portable phonograph of considerably better quality than you can buy. Phono pickup X1 must be the ceramic type—either the usual high impedance or so-called low impedance (actually several thousand ohms) ceramic type can be used.

Transformer T1 should have a primary impedance anywhere from 150 to 300 ohms center-tapped. The secondary should match the speaker impedance. Do not use a sub-miniature T1; for good sound quality T1 must have sufficient "iron," so make certain it can handle approximately 25 mA average current.

A 6-inch speaker will deliver remarkably good sound quality, at least the equal of a good quality table radio. Two 6V lantern batteries or eight D cells easy give Porta-Groove Amp enough oomph. Do not use C or AA cells; they cannot give even reasonable life with the 20 mA idling drain, 140 mA peak power drain.

IC 22

Stereo Mike Preamp

A dual IC gives hi-fi amplification for a stereo microphone pair. Low distortion and full-fidelity frequency response characterize this mike preamp. With resistors R1 and R2 providing a center-tap for the power supply, the IC can be powered from a standard single-ended power supply, or series connected batteries.

Be very careful to observe the correct polarity for capacitors C2 and C3. In the event the unit motorboats...
(low frequency oscillation), install a 0.1 uF capacitor from pin 14 to ground.

The connections for one of the two amplifiers is shown circled; the connections for the second amplifier are uncircled. Pins 7 and 14 are common to both amplifiers. Capacitor Cx’s value is determined by the load impedance. It should be of such value as to provide the desired overall low frequency response; 0.1 uF is suggested for high impedance output loads (100K and higher), while 10 uF is suggested for low impedance loads.

![Diagram of Groove Booster](image)

IC 23

Groove Booster

Using a dual operational amplifier IC, the Groove Booster will provide a fully equalized 1 V rms output from standard phono magnetic pickups. The terminal numbers which are circled on the schematic are the connections for one of the two independent stereo amplifiers on the single IC chip. The uncircled numbers are the terminals for the stereo second IC. Power supply terminals #14 and #7 are common to both stereo amplifiers. Note that the power supply is ±12 volts to ground. Two 6-volt batteries in series can be used for each side of the power supply. If batteries are used, connect 25-uF capacitors from pins 7 and 14 to ground—and get their polarity correct.

![Diagram of 100X Instrument Amplifier](image)

IC 24

100X Instrument Amp

When voltages drop too low to be indicated on your scope or VTVM, just connect our 100X Instrument Amplifier ahead of your test gear and you get full-screen or full-scale readings. With an input impedance of 1 megohm, and a flat frequency response from DC to 20 kHz and beyond, the 100X Instrument Amplifier...
provides a gain of exactly 100 when potentiometer R2's wiper is at the top (full gain).

Connected ahead of a VTVM, the 100X Instrument Amplifier will convert, for example, a 10 mV DC level into 1V. Here's a value that can be read on your VTVM! Similarly, if connected ahead of a scope's vertical input, the amp boosts a signal that will just cause a wiggle on the CRT to almost a full screen trace. The maximum input signal level for undistorted output is 100 mV peak-to-peak. Naturally, higher input signals can be used because of the attenuation provided by sensitivity control R2.

After you've completed the 100X Instrument Amplifier, connect a VTVM across the output, adjust R4 for a zero DC meter reading. From time to time check the DC output; if it has drifted off zero, simply readjust R4. It might happen that changing R2's setting over a wide range might cause the output to drift off zero; if so, simply readjust R4. If you are primarily concerned with AC measurements, the output DC zero drift is unimportant, and a 0.1-uF capacitor can be connected between the 100X Instrument Amplifier and your VTVM or scope.

IC 25

Audio High Pass Filter

A high pass filter is a handy device to have around. Depending on the corner (turnover) frequency you select it can serve as a hum filter, distortion meter or highly-selective audio equalizer. The values of C1, C2, C3 and R1 provide a corner frequency of 1000 Hz. The IC has internal compensation so special wiring techniques are unnecessary. No pin connections are given because the 741 IC is available in many different pin configurations. Check the manufacturer's specs for the particular IC used. R2 connects to the non-inverting (+) input of the IC, R1 between the output and the inverting (−) input.

IC 26

Protect-A-Volt

A simple turn of a knob sets Protect-A-Volt's output voltage anywhere in the 3 to 20-volt range—and with full short circuit protection! Should there be a wiring error in the powered project, this supply automatically shuts down the output voltage until the overload is removed. The maximum output current (short circuit protection) has been established by resistor R3's value to 200 mA. Power transformer T1's rating should not exceed 200 mA as extra current capacity could not be handled by the integrated circuit.

To make this project easy to build, and to sharply reduce total cost, it was necessary to eliminate a fully off,
or zero output, setting for Voltage Adjust control R1. The minimum output voltage is 3V. The maximum voltage from T1's secondary must be 30V rms if the secondary is center-tapped; 15V rms if there is no center-tap and a bridge-rectifier is substituted for silicon rectifiers SR1 and SR2. Capacitor C1's voltage rating must be 25 volts minimum. Do not eliminate high-frequency-compensation network components R4/C3.

IC 27

Bi-Polar Power Supply

Most IC circuits require a Bi-Polar power supply. That is, a power source with two outputs—one positive with respect to ground and the other negative with respect to ground. A standard bridge rectifier circuit will provide a Bi-Polar output if the transformer's secondary is center-tapped to ground.

Filter capacitors C1 and C2 should be at least 1000 μF (2000 μF preferred) at a voltage rating at least equal to the supply's output voltage. The supply's output voltage is equal to 1.4 times Es. Voltage Es equals one-half Transformer T1's peak secondary voltage. For example, assume that T1's secondary voltage is 24 volts (rms) center-tapped; the voltage on each side of the center-tap (Es) is 12. The supply's output voltage is therefore 12 x 1.4 or 16.8 VDC. Always remember that each Bi-Polar output is derived from half T1's secondary voltage.

IC 28

Ten Meter DX'er

Though many budget communication receivers are outstanding performers on the lower Ham bands they often poop out on 10 Meters; yet 10 Meters is a real hot DX band with much of the action. To perk up reception, simply connect our Ten Meter DX'er between the antenna and receiver, and you'll hear signals you didn't know existed. With 50 dB of power gain in any 1 MHz segment, the Ten Meter DX'er will boost the...
PARTS LIST FOR
TEN METER DX'ER

C1—50-pF, 500-VDC ceramic disc capacitor
C2, C4—50-pF trimmer capacitor
C3—0.002-µF silver mica capacitor
C5—0.002-µF, 500 VDC ceramic disc capacitor
IC1—Motorola MC1590G
L1—12 turns #22 enameled wire on Micro Metals T37-6 toroid core
L2—Primary, 17 turns #20 enameled wire on Micro Metals T44-6 toroid core. Secondary, 2 turns #20 enameled wire.
R1—10,000-ohm, 1/2-watt resistor
R2—10,000-ohm potentiometer
Misc.—Metal cabinet, shielding material.

Also, because of the very high gain, careful wiring and short ground leads are essential. Also, capacitor C5 must be connected directly at IC1's pin 7. Potentiometer R2 adjusts the DX'er's gain, and should be adjusted to just below the point where the DX'er overloads. To align, tune in a signal in the center of the desired frequency coverage and adjust trimmer capacitors C2 and C4 for maximum signal strength.

IC 29
CB Power Supply

CB mobile transceivers and 3 to 5-watt CB handie-talkies are easily converted to base station operation with this 13.8 volt regulated power supply. Transformers T1 and T2 should be rated 2 amperes. When T1 and T2's secondaries are connected, test the transformer(s) output voltage with an AC voltmeter. If the meter indicates approximately 6.3 volts, reverse the connections of either transformer's primary or secondary, but not both. The meter will then read about 18 VAC. Complete the rest of this project only after you are certain the output voltage from the transformer(s) is about 18 VAC.

IC1 must be heat sunk to the cabinet. Note that IC1's tab is a "hot" terminal; make certain it is insulated from the cabinet with a power transistor insulator or a mica washer. Coat both sides of the insulator (washer) with silicon heat sink grease. And make certain the mounting screw is insulated from the cabinet; use fiber shoulder washers under the screw.

Connect rectifier D2 exactly where shown in the circuit. D2 should be rated at least 50 PIV at 3 amperes. Bridge rectifier D1 is rated 50 PIV at 6 amperes. Do not substitute a 3 ampere bridge rectifier for D1 unless you heat sink it to the chassis. (Heat sinking for D1 is suggested for both the 3 and 6 ampere types.)

PARTS LIST FOR
CB POWER SUPPLY
C1—2000-µF, 25-VDC electrolytic capacitor
C2—0.1-µF Mylar capacitor
C3—500-µF, 25-VDC electrolytic capacitor
D1—Bridge rectifier, see text
D2—Silicon rectifier, 50 PIV, 3 amperes
IC1—Voltage regulator, LM-340-15 (T-package)
T1—12-volt, 2-ampere filament transformer
T2—6.3-volt, 2-ampere filament transformer

101 ELECTRONIC PROJECTS 1975
The 5-volt power supply is almost the universal power source for digital projects. Only problem is the 5 volts must be highly regulated, for a power line transient riding through the supply can zap a board full of ICs. This supply gives you full protection against transients, as well as providing tight regulation. The entire regulator is contained in IC1; no other components other than the filter capacitor and rectifier are needed. For full 5 ampere output IC1 requires a heat sink of 30 square inches; but if you use a metal cabinet 3 x 4 x 5 inches or larger the cabinet itself serves as the heat sink. Since pin 3 on IC1 is grounded (to the cabinet), all you need is some silicon heat sink grease between the IC and the cabinet—no insulator.

Power transformer T1 must be rated for the maximum current you will use or need. If you want the full 5 amperes T1 must be rated 5 amperes. But if you will need less current, say 2 amperes, T1 can be rated 2 amperes.

Rectifiers D1 through D4 are available with ratings up to 3 amperes in the standard coaxial mounting. For greater current capacity the rectifiers must be heat-sunk (electrically isolated) to the cabinet, or other sink. A 10-ampere bridge rectifier such as sold by Calectro and Radio Shack can be substituted, but make certain it is heat sunk to the chassis.

PARTS LIST FOR 5V/3A FOR DIGITAL PROJECTS

- C1—3000-uF, 25 VDC electrolytic capacitor
- C2—0.1-uF Mylar capacitor
- C3—500-uF, 10 VDC electrolytic capacitor
- D1-D4—See text
- F1—¼ ampere, 3AG
- IC1—5-volt regulator, LM223 or LM323
- S1—Spst slide or toggle switch
- T1— see text

What's your favorite circuit?

If you have a small, simple circuit that you honestly believe should be in 101 ELECTRONIC PROJECTS magazine, please let us know about it. Just pencil in the schematic diagram complete with parts identification. Mail to the Editor, 101 ELECTRONIC PROJECTS, 229 Park Avenue South, New York, New York 10003. All submissions become the property of the magazine and cannot be returned.
INFLATION-BUSTING DIGITAL CLOCK PROJECT...

TIME FREEZE! What's time freeze? To tell you the truth, nothing that great— we think it's everything else about this digital clock that's so great!

First of all, it's even simpler to build than our first clock project—a very popular one published over a year ago. Secondly, you'll find that even fewer parts do more jobs.

But today the best feature is one that is uppermost in everybody's mind—the major parts cost. In fact, the overall clock cost is just about half the price of our previous clock project. It's the least expensive electronic digital clock we could find—kit, project, or assembled—that has just about every feature you can think of in a line-powered digital clock.

It is a 6-digit clock. It is a calendar. It is a 24-hour alarm clock. It has a 10-minute snooze alarm. It has provision for internal battery power operation. It can be operated in either the 12- or 24-hour mode. It knows the days of the month (you update just once every four years at leap year). It is simple to build without a printed circuit board because there are no driver transistors for the display. It uses a standard low-cost "calculator" type display, and the display is internally wired—only 13 connections operate all 42 segments of the six-digit display. And all the display connections are made to an IC connector for ease of assembly.

It all adds up to one thing: You should be able to build this clock for a price considerably lower than digital clocks with fewer features. And, oh yes, about time freeze: It's the simple "seconds hold" feature you get with this clock. With it you set the time ahead a minute or two, wait for your time standard (WWV, local radio, Ma Bell, etc.) to count down to zero, flick the function switch, and watch your clock start counting from "00" seconds every time. A small feature, perhaps, but something everyone appreciates.

Other features of the clock are as follows: You can select between time, date, alarm "set" time, or time/date display (a time display for 8 seconds followed by a date display for 2 seconds). A 50 or 60 Hz switch and the time freeze feature let you set time with ease (in the 50 Hz position, the clock will run 20 percent faster on a 60 Hz line). You also have a "snooze" button to recycle the alarm by ten minutes. There is only one switch for setting hours, minutes, days, and months! Ad-
MAXICLOCK

ditional features are an “alarm is set” red LED indicator, leading zero blanking, and a green LED to indicate p.m. The clock also provides an optional 24-hour display, stand-by battery power, and display brightness control.

How Does It Work? The brain of the clock is the Cal-Tex CT7001 integrated-circuit consisting of thousands of transistors; it counts down the line frequency to seconds, minutes, days, and months. Internal memories record the number of days in each month and the alarm settings. To avoid large numbers of wire leads, the display digits are multiplexed, which means that “gating” signals (digit turn-on signals) are applied in sequence to the “control” grid of each digit. But it happens so fast you “see” a continuous 6-digit display. The display segments of all digits are connected in parallel right inside the display case. It comes pre-wired that way in its compact enclosure.

The first transistor, Q1, turns the leading zero off when the “SF” segment (see schematic) appears—this is the only segment not required to form digits 1 and 2. The second transistor, Q2, is a programmed unijunction transistor which drives the speaker to sound the alarm. You can change the sound of the alarm by making C1 smaller or larger as you desire.

Construction. To build the clock we used point-to-point wiring on a 3 x 4-in. perf board. The clock fits into a 3 x 4 x 5-in. cabinet, but you may want to build it in a slightly larger cabinet with different styling. If your soldering skills are limited, we would recommend a 4 x 5 x 6-in. cabinet. All external connectors are brought out to push-in terminals at the edge of the perf board.

Be careful handling the integrated circuit. A socket for the IC is a must. Install the IC in the socket only when you are finished with all the wiring to prevent a static charge from damaging it.

The display is quite sturdy, though dropping it on its edge on the concrete basement floor (as we did during construction) will definitely wipe it out! Cut a hole in the front of the cabinet for the display and attach it with a bracket, glue, or masking tape. All display connections are brought out on pins similar to a 14-pin dual in-line IC. The pins have to be bent slightly to fit into the IC socket. To improve visibility, we recommend putting a sheet of smoked or green-blue plastic or glass in front of the display.

Optional Features. You may want to drop some of the features provided in the basic clock to simplify its construction. You may also want to add a few extra features if you feel strongly about them. Mix and match; it’s up to you.

- Leading or blanking zero in the 24-hour mode. If you prefer a leading 0 (05 15 45 instead of 5 15 45) leave out Q1 and R19 to R21.
- Display brightness. If you would like to control the intensity of the display, replace R24 with a 500-ohm potentiometer connected as a rheostat.
- Twenty-four-hour display. You can choose the 24-hour mode instead of the 12-hour mode simply by connecting D18 as shown on the schematic. The clock must be reset when switched from 12- to 24-hour display.
- Stand-by battery power. A couple of 9-volt batteries as shown on the schematic will provide stand-by power. When the AC is on they do not supply any current to the circuit. When the AC is off the drain on the batteries is only about 3 mA. Though the display will be off, an internal oscillator will keep the counters running so that the correct time and date will be displayed when the power returns. For this option, replace R22 with a 5000-ohm potentiometer connected as a rheostat. Adjust it by unplugging the clock for one minute at a time (with a stand-by battery installed). Then, check whether it is fast.
B1—Pair of 9-volt transistor radio batteries.
Note: required only when standby battery power option is included.

C1—1-uF capacitor, any type, 50 VDC or better

C2—150 or 160-pF disc capacitor, 50 VDC or better
Note: You can parallel-connect a 100-pF and 47-pF to obtain an approximate value.

C3—0.01-uF disc or tubular capacitor, 50 VDC or better

C4, **C5**—100-uF electrolytic capacitor

D1 to **D11**, **D16**, **D18**—General purpose silicon diodes such as 1N914

D12, **D13**—General purpose germanium diodes such as 1N34

D14, **D15**, **D19**—1-amp, 200-volt silicon diodes, 1N4003

D17—4-volt, ½-watt zener diode

D20—6-volt, ½-watt zener diode

IC1—Time/date/alarm clock-on-a-chip (Cal-Tex CT7001, do not substitute.)

LED1—Red light emitting diode, alarm-on indicator

LED2—Green light emitting diode, p.m. indicator

Q1—Npn silicon transistor, HEP S0007

Q2—Programmable unijunction transistor, HEP S9001

R1—27,000-ohm, ½-watt resistor

R2, **R23**—56,000-ohm, ½-watt resistor

R3, **R18**, **R21**—2700-ohm, ½-watt resistor

R4—12,000-ohm, ½-watt resistor

R5 to **R17**, **R19**—15,000-ohm, ½-watt resistor

R20—47,000-ohm, ½-watt resistor

R22—1500-ohm, ½-watt resistor, see text

R24—33-ohm, ½-watt resistor, see text

R25—39,000-ohm, ½-watt resistor

R26—62-ohm, ¼-watt resistor

S1—4-position, single-pole rotary or slide switch

S2—Spdt center-off toggle switch

S3—Spdt center-off toggle switch

S4—Spst toggle switch

S5—Dpst toggle switch

S6—Normally open pushbutton switch

T1—Power transformer, PB361

Z1—7-segment, 8-digit fluorescent display with internally strapped segments for multiplex display system, ISE DP89A used by author

Misc.—Small 3.2- or 8-ohm speaker used only if alarm option is included (Radio Shack 40-262 or equiv.); cabinet (author used 3 x 4 x 4½-in. unit but suggests larger size for novice builders such as Radio Shack 270-253 which is 5¼ x 3 x 5½-in.); wire, solder, hardware, 14-pin DIP IC sockets for display (2 required), etc.

A partial kit of parts consisting of a Cal-Tex CT7001 (IC1), the ISE DP89A display panel (Z1), and a 28-pin socket for IC1 is available from Photolium Corp., 116 E. 28th Street, New York, NY 10016 for $29.95 postpaid. Power transformer T1 can be added to the basic kit for an additional $3 if the time of your original order only (total for 4 items noted in this offer is $29.95 postpaid). Postal money order will speed delivery. Otherwise allow 6 to 8 weeks for delivery. (New York residents must add sales tax.)

101 ELECTRONIC PROJECTS 1975
or slow when the AC power is again applied and adjust R22 in the direction which will reduce error.

Operation. Set the time, date, and alarm by turning S1 to the proper position (either time, date, or alarm). Then flip and hold S2 in the hour/months or minute/day position—whichever you wish to set. You will notice that the function you have elected to set will increment at one digit per second for as long as S2 is in the off-center position. You will also notice that setting one function will not affect any other function. This feature allows you to set February 29 in a leap year without upsetting any other function. You will also note that moving S1 to time stops the clock. When S2 is then actuated, seconds will reset to 00. These two imaginative features make for precise and easy time setting. After making all your settings, return S1 to its normal run setting.

The display mode, time-only, date-only or alternate (time and date), is selected with S3.

The alarm on switch S5 also turns on a red LED to make you aware that the alarm is set. The warning light may save you from being awakened at 7 a.m. on a weekend.

The alarm can be set up to 23 hours, 59 minutes in advance (let the alarm ring for a minute, or better still, just turn it off for a minute before flipping S5 back on for tomorrow morning’s greeting). Switch S6 is the snooze button and will give you another ten minutes sleep in the morning if you can manage to give it a nudge.

When you set time or alarm, the p.m. light will indicate whether your setting corresponds to a.m. (light off) or p.m. (light on).

The Wrap-Up. So that’s it! A clock project that gives you more for less is e/e’s style. Our supplier of hard-to-find items has promised to hold the line on prices (see the parts list), so we expect these optional features and useful functions to bring our readers the best clock their inflation-fighting dollars can buy.
Tired of all those fancy experimenter projects good for everything but a CB shack? Here's a goof-proof project that puts SW broadcasts on a CB without modifications!

by Malcolm K. Smith

The receiver in your CB transceiver is almost certainly an excellent signal grabber with good selectivity and sensitivity. But, it's crystal controlled to receive only the CB channels. There is, however, a simple way to make your CB serve as a high quality rig for VHF monitoring, short wave listening, checking the National Weather Service forecasts, or getting an accurate time and frequency signal. All you need is a simple device called a converter that requires no changes to the inside of your rig. And, best of all, building a converter is a breeze, because it can be made from low cost modules available in kit form.

There are many exciting signals you can receive on your CB with a converter, but the most useful ones are the precision time and frequency broadcasts sent out by CHU in Canada and the National Bureau of Standards station WWV in Fort Collins, Colorado. Let's say you've just built the e/e MAXICLOCK—a first class digital clock; surely you need something better than a DJ's idea of the time to set your clock. Or, if you're interested in accurate calibration of a receiver or transmitter, you need the precision standard frequency given by WWV. And now, if you'd like to tell your CB using a converter, what is a converter, and how does it work?

A converter mixes together an input signal—let's say CHU at 7.335 MHz—with a signal from a "local oscillator" (LO) in the converter itself. When two signals are mixed, out come new signals at the sum and difference of the original frequencies. Suppose you mix the 7.335 MHz signal from CHU with an LO signal of 19.730 MHz; one of the output signals is their sum—27.065 MHz, the frequency of channel 9.

Simplex Circuit. Take a look at the block diagram which is nearly the schematic of a converter; the 7.335 MHz signal is amplified by the RF amplifier and fed into the mixer where the LO signal (19.730 MHz) is added to it. The sum frequency (27.065 MHz) is fed into the antenna input jack of your CB (tuned to channel 9), and from the speaker you now hear the time signals. You have "converted" 7.335 MHz to 27.065 MHz!

Incidentally, the workings of CB receivers were well described in e/e for July-August 1974. If you have that issue, the article on page 45, "Discover Your CB Receiver," gives a good explanation of converters.

Our CB time converter uses three easy-to-build and low-in-cost modules available from the International Crystal Mfg. Co., 10 North Lee, Oklahoma City, Okla., 73102. Each module performs one function and consists of a transistor, a tuned "LC" circuit, and other components mounted on a printed circuit board. The three kits needed here are: SAX-1, the RF amplifier; MXX-1, the RF mixer; and OX, a crystal controlled local oscillator. You will have to buy an "EX" crystal for each frequency to be received unless you have one of the old tunable receivers such as the Lafayette Comstat 19, which can be manually tuned over a range of about 300 kHz. In that case, you would require only one crystal to cover this 300 kHz range.

Pinpoint Hertz. How do you calculate the required crystal frequency? First, determine the frequency you wish to
With three easy to construct and inexpensive kits, which come with an etched and drilled PC board, you can electronically "slide" your CB receiver down to pick-up short wave broadcasters like WWV, CHU, or even the Voice of America.

3-Way Cut. So, you want a crystal of frequency 135.485 MHz, right? Wrong! There is a slight complication in using the OX oscillator at frequencies over 60 MHz. You can't use the basic or fundamental frequency of the crystal. You have to use what are called its harmonics—frequencies which are two or three or more times the fundamental. Here you use the third harmonic—three times the fundamental. Therefore, the crystal frequency should be one third the LO frequency. The NWS crystal is, therefore, 135.485 \(\div 3 = 45.1617 \) MHz. The table gives crystal frequencies for a few other common signals.

In addition to the International Crystal modules and EX crystals, you'll also need a few small parts and a box or cabinet for mounting. The cabinet requirements are not critical; a small metal box or one with a metal cover should serve well. The common bake-lite box with aluminum cover is fine. A box about 4 x 8 x 2 1/4-in. is good because it gives you plenty of room for batteries, connectors, etc.

The ICM kits are quite complete; you'll need only wire and solder to build the modules. International Crystal provides detailed instructions for selecting the right components from the ones they supply and for assembling the individual modules. The diagram shows you how to connect the modules together to produce a converter. Before mounting the boards, check your soldering carefully. Look very carefully at the points where the input and output terminals meet the copper foil. They can easily work loose; it's a good idea to solder each one individually. Use the bolts and spacers supplied to mount the modules on a metal chassis; drill four 5/16-in. holes in a square 1 3/16-in. on a side for these bolts.

Input-Output. SO-239C coaxial jacks handle the coax cables to the antenna and the transceiver. An FSP switch and a snap-type battery clip take care of power connections. A nine-volt transistor radio battery is an adequate power source. However, we prefer to use four AA cells in a holder; the rig works fine on six volts and these cells last longer than the nine volt battery. For long term monitoring you may want to use an external AC power supply; the two

Here's why we stamp this project "goof-proof." Three little sure-fire PC board project kits and a few wires to plug them together pick up short wave broadcasters and "convert" them to CB channel 9. That's where your CB set takes over. It "picks up" the converted signal; that's why no modification to the CB set is ever required.
The units listening. However, with the SAX and capacitor for the converter allows you to short the external crystal to the PC board. A special word here about using your converter on different frequencies. You should follow the ICM instructions carefully in choosing the right coil and capacitor for the kits. For the XX module, the “yellow dot” coil will probably cover the range you want for time listening. However, with the SAX and MXX, the yellow dot has to be matched with the right capacitor: the 100 pF capacitor tunes the range 5.4 to 8.5 MHz—just right for CHU. For WWV you need the 47 pF capacitor that tunes 8.5 to 13 MHz.

When the modules are securely mounted, make the connections between the units as shown in the diagram. Note that the negative battery terminal is connected to chassis ground with a solder lug. Connections to the boards are made with the little connectors supplied. Take it easy and work carefully with them. First cut your wire to the right length, then strip about ¼-in. of insulation from each end. Hold the “open” end of the connector with long nose pliers; squeeze the connector around the wire end. Secure the wire in place by flowing in some solder. Careful! Don’t let solder get into the round end that mates with the pin on the PC board.

Setup. For testing and adjusting your converter, an RF signal generator is useful, but not essential. The tuned circuits in the SAX and MXX can be peaked using an on-the-air signal from CHU or WWV. Adjust the plugs in the coils for maximum volume from the speaker.

Of course, your converter needs an antenna to function properly. When radio propagation conditions are good, almost any piece of wire connected to the center (ungrounded) input will serve. We get good results by connecting both wires from a monitor antenna to the center terminal. This is, in effect, a long vertical antenna. Your CB antenna will probably not work well, since most good CB antennas are effectively grounded for any frequencies except the CB channels (good for lightning protection, but not for receiving 10 MHz).

Shortwave Fix-Tuned. There are many shortwave broadcast stations around the world you might try to snap with a fix-tuned receiver like the one here. The radio can be left “on,” always tuned exactly to the broadcaster’s frequency. When “skip” on the shortwave bands is just right, and the station is broadcasting, you will be ready to copy. While a separate crystal for every possible frequency is a financial impossibility, and not very practical anyway, you can keep a crystal or two around for your most often used frequencies.

Here is a selected list of shortwave broadcast stations which may interest you. Of course, you should confirm reception in your area with a regular tunable shortwave receiver before sinking your good bucks into a crystal.

Voice of America, Greenville, N.C., 15160 kHz, 2345 GMT, relaying programs of the Organization of American States; Greenville, N.C., 15235 kHz, 1900 GMT.

Canadian Broadcasting Corporation, Sackville, N.B., 11720 kHz, 0200 GMT, Northern Service news cast; Sackville, N.B. 15190 kHz, 0100 GMT, Radio Canada International’s foreign service in English.

CFRX, Toronto, Ontario, 6070 kHz, can be heard during the evening hours in North America with programs of CFRB, sounding much like a popular music format U.S. commercial BCB station.

Voice of the Andes, HCJB, Quito, Ecuador, 11745 kHz, English may be heard around 0300 GMT. Or, in the mornings, try 15115 kHz about 1300 GMT.

Radio Peking, Peking, People’s Republic of China, 15060 kHz. You can find this station broadcasting in English around 0200 GMT.

Radio Australia, Melbourne, Australia, 11785 kHz. Plenty of English programs from this down under station; listen in about 1400 GMT.

Radio Tahiti, Papeete, Tahiti, 15170 kHz. With music that runs the gamut from U.S. pops to Polynesian melodies, listen for this station from its sign-on at 0300 GMT.

This little converter now makes your CB into a red hot receiver. With the right LO crystals, you can cover your favorite frequency-stops from 3 MHz to 170 MHz. Good signal hunting!
Both young and old radio buffs usually start out with a crystal set . . .

OATMEAL BOX CRYSTAL

Fig. 1
Sliding contacts made from brass and steel.

6-32 x 1/4-in. flat-head brass machine screw, soldered to top of slider

Knob made from 1/2-in. wood dowel, and painted black

7/32-in. OD square brass tube or rod of the required length (see text)

1/4-in. wide brass or steel band, bent as shown, and soldered to underside of slider

SLIDER
1-in. length of 1/4-in. OD square brass tube that fits over rod

Fig. 2
Antenna and ground end of the Quaker Oats radio.

Bore under-size hole about 3/4-in. into wood block, twist a 6-32 x 1 1/2-in. R.H. brass machine screw into hole, and saw off the head.

8-32 brass threaded rod runs all the way through the radio.

Antenna. End of coil passes through wood to antenna binding post.

Fig. 3
Crystal detector end of the Quaker Oats radio.

1/2-in. long flat-head wood screw holds medium-size fahnestock clip

3/4-in. long R.H. wood screw holds rod and medium size fahnestock clip to wood block. This clip is for phones

U-bracket is held by threaded rod and hex nut. (A length of 8-32 threaded brass rod passes all the way through the radio)

Ask just about any radio old-timer, including this writer, and he will probably tell you that his first radio was a home-brew slide tuning coil wound on an oatmeal box, a cat whisker and galena crystal detector, and a pair of earphones. This picture story shows how to make such a radio, and it looks much like the writer's first radio built not long after World War I.

First, make the coil. Remove the two end covers from an 18-ounce, round Quaker Oats box, and cut the tube to a length of about 6 1/2-in. Give the tube a coat of shellac inside and out to moisture-proof it.

The writer used #21 single-cotton-covered enamelled copper magnet wire, and after the coil was wound the cotton was colored green by painting it with India ink to make it look like the old-time green silk-covered wire which is no longer being made. If you prefer, use #20 or #21 enamelled or nylon-coated copper magnet wire, and one pound should easily do it.

Get Going. Punch two small holes through the tube at each end, about 1/2-in. from the ends, to anchor the ends of your coil. To do a tight, smooth and neat job of winding the coil, tie the end
if your "taste" dates to earlier days, try-

RADIO

by Art Trauffer

of the wire to some object outdoors where there is plenty of room, and unwind a couple hundred feet of wire, and pull the wire tight to stretch out any bends in the wire. Cut off the wire and anchor the end in the two small holes near one end of the tube, and dab a bit of cement to hold it fast. Now wind the coil by turning the tube slowly while you walk towards the tied end of the wire, and when the tube is full of wire cut off the wire and anchor the end in the two holes at the other end of the tube and put on a dab of cement. This trick will give you a neat professional-looking coil.

As shown in the photos, the two wood end blocks for the coil measure \(5 \times 5 \times \frac{3}{4} \) in. and are sanded smooth, stained, and varnished. The writer's first project used oak.

Bore a \(\frac{3}{16} \) in. hole through the exact center of each wood block; these are for the length of 8-32 threaded brass rod that passes through the coil and holds the wood end blocks. One end of the threaded rod holds the U-bracket of the crystal detector (Fig. 3), and the other end of the rod serves as the antenna binding post (Fig. 2).

Note in Fig. 2 that the end of the coil nearest to the antenna binding post passes through a small hole in the wood block and is clamped between the two washers of the antenna binding post; this automatically connects the coil end to the U-bracket of the crystal detector also.

Figs. 2 & 3 give details for mounting the slide rods, the earphone Fahnestock clips, the ground binding post, and the clamp that holds the galena crystal. The simple hook-up is shown in Fig. 4. Fig. 1 gives all details for making the two sliders that will contact the coil.

Contact. Perhaps the hardest job of all is to do a neat job of removing the insulation from the coil when making the two bare wire paths for the sliders. Use fine sandpaper and be careful not to sand off too much of the copper. When you are through brush away any fine copper dust between the turns of the wire. You will get a neater job if you use enamelled wire instead of cotton-covered wire.

For best results with this crystal radio, use a long antenna, a cold water pipe ground, a sensitive galena crystal, and a sensitive high-impedance pair of magnetic earphones.

Your basic materials may be the same, but the bucks required to buy them have certainly bounced upward from bygone days! It cost the editor 49¢ for this box which had four different prices on the top ranging from 49 up to 55¢.

Fig. 4 Simple schematic for the crystal radio.

BILL OF MATERIALS FOR QUAKER OATS BOX CRYSTAL RADIO

- 1 round Quaker Oats box (18 oz.)
- 1 lb. #20 copper magnet wire, for winding coil (see text)
- 2 pieces 5-in. x 5-in. x \(\frac{3}{4} \) in. oak, walnut, or mahogany (for coil end blocks)
- 1 foot of 8-32 threaded brass rod (to pass through coil form)
- 1 \(32 \) brass hex nut (holds crystal detector U-bracket to wood block)
- 2 12-in. lengths \(\frac{7}{32} \) OD square brass tubing or solid rod (for slider tracks)
- 3 \(\frac{1}{4} \) in.-long round-head wood screws (hold brass rods to wood blocks)
- 1 \(32 \) x \(\frac{3}{16} \) in. round-head brass machine screw, with hex nut and ornamental thumb nut to fit (for ground binding post)
- 3 inches of square brass tubing to fit snugly over slider rods (for making the two sliders)
- 2 \(6 \times 32 \times \frac{1}{4} \) in. flat-head brass machine screws (to hold knobs to top of sliders)
- 3 inches \(\frac{3}{4} \) in.-wide brass band (for slider)
- 4 inches of \(\frac{3}{4} \) in.-wide brass band (for making slider contact blades)
- 2 medium-size fahnestock clips (for phones binding post)
- 1 \(\frac{3}{4} \) in. long flat-head wood screw (holds one fahnestock clip to wood block)
- 1 unmounted crystal detector stand (K/D Stand 9-14, Modern Radio Labs.)
- 1 mounted galena crystal for above detector stand (9-1 ML, Steel Galena, Modern Radio Labs., P.O. Box 1477, Garden Grove, CA 92642)
- 1 \(\frac{3}{4} \) in. long flat-head wood screw (holds crystal clamp to wood block)

Note: Those who do not have near-by hobby shops or large hardware stores can get most of the above hardware from MRL, P.O. Box 1477, Garden Grove, CA 92642. Send them 25¢ for a copy of their catalog.
Here are some ideas suggesting how to make novel pen sets that bring back fond memories to old-timers in wireless and radio. The pen sets also fascinate newcomers in radio and electronics, and they make nice gifts.

As shown in the illustrations, an early wireless or radio item such as a vacuum tube, crystal detector stand, or spark gap is mounted on a block of marble, onyx, or wood, and then a funnel and pen is added to complete the desk pen set.

Old-timers in radio might want to use the crystal detector they made or bought for their first crystal set, or the first tube they used when they graduated to tube sets, or the spark gap they made or bought to use with their Ford spark coil transmitter. Newcomers in radio and electronics can purchase the above early items from antique radio collectors, or they can make their own crystal detector stands and spark gaps using the illustrations as guides.

Marble and onyx blocks can sometimes be found at sales, or they can be purchased from large electric lamp supplies firms, or from firms that make sports trophies. Funnels and pens can be purchased from the larger hobbies and crafts dealers. The table gives some purchasing tips.

To mount items on marble and onyx blocks you can either drill holes using high-speed drills (at slow speeds), or masonry drills, or you can simply cement the items on the blocks using epoxy glue or the new industrial “wonder glues.”

Here is a Western Electric 216-A triode tube mounted on a block of onyx purchased at a sale for a few cents. The four pins on the bottom of the tube base were soldered to a small brass disc and then the brass disc was cemented to the onyx block with epoxy glue. The ball joint of the pen funnel was also glued to the onyx block.

A novel pen set idea is a Western Electric 203-D triode (similar to a VT-1) mounted in an RCA UR-542 porcelain bayonet-type socket. One of the binding post screws was removed from the socket and a 6-32 x 3/4 in. flat-head machine screw was passed through the hole to hold the ball joint of the pen funnel. If desired, you can cement the pen funnel to the socket using epoxy, or “miracle glue.” Four small felt pads were added to the bottom of the socket.

The author used a marble block removed from a discarded basketball trophy purchased for 75¢ at a Salvation Army store. The hole in the block was used for mounting a funnel and pen. The crystal detector parts were glued to the block with epoxy glue.
ON YOUR DESK

Bring back the days of “wireless” glory with these fascinating and useful souvenirs!

Here we have the famous Westinghouse Aeriotron (WD-11) triode tube which made a big hit in the early 1920s because you could heat the filament (1.1 volts) with a 1½-volt drycell instead of using a 6-volt storage battery. In this case, the author used a desk pen set purchased at a rummage sale for 50¢, and drilled four small holes for the tube base pins to fit in, and then used epoxy glue to hold it fast. Green felt was glued to the bottom of the marble to protect polished desk surfaces.

Here is a home-brew stationary spark gap, such as used in the early days of radio—known then as “wireless.” Many of you old-timers will recall using a Ford Model-T spark coil to provide the high voltage for the spark! Assembly is easy. Simply pass a machine screw through one of the mounting holes in the base of the spark gap to hold the ball joint of the pen funnel. Glue felt to the bottom of the base to protect polished desk surfaces.

POSSIBLE SOURCES FOR DESK PEN SET MATERIALS

Marble and Onyx Blocks
Salvation Army, Goodwill Stores, auctions, rummage sales
Gilbert & Miller, Inc., 239 New Main St., Yonkers, NY 10701. (This company supplies marble and onyx blocks, as well as pens and pen funnels. Write for catalog.)

Pens and Pen Funnels
Gilbert & Miller, Inc. (see address above) Large hobbies and crafts supplies stores

Green Felt
Notions and yard goods departments of department stores

Early Vacuum Tubes
Antique radio collectors (The following two antique radio newsletters also might be helpful: Antique Radio Topics, published by Antique Radio Press, P.O. Box 42, Rossville, IN 46065—50¢; and The Horn Speaker, published by Cranshaw Publications, P.O. Box 12, Kleberg, TX 75145—also 50¢.)
Watch ads in Collectors News, Antique Trader, etc. for antique radio collectors and dealers wanting to sell early radio vacuum tubes.

Crystal Detector Stands
Modern Radio Labs., 1477-G, Garden Grove, CA 92642
Bill Baker, Route 3, Box 1134, Troutdale, OR 97060 has some Kilbourne & Clark crystal detector stands (circa early 1920s) to sell. Write him for prices.

Crystals
Art Trauffer, 120 Fourth Street, Council Bluffs, IA 51501 sells genuine MPM (Million Point Mineral) unmounted galena crystals in original factory boxes (circa early 1920s) at 50¢ each, plus postage.

Spark Gaps
Buy from antique radio collectors and dealers.
If you're an armchair shortwave (SW) traveler, you've probably already read through the shortwave stations listed in White's Radio Log, located in e/e's sister publication Communications World. Maybe, with mouth-watering anticipation, you've tried to hear Rabaul, Upper Volta, Yemen, Hanoi, or Vientiane. If you haven't been successful, be patient; because that's what it takes—patience—plus a good SW antenna. We can't supply the patience, but here are some good antenna ideas which are sure to help.

No matter what shortwave receiver you're using, a good antenna is a must to bring in those distant stations. If it weren't, the manufacturer wouldn't have supplied antenna terminals! The problem is what kind of antenna—a hunk of wire? or maybe something more scientific? We'll help you make the decision by telling you a little about SW antennas and how they work.

Shortwave antennas can be short and simple or they can be complicated and cover several acres. For shortwave listening most of us are limited to the short and simple ones—those that fit in a backyard and don't cost too much. But even a simple antenna, properly designed and installed, can work wonders.

Fig. 1 shows several commonly used SW antennas with lengths shown for the SW broadcast bands. The antenna in Fig. 1A is known as an unbalanced end-fed longwire. It can be hung horizontally or vertically, or a combination of both. When hung horizontally it has some degree of directionality, while it tends to be omnidirectional when vertical. This antenna will work well on all frequencies if it is made long enough, or it can be cut to operate at only certain frequencies. It works best with an antenna tuner that can be located at the receiver, since the lead-in is part of the antenna's total length. The longwire has a high terminal impedance and always operates best with a tuner that matches the antenna to the receiver. With an antenna tuner, it is an ideal antenna to run around the eaves of the house, or across the attic.

Another Type. Figs. 1B and 1C show the popular centerfed balanced dipole. This antenna can also be hung vertically or horizontally and uses two balanced leads to the receiver that can be any length. This antenna is always cut to a resonant length, though it will also work well at three times the resonant frequency. For instance, an antenna that works in the 90 meter SW band (3.2-3.4 MHz) will also work for the 31 meter band (9.5-9.7 MHz). If space is limited, its ends can be bent down (or even back) as much as 25 percent before reduction in performance becomes serious. Fig. 1B shows a single-wire dipole fed with 75-ohm feedline which can be plastic appliance cord. Fig. 1C shows the folded dipole version built from 300-ohm twinlead. The folded dipole, incidentally, will work well at half the resonant frequency.

As previously mentioned, a vertical antenna tends to be omnidirectional, while a horizontal antenna tends to have directional characteristics. For general around-the-globe listening the vertical antenna is probably best, though low frequency resonant antennas are difficult to orient in this position because of their length.

Directionals. If you are interested in DX from a particular part of the globe, however, the directional characteristics of a horizontal antenna can work for you. Fig. 2 shows the direction of maximum pickup for the horizontal longwire and dipole. By looking at a globe and determining the shortest path to the

Fig. 1

Fig. 2
area you want to hear, you can position your antenna and use its directional characteristics to advantage.

Fig. 3 shows how directionality can be further increased by bending the ends of the dipole inward. This type of antenna can be easily built by using a center support, such as a TV mast, and bringing the ends in and down toward the ground. For best results, the ends of the antenna must be 10 feet or more above the earth.

A more elaborate antenna that will “look” in any one of four directions can be made by mounting two dipoles in this manner at right angles and connecting the lead-in to different elements to achieve the desired direction. This deluxe array has a disadvantage in that you must have easy access to the top, or center part, in order to change lead-in connections.

Fortunately, choice DX can be logged on any of the eleven international broadcast bands; but it is difficult (if not impossible) for the serious SW listener to come up with a good antenna for each of eleven bands. Few SWLs have the real estate or inclination to put up a single tuned antenna for each band, so a couple of multiband antennas running in different directions is often the answer. Fig. 4 shows simple multiband antennas that can be used; and, through compromises, they will give all around performance.

Still Around. The basic antenna shown in Fig. 4A was popular in the 1930s, and is known as the “windom” antenna. It can be fed with 300-ohm TV twin lead, and works well on even harmonics of the fundamental frequency.

Figure 4B shows how, by using 300-ohm twin lead, two antennas can be connected to the same lead-in to give satisfactory performance on the 60, 49, 41, 25, 19, 16, 13, and 11 meter bands. This permits coverage of 9 of the 11 international broadcast bands with a single antenna. By tying the lead-ins together at the receiver and using an antenna tuner, this antenna becomes a longwire, making it probably the most versatile SW antenna available.

Another multiband antenna shown in Fig. 4C consists of two centered dipoles made from 300-ohm twin lead connected to the same feedline. This antenna has the advantage of being short (nice for small city lots, or apartment dwellers) and performs well on the 60, 49, 41, 25, 19, 16, 13, and 11 meter bands. Again, it can be connected as a longwire at the receiver and used with an antenna tuner.

The circuit of a simple SWL antenna (Continued on page 102)

BUILD A SIMPLE SWL ANTENNA TUNER

Here’s a simple antenna tuner any SWL can whip together in an evening and use for a lifetime. Neatness counts when monkeying with low level RF, so mimic the author’s model for best results. Keep solder connections clean.

Fig. 5

C1—365-pF miniature variable capacitor
L1—31 turns /in., ¼-in. diam. coil stock, B&W 3008, Air Dux 532T, etc.
Note: Measure coil and cut ½-in. from one end. Remove one turn in either direction. Measure ½-in. and solder tap to one turn (bend adjacent turns inward for access). Coil ends mount to terminal strip for stability.
S1—Spdt toggle switch
Misc.—2-lug terminal strips for antenna, ground and receiver connections, knobs, wire, solder, 3¼ x 2½ x 4-in. cabinet, etc.
Because they're priced so low, generally from $10 to $20, the "weather monitor" has been a hot gift item for the electronics experimenter, so you probably have one. Tuning the weather station frequencies of 162.40 and/or 162.55 MHz, these small, inexpensive radios are supposed to keep you up to date on the latest weather conditions. But as you've probably discovered yourself, unless you're a boat owner with need for tide and sea conditions, you get a more up-to-date report from your local news station—AM or FM.

Also, reception is probably not all that great. The recommended receiver sensitivity for weather station reception is 0.6 nV for a 50-mile range, and these inexpensive weather receivers can't get anywhere near this kind of sensitivity.

But there's no need to let an unused weather receiver sit on the shelf. Fortunately, very few models use crystal control tuning, and they are easily converted to a police or fire monitor, or even a sound channel receiver for the higher VHF TV stations. But remember, there won't be any super-sensitivity. TV stations might be received some 30 or 40 miles from the transmitter, but you'll have to be within 2 miles or so of the average police or fire transmitter to pick them up. If you live near an airport you might get coverage of the aircraft frequencies above 108 MHz, but with sharply reduced sensitivity.

The weather monitors are generally similar in electronic design, though the packaging might be anything from a cube to a desk-top pen holder. The circuits are bare-minimum superhet receivers with a local oscillator tuned over a limited range by a panel control. Generally, there are two panel controls, one for volume and one for fine tuning. The fine tuning knob might have calibrations for both weather frequencies, or no calibration at all. It doesn't make any difference as long as the local oscillator is tunable.

To change the weather monitor tuning range, all you need do is connect a small external trimmer capacitor across the oscillator tuning capacitor—the fine tuning control. The value of capacitor will determine which frequencies are tuned. Keep in mind that if you tune lower in frequency the sensitivity is sharply reduced, particularly below about 160 MHz. A capacitor with a maximum value of 7 pF will get you down to the police/fire frequencies. A 60 pF maximum trimmer will get you about to the top of the FM band, but tuning will be extremely critical and sensitivity will be very low.

A 60 pF trimmer will also get you some of the TV sound carriers above 162 MHz. How can you receive signals above 162 MHz if the tuning range is lowered? Simple. The harmonics of the local oscillator are used to receive the TV stations. For example, if you lower the monitor's oscillator to, say, 100 MHz, the oscillator's harmonic output is also 200 MHz, and a very weak 300 MHz. (The monitor's front end appears to pass the frequencies above the design-range, 162 MHz, with greater sensitivity than lower frequencies.)

Tear It Down. To experiment you must first get the circuit out of its cabinet. Keep in mind these weather monitors are inexpensive and designed to be assembled quickly by unskilled workers. Don't go looking for tricky or difficult assembly sub-systems. Generally, one or two screws are all that's holding the cabinet together. If necessary, unsolder the speaker wires, battery wires and on-off switch wires, and remove the circuit board from the cabinet. Locate the trimmer capacitor used for the fine tuning and its two solder terminals. Solder a 3-in. length of solid, insulated wire to each terminal.

Check how the board fits the cabinet and mark the outside of the cabinet nearest the fine tuning. Drill two small holes at the mark and then install a trimmer capacitor on the cabinet near the holes. Or, you don't have to secure the trimmer if you feel you will experiment with different capacitor values, but it will be difficult to tune the stations with a "floating" trimmer. You can't hand-hold the trimmer because the capacitance from your hand will affect the tuning adjustments.

Slip the wires from the fine tuning control through the holes you've drilled in the cabinet and seat the circuit board. Then reassemble the monitor.

Connect the wires protruding through the cabinet to the trimmer capacitor using the shortest possible leads (cut off the excess).

That's the whole bit. Use an insulated alignment-type screwdriver to adjust the trimmer. You'll probably be able to tune a few TV stations immediately. Tuning police/fire calls or anything else will be more difficult because transmissions in these services are short and fast. You can preset the tuning by using a signal generator or a well calibrated grid dip oscillator.

Remember, this is a fun project. Don't hope for more than acceptable reception. But then who knows, you might be able to tune your favorite TV channel and keep track of the program while working in your shop.

Install a small trimmer on the cabinet at a point just outside the internal trimmer.
Electro Motive Force Multiplier
Try your voltage multiplier theory this new way!

by Thomas R. Sear

When you need a power supply for a high voltage, low current application, your best bet is a voltage multiplying type power supply. They are simple. They are inexpensive. And you can develop almost any voltage you want by selecting the transformer used and cascading basic multiplier stages. The only limiting factor is the ratings of the components you can obtain.

Basically, a voltage multiplier circuit consists of simple, inexpensive diodes and capacitors connected in such a way as to develop a DC output voltage that is some multiple of the peak value of the input voltage. Only one diode and one capacitor are required for each time you want to multiply the voltage. As a safety factor, a transformer should be used to isolate the power supply from the line voltage. But part of the beauty of using voltage multipliers to obtain high voltages is that you don’t have to begin with an expensive high voltage transformer.

How It Works. Voltage multiplier circuits will operate with any type of waveform as the input. The only factor that might be considered is the switching time of the diodes used. The rise time and fall time of the input signal must be slower than the time that the diodes require to reverse conduction—sort of like the frequency response of an amplifier. However, since most power supplies operate from 60-Hz power, this factor will not affect most experimenters. The reason the frequency of the input is interesting is because the ripple content of the power supply output can be reduced by operating the circuit at a higher frequency.

Referring to Fig. 1, note that the basic voltage multiplier circuit is none other than our old friend the humble

The standard half-wave power supply.

Half-wave power supply. This simple circuit forms the basis for a complete family of voltage multiplying circuits, and is shown both in the standard schematic format and a simplified form that will facilitate the development of additional multiplier circuits.

With little or no current required from this power supply, the value of the DC output voltage will approach the peak value of the AC input voltage. For example, if T1 were simply an isolation transformer, with primary and secondary voltages of 117 Volts, the theoretical DC output from a half-wave power supply would be 1.414 x 117, or about 165.4 VDC.

In practice, because of circuit losses, the actual output voltage will decrease as more current is required from the circuit. We will discuss how to estimate the output voltage of a given circuit shortly.

Fig. 2. Basic voltage doubler circuit.

Double Up. By adding a second diode and capacitor combination to the basic half-wave circuit, as shown in Fig. 2, it becomes a voltage doubler circuit—effectively multiplying the peak value of the input voltage by two. Notice that the new diode, D2, and capacitor, C2, are connected in series (cascade) with the original diode, D1, and capacitor, C1, and are between them and the transformer, T1.

The circuits shown in Figs. 1 and 2 are the basis of all voltage multiplication. The voltage tripler circuit shown in Fig. 3 is merely the doubler circuit shown in Fig. 2 connected in cascade with the half-wave circuit shown in Fig. 1. Likewise, the quadrupler circuit shown in Fig. 4 is simply two doubler stages connected in cascade. To multiply a voltage five times just cascade two doubler circuits with a half-wave circuit. To multiply a voltage six times just cascade three doubler circuits. And so on. As most things are, it is simple once you see the patterns involved.

The Fog Lifts! Notice the basic pattern that forms voltage multiplier circuitry. Beginning with the half-wave circuit shown in Fig. 1, and moving from the load toward the transformer, each additional stage of multiplication is simply a diode and a capacitor connected as follows: The diode that is being added to the circuit has its cathode connected to the anode of the previous diode, and its anode connected to the “opposite” side of the circuit; the capacitor being added is connected to the anode of the previous diode on one end, and to the transformer at the other end. Notice also that the capacitors being added alternate from one side of the circuit to the other.

This basic pattern can be continued until the input voltage has been multiplied as many times as desired. The ultimate value will, of course, depend upon the voltage ratings of available components.

Component Ratings. When building voltage multiplier circuits there is one basic rule to follow: all components should be rated for at least two times the peak value of the input voltage. For example, if the secondary voltage of T1 is 200 Volts, the peak-inverse voltage (PIV) of all diodes and the working voltage (WVDI) of all capacitors should be at least 1.414 x 200 x 2, or 566 volts. Most transformers will satisfy your requirements as built, but it is always good practice to verify the voltage rating of the windings to preclude problems.

At voltage values of 1000 volts or more, special consideration should be given to wiring insulation and physical

(Continued on page 102)
spacing of all components to prevent arcing within the power supply.

As load requirements increase, adequate ventilation must be considered. The diodes, and to some extent the capacitors, dissipate heat because of forward-drop, switching, and leakage losses. This heat must be removed to prevent the diodes from going into thermal runaway.

Capacitor values should be as large as practical, but some values may become too expensive to be considered for your application. Though filtering and regulation will be improved by using large values of capacitance, there is a point beyond which the improvement isn’t worth the cost. The optimum value of capacitance can be calculated using (for you math whizzes)

\[C = \frac{N^3 I_o}{720 \text{ (PEAK)}} \]

For simplicity, all capacitors should have the same value and voltage rating. The value computed using formula number (1) is not absolute; the nearest value available at your parts house, or found in your junk box, will suffice.

Determining Output Voltage. The output voltage of any multiplier circuit with a load is a function of the input voltage, the source impedance, the capacitor values, the forward voltage drop of the diodes, and the frequency of the input voltage. By assuming that the diodes are ideal (no voltage drop across them in the forward direction) and if the values of all capacitors are made equal (generally the best way to go) the approximate output voltage from a given circuit can be calculated using

\[V_o = NV_P - N^3 \frac{I_o}{720 \text{ (PEAK)}} \]

if the input frequency is 60 Hz—as will be the case in most instances.

If you have decided to use a specific circuit configuration (say a tripler), know the output voltage that you want, and have selected the capacitors that you “must” use, you can calculate the required input voltage using

\[V_{in} = NV_P - N^3 \frac{I_o}{720 \text{ (PEAK)}} \]

In formulas (1), (2), and (3)

\[V_{in} = \frac{N^3 I_o}{720 \text{ (C)}} \]

C = the value of the capacitors used in the voltage multiplier circuit. All capacitors should have the same value.

\[I_o = \text{the amount of current required from the power supply.} \]

N = the number of diodes used in the voltage multiplier circuit.

\[V_o = \text{the output voltage expected from the voltage multiplier circuit.} \]

\[V_P = \text{the peak value of the transformer secondary voltage.} \]

If a negative output voltage is desired merely reverse all the diodes in a voltage multiplier circuit. All other considerations remain the same.

If the math leaves you cold, you can still build voltage multiplier circuits by making some educated assumptions. Use the largest values of capacitance that you can locate; say 10 to 20 microfarads, and assume that the voltage output will be approximately 70 percent of the theoretical value if the power supply were unloaded. This procedure will provide valid results, and the power supply output will be within normal tolerances for most applications.

One last word of caution. These supplies can add up to a lethal dose of the old EMF. Take care.

Hey, Look Me Over

(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)

Hey, Look Me Over
(Continued from page 10)
Tip uniformly cleans tips up to ¼-in. diameter, prevents contaminated solder joints and prolongs tip life—tips solder faster, longer. Price approximately $10.50. Also available is a Portable Re-Tip, Cat. No. 9483, for hand-held use, and a Base Refill Cartridge, Cat. No. 9484 at about $4.50. For more information and catalog, write to GC Electronics, Division of Hydrometals, Inc., 400 South Wyman, Rockford, IL 61101.

Automatic Direct-Drive Turntable

The Technics by Panasonic model SL-1300 turntable combines the outstanding performance of direct-drive design with the convenience of fully automatic, single-play operation. When the start switch is activated, the platter begins to rotate and the stylus is set down in the lead-in groove of the record. After play is completed, the arm is lifted off and returned to its rest position, and the motor is turned off. This was achieved without any sacrifice in such characteristics as low wow and flutter, low rumble, long-term speed stability, reliability, or any of the other widely recognized virtues of direct-drive design, formerly available only in manual turntables. In this efficient design, less than 4 watts of power is used by the entire turntable, with most of that amount being consumed by the control circuitry and the stroboscopic lamp. Less than 0.1-watt is consumed by the motor. This contributes greatly to stability by minimizing heat effects. Costs only $229.95. For more information, write Panasonic, 200 Park Avenue, New York, NY 10017.

Antenna Systems for SWLs

(Continued from page 97)

tuner that you can easily build is shown in Fig. 5. Details of the tuner built in a small utility box is shown in the photographs. This SWL antenna tuner can be used to improve the performance of any longwire antenna. Select the proper range for C1 with S1 and peak C1 for best S-meter output on your receiver. Fig. 6 is a photo of the completed SWL antenna tuner ready for connection to your antenna system and receiver.

Summing Up. The best antenna for you depends on the type of DX hunting you want to do and the space available. A long-wire with the antenna tuner shown will work well for general listening. If you're interested in a particular part of the work and a particular band, a single frequency dipole pointed in the right direction will give excellent results.

If you want one antenna that will do as much as possible, use a multi-band antenna. In any case, those hard to log DX stations will come a lot quicker with any of these antennas, mounted as high as possible.

TRACE SIGNALS WITH YOUR TAPE RECORDER

A signal tracer can be easily improvised by using a cassette tape recorder (any tape recorder will do), a capacitor, and an earphone (or loudspeaker), connected as shown in the diagrams. Use the "monitor" switch to hear the output, or connect a loudspeaker or earphones, as shown. Connect the input to the auxiliary jack if tracing high level signals, and to the microphone jack if tracing low level signals.

Switch the recorder to the record mode to trace signals. It may be necessary to defeat the "erase protect" sensing lever in cassette recorders by pressing on it before pushing down on the record button. Otherwise, operate the recorder with a cassette in place.

How It's Done. Probing with the capacitor lead at the collector and base of each transistor in a circuit, in turn, allows the signal to be traced through the circuit; and faults, such as a dead stage, can be found in a few minutes.

If the amplitude of the input signal is too high, simply connect an attenuator (Fig. 2) across the input terminals to the tracer, as shown, and adjust the potentiometer for correct volume.

While the circuit is useful for tracing low signals, and to the tuner that you can easily build is shown in Fig. 5. Details of the tuner built in a small utility box is shown in the photographs. This SWL antenna tuner can be used to improve the performance of any longwire antenna. Select the proper range for C1 with S1 and peak C1 for best S-meter output on your receiver. Fig. 6 is a photo of the completed SWL antenna tuner ready for connection to your antenna system and receiver.

Summing Up. The best antenna for you depends on the type of DX hunting you want to do and the space available. A long-wire with the antenna tuner shown will work well for general listening. If you're interested in a particular part of the work and a particular band, a single frequency dipole pointed in the right direction will give excellent results. If you want one antenna that will do as much as possible, use a multi-band antenna. In any case, those hard to log DX stations will come a lot quicker with any of these antennas, mounted as high as possible.

TRACE SIGNALS WITH YOUR TAPE RECORDER

A signal tracer can be easily improvised by using a cassette tape recorder (any tape recorder will do), a capacitor, and an earphone (or loudspeaker), connected as shown in the diagrams. Use the "monitor" switch to hear the output, or connect a loudspeaker or earphones, as shown. Connect the input to the auxiliary jack if tracing high level signals, and to the microphone jack if tracing low level signals.

Switch the recorder to the record mode to trace signals. It may be necessary to defeat the "erase protect" sensing lever in cassette recorders by pressing on it before pushing down on the record button. Otherwise, operate the recorder with a cassette in place.

How It's Done. Probing with the capacitor lead at the collector and base of each transistor in a circuit, in turn, allows the signal to be traced through the circuit; and faults, such as a dead stage, can be found in a few minutes.

If the amplitude of the input signal is too high, simply connect an attenuator (Fig. 2) across the input terminals to the tracer, as shown, and adjust the potentiometer for correct volume.

While the circuit is useful for trac-
ORIGINAL OLD RADIO SHOW RECORDS

* Now, hear the original soundtracks on 33-1/3 rpm records!
* Nostalgic album covers ready for framing!

Please send me the items and quantities I've indicated below:

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Enclosed find $__________ Or charge to:

☐ American Express
☐ Master Charge

Interbank No. ________ Expiration Date ________

(PLEASE PRINT)

Card Number: ________________________________

Name: ________________________________

Street: ________________________________

City: ____________________ State: ________ Zip: ________

Signature: __________

NY State residents add applicable sales tax.

Please send check or money order payable to:

Liberty Library Corp., Dept. 1037
250 West 57th Street, New York, N.Y. 10019

Prices include postage and handling

$5.98 EACH

* 5 for $26.95
(A $3.00 saving)

* 10 for $51.95
(A $8.00 saving)

* All 21 for $97.95
(A $28.00 saving)

* These are the "golden" originals of the greatest radio shows of all time! Each LP record is complete—12 inches—2 complete shows—with about 28 minutes of playing time per side.
BUILD 20 RADIO

and Electronics Circuits

PROGRESSIVE HOME

RADIO-T.V. COURSE

Now Includes
★ 12 RECEIVERS
★ 3 TRANSMITTERS
★ RVFE GENERATOR
★ SIGNAL TRACER
★ AMPLIFIER
★ SIGNAL INJECTOR
★ CODE OSCILLATOR

YOU DON'T HAVE TO SPEND
HUNDREDS OF DOLLARS FOR A RADIO COURSE

No Knowledge of Radio Necessary
No Additional Parts or Tools Needed
EXCELLENT BACKGROUND FOR TV
SCHOOL INQUIRIES INVITED
Sold In 79 Countries

FREE extras
★ SET OF TOOLS
★ SOLDERING IRON
★ ELECTRONICS TESTER
★ VALUABLE DISCOUNT CARD
★ CERTIFICATES OF MERIT
★ TESTER INSTRUCTION MANUAL
★ HIGH FIDELITY TV QUIZZES
★ TELEVISION BOOK + RADIO TROUBLE-SHOOTING GUIDE
★ MEMBERSHIP IN RADIO-T.V. CLUB: CONSULTATION SERVICES - FCC AUTHORIZED TECHNICIAN
★ PRINTED CIRCUITRY

SERVICING LESSONS
You will learn trouble-shooting and servicing in a progressive manner. You will practice repairs on the sets you construct. You will learn symptoms, how to test and repair television, hi-fi, hi-fi electronics, car radios. You will learn how to do professional Signal Tracing, the unique Signal Injector and the dynamic Radios and Electronics Tester. While you are learning in this practical way, you will be able to make more than a thousand dollars a month for yourself and neighbors, and charge fees which will far exceed the cost of the "EDU-KIT." Our Consultation Service will help you with any technical problems you may have.

FROM OUR MAIL BAG

J. Statella, of 25 Poplar Plt., Waterbury, Conn.: "I have repaired several sets for my local sound man. The "EDU-KIT" paid for itself, I was ready to spend $500 for a Course, but I found your ad and sent for your Kit.

John Valvo, 101 6th St., N.Y.: "I am sure I have been wonderful. Here are the answers for them. I have been in business for two years, and have sold from 500 kits to 5000 kits. I learned to work with radio and TV sets, and now I sell them. I have learned to do photo-copying and wiring and servicing on metal chassis, plus the new method of "Printed Circuits." These circuits are guaranteed to operate. Our kits are sold in all countries.

The "EDU-KIT" is complete.

PRINTED CIRCUITRY
At no increase in price, the "EDU-KIT" now includes Printed Circuity. You build a Printed Circuit Signal Injector, a unique service aid, a piece of equipment that can detect malfunctions in many radio and TV troubles. This revolutionary new technique of radio construction is now becoming popular in commercial radio and TV sets.

A Printed Circuit is a specially insulated chassis on which has been deposited a conducting material which takes the place of wire. Printed Parts are merely plugged in and soldered to terminals.

Printed Circuity is the basis of modern Automatic Electronics. A knowledge of this subject is a necessity today for anyone interested in Electronics.

Progressive "EDU-KITS" Inc., 1189 Broadway, Dept. 507FC New York, N.Y. 11557

Please rush me free literature describing the Progressive Radio-TV Course with Edu-Kits. No Salesman will call.

NAME
ADDRESS
CITY & STATE ZIP

PROGRESSIVE "EDU-KITS" INC.
1189 Broadway, Dept. 507FC
New York, N.Y. 11557

CIRCLE 5 ON READER SERVICE COUPON