A Journal of Communications and Electronic Engineering

December, 1950
Volume 38 Number 12

PROCEEDINGS OF THE I.R.E.
Periodical Literature for Electronic Engineers
Practical Design for Production and Quality
Graphical Analysis of Transistor Characteristics
Reactance Chart
Inductance Chart for Solenoid Coil
Transmission-Line Impedance Curves
The Simplification of Television Receivers
Design Curves for IF Amplifiers
Marginal Checking for Computer Reliability
A Digital Electronic Correlator
Split-Anode Magnetron Operation
Frequency Characteristics of Magnetrons
Tropospheric Reception (Abstract)
Abstracts and References
Annual Index

Table of Contents, Indicated by Black-and-White Margin, Follows Page 32a

The Institute of Radio Engineers
PERMALLOY DUST TOROIDS
FOR MAXIMUM STABILITY...

The UTC type HQ permalloy dust toroids are ideal for all audio, carrier and supersonic applications. HQA coils have Q over 100 at 5,000 cycles... HQB coils, Q over 200 at 4,000 cycles... HQC coils, Q over 200 at 30 KC... HQD coils, Q over 200 at 60 KC... HQE (miniature) coils, Q over 120 at 10 KC. The toroid dust core provides very low hum pickup... excellent stability with voltage change... negligible inductance change with temperature, etc. Precision adjusted to 1% tolerance. Hermetically sealed.

UTC INTERSTAGE AND LINE FILTERS

These U.T.C. stock units take care of most common filter applications. The interstage filters, BMI (band pass), HMI (high pass), and LMI (low pass), have a nominal impedance at 10,000 ohms.

The line filters, BML (band pass), HML (high pass), and LML (low pass), are intended for use in 500/600 ohm circuits. All units are shielded for low pickup (150 mv/gauss) and are hermetically sealed.

United Transformer Co.

150 VARICK STREET NEW YORK 13, N. Y.
EXPORT DIVISION: 13 EAST 40TH STREET, NEW YORK 16, N. Y. CABLES: "ARLAB"
"IRE meetings are great!"

The amazing speed of development in television, radio communications and electronics can, in a large measure, be traced to the free interchange of ideas between engineers. In the long run, this becomes an "exchange," and those who idealistically "give" also "receive" and all that participate thereby profit. This has been the objective of IRE Conferences and Meetings since 1912!

IRE NATIONAL CONVENTION & RADIO ENGINEERING SHOW

Dates: March 19-22, 1951
Place: Waldorf Astoria Hotel and Grand Central Palace
Program: 24 Technical Sessions on every field of "Waves and Electrons" from Audio to Nucleonic. Practical engineering sessions on television, quality control, and components, papers on advances in Instrumentation, the popular Tuesday Evening Symposium on Television, all combine to carry out the theme of the 1951 Convention, "Advance with Radio-Electronics."

Add to this the 250 exhibits of the Radio Engineering Show, and the fellowship of meeting your associate engineers in your professional field, and you have a meeting you cannot miss.

IRE Conferences and Conventions promote electronic progress!
How to compensate for a curl . . . and add to your telephone value

Bell scientists know that the telephone is not used under ideal laboratory conditions. There is never a perfect seal between receiver and user's ear. A curl may get in the way, or the hand relax a trifle. And ears come in many shapes and sizes. So some sound escapes.

Now, sound costs money. To deliver more of it to your ear means bigger wires, more amplifiers. So Bell Laboratories engineers, intent on a thrifty telephone plant, must know how much sound reaches the ear, how much leaks away. They mounted a narrow "sampling tube" on an ordinary handset. The tube extended through the receiver cap into the ear canal. As sounds of many frequencies were sent through the receiver, the tube picked up a portion, and sent it through a condenser microphone to an amplifier. That sampling showed what the ear received.

As a result, Bell scientists can compensate in advance for sound losses—build receivers that give enough sound, yet with no waste. That makes telephone listening always easy and pleasant.

It's another example of the way Bell Telephone Laboratories work to keep your telephone service one of today's biggest bargains.

Bell Telephone Laboratories

Automatic recorder plots sound pressures developed in the ear canal at different frequencies.
Hi-Q Ceramic Disk Capacitors

Hi-Q Ceramic Disk Capacitors for by-passing, blocking, or coupling are being used by the millions by television receiver manufacturers who demand the utmost in performance.

Unit cost, time and labor may be saved by using several of the multiple capacity Hi-Q Disks where applicable in your television circuit. Multiple capacities having a common ground are available in standard units as shown in the chart below. Hi-Q Disks are coated with a non-hygroscopic phenolic to insure protection against moisture and high humidities. Hi-Q Disks like all other Hi-Q components assure you of the highest quality workmanship at the lowest possible cost.

Our Engineers are ready and willing to discuss the application of these highly efficient, dependable capacitors in your circuits. Write today for your FREE copy of the new Hi-Q Datalog.

<table>
<thead>
<tr>
<th>Type</th>
<th>A Diameter</th>
<th>B Lead Width</th>
<th>C Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.P.D. .00047</td>
<td>1/8" max.</td>
<td>3/16" + 1/16"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. .0008</td>
<td>3/16" max.</td>
<td>3/16" + 1/16"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. .001</td>
<td>3/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. .004</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. .005</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. .01</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. 2x.001</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. 2x.0015</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. 2x.002</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. 2x.003</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. 2x.004</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. 3x.0015</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
<tr>
<td>B.P.D. 3x.002</td>
<td>1/16" max.</td>
<td>1/4" + 3/8"</td>
<td>3/32" max.</td>
</tr>
</tbody>
</table>

Data Log

The Union-Sun & Journal Reaches Far Out from Lockport with WUSJ AM-FM

- WUSJ AM-FM is owned and operated by the Lockport, N. Y., Union-Sun & Journal, Inc., a daily newspaper that has served the Lockport community for over 128 years.
- WUSJ is the only full time AM broadcasting station in Niagara County. Its coverage, which includes all of Niagara County, extends into Erie and Orleans Counties, and across Lake Ontario into Canada.
- The Truscon Radio Tower extends up 135 feet, with a 42-foot 4-bay FM tower on top, making a total combined height of 177 feet above ground. The power of the AM station is 250 watts and 1340 KC; the FM power is 750 watts and 99.3 MC.

Another TRUSCON TOWER OF STRENGTH
177 FT.
HIGH OVERALL

While extreme height is not necessary to achieve the required signal strength, this tower demonstrates one outstanding characteristic of all Truscon Radio Towers—each is designed and erected to fit the purely local conditions under which it must operate. Truscon engineers have a world-wide background of field experience to aid you in determining all operating factors, and in fitting the right tower to them.

Whether you're planning in terms of AM, FM, or TV, call or write your nearest Truscon district office. Capable technicians will work with you in selecting location and type of tower—guyed or self-supporting, uniform or tapered cross-section, tall or small—which best will serve you and your audience.

TRUSCON STEEL COMPANY
YOUNGSTOWN 1, OHIO
Subsidiary of Republic Steel Corporation

PROCEEDINGS OF THE I.R.E. December, 1950
MANY MANUFACTURERS
of ELECTRICAL EQUIP-
MENT are finding our
CLEVELITE* and
COSMALITE* . . .
spirally laminated
paper base phenolic
tubing meets their
most exacting
requirements.

Available in diameters,
wall thicknesses and
lengths to meet endless
adaptations.

What are your
requirements?

CLEVELAND
PHENOLIC TUBES

are the first choice of the Radio and Television Industries!

For example, CLEVELITE* is the proper choice for Fly-back
and High Voltage Transformers.

It insures perfect satisfaction.

Furthermore, CLEVELITE'S high dielectric strength . . . low
moisture absorption . . . strength, low loss and good ma-
chineability meet widely varied requirements and give
fine performance.

PROMPT DELIVERIES are available through our large pro-
duction capacity.

Inquiries invited . . . Samples gladly sent.

The CLEVELAND CONTAINER CO.
6201 BARBERTON AVE. CLEVELAND 2, OHIO

PLANTS AND SALES OFFICES at Plymouth, Wis., Chicago, Detroit, Ogdenburg, N. Y., Jamestown, N. Y.
ABRASIVE DIVISION at Cleveland, Ohio

CANADIAN PLANT: The Cleveland Container, Canada, Ltd., Prescott, Ontario

REPRESENTATIVES

NEW YORK AREA R. T. MURRAY, 614 CENTRAL AVE., EAST ORANGE, N. J.
NEW ENGLAND R. S. PETTIGREW & CO., 958 FARMINGTON AVE.
 WEST HARTFORD, CONN.
CANADA WM. T. BARRON, EIGHTH LINE, RR #1, OAKVILLE, ONTARIO

PROCEEDINGS OF THE I.R.E. December, 1950
Mallory Vibrators

Roll Up Big Savings...
"Protect Customer Good Will!"

Reducing component parts costs—and at the same time, improving performance—is a welcome combination! The economy and dependability of Mallory Vibrators have made important contributions of this kind for Mallory customers.

Here's just one example! A radio manufacturer was receiving serious field complaints on vibrator performance. The substitution of two Mallory Vibrators—one a standard type, and the other especially designed for his problem—not only eliminated the difficulty but saved the customer $30,000 in vibrator costs alone! And the changes were accomplished with virtually no modification in circuit designs.

That's service beyond the sale!

And whether your problem is electronic or metallurgical what Mallory has done for others can be done for you.

Vibrators and Vibrapack* Power Supplies

MALLORY

MALLORY VIBRATORS

Mallory Vibrators are based on exclusive design and manufacturing methods that assure long, trouble-free service. Send the details of your application. Get Mallory's recommendation on the Vibrator or Vibrapack* power supply best suited to your needs.

SERVING INDUSTRY WITH

Capacitors Contacts
Controls Resistors
Rectifiers Vibrators
Special Power
Switches Supplies
Resistance Welding Materials

Each tiny El-Menco CM-15 capacitor performs at maximum efficiency regardless of climate or critical operating conditions. Before leaving the factory, it is tested for dielectric strength at double working voltage—for insulation resistance and capacity value. Every gem-sized El-Menco capacitor meets and beats the strictest Army-Navy standards. That's why you can always depend on this tiny condenser to give gigantic performance in your product.

A COMPLETE LINE OF CAPACITORS TO MEET EVERY REQUIREMENT

THE ELECTRO MOTIVE MFG. CO., Inc.
WILLIMANTIC CONNECTICUT

Write on your firm letterhead for Catalog and Samples.

MOLDED MICA CAPACITORS

FOREIGN RADIO AND ELECTRONIC MANUFACTURERS COMMUNICATE DIRECT WITH OUR EXPORT DEPT. AT WILLIMANTIC, CONN. FOR INFORMATION.

ARCO ELECTRONICS, INC.

PROCEEDINGS OF THE I.R.E. December, 1959
A RELIABLE SOURCE OF SUPPLY for DEPENDABLE RESISTORS for OVER 20 YEARS

STACKPOLE

... FIXED RESISTORS
VARIABLE RESISTORS ... IRON CORES ... CERAMAG® CORES ... LINE, SLIDE AND ROTARY SWITCHES ... CARBON VOLTAGE REGULATOR DISCS ... MOLDED COIL FORMS ... GA "GIMMICK" CAPACITORS, ETC.

Electronic Components Division
STACKPOLE CARBON COMPANY • ST. MARYS, PA.
The DAVEN Output Power Meters are designed to measure the actual power delivered by an audio signal system to a given load. However, because of the characteristics of the circuit, they are admirably suited to other applications, namely:

1. Determination of Characteristic Impedance of an A.C. Source.
2. Effects of Load Variation on a Signal System.
4. Measurement of Insertion Loss in Multi-channel Mixers and other complex circuits.
5. Filter and Transformer Measurements.

The equipment shown on this page is built to DAVEN'S well-known standards of precision. Please write for more detailed data. Let our engineering department help you on specific problems.

Impedance Range: 2.5 ohms to 20,000 ohms. Remains essentially resistive over frequency range of 30 to 10,000 cps. Accuracy ±5%.

Power Range: 0.1 mw to 5 watts in steps of 0.1 mw.

Indicating Meter: Calibrated from 0 to 50 milliwatts and from 0 to 17 db. Zero level: 1 mw.

Meter Multiplier: Extends the power reading of the meter from 0.1x to 1000x, scale values, or the db reading from -10 to +30 db, in steps of 2 db.

Characteristics similar to OP-961, except that it can measure up to 100 watts.

Impedance Range: 40 selected impedances between 2.5 and 20,000 ohms.

Power Range: 0.1 mw to 100 watts in 0.1 mw steps.

Range may be extended below 0.1 mw by use of external amplifier.

Indicating Meter: Calibrated from 0.1 watt to 1 watt and from -10 to +10 db. Zero level: 1 mw.

THE DAVEN CO.

195 CENTRAL AVENUE • NEWARK 4, NEW JERSEY
When you're building any of thousands of complex industrial and military electronic devices, reliable components are a must.

To give you, the designers of these devices, the utmost in reliability, General Electric is constantly at work improving and redesigning in its ever growing line of electronic components.

The list at left only partially covers the thousands of parts in the complete G-E line. We'll tell you about as many of them as space will permit in these pages from month to month. *Apparatus Department, General Electric Company, Schenectady 5, N. Y.*
LINE-VOLTAGE STABILIZERS
—get rid of ups and downs!

When you're after a steady 115 volts at the input of your equipment and the line is fluctuating anywhere between 95 and 130, use a G-E voltage stabilizer. These units use a special transformer circuit to provide a stabilized output voltage within ±1% of 115 volts for fixed, unity-power-factor loads. Fast response of G-E stabilizer restores normal output voltage in less than three cycles. 15-, 25- and 50-va stabilizers are small enough to mount on radio or electronic instrument chassis (2 inches high, 9 inches long). Standard ratings up to 5000 va are available in larger sizes. Write for Bulletin GEA-3634.

TYPE HMA RELAYS—up to 30 amps, closing

The G-E Type HMA relay is only the size of cigarette package, but it closes at currents up to 30 amperes! HMA relays have self aligning, silver-to-silver contacts; are positive in action, instantaneous in operation. They are available in either back or front connected models. For coil voltages of 6, 12, 24, 32, 48, or 125 d-c; 115 or 230 a-c. Single- or double-break contacts. Bulletin GEA-5457.

With the unique electrical property of varying inversely in resistance as the fourth power (or even higher) of the applied voltage, Thyrite® resistance material has solved many problems for the design engineer.

Use it with a-c, d-c, or short duration pulses; for such applications as the limiting of voltage surges, stabilization of rectifier output voltages, controlling of voltage-selective circuits, and potentiometer division of voltages.

Thyrite comes in disk form in diameters from 0.25 to 6.00 inches, with or without mounting holes. Smaller sizes are furnished with wire leads. See Bulletin GEA-4138.

Registered Trade Mark of General Electric Co.

Please send me the following bulletins:

\(\text{(V) for reference only} \)
\(\text{(X) for planning a project} \)

- GEA-3634 Voltage stabilizers
- GEA-4138 Thyrite
- GEA-5457 HMA relays

Name

Company

Address

City State
Unusual combinations of characteristics required in today's critical electronic circuits demand a complete range of resistor types. Specializing in resistors, IRC makes the widest line in the industry. This means ease of procurement—a single dependable source of supply for all your resistance needs. It also means unbiased recommendations—no substitution of units "just as good". IRC's complete line of products; complete research and testing facilities; complete network of licensees for emergency production—all add up to complete satisfaction for you.

PRECISION RESISTORS

IRC Precision Wire Wounds offer a fine balance of accuracy and dependability for close-tolerance applications. Extensively used by leading instrument makers, they excel in every significant characteristic. Catalog Bulletin D-1.

IRC Deposited Carbon PRECISTORS combine accuracy and economy for close-tolerance applications, where carbon compositions are unsuitable and wire-wound precisons too expensive. Catalog Bulletin B-4.

IRC Matched Pairs provide a dependable low-cost solution to close-tolerance requirements. Both Type BT and BW Resistors are available in matched pairs. Catalog Bulletin B-3.

IRC Sealed Precision Voltmeter Multipliers are suitable and dependable for use under the most severe humidity conditions. Each consists of several IRC Precisions mounted and interconnected, encased in a glazed ceramic tube. Catalog Bulletin D-2.

CONTROLS

IRC Type W Wire Wound Controls are designed for long, dependable service and balanced performance in every characteristic. These 2-watt variable wire wound units provide maximum adaptability to most rheostat and potentiometer applications within their power rating. Catalog Bulletin A-2.

INSULATED COMPOSITION and WIRE WOUND RESISTORS

IRC Advanced Type BT Resistors meet and beat JAN-R-11 Specifications of 1/4, 1/2, 1 and 2 watts—combine extremely low operating temperature with excellent power dissipation. Catalog Bulletin B-1.

IRC Type BW Wire Wound Resistors are exceptionally stable, inexpensive units for low range requirements. Have excellent performance records in TV circuits, meters, analyzers, etc. Catalog Bulletin B-5.

IRC Type BTAV High Voltage Resistors, developed for use as discharge resistors in fluorescent "Quick Start" ballasts, withstands momentary peak surge of 6000 volts. Also suited to TV bleeder circuits. Catalog Bulletin B-1.

HIGH FREQUENCY and HIGH POWER RESISTORS

IRC Type MP High Frequency Resistors afford stability with low inherent inductance and capacity in circuits involving steep wave fronts, high frequency measuring circuits and radar pulse equipment. Available in sizes from 1/8 to 90 watts. Catalog Bulletin F-1.

Type MV High Voltage Resistors utilize IRC's famous filament resistance coating in helical turns on a ceramic tube to provide a conducting path of long, effective length. Results: Exceptional stability even in very high resistance values. Catalog Bulletin G-1.

IRC Type MVX High Ohmic, High Voltage Resistors meet requirements for a small high range unit with axial leads. Engineered for high voltage applications, MVX has exceptional stability. Catalog Bulletin G-2.

IRC Type MPM High Frequency Resistors are miniature units suitable for high frequency receiver and similar applications. Stable resistors with low inherent inductance and capacity. Body only 3/4" long. Catalog Bulletin F-1.

POWER RESISTORS

IRC Fixed and Adjustable Power Wire Wounds give balanced performance in every characteristic—are available in a full range of sizes, types and terminals for exacting, heavy-duty applications. Catalog Bulletin C-2.

IRC Type FRW Flat Wire Wound Resistors fulfill requirements of high wattage dissipation in limited space—may be mounted vertically or horizontally, singly or in stacks. Catalog Bulletin C-1.

IRC Type MW Wire Wound Resistors after low initial cost, lower mounting cost, flexibility in providing taps, and saving in space. Completely insulated against moisture. Catalog Bulletin B-2.

IRC Type LP Water-Cooled Resistors for TV, FM and Dielectric Heating Applications. Cooled internally by high velocity stream of water adjustable to local water pressure and power dissipation up to 5 K.W.A.C. Catalog Bulletin F-2.

IRC 1111111111111111111

INTERNATIONAL RESISTANCE COMPANY

405 N. BROAD ST., PHILADELPHIA 8, PA.

Please send me Technical Data Bulletins checked below:

- [] Bulletin A-2 (W)
- [] Bulletin A-4 (Q)
- [] Bulletin B-1 (BT)
- [] Bulletin B-1 (BTAV)
- [] Bulletin B-2 (MW)
- [] Bulletin B-3 (MA/P)
- [] Bulletin B-4 (DC)
- [] Bulletin B-5 (BW)
- [] Bulletin C-1 (FRW)
- [] Bulletin C-2 (PW/W)
- [] Bulletin D-1 (WW)
- [] Bulletin D-2 (MA)
- [] Bulletin F-1 (MP)
- [] Bulletin F-1 (MPA)
- [] Bulletin F-2 (LP)
- [] Bulletin G-1 (MVY)
- [] Bulletin G-2 (MVYX)

NAME __

TITLE __

COMPANY __

ADDRESS ___

CITY ____________________________ ZONE ______ STATE ___________

J. P. ARMOT & CO. ADV. AGENCY
STANDARD RI-FI* METERS

14 kc to 1000 mc!

DEVELOPED BY STODDART
FOR THE ARMED FORCES.

AVAILABLE COMMERCIALLY.

VHF!
15 MC
14 KC
to
to
400 MC
250 KC.

NMA - 5
NM - 10A

VLF!

Commercial equivalent of 15-587/U.
Sensitivity as two-terminal voltmeter, (95 ohms balanced)
2 microvolts 15-125 MC, 5 microvolts 88-400 MC. Field
intensity measurements using calibrated dipole. Frequency
range includes FM and TV Bands.

HF!
150 KC
25 MC

Commercial equivalent of AN URM-1.
Self-contained batteries, A.C. supply optional. Sensitivity as
two-terminal voltmeter, 1 microvolt. Field intensity with ½
meter rod antenna, 2 microvolts-per-meter; rotatable loop
supplied. Includes standard broadcast band, radio range,
WWV, and communications frequencies.

UHF!
375 MC
1000 MC

Commercial equivalent of AN URM-17.
Sensitivity as two-terminal voltmeter, (50-ohm coaxial input)
10 microvolts. Field intensity measurements using calibrated
dipole. Frequency range includes Citizens Band and UHF
color TV Band.

Since 1944 Stoddart RI-FI* instruments have established the
standard for superior quality and unexcelled performance.
These instruments fully comply with test equipment require-
ments of such radio interference specifications as JAN-1225,
ASA C63.2, 16E4(SHIP'S), AN-1.12a, AN-1.42, AN-1.27a, AN-1.40
and others. Many of these specifications were written or re-
vised to the standards of performance demonstrated in
Stoddart equipment.

*Radio Interference and Field Intensity.

Precision Attenuation for UHF !

Less than 1.2 VSWR to 3000 MC.
Turret Attenuator: 0, 10, 20, 30, 40, 50 DB.
Accuracy ± .5 DB.
Patents applied for.

STODDART AIRCRAFT RADIO CO.
6644 SANTA MONICA BLVD., HOLLYWOOD 38, CALIF.

Hillside 9294
BRADLEY UNITS

"Tops" in Permanent Performance
... because rated at 70C

Bradley unit resistors have permanent characteristics, because they are rated to operate continuously at 70C ambient temperature... not 40C. They can withstand extremes of temperature, pressure, and humidity without deterioration.

Bradley units are solid molded with high mechanical strength. They need no wax impregnation to pass salt water immersion tests. The leads are differentially tempered to prevent sharp bends.

Bradley units are made in standard R.M.A. values in ½ and 2 watt ratings from 10 ohms to 22 megohms; 1 watt from 2.7 ohms to 22 megohms.

Let us send you a complete A-B resistor chart.

Allen-Bradley Co., 114 W. Greenfield Ave.
Milwaukee 4, Wis.

The A-B honeycomb carton prevents tangling of leads and saves time.
Sprague-Herlee Cera-mite Capacitors are a "must" for modern television circuits.

Now available in NP0 and N750 temperature-compensating bodies and in two different high-K bodies, Cera-mites meet most application needs in the 10 mmf to 15,000 mmf capacitance range.

These miniature capacitors offer set designers maximum space economy, ease of mounting, and improved very-high-frequency performance.

The flat disc with uni-directional lead construction has minimum self-inductance and a higher self-resonant frequency than a tubular design; hence improved v-f bypass efficiency.

Sprague-Herlec Engineering Bulletin 601B gives the complete list of standard ratings as well as performance specifications. Write for your copy today!
It's a fact that

- Certain designs in AlSiMag can be supplied with open end POLISHED SLOTS as narrow as .010".
- AlSiMag rods are regularly and economically produced within TOLERANCES of .0001".
- AlSiMag plates and discs can be produced FLAT within microinches.
- Some AlSiMag compositions have such great resistance to HEAT SHOCK that they are used in the control of molten metals.
- AlSiMag is one of the best ELECTRICAL INSULATORS at high temperatures and high frequencies.
- AlSiMag has such hardness and RESISTANCE TO ABRASION that it is used for extrusion and drawing dies and also for wire recorder and thread guides.
- AlSiMag tubes have been successfully produced with holes almost as small as a human hair, with wall sections of about the same thickness.

Some AlSiMag precision made parts are so tiny that several thousand will go in a thimble.
(For illustrative purpose, larger parts are shown here.)

- AlSiMag Custom Made Technical Ceramics are available in a wide variety of physical characteristics. AlSiMag parts come to you ready for your assembly line. They are uniform, dimensionally accurate and economically fabricated in quantity. American Lava Corporation is known throughout the industry for its leadership in engineering and research and for its ability to produce ceramics that comply with specifications and that do the job as planned. Engineering cooperation and handmade test samples are available. Send us your problems.

AMERICAN LAVA CORPORATION
49TH YEAR OF CERAMIC LEADERSHIP
CHATTANOOGA 5, TENNESSEE

OFFICES: METROPOLITAN AREA, 671 Broad St., Newark, N. J., Mitchell 2-8150 • CHICAGO, 228 North LaSalle St., Central 6-1721
PHILADELPHIA, 1649 North Broad St., Stevenson 4-2823 • LOS ANGELES, 332 South Hill St., Mutual 9076
NEW ENGLAND, 38-8 Brattle St., Cambridge, Mass., Kirkland 7-4498 • ST. LOUIS, 1122 Washington Ave., Garfield 4959
Now MYCALEX offers both 7-pin and 9-pin miniature tube sockets ... with superior low loss insulating properties, at new low prices that offer ceramic quality for the cost of phenolics.

MYCALEX miniature tube sockets are injection molded with precision that affords uniformity and extremely close tolerances. MYCALEX insulation has high dielectric strength, very low dielectric loss, high arc resistance and great dimensional stability.

Produced in two grades: MYCALEX 410 conforms to Grade L4 specifications, having a loss factor of only .015 at 1 MC. It is priced comparably with mica filled phenolics.

MYCALEX 410X is for applications where low cost of parts is vital. It has a loss factor only one-fourth that of “everyday” quality insulating materials, and a cost no greater.

Prices gladly quoted on your specific requirements. Samples and data sheets by return mail. Our engineers will cooperate in solving your problems of design and cost.

Mycalex Tube Socket Corporation

"Under Exclusive License of Mycalcorp of America"

30 Rockefeller Plaza, New York 20, N.Y.
Re-generation? Radiation?

Erie Type 325
High Frequency By-Pass Capacitor
Will Help Solve Your Problem

- Low Inductance
- Uniform Inductance for Resonance By-Passing
- Rugged High Terminal for Tie-Point
- Fully Shielded

One solution to control of regeneration and radiation in TV sets lies in better by-passing... and Erie Style 325 Stand-Off Ceramicicon provides the solution in concrete form. This ceramic capacitor is made especially for high frequency decoupling and offers an outstanding combination of features never before offered in the low-price field.

A by-pass to ground is provided through the shortest possible path, in a completely sealed metal case. Full advantage is taken of the concentric cylindrical electrode configuration in maintaining this short path, resulting in extremely low series inductance and effective v.h.f. by-pass.

Push-on clip facilitates high speed assembly... or shell may be soldered directly into a hole in the chassis. Post terminal provides a sturdy tie-point for several connections, at tube socket terminal height. The capacitor possesses unusual mechanical ruggedness.

Write for detailed information and samples.

Electronics Division
Erie Resistor Corp., Erie, Pa.
London, England... Toronto, Canada
The Eimac 3X2500A3 is one of the outstanding vacuum tube developments made during recent years. Consistent performance, long life, and low cost account for its filling the key socket positions in many important recently designed equipments.

The 3X2500A3 is a compact, air-cooled triode. Its coaxial construction results in minimum lead inductance, excellent circuit isolation, and convenience of use with coaxial plate and filament tank circuits. For AM service it is FCC rated for 5000 watts per tube as a high-level modulated amplifier. It has comparatively low plate-resistance, high transconductance, and will provide effective performance over a wide range of plate voltages at frequencies extending well into the VHF.

Reports from many engineers, like Mr. Dodd of WFAA-TV, confirm the outstanding transmitter performance, simplified maintenance, and low tube replacement cost made possible through the use of the Eimac 3X2500A3. Consider this unequalled triode for your applications...complete data are free for the asking.

EIMAC 3X2500A3

GENERAL CHARACTERISTICS

ELECTRICAL

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament: Thoriated tungsten</td>
<td>7.5 volts</td>
</tr>
<tr>
<td>Voltage</td>
<td>60 amperes</td>
</tr>
<tr>
<td>Maximum starting current</td>
<td>100 amperes</td>
</tr>
<tr>
<td>Amplification Factor (Average)</td>
<td>20</td>
</tr>
<tr>
<td>Direct Interelectrode Capacitance (Average)</td>
<td>26 ufd</td>
</tr>
<tr>
<td>Grid-Plate</td>
<td>40 ufd</td>
</tr>
<tr>
<td>Grid-Filament</td>
<td>12 ufd</td>
</tr>
<tr>
<td>Plate-Filament</td>
<td>30,000 uhos</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>Forced air</td>
</tr>
<tr>
<td>Maximum Overall Dimensions:</td>
<td>9.0 inches</td>
</tr>
<tr>
<td>Length</td>
<td>4.25 inches</td>
</tr>
<tr>
<td>Diameter</td>
<td>5.6 pounds</td>
</tr>
</tbody>
</table>

RADIO FREQUENCY POWER AMPLIFIER

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-Grid Circuit</td>
<td>3700 4000 volts</td>
</tr>
<tr>
<td>C-Group Plate Voltage</td>
<td>450 550 volts</td>
</tr>
<tr>
<td>C-Group Plate Current</td>
<td>1.8 1.85 amps.</td>
</tr>
<tr>
<td>D-Group Current</td>
<td>275 275 ma.</td>
</tr>
<tr>
<td>Driving Power (Approx.)</td>
<td>1500 1900 watts</td>
</tr>
<tr>
<td>Useful Power Output</td>
<td>6800 7500 watts</td>
</tr>
</tbody>
</table>

COMPLETE DATA AVAILABLE FREE

EIMAC TUBES

The Power for E-F

PROCEEDINGS OF THE I.R.E. December, 1950
GPL Introduces First TV Camera Chain
Designed from Start to Finish for Compactness and Ease of Operation

Built with the compact precision which distinguishes a quality watch from an alarm clock, GPL's new image orthicon camera chain is smaller, lighter, easier to use. It is the first camera chain that has been "human engineered"—designed from motion studies of cameramen and control personnel. It is the first with type and location of controls based on minimum movement and maximum ease and efficiency.

This simplification, together with size and weight reduction has been accomplished without any sacrifice or limitation whatever in performance or accessibility. Superior GPL circuit design provides a better picture than normally obtainable with image orthicon equipment. Complete control is provided for every studio or field requirement.

Logical components have been combined . . . fewer units make up a chain. A single chain consists of only 4 units; a triple chain, 12 including switching unit and master monitor. The camera, with integral view finder, is only 10½" x 12½" x 22", weighs 75 lbs. instead of 100-105 lbs. The sync generator is a single portable unit including its own power supply. It may be easily removed from its case to go into a standard relay rack.

SIMPLIFIED CONTROL

All controls are at the finger-tips of cameramen and camera control operators. Focus adjustment of all lenses is uniform; a given rotation of focus control produces the same shift in plane of focus for all lenses. The iris is motor-controlled, either from the rear of the camera or from the camera control unit. Dials on both camera and control unit indicate the lens opening. Negative feedback is used to stabilize video frequency response, eliminating an adjustment. Target and beam are controlled by thumbwheels next to convenient knobs for pedestal and gain.

READILY ADAPTABLE

GPL Camera Chains completely meet all studio and field requirements or may be readily adapted to supplement existing installations. Before you make any camera chain investment, get all the facts on this new addition to GPL's outstanding line of TV studio equipment.

Write, Wire or Phone for Details

Compone GPL camera and control unit have been "human engineered" for easy, efficient use. Camera provides uniform focus adjustment for all lenses; iris is motor-controlled from rear of camera or from control unit, with lens opening shown on dials at both locations. Control unit has 8½" monitor tube.

IMPROVED SYNC GENERATOR

The sync generator, with its power supply, is a single unit, packaged for field use. Because binary counting circuits are used, and pulse width is controlled by delay lines, it provides circuit reliability better than present studio equipment. With this circuitry, all operator adjustments are eliminated.

General Precision Laboratory

Pleasantville, N. Y.

INcORPORATED

New York
Here, woven around the quantitative investigation of a 0.25 microsecond pulse, is a graphic account of the performance features which make the Type 303 an exceptionally fine, high-frequency cathode-ray oscillograph.

A. SIGNAL DELAY built into the Y-axis amplifier insures complete display of the steep pulse rise. As illustrated by a portion "A", the 10% point of rise does not occur until sometime after the sweep starts. Y-axis frequency response, of the instrument, includes the performance of the signal-delay line.

B. EXCELLENT TRANSIENT RESPONSE—wholly essential to the proper study of high-speed phenomena—is depicted by the rise time which is reproduced without appreciable degradation. A rise time of 0.01 microsecond, or greater, will be reproduced as a rise time not exceeding 0.03 microsecond.

C. NO OVERSHOOT is observed even on extremely steep wavefronts. The low-frequency response limit is a 3% slope on a 30-cycle squarewave. As shown on the frequency-response curve, there is no positive slope above the mid-frequency range. Since the response tapers off so slowly, the Type 303 is usable at frequencies beyond 10 megacycles. The synchronizing circuits will lock in sine-wave signals as high as 20 megacycles.

D. UNDISTORTED DEFLECTION provided by the Y-axis amplifier is 2.5 inches for unidirectional pulses. An equivalent undistorted deflection of 5 inches is available for symmetrical signals and may be positioned over the useful area of the cathode-ray tube. Even at the highest attenuation ratios, the Y-axis input is not frequency sensitive, as shown by the illustrated pulse which has been attenuated 4000 times. The direct-coupled X-axis amplifier of the Type 303 will provide over 5" of undistorted deflection.

E. SWEEP SPEEDS available in the Type 303 make possible a presentation which is practical for qualitative and quantitative analysis of a pulse as short as 0.25 microsecond. Both driven and recurrent sweeps are continuously variable from 0.1 second to 5 microseconds. Through sweep expansion, sweep length is variable from a fraction of an inch to an effective 30 inches, any portion of which may be positioned on the screen. As shown above, even at the fastest sweep range, the sweep is extremely stable and linear. Notice the absence of jitter.

F. TIME CALIBRATION in the Type 303 is accomplished by substituting a damped sinewave for the signal. Double exposure by photographic recording of calibrating sinewave and signal provides a permanent quantitative analysis of the signal. In addition to the 10-megacycle signal shown above, calibrating frequencies of 10 KC, 100 KC, and 1 MC are also available. Accuracy of time calibration is within 3%.

G. AMPLITUDE CALIBRATION completes the precise, quantitative analysis of the signal. A built-in, regulated, voltage-calibrator provides peak-to-peak signals of 0.1, 1.0, 10, and 100 volts. Similar to time calibration, the amplitude calibrating square wave is substituted for the signal. Amplitude calibration is accurate within 5%.

price $820.00 FOR COMPLETE DETAILS WRITE for bulletin TYPE 303

ALLEN B. DUMONT LABORATORIES, INC. Instrument Division 1000 Main Avenue, Clifton, N. J.
CLARE Hermetically Sealed RELAYS

Offer the utmost perfection in True Hermetic Sealing

Here Is What CLARE Hermetic Sealing Means:

After assembly in the container, the enclosure is attached to a high vacuum pump and pumped down to a few microns pressure to remove all traces of moisture and gases. While under this extreme vacuum, the enclosure and seals are tested for leaks by means of a Mass Spectrometer—a device so sensitive that it can detect a leak so tiny that more than thirty-one years would be required for one cubic centimeter of air to pass through it. This highly refined method of leak testing causes rejection of many enclosures which could pass the usual immersion tests without detection.

For most applications, the enclosure is then filled with dry nitrogen, which has a relatively high arcing potential.

Write for CLARE Bulletin No. 114

CLARE Hermetically Sealed Relays Protect Against These Conditions:

- Moisture, High Humidity and Ice
- Salt Air and Spray
- Fungus Growth
- Varying Air Pressure
- Variation of Air Density
- Dust and Dirt
- Corrosive Fumes
- Explosive Atmospheres
- Tampering

Clare Hermetically Sealed Relays are air-tight so that no gas or spirit can enter or escape.

This ideal condition, now available to every user of CLARE hermetically sealed relays, is the result of many years of painstaking research by the CLARE organization to produce a perfectly sealed relay at a reasonable cost to industrial relay buyers. Hermetically sealed in an ideal atmosphere of dry inert gas, they are permanently immune to the difficult climatic and environmental conditions responsible for 95% of the failures of exposed electrical apparatus.

CLARE has today—or can provide you with—the hermetically sealed relay that you require. Over forty different series of CLARE hermetically sealed relays are described in Bulletin No. 114. Within each series, innumerable variations of coil and contact specifications are possible. Numerous other special sealed-relay units are also available.

Clare sales engineers are located in principal cities to assist you in the selection of just the right relay for your specific requirement. Look them up in your telephone directory or write: C. P. Clare & Co., 4719 West Sunny-side Ave., Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address: CLARELAY.

CLARE RELAYS

... First in the Industrial Field
SIGNAL GENERATORS by

AIRCRAFT RADIO CORPORATION

The Type H-14 Signal Generator, 108-118 megacycles, provides a standard signal source for the complete testing of VHF airborne omnirange and localizer receivers in aircraft or on the bench. It provides for testing 21 omni courses, plus left-center-right checks on both amplitude and phase localizers. Aircraft may be checked out quickly and accurately just before take-off. RF output for ramp checks, 1 volt into 52 ohm line and for bench checks, 0-10,000 microvolts. Provision for external voice or other modulation. AF output available for bench maintenance and trouble shooting.

Price: $855.00 net, f.o.b. Boonton, N. J.

TYPE H-12—VHF Signal Generator; 900-2100 Megacycles

Provides source of cw or pulse amplitude-modulated RF, power level 0 to -120 dbm. Internal pulse circuits with controls for width, delay, and rate, and provision for external pulsing. Single dial tuning, frequency calibration accurate to better than 1%. Built to Navy specifications for research and production testing. Equal to military TS-419/U.

Price: $1950.00 net, f.o.b. Boonton, N. J.

WRITE TODAY for descriptive literature on A.R.C. Signal Generators or airborne LF and VHF communication and navigation equipments, CAA Type Certified for transport or private use.

Aircraft Radio Corporation
Boonton, N. J.

Dependable Electronic Equipment Since 1928
EXTRA RELIABILITY

G-E transmitting tubes have it! So... Mr. Manufacturer... specify General Electric, to design max dependability into your radio equipment!

HERE are tubes better-built by G.E. for better performance! Each has that something extra in design, in manufacture, which means real dependability when the chips are down and your equipment is working peak-load and full-time.

GL-5686... It's a new nine-pin miniature that does the work of a 6AQ5 or 6AR5—does it consistently, because every tube gets 50 hours' service at the factory under Class A conditions, with frequent samples also being selected for full life tests. You can bank on the GL-5686!

GL-807... The G-E grid construction is substantial and strong—will stand up under punishment. Moreover, special G-E development work in metals and other substances gives this tube premium quality from cap-terminal through to base-pins.

GL-813... Superior G-E internal shielding, in the form of a large ground-plane barrier, gives ample protection against feedback—cuts down sharply on the need to neutralize. Improved design joins with precision G-E manufacture to offer you the leading beam power tube in its class.

Why not ensure your new transmitter's performance by choosing these and other G-E tubes your customers can count on, day-in and day-out? Just write for data sheets that give all ratings, in all classes of service. Or better, ask for the help of expert G-E tube engineers, who will be glad to consult with you personally on applications.

Address Electronics Department, General Electric Co., Schenectady 5, N.Y.

TYPICAL OPERATION, CLASS C TELEGRAPHY

<table>
<thead>
<tr>
<th></th>
<th>GL-5686</th>
<th>GL-807</th>
<th>GL-813</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate voltage</td>
<td>250 v</td>
<td>600 v</td>
<td>2,000 v</td>
</tr>
<tr>
<td>Plate current</td>
<td>40 ma</td>
<td>100 ma</td>
<td>180 ma</td>
</tr>
<tr>
<td>Driving power</td>
<td>0.15 w</td>
<td>0.2 w</td>
<td>1.9 w</td>
</tr>
<tr>
<td></td>
<td>6.5 w</td>
<td>40 w</td>
<td>275 w</td>
</tr>
<tr>
<td>Power output</td>
<td>7.5 w</td>
<td>25 w</td>
<td>100 w</td>
</tr>
<tr>
<td>Max plate dissipation</td>
<td>160 mc</td>
<td>60 mc</td>
<td>30 mc</td>
</tr>
<tr>
<td>Freq. at max ratings</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL ELECTRIC
Now! Complete coverage!

Now—hp—offers the world’s broadest, easiest-to-use line of VHF, UHF and SHF signal generators. These are precision instruments supplying accurately known frequencies up to 7,600 mc. They are deliberately designed for utmost convenience and accuracy in making all kinds of measurements including: receiver sensitivity, selectivity or rejection; signal-noise ratio, conversion gain, SWR, antenna gain, transmission line characteristics; and for driving bridges, slotted lines, filter networks, etc.

New —hp— Model 618A, shown above, is for use in the 3,300 to 7,600 mc band. It provides a 1 milliwatt signal into a 50-ohm coaxial load (zero dbm). Its output attenuator reduces output level to less than —100 dbm. Frequency is continuously variable, directly read in mc. Repeller voltage tracks automatically; no adjustment is needed to select the correct frequency. Accuracy is ± of 1%. The instrument offers external frequency modulation with maximum deviation of ±10 mc. It also may be externally pulse modulated, with a positive or negative peak of approximately 15 volts. Internal square wave modulation is also provided; frequency range, 400 to 1,000 cps. $2,250 f.o.b. factory.

For complete details, write factory direct or see the —hp— sales representative in your area.

HEWLETT-PACKARD COMPANY
2159D Page Mill Road • Palo Alto, California

Sales representatives in all principal areas. Export: Frazar & Hansen, Ltd., San Francisco, Los Angeles, New York
10 to 7600 mc

10 to 500 mc -hp- 608A SIGNAL GENERATOR
Output range 0.1 µv. to 1.0 v. into 50 ohms. Accuracy ± 1 db. Direct reading frequency and output calibration, no charts or interpolation. CW, pulsed or amplitude modulated output (50 to 1,000,000 cps). Resettability better than 1 mc. Master oscillator power amplifier for widest modulation capabilities. Constant internal impedance 50 ohms. Maximum VSWR 1.2. $850 f.o.b. factory.

450 to 1,200 mc -hp- 610B SIGNAL GENERATOR
Output range 0.1 µv. to 0.1 v. into 50 ohms. Accuracy ± 1 db. Output and frequency directly set and read, no charts or interpolation. Modulation: internal or external pulsed, external amplitude, external square wave. Widely variable pulse length, repetition, and delay features. $925 f.o.b. factory.

800 to 2,100 mc -hp- 614A SIGNAL GENERATOR
Output range 0.1 µv. to 0.223 v. (1 µw). Accuracy ± 1 db. Single dial direct reading frequency and output, no charts or interpolation. CW, pulsed and FM output. Modulation: internal pulsed, FM, external pulsed. Widely variable pulsing, synchronizing, delay and triggering features. Extremely fast rise/decay time 0.1 µsec. Constant internal impedance 50 ohms, SWR 3 db. $1,350 f.o.b. factory.

1,800 to 4,000 mc -hp- 616A SIGNAL GENERATOR
Output range 0.1 µv. to 0.223 v. (1 µw). Accuracy ± 1 db. Single dial, direct reading frequency and output, no charts or interpolation. Output, modulation, and synchronization features identical with Model 614A. Like Model 614A, instrument automatically tracks frequency changes, requires no voltage adjustment during operation. $1950 f.o.b. factory.

HEWLETT **hp** PACKARD
SPEED AND CONVENIENCE

Rapid, accurate measurement of impedance, reflection coefficient and standing wave ratio. Small size, convenient for field use.

50 to 500 Mc.

Can be inserted in various sizes of solid coaxial line or flexible cables.

Make three readings, plot diagram and read off impedance to ± 5%.

$400.00.

FTL-42A IMPEDOMETER

PRECISION

Precise impedance measurements in the range of 60 to 1000 megacycles per second. Accuracy ± 2%.

1000 to 2000 Mc range covered with slightly reduced accuracy.

Coaxial line 250 centimeters long having a surge impedance of 51.0 ohms ± 0.5 ohms.

$2,495.00.

FTL-30A SLOTTED LINE

Write for FTL-30A and FTL-42A brochures

Federal Telecommunication Laboratories, Inc.

500 Washington Avenue
Nutley 10, New Jersey
The Most Complete Line of Wirewound Resistors...
The OHMITE Line

No matter what your resistor requirements, the chances are that Ohmite has exactly the resistor you need. Ohmite offers fixed, adjustable, tapped, non-inductive, and precision-type resistors in many sizes, types of terminals, and in a wide range of wattage and resistance values. Ohmite application engineers will be pleased to help in the selection of the right resistor for your needs.

OHMITE MANUFACTURING CO
4862 Flourney St., Chicago 44, Illinois

Write on Company Letterhead for Catalog 40

Be Right with
OHMITE
RHEOSTATS • RESISTORS • TAP SWITCHES
Industry's First Choice
SHALLCROSS MATCHES YOUR

Precision Resistor Requirements!

...for real dependability on
STANDARD INDUSTRIAL USES

...over 40 economical standard types and sizes, each available in numerous mechanical and electrical adaptations. Write for Shallcross Data Bulletin R3A.

...for JAN EQUIPMENT

Shallcross is in constant touch with the latest military precision resistor requirements. The present line includes 13 types designed for JAN characteristic "B" and 4 types for characteristic "A".

...for MINIATURIZATION PROGRAMS

For years, Shallcross has led the way in the production of truly dependable close-tolerance, high-stability resistors in miniature sizes. Standard and hermetically sealed types are available.

...for SPECIAL ASSEMBLIES

Shallcross regularly produces hundreds of special precision resistor types including precision power resistors, resistors with axial or radial leads and multi-unit strip resistors (illustrated) with either inductive or non-inductive windings.

...for HIGH-STABILITY APPLICATIONS

Many Shallcross Akra-Ohm resistors are available with guaranteed tolerance to 0.01% and stability to 0.003%. Matched pairs and sets are supplied to close tolerances.

SHALLCROSS MATCHES YOUR

PRECISION RESISTOR REQUIREMENTS

WIDE-RANGE, DIRECT READING CAPACITOR ANALYZER

A laboratory-type Capacitor Analyzer meeting the need for a highly accurate, wide-range, direct-reading measuring instrument capable of determining the essential characteristics of capacitors has been announced by the Shallcross Manufacturing Co. This versatile instrument will determine capacitance values between 5mfd and 12,000 mfd; insulation resistance from 1.1 to 12,000 megohms; also leakage current, dielectric strength, and percentage power factor. A divided panel carrying an outline of the operating instructions makes it readily possible to use the instrument without reference to an instruction book. The Shallcross analyzer operates on 110 volt, 60-cycle alternating current. Literature giving full details will gladly be sent on request to the Shallcross Manufacturing Company, Collingdale, Pa.

MULTI-PURPOSE TRANSMISSION TEST SET

In addition to measuring the electrical characteristics of telephone lines and equipment the new Shallcross multi-purpose transmission test set may be used for efficiency tests on local and common battery telephone lines and sets, carbon microphones, receivers, and magnetic microphones. It also provides a fast, efficient means of testing capacitors, generators, ringers, insulation resistance, dials, and continuity. Key switches and dials are used to select and control the test circuits. The 693 Transmission Test Set is powered by external batteries. It features compact, substantial construction and is fully portable, thus making it ideal for either field or laboratory use. Details may be obtained from the Shallcross Manufacturing Company, Collingdale, Pennsylvania.
Now Available!

MOLYBDENUM PERMALLOY
POWDER CORES*

COMPLETE LINE OF CORES
TO MEET YOUR NEEDS

★ Furnished in four standard
permeabilities — 125, 60, 26
and 14.

★ Available in a wide range of
sizes to obtain nominal in-
ductances as high as 281
mh/1000 turns.

★ These toroidal cores are given
various types of enamel and
varnish finishes, some of
which permit winding with
heavy Formex insulated wire
without supplementary insu-
lation over the core.

For high Q in a small volume, characterized by low eddy current
and hysteresis losses, ARNOLD Moly Permalloy Powder Toroidal
Cores are commercially available to meet high standards of physical
and electrical requirements. They provide constant permeability
over a wide range of flux density. The 125 Mu cores are recom-
manded for use up to 15 kc, 60 Mu at 10 to 50 kc, 26 Mu at 30 to 75 kc,
and 14 Mu at 50 to 200 kc. Many of these cores may be furnished
stabilized to provide constant permeability (±0.1%) over a specific
temperature range.

★ Manufactured under licensing arrangements with Western Electric Company.
How RCA Engineering in Depth benefits electronic equipment manufacturers

- RCA Engineering in Depth begins with basic research, progresses through design and production, and ends with the field engineering group, right at your doorstep.

It is important to you because the collective experience of these engineering groups works unceasingly toward solutions of your problems... through the development and application of improved electron tubes and components... and through a personal and confidential appraisal of your specific requirements and their translation into practical, economical equipment.

When you deal with RCA, you are dealing with the most seasoned, highly integrated, and extensive electronics engineering force in the field. The vast and impressive experience of this group accounts for RCA's engineering leadership in the development of better tubes and components in advance of the market.

To put RCA Engineering in Depth to work for you... just phone or write RCA, Commercial Engineering, Section L-47R Harrison, N. J.
PROCEEDINGS OF THE I.R.E.

Published Monthly by
The Institute of Radio Engineers, Inc.

Volume 38
December, 1950
Number 12

PROCEEDINGS OF THE I.R.E.

W. R. G. Baker 1378
A Half Century 1379
1379 Periodical Literature for Electronic Engineers 1380
R. C. Cole 1380
1380 Practical Design for Effective Production and High Quality 1381
Joseph Manuele 1385
1381 Graphical Analysis of Transistor Characteristics 1387
1382 Reactance Chart 1392
1383 Inductance Chart for Solenoid Coil 1398
1384 Transmission-Line Impedance Curves 1400
1385 The Simplification of Television Receivers 1404
1386 Universal Design Curves for Intermediate-Frequency Amplifiers with Particular Reference to Phase and Amplitude Distortion and Their Compensation 1408
1387 Marginal Checking as an Aid to Computer Reliability 1418
1388 A Digital Electronic Correlator 1422
1389 Some Aspects of Split-Anode Magnetron Operation 1428
H. J. Reich, J. C. Mas, J. G. Skalnik, and R. L. Ungvary 1434
1390 Effects of Space Charge on Frequency Characteristics of Magnetrons 1434
H. W. Welch, Jr. 1450
1391 Comparison of Tropospheric Reception at 44.1 Mc with 92.1 Mc 1451
Over the 167-Mile Path of Alpine, New Jersey, to Needham, Massachusetts 1451
Greenleaf W. Pickard and Harlan T. Steinson 1455
1392 Reflected Ray Suppression 1453
1393 A Note on the Synthesis of Resistor-Capacitor Networks 1453
Charles Belove 1454
1394 Relation of Nyquist Diagram to Pole-Zero Plots in the Complex Frequency Plane 1455
W. W. Harman 1455
1395 Elliptically Polarized Waves 1455
Leonard Hartkin 1455
1396 An Achromatic Microwave Antenna 1455
N. D. Kornman and J. R. Ford 1455
1397 Stratospheric-Ionospheric Relationships 1456
N. C. Gerson 1456

INSTITUTE NEWS AND RADIO NOTES SECTION

25 Years of I.R.E. in Canada 1458
1460 Technical Committee Notes 1461
1462 Industrial Engineering Notes 1462
1462 People 1462

Books 1465
1379 "Heaviside's Electric Circuit Theory," by H. J. Josephs 1465
Reviewed by S. N. Van Voorhis 1465
1379 "Ionization Chambers and Counters," by H. D. Wilkinson 1465
Reviewed by R. E. Lapp 1465
1380 Atomic Physics," by Wolfgang Finkelnburg 1466
Reviewed by J. B. Horner Kiper 1466
1381 Primary Batteries," by George Wood Vinal 1466
Reviewed by Donald McNicol 1466
1382 The Principles of Television Reception," by A. W. Keen 1466
Reviewed by Pierre Mertz 1466
1383 "Parent Practice and Management for Inventors and Executives," by Robert Calvert 1466
Reviewed by R. A. Heising 1466
Reviewed by John D. Reed 1466
1385 "High-Speed Computing Devices," by Staff of Engineering Research Associates, Inc. 1467
Reviewed by L. A. Zadeh 1467
1386 "Electromagnetic Theory," by Oliver Heaviside 1467
Reviewed by Donald McNicol 1467
1387 "Wave Filters," by L. C. Jackson 1467
Reviewed by C. W. Carnahan 1467
1388 "Circuits in Electrical Engineering," by Charles R. Vail 1467
Reviewed by Knox McWhain 1468
1389 Abstracts and References 1480
follows p. 1480
1380 Section Meetings 1480
38A Positions Open 50A
1381 Student Branch Meetings 54A
44A Positions Wanted 68A
1382 Membership 95A
Advertising Index 95A
1383 Industrial News 95A

Copyright, 1950, by The Institute of Radio Engineers, Inc.
W. R. G. Baker, vice-president of General Electric Co., Electronics Park, Syracuse, N. Y., and a pioneer in the development of radio and television, was born at Lockport, N. Y., on November 30, 1892. A graduate of Union College with three degrees, Dr. Baker joined General Electric’s Research Laboratory in 1917.

His first work on radio included the development and testing of radio apparatus for aircraft, submarines, captive balloons, torpedo boats, destroyers, and battleships. Dr. Baker was later made designing engineer.

In 1924 this responsibility was enlarged to include the design of all radio products, and in 1926, he was given complete charge of development, design, and production. He supervised the design of pioneer broadcasting stations WGY in Schenectady, KOA in Denver, and KGO in Oakland and the Schenectady radio developmental laboratory. The latter aided in maintaining communications with both Byrd Antarctic expeditions.

On the formation of the RCA-Victor Corporation in 1929, Dr. Baker went to Camden, N. J., to head the radio engineering activities of the new organization and was in charge of production and later vice-president of engineering and manufacturing.

In 1935 General Electric transferred its radio receiver activities to Bridgeport, Conn., and Dr. Baker resumed his connections with the Company. He was named managing engineer in 1936, a post he held until May, 1939, when he was promoted to the position of manager of the Company’s radio and television department.

In October, 1941, Dr. Baker was elected a vice-president. His department was subsequently redesignated the Electronics Department, now one of the nine GE operating departments, and producer of radio, radar, television and similar equipment in the rapidly expanding electronics industry.

Under Dr. Baker’s direction as Chairman of the National Television System Committee the standards for monochrome telecasting were developed, recommended, and adopted by the FCC. As Director of Engineering for the Radio-Television Manufacturers Association, he is actively engaged in co-ordinating the work of the industry on color television.

Under his supervision as chairman of the Radio Technical Planning Board, recommendations for frequency allocations of all broadcasting services were formulated.

Dr. Baker became a member of the Institute in 1919 and a Fellow in 1928. He was President in 1947 and a Director in 1940 and 1946–1950. Dr. Baker was Standards Co-ordinator during 1948 to 1950 and has served on numerous IRE committees.
A Half Century

LEE DE FOREST

To those of our membership whose professional, or amateur, radio activities span the completed half century, the glance backward from today's eminence of achievement must surely be accompanied by sentiments of wonder and admiration, not unmixed with some nostalgia.

From the crude experiments of Oliver Lodge and Marconi in wireless transmission over the first few miles, when even a wave-meter was unknown, to the spanning of the Atlantic, first with Morse signals, then with the human voice from Arlington to Paris and Honolulu, and on down the years to today's universal network of radio communication of every type and description, shrinking our globe to a mere basketball, the technical progress therein involved defies total comprehension.

With this crowded accomplishment, no organized mental achievement, through the age-long history of the evolving human brain, can successfully compare.

In 1900 our accessible technical library comprised chiefly the works of Maxwell, Hertz, Tesla, J. J. Thompson, Poincare, and Lodge. The single journals containing an occasional article helpful to the then Wireless Engineer were Wiedemann's Annalen and the Philosophical Magazine of London.

Other than the lone experimenters themselves, few indeed glimpsed at first any commercial future for "Wireless." Even the Army and the Navy saw but small usefulness in our manifold efforts, employing alternating currenttransformers, self-restoring detectors and headphones, to excel the European pioneers with their still more primitive spark-coils, coherers, and tape recorders. Technical progress lagged shamelessly, tightly bound as we then were by the strict limitations of the open spark and arc transmission, with the quenched spark-gap of Max Wien and the electrolytic and crystal detectors were almost the sole instances of progress until entrance upon the scene of the three-element tube with plate supply, first as a far better detector, then as the long-awaited amplifier, poetically foretold forty years before by Professor's Hughes and Stokes—an "hour for which the years (and telephone engineers) did sigh." As though in apt commemoration of the discovery of that promethean device, the Archimedian electronic lever, destined with feedback to move the world forward, our Institute of Radio Engineers was shortly thereafter established.

Its infant-sized PROCEEDINGS began forthwith to compete with Zenneck's Jahrbuch der Drahtlos Telegraphie, and was eagerly welcomed by those to whom German and Greek were essentially synonymous.

The demands and exigencies of World War I forced the swift development of the first watt oscillators into multi-kilowatt types which, with the power-modulation methods of Heising, thereafter made possible huge sponsored earnings by a theretofore virgin-pure radio broadcasting art—a sort of etheric prostitution new to mankind. So broadcasting for hire, like a surging epidemic, spread over the land. What untold tonnages of soap and so-far were sold therewith; what hosts of otherwise undiscovered "talent" ranged and raged before our inoffensive microphones; what profound changes in our home life, in political destinies were thus unfolded! And what manifold new industries, whose swollen earnings have already totaled more than fifty billions, affording a million new jobs, have we seen founded upon, or grown great from, the electron tube!

Ensued then the regenerative and superheterodyne receivers, entangled for years in historic patent litigation, even unto the Supreme Court, whereon the patent-lawyer fraternity fattened enormously. Simultaneously during the tumultuous 'twenties the amplifying branch of the fast spreading electronic tree blossomed beautifully into sound-on-film, perfected music recording-reproduction, and the oscillographic parent of television-realizations of the ancient dreams of Edison and of von Rosing.

Progress during the third decade of our half century may be generally classified as intensified investigation of atmospheric phenomena affecting transmission, the introduction of the electron to industry, rapid development of frequency modulation by Armstrong, and the beginnings of cathode-ray television made possible by the brilliant genius of Zworykin and Farnsworth. Our accumulated store of information and the practical applications thereof added up to immense basic values, forming a firm foundation for what the fighting 'forties were to require.

There the demonic demands of World War II, blacking out all cost figures, forced a dozen premature births, such as radar, sonar, the proximity fuse, remote-controlled missiles, and the electronic navigational aids that made possible today's congested aviation traffic.

Thus the present status of radio and electronics owes immeasurable debt to the two holocausts that have blackened the fair pages of the history of our first half-century.

Today's astounding public acceptance of television serves as a needed peacetime stimulation to yet swifter, more enabling efforts. Happily there are indications that in (long overdue) time the cultural values beyond all estimation, innate in radio and television, will be realized by those to whom we engineers have had to entrust the commercial applications of the miracles so hopefully created; that eventually the advertiser's profit motive will cease to be the prime factor in the instrumentalities we have been busy introducing into the home-life of America. Assuming that Russia values her peaceful place in the sun, color video, now only nascent, will be our next great contribution to the richness of that home life.

But what in addition to this awaits our world during the ensuing half-century? What further multiple and benign activities await the electron, as undreamed of now as were those of today to the embryonic radio profession of fifty years ago?

These the fortunate chronicles of A.D. 2000 alone can tell.

As we survey the history of modern technological advancement the world over, we find nothing comparable with the past half-century's achievements of American industry, scientifically directed; and nothing in all that vast progress surpassing that of our own radio-electronic structure. Today while our national economy, so often tormented by ill-conceived political restrictions and excations, presents a rapidly darkening picture, the brilliant record of our special industry and science stands out as a challenging example of the basic virtues of the principle of free enterprise. Let us all therefore highly resolve to keep that proven principle unshackled by the socialist sophistries which now seek, leech-like, to suck the life blood from our American capitalistic system.

That the record of the next half-century be no less glorious than that of the epoch now ending.
Periodical Literature for Electronic Engineers*

R. C. COILE†

Summary.—Periodical literature for electronic and communications engineers has been examined. Suggested lists of periodicals are presented, ranked by relative usefulness for keeping up with current progress and for finding previously published information. Problems of publishing, abstracting, and searching electronic literature are discussed.

INTRODUCTION

Electronic engineers read periodical literature basically for two reasons; first, to keep abreast of current progress, and second, to find previously published information which may help on the particular project on which they are working. In the first instance, one of the problems facing an individual engineer and an academic or industrial library, is the determination of which technical periodicals and/or abstract journals should be read. In the second case, when previously published papers pertinent to a particular project are being searched for, the problems are to determine in which technical periodicals and/or abstract journals to search, as well as in what year to search, and further—how to search.

This paper examines some of the problems of periodical literature for electronic and communications engineers from the reader's point of view. A suggested list of periodicals ranked by relative usefulness is given for browsing and keeping up-to-date activities. Another list of periodicals whose papers have demonstrated more than ephemeral value is given. The time scale and age of published papers pertinent to a particular project have been studied from a probability basis.

Some of the problems of literature search and abstracting are discussed. Work on classification, storing, and handling information for the convenience of the reader is urgently required to cope with the growth of the electronic industry. The size of the Institute of Radio Engineers has been roughly estimated to be 80,000 in 1960 and the Proceedings of the I.R.E. should then be publishing about 800 papers per year.

PERIODICAL LITERATURE FOR CURRENT READING

One approach to determining which periodicals are currently publishing papers of interest to electronic engineers would be to examine a large number of current journals for a given period and determine how many pertinent papers on electronic subjects are being published and in which journals. Or instead of examining the journals directly, one might make a statistical study of an abstract journal such as the Engineering Abstracts (Section B—Electrical Engineering Abstracts), or of the abstracts published in the Wireless Engineer and the Proceedings of the I.R.E. The abstract journals exercise a certain amount of selection in choosing which papers their editors consider worthy of abstracting.

A much greater degree of selection is employed by the I.R.E. Annual Review Committee which prepares an annual Report listing the most significant papers published each year. An analysis has, therefore, been made of the recent Report on "Radio Progress during 1949." This I.R.E. committee of 29 members prepared a Report which contained 810 references to 134 periodicals. The report was divided into 22 subject fields with specialists in each field citing the most important papers published in that field in 1949. In passing, one might note that there was no subject field on "measurements" and that only one reference was listed under "industrial electronics."

The periodicals are listed in relative rank in Appendix A, which shows the number of times the periodical was cited. Fig. 1 illustrates some of the data graphically. Fifty per cent of the references were made to 9 periodicals and 75 per cent were made to 24 periodicals. The last 25 per cent of the references required 110 additional periodicals.

The relative ranking of periodicals given in Appendix A depends, of course, on the subject fields considered. A different selection of subject fields will give a different ranking of journals. Furthermore, it is obvious that the more one restricts one's fields of interest, the fewer journals are pertinent. For example, if one is interested in keeping abreast of progress only in radio-frequency circuits, it is not necessary to read the Journal of the Acoustical Society, or the like. However, keeping posted on progress in a single field such as radio propagation requires reading journals in radio, electrical engineering, physics, applied physics, geophysics, and meteorology.

Appendix A, therefore, is suggested as a tentative guide for reading for engineers whose interests lie in the 22 subject fields considered by the I.R.E. Annual Review Committee.

PERIODICAL LITERATURE USED BY ELECTRONIC AND COMMUNICATIONS ENGINEERS

The periodical literature actually used by electronic engineers may be determined by studying the footnote references in the technical papers published in the Proceedings of the I.R.E. Presumably these references were of some value to the engineer publishing an account of his own work. A study has been made of these references to determine their sources and ages. Appendix B shows the results of a study made of the 1954 issues of the Proceedings of the I.R.E. The 42 periodicals mentioned in footnote references have been arranged in order of relative rank with the journals referred to the most time-ranked highest.

* Decimal classification: 6853. Original manuscript received by the Institute, June 12, 1950; revised manuscript received, July 26, 1950.
† Operations Evaluation Group, Division of Industrial Cooperation, Massachusetts Institute of Technology, Cambridge, Mass.

‡ An I.R.E. committee on Measurements and Instrumentation was formed during the latter part of 1949 and future Radio Progress Reports will therefore cover the field of measurements.

Fig. 1—Sources of reference in IRE Annual Review Report.

Fig. 2—Sources of references in 1949 Proc. I.R.E.
A study of the 1949 issues of the Proceedings of the I.R.E. is given in Appendix C. One hundred and fifteen periodicals were listed in references. To make this 1949 study comparable with the data for 1934 which excluded periodicals which were not mentioned also by one or more of a selected group of key journals, 73 of these 115 periodicals were determined to be also listed by one or more of the following: Electrical Engineering, Journal of the Institution of Electrical Engineers, General Electric Review, Electronics, and Bell System Technical Journal. Consequently, 73 periodicals were mentioned in 1949, as compared to 42 in 1934, an increase factor of 1.7. It is interesting to note the gains in relative rank of the Physical Review, Bell System Technical Journal, Journal of Applied Physics, Electronics, Review of Scientific Instruments, and RCA Review.

Fig. 2 shows graphically the sources of the 1949 IRE references. Fifty per cent of the references came from the first four journals and 75 per cent of the references came from the first 17 periodicals. Then 98 more periodicals accounted for the last 25 per cent of the references.

A study was made of the time interval between the publication year of a paper and its citation as a reference in the 1949 Proceedings of the I.R.E. Fig. 3 shows that 18 per cent of the references were two years old, 16 per cent were one year old, 13 per cent were two years old with decreasing frequency of occurrence for older references. Fig. 4 shows that 50 per cent of the references were less than three years old. Twenty-five per cent of the references were more than nine years old.

These surveys of the 1934 and 1949 issues of the Proceedings of the I.R.E. give an indication of the past use of published literature by engineers in past research programs. The distribution of the sources of the references and the ages of the references depended on the particular research programs reported in the papers. Academic research, for example, may result in a scholarly published paper with more historical footnote references than a paper by an engineer in industry reporting on a current development. It is left, however, that the listing of periodicals in Appendix C gives an index of usefulness of journals covering the fields of interest to The Institute of Radio Engineers.

Literature Search

The information on sources and ages of references presented in the survey of periodical literature discussed above enables one to start on an "associative trail" type of literature search. Examination of the top rank for five or six periodicals for three or four years back has a fair probability of uncovering papers pertinent to the subject being searched for. Footnote references in these papers furnish leads for further searching. In certain fields, a specialized periodical, e.g., Journal of the Acoustical Society, would be the logical place to start a search.

Abstract journals and abstracting and referencing publications and organizations facilitate an all-out organized search. Some of the abstract and reference publications useful to electronic engineers are the following:

- Science Abstracts—Section B (Electrical Engineering Abstracts)
- Mathematical Reviews
- References to Contemporary Papers on Acoustics (published in the Journal of the Acoustical Society of America)
- Wireless Patents (published in the Wireless Engineer)
- Engineering Index
- Industrial Arts Index
- Bibliography of Scientific and Industrial Reports
- Annales des Telecommunications
- Electronic Engineering Master Index
- Electronic Engineering Patent Index

The general situation is confusing but it is generally agreed that, despite the large number of different abstracting agencies, many worthwhile papers are being overlooked while others are duplicated in many of the abstract journals.

Probably the most useful for electronic engineers of the above abstracts are those published in the Wireless Engineer and Proceedings of the I.R.E.: about 80,000 abstracts prepared by the Radio Research Board in England have been published in the Wireless Engineer in the past twenty years. The approximate number of these abstracts published each year is given in Fig. 5. Over 4,000 abstracts were published each year for the eight years prior to World War II, with approximately 150 journals scanned.

However, the disturbing effect of the breakdown of this abstracting service is indicated by the negative slope of the last four postwar years. In 1948 when 195 journals were scanned, only 3,575 abstracts were published. To have fewer abstracts for a year such as 1948, when thousands more papers were being published than during the war, does not lead to any confidence that a high percentage of pertinent published papers are being abstracted.

A further index of the abstracting activity is given in Fig. 6, where the number of abstracts per year per member of the IRE is shown. The negative slope as well as the small magnitude of this ratio is not encouraging.

When one wishes to use the 80,000 abstracts, one must still face the problem of searching in an annual index or in the 12 issues of the Wireless Engineer a year for as many as the past 20 years as desired (a maximum of 240 separate batches of 300 or so references). Some individuals and organizations have the abstracts arranged in card files. This poses the problem of a classification system. The Wireless Engineer abstracts had no classification numbers until four years ago when they began to be classified according to the Universal Decimal Classification System. Electrical Engineering Abstracts, similarly, had no classification numbers until eight years ago.

At the moment, the systems and aids available for literature search are very crude. It should be possible to mechanize part of the searching with modern electronic techniques. The Departments of Commerce and Agriculture and the Atomic Energy Commission have also set up classification and abstracting systems. But the second approach is not satisfactory because it will not be quick enough to fill the present need.

![Fig. 4 — Age of references.](image)

![Fig. 3 — Distribution of references in 1949 Proceedings of the I.R.E., by age groups.](image)

![Fig. 5 — Abstracts per year in Wireless Engineer; now also in Proceedings of the I.R.E.](image)

![Fig. 6 — Abstracts per year per IRE member.](image)
Commission are now experimenting with and developing improved abstract selectors based on the Bush "Rapid Selector" library machine developed at the Massachusetts Institute of Technology in 1938-1940 by John Howard, Laurence Steinhardt, John Couzens, Claude Shannon, and the author.

Documentation

In the past, the problems of documentation have chiefly been the concern of the producers and not the consumers. Publishers and editors have decided publication policy primarily to solve their own problems. Rejecting and/or overcondensing a larger percentage of manuscripts and increasing the delay time between submission of a manuscript and its publication may temporarily solve some of an editor's problems of higher printing costs and in uneven volume but are hardly the same solutions a reader would agree with. One alternative under investigation by a professional society suggests that a journal composed solely of brief author abstracts be published at a low subscription rate with inexpensive microfilm copies of any complete paper supplied as desired to a reader.

Libraries are organized principally for the convenience of the librarian and not the reader. The classification systems are organized along medieval lines for the manual practices employed. However, it is encouraging that some groups are worrying about the problems of classifying, storing, and handling information. In addition to the previously mentioned experimentation with microfilm abstract machines by the Departments of Commerce and Agriculture and the Atomic Energy Commission, other groups, such as the Center for Scientific Aids to Learning at the Massachusetts Institute of Technology, are working on documentation problems. Another approach is being made by the American Chemical Society which is working with a manufacturer of punch-card business machines to have a machine designed for nonnumerical purposes, since more than one million Chemical Abstracts have already been published.

One of the problems facing electronic

PROCEDURE OF THE I.R.E.

December

The Institute of Radio Engineers has had a publication from the time of its origin thirty-seven years ago. Fig. 8 shows the number of papers published per year in the *Proceedings.* Over 100 papers have been published each year since 1927, with the exceptions of one depression year and two World War II years. The number of "papers" includes book reviews which have been numerous in postwar years. For example, in 1948, of the total of 266 papers shown in Fig. 8, 173 were original technical papers and 93 were book reviews. The over-all figures have been used, as it is considered that both papers and book reviews need consideration in keeping abreast of the field.

During the war years when publication was curtailed, the Institute made plans and set aside special funds for large postwar publication of papers when the easing of security restrictions and paper restrictions permitted. Fig. 8 shows the marked increase in papers published in the postwar years. However, this increase has covered the deficit of the war years when many papers were not published which would have been published in normal times—if one is talking about a static condition. But the Institute is dynamic and has more than quadrupled its membership since 1940. The ratio of papers published per year per IRE member given in Fig. 9 shows the trend from 1914 to date and the projected trend which gives an estimate of 0.01 paper per year per member in 1960. If this trend is considered reasonable, the estimates of the growth of the IREs given previously would indicate that the size of the *Proceedings* in 1955 should be at least 550 papers and 800 papers in 1960.

Acknowledgment

This paper is part of a preliminary study of the problems of documentation in electrical engineering literature being carried out in the Vail Library of the Massachusetts Institute of Technology. The author wishes to express his appreciation to Ruth McGlashan Lane, Vail Librarian, and Samuel H. Caldwell for helpful suggestions and encouragement.

The author further wishes to express his appreciation to Harold L. Hazen who suggested the investigation, and to Vernon D. Tate and James W. Perry for their interest and helpful discussions.
APPENDIX A

PERIODICALS FOR CURRENT READING IN ELECTRONIC AND COMMUNICATIONS ENGINEERING

<table>
<thead>
<tr>
<th>Relative Rank</th>
<th>Periodical</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proceedings I.R.E.</td>
<td>118</td>
</tr>
<tr>
<td>2</td>
<td>Physical Review</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Electronics</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>RCA Review</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Journal Acoustical Society of America</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Tele Tech</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Audio Engineering</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>Journal Applied Physics</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>Electrical Engineering (and Trans. of AIEE)</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Review of Scientific Instruments</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Bell System Technical Journal</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>Journal Society of Motion Picture Engineering</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>Digital Computer Newsletter</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>Wireless Engineer</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>Journal Institution of Electrical Engineers</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>Nature</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>Proceedings National Electronics Conference</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>L'Onde Electrique</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>Nucleonics</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>Communications</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>F.M. and Television</td>
<td>11</td>
</tr>
<tr>
<td>22</td>
<td>Comps Rendus Academy of Science (Paris)</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>Philips Technical Review</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>Bell Laboratories Record</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>Proceedings Physical Society</td>
<td>7</td>
</tr>
<tr>
<td>26</td>
<td>Technical Information Pilot</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>Papers presented at AIEE Summer Meeting</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>Math Tables and Other Aids to Computation</td>
<td>5</td>
</tr>
<tr>
<td>29</td>
<td>RMA Standards</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>A.E.U.</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>Papers presented at AIEE Winter Meeting</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>Electrical Communication</td>
<td>4</td>
</tr>
<tr>
<td>33</td>
<td>Journal Geophysical Research</td>
<td>4</td>
</tr>
<tr>
<td>34</td>
<td>Journal Scientific Instruments</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>Radio Television News</td>
<td>4</td>
</tr>
<tr>
<td>36</td>
<td>Railway Signalling and Communication</td>
<td>4</td>
</tr>
<tr>
<td>37</td>
<td>Telephone and Telegraph Age</td>
<td>4</td>
</tr>
<tr>
<td>38</td>
<td>The Engineer</td>
<td>4</td>
</tr>
<tr>
<td>39</td>
<td>Wireless World</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>American Standards Association</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>Ann. Radio Elec.</td>
<td>3</td>
</tr>
<tr>
<td>42</td>
<td>Electronic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>43</td>
<td>Papers presented at the IRE National Convention</td>
<td>3</td>
</tr>
<tr>
<td>44</td>
<td>Observatory</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>Philips Research Reports</td>
<td>3</td>
</tr>
<tr>
<td>46</td>
<td>Proceedings Royal Society A</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>Western Union Tech. Rev.</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>Annual Telecommunications</td>
<td>2</td>
</tr>
<tr>
<td>49</td>
<td>Arch. Elek. Ubertragung</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>Astro. Journal</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>Bulletin Academy of Science (USSR)</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>Bulletin Assoc. Suisse Elec.</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>Engineering</td>
<td>2</td>
</tr>
<tr>
<td>54</td>
<td>Frequency</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>General Electric Review</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>Papers presented at IRE Fall Meeting</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>Journal Laboratory and Clinical Medicine</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>Journal Phys. Radium (France)</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>MIT Research Laboratory of Electronics</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>Naturwiss.</td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td>Optik</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>Philosophical Magazine</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>Proceedings Indian Academy of Science</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>Sky and Telescope</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>Trans. Chalmers University of Technology</td>
<td>2</td>
</tr>
<tr>
<td>66</td>
<td>Acta Crystallographica</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>Advanc. Science</td>
<td>2</td>
</tr>
<tr>
<td>68</td>
<td>Agricultural Engineering</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>AIEE-I.R.E. Theory of Communication Lectures</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>Alta Frequenza</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>American Mineralogist</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>Appl. Scientific Research</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>Ark. Mat. Astro. Pys.</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>Austr. Journal Scientific Research</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>Automat i Telemakh (Russia)</td>
<td>1</td>
</tr>
</tbody>
</table>

APPENDIX A—(continued)

<table>
<thead>
<tr>
<th>Relative Rank</th>
<th>Periodical</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>BBC Quarterly</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>British IRE</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td>British Journal of Psych.</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>Brush Dev. Co. Quarterly Report</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>CRPL Report</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>Discussion of Parady Soc.</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>Edison Electric Inst. Bulletin</td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>Elect. Review (London)</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>Elek. Witt. Tech.</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>Endeavour</td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>Engineer</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>Farnmeldtech Z.</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>Federal Engineer</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>FIAT Review of German Science</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>Fortune</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>GEC Journal</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>Gen. Radio Tech. Pub.</td>
<td>1</td>
</tr>
<tr>
<td>93</td>
<td>Heb. Phys. Acta</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>HF (Brussels)</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>Indian Journal Phys.</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>Institute of Navigation</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>IBM Publication</td>
<td>1</td>
</tr>
<tr>
<td>98</td>
<td>Journal British Astro Association</td>
<td>1</td>
</tr>
<tr>
<td>99</td>
<td>Journal Chem. Phys.</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>Journal Electro Chem. Society</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>Journal Franklin Inst.</td>
<td>1</td>
</tr>
<tr>
<td>102</td>
<td>Journal Ind. Hygiene and Toxicology</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>Journal of Metals</td>
<td>1</td>
</tr>
<tr>
<td>104</td>
<td>Journal of Met.</td>
<td>1</td>
</tr>
<tr>
<td>105</td>
<td>Journal Optical Society of America</td>
<td>1</td>
</tr>
<tr>
<td>106</td>
<td>Journal Res. National Bureau Standards</td>
<td>1</td>
</tr>
<tr>
<td>107</td>
<td>Journal Royal Astron. Society, Canada</td>
<td>1</td>
</tr>
<tr>
<td>108</td>
<td>Journal Tech. Phys. (USSR)</td>
<td>1</td>
</tr>
<tr>
<td>109</td>
<td>Kungl Tekn Hovig Händl (Stockholm)</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>Marconi Review</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>Nuovo Cim.</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>Physics Today</td>
<td>1</td>
</tr>
<tr>
<td>113</td>
<td>Proceedings IRE (Australia)</td>
<td>1</td>
</tr>
<tr>
<td>114</td>
<td>Quarterly Appl. Math.</td>
<td>1</td>
</tr>
<tr>
<td>115</td>
<td>Quarterly Journal Royal Met. Society</td>
<td>1</td>
</tr>
<tr>
<td>116</td>
<td>Radio Franç.</td>
<td>1</td>
</tr>
<tr>
<td>117</td>
<td>Radio Tech Dig (France)</td>
<td>1</td>
</tr>
<tr>
<td>118</td>
<td>Ry. Age</td>
<td>1</td>
</tr>
<tr>
<td>119</td>
<td>Radiotronics</td>
<td>1</td>
</tr>
<tr>
<td>120</td>
<td>Review Gen. Elec.</td>
<td>1</td>
</tr>
<tr>
<td>121</td>
<td>Chalmers University of Technology Research Laboratory of Electronics</td>
<td>1</td>
</tr>
<tr>
<td>122</td>
<td>Science Monthly</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>Tech. Bulletin National Bureau Standards</td>
<td>1</td>
</tr>
<tr>
<td>124</td>
<td>The Quill</td>
<td>1</td>
</tr>
<tr>
<td>125</td>
<td>Tonte In Radio</td>
<td>1</td>
</tr>
<tr>
<td>126</td>
<td>Trans. American Geophys. Union</td>
<td>1</td>
</tr>
<tr>
<td>127</td>
<td>Trans. American Society Mechanical Engineers</td>
<td>1</td>
</tr>
<tr>
<td>128</td>
<td>Trans. S. Afr. Inst. Electrical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>129</td>
<td>University of Kentucky Report</td>
<td>1</td>
</tr>
<tr>
<td>130</td>
<td>Wesleyan University Report to Sig C</td>
<td>1</td>
</tr>
<tr>
<td>131</td>
<td>Williams College Meeting American Phys. Society</td>
<td>1</td>
</tr>
<tr>
<td>132</td>
<td>Zeits. Angew. (Phys.)</td>
<td>1</td>
</tr>
<tr>
<td>133</td>
<td>Zh. Tekh. Fiz. (Russia)</td>
<td>1</td>
</tr>
<tr>
<td>134</td>
<td>Zeits. Ver dtsch. Ing. (VDI)</td>
<td>1</td>
</tr>
</tbody>
</table>

APPENDIX B

PERIODICALS USED BY ELECTRONIC AND COMMUNICATIONS ENGINEERS IN 1934

<table>
<thead>
<tr>
<th>Relative Rank</th>
<th>Periodical</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proceedings of the I.R.E.</td>
<td>(180)</td>
</tr>
<tr>
<td>2</td>
<td>Wireless Engineer</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Bureau Standards Journal of Research</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>Philosophical Magazine</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Nature</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Physical Review</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Bell System Technical Journal</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Proceedings Physical Society</td>
<td>20</td>
</tr>
</tbody>
</table>
Appendix B—(continued)

<table>
<thead>
<tr>
<th>Relative Rank</th>
<th>Periodical</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Proceedings Royal Society</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Zeitschrift für Technische Physik</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Annalen der Physik</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>Comptes Rendus</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>Elektrische Nachrichten Technik</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Zeitschrift für Physik</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>Journal Acoustical Society</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Journal Institution of Electrical Engineers</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>Hochfrequenztechnik und Elektroakustik</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>Archiv für Elektrotechnik</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>Electronics</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>Wireless World</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>Physikalische Zeitschrift</td>
<td>7</td>
</tr>
<tr>
<td>22</td>
<td>Telefunken-Zeitung</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>Journal Institution of Electrical Eng. of Japan</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>Radio Engineering</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>L'onde electrique</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>Annuelles des Postes, Telegraphes de Telephones</td>
<td>5</td>
</tr>
<tr>
<td>27</td>
<td>Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>Helvetica Physica Acta</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>Alt Frequenz</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>Electricity</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>Physics</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>Elektrotechnische Zeitschrift</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>Physica</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>Journal Franklin Institute</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>Journal Scientific Instruments</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>Journal Society Motion Picture Eng.</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>AstroPhysical Journal</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Electrical Communication</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Trans. Optical Society</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Review of Scientific Instruments</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Electrical World</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>General Electric Review</td>
<td>1</td>
</tr>
</tbody>
</table>

Appendix C—(continued)

<table>
<thead>
<tr>
<th>Relative Rank</th>
<th>Periodical</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Physica</td>
<td>4</td>
</tr>
<tr>
<td>37</td>
<td>Annales der Physik</td>
<td>3</td>
</tr>
<tr>
<td>38</td>
<td>Bell Laboratory Research</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>Elek. Nach. Tech.</td>
<td>3</td>
</tr>
<tr>
<td>40</td>
<td>MDMC</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>Proceedings American Philosophical Society</td>
<td>3</td>
</tr>
<tr>
<td>42</td>
<td>Science</td>
<td>3</td>
</tr>
<tr>
<td>43</td>
<td>American Journal Physics</td>
<td>2</td>
</tr>
<tr>
<td>44</td>
<td>Chalmers Tek.</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>Complex Rendels</td>
<td>2</td>
</tr>
<tr>
<td>46</td>
<td>Dokhody Academy Science Ukraine</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>Electrical Journal</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>Pauk and Tona</td>
<td>2</td>
</tr>
<tr>
<td>49</td>
<td>Phys. Ind.</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>Hochfrequenz und Elektroak.</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>Journal General Physiology</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>Journal Research National Bureau Standards</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>Journal Scientific Instruments</td>
<td>2</td>
</tr>
<tr>
<td>54</td>
<td>Leiden Comm.</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>Nucleons</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>Oak Ridge Nat. Lab.</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>Philips Research Reports</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>Physics</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>Proceedings Cam. Philosophical Society</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>Quarterly Applied Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td>Revue Gen. Elec.</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>Zeit Phys.</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>Z. Naturf.</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>American Math. Society Bulletin</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>Annuelles de Telecommunications</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>Annuelles Radio-elec.</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>Anal. Chem.</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>American Journal Rowatengology and Rad. Therapy</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>Bell Tel. Quarterly</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>British Journal Radiology</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>Brooklyn Polytechnic Inst.</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>Bulletin Soc. Franc. Elec.</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>Bulletin Academy Royal Belguque</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>Bureau Standards Scientific Papers</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>Camp Evans Signal Lab. Report</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>Chemical and Engineering News</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>Chem. and Ind.</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td>Das Elektron</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>Elec. Ind.</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>Electronic Eng.</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>Stanford U. Electronics Research Lab.</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>AMC Electronics Research Lab.</td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>Geophysics, Publik.</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>Ind. Radiography</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>Journal Aero Science</td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>Journal American Chemical Society</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>Journal Applied Mech.</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>Journal British Inst. Rad. Eng.</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>Journal Chem. Phys.</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>Journal Phys. and Colloid Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>Journal Phys. Chem.</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>Journal Phys. (URSS)</td>
<td>1</td>
</tr>
<tr>
<td>93</td>
<td>Journal Phys. Radium</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>Journal Royal A. Society Cam.</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>L'Onde Pile.</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>Luftfahrtforschung</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>Naturwissenschaften</td>
<td>1</td>
</tr>
<tr>
<td>98</td>
<td>Nova Acta Royal Society Science (Uppsala)</td>
<td>1</td>
</tr>
<tr>
<td>99</td>
<td>Phil. Tech. Review</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>Proceedings Nat. Academy Science</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>Product Eng.</td>
<td>1</td>
</tr>
<tr>
<td>102</td>
<td>Radio</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>Radio Research Board</td>
<td>1</td>
</tr>
<tr>
<td>104</td>
<td>Science Monthly</td>
<td>1</td>
</tr>
<tr>
<td>105</td>
<td>Stanford U. Micro-Wave Lab.</td>
<td>1</td>
</tr>
<tr>
<td>106</td>
<td>Tech. Mitt. Jg.</td>
<td>1</td>
</tr>
<tr>
<td>107</td>
<td>Terr. Mag. Almo. Elec.</td>
<td>1</td>
</tr>
<tr>
<td>108</td>
<td>The Oscillator</td>
<td>1</td>
</tr>
<tr>
<td>109</td>
<td>T.R.E</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>U. S. AEC Report</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>Wissenschaften Aero, Siemens</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>Westminster Eng.</td>
<td>1</td>
</tr>
<tr>
<td>113</td>
<td>Wireless World</td>
<td>1</td>
</tr>
<tr>
<td>114</td>
<td>Zeit. Tech. Phys.</td>
<td>1</td>
</tr>
<tr>
<td>115</td>
<td>VDI Zeitschrift</td>
<td>1</td>
</tr>
</tbody>
</table>
Practical Design for Effective Production and High Quality*

JOSEPH MANUELE†

The following paper has been made available for publication through the good offices of the I.R.E. Professional Group on Quality Control, and has received the approval of that Group.

Summary—Every newly developed appliance must pass through three stages before finally reaching the home; namely, the laboratory model stage, the engineering model stage, and the mass production stage. The engineering model stage is really the “pilot plant” stage of production where the laboratory model is proved and the manufacturing “bugs” are worked out before placing the article in mass production.

The engineering model stage of manufacture is controlled most effectively by the verification committee whose function it is to prove that component parts as well as the article itself can be, or cannot be, manufactured with the existing equipment and personnel. The verification committee proves that the engineering department has really come up with a good idea which is practical and which can be manufactured economically and in quantities. The verification committee also points out weaknesses in design.

The verification committee is guided in its analyses and recommendations by the principles governing practical design for effective production and high quality, which are: (1) simplicity of design, (2) minimum number of component parts, (3) clearly defined and measurable quality standards, and (4) absolute interchangeability of parts.

HISTORY RECORDS that in the late 1790’s Eli Whitney was granted a contract from the United States government to make some muskets. In those days muskets were made by trained artisans, and each musket was as good as the skill of the individual worker could make it. Presumably if a gun were damaged in battle action, a soldier could not take parts from another damaged gun to repair his own. There was no recognition of the principle of “interchangeability of parts” in those days. Neither was the importance of designing for effective production recognized, and product quality reflected a combination of the worker’s skill and pride in his job.

But Eli Whitney was a shrewd industrialist. He recognized the importance of design for effective production, and of the value of the principle of interchangeability of parts. He could do nothing about the design of the muskets, since this was already fixed, but before he started production, he made a set of gages for the various parts. Then he made the parts to the gages. Hence, every part could be assembled into its proper place on any musket, and the musket would function perfectly. History does not record whether there was a renegotiation on the contract, but we suspect that Mr. Whitney made a satisfactory profit on the transaction because of the cost reduction effected by his simplification in manufacturing method.

This incident really marks the beginning of modern “straight line” manufacturing techniques. These mass production methods are responsible for having made America great, and for having provided Americans with more comforts and more leisure than some of us are able to use wisely.

However, the art and science of product design to facilitate mass production has not always kept pace with progress in manufacturing methods. When contemplating a new design, how often have we heard the remark, “But can it be mass produced?” Because of the tremendously large and profitable American market, competition to reach that market is intensely keen. Hence, products intended for the American home must be mass-produced, if they are to be profitable.

Every newly developed home appliance usually goes through three stages before finally finding its place in the American home as a necessity, or even a luxury, of everyday living: (1) laboratory model stage, (2) engineering model stage, and (3) mass-production stage.

After the product has germinated in the mind of the inventor, the first stage it must pass through is the laboratory model stage. Here some of the theoretical principles of its operation are proved, modified or discarded. The main interest here is “Will it work?” Has the inventor really produced something of practical value, or has he just “laid an egg”? This laboratory model stage is very important because every year the ingenious mind of man creates many new products, some of which are just plain duds, and some of which can be termed only as scientific curiosities. Obviously industrial capital cannot be risked on duds, or scientific curiosities, manufactured by the million. Hence such new creations must be proved in the laboratory.

After the product has passed successfully through the laboratory model stage and it has been definitely proved that a product of some practical value has been developed, it is put through the engineering model stage. Here, the aim is to adapt the new product for profitable mass production. Changes in engineering design are made, if required to facilitate production in quantities. The various “bugs” are taken out of it, and the product is streamlined for “tooling.” It is at this
stage that tool-made samples are produced to prove tools, production methods, and the product itself. Costs of production also are estimated at this point, and a sufficient number of units are manufactured and made available to the quality control department for a thorough “quality analysis” of the product.

Because of difficulties in meeting quality standards, or because of manufacturing problems which cannot be resolved, some products never get beyond this engineering model stage, and they are “put on the shelf,” or “killed,” at this time. Sometimes they are sent back to the engineering department with suggestions for redesign, and are later brought back through the engineering development stage a second time.

During this period of engineering development the verification committee, of the quality control department makes its quality analysis of “production method” produced samples, and gives its recommendations on whether the product: (1) comes up to proper quality standards, and (2) whether the design of component parts, and the product as a whole, lends itself to economical mass production with the available tools and personnel.

In order to make this quality analysis, a few units of the new product are manufactured, as nearly as possible, under production conditions, and these units are turned over to the quality control department for inspection and test in the regular way. No special inspection or test procedures are used at this point, and no special concessions are made in regard to product quality. The product is judged against the engineering quality standards which have been established, even though these standards may be tentative at this time.

Each part, component, and the completely assembled product, is inspected and tested, and a note is made of the actual quality and the desired quality. From this information a report is prepared, on regularly prepared forms, and submitted to the verification committee.

The function of the verification committee is twofold: to determine whether the product is of such quality that it will give the minimum amount of trouble in the field, from both the functional and aesthetic point of view; and whether the product and its various components can be mass-produced with the available manufacturing facilities and personnel.

The verification committee consists of an authorized representative from each of the following: (1) manager of quality control, (2) superintendent of manufacturing, (3) manager of engineering, (4) manager of sales, and (5) purchasing agent.

The product and its components are kept in the engineering development stage, and released for regular production only after the verification committee has given its approval. The verification committee may recommend design changes to facilitate mass production, and it may also recommend changes in manufacturing methods, or tools, if this appears desirable. The object is to take the “bugs” out of the product so that, when it is put in production, no major production difficulties will be encountered.

When a product gets into production it is subjected to the strictest kind of inspection and testing in order to evaluate its functional qualities, and unless it meets well-defined, and often rather narrow, quality standards, rejections may be rather high and costly. Furthermore, a product in the production stage must move rather smoothly along the processing line. It is desirable that it lend itself to manufacturing and assembly by relatively unskilled labor, since skilled labor is generally scarce and costly.

It is during this engineering development stage that the design of the product is really tested for effective production and high product quality. Practical design for effective mass production requires absolute interchangeability of parts. These parts must be interchanged without the necessity of “fitting at assembly,” or “adjusting at test.” It is true that this ideal is “approached” more frequently than it is “achieved.” However, it is when this ideal of absolute interchangeability is achieved that profits are highest, and product quality is most satisfactory.

To achieve this ideal of absolute interchangeability it is necessary that component parts be made to clearly defined and measurable quality standards. These quality standards must provide for sufficient variability to permit economical manufacturing, and yet this variability must be within sufficiently narrow limits to allow the part to operate satisfactorily in the completed unit, without the need of fitting at assembly, or adjusting at test.

These adjustments at assembly mean higher manufacturing costs and somewhat less uniform, though in some cases, better quality. Adjustments made in this manner are subject to the skill of the tester, and no two testers work exactly alike; nor do they possess the same skill and judgment. Furthermore, since these testers generally require training for some period of time, their labor rates are higher. Therefore, the aim, when designing for effective mass production, should be to:

(1) Simplify the design of component parts and the product, so that all operations may be performed by relatively unskilled operators.

(2) Establish such quality standards for component parts as will make the achievement of interchangeability a practical reality.

(3) Reduce the number of component parts to a minimum. This will reduce the cost of component parts required, and the cost of the assembly operation.

(4) Make effective use of the verification committee to make a proper quality analysis of the product, to prove the design for effective production and satisfactory quality.

But assuming that all of these four steps have been taken and the new product has passed satisfactorily through the laboratory model stage and the engineering model stage, and it has been given the proper approval...
for regular production by the verification committee, it does not necessarily follow that the production stage will be free of all difficulties, regarding either production, or quality. Production bottlenecks will be encountered, and it will be found difficult to maintain proper quality standards under the usual press for production. Pertinent and accurate information must be carried back to the design engineers so that designs can be altered to facilitate production in order to break production bottlenecks, or to improve quality, if it is felt that design changes will achieve these aims.

However, design changes during the production stage are costly; they interfere with production, and they require additional expenditures for tools. Therefore, these must be kept at a minimum. In many cases it has been found advantageous to “freeze” designs for a definite period. During this period, all desired changes are accumulated. Then at the end of the specified period, all accumulated changes are made in one major redesign of the product. Of course this procedure cannot be followed if difficulties are of such a nature as to interfere with production, or if quality is so poor as to result in excessive field trouble, or in a possible dropping off of customer acceptance of the product.

In order that correct and useable information might be had on the success of the product in passing through the production stage, it is necessary that adequate records be accumulated by the shop. The quality-control charts kept by the quality control department will generally be found satisfactory for this purpose. Every design engineer should review, critically, these quality-control charts, at least weekly. He should study these charts from two points of view: (1) Is the quality which he established for his product being properly maintained? and (2) If the shop is having trouble achieving a proper level of quality, can he redesign or modify the product to make this attainment easier?

The design engineer’s responsibility for his product does not end when the product has been placed in production, although many engineers seem to think so. Design engineers can acquire a liberal engineering education from shop operatives who fabricate the product. “Simplicity of design” is a phrase which covers a vast engineering territory, but it is a goal more held in the breach than in the observance. The design engineer, therefore, will do well to spend some time “on the floor,” at least several times each week, to note how well his brain child is thriving on the rough fare the shop personnel is able to feed it. High rejections and high manufacturing costs may not always be due to poor manufacturing methods.

In summing up, it can be said that the good design engineer who wishes to produce a practical product design for effective production and high quality, must keep uppermost in his mind: (1) simplicity of design, (2) minimum number of component parts, (3) clearly defined and measurable quality standards, and (4) absolute interchangeability of parts.

Graphical Analysis of Transistor Characteristics

LLOYD P. HUNTER

Summary—Graphical constructions are given which will determine the circuit constants necessary for the design of voltage amplifiers, current amplifiers, and oscillators, from the dc characteristics of the transistors to be used.

SEVERAL papers1-3 have been published analyzing the characteristics of transistors from the point of view of equivalent circuits. These analyses are quite cumbersome to apply to the typical transistor since its characteristics change so much over its range of operation that no simple equivalent circuit can be set up to give its full behavior, and the constants of a simple equivalent circuit must be re-evaluated at each new operating point. If a graphical method is used, however, the analysis will apply to all parts of the operating range of a given transistor and will lead to a visualization of the type of transistor characteristic that will do a given job. The purpose of this paper is to demonstrate such a graphical method.

Perhaps the most striking difference between a transistor and a conventional vacuum triode is that in the tube there is no reaction of the plate circuit upon the grid circuit, while in the transistor the emitter characteristics are greatly modified by the collector circuit. This means that the behavior of a transistor must be deduced from two sets of volt-ampere characteristics rather than one. The two sets of volt-ampere characteristics used here are those of the emitter and the collector, rather than two sets of some sort of mutual characteristics. These characteristics suffice to show the basic relations involved and are the two sets most easily and naturally measured.
In Fig. 1 are shown the volt-ampere characteristics for both the collector (output) and emitter (input) sides of a typical transistor, connected as shown. The circuit is that of a simple voltage amplifier. If a load line R_L is drawn in the collector (output characteristic) plane and is transferred point by point to the emitter (input characteristic) plane, the quiescent operating point will be the intersection of this line with the ordinate erected at $V_E = E_R$, the emitter bias supply voltage. The input impedance will then be given by the slope of this transferred load line at the operating point.

![Fig. 1—Transistor of typical characteristics connected as a voltage amplifier. (a) Collector (output) characteristic. (b) Emitter (input) characteristic.](image)

If the input signal ΔI_E is traced through the input diagram to give ΔI_E, and this value is transferred to the output diagram, it can be seen to result in a voltage swing ΔV_E along the load line in the collector characteristic. For the example shown, the voltage gain $\Delta V_E/\Delta I_E$ is seen to be about 30. This is typical for an average transistor. The distortion of this amplifier depends on the curvature of the transferred load line at the operating point. At the operating point chosen for the example there is considerable curvature and therefore distortion. To illustrate this, an operating point at 0.5 volt and 4 milliamps in the emitter plane would show practically no distortion, since the transferred load line has an inflection point in this neighborhood and is nearly linear over quite a range. The characteristics of nearly all transistors show an inflection point in the transferred load line so that there is some region of reasonable extent which may be picked for distortionless operation.

In the example shown, the input impedance is quite low (about 100 ohms) while the output impedance is moderate (2,700 ohms). Since ΔI_E nearly equals ΔI_R, this impedance ratio is seen to be primarily responsible for the voltage amplification. This means that one could not design a multistage voltage amplifier using transistors of such characteristics in direct cascade without some sort of transformer coupling which would bring the output impedance of one stage more nearly in line with the input impedance of the following stage. It is possible, however, to use a transistor of these characteristics as a current amplifier in such a way that a multistage amplifier may be designed having alternate stages of voltage and current amplification without having to resort to transformer coupling.

In order to use the transistor as a current amplifier of considerable gain, one must utilize feedback in one form or another. One direct method of doing this is to use the base load of the transistor for the input, and the emitter resistance R_E as the output. Such a situation is shown in Fig. 2. As before, the first step in analyzing this circuit is to draw the load line R_L in the collector characteristic plane and transfer this load line point by point to the emitter characteristic plane. The quiescent operating point (operating point 1) is determined by the intersection of this transferred load line and the emitter load line R_E in the emitter plane. A signal voltage ΔV applied at the input terminals, and of such a polarity as to increase the emitter current, will effectively add to the emitter bias voltage E_R and subtract from the collector supply voltage E_C. Since $|E_C| > |E_R|$ we will neglect the displacement of R_E and consider only the displacement of R_L, as shown in the emitter characteristic. This new load line determines a new operating point (operating point 2). If these two operating points are transferred back to the collector plane, a value of ΔI_E may be read.

![Fig. 2—Transistor of typical characteristics connected as a base-input amplifier. (a) Collector characteristic. (b) Emitter characteristic.](image)

Since the current in the base lead is the algebraic sum of ΔI_E and ΔI_T, and ΔI_T is in general negative when ΔI_E is positive, it is easy to see that the input impedance may be either positive or negative, depending upon the sign of this algebraic sum. If the resistances R_E and R_T are so chosen that $|\Delta I_T| > |\Delta I_E|$ for the polarity of test voltage shown in the example, the input impedance is positive, and the current gain ξ is given by $\Delta I_T/\Delta I_E + 1$. (The current through the emitter load resistance R_E is considered the output current.) The condition that $|\Delta I_T| > |\Delta I_E|$, mentioned above, is easily satisfied for any transistor, regardless of the magnitude of its short circuit current gain by simply making R_T large enough.
By reference to Fig. 3 we will derive a graphical construction for the determination of R_e to provide a desired current gain ξ in such a current amplifier working at an arbitrary operating point. Fig. 3 (a) shows a portion of a collector plane in which a load line R_e makes the angle θ with the current axis, and the perpendicular to the lines of constant emitter current through the operating point makes the angle β with the current axis. δl represents the portion of the load line covered with a given signal ΔV across the base terminals. The projection of this segment on the current axis gives the collector-current change δI_e, and its projection on the perpendicular to the lines of constant I_e gives the change in emitter current δI_e. Let ΔL_e be the length in this plane of one unit of collector current ΔL_o be the length in this plane of one unit of emitter current as shown.

From Fig. (3a) then:

$$\delta I_e = \frac{\delta l}{\Delta L_e} \cos \phi$$

(1)

and from the above definition of current gain ξ, we have

$$\xi(\delta I_e + \delta I_o) = \delta I_e$$

(2)

substitution of (1) into (2) gives the relation

$$\xi \left(\frac{\delta l}{\Delta L_e} \cos \phi - \frac{\delta l}{\Delta L_o} \cos \theta \right) = \frac{\delta l}{\Delta L_e} \cos \phi$$

(3)

From the geometry of the diagram, $\phi = \theta - \beta$, whence

$$\cos \phi = \cos (\theta - \beta) = \sin \theta \sin \beta + \cos \theta \cos \beta$$

Substituting in (3) and multiplying by $\Delta L_e/\xi$ gives

$$\sin \theta \sin \beta + \cos \theta \cos \beta - (\Delta L_o/\Delta L_e) \cos \theta = \left(1/\xi\right) (\sin \theta \sin \beta + \cos \theta \cos \beta)$$

Dividing by $\cos \theta$ gives

$$\left(\tan \theta \sin \beta + \cos \beta\right) \left(1 - \frac{1}{\xi}\right) = \frac{\Delta L_o}{\Delta L_e}$$

or

$$\tan \theta = \frac{\Delta L_o \frac{\xi}{\Delta L_e}}{\sin \phi} \csc \beta - \cot \beta$$

(4)

Thus $\tan \theta$, the slope of the desired load line, is given in terms of the required gain ξ and certain functions of the volt-ampere characteristics.

Equation (4) may be readily solved graphically by the procedure illustrated in Fig. 3(b). Draw a line OA of length ΔL_e parallel to the I_e axis through the operating point O. Draw BC through A parallel to the V_e axis. The angle OBA is now the angle β, and from the geometry of the diagram

$$BA = \Delta L_e \cot \beta$$

$$BC = \Delta L_e \csc \beta$$

(5)

The line BC is extended to D making

$$BD = \frac{\xi}{\xi - 1} BC$$

(6)

The desired load line R_e is now drawn through O and D. From geometry and (5) and (6),

$$\Delta L_e \tan \psi = AD = BD - BA$$

$$= \Delta L_e \left(\frac{\xi}{\xi - 1}\right) \csc \beta - \Delta L_e \cot \beta$$

Dividing by ΔL_e and comparing to (4), we see that,

$$\tan \psi = \frac{\Delta L_e \frac{\xi}{\Delta L_e}}{\sin \phi} \csc \beta - \cot \beta = \tan \theta$$

(7)

proving that the desired load line R_e is indeed the line OD.

The input resistance R_i of such a current amplifier depends now on the resistance R_e in the emitter circuit. In order to determine R_i to give an arbitrary input impedance R_i, where

$$R_i = \frac{\Delta V}{\delta I_e + \delta I_o} = \frac{\xi \Delta V}{\delta I_e}$$

we will refer to Fig. 4. In Fig. 4(a) $\delta l'$ is the length of the segment of the transferred collector load line R_e which is swept out with the signal voltage ΔV. Its projection on the I_e axis is δl. The length $\Delta L_e'$ is equal to one unit of I_e in this plane and the length $\Delta L_o'$ is equal to one unit of V_e. By inspection.
The length \(\bar{A} \), laid off along \(FH \), determines the point \(G \). Finally, we see by geometry that,

\[GH = \Delta L_e' \tan \eta = \bar{A} - HF. \tag{13} \]

If (11) and (12) are substituted into (13) and the whole equation is divided by \(\Delta L_e' \), we obtain (10), proving that the line \(GO \) determines the desired emitter load line \(R_e \).

We have now completed the design of our current amplifier with a given gain and input impedance, using only graphical construction in the dc emitter and collector characteristic planes. In design work this procedure may take the place of the equivalent circuit analysis cited in the references, and seems to be a much simpler and faster method to use.

The base-input circuit of Fig. 2 has been described as a current amplifier. The same circuit can be used as a high-input-impedance voltage amplifier if the collector resistance \(R_e \) is used as the output resistance. If the input signal \(\Delta V \) is traced through the emitter diagram to give \(\Delta L_e \), and this value is transferred to the collector diagram it is seen to result in a voltage swing along the collector load line of about 1.5 volts. In this example then the voltage gain would be about 15.

In discussing the voltage amplifier of Fig. 1, it was pointed out that a multistage amplifier could not be made using emitter input circuits in direct cascade without some means of impedance matching between the stages, such as transformers. From the above analysis of the base-input current amplifier, it is clear that in most cases it should be possible to design the input impedance of such an amplifier to match the output impedance of the emitter-input voltage amplifier so that a multistage amplifier could be built by using alternate stages of voltage and current amplification without having to insert impedance-matching components. The base-input circuit when used as a high-input-impedance voltage amplifier may be directly cascaded. In such a case the input resistance \(R_i \) (10) may be adjusted to equal the output resistance \(R_o \) by adjusting the emitter resistance \(R_e \) in each stage, as described above.

From (8) we see that the input impedance of a base-input circuit becomes infinite if the current gain \(\xi \) becomes infinite. This is equivalent to saying that \(\delta L_i = \delta L_e \). Under these conditions the construction of Fig. 3(b) reduces to drawing the load line through \(OC \), since \((\xi/\xi - 1) \rightarrow 1 \) as \(\xi \rightarrow \infty \). The load resistance \(R_o \), determined in this way is the lowest load resistance that can be used without making the input impedance \(R_i \) negative. If lower values of \(R_e \) are used and an LC tank circuit is inserted across the input terminals in the base lead, the system will oscillate with the frequency determined by the tank circuit. The above graphical construction can then be used to determine both the critical
values of R_s required for oscillation, and the region in the dc collector characteristic plane in which the transistor may be made to oscillate (the region in which the critical value of R_s is greater than 0).

The region of possible oscillation in the dc collector-characteristic plane is bounded by a contour on which the points A and C of the construction of Fig. 3(b) coincide. If we define a current gain $\alpha = (\partial I_c/\partial I_e)V_e$ (according to the literature) we see that for $\alpha = 1.0$, the above-mentioned coincidence occurs. The region of possible oscillation is then bounded by a contour of $\alpha = 1.0$. Such a contour may easily be plotted by inspection since $\alpha = (\partial I_c/\partial I_e)V_e = 1.0$ means simply that the vertical separation of the constant-emitter-current lines should equal one unit on the collector current scale if the constant-emitter-current lines are drawn for the same units of emitter current.

In the more general case, we may bound the region of the collector characteristic plane in which ξ can be made equal to, or greater than, some desired value ξ_0. This means in the construction of Fig. 3(b) that the points A and D would coincide on this boundary when the length BC has been multiplied by $\xi_0/(\xi_0-1)$ to get the length BD. Such a condition is illustrated in Fig. 5. By similar triangles, we see that

$$\frac{OL}{OD} = \frac{OL}{OA} = \frac{BC}{BD}.$$ \hspace{1cm} (14)

By construction,

$$\frac{BC}{BD} = \frac{\xi_0 - 1}{\xi_0}.$$ \hspace{1cm} (15)

and by definition,

$$\alpha = \left(\frac{\partial I_c}{\partial I_e} \right) V_e = \frac{OL}{DA} = \frac{OL}{OA}. \hspace{1cm} (16)$$

Substituting (15) and (14) into (16), we get

$$\alpha = \frac{\xi_0 - 1}{\xi_0}.$$ \hspace{1cm} (17)

on the boundary of the region in which $\xi \leq \xi_0$. This means, for instance, that if we want to design a current amplifier with a gain of 10, we must choose the operating point in the collector characteristic plane in a region where $\alpha \geq 0.9$.

In the region of oscillation discussed above, ξ is negative. All of the foregoing equations still hold for ξ negative, so that we may compute the negative input resistance R_i from (10) as easily as we may compute a positive input resistance. In designing a simple base-input trigger circuit, such as that discussed by Reich and Ungvary,\footnote{H. J. Reich and R. L. Ungvary, "Transistor trigger circuit," Rev. Sci. Instr., vol. 20, pp. 586-588; August, 1949.} one may determine the lowest value of negative base input resistance obtainable with a given transistor by first picking the point of maximum α in the collector plane. This value of α determines in (17) the lowest possible value of $\xi = 1/(1-\alpha)$. Next, the V_c ordinate through this point is transferred to the emitter plane and the slope of this transferred line is read at the same point, to obtain $\tan \eta$. The desired input resistance is then computed from (10) in the form

$$R_i = \frac{1}{1 - \alpha} \left\{ \frac{\Delta L_e}{\Delta L_y} \tan \eta \right\}. \hspace{1cm} (18)$$

(Tan ξ and tan θ are both set equal to zero in this computation to find the lowest value of R, possible.) If it is desired to have some resistance in the collector circuit, the value of ξ would have to be computed from (4).

These few examples should suffice to illustrate the graphical analysis of transistor characteristics for the design of simple circuits. Such methods are not easily extended to complex circuits, but the analysis of some types of more complex circuits (such as multistage amplifiers) can be done by these methods in successive steps.

Acknowledgement

The author wishes to acknowledge his indebtedness to J. W. Coltman for suggesting the construction of Fig. 5(b), and for a helpful discussion of the work.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig5.jpg}
\caption{Collector plane construction for the derivation of equation (17).}
\end{figure}
Reactance Chart*

HAROLD A. WHEELER†, FELLOW, IRE

Summary—The time-honored chart of reactance, frequency, inductance, and capacitance is extended in range, with added scales of susceptance, wavelength, and time constant. Simple geometric patterns are given which enable the chart to be used for the direct solution of various problems such as the bandwidth of a resonant circuit, some properties of a transmission line (wave impedance and delay), and half sections of the usual kinds of constant-k filters (low-pass, high-pass, band-pass).

I. Introduction

Since 1928, the reactance chart has been one of the outstanding aids to radio engineers. It is here presented as Figs. 6 and 7 (see pages 1394 and 1395) with the following improvements:

1. A wavelength scale is added at the top of the chart giving a direct conversion between frequency and wavelengths.
2. A time-constant scale is added at the bottom, giving the time constant CR or L/R, or the time delay in a transmission line or filter.
3. A conductance or susceptance scale is added at the left side, the reciprocal of resistance or reactance.
4. The frequency scale of Fig. 7 covers from 0.1 cycle to 100,000 Mc (3 mm wavelength) in two ranges. The scales on the left side are common to both ranges. The other scales have upper and lower sets of units. All the upper units are used together for the low-frequency range, the lower units for the high-frequency range.

The following instructions describe the use of the chart in many problems, including the complete design of constant-k filters.

II. General Instructions

A point on the chart is the intersection of four lines, one each for frequency f, reactance X, inductance L, and capacitance C. Any two of these quantities determines the point and thereby the other two quantities.

Fig. 6 is a single square of the chart, enlarged for accuracy of reading. If accuracy is desired, the problem is first computed on Fig. 6, all except the decimal point. Then Fig. 7 is employed to locate the decimal point and to give a rough check on the number.

In locating a number on the inductance or capacitance scales of Fig. 6, it is important that the decimal point be shifted by an even number of places.

If accuracy is not required, only Fig. 7 is used. This is good for one or two significant figures and the decimal point is located in the numbers and units on the scales.

III. Abbreviations

\[c = \text{cycle per second} \]
\[s = \text{second} \]
\[m = \text{meter} \]
\[\Omega = \text{ohm} \]
\[\mu = \text{mho} \]
\[h = \text{henry} \]
\[f = \text{farad} \]
\[M = \text{mega} (10^6) \]
\[\mu = \text{micro}(10^{-6}) \]

IV. Reactance and Resonance

Disregarding the sign of the reactance, the basic formulas for this chart are as follows:

\[X = \omega L = 2\pi f L \quad \text{ohms} \quad (1) \]
\[X = \frac{1}{\omega C} = \frac{1}{2\pi f C} \quad \text{ohms} \quad (2) \]

in which

\[X = \text{reactance of } L \text{ or } C \text{ (ohms)} \]
\[f = \text{frequency (cycles per second)} \]
\[\omega = 2\pi f = \text{radian frequency} \]
\[L = \text{inductance (henries)} \]
\[C = \text{capacitance (farads)} \]

If L and C form a resonant circuit as in Fig. 1, these two formulas merge into the resonance formulas

\[X_0 = \omega_0 L = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}} \quad \text{ohms} \quad (3) \]
\[\omega_0 = \frac{1}{\sqrt{LC}} \quad \text{radians per second} \quad (4) \]

In which the subscript "0" denotes resonance.

![Resonant circuit](image)

Fig. 1—Resonant circuit.

Fig. 2 shows the pattern representing the above four formulas for reactance and resonance.

The susceptance corresponding to reactance \(X \) is \(B = 1/X \). This is given on the reciprocal scale on the left side.

The wavelength corresponding to frequency \(f \) is

\[\lambda = \frac{c}{f} = \frac{2\pi c}{\omega} \quad \text{meters} \quad (5) \]

* Decimal classification: R45X.R084. Original manuscript received by the Institute, February 13, 1950.

† Wheeler Laboratories, Great Neck, L. I., N. Y.

‡ This paper was prepared while the writer was associated with Hazeline Service Corp., Great Neck, L. I., N. Y. It was first printed in October, 1942, as Hazeline Report 1400W.

† Wheeler Laboratories, Great Neck, L. I., N. Y.
Each of the networks of Fig. 3 has a charging or discharging time constant

\[t_c = \frac{1}{\omega_e} = \frac{L}{R} \text{ or } CR \text{ seconds. (7)} \]

An extra scale below the chart gives this time constant. It is noted that the subdivisions of this scale are provided by diagonal lines meeting to form a “V” at the bottom edge of the chart where each subdivision should be. The time constant is the radian period corresponding to the frequency.

VI. RESISTANCE AND RESONANCE

A sharply resonant circuit with resistance as shown in Fig. 5(a) behaves as a band-pass filter. Relative to the peak, it presents a voltage attenuation ratio of 1/\sqrt{2} (3 db) at a nominal bandwidth \(f_w \) indicated in Fig. 5(b). The series \(R \) and shunt \(G \) contribute parts of the bandwidth as follows:

\[f_w = f_o + f_v \ll f_o \]
\[\omega_u = \frac{1}{t_u} = \frac{R}{L} ; \quad \omega_v = \frac{1}{t_v} = \frac{G}{C} \]
\[\omega_w = \frac{1}{t_w} = \frac{R}{L} + \frac{G}{C} \]

in which

\(t_u = \text{time constant of } L/R \)
\(t_v = \text{time constant of } C/G \)
\(t_w = \text{half time constant of damping of free oscillations in the resonant circuit.} \)

Fig. 8 shows the pattern of all these relations and others on the chart, involving five points of intersection. Since the bandwidth does not involve the frequency of
Note. On the scales of inductance and capacitance, both decimal points must be shifted by even numbers of places, or both by odd numbers of places, to interchange the scales on this chart with the actual values in henries (Mh, h, μh, μμh) and farads (f, μf, μμf, μμμf). This rule must be followed if both inductance and capacitance appear in the same computation.

\[X = \frac{1}{2\pi f L} = \frac{1}{2\pi f C} = \frac{1}{2\pi f C} \]

\[L = \frac{1}{2\pi f} = \frac{1}{4\pi^2 f^2 C} \]

\[C = \frac{1}{2\pi f X} = \frac{1}{4\pi^2 f^2 L} \]

\[f = \frac{1}{2\pi \sqrt{LC}} = \frac{X}{2\pi f L} = \frac{1}{2\pi f X} = \frac{1}{2\pi f C} \]

\[\tau = \frac{1}{LC} = \frac{L}{R} = CR = \frac{1}{2\pi f} = \frac{L}{R} \]

\[R = \frac{1}{\tau C} = \frac{1}{\tau L} = \frac{1}{\tau} \]

\[X = \frac{1}{2\pi f L} = \frac{1}{2\pi f L} = \frac{1}{2\pi f L} = \frac{1}{2\pi f L} \]

\[\lambda = 2\pi \sqrt{LC} = \frac{300}{f} x 10^6 = \frac{300}{f} x 10^6 = 2\pi L x 300 x 10^6 \]

Fig. 6—Enlargement of one square.
resonance, the bandwidth may be determined separately.

The intersection of \(R \) and \(L \) determines \(f_a \) while that of \(G \) and \(C \) determines \(f_r \). The sum of these is the nominal bandwidth \(f_w \), which also determines the half time constant of damping, \(t_c \), on the time-constant scale.

The total effect of \(K \) and \(G \) may be regarded as concentrated in an equivalent series resistance \(R' \) or shunt resistance \(R'' \), such that

\[
R' = \omega_a L \quad \text{or} \quad R'' = \frac{1}{\omega_a C}.
\]

These formulas are closely associated with the ratio of reactance to resistance

\[
Q = \frac{f_0}{f_w} = \frac{X_0}{R'} = \frac{X_0}{X_0} > 1.
\]

The equivalent series or shunt resistance, \(R' \) or \(R'' \), is determined by the intersection of \(f_w \) with \(L \) or \(C \), respectively. This pattern of Fig. 8 gives a simple conversion between equivalent series and shunt resistance if either is given, together with \(L \) and \(C \).

The remaining point in Fig. 8 is the resonance point like Fig. 2. If either the series \(R \) or the shunt \(G \) is absent, this pattern simplifies by the disappearance of the dotted lines, because either \(f_a \) or \(f_r \) disappears and the other merges into \(f_w \).

It may happen that the pattern of Fig. 8 for a given problem is divided between the two frequency ranges on the chart. This is true of circuits resonant in the neighborhood of 1 Mc. If many problems are to be encountered in such a region, a third scale may be added in red ink (or may be imagined) which is the mean of the two ranges marked on Fig. 7.

VII. LOW-PASS AND HIGH-PASS FILTERS

Low-pass and high-pass filters of the constant-\(k \) type are shown in Fig. 9. The half section is the logical (but not usual) basis for filter design formulas, and is used in this treatment.

![Fig. 9—Low-pass and high-pass filters to be solved by Fig. 4: (a) and (b) half sections; (c) and (d) mid-series sections; (e) and (f) mid-shunt sections.](image)

On this basis, the low-pass and high-pass formulas are the same as (6) above, \(R \) being the nominal or "mid-band" image impedance. Therefore, these filters are designed directly by the pattern of Fig. 4.

In a low-pass filter, the time constant \(t_c \) is the delay per half section, based on the "mid-band" phase slope at frequencies much less than the cutoff frequency.

Either of these half-section filters with \(R \) on both sides is simply a critically damped resonant circuit whose frequency of resonance is \(f_r \). Critical damping can be obtained by resistance on only one side of the half section if the value is changed to \(2R \) in series or \(R/2 \) in shunt.

VIII. BAND-PASS FILTERS

Band-pass filters of the constant-\(k \) type are shown in Fig. 10. If the cutoff frequencies are \(f_1 \) and \(f_2 \), the design formulas may be expressed as follows

\[
\omega_2 - \omega_1 = \frac{R}{L_1} = \frac{1}{RC_2}, \quad (13)
\]

\[
\omega_1\omega_2 = \frac{1}{C_1L_1} = \frac{1}{C_2L_2}. \quad (14)
\]

These two expressions have in common \(L_1 \) and \(C_2 \). In (13) they are involved with \(R \) and the bandwidth \(f_2 - f_1 \), and in (14) with \(C_1, L_2 \), and the mean frequency \(\sqrt{f_1f_2} \).
These relations are respectively analogous to (11) and (4) above, from which follows the pattern of Fig. 11. The three points of intersection are determined by R, f_1, and f_2 in the usual practical problem, but the design is determined by any set of quantities sufficient to locate the three points. The pattern is shown for cases in which the bandwidth is less or greater than the mean frequency.

A band-rejection filter is computed by the same procedure, by merely interchanging the series and parallel arms in the half section of Fig. 10(a).

The three points of intersection are determined by R, f_2, and f_t in the usual practical problem, but the design is determined by any set of quantities sufficient to locate the three points. The pattern is shown for cases in which the bandwidth is less or greater than the mean frequency.

A band-rejection filter is computed by the same procedure, by merely interchanging the series and parallel arms in the half section of Fig. 10(a).

IX. Transmission Lines

The transmission line of Fig. 12 has two characteristics of interest here, its wave impedance and its time of delay.

The wave impedance is

$$R = \sqrt{\frac{L}{C}} \tag{15}$$

in which L and C are uniformly distributed inductance and capacitance of any length of the line. This equation is solved by the pattern of Fig. 4.

The time of delay is

$$t_d = \sqrt{LC} \tag{16}$$

in which L and C are the total values for a certain length of line. This formula also is solved in Fig. 4.

Both of these formulas apply also to any number of sections of low-pass filter, L and C being the total series inductance and shunt capacitance.

Acknowledgment

The writer expresses his special appreciation of the skill and ingenuity of E. A. Owen in preparing the charts.

BIBLIOGRAPHY

Inductance Chart for Solenoid Coil*

HAROLD A. WHEELER†, FELLOW, IRE

Summary—A simple chart presents the relation between inductance, over-all dimensions, and density of winding for a solenoid coil. Any one unknown may be determined if the other quantities are given.

I. Solenoid Coil

The chart to be described presents the relations among the dimensions and inductance of a solenoid coil. It presents them in such a form that any sufficient group of values may be given and the remaining values may be explicitly read from the chart. The chart is plotted on logarithmic scales covering a number of decades sufficient for nearly all applications of solenoid coils. The decimal point is placed so there is no ambiguity. The scale of winding density is self-computing for close windings of various wire gauges and types of insulation.

Fig. 2 (opposite page) is this chart, including a small diagram which shows the pattern of intersecting lines used for each computation. Fig. 1 shows a cross section of a solenoid coil with all dimensions noted, as follows:

Dimensions in Inches

- $a =$ mean radius of coil
- $2a =$ mean diameter of coil
- $b =$ axial length of coil
- $c =$ depth of multilayer coil
- $d =$ diameter of wire
- $e = 1/m = b/n =$ pitch of winding
- $m = 1/e = n/b =$ density of winding
- $n = b/e = mb =$ number of turns.

The chart is based on the usual current-sheet formula which is accurate for many turns of fine wire, close-wound in a single layer. It is also accurate at low frequencies for one turn or many turns of thin ribbon, close-wound in a single layer. The wire is made of non-magnetic material.

The following corrections are needed for special cases. The low-frequency cases apply if the current density in the wire is uniform. The high-frequency cases apply if the current flows in the surface of the wire, according to the skin effect.

II. Coil of One Turn

$n = 1, \quad m = 1/b, \quad b < a.$

This case may be computed, with an error less than 1/20 the value of inductance, by assigning the proper value to the axial length b; it is otherwise undetermined for one turn. Note that the two points of intersection on the chart are separated by one cycle on the horizontal scale.

At low frequencies, for solid wire:

$$b = e = \left(\frac{1}{2} \exp \frac{5}{4} \right) d = 1.74 d; \quad d = 0.574 b. \quad (1)$$

At low frequencies, for tubular wire of mean diameter $=d$; at high frequencies, for solid or tubular wire of outside diameter $=d$:

$$b = e = \left(\frac{1}{2} \exp \frac{3}{2} \right) d = 2.24 d; \quad d = 0.446 b. \quad (2)$$

At high frequencies, for ribbon of width $=d$:

$$b = e = \left(\frac{1}{4} \exp \frac{3}{2} \right) d = 1.12 d; \quad d = 0.893 b. \quad (3)$$

III. Coil of Few Turns

The accuracy of L is greatest if the ratio of pitch over wire diameter e/d has the value given in the preceding rules.

IV. Multilayer Coil of Many Turns

For b, substitute $b + c$:

$$m = \frac{n}{b + c}; \quad n = m(b + c). \quad (4)$$

The accuracy of L is within 1/20 if $e < a/2$.

Acknowledgment

The writer expresses his special appreciation of the skill and ingenuity of E. A. Owen in preparing this chart.

Bibliography

* Decimal classification: R217,11XR382X8084. Original manuscript received by the Institute, February 13, 1950.

This paper was prepared while the writer was associated with Hazeltine Service Corp., Little Neck, L. I., N. Y. It was first printed in August, 1942, in Hazeltine Report 1343W.

† Wheeler Laboratories, Great Neck, L. I., N. Y.
Fig. 2—Inductance chart.
Transmission-Line Impedance Curves*

HAROLD A. WHEELER†, FELLOW, IRE

Summary—A universal family of curves gives on one plot the wave resistance, inductance, and capacitance of transmission lines of one or two or four wires. Each curve represents one field pattern. An expanded scale includes the region of very low impedance, usually neglected. The seven field patterns plotted include inner conductors of circular cross section, in or near shields such as a nearby plane, a corner, parallel planes, a trough, and a coaxial square or circle.

I. INTRODUCTION

In a TRANSMISSION LINE, the same field patterns are involved in the wave resistance \(R \) and the inductance and capacitance per unit of length \(L, C \). Also, every field pattern of a two-wire line (balanced pair) may be bisected by a plane so as to occur about a one-wire line. Hence, one curve can present all these properties of one or two wires. A family of such curves is given to present the properties of one or two or four wires in various shields formed of one or more planes or of circular cross sections. On semilogarithmic co-ordinates, all the curves approach parallel straight lines for high-impedance transmission lines.

II. THE FAMILY OF CURVES

Figs. 1 and 2 (see pages 1402 and 1403) present a family of seven curves plotted on two different scales. Fig. 1 is plotted on the usual semilogarithmic co-ordinates, so that a coaxial line of circular inner and outer cross sections is plotted as a straight line. Fig. 2 is plotted on a special scale which expands the region of low impedance and causes each curve to have a certain finite value of its slope at the origin.

Each curve corresponds to a shield cross section which has all of its surfaces tangent to a circular cross section. The diameter \(D \) thereof is denoted the "maximum wire diameter," because it is the wire diameter that would touch the shield. The inner conductor is a wire having a circular cross section of a lesser diameter \(d \).

Table I is a list of the seven field patterns, (a) to (g), with their description for one, two, or four wires. On

Fig. 1, they are diagrammed for one or two wires, in the same order as the curves from top to bottom.

Fig. 1 and Table I have a column of the factors \(s \) which are a measure of how much space outside the "maximum wire diameter" is still inside the shield. A high-impedance line in any of the various shields has the same impedance as if the shield had a circular cross section of a diameter \(sD \) exceeding the "maximum wire diameter" by this factor. Beside each factor \(s \) is the number of ohms (in parentheses) by which this factor increases the wave resistance of one wire.

The curves are based on a perfect conductor, so the current travels on the outer surface of the inner diameter \(d \) and on the inner surface of the outer diameter \(D \). For imperfect conductors, the capacitance is the same, but corrections will be given for the inductance and wave resistance.

Also, the curves are based on free space, which is the same as air for the precision of this treatment. If the line is filled with an insulating material having a dielectric constant \(k \), the capacitance is multiplied by \(k \) and the wave resistance is divided by \(\sqrt{k} \).

III. THE GENERAL FORMULAS

If the diameter ratio \(D/d \) is so large that the field pattern is substantially circular near the wire, the properties of the line are given by the following simple logarithmic formulas:

\[
R = R_0 \frac{n \log sD/d}{2\pi m} \\
L = \mu_0 \frac{n \log sD/d}{2\pi m} \\
C = \epsilon_0 \frac{2\pi}{n \log sD/d}
\]

in which

\[R = \text{characteristic resistance (ohms)} \]

\[L = \text{inductance per unit length (mH per meter)} \]

\[C = \text{capacitance per unit length (\muF per meter)} \]

\[R_0/2\pi = 60 \text{ ohms} \]

\[\mu_0/2\pi = 0.2 \muH \text{ per meter} \]

* Decimal classification: R244.2X2R084. Original manuscript received by the Institute, February 13, 1950.

† Wheeler Laboratories, Great Neck, L. I., N. Y. It was first printed in July, 1942, in Hazeltine Report 1336W.
The amount of increase of inductance from this cause is indicated by a marker (*) on the scale. That of the wave resistance is one-half as high on the graphs, and is indicated by an extra horizontal line crossing the R scale near the bottom. These corrections are especially important if a line is to be tested at low frequencies and used at high frequencies.

V. Bifilar Conductors

Case (a) for two wires is an example how equal currents in opposite directions cause the same field pattern as if a shield plane were interposed between the two conductors. Likewise, case (c) for one or two wires gives the effect of a grid of parallel wires with currents alternately in one direction and in the opposite direction.

The so-called Ayrton-Perry noninductive resistor is an example of such a grid of wires. Two wires connected in parallel \(n = 1 \) and \(m = 2 \) are wound "noninductively" in a single layer. Their inductance is one-half that of one wire on the graphs for case (c) with the added correction (*).

Acknowledgment

The author expresses his special appreciation of the skill and ingenuity of E. A. Owen in preparing these curves.

Bibliography

1. "High-frequency characteristic impedance of transmission lines," Electronic Eng. (London); July and September, 1941. (Several unusual cases.)
7. S. Frankel, "Characteristic functions of transmission lines," Communications: March, 1942. (Formulas for all cases, small wires.)

<table>
<thead>
<tr>
<th>Factor 1</th>
<th>(Ohms)</th>
<th>One Wire</th>
<th>Two Wires (Balanced Pair)</th>
<th>Four Wires (Balanced Quad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 2</td>
<td>In open space</td>
<td>In open space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) 3.414 = (\sqrt{2})</td>
<td>In a corner</td>
<td>In a corner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) 2.732 = (\sqrt{3})</td>
<td>Between two planes</td>
<td>Between two planes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) 1.2 = (\sqrt{3})</td>
<td>In a semicircular tube</td>
<td>In a semicircular tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) 1.171 = (4/\sqrt{2}) tanh ((\pi/2))</td>
<td>In a square tube</td>
<td>In a square tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) 1.079</td>
<td>In a circular tube</td>
<td>In a circular tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) 1</td>
<td>In a channel</td>
<td>In a channel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note—Since the four wires are connected in series-parallel, they take the same scales as one wire on the graphs.
The curves are in the same vertical order as the diagrams.

If dielectric constant \(k > 1 \), multiply \(C \) by \(k \), divide \(R \) by \(\sqrt{k} \).

Maximum wire diameter is that which touches all other surfaces at once.
The Simplification of Television Receivers*

W. B. WHALLEY†, ASSOCIATE, IRE

Summary—The minimum number of functions required in a TV receiver is analyzed with the purpose of reducing the required components and tubes while maintaining high quality of performance and all normally desirable features such as AGC and horizontal AFC. One of the approaches to this end has been a study of the feasibility of combining different functions in a common tube. A receiver incorporating some of the results of this study is described. Measured data taken on this receiver are presented and its general features are discussed.

This paper, as the title indicates, describes an investigation into the general means of simplifying television receivers so as to reduce the costs of production and servicing. An account is given of several approaches to the problem which were found valuable in attaining the objectives.

Reasons for Simplification

There are many reasons for considering the possibilities of simplifying television receivers. Some are, of course, obvious since a reduction in the number of components has a cumulative effect in reducing the number of leads and connections, permits the use of a smaller chassis and cabinet, and requires less power and consequently smaller power transformers, filter capacitors, and choke.

In addition, however, there can be an improvement in reliability and ease of servicing as the number of components and related connections is reduced. This paper may, therefore, be regarded as describing an inevitable trend in the industry.

General Procedure

The first step in this program was to analyze the operation of a television receiver from the standpoint of the minimum number of necessary functions, and then to plan the simplest possible circuit to perform each function, at the same time keeping in mind the possibility of combining two functions in the same circuit.

In parallel with the analysis, a survey of the circuits of contemporary television receivers was made and trends in simplification noted.

It should be emphasized that the study program and the experimental work were predicated on designs having full bandwidth (4 Mc), good sensitivity, magnetic-type deflection circuits with horizontal automatic-frequency control, automatic gain control with moderate speed of response controlled from the video back-level voltage, good brightness such as that given by a 12½-inch picture tube operating at 10,000 volts, low hum level, and good sound quality.

It was also realized that, while considering the design changes in one section of the receiver, it was of major importance to relate such changes to the combination of circuits making up the whole receiver.

Experiments were then performed to test the new simplified circuits for the individual and combined functions, followed by the construction of a sample receiver incorporating several of the ideas evolved.

It may be advisable at this point to review briefly the functions of a television receiver in order that the discussion to follow may have better coherence. The various functions will be noted in a sequence which follows, as closely as possible, the path of the signal through the receiver. Some general remarks as to the simplification and combination will be included.

1. Channel Selection and Radio-Frequency Amplification

Much work has been in progress on tuners, and there are available two or three types having reasonably good image rejection and noise figure, yet requiring only two tubes. It is probable that the circuit suggested by Wallman, Maenee, and Gadsden would give a better signal-to-noise ratio than presently available tuners and yet still require a total of only two tubes.

2. Amplification at Intermediate Frequency

Intermediate-frequency amplifiers can operate with the fewest components if a basic design is chosen having one main unit to handle the sound by the intercarrier method. Stagger-tuned intermediate-frequency amplifier circuits have been quite popular during the past few years but are difficult to design for optimum adjacent-channel selectivity combined with good gain per stage. Measurements have shown that a modified bandpass-filter-coupled amplifier can give better adjacent-channel selectivity than stagger-tuned amplifiers and a sufficient increase in gain per stage to provide quite good operation with only three stages.

3. Video Detection

Video detectors are almost invariably of the single-diode type and are, therefore, about as simple as can be devised. We have found that a crystal diode, such as type 1X34, has some operating features which are a distinct improvement over available tube diodes. The crystal diode has low capacitance, linear output to low signal voltages, and is very easily wired into the circuit. It may be noted in passing that the high distortion which occurs in a sound AM receiver diode detector at modulations over 80 per cent is not a problem in a television receiver demodulator. This is due to the fact that the dc and ac loads are alike.

* Decimal classification: R583.5. Original manuscript received by the Institute, January 9, 1950; revised manuscript received, July 5, 1950.
† This paper is reprinted from The Sylvania Technologist, January, 1950.
† Sylvania Electric Products Inc., Bayside, L. I., N. Y.

4. Video Amplification

The video signal for the picture tube could be supplied directly from the video detector if a high-level-output intermediate-frequency amplifier is chosen. This would also take care of the dc level. However, better gain-bandwidth figures are obtained in practice in a video amplifier than in an intermediate-frequency amplifier, and a large tube would have to be used in the final stage of the intermediate-frequency amplifier in order to supply 50 or more volts root-mean-square to the diode. Hence, a video amplifier having only one stage seems advisable. It is possible to design the video amplifier so that it takes care of the dc level control by the choice of a dc coupled circuit, provided that the reference dc point is stable during changes in amplitude of the received signal.

Maintenance of the dc level is most important, otherwise the background of the picture would change in intensity with change in the scene.

5. Direct-Current Level Control

Direct-current level control by the method of dc coupling the video amplifier eliminates the need of an extra diode and makes it possible to incorporate some noise limiting if the polarity of the video detector is suitably chosen.

6. Gain Control

It was realized that an automatic gain control circuit of good quality would be of major importance in receiver operation. A satisfactory automatic gain control (AGC) would lessen the need for adjusting the contrast control during tuning, would further stabilize the amplitude of pulses, and would avoid the overdrive and underdrive output settings of the manually operated receiver which can so often occur during switching of signals of widely different voltage levels. It was also known that simple types of automatic volume control circuits were inadequate since they responded directly to noise and interference voltages and also tended to upset the dc level control. Hence, the objective became a circuit which would produce a controlled voltage referred in amplitude to the black level of the signal.

7. Sound Intermediate-Frequency Amplification

The sound system which appears to give the greatest ease in tuning with a reasonably small number of components is the intercarrier system. With this type of operation it is usually permissible to employ only one stage of amplification at the frequency of 4.5 Mc. Aside from the adequacy of the single stage, there is greater ease in tuning the receiver since the fine tuning control is used only for obtaining the best picture quality and has little effect upon the sound. As has often been pointed out, there is the added freedom from the effect of local oscillator drift, oscillator tube microphonicism, and hum.

8. Discriminator

The sound discriminator may be of various types. However, the ratio detector provides a relatively high audio-frequency output for the 25-ke FM deviation occurring in television sound operation and is reasonably stable in tuning.

9. Audio Amplifier

Preliminary analysis of the audio amplifier indicated that more than one stage is advisable. The usual procedure has been to use two separate tubes for this function. It appeared possible to combine this function with other portions of the receiver. As will be shown later, this has been tried out and a high degree of success has been obtained.

10. Synchronizing Pulse Amplification and Separation

Various types of synchronizing pulse amplifiers and separation circuits can be devised. The one chosen in this experimental work has no particular novelty except some reduction in the number of resistors. It seems that a double-triode tube should be sufficient for good synchronizing signal separation, especially if the input signal is obtained from the AGC peak voltage diode. This will be described at a later point.
11. Horizontal Deflection

Horizontal deflection, preferably with automatic frequency control (AFC), is one function which lent itself to a considerable degree of simplification. Receivers have been constructed with four to eight tube sections to perform this operation. Clark has called attention to the fact that there are three principal AFC circuits in use. These are the saw-tooth type, the sine-wave type, and the pulse-time type. The last one appears to require the smallest number of elements of those presently in use. Sufficient work has been done during the progress of this study to indicate that horizontal deflection with stable AFC might be obtained with a total of only two tubes.

12. Vertical Deflection

The status of vertical deflection has already attained considerable simplicity. Use of one double triode now appears sufficient for vertical deflection, including both saw-tooth generation and amplification.

13. High-Voltage Supply

Various sources of high voltage for a television receiver may be employed, for example, (a) a 60-cycle transformer, (b) a radio-frequency high-voltage supply, or (c) the horizontal-deflection amplifier pulse. Source (c) is most attractive for a number of reasons such as the following:

A. Very little shielding is required since the pulse is automatically in synchronism with the picture horizontal deflection.

B. There is a useful degree of automatic regulation of picture size as the line voltage varies.

C. The circuit is simple since it requires only the addition of a rectifier tube, filter resistor, and capacitor.

D. Finally, there is automatic protection of the picture tube if horizontal deflection fails.

14. Low-Voltage Supply

It should be pointed out that even the low-voltage power supply to a television receiver can be simplified. One item to be stressed is that, almost without exception, the rectifier choke has been placed in the positive side of low-voltage power supplies in television receivers. Tests show that there is no logical objection to putting the filter choke in the negative side, for example, from the center tap of the power transformer to ground. With this connection, the voltage drop across the choke and focus coil, if there is an electromagnetic focus coil, may be used for the negative dc supply, avoiding the use of a separate rectifier tube or the wasted voltage drop in an additional resistor which might be used in the return lead from the power transformer.

DUAL FUNCTIONS

Next comes the possibility of combining two functions in the same tube. Some of these possibilities have already been mentioned, such as the use of one double triode for the whole vertical deflection.

Thought was given to other possible combinations of functions, such as adapting a portion of the intermediate-frequency amplifier to serve also as the first sound amplifier, then using the AGC tube to serve also as part of the synchronizing circuit and, finally, to using the AGC tube to function also as the first audio amplifier.

The characteristics of various standard tubes were studied to see if one double-purpose tube could operate as the combined video amplifier and the final audio output stage.

The experimental part of the program was begun with measurements of the type 28D7 tube for its possible use in a combined audio-output stage and the whole video amplifier. These measurements showed that the tube had excellent characteristics as a video amplifier, operating with the cathode tied to ground and the control grid directly connected to a negatively polarized diode-rectifier circuit. When dc coupled from the anode filter to the cathode of the picture tube, the voltage gain is 20 with a bandwidth of 4 Mc.

While one section of the tube is amplifying the video signal, the other section of the tube easily supplies 3 watts of audio power. These operating conditions are with a screen grid voltage of 33 and a total screen current of only 0.4 ma. Combining the video amplifier and audio output in a single tube means one less socket with correspondingly fewer pin connections.

One might be curious as to possible cross talk inside the tube envelope between the video and the audio signals. Careful measurements of a number of tubes show that the cross talk is quite low, averaging 70 db down.

We were interested in the possibility of combining the last intermediate-frequency amplifier and first audio stages. Measurements showed that this combination in the one tube has only one major objection—a high noise component in the received signal, particularly automobile ignition noise, will be superimposed upon the sound.

A new AGC circuit was developed for operating from the black-level voltage of the video signal with a negligibly small power consumption from the negative bias.
supply. Thought was given to the possibility of also supplying some sync amplification. The first two items were attained by a new circuit which was developed during the experimental work and which is shown in Fig. 3. However, instead of combining the AGC with the sync amplifier, it was found to be, in general, preferable to make it serve the dual purpose of AGC and first audio amplifiers. In this way, one half of a type-7N7 double triode operates as a stable automatic-gain-control amplifier and, at the same time, as the first stage of the audio amplifier. The other half of the double tube can be used as part of the horizontal-deflection system.

Enough work has been done on a combined horizontal-deflection and automatic-frequency-control circuit to show the possibility of performing this combined function with fewer than 3 tubes. This work, however, has not yet been completed.

Simplification of the low-voltage power supply has resulted in one model which provides, from only one rectifier and a single filter choke, the main positive dc voltage and two negative voltages, one for the AGC amplifier divider, the other for biasing the final audio stage. The total filter capacitance is approximately one half that of conventional television receivers and the hum voltage is lower than that of any other television receiver that we have measured.

Additional items considered included the possible reduction in the number of resistors and capacitors in the synchronizing separation circuits. One result was a low-pass filter for the vertical integrating network having a total of two resistors and two capacitors which gave a steeper pulse output than older, more complex networks.

Description of Sample Receiver

Having briefly described some of the experiments performed to date, a short description will be given of a completed sample receiver incorporating some of the features described.

Fig. 1 is the block diagram of a type of circuit which was very popular in 1948. In this diagram, the rectangles with heavy boundaries represent the rectifiers and the rectangles with dotted outlines are of those sections which have been removed or combined with other functions in one of the simplified receivers. The fact that both stages of the audio amplifier have dotted outlines is due to their combination with other functions and not to the elimination of the audio amplifier. It should be noted that this receiver does not have automatic gain control.

![Fig. 5 - Video gain characteristic of 28D7 tube, one section only. Zero signal bias = 0, screen voltage = 33.](image)

![Fig. 4 - Audio-frequency response curve of first audio and AGC.](image)

Fig. 2 shows the basic block diagram of a simplified receiver. The tuner uses a total of only two tubes, yet it has good image selectivity and a reasonably high signal-to-noise ratio. The intermediate-frequency amplifier has three stages of simple bandpass-filter coupling giving a voltage gain of 1,500. A tube similar to type 28D7 employing a 6.3-volt heater is used for the video amplifier and second stage of audio. For best operation a type-1N34 crystal is used as the second detector, although this could be replaced with one half of a type-6AL5 tube with some deterioration in operation. The intercarrier intermediate-frequency amplifier feeds the double-diode section of a type-7X7 or a 6T8 tube, while the triode section of this same tube produces the vertical saw-tooth signal which is then amplified by one section of a 7N7, the other section of this latter tube providing the horizontal discharge for the horizontal-deflection amplifier stage. One section of another double triode operates as the combined AGC amplifier and first audio stage while the other section provides horizontal automatic frequency control. The synchronizing amplifier, as has been mentioned before, is one of several possible, circuits using a double triode, the design of this particular circuit being influenced by the plan for a minimum number of components.

Fig. 3 shows the detailed schematic of the combined AGC first audio unit.

Fig. 4 shows the audio-frequency response curve of
the combined first audio and AGC amplifier. It will be noted that the frequency response is adequate for sound reproduction of reasonably high quality.

Fig. 5 shows the gain characteristic of one section of a type-28D7 tube used as a video amplifier.

Fig. 6 shows the over-all schematic for one of these receivers having 6 fewer tubes than the average good television receiver employing magnetic deflection. As mentioned previously, the two crystals could be replaced by one double-diode tube, although the improved operation obtained with the crystals and the simplicity in wiring would thereby be sacrificed.

Universal Design Curves for Intermediate-Frequency Amplifiers with Particular Reference to Phase and Amplitude Distortion and Their Compensation*

W. HACKETT†

Summary—The accurate assessment of distortion in intermediate-frequency amplifiers and the possibilities of compensation assume importance for the development of frequency-modulated very-high-frequency multi-channel equipment with its concomitant wide-bandwidths. The present purpose is to furnish graphical data for the evaluation of phase and amplitude distortion arising from various types of coupling network including compensating combinations, to demonstrate a graphical procedure for accurate design, and to summarize the analysis on which the graphical treatment is based.

Sets of nomograms and curves provide for the assessment of performance as represented by gain times bandwidth, and for the interpretation of equation parameters in terms of circuit parameters.

* Decimal classification: R161.13. Original manuscript received by the Institute, July 7, 1949; revised manuscript received, August 8, 1950.
† British Telecommunications Research Ltd., Taplow, Bucks., England.
I. Introduction

FOR LOW HARMONIC DISTORTION in frequency modulation systems, small amplitude and phase distortion, particularly the latter, are essential. The use of tuned circuits as the coupling networks in intermediate-frequency amplifiers gives rise to both types of distortion. The purpose of the present study is to provide data in graphical form to facilitate the design of intermediate-frequency amplifiers of sufficiently low distortion.

For wide bandwidths, small distortion requires relatively low Q circuits which will usually be achieved by the shunt connection of resistance. Attention has, therefore, been confined throughout to parallel-loaded tuned circuits. At the same time it has been assumed that the carrier frequency is located at the point of phase symmetry, which for parallel-loaded circuits occurs at a frequency slightly different from the resonant frequency and requires some detuning.

For coupling networks comprising either single- or coupled-tuned circuits, a rigorous treatment leads to complicated equations for phase and amplitude distortion. Simple approximate equations are given which can be shown to represent phase distortion to a high degree of accuracy and amplitude distortion to a rather lower degree of accuracy for a single-tuned circuit. It is then shown that, under certain conditions, one stage comprising a pair of coupled-tuned circuits is substantially equivalent in respect of distortion to two stages of single-tuned circuits in which the resonant frequencies are staggered above and below the carrier frequency. This equivalence leads to the derivation of relatively simple, approximate equations for the distortion arising from coupled-tuned circuits in terms of equation parameters which differ somewhat from those adopted for series-loaded circuits or circuits of high Q.1,2

It is known that, over a certain range of parameters, coupled circuits exhibit amplitude and phase distortion of opposite sign to those obtaining with single-tuned circuits. This fact may be utilized to achieve a considerable measure of compensation by the cascade connection of stages embodying single- and coupled- or staggered-tuned circuits when the circuit parameters are suitably chosen. The requirement is therefore to present the data for the two characteristic types of distortion in such a form as to assist the optimum choice of parameters and permit the quantitative assessment of distortion in compensating combinations.

II. LIST OF SYMBOLS

\[A = \left| -jk \ 2\pi f \right|^2 \left(C_1 C_2 \right)^{1/2} / \left(f(1 - k^2) \right) \] (equation 10)

\(C \) = capacitance of tuned circuits in farads

\(D_a \) = amplitude distortion per unit network in decibels

\(D_p \) = phase distortion per unit network

\(f \) = frequency in cps

\(f_0 \) = carrier frequency in cps

\(f_1, f_2 \) = lower and upper values of \(f \) corresponding to given amplitude distortion for single-tuned circuits

\(f_r \) = resonant frequency of tuned circuit in cps

\(\Delta f \) = error in \(f \)

\(F \) = equivalent gain factor per stage of unit network

\(g \) = mutual conductance of tube in amperes per volt

\(G \) = stage gain

\(G_e \) = mean or equivalent gain per stage of unit network

\(J \) = \(K_1 / 2Q \)

\(k \) = coefficient of coupling

\(k_c \) = coefficient of critical coupling

\(K_1 = Q_s \left[(1 - k)^{-1/2} + (1 + k)^{-1/2} \right] \) for coupled-tuned circuits

\(K_2 = Q_s \left[(1 - k)^{-1/2} - (1 + k)^{-1/2} \right] \) for coupled-tuned circuits

\(n_s \) = number of stages per unit network

\(n_u \) = number of unit networks

\(Q \) = magnification factor of tuned circuit at resonant frequency

\(x = F_p (f - f_0) / f_0 \)

\(Z \) = transfer impedance of coupling network of one stage

\(Z_e \) = equivalent transfer impedance per stage of unit network

\(\lambda \) = \(K_2 / f_0 \)

\(\Delta \lambda \) = error in \(\lambda \) corresponding to error \(\Delta f \)

\(\lambda_p \) = value of \(\lambda \) corresponding to peak values of \(D_p \) (Fig. 2)

\(\phi \) = phase shift associated with unit network

\(\phi_0 \) = value of \(\phi \) at \(f = f_0 \)

<table>
<thead>
<tr>
<th>Suffixes</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Individual equivalent and/or actual tuned circuits involved in coupled or staggered circuit networks.</td>
</tr>
<tr>
<td>c</td>
<td>Coupled-tuned circuits.</td>
</tr>
<tr>
<td>s</td>
<td>Single-tuned circuits.</td>
</tr>
<tr>
<td>st</td>
<td>Staggered-tuned circuits.</td>
</tr>
<tr>
<td>s/c</td>
<td>Compensating combination comprising single- and coupled-tuned circuits.</td>
</tr>
<tr>
<td>s/st</td>
<td>Compensating combination comprising single- and staggered-tuned circuits.</td>
</tr>
</tbody>
</table>
III. Definitions

Unit Network

It is found convenient to define and express distortion in terms of the "unit network," which is defined as the smallest repeatable combination of stages \(n_s \) in the amplifier.

Performance Parameter \(P \)

Assuming a constant current source such as a pentode, the ratio of output to input voltage of an amplifier stage is given by \(gZ \), where \(g \) is the mutual conductance of the tube and \(Z \) is the transfer impedance of the coupling network. The stage gain \(G \) at the carrier frequency \(f_0 \) is then given by

\[
G = g |Z| \quad \text{(1)}
\]

If the \(n_s \) stages of a unit network have transfer impedances \(Z_1, Z_2, \ldots, Z_{n_s} \), then the mean or equivalent gain per stage \(G_e \) at the carrier frequency is given by

\[
G_e = g \left| \frac{Z}{Z} \right| \quad \text{(2a)}
\]

where

\[
C_e = \text{equivalent capacitance per stage}
\]

and both \(C_e \) and \(F_e \) depend on the type of unit network. If the performance parameter \(P \) is defined as equivalent gain per stage times fractional half bandwidth, then

\[
P = G_e \left(\frac{f - f_0}{f_0} \right) = \frac{g x}{2 \pi f C_e} \quad \text{(2b)}
\]

Amplitude Distortion

The amplitude distortion associated with a unit network \(D_a \) may be defined as the ratio of the modulus of the output voltage at frequency \(f \) to that at carrier frequency \(f_0 \), expressed as an attenuation in decibels, and is given by

\[
D_a = 20 \log_{10} \left| \frac{Z}{Z} \right| \quad \text{(3)}
\]

Phase Distortion

The phase distortion associated with a unit network \(D_p \) may be defined as the difference between the actual phase shift \(\phi \) at frequency \(f \) and that which would obtain if the phase-shift frequency gradient were constant at the carrier frequency value, i.e.,

\[
D_p = \phi - \phi_0 - \left(f - f_0 \right) \frac{d\phi}{df} \left| f - f_0 \right| \quad \text{(4)}
\]

IV. Formulas for Phase and Amplitude Distortion

A. Single-Tuned Circuit

The transfer impedance \(Z_s \) for a parallel-loaded tuned circuit is given by

\[
Z_s = \frac{1}{2 \pi f C_s \left[1 + j \left(\frac{f}{f_0} - \frac{f_0}{f} \right) \right]} \quad \text{(5)}
\]

where

\[
f_0 = \text{resonant frequency}
\]

\[
Q_s = \text{circuit quality factor}
\]

\[
C_s = \text{capacitance of tuned circuit}.
\]

The derived phase-frequency characteristic shows a point of inflection, which is a point of skew symmetry, at a frequency slightly lower than \(f_0 \). Assuming that the circuit is so tuned as to locate the carrier frequency \(f_0 \) at the point of phase symmetry, it can be shown that the phase distortion per stage in radians is given to a very close approximation by

\[
D_{ps} = 2Q_s \left(\frac{f - f_0}{f_0} \right) - \arctan \left(2Q_s \left(\frac{f - f_0}{f_0} \right) \right) \quad \text{(6a)}
\]

which may be expressed in the form

\[
D_{ps} = \frac{\lambda}{J} - \arctan \left(\frac{\lambda}{J} \right) \quad \text{(6b)}
\]

where

\[
\lambda = K \left(\frac{f - f_0}{f_0} \right) \quad \text{(6c)}
\]

and

\[
J = K / 2Q_s \quad \text{(6d)}
\]

and is a scale-adjusting factor used in Section IV D for the determination of the conditions for compensation. The curve of \(D_{ps} \) is skew symmetrical about \(\lambda = 0 \), i.e., \(f = f_0 \), and is positive for positive values of \(\lambda \).

The amplitude distortion per stage \(D_{as} \) is then given approximately by

\[
D_{as} = 10 \log_{10} \left[1 + \left(2Q_s \left(\frac{f - f_0}{f_0} \right) \right)^2 \right] \quad \text{(7a)}
\]

which may be expressed in the form

\[
D_{as} = 10 \log_{10} \left[1 + \left(\frac{\lambda}{J} \right)^2 \right] \quad \text{(7b)}
\]
Whereas D_{as} as given by (7) is symmetrical about $A = 0$, i.e., $f = f_0$, a rigorous analysis, while giving substantially the same bandwidth for the same distortion, requires the band to be displaced towards the higher frequencies. The approximate symmetrical equation will usually be sufficiently accurate for general design purposes, but corrections may be applied as a refinement if required. If for a particular value of distortion the symmetrical curve gives a fractional bandwidth of $2(f - f_0)/f_0$, and the true upper and lower frequencies as rigorously derived are f_u and f_l, respectively, then the true fractional bandwidth is given by

$$\frac{f_u - f_l}{f_0} = \frac{f_{rs}}{f_0} \left[1 + \left(\frac{f - f_0}{f_0} \right)^2 \right]^{1/2}$$

and the deviation of its midpoint from the carrier frequency is given by

$$\frac{(f_u + f_l)/2}{f_0} = \frac{f_{rs}}{f_0} \left[1 + \left(\frac{f - f_0}{f_0} \right)^2 \right]^{1/2} - 1$$

$$\Omega = \frac{f_{rs} - f_0}{f_0} + \frac{1}{2} \left(\frac{f - f_0}{f_0} \right)^2$$

where f_{rs} is given by (29) of Table III and is an inverse function of Q.

B. Coupled-Tuned Circuits

It can be shown that the transfer impedance Z_t associated with a pair of coupled circuits, which are tuned to the same frequency f_r, and are of equal Q, can be expressed in the form

$$Z_t = AZ_{10}Z_{12}$$

where

$$1 = \frac{j k 2 \pi f_r z (C_1 C_2)^{1/2}}{f(1 - k^2)}$$

$$Z_{10} = \frac{1}{2 \pi f_r C_1 \left\{ \frac{1}{Q_1} + j \left(\frac{f}{f_{r1}} - \frac{f}{f} \right) \right\}}$$

$$Z_{12} = \frac{1}{2 \pi f_r C_2 \left\{ \frac{1}{Q_2} + j \left(\frac{f}{f_{r2}} - \frac{f}{f} \right) \right\}}$$

$$f_{r1} = f_r/(1 + k)^{1/2}$$

$$f_{r2} = f_r/(1 - k)^{1/2}$$

$$Q_1 = Q_r/(1 + k)^{1/2}$$

$$Q_2 = Q_r/(1 - k)^{1/2}$$

Fig. 1—Phase distortion for simple unit networks and derived compensating combinations.

Fig. 2—Amplitude distortion for simple unit networks and derived compensating combinations.
Comparison with (5) indicates that \(Z_2 \) is equivalent to \(A \) times the product of the impedances of two single resonant circuits, which have the same product of capacitance into shunt resistance and are tuned respectively to \(f_{1} \) and \(f_{2} \). Factor \(A \) is an inverse function of frequency and includes a phase shift of \(-90^\circ\).

The phase-frequency characteristic of coupled circuits shows a point of inflection which is a point of skew symmetry at a frequency slightly greater than the resonant frequency. If the resonant frequency is so adjusted that the point of phase symmetry is coincident with the carrier frequency \(f_0 \), derivation from (6) gives approximately for the phase distortion \(D_{\text{ph}} \) of coupled circuits

\[
D_{\text{ph}} = \frac{2\lambda}{1 + K^2} - \arctan\left(\frac{2\lambda}{1 + K^2 - \lambda^2}\right)
\]

where

\[
\lambda = k\left(\frac{f - f_0}{f_0}\right)
\]

\[
K_1 = \left(1 - k^2\right) + (1 + k)^2
\]

\[
K_2 = \left(1 - k\right)^{1/2} - (1 + k)^{1/2}
\]

\[
k = \text{coefficient of coupling}
\]

\[
k_c = \text{coefficient of critical coupling}
\]

\[
D_{\text{ph}} \text{ is skew symmetrical about } \lambda = 0, \text{ i.e.}, f = f_0, \text{ and is negative for positive values of } \lambda \text{ over a certain range depending on the value of } K_2 > 1/\sqrt{3}, \text{ beyond which it becomes positive. The position } \lambda_p \text{ of the peaks is given by}
\]

\[
\lambda_p = \pm (3K^2 - 1)^{1/2}.\]

A rigorous analysis gives curves for amplitude distortion which are symmetrical about \(f_0 \), in the denominator of factor \(A \) of (10a) correcting for the inherent asymmetry associated with the equivalent single-tuned circuits. Thus, by adopting the approximate symmetrical equation (7) for single-tuned circuits and regarding \(f \) in factor \(A \) as constant, \(D_{\text{ph}} \) for coupled circuits can be shown to be given to a very close approximation by

\[
D_{\text{ph}} = 10 \log_{10} \left[(1 + K^2 - \lambda^2)^2 + 4\lambda^2\right] - 20 \log_{10} [1 + K^2].
\]

Critical coupling corresponds to \(K_2 = 1 \), above which the characteristic exhibits the familiar double hump, the peak values of which occur at \(\lambda_p \) given by

\[
\lambda_p = \pm (K^2 - 1)^{1/2}.
\]

Equations (11) and (13) show that phase distortion \(D_{\text{ph}} \) and amplitude distortion \(D_{\text{ac}} \) can each be represented completely in terms of the two parameters \(\lambda \) and \(K_2 \), and therefore by a single family of curves plotted against \(\lambda \) for different values of \(K_2 \) as illustrated by the full-line curves of Figs. 1 and 2. This is not possible, except for high values of \(Q \), where the more usual parameter \(Q(f-f_0)/f_0 \) and \(k/k_c \) are used.

C. Staggered-Tuned Circuits

For two stages of single resonant circuits tuned to frequencies \(f_0 \) and \(f_2 \) respectively, and having \(Q \) values \(Q_1 \) and \(Q_2 \) at these frequencies, the product of the transfer impedances is given by

![Fig. 3—Nomogram for performance parameter \(P \). \(P = \omega_c \left(\frac{f - f_0}{f_0}\right)\). For \(C \), see Table II and Fig. 4. For \(x \) see Table II and Fig. 5.](image_url)
capacity into shunt resistance so that

\[Z_{v1} \times Z_{v2} = Z_{a1}^2 \]

where \(Z_{v1} \) and \(Z_{v2} \) are of the form of (10b) and (10c), respectively. If the circuits have the same product of capacitance into shunt resistance so that

\[\frac{Q_1}{f_{r1}} = \frac{Q_2}{f_{r2}} \]

and are so tuned that the carrier frequency coincides with the point of skew symmetry of the resultant phase-shift characteristic, then the phase distortion \(D_{ps1} \) for two stages of staggered circuits is given as for one stage of coupled-tuned circuits by (11) where

\[K_1 = Q_2 + Q_1 \]

(17a)

\[K_2 = Q_2 - Q_1. \]

(17b)

In this case, owing to the absence of a factor \(A \) with its correcting factor \(f \), there will in practice be some asymmetry in the amplitude characteristic. For general design purposes, however, it is convenient to assume

symmetry so that amplitude distortion \(D_{as1} \) for two stages of staggered circuits may be represented approximately by the same equation (13) as for a single stage of coupled-tuned circuits.

It is evident that the replacement of one stage of coupled-tuned circuits by two stages of staggered-tuned circuits offers the possibility of higher gain for the same distortion while at the same time affording greater facility of adjustment.

D. Compensating Combinations

The difference in sign of the phase and amplitude distortion associated with single- and coupled- or staggered-tuned circuits can be utilized to give a considerable measure of compensation over a range of \(\lambda \), provided that certain relations obtain between the parameters \(J \) and \(K_2 \). Curves for phase and amplitude distortion are presented in Figs. 1 and 2 respectively in such a form as to reveal the appropriate relations. The broken line curves represent distortion arising from a single-tuned circuit, \(D_{ps} \) and \(D_{as} \), as a function of \(\lambda \) for different values of \(J \). The full line curves, on the other hand, show the mirror image of the distortion associated with a unit network of the coupled or staggered circuit type, i.e. \((-D_{ps}) \) or \((-D_{ps1}) \) in Fig. 1 and \((-D_{as}) \) or \((-D_{as1}) \)

<table>
<thead>
<tr>
<th>(K_1)</th>
<th>(K_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Fig. 4—Nomograms for equivalent capacitance \(C_i \) for simple and compensating unit networks.

<table>
<thead>
<tr>
<th>(J)</th>
<th>(K_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 5—Nomograms for conversion from \(\lambda \) to \(\epsilon \) for simple and compensating unit networks.
in Fig. 2, as a function of \(\lambda \) for different values of \(K_2 \). Since both phase and amplitude distortion arising from a number of unit networks add algebraically, the difference between any \(J \) and any \(K_2 \) curve gives the resultant distortion \(D_{\text{phase}}, D_{\text{asym}}, D_{\text{phase}} \) or \(D_{\text{asym}} \) for the corresponding compensating unit network.

It is to be noted that equal increments of \(J \) correspond to equal increments of \(\lambda \) for the same distortion, which permits linear interpolation for intermediate values of \(J \). Since \(J = K_1 Q_2 \), \(K_1 \), \(Q_2 \), for coupled circuits and \(K_1 = (Q_1 + Q_2) \) for staggered circuits, \(J \) represents approximately the ratio of the \(Q \) of coupled circuits or the mean \(Q \) of staggered circuits to that for the single-tuned circuit.

It is apparent from Fig. 2 that maximum compensation for amplitude distortion requires a value of \(J \) of the order of 2, which may not necessarily represent the optimum value for compensation of phase distortion, and some compromise may be required. For special purpose where both phase and amplitude distortion are required to be very small, a better compromise may be possibly achieved by the use of more complicated compensating combinations involving three or more simple unit networks, e.g., one of the single-tuned circuit type and two of the coupled- or staggered-tuned circuit types. Mathematical treatment is difficult but design can conveniently be carried out by trial and error, using the curves of Figs. 1 and 2. It may be found convenient to use different equation parameters \((K_1 \) and \(K_2 \)) for unit networks of similar type; the values of \(D_p \) and \(D_a \) corresponding to a given frequency deviation must then be derived for different values of \(\lambda = K_1(f = f_0)/f_0 \) in the two cases.

V. Evaluation of Performance Parameter \(P \)

To compare the merits of different circuit arrangements it is necessary to interpret \(\lambda \) in terms of performance parameter \(P \), i.e., equivalent gain per stage at car-

\(^6\) Intersection and close proximity preclude the separate delineation of the \(D_\lambda \) curves for \(K_2 = 1.4 \) to 2.4 at low values of \(\lambda \). They all fall within the cross-hatched area and are of the same general form as the curve for \(K_2 = 2.6 \), which follows the lower boundary.

Fig. 7—Resonant frequency of coupled-tuned circuits in terms of equation parameters.

Fig. 6—Nomograms for conversion from equation to circuit parameters for single-, coupled-, and staggered-tuned circuits.
rier frequency times fractional semibandwidth, which is given by (2) and may be evaluated by the nomogram of Fig. 3, using a set-square index.

This formula involves C_2, the equivalent capacitance per stage and x, the equivalent gain factor per stage times fractional half bandwidth. Both factors are given for specific unit networks by the equations of Table II and may be evaluated from the nomograms of Figs. 4 and 5 respectively. For more complicated combinations, C_2 and x are given by the geometric mean of the values of C_2 and x associated with the component stages.

VI. CONVERSION FROM EQUATION PARAMETERS TO CIRCUIT PARAMETERS

The required circuit parameters are resonant frequencies, Q values, and for coupled circuits, coefficient of coupling. They are given for the three basic unit networks by the conversion equations of Table III and may be evaluated from the nomograms of Fig. 6 and curves of Fig. 7.

Error in the tuning of the resonant circuits will give rise to asymmetry in the distortion characteristics of Figs. 1 and 2. A positive error Δf in the resonant frequency of single- or coupled-tuned circuits or in the mean resonant frequency of staggered-tuned circuits will cause a shift to the right by an amount $\Delta \lambda \Omega K f / f_0$.

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUATIONS FOR EVALUATION OF FACTORS INVOLVED IN PERFORMANCE PARAMETER FOR VARIOUS UNIT NETWORKS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit Network</th>
<th>Number of Stages n_e</th>
<th>Factor F</th>
<th>Equation</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single tuned circuit</td>
<td>1</td>
<td>C_2</td>
<td>(18)</td>
<td></td>
</tr>
<tr>
<td>Coupled tuned circuits</td>
<td>1</td>
<td>$C_2 (C_2)^{1/2}$</td>
<td>(22)</td>
<td></td>
</tr>
<tr>
<td>Staggered-tuned circuits</td>
<td>2</td>
<td>$C_2 (C_2)^{1/2}$</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>Compensating combinations comprising</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-tuned circuit, Coupled-tuned circuits</td>
<td>$1 \frac{3}{2}$</td>
<td>$C_2 (C_2)^{1/2}$</td>
<td>(25)</td>
<td></td>
</tr>
<tr>
<td>Single-tuned circuit, Staggered-tuned circuits</td>
<td>$1 \frac{3}{2}$</td>
<td>$C_2 (C_2)^{1/2}$</td>
<td>(26)</td>
<td></td>
</tr>
</tbody>
</table>

1 Equations (20), (22), (24), and (26) may be evaluated from Fig. 4 and (21), (23), (25), and (27) from Fig. 5.

2 The gain factor included in x is strictly that at the resonant and not the carrier frequency, but the difference is negligible for practical purposes.

3 This equation involves the limitations of footnote 2 above.

4 This equation involves the limitations of footnote 2 above.
VII. Computing Procedure Illustrated by Numerical Examples

The computing procedure for the design of intermediate-frequency amplifiers for minimum distortion, when the bandwidth and over-all gain are specified, is outlined in Table IV and illustrated by two numerical examples for compensating unit networks of the coupled and staggered circuit types respectively.

The alternative case, when the maximum distortion is specified and it is required to design for maximum gain times bandwidth, can equally well be treated by a revised order of steps.

VIII. Conclusions

To meet the desiderata of wide bandwidths and low phase distortion, parallel loading of resonant circuits used as coupling networks has been assumed, together with the requisite detuning to locate the point of phase symmetry at the carrier frequency.

Simple approximate equations are given for the distortion associated with a single-tuned circuit, and corrections, which may be applied as a refinement, are indicated. For a unit network comprising one stage of coupled-tuned circuits of equal Q or its distortion equivalent of two stages of staggered-tuned circuits, the adoption of novel parameters leads to relatively simple equations for phase and amplitude distortion, each of which may then be represented by a single family of curves. Such representation permits advantage to be taken of the difference in sign of the distortion associated with single- and coupled- or staggered-tuned circuits over a certain range of parameters, to design compensating combinations.

<table>
<thead>
<tr>
<th>Coupling Network</th>
<th>Circuit Parameter</th>
<th>Conversion Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expression</td>
<td>Number</td>
</tr>
<tr>
<td>Single-tuned circuit</td>
<td>(f_s - f_o) / (f_o)</td>
<td>(28)</td>
</tr>
<tr>
<td></td>
<td>(Q)</td>
<td>(K_1 = \lambda \left(1 - \frac{f_s}{f_o} \right))</td>
</tr>
<tr>
<td>Coupled-tuned circuits</td>
<td>(f_s - f_{o*}) / (f_o)</td>
<td>(29)</td>
</tr>
<tr>
<td></td>
<td>(1 - \frac{f_{o*}}{f_s})</td>
<td>(2K_1^2 - 1) (\frac{K_1}{K_2}) (1 + \frac{2K_1}{K_2}) (\frac{K_2}{K_1}) (\frac{1}{Q^2})</td>
</tr>
<tr>
<td></td>
<td>(k)</td>
<td>(30)</td>
</tr>
<tr>
<td></td>
<td>(\frac{2K_1}{K_1 + K_2})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Q_o)</td>
<td>(31)</td>
</tr>
<tr>
<td></td>
<td>(\frac{K_1^2 - K_2^2}{2(K_1^2 + K_2^2)^{1/2}})</td>
<td></td>
</tr>
<tr>
<td>Staggered-single-tuned circuits</td>
<td>(f_s - f_o) / (f_s)</td>
<td>(32)</td>
</tr>
<tr>
<td></td>
<td>(\frac{K_2}{K_1}) \ for (K_1 > 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{f_{o*} - f_o}{f_s}) / (f_s)</td>
<td>(33)</td>
</tr>
<tr>
<td></td>
<td>(\frac{K_2}{K_1}) \ for (K_1 > 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{Q_o})</td>
<td>(34)</td>
</tr>
<tr>
<td></td>
<td>(\frac{K_1 - K_2}{2})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Q_o)</td>
<td>(35)</td>
</tr>
<tr>
<td></td>
<td>(\frac{K_1 + K_2}{2})</td>
<td></td>
</tr>
</tbody>
</table>

Note—Equations (29), (30), (31a), and (32) through (35) may be evaluated from the nomograms of Fig. 6. For \(K_1 < 15 \) and \((f_s - f_o) / f_o > 0.01 \) use should be made of (31) which may be evaluated from the curves of Fig. 7.
Sets of nomograms and curves provide for the evaluation of the performance parameter (equivalent gain per stage times fractional semibandwidth) in terms of the tube mutual conductance, equivalent shunt capacitance, carrier frequency, and equation parameters, and for the conversion from equation to circuit parameters (resonant frequencies, Q values, coupling coefficient) for the various unit networks. The procedure for using the graphical data is indicated and illustrated by two numerical examples.

IX. Acknowledgments

The author wishes to thank Brigadier J. B. Hickman, Managing Director, British Telecommunications Research Ltd., T. Walmsley, former Director of Research under whose directorship the work was carried out, and F. O. Morrell, present Director of Research, for permission to publish this paper. The author is also indebted to D. A. Bell, for helpful advice during the course of the work, and to those colleagues who assisted in the preparation of the manuscript.

TABLE IV

Computation of Distortion and Circuit Parameters for Typical Compensated Unit Networks to Give Specified Over-all Gain and Bandwidth

<table>
<thead>
<tr>
<th>Specified over-all gain</th>
<th>Specified bandwidth</th>
<th>Assumed g</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^p</td>
<td>$\pm 1 \text{ Mc}$</td>
<td>5 mA/V</td>
</tr>
<tr>
<td>$f - f_0 = \frac{1}{30}$</td>
<td>f_0</td>
<td>$2\pi f_0 = 2.65 \times 10^{-11}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Unit network</th>
<th>Quantity</th>
<th>Equation</th>
<th>Fig.</th>
<th>Compensating Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single</td>
<td>Coupling circuit</td>
<td>Equation</td>
<td>Fig.</td>
<td>Single</td>
</tr>
<tr>
<td></td>
<td>network</td>
<td>Number of stages n_e</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Associated capacitances</td>
<td>$C_1 \text{ pF}$</td>
<td>(24)</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2 \text{ pF}$</td>
<td>(25)</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Equivalent capacitance $C_e \text{ pF}$</td>
<td>$\frac{f}{f_0}$</td>
<td>3</td>
<td></td>
<td>0.5925</td>
</tr>
<tr>
<td>3</td>
<td>Number of unit networks n_e</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>0.265</td>
</tr>
<tr>
<td>4</td>
<td>Equivalent gain per stage G_e</td>
<td>$\frac{f}{f_0}$</td>
<td>1</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>$P = G_e(f - f_0)/f_0$</td>
<td>$\frac{f}{f_0}$</td>
<td>1</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>$\frac{f}{f_0}$</td>
<td>1</td>
<td></td>
<td>0.94</td>
</tr>
<tr>
<td>7</td>
<td>Selected values of</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>λ</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td>$\frac{f}{f_0}$</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>9</td>
<td>D_e (per unit network) degrees</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>28.20</td>
</tr>
<tr>
<td></td>
<td>D_e (per unit network) db</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>n_eD_e</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>1.22 $\times 10^{-2}$</td>
</tr>
<tr>
<td></td>
<td>n_eD_e</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>3.42 $\times 10^{-4}$</td>
</tr>
<tr>
<td>10</td>
<td>K_1</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>10.1</td>
</tr>
<tr>
<td>11</td>
<td>Single-tuned circuit</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>1.22 $\times 10^{-2}$</td>
</tr>
<tr>
<td></td>
<td>Coupled-tuned circuit</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>3.42 $\times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>Staggered-tuned circuit</td>
<td>$\frac{f}{f_0}$</td>
<td>2</td>
<td></td>
<td>3.38 $\times 10^{-2}$</td>
</tr>
</tbody>
</table>

The author acknowledges the assistance of the late T. Walmsley, former Director of Research, under whose directorship the work was carried out, and of F. O. Morrell, present Director of Research, for permission to publish this paper. The author is also indebted to D. A. Bell, for helpful advice during the course of the work, and to those colleagues who assisted in the preparation of the manuscript.
Marginal Checking as an Aid to Computer Reliability*

NORMAN H. TAYLOR†, SENIOR MEMBER, IRE

Summary—Deteriorating components, particularly crystals and vacuum tubes, cause reduction of safety margins and are a principal source of error in digital computing and pulse communication.

Marginal checking varies voltages in logical circuit groups, inducing inferior parts to cause failure, while a test program or pulse transmission detects and localizes potential failure. In a digital computer, this can be automatically accomplished with the computer itself acting as the detector.

In one trial on a 400-tube prototype system the application of this type of preventive maintenance for half an hour per day improved reliability 50 to 1. Results of preliminary tests on a full computer are discussed.

I. Introduction

Electronic digital computers will be used to solve real-time problems and must be reliable.

For example, when the modern computer becomes the nerve center of an all-weather air traffic control system, the plane pilot must know the system is operating, and will continue to operate, without error. Such reliability can be guaranteed only by detecting imminent failures and prevention their occurrence.

In order to obtain “computer reliability,” a much higher degree of performance is required than in ordinary means of communication. The basic difference is the high concentration of information used in a computer compared with the concentration of information in speech, television, or radar. Interruptions in circuits of the latter type can occur at frequent intervals, with little loss of intelligence. An occasional intermittent tube does not void the sense from a radio, ignition noise does not completely void television, nor does an arcing magnetron nullify the plot on a radar screen.

This criterion is not good enough in computer applications. The usual method of transmitting intelligence in a computer is to supply high-frequency pulses to particular circuits at specified times. A single pulse occurring at the wrong time can invalidate the usefulness of the whole effort. This single-error limitation is due to the presence of a memory in a computer. Memory remembers the errors as well as the information to be processed, and once an error becomes imbedded in the memory it can be propagated into all subsequent calculations.

The necessary reliability can be approached by combining good design with the best available components, and utilizing marginal checking as an additional aid.

Marginal checking differs from ordinary checking by not only answering the question, “Are all circuits functioning?” but also, “How much longer will the circuits function?” Good equipment starts with wide safety margins, but age and wear reduce these safety margins, leading to eventual failure. Marginal checking assures adequate safety by testing the system frequently enough so that only slight deterioration can occur between tests.

II. The Marginal Checking System

A. Magnitude of the Problem

Most of the large-scale digital machines under development utilize many thousands of vacuum tubes, crystals, resistors, condensers, and coils. The vacuum tube is the least reliable component of this group, and the crystal rectifier, though better than the tube, is still a weak link in the chain of reliability. Failures in the resistors, condensers, and coils are not frequent, and these elements do not threaten computer reliability to such an extent.

What may be expected of a system using present-day vacuum tubes and crystals? A few assumptions will serve to indicate the problem. If a typical computer has 5,000 cathodes and 10,000 crystals, suppose the tubes will last on an average of 5,000 hours, and the crystals, 10,000 hours. Every 30 minutes one of these aging components may cause a failure. Furthermore, some of these failures will not be steady but will cause marginal operation and thus be very difficult to locate. In a typical 8-hour day this may cause 16 shutdowns. Even if a trouble location technique is well developed, so that the period of shutdown is short, the efficiency of the machine will be very low. One might ask if a periodic replacement program could be followed which would eliminate many of these component failures. Unfortunately, early failure in groups of new tubes is quite high, so that wholesale replacement on simply a time basis would increase the failure rate.

B. Features of Marginal Checking

The preventive maintenance techniques called marginal checking use performance margins to establish life expectancy of components, so that those with low margins can be removed during a testing period.

Three features of this marginal checking scheme make it very practical for use in large electronic systems:

(1) The checking system can detect imminent failures before they become real failures and cause computational error.

(2) This detection can isolate the failing component to a specific tube, crystal, or resistor.

(3) Such isolation can be so rapid that it consumes only a small percentage of total machine time.

* Decimal classification: 621.375.2. Original manuscript received by the Institute, April 6, 1950; revised manuscript received, July 28, 1950.
† Massachusetts Institute of Technology, Cambridge, Mass.
1. Conversion to Real Failures: The conversion of imminent failures to real failures during test periods is the important key in this marginal checking system. Such checking is possible in computers and also in many other pulse systems due to the on-off nature of the circuitry used.

In a computer, information passes from one place to another as the presence or absence of a pulse on a transmission line. It is not necessary that the pulse be of any particular amplitude to get this information to its destination but only that the pulse be large enough to affect the detector. If the presence of a pulse means a 1 and the absence a 0, then a pulse which is too small to affect the detector has the same effect as no pulse at all and so a 0 is recorded.

a. A Simple Computer Channel

Fig. 1 gives a typical basic block diagram often encountered in pulse systems. Gate tube A, when open, allows pulses to pass along a channel to a flip-flop. If the pulses are large enough and the flip-flop in proper condition, each pulse will cause a reversal of the flip-flop from a 1 to 0 or vice versa.

Two sorts of trouble may develop. First, the gate tube may deteriorate and cause the pulse amplitude to be reduced to a point where the flip-flop will not switch on, second, the flip-flop may refuse to switch because of one of its components has deteriorated.

b. Checking the Gate Circuit

The margin of performance in the gate tube (A) can be checked by lowering the voltage on the screen of the tube by inserting a negative voltage in series with the screen lead as shown in Fig. 2 (a schematic for gate tube circuit). The pulses emerging from the tube will be lower than they were before the deviation.

If both the flip-flop and gate as shown in Fig. 1 have adequate margins then this marginal checking of the gate circuit will make no difference. This can be detected by another gate tube (B) which opens and closes according to the action of the flip-flop. If a sensing pulse is applied to gate tube B in Fig. 1, it will pass through to indicate that the flip-flop has switched and opened the channel. In the diagram shown this should occur for every other pulse passing through gate tube A.

A low margin in gate tube A will interrupt this sequence and no check pulse will emerge from gate tube

B. From such a test it can be determined whether or not the gate circuit is nearing an unsafe condition. The circuit shown in Fig. 2 has a nominal screen voltage of 90 volts. A typical margin would be minus 20 volts from this value.

c. Checking the Flip-Flop

This first check assumed that the flip-flop was performing normally and acting as a detector for the arrival of pulses. To check this assumption the following test can be made on the flip-flop circuit.

Fig. 3 is a simplified schematic of a flip-flop. One tube must have the ability, when conducting, to hold the other tube in a nonconducting state. The circuit is completely symmetrical. Tube deterioration shows up as a reduction in plate current in one tube with a consequent reduction of bias available to the opposite tube. The large cathode resistor allows considerable aging before the condition becomes intolerable but eventually tube deterioration will become so extreme that instability will occur and the flip-flop will favor one side. Then, whenever it is ordered to change sides by an incoming pulse the circuit will either fail to switch or fail to hold its new position after switching takes place.

This unfavorable condition can be detected before it leads to failure by feeding the two screen circuits of the flip-flop separately, as shown in Fig. 3, and selectively raising the screen voltage of the normally off tube about 30 volts (nominal value 120 volts). Raising its screen voltage also raises its number 1 grid cutoff voltage. The normally on tube must have a safe margin of plate current available if it is able to hold the tube being checked
off under these extreme conditions. If the on tube is weak it will fail to hold off the opposite tube and a spurious switching operation will result. The detection of this condition can be automatic by using the sensing pulses and gate circuits shown in Fig. 1.

d. Testing Crystals in a Clamp Circuit

A third type of conversion which will pick up aging crystals is of considerable interest. Fig. 4 shows a clamp circuit which couples the plate of a flip-flop to a gate tube. Proper operation of this circuit depends on the back resistance of the crystal staying at a high value so that proper clamping action will be available during the period between the voltage pedestals used for clamping. If the crystal deteriorates, the voltage at the grid of the gate circuit will appear as shown at the right of the diagram. Serious deterioration will result in the opening of the gate circuit when it should be closed.

Fig. 4—Marginal checking of clamp crystal rectifiers.

To convert this imminent failure to a real one, a change in the timing of the clamping period is used. A good crystal will operate when a much longer period is allowed, but a deteriorating unit will not hold the bias that long and a failure will result. Values of 16 microseconds and 64 microseconds have been used effectively in this circuit. If a sensing pulse to the gate tube under control of this clamp circuit is inserted near the end of this longer wait period it will be rejected by a good crystal and passed by a deteriorating one. This scheme can then be automatized.

2. Localizing Failures: Once an imminent failure has been converted to a real failure by any one of the methods noted above, the problem of detecting the fault and localizing it to a particular source can be very time-consuming if it is not approached in an orderly manner. Fault isolation can be solved if the computer is divided for marginal checking into small logical sections. To simplify the trouble-location scheme, sections should be chosen so that at a given time only one fault can exist.

The logical design of a computer separates it into many channels, all starting at the pulse source and dispersing throughout the system to a destination.

Fig. 5 shows two of these typical channels separated into four sections. The vertical lines indicate how these channels may be broken for purposes of marginal checking and isolation of faults. In each case a pulse starts from the distributor along its channel and arrives at its destination with enough energy to change the condition of a flip-flop circuit in the destination section. If each section is subjected to voltage variation and the sequence still functions, the channel can be said to have adequate margins.

The addition of a checking section to these channels allows the checking routine to be carried out automatically by the computer. An error-sensing pulse checks that the information arriving at the checking section via the channel under test is the same as that arriving by a separate checking channel. If the two pieces of information disagree, an alarm is sounded and immediately the pulse distributor is stopped.

Knowing the stopping point of the distributor, the channel at fault is isolated. In addition, knowledge of the section under voltage variation isolates the tube in the channel. The operator can usually find such troubles in a few minutes during such a test routine.

These channels are not used simultaneously but in a time sequence so tubes of the same type, but in different channels, may be grouped in the same section for voltage variation and no loss in isolation results.

3. Automatic Marginal Checking: The whole sequence of sending pulses through each of the channels has been automatized in the Whirlwind Computer system sponsored by the Office of Naval Research, at the Massachusetts Institute of Technology. Some 200 sections are used. The computer program sends the pulses through each of the channels in a fraction of a second. Successive sections are selected by telephone switching apparatus and subjected to voltage variation at 5-second intervals. In this way the whole system can be completely checked in about 15 minutes.

Fig. 5—Computer marginal checking.

1 The Whirlwind Computer is an electronic digital machine capable of performing at very high speed; i.e., 13,600 multiplications per second.
At present it appears that establishment of adequate margins once each day will be an excellent guarantee that the next 24-hour period will be completely free from error.

It is evident that the basic principles of marginal checking discussed in this paper are simple; but the system must be carefully designed to reap advantages of the checking in an economical way. Too many checking circuits complicate the equipment; not enough will fail to give unique indications and will not isolate defective components.

III. Conclusion

The most significant information about marginal checking is its performance record. Over a period of eight months, a 5-binary-digit prototype arithmetic element at MIT has been running a test problem over and over 24 hours a day. This test system contains about 400 vacuum tubes and 1,000 crystals, and marginal checking is done manually for a period of ½ hour a day and deteriorating components are removed. This equipment has made several runs of three weeks without computational error which represents 2.5 X 10^10 correct solutions of the problem, and about 10^3 correct flip-flop reversals in 25 flip-flop circuits. The average run without error has been eleven days, which represents approximately a 50-to-1 improvement in the results obtained before marginal checking was installed. A run of forty-five days without error was made in early 1950. During this forty-five-day period, 12 tubes, 7 crystals, and 4 resistors were located during marginal checking periods and replaced because of low margins.

When one begins to work with larger systems, there is reason to believe that, with marginal checking, errors will not increase in proportion to the extra equipment involved. A high percentage of the remaining errors are caused by power failure, lightning, and external disturbances independent of the number of vacuum tubes in the system.

A measure of the success of marginal checking in improving the performance of the Whirlwind Computer is shown in Table 1.

At present, 3,900 tubes and 11,000 crystals have been running for about 3,300 hours. 32 registers of test storage, made up of toggle switches and flip-flops, allow the solution of several problems which thoroughly test the computer.

During these installation tests, 187 tubes have been removed, 109 of which have been located by marginal-checking techniques. The majority of tube failures with deteriorating characteristics have been due to the formation of an apparent resistance on the cathode sleeve or in the cathode coating. This defect has been called interface resistance.

Obvious tube faults have been due to gas, broken pins, internal short circuits, and open welds. Many of these have been located by the built-in checking system of the computer without the aid of marginal checking.

Of the 272 crystal failures, 223 were located by the marginal-checking technique. The most serious fault has been a drifting of back resistance to a lower value by a factor of 2 to 10 with the continued application of voltage. The cause of this is not well understood but 1 to 10 per cent of new crystals exhibit this tendency after voltage has been applied for a period of 30 to 60 seconds. A few obvious faults have been due to completely open or short-circuited crystals.

About a dozen tubes and a few crystals have been intermittent. The on-off intermittent is the most difficult fault to locate in electronic circuits. Marginal checking does not aid in isolating this type of failure and this represents one limitation in the system. Complete failure such as filament burnout also cannot be predicted. However, in 3,300 hours of operation, only two tubes have exhibited such failure.

Some of the by-products of marginal checking have proved invaluable in testing the Whirlwind system. Many low performance margins have been found which were due to design weaknesses and not to deteriorating components.

Refinements have been made in the design to reduce noise level and improve timing of pulse sequences and frequency response. These improvements have all been possible earlier in the program than usual, due to a large measure to marginal checking.

BIBLIOGRAPHY

The following references have been published by Project Whirlwind, Servomechanisms Laboratory, Massachusetts Institute of Technology, under Contract N50R160 for the Office of Naval Research. They are available at the Library of Congress, Naval Research Section, upon request.

TABLE 1

<table>
<thead>
<tr>
<th>Tube and Crystal Failures*</th>
<th>Tubes</th>
<th>Crystals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number in use</td>
<td>3,900</td>
<td>11,000</td>
</tr>
<tr>
<td>Total failures</td>
<td>187</td>
<td>272</td>
</tr>
<tr>
<td>Obvious faults</td>
<td>76</td>
<td>7</td>
</tr>
<tr>
<td>Deterioration of operating characteristics</td>
<td>111</td>
<td>265</td>
</tr>
<tr>
<td>Failures located by marginal checking</td>
<td>109</td>
<td>223</td>
</tr>
</tbody>
</table>

* Note—Majority of tubes and crystals were in operation for 3,300 hours.
A Digital Electronic Correlator*

HENRY E. SINGLETON†, SENIOR MEMBER, IRE

Summary—The relation between correlation functions and the general theory of communication is presented, and this relation leads to a technique for electronic computation of correlation functions and to the design of a machine for carrying out the computation. Because of the requirements of great accuracy and long storage, the machine makes use of binary digital techniques for storage, multiplication, and integration. Descriptions of the more unusual circuits in the machine are given, and circuit diagrams are included. A number of experimental results obtained by the machine are presented.

The application of statistical methods to communication problems is still only a few years old, but already the power of the statistical approach is becoming generally appreciated. An adequate body of statistical data is not yet available, however, and this lack prevents the full strength of the statistical technique from being brought to bear on a large number of communications problems. The branch of statistical theory which is applicable here, and which, indeed, must be considerably extended if it is to be of greatest use, is the theory of random processes. The theory of random processes arises because communication equipment must operate for an ensemble of possible signals, none of which can be specified in advance, but which instead are characterized by a set of probability distribution functions. The fundamental statistical parameters which are required for the solution of general communication problems are accordingly the set of functions which characterize the ensemble, namely, the probability distributions

\[P_n(y_1, t_1; y_2, t_2; \ldots; y_n, t_n), \quad n = 1, 2, \ldots \]

where \(P_n \) is the probability that a member of the ensemble has values in the ranges \((y_1, y_1+dy_1), (y_2, y_2+dy_2), \ldots, (y_n, y_n+dy_n)\) at times \(t_1, t_2, \ldots, t_n\). Since \(P_n \) can be found from \(P_1 \) for \(j > 1 \), it follows that the \(P_n \) describe the process in successively greater detail as \(n \) increases. In applications of the theory it is usual to assume that the probability distributions are invariant under a shift of the origin of time, i.e., that the process is stationary.

Although a knowledge of all the probability distributions \(P_n \) is required in order to treat more general communication problems, many problems can be handled through the use of the second probability distribution \(P_2(y_1, t_1; y_2, t_2) \). Since for stationary ensembles the distribution \(P_2 \) depends not on the absolute values of \(t_1 \) and \(t_2 \) but on the difference \(t_2-t_1 \), it is convenient to abbreviate \(P_2(y_1, t_1; y_2, t_2) \) as \(P(y_1, y_2; \tau) \) where \(\tau = t_2-t_1 \).

The experimental evaluation of \(P(y_1, y_2; \tau) \) for even a single stationary ensemble is a lengthy task, because it requires the evaluation of \(P \) for each point in the three-dimensional space \(y_1, y_2, \tau \). It is therefore fortunate and of considerable engineering interest that a certain class of communication problems can be treated in terms of the moment of the distribution \(P \)

\[M(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1 y_2 P(y_1, y_2; \tau) dy_1 dy_2. \quad (1) \]

The three-dimensional probability distribution undergoes a smoothing due to the process of integration, and the result is a one-dimensional rather than a three-dimensional function. Furthermore, the moment \(M(\tau) \), which may be regarded as the average value of the product \(y_1 y_2 \) for a specified \(\tau \), can be evaluated without recourse to the probability distribution \(P \). In fact, if \(f(\tau) \) is a member of the ensemble, the average of products of pairs of values of \(f(\tau) \) which are separated by time \(\tau \) is the correlation function

\[\phi(\tau) = \lim_{\tau \to \infty} \frac{1}{2T} \int_{-\tau}^{\tau} f(t)f(t+\tau)dt. \quad (2) \]

For a stationary process it follows from the ergodic theorem that \(M(\tau) = \phi(\tau) \).

Theory of Computation

Since according to the above results only one member \(f(t) \) of the ensemble is required to compute \(\phi(\tau) \), a convenient approximate method of evaluating \(\phi(\tau) \) experimentally is to average a large number of products of pairs of samples of \(f(t) \)

\[\phi(\tau) = \frac{1}{N} \sum_{1}^{N} a \cdot b(\tau), \quad (3) \]

Notably the design of optimum linear systems, footnote references 1 and 2.
where \(N \) is a large number and \(a_n \) and \(b_n \) are samples of \(f(t) \) which are separated by the interval \(\tau \).

Physically, the above discussion means that the computation may proceed as follows: a sample \(a_i \) of the input time series is obtained and stored; after a time \(\tau \) has elapsed, a sample \(b_i \) is taken and stored; the two samples \(a_i \) and \(b_i \) are multiplied together; the product is stored, and the samples \(a_i \) and \(b_i \) are discarded. The sampling and multiplying process is carried out repetitively, and each time a product is obtained it is added to the cumulative sum of the products previously obtained. After \(N \) such products have been obtained, the sum is recorded and the device storing the products is reset to zero. The sum recorded represents the value of \(N\phi(\tau) \) for the value of \(\tau \) under consideration. Proceeding in this way, as many points on the correlation function may be obtained as desired. The procedure just described is used in the present machine. Although an average might be obtained in a shorter period of time by delaying the entire wave form, such a procedure would require the use of more complex equipment.

General Design Specifications

An earlier experimental correlator\(^1\) at the Research Laboratory of Electronics, Massachusetts Institute of Technology, demonstrated the feasibility of high-speed electronic computation of correlation functions. Results on this earlier correlator pointed out the need for great accuracy in the computing circuits and in the specification of the delay \(\tau \), as well as a need for a very large range of possible values of \(\tau \). Although the preliminary machine served an exceedingly useful purpose, it was limited in the range of delay available, and hence unable to handle many of the problems susceptible to treatment by correlation functions. The present research was initiated in order to provide the laboratory with a highly flexible, general-purpose correlator; one which would meet the requirements of the numerous applications which had been proposed, and which would take advantage, in its design, of experience gained on the first correlator. The following general design specifications for the present machine were arrived at:

1. Wide-band input circuits (dc to 12 Mc/sec).
2. Wide range of delays (0 sec to 0.1 sec).
3. Minimum increments in \(\tau \) to be less than 0.1 \(\mu \)sec.
4. Value of \(\tau \) to be known to within 0.01 \(\mu \)sec.
5. Machine to be completely automatic.
6. Accuracy and long term stability to be as good as possible.

The requirement for great accuracy and stability, and especially for very long storage, strongly indicated the use of digital techniques. The binary system is therefore used for storing, multiplying, and integrating.

Box cars 5 and 6 are obtained from signals 1 and 2 at the time of occurrence of timing pulses 3 and 4. The selector gate normally passes the larger of the two box cars to the number generator, except during occurrence of gate 7 when box car 5 is passed, and during occurrence of gate 9 when box car 6 is passed. Gates 7 and 9 are also fed to the number generator, and during their occurrence the output of the selector gate is coded into binary form. The purpose of delaying pulse 4 to produce pulse 8 is to insure that gates 7 and 9 do not overlap for small or zero values of \(\tau \). Thus the number generator has time to code the first box car, gate the resulting binary digits into storage in the number register, and reset itself before it receives the signal (gate 9) to code the second box car. After the \(A \) and \(B \) numbers are stored in the number register, they are multiplied together in the multiplier and added to the previously accumulated products in the integrator. When a predetermined number of products (of the order of 10⁹) has been accumulated, a number stop gating pulse of approximately four seconds duration goes out on the number stop line from the timing equipment to the number generator, and stops the gating of the \(A \) numbers into storage. By this means the \(A \) number section of the register remains reset to zero. The output of the multiplier therefore becomes zero also, and the number accumulated in the integrator is recorded. This is the value of \(\phi(\tau) \) for the particular value of \(\tau \) being used. The integrator is then reset to zero, and the value of \(\tau \) is changed in the timing equipment by changing the separation of the \(A \) and \(B \) timing pulses. The operations of recording \(\phi(\tau) \), resetting the integrator, and changing \(\tau \) are completed in about two seconds. When the number stop gating pulse ends, the machine begins the computation of \(\phi \) for the new value of \(\tau \).

Circuit Features

We now proceed to a somewhat more detailed discussion of those parts of the machine which are especially important in meeting the design specifications listed above.

Timing Equipment

Fig. 3 is a block diagram of the portion of the timing equipment which is used in obtaining the \(A \) and \(B \) timing pulses. These timing pulses must be accurately spaced, since it is their separation which defines \(\tau \). A 1-Mc crystal oscillator is used as a reference. The output of the oscillator drives a pulse generator which in turn feeds a cascade of bistable multivibrators. A square wave is taken from one of the latter stages in the cascade to govern the repetition rate at which \(A \) and \(B \) timing pulses are produced, and therefore the rate at which multiplications are carried out. This rate may be as great as approximately 1,000 per second for small values of \(\tau \), but must be decreased as the value of \(\tau \) increases. Normally the rate is set low enough to include the maximum value of \(\tau \) used in any one correlation function, and is not changed throughout the computation. By means of the pulse generator, a pulse obtained from one edge of the square wave triggers the phantastrons, and these trigger gating pulse generators whose outputs are set to have a duration equal to the steps in \(\tau \) which are to be used in the problem under consideration. The gate pulse generators turn on the gates during the occurrence of one of a train of pulses obtained from an earlier stage in the divider cascade. This latter pulse train has a repetition period equal to the desired steps in \(\tau \). Numbered wave forms are shown in Fig. 4. The steps in \(\tau \) which are available by this method range from 1 \(\mu \text{sec} \) to 2\(^9\) \(\mu \text{sec} \). Smaller steps in \(\tau \) are obtainable by making use of the trailing edges of the phantastron

![Fig. 4—Wave forms at numbered points of Fig. 3.](image)

Sampling and Coding Circuits

In order to produce a binary digital representation of the amplitude of the input signal at the time of sampling, the corresponding box car is first converted to a pulse having a duration proportional to the box-car amplitude. The duration-modulated pulse is then used to gate a train of timing pips to a binary counter. The counter is reset to zero prior to the occurrence of each
duration-modulated pulse, so that the condition of the counter at the end of the duration-modulated pulse is a binary representation of the box-car amplitude.16 It is evident that the only important errors produced by the correlator must lie in these circuits, that is, in the box-car generator and in the duration-modulated pulse generator. The duration-modulated pulse is obtained by intersecting the box car with a saw-tooth wave form, and marking the instant of equality of the two voltages. Thus the critical portions of the duration-modulated pulse generator are the saw-tooth wave-form generator and the comparison circuit used to indicate equality between the saw-tooth and the box car. The box-car generators, saw-tooth generator, and comparison circuit are therefore discussed next. A block diagram showing the interconnection of these circuits is given in Fig. 5. The operation indicated by the diagram can be followed with the aid of Fig. 6, which shows wave forms for numbered points on the diagram.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5.png}
\caption{Block diagram of number generator and associated circuits.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6.png}
\caption{Wave forms at numbered points of Fig. 5.}
\end{figure}

Box-Car Generator

A block diagram of one of the box-car generators is shown in Fig. 7. There are two of these circuits, one for each channel. The input timing pulse is reshaped for uniformity in a blocking pulse generator, which produces a very sharp sampling pulse a little less than 0.1 µsec in duration. The sampling pulse is applied to the suppressor grid of a 6AS6 gate tube normally biased below plate current cutoff, and the input time series is applied to the control grid. The need for a very narrow sampling pulse and a wide, flat-topped output pulse imposes conflicting requirements on the box-car generator. The wide output pulse is obtained by storing charge on a condenser. In some cases use is not made of the stored sample until about 600 µsec have passed. In order that the charge not decay appreciably during this interval, a large condenser (0.01 µf) is used. Discharging through a leakage resistance of say 40 megohms, the time constant is 400 milliseconds, and this is satisfactory. Charging through a resistance of 500 ohms, however, which is the order of magnitude that can be easily obtained, the charging time constant is 5 µsec. and a 0.1-µsec pulse is not wide enough. The conflicting requirements are met by widening the original 0.1-µsec sample in successive stages, as shown in Fig. 7.

Saw-Tooth Generator

A schematic diagram of the saw-tooth generator is shown in Fig. 8. This is a Miller feedback circuit using three stages of gain, and gives extremely good linearity. Generation of the saw tooth takes place during the presence of a gating pulse on the normally cut-off suppressor of the first stage of the amplifier. Temperature drift affecting the saw-tooth slope is compensated by returning the resistor of the RC combination which determines the slope to a variable voltage under control of the first or

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig7.png}
\caption{Block diagram of box-car generator.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig8.png}
\caption{Saw-tooth generator.}
\end{figure}

principal digit in the B channel of the output of the number generator. The output of the number generator ranges from 0 to 1,023. If the first digit is one, the output is equal to or greater than 512. If the first digit is zero, the output is less than 512. The voltage applied to the slope control resistor is proportional to the relative frequency of occurrence of one in the first digit, and is of the proper polarity to decrease the size of the number if the relative frequency is greater than 50 per cent. Thus the average value of the output of the number generator is held very closely to 512. Use of this drift compensation circuit has reduced errors due to long term drifts in the correlator to negligible importance.

The manner in which the slope control voltage is obtained is shown in Fig. 9. A reset pulse is applied to the flip-flop just before the B number is gated into storage.

When the B number is gated into storage, the flip-flop is triggered if the first digit of the B number is one; otherwise the flip-flop remains in the reset condition. The output of the flip-flop is therefore essentially a rectangular wave whose polarity is dependent on the current value of the first digit of the B number. This rectangular wave is smoothed in an RC circuit whose time constant is long compared to the sampling period. The resulting voltage is amplified in the dc amplifier and used to control the slope of the saw-tooth generator.

Comparison Circuit

A schematic diagram of the comparison circuit is shown in Fig. 10. The saw tooth is applied to the grid of V1 and the box-car to the grid of V2. As the saw tooth passes through a narrow range of voltage in the neighborhood of the box-car voltage, the plate current of V1 shifts to V2. No triggering is involved, since no reset pulse is present. Because of the pentode V3 in the common cathode circuit of V1 and V2, the plate current of V2 after the shift is equal to the plate current of V1 before the shift. This causes the voltage swings across the plate resistor of V1 and V2 to be equal, and allows fixed grid biases to be used in V4 and V5. The grids of V4 and V5 are driven in push-pull. A narrow slice is taken near the midpoint of the grid swing, and appears in amplified form at the plate of V4. The resulting essentially rectangular wave form is applied to a regenerative amplifier, or trigger circuit, which derives a sharp pulse from the leading edge of the rectangle. This sharp pulse is used to reset a flip-flop (not shown on Fig. 10, see Fig. 5) previously triggered by the leading edge of the saw-tooth gate. The wave form at the plate of the flip-flop is the required duration-modulated pulse. It is used, as has been indicated, to gate the timing pulse generator which drives the binary counter in the number generator.

High-Speed Counter

Very little need be said about the binary counter in the number generator. Since 10 digits are used, a maximum of 1,023 pulses may be counted. In order not to take too long in the counting, a 5-Mc repetition rate is used for the pulses to be counted, thus requiring at most 200 µsec. The first stage of the counter is shown in Fig. 11. The circuit was tested for several weeks at 10 Mc before being incorporated into the equipment. The essential feature of the circuit, which allows it to operate at the unusually high speed, is that crystal diodes from the grids to a tap on the cathode resistor are used to discharge the coupling capacitors C through the low input impedance of the opposite tube. This permits the use of large coupling capacitors (100 µf in this case) and still permits the coupling capacitors to discharge quickly after each triggering to a voltage from which the flip-flop can again be triggered.

Register and Multiplier

After each of the numbers for the two input channels is generated, it is gated into storage in the number register (see Fig. 12). The register consists of two sets
of ten flip-flops each, one set for each of the two numbers to be multiplied, and includes means for shifting the A numbers to the left and the B numbers to the right. Although ten digits are stored in each register, for simplicity only four stages of each are shown in Fig. 12. Assuming that a number is in one of the registers, shifting may be accomplished by applying a shift pulse which rest all of the flip-flops to zero. Associated with each flip-flop is a monostable delay multivibrator. Any flip-flop in state one has its state changed by the reset, and produces a pulse which triggers its associated delay multivibrator. The trailing edge of the delay multivibrator is used to set the next flip-flop to one. Thus each symbol of the stored numbers is moved one stage to the left (in the upper register) or to the right (in the lower register). The shifting operation is made use of during the process of multiplication, in a manner to be described below.

![Block diagram of part of number register.](image)

We first note the numerical example of binary multiplication which is also shown in Fig. 12. The multiplication is carried out in a manner analogous to decimal multiplication, as follows: (1) each digit of the upper number is multiplied by the digit occupying column four of the lower number, and the result is written in the highest empty space directly under the upper number; (2) the upper number is shifted one space to the left and the lower number one space to the right; (3) steps (1) and (2) are repeated until all digits have been used; (4) the partial products obtained with each step (1) are summed to give the complete product.

In the machine the process is exactly similar. The value of each partial product is present between shift pulses in the state of the rectifier coincidence circuits shown in Fig. 12. The connection from the register flip-flops to each coincidence circuit is such that if the two corresponding flip-flops are in state one, the output voltage of the coincidence circuit is zero; otherwise it is a large negative voltage. Each coincidence circuit output voltage is used to control the suppressor grid of a 6AS6 gate tube. Application of a positive exploring pulse to the control grid of the gate tube therefore results in a pulse at the gate tube plate only if the two corresponding flip-flops are in state one. The first partial product is present in the state of the coincidence circuits as soon as both numbers are stored. This partial product is read off into the accumulator, or integrator, by applying exploring pulses to the control grids of the gate tubes in sequence. Trigger pulses occur at the plates of some of the gate tubes and these are used to trigger appropriate stages in the integrator. As soon as all the coincidence circuits have been read, a shift pulse is sent to the register, and the reading process is repeated. This sequence of operations continues until only zeros remain in the register. The shift pulses are then stopped. We observe that the sequence of outputs of a given coincidence circuit corresponds to the numbers in a particular column of the sum of partial products in the numerical example of binary multiplication noted earlier. Hence the output of a given 6AS6 gate tube is always used to trigger the same stage in the integrator. The two ten-digit binary numbers are multiplied together in 250 μsec, once they are both present in the register.

Integrator and Recorder

As has been indicated, the integrator comprises a cascade of scale-of-two circuits, or flip-flops. A multiple pen Esterline-Angus Recorder is connected to the last ten stages of the integrator, and the condition of these stages is read into the recorder at the end of each integration period. The integrator is then reset preliminary to beginning a calculation with the next value of τ. A switch is provided for skipping one or more of the intermediate stages in the integrator, in order that the ten stages recorded may always represent the most significant part of the result. At the same time that the digits are recorded, they are decoded in a voltage adding circuit, and the result is recorded on a General Electric Recording Microammeter. The decoded recording is useful in test runs for immediate observation of results, but is not as accurate as the digit recording.

Sample Results

Fig. 13 shows the correlation function of a sine wave as evaluated and plotted by the machine. The steps in τ are four microseconds.

![Autocorrelation function of sine wave.](image)
Fig. 14 shows the correlation function of a limited wave produced by passing wide-band (3 Mc) noise through an RC integrator (5-µsec time constant), and then limiting the output of the integrator to produce a rectangular wave.

\[\int_0^\infty e^{-|t-T_2|/T_1}e^{-|t-T_2|/T_2}dt \]

obtained by taking the cross correlation of the output and input of an RC circuit \((T_1 = 50-\mu\text{sec time constant}) \). The input circuit was obtained by passing wide-band noise through an RC \((T_2 = 5-\mu\text{sec time constant}) \) integrator.\(^n\)

\(^n\) Obtained from equipment designed by C. A. Stutt.

Fig. 15—Autocorrelation of random square wave.

\[F(i) = \text{rect}(i) \]

Fig. 16—Convolution of exponentials.

Some Aspects of Split-Anode Magnetron Operation*

H. J. REICH†, FELLOW, IRE, J. C. MAY†, MEMBER, IRE, J. G. SKALNIK†, ASSOCIATE, IRE, AND R. L. UNGVARY‡, MEMBER, IRE

Summary—Tests of split-anode magnetrons used with butterfly resonators have shown that resonators and tubes at present available are not suitable for use in wide-band butterfly magnetron oscillators, but that such oscillators might have desirable characteristics in some applications if the tubes and resonators were designed for the purpose.

Oscillographic studies appear to indicate that negative slope of portions of the anode current-voltage characteristics can be explained on the basis of back-heating and that negative slope is absent when the current is varied rapidly.

A comparison of various methods of anode-current stabilization showed that smoothest operation is obtained if the magnetic field is produced by an electromagnet excited by the direct anode current.

I. Introduction

CONSIDERABLE material is available in the literature on the pulsed operation of cavity magnetrons. The treatment of continuous-wave (cw) operation of split-anode magnetrons, however, is
less extensive, and the purpose of this paper is to discuss some of the characteristics of these tubes and their associated circuits.

II. DESCRIPTION OF TUBES AND CIRCUITS

The magnetrons used were General Electric Company \(5J29\), \(5J30\), and \(5J32\) split-anode magnetrons. The \(5J30\), shown in Fig. 1(a), has no internal loop and therefore may readily be operated at frequencies as low as a few megacycles per second with an external quarter-wave line. The \(5J29\), shown in Fig. 1(b), contains an internal loop between the two anode segments. The loop increases the maximum frequency that may be obtained but reduces the tuning range. The double-ended \(5J32\), shown in Fig. 1(c), was used principally in butterfly-tuned oscillators discussed in Section III. The general form of one oscillator circuit used in this work is shown in Fig. 2(b). Fig. 2(a) shows the manner in which the magnetic field was applied, and Fig. 2(c) the way in which cooling-water connections were made to the anode leads of the tubes.

III. BUTTERFLY-TUNED OSCILLATORS

Not only must the anodes of split-anode magnetrons be water-cooled, but the filament leads and the entire envelope must be air-cooled. Uniform cooling of the envelope is important. The internal loop of the \(5J29\) allows the cooling water to enter through one anode lead and leave through the other. In the \(5J30\) and \(5J32\), however, the water must enter both anodes through small concentric tubes contained within the tubular lines and leave through the lines, as shown in Fig. 2. The inner tubes must extend into the anodes in order to provide proper cooling.

If the standard type of butterfly tuner could be adapted to serve as a resonator for a split-anode magnetron, several advantages over parallel-line oscillators could be achieved: (1) the physical size of the oscillators could be greatly reduced; (2) the tuning mechanism would be much simpler; (3) the position of the load-coupling point could be made independent of tuning; and (4) the tendency toward resonance-mode jumping would be greatly reduced.

The materials available for the construction of such an oscillator are not what might be desired. First, the butterfly tuners available are all low-power receiver units whose voltage ratings are far below the magnetron requirements. Second, the magnetrons available have all been built for use in parallel-line systems and thus are not ideally suited for connection to the butterfly tuner. The primary difficulty turns out to be the length of line between the electrodes and the butterfly. The butterfly tends to act as a capacitive short circuit on a short section of line made up mainly of the tube leads. The frequency range is therefore much smaller than that of the butterfly resonator itself.

Several oscillators working on this principle were built and fair operational results were obtained. One of the butterfly tuners used is shown in Fig. 3. The load was coupled, in general, directly to the short section of parallel line connecting the tube and the tuner.

Arcing inside the tuner due to insufficient spacing was a frequent occurrence. In an endeavor to increase...
the spacing of available types, some units were dismantled and reassembled with different stacking arrangements. As might have been predicted, these units were not ideal resonators, having many spurious modes. One of the oscillators built, which used a 5J30 tube, had a frequency range from 127 to 385 Mc and a maximum power output of approximately 500 watts at 385 Mc.

The butterfly tuner could be more successfully used in conjunction with split-anode magnetrons if the current types of butterfly tuners and magnetrons were modified for the purpose. A tube could be built with much shorter leads and the butterfly spacing might be changed. Since small size is desirable, however, the ideal solution might well be to include the butterfly tuner within the magnetron envelope. The disadvantage of such a structure would be the increased complexity of tuning.

IV. AMPLITUDE-MODULATION CHARACTERISTICS

Fig. 4 shows typical characteristics of average anode voltage versus average anode current for a split-anode magnetron at fixed magnetic flux density and several values of filament current. These characteristics were obtained with the magnetron oscillating, but each point on the curves was taken with fixed values of direct anode current and voltage. Characteristics obtained in this manner will be termed "static current-voltage characteristics," in contrast with characteristics obtained with periodically varying average current and voltage, which will be termed "dynamic current-voltage characteristics."

An interesting feature of the characteristics of Fig. 4 is the negative slope observed in certain ranges of filament current. This negative slope would be expected to result in unstable operation when the tube is amplitude-modulated by variation of anode current. Experience in the use of split-anode magnetrons at the Radio Research Laboratory during the war, however, showed that stable amplitude modulation could be obtained. These facts suggest that the static current-voltage characteristics do not hold under dynamic conditions, and led to the oscillographic determination of dynamic characteristics.

The circuit used in the determination of dynamic characteristics is shown in Fig. 5. By means of this circuit the current could be varied periodically about an operating value at any frequency within the range from 500 cps to 5,000 cps. The voltage across the resistor R_1, which is proportional to the instantaneous magnetron current, was impressed across the x-deflection plates of an oscillograph tube, and the applied modulation voltage was applied across the y-deflection plates. The instantaneous anode voltage was found by subtracting the instantaneous voltage across R_1 from the instantaneous applied voltage, i.e., subtracting the x-deflection from the y-deflection. In this manner dynamic curves of alternating anode voltage versus alternating anode current were obtained.

In the study of dynamic characteristics, most of the data were obtained with the butterny-tuned oscillator of Fig. 3 because of its compactness, ease of tuning, and relative freedom from mode jumping. Comparison with a parallel-line resonator showed that the dynamic characteristics are not noticeably dependent upon the type of resonator used.

In order to avoid modulation resulting from an alternating component of magnetic flux, the magnetron filaments were operated on direct current.

With the equipment used, it was not possible to modulate over a sufficient range of current to obtain the entire dynamic characteristics, and the various portions of the curves could not be obtained separately and combined because of the change of filament temperature with average anode current as the result of back-heating. For the limited current swings obtainable, how-
ever, the dynamic curves, unlike the static curves, always show a positive slope and show little or no curvature. Because of the small curvature, the slope of the dynamic curves at various operating points may be assumed to be equal to the ratio of the rms value of the alternating component of anode voltage to the rms value of the alternating component of plate current. The curves of Fig. 6, showing rms anode current versus

rms anode voltage at four values of filament current, indicate that this assumption is justified over a limited range of operation, and it is therefore unnecessary to use oscillographic techniques except to check the linearity. Curves of detected output versus modulating voltage were essentially linear. Although the entire dynamic characteristics could not be obtained experimentally, the decrease in slope of the dynamic characteristics with increase of filament temperature at both constant anode current and constant anode voltage indicates that the complete family of dynamic characteristics is of the general form shown in Fig. 7.

The difference between static and dynamic characteristics can be explained on the basis of back-heating. Under dynamic conditions the average anode current remains constant throughout the cycle and therefore back-heating and filament temperature remain constant. The static characteristics, on the other hand, are obtained by varying the average anode current at constant filament current. As the average anode current is increased, increased back-heating raises the filament temperature. (The increase in temperature is clearly visible in these tubes.) Since the exact form of the dynamic characteristics and the manner in which filament temperature depends upon anode current are not known, the shape of a static characteristic cannot be predicted exactly from a family of dynamic characteristics. The assumption that filament temperature increases with anode current because of back-heating under static conditions results in a predicted static characteristic of the general form of the dashed curve in Fig. 7. Whether the slope of any portion of the predicted curve is negative or positive depends upon the slope and spacing of the constant-filament-temperature (dynamic) curves and upon the manner in which filament temperature varies with average anode current, but the theory shows that the static characteristics might be expected to have negative slope in at least a portion of the operating region. It also suggests that negative slope, which may result in unstable operation (see Section V), could be prevented if the effect of back-heating upon filament temperature could be made small in comparison with the effect of filament heating current. This is probably the explanation of the fact that only the 33-ampere curve of Fig. 4 shows negative slope.

The marked differences between the static and dynamic characteristics of split-anode magnetrons indicated clearly that the modulation resistance of these tubes in amplitude modulation cannot be determined from static current-voltage characteristics. The modulation resistance may be readily determined, however, from measured values of modulation-frequency anode current and voltage in a circuit of the form of Fig. 5.

V. LIMITATION OF ANODE CURRENT

The 33-ampere curve of Fig. 4 shows that if the anode voltage is gradually raised, the anode current will increase in a stable manner until the voltage reaches the value corresponding to the peak in the curve. Beyond this value of voltage, however, the voltage required across the tube decreases as the anode current increases, and therefore, if the voltage supply has good regulation and the anode-circuit resistance is low, the current will rise abruptly to a value of 400 to 500 ma. Under some operating conditions the anode current may suddenly rise to values that are sufficiently high to cause damage or destruction of the tube. Abrupt changes in current are obviously objectionable in the amplitude modulation of the tube.
The simplest method of stabilizing the circuit against abrupt increases of current is to use resistance in series with the anode. The manner in which stabilization occurs can be readily seen by the use of a "load line" in the current-voltage diagram, in a manner analogous to that used in the analysis of amplifier tubes. Through a point of the voltage axis corresponding to the anode supply voltage, a line is drawn with negative slope equal in magnitude to the anode circuit resistance, as shown in Fig. 8. If the resistance is high enough so that the magnitude of the slope of this load line exceeds the highest magnitude of the negative slope of the tube characteristic, only one intersection is obtained. There can then be only one stable value of current, and an abrupt increase of anode current at constant anode supply voltage cannot occur. The objection to this solution of the problem lies in the power loss in the series resistance.

A more common method of stabilization is the use of a power pentode, or of a parallel combination of two or more pentodes, in series with the magnetron cathode. In the operating range of power pentodes the plate current varies comparatively little with plate voltage, but is determined principally by the control-grid voltage.

Fig. 8—Limitation of anode current by series resistance

The anode diagram of Fig. 9, in which the load line of Fig. 8 is replaced by the family of pentode plate characteristics (pentode plate voltages are indicated as a voltage drop relative to the supply voltage), shows the manner in which stabilization is obtained. In addition to the lower power loss and lower plate supply voltage required, the pentode method of stabilization has the advantage that current modulation of the magnetron can be produced by applying a relatively small modulating voltage to the pentode grids.

A third method of stabilization is the use of a circuit in which the filament current is automatically reduced as the anode current increases. The objection to this method of stabilization is the thermal inertia of the filament and increased low-frequency pulsing.

A fourth method of stabilization consists of the use of an electromagnet, excited by the anode current, to provide the magnetic flux for the magnetron. Fig. 10 illustrates the mechanism of stabilization. Increase of anode current is accompanied by a proportional increase of flux density. The static path of operation is therefore of the form shown by the dashed curve. The slope of the static characteristic is effectively increased and negative slope is avoided. This method of stabilization has been used previously on cavity magnetrons.

VI. SERIES MAGNET STABILIZATION

Fig. 11 shows static current-voltage characteristics for a 5J29 tube operated with series field excitation. The four curves correspond to four values of number of turns on the electromagnet. An advantage of the use of this type of stabilization is that oscillation is obtained at much lower values of anode voltage than with constant flux, and that the amplitude of oscillation can be increased smoothly over a wide range by increasing the anode voltage.

The breaks in the characteristics of Fig. 11 for the smaller number of magnet turns indicate pulsing.

Fig. 9—Limitation of anode current by series pentodes.

Fig. 10—Limitation of anode current by means of an electromagnet excited by the magnetron anode current.
The magnet current is controlled by a number of 304-TH power tubes in parallel, which are in turn controlled, through the 6SK7 amplifier stage, by the voltage drop across the resistor R_i in the cathode circuit of the magnetron. In this manner the change of magnet current is made much greater than the change of magnetron anode current, and the operating anode current is made essentially independent of operating voltage.

Fig. 13 compares static current-voltage curves for a SJ30 operated with fixed magnetic field, with series-excited magnetic field, with amplifier-controlled magnetic field (circuit of Fig. 12), and with constant magnetic field and series pentodes. Fig. 14 shows corresponding curves of power output versus anode current.

VII. Acknowledgment

The work upon which this paper is based was conducted under research contract N6or-44 with the Office of Naval Research.
Effects of Space Charge on Frequency Characteristics of Magnetrons*

H. W. WELCH, JR.†, ASSOCIATE, IRE

Summary—Properties of the magnetron space-charge swarm which affect the propagation of electromagnetic waves are defined in terms of an effective dielectric constant. The space charge is found to be doubly refractive in nature, the velocity of propagation depending on the direction of propagation of the wave, polarization of the wave, and frequency. Effects of synchronism of the rotating space-charge swarm are discussed qualitatively. Experimental results which check parts of the theory are presented. The relationship of the space charge to the circuit is discussed in terms of the nonoscillating and the oscillating magnetron.

Introduction

The complete discussion of space-charge effects on frequency characteristics of continuous-wave magnetrons requires attention to a varied subject matter. Much of this subject matter has been treated in reports of government agencies and in the journals, and is generally understood. There are, however, several points at which present knowledge becomes inadequate background for an understanding of the mechanism of magnetron operation. This is particularly the case when one is to predict quantitatively the behavior of magnetron space-charge clouds under the influence of radio-frequency fields.

The circuit aspects of magnetron frequency characteristics are generally treated by establishment of an equivalent circuit and interpretation of that equivalent circuit in terms of experimentally measurable quantities. The most conveniently measurable quantities are resonance wavelength, loaded Q, and minimum standing-wave ratio. The relationships between these quantities and other unmeasurable quantities in the equivalent circuit are fairly well defined and understood. This theory can be extended to explain semiquantitatively effects of the output circuit and load on magnetron frequency characteristics such as frequency pulling and long-line effect.

Frequency characteristics of an operating magnetron must be obtained from the following types of experimentally obtained information: Rieke diagrams, relating frequency of oscillation and power output to load characteristics; frequency pushing measurements, relating frequency and plate current for constant loading; and modulation characteristics determined by spectral measurements of various types. Interpretation of these types of data depends on knowledge of the physics of space-charge effects in the oscillating magnetron and, at this point, is almost entirely qualitative.

Another type of data, resulting from measurements made on magnetrons in which electrons are circulating but not reaching the anode, is very useful as an aid to the understanding of space-charge behavior. The method of measurement is the same as that used for cold impedance tests on microwave tubes and resonant cavities. In order to differentiate, the term "hot impedance test" is used, implying that the magnetron is "hot" and capable of drawing plate current if the conditions of anode voltage and magnetic field are proper adjusted.

In order to provide theoretical interpretation of the experimental results, it is necessary to study two types of properties of the space charge. These are the following:

Type 1—Properties having to do with the distribution of angular velocity, field, potential and charge density, and definition of the space-charge boundary in the magnetron interaction space.

Type 2—Properties having to do with the propagation of electromagnetic waves in the space-charge distribution defined by the results of the study of properties of Type 1.

The results of the study of properties of Type 1 will be presented when needed but not derived in this paper. The primary purpose will be the detailed discussion of properties of Type 2 and interpretation of the various effects of space charge on magnetron frequency characteristics. It will be pointed out that these effects result from three more-or-less separate phenomena which may occur together or separately. The picture is still incomplete experimentally, because of very large quantities of data which are necessary to survey the entire range of the variable parameters, and, theoretically, because of the complexity of the necessary mathematical development. Another important factor is that, in most conventional magnetrons, the total effect of space charge on frequency is a shift of less than one or two percent. A detailed study therefore requires a number of measurements accurate within at least 0.1 per cent.

The need for the study of space-charge effects on frequency characteristics lies in two directions. In the first place, it becomes possible for experimental results to provide a check on the basic theories of the magnetron space charge. In the second place, understanding of the use of the magnetron space charge in electronic frequency control or modulation is increased.

* Decimal classification: R138.1 XR355,912.1. Original manuscript received by the Institute, October 10, 1949; revised manuscript received, May 25, 1950.

† This paper is based on work done for the Signal Corps of the United States Army, under Contracts W-36-038 sc-32245 and 36-039 sc-35561.

‡ Engineering Research Institute, University of Michigan, Ann Arbor, Mich.
The various conditions under which data may be
taken give a wide range of possibilities for interpreta-
tion. In certain cases quantitative agreement between
theory and experiment are obtained. The present paper
is not meant to be a complete and final analysis of the
problem of magnetron space-charge and frequency char-
teristics. It is intended to relate as many as possible of
the known facts and theories in such a way that they
can be used as a guide for further research and develop-
ment. Gaps in both experimental data and theory will
be pointed out with the hope that someone will have the
necessary information, or the time to acquire the neces-
sary information, to fill them in.

Formation of the Magnetron Space Charge

The static cylindrical magnetron space-charge dis-
tribution, which is often called the Hull or Brillouin
solution, may be thought of as a swarm of electrons re-
volving around the cathode. This swarm is characterized
by the condition that no radial current exists and by the
following angular velocity distribution:

$$\omega = \frac{Re}{2m} \left(1 - \frac{r^3}{r_c^3}\right)$$ \hspace{1cm} (1)

where

- $B =$ axially directed magnetic field
- $r_c =$ cathode radius
- $r =$ radius which locates electron
- $e =$ absolute value of electronic charge
- $m =$ electronic mass.

However, assuming no energy exchange with the sur-
rroundings, this distribution of angular velocity must
exist in the static magnetron regardless of the radial
velocity, initial or otherwise. If no radial velocity is
present, then the corresponding potential distribution
represents minimum energy of the electrons.

$$E_e = \frac{1}{2} m \left(\frac{Re}{2m}\right)^2 \left(1 - \frac{r_c^3}{r^3}\right)^2$$ \hspace{1cm} (2)

where

$E =$ electric potential.

If current is passed radially through the cloud, addi-
tional energy must be supplied which would add to the
potential of the electrons given by (2). If the anode
potential E_a is insufficient to supply the minimum energy at
the anode (given by substituting the anode radius r_a into (2)),
then the swarm of electrons must be bounded between cathode and anode. In order to calcu-
late effects of the space charge under these condi-
tions, the position of this boundary and the space-
charge distribution within should be known. The posi-
tion of the boundary is readily calculated because the
potential and field at the swarm boundary are known.
If no electrons are crossing the boundary, the potential
at the boundary must be given by (2). The field is,
therefore,

$$-\frac{\partial E}{\partial r} = \frac{1}{4\pi m} B^2 r \left(\frac{r_c^4}{r^4} - 1\right)$$ \hspace{1cm} (3)

By Gauss's theorem the total space charge per unit
length within a radius r will be

$$\tau = \frac{2\pi r e_0}{(+ \frac{\partial E}{\partial r})}$$

$$= \frac{1}{2} \frac{\pi e_0}{m} B^2 r \left(\frac{r_c^4}{r^4} - 1\right)$$ \hspace{1cm} (4)

where

- $\tau =$ total space charge per unit length
- $e_0 =$ (1/360) X 10^-9 farads per meter.

For a cylindrical diode

$$E_a - E = \frac{\tau}{2\pi r} \log \frac{r_a}{r}$$ \hspace{1cm} (5)

where

- $E_a =$ the anode potential
- $E =$ potential at some point in charge free space
- $\tau =$ charge per unit length inside r.

If we let

- $r = r_H =$ boundary of space-charge swarm
- $E = E_H =$ potential at r_H from (2)
- $\tau =$ value defined by (4) for $r = r_H$,

and substitute from (2) and (4) into (5), we have

$$E_a = B^2 \frac{e}{8m} r_H^2 \left[2 \left(1 - \frac{r_c^4}{r_H^4}\right) \log \frac{r_a}{r_H} + \left(1 - \frac{r_c^4}{r_H^4}\right)\right]$$ \hspace{1cm} (6)

This equation shows us that for a given magnetron, if
$E_a B^2$ is kept constant, the radius of the space-charge
swarm remains constant (under static conditions).

It is important to note that in the derivation of (4)
and (6) it was unnecessary to specify the distribution of
space charge and potential inside the swarm. It is known
that a number of solutions for these distributions are
possible in which electrons stream back and forth be-
tween the cathode and the outer boundary of the space-
charge swarm. Corresponding to each of these double-
stream or multiple-stream solutions, as they are called,
there would be a different potential and space-charge
distribution within the swarm. All of these solutions
have been obtained for the plane magnetron. However,
for the cylindrical magnetron the complete solution is
not yet available. If it assumed that the solution is not
multiple stream (i.e., that all of the electrons in the
swarm are traveling in circles around the cathode), the
resulting space-charge distribution is

1 J. C. Slater, "Microwave Electronics," D. Van Nostrand Co.,
\[p = -\frac{1}{2} \varepsilon_0 \frac{e}{m} R^2 \left(1 + \frac{r^*}{r} \right). \]

(7)

This is obtained by applying Poisson's equation to (3), and therefore corresponds to minimum energy in the electrons. This distribution will be used in the following discussion.

Propagation of the Electromagnetic Wave in the Magnetron Space Charge

The radio-frequency properties of the space charge have been analyzed previously in two important articles.\(^1,2\) However, many points of particular interest to the problem of frequency characteristics have not been emphasized. In order to establish the relationship of the following treatment to the two previous treatments, the major differences will be pointed out. All three methods are alike in that the space-charge distribution given by (7) is the starting point, and, as was pointed out in the last section, there is no ambiguity in the use of (6) to determine the boundary of the space-charge swarm.

The fundamental equation of motion of an electron in space, in vector form, is

\[\frac{dv}{dt} = -\frac{e}{m} (F + v \times B) \]

(8)

where
- \(v\) = velocity of the electron
- \(F\) = electric field
- \(B\) = magnetic field.

It is assumed that

\[v = \vec{v}_0 + \vec{v}_1, \]
\[F = F_0 + F_1, \]
\[B = B_0 + B_1, \]

where \(B_0, v_0,\) and \(F_0\) are static values and \(B_1, v_1,\) and \(F_1\) are impressed radio-frequency values. Substituting into (8) and keeping the terms involving radio-frequency values, we have

\[\frac{dv_1}{dt} + (v_0 \cdot \nabla) v_1 + (v_1 \cdot \nabla) v_0 + (v_1 \cdot \nabla)^2 v_1 \]
\[= -\frac{e}{m} (F_1 + v_1 \times B_0 + v_0 \times B_1) \]

(9)

where we are following the motion of a particular electron. The left side is the total derivative \(dv/dt\) under these conditions. It is generally agreed that the term \(\vec{v}_0 \times \vec{B}_1\) is negligible compared to other terms. In the paper by Blewett and Ramo the term \(v_1 \times B_0\) is also neglected. Actually the effect of the magnetic field is quite important, as will be shown in the following, and as was also pointed out by Lamb and Phillips.

In the paper by Lamb and Phillips it was assumed that \(v_1\) was a small perturbation and therefore the term \((v_1 \cdot \nabla) v_1\) could be neglected. Their results apply particularly to frequencies near the cyclotron frequency

\[\left(\frac{e}{\mu} \right) = \frac{B_e}{2\pi m} \]

and are limited to very small sheaths of electrons surrounding the cathode. Damping is treated in a qualitative sense. Their results will be discussed further at the end of this section.

In the present approach, a simplified problem is treated in order to obtain more generally applicable results. These results will indicate an approximate behavior to be expected in a magnetron which seems to check closely enough with experimental observations to justify the method of treatment. It is assumed that the space-charge swarm is moving with a uniform velocity \(v_0\) so that the term \(v_1 \cdot \nabla v_0\) is dropped in (9). Actually

\[v_0 = \omega r = \frac{Be}{2m} \left(\frac{1 - r^2}{r^2} \right), \]

from (1). Also, the wave is assumed to be propagated perpendicular to \(v_0\) so that the product \(v_0 \cdot \nabla v_0\) vanishes. The force equation under these conditions becomes simply

\[\frac{dv_1}{dt} = -\frac{e}{m} (F_1 + v_1 \times B_0 + v_0 \times B_1) \]

(10)

where the subscripts "1" only serve to indicate radio-frequency values and will be dropped in the remainder of the discussion.

Ordinarily in treatment of electrodynamics of a moving medium the effect of the motion does not become appreciable until the velocity is an appreciable fraction of the velocity of light. In the case of the magnetron, however, the effect of the motion may become important when the angular velocity of the edge of the swarm approaches synchronism with the angular velocity of the radio-frequency wave in the interaction space. Under these conditions the electrons can contribute energy to the radio-frequency wave and begin to slow down and form spokes extending toward the anode. These spokes assume a certain phase relationship to the radio-frequency wave which changes with plate voltage and affects frequency in a way not covered by the treatment in this section. Thus the results of this section should only be considered valid for

\[\omega \ll \omega_n \]

(11)
where
\[\omega_n = \frac{2\pi f}{n} \] (synchronous angular velocity)

- \(f \) = frequency of the radio frequency impressed on the magnetron structure
- \(n \) = mode number \(= \frac{1}{2} \) number of anodes in \(\pi \) mode.

Since we are considering the space charge as an atmosphere of determined density and boundary, it is immaterial what system of co-ordinates is used for the force equation. We are considering properties of space-charge atmosphere as they affect propagation, so it will be simpler to treat a plane wave. The results will then be interpreted in the case of the particular geometry of the magnetron. We will assume first a configuration as shown in Fig. 1(a). Magnetic field is oriented in the \(\mathbf{z} \) direction; a plane wave is propagated in the \(\mathbf{x} \) direction. Fig. 1(b) shows, in comparison, the actual case in a magnetron. The force equations and Maxwell's equations yield the following:

\[
\begin{align*}
\frac{\partial F_x}{\partial t} + \rho \dot{x} &= 0 \\
\frac{\partial F_y}{\partial t} + \rho \dot{y} &= 0 \\
\frac{\partial F_z}{\partial t} + \rho \dot{z} &= 0
\end{align*}
\]

\[
\frac{\partial H_x}{\partial t} + \mu_0 \frac{\partial H_y}{\partial t} = 0
\]

\[
\frac{\partial H_y}{\partial t} - \mu_0 \frac{\partial H_z}{\partial t} = 0
\]

\[
\omega_c = B \frac{e}{m} \quad B \text{ is z-directed steady magnetic field.}
\]

A solution of the type \(A e^{i(kx - v)t} \) is assumed for each of the quantities \(x, y, z, F_x, F_y, F_z, H_x, H_y, \text{ and } H_z \). \((\omega_f = 2\pi f) \). A different constant \(A \), of course, is used in each case. Substituting in (12) through (20) and differentiating, a set of simultaneous equations is obtained. The determinant of the coefficients in these equations is the following

\[
\begin{vmatrix}
-\omega_f^2 & \pm \omega_f v & 0 & e/m & 0 & 0 & 0 & 0 \\
\pm \omega_f v & -\omega_f^2 & 0 & 0 & e/m & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\rho & 0 & 0 & \pm \epsilon_0 & 0 & 0 & 0 & 0 \\
0 & \pm \rho & 0 & 0 & \pm \epsilon_0 & 0 & 0 & 0 \\
0 & 0 & \pm \rho & 0 & 0 & \pm \epsilon_0 & -k/\omega_f & 0 \\
0 & 0 & 0 & \pm \rho & 0 & 0 & 0 & -k/\omega_f \\
0 & 0 & 0 & 0 & \pm \rho & 0 & 0 & \pm \mu_0
\end{vmatrix}
\]

By Cramer's rule, in order for a solution other than a trivial solution to exist this determinant must be identically equal to zero. It is convenient to solve for \(k^2/(\epsilon_0 \mu_0) \omega_f^2 = c^2/v^2 \) where \(c = \text{velocity of light and } v = \text{phase velocity of the wave. } c/v \) is the effective index of refrac-

\footnote{See any advanced calculus text for discussion of this rule.}
tion of the medium and \(\varepsilon^2/\mu^2 \) therefore the effective relative dielectric constant \(\varepsilon_r \). The result is

\[
\varepsilon_r = 1 + \frac{\rho e}{\varepsilon_0 m} \left(\frac{\omega_f^2 + \frac{\rho}{\omega_0} e}{\omega_f^2} - 1/2\omega_e^2(1 + 1) \right)
\]

(21)\(^5\)

From (7) the space-charge density in a magnetron at the boundary of a swarm of radius \(r \) is

\[
\frac{\rho e}{\varepsilon_0 m} = -1/2\omega_e^2 \left[1 + \left(\frac{r_e}{r} \right)^4 \right]
\]

(7a)

Letting

\[
1 + \left(\frac{r_e}{r} \right)^4 = M,
\]

the complete result for effective dielectric constant of the magnetron-type space charge may be written

\[
\varepsilon_r = 1 - \frac{M}{2} \frac{\omega_e^2}{\omega_f^2} - 1/2(M + 1 + 1)\omega_e^2.
\]

(22)

For the \((-\) sign

\[
\varepsilon_r = 1 - \frac{M}{2} \frac{\omega_e^2}{\omega_f^2} - 1/2 \frac{M}{2} \omega_e^2.
\]

(23)

For the \((+\) sign

\[
\varepsilon_r = 1 - \frac{M}{2} \frac{\omega_e^2}{\omega_f^2} - 1/2 \frac{M}{2} \omega_e^2.
\]

(24)

The result of (24) is exactly the same as the result which is obtained when no steady magnetic field is assumed present and is the result obtained in the paper by Blewett and Ramo, due to the neglect of the cross product of the radio-frequency velocity and the static magnetic field in the force equation.

Another case should be mentioned, which, although it does not occur in the conventional magnetron, is of importance in some structures which use the magnetron-type space charge to vary reactance for electronic frequency modulation. In this case the direction of wave propagation is assumed parallel to the direction of the magnetic field. This case is treated by the same method as the one just treated with the result

\[
\varepsilon_r = 1 - \frac{M}{2} \frac{\omega_e^2}{\omega_f^2} - 1/2 \frac{M}{2} \omega_e^2.
\]

(25)\(^6\)

It should be noted that the \((±\) sign in this result is not a result of the assumption of a \((±\) sign in the assumed solution but results from the quadratic nature of the solution of the determinant.

In this case the \((±\) sign is a result of the assumption that it exists in the exponential solution.

Equations (22) and (25) are plotted in Figs. 2(a) and 2(b) with the assumption that \(M=1 \). This is approximately true only for values of \(r_e/r \) less than 1/3. The curves as plotted will, however, represent the picture with sufficient accuracy to support discussion.

The meaning of each of the various values of effective dielectric constant is not obvious from the development presented here. However, further examination of the polarizations of the waves and of a physical picture show the following to be true.

In Fig. 2(a) the solid curve from (23) corresponds to an electromagnetic wave polarized with the \(E \) vector perpendicular to the static magnetic field. The wave cannot be entirely transverse because there must be a component of \(E \) in the direction of propagation. The actual situation in an ideal multianode magnetron

![Fig. 2](image-url)

Fig. 2—Dielectric constant of magnetron space charge as function of \(\omega_f/\omega_0 = E_f/\omega_0 \). (a) Direction of propagation transverse to direction of magnetic field, (b) Direction of propagation same as direction of magnetic field.
should be approximated by this case as examination of Fig. 1(b) will show. If end effects are neglected, the electric fields are entirely in the xy plane perpendicular to the static magnetic field. However, propagation is not always perpendicular to v_0.

In Fig. 2(a) the dotted curve from (24) corresponds to an electromagnetic wave polarized with the E vector parallel to the static magnetic field. In this case the presence of the magnetic field does not have any effect, as was pointed out previously.

In Fig. 2(b) the solid curve from (25) with $+$ sign corresponds to an electromagnetic wave with left-hand circular polarization.

In Fig. 2(b) the dotted curve from (25) with $-$ sign corresponds to an electromagnetic wave with right-hand circular polarization.

The effective dielectric constant, which is really a measure of phase velocity of the wave, depends on polarization, relationship of direction of propagation to direction of magnetic field, and value of ω_f/ω. The properties of these regions and the effect to be expected in a magnetron-type structure may be summarized as follows:

$\epsilon < 0$. In this case the phase velocity is imaginary; a wave will not propagate within the space charge; therefore, a space-charge boundary acts as a reflecting surface. The capacitance between cathode and anodes is increased by the presence of the space charge.

$0 < \epsilon < 1$. In this case the phase velocity of the wave exceeds the velocity of light. The capacitance between cathode and anodes is decreased by the presence of space charge.

$\epsilon > 1$. In this case the phase velocity of the wave is less than the velocity of light. The capacitance between cathode and anodes is increased by the presence of the space charge.

The total range of values covered by the graphs of Fig. 2 represents a considerable variation of conditions which might be imposed on the magnetron-type structure. Data exist only in limited regions; some of this will be presented in the next section.

It will be interesting at this point to compare these results with the results of Lamb and Phillips. In their paper the behavior near the cyclotron resonance is described from an impedance point of view for very small sheaths of electrons surrounding the cathode. This result is the following:

$$ Z_{el} \approx \frac{F_e}{H} = \frac{n s}{r_c \epsilon \omega_f \omega_c^2 - \omega_f^2} $$

where

$F_e/H = $ the ratio of the electric field vector to the magnetic field vector

$s = $ thickness of the electron sheath around the cathode.

It is assumed that

$$ \frac{n s}{r_c} < \frac{\omega_c^2 - \omega_f^2}{\omega_f^2} \quad \text{and} \quad n \neq 0. $$

This restriction on the magnitude of s/r_c is a severe limitation in the practical case of an oscillating magnetron or frequency-modulation structure. In either of these cases, s/r_c can be an appreciable fraction of r_a/r_c. An effective cathode radius may be calculated which, when used as a boundary condition, obtains the same effect on resonant frequency of the anode block as the condition of (26). Thus

$$ r_{eff} = r_c \left(1 + \frac{2n s}{r_c} \frac{\omega_f^2}{\omega_c^2 - \omega_f^2} \right)^n/2. \quad (27) $$

This result predicts a resonance at the cyclotron frequency which is qualitatively described by a positive wavelength shift (capacitance increase) for $\omega_f/\omega_c < 1$ and a negative wavelength shift (capacitance decrease) for $\omega_f/\omega_c > 1$. This effect and the type of effects predicted by (23) might be simultaneously possible in an actual magnetron, since the assumptions involved in neither development can be held except in extreme cases. A qualitative picture of the behavior of the electrons near the cyclotron resonance is given in Fig. 3. In all cases the angular frequency impressed on the anode is assumed to be the cyclotron frequency. ω is the angular velocity of the outermost electrons. If

Fig. 3—Qualitative picture of cyclotron resonance.
\(\omega < \omega / n \) (corresponding to small \(\delta \)), as in Fig. 3(a), the perturbed electron will execute several cycles in passing a set of anodes. In this case the resonance effect should occur very near the cyclotron frequency. The effect of the steady-state angular velocity is not important. If \(\omega = \omega / n \), as in Fig. 3(b), the electron executes a single cycle in just the time it takes it to move, due to the steady-state velocity, from one set of anodes to the next. In the same time, the direction of the field between the next set of anodes has changed to be in phase with the electron oscillation. In the case of Fig. 3(c), the electron does not execute a single cycle in transit between two anodes and arrives between the next set out of phase with the field. Essentially these observations mean that the magnetic field for the cyclotron resonance should be a function of voltage. This has been observed experimentally and is presented in Fig. 10. To our knowledge more extensive data on the cyclotron resonance which might serve to clarify the picture do not exist.

Space Charge and the Equivalent Circuit

The details of an equivalent circuit for a microwave device such as a magnetron naturally change with the structure of the magnetron. Effects of end hats, straps supporting structures, and the like may or may not be important enough to be included in the circuit. The equivalent circuit is usually based on the assumption that the various possible modes of oscillation are sufficiently separated in frequency to be considered individually. This permits the representation of the resonant circuit of the magnetron as a simple parallel resonant circuit. When this assumption is not valid, the resonance is made complex and, in general, must be treated as a special case. However, if the assumption is not justified, some sort of device is usually necessary to induce mode separation before the magnetron is practically usable. Thus, in most practical cases the simplified approach is adequate.

The most important concept in connection with equivalent circuits of magnetrons relative to the present problem is the concept of electron-transit admittance. It is the susceptive portion of this admittance which affects frequency characteristics of the magnetron. If an equivalent circuit may be established in which the function of the electron-transit susceptance is properly understood, the picture is greatly simplified. This has been done with satisfactory results for triodes, tetrodes and klystrons, but the picture in the case of magnetrons is still obscure. The circuit in Fig. 4(a) is suggested as equivalent in the case of a nonoscillating magnetron. In this circuit, the electron-transit admittance is represented by \(y \), which may be defined as the admittance of the electrons as seen from terminals representing the two sets of anodes. The nature of this admittance changes for various conditions of anode voltage, magnetic field, and radio-frequency voltage between anode segments. The primary purpose of this paper is to present the over-all picture of these changes.

The picture for an oscillating magnetron is more complex. However, a convenient picture is obtained by replacing the admittance \(y \) by a current generator \(i_y = y \omega v \) (see Fig. 4(b)). The admittance \(y \) may now be thought of as the equivalent admittance of a current generator. The value of this admittance is a function of plate current and loading. Variation in the susceptive portion of this admittance with current is the cause of frequency pushing. This will be discussed in a following section.

![Equivalent circuits](image)

Experimental investigation of the nature of the quantity \(y \) must be made by a meter located in the line between the output terminals \(O \) and \(O' \) and the load \(Y' \). In the case of the nonoscillating magnetron (Fig. 4(a)) an external signal must be fed into the circuit at the points \(A \) and \(A' \). Measurements of standing-wave ratio and position of minimum, coupled with a knowledge of properties of the circuit and the controllable parameters in the circuit, yield an experimental result for \(y \) as a function of the variable parameters. This type of measurement we call a hot impedance test, in analogy with the established term, cold impedance test. When anode voltage is increased to the point of supporting oscillation, these measurements can no longer be made and the circuit in Fig. 4(b) applies. Standing-wave ratio and position of the minimum measurements now apply to the load. No external source is present. The load is therefore used as a variable and the effect on resonant wavelength, power output, and the like is recorded in the Rieke diagram. Variation of frequency with the plate current (frequency pushing) can be measured quite simply in connection with over-all performance data taken for constant loading.

In the case of the nonoscillating tube, a radio-frequency voltage may be considered applied across the
capacitive portion of the magnetron circuit, at the boundary between the resonant circuit structure and the interaction space. This is represented by $T-T'$ in Fig. 4(a). The radio-frequency voltage causes a current i_r to flow into the tank circuit. If there are electrons present in the interaction space they may be represented by an admittance y_r through which a current i_e will flow. The currents i_e and i_r are independent of each other if the radio-frequency voltage is assumed unaffected by their magnitudes. If the admittance of the tank circuit is known, the admittance y_r could presumably be measured. This admittance should be dependent upon the values of magnetic field, anode voltage, radio-frequency voltage, and geometry of the interaction space.

In the case of the oscillating magnetron as represented in Fig. 4(b), the current i_r, developed in the tank circuit, is induced by spokes of synchronous space charge rotating in the interaction space. This current results in a radio-frequency voltage at the terminals $T-T'$. The current cannot exist until the oscillations become regenerative. The synchronous space-charge spokes cannot exist until radio-frequency voltages are present, i.e., until oscillation starts. The rotating spokes of synchronous space charge may be thought of as a current generator. There is a phase difference between the generated current and the radio-frequency voltage which causes the oscillations to build up at a lower frequency than the natural resonance frequency of the tank circuit. This phase difference and the equivalent negative conductance of the electrons are represented in y_r, the admittance equivalent to the generator the electrons. The value of this admittance must be such that the net susceptance and conductance of the circuit are cancelled at the frequency of oscillation. When the admittance characteristic of the tank circuit is known as a function of frequency near resonance, the value of y_r can be calculated.

These two interpretations of y_r should be kept in mind while reading the following sections. We will find that in the first case for the nonoscillating magnetron, the space-charge effects on frequency are primarily a function of the dimensions and density of the hub of the space-charge wheel. (See Fig. 13 for pictorial representation of the space charge.) In the second case of the oscillating magnetron, the effect on frequency is due to the phase relation of the spokes of synchronous space charge with the radio-frequency voltage. The two effects may cause frequency shifts in opposite directions. Quantitative agreement between experiment and theory for the first case is shown in the Appendix. In the second case, only qualitative discussion is thus far possible.

Space-Charge Effects in the Nonoscillating Magnetron

In order to measure effects of space charge in the nonoscillating magnetron, hot impedance measurements must be made from the output terminals. The measurements which have been taken are of four types as follows:

1. Impedance measurements at constant magnetic field and radio-frequency voltage, anode potential as variable parameter.
2. Impedance measurements at constant magnetic field and anode potential, radio-frequency voltage as variable parameter.
3. Resonant wavelength measurements at low radio-frequency voltage for different magnetic fields, anode potential as variable parameter.
4. Resonant wavelength measurements at low radio-frequency voltage and constant space-charge swarm radius, magnetic field as variable parameter.

A schematic drawing of the experimental setup is shown in Fig. 5. In order to obtain high radio-frequency voltage, one magnetron is used to drive another. Radio-frequency voltage is varied by means of attenuating reflectors placed in a slotted section between the impedance matching load and the magnetron under investigation. Radio-frequency voltage is measured by a probe placed at a voltage minimum (at cold resonance) approximately three wavelengths from the magnetron coupling loop (L_r in the diagram). This probe leads to a crystal detector and microammeter. The probe is calibrated against power measurements into a matched load and radio-frequency voltage calculated from the known line impedance of 52 ohms. The impedance matching load is quite useful for measurements of this type or in any application where a high-Q circuit is to be driven by a magnetron. It consists of two loads separated by $\lambda/4$. The driving magnetron is thus under no circumstances subject to standing-wave ratios greater than three to one.

In the impedance measurements, Q_0, λ_0 and G_0 are measured and plotted against the variable parameter, Q_0 is the unloaded Q of the magnetron, λ_0 is the resonant wavelength, and G_0 is the input conductance at resonance. $G_0 = Y_0/\omega_0$, where ω_0 is the minimum standing-wave ratio and Y_0 is the characteristic admittance of the line.

The results of hot impedance measurements made under various conditions are shown in Figs. 6 through 12. The results shown in Fig. 6 offer a comparison between frequency effects in the nonoscillating magnetron and in the oscillating magnetron. The increasing reso-
The conductance about 700 characteristic of the space charge. The point of this reduction in general form of the curves is seen to be the same, with a reduction in Q as the radio-frequency voltage is raised. The Q_0 curves are relatively flat up to about 700 volts. This indicates that there is no change in the conductive characteristics of the space charge in this region. At about 700 volts, the Q_0 begins to rise sharply. At the point of oscillation it would, ideally, go to infinity as the conductance goes to zero. This point occurs at about 900 volts. This behavior means that in the region between 700 and 900 volts space charge is contributing energy to the radio-frequency field and therefore synchronous bunches of space charge have been formed. When the Q_0 curve intersects with the cold Q_0 line the space charge is contributing just enough negative conductance to compensate for losses which may be present within the space charge due to bombardment of the cathode and collisions with large ions. The further increase in Q_0 represents compensation for copper losses in the resonant circuit. The reduction of the Q_0 in the flat portion of the curve is due to increase in losses due to back bombardment as radio-frequency voltage is raised. The data in Fig. 8 show how the Q_0 varies with radio-frequency voltage for a value of anode voltage in the flat portion of the curve of Fig. 7. The losses are

Fig. 6—Change of magnetron resonant wavelength with plate voltage. Comparison of frequency pushing and hot impedance test results.

Fig. 7—Q_0, λ_0, and G_0 of hot magnetron as a function of plate voltage for various radio-frequency voltages.
going up rather rapidly with the increasing radio-frequency voltage. This is probably due to an increase in the energy spent in back bombardment of the cathode.

The complexity of the space-charge frequency characteristics in the nonoscillating magnetron when a wide range of variables is considered is clearly illustrated by the four sets of data in Fig. 9. These data were taken by an absorption method in which resonance was observed on an oscilloscope pattern. Q measurements could not be made. The radio-frequency voltage was supplied from a klystron signal source. The curves are similar to those just discussed except that E/B^2 is used as the independent variable. The radius of the space-charge swarm, in the absence of radio frequency, is proportional to this quantity. In the presence of radio frequency there are three critical conditions involving magnetic field and voltage; these are expressed by (28), (29), and (30) which follow. The critical values are noted on the curves of Fig. 9.

\[\omega_c \approx \omega_e \]

where

\[\omega_e = \frac{2\pi c}{\lambda_e} \]

\[c = \text{velocity of light.} \]

This equation defines the cyclotron resonance. λ_e is the critical wavelength for the particular magnetic field B_e at which the period of natural rotation of an individual electron in the magnetic field is equal to the period of the radio-frequency cycle. As was pointed out in the discussion of Fig. 3 the resonance in the magnetron space charge should also be a function of voltage. This is borne out in the results shown in Figs. 9(b)

Fig. 8—Q_b, λ_e, and G_e of hot magnetron as function of radio-frequency voltage for constant plate voltage.

Fig. 9—Hot impedance test on QK59 no. 2483.
and 9(c) where the cyclotron resonance shows up as a perturbation of the resonant wavelength for two different voltages at slightly different magnetic fields.

$$E_{an} = \frac{B_n}{B_0} - \frac{r_c^2}{r_a^2} \left(\frac{1 - \frac{r_c^2}{r_a^2}}{1 - \frac{r_c^2}{r_a^2}} \right) \log \left(\frac{B_n}{B_0} - \frac{2 - \frac{r_c^2}{r_a^2}}{1 - \frac{r_c^2}{r_a^2}} \right) + 1$$

where

$$E_a = \frac{m}{2e} \omega_s^2 r_a^2$$

$$B_0 = \frac{2m}{e} \frac{1}{\omega_s} (1 - \frac{r_c^2}{r_a^2})$$

(ω_s defined in (11)).

Equation (29) relates the anode voltage (E_{an}) and magnetic field (B_n) for which outer electrons in the space-charge swarm reach a velocity synchronous with the angular velocity of the radio-frequency wave traveling around the interaction space. For higher voltages than E_{an} the electrons are trying to move faster than synchronism and can give energy to the radio-frequency field. This condition shows up as a contribution of negative conductance and positive susceptance to the system, thus causing a rather sharp increase in Q and resonant wavelength.

$$\frac{E_{an}}{E_0} = 2 \frac{B_n}{B_0} - 1. \quad (30)$$

This equation defines the anode voltage at which synchronous electrons can reach the anode with no radially directed velocities (Hartree voltage). This voltage is approximately the voltage at which oscillations begin.

Fig. 10 presents summary data of these three conditions extracted from a group of 26 curves similar to those of Fig. 9. The calculated values are presented for comparison. A considerable spread is represented for points on the curve for E_{an}/E_0, since the point at which a sudden increase in resonant wavelength occurs on the experimental curves is not definite.

The observed starting voltage seems to bear a definite relation to the calculated Hartree voltage, since the slopes of the two curves are approximately the same. The difference is probably due to the effect of the load on the starting voltage. This has not been quantitatively analyzed, but it may be said that, in a given magnetron, as the Q is lowered the starting voltage is raised.

The critical magnetic field for the cyclotron resonance is quite obviously affected by voltage. No satisfactory theory has been developed to give quantitative explanation of this effect. The synchronous voltage checks very well, considering the region of doubt which exists in its determination. It seems to be strongly perturbed in the region of the cyclotron resonance. It is interesting to note, however, that the cyclotron resonance seems to have no particular effect on the starting voltage for oscillation.

The static cutoff voltage (given by (2) with $r=r_a$) is calculated to be $E/B^2 = 7.4$. It is quite obvious in Fig. 9(d) and several other sets of data which are not given that this is not checked for low magnetic field in this particular magnetron.

In order to observe effects on resonant frequency due only to the change in effective dielectric constant of the space-charge swarm (as given by (23)), it is necessary to use data taken at various magnetic fields and at constant swarm radius. It is also necessary to stay below the voltage required to produce synchronous electrons. Thus, data in the curves of Fig. 9 taken below the synchronous voltage should represent the effect due to the expansion of a space-charge swarm having an effective dielectric constant determined by $B_c/B = \omega_i/\omega$. Wavelength shift for four values of E/B^2 and varying B is plotted in Fig. 11. The position of the observed cyclotron resonance and the calculated field required for synchronism are marked. The latter is given by
For $\omega_i/\omega_s < \omega_i/\omega_n$, the outer electrons in the swarm are tending to travel with greater than synchronous velocities and can contribute synchronous reactance which masks the effect of changing dielectric constant. The curve for $E/B^2 = 2$, $r_h/r_e = 1.08$ is replotted in Fig. 12 with the effective dielectric constant as given by (23). The expected wavelength shift (with amplitude arbitrarily adjusted to equal the observed shift) is shown by the dotted line. Agreement seems to be good except in the region between $\omega_i/\omega_s = 0.575$ and the observed cyclotron resonance. This may be due to the fact that the electrons are approaching synchronous velocities.

The over-all qualitative picture presented by these data is fairly clear, while attention to particular points may be misleading because of experimental inaccuracies or insufficient theoretical understanding. Some of the important conclusions are summarized below, and quantitative results for some particular cases are given in the Appendix.

The three types of effects on frequency are clearly represented by the data.

1. Passive effects due to wave-propagating properties are illustrated as wavelength shift at subsynchronous voltages in Fig. 9, and to the right of the lines $\omega_i/n = \omega_n$ in Fig. 11. The subsynchronous data in Fig. 9(a) illustrate increasing wavelength for $\epsilon > 0$ and in Fig. 9(d) decreasing wavelength for $0 < \epsilon < 1$. The curves in Fig. 12 which pertain to these effects have been discussed in the last paragraph.

2. Synchronous reactance is demonstrated by the relatively sharp increase in wavelength above synchronous voltage and to the left of the line $\omega_i/n = \omega_n$ in Fig. 11. The case for $E/B^2 = 5$ is particularly interesting in this connection. The decrease in wavelength showing up in the other curves between $B_x/B = 1.05$ and $B_x/B = 1.35$ is apparently cancelled by the effects of synchronism. This shows up even more clearly upon careful examination of data of the type shown in Fig. 9 from which this curve was taken. Synchronous reactance will be discussed more completely in the next section.

3. The cyclotron resonance shows up quite obviously in Figs. 9(b), 9(c), and is, as would be expected, dependent upon anode voltage. It is not clear from the data whether this point is intimately related to the other two effects. It does appear in Fig. 11 that a sharp increase in wavelength with increasing magnetic field should be associated with the cyclotron resonance.

The most probable sources of error are the following:

Magnetic field for the entire series of measurements may be off by 75 to 100 gauss. It is fairly certain that the calibration was not changed during the series of measurements, because it was possible to recheck critical points at the cyclotron resonance and starting voltage.

Dimensions of the magnetron, particularly r_a/r_e, may be in error by 10 to 20 per cent. Another tube which was taken apart had a cathode larger in this proportion. The dimensions used were taken from data in the tube specifications.
Wavelength measurements were made with a Micro wavemeter. The estimated error is \(\pm 0.002 \) cm. The direction of wavelength shift could always be observed by watching the oscilloscope screen. Determination of the exact resonant wavelength near the cyclotron resonance was difficult because of the distortion of the scope pattern.

Space-Charge Effects in the Oscillating Magnetron

Evidence of space-charge effects in the oscillating magnetron is given in the results of frequency-pushing measurements and in Rieke diagrams. Space-charge effects on frequency in the conventional oscillating tube are of small magnitude, of the order of 1 per cent. Frequency pushing is ordinarily defined as variation of oscillatory frequency with plate current, in contrast with the term frequency pulling, which is, ideally, variation of frequency at constant standing-wave ratio in the Rieke diagram.

More generally it is convenient to think of frequency variation over a performance chart (set of volt ampere characteristics at varying magnetic fields and constant load) and frequency variation with variation in load impedance at constant current and magnetic field as is experienced in the Rieke diagram. Variation of frequency over the performance chart is entirely due to space-charge effects. Variation of frequency in the Rieke diagram is primarily due to changes in the susceptive portion of the load impedance. However, contours of constant frequency in the Rieke load-impedance diagram should follow contours of constant susceptance. The fact that this is not the case may be attributed to space-charge effects.

Fig. 13 presents a qualitative picture of the space-charge swarm with spokes at an instant when the anodes are at their maximum + or - radio-frequency potential. The spokes form on the static magnetron space-charge swarm bounded by the synchronous radius (which can be calculated from (31)). In the nonoscillating magnetron with imposed radio-frequency, as described in the last section, the spokes can form without reaching all the way out to the anode. The maximum radius reached in the spoke is determined by the anode potential, and the spoke will form in the region of the maximum positive potential, 90 electrical degrees ahead of the maximum decelerating field. Thus the current induced by the rotating spokes will lead the radio-frequency voltage by approximately 90 degrees. As the anode potential is increased the spoke will extend farther toward the anode, maintaining the same phase position but increasing the amount of susceptance contributed by the space charge. This accounts for the sharp rise in resonant wavelength before oscillation starts, exhibited in the curves of Figs. 6 through 9.

When oscillation starts, the spokes must reach out of the anodes and there is a transport of electrons through the spokes sufficient to supply the dc anode current necessary to provide input power. The generated frequency is usually lower than the frequency of the tank circuit by a margin of the order of \(1/Q \). The impedance of the tank circuit is almost a pure inductance and the power delivered from the electron swarm is small. In order for more power to be delivered from the spokes to the circuit the angle \(\theta \) must be reduced so that the induced current leads the voltage less than 90 degrees.

As the voltage is raised further, the phase angle is reduced further, thereby decreasing the positive susceptance contributed by the spokes and decreasing the resonant wavelength. Fig. 6 illustrates this effect. The dotted lines in Fig. 9 also indicate the direction of wavelength shift after oscillation was observed.

The fact that the resonant wavelength does not come back to the cold resonance value may be due to the presence of the hub of subsynchronous space charge. It is important to realize that variation in frequency over the performance chart may depend upon the "passive" effects of the hub of the space-charge wheel as well as the "active" effects of the spokes. Therefore, a complete analysis of pushing data would be more complex than the relatively simple interpretation just given.

The difference in the physical significance of the quantity \(y \), in the preoscillating and oscillating magnetron as discussed in connection with Fig. 4 is apparent in the above discussion. In the former case, expansion of the hub and synchronous spokes have the major effect, with some complication introduced by the cyclotron resonance. In the latter case, the effect of the hub is probably a constant correction, whereas the phasing of the spokes with respect to the radio-frequency wave in the interaction space makes a major contribution.

Space-charge effects in the Rieke diagram are intimately related to frequency pushing. The rotating swarm is thought of as a current generator, the frequency of which is a function of power output. Power output in turn is a function of the load on the generator. The experimental evidence of Rieke diagrams indicates...
the electronic susceptance to be a function of the load conductance on the magnetron. Variation of the conductive portion of the magnetron load without change in the susceptive portion varies the form of the resonance curve without changing its position on the frequency axis. The rotating swarm of electrons must adjust itself to meet the conditions of negative conductance and phase relationship to the radio-frequency voltage imposed by the resonant circuit. In addition, the changing radio-frequency voltage caused by variation in load will react on the electron swarm. This combination of causes must have a very complex, but not very large, effect upon the frequency of oscillation. Further complication results from the fact that a particular value of load conductance (a particular form of the resonance curve) allows maximum efficiency of energy transference from the electron swarm to the radio-frequency field. This is the condition of optimum shunt impedance. The characteristics of the optimum condition are understood for conventional oscillators employing triode or tetrode vacuum tubes, but still not satisfactorily explained in the case of the magnetron oscillator.

CONCLUSIONS

The present paper is not meant to be a complete and final analysis of the problem of the magnetron space-charge and frequency characteristics. It is intended to relate as many as possible of the known facts and theories in such a way that it can be used as a guide for further research and development. We have presented in some detail the ideas and data originating in the University of Michigan laboratory and have tried to provide enough discussion and criticism of other ideas to make the development consistent.

Some important conclusions have been mentioned in the discussion of the experimental results and theory. These are the following:

1. Frequency pushing with increasing voltage is primarily due to a decrease in wavelength caused by the active phasing effect of the electrons in the spokes of the space-charge wheel acting as a current generator in the magnetron.

2. The increase in the extent of space-charge spokes as voltage is increased under hot impedance test conditions may also contribute an increasing positive susceptance without change in the phase angle of the spoke relative to the wave of radio-frequency potential.

3. Frequency shifts caused by the subsynchronous swarm as voltage is increased under hot impedance test conditions are primarily of two types. In one case, the dielectric constant of the hub of the space-charge wheel is negative and the resonant wavelength increases as the hub expands. In the other case, the dielectric constant of the hub of the space-charge wheel is positive, but less than unity, and the wavelength decreases as the hub expands. These effects may be called passive effects.

4. For a particular value of magnetic field, under hot impedance test conditions, the natural resonance of the individual electrons in the space charge causes perturbation of the resonant wavelength. This is the cyclotron resonance ($\omega_r = \omega_c$).

5. Frequency pulling is primarily an effect of circuitry. Deviations from the values predicted on the basis of circuitry are due to interrelation of the equivalent susceptance and conductance of the space-charge cloud acting as a current generator in the magnetron. They are therefore related to frequency pushing.

It would be desirable to amplify experience by carrying out experiments designed to determine the exact value of γ, the electronic admittance, under various conditions in both the nonoscillating and the oscillating cases. Possibly, if enough data were available on different magnetrons, generalizations could be made which would give more insight into the actual behavior in the oscillating magnetron. It is important to realize that, although the frequency shifts due to space-charge effects are small compared to the resonance frequency (of the order of one per cent), an understanding of the underlying causes of these shifts is equivalent to an understanding of the basic electronic principles of magnetron operation.

Frequency shifts of the type mentioned in 3 and 4 above may be used in a reactance tube to produce frequency modulation. The problem of designing a tube of this type has been undertaken in the University of Michigan laboratory. Details of this development will be presented when data are available on operating tubes. Quantitative results and a simple formula, placing limitation on the design of such tubes with multianode structures, are given in the Appendix.

APPENDIX

The theory and experimental results given in this paper can be used as a basis for design in devices using the magnetron-type space charge to furnish electronic control of frequency. Frequency shifts of the order of 8 per cent of 500 Mc have been obtained using split-anode magnetrons. The space charge may be used within a multianode structure attached to the resonant circuit of the magnetron. The theory which has been developed can be used as a basis for convenient design criteria by which anode structure and interaction space designs can be determined which obtain maximum benefit of the space charge and do not permit oscillation.

In the first place, if we wish to make use of the properties of a space charge of negative dielectric constant, we have the condition

$$\omega_r < 0.36\omega_c.$$ \hspace{1cm} (32)

This is obtained from Fig. 2. If we wish to place the

\footnote{These results were obtained by P. H. Peters at the General Electric Research Laboratories.}
the value of the presence of the well-known condition

\[B < B_0. \quad (33) \]

If (32) and (33) are combined so that the structure will not oscillate and the space charge will cause total reflection, we obtain the following:

\[\omega_f < 0.36\omega_c = 0.36 \frac{B_0}{m} < 0.36 \times B_0 \frac{r}{m} \]

\[= 0.36 \times \frac{2\omega_f}{n} \frac{1}{1 - \frac{r_s^2}{r}^2} \]

which results in the simple criterion

\[1 - \frac{r_s^2}{r}^2 \leq 0.72 \frac{n}{n} \]

or

\[\frac{r_s}{r} < \sqrt{\frac{1}{1 - 0.72/n}}. \quad (34) \]

This last equation gives the following values of \(r_s/r \)

for various values of \(n \):

\[
\begin{align*}
 n = 1 & \quad r_s/r < 1.88 \\
 2 & \quad 1.25 \\
 3 & \quad 1.15 \\
 4 & \quad 1.10 \\
 5 & \quad 1.08 \\
 6 & \quad 1.06.
\end{align*}
\]

Spacing requirements imposed a limitation on the value of \(r_s/r \) which can be used and, therefore, on \(n \). For example, if the cathode diameter is of the order of \(\frac{1}{4} \) to 1 centimeter, \(r_s/r < 1.15 \) begins to be impractical. Therefore, \(N = 2n = 6 \) is the largest practical number of anodes. To be on the right side, \(N = 4 \) or even \(N = 2 \) should be used if possible.

If it is desired to make use of the space charge with a positive dielectric constant less than unity the following criterion may be used:

\[\omega_f > 1.36\omega_c. \quad (35) \]

\(\omega \) should not be too much in excess of \(\omega_c \); otherwise \(\epsilon \) differs so little from unity that the change in susceptance due to the space charge will not be appreciable. At most, the presence of space charge of these characteristics can do no more than cancel the effect of the cathode. The value of \(\omega_f/\omega_c \) might arbitrarily be limited to less than two for this case. If this is done, we have as before

\[1 - \frac{r_s^2}{r}^2 < \frac{4}{n} \]

\[\frac{r_s}{r} < \frac{1}{1 - 4/n}. \quad (36) \]

This imposes no serious restriction on \(r_s/r \) and is actually satisfied in most conventional continuous-wave magnetrons operating at wavelengths greater than 6 centimeters.

The relative merits of these two types of behavior under conditions of high radio-frequency voltage are not yet experimentally determined. On paper the use of space charge of negative dielectric constant can produce an infinite change in \(\lambda_0 \), whereas the space charge of positive dielectric constant can only cancel the effect of the cathode. This latter, of course, can be to two to five per cent. The linearity of frequency change and losses under the influence of high radio-frequency voltage might give preference to the latter method. This remains to be seen. The following illustrative cases give quantitative comparison of experimentally observed results with the theory.

The total capacitance in the resonant circuit of any magnetron must include the capacitance between anode and cathode. The latter is the portion which is varied by the presence of the space charge. Let

\[C_a = \text{total anode-to-anode capacitance including effect of cathode}. \]

\[C_e = \text{total anode-to-cathode capacitance}. \]

\[\Delta C_e = \text{change in anode-to-cathode capacitance caused by presence of space-charge swarm}. \]

For a given \(\Delta C_e \) it can be shown that the resonant wavelength shift is given approximately by

\[\frac{\Delta \lambda_0}{\lambda_0} = \alpha \frac{C_e}{C_a} \Delta C_e. \quad (37) \]

Here \(\alpha \) is a proportionality factor which is equal to \(\frac{1}{4} \) in a lumped-constant circuit since, in this case, wavelength is proportional to the square root of the capacitance. In distributed-constant circuits, as is usually the case in a magnetron, \(\alpha \) is less than \(\frac{1}{4} \) and must be calculated for the particular case.

\[C_e/C_a \] is ordinarily four or five per cent. By particular design it can be made 20 per cent or more.

The method of calculation of \(\Delta C_e/C_e \) varies with the geometry and the effective dielectric constant of the space charge. The following two examples are typical.

If \(0 < \epsilon_e < 1 \) and the space between anode and cathode is just filled by the space-charge swarm (thus having maximum effect),

\[\frac{\Delta C_e}{C_e} = \epsilon_e - 1 \quad (38) \]

where, since \(\epsilon_e \) is less than unity, the wavelength shift is always negative and the maximum value of shift corresponds to \(\Delta C_e/C_e = -1 \). In this case the effect of
the cathode is cancelled. Table I gives two sample calculations for this case. \(\epsilon \) is calculated from (23).

In the case of negative \(\epsilon \), total reflection should occur from the space charge. The cathode diameter is therefore effectively increased by the presence of the space charge. The capacitance between anode and cathode will be a function of the following form:

\[
C_e = \frac{K}{\ln \frac{r_a}{r_c}}
\]

where \(K \) is a function of \(\frac{r_a}{r_c} \) because of fringing effects around the anodes. The percentage change in effective capacitance to the cathode is therefore the following, if we consider \(r_H \) (radius of the space-charge cloud) as a reflecting surface:

\[
\Delta C_e = \frac{K_H}{\ln \frac{r_a}{r_H}} - \frac{K_c}{\ln \frac{r_a}{r_c}}
\]

\[
\Delta C_e = \frac{K_H \log \frac{r_a}{r_c}}{K_c \log r_a/r_H} - 1.
\]

(39)

Using this result in (37), the following result were obtained in two different tubes constructed in the University of Michigan laboratory. In the second case, a negative dielectric constant is actually not predicted by the theory, but the direction of wavelength shift indicates that the space charge is reflecting. This sort of discrepancy may be due to errors in determination of magnetic field or to the oversimplified nature of the theory.

In the optimum design of a modulator tube, \(\alpha \) should be made as large as possible. The second case of Table II illustrates this point. Although a capacitance change of 123 per cent is obtained, due to the small value of \(\alpha \), the wavelength shift is less than one per cent.

Acknowledgments

The author is indebted to all of his co-workers in the University of Michigan Electron Tube Laboratory, particularly to W. G. Dow, who suggested the technique of hot impedance testing, and to J. R. Black, G. R. Brewer, and Miss Rita Callahan, who offered many helpful suggestions and assisted in gathering of experimental information.

TABLE I

Comparison of Theory and Results for \(0 < \epsilon < 1 \) in the Space-Charge Swarm

<table>
<thead>
<tr>
<th>(E_a)</th>
<th>(B)</th>
<th>(\lambda)</th>
<th>(r_a/r_e)</th>
<th>(r_H/r_e)</th>
<th>(\omega_f/\omega_e)</th>
<th>(C_e/C_a)</th>
<th>(\alpha)</th>
<th>(\frac{\Delta C_e}{C_e})</th>
<th>(\Delta \lambda _3)</th>
<th>(\lambda _3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>210</td>
<td>16.85</td>
<td>1.66</td>
<td>1.66</td>
<td>1.35</td>
<td>0.045</td>
<td>0.5</td>
<td>-0.07</td>
<td>-0.16 per cent</td>
<td>-0.18 per cent</td>
</tr>
<tr>
<td>450</td>
<td>450</td>
<td>17.6</td>
<td>1.66</td>
<td>1.66</td>
<td>1.35</td>
<td>0.045</td>
<td>0.5</td>
<td>-1</td>
<td>-2.25 per cent*</td>
<td>-1 per cent</td>
</tr>
</tbody>
</table>

* Note from the solid curve in Fig. 2(a) that \(\epsilon \) is a very critical function of magnetic field in this region so that a 1 per cent error in determined field could produce almost a 100 per cent error in the calculated wavelength shift.

TABLE II

Comparison of Theory and Results for \(\epsilon < 0 \) in the Space-Charge Swarm

<table>
<thead>
<tr>
<th>(E_a)</th>
<th>(B)</th>
<th>(\lambda)</th>
<th>(r_a/r_e)</th>
<th>(r_H/r_e)</th>
<th>(\omega_f/\omega_e)</th>
<th>(C_e/C_a)</th>
<th>(\alpha)</th>
<th>(\Delta C_e/C_e)</th>
<th>(\Delta \lambda _3)</th>
<th>(\lambda _3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,400</td>
<td>1,700</td>
<td>16.9</td>
<td>1.66</td>
<td>1.1</td>
<td>0.35</td>
<td>0.045</td>
<td>0.5</td>
<td>+0.25</td>
<td>+0.55 per cent</td>
<td>+0.65 per cent</td>
</tr>
<tr>
<td>1,400</td>
<td>1,400</td>
<td>13.2</td>
<td>1.33</td>
<td>1.17</td>
<td>0.58</td>
<td>0.05</td>
<td>0.125*</td>
<td>+1.23</td>
<td>+0.77 per cent</td>
<td>+0.76 per cent</td>
</tr>
</tbody>
</table>

* These data were taken on a double-anode modulator tube with a distributed constant circuit—hence the low value of \(\omega \). All other data were taken on an interdigital magnetron in which the capacitance was essentially concentrated in the anodes.
Comparison of Tropospheric Reception at 44.1 Mc with 92.1 Mc Over the 167-Mile Path of Alpine, New Jersey, to Needham, Massachusetts

GREENLEAF W. PICKARD†, FELLOW, IRE, AND HARLAN T. STETSON†, ASSOCIATE, IRE

In a previous paper, the authors rendered an account of field intensity measurements of W2XNM at 42.8 Mc made at the Cosmic Terrestrial Research Laboratory at Needham, Mass., during 1945 and a part of 1946, and exhibited certain relations found with meteorological conditions. On January 24, 1947, the frequency of W2XNM was changed from 42.8 Mc to 44.1 Mc, and in the summer of that year a higher frequency was transmitted from the same tower at Alpine as station W2XEA at a frequency of 92.1 Mc with substantially equal power on both frequencies. This gave an opportunity for making comparative measurements on both the higher and lower frequencies over the same path of Alpine, N. J., to Needham, Mass., 167 miles in length, or 270 kilometers.

Records of W2XEA began on August 15, 1947, on the same schedule as W2XNM 1600-2300 Eastern Daylight Standard Time in summer and Eastern Standard Time in winter. The general picture of Alpine reception from these two stations as received at Needham is that the fields vary widely from second to second, and even from minute to minute. However, when reduced to microvolts/meter, the two fields received at Needham show similar variations with respect to daily and monthly values. The average field of the higher frequency (92.1 Mc) exhibits somewhat higher values than the fields of the lower frequency station.

The authors find variations in both of these fields closely correlatable with atmospheric refraction throughout the interval as determined from calculation of surface refraction utilizing meteorological data obtained at Boston. Meteorological data at New York, or Hartford proved unsatisfactory for correlation purposes. The inference is that variation in reception appears to be more influenced by surface conditions at the receiving end than at the other points examined along the path.

The data for W2XNM 44.1 Mc comprise a total of 2,112 hours and W2XEA 2,154 hours. Because of the importance of overlap, the percentage distribution with respect to time and doldrums has been determined. The authors believe the close comparison of both lower and higher frequencies with atmospheric refraction suggest a common mode of propagation and that refractive bending in the lower atmosphere is a major factor for both frequencies.

Considering other modes of propagation, it would appear that duct transmission should be relatively infrequent for the longer waves of the lower frequency, but if significant on the higher frequency paths, greater difference would be apparent in the field intensity data gathered. Since both frequencies, however, respond similarly to meteorological changes, there seems to be little evidence from these observations that duct transmission is a dominant factor in tropospheric reception at the frequencies observed unless the assumption of a value of 7 kilometers for a critical duct width at 7 meters is to be questioned.

In the interest of space, plotted values of relative fields in log microvolts/meter are exhibited in weekly means on the accompanying diagram for both W2XNM and W2XEA together with the calculated surface refraction over the interval from August, 1947, to December, 1948.

Fig. 1—Weekly means of measured field intensities of W2XNM and W2XEA at Needham Mass., compared with corresponding atmospheric surface refraction at Boston, Mass.
Contributors to the Proceedings of the I.R.E.

Russell C. Coile was born in Washington, D.C., on March 11, 1917. He attended the Massachusetts Institute of Technology where he received the S.B. and S.M. degrees in electrical engineering in 1938 and 1939, respectively, as well as the E.E. degree in 1950. While still an undergraduate he served as student engineer with the General Electric Company, was later an engineer’s assistant at the Western Electric Company in Kearney, N. J., and, in 1938-1939, was research assistant at the MIT Electrical Engineering Research Laboratories.

From 1939 to 1942 Mr. Coile held the post of mathematician in the Department of Terrestrial Magnetism at the Carnegie Institution, Washington, D. C. As a reserve officer in the Army Signal Corps, he was called to active duty in World War II, emerging with the rank of major.

That same year Mr. Coile joined the firm of Conlon & Foss, Inc., Washington, D. C., as an electronic engineer. He is now a staff member of the Operations Evaluation Group, Division of Industrial Cooperation, at MIT, a position he has held since 1947. He is a member of Sigma Xi andEta Kappa Nu fraternities.

W. Hackett was born in Smethwick, Staffordshire, England. She obtained her technical education at the University of Birmingham, receiving the B.Sc. degree in electrical engineering in 1929 and the Ph.D. degree in 1931.

As a technical assistant with the British Electrical and Allied Industries Research Association, London, from 1933 to 1944, she was concerned with the development of research and commercial methods of test for dielectric materials and components, and is the author or co-author of a number of papers on the subject. From 1944 to 1946 she was in the employ of A.H. Hunt Ltd., Capacitor Manufacturers, London, engaged on theoretical work and in charge of the test section of the laboratory. Since January, 1947, she has been engaged mainly on circuit analysis with British Telecommunications Research Ltd., Taplow, Bucks., England.

She has been an associate member of the Institution of Electrical Engineers, London, since 1940.

L. P. Hunter was born in Wooster, Ohio, on February 11, 1916. He received the B.S. degree in physics from the Massachusetts Institute of Technology, the B.A. degree from the College of Wooster, and the M.S. and D.Sc. degrees from Carnegie Institute of Technology.

In 1940 Dr. Hunter joined the Westinghouse Electric Corporation, engaging in work on the physics of solids. His first investigation involved the behavior of the elastic constants during phase changes in solids. During the war he was engaged in microwave magnetron development, and later spent a year at the University of California working on the calutron project. Since the war Dr. Hunter has spent some time in X-ray research. In the summer of 1948 he was a member of the Lexington Evaluation Project of the A.E.C. He has just returned to Westinghouse from a two-year leave at the Oak Ridge National Laboratory, where he was engaged in a study of radiation effects in solids, and is now manager of a section working on solid-state electronics.

Dr. Hunter is a member of the American Physical Society and its division of solid-state physics.

W. Hackett

J. C. May

Herbert J. Reich was born on Staten Island, N. Y., on October 25, 1900. He received the M.E. degree from Cornell University in 1924, and the Ph.D. degree in physics in 1928. In 1929 he joined the department of electrical engineering at the University of Illinois, where he became associate professor, associate professor, and professor, successively, of electrical engineering. In January, 1944, he was granted leave of absence to join the staff of the Radio Research Laboratory at Harvard University. In January, 1946, Professor Reich was appointed professor of electrical engineering at Yale University, where he is at present.

Dr. Reich has specialized in the field of electron tubes and electron-tube circuits, having published numerous papers on these and related subjects in various technical journals. He is the author of "Theory and Applications of Electron Tubes," and "Principles of Electron Tubes," as well as co-author of "Ultra-High-Frequency Techniques."

Dr. Reich is a Director of the IRE, and has served on numerous IRE committees. At present, he is a member of the Board of Editors, the Electron Tube Committee, and the Education Committee of which he is chairman. He is a member of the American Institute of Electrical Engineers, the American Association for the Advancement of Science, the American Society for Engineering Education, and is a Fellow of the American Physical Society.

L. P. Hunter

Herbert J. Reich

Joe Cyril May was born in McCurtain, Okla. on May 5, 1923. He received the B.S. degree in electrical engineering from Oklahoma Agricultural and Mechanical College in 1944, and the M.E. degree in electrical engineering from Yale University in 1947. He became an instructor in electrical engineering in 1944 and was appointed to the rank of assistant professor in 1949. He has been associated with research on split-anode magnetrons and radar signal-to-noise investigations.

Mr. May is at present Membership Chairman of the Connecticut Valley Section of The Institute of Radio Engineers. He is also a member of the American Institute of Electrical Engineers, Sigma Tau, and Eta Kappa Nu.

Herbert J. Reich

J. C. May
Henry E. Singleton (A'47-SM'50) was born on November 27, 1916, at Haslet, Texas. He received the S.M. and S.B. degrees in electrical engineering from the Massachusetts Institute of Technology in 1940. From 1941 to 1946 he worked for the Navy, first with the Naval Ordnance Laboratory and later as a member of the Operations Research Group of the Office of Scientific Research and Development, attached to Cominch, U. S. Fleet. After the war he spent two years with the International Telephone and Telegraph Corporation, in New York, N. Y. In 1948 he returned to MIT, where he has been engaged in research on digital computers and nonlinear networks. He is now an instructor in electrical engineering at MIT.

Mr. Singleton received the William Lowell Putnam prize in mathematics in 1939. He is a member of Eta Kappa Nu, and is serving on the Annual Review Committee and the Technical Committee on Modulation Systems of the IRE.

J. G. Skalnik (S'46-A'48) was born in Medford, Okla., on May 30, 1923. He received the B.S. degree in electrical engineering from Oklahoma Agricultural and Mechanical College in 1943, and the M.E. degree in electrical engineering from Yale University in 1947. He became an instructor in electrical engineering at Yale University in 1944, and in 1949 was appointed assistant professor. He has been associated with research on split-anode magnetrons, radar signal-to-noise investigations, and transistors.

Mr. Skalnik is a member of the American Institute of Electrical Engineers.

Norman H. Taylor (SM'50) was born in Manchester, England, on November 15, 1916. He received the B.S. degree from Bates College in 1937 and the S.B. degree in electrical engineering from Massachusetts Institute of Technology in 1939. He received his early training and spent the war years at the Western Electric Company in the Test Equipment Development Engineering Group. Since 1947 he has been at the Servomechanisms Laboratory, MIT, doing research and development on electronic computers. He is at present systems engineer on the Whirlwind digital computer.

Mr. Taylor is a member of Eta Kappa Nu and Sigma Xi. He is now serving as a member of the Measurements and Instrumentation Committee of the IRE.

Robert L. Ungvary (S'43-A'45-M'50) was born in Stamford, Conn., on April 17, 1921. He received the B.E. degree in electrical engineering in December, 1942, from Yale University. Following a period of war service as a radar officer in the Pacific area, Mr. Ungvary returned to graduate study at Yale, receiving the M.E. degree in June, 1947. He remained at Yale as a research assistant, engaged in classified project work for the Office of Naval Research, until June, 1949. In July, 1949, he joined the engineering staff of the Raytheon Manufacturing Company and is currently engaged in development of airborne radar equipment.

Mr. Ungvary is an associate of the American Institute of Electrical Engineers and a member of Sigma Xi.

H. William Welch, Jr. (A'47) was born in Beardstown, Ill., on October 21, 1920. He received the B.A. degree in physics and was elected to Phi Beta Kappa at De Pauw University in 1942. After a summer with the Eastman Kodak Company test laboratories, he spent a year at the University of Wisconsin in graduate study, research, and teaching. In 1943 he went to the Harvard University Radio Research Laboratory as a research associate, where he was involved in magnetron research and development. After spending the first six months of 1946 as a part-time instructor of physics at Purdue University he went to the University of Michigan Engineering Research Institute as a research physicist. He is presently concerned with problems of microwave-tube electronics in the Department of Electrical Engineering Electron Tube Laboratory.

Mr. Welch received the M.S. degree in physics at the University of Michigan in 1948. He is a member of Sigma Xi and the American Physical Society.

Wilfrid B. Whalley (A'37) was born in Liverpool, England, in 1908. He moved to Canada in 1919. He received the B.A.Sc. degree from the University of Toronto in 1932, following which he was on the staff of the department of electrical engineering for four years and, in 1936, he received the M.A.Sc. degree.

In 1936 Mr. Whalley was a development engineer at the Radio Valve Company in Toronto.

From 1937 to 1940 he was with the RCA Manufacturing Company in Harrison, N. J., following which he transferred to war work on radar systems and cathode-ray tubes in Canada. In 1943, Mr. Whalley returned to RCA to engage in research on radar and television transmitting tubes and circuits. He was appointed assistant professor of engineering physics at Cornell University in 1947. At present, he is concerned with television research and development at the physics laboratories of Sylvania Electric Products Inc.

Mr. Whalley is a member of Sigma Xi, American Association of University Professors, and the American Physical Society.

H. A. Wheeler (A'27-M'28-F'35) was born in St. Paul, Minn., on May 10, 1903. He received the B.S. degree in physics from George Washington University in 1925. From 1925 to 1928 he pursued postgraduate studies in the physics department of The Johns Hopkins University, and lectured there during 1926 and 1927. He was employed as a laboratory assistant in the radio section of the National Bureau of Standards in 1921, leaving in 1923 to assist Professor Hazelton and later to join the Hazeltine Corporation in 1924. He was in charge of their Bayside laboratory from 1930 to 1937, and advanced to the position of vice-president and chief consulting engineer of Hazeltine Electronics Corporation.

In 1946 Mr. Wheeler opened his own consulting office in Great Neck, L. I., N. Y. He is now also president of Wheeler Laboratories, Inc., an engineering organization engaged in consultation and the construction of special equipment. Mr. Wheeler is a fellow of the American Institute of Electrical Engineers and a member of Sigma Xi.

He received the Morris Liebmann Memorial Prize in 1940, and was a member of the Board of Directors of the IRE in 1934, and from 1940 to 1945.
Reflected Ray Suppression

In line-of-sight microwave communications, destructive interference between the direct and the ground-reflected rays may interfere with the desired service. Although the receiver is situated originally to be in an interference maximum, subsequent atmospheric changes may shift the spatial interference pattern of the source and its image, putting the receiver in a minimum. Diversity reception can be used to alleviate this difficulty. The present note proposes as an alternative remedy that a small screen be set on the ground at the "reflection point" in the path in such a way that the reflected ray at the receiver will disappear almost entirely in theory, and in practice to an extent which depends mostly on the smoothness of the ground plane. The direct wave itself will be only slightly modified. The screen blocks a small part of the reradiation from the ground to the receiver, the design being such that the remainder of the reflected radiation cancels itself to zero at the receiver. Model experiments over an 800-foot transmission path have shown that the scheme is successful.

The foundation for this scheme rests on the fact that the wave field from a point source to a point receiver under free-space conditions becomes zero if part of a Fresnel zone is blocked off in such a way that the remaining diffracted contribution of the zone is unchanged in phase and halved in amplitude. One way to explain the reflection elimination is to use the "method of images." This makes the reflection problem into a free-space transmission problem. The ground plane is removed, there is the source and its image and the screen and its image, and one receiver. To eliminate the image source an opaque quarter-circle whose radius equals the radius of the first Fresnel zone may be erected on the ground. One of the straight edges is on the ground and the other is vertical and exactly centered in the path. The plane of the screen is perpendicular to the path. It is put at the place where the central ray to the image would intersect the ground plane. It may be said that one half of the first Fresnel zone to the image source is blocked by a half-circle; the remaining contribution from this zone is unchanged in phase, and thus the image source is eliminated at the focal point (the receiver). There is a large area around this point where the image is nearly eliminated. It may be noted that a sector of a circle is only one of a large variety of screens which can eliminate a source, or an image source.

In the experiments, a 4,500-Mc transmitter was placed 800 feet from the receiver and 14.3 feet above the ground; the antennas at each end were 4- by 6-inch horns. The receiver could be elevated up and down a 50-foot tower. Numerous tests were made using various shapes and placements of screens. Fig. 1 shows an example of the results obtained. Two triangular screens whose edges were 7.3, 6.6, and 5.4 feet were used for this trial. The figure shows an original recorder tape; time progresses upward on the tape. First, with the path unobstructed, the receiver makes a descent from 4 meters to zero meters (see the height markers on the extreme right). The interference of the reflected ray creates a well-defined pattern. Then the receiver makes an ascent with the two triangular screens eliminating the reflected ray. The exact position for the screens moves along the path as the receiver elevates, therefore the ascent was stopped every half-meter in order to reset the screens. The influence of the reflected wave is mostly eliminated at the receiver and the remaining direct wave has the correct strength, 6 decibels weaker than in the former interference maxima.

The experiments confirm the theory and indicate that trouble with a strong reflected wave can be eliminated by erecting small screens in the path, or when possible by taking advantage of an obstacle already present. In many cases it may be sufficient to reduce the apparent reflection coefficient to the order of six or seven tenths in order to render the reflected wave rather harmless; and to accomplish this much reduction only a very small screen is needed.

A Note on the Synthesis of Resistor-Capacitor Networks

In their paper on the synthesis of R-C lattice networks, Professors Bower and Ordung present a method for realizing maximum gain in a prescribed voltage transfer ratio. The method, in the case when the load is negligible, consists of placing one of the roots of an arbitrary polynomial $F(p)$ so that one of the equality signs in

$$-1 \leq \frac{b_k}{k_{or}} \leq 1$$

holds at the lowest maximum of the prescribed transfer ratio $|A(p)|$ plotted for negative real p. The remainder of the roots of $F(p)$ are then placed arbitrarily within prescribed intervals.

By careful placement of the remainder of the roots of $F(p)$, it is possible to achieve a design having a maximum gain factor with a minimum number of elements. Such a design is obtained by making one or the other of the equality signs in (10) hold at each of the roots of $F(p)$. This can always be done, once k has been chosen for maximum gain or less. The result is that Z_r and Z_t (see (7) and (9)) each have different poles, the total number n being equal to the degree of $F(p)$. Thus the degenerate lattice designed on this basis will contain n capacitors, rather than the $2n - 1$ which result when the remainder of the roots is placed arbitrarily. Since k is generally chosen on the basis of the maximum gain requirement alone, and since

\[\begin{align*}
\text{Fig. 1—Signal-strength-versus-height record showing reflected wave suppression. Height markers on right, zero mark is about 7 feet above the ground. (The break in the record marks an equipment difficulty.)}
\end{align*} \]
it is evident that all of the roots of \(F_i(p) \) should be placed at points in their prescribed intervals where \(|A| = 1/h \). In some intervals, there is an optional choice between two such values of \(p \).

As an example of the method, consider the transfer ratio
\[
A = p^2 + 42p + 3600.
\]

Fig. 1—\(A(p) \) for example of unloaded lattice.

A plot of \(A(p) \) is shown in Fig. 1. It is evident that for maximum gain, \(h = 1/2.1 \) and the critical root of \(F_i(p) \) is at \(p = 0 \). The other root of \(F_i(p) \) can be placed at \(p = -9.7 \) or \(p = -218 \) where \(|A| = 2.4 = 1/h \). Both values are reasonable spread of element values. For the larger value \(F_i(p) = p(p + 218) \).

One then obtains
\[
Z_a = \frac{1}{2.4} \left(\frac{p^2 + 42p + 3600}{p(p + 218)} \right) = \frac{1}{2.4} \left[\frac{1 + 16.5}{p} \right] = \frac{1}{2.4} \left(\frac{1 + 16.5}{p} \right),
\]
\[
Z_b = \frac{(p + 5)(p + 300)}{p(p + 218)} = \frac{1}{p} \left(\frac{6.87}{p} \right) = \frac{80.2}{p}.
\]

From which
\[
Z_a = 0.708 + \frac{6.87}{p},
\]
\[
Z_b = 0.292 + \frac{80.2}{p}.
\]

The resulting lattice is shown in Fig. 2.

Fig. 2—Lattice network, \(F_i(p) = p(p + 218) \).

This lattice is easily reduced to three-terminal form, and the final network (Fig. 3) contains only two capacitors.

Fig. 3—Reduced network, \(F_i(p) = p(p + 218) \). For \(F_i(p) = p(p + 9.7) \) one obtains
\[
Z_a = 0.708 + \frac{155}{p},
\]
\[
Z_b = 0.292 + \frac{141}{p + 9.7}.
\]

The final reduced network is shown in Fig. 4.

Relation of Nyquist Diagram to Pole-Zero Plots in the Complex Frequency Plane*

Although the relation of the familiar Nyquist diagram to pole-zero plots is undoubtedly well known to those whose daily work takes them on frequent excursions into the complex frequency plane, it is neither immediately obvious nor commonly mentioned.

Fig. 4—Reduced network, \(F_i(p) = p(p + 9.7) \).

Fig. 1—Closed-loop system.

The closed-loop system of Fig. 1 has a gain, with feedback, of \(A/1 - AB \). The Nyquist criterion for stability states that the system is stable if a polar plot of \(AB \) does not enclose the point \((1, 0) \). On the other hand, the system is known to be stable if the complex gain \(E_o/E_i \) does not have a pole in the right half of the complex frequency plane \(p = a + j\omega \). In other words, stability is insured if the amplifier with feedback does not give infinite gain to signals of the form \(E_o e^{j\omega t} \) for any positive value of \(\omega \). The equivalence of these two statements is easily shown by an example.

* Received by the Institute, June 12, 1950

Fig. 2—High-frequency equivalent circuit of resistance-coupled amplifier stage.

Consider an amplifier made up of four identical resistance-coupled stages each having the equivalent circuit of Fig. 2. Let the feedback network be a simple resistance voltage divider so that \(\beta \) is a (negative) constant fraction. The gain of the amplifier, and also the gain around the closed loop
\[
AB = \frac{A}{1 + pRC},
\]

have fourth order poles at \(p = -(1/RC) \) (Fig. 3). Contours of constant magnitude of the complex amplitude of the complex frequency plane, unstable if any fall in the right half plane (Fig. 4).

Fig. 3—Pole-zero plot of loop gain \(AB \).

\(AB \) are concentric circles about the point \(p = -(1/RC) \); contours of constant phase shift around the closed loop are radial lines. At the two points indicated in Fig. 3 the magnitude of \(AB \) is assumed to be unity and the phase shift of \(A \) is 45° per stage or a total phase shift in the amplifier of 180°.

Consider now the overall gain with feedback, \(A/1 - AB \). It will have poles for the values of \(p \) for which \(AB = 1 \). The system is stable if these poles all fall in the lower half of the complex frequency plane; unstable if any fall in the right half plane (Fig. 4).

Fig. 4—Poles of over-all gain (with feedback) \(A/1 - AB \) corresponding to points \(AB = 1 \) in Fig. 3.

It remains to relate these plots to the Nyquist plot of loop gain \(AB \) of Fig. 5. This is a simple matter—the gain is a rational function of the complex frequency \(p \) and the Nyquist plot of Fig. 5 is a conformal mapping of the positive \(\omega \) axis of Fig. 4. The first quadrant of the complex frequency plane maps into the shaded area of Fig. 5. Thus the
Elliptically Polarized Waves

In the paper "Antennas for Circular Polarization," by Sichak and Milazzo, an expression is derived for the voltage induced in an arbitrarily elliptically polarized receiving antenna by an elliptically polarized wave. The derivation is based on the fact that the elliptically polarized waves may be assumed to be made up of two linearly polarized components. This expression is equation (2) of the above paper.

\[V = K \left[1 + \frac{2r_0^2}{(r_i^2 + 1)(r_i^2 + 1) - (r_i^2 - 1)(r_i^2 - 1) \cos 2\alpha} \right] \]

where \(K \) is a constant, \(r_i \) is the axial ratio of the receiving antenna, \(r_0 \) is the axial ratio of the transmitting antenna, and \(\alpha \) is the angle between the major axes of the two ellipses of polarization. The (+) sign is used if the senses of rotation of the two antennas are opposite and the (+) sign is used if the senses are the same.

An alternate method of approach, and one which is perhaps simpler and more physically apparent, is to assume that an elliptically polarized wave is made up of two circularly polarized components of opposite sense of rotation, and of the proper relative phase and magnitude. The sense of rotation of the resultant wave is the same as the sense of the larger component. Then

\[r_1 = \frac{R_1 + L_1}{R_1 - L_1}, \quad r_2 = \frac{R_2 + L_2}{R_2 - L_2}, \]

where \(R_1, L_1, R_2, L_2 \) are the right- and left-handed amplitude components of the receiving and transmitting antennas, respectively. Also

\[K = \frac{L_1 + L_2}{L_1 - L_2} \quad \text{for right-handed waves,} \]

\[K = \frac{R_1 + R_2}{R_1 - R_2} \quad \text{for left-handed waves,} \]

The voltage induced at the receiver terminals of an antenna, compared to that which would be induced if both antennas were correctly linearly or circularly polarized, is

\[\frac{V_n}{V_o} = \left| \frac{R_1 R_2 e^{i(\omega t - \gamma)} + L_2 L_1 e^{i(\omega t - \phi)}}{R_1 R_2 e^{i(\omega t - \gamma)} + L_2 L_1} \right| \]

where \(\alpha = -\phi - \gamma \). Expanding,

\[\frac{V_n}{V_o} = \left| R_1^2 R_2^2 + L_1^2 L_2^2 + 2R_1 R_2 L_1 L_2 \cos 2\alpha \right|^{1/2} \]

Usually it is more convenient to express (6) in terms of the axial ratios. Using the relations (3) and realizing that \(R^2 + L^2 = 1 \), (normalizing the power in the wave), we may substitute in (6) and get for the power received relative to the maximum power

\[P_R = \frac{P_o}{V_o^2} = \frac{1}{\left(1 + r^2_1 + (1 + r^2_1) + (1 + r^2_2) (1 + r^2_2) \right.} \]

\[+ \left. \frac{4(1 + r^2_1)(1 + r^2_1)(1 + r^2_2)(1 + r^2_2) \cos 2\alpha}{2(1 + r^2_1)(1 + r^2_2) \cos 2\alpha} \right] \]

\[= \frac{1}{2} \left(\frac{1 + r^2_1}{1 + r^2_1} + \frac{1 + r^2_2}{1 + r^2_2} + \frac{1 - r^2_1}{1 - r^2_1} \cos 2\alpha \right) \]

\[+ \frac{2}{(1 + r^2_1)(1 + r^2_2)} \frac{1 - r^2_1}{1 - r^2_1} \cos 2\alpha \]

The (+) sign is used when the two antennas have the same sense of rotation and the (−) when the sense of rotation is opposite. This result (7) is the same as Sichak and Milazzo's (1). This is made obvious by squaring both sides of the latter expression, and dividing both sides by \(2K^2 \), since \(P_o = 2K^2 \).

This derivation has as an interesting and useful by-product, equation (6). This latter form may be conveniently used for many cases, particularly where it is easier to deal with right- and left-handed components, rather than axial ratios. For instance, consider two antennas linearly polarized in the same direction. Here \(R_1 = R_2 = L_1 = L_2 = 0.707 \) and \(\alpha = 0 \). Therefore \(V_o/V_n = 0.25 + 0.25 \cos 2\alpha \). If on the other hand the two antennas are orthogonal, \(\alpha = 90^\circ \), and \(V_o/V_n = 0 \). Similarly if two right-handed circularly polarized antennas are used, \(R_1 = R_2 = 1, L_1 = L_2 = 0 \) and \(V_o/V_n = 1 \), as is also the case for two left-handed antennas. If, however, one left- and one right-handed antenna are used, \(R_1 = L_1 = 0, R_2 = L_2 = 1 \), or \(R_1 = L_2 = 1, R_2 = L_1 = 0 \), or \(R_1 = L_2 = 0, R_2 = L_1 = 0 \), and \(V_o/V_n = 0 \).

The case for optimum power transfer is readily determined from (6) or (7). The conditions are \(\alpha = 0 \), and either the polarization parameters \(R_1, R_2, L_1, L_2 \) in (6), or the sense of rotation of the two antennas is the same and \(r_1 = r_2 \) in (7).
condition can be approximated by properly modifying this ideal surface to eliminate the spherical aberration, and by utilizing steps to bring the modified surface back to the vicinity of the ideal surface, wherever the deviation becomes excessive. Surface \((X, Y)\) is chosen to minimize the chromatic aberration.

The dotted line represents the path of a ray going from \(P\) to \((X_1, Y)\) to \((X, Y)\) to a plane perpendicular to and cutting the axis at the vertex of the surface \((X, Y)\).

Fig. 3—Cross section \((AA)\) through either antenna.

In order that the lens shall be achromatic, the difference measured in wavelengths, between the dotted and the axial paths, should not change with frequency. While this can not be done exactly, it can be accomplished for two frequencies. If these two frequencies are located near the edges of the frequency band in which the lens is to operate, the lens can be made approximately achromatic over the whole band. That is,

\[
\begin{align*}
\phi(y) + a + x + x_1 + l - x = \phi(0) \\
\frac{a}{\lambda_1} - \frac{l}{\lambda_1} = \phi(y) + a + x \\
\frac{x_1 + l - x}{\lambda_2} = -\phi(0) - \frac{a}{\lambda_2} - \frac{l}{\lambda_2}
\end{align*}
\]

where \(\phi(y)\) is the surface phase shift at points \((X_1, Y)\) or \((X, Y)\)

\(\omega(0)\) is the surface phase shift at point \((0,0)\)

\(\lambda_1\) is the free-space wavelength corresponding to one frequency

\(\lambda_2\) is the free-space wavelength corresponding to the other frequency

\(x_1\) is the wavelength in the lens at \(\lambda_1\)

\(x_2\) is the wavelength in the lens at \(\lambda_2\).

Collecting terms, \((1)\) can be written

\[
x = \frac{x_1}{1 - \frac{1}{\lambda_1} - \frac{1}{\lambda_2}}
\]

or

\[
x = \frac{x_1}{1 - \frac{f_1}{f_2}}
\]

where \(n_1\) and \(n_2\) being the indices of refraction, correspond to the frequencies \(f_1\) and \(f_2\), which in turn correspond to \(\lambda_1\) and \(\lambda_2\) respectively.

This is the equation of the desired curve.

It will be noted that when double constant

is employed, the phase or stepping correction can be applied to either surface \((X_1, Y)\) or \((X, Y)\).

N. I. Korman

J. R. Ford

Radio Corporation of America

RCA Victor Division

Camden, N. J.

Stratospheric-Ionospheric Relationships*

An attempt has been made to determine whether any correlation existed between pressures and temperatures, as found at the tropopause or in the lower stratosphere, and electron densities found in the several ionospheric regions. The original impetus for this investigation arose from the various reported correlations between surface meteorological factors and ionospheric parameters. On the whole, previous studies had attempted a direct correlation generally between the barometric pressure at the earth's surface and critical frequencies of the ionospheric layers. However, as surface pressure is highly dependent upon the mass of relatively shallow air masses (of depth mainly less than 3-4 km in the case of polar air) which in many instances rarely affect higher level meteorological conditions, a new datum level for the study was adopted.

There does not seem to be a one-to-one correspondence between barometric pressure variations at the ground and, for example, those at the tropopause. In the atmosphere, high-frequency wave components (cyclone-waves) are found which generally do not extend to 9-11 km. In other cases, however, it is not known with certainty whether or not the high-frequency components do extend to the tropopause. In any event, it would seem that those atmospheric disturbances which affect the stratosphere may also be present in sufficient strength to affect the ionized regions also.

A correlation might then be attempted between meteorological parameters in the stratosphere (where the magnitude of the high-frequency wave components, found at the surface, is reduced) and ionospheric conditions in the troposphere.

An investigation of this type was made between ionospheric layer critical frequency and \((a)\) temperature and pressure at the tropopause and \((b)\) temperature and pressure at an altitude of 13 km. In undertaking the study, radiosonde and ionospheric data for Washington, D. C., were examined for the period January 1, 1940, to December 31, 1947. The criterion adopted for the definition of "tropopause" was that advocated by Flohn and Penndorf. Thus a tropopause was considered to be that point above which the lapse rate first falls below \(2^\circ K\) per km providing this or a lesser lapse rate continues through an altitude range of 1.5 km or more. Instances where no well defined tropopause existed were not included in the analysis. Ionospheric data were obtained from the CRPL series. Only the critical frequency of the \(F_2\) layer was considered. As radiosonde data are available only at 0430 Greenwich Mean Time and 1630 GMT, only two sets of data per day could be employed.

The investigations reveal no correlation between either the temperature or pressure at the tropopause and the critical frequency of any of the ionospheric regions. Also, no correlation was evident between temperatures at 13 km and the critical frequency of the ionospheric layers.

Considering the pressure at 13 km and the temperature at the \(E\) and \(F_2\) regions, some slight correlation was found in several instances. However, no correspondence was found with sporadic \(E\) conditions. Results of the examination are given below in Table 1.

N. C. Gerson

Air Force Cambridge Research Laboratories

Cambridge, Mass.

TABLE I

<table>
<thead>
<tr>
<th>Ionospheric Region</th>
<th>Correlation Coefficient</th>
<th>Standard Error of Critical Frequency ((\text{MHz}))</th>
<th>Standard Deviation of Pressure ((\text{mb}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) layer, daylight</td>
<td>0.54</td>
<td>0.05</td>
<td>0.27</td>
</tr>
<tr>
<td>(F_1) layer, daylight</td>
<td>-0.37</td>
<td>0.04</td>
<td>2.22</td>
</tr>
<tr>
<td>(F_2) layer, darkness</td>
<td>0.45</td>
<td>0.05</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Appreciation is expressed to Miss A. M. Walter for her careful assistance in performing the computations.

COLOR TELEVISION DISCUSSED AT ELECTRONICS CONFERENCE

Chairman Wayne Coy of the Federal Communications Commission gave the reasons back of the recent decisions regarding color television in speaking at the opening luncheon of the 1950 National Electronic Conference held on September 24-27, at the Edgewater Beach Hotel, Chicago, Ill.

Total registration at the conference was 2,350, well above the figure for the 1949 conference. Some 60 exhibitors occupied all of the space used in previous conferences, and overflowed into the main corridor of the hotel.

"Twenty-Five Years of Progress," was the theme. Many exhibits, including old as well as new equipment, were shown. The exhibit of the IRE Chicago Section was presented in connection with its Silver Anniversary Celebration.

All of the eighteen technical sessions during the conference were well attended. Proceedings of the Conference will be published early in 1951. Most of the 60 technical papers presented have already gone to the editors. The volume may be ordered from the National Electronics Conference, Inc., 852 E. 83 St., Chicago 19, Ill.

Speakers at the meeting included Titus Le Clair, national president of the AIEE, who introduced E. A. McFaul, formerly of Northwestern University, who spoke on the subject, "Is The Engineer Slipping?" The major social event was the Old Timers Dinner in the hotel ballroom at which the IRE Chicago Section was host to many outstanding figures in the electronics industry who had been active and prominent in the field for twenty-four years or more.

 Speakers at the meeting included Titus Le Clair, national president of the AIEE, who introduced E. A. McFaul, formerly of Northwestern University, who spoke on the subject, "Is The Engineer Slipping?" The major social event was the Old Timers Dinner in the hotel ballroom at which the IRE Chicago Section was host to many outstanding figures in the electronics industry who had been active and prominent in the field for twenty-four years or more.

The sponsor of the Wednesday luncheon was The Institute of Radio Engineers. Raymond F. Guy, IRE president and manager of radio and allocation engineering of the National Broadcasting Company, introduced John V. L. Hogan, who spoke on the subject, "What's Behind IRE?" Mr. Hogan prominent investor in the radio and electronics field, was one of the organization's founders. He recounted its early history and outlined plans for the future.

The 1951 National Electronics Conference is scheduled for October 22, 23, and 24 and will be held at the Edgewater Beach Hotel, Chicago, Ill.

PETER MOTE IS ELECTED NEW PRESIDENT OF SMPTE GROUP

Peter Mote, president of the Mote-Richardson Co., Hollywood, Calif., was elected president of the Society of Motion Picture and Television Engineers at a meeting of the Board of Governors which preceded the opening of the organization's 68th annual convention at Lake Placid.

Monmouth Subsection Sponsors Program of Community Service

The Monmouth Subsection of the New York Section of The Institute of Radio Engineers is sponsoring a number of interesting projects as a part of its Community Service program for the year 1950-1951. Included in its program are the following activities: professional assistance in civil defense planning and operating; reconditioning of donated television and radio receiving sets for installation in hospitals and welfare agencies for the use of patients and inmates; courses for laymen in popular electrical subjects, such as "Electricity in the Home," as a part of existing adult education programs; participation in the career counseling program of high schools and junior colleges, featuring vocational guidance in the field of radio electronics; liaison with other professional groups, such as doctors and lawyers, in matters of general interest to the community and of mutual interest to two or more professions; and newspaper columns or articles on the popular aspects of television and related subjects of general interest.

Included on the local IRE Community Service Committee are G. L. Van Deen of RCA Institute; S. D. Robertson and L. E. Hunt, Bell Telephone Laboratories; H. S. Bennett, Watson Laboratories; John L. Slattery and A. Enaurian, Evans Signal Laboratories; George Trad and J. D. Winer.

Monmouth Subsection Sponsors Program of Community Service

The Monmouth Subsection of the New York Section of The Institute of Radio Engineers is sponsoring a number of interesting projects as a part of its Community Service program for the year 1950-1951. Included in its program are the following activities: professional assistance in civil defense planning and operating; reconditioning of donated television and radio receiving sets for installation in hospitals and welfare agencies for the use of patients and inmates; courses for laymen in popular electrical subjects, such as "Electricity in the Home," as a part of existing adult education programs; participation in the career counseling program of high schools and junior colleges, featuring vocational guidance in the field of radio electronics; liaison with other professional groups, such as doctors and lawyers, in matters of general interest to the community and of mutual interest to two or more professions; and newspaper columns or articles on the popular aspects of television and related subjects of general interest.

Included on the local IRE Community Service Committee are G. L. Van Deen of RCA Institute; S. D. Robertson and L. E. Hunt, Bell Telephone Laboratories; H. S. Bennett, Watson Laboratories; John L. Slattery and A. Enaurian, Evans Signal Laboratories; George Trad and J. D. Winer.

NOTICE

Effective January 1, 1951, the Student dues will be $5.00 per year. Payments at the old rate of $3.00 will be accepted through December 31, 1950. All payments received thereafter will be at the new rate.
25 Years of IRE in Canada

1925—Canadian IRE Section Formed

The IRE was introduced to Canadian radio engineers on October 2, 1925, in Toronto, when a Canadian Section was organized by C. L. Richardson, the first Chairman, who was elected along with Dugald Hepburn, Vice-Chairman, W. J. Hevey, Secretary, C. C. Meredith, Assistant Secretary, and G. F. Eaton, Treasurer. From this beginning with some 53 members and guests present, IRE in Canada has grown constantly until there are now 958 Fellows and members of all grades. Sections and Subsections have been formed in six additional cities, and student branches at the Universities of Alberta and Toronto. Much credit for the advancement of IRE in Canada goes to Ralph A. Hackbusch, Fellow, 1937, who was Chairman of the Toronto Section, 1932–1933; Director, 1938; Vice-President, 1944; Director-At-Large, 1945 and 1946.

1950—Present Canadian Council IRE

The Canadian Council of the IRE was formed in 1945 to co-ordinate the activities of the various Canadian Sections in National matters. This plan formed the basis of the organization now in effect in the eight IRE regions. Despite the obstacles of distance, the Canadian Council has performed its function well.
Present Canadian Council IRE (cont'd.)

Toronto Section, 1925

J. C. Bernier Chairman, 1950–1951
A. B. Oxley Chairman, 1949–1950
B. R. Tupper Chairman, 1950–1951
A. H. Gregory, Chairman, Organizing Committee

Montreal Section, 1937

The Montreal section was organized by a group which had previously helped to organize the Canadian (now Toronto) Section twelve years earlier. A. M. Patience was the first Chairman.

J. T. Henderson Chairman, 1950–1951
A. W. Y. Desbrisay Chairman, 1949–1950
S. G. L. Horner Chairman, 1950–1951
R. D. Cahoon Chairman, 1949–1950

Ottawa Section, 1944

Engineers and scientists in the Armed Forces Headquarters and the National Research Council formed the Ottawa IRE section, with F. P. Park as acting Chairman, followed by Col. W. A. Steele.

F. P. Kehoe Chairman, 1950–1951
G. W. Foster Chairman, 1949–1950
L. R. Harris Chairman, 1950–1951
A. H. Sievert Chairman, 1949–1950

Vancouver Section, 1950

The newest Canadian section has just been formed under the organizing hand of A. H. Gregory and the Chairmanship of B. R. Tupper. This fills a long expressed need for IRE on Canada’s west coast.

Winnipeg Subsection, 1945

Formed as a subsection of the Toronto Section under W. A. Cole as chairman, this group now plans to apply for full Section status. This is an indication of its growth and activity in the years since its formation.

London, Ont. Section, 1944

With Professor G. A. Woonton as the Chairman, the first London Section meeting achieved distinction by viewing its charter on a local television hook-up. From this beginning, it too has constantly grown.

Hamilton Subsection, 1947

Also a subsection of the Toronto section, this group was formed under the Chairmanship of T. S. Farley. It was then and has continued since as one of the most active IRE groups in Canada.
BELL SYSTEM WILL EXPAND ITS TELEVISION NETWORK CHANNELS

The Long Lines Department of the American Telephone and Telegraph Company made a 50 per cent increase on September 30 in the number of cities connected in its television networks.

This expansion, the largest since the eastern and midwestern TV networks were joined in January, 1949, will add 14 cities to the present 28-city networks and, for the first time, carry live network television as far south as Jacksonville, Fla., and as far west as Omaha, Neb.

The route extensions will give network service to 19 more television stations covering areas populated by about 12 million people. The present Bell System network serves 54 stations in areas populated by about 60 million people, according to estimates in the industry. Latest estimates indicate that on September 30 better than 80 per cent of the nation's seven and one-half million television sets will be in range of live network broadcasts.

Five of the new network cities are in the southeast: Greensboro and Charlotte, N. C.; Jacksonville; Atlanta, Ga.; and Birmingham, Ala. Two are in the central area: Indianapolis, Ind. and Louisville, Ky.; and seven in the west central area, including Rock Island, Ill., Davenport and Ames, Ia., Omaha, Kansas City, Mo., and Minneapolis and St. Paul, Minn.

IRE VANCOUVER SECTION FORMED; TORONTO CELEBRATES 25TH YEAR

At its September meeting the Board of Directors approved the establishment of the new Vancouver Section, as the fifty-seventh IRE Section, to include the Province of Saskatchewan, Alberta, British Columbia, and the Yukon Territory. The addition of the Vancouver Section brings to a total of five the number of Sections in Canada.

The territory comprising the Vancouver Section was relinquished by the Toronto Section, which this month is celebrating the Silver Anniversary of its founding as the first IRE Section in Canada and one of the first seven Sections established by the Institute.

WESTERN UNION COMPANY HAS DEVELOPED AMPLIFIER CABLE

The Western Union Telegraph Company has recently revealed the development of the world's first submerged transatlantic cable amplifier. As the result of the invention the annual capacity of Western Union's cable system will be increased by more than one hundred million words and will have far-reaching effects in greatly reducing the frequency demands in the crowded global radio spectrum. The first amplifier will be inserted in a transatlantic cable 1,800 feet deep, at the bottom of the ocean, northeast of Newfoundland in July, and at least double the speed of that cable.

The 3-stage amplifier, developed under the direction of H. P. Corwith (MTZ-SM/43), vice-president of Development and Research, will be equipped with three complete sets of vacuum tubes. An electrically operated switch, controlled from a shore station, will change tubes in the event of tube failure.

While in recent years a few submerged telephone repeaters have been laid in short cable, this is the first amplifier developed for the cables now spanning the Atlantic.
MUNITION BOARD ANNOUNCES SECURITY PROCEDURE CHECK

The Munitions Board has established uniform policies, procedures, and standards to aid industry in clearing facilities and personnel to handle classified material in dealing with the Army, Navy, or Air Force on military contracts.

Regulations covering the uniform procedure have been issued to the armed services. A central security file has been established to maintain data on all individuals, organizations, facilities, factories, etc., that have been cleared by the military departments.

The new regulations are designed to eliminate past duplications necessitated by requiring the dollar shortage, and do not reflect any lack of demand for United States products, the Commerce Department said.

STATISTICS

A record production of television receivers was set in August by the radio-television manufacturing industry, according to estimates projected from RTMA member-company production reports. RTMA estimates show a total of 702,287 TV receivers manufactured by the industry during a four-week period ending August 25. Radio set production was also at high level with 1,203,447 being produced during the month. During the fourth week 187,891 TV sets are estimated by RTMA to have been manufactured. Rectangular TV picture tubes accounted for 47 percent of the July cathode-ray tube sales to set manufacturers, according to the dollars and the trend of reports to RTMA. Due to the vacation shutdown of manufacturing plants, July sales of cathode-ray tubes of 16 inches and larger in size, picture tubes 15 inches and less accounted for only 15 percent of the July sales, while picture tubes 15 inches and larger amounted to slightly more than 11 percent.

COMMITTEES AGREE ON 50 MICROVOLTS AS GOAL IN FM RADIATION REDUCTION

Members of the R6 Committee on FM Receivers and the FCC on Radio Interference, Section of the RTMA Engineering Department, on Tuesday, September 12, adopted a resolution recommending that by June 30, 1951, all FM receivers in production comply with a radiation limit of 50 microvolts per meter, at 100 feet.

The committee also adopted a resolution recommending that standards also be adopted, following appropriate early study, for television receivers and radiation limits were suggested of 50 microvolts per meter at 100 feet on channels 2 through 6, and 150 microvolts per meter at 100 feet on channels 7 through 13.

Curtis Plummer, FCC Chief Engineer, while not committing the Commission to the acceptance of any value, commended the industry for the progress that has been made by its cooperation in the immediate adoption of the recommended standard in the production of FM sets.

Earlier the industry engineers brought out the lack of uniform standards for measuring radiation, and it was agreed that FCC engineers will cooperate with industry engineers in tests to be made in Philadelphia, Chicago, and Washington. An IRE committee is working on standards for such measurements.

NEW FM SERVICE REQUESTED BY MULTIPLEX CORPORATION

The Multiplex Development Corporation petitioned the FCC to change its rules governing FM broadcasting to permit “multicasting” by FM stations. The company has been conducting developmental broadcasts and experiments since June 5 under a Commission developmental license. The plan would permit FM stations to utilize their frequencies for a “supplementary” broadcast service. The company claims this is possible without interference occurring to other FM broadcasts.

Public service uses of the new method were cited, including use of “multicasting” by civic, defense, and educational organizations. The proposed method would also provide a service for transit radio and storecasting, the petition said.

STATES CANNOT CENSOR TELEVISION FILMS

The Third United States Court of Appeals has held that state boards of censors have no right to censor motion-picture films to be used on television programs. The unanimous ruling stated that Congress, and not the individual states, can regulate television broadcasts.

RECORD FACTORY LAY-OFFS IN JULY

The U.S. Department of Labor has reported that the lay-off rate in July in the nation’s factories declined to 6 percent in 1,000 employees, the lowest level in four years. The stepped-up rate of hiring which was reached in June was maintained in July, the Department said. Factories hired workers at a rate of 46 for every 1,000 employees on the payroll.
Kahn Re-elected President of Radio Parts Meeting

Jerome J. Kahn, president of Standard Transformer Corp., was re-elected president of the Radio Parts and Electronic Equipment Shows, Inc., at the annual meeting at the Greenbrier Hotel, White Sulphur Springs, W. Va.

Samuel J. Spector, of Insolune Corp. of America, was chosen vice-president; Lew Howard, Triad Transformer Mfg. Co., secretary; and Charles A. Hansen of Jensen Mfg. Co., treasurer.

The board of directors voted to hold a three-day show May 21, 22, and 23 at the Hotel Stevens, Chicago, Ill., with booths in Exhibition Hall and display rooms on the fifth and sixth floors open from 10:30 to 6 P.M. daily.

United States Plans to Purchase Radios for Possible Use Abroad

The Department of State has revealed that discussions have been held with four radio manufacturers in the purchase of 200,000 small radios for possible use behind the Russian "iron curtain." The plan is aimed at increasing the number of listeners to the Voice of America program.

A supplemental appropriations bill now before Congress contains $2,850,000 in funds for the purchase of such sets in addition to $41,288,000 for new VOA transmitting stations.

Manufacturers interested in the project, according to the State Department, are RCA International; General Electric International; Pilot Radio Corp.; and Emerson Radio and Phonograph Corp. The first three concerns are understood to have submitted models, and Emerson was said to have made a price quotation.

The type of set needed to cover the standard broadcast band and all the international bands up through 22 Mc. Discussions so far have involved battery-operated sets.

Top Government Officials Reassure NAB on Its Plans

Two important Government officials, FFC Chairman Wayne Coy and John Steelman, assistant to the President, have assured the nation's broadcasters through the National Association of Broadcasters that there were no plans presently contemplated to restrict their activities during the current emergency.

Dr. Steelman emphasized that American radio and television broadcasters could expect no controls beyond those self-imposed ones that were employed during the war.

Proceedings of the IRE

IRE People

R. G. E. Hutter (SM'46), head of the electronics research section of the Physics Laboratory, Sylvania Electric Products Inc., Bayside, L. I., N. Y., has been appointed assistant professor at the Brooklyn Polytechnic Institute, where he will conduct classes in electron tube theory and electron optics.

A native of Berlin, Germany, Dr. Hutter was a graduate student in physics and mathematics at the University of Berlin from 1930 to 1936. From 1936 to 1938 he served as a research physicist in the Telefunken transmitter laboratories, and in 1938 and 1939 was chief engineer of station KZIH in Manila, P. I. During 1940 and 1941 he was a graduate student in communication engineering and physics at Stanford University, serving, until he received the Ph.D. degree in 1944, as a research associate in the University's Division of Electronic Optics.

Since then Dr. Hutter has been associated with the Physics Laboratories of Sylvania Electric. He is also a member of the American Physical Society and Sigma Xi.

His course in electron tube theory will include an analysis of the basic operating conditions for microwave generators.

Merle A. Tuve (F'45), of the Carnegie Institution, Washington, D. C., has been awarded a Howard N. Potts Medal by the Franklin Institute for the proximity fuze which helped attain many decisive victories in World War II.

The citation accompanying the award reads: "In recognition of the scientific insight exhibited in the conception of the TV Proximity Fuse and of the administrative ability and practical good judgment shown in the supervision of its development and engineering design."

Dr. Tuve was born in Canton, S. D. He was graduated from the University of Minnesota as an electrical engineer in 1922 and received the M.A. degree the following year. In 1926 John Hopkins awarded him the Ph.D., and honorary D.Sc. degrees were given him by Case, Kenyon, and Williams Colleges in 1948 and 1949. Before joining the staff at Carnegie Institution in 1926, he was physics instructor both at Princeton University and at Johns Hopkins.

Among the honors held by Dr. Tuve are: Commander, Order of the British Empire, the AAAS prize in 1931; Presidential Medal for Merit, 1946; The Research Corporation award, 1947; the John Scott award, Philadelphia; and the Comstock Prize of the National Academy. He is a Fellow of the American Physical Society, and a member of the American Philosophical Society, National Academy of Sciences, American Academy of Arts and Sciences, American Geophysical Union, Phi Beta Kappa, Tau Beta Pi, and Sigma Xi.

Dr. Tuve is editor of the Journal of Geophysical Research and contributes papers to the Physical Review and other scientific journals regarding nuclear physics, geophysics, and biophysics. At present he is doing research relative to the crust of the earth and its early geological history.

John E. Allen (A'23 SM'41), chief of tests for the Pennsylvania Water and Power Company and the Safe Harbor Water Corporation, and known nationally for his contributions to the progress of electrical engineering, died in August at Lancaster, Pa. Mr. Allen, who was 57 years old, had been ill for about three months.

He was best known for his work in developing the high-frequency fault locator. He was a joint recipient in 1935 of a first prize award by the Edison Electric Institute for this work. Another of his inventions was a high-speed frequency indicating meter which permitted instantaneous perception of alternating-current frequency.

Among his other research accomplishments were contributions to the reduction of the effects of lightning on transmission lines; the improvement of governors for hydro turbines; the measurement of radio field strength preliminary to the design of a space radio system; and the design and construction of equipment for carrier current and land wire telephone systems.

He was also a member of the AIEE in which organization he was a Fellow, and was a member of the National Association of Corrosion Engineers, the Instrument Society of America, and the American Association for the Advancement of Science.
IRE People

O. W. Pike (A'26-M'29 SM'43-F'51), manager of engineering in the tube divisions of General Electric Co.'s electronics department, died on October 7 at Ellis Hospital in Schenectady, N. Y. He was 51 years old. Mr. Pike became associated with General Electric Company in 1920.

Mr. Pike, who was graduated from the University of New Hampshire with the B.S. degree in electrical engineering, joined the company as a student engineer. In 1922 he was transferred to the research laboratory to do developing work on small transmitting tubes. He was placed in charge of development of low power tubes in 1924, and later on assumed responsibility for the development of gas and mercury vapor tubes.

Mr. Pike was appointed designing engineer when the vacuum-tube department was formed in 1930. He was then placed in charge of the design and development of both industrial and radio tubes, and when the tube division was created in 1943 he was then named division engineer.

He was chairman of the Joint Electronic Tube Engineering Council when it was formed and continued as a member until his death.

He was named to receive the 1950 Radio Fall Meeting Plaque to have been given during the meeting on October 30–November 1, for his work in organizing JETEC.

Dundas P. Tucker, Captain, U. S. Navy (A'36-SM'46) has been appointed Director of the Navy Electronics Laboratory, located on Point Loma near San Diego, Calif. This Laboratory is responsible for a large portion of the research and development work of the Navy Bureau of Ships in radio, radar, acoustics, and allied fields. His previous assignment was Director of the Electronic Design and Development Division, Navy Bureau of Ships.

Captain Tucker's electronics activities cover a span of more than thirty years. He received the B.S. degree from the U. S. Naval Academy in 1925, and the M.A. degree from Harvard University in 1934.

During World War II Captain Tucker was responsible for the radar and guided missiles program of the Navy Bureau of Ordnance. He was the originator of the Navy's "Bat," the first automatic guided missile to see regular service use. He was awarded the Legion of Merit for these war services.

Hector R. Skifte (A'31-M'36-SM'43), president of Airborne Instruments Laboratories, Inc., Mineola, L. I., N. Y., has been appointed chairman of the Committee on Navigation of the Department of Defense Research and Development. Norman L. Winter (A'47-M'47), assistant to the vice-president and general sales manager, Sperry Gyroscope Co., Great Neck, L. I., N. Y., has been appointed a member of the committee.

Dr. Skifte, who has been a member and vice-chairman of the committee since its formation in June, 1946, has been serving as acting chairman for the past six months.

During World War I he was associate director, Airborne Instruments Laboratory of Columbia University, Division of Research.

Dr. Winter has been associated with the Research and Development Board since its formation, serving as executive director of its Committee on Electronics from its formation in August, 1946, until May, 1949, and as a consultant since then. He has served as a colonel in the Air Force during World War II and his last position was as Chief Plan Section, Electronic Subdivision, Engineering Division, Air Materiel Command. He has been with Sperry Gyroscope since he left the Committee on Electronics.

Donald G. Fink (A'35-SM'45-F'47) is another member of the committee, while W. J. Merchant (SM'47) is executive director of the Committee Secretariat which carries on the work of the part-time committee.

Vladimir K. Zworykin (M'30-F'48) has been awarded the 1950 Progress Medal of the Society of Motion Picture and Television Engineers, the highest honor granted by the Society for significant scientific contributions in a new field. His basic research and developments have helped make television a present-day reality.

Dr. Zworykin received the award at the 68th semiannual convention of the SMPTE at Lake Placid, N. Y. He is vice-president and technical consultant of the RCA Laboratories Division, Radio Corporation of America.

John H. Howard (SM'50) has been named a member of the staff of the Research Division of the Burroughs Adding Machine Company in Philadelphia, Pa. Until recently he had been a consultant in the field of electronic control systems.

Mr. Howard, who holds the B.S. degree in electrical engineering from Kansas State College, received an appointment in 1935 as a research associate at the Massachusetts Institute of Technology, where he received the M.S. degree in electrical engineering in 1939.

After completing three years of service with the U. S. Navy in 1946, he was Director of Development at Engineering Research Associates and was later associated with the Sperry Gyroscope Company. He is also a member of the AIEE, Sigma Xi, and Phi Kappa Phi.

Charles E. Appar, a pioneer radio operator, died recently at his home at Westfield, N. J., at the age of 85 years. During the first World War Mr. Appar aided the United States government in detecting subversive messages from a German radio station located at Sayville, L. I., N. Y. He recorded code messages from the station which was said to be broadcasting information to German submarines on the movements of neutral ships, and caused the government to seize the station.

Mr. Appar, who was born in Gladstone, N. J., attended Wesleyan University. He was associated with the New York Life Insurance Company, and was a salesman before he became an executive for the New York brokerage firm of Spencer Trask and Company. His hobby was astronomy and he wrote for the publication of the Royal Canadian Astronomical Society, and other periodicals.

Mr. Appar joined The Institute of Radio Engineers as an associate in 1913, but later resigned his membership.
Norman E. Wunderlich (M'39) has been elected vice-president and general manager of the Link Radio Corporation, N. Y., and will be in charge of all company activities. Frederick T. Budelman (A'41) has been named vice-president in charge of engineering and research, and as assistant to Mr. Wunderlich.

Since last July Mr. Wunderlich has been associated with Link Radio Corp., in the establishment of a Chicago office and service center, and in organizing a sales-engineering force throughout the Middle West.

He has been active in the radio and electronic industry for over 30 years. Previously, he had been connected with the administrative, executive, and engineering management of Moogola, IT&T Corp., and Federal Telephone Radio Corp., and was a co-owner of the Rauland Corp., director of engineering and research for the Victor T.liking Machine Co. and RCA Victor Co., vice-president of Lear, Inc., and founder and owner of Wunderlich Radio Corp.

Sam Norris (A'47) has been elected president of the Ampex Electronic Corp., Brooklyn, N. Y. Previously, he had been executive vice-president.

He has been closely associated with the growth of Ampex, which for over twenty years has been a leading manufacturer of power and transmitting tubes and is a pioneer in the ultra-high-frequency field. Its newest developments include a new-type rotating anode X-ray tube, germanium, magnetrons, and power tubes.

Mr. Norris was graduated from Cornell University with the B.A. degree in 1927.

John H. Ganzhenhuber (A'42), formerly manager of broadcast sales for Western Electric Co., has been appointed vice-president in charge of the sales and product development of Standard Electronics Corp., wholly owned subsidiary of Claude Noon, Inc. He will supervise Standard's national sales program and be responsible for equipment development. His work will have particular emphasis on the television broadcast field.

In addition to handling Western Electric's broadcast sales operations, Mr. Ganzhenhuber took an active part in Western Electric's radar program for the Armed Forces during the war. Prior to this he was field sales engineer and district manager of broadcasting sales for Graybar Electric Co. for nine years. This latter organization will distribute Standard Electronics' entire line of television, AM, and FM broadcast equipment.

Mr. Ganzhenhuber, who was born on September 19, 1909, was graduated from the University of Southern California in 1933 with the B.S. E.E. degree.

Adriano A. Pascucci (SM'48), director of the research laboratories, Radio Hispano Suiza, Barcelona, Spain, has been awarded, together with H. W. Stauffe, the first "Booone's Prize" at the annual general Board of Directors' meeting of the Associazione Elettronica Italiana in Milan, Italy, in April. The award will be given annually by the Associazione Elettrotecnica Italiana for outstanding achievements in the field of experimental research on dielectrics.

Dr. Pascucci's and Dr. Stauffe's contributions to the knowledge of dielectric properties of ceramic materials include development and experimental tests on ceramic titanates, and a system of frequency modulator realized with a titinate nonlinear capacitor, presented in October, 1947, at the international congress for the celebration of the 50th anniversary of Marconi's discovery of radio, which was held in Rome, Italy, from September 28 to October 5. In 1948 Dr. Pascucci joined the Radio Hispano-Suiza as research director, where he is now engaged in Industrial Television research. He is also a member of the Acoustical Society of America, the American Institute of Physics, and the Associazione Elettrotecnica Italiana.

Mr. Spittal is a graduate of the University of Toronto, receiving the B.A.Sc. degree in 1927 and the electrical engineering degree in 1933.

William S. Dawson (A'39), formerly with Headquarters, Airways and Air Communications Service, Washington, D. C., has arrived in Tokyo for assignment to Headquarters, 1908th AACS Wing. He has been assigned duties as Weather Communications Advisor in his new organization.

He will make frequent field trips all over the Far East area, "trouble shooting" weather communications facilities. In Washington Major Dawson was Facsimile Project Officer for the AACS.

G. F. Callahan (A'39) has been appointed to a supervisory position in General Electric's cathode-ray tube division. A native of Elk Point, S. D., he was graduated from the University of Nebraska in 1921 with the B.S. degree in electrical engineering.

In 1931 he joined the Ken-Ray Tube and Lamp Corporation at Owensboro, Ky., where he worked on the design of receiving tubes and served for four years as the Works Manager of the Bowling Green manufacturing plant. He had been engaged in the design, development, and manufacture of lamps and electronic tubes for several manufacturing concerns.

When GE acquired the Ken-Ray tube business, Callahan became active in the development of new miniature and cathode-ray receiving tubes. In 1948 he was appointed division engineer of the cathode-ray tube division with headquarters in Schenectady. When the cathode-ray tube plant was built in Syracuse, he moved to Electronics Park in the same capacity as division engineer.

Milton A. Chaffee (M'49), field supervisor for Airborne Instruments Laboratory, Mineola, L. I., N. Y., who as an electronics expert was assigned by the U. S. Air Force to the Berlin Airlift to help establish its famous record of 1949, has been sent to the Far East to aid the USAF.

Mr. Chaffee has been with the Airborne Instruments Laboratory since 1945. Formerly he was associated with the Radiation Laboratory at MIT for three years. He is a graduate of the University of California, where he also did graduate work.

New appointments at Bendix Radio Division, Bendix Aviation Corporation of Baltimore, Md., include that of R. B. Moon (A'42) who has been named assistant general sales manager. J. W. Hammond (A'39-SM'45) has been transferred to the Fries Instrument Division of Bendix Aviation Corp. as director of sales, and R. L. Daniel (A'40) will continue as manager of aviation radio sales, the company has announced.

S. M. Decker (A'45) has been appointed assistant chief engineer of the Television Department of Air King Products Co., Inc., Brooklyn, N. Y., manufacturers of radars, wire recorders, and television receivers. Mr. Decker has been a prominent member of the radio field since 1939, and formerly was assistant chief engineer at Garod Radio Corp.
Ionization Chambers and Counters by D. H. Wilkinson
Published (1950) by Cambridge University Press, 51 Malden Ave., New York 10, N. Y. 255 pages + index + 16 pages. 79 figures. $5.81. $4.50.

The advanced reader in the growing literature of nuclear science has available relatively few specialized books on the instruments of the field. Since the war many engineers interested themselves in Geiger counters and ion chambers; thus this new book on the subject of these instruments will probably be eagerly sought, the more so because there are so few books of its type and because nuclear instrumentation is undergoing rapid development so that books in the field age quickly.

Engineers will not find Wilkinson's book aimed in their direction. Basically, the approach is one of developing the principles of Geiger counters and ion chambers. Much attention is given an analytic technique so that the engineer will find he has to brush up on his physics to follow the arguments. The mathematics are quite straightforward and should present no difficulty. In spite of the theoretical nature of many pages in the book and the involved intricacies of the Geiger counter mechanisms, the reader will find that considerable technology has been woven into the treatment. This is most welcome especially as the author tends to strip away from Geiger counters the mystic ritual which so long attended their construction.

Professor Wilkinson has focused his treatment upon the principles of instrumentation, particularly upon the Geiger counter and ion chamber, to the exclusion of any description of the crystal counter and some of the more recent nuclear detection devices. None the less, the book is very complete and well organized with respect to the more conventional counting devices.

New Publications

The titles of the publications have been grouped in the following broad categories: Books, survey articles, instrumentation, electron optics, related instruments, and applications. Within each group the arrangement is alphabetical, and within each year it is alphabetical by author.

Each reference is consecutively numbered, and a special author index refers to these numbers. Only those papers having a direct bearing on electron microscopy and published after January 1, 1950, have been included. Semiscientific, popular accounts, and patent literature have been omitted.

Heaviside's Electric Circuit Theory by H. J. Josephs
Published (1950) by John Wiley and Sons, Inc., 440 Fourth Ave., New York 16, N. Y. 113 pages + index + viii pages. 15 figures. $4.25.

This book, one of the series of Methuen Monographs on Physical Subjects, although small physicists may find it easily in the coat pocket) contains a worthwhile amount of material having to do with the methods introduced by Heaviside for solving the differential equations of electric circuits. It is by now becoming possible to take a reasonably dispersive view of the field of the operational calculus without hindrance from the violent controversies that raged over it in its early days.

Such a view leads one to the conclusions that Heaviside was unquestionably a genius, that he and pure mathematicians simply did not approach compatibility, and that his unorthodox and sometimes intuitive methods led to striking results and probably goaded the pure mathematicians on in directions they might not otherwise have travelled, with the result that today Heaviside's procedures may be justified by processes of adequate mathematical rigor.

It then becomes a matter of preference as to whether the present-day workers stay with Heaviside's formalism, taking all the risks of trying to follow a genius in his thought processes, or use the more humdrum procedure on the Laplace transform and associated complex variable theory. The reviewer must confess a preference for the latter approach, and with it the possibility of bias.

The book is based on a series of out-of-hours lectures delivered to engineers of the Post Office Research Station. It begins with a review of the classical solution of the differential equations in terms of given boundary values. From there Heaviside's expansion method is introduced and applied to various cases. A theorem only recently discovered among Heaviside's papers is then demonstrated and used to obtain many further results. Apparently Heaviside himself did not use the theorem in this way. The theorem is by now a well-known one, having been rediscovered at various times. What was not so well known was the fact that Heaviside had been thinking along such lines. The book closes with a chapter outlining the connections between the Heaviside operational approach and the modern mathematical procedures.

One minor objection that may be raised concerns the practice of writing the operational equation as an equation with an ordinary equality sign. Either a special symbol or a functional notation would seem to offer less possibility of confusion and would have ample precedent. Such criticism should not however be allowed to hide the fact that the book fulfills its avowed aim in a most commendable manner.

S. N. Van Voorhis
University of Rochester, Rochester, N. Y.

Atomic Physics by Wolfgang Finkelburg

This book attempts to present a connected account of the present state of our knowledge of the structure of matter from elementary particles up to the latest concepts of the solid state, at a level suitable for seniors and graduate students in science or engineering. The author has stressed the meaning of experiments and theories and the interrelations between such seemingly divergent fields as atomic, molecular, nuclear and solid-state physics, without plunging the reader into a morass of mathematical or experimental details.

Following two chapters in which the groundwork for the discussion is developed with the introduction of the fundamental notions of atomic theory and of the elementary particles, Professor Finkelburg gives an unusually readable account of the development of spectroscopy and the Bohr theory. In Chapter 4 he introduces quantum mechanics, pointing out just where the Bohr theory proved inadequate, and where the quantum theory scored its greatest successes.

The final section of this chapter deals with the achievements, limitations and philosophical significance of quantum mechanics. The fifth chapter (92 pages) is devoted to nuclear physics, and the final two chapters are concerned with molecular physics and atomic physics of the liquid and solid state.

Each chapter is provided with an extensive bibliography, but specific references to original papers and mathematical derivations are generally lacking. While these omissions would seriously impair the value of the book as a text or reference work, they do make it more readable. In the opinion of this reviewer the book should be an excellent one for an engineer or scientist who wishes to bring himself up to date on the whole subject of modern physical thinking. In this respect I believe it fills a long-felt want.

The book appears to be unusually free of errors or misprints and only occasionally was I conscious of the fact that it is a translation from the German. The author has taken great pains to bring his material up to the minute and should be congratulated on a splendid job.

J. B. Horner Kuper
Brookhaven National Laboratory
Upton, L. I., N. Y.

Primary Batteries by George Wood Vinal

This is a new book, on a subject which has for long been in need of comprehensive treatment such as is incorporated in the twelve extended chapters of this work. In our recollection it is the only thorough treatment of primary batteries in many years covering history, theory, materials, chemical reactions, manufacture and operating char-
The Principles of Television Reception by A. W. Keen
Published (1949) by Sir Isaac Pitman and Sons, Ltd., London, 304 pages +5-page index +10-page appendices +6 pages. 335 figures. $20/£9.50.

This book was originally written for the engineers of the picture transmission manufacturer's servicing organization. It was designed to teach them the basic principles of television reception, including developments in color television, in a qualitative and theoretical fashion, i.e., without being involved in numerical and design details. It can also be recommended as a text for the general technical reader. Particular care has been taken to avoid mathematical complication, and the fundamental derivations have been placed in an explanation formal.

The electrical circuit material is well presented, and a background chapter on basic signal and circuit theory prepares one for the later discussions. There is also a Back-

ground chapter on receiver testing, which is hardly enough instruction for a service man, but gives a good outline of the general principles in this aspect of the art. Another background chapter outlines the complete television process from the original scene on, and presents major British and American broadcast standards. The treatment becomes more sketchy when it comes to discussion of the visual performance of the receiver.

The book covers much of American as well as British practice in receiver design. The major difference in relation to two problems, namely, the number of simultaneous channels in use, and the consequent importance of image frequency response and local oscillator radiation in the American receiver, are covered rather briefly for the American reader.

In contrast with the general trend of the book to start from basic principles, the chapter on antenna theory and the discussion of colorimetry assume a higher degree of sophistication on the part of the reader. It is of course a part of a textbook treatment of colorimetry into five pages, but the naive reader, if he also sees other material on this subject, will be puzzled by the scaling of the three chromaticity diagram coordinates into equal units of brightness.

It is indicative of the rapid recent development in color television (characterized with apparent British understatement as "on a limited scale") that the book was concluded in 1947, the descriptions of the color systems are now fairly well-out-of-date.

Pierre Nertz
Bell Telephone Laboratories
New York 14, N. Y.

Patent Practice and Management for Inventors and Executives by Robert Calvert
Published (1950) by Scardale Press, Box 340, Scardale, N. Y. 331 pages +15-page index +14-page appendix, 6 x 9½, $5.00.

Written by Robert Calvert, Ph. D., various chemist, college professor, industrial research director, and patent attorney, the book has been prepared for inventors and executives, as its title implies. It is useful also for engineers engaged in industry. It includes information on applications, patents, their processing, and their handling to a degree desirable for executives, supervising engineers, and independent inventors, and to a lesser degree to others employed in industry. The various subjects are covered in great detail as the intended readers are likely to be able to absorb, but not in the full and thorough fashion of books written for a patent attorney.

For the executive, there are chapters on license of patents, misuse of patents, utilization of patents without license, agreement, or suit, measure of liability for infringement, tax law involved in patents, and foreign patents, their advantages and disadvantages.

For the engineering supervisor there are chapters discussing the phases of patent procurement necessary to understand how engineers can best co-operate in the patent aspects of their work to secure protection of their technical advances.

For the average engineer, besides the patent information, items of special interest occur in chapters on who is the inventor, special incentives for inventors and executives, and patent rights of employers and employees. For the independent inventor, who is his own business executive as well as design and research engineer, most of the book is pertinent to his interests.

The book will not suffice to dispense with a patent attorney. It will, however, answer many questions that come to mind, when the patent attorney is not available, and supply valuable information that a patent attorney will not think of imparting unless asked.

The book is well written and easily readable. It contains a glossary of patent terms, an appendix of license and other forms, as well as an index of cases and authorities including authors, and a subject index that appears ample.

Robert D. Monroe

The Radio Manual by George E. Sterling and Robert B. Monroe

This revised edition although still primarily an operating manual has a wealth of background theory and fundamental data. The book is specifically directed at the commercial radio operator. It contains complete and specific operating and maintenance instructions on present-day Marine, Emergency, AM and FM broadcast and television transmitters. Marine and land radio operators and technicians who have the book will find it a useful reference book. The new chapter on Emergency Service Radio Equipment (Police, Fire, etc.) covers the complete systems including antennas and operating procedures. The chapter on Marine Navigation has been revised to include Radar and Loran, as well as ordinary direction find equipment. Chapters are also provided on Radio Frequency Measurements and Broadcast Studio and Control Room Equipment. Backing up the foregoing chapters on actual equipment are well-written chapters on elementary electrical and radio theory. These cover electricity and magnetism, motors and generators, batteries, electron tubes, amplifiers and oscillators, amplification and frequency modulation, radio wave propagation and antennas. The three final chapters cover the state, federal and international conventions and laws of radio. Particular attention is merited by the excellent chapter on television prepared by Dr. T. T. Goldsmith. In 72 pages he covers the general theory and complete details of the overall system including test equipment and operating procedure. The arrangement of the chapters in conjunction with a complete index facilitates the location of material. The book is clearly printed, and the illustrations are excellent. It forms a valuable reference volume for any engineering library and is particularly recommended for students and commercial operators.

John D. Reid
American Radio and Television Inc.
North Little Rock, Ark.
Institute News and Radio Notes

This volume, which represents the combined efforts of a number of members of the staff of Engineering Research Associates, Inc., is a very welcome one, for it is the most up-to-date book on the subject of machine computation and contains a wealth of information not readily available elsewhere.

According to the foreword, the book is based on a report submitted to the Office of Naval Research in fulfillment of a contract which called for "an investigation and report on the status of development of computing machine components." Reflecting this fact, the book presents essentially the results of a broad survey of the field of machine computation, with emphasis on high-speed computing devices.

The book is divided into three parts of about equal length. Part 1 begins with a general discussion of various types of computing machines. Following this are given descriptions of some of the basic computing elements such as flip-flop circuits, switching and gating circuits, converters, buffers, and adders. The material covered in the next three chapters is usually described in terms of the major parts of a computer.

Chapter 5 is given over to a discussion of programming of computational processes and the organization of standards commands for the general-purpose machine. Chapter 6 presents a discussion of several counting systems: binary, decimal, bi-binary, octal, and hexadecimal. The chapter concludes with the basic arithmetic operations in these systems. Chapter 7 is concerned with the basic techniques of numerical analysis. One finds here a very good treatment of various interpolation formulas, methods of numerical integration and the principal methods of solution of ordinary differential equations.

Part 2 is devoted to a discussion of various types of computing systems. Included here are descriptions of desk calculators, punched-card computers, and large-scale digital computers generally. In particular, the ENIAC and the UNIVAC, Mark I and II Calculators, the IBM Selective Sequence Calculator, Bell Telephone Laboratories' Relay Computers, and ERKA Computer are described in some detail. Analog computers are treated briefly in Chapter 11, and only a few pages are devoted to electronic differential analyzers.

The last part of the book contains much useful information about the basic arithmetic components: adders, subtractors, accumulators, and multipliers. The storage devices-delay lines, magnetic tape, punched tape, and cathode-ray storage tubes are treated in varying degrees of detail. The last chapters of the book are devoted in the main to a description of data conversion devices, from digital to analog, and vice versa, and to discussion of other auxiliary techniques and equipment.

The book has many valuable features, as well as some weaknesses. A particularly noteworthy feature is the unusually complete and up-to-date bibliography which is appended at the end of each chapter. Perhaps the most noticeable weakness is the lack of continuity in the treatment of various topics and unevenness in emphasis.

On the whole, the book constitutes a valuable reference book for any student of machine computation and is a "must" for all those who are concerned directly or indirectly with the theory and practice of computing devices.

L. A. Zadeh
Columbia University
New York, N. Y.

Electromagnetic Theory by Oliver Heaviside

This work constitutes one of the most readable classics of modern applied science, in one volume, unabridged. It was published originally in three volumes between 1891 and 1912. Heaviside intended to write a fourth volume, but circumstances intervened, and in publishing volume 3, in 1912, he incorporated material intended for volume 4.

This work incorporates treatment of more than 500 topics, including Maxwell's theory, colorotropic relations, electric stress in air, depth of the electrified layer on conductors, waves from moving sources, waves in the ether, sound waves, Lagrange's equations, etc. Heaviside was the first to investigate mathematically the problem of the coaxial cable. The consolidated work may be regarded as a summary of Heaviside's mature views on these subjects, concluded by challenging paragraphs on "Limitations on Scientific Prediction." The extended Introduction by Professor Ernst Weber is a critical and historical review of Heaviside's life and works.

In his published Notes of 1885-1886, Heaviside discussed the use of the terms resistivity, permeability, capacity, etc., and he expressed alarm as to the "frightful names that might have been given the electrical units by the Germans." The salutary and inclusive language of Heaviside's writings is refreshing after a long time. He enjoyed lofty visions of the Cambridge mathematicians because of their "distressing and soul-destruction of style in doing their work." Actually, Heaviside's unorthodox methods were so sketchily explained as to shock the conservative rigors of the time. Heaviside's writings disclose that he had unbounded admiration for Maxwell's Theory unifying the known facts of electrostatics, electromagnetism, and electrodynamics— at the time of Maxwell's death in 1879, still speculative because no experimental evidence of wave propagation had been given. Henceforth Heaviside asserted himself as a vigorous disciple of Maxwell.

Heaviside, like Edison and a host of other men who achieved renown, in his youth became a telegraph operator and took advantage of opportunities incidental to such employment to study and experiment.

The publication of this work places Heaviside's writings within reach of all colleges and technical schools, as well as of earnest students who realize the direct value of personal libraries.

DONALD MCMICHEL
Communication Engineer
75 Beaver St. New York, N. Y.

Wave Filters by L. C. Jackson
Published (1950) by John Wiley and Sons, Inc., 440 Fourth Ave., New York, 10. 303 pages +2-page index +vii pages. 04. 41 x60. $1.25.

This book is a third edition of one of the handy pocket sized Methuen's monographs on physical subjects and was first published in 1944.

The author's intention is to strike a happy medium between standard treatises on wave filters, and the brief treatments given in texts on general communication engineering. Unfortunately, the result is a rather uninspired collection of formulas for conventional filter types, with slightly more explanation than is found in the usual handbook treatment. No mention is made, either in the text or bibliography, of the modern filter design methods of Guillemin, Bode, Kalinling, and others.

Other filter types are discussed briefly, including coupled circuits, quartz crystals, coaxial lines, and mechanical and acoustic applications.

C. W. CARNARHAN
Sandia Corporation
Albuquerque, N. M.

Circuits in Electrical Engineering by Charles V. Vail
Published (1950) by Prentice-Hall, Inc., 70 Fifth Avenue, New York, N. Y. 497 pages +12-page index +xxv pages. 206 figures. 6 x8 x. $7.65.

This book was written to cover the "demands ... made of electric circuits courses by the typical modern electrical engineering curriculum." "An introductory course in electrical engineering is not essentially essential to successful use of the book. A knowledge of mathematics through basic calculus is assumed." Whether the book is intended for the circuits courses of the whole curriculum or for only the first introductory course is not stated. This is important, since repetitive networks such as filters and transmission lines are not mentioned, although an introduction to transient theory is included.

The book evokes a curious combination of reactions from this reviewer. From many angles it is just another elementary textbook. The tedious detail of many of the analyses (such as reactive power) would seem unnecessary for students of average ability. In fact, the student might well profit by doing the detailed development of such relationships for himself. The problems are humdrum and routine, so that no play of imagination is invited.

Yet there are certain excellent features about the book. The drill is thorough, so that the student should certainly grasp the mechanics of the techniques discussed. The concept of the principle of duality in circuit theory is well discussed. And the balanced discussion of complicated networks from the loop and node points of view should prove extremely useful to the student in his later work. All of the treatment is given for the general case of any frequency including direct current.

In short, the point of view is excellent, the treatment pedestrian.

DONALD MCMICHEL
Hazelwood Engineering Corp.
Little Neck, L. I., N. Y.
Abstracts and References

Prepared by the National Physical Laboratory, Teddington, England, Published by Arrangement with the Department of Scientific and Industrial Research, England, and Wireless Engineer, London, England

NOTE: The Institute of Radio Engineers does not have available copies of the publications mentioned in these pages, nor does it have reprints of the articles abstracted. Correspondence regarding these articles and requests for their procurement should be addressed to the individual publications, and not to the I.R.E.

1468

December

PROCEEDINGS OF THE I.R.E.

The Annual Index to these Abstracts and References, covering those published in the Proc. I.R.E. from February, 1949, through January, 1950, may be obtained for $2.80d., postage included from the Wireless Engineer, Dorset House, Stamford St., London S.E., England. This index includes a list of the journals abstracted together with the addresses of their publishers.

Acoustics and Audio Frequencies

1608

534.231

The Propagation of a Sound Pulse in the Presence of a Semi-Infinite Open-ended Channel: Part 1—W. Chester. (Phil. Trans. A, vol. 242, pp. 527-556; September 5, 1950.) Two problems are discussed. In the first case the sound pulse originates inside a duct between two semi-infinite parallel planes and travels to and beyond the open end, where it undergoes partial reflection. In the second case, the pulse originates outside the duct and approaches the open end from an arbitrary direction. A successive of diffracted waves is created at the far end of the duct, for which in the first case a general formula is derived by operational methods. A simple reciprocity relation is applied to reduce the form of the wave in the duct in the second case. Ultimately the returning wave becomes a steadily plane and splits up into regions of length equal to the distance between the boundary planes, the form of the potential depending on the number of diffracted waves which contribute to each particular region. Explicit expressions are obtained for the potential in the first two regions at the head of the returning wave and for the third region when the pulse originates within the duct. The case of an initial velocity distribution given by the Heaviside unit pulse is treated in detail.

534.232:534.321.9

The Relative Output from Magnetostriiction Ultrasonic Generators—F. M. Leslie. (Jour. Acous. Soc. Amer., vol. 22, pp. 418-421; July, 1950.) Equivalent transmission-line circuits are used to develop formulas for the resonance frequency and output of the simple bar oscillator and the dumbbell type. Approximations in the latter case do not introduce any great discrepancy between calculated and measured values of resonance frequency. The formulas, though applicable directly to the symmetrical dumbbell oscillator, may be easily applied to the asymmetrical oscillator and to those in which the space area is less than the cross-section of the duct.

534.232:534.321.9:521.3.076

534.24:532.582.3

2086 Sound Scattering from a Fluid Sphere—C. A. Dobbs. (Jour. Acous. Soc. Amer., vol. 22, pp. 426-431; July, 1950.) A mathematical solution is obtained for scattering from a sphere of size comparable with the wavelength, with acoustic properties near to those of the surrounding medium. The reflectivity for direct backward scattering is presented as a function of relative density and relative sound velocity. Comparison is made with the Rayleigh limiting case and with the case of a fixed rigid sphere. For diameters comparable with the wavelength, scattering may show pronounced maxima and minima.

534.372:534.213.4

2087 Classical Viscosity in Tubes and Cavities of Large Dimensions—B. P. Bogert. (Jour. Acous. Soc. Amer., vol. 23, pp. 432-437; July, 1950.) A method for the calculation of viscous losses in acoustic wave guides and cavities is described, similar to that used by Carson, Mead, and Schelkunoff for electromagnetic waves. The loss in a plane wave in a round tube is discussed and the results agree with those previously obtained by others. The attenuation for two higher modes in hard-wall guides is computed as well as the decay constants for a cylindrical cavity for longitudinal and pure radial modes.

534.414

2068 Acoustic Resonators of Circular Cross-Section and with Axial Symmetry—A. K. Nielsen. (Trans. Den. Acad. Sci., vol. 10, pp. 70-194; 1950.) For practice in the language on this subject is critically reviewed. The usual approach to resonator theory is inadequate for two reasons. First, the coupling in the resonator is usually assumed constant in order to satisfy boundary conditions. This assumption actually violates the boundary condition at the sharp edges of the coupling aperture, where the velocity becomes infinite (neglecting losses). Secondly, the interaction between the wave emitted from the coupling aperture and that reflected from the cylindrical walls of the resonator has been neglected. An expression for the velocity distribution is derived which satisfies the rise-to-infinity condition at the edge of the aperture and a formal solution of the wave equation is obtained, assuming the velocity distribution in the aperture to be known. The results are used to calculate the resonance frequency of a symmetrical resonator by the energy method. Formulas are also given for symmetrical resonators. The end correction for a flanged open pipe is found to be 0.8220, a slightly better approximation than Rayleigh's value of 0.824. The effects of viscosity and heat conduction are also considered. Experimental results for various resonators and flanged open pipes agree with the theoretical values to within 1 per cent.

534.417:621.395.614

2089 Crystal Microphone for Underwater Sounds—W. Gutiérrez. (Z. Angew. Phys., vol. 1, pp. 206-210; May, 1950.) The microphone consists of 10 Rochelle-salt plates with 45° X-cut mounted between elastic supports so that the sound pressure acts only on the front membrane. Its response characteristic is shown; this is largely independent of temperature change. The method of calibration is described. The measured response of the receiver agrees well with values calculated from crystal data.

534.442

534.442.2:621.397.52

2069 A Continuously Variable Filter—C. G. M. Fent. (Jour. Acous. Soc. Amer., vol. 22, pp. 449-453; July, 1950.) A heterodyne filter for the speech frequency range is described. Band-pass filtering with continuously variable low-pass high-frequency cutoffs or band-elimination filtering with variable mid-frequency and fixed bandwidth are possible. Variable filtering is performed by sub transmission with successive filtering and demodulation. The filter was designed for speech investigations and wave analysis in the range 40-2000 c.p.s.

534.75:534.792

534.78:621.314.26

The radiation field of an electric and magnetic dipole of given moment in an infinitely long straight metal tube of arbitrary cross-section is calculated for E and H waves, and also the total em power flux through the tube.

2.3.361.67 + 2.3.361.611.1

A Combination Slot Antenna and Resonant Transmission Circuit—H. L. Evertson. (Proc. NEC (Chicago), vol. 5, pp. 183–189; 1949.) An impedance transforming and coupling network is usually required between the transmitter and the antenna. The coupling network can be eliminated by using the edges of the antenna slot as the resonant circuit of the transmitter unit. Such an arrangement is especially suitable for wide-band applications.

2.3.361.67 + 2.3.361.710

Impedance and Radiation Characteristics of Slotted-Cylinder Antennas—R. E. Beam and H. D. Ross, Jr. (Proc. NEC (Chicago), vol. 5, pp. 172–182; 1949.) Approximate theoretics expressions are developed for the input impedance and radiation patterns of a slotted-cylinder antenna with a narrow slot of length equal to or greater than the free-space half wavelength, and fed at the midpoint of the slot. The slot antenna is considered as a slot-loaded cylindrical waveguide in calculating the cut-off frequency and phase constant along the slot. A sliding slot is also applied to the determinate of radiation resistance. Experimental results are in good agreement with theory.

2.3.361.67 + 2.3.361.711

Slot Radiators—A. B. Bögovic. (Proc. I. R. E., vol. 38, pp. 803–806; July, 1950.) By an extension of Balbinet’s principle, Balbinet’s model was shown (1335 of 1947) that the field pattern of a slot antenna is identical with that of the corresponding wire antenna, but with the electric and magnetic fields interchanged. A proof of this is now given, using the double-current sheet diffraction formula. Integration of Poynting’s vector over both surfaces of the slot gives a driving impedance of 362.5±210.5. The real part of this is in excellent agreement with experimental measurements. The mutual impedance between slots, necessary for array calculations, is also determined.

2.3.361.710

The Slot Radiator, a Magnetic Dipole for Cylindrical Waves—H. Severin. (Zeit. für Phys., vol. 128, pp. 108–119; June 20, 1950.) The slot radiator is represented as a magnetic dipole and its mode of operation is the theory of propagation of em waves at a small aperture in a perfectly conducting screen. Measured values of the radiation from and magnetic moment of small elliptical-slot radiators disposed respectively parallel and perpendicular to the magnetic field of the incident wave are in good agreement with calculations, provided the linear dimensions of the apertures are $\leq 2a$.

2.3.361.713

The Deflection of Spherical Aberration by a Phased Line Source—R. C. Spencer, C. J. Sletten, and J. E. Walsh. (Proc. NEC (Chicago), vol. 5, pp. 320–333; 1949.) Theory of the spherical aberration by a linear line source is developed. Tests using feeds such as open waveguides, horns, polyrod, slotted and dipole line sources show that if the plasing is suitably adjusted, an aberration scan of a pencil beam over at least $\pm 30^\circ$ in any direction can be achieved.

2.3.361.716 + 2.3.361.724

The Electromagnetic Field in the Vicinity of a Linear Conductor—P. H. Nelson. (Proc. NEC (Chicago), vol. 5, pp. 315–319; 1949.) A study is made of the interference pattern in
the vicinity of a linear conductor, of infinite length and zero resistance, subjected to the action of a plane wave with electric field vector parallel to the conductor. The re radiator field is independent of the incident field except at the surface of the conductor, so that superposition of the incident and radiated fields gives the required field. Experiment was performed at a frequency of 3,000 Mc with some simple types of conductor gave results in close agreement with theoretical calculations.

621.396.67

621.670-621.317.70
The Electronically Driven Ripple-Tank as an Aid to Phase-Field Visualization—Schoole. (See 284.)

621.670-621.392.26

621.670-621.397.62

621.670-621.012

621.670-621.029.64: 533.42
Small-Surface Microwave Diffraction—A. Applebain and P. C. Fritch. (Proc. NEC (Chicago), vol. 5, pp. 442-449; 1949.)

621.670-621.029.62
The diffraction of plane-polarized em waves by reflection from small perfectly conducting surfaces (diameter of the order of \(\lambda \)) is calculated for any angle of incidence by Scheltenoff's "current-sheet" method. A correction for boundary effects is determined. Experimental results obtained with modulated reflex klystron, Type 2K39, as the power source, are in good agreement with theory.

621.670-621.397.61
1057-Foot FM-TV Antenna—(Broadcasting News, no. 59, pp. 8-15; May and June, 1950.) Situated at Atlanta, Ga., a 1,000-W tower supports an RCA Supergain television antenna (1865 Mc, September). Above this is a FM antenna, a 4-section jykon, RCA Type BF-14D. The television antenna has a gain of 11.5, which, with a 5-W power input, gives an effective power of 25 Kw. The FM antenna has a power gain of 6; provision is made for an additional four sections to double this gain. The earthing system consists of radial copper straps 50 ft long, every five degrees, buried 6 in. deep and terminating in copper earthing rods.

621.396.67
A Wide-Angle Microwave Radiator—S. D. Jones. (Proc. IEE (London), Part 11, vol. 97, pp. 255-258; July, 1950.) If a glass sphere of unit radius could be produced with a refractive index \(\mu = 2 \) (or \(\mu = 1 \)) where \(\theta \) is the radial distance from the centre, the sphere would act as a lens with a focus on the surface of the sphere. A microwave anlage has been constructed using such conducting sheets. The lens is free from aberrations as the feed is moved parallel to the incidence field, which is therefore suitable for wide-angle scanning. The measured performance agrees well with theory.

621.670-621.538.31: 538.214
The Effective Permeability of an Array of Thin Conducting Disks—Estlin. (See 2765.)

621.670-621.572.2
Theoretical Investigations on the Radiation Impedance of Transmitting Aerials—J. Patry, (Scheib, Arch. Angev. Wiss. Tech., vol. 16, pp. 138-147, May, 1950.) The theory of Hallman is extended to antenna arrays, in particular to symmetrical dipole arrays for metre waves. The primary amplification constants are the interaction of parallel dipoles with parallel feed and the effect of the spacing between the two elements of a dipole. The complex general formula is simplified for the resonance case treated here. The values of expressions from which the radiation resistance can be found are given in a table referring to 12 different arrays of similar dipoles.

CIRCUITS AND CIRCUIT ELEMENTS

621.314.2.018.424.029.3

621.314.263

621.314.3

621.314.37
The Problem of the Magnetic Amplifier and some Approaches to its Solution—M. Lwischitz-Galik, E. J. Smith, and E. Weber. (Proc. NEC (Chicago), vol. 5, pp. 235-254; 1949.) Various problems connected with a study of the state of art are discussed, and results obtained by using the magnetization characteristic of a core under conditions of assumption of magnetization are discussed. Experimental results are given illustrating the effect of the bias on the ac magnetization curve. Results for half-wave and full-wave magnetization of the core are compared with point by point procedure and by a method based on the representation of the magnetostriction curve by three linear elements. The latter method yields satisfactory results in much the shorter time.

621.314.37
An Extension of a Theory of Magnetic Amplifiers—R. T. Beyer and Ming-Yi Wei. (Jour. Franklin Inst., vol. 250, pp. 25-37; July, 1950.) The theory previously given (2750 of 1949) is extended to large magnetic circuits and the presence of harmonics in the primary circuit, the ac impedance of the secondary being assumed infinite. Experimental evidence supports the calculation of the harmonic effect by a non-linear relation between dc input and second harmonic output, the latter passing through a maximum as the ac is increased. The influence of a third-harmonic component in the primary current is also investigated; for small input currents it may be neglected without serious error.

621.314.37: 081.142
Magnetic Amplifier Studies on the Analog Computer—E. L. Harlau, W. H. Dilligham, D. F. Aldrich, J. T. Carleton, and F. N. McClure. (Proc. NEC (Chicago), vol. 5, pp. 222-234; 1949.) A description is given of an electrical analogue to magnetic circuits and its application to the study of such circuits. Methods of applying the analogue to specific design problems are discussed. The nonlinear characteristics of iron are reproduced by using a multiple-diode nonlinear-resistance circuit, whose characteristics simulate the true \(B/H \) curve by means of 20 successive linear elements.

621.316.842-621.316.86
Wideband Power Resistors—II. L. Krauss and P. G. Olszewski. (Proc. NEC (Chicago), vol. 5, pp. 186-194; August, 1950.) A 30-watt carbon resistor 10 in. long and 1 in. in diameter provided a satisfactory reactance-free 500-ohm termination up to 50 Mc when mounted in free space, but not when near an earthed plane, owing to stray capacitance. A terminated wire-wrap resistor with 8 turns/in. on a former 1 in. in diameter, with carbon resistors connecting it to the earthed plane at suitable intervals so as to satisfy the distortionless transmission-line equation \(R/G = 1/C \), gave very satisfactory results up to 50 Mc.

621.318.57

621.318.572: 621.305.7
A Pulse Length Sorter and Counter—E. H. Parent and R. W. H. Hildebrand. (Proc. NEC (Chicago), vol. 5, pp. 72-92; 1949.) Pulses of random length and spacing, which occur at a rate of up to 100 per minute, can be sorted according to duration into 15 ranges. Sorting considered in detail. Application to rhythmical "rhythmical" ripple control is described, with technical notes.

December

2728
The Problem of the Magnetic Amplifier and Some Approaches to its Solution—M. Lwischitz-Galik, E. J. Smith, and E. Weber. (Proc. NEC (Chicago), vol. 5, pp. 235-254; 1949.) Various problems connected with a study of the state of art are discussed, and results obtained by using the magnetization characteristic of a core under conditions of assumption of magnetization are discussed. Experimental results are given illustrating the effect of the bias on the ac magnetization curve. Results for half-wave and full-wave magnetization of the core are compared with point by point procedure and by a method based on the representation of the magnetostriction curve by three linear elements. The latter method yields satisfactory results in much the shorter time.
A 60-dB Nonlinear Amplifier—J. A. Caruthers. Canad. Jour. Res., vol. 28, pp. 287–292; May, 1950. The amplifier described has been used to drive an Estevan Juneau DA recording galvanometer as part of the apparatus for automatically recording the radiation patterns of microwave antennas. By using automatic valve control, the amplifier can be controlled to the logaritmic of the input, thus enabling a 60-dB variation of input signal to be plotted. The speed of response is limited by the galvanometer, but is adequate for obtaining a pattern through 100° of azimuth in about two minutes. Plotting is accurate to within 1 dB if care is taken to check calibration frequently.

321.392.645

321.650

Wideband Video Amplifiers—A. E. Brain. (Proc. I.E.E. (London), Part III, vol. 97, pp. 235–251; July, 1950). The transient response of multistage amplifiers may be improved by the insertion of several sections of bridged-T or bridged-C networks. A method is outlined for evaluating the phase characteristic of an amplifier with an arbitrary amplitude characteristic. Application of three suitable phase-correcting circuits to a 10-stage amplifier reduced the rise time by about 33 per cent and
the overflow from over 20 per cent to less than 9 per cent.

621.396.645.094
2753
On the Problem of Distortionless Amplification of D.C. Pulses with an A.C. Amplifier—R. Gouger. (Zeit. Angew. Phys., vol. 2, pp. 179-188; April 1950.) For investigation of transfer function in a circuit a "transfer function" method is found useful. This is defined as the ratio of output to input voltage as a function of time when a step voltage is applied to the circuit; it is time-dependent on the circuit time constant. The transfer function is calculated for amplifiers with and without distortion correction and with and without 6 stages. The influence of RC combinations in cathode and screen grid circuits is considered. By use of CR or LR correcting networks the transfer function of a RC-coupled amplifier can be made practically independent of time up to half the original time constant. For pulses of duration less than this such an amplifier is suitable. The compensated amplifier has a lower minimum operating frequency and gives very little phase change at low frequencies. Distortion-free amplification can be achieved for square waves of fundamental frequency at least twice as high as the limiting frequency of the uncompensated amplifier.

621.396.645.35:621.317.755
2754
D.C. Amplifier Techniques in Oscillography—Maron. (See 2838.)

621.396.822:510.283
2755
Statistical Prediction of Noise—W. I. Lee, and A. A. Sutt. (Proc. NEC (Chicago), vol. 5, pp. 342-365; 1949.) Pertinent results in Wiener's theory of prediction (2463) above and their application to the prediction of filtered noise are discussed. Calculations leading to the required network for prediction of such noise are given in detail. Results in the form of a simultaneous display of predictor input and output waveforms show that the theory provides a useful approach to certain communication problems.

681.142
2756
Feedback in Electrical Analogue [impendance Networks—P. Grove and V. Rocard, (Rev. Sci., (Paris), vol. 87, p. 85; April and June, 1949.) The introduction of reaction into such circuits extends their mathematical application.

621.314.21
2757

621.318.41
2758
The Theory and Design of Inducance Coils. [Book Review]—Publishers: Macdonald, London, 180 pp., 18a. (Electrical, vol. 145, p. 425; August 18, 1950.) "The object of this book is to explain, in general terms, the underlying theory on which the design of inductance coils is based, and then to show how the theory can be simplified by the use of certain geometric arrangements and what is done if they are justified... It is very well produced, carries a small, but useful, bibliography and should be a valuable reference work."

GENERAL PHYSICS

535.222
2759

535.314
2760

537.313:32:621.314.634
2761
Experimental and Recalculation of Rectifier Theory as Applied to the Selenium Rectifier—Hincks. (See 2798.)

537.312.8:539.23:669:426
2762
The Conductivity of Thin Wires in a Magnetic Field—R. G. Chambers. (Proc. Roy. Soc. A, vol. 202, pp. 378-394; August, 1977.) A thin needle wire of film has a magnetic conductivity which is very well produced, ductance coil is is over shot from over 20 per cent to less than 9 per cent. Electromagnetic Waves at a Perfectly Conducting Circular Disk and at the Circular Aperture in a Perfectly Conducting Plane Screen—J. Meixner and W. Andrijewski. (Ann. Phys. Lpz., vol. 7, pp. 172-197; 1950.) A rigorous solution which satisfies the radiation and boundary conditions and facilities numerical calculation is obtained by representing the wave field by means of the Hankel vector potential and developing the expression for the wave in the form of spherical functions. The field and the induced-current distribution in the diffracting disk are fully investigated for the particular case of the circular aperture.

The complementary problem of diffraction of a circular aperture in a screen of infinite extent may be treated similarly, by virtue of the validity of the generalized Babinet principle.

538.566:537.362
2768
Electro-Magneto-Ionic Waves—V. A. Harley and K. Landecker. (Nature (London), vol. 166, pp. 259-261; August 12, 1950.) Experiments have been made, using gas-discharge tubes subjected to magnetic fields to test the theory that discrete frequency bands exist in which some waves can grow in an ionized medium, developing strong normal wave fields and a small random perturbation. Various gases, pressures of electrode arrangements were used. For fields 200 gauss aligned along the tube the expected bands always appeared; some observed noise intensities are shown graphically. An attempt was made with the band experiments conclusions are drawn regarding the behavior of wave propagation, Observations were also made on the propagating magnet field applied transversely. The experiments demonstrate the value of the theory and supply a simple model for a sunspot emitter of enhanced radio noise. See also 1665 of July (Haley and Roberts), 2785, and 3406 of 1949 (Haley).

548.232:538.211
2769
Stellar Crystals: Their Growth and Their Effects on Magnetic Properties—W. Morrill. (Gen. Elec. Rev., vol. 53, pp. 16-21; August, 1950.) Practical use of the anisotropic properties of metals is well advanced and the controlled growth of oriented crystals has produced exceptional magnetic properties in certain commercial materials. Study of crystal orientation and growth by many laboratories and it is hoped that eventually any degree of preferred crystal orientation in any magnetic material will be commercially practical.

GEOPHYSICAL AND EXTRATERRESTRIAL PHENOMENA

523.2/32:538.12
2770
The Hydromagnetic Equations—W. M. Elsasser. (Phys. Rev., vol. 79, p. 183; July 1, 1950.) Using "Maxwellian" electromagnetic equations analogous to the hydrodynamic equations are derived for the currents and associated magnetic fields carried by cosmic fluids. These phenomena are of importance for solar, stellar and sunspot magnetism, geomagnetism, magnetic fields in stellar atmospheres and in interstellar space, and the related problem of galactic radio noise.

523.841.2:538.12
2771
Stellar Magnetic Fields—H. W. Babcock. (Nature (London), vol. 166, pp. 249-251; August 12, 1950.) An account of observations of the magnetic fields of certain variable stars. The star HD 125248 appears to be a magnetic dipole oscillator, with a fundamental frequency 1.25 microcycles/sec, radiating about 108 kw on both fundamental and secondary harmonic.

536.562:538.566
2772
Electro-Magneto-Ionic Waves—Bailey and Landecker. (See 2768.)
LOCATION AND AIDS TO NAVIGATION

621.306.9:531.761 Theoretical Limit to Time-Difference Measurements—Richman. (See 2824.)

621.306.933 Radio Aids to Navigation at the Ministro Pistarini Airport (Buenos Aires)—P. N. Guzri. (Rev. Telec. (Buenos Aires), vol. 37, pp. 307-312; June, 1949.) The aids provided, chosen to conform to ICAO recommendations, will include GCA and an instrument landing system.

621.306.933 Microwave Radio Blind-Landing Systems for Aircraft—A. N. Bhattacharyya. (Indian Jour. Phys., vol. 23, pp. 88-92; February, 1949.) Two sharply defined beams rotating in a plane inclined to the earth's surface at the glide angle are produced respectively by two horn antennas rotating in opposite directions. The beams are synchronized to intersect in the vertical plane midway between the antennas thus defining a glide path. Operating frequency is of the order of 20 KMc.

621.306.933 Magnetic Properties of Platinum-Iron Alloys: Part 2—A. Kussmann and G. von Rittberg. (Ann. Phys., Lpz., vol. 7, pp. 173-110; April 1, 1950.) For alloys containing 50 to 63 per cent Pt, by weight magnetostriiction effects are the highest yet observed in ferromagnetic materials. Optimum properties for permanent magnets are obtained when the Pt content is 70 per cent. Magnetostriiction in this case is very small.

551.510.535:523.5 A Comparison of Meteor Activity with Occurrence of Sporadic E Reflections—V. C. Pinoe. (Science, vol. 112, pp. 50-51; July 14, 1950.) Measurements of signal strengths and phase of 3.2 cm waves for a 26.5 mile over sea path were made during June and July, 1949. The radar data are analysed, using Macfarlane's theory (3487 of 1948) to give the modified refractive-index curves, which are compared with those deduced from meteorological observations.

551.510.535:523.5 Data on the F, Layer of the Ionosphere and Computed Results according to the Palibar Model—E. Theisens. (Naturewiss, vol. 33, pp. 334-335; July, 1950.) Diurnal, seasonal and long-term ionospheric variations observed at two German stations are examined.

551.594.51 On the Origin of Ten Centimeter Radiation from the Polar Aurora—P. A. Forsyth, W. Petrie, and B. W. Currie. (Canad. Jour. Res., vol. 28, pp. 324-325; May, 1930.) Auroral bursts of 10-cm radiation from auroral displays have been recorded by radar equipment. The sources of continuous radiation from a partially ionized medium are briefly discussed. From a knowledge of the constants of the equipment used it is deduced that the power density at the receiver is at least 2x10^-14 W/m^2; and it seems that the most likely source of this radiation is a plasma oscillation of the ionized volume associated with the auroral display. If this is so, the electron density in localized regions must be of the order of 10^10/cm^3.

521.030:537.5 Cosmical Electrodynamics [Book Review]—H. Alften. Publishers: Clarendon Press, Oxford and Oxford University Press, London, 1950, 238 pp., 25s. (Nature (London), vol. 166, p. 243; August 12, 1950.) A short general survey of three chapters follows by three chapters discussing the motion of charged particles in a magnetic field, electric discharges, and the magnetohydrodynamic waves which Alften himself first discovered. The ideas developed in these three chapters are then applied in a further three chapters to solar physics (sunspots, chromospheric and corona temperatures, prominences, etc.), magnetic storms and auroras, and cosmic radiation.
high-frequency magnetic field. See also 2801 below (Herr).

621.305.625:3:681.6

A New Magnetic Record Duplicating Process—M. Caissan. (Proc. NEC (Chicago), vol. 5, pp. 258-261; 1949) A rapid contact-printing process in which the blank is held against a master tape while the two are subjected to a

2803

A New Magnetic Tape Recording Process by Contact Printing—R. T. Herr. (Proc. NEC (Chicago), vol. 5, pp. 262-268; 1949) Discussion of a method identical in principle with that noted in 2803 above, and brief description of practical use to which the method is not limited to tape records, but can be applied to records on disks, drums, etc. It does not seem applicable to the duplication of records on wire.

2804

Closed-Cycle Recording Oscillograph—B. Ciessel and R. Rudolph. (Proc. NEC (Chicago), vol. 5, pp. 4-10; 1949) Review of available equipment and description of an 8-channel pen recorder, with servo-motor pen drive, for use in flight tests.

2707

Experimental Examination of Rectifier Theory as Applied to the Selenium Rectifier—H. W. Henkels. (Proc. NEC (Chicago), vol. 5, pp. 23-39; 1949) Recent work at the University of Pennsylvania on the corroboration of rectifier theory with experiment is examined. The variables in Schottky's theory are treated individually. The electrical properties of single crystals, as well as microcrystalline specimens, are examined in their relation to the theory. To explain bulk properties, a model of microcrystalline selenium must possess layers of high resistance at crystal grain boundaries, and surface layers on the crystalfaces of quite low resistance.

2908

Concerning the Theory of Photoconductivity in Infra-red-Sensitive Semiconducting Films—E. S. Ritter. (Science, vol. 111, pp. 685-688; June 23, 1950) Critical discussion of views such as a generalization of the explanation of the effects observed in such films which avoids the difficulty of the exact balancing of impurities.

2800

Stressses in Glass/Metal Seals: Part I — The Cylindrical Seal—W. Marvin. (J. amer. ceram. soc., vol. 33, pp. 222-229; July 1, 1950) Consideration of the effect of cooling of a beaded wire seal following annealing treatment leads to a modification of the theory of Hull and Harger (1184 of 1935); good agreement between the theoretical and experimental values of stress in beaded wire seals. Cylindrical seals with the metal outside are also considered. The expansion necessary to make this match depends on the geometry of the seal. Metal/glass metal seals should be annealed at a temperature above that used for the glass alone.

537.228:1:548.0

Abstracts and References

from 0 to 13 for the negative values of \(x \) and from 0 to 25 for the positive values of \(x \). For \(x = 0 \) the table is tabulated for the same values of \(x \) and for \(x \) ranging from 25 to 30.000. Functions for \(x \) ranging from 25 to 30,000. Functions tabulation in the \(x \) and \(v \) directions.

1050 Abstracts and References

Kind of Orders Fifty-two through Sixty-five

1949. L. Long frequency scales used in heterodyne oscillators are calibrated by recording photographically on a strip of motion-picture film the image of a master scale which continuously indicates the instantaneous frequency of the oscillator.

2621.371.32:021.306.645.04 2826 Notes on Voltage, Current and Charge Measurements by Means of Valve Amplifiers—W. A. Deering (Proc. I.E.E. (London), Part III, vol. 97, pp. 193-208, April 1, 1950.) Two parameters are defined by means of which different types of apparatus can be compared: (a) electrical resolving power, which is a measure of the lower frequency difference detectable between two currents of 1-sec duration; (b) pulse sensitiveness. Estimates are made of the disturbing effects of fluctuations originating in batteries, resistors and valves, and noise effects in grounded-grid and free-grid valves are considered. Practical measurement limits for voltage, current and charge are deduced. Some fifty references are given.

1957.3.35.3.029.04:0546.217 2827 The Permittivity of Air at a Wavelength of 10 Centimeters—W. E. Phillips (Proc. I.E.E. (London), vol. 88, pp. 786-790, July, 1950.) Measurements of the permittivity of air as a function of water-vapor content, at atmospheric pressure and temperature, support the results of previous workers regarding the importance of atmospheric water-vapor content on the transmission of high-frequency waves. Measurements of the air density at reduced pressure are also recorded. Permittivity is determined by comparing the wavelengths of standing waves in a cylindrical cavity resonator whether the evacuated air column is 0.01 mm Hg and when containing the air sample under test. The following values for permittivity were obtained: dry air at 759.09 mm Hg and 25.5°C, 1.00054; dry air at reduced pressure and 22°C, 1.00053, at 555.48 mm Hg and 1.000129, at 180.88 mm Hg; moist air, 1.00080, at 752.45 mm Hg, 22°C and 100% per cent humidity, falling to 1.000680 at 756.45 mm Hg, 19°C and 55.7% per cent humidity.

1941.361 2828 On the Problem of Unequivocal Frequency Measurement by Comparison with Fixed Standard Frequencies—H. M. Schmidt (Z. Phys. (Berlin), vol. 111, pp. 219-224, May, 1938.) In the method described the unknown frequency \(f_0 \) is measured with (a) a suitable harmonic \(n_f \) of the standard frequency \(f_0 \), and (b) a second-standard frequency \(f_0+1 \) with a known phase angle. Therefore the phase difference of the difference frequencies produced is \(n_f \), according as \(f_0 \) is higher or lower than \(n_f \). The number \(n_f \) is given by the ratio of the phase angle for the difference frequency to that for the fundamentals.

1941.42 2830 Notes on the Theory and Practice of Magnetic Field-Strength Comparators of the Forster Type—M. Wurz (Z. Angew. Phys., vol. 2, pp. 210-219; May, 1950.) Discussion of the principle of and design improvements for the magnetized coil-plate meter. See also 1470 of 1941 (Forster).

1941.714.011.6 2831 The Measurement of the Time Constant of a Critically Damped Meter—S. F. Pearce (Jour. Sci. Instr., vol. 27, pp. 202-203, July, 1950.) The performance of critically damped meters, such as are required as the final indicating instrument in a receiver used for the measurement of radio interference, is analyzed and a simple method is described for measurement of the time constant.

1941.371.714.029.06:021.306.645.35 2832 Electrodynamic Ammeter for Very High Frequencies—T. B. Cohen (Jour. Appl. Phys., vol. 21, pp. 624-630; July, 1950.) Short description of an instrument developed at the National Bureau of Standards by M. Solow. It consists essentially of a Wheatstone Bridge with a copper wire ring about 1 cm in diameter suspended between the inner and outer conductors by a quartz fibre. When current flows in the line a torque is exerted on the ring and its value is indicated optically. The instrument is calibrated by measurements at both 500 Mc and 150 Mc.

1941.371.729:021.306.077 2833 Electrolytic-Tank Measurements for Micro-wave Metallic Delay-Lens Media—S. B. Cohen (Jour. Appl. Phys., vol. 21, pp. 624-630; July, 1950.) The low-frequency index of refraction of a delay-lens medium can be calculated from electrolyte-tank measurements on single elements. The proximity between adjacent elements is taken into account. Apparatus and method are described and results are tabulated for three types of delay-lens structure.

1941.717.673 2834 Admittance Analyzer—W. E. Bernard (Electronics, vol. 21, pp. 137-149, August, 1950.) The admittance to be measured is connected across a tuned circuit which is then tuned; the change of capacitance to restore resonance gives the admittance, and the symmetry is calculated from \(G = \text{Re}(A) \), where \(G \) is the admittance across the retuned circuit and a known resistance \(R \) in series with it, and \(R \) is the voltage across the retuned circuits. Resistance range was found to be 10 to 1000 at frequencies up to 1 Mc. At higher frequencies the upper limit is 1/4 Mc, where \(f \) is in Mc. A detailed circuit diagram is given.

1941.717.029.06:02 2837 A V.H.F. Match Meter—P. G. Sulzer (TV Eng., vol. 1, pp. 4-6; July, 1950.) The meter includes two bridging devices, and when connected between a low-power radio-frequency source (10-240 Mc) and an antenna or transmission line it indicates the magnitude of the reflection coefficient. One bridge is used for unbalanced systems, the other for balanced systems, the reference impedances being respectively 50 Ohms and 300 Ohms. The voltmeters reading the input and null voltages consist of crystal diodes with a switched dc microammeter. Calibration is effected either by comparison with a voltmeter of known accuracy or by connecting selected high-frequency resistors across the voltmeter terminals.

1941.717.755:021.306.645.35 2838 D.C. Amplifier Techniques in Oscillography—M. Maron. (Proc. N.E.C. (Chicago), vol. 5, pp. 11-16; 1949.) Design problems are discussed, and a description is given of a de
amplifier, developed as a signal amplifier for a cro. Auxiliary circuits, including time base, are described. Typical applications of the dc amplifier in oscillography are outlined.

621.376.029.64:261.396.011.4 2839

621.376.79:261.3.018.78T 2840
An Intermodulation Analyzer for Audio Systems—R. S. Fine. (Audio Eng. (Chicago), vol. 3, pp. 11-13, 43, July, 1940) A description, with detailed circuit diagram, of an instrument for the measurement of intermodulation distortion. It is particularly useful for checking the quality of amplifiers and phonograph pickups.

621.376.79:261.396.067 2841

621.376.791:261.397.5 2842
Inexpensive Picture Generator—J. R. Forget, (Proc. Audio Eng. Soc. (London), vol. 2, pp. 108-109, Aug, 1950) Light from the picture tube of a television receiver is transmitted through a transparent foil pattern and picked up by a multi-focus photo-cell whose output is amplified and directed for cathode-tube, radio-pho- toscope etc. This technique allowing positive negative transmitting to be used. Blanking pulses are added in a manner whose output is clipped by a component video pattern signals, which are suitable for feeding the video section of a television receiver without synchronizing arrangements are available. A self-sustained circuit for producing fast tran-blanking subas described with detailed diagrams.

621.38.60:261.28.04 2843
Microwave Attenuators for Powers up to 1000 Watts—H. F. Grinnell and J. N. Jorgow (Proc. I.E.E., vol. 3, pp. 7.77-780, July, 1950) A description of a waveguide attenuator which reduces input power by a factor ranging from 1 to 10,000. The device is a combination of three units (1) a waveguide attenuator, (2) a waveguide transformer, and (3) a waveguide attenuator. The waveguide attenuator is a solid-state device which can be matched to any desired value of power, and the waveguide transformer is a device which can be matched to any desired value of power.

OTHER APPLICATIONS OF RADIO AND ELECTRONICS

534.321.9:59.32 2844

534.321.9:59.32 2845

534.321.9:59.32 2846
Superconductor Control of a Large-Slide Projector—N. G. Lutz and H. Rand. (Proc. NEC (Chicago), vol. 5, pp. 4.1-4.1, 1949). Equipment is described which allows a lecturers to operate the slide-changing device on a projector by means of a small ultrasonic whistle concealed in a pocket.

535.214:5.315.01-15 2847
The Diaphragm Radiometer—P. S. Weber (Opik, vol. 6, pp. 121-161, March, 1950) A description is given of an intrinsically radiative receiver for measuring the absorption and transmission in gases. The small modulated radiation is incident on a diaphragm formed, or closed, in a gas chamber, and the resulting oscillations of the diaphragm when the conditions in one arm of a tuned high frequency bridge or a modulation frequency between 100 cps. Radiated power is low as 12.31 w. Millimeters measured the high frequency voltage delivered being 10 v. The sensitivity can be obtained by expressing the diaphragm to a sound of a frequency which is multiple of the modulation frequency.

621.3.077:504.323.504.321.9 2848

534.3.08.27:53.57.533 2849
Automatic Regulation of Thermionic Emission—W. W. Weatherford and N. H. Meehan (Jour Electrochem. Soc., vol. 1, pp. 189-191, July, 1950) Continuous control for large chambers having a conical constrictor can be used to control the rate of emission current to develop a constant voltage which is applied after amplification, and then a pair of valves with and without controls in the heating current for the electron. A phase shift network in the feedback chain can increase the sensitivity which sometimes occurs at higher frequencies.

534.3.08.27:53.57.533 2850
Matrix Telemetering System—N. H. Rossetti (Electronics), vol. 3, pp. 83-87, Aug. 1950) U.T.M. channels are superimposed on a 28-channel carrier with peak power of 4 kw. A 1 kw. oscillator in the transmitters (carrier) unit operates in a stable frequency by joining 100 time intervals to each channel; and transmits a synchronizing pulse to an oscillator counter unit in the receiver. This signal is in the various channels are checked to transport the data on a black-out cathode-ray trace, and reproduced on continuously running film.

261.376.397 2851

261.376.397 2852
Thickness Gage for Moving Material—S. V. Hart and A. R. Rosene (Proc. NEC (Chicago), vol. 5, pp. 83-87, 1949) An instrument which records the thickness of any non-magnetic material within the range 0.001-0.001 inch and detects deviations of <1 micron from a standard. The material is inserted between primary and secondary of a split transformer, the output of which is balanced in a bridge circuit against that of a similar unit holding a standard slab. Magnetic materials can be handled by using a pair of differential transformers.

261.376.755:261.376.39 2853

261.365.55 2854
Heating by Means of High-Frequency Fields—C. H. H. Wiltart (Proc. I.E.E. (London), vol. 3, pp. 133-142, April, 1950) Continuous means for heating material is available in the form of a magnetic field. This is used in the field of magnetic field-assisted in fusion research to high the solid state. Observation on this, and on the rate of heating, presents the theoretical considerations.

261.38.61.11:10.15.265 2855

261.38.61.27 2857
Extraction of the Electron Beam from a 30-Bev Synchrotron—J. H. Lawson, H. F. Wall, and H. H. Atwood (Nature (London), vol. 166, pp. 224-228; Aug. 1950) Extraction of the electrons up to 20 MeV have been accomplished. The extraction is achieved by use of a small shunt coil carrying a pulsed current of up to 6,000 A. A pulsed current that is the maximum is when the electrons enter the beam. It is anticipated that the method is applicable to 10 MeV electrons.

261.38.4 2858
Scintillation Type Alpha-Particle Detector—W. J. Oppenheimer, R. L. Macklin, and A. O. Cooper (Rev. Sci. Instr., vol. 21, pp. 534-55; June, 1950) A description of a scintillation type alpha-particle detector which is a windows of organic scintillator materials. The main application of these detectors is in the detection of alpha-particle radiation.
Abstracts and References

2601.387.41: 548.0
Crystal Counters—R. Hofstadter. (Proc. I.R.E., vol. 38, pp. 726-740, July, 1950.) The author's previous paper, but no new subject (June, and p. 520-521, June, 1950) is extended to cover later developments such as counters using S or Ge crystals.

2601.387.42
Geiger Counter for Civilian-Defense Use—H. D. LeVine, H. J. DiGiovanni, and M. R. Cook (Vintoon, vol. 6, pp. 56-59, June, 1950) Description of a simple and relatively cheap counter. The necessary high-voltage supply is obtained from a vibrator operated by a 3-volt flashlight battery.

2601.387.4241

2601.387.4242

2601.387.4242 : 531.761

2601.387.526.9
Electronic Contour Mapping—R. C. Raymond. (Proc. N.E.C (Chicago), vol. 5, pp. 211-216; 1949.) A stabilized aircraft with a pencil-beam radar set makes several thousand observations per second on the terrain over which it flies. The data are used to print a contour map. Calculations indicate that with efficient equipment contour maps covering 1,000 square miles could be printed in under an hour.

2601.387.832
Coordinate Tubes for Use with Electrostatic Storage Tubes—K. S. Julian and A. L. Samuel. (Proc. N.E.C (Chicago), vol. 5, pp. 107-122; 1949.) The system uses two master tubes which separately control the horizontal and vertical displacements of the electron beams in a bank of slave tubes. Control is effected by servo amplifiers, which locate the proper memory positions from their digital address codes in terms of the mechanical positions of target plates contained within the master tubes. Two different types of tube are described, one for sequential operation, the other for a parallel address system.

2601.387.868

2601.387.869

2601.387.980

PROVAGATION OF WAVES

538.566

538.569.11
Ground-Wave Propagation over an Inhomogeneous Smooth Earth. Part 2—Experimental Evidence. The Radiation Propagation—G. Millington and G. A. Isted. (Proc. I.E.E (London), Part II, vol. 97, pp. 209-217; July, 1950. Discussion, pp. 217-222.) Theoretical considerations of the case of vertical separation (1758 of 1949) are reviewed, which predict an increase in field strength on crossing a land-sea boundary. Further experimental results are discussed and found in agreement with theory, although not conclusive. The best conditions for obtaining such an increase in practice are analysed: a wavelength of 4 m is suitable where the distances involved are small, while 100 m wavelength is preferable where attenuation with distance is much greater over land than over sea. Measurements on these wavelengths of field strength along land-sea paths are described; the results show the predicted increase and fit the calculated curves as well as experimental conditions would allow. Some practical implications of the results are discussed, in particular with regard to the siting of transmitters near water, the possibilities of common-frequency working under ground-wave conditions, and the ground-wave coverage of medium- and long-wave navigation aids.

538.569.11
The Benzon Technique as Applied to Oblique Incidence Ionosphere Propagation—J. T. deBettencourt and H. Klemperer. (Proc. I.E.E., vol. 38, pp. 79-172; July, 1950.) Experiments have been made to identify the propagation paths of pulse signals. An interrogator-responder near Boston transmitted pulses of width 100 as and repetition rate 20/sec to a transponder in the Caribbean area 2,615 km away. Horizontal rhombic antennas, and transmitters giving 20 kw peak power at 16.08 Mc were used at both stations. Photographic records were obtained showing pulse amplitudes against go-and-return time, and go-and-return time against time of day. One-way transmission time is simply calculated from the observations and the path travelled is then identified by means of available charts.

538.569.11 : [551.51-545.326
Determination of Modified Index-of-Refraction over the Gulf of Mexico from Radio Data—Straiton and LaGrone. (See 2773.)

538.569.11 : [551.510.535
Ray Paths of Radio Waves in the Ionosphere—E. Venn. (Rev. of Radio., vol. 2, pp. 152-160; April, 1950.) Graphs are given of the paths of the ordinary and extraordinary waves for a signal of wavelength 80 m both for vertical and oblique incidence on a linearly ionized and on a parabolically truncated layer at a height of 200-300 km. At vertical incidence the ordinary ray is deflected northwards, the extraordinary ray southwards. For small angles of incidence the paths at their apex and the height of reflection are constant. The ray theory may give inaccurate results near the point of reflection. See also 718 of April.

538.569.11-12 : 2601.369.81-029.04
Propagation of Microwave Radio Scintillations [fluctuations] at Wind Speed on an Overwater Path—A. W. Straiton and H. W. Smith. (Proc. I.R.E., vol. 38, pp. 825-826; July, 1950.) 3.2-m radio signals transmitted over a 26.5-mile overwater path were recorded by two receivers (a) with a horizontal separation of 65 ft. normal to the radio path, (b) with a vertical separation of 10 ft. Signal fluctuations propagating at a speed between the horizontally separated receivers; a downward but less definite progression was observed for the case of vertical separation. See also 3241 of 1949 and 1483 of July (Straton et al.).

538.569.81
Propagation of 12-Mc/s and 15-Mc/s Waves over Ranges of 500-1300 km—R. G. Sacasa. (Rev. Telecom. [Madrid], vol. 5, pp. 2-8; December, 1949.) Data for 10 Mc as optimum working frequency are taken from the diagram previously discussed (2614 above); these are rearranged in tabular form and considered in detail. Experimental results for reception during November 1949 and September 1950 are presented. Agreement with prediction is very satisfactory.

538.569.821.029.04
Microwave Attenuation Statistics Estimated from Rainfall and Water Vapor Statistical Distributions—J. E. Bussey. (J. Appl. Meteor., vol. 8, pp. 781-785; July, 1950.) Curves are derived giving predictions of the number of hours per year during which the overall attenuation of a 50-km path and a 1-km path at Washington will exceed various values for frequencies above 1 kMc. The results are obtained by analyzing available meteorological data, theoretically derived factors (515 of 1947) being used for converting at radio attenuation values. Extension of the method to other parts of the U.S.A. is discussed.

RECEPTION

538.569.621.036.619.13
Detector Circuits for Frequency-Modulation Receivers—C. J. Boers. (Frequenz, vol. 5, pp. 296-300; August, 1950.) Disturbing effects of undesired am are examined, and the action of limiters is explained. A subsequent paper is to deal with particular types of discriminator circuit.

538.569.621.036.619.93
Mobile FM Broadcast Reception—H. C. Barrett. (Electronics, vol. 23, pp. 74-78; August, 1950.) A report of results obtained with various types of antenna and circuit for fm broadcast reception in moving vehicles. Increased sensitivity and improved limiting circuits appear to be necessary.
621.396.612: 621.396.822 2882
Telecomun. (Madrid), vol. 5, pp. 47–60; March, 1950.) A translation from "Radio at Ultra-

621.396.622.015.T: 621.396.822 2883
I.R.E., vol. 38, pp. 771–774; July, 1950.) The frequency response of a linear device giving the
maximum value for the ratio between peak amplitude of the use and the rms values of the
noise at the output is determined analytically for a known pulse superimposed on fluctua-
tion noise with a known spectrum. The result is applied to the case in which the fluctua-
tion noise has a uniform frequency distribution; the optimum network is then physically realizable if
the pulse differs from zero for only a finite interval of time. The noise-suppression efficiency of
a conventional RC circuit is computed for rectangular and for exponentially decaying pulses.

621.396.602: 621.396.619.13 + 621.397.62 2884
A New TV-FM Tuner—C. C. Lycke (Tele-Tech, vol. 9, pp. 21–26, 86; June, 1950.)
Detailed description of a continuously variable inductive tuner in which tuning is effected by
a rotor carrying copper vanes serving as short-circuited turns when brought near the inductor coils.
Two sets of coils and vanes are used, one set for the high and the other for the low US
television band.

621.396.662.065.3 2885
Hyper-sensitive Resonance Indicator—R. L. Ives (Electronics, vol. 23, pp. 118–154;
August, 1950.) Application of Foster-Seeley and Doppelpanger discriminators to resonance
indicators is described. Design details, with illustrations, of a small transistor receiver capable of operating in a
single channel without picking up adjacent-channel signals are given. The performance of the receiver is compared
with that of other systems. Transmitter power output is 12 wz on 25–
50 Mc and 10 wz on 151–174 Mc.

621.396.65: 621.396.619.11/3 2890
629–631; July, 1950.) Theory and design equations are presented for the conversion of a nar-
row-band FM microwave signal into almost pure AM signal within a wideband of given
dimensions. Frequency relations and guide dimensions are arranged so that the FM side-
bands are shifted with respect to the carrier until they become AM sidebands at the guide
gate output. A complex intensity signal may be transmitted with negligible distortion if it is
used for AM of an intermediate carrier which is then applied for FM of the microwave car-
rier.

621.396.65.029.63 + 621.397.5 2896
2000- and 7000-Mc/s TV Microwave Re-
8–11; 1950.) A relay equipment for transmission of outside programs to station WMAL-TV is described.
The 7-kec equipment is portable and serves for local transmissions over line-of-sight paths up to about 20 miles, while the more powerful 2-kec equipment is used between fixed stations and is effective at much greater ranges. Installation and operation procedures are dis-
cussed.

621.396.7 + 621.397.7 | 73(10587) 2897
9, pp. 37–39, 84; June, 1950.) A very comprehensive listing of US stations of all types, and of
manufacturers of equipment directly or indi-
rectly connected with radio and television.

621.396.712.029.6: 621.396.619.13(43) 2808
286–292; August, 1950.) Germany is the first European country to introduce ultra-short
wave FM broadcasting. American practices have been studied and full advantage is taken of the
possibilities of FM, viz., high quality, economic power use, small propagation paths and reduced inter-
ference. Radio links are preferred to cable for all but very short distances. Tetrodes are used
for power up to 1 kw, triodes for higher power. The advantages of small automatically con-
trolled transmitters are emphasized, and filter arrangements are described which permit two
programs to be radiated from the same an-
tenna.

621.396.712(43) 2899
Basis of U.S.W. Plan for the U.S. Zone [of
Germany]—F. Gutmann. (Fernmeldetechnik, Z., vol. 3, pp. 276–278; August, 1950.)

621.396.712(43) 2800
The U.S.W. Network of the North-West
Germany Broadcasting System—W. Neuselt. (Fernmeldetechnik, Z., vol. 3, pp. 282–285; August,
1950.)

621.396.712(43) 2801
The U.S.W. Network of the South-West
Germany Broadcasting System—Knopfel.
(Fernmeldetechnik, Z., vol. 3, pp. 279–281; August, 1950.)

SUBSIDIARY APPARATUS

621.526 2802
A Note on the Error Coefficients of a Servo
vol. 21, pp. 724; July, 1950.)

621.316.722.1 + 621.316.281 2803
Preservation Rectifier with Electronically
Stabilized Charging Voltage—E. Casse-
(Philips Tech. Rev., vol. 11, pp. 235 259;
March, 1950.) The difference between the charging voltage of a accumulator battery and a constant reference voltage is amplified and used to control the de bias of a transistor in series with the secondary of the transformer feeding the rectifier in the charging equipment. The charging voltage is thereby maintained constant to within 0.5 per cent for mains fre-
quency deviations of 4 per cent or voltage variations of 10 per cent.

621.355.2 + 621.355.8 2804
Military Storage Batteries—R. M. Well.
Recent developments are described, particular-
ly as regards lead-acid batteries and alkaline
batteries with sintered Ni-Cd plates, and ob-
taining satisfactory performance at very low

TELEVISION AND PHOTOGRAPHY

621.307.5: 621.317.790 2805
Inensive Picture Generator—Popkin
Clurman. (See 2842.)

621.307.5: 621.306.65 2806
Television the Boat Race—1950: The Engi-
neering Problems—T. H. Bridgewater, R. H.
Hannans, and S. N. Watson. (BBC Quart.,
vol. 5, pp. 107–115; Summer, 1950.) A de-
tailed account of the system of radio and cable links connecting the equipment on the launch fol-
lowing the boat with the Alexandra Palace
transmitter.

621.307.5: 621.306.65 | 621.306.65.029.63 + 64 2807
2000- and 7000-Mc/s TV Microwave Re-
lays—Hildurn. (See 2896.)

621.307.5(43) 2808
The Development of Television by the
German Post Office—H. Presler. (Fern-
meldetechnik, Z., vol. 3, pp. 302–308; August,
1950.) A historical review, with extensive bibli-
ography.

621.307.5(43) 2809
Development of Television Technique by the
(Walter von Fritsch, F. Wplitz-Forsthilt, T.
Müller, F. Rudert, and H. Strübig.
(Fernmeldetechnik, Z., vol. 3, pp. 308–316; August,

PROCEEDINGS OF THE I.R.E. December
TRANSMISSION

262.396.61

Lorenz 10-kW U.S.W. Transmitter for F.M. Broadcasting—G. Brauer. (Transmitted—Z. vol. 10, pp. 11-12, July, 1950.) Illustrated description of a F.M. transmitter operating in the range 40-50 Mc. Tests indicate that such transmitters give effective state coverage.

262.396.611.13

3000 Watts for State Police—W. Fingerle, Jr. (Proc. V.T. Tech. vol. 10, p. 296; August, 1949.) Illustrated description of an 8-kW exciter unit and by use of the Type 316-A tube in the BC-645 as a frequency doubler. Frequencies in the band 460-470 Mc are derived from crystals with fundamental frequencies between 8.52 Mc and 8.70 Mc. See also 517 of 1949 (Samuelson).

262.396.619.13

A Versatile Crystal Controlled Source of Angle Modulation—J. F. Gordon. (Proc. N.E.C. (Chicago), vol. 5, pp. 518-519; June, 1949.) A device is described which produces large deviations and increased modulation sensitivity without loss of transmitter stability; the relatively small number of tube uses results in a simple circuit. An experimental unit and detailed discussion of its performance are also described.

TUBES AND THERMIONICS

262.314.62

G.E. Germanium Crystal Rectifiers—(Instr. Practice, vol. 4, pp. 427-428; June, 1950.) Characteristics of four available types are tabulated. All are sealed in glass envelopes and have the metal point cemented to the Ge crystal.

262.315.671

A New Rectifier Tube for Extremely High Power and Voltage Levels—T. H. Rogora. (Proc. N.E.C. (Chicago), vol. 5, pp. 462-492; 1949.) The factors which control the design of high-velocity rectifiers and limit their use for high-current applications are discussed, and new design principles are outlined which have been evolved to raise these limits sufficiently to make the use of certain devices using high-current high-voltage supplies. New tubes described can handle a peak current of 10 A and an inverse voltage of 110 kv.

262.398

262.383

262.382

The Phototransistor—J. N. Slive. (Bell Lab. Rep., vol. 28, pp. 337-342; August, 1950.) The essential element in the device is a wafer of Ge with a spherical dimple ground in one face so that at the center, where a phosphor-bronze wire 0.005 in. diameter makes contact, the thickness is about 0.003 in. Operation of the cell depends on the decrease in resistance of the transistor resulting from surface charge on the collector wire on exposure to light. For a particular cell operated in series with a 20-k Ohm resistor, the calculated current output was about 0.07 m£/mm. With illuminating light the response curve is substantially flat up to 200 kc, the highest frequency so far used. The sensitivity is greatest in the spectral region 0.4 to 0.5 microns and the mechanism of photoconductivity is given.

262.385.621

262.385.622

262.385.713

A New Type of Rectifier for High-Power Transmitting Tubes—O. Schärl. (Brown Boeri Rev., vol. 36, pp. 311-315; September, 1949.) A radiator system is described which uses transverse focusing of sheet-metal rings separated by spacers and riveted together. Applied to the Type-ATL 35-1 tube it can handle an anode dissipation of 46 kw.

262.385.032.216

Conduction Processes in the Oxide-Coated Cathode—R. Loosjes and H. J. Vink. (Phyis Rev., vol. 11, pp. 13-17; March, 1949.) Preparation and activation of oxide-coated cathodes is described. Electrons emitted by the coating are replaced by conduction from the metal core and it is shown that this conduction is due to two processes acting together, electronic conduction of the grains at temperatures <>800 K and conduction through the electron gas in the pores between the grains at higher temperatures. The lagging of conduction behind emission at temperatures >1,000 K is explained by the effect of the space charge upon the electron density and upon the field in the pores.
621.385.032.42:621.3025.4 2936
Human Characteristics of A.C.-Heated Transmitting Tubes—E. Atti. (Brown Bovery Res., vol. 36, pp. 305–311; September, 1949.) The human characteristics of a heated-tungsten-filament tubes can be reduced very considerably by use of specially designed cathode systems and 3-phase or 6-phase heater supplies. Careful balancing of the phases and accurate alignment of the grid and the filament wires is essential. In the new 200-kw broadcasting transmitter at Beromünster, the hum level of the alternating-frequency output signal, which consists of two class-B triodes with 3-phase heating, is 57db without feedback, which lowers it further to 61db.

621.385.2 2937
The High-Frequency Response of Cylindrical Diodes—E. H. Gamble. (Proc. NEC (Chicago), vol. 5, pp. 387–402; 1949.) The problem is considered as a quasistationary one and equations are derived for an ideal diode in which the electron paths are normal to the emitting surface. The relations thus obtained are applied to space-charge-limited and temperature-limited operation. Numerical solutions of the nonlinear integral equations were obtained for computer calculations including the corresponding differential equations. The results indicate the essential correctness of the treatment of the problem.

621.385.3:621.315.592:621.306.822 2938
Low-Frequency Noise in Transistors—II. T. Woods. (Proc. NEC (Chicago), vol. 5, pp. 173–187; February, 1949.) The noise of both emitter and collector noise in six type-A transistors was investigated. Noise output varies with frequency, but not inversely. Emitter noise does not contribute significantly to the noise output, and the output is independent of dc voltage, current and resistance. Good correlation is found between noise power and forward transfer impedance. The noise output may be predicted fairly accurately at any given operating point, for any bandwidth up to 15 kc. The lowest input signal strength required to produce a given output signal-noise ratio can also be estimated.

621.385.4:621.315.43 2939
Variable-Capacitance Tube for Frequency Control—R. W. Slinkman. (Synchro Technologist, vol. 3, pp. 18–20; July, 1950.) Frequency, high-very-high-frequency, and ultra-high-frequency oscillators in FM receivers is effected by means of a tetrode with a hemispherical anode. The curvatures of the anode vary with changes of frequency and indeed affects the value of a capacitor within the tube which forms part of the oscillator tube circuit. External series capacitors enable the effective control bandwidth to be adjusted. Tests in a commercial FM receiver and in an experimental 600-Mc television converter have given promising results.

621.385.832 2940
Beam Deflection Nonlinear Element—A. A. G. Moodie. (IEEE Trans., vol. 23, pp. 122–128; August, 1950.) A parabolic mesh placed between deflecter plates and collector electrode a square-law static characteristic to be obtained with a change in the point of tangential cross-section. Instantaneous squaring of radar-type signals to an accuracy of 2 per cent full-scale, at an input frequency to the deflector plate of 50 Mc, as allowed by this means in the Raytheon tube type CK-256.

621.385.832 2941
Dimensional Tolerances in Cathode-Ray-Tube Guns—H. Moss, L. Woodbridge, and M. Webb. (Proc. IEE (London), Part III, vol. 97, pp. 277–283; July, 1950.) Preliminary experiments show that cathode tilt in the triode has negligible effect on beam centrality and symmetry. Effects of lateral displacement and tilt of the first anodes for various grid types and tilt results determined individually for several types of triode geometry. The asymmetry due to the tilt, displacement and deformation of the filament elements is also investigated experimentally by the use of a special type of ion-trap electron gun is described.

621.385.832:621.3087 2942
The Recording Storage Tube—R. C. Heinigenrother and B. C. Gardner. (Proc. I.R.E., vol. 38, pp. 740–747; July, 1950.) A cathode-ray tube has a mesh screen coated on the face away from the electron gun with a charge-retaining layer. The potential of an output-signal screen located further along the tube is made negative relative to the cathode, so that when the signal is applied "written" the beam passes through the mesh screen and is reflected to its rear (storage) surface, whereas when the signal is taken off "read" of the beam strikes the output-signal screen, which in this case is made more positive than the storage-screen mesh potential, and does not disturb the stored charges. The signal can thus be reproduced one million times without appreciable deterioration and with a decrease in signal level of only a few per cent.

621.390.611.2 2943
The Design and Fabrication of TV Picture Tubes—K. A. Houghton. (TV Rev., vol. 1, pp. 16–21, 35 and 16–17; March and April, 1949.) Survey of American manufacturing processes and discussion of present trends in cathode-ray tube design, with particular attention to beam focusing the use of electron-field and magnetic ion traps, metal-cone construction etc.

621.390.615.14:621.385.020.636 2944
The Helix as Resonator for Generating Ultra High Frequencies—B. van der Meer. (Philips Tech. Rev., vol. 11, pp. 212–215; February, 1950.) The action of the travelling-wave tube as an amplifier is described briefly and its use as a quasi-high-frequency generator is discussed. The resonances of the helix play an important part in this latter case. A relatively simple method is developed for determining under what conditions oscillations are possible and at what current intensity they begin. Results are given of some experiments which illustrate the correctness of the theory. An experimental tube with gas-concentrated beam is described.

621.390.615.141.2 2945
The Turbator—F. Lifli. (Brown Bose Rev., vol. 36, pp. 315–318; September, 1949.) The evolution is reviewed of the Brown Bose type of magnetron, which comprises a bigger oxide cathode and a single-anode cavity resonator capacitively coupled to the anode segments. The frequency of the anode enables an anode discharge of 200 v to be attained. A glass-enclosed 15-w type is being developed.

621.390.615.141.2:621.317.301 2946
Measurement of the Space-Charge Resonance Frequency of Linear Magnets—P. Fecchin. (Comm. Res. Acad. Nat. Sc., Paris, vol. 231, pp. 270–271; July 24, 1950.) The magnetron is coupled to a waveguide which is terminated by its characteristic impedance and energized by a klystron generator. Resonance conditions are determined from measurements of the transmission coefficient in the waveguide for the operating wavelength field and anode voltage. The results obtained verify the theory previously given (2678 of December). See also 2680 of December.

621.390.615.142 2947
Radial-Beams Velocity-Modulated Microwave Tube—C. H. Lob and D. F. Howland. (Proc. NEC (Chicago), vol. 5, pp. 403–407; 1949.) The tube consists of a coaxial resonator of length 1/2, cut in the middle perpendicular to its axis of symmetry so as to constitute an unefficient effective 1/4-mode. Surrounding the cut in the resonator is a gun structure with a ring cathode and two focusing electrodes. The action of the tube is similar to that of a two-gap klystron or a reed klystron, depending on the operating conditions. Test results on three experimental tubes are given. An output of about 3 mw was obtained at a wavelength of 4 cm.

621.390.615.142.2 2948

621.390.645:621.390.822 2949
Noise Suppression in Triode Amplifiers—van der Ziel. (See 2751.)

MISCELLANEOUS

621.390.7.721.73(058.7) 2950
Tele-Tech TV-FM-AM Station & Studio Equipment Directory, 1951.—(New York.)

621.390.582.519.283 2951
The Theory of Sampling Inspection Plans H. C. Hamaker. (Philips Tech. Rev., vol. 11, pp. 77–87; July, 1950.) Mathematical principles underlying sampling inspection are discussed. Two parameters for describing an operating characteristic, termed "point of control" and "relative slope," are introduced and the relation of the acceptance number is established. Various other parameters in use are reviewed and reasons are given for the choice of the point of control and sample size as a practical set.

621.390.827 2952
Basic Electrical Engineering [Book Review]—G. F. Corcoran. Publishers: Chapman & Hall, London, 1949, 449 pp. 275. (Hewson Jour., June, 1950, p. 179.) "...the treatment...is clear, smoothly sequential, succinct but without undue condensation...It is a most commendable piece of work."

621.390.828 2953

621.390.307 2954
TABLE OF CONTENTS

General Information .. Cover II
Contents of Volume 38 .. Index 3
Chronological Listing .. " 3
Index to Authors ... " 8
Index to Book Reviews ... " 9
Index to Subjects ... " 10
Nontechnical Index .. " 19
Abstracts and References .. " 19
Awards .. " 19
Committees .. " 19
Conventions and Meetings .. " 19
Editors .. " 20
Election of Officers .. " 20
Front Covers .. " 20
Frontispieces .. " 20
Nontechnical Index (continued) Index 20
Industrial Engineering Notes ... Index 21
IRE People .. 20, 21
IRE Professional Groups ... 21
Miscellaneous ... 21
Obituaries .. 22
Report of Secretary ... 22
Representatives in Colleges .. 22
Representatives on Other Bodies 22
Sections .. 22
Standards—IRE .. 22
Back Copies .. Cover III
Proceedings Binders ... Cover III
Membership, Emblems .. Cover III
Current IRE Standards .. Cover IV

GENERAL INFORMATION

The Institute

The Institute of Radio Engineers serves those interested in radio and allied electronics and electrical-communication fields through the presentation and publication of technical material.

Membership has grown from a few dozen in 1912 to approximately 30,000. There are several grades of membership, depending on the qualifications of the applicant, with dues ranging from $3.00 per year for Students to $15.00 per year for Members, Senior Members, Fellows, and Associates of more than five years' standing.

The Proceedings is sent to members of record on the date of publication. IRE Standards, as listed on Cover IV, are in stock and are available for those who wish to buy them at the cost shown opposite the name of the Standard.

The Proceedings

The Proceedings has been published without interruption from 1913, when the first issue appeared. Over 3,800 technical contributions have been included in its pages, portraying a currently written history of developments in both theory and practice. The contents of every paper published in the Proceedings are the responsibility of the author and are not binding on the Institute or its members. Textual material appearing in the Proceedings may be reprinted or abstracted in other publications on the express condition that specific reference shall be made to its original appearance in the Proceedings. Illustrations of any variety may not be reproduced, however, without specific permission from the Institute.

The first issue of the Proceedings was published in 1913. Volumes 1, 2, and 3 comprise four issues each. Volume 4 through volume 14 contain six numbers each, and each succeeding volume is made up of twelve issues.

In 1939, the name of the Proceedings of The Institute of Radio Engineers was changed to the Proceedings of the I.R.E., and the size of the magazine was enlarged from six by nine inches to eight and one-half by eleven inches.

Subscriptions

Annual subscription rates for the United States of America, its possessions, and Canada, $18.00; to college and public libraries when ordering direct, $13.50; other countries, $1.00 additional for postage.
Contents of Volume 38—1950

Volume 38, Number 1, January, 1950

Proceedings of the I.R.E.

Cumulative

Index

Number

Page

Raymond F. Guy, President—1950

The Engineer in Private Enterprise, E. W. Butler and B. B. Bauer

Service Engineering for Television, Eugene Ecklund

Adjustment of High-Precision Frequency and Time Standards, John M. Shull

Correction to Han Chang Biography, November, 1949 issue

The Speed of Radio Waves and Its Importance in Some Applications, R. L. Smith-Rose

The Application of Thermistors to Control Networks, J. H. Ballman and J. G. Kreer

Radio Propagation Variations at VHF and UHF, Kenneth Bullington

The Dynamic Sensitivity and Calibration of Cathode-Ray Oscilloscopes at Very-High Frequencies, Hans E. Henning

Two Simple Bridges for Very-High-Frequency Use, D. D. King

Nonlinear Coil Generators of Short Pulses, L. W. Hussey

Comparison of Measured and Calculated Microwave Signal Strengths, Phase, and Index of Refraction, A. W. Straton, A. H. LaGrone, and H. W. Smith

Wide-Angle Metal-Plate Optics, John Rose

High-Power Sawtooth Current Synthesis from Square Waves, Ilana E. Kallmann

Speed of Electronic Switching Circuits, Everard M. Williams, Donald F. Aldrich, and James B. Woodford

Reciprocity Between Generalized Mutual Impedances for Closed or Open Circuits, A. G. Cleland

Design Factors in Low-Noise Figure Input Circuits, Matthew T. Lebenbaum

On the Deduction of the Refractive Index Profile from Radio Field-Strength Measurements, James W. Green

Conductors to the PROCEEDINGS OF the I.R.E.

Industrial Engineering Notes

I.R.E. People

Sections

Books

“Handbook of Patents” by Harry Aubrey Talmin, Jr. (Reviewed by Alas W. Graf)

“Dynamical Principles of Mechanics” by David R. Inglis (Reviewed by R. R. Pierce)

Abstracts and References

Volume 38, Number 2, February, 1950

Proceedings of the I.R.E.

Sir Robert A. Watson-Watt, Vice-President—1950

Technical Writing for Students, Carl E. Smith

Report on the International Television Standards Conference

Standards on Designations for Electrical, Electronic and Mechanical Parts and Their Symbols, 1949

A Microwave System for Television Relaying, J. Z. Millar and W. B. Schlenger

The Design of Electronic Equipment Using Subminiature Components, M. L. Miller

Electron Beams in Axially Symmetrical Electric and Magnetic Fields, C. C. Wong

The Transmission and Reception of Elliptically Polarized Waves, George Sinclair

The Magnetic Amplifier, N. R. Castellini

Correction to “Design Procedures for Ft-Network Antenna Couplings,” Leo Storch

Receiving Tubes Employing Secondary Electron Emitting Surfaces Exposed to the Evaporation from Oxide Cathodes, C. A. Miller

Propagation of Short Radio Waves Over Desert Terrain, J. P. Day and L. G. Trolese

Volume 38, Number 3, March, 1950

Proceedings of the I.R.E.

Austin V. Eastman, Regional Director, 1950–1951

The Engineer as Government Advisor, Donald G. Fink

Suggestions for the Preparation of Technical Papers, R. T. Hamill

Some Problems of Disk Recording for Broadcasting Purposes, F. O. Vold

A Variable Speed Turntable and Its Use in the Calibration of Disk Reproducing Pickups, H. E. Haynes and H. E. Rose

A New Type of Slotted Line Section, W. Bruce Whalley and W. Noel Eldred

The Radiation Characteristics of Conical Horn Antennas, A. P. King

Interference Characteristics of Pulse-Time Modulation, Ernest R. Kretzmer

A General Review of Linear Varying Parameter and Nonlinear Circuit Analysis, W. R. Bennett

The Synthesis of Resistor-Capacitor Networks, J. L. Czarski and P. O. Pederson

Theoretical Aspects of Asynchronous Multiplexing, W. D. White

Shunt-Excited Flat-Plate Antennas with Applications to Aircraft Structures, J. V. N. Granger

Volume Scanning with Conical Beams, Daniel Levine

Frequency Analysis of Variable Networks, Lofti A. Zadeh

Input Impedance of a Two-Wire Open-Line and Cylindrical-Center Driven Antenna, T. W. Winterfield

Reflection of Radio Waves From Rough Sea, Lamont V. Blake

Correction to “Fluctuation Phenomena Arising in the Quantum Interaction of Electrons with H-F Fields,” D. K. C. MacDonald and R. Kempler

A Note on Coaxial Bethe-Hole Directional Couplers, Edward L. Ginton and Paul S. Goodwin

Admittance and Transfer Function for an n-Mesh RC Filter Network, E. L. Tuchkov

Contributors to the PROCEEDINGS OF the I.R.E.

Correspondence

Increase in Q-Value and Reduction of Aging of Quartz-Crystal Blanks,” R. C. Peace, M. A. A. Drusac, and D. G. McCa

Calculation of Ground-Wave Field Strengths, K. Venkataraman

Technical Committee Notes

Industrial Engineering Notes

I.R.E. People

Sections

Index—3
Volume 38, Number 9, September, 1950

Abstracts and References

3704. The Present Status of Color Television

3705. Mixed Highs in Color Television, A. V. Bedford

3706. Metalized Paper for Capacitors, D. A. McLean

3707. Metalized Paper Capacitors, J. R. Weeks

3708. Biological Requirements for the Design of Amplifiers, Harry Grundfest

3709. Effects of Intense Microwave Radiation on Living Organisms, John H. Clark

3710. The Klystron Mixer Applied to Television Relaying, Vincent Learned

3711. The Compensation of Delay Distortion in Video Delay Lines, R. A. Erickson and H. Sommer

3712. Measured Directivity Induced by a Conducing Cylinder of Arbitrary Length and Spacing Parallel to a Monopole Antenna (Abstract), F. R. Abbott and C. F. Fisher

3713. Impedance Transformation in Folded Dipoles, Rudolf Guetler

3714. Two Standard Field-Strength Meters for Very-High Frequencies, D. R. King

3716. Development of Artificial Microwave Optics in Germany

3717. The Pointing Vector in the Ionosphere, James C. Scott

3719. High-Frequency Vibrations of Plates Made from Isometric and Tetragonal Crystals, E. A. Gerber

3720. Standards on Electron Tubes: Methods of Testing, 1950, Part II

709. Contributs to the PROCEEDINGS of the I.R.E.

Correspondence:

3497. "Note on the Reactance-Tube Oscillator," Adolf Giger

3498. "The Reactance-Tube Oscillators," T. C. Rideout and Han Chang

3500. "Comment on 'Psychical Physics,' Ted Powell

3501. "Nikola Tesla, Inventor," Ted Powell

3502. Technical Committee and Professional Group Notes

3503. Industrial Engineering Notes

3504. IRE People

Books:

3505. "Radio Operating Questions and Answers" by J. L. Hornung (Reviewed by Donald McNicol)

3506. "Electronics in Engineering" by W. R. Ryland Hill (Reviewed by J. D. Ryder)

3507. "Facsimile" by Charles R. Jones (Reviewed by Nathan Marchand)

3508. Sections

3509. Professional Groups

3510. 1106

3511. Abstracts and References

Volume 38, Number 10, October, 1950

Proceedings of the I.R.E.

Hermann E. Kraus, Regional Director, 1950-1951

112

International Aspects of Radio, R. L. Smith-Rose

112

The Role of Professional Groups in the IRE, L. C. Van Atta

112

Electronics and the Electrostatic Generator, Burridge

112

112

Interference Caused by More than One Signal, Raymond W. Wiegand and J. M. Fleit

112

The β-Germanium Transistor, W. G. Pfann and J. H. Scaife

112

Index

Cumulative Index Number

3732. Asymmetry-Driven Antennas and the Sleeve Dipole, Ronold King

3734. The 'Traveling-Wave' Cathode-Ray Tube, K. Otsuki, S. Terahata, T. Iida, and T. Nakamura

3735. Correction to "Speed of Electronic Switching Circuits" by E. M. Williams, D. F. Aldrich, and J. B. Woodford

3736. Conductivity Measurements at Microwave Frequencies, A. C. Hek and R. W. Davison

3737. Cascade-Connected Attenuators (Abstract), R. H. Beatty

3738. The Design of Frequency-Compensating Matching Sections, F. J. Ramsey

3739. Signal-to-Noise Improvement Through Integration in a Storage Tube, T. V. Harrington and T. F. Rogers

3740. Distortion-Hold-Off Considerations in Angular Modulation, Albert J. Grinich

3742. Discussion on "The Energy-Spectrum of an Almost Periodic Succession of Pulses" by G. G. Macfarlane, T. S. George and G. G. Macfarlane

3744. Correction to "The Transmission and Reception of Elliptically Polarized Waves" by George Sinclair

3745. "Pulse and Pulse-Related Considerations in Angular Modulation, Albert J. Grinich

3747. "Traveling-Wave Tubes" by J. B. Pierce (Reviewed by J. B. Pierce)

3749. "Radio and Television Mathematics" by Bernhard Fischer (Reviewed by W. L. Behrend)

3750. "Television for Kinescopes" by Edward M. Roll (Reviewed by Ralph R. Batchler)

3751. Institute Committees—1950

3752. Abstracts and References

3753. Books: "Applications of the Electronic Valve in Radio Receivers and Amplifiers" (Reviewed by W. C. White)

3755. Statistical Methods in Research and Development, L. Lutzker

3756. Standards on Wave Propagation: Definitions of Terms, 1950

3757. Quality Rating of Television Images, Pierre Merz, J. D. Forder, and H. N. Christoffersen

3759. Correction to "Phase-Insensitive High-Frequency Triode Oscillator Using a Series-Finned Circuit," J. M. Petter

3760. Tone Rendition in Photography, W. T. Winningham

3761. Correction to "The Recording Storage Tube," R. C. Hergenrother and H. C. Gardner

Index—6

Volume 38, Number 11, November, 1950

Proceedings of the I.R.E.

Chairmen of Recent IRE Sections—Harry L. Thomas, Schenectady and Fred M. Ashbrook, Ithaca

Quality in Engineering, Allen B. DuMont

Management's Role in Research and Development of Electronic Systems, Ralph J. Cole

Statistical Methods in Research and Development, L. Lutzker

Standards on Television: Methods of Measurement of Time of Rise, Pulse Width, and Pulse Timing of Video Pulses in Television, 1950

Standards on Wave Propagation: Definitions of Terms, 1950

Quality Rating of Television Images, Pierre Merz, J. D. Forder, and H. N. Christoffersen

Correction to "Feedback in Very-High-Frequency and Ultra-High-Frequency Oscillators," F. J. Kampschoeker

Correction to "Phase-Insensitive High-Frequency Triode Oscillator Using a Series-Finned Circuit," J. M. Petter

Tone Rendition in Photography, W. T. Winningham

Correction to "The Recording Storage Tube," R. C. Hergenrother and H. C. Gardner

Index—6
Volume 38, Number 11, November, 1950 (Cont'd.)

Cumulative

Index

Number

Page

3759. Tone Rendition in Television, B. M. Oliver 1268
3760. A Rooter for Video Signals, B. M. Oliver 1301
3762. Combined Search and Automatic Frequency Control of Mechanically Tuned Oscillators, J. Gregg Stephenson 1314
3764. Antenna Systems for Multichannel Mobile Telephony, W. C. Babcock and H. W. Nyland 1320
3766. The Remainder Theorem and Its Application to Operational Calculus Techniques, Albert S. Richardson, Jr. 1336
3767. Band-Pass Low-Pass Transformation in Variable Networks 1339
3769. Nyquist Diagrams and the Routh-Hurwitz Stability Criterion, Frank E. Beckwell 1345
3770. On the Approach to Steady-State of a Linear Variable Network Containing One Reactance, Alan A. Grontstein 1349

Contributors to the PROCEEDINGS OF THE I.R.E.: 1351

Correspondence:

3772. Technical Committee Notes 1355
3773. IRE People 1357
3774. Industrial Engineering Notes 1359

Books:

3775. "Electron Tube Circuits" by Samuel Seely (Reviewed by S. N. Van Voorhis) 1360
3776. "Practical Television Servicing and Trouble-Shooting Manual" by The Technical Staff of Coyne Electrical and Radio-Television School (Reviewed by Frank R. Aram) 1360
3777. Sections 1361
3778. Professional Groups 1362
3779. Abstracts and References 1363
3780. "Aerials for Centimetre Wave-lengths" by D. W. Fry and F. K. Gowar (Reviewed by Salvatore Milazzo) 1376
3781. "Questions and Answers in Television Engineering" by Cort V. Rahnoff and Magdalene E. Walbrecht (Reviewed by J. Ernest Smith) 1376
3782. "Handbook H42, Safe Handling of Radioactive Isotopes" 1376

Volume 38, Number 12, December, 1950 (Cont'd.)

Cumulative

Index

Number

Page

3782. Reactance Chart, Harold A. Wheeler 1392
3783. Inductance Chart for Solenoid Coil, Harold A. Wheeler 1398
3784. Transmission-Line Impedance Curves, Harold A. Wheeler 1400
3785. The Simplification of Television Receivers, W. B. Whaley 1404
3786. Universal Design Curves for Intermediate-Frequency Amplifiers with Particular Reference to Phase and Amplitude Distortion and Their Compensation, W. Hackett 1408
3787. Marginal Checking as an Aid to Computer Reliability, Norman H. Taylor 1418
3788. A Digital Electronic Correlator, Henry E. Singleton 1422
3790. Comparison of Tropospheric Reception at 44.1 Mc with 92.1 Mc Over the 167-Mile Path of Alpine, New Jersey, to Needham, Massachusetts (Abstract), Greenleaf W. Pickard, and Harlan T. Stetson 1450
3791. Contributors to the PROCEEDINGS OF THE I.R.E.: 1451

Correspondence:

3792. "Reflected Ray Suppression," Howard E. Bussey 1453
3798. "25 Years of IRE in Canada", Technical Committee Notes 1458
3799. Industrial Engineering Notes 1460
3800. IRE People 1462

Books:

3799. "Heaviside's Electric Circuit Theory" by H. J. Josephs (Reviewed by S. N. Van Voorhis) 1465
3799. "Ionization Chambers and Counters" by H. D. Wilkinson (Reviewed by R. E. Lapp) 1465
3800. "Atomic Physics" by Wolfgang Finkelsburg (Reviewed by J. B. Harner Kaper) 1465
3801. "Primary Batteries" by George Wood Vinal (Reviewed by Donald McNicol) 1465
3802. "The Principles of Television Reception" by A. W. Keen (Reviewed by Pierre Merts) 1466
3803. "Patent Practice and Management for Inventors and Executives" by Robert Calvert (Reviewed by R. A. Heising) 1466
3806. "Electromagnetic Theory" by Oliver Heaviside (Reviewed by Donald McNicol) 1467
3807. "Wave Filters" by L. C. Jackson (Reviewed by C. W. Carmichael) 1467
3808. "Circuits in Electrical Engineering" by Charles R. Vail (Reviewed by Knox Mcllwain) 1467
3809. Abstracts and References 1468

Annual Index: follows p. 1480

Index—7
INDEX TO BOOK REVIEWS

Acoustic Measurements, by Leo L. Beranek (Reviewed by John D. Reid): 3631
Acoustical Designing in Architecture, by Verne Q. Knudsen and Cyril M. Harris (Reviewed by Leo L. Beranek): 3677
Advances in Electronics, Volume II, edited by L. Marton (Reviewed by E. W. Herold): 3748
Atomic Physics, by Wolfgang Finkelnburg (Reviewed by J. B. Horner Kuper): 3800
Circuits in Electrical Engineering, by Charles R. Ray (Reviewed by Knox McMillan): 3808
Communication Circuit Fundamentals, by Carl E. Smith (Reviewed by Samuel Seely): 3628
Communication Circuits, by Lawrence A. Ware and Henry R. Reed, Third Edition (Reviewed by Knox McMillan): 3606D
Description of a Relay Calculator, by the Staff of the Computation Laboratory (Reviewed by Claude E. Shannon): 3607C
Dynamic Principles of Mechanics, by David R. Inglis (Reviewed by J. R. Pierce): 3554
Electric and Magnetic Fields, by Stephen S. Attwood (Reviewed by Wellesley Dodds): 3570
Electromagnetic Theory, by Oliver Heaviside (Reviewed by Donald McNicol): 3806
Electron Tube Circuits, by Samuel Seely (Reviewed by S. N. Van Voorhis): 3773
Electronic Engineering Master Index, edited by John F. Rider (Reviewed by John R. Ragazini): 3654
Electronics: Experimental Techniques, by W. C. Elmore and Matthew L. Sands (Reviewed by Frederick W. Grover): 3702
Electronic Engineering, by W. Ryland Hill (Reviewed by J. D. Ryder): 3725
Facsimile, by Charles R. Jones (Reviewed by Nathan Marchand): 3775
Fourier Transforms, by S. Bochner and K. Chandrasekharan (Reviewed by Gordon L. Fredendall): 3592
Fundamentals of Radio-Valve Techniques—Book I, by J. Deketh (Reviewed by S. N. Van Voorhis): 3630
Fundamentals of Vacuum Tubes, by Austin V. Eastman (Reviewed by Frederick B. Llewellyn): 3614
Giant Brains or Machines That Think, by Edmund C. Berkeley (Reviewed by Charles J. Hirsch): 3655
Handbook of Patents, by Harry Aubrey Tolmin, Jr. (Reviewed by Aloys W. Graf): 3553
Heaviside's Electric Circuit Theory, by H. J. Josephs (Reviewed by S. N. Van Voorhis): 3798
How to Become a Radio Amateur, published by the American Radio Relay League: 3679
Introduction to the Luminescence of Solids, by H. W. L. Leverenz (Reviewed by C. W. Carnahan): 3627
Ionization Chambers and Counters, by H. D. Wilkinson (Reviewed by R. E. Lapp): 3799
Matrix Analysis of Electric Networks, by P. Lee Corbelier (Reviewed by A. G. Clavier): 3625
Modern Operational Calculus, by N. W. McLachlan (Reviewed by Herbert J. Carlin): 3559
The Motion Picture Theatre-Planning and Upkeep, edited by Helen M. Stote (Reviewed by Leo L. Beranek): 3609E
Patent Practice and Management for Inventors and Executives, by Robert Calvert (Reviewed by R. A. Heising): 3803
Practical Television Servicing and Troubleshooting Manual, by the Technical Staff of Coyne Electrical and Radio-Television School (Reviewed by Frank R. Arama): 3774
Primary Batteries, by George Wood Vinal (Reviewed by Donald McNicol): 3801
The Principles of Television Reception by A. V. Keen (Reviewed by Pierre Mertz): 3802
Questions and Answers in Television Engineering, by Carter V. Rabinoff and Magdalena E. Walrath (Reviewed by Fernandez Smith): 3777
Radio and Television Mathematics, by Bernhard Fisher (Reviewed by William L. Behrend): 3749
Radio Operating, Questions and Answers, by J. L. Hornung (Reviewed by Donald McNicol): 3724
Recent Advances in Radio Receivers, by L. A. Maxon (Reviewed by S. W. Seeley): 3676
Television for Radiomen, by Edward M. Noll (Reviewed by Ralph R. Batchler): 3750
Television Simplified, by Milton S. Kiver (Reviewed by Nathan Marchand): 3678
Theory of Oscillations, by A. A. Andronov and C. E. Chaikin (Reviewed by W. J. Cunningham): 3605A
Transformation Calculus and Electrical Transients, by Stanford Goldman (Reviewed by Lloyd T. DeVore): 3591
Traveling-Wave Tubes, by J. R. Pierce (Reviewed by Andrew V. Haeli): 3747
TV Picture Projection and Enlargement, by A. W. Lytel (Reviewed by Albert F. Murray): 3606B
Vacuum Equipment and Techniques, edited by A. Guthrie and R. K. Wakerling (Reviewed by George O. O'Neill): 3629
Wave Filers, by L. C. Jackson (Reviewed by C. W. Carnahan): 3807

Index—9
INDEX TO SUBJECTS

This listing includes technical, sociological, economic, and general papers. Numbers refer to chronological list.

<table>
<thead>
<tr>
<th>A</th>
<th>Abstracts and References: 3555, 3569, 3593, 3613, 3633, 3656, 3680, 3703, 3727, 3751, 3775, 3809</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics: 3607</td>
<td>Studio Design: 3607</td>
<td>Advertising: 3609</td>
</tr>
<tr>
<td>National Media: 3689</td>
<td>Aircraft Antenna: 3583</td>
<td>Shunt-Excited Flat Plate: 3583</td>
</tr>
<tr>
<td>Aircraft Navigation: 3598</td>
<td>Pictorial Display: 3598</td>
<td>Telerama: 3598</td>
</tr>
<tr>
<td>Allocations, Television: 3594</td>
<td>Amplifiers: 3551, 3563, 3608, 3614, 3616, 3624, 3643, 3649, 3660, 3674, 3690, 3708, 3710, 3730, 3732, 3745, 3750, 3760, 3786</td>
<td>Biometrics: 3708</td>
</tr>
<tr>
<td>Bioelectric: 3708</td>
<td>Cathode Neutralization: 3674</td>
<td>Videotape: 3674</td>
</tr>
<tr>
<td>Class C: 3643</td>
<td>Maximum Tank Voltage: 3643</td>
<td>Video: 3674</td>
</tr>
<tr>
<td>Crystal: 3690</td>
<td>High Input Impedance: 3690</td>
<td>Class-C: 3643</td>
</tr>
<tr>
<td>Direct-Current: 3708</td>
<td>Distributed: 3660</td>
<td>High-Gain, Wide-Range: 3730</td>
</tr>
<tr>
<td>Bandwidth: 3660</td>
<td>Feedback: 37469</td>
<td>Miniaturation: 3649</td>
</tr>
<tr>
<td>Stability: 3769</td>
<td>Intermediate-Frequency: 3649, 3730, 3786</td>
<td>Klystron: 3710</td>
</tr>
<tr>
<td>High-Frequency: 3551</td>
<td>Double-Tuned Circuits: 3551</td>
<td>Mixing Action: 3710</td>
</tr>
<tr>
<td>Low Noise Figure: 3551</td>
<td>Design Curves: 3786</td>
<td>Television Relaying: 3710</td>
</tr>
<tr>
<td>Intermediate-Frequency: 3649, 3730, 3786</td>
<td>Distortion: 3786</td>
<td>Linear: 3608</td>
</tr>
<tr>
<td>Design Curves: 3786</td>
<td>Inverse Feedback: 3649</td>
<td>Miniaturation: 3649</td>
</tr>
<tr>
<td>Inverse Feedback: 3649</td>
<td>Printed Circuit: 3730</td>
<td>Miniaturation: 3730</td>
</tr>
<tr>
<td>Miniaturization: 3649</td>
<td>Radial-Type: 3730</td>
<td>Reversing: 3745</td>
</tr>
<tr>
<td>Reversing: 3745</td>
<td>Square-Wave: 3624</td>
<td>Triode: 3616</td>
</tr>
<tr>
<td>Square-Wave: 3624</td>
<td>Triode: 3732, 3745</td>
<td>Microwave: 3796</td>
</tr>
<tr>
<td>Transformer: 3745</td>
<td>p-Germanium: 3745</td>
<td>Microwave: 3796</td>
</tr>
<tr>
<td>p-Germanium: 3745</td>
<td>Traveling-Wave Tube: 3609</td>
<td>Oscillating: 3763</td>
</tr>
<tr>
<td>Traveling-Wave Tube: 3609</td>
<td>Magneton Type: 3609</td>
<td>Oscillating: 3763</td>
</tr>
<tr>
<td>Magneton Type: 3609</td>
<td>Triode: 3616</td>
<td>Triode: 3732, 3745</td>
</tr>
<tr>
<td>Triode: 3616</td>
<td>Microbeam: 3616</td>
<td>Transistor: 3732, 3745</td>
</tr>
<tr>
<td>Microbeam: 3616</td>
<td>Video: 3674</td>
<td>Filters: 3730</td>
</tr>
<tr>
<td>Video: 3674</td>
<td>Cathode Neutralization: 3674</td>
<td>Miniaturation: 3730</td>
</tr>
<tr>
<td>Amplitude: 3618, 4607</td>
<td>Cathode-Coupled Oscillator: 3618</td>
<td>Multidiode: 3614</td>
</tr>
<tr>
<td>Cathode-Coupled Oscillator: 3618</td>
<td>Cylindrical Antennas: 3697</td>
<td>Annular Circuits: 3614</td>
</tr>
<tr>
<td>Cylindrical Antennas: 3697</td>
<td>Analogue Computers (See Computers)</td>
<td>Modes: 3614</td>
</tr>
<tr>
<td>Analogue Computers (See Computers)</td>
<td>Angular Modulation: 3740</td>
<td>Multiple-Tube Generator: 3614</td>
</tr>
<tr>
<td>Angular Modulation: 3740</td>
<td>Distortion: 3740</td>
<td>Amplifier: 3614</td>
</tr>
<tr>
<td>Distortion: 3740</td>
<td>Annular Circuits: 3614</td>
<td>Oscillator: 3614</td>
</tr>
<tr>
<td>Annular Circuits: 3614</td>
<td>Modes: 3614</td>
<td>Amplifier: 3614</td>
</tr>
<tr>
<td>Multiple-Tube Generator: 3614</td>
<td>Amplifier: 3614</td>
<td>Oscillator: 3614</td>
</tr>
<tr>
<td>Amplifier: 3614</td>
<td>Oscillator: 3614</td>
<td>Anode: 3789</td>
</tr>
<tr>
<td>Oscillator: 3614</td>
<td>Split: 3789</td>
<td>Magneton: 3789</td>
</tr>
<tr>
<td>Magneton: 3789</td>
<td>Index—10</td>
<td></td>
</tr>
</tbody>
</table>
K

Klystron: 3561, 3603, 3651, 3710
Bunching Effects: 3603
Electron Beam: 3561
 Mixer: 3710
Television Relaying: 3710
Resonators: 3651

L

Leak Detector: 3681
Positive-Ion Emission: 3681
Lenses: 3547, 3716, 3796
Achromatic: 3796
Artificial Dielectrics: 3716
Metal-Plate: 3547
Wide-Angle Scanning: 3547
Conna: 3547
Resonance: 3547
Square-Law Error: 3547
Light Waves: 3539
Velocity: 3539
Line: 3711
Delay: 3711
Video: 3711
Distortion Compensation: 3711
Linear Amplifiers: 3608
Bandwidth: 3608
Differential Networks: 3608
Output Circuits: 3608
Overload: 3608
Preamplifier: 3608
Line-Sequential System: 3704
Color Television: 3704
Equipment: 3704
Performance: 3704
Scanning Pattern: 3704
Lissajous Figure: 3735
Ultrammetrical: 3735
Voltage Wave Form: 3735
Cathode-Ray Tubes: 3735
Literature: 3757
Periodicals: 3757
Low-Loss Filters: 3768

M

Magnetic Amplifier: 3563
Amplifier Characteristics: 3563
Optimum Amplification: 3563
Steady-State Characteristics: 3563
Magnets: 3699, 3789, 3790
Preamplifier: 3609
Amplifier: 3609
Traveling-Wave Tube: 3609
Frequency: 3790
Space-Charge Effects: 3790
Space-Charge Effects: 3790
Split-Anode: 3789
Operation: 3789
Maintenance of Electronic Equipment: 3595
Management: 3657, 3753
Development: 3657, 3753
Research: 3657, 3753
Market Research: 3683
Marketing Symposium: 3682, 3683, 3684, 3685, 3686, 3687, 3688, 3689
Advertising: 3689
Production: 3685
Product Planning: 3684
Research: 3683
Sales: 3686, 3687, 3688
Matched Load Field-Strength Meters: 3714
Measurements: 3714
3740, 3541, 3543, 3545, 3556, 3620, 3621, 3636, 3637, 3644, 3646, 3650, 3661, 3666, 3692, 3693, 3697, 3714, 3736, 3750, 3796
Antennas: 3712, 3790
Achromatic: 3796
Parasitic: 3712
Attenuators: 3620, 3664
Conductivity: 3736
Ground Reflection: 3792
Suppression: 3792
Measurements: 3545, 3664
Attenuation: 3545, 3664
Attenuator: 3664
Phase Change: 3545
Refractive Index: 3545
Signal Strength: 3545
Optics: 3547, 3796, 3716
Artificial Dielectrics: 3716
Wide-Angle Scanning: 3547
Propagation: 3565, 3658
Field Strength: 3565
Refractive Index: 3565
Test: 3638
Radiation Exposure: 3709
Physical Effects: 3709
Reflections: 3587
From a Rough Sea: 3587

Miniaturization: 3601, 3730
Amplifiers: 3740
Electrode Spacing: 3601
High Operating Temperatures: 3730
Printed Circuit Amplifiers: 3740
Mixed Highs: 3705
Color Television: 3705
Mixing: 3710
Klystron: 3710
Television Relaying: 3710
Mixing Circuits: 3613
Electronic Computer: 3613
Mobile Radiotelephone: 3531, 3578, 3764, 3768, 4, 3613
Antenna Systems: 3765
Co-channel Stations: 3541
Geographical Separation: 3751
Service Areas: 3531
Land-to-Car Transmission: 3758
Echoes: 3578
Multichannel: 3764, 3765
Antenna Systems: 3765
Urban Installation: 3764
Urban Area Transmission: 3764
At 430 Mc: 3763
Receiver: 3763
Transmitter: 3763
At 150 Mc: 3763
Noise Figures: 3763
Free-Space Losses: 3763
Urban Installation: 3764
Six-System: 3764
60-Kc Spacing: 3764
Wave Propagation Variations: 3511
Fading: 3541
Shallow Losses: 3541
Modes: 3566, 3690, 3641
Annular Circuit: 3641
Solution: 3600
HeliX Parameters: 3600
Traveling-Wave Tube: 3600
Spurious: 3566
Coaxial-Line Filters: 3566
Modulation: 3455, 3497, 3577, 3597, 3609, 3693, 3740
Angular: 3740
Distortion: 35740
Annual Review: 1949, 3597
Frequency: 3497, 35740
Distortion: 35740
Reactor-Tube Oscillator: 3497
Phase: 3639, 3790
Pulse-Amplitude: 3455
Pulse-Time: 3577
Interference Characteristics: 3577
Velocity: 3603
Bunching Effects: 3603
Modulator: 3579
Circuit Analysis: 3579
Multiple-Path Transmission: 3578
Echoes: 3578
Multiple-Tube Generator: 3614
Multiplex: 3581, 3766
Asynchronous: 3581
Theoretical Aspects: 3581
Time-Division Systems: 3566
Interchannel Cross Talk: 3766
Multiplier Tube: 3586
Applications: 3596
Multivibrator: 3549, 3647
Cathode-Coupled: 3647
Operation: 3547
Switching Wave Forms: 3549
Triggering Delay: 3549

Navigation: 3597, 3598, 3636, 3637
Aids: 3597
Annual Review: 1949, 3597
Aircraft: 3598
Pictorial Display: 3598
Error: 3636, 3637
Phase Measurments: 3636, 3637
Phase Measurements: 3636, 3637
Error: 3636, 3637
Teleram: 3598

Index—14
Wave Propagation (Cont'd.)
Ground Wave (Cont'd.)

Reflection: 3792
Suppression: 3792

Ionosphere: 3678, 3677, 3665, 3667, 3669

Absorption: 3672

Curved: 3672

Oblique Incidence: 3672

Beacon Technique: 3672

Poynting Vector: 3672

Reflection: 3672

Polarization: 3672

Stratospheric Relation: 3672

Wind Shear: 3672

Meteorological Fields: 3672

Microwave: 3672

Absorption: 3672

Attenuation: 3672

Attenuator: 3672

Fluctuation: 3672

Klystron: 3672

Wave Projector: 3672

Reciprocity Theorem: 3672

Wave Propagation: 3672

Annual Review: 3672

Attenuation: 3672

Piston Attenuator: 3672

Beacon Technique: 3672

Ionosphere: 3672

Beyond Horizon: 3672

Deflections of 3672

Fading: 3672

Propagation: 3672

Field Strength: 3672

Ground Wave: 3672

Iono-phere: 3672

Reflection: 3672

Scattering: 3672

Nephelometry: 3672

Swath: 3672

Weather: 3672

Mountains: 3672

X
NONTENATIONAL INDEX

Abstracts and References

Monthl References
January, pp. 100-112
February, pp. 212-224
March, pp. 323-336
April, pp. 451-464
May, pp. 579-592
June, pp. 707-720
July, pp. 835-858
August, pp. 963-976
September, pp. 1107-1120
October, pp. 1363-1376
December, pp. 1468-1480

Awards

BOWDER J. THOMPSON MEMORIAL AWARD—1950 (Recipients)
Hall, Joseph F.
Randal, Arthur W.
June, p. 693

BROWBER'S AWARD—1950 (Recipient)
Barlow, E. J.
June, p. 693

THOMAS ELLIOW AWARD—1950 (Recipient)
Barlow, E. J.
June, p. 693

HARRY F. DRUMMOND MEMORIAL AWARD—1950 (Recipient)
Barlow, E. J.
June, p. 693

JOHN H. POTTS MEMORIAL AWARD AND MEDAL—1950 (Recipient)
Olson, Harry F.
March, p. 319

MURIEL or HESS—1950 (Recipient)
Terman, Frederick E.
June, p. 693

MORRIS LIEBMAN MEMORIAL PRIZE—1950 (Recipient)
Schade, Otho H.
June, p. 693

PRESIDENT'S CERTIFICATE OF MERIT—1950 (Recipient)
Chase, Britton
January, p. 97

Committees

BOARD OF DIRECTORS
Votes Regional Changes
January, p. 92
Announces 1951 Awards
December, p. 1460

EXECUTIVE COMMITTEE
Appoints Representatives on ASA Sectional Committees
November, p. 1355

INSTITUTE COMMITTEES—1950
Activities
Membership, February, p. 186
Papers Procurement, September, p. 1098
Professional Groups, September, p. 1098

Personnel
June, p. 703
October, p. 1231

JOINT TECHNICAL ADVISORY COMMITTEE
Activities
February, p. 186
March, p. 315
April, p. 443
May, p. 567
June, p. 690
July, p. 828
August, p. 954
October, p. 1223
December, p. 1460

Personnel
September, p. 1098

MISCELLANEOUS COMMITTEES
ASEE Committee
July, p. 528

IRE/AIEE Committee on Noise Definitions
August, p. 954
October, p. 1223

IRE/AIEE Conference on Improved Quality Electronic Components Steering and Technical Program Committee
March, p. 315
April, p. 443

Joint IRE/AIEE Committee on High Frequency Measurements
July, p. 828
August, p. 954

Joint IRE/AIEE Symposium on Minimization in Electronic Equipment Planning Group
January, p. 93

Joint IRE/AIEE Symposium on Package Design (Subcommittee)
February, p. 186

Joint IRE/AIEE Symposium on Packaging Electronics Steering Committee
December, p. 1460

RMA-IRE Co-ordination Committee
January, p. 93

Third Annual Joint IRE/AIEE Nuclear Science Symposium Planning Committee
April, p. 443
May, p. 567
June, p. 690
August, p. 954

Personnel
June, p. 705
October, p. 1233

TECHNICAL COMMITTEES
Activities
Annual Review, June, p. 689
Antennas and Waveguides, June, p. 689, December, p. 1460
Audio Techniques, February, p. 186
June, p. 689, November, p. 1355
Electroacoustics Committee, May, p. 567, June, p. 689
Electro-Tubes and Solid State Devices
February, p. 186, April, p. 442, May, p. 567, June, p. 689, July, p. 827, August, p. 954
Electronic Computers, June, p. 689, November, p. 1355
Electronic Instrumentation, April, p. 442
Electronics, June, p. 689
Industrial Electronics, January, p. 93, March, p. 315, May, p. 567, June, p. 689
Measurements and Instrumentation
January, p. 93, February, p. 186
March, p. 315, April, p. 443, June, p. 689, July, p. 827
Mobile Communications, March, p. 315, June, p. 689
Modulation Systems, February, p. 186, June, p. 689
Piezoelectric Crystals, June, p. 689
Radio Transmitters, June, p. 689
Receivers, January, p. 93, May, p. 567, June, p. 689
Sound Recording and Reproducing, February, p. 186, May, p. 567
June, p. 689, September, p. 1098
Symbols, April, p. 442, June, p. 689
TASC Group on Pulse Definitions (Subcommittee) February, p. 186
Television Systems, June, p. 689
Theory and Application of Tropospheric Propagation (Subcommittee), February, p. 186
Video Systems and Components (Subcommittee), January, p. 93
Video Techniques, January, p. 93, June, p. 689, July, p. 828, August, p. 954, December, p. 1460
Wave Propagation, January, p. 93, April, p. 442, June, p. 689, July, p. 827, August, p. 954, September, p. 1098

Personnel
June, pp. 701-705
October, pp. 1232-1233

Conventions and Meetings

AAAS Annual Meeting, Cleveland, Ohio, December 26-30

November, p. 1356

AIEE New York Section Network Symposium, New York, N. Y., January 11, February 15, March 15, April 5

January, p. 93

Index—19
Antennas and Propagation Symposium, San Diego, Calif., April 3-4
August, pp. 958-962
AIEE Annual Meeting, Seattle, Wash., June 25, pp. 567
Australian IRE Meeting, Sydney, December 19, 1949
April, p. 442
Eastman Kodak Company Television Symposium, Rochester, N. Y., May
April, p. 444
Electric Railway Traction Convention, London, March 20-23
March, p. 316
Electron Tubes for Computers Conference, Atlantic City, N. J., December 11-12
December, p. 1460
Engineers' Joint Council January, p. 94
High-Frequency Measurements Conference, Washington, D. C., January, 1951
September, p. 1098
November, p. 1356
Institute of Aeronautical Sciences Annual Convention New York, N. Y., January, 1951
December, p. 1460
Ionospheric Physics Conference, State College, Pa., July
May, p. 568
IRE/AIEE/RMA Conference, Washington, D. C., May 9-11
March, p. 316
IRE National Convention—1950
Convention and Show Unqualified Success May, pp. 569-571
Convention Slated in New York, March 6-9 January, p. 92
Program and Summaries of Technical Papers February, pp. 192-211
IE/WA Meeting, Syracuse, N. Y., November 1949 January, p. 92
IRE/URSI Antennas and Propagation Symposium, San Diego, Calif., April 3-5 March, p. 315
IRE West Coast Convention—1950
Convention Held in Fall is Successful November, p. 1355
Convention Will Be Held in Long Beach, Calif., September 13-15 April, p. 442
Full Agenda Announced August, p. 953
ISO 1952 General Assembly September, p. 1099
Joint IRE/AIEE; Third Annual Conference on Electronic Instrumentation in Nuclear Science and Medicine, New York, N. Y., October 21-25 October, p. 1223
July, p. 828
Joint IRE/URSI Meeting, Washington, D. C., October 31-November 2, 1949 January, p. 93
February, p. 187
Joint NYU/Atomic Energy Commission Nuclear Technology Conference, New York, N. Y., January 10-12 January, p. 95
Midwest Power Conference, Chicago, Ill., April
February, p. 187
Index—20

National Electronics Conference, Chicago, Ill., September 24-27 September, p. 1098 December, p. 1457
National Television Systems Committee Meeting, New York, N. Y., March 3 May, p. 567
New England Radio Engineering Meeting, Boston, Mass., April 15 April, p. 442 May, p. 567
NYU Wave Propagation Symposium, New York, N. Y., June 6-8 April, p. 444
Radio Full Meeting, Syracuse, N. Y., October 30-November 1 October, p. 1221
Swiss Television Committee Meeting, October 18, 1949 January, p. 94
University of Michigan Summer Electronics Symposium, Ann Arbor, Mich., June 26-August 18 May, p. 568

Front Covers
Chicago IRE Section Celebrates its Silver Anniversary in the Midwest Radio Broadcasting and Manufacturing Metropolis September

Electrical Performance Based on Geometrical Compression May
Electron Microscopy of Magnetic Fields January
Evolution of Picture-Tube Technique July
IEEE National Convention February
An Industrial University March
Pre-Assembled Circuit November
Radio "Pipe Fitters" June
Studies of New Circuit—October
Vigorous Testing April
West Coast 1950 Convention August
25 Years of IRE in Canada December

Frontispieces
Adams, Kipling May, p. 416
Ashbrook, Fred M. November, p. 1250
Baker, W. C. G. November, p. 1278
Clardy, Leloir May, p. 446
Clark, Trevor H. September, p. 978
Esterman, Austin V. March, p. 226
Gus, Raymond F. January, p. 2-2
Hamburger, Ferdinand, Jr. April p. 338
Heegar, Howard E. August, p. 850
Hewlett, William R. July, p. 722
Krausz, Herman I. October, p. 1122
Morrissey, F. C. August, p. 850
Reid, John D. June, p. 594
Schulz, E. H. May, p. 446
Thorson, Harry L. November, p. 1250
Wilson-Watt, S. Robert A. February, p. 112

Industrial Engineering Notes
January, pp. 95-96
February, p. 188
March, pp. 317-318
April, pp. 443-446
May, p. 571
June, pp. 691-692
July, pp. 829-830
August, pp. 951-953
September, pp. 1100-1101
October, pp. 1227-1228
November, pp. 1359-1360
December, pp. 1461-1462

IRE People
Atchley, Dana W., Jr., August, p. 956
Bennett, Rawson, October, p. 1226
Black, Knox C., February, p. 189
Bowie, Robert M., March, p. 320
Brown, Glenn H., November, p. 1358
Budelman, Frederick T., December, p. 1164
Callahan, G. F., December, p. 1464

Edited by
Graham, Virgil M.
Butler, E. W., and Zuber, H. H.
Caldwell, Oreste H.
Carr, E. Finley
Smith, Carl F.
Eiff, Donald G.
McNeil, Donald
Appel, John E.
Smith-Rose, R. L.
Krantz, Herman I.
Krausz, Herman I.
Heegar, Howard E.
Hewlett, William R.
Hamburger, Ferdinand, Jr.
Reid, John D.
Schulz, E. H.
Thorson, Harry L.
Wilson-Watt, S. Robert A.
Tucker, Dundas P., March, p. 320, December, p. 1463
Tuckerman, Lucien P., March, p. 320
Tuve, Merle A., December, p. 1462
Um, E. H., October, p. 1226
Vazan, Russell H., November, p. 1358
Viebrock, Alfred C., March, p. 319
Walker, Eric, October, p. 1225
Weiss, Walter, April, p. 448
White, Edwin L., November, p. 1357
White, James, July, p. 831
Winer, John T., December, p. 1462
Winter, Norman L., December, p. 1463
Woolery, James Winston, Jr., October, p. 1226
Wunderlich, Norman E., December, p. 1464
Young, C. Paul, April, p. 447
Zworykin, Valdimir K., December, p. 1463

IRE Professional Groups

Activities

Audio Group
June, p. 689
Administrative Committee
February, p. 186
June, p. 689
Antennas and Wave Propagation Group
January, p. 93
February, p. 186
Broadcast Transmission Systems Group
August, p. 954
November, p. 1335
Administrative Committee

Circuit Theory Group
January, p. 93
Instrumentation Group
June, p. 690
Administrative Committee
July, p. 828

Nuclear Science Group
January, p. 93
February, p. 186
Professional Group Chairman Meeting
January, p. 93
Professional Group Program
March, p. 316
Quality Control Group
January, p. 93
February, p. 186
Radio Telemetry and Remote Control Group
September, p. 1099
October, p. 1223
Vehicular Communications Group
October, p. 1223
November, p. 1335
Administrative Committee
March, p. 315
Chairmen
July, p. 834
September, p. 1106
November, p. 1362

Miscellaneous

AIEE Nominates New Officers
April, p. 446
American Radio Relay League Publishes
World Radio Map
June, p. 691
AKRL Releases Film on Television Interference
January, p. 94
Army Signal Corps Will Give Electronics
Program
May, p. 568
ASTE Establishes Fund for First Research Foundation
June, p. 690
Baltimore Is Third Port to Install Harbor Radar System
July, p. 828

Bell System Will Expand Television Networks
December, p. 1460
CAA Leases Biggest Contract for New Air Navigation Aids
July, p. 527
Calendar of Coming Events
January, p. 94
February, p. 187
March, p. 318
April, p. 443
May, p. 567
June, p. 690
July, p. 827
August, p. 954
September, p. 1098
October, p. 1224
November, p. 1336
December, p. 1460

Curve Generator Developed at National Bureau of Standards
June, p. 690

Dr. Lester Field Is Honored by Eta Kappa Nu
June, p. 691

Engineers Reflect Radio Waves around Pennsylvania Mountain
March, p. 317

First Electronic Exhibit Presented in New Mexico
February, p. 187

FMA-NAB Liaison Committee Maps Proposal for Metric
February, p. 186

GE Builds System for Microwave Relay
February, p. 187

GE Develops Lightweight X-Ray Machine
January, p. 95

GE Devises New Type Counter
October, p. 1224

GE X-Ray Shows Details of Materials
March, p. 317

International Standardization Council

Formed by Government
June, p. 690

IRE Will Inaugurate Plans for Annual Student Awards
July, p. 827

Johnson and Miller Appoint Censorship Problem Committee
April, p. 443

Max F. Baldwin Elected Head of Sylvania Directors
July, p. 828

MIT Offers Fellowships in Electronics Research
Study, April, p. 442

NAB Completes Internal Reorganization of Structure
February, p. 187

NAB Seeks Government Action on Broadcasting Allocations
April, p. 444

NAB Surveying Manufacturers for Information on FM Sets
June, p. 690

July, p. 827

National Bureau of Standards Has 50-Million Volt Betatron
September, p. 1099

National Bureau of Standards Offers Calibration Services
November, p. 1356

National Bureau of Standards Publishes
Booklet of HF Voltage Measurements
January, p. 94

National Bureau of Standards Publishes
New Booklet on Spectrophotometric Data
April, p. 445

National Bureau of Standards Reviews WWV and WWVH Services
April, p. 444

New Electronic Accelerator Speeds Automatic Elevators
January, p. 94

Index—21
New York FBI Homes Outnumber AM
Homes in 26 other States
January, p. 94
Northwestern University Will Build Atom
Smasher
December, p. 1457
Publication of Revised IRE Master Index
December, p. 1460

Notices
Attention, Foreign Members!
March, p. 317

First Call! Authors for IRE National
Convention
September, p. 1098

Second Call! Authors for IRE National
Convention
October, p. 1224

Last Call! Authors for IRE National
Convention
November, p. 1356

Components Conference Papers Available
September, p. 1099

Effective January 1, 1951, Student Dues
$5.00 per Year
October, p. 1223

Decide, p. 1457

Nuclieonics Conference Papers Available
March, p. 515

Vacancies at Indiana Navy Station
November, p. 1355

Oak Ridge Institute to Give Courses on
Radioisotopes
November, p. 1355

Path Rainfall Affects Attenuation of Micro-
waves
January, p. 94

Peter Mole Elected New President of
SMiTE Group
December, p. 1457

Radio Program During 1949
April, pp. 330-391

Radio Propagation Station Established in
Virginia
June, p. 691

Radio, TV, Electronics Exhibit Will Be Held
in Philadelphia
September, p. 1099

Rider Receives Esleta Radio Education
Award
February, p. 187

Signal Corps Center Recruits Civilian Tech-
nical Personnel
October, p. 1223

SMiTE Announces Name Change
March, p. 315

Sylvania Electric Products Absorbs Colonial
Radio Co.
April, p. 444

Treasury Refuses to Postpone Excise Tax
for Loudspeakers
April, p. 444

United States Air Force Reserve Offers
Various Commissions
September, p. 1099

University Engineers Unveil $250,000 Elec-
tric Computer
March, p. 316

300,000,000-Volt Synchotron Passes First
Test at MIT
April, p. 444

Webster Is New Chairman of Research De-
velopment Unit
June, p. 698

Western Union Company Has Developed
Amplifier Cable
December, p. 1460

William A. Wildhack Will Head Basic In-
strumentation Office
November, p. 1356

25 Years of IRE in Canada
December pp. 1458-1459

Obituary
Aggar, Charles E., December, p. 1461
Allen, John F., December, p. 1462
Bates, John F., October, p. 1225
Beers, Norman H., October, p. 1226
Briggs, Lloyd A., March, p. 319
Cobb, F. Arthur, August, p. 956
Cummings, B. Ray, April, p. 447
Douglas, Morris Duan, March, p. 320
Durham, Gaylord E., April, p. 448
Ferry, Montague, February, p. 190
Fouis, Joseph L., March, p. 319
Harrell, Loren B., September, p. 1102
Hayes, M. W. V., June, p. 689
Heagy, Margaret S., July, p. 831
Herradon, Landon C., February, p. 190
Jansky, Karl G., April, p. 447
Jewett, Frank B., February, p. 189
Kolster, Frederick A., October, p. 1225
Kruger, Werner C., March, p. 320
Ludwig, James H., April, p. 447
Martin, Albert D., Jr., January, p. 97
Milne, George O., April, p. 448
Murphy, Commodore John V., April, p. 448
Nadosy, Alexander August, p. 956
Obukhoffs, Nicholas M., October, p. 1226
Pike, O. W., December, p. 1463
Poor, Walter E., August, p. 957
Spaulding, Frank E., Jr., February, p. 190
Tomkins, George, February, p. 190
Waples, Paul E., May, p. 574
Wise, Roger N., April, p. 448
Zworykin, Vladimir K., April, p. 417

Report of the Secretary
Letter to the Board of Directors
June, pp. 697-702

Report of the Technical Secretary
Technical Secretary Reports Professional
Groups' Status
January, pp. 92-93

Representatives in Colleges
June, pp. 705-706
October, pp. 1233-1234

Representatives on Other Bodies
June, p. 706
July, p. 827
October, p. 1234

Sections
Chairmen and Secretaries
January, pp. 98-99
March, pp. 321-322
May, pp. 575-576
July, pp. 833-834
September, pp. 1105-1106
November, pp. 1461-1462

Activities
Cedar Rapids Section 1950 Student Pa-
ers Contest
March, p. 316

Chicago Section Silver Anniversary (by
Paul S. Smith)
May, pp. 572-573

Chicago Section 25th Anniversary—
Officers
May, p. 956

Cincinnati Section Spring Conference
January, p. 953

Dayton Section Conference
May, p. 567

Emporium Section Annual Summer Sem-
nar
August, p. 954

Memorandum Subsection Program of Com-
muters' Service
December, p. 1457

Toronto Celebrates 25th Year
December, p. 1460

Vancouver Section Formed
December, p. 1460

Standards
Report on the International Television
Standards Conference
February, p. 116

Standards on Designation for Electrical,
Electronic, and Mechanical Parts and
their Symbols, 1949
February, pp. 118-124

Standards on Electron Tubes: Definitions
of Terms
May, pp. 953-953

April, pp. 426-439

Standards on Electron Tubes: Methods of
Testing, 1950—Part I
August, pp. 912-948

Standards on Electron Tubes: Methods of
Testing, 1950—Part II
September, pp. 1079-1094

Standards on Television; Methods of Meas-
urement of Television Signal Levels,
Resolution, and Timing of Video
Switching Systems, 1960
May, pp. 551-562

Standards on Television: Methods of Mea-
urement of Time of Rise, Pulse Width,
and Pulse Timing of Video Pulses in
Television, 1950
November, pp. 1258-1264

Standards on Wave Propagation: Defini-
tions of Terms, 1950
November, pp. 1264-1269

Index—22
Back Copies

The Institute endeavors to keep on hand a supply of back copies of the PROCEEDINGS for sale for the convenience of those who do not have complete files. However, some issues are out of print and cannot be provided.

All available back issues of the PROCEEDINGS of the I.R.E. are priced at $2.25 per copy to individual non-members; $1.65 per copy to public libraries, colleges, and subscription agencies; and $1.00 per copy to Institute members. Price includes postage in the United States and Canada; postage to other countries is ten cents per copy additional.

1913–1915 Volumes 1–3 Quarterly

1913 Vol. 1 January (a reprint)

1916–1926 Volumes 4–14 Bimonthly

1920 Vol. 8 April, June, August, October, December
1921 Vol. 9 February, April, June, August, October, December
1922 Vol. 10 All 6 issues

1923 Vol. 11 February, April, October, December
1924 Vol. 12 August, October
1925 Vol. 13 April, June, August, October, December
1926 Vol. 14 All 6 issues

1927–1938 Volumes 15–26 Monthly

1927 Vol. 15 April, May, June, July, October, December
1928 Vol. 16 February to December, inc.
1929 Vol. 17 April, May, June, November, December
1930 Vol. 18 April to December, inc.
1931 Vol. 19 All 12 issues
1932 Vol. 20 January, March to December, inc.

1933 Vol. 21 All 12 issues
1934 Vol. 22 All 12 issues
1935 Vol. 23 All 12 issues
1936 Vol. 24 January, February, March
1937 Vol. 25 February to December, inc.
1938 Vol. 26 All 12 issues

1939–1950 Volumes 27–38 Monthly

New Format—Large Size

1939 Vol. 27 January, February, March, May, December
1940 Vol. 28 All 12 issues
1941 Vol. 29 All 12 issues
1942 Vol. 30 January to May, October to December, inc.
1943 Vol. 31 February to December, inc.
1944 Vol. 32 January, February, April, May, August to December, inc.

1945 Vol. 33 January to July, inc., September to December, inc.
1946 Vol. 34 January, February, April to December, inc.
1947 Vol. 35 January to May, inc., July, October to December, inc.
1948 Vol. 36 All 12 issues
1949 Vol. 37 January to April, inc., July to December, inc.
1950 Vol. 38 All 12 issues

Cumulative Indexes covering the periods 1913–1942 and 1943–1947 are available at the same prices as back issues of PROCEEDINGS.

Proceedings Binders

Sturdy binders of blue Spanish-grain fabricoid with gold lettering, which will serve either as temporary transfers or as permanent holders for the PROCEEDINGS may be obtained in the large size only (1939 to date) at the following prices: $2.50 for plain; $3.00 for Vol. No. or year, or your name imprinted; $3.50 for Vol. No. and name or name and year imprinted. Postage is prepaid in United States or Canada; postage to other countries, 50 cents additional.

Membership Emblems

The IRE emblem is available to members in three useful forms; the lapel button, the pin, and the watch charm. Each is of 14-karat gold, enameled in color to designate the grade of membership.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Background Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fellow</td>
<td>Gold</td>
</tr>
<tr>
<td>Senior Member</td>
<td>Dark Blue</td>
</tr>
<tr>
<td>Member</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Associate</td>
<td>Maroon</td>
</tr>
<tr>
<td>Student</td>
<td>Green</td>
</tr>
</tbody>
</table>

The lapel button has a screw back with jaws which grip the cloth of the coat. These are priced at $3.00 each. The pin, at $3.50 each, is provided with a safety catch. The watch charm, enameled on both sides and equipped with a suspension ring for attaching to a watch charm or fob, is $5.50.

Prices on emblems are the same for all grades of membership and include Federal tax, postage, and insurance or registered-mail fee.

Remittance should accompany your order.

Please do not send cash except by registered mail.

THE INSTITUTE OF RADIO ENGINEERS, INC.
1 East 79 Street, New York 21, New York
Current IRE Standards

In addition to the technical papers published in the PROCEEDINGS of the I.R.E., Standards on various subjects have been printed. These are available at the prices listed below. A 20% discount will be allowed on orders for 100 or more copies mailed to one address.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
<th>Pages</th>
<th>Dimensions</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 IRE 2, 11, 15</td>
<td>Standards on Antennas, Modulation Systems, and Transmitters: Definitions of Terms, 1948.</td>
<td>(vi+25 pages, 8½ x 11 inches)</td>
<td>$0.75</td>
<td></td>
</tr>
<tr>
<td>48 IRE 2 S2</td>
<td>Standards on Antennas: Methods of Testing, 1948. (Adopted by ASA C16.11-1949).</td>
<td>(vi+18 pages, 8½ x 11 inches)</td>
<td>$0.75</td>
<td></td>
</tr>
<tr>
<td>42 IRE 3 S1</td>
<td>American Recommended Practice for Volume Measurements of Electrical Speech and Program Waves. (Adopted by ASA C16.5-1942).</td>
<td>(8 pages, 7½ x 10½ inches)</td>
<td>$0.20</td>
<td></td>
</tr>
<tr>
<td>38 IRE 6 S1</td>
<td>Standards on Electroacoustics, 1938. Definitions of Terms, Letter and Graphical Symbols, Methods of Testing Loud Speakers.</td>
<td>(vi+37 pages, 6 x 9 inches)</td>
<td>$0.50</td>
<td></td>
</tr>
<tr>
<td>50 IRE 7 S1</td>
<td>Standards on Electron Tubes: Definitions of Terms, 1950.</td>
<td>Reprinted from the April, 1950, PROCEEDINGS (pp. 426-438)</td>
<td>$0.75</td>
<td></td>
</tr>
<tr>
<td>50 IRE 7 S2</td>
<td>Standards on Electron Tubes: Methods of Testing, 1950.</td>
<td>Part I reprinted from August, 1950, PROCEEDINGS (pp. 917-948); Part II reprinted from September, 1950, PROCEEDINGS (pp. 1079-1093)</td>
<td>$1.25</td>
<td></td>
</tr>
<tr>
<td>42 IRE 9 S1</td>
<td>Standards on Facsimile: Definitions of Terms, 1947.</td>
<td>(vi+6 pages, 8½ x 11 inches)</td>
<td>$0.20</td>
<td></td>
</tr>
<tr>
<td>43 IRE 9 S1</td>
<td>Standards on Facsimile: Temporary Test Standards, 1943.</td>
<td>(vi+8 pages, 8½ x 11 inches)</td>
<td>$0.20</td>
<td></td>
</tr>
<tr>
<td>49 IRE 12 S1</td>
<td>Standards on Radio Aids to Navigation: Definitions of Terms, 1949.</td>
<td>Reprinted from the December, 1949, PROCEEDINGS (pp. 1364-1371)</td>
<td>$0.60</td>
<td></td>
</tr>
<tr>
<td>45 IRE 14 S1</td>
<td>Standards on Piezoelectric Crystals: Recommended Terminology, 1945.</td>
<td>(vi+4 pages, 8½ x 11 inches)</td>
<td>$0.20</td>
<td></td>
</tr>
<tr>
<td>49 IRE 14 S1</td>
<td>Standards on Piezoelectric Crystals, 1949.</td>
<td>Reprinted from the December, 1949, PROCEEDINGS (pp. 1578-1595)</td>
<td>$0.20</td>
<td></td>
</tr>
<tr>
<td>49 IRE 16 S1</td>
<td>Standards on Railroad and Vehicular Communications: Methods of Testing, 1949.</td>
<td>Reprinted from the December, 1949, PROCEEDINGS (pp. 172-175)</td>
<td>$0.50</td>
<td></td>
</tr>
<tr>
<td>38 IRE 17 S1</td>
<td>Standards on Radio Receivers: Definitions of Terms. 1938. A Reprint (1942) of the like-named section of "Standards on Radio Receivers, 1938." (vi+6 pages, 8½ x 11 inches)</td>
<td>(vi+15 pages, 8½ x 11 inches)</td>
<td>$0.50</td>
<td></td>
</tr>
</tbody>
</table>

Prices Are Net and Include Postage to Any Country. Include Remittance with Order and Address.

THE INSTITUTE OF RADIO ENGINEERS, INC.

1 East 79 Street, New York 21, N.Y.
TORTURE TESTS PROVE SWITCH PERFORMANCE

Turn it on. Turn it off. Do this 25,000 times or more and you'll get a good idea of the terrific punishment Centralab switches must be able to withstand. Day and night, skilled CRL engineers and specially designed testing machines put Centralab switches through torture tests no switch is ever asked to undergo in ordinary operation. What does this mean to you? Just this. You can be sure that Centralab gives you the smooth operation, positive indexing and accurate positioning you want in the switches you buy. What's more, you can be sure CRL switches will continue to provide these advantages for a long, long time.

Constant checking makes sure CRL switches live up to your desired uniform low contact resistance. Here an engineer tests resistance by running 1 ampere through contacts.

Accelerated life test machine rotates through fixed number of positions at 1000 cycles per hour. . . . proves switch springs, clips and contacts stand up under long, hard use.

Resistance of switch insulation to atmospheric change is tested in controlled temperature and humidity chamber. Test helps avoid breakdown or leakage.
Yes, CRL's Medium Duty Power Switches are made to meet your individual needs — single, two or three poles — 18 contacts per section ... up to 20 sections per shaft. Contacts and collector rings of coin silver, mounted on Grade L5 Steatite, compounded and produced right in our own plant ... backed up by 20 years of ceramic manufacturing experience.

These switches are designed for R. F. or 71/2 amp. 110-115 V. application. Voltage breakdown to ground, 3000 V. RMS 60 cycles.

The combination of rugged construction — coin silver contacting members, plus the high insulation resistance of Grade L5 Steatite, means trouble-free performance in x-ray, lab-test equipment, high voltage transmitters and other electronic gear.

For top-performing medium duty power switches, built for life-time service — in standard or custom built models — ask about CRL's "torture tested" power switch line. Our engineers will be glad to assist you.

Great step forward in switching is CRL's New Rotary, Coil, Sprung and Cam Index Switch. It gives you smoother action, longer life.

Centralab's development of a revolutionary, new Slide Switch vastly facilitates AM and FM set design! Flat, horizontal design saves valuable space, allows short leads, convenient location to coils, reduced lead inductances for increased efficiency in low and high frequencies. CRL Slide Switches are rugged and dependable.
for Electronic Gear

4 24 insulated clips per section assure variety of switching combinations. This double-wipe style switch can be CRL built to your specifications. Successfully used in TV up to 200 megacycles. Ratings: 1 amp at 6 v. Stator and rotor highest grade laminated phenolic. Clips silver-plated or silver alloy.

5 CRL's new high quality Model 2 Radiom Controls specifically designed for TV, radio, other electronic equipment. Lower noise level, longer life.

For by-pass or coupling applications, check Centralab's original line of ceramic disc Hi-Kaps. Disc Hi-Kaps are smaller than a dime.

7 Hi-Vo-Kaps (10-20-30 kv) are filter and by-pass capacitors combining high voltage, small size and variety of terminal connections to fit most TV needs.

8 Ceramic Trimmers are made in five basic types. Full capacity change within 180° rotation. Spring pressure maintains constant rotor balance.

Centralab's Amper, above, is an integral assembly of tube sockets, capacitors, resistors and wiring combined into one miniature amplifier unit.

10 Couplate consists of plate and grid resistors, plate by-pass and coupling capacitors. Minimum soldered connections speed production.

11 This is the new CRL Vertical Integrator Network used in TV sets. Variations of this Centralab integrator plate are available on special order.
Choose From This List!

Centralab Printed Electronic Circuits
- 42-22 — VERTICAL INTEGRATOR — for TV application.
- 42-27 — MODER 2 COUPLATE — for small or portable set applications.

Centralab Capacitors
- 42-3 — BC TUBULAR Hi-KAPS — capacitors for use where temperature compensation is unimportant.
- 42-4R — BC DISC Hi-KAPS — miniature ceramic BC capacitors.
- 42-10R — Hi-Vo-KAPS — high voltage capacitors for TV application.
- 42-59 — CERAMIC TUBULAR TRIMMERS — designed for TV and VHF application.
- 42-101 — CERAMIC TRIMMERS — CRL trimmer catalog.

Centralab Switches
- 953 — SLIDE SWITCH — applies to AM and FM switching circuits.
- 995 — LEVER SWITCH — shows indexing combinations.
- 972 — SWITCH CATALOG — facts on CRL complete line of switches.

Centralab Controls
- 42-19 — MODEL "1" RANDHIM — world's smallest commercially produced control.
- 42-85 — MODEL 2 RANDHIM — CRL's new line of 3/8" diam controls for TV — AM — FM.

Centralab Ceramics
- 967 — CERAMIC CAPACITOR DIAMETRIC MATERIALS.
- 720 — CERAMIC CATALOG — CRL stoneware, ceramic products.

Look to CENTRALAB in 1951! First in component research that means lower costs for the electronic industry. If you are planning new equipment, let Centralab's sales and engineering service work with you. For complete information on all CRL products, get in touch with your Centralab Representative. Or write direct.

CENTRALAB
Division of Globe-Union Inc.
920 East Keele Avenue, Milwaukee, Wisconsin

Yes—I would like to have the CRL bulletins, checked below, for my technical library!

☐ 973 ☑ 42-24 ☑ 42-9 ☑ 42-10R ☐ 981 ☐ 953 ☐ 42-19
☐ 42-6 ☑ 42-27 ☑ 42-3 ☑ 42-59 ☐ 42-18 ☑ 995 ☐ 967
☐ 42-22 ☐ 999 ☐ 42-4R ☐ 42-101 ☐ 42-102 ☐ 970 ☐ 720
☐ 975 ☐ 722 ☐ 42-85

Name

Address

City State
SILICONE—the amazing new synthetic that made headlines when General Electric brought it out—is back in the news again. For today, G-E small capacitors, up through 5000 volts, are hermetically sealed with G-E silicone rubber bushings or gaskets.

This means that your new G-E capacitor is sealed positively, permanently—for maximum life. For silicone seals by compression alone, without the use of adhesives. It will never shrink, loosen or pull away—it remains elastic at any operating temperature a capacitor will ever meet. It is impervious to oils, alkalies and acids. Its dielectric strength is permanently high and it is not easily damaged during installation for it has a flexibility that withstands mechanical and thermal shock.

This exclusive G-E feature—designed to surpass established installation requirements—makes General Electric capacitors finer and more dependable than ever before. Apparatus Dept., General Electric Company, Schenectady 5, N. Y.

Silicone-rubber bushings, permanently elastic and formed to close tolerances, seal themselves by compression to the capacitor cover. They are used with capacitors 1500-v d-c, or 660-v a-c, and lower. Silicone rubber gaskets with plastic or porcelain stand-offs are used for higher voltages.
ACCENT

VOLTAGE REGULATORS

Accuracy, with rugged construction, economical and trouble-free operation, reasonable cost — those are features that you expect, and get, when you specify Sorensen regulators!

ALL SORENSEN REGULATORS HAVE THESE ADVANTAGES:

- **Wide Input Range**
- **Adjustable Output Voltage That Stays Set**
- **Regulation Accuracy of ±0.1%**
- **Excellent Waveform**
- **Fast Recovery Time**
- **In Sensitivity to Line Frequency Fluctuations.**

STANDARD AC SPECIFICATIONS

<table>
<thead>
<tr>
<th>VA capacity</th>
<th>150</th>
<th>250</th>
<th>2000</th>
<th>5000</th>
<th>15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic Distortion</td>
<td>3% max.</td>
<td>2% max.</td>
<td>3% max.</td>
<td>3% max.</td>
<td></td>
</tr>
<tr>
<td>Regulation accuracy</td>
<td>± 0.1% against line or load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>95-130 VAC; also available for 190-260 VAC single phase 50-60 cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>Adjustable between 110-120; 220-240 in 230 VAC models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load range</td>
<td>0 to full load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.F. range</td>
<td>Down to 0.7 P.F. All models temperature compensated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: THREE PHASE AND 400 CYCLE REGULATORS ALSO AVAILABLE. ALL REGULATORS CAN BE HERMETICALLY SEALED.

Write for Complete Literature

For regulated DC problems investigate Sorensen's line of Voltage Reference Standards, DC Supplies, and NOBATRONS.

Sorensen and company, inc.
375 Fairfield Ave. • STAMFORD, CONN.

MANUFACTURERS OF AC LINE REGULATORS, 60 AND 400 CYCLES; REGULATED DC POWER SOURCES; ELECTRONIC INVERTERS; VOLTAGE REFERENCE STANDARDS; CUSTOM BUILT TRANSFORMERS; SATURABLE CORE REACTORS
NEW! FREQUENCY AND TIME MEASUREMENTS
ACCURATELY ... CONVENIENTLY

FREQUENCY RATIO MEASUREMENTS
DIRECT RPM READING TACHOMETER
SECONDARY FREQUENCY STANDARD

The Universal
6-IN-ONE
MEGACYCLE

FREQUENCY-TIME COUNTER

By Potter

Now, the Potter Instrument Company offers all-in-one equipment, the features heretofore available only in separate counting systems. Two complete counting channels, a 100 kc crystal oscillator time base and unique gating circuits are combined to provide the new FREQUENCY-TIME COUNTER.

<table>
<thead>
<tr>
<th>FREQUENCY MEASUREMENTS</th>
<th>0 to 1 mc range by counting cycles per pre-selected time or by measuring time per pre-selected count. Accuracy 0.001 % minimum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME INTERVAL MEASUREMENTS</td>
<td>0 to 10 seconds ± 10 micro-seconds.</td>
</tr>
<tr>
<td>FREQUENCY RATIO MEASUREMENTS</td>
<td>Ratio of two external frequencies can be measured.</td>
</tr>
<tr>
<td>SECONDARY FREQUENCY STANDARD</td>
<td>100 kc crystal oscillator with divided frequencies available at 10, 1 kc and 100, 10, 1 cps.</td>
</tr>
<tr>
<td>TOTALIZING COUNTER</td>
<td>Six decades, pulses 0 to 1 mc, sine wave 10 cps to 1 mc.</td>
</tr>
<tr>
<td>DIRECT RPM READING TACHOMETER</td>
<td>Through the use of an external 60 count per revolution photoelectric disc generator an accuracy of ± 1 rpm is obtained.</td>
</tr>
</tbody>
</table>

FEATURES

WIDE FREQUENCY RANGE — Pulses 0 to 1 megacycle — sine waves from 10 cps to 1 mc.
EXTREMELY HIGH ACCURACY — 0.001% from 0 to 1 megacycle.
VERSATILITY — Frequency measurements, time intervals, frequency ratios, high speed counting, rpm measurements, and a secondary frequency standard — all in one instrument.
RAPID MEASUREMENT — No adjustments or interpolations — only a few seconds for a complete measurement.
DIRECT DECIMAL READING — Frequency or time displayed on six Potter Counter Decades using the 1-2-4-8 large neon glow lamp decimal indication. Readable even under high ambient illumination.

AUTOMATIC OR MANUAL RECYCLING — The counter will retain the measurement until reset or will automatically recycle after displaying the measurement for a selected time.
NO ADJUSTMENT — Stable decade counter frequency dividers, rather than multivibrators are used to establish the precise time base.
DEPENDABLE — The exclusive four-lamp Potter decades provide a direct on-off indication of the counter stages without the complexity and unreliability of a readout matrix. An associated glow lamp for each tube in the counting and dividing circuits simplifies tube servicing.
PERMANENT RECORD — Other versions of the Frequency Time Counter can be supplied with high speed recording devices.

POTTER INSTRUMENT COMPANY
INCORPORATED

115 CUTTER MILL RD., GREAT NECK, NEW YORK

PROCEEDINGS OF THE I.R.E. December, 1950

39A
MORE GEO. STEVENS COIL WINDING
EQUIPMENT IS IN USE THAN ALL
OTHER MAKES COMBINED!

- MORE OUTPUT . . . LOWER
COSTS . . . from EXCLUSIVE SPEED
FEATURE. Universal motors permit
variable speeds without changing
belts and pulleys. Coil design per-
mitting, speeds of 7500
RPM are not uncommon.

- PORTABILITY. Conveniently car-
rried from place to place. Machines
come mounted on bases to constitute
one complete unit.

- MUCH LOWER ORIGINAL
COST. The same investment buys
more GEO. STEVENS machines than
any other coil winding machines.

- LONG LIFE. Most of the original
GEO. STEVENS machines bought 14
years ago are still operating daily
at full capacity.

- MUCH FASTER CHANGING OF
SET-UPS than any other general
purpose coil winding machine.
Quickly changed gears and cams
to save time between jobs.

- VERY LOW MAINTENANCE.
Replacement parts are inexpensive,
can be replaced in minutes, and are
stocked for "same day" shipment,
thus saving valuable production time.

- EASIEST TO OPERATE. In one
hour, any girl can learn to operate a
GEO. STEVENS machine.

SPACE WINDING MACHINE, MODEL 30, winds resistors and space wound coils up to 6" long. Winds wire from No. 40 to 18. For smaller wire sizes, Model 92-6 De-Reeler
is recommended instead of the bench type spool holder illustrated.

8 to 800 TURNS PER INCH is an outstanding feature, permitting an unusually wide
range of pitch selection. 48 pitch change gears—completely enclosed for safety—give
desired pitch. Up to 10,000 turns are registered by full vision 6" Clock Dial Counter.

For speedy return to starting position, the heavy traverse bar has a friction drive
and uses a rack and pinion for return. Accurate location for start of coil is attained by
screw adjustment on feed roller. Fine wire is wound freely and fast due to ball bearing,
spring tension tailstock which also allows quick change of coil forms. Spools and
tailstock may be adjusted closer or farther from winding head by moving tension
brackets—because they are mounted on bed rods. Tailstock may also be moved to the
front or rear for perfect alignment.

Motor equipment: 1/4 H.P. Variable Speed Universal Motor with foot treadle con-
trol. Automatic Stop with Predetermined Counter is optional—it saves time and
eliminates most had coil rejection by not requiring operator to do turns manually.

Also available—MODEL 35—same construction, same features but arranged to
wind forms up to 12" long.

There is a GEO. STEVENS machine for every coil winding need. Machines that wind ANY
kind of coil are available for laboratory or production line. . . . Send in a sample of your
coil or a print to determine which model best fits your needs. Special designs can be made
for special applications. Write for further information today.

World's Largest Manufacturer of
Coil Winding Machines

GEO. STEVENS
MFG. CO., INC.
Pulsaski Road at Peterson
Chicago 30, Illinois

REPRESENTATIVES

Frank Tate
4022 No. Rogers Ave., Chicago 30, Illinois

Ralph K. Reid
1911 W. 9th St., Los Angeles 4, California
F. A. Staff & Co.,
1213 W. 3rd St., Cleveland 13, Ohio

(Continued from page 38A)

INDIANAPOLIS

"Lecture and Demonstration of Test Equipment for Pulse, UHF and Audio Measurements," by Frank Waterfall, Alfred Crossley and Associates; (October 12, 1950).

KANSAS CITY

"The Interaction of Electrons and Electromagnetic Field Multi-cavity," by Chal Veh, Faculty, University of Kansas; February 15, 1950.

Student Paper Competition; April 11, 1950.

"Solar and Cosmic Noise," by C. R. Burrows, Faculty, Cornell University; Election of Officers; May 5, 1950.

LOS ANGELES

MILWAUKEE

NEW MEXICO

"The Mathematical Training of Electrical Engineers," by Alexander Boldyreff, Faculty, University of New Mexico; September 22, 1950.

NEW YORK

"The Engineer's Approach to the Human Mechanism," by J. R. Ragazzini, Faculty, Columbia University; September 6, 1950.

NORTH CAROLINA-VIRGINIA

OTTAWA

PHILADELPHIA

Business and Social Meeting; October 5, 1950.

PORTLAND

"Metal Plate Lenses for Microwave," by J. J. Ittaly, Faculty, Oregon State College; May 20, 1950.

Design of a Regulated Frequency Power Sup-
ply for Use in Bell System Time Announcing
Machines," by H. M. Owensdorf, Bell Telephone Laboratories; June 27, 1950.

"IDP Microwave System," by D. E. Smith, Bonnevile Power Administration; "FTL Equip-
ment," by N. J. Gottfried, Federal Telecommunica-
tions Laboratories, Inspection Tour conducted by
R. J. Hughes, Federal Telecommunications Labo-
ratories; September 21, 1950.

(Continued on page 42A)

PROCEEDINGS OF THE I.R.E. December, 1950
SERIES 610 A.C. AND SERIES 615 D.C.

One of a line

Relays BY GUARDIAN

CHRISTMAS OR CONVOYS... For peacetime products or national defense—let Guardian be your first line supplier.

The Guardian 610 A.C. and 615 D.C. Relay shown above is small and low priced, yet packed with power. Furnished hermetically sealed with the Screw Terminal housing shown, Octal Plug, or A.N. Connector housing.

Write—ASK US TO MAKE SPECIFIC RECOMMENDATIONS. NO OBLIGATION.

GUARDIAN ELECTRIC
1628-P W. WALNUT STREET CHICAGO 12, ILLINOIS
A COMPLETE LINE OF RELAYS SERVING AMERICAN INDUSTRY
SALT LAKE
'Type K Carrier System,' by W. M. Stuart, American Telephone and Telegraph Company; Tour of KSL-TV Studios; October 16, 1950.

SAN ANTONIO
'Relationship of the Regional Director to the Sections,' by Ben Akerman, Radio Station KGRT; 'Microwave Atmospheric Refractometer,' by A. P. Dean, Faculty, University of Texas; September 21, 1950.

SAN DIEGO
'Guided Missile Electronics,' by D. P. Tucker, U. S. Navy Electronics Laboratory; September 5, 1950.

SCHENECTADY

SEATTLE
'Control of Loudspeaker Bass Response,' by W. R. Hill, Faculty, University of Washington; September 29, 1950.

SYRACUSE
'The Bell Telephone Laboratory and Its Work,' by J. W. McRae, Bell Telephone Laboratories; October 5, 1950.

TORONTO
'Master Control Equipment for a Large Broadcasting Studio Center,' by R. H. Tanner, Northern Electric Company; October 2, 1950.

VANCOUVER
'Institute Affairs,' by A. V. Eastman, Faculty, University of Washington; Election of Officers; September 19, 1950.

WASHINGTON
'A New Coupling Circuit for Audio Amplifiers,' by F. H. McIntosh, McIntosh Engineering Laboratory, Inc.; October 9, 1950.

WILLIAMSPORT
'Television Synchronizing Circuits,' by N. S. Kornets, Westminster Radio Division; September 27, 1950.

AMARILLO-LUBBOCK
'Vertical Antennas,' by George McIlride, Radio Station KFJA; May 23, 1950.

BINGHAMTON

CENTRE COUNTY
'Radar in the Next War,' by G. L. Haller, Faculty, Pennsylvania State College; Election of Officers; May 22, 1950.

'Polarimetry, Its Use in Studying Weak Frequency Echoes,' by R. H. Neary, Radio Propagation Laboratory; 'Relays: Their Place in the Modern Power System,' by L. G. McCracken, Faculty, Pennsylvania State College; October 17, 1950.

(Continued from page 40A)

'Signalling Equipment Used in Long Distance Automatic Dialling,' by L. B. Edwards, Pacific Telephone and Telegraph Company; October 19, 1950.
Ceramic models available for economy and where fine precision of all metal parts is not needed.

POWER Rheostats...

ALUMINUM FRAME
ALUMINUM WINDING CORE
Assuring Maximum Heat Dissipation

MODEL 245 — up to 50,000 ohms (25 Watt)
MODEL 241 — up to 75,000 ohms (50 Watt)

These exceptionally high resistances are possible because of new developments in material and design. Built to JAN-R-22 Specifications.

PRECISION Potentiometers

FEATURES
- Linearity Accuracy ±0.2%
- Resistance Accuracy ±1%
- High Humidity Models JAN-R-19 SPECS.
- Non-Linear Models

Send All Inquiries to Dept. E-1 for Full Information on Our Complete Line
Announcing...

IMPROVEMENTS IN THE

BALLANTINE BATTERY OPERATED

ELECTRONIC VOLTMETER

Achieving a tenfold increase in sensitivity, higher input impedance, improved low frequency response and substantial reduction in size and weight.

VOLTAGE RANGE:
100 microvolts to 100 volts in 6 decade ranges.

INPUT IMPEDANCE:
2 megohms shunted by 8 mmfd on high ranges and 15 mmfd on low ranges.

FREQUENCY RANGE:
2 cycles to 150,000 cycles.

ACCURACY:
3%, except 5% below 5 cycles and above 100,000 cycles.

- Available multipliers increase the voltage range to 1,000 or 10,000 volts.
- Available precision shunt resistors permit the measurement of AC currents from 1 ampere down to one-tenth of a microampere.
- Features the well-known Ballantine logarithmic voltage and uniform DB scales.
- Battery life over 100 hours.
- Can also be used as a flat pre-amplifier with a maximum gain of 60 DB. Because of the complete absence of AC hum, the amplifier section will be found extremely useful for improving the sensitivity of oscilloscopes.

For further information on this Voltmeter and the Ballantine Model 300 Voltmeter, Wide-Band Voltmeters, Peak to Peak Voltmeters and accessories such as Decade Amplifiers, Multipliers, and Precision Shunt Resistors, write for catalog.

BALLANTINE LABORATORIES, INC.
102 Fanny Road, Boonton, New Jersey
a DC transformer?

Certainly...

Bendix Specialized Dynamotors are made for the Job!

Whenever DC power is required at other than the supply voltage, Bendix® Specialized Dynamotors function as DC transformers. They can be wound for any input or output voltage between 5 and 1200 volts, and they can deliver power up to 500 watts. Multiple outputs can be supplied to correspond with several secondaries on transformers, and their output voltages can be regulated within close limits regardless of input voltage or load variations. Bendix Specialized Dynamotors are tailored to the exact requirements of each application by the design of the windings used in standardized frames. This reduces the cost, size and weight to an absolute minimum, consistent with the operational requirements. Compliance with Government specifications is assured by the choice and treatment of materials and the basic design. A complete description of your requirements will enable our engineers to make concrete recommendations... All orders are filled promptly and at moderate cost.

RED BANK DIVISION OF BENDIX AVIATION CORPORATION

RED BANK, NEW JERSEY

Specialty Dynamic Motors

Write for this colorful and informative book—it's free. You'll find it loaded with facts and figures about all types of dynamotors.
THE FIRST CHOICE OF RADIO ENGINEERS

MAGNECORDER

For every purpose... every purse!

More radio engineers use Magnecorders than all other professional tape recorders combined. Here's why:

HIGH FIDELITY, LOW COST

Stations are enthusiastic about the life-like tone quality and low distortion of Magnecorders. Magnecorder frequency response: 50 — 15kc ± 1 db. Signal-noise ratio: 50 db. Harmonic distortion less than 2%. Meets N.A.B. standards. No other recorder offers such fidelity at such a moderate price.

GREATEST FLEXIBILITY

Mount a Magnecorder in a rack or console cabinet for delayed studio and network shows. Slip it into its really portable cases for remotes. Add to your Magnecorder equipment as you need it—combine Magnecorders to suit every purpose.

MORE FEATURES

Your Magnecorder, new or old, can now have 3 heads (separate erase, record, and playback) to permit monitoring from tape. Three speeds (1 1/2" — 7 1/4" — 3 3/4") — up to an hour on a 7" reel available on both PT6 and PT63 equipment. Dual track heads also available if desired.

Write for NEW CATALOG

MAGNECORD, INC., Dept P12
360 North Michigan Avenue, Chicago 1, Ill.
Send me latest catalog of Magnecord Equipment.
Name
Company
Address
City Zone State
A SENSATIONALLY NEW FACE

for

TELEVISION
PICTURE
TUBES!

WATCH FOR
THE ANNOUNCEMENT OF

Sheldon's NEW LINE OF
NO-GLARE, ALL-GLASS

VITATRON* Picture Tubes

SHELDON ELECTRIC CO.
Division of Allied Electric Products Inc.
68-98 Coit Street, Irvington 11, N. J.
Branch Offices & Warehouses:
CHICAGO 7, ILL., 426 S. Clinton St.
LOS ANGELES 26, CAL., 1755 Glendale Blvd.

TELEVISION PICTURE TUBES • CATHODE RAY TUBES • FLUORESCENT LAMP STARTERS AND LAMPHOLDERS • SHELDON REFLECTOR AND INFRA-RED LAMPS
PHOTOFLOOD AND PHOTOSPOT LAMPS • SPRING-ACTION PLUGS • TAPMASTER EXTENSION CORD SETS AND CUBE TAPS • RECTIFIER BULBS

KEEP INFORMED!
If you would like to know what is happening in the Television Industry, send for your FREE subscription to "TELEVISION MIS-INFORMATION"—the famous publication with over 60,000 readers in the Industry.

MAIL COUPON TODAY!

TELEVISION MIS-INFORMATION, 68 Coit St., Irvington 11, N. J.
Please enter my FREE SUBSCRIPTION to your magazine.
My Name ______________________ Title ______________________
Company ______________________
Address to which it is to be mailed ______________________
Specify BREEZE “Monobloc” Waterproof and Pressure Sealed CONNECTORS

The only APPROVED Monobloc System for Advanced Radar, Communications, and Electronic Equipment

Breeze “Monoblocs”, with single piece plastic inserts, offer outstanding advantages in assembly, wiring, mounting and service in the field.

Single piece inserts make a tighter unit, eliminate the air spaces within conventional multiple-piece inserts, greatly reduce the opportunity for moisture shorts.

Removable contact pins make possible bench soldering of leads, quick, error free assembly of Breeze Waterproof Connectors and panel-type "Monobloc Miniatures."

Single-Hole Panel Mounting is all that is required for either Waterproof or Pressure Sealed types. Pressure Sealed types are available for values up to and including 75 psi, or they can be specially engineered for greater pressures. They meet specified requirements of shock, vibration, salt spray, humidity and temperature cycling from -65° to +185° F.

Breeze “Monobloc” Waterproof and Pressure Sealed Connectors are engineered to your requirements in aluminum, brass or steel—in all sizes and capacities. They are fully tested and approved...cost no more than ordinary types.

Write for Details
If you have a tough connector problem, ask BREEZE for the answer!

BREEZE
CORPORATIONS, INC.
41-G South Sixth Street, Newark 7, N.J.
This instrument permits voltage readings on AC or DC circuits of very high resistance. The only current drawn is the very small leakage current and a very low capacitance current on AC circuits. Very useful for the many high voltage—low current circuits employed in nuclear research. Available with full scale voltages ranging between 300 and 3500 volts. Special laboratory instrument available with full scale reading of 150 volts. Full scale capacitance ranges from 8 mmfd for the 3500 volt model to 100 mmfd for the 150 volt instrument. Magnetic damping. 2½" dial. Write for complete specifications.

Student Branch Meetings

(Continued from page 48A)

Rhode Island State College, IRE-AIEE Branch
Business Meeting; September 26, 1950.
"Implications of New FCC Ruling for Color
Television," by W. B. Hall, Faculty, Rhode Island
State College; October 19, 1950.

Rutgers University, IRE-AIEE Branch
Film: "Adventures in Research"; October 10, 1950.

University of Southern California,
IRE-AIEE Branch
Business Meeting; "The Preparation and Pres-
etation of Student Papers," by R. M. Strausser;
September 28, 1950.

Syracuse University, IRE-AIEE Branch
Election of Officers; Film: "1949 Syracuse-Col-
gate Football Game"; September 28, 1950.

University of Texas, IRE-AIEE Branch
"Zurich Radio Conference," by A. W. Stratton,
Faculty, University of Texas; October 16, 1950.

Tufts College, IRE-AIEE Branch
"Professional Societies," by A. H. Howell,
Faculty, Tufts College; October 4, 1950.

University of Wyoming, IRE-AIEE Branch
"Organization, Purpose and Aims of AIEEE," by
W. C. DuVall; October 5, 1950.

The following transfers and admissions
were approved and will be effective as of
December 1, 1950:

Transfer to Senior Member
Beimsman, R. M., 1212 Woodbine Ave., Oak Park,
Ill.
Capodanno, R. T., 50 Coolidge Ave., W. Caldwell,
N. J.
Chapman, J. K., 329 Westvale Rd., Syracuse 9,
N. Y.
Farr, K. R., R. D. 1, Box 193A, Paxinos, Pa.
Forster, W. H., 920 E. Mt. Airy Ave., Philadelphia
19, Pa.
Hansen, W. W., 8819 S. Talman Ave., Chicago 42,
Ill.
Hargens, C. W., 111, 909 Hunters Lane, Enfield,
Greendale P. O., Pa.
Henderson, A. B., 801 Hathaway Rd., Dayton 9,
Ohio
Hovath, A., 312 Harding Ave., Clifton, N. J.
Ittelson, K. W., 551 Daytonia Pkwy., Dayton 6,
Ohio
Keachie, J. H., RCA Victor Division, 718 Keith
Bldg., Cleveland 15, Ohio
McClellan, C. E., 1306 Tarrant Rd., Glen Burnie,
Md.
Murphy, J. L., 1456 E. 54 St., Chicago 15, Ill.
Rambo, S. L., 154 Oakite Village, Baltimore 29, Md.
Reid, J. J., 2929 Connecticut Ave., N. W.,
Washington, D. C.
Ritter, E. H., Northrop Aircraft, Inc., Hawthorne,
Calif.
Senn, G. F., 81 Garden Rd., Little Silver, N. J.
Stoker, W. C., Brunswick Rd., Rt. 37, Troy, N. Y.
Swanson, M. W., 8704 Maywood Ave., Rosemary
Hills, Silver Springs, Md.

(Continued on page 62A)
Engineers
Physicists

Expansion of the permanent staff of the Boeing Airplane Company's Physical Research Unit has created openings for research and development on

- Electronic and microwave circuits
- Flush antennas
- Servomechanisms and computers
- Radar systems and components
- Instruments and gyro

Men are needed who have demonstrated outstanding experimental or analytical ability or who have recently received the MS or PhD degree with high honors in EE, Physics or Applied Mathematics.

These positions offer challenging work in a professional environment plus the unparalleled recreational possibilities of the Pacific Northwest.

Opportunity for advancement is essentially unlimited in the rapidly expanding fields of guided missiles, airplane control and industrial machine and process control. Salaries are based on semi-annual performance reviews.

Address inquiries to

MR. JOHN C. SANDERS
Staff Engineer—Personnel
Boeing Airplane Company
Seattle 14, Washington
Electronics Technicians Wanted

The RCA Service Company, Inc., a Radio Corporation of America subsidiary, needs qualified electronics technicians for U.S. and overseas assignments. Candidates must be of good character and qualified in the installation or maintenance of RADAR or COMMUNICATIONS equipment or TELEVISION receivers. No age limits, but must have at least three years of practical experience.

RCA Service Company offers comprehensive Company-paid hospitalization, accident and life insurance programs; paid vacations and holidays; periodic review for salary increases; and opportunity to obtain permanent position in our national and international service organization, engaged in the installation and maintenance of AM, FM, and TV transmitters, electronic inspection devices, electron microscopes, theatre and home television, r-f heating equipment, mobile and microwave communications systems, and similar electronic equipment.

Base pay, overseas bonus, payments for actual living and other expenses, and benefits mentioned above add up to $7,000 per year to start for overseas assignments, with periodic review of base salary thereafter. Openings also available at proportionately higher salaries for specially qualified technicians with supervisory ability.

Qualified technicians seeking an advantageous connection with a well-established company, having a broad-based, permanent peacetime and wartime service program, write to:

Mr. G. H. Metz,
Personnel Manager,
RCA Service Company, Inc.,
Camden 2, New Jersey.

Research and development organization located in the midwest. Unlimited opportunity for advancement for properly qualified men. Law degree unnecessary. Must be U.S. citizen and free to make occasional trips to Washington D.C. Please give full details in first letter. Box 630.

Electronic Engineer
Senior graduate engineer with at least 10 years experience in receiver design. Minimum of 2 years experience UHF desirable. Must be capable of assuming project responsibility. Location Connecticut. Excellent opportunity. Salary high. Submit resume. Box 631.

Electronic Engineers
The U.S. Naval Ordnance Experimental Unit is located at the National Bureau of Standards, Washington, D.C. The following vacancies exist in grades GS 14, $8800, GS 13, $7600 and others of Electronic Engineers (General) (Radar) (Instrumentation) and (Stabilization). Assignments will include consultation, evaluation and product engineering in the development of guided missile components. Enclose copy of Civil Service Application Form 57 (obtainable at local post office) and address completed form to Officer in Charge, U.S. Naval Ordnance Experimental Unit, National Bureau of Standards, Washington 25, D.C.

Electronic Engineer
Electronic engineer with interest in instrumentation and automatic control to join instrument development group at the Wind Tunnels Laboratory. Starting salary $3100-$3825 per annum. Apply Civilian Personnel Division, Aberdeen Proving Ground, Maryland.

Engineer
Small California transmitting tube company requires engineer for medium frequency tube work, also for development and manufacture of klystrons and pulse tubes. Give full details giving age, experience, availability and salary expected. Box 632.

Engineers and Physicists
Project and senior engineers desired for work on several theoretical and experimental programs of diversified nature involving military applications of electronics. Applicants should have 3 or more years of experience in research and development in some branch of electronics and preferably advanced graduate training. Command of physical fundamentals and analytical ability important. Small, expanding company located in college town. Opportunities of graduate study. Reply Personnel Manager, Haller, Raymond and Brown, Inc. State College, Pa., stating education, experience, salary expected.

Engineers
National Broadcasting Company needs experienced engineers with commercial television operating experience or standard broadcasting control room experience. Apply Room 505, 30 Rockefeller Plaza, New York, N.Y.

(Continued from page 50A)

The W. L. Maxson Corporation

Is Seeking
Outstanding Engineers and Physicists

with ambition to

Further Present Standing Immediately

Minimum Requirements are:

1. Five to ten years experience in advanced electronic research and development

2. Outstanding record of ingenuity

3. Ph.D., M.S. or equivalent

Please send résumé and salary requirements to:

The W. L. Maxson Corporation
460 W. 34th St.
New York 1, N.Y.
ELECTRICAL ENGINEERS

Independent industrial research and development laboratory has openings for electrical engineers with training and experience in the following fields: UHF, Instrumentation; Telemetering; Computers; Servo and Control Systems; and Electromagnetic Devices.

Candidates should have an excellent scholastic record. Advanced degree helpful, but not essential. Requires 2-5 years experience, with record of accomplishment in one or more of the above fields.

Good salaries for outstanding men plus other benefits—such as a retirement plan (immediate vesting), group insurance, and nearby opportunities for graduate work. Excellent opportunities for advancement.

Write, giving survey of qualifications, to

Electrical Engineering Research
ARMOUR RESEARCH FOUNDATION
ILLINOIS INSTITUTE OF TECHNOLOGY
Technology Center
Chicago 16, Illinois

PHYSICISTS, ENGINEERS
APPLIED MATHEMATICIANS

Electronic and mechanical engineers, physicists, and applied mathematicians.

POSITIONS AVAILABLE AT ALL LEVELS
for research and development in radar, microwaves, servo systems, computers, telemetering, instrumentation and nucleonics.

Permanent positions offering variety, responsibility, and challenging opportunities for advancement.

BENDIX AVIATION CORPORATION
RESEARCH LABORATORIES
4855 Fourth Avenue
Detroit 1, Michigan

ELECTRON TUBE ENGINEERS

RADIO AND TELEVISION ENGINEERS

Experienced in design of high frequency circuits such as FM tuners, TV boosters and TV antennas. Salary commensurate with ability. Write giving full details—Mr. Stone, Talk-A-Phone Company, 1512 South Pulaski Rd., Chicago 23, Ill. Lawndale 1-8414.

ENGINEERS

Physicists, chemists or EE's with Ph.D or equivalent and experience in the field of solid state physics for research work on electronic devices employing germanium and silicon. An excellent opportunity in a research laboratory of a leading manufacturer with laboratories in New York state. Send complete resume. Our employees have been notified. Box 633.

SENIOR ELECTRONICS ENGINEER

For design and development of circuitry for ultrasonic equipment including circuits, audio oscillators amplifiers, and audio measuring equipment to meet Navy specifications. Experience required: 3-5 years in development of audio or supersonic equipment for government or industrial usage. Must have B.S. in physics or electrical engineering. Write: Personnel Director, Box 30, State College, Pa.

DEVELOPMENT TECHNICIANS

At least 3 years experience in layout. (Including rough drafting) of electronic chassis. Should also be experienced in electronics testing and trouble shooting. Write: Personnel Director, Box 30, State College, Pa.

ELECTRICAL ENGINEER

Graduate electrical engineer with a minimum of 2 years experience. For design and development of audio transformers and filters. Permanent position with progressive firm located in Chicago. Give details stating age, education, experience, references, availability for work and salary expected. Box 634.

ENGINEERS

The 15th Naval District which comprises the Panama Canal Zone is in need of electrical engineers, electronics draftsmen, radio and electronic mechanics. Employment is with the Navy. No Civil Service status is required for these positions in Canal Zone. Rates pay as follows: Engineers—$5750-$6750. Draftsmen—$4300-$5250. Mechanics—$2.02-$2.23 per hour. Employment under a 18 month agreement which provides transportation with shipment of household effects to and from the home of employee and is subject to indefinite renewal. Apply: Commandant, 15th Naval Dist. (District Civilian Personnel Office) Box 127, Port Amador, Canal Zone.

ELECTRONIC SCIENTIST

For research in upper atmosphere rocket program. Must have an appropriate degree.

(RECORDS OF THE I.R.E.) December, 1950
FOR PROCEEDINGS OF THE MODELS AND PRECISION

Laboratory Model Helipot

The ideal resistance unit for use in laboratory and experimental applications. Also helpful in calibrating and checking test equipment. Combines high accuracy and wide range of 10-turn Helipot with precision adjustability of DUODIAL. Available in eight stock resistance values from 100 to 100,000 ohms, and other values on special order.

Models D and E Helipots

Provide extreme accuracy of control and adjustment, with 9,000 and 14,400 degrees of shaft rotation.

- 25 turns, 234° coil, 3.5-16' dia., 15 watts
 - resistances from 100 to 750,000 ohms
- 40 turns, 373° coil, 3.5-16' dia., 20 watts
 - resistances from 200 ohms to one megohm.

356°—resistances 5 to 20,000 ohms.

diode, 2 watts, electrical rotation

01 0

For many years The Helipot Corporation has been a leader in the development of advanced types of potentiometers. It pioneered the helical potentiometer—the potentiometer now so widely used in computer circuits, radar equipment, aviation devices and other military and industrial applications. It pioneered the DUODIAL—the turn-indicating dial that greatly simplifies the control of multiple-turn potentiometers and other similar devices. And it has also pioneered in the development of many other unique potentiometric advancements where highest skill coupled with ability to mass-produce to close tolerances have been imperative.

In order to meet rigid government specifications on these developments—and at the same time produce them economically—Helipot® has perfected unique manufacturing facilities, including high speed machines capable of winding extreme lengths of resistance elements employing wire even less than .001" diameter. These winding machines are further supplemented by special testing facilities and potentiometer "know-how" unsurpassed in the industry.

So if you have a problem requiring precision potentiometers your best bet is to bring it to The Helipot Corporation. A call or letter outlining your problem will receive immediate attention!

THE Helipot CORPORATION, SOUTH PASADENA 6, CALIFORNIA

PROCEEDINGS OF THE I.R.E. December, 1950

53A
POSITIONS OPEN IN RESEARCH AND ADVANCED DEVELOPMENT PROGRAMS

To
Research Physicists
Senior Electronic Engineers
Senior Mechanical Engineers
Engineering Physicists
Circuit Engineers
Microwave Engineers
Vacuum Tube Research Engineers
Technical Report Writers
Electronic Technicians
Experienced or Holding Advanced Degrees
For Research, Design, or Development In

We invite interested personnel with experience in the above fields to submit a complete and detailed resume of education and experience, together with salary requirements and availability date, to:

The Employment Department
CAPEHART-FARNSWORTH CORPORATION
Fort Wayne 1, Indiana

(Continued from page 52A)
gree, and at least 3 years experience, with emphasis on electronics as applied to upper atmosphere research or an allied field. Please address replies, containing a brief resume of experience to Employment Officer, Naval Research Laboratory, Washington 25, D.C.

RADIO & RADAR ENGINEERS

Radio and radar engineers for aircraft installation and application design work. Should have 5 or more years’ experience with aircraft radio or radar systems, and preferably have aircraft installation or antenna design, selection and application experience. Experienced aircraft electrical engineers are also needed. Contact Engineering Personnel Section, Chance Vought Aircraft, P.O. Box 9907, Dallas, Texas.

Electronic Engineer

Electronic engineer to head engineering department. Must have had experience in development and design of quartz crystals for frequency control and thorough knowledge of manufacturing processes. Box 636.

Positions Wanted By Armed Forces Veterans

In order to give a reasonably equal opportunity to all applicants, and to avoid overcrowding of the corresponding column, the following rules have been adopted:

The Institute publishes free of charge notices of positions wanted by I.R.E. members who are now in the Service or have received an honorable discharge. Such notices should not have more than five lines. They may be inserted only after a lapse of one month or more following a previous insertion and the maximum number of insertions is three per year. The Institute necessarily reserves the right to decline any announcement without assignment of reason.

Communications Engineer

B.S.E.E. September 1950, Ohio State University. Married, age 25, 6 years A.M and F.M broadcasting experience. Chief Engineer overseas Armed Forces radio station 8 months. 1st class radio-telephone license. Desires production or design. Box 476 W.

Electrical Engineer

(Continued on page 55A)

TOP TELEVISION COMMUNICATIONS and RADIO MFR. Needs Help
to meet our expanding civilian business and increasing military contracts.

* Good opportunity for Electrical and Mechanical Exp. Engineers. Lab. Technicians and Draftsmen . . . to improve their status, job security and working conditions.

Apply by letter only stating experience, schooling, age, salary and reason for change.

Our employees know about this ad.

Chicago location.

* Address Box 641
The Institute of Radio Engineers
1 East 79th St., New York 21, N.Y.
COIL ENGINEER

Large manufacturer of radio and television receivers has an opening for an experienced coil engineer to design RF and IF coils for mass production.

Should have a thorough background in coil application and coil manufacturing techniques. Send complete resume giving education, experience, age, and salary requirements.

Box No. 637
THE INSTITUTE OF RADIO ENGINEERS
1 East 79th St, New York 21, N.Y.

TECHNICAL EDITORS AND WRITERS

These are senior positions, the men selected must be able to outline, compile, edit, proofread, plan and check art, dummy, and direct the final publication of technical and scientific publications.

A good working knowledge of radio and radar theory and application is essential, in addition to extensive editorial and journalistic experience. Some knowledge of structural and mechanical engineering is desirable.

Send complete resume with first letter to:
James E. Thompson
Department 29
HUGHES AIRCRAFT COMPANY
Culver City, California

All replies will be handled in the strictest confidence.

RESEARCH ENGINES

CALIFORNIA INSTITUTE OF TECHNOLOGY JET PROPULSION LABORATORY, PASADENA CALIFORNIA

Needs Research Engineers for work on their Missile Program in the following electronic categories:

RADAANTENNASTELEMETERINGCOMPUTERSINSTRUMENTATIONANALOG COMPUTERS

Apply in writing and furnish information as to education and experience. 4800 Oak Grove Drive, Pasadena 3, California.

PHYSICISTS AND ENGINEERS

You can find plenty of positions where you will work on missile improvements on radar, telemetering systems, and other conventional devices. However, you will find very few positions where you can break ground in new fields having tremendous significance. Thus you can do at the JACOBS INSTRUMENT COMPANY, whose entire effort is devoted to pioneering activities in new fields that it has opened up itself. One of these fields, for example, is that of ultra-high speed, ultra-compact digital computers and controllers. This company's JAINCOMP family of computers dominates this field. Other equally important fields are being developed. Engineers and physicists with sound backgrounds and experience in the design of advanced electronic circuits or precision mechanical instruments may qualify, also individuals with good backgrounds in applied physics. A few openings exist for outstanding junior E. E.'s and physicists, also experienced technologists; applicants for these positions must apply in person.

JACOBS INSTRUMENT CO.
4718 Bethesda Ave.
Bethesda 14, Maryland

Positions Wanted

(Continued from page 54A)

ELECTRONICS INSTRUCTOR

Nine years servicing civilian and government RXs, and TXs and PA systems; 6 years teaching AM, FM and TV mathematics, theory and laboratory; 2 years Navy radar training. Last positions: organized school technically and held chief instructors status 3 years. Box 479 W.

ELECTRONIC ENGINEER—PHYSICIST

Six years of physics, electrical engineering and electronics in Fortham, University of Rochester, Harvard, Massachusetts Institute of Technology and Brooklyn Polytechnical Institute: B. S. in Physics, June 1949. 1/2 years servomechanism development plus 3 years as Naval electronics officer. Age 27, married, 2 children. Desires position in electrical engineering, technical or sales anywhere in U. S. or overseas. Box 490 W.

ELECTRICAL ENGINEER

Recent electrical engineering graduate. Some experience. Special interest in design of VHF communications equipment, propagation studies or field surveys, and evaluation of overall system performance. Desires position continental U.S.A. Box 481 W.

ELECTRONIC ENGINEER

B.E. June 1949, University of Delaware. Age 25, married. 3½ years Navy AETM. 1 year in nucleonic instrument maintenance, calibration, and modification. Desires research or development position in New York or Philadelphia area. Box 482 W.

(Continued on page 58A)
RCA TAPE RECORDER Type RT-11A

50 to 15,000 c.p.s. (±2 db) at 15 in/sec
50 to 7,500 c.p.s. (±2 db) at 7½ in/sec

COMPLETE—with motor board, plug-in type
recording amplifier, plug-in playback
amplifier, two standard NAB reels, power supply
and panel and shelf.

- Split-second start and stop
- Push-button operation
- Extremely accurate timing—with synchronous capstan
- Smooth tape runs—via
sapphire guides
- Automatic tape lift for fast
“forwards” and rewinds
- Microswitch “tape-break”
control—no tape spills, snarls
- Remote control of all
operations
- Rack or console mounting
- Plug-in amplifiers
- Interlock system for vital
controls
- 3 heads—Erase—Record—
Playback
USH-BUTTON CONTROL puts tape recording facilities at your fingertips.

NEW -

High-Fidelity Tape Recorder
— the finest money can buy!

This is the world's foremost professional tape recorder, the one recorder that has everything—accurate timing, low wow and flutter, plus quick starting. All operations are push-button controlled. All functions—including cueing—can be extended to remote positions.

Designed for applications where operating TIME and RELIABILITY are prime factors, the new Type RT-11A Recorder offers a number of exclusive features. For example, you can start or stop the tape in 0.1 second. You can jockey the tape back and forth for cueing without stopping. You can rewind a standard 10½-inch reel in one minute!

A synchronous capstan makes it practical to hold recording time to ±2½ seconds in a 30-minute run.

And with synchronizing equipment . . . for which provision is made . . . timing can be held to 0.3 second on any length program!

Many more important features, too.

Self-centering "snap-on" hub adaptors assure perfect reel alignment with either RMA or NAB reels. A complete system of control interlocking virtually eliminates the possibility of accidentally erasing a program—makes it impossible to snarl or "spill" the tape. "Microswitch" control stops the machine if the tape is severed—applies reel brakes instantaneously. The tape automatically lifts free and clear of heads during fast forward runs or rewinds. Tape alignment over the heads is held precisely by a floating casting. Starting wow is reduced to the vanishing point.

BY ALL MEANS, call your RCA Broadcast Sales Engineer for complete details. Or mail the coupon.

RCA Engineering Products, Department 71L, Camden, New Jersey

Send me more information (including price and delivery) on your new De Luxe Tape Recorder, Type RT-11A.

NAME

ADDRESS

STATION OR FIRM

CITY STATE
TRANSMISSION-EQUIPMENT-DESIGN-ENGINEERS

West Coast manufacturer of carrier equipment plans expansion program in United States and Canada. Wishes to contact a small number of experienced telephone and telegraph engineers interested in permanent positions offering excellent futures in a well-established but expanding industry. Several positions will become available during the next year. Salaries commensurate with training and experience will be arranged for men selected. Please give full details in first reply.

Lenkurt Electric Co.
1105 County Rd., San Carlos, Calif.
926 East Hastings St., Vancouver, B.C.

ENGINEERS

ELECTRONICS
RESEARCH AND
DEVELOPMENT

In Baltimore, Maryland
Career Positions
for
Top Engineers and Analysts
in
Radar Pulse, Timing and Indicator Circuit Design
Digital and Analogue Computer Design
Automatic Telephone Switchboard Design

Also

Electro-Mechanical Engineers
Experience in servo-mechanism, special weapons, fire control, and guided missile design.
Recent E.E. graduates and those with at least one year electronics research and development work will also be considered.
Salary commensurate with ability, Housing reasonable and plentiful. Submit resume outlining qualifications in detail. Information will be kept strictly confidential. Personal interviews will be arranged.

THE GLENN L. MARTIN COMPANY
Employment Department
Baltimore 3, Maryland

RESEARCH OPPORTUNITIES IN THE LOS ANGELES AREA

Unusual Opportunity for Senior men with degrees and at least five years of outstanding proven accomplishment to achieve further growth by working with some of the nation's outstanding scientists on commercial and military projects in large modern electronics laboratories.

ELECTRONIC ENGINEERS
PHYSICISTS—CIRCUITRY
PHYSICISTS—ANALYSIS
PHYSICISTS—OPTICS
PHYSICISTS—ELECTRON TUBES

LONG TERM PROGRAM OF RESEARCH AND DEVELOPMENT IN THE FIELDS OF RACER, GUIDED MISSILES, COMPUTERS, ELECTRON TUBES, AND RELATED EQUIPMENT.

Please do not answer unless you meet the above requirements.

RESEARCH AND DEVELOPMENT LABORATORIES
Hughes Aircraft Company
CULVER CITY, CALIFORNIA

Positions Wanted

(Continued from page 554)

ANTENNA ENGINEER
B.S. and M.S. in E.E., extra graduate credit. 2 years Navy electronics, 1 year part-time teaching, over 2 years aircraft antenna research and development work. Age 27, married. Eta Kappa Nu, Tau Beta Pi, A.I.E.E., I.R.E., Sigma Xi. Desires research and development in VHF, UHF or microwave antennas. Box 483 W.

COMMUNICATIONS ENGINEER

TELEVISION ENGINEER
Presently employed, 28 months equipment design and advanced development; video, pulse and special associated circuits. Seeking permanent connection with future away from metropolitan New York area. Systems engineering preferred, but will consider research or development. Present salary $5400. Credentials on request. Box 485 W.

ELECTRONIC ENGINEER
M.S.E.E. electronics, University of Illinois 1949. Age 31, married. 4 years A.A.F. radar officer, instructor. 1 year radio manufacturing. Last year and a half in geophysics, still employed. Prefer mid-west or southwest. Box 486 W.

ELECTRONIC ENGINEER
B.E.E. 1942. Age 30, married, 1 child. 9 years experience in research and development. Experience includes UHF, micro-

PROJECT ENGINEERS

Opportunities exist for graduate engineers with design and development experience in any of the following:

ANALOGUE COMPUTERS
SERVO MECHANISMS
RADAR
ELECTRONIC CIRCUITS
COMMUNICATION EQUIPMENT
AIRCRAFT CONTROLS
HYDRAULICS
INSTRUMENTATION
ELECTRONIC PACKAGING
PRINTED CIRCUITS
PULSE TRANSFORMERS
FRACTIONAL H. P. MOTORS

Submit Resume to Employment Dept.

SPERRY GYROSCOPE CO.
Division of the Sperry Corp.
GREAT NECK, L.I., NEW YORK

Pioneer in Radio Engineering Instruction Since 1927

CAPITOL RADIO
ENGINEERING INSTITUTE
An Accredited Technical Institute

ADVANCED HOME STUDY
AND RESIDENCE COURSES IN
PRACTICAL RADIO ELECTRONICS
AND TELEVISION ENGINEERING
Request your free home study or
residential school catalog by writing to.

DEPT. 2612 E
16th and PARK ROAD, N.W.,
WASHINGTON 6, D.C.
Approved for Veteran Training
PHYSICISTS AND SENIOR RESEARCH ENGINEERS

POSITIONS NOW OPEN

Senior Engineers and Physicists having outstanding academic background and experience in the fields of:
- Microwave Techniques
- Moving Target Indication
- Servomechanisms
- Applied Physics
- Gyroscopic Equipment
- Optical Equipment
- Computers
- Pulse Techniques
- Radar
- Fire Control
- Circuit Analysis
- Autopilot Design
- Applied Mathematics
- Electronic Subminiaturization
- Instrumentation
- Automatic Production Equipment
- Test Equipment
- Electronic Design
- Flight Test Instrumentation

Positions available for

SENIOR ELECTRONIC ENGINEERS

with Development & Design Experience

in MICROWAVE RECEIVERS PULSED CIRCUITS SONAR EQUIPMENTS MICROWAVE COMMUNICATIONS SYSTEMS

Opportunity For Advancement Limited only by Individual Ability

Send complete Resume to:
Personnel Department

MELPAR, INC.
452 Swann Ave.
Alexandria, Virginia

ENGINEERING OPPORTUNITIES IN

Westinghouse

Wanted:
Design Engineers
Field Engineers
Technical Writers

Must have at least one year's experience.

For work on airborne radar, shipborne radar, radio communications equip., microwave relay, or micro-wave communications.

Good pay, excellent working conditions; advancement on individual merit; location Baltimore.

Send resume of experience and education to: Manager of Industrial Relations, Westinghouse Electric Corp., 2519 Wilkens Ave., Baltimore 3, Maryland.

NATIONAL UNION RESEARCH DIVISION

Senior engineers and physicists are needed for research and development of Cathode Ray, Subminiature, Secondary Emission and highly specialized types of Vacuum Tubes.

Junior Electrical Engineers are desired for training as tube or circuit design engineers.

Men qualified by virtue of education or experience to handle problems in the field of tube or circuit design are invited to send their resumes to:

Divisional Personnel Manager
National Union Research Division, 350 Scotland Rd., Orange, N.J.

RCA VICTOR

Camden, N. J.

Requires Experienced Electronics Engineers

RCA's steady growth in the field of electronics results in attractive opportunities for electrical and mechanical engineers and physicists. Experienced engineers are finding the "right position" in the wide scope of RCA's activities. Equipment is being developed for the following applications: communications and navigational equipment for the aviation industry, mobile transmitters, microwave relay links, radar systems and components, and ultra high frequency test equipment.

These requirements represent permanent expansion in RCA Victor's Engineering Division at Camden, which will provide excellent opportunities for men of high caliber with appropriate training and experience.

If you meet these specifications, and if you are looking for a career which will open wide the door to the complete expression of your talents in the fields of electronics, write, giving full details to:

National Recruiting Division
Box 980, RCA Victor Division
Radio Corporation of America
Camden, New Jersey
OVER 75 TV SET MANUFACTURERS USE "THE STANDARD TUNER"

Standard COIL PRODUCTS
"Standard" Booster

Chicago
Los Angeles
Bangor, Michigan

"THE STANDARD BOOSTER"
FOR FRINGE AREA RECEPTION
Specify CP TEF-LINE SUPER TRANSMISSION LINE

A new transmission line based upon a new plastic—TEFLON

CP TEF-LINE transmission line, utilizing DuPont Teflon insulators, greatly reduces high frequency power losses. Furthermore, operation of transmission line at frequencies heretofore impossible owing to excessive power loss now becomes easily possible. For TV, FM and other services utilizing increasingly high frequencies, TEF-LINE by CP is a timely and valuable development worthy of investigation by every user of transmission line.

CP SUPER TEF-LINE IS AVAILABLE NOW!

Tef-Line can be delivered immediately in three standard sizes—\(\frac{3}{8} \)", \(\frac{1}{2} \)" and \(\frac{3}{4} \)". With the exception of elbows and gas stops, the new Seal-O-Flange Super Transmission Line is interchangeable with all other CP fittings including end seals, tower hardware, flanges, "O" rings, inner conductor connectors and miscellaneous accessories.

Check your transmission line requirements with the new CP TEF-LINE BULLETIN which is available on request. If you need help in planning installations, our engineers will be happy to talk over specific problems at your convenience.

- TOWER HARDWARE
- AUTO-DRYAIRE DEHYDRATORS
- LO-LOSS SWITCHES
- COAXIAL DIPOLE ANTENNAS
- SEAL-O-FLANGE TRANSMISSION LINE

Communication Products Company, Inc.

KEYPORT NEW JERSEY
Since its introduction, Revere Free-Cutting Copper has decisively proved its great value for the precision manufacture of copper parts. Uses include certain tube elements requiring both great dimensional precision, and exceptional finish. It is also being used for switch gear, high-capacity plug connectors and in similar applications requiring copper to be machined with great accuracy and smoothness. This copper may also be cold-upset to a considerable deformation, and may be hot forged.

Revere Free-Cutting Copper is oxygen-free, high conductivity, and contains a small amount of tellurium, which, plus special processing in the Revere mills, greatly increases machining speeds, makes possible closer tolerances and much smoother finish. Thus production is increased, costs are cut, rejects lessened. The material's one important limitation is that it does not make a vacuum-tight seal with glass. In all other electronic applications this special-quality material offers great advantages. Write Revere for details.

Revere Copper and Brass Incorporated

Founded by Paul Revere in 1801

Executive Office: 230 Park Avenue
New York 17, New York

Customers Report:

"This material seems to machine much better than our previous hard copper bar; it cuts off smoothly, takes a very nice thread, and does not clog the die." (Electrical parts.)

"Increased feed from 1 1/2" to 6" per minute and do five at one time instead of two." (Switch parts.)

"Spindle speed increased from 924 to 1161 RPM and feed from 0.065" to 0.0105" per spindle revolution. This resulted in a decrease in the time required to produce the part from 0.053 hours to 0.0036 hours. Material was capable of faster machine speeds but machine was turning over at its maximum. Chips cleared tools freely, operator did not have to remove by hand." (Disconnect studs.)
Presto...most carefully made recording discs in the world

Step 1—Inspection is Important

Surface reflections in a recording disc can tell more than volumes to the skilled eye. That's why no mechanical test has ever replaced the examination of each Presto disc by trained inspectors.

Under a bank of fluorescent lamps diffused by a special glass screen, discs are slowly rotated. A ripple, a fleck in the brilliant surface automatically grades the disc. Only those passing the most critical surface test are allowed to carry the Presto “Green Label.”

Rigid inspection of discs is further insurance that your instantaneous or master recording will produce full tonal quality, that it will react properly under recording, processing and playback conditions. This important fourth step in the manufacture of Prestos is another reason why they are known throughout the world as the most carefully-made, most permanent, best performing discs available.

The famous Presto “Green Label”...world's finest recording disc.

In Canada:
Walter P. Down, Ltd.,
Dominion Sq. Bldg.
Montreal, Canada

Overseas:
M. Simons & Son Co., Inc.
25 Warren Street
New York, New York
Hawaiian Airlines selected the WILCOX TYPE 361A COMMUNICATIONS SYSTEM for all aircraft. This consists of a 50 watt transmitter, a high sensitivity receiver, and a compact power supply, each contained in a separate 1/2 ATR chassis. Transmitter and receiver contain frequency selector with provisions for 70 channels...ample for both present and future needs.

Ground Station Packaged Radio
Hawaiian Airlines selected the WILCOX TYPE 428A FACTORY PACKAGED STATION for all ground stations. This consists of the WILCOX 406A fixed frequency 50 watt transmitter, the WILCOX 305A fixed frequency receiver, the WILCOX 407A power supply, the WILCOX 614A VHF antenna, telephone handset, loudspeaker, desk front, typewriter well, and message rack.

Dependable Communications for the World's Airlines
During recent months, many of the world's foremost airlines, UNITED, EASTERN, TWA, MID-CONTINENT, BRANIFF, PIONEER, ROBINSON, and WISCONSIN CENTRAL have placed volume orders for similar communications equipment. No greater compliment could be paid to the performance, dependability, and economy of WILCOX equipment than to be "FIRST CHOICE" of this distinguished group.

Write today for complete information on the Type 361A VHF Air-Borne Communications System and the Type 428 Packaged VHF Ground Station.
WHEN YOU NEED A MINIATURE TRANSFORMER

CHECK

THESE FEATURES

OF THE

HORNET

SIZE AND WEIGHT Because they are designed for high operating temperatures, Hornet Transformers and Reactors have only about one-fourth the size and weight of Class A units of comparable rating.

VOLTAGE RATINGs Designs are available for RMS test voltages up to 10,000 volts at sea level, and up to 5,000 volts at 50,000 feet altitude. Power ratings from 2VA to 5KVA.

POWER FREQUENCIES These units are designed to operate on 380/1600 cps aircraft power supplies, 60 cps power supplies, and any other required power frequency.

AMBIENT TEMPERATURES Hornet Units can be designed for ambient temperatures up to 200 deg. C. Size for any given rating depends upon ambient temperature and required life.

LIFE EXPECTANCY Extensive tests indicate that the life expectancy of Hornet units at continuous winding temperatures of 200 deg. C. is over 50,000 hours.

MOISTURE RESISTANCE Since Hornet Transformers and Reactors contain only inorganic insulation, they are far more moisture resistant than conventional Class A insulated units.

EFFICIENCY Regulation and efficiency of Hornet Transformers compare favorably with Class A units.

SPECIFICATIONS Hornet Transformers meet the requirements of Government specifications covering this type of equipment.

Bulletin B300, containing full electrical and dimensional data on Hornet units, is now available. Write for it, or tell us your specifications for special units.

NEW YORK TRANSFORMER CO., INC.
ALPHA NEW JERSEY

MEMBERSHIP

(Continued from page 61A)

Kuramuki, A., 91 Old Mill Rd., Great Neck, L. I., N. Y.
Kurinsky, J. J., 3144 N. Oak Park Ave., Chicago, Ill.
Lawson, M. H., 12926 Short Ave., Venice, Calif.
Levers, E. O., 45-24–289 St., Great Neck, L. I., N. Y.
Liebersohn, A., 248–252 Heves St., Brooklyn 11, N. Y.
Libbeck, W. A., 2549 W. Winneba Ave., Chicago 25, Ill.
Luner, H. J., 1707 Van Dyke, Detroit 34, Mich.
MacDermott, J. G., 831 Paul St., Gloucester City, N. J.
Mead, A. S., Regnartuna, Gälli 58 House, 4378 Sandhag, New Delhi, India.
Malinowski, S., 5306 W. Foster Ave., Chicago 39, Ill.
Margolis, A. B., 105 E. 106 St., New York, N. Y.
Marshall, H., 20 N. Wacker Dr., Chicago, Ill.
Milk, J. T., Hughes Aircraft Company, Culver City, Calif.
Miller, B. N., 624 Hecker, Belleville, Ill.
Morgan, J. F., 2 Parry Pl., Great Neck, L. I., N. Y.
Morro, F. E., 9884 Patton Ave., Detroit 24, Mich.
Neff, R. K., 5063 N. Paulina, Chicago, Ill.
Olson, R. E., 21 E. Johnson Ave., Hermitage, N. J.
Perry, F. E., 2421 First Ave., Seattle, Wash.
Peterson, L., 1228 Third Ave., New York 21, N. Y.
Petru, R., 2319 E. 43 St., Cleveland, Ohio
Raffel, L., 116 Orient Ave., Jersey City, N. J.
Rajan, K. T., Institute of Technology, Trichur, S. India
Riley, E. E., 1567 Holmtry Rd., Cleveland, Ohio.
Richardson, R. W., 404 Broadmoor Rd., Baltimore 12, Md.
Riley, H. E., Port Arthur Collier, Box 511, Port Arthur, Tex.
Romanski, M. T., 1345 Mermian Ave., New York 52, N. Y.
Rusell, C. A., 100 S. Edgefield, Dallas, Tex.
Sander, W. E., La Vista St., Atlantic, Iowa
Scarborough, D. S., 724 Costa Rica Ave., San Mateo, Calif.
Schulze, W. J., 675 Richmond Ave., Buffalo, N. Y.
Seaton, G., 14314 Ledgewood, Cleveland 12, Ohio
Shannon, G. C., 1840 Belmont Ave., New Hyde Park, N. Y.
Shubel, R. J., 244–68–71 Ave., Flushing, L. I., N. Y.
Shobodin, L., 3210 Quentin Rd., Brooklyn, N. Y.
Smith, R. S., Rt. 2, Box 103, Harrisonburg, Va.
Sogardello, Jr., 325 W. Sunnyvale Ave., Chicago, Ill.
Sourek, R. A., 12013 Craven Ave., Cleveland 5, Ohio
Sprague, W. C., 15–4 Victoria Dr., Pittsburgh 27, Pa.
Spranger, P. B., 3357 Freer St., Arcadia, Calif.
Steele, S. E., 79 Hamilton St., Berea, Ohio
Trochin, J. J., 749 Large Ave., Clayton, Pa.
Treillard, C. E., 7754 Belgrano, Buenos Aires, Argentina
Uhlman, J. C., Box 3, Lac Du Bonnet, Man., Canada
Warzech, T. D., 1749 W. Wood St., Chicago, Ill.
Weltzer, L. W., 2092-5 St., Wyandotte, Mich.
White, H. A., 148 Hendrickson Ave., Rockville Centre, N. Y.
Zanotta, F. J., 613 S. Yale Ave., Villa Park, Ill.
Zupaansky, M., 5327 N. Winthrop Ave., Chicago 40, Ill.
Here’s why top engineers and technicians use Model 630

Features like those shown above are what make this popular V.O.M. so outstandingly dependable in the field. The enclosed switch, for instance, keeps the silvered contacts permanently clean. That’s rugged construction that means stronger performance, longer life. And tests show that the spiral spring index control, after more than 150,000 cycles of switch rotation, has no disruption or appreciable wear! Investigate this history-making Volt-Ohm-Mil-Ammeter today: 33 ranges, large 5½” meter.

ONLY
$39.50
AT YOUR DISTRIBUTOR

FOR THE MAN WHO TAKES PRIDE IN HIS WORK
News New—Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

Radiation Detection Meters

A radioactivity-measuring instrument, the Universal Roentgen Meter, is now being produced by Westinghouse Electric Corp., Box 2099, Pittsburgh 30, Pa.

The meter is the measure of radiation, expressed in milliroentgens, that the device detects, indicating the amount of radioactivity present in any area.

The meter is equipped with multiple scales, either four, five or six, which make possible fine readings in all ranges of radiation. The four scale model covers four ranges of radiation: 0 to 1/10 milliroentgen; 0 to 5 milliroentgens; 0 to 50 milliroentgens; and 0 to 500 milliroentgens.

Setting a switch determines which of the multiple scales will operate and will be visible, thus eliminating incorrect reading by use of the wrong scale.

The instrument is sensitive enough for use in X-ray work, but also accurately measures large amounts of radiation encountered in atomic fission research.

(Continued on page 701.)

ELECTRONICALLY REGULATED LABORATORY POWER SUPPLIES

RACK MODEL 32

- **Input:** 105 to 125 VAC, 50-60 CY
- **Output #1:** 200 to 325 VDC at 300 ma regulated
- **Output #2:** 6.3 Volts AC CT at 5A unregulated
- **Output #3:** 6.3 Volts AC CT at 5A unregulated
- **Ripple Output:** Less than 10 millivolts RMS

For complete information write for Bulletin G-2

Andrew Corporation

World's Largest Antenna Equipment Specialists

Transmission Lines for AM-FM-TV • Antennas • Directional Antenna Equipment • Antenna Tuning Units • Tower Lighting Equipment

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Type Number</th>
<th>Diameter of Parabola feet</th>
<th>Gain Over Half Wave Dipole Decibels</th>
<th>Beam Width, Half Power Points, Degrees</th>
<th>Net Weight, Pounds</th>
<th>Thrust Due to Wind Loading at 30 Pounds/FT Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>890-960 MCS</td>
<td>1002, 1004, 1006, 1010</td>
<td>2, 4, 6, 10</td>
<td>10, 15, 20, 25</td>
<td>36°, 22°, 16°, 11°</td>
<td>10, 64, 150, 380</td>
<td>127, 509, 1145, 3200</td>
</tr>
</tbody>
</table>

Your antenna problems can be solved by ANDREW—the largest firm of antenna equipment specialists in the world. Write today.
Remarkable new compactness in precision control

The extreme compactness of the new Type 1623 Motor-Driven Induction Generator has been achieved with no sacrifice of general performance characteristics. Like its "bigger brothers" in the Kollsman line, the Type 1623 combines, in a single frame, motors of high torque/inertia ratio with generators offering linear voltage vs. speed over a wide range.

Where size and weight are prime considerations, this 4.2-ounce unit will prove the solution to many precision control problems. Separate induction motors and generators are also available in the same diameter frame.

For further information on the 1623 and others in the complete Kollsman group of miniature special purpose AC motors—or if you require a unit to your own specifications—write: Kollsman Instrument Division, Square D Company, 80-08 45th Avenue, Elmhurst, N. Y.

Type 1623 Motor-Driven Induction Generator

Motor characteristics: Maximum torque at stall—smooth-running (will not "cog")—fast-reversing—operates from two-phase source, or from single-phase with phase-shifting condenser—available for 60 or 400 cycle operation.

Generator characteristics: Low residual voltage and voltage "spread"—constant frequency output—amplitude directly proportional to speed.

Unit characteristics: Both rotors mounted on same shaft, assuring positive alignment—stainless steel housing—hardened beryllium copper shaft—corrosion-resistant nickel steel laminations—high temperature insulation (up to 200° C. total temperature)—stainless steel precision ball bearings—weight: 4.2 ounces.

KOLLSMAN INSTRUMENT DIVISION

SQUARE D COMPANY

PROCEEDINGS OF THE I.R.E. December, 1950
YOUR SEARCH for the miniature, lightweight crystal cartridge with smoothest response characteristics, highest tracking excellence and low needle talk will now end with Astatic’s new “AC” Series. Essentially, it’s a matter of a new mechanical drive system which affords a new low inertia. The results are definitely superior overall performance. Put the “AC” through its paces yourself... note that the general excellence of frequency response is especially fine in the high frequencies. “AC” Cartridges use the new Astatic Type “A” Needle, easily replaceable without tools on the same holding principle as the famous Astatic Type “Q” Needle.

The Astatic “AC” Series

Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Minimum Needle Pressure</th>
<th>Output Voltage (in 0.5 Meg Load)</th>
<th>Frequency Range (c.p.s.)</th>
<th>Needle Type</th>
<th>For Record</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-1</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-2</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-2</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-2</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
</tbody>
</table>

Double Needle Turnover Models

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Minimum Needle Pressure</th>
<th>Output Voltage (in 0.5 Meg Load)</th>
<th>Frequency Range (c.p.s.)</th>
<th>Needle Type</th>
<th>For Record</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-1</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-2</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-2</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
<tr>
<td>AC-2</td>
<td>8.90</td>
<td>6 gr.</td>
<td>10-10,000</td>
<td>Standard 78 RPM</td>
<td>A-3 (3 mil sapphire tip)</td>
<td>ASWYN</td>
<td></td>
</tr>
</tbody>
</table>

Specifications

- **Model:** AC-76J, AC-1, AC-2
- **List Price:** 8.90
- **Minimum Needle Pressure:** 6 gr.
- **Output Voltage:** 10-10,000
- **Frequency Range:** Standard 78 RPM
- **Needle Type:** A-3 (3 mil sapphire tip)
- **For Record:** ASWYN, ASWY

Dual Needle Turnover Models

- **Model:** AC-1, AC-2
- **List Price:** 8.90
- **Minimum Needle Pressure:** 6 gr.
- **Output Voltage:** 10-10,000
- **Frequency Range:** Standard 78 RPM
- **Needle Type:** A-3 (3 mil sapphire tip)
- **For Record:** ASWYN, ASWY

Specifications

- **Model:** AC-1, AC-2
- **List Price:** 8.90
- **Minimum Needle Pressure:** 6 gr.
- **Output Voltage:** 10-10,000
- **Frequency Range:** Standard 78 RPM
- **Needle Type:** A-3 (3 mil sapphire tip)
- **For Record:** ASWYN, ASWY

News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information, Please mention your I.E.E. affiliation.

Dual Spotlight Soldering Gun Eliminates Shadows

Dual spotlights to eliminate shadows, and over/under terminals to brace tip and improve visibility are features of the new light-duty soldering gun recently announced by Weller Electric Corp., 821 Parker St., Easton, Pa.

This new model is considerably smaller and lighter than previous, now obsolete, 135-watt guns, and yet has substantially greater soldering capacity.

The gun has dual heat, 100/135 watts, for all light and delicate soldering, 5-second heating to save time and current, trigger-switch control which adjusts heat to the work, and eliminates need of unplugging gun between jobs.

(Continued from page 72A)

The nonmelting SILICONE insulating and waterproofing compound that is stable at temperatures from -70° to +400°F.

Dow Corning 4 Compound

- **MEETS ALL THE REQUIREMENTS OF AN-C-128a**
- **More water repellent than paraffin, Dow Corning 4 Compound is highly resistant to oxygen, ozone and to deterioration caused by corona discharge.**
- **POWER FACTOR, up to 10 megacycles... 0.001**
- **VOLUME RESISTIVITY, ohm centimeters... 10°**
- **DIELECTRIC STRENGTH, volts/mil... 500**

Write Today!

for your copy of our new booklet on Dow Corning 4 Compound Address Dept. D

DOW CORNING CORPORATION, Midland, Michigan
NEW SYSTEM Accurately measures VSWR from 1.02 to 100/1

DOUBLE PROBE SYSTEM
PRECISION
SLOTTED LINE & VSWR INDICATOR
MEASURES
IMPEDANCE • VSWR
RELATIVE POWER
100 MC TO ABOVE 1000 MC

SWR INDICATOR —
STABLE SENSITIVE
1000 CYCLE NEGATIVE
FEED BACK AMPLIFIER
FLAT TOP SELECTIVITY.

MODEL 62
MIN. GENERATOR RF. POWER
REQ. 2-20 MILLIWATTS

- Full scale VSWR ranges: 1.1/1 • 4.0/1 • 10.1/1 and to 100/1 using included calibrated probe depth attenuators.
- Differential probe system for accurate measurement of low VSWR.
- Useable electrical probe travel 150 centimeters (½ wave at 100 mc/s).
- Removable end tapers exhibit negligible impedance transformation — under 1%.
- Residual VSWR under 1% — voltage uniformity ±.05% or better — mechanical tolerances held to 0.2%.
- Machine engraved centimeter scale and vernier (Starrett) measures probe travel to 0.1 millimeter accurate to 0.01 mm.
- Continuously adjustable probe depth 0—.500” calibrated in .001” steps. Permits measurements of relative power and maintenance of square low crystal characteristic.

THE ROLLIN COMPANY
2070 N. FAIR OAKS AVE. • PASADENA 3, CALIFORNIA
Two Bolometer Amplifiers

MODEL 100

• Variable Bandwidth
• Tunable Frequency Range
• Voltage Ratio Expander
• Automatic Normalization
• Self Contained Metering
• Recorder Output

USES

The P & B Bolometer Amplifier Model 100 is a quality amplifier designed for use in connection with making electrical measurements of antennas and associated radio-frequency systems. Standing wave ratios may be quickly determined on either a linear or expanding indicating scale.

The tunable, variable bandwidth, band-pass characteristics of the amplifier make it useful where conditions might render other test equipment useless.

Built to Navy Specifications for research and production testing.

CHARACTERISTICS

Frequency range—400 cycles to 5,000 cycles (± 3% calibration accuracy).
Bandwidth—(1/2 voltage) 6, 12, 22, 50, 100 and 300 cycles.
Input Voltage Range
Signal Channel—10-4 to 10-7 volt.
Monitor Channel—10-5 to 10-3 volt.
Expander Operation—10-6 to 10-4 volt.
Input Impedance—250 ohm to 350 ohm.
Meter—Logarithmic scale with 100 db decade.
Recorder Output—0.1 to 100 volts ± 0.1 w. full-scale.
Normalizing—output voltage holds within ± 2.5 db for input changes of ± 50% to both channels.

Bolometer Bias—adjusted in steps of 5%. Current change over range of 2:1 metered directly.
Voltage Ratio Expander—eighth power expansion.
Power Supply—105/115 volts 50/60 cycles, 175 watts.
Dimensions—19 1/2" high, 12 1/2" wide, 12" deep.
Weight—65 lbs.
Finish—Blue grey—Wrinkle.

Ask for Bulletin L-100

MODEL 60

• Self Contained Metering
• Pull Out Meter
• AC and DC Recorder Output
• Panel Selection of 3 Frequencies
• Adjustable and Metered Bolometer Bias

USES

The Model 60 Bolometer Amplifier is a band-pass amplifier designed to amplify the output of crystal or bolometer probes used in RF measuring equipment. The amplifier is suitable for all occasions where extremely low audio voltages must be amplified. The recorder output makes the unit particularly useful for antenna pattern recorders requiring either AC or DC input voltages.

DESCRIPTION

The Model 60 Bolometer Amplifier is an audio amplifier incorporating parallel T null networks in a feed back circuit to provide a narrow band pass at any desired frequency within specified limits. The amplifier includes a meter amplifier and an output meter which may be removed from the panel opening for use at remote locations. The recorder output provides a choice of impedances for AC outputs as well as a DC output for those recorders requiring such an input. Input circuits are designed for operation with crystals or 300 ohm bolometers.

CHARACTERISTICS

FREQUENCY RANGE—400 cycles to 5000 cycles (choice of 1, 2, or 3 frequencies within these limits) ± 3% frequency inaccuracy.
BANDWIDTH—(1/2 voltage points) 8% of bandpass center frequency.
INPUT VOLTAGE RANGE
Meter—10-12—10-5 volt.
Recorder (AC)—10-6—10-4 volt.
INPUT IMPEDANCE—250 ohm to 350 ohm.

METER—Logarithmic meter scale with 100 db decade.

For further information, please contact our Engineering Department.

For detailed information on our products and services, write to

Langevin MANUFACTURING CORPORATION
37 W. 65th St., New York 23, N. Y.
New Miniature Insulated Terminals
to help your miniaturization program

Featuring extremely small size combined with excellent dielectric properties, three new miniature insulated terminals are now available from CTC.

Designed to meet the requirements of the miniaturization programs now being carried out by manufacturers of electrical and electronic equipment, the terminals come in three lengths of dielectric and with voltage breakdown ratings up to 5800 volts. In addition, they have an extremely low capacitance to ground.

The X1940XA is the smallest terminal, having an over-all height of only three-eighths of an inch including lug. Insulators are grade L-5 ceramic, silicone impregnated for maximum resistance to moisture and fungi.

All terminals have hex-type mounting studs with 3/48 thread or .141” OD rivet style mounting. Mounting studs are cadmium plated, terminals are of bright-alloy plated brass.

Write for additional data.

UHF ENGINEERING

Specialized UHF knowledge, experience and shop techniques enable LAVOIE LABORATORIES, INC. to handle every phase of electronic production efficiently and economically.

Precision work and low unit cost are based on these factors developed through years of practical specialization in this field.

Lavoie Laboratories, Inc.
MORGANVILLE, NEW JERSEY
INSTRUMENTS
Engineered for Engineers

SWEEP CALIBRATOR

MODEL GL-22A
A versatile source of timing markers for accurate measurement of sweep intervals with oscilloscopes and synchronoscopes.
• Positive or negative markers of 0.1, 1.0, 10, 100 micro-seconds variable to 50 volts.
• Variable width and amplitude gate for blanking or timing.
• Markers from external trigger or internal generator. May be synchronized with triggers up to 100 KC, repetition rate.
• Voltage regulation to timing circuits.
Write for free bulletin.

POWER SUPPLY

MODEL TYN-7
The basic unit of a microwave signal generator. Square-wave modulator for low-powered velocity-modulated tubes.
• Cathode voltage continuously variable to 28-400 volts.
• Provision for 180-300 volt range.
• Reflective voltage range 15-50 volts.
• Provision for grid pulse modulation to 60 volts, reflector pulse modulation to 100 volts.
• Square-wave modulation variable from 600 to 5000 cycles.
• Provision for external modulation.
Write for free bulletin.

LABORATORY AMPLIFIER

MODEL TAA-16
High gain audio amplifier feeding a-c voltmeter for measurement of standing wave ratios with slotted lines.
• 500-5000 cycles with broadband selective control on front panel.
• Sensitivity: Broadband 15-microvolts; selective 10 microvolts.
• Meter scales 0-10 and standing-wave voltage ratio.
• Panel switch for belometer voltage application.
• Master gain control switch for attenuation factors of 1, 10, and 100.
• Stable electronic power supply.
Write for free bulletin.

FM MODULATION MONITOR

MODEL MD-25
For monitoring modulation of fixed or mobile FM transmitters and carriers from 30-162 mc to comply with FCC limitations of carrier frequency swing and reduce adjacent-channel interference.
• Coverage 30-40, 40-50, 72-78, 152-162 mc.
• Flasher indicates peak modulation (peak carrier deviation).
• Meter indicates peak swings of modulation to 1 kc.
• Sensitivity: signal measurements with approximately 1 millivolt at antenna input.
Write for free bulletin.

ALLISON RADAR
FOR
MULTI-ENGINED AIRCRAFT
Military • Airline • Executive
MODELS E ES ESB
58-65 LBS. OVERALL WEIGHT
1. Long range. 80-150 miles.
2. Exclusive scanning method.
4. Easy to operate.
5. Simplicity of maintenance.
7. JAN components.
8. RACON beacons.

ALLISON RADAR CORPORATION
11 West 42nd St., New York 18
Penn 6-5811-12

INSTRUMENTS
Engineered for Engineers

Line Voltage Regulators
A new series of line adjusters has been added to the Stancor line of transformers, manufactured by Standard Transformer Corp., 3580 N. Elston Ave., Chicago 18, Ill.

These four units permit operation of electrical devices at 115 volts when the supplied voltage is 65, 75, 90, 100, 115, 130, or 145. They meet power requirements up
EMSCO ENGINEERED
RADIO TOWERS

For AM, FM, VHF, UHF, Microwave, Television and Radar

EmSCO Towers are available for all types of broadcast and communication service. Backed by years of fabricating experience, EmSCO towers are engineered for safety, performance and economy. Bolted construction and hot dip galvanizing insure long life, low maintenance cost and maximum electrical conductivity. Self-supporting triangular and square towers and guyed triangular towers are available in heights up to 1,000 feet with wind loadings up to 60 lbs. RMA design.

Development of stabilized, high permeability cores of various types and grades, has greatly increased the applications of toroid coils in the low frequency range from 500 cycles to 200 KC. B&W toroids feature high inductance and high Q within a minimum of space and confined electrical field. These features assure the highest performance in many types of filters or networks.

Over fifteen years background in coil design and manufacture, plus the latest toroidal coil winding equipment, provides a combination that makes it possible for B&W to meet your most exacting requirements. B&W Toroidal Coils are available in open types, shielded, potted or hermetically sealed units in addition to complete filters or networks for specific applications. Our Engineering Department is ready to assist you with your problems in the application of toroids.

Write to
Dept. PR-120

BARKER & WILLIAMSON, INC.
237 Fairfield Avenue
Upper Darby, Pa.
Microwave “Shutter”

by TERPENING

The “shutter” you see in the waveguide section above is designed to close automatically when the radar is not operating. This prevents damage to the crystal detector, which might be caused by radiation from other nearby radars.

Specifications called for very high attenuation when closed, extremely low attenuation when open, and fully automatic operation.

As designed and produced in quantity in our plant, the performance of this component exceeded our customer’s expectations. For example:

- With the solenoid-actuated shutter in closed position, attenuation is greater than 40 db,
- With shutter open, attenuation is negligible—a few hundredths of one db.

This is a typical example of the work we are set up to handle—from design through production—from single component to entire transmission line. Although our engineering staff, laboratories, and fully equipped shop are usually busy on government contracts, our unusual facilities may permit us to work with you on special components for military microwave systems. We shall be happy to talk with you about your present and/or future needs.

News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 74A)

to 750 va, 50 to 60 cps. The line adjuster input is correctable in seven steps by means of a selector switch and indicated by an output voltmeter. These units are also useful for altering a 115-volt line above or below that level. They are equipped with a line cord and plug to fit a standard outlet and a plug-in receptacle to accommodate devices to be operated.

Vector Analyzer

A new Vextrolyzer, Type 201, capable of measuring vector relations of alternating voltage from 8 cps to 500 Mc is announced by Advance Electronics Co., P.O. Box 2515, Paterson, N. J.

The frequency range is 8 cps to 10 Mc through panel binding posts. 20 kc to 500 Mc through probe. Input Impedances: probe, 2.5 megohm and dielectric losses; binding posts, 1 megohm and dielectric losses.

The voltage range is 2, 4, 10, 20, and 40 volts, full scale. Phase angle range is 0°-180°, and 180°-360°, ranges with better angular sensitivity can be obtained through panel adjustment. Accuracy is ±.3 per cent through panel binding posts, ±1 db through probe for phase angle measurements.

(Continued on page 74A)

Butterfly POWER...

- MICROTORQUE Variable Resistors and Potentiometers require as little as .003 in. oz. torque to operate. This unique feature makes the MICROTORQUE invaluable for applications where the position of instrument pointers, gyroscopes, and delicate instruments in general must be recorded, transmitted or indicated at a distance, and Giannini are the sole makers of MICROTORQUE Potentiometers.

A variety of resistance values and circuits available.

L. H. TERPENING COMPANY

DESIGN • RESEARCH • PRODUCTION

Microwave Transmission Lines and Associated Components

16 West 61st St. • New York 23, N. Y. • Circle 6-4760

gianninni

Write for booklet.

G. M. Giannini & Co., Inc.
Pasadena 1, California

PROCEEDINGS OF THE I.R.E. December, 1950
PARABOLIC ANTENNAS

Recent installations of Workshop Parabolic Antennas have replaced hundreds of telephone lines and several coaxial cables. Railroads, oil companies, and broadcast stations report remarkable savings in installation, operation, and maintenance costs.

The Workshop can supply parabolic antennas in a wide range of types, sizes, and focal lengths, plus a complete engineering service.

PARABOLAS — Precision-formed aluminum reflectors.

MOUNTINGS — Various types of aluminum reinforced mountings can be supplied with all antennas.

PATTERN and IMPEDANCE DATA — A series of elaborate measurements of both pattern and impedance are made to adjust the settings for optimum performance.

POLARIZATION — Either vertical or horizontal polarization can be obtained easily by a simple adjustment at the rear of the reflector.

ENGINEERING and CONTRACT SERVICE — If your product or service requires high-frequency antennas, get in touch with the WORKSHOP. As the pioneer and acknowledged leader in this field, we can help you. Be it research, design, test, or production, our highly-skilled staff, backed by the finest laboratory equipment in the industry, can solve your antenna problem with a minimum of time and expense. Write, or phone Needham 3-0005. No obligation.
Here's why those in the know—demand

CANNON PLUGS

Patented exclusive latchlock device

Shell design saves space.

Ground contact makes first; breaks last.

Hand tinned solder cups tinned inside only.

Socket contacts are full-floating... turn through 360°.

Insert retaining screw threads into metal barrel instead of plastic... inserts can be quickly removed.

Compression gland having a soft rubber bushing grips the cable; fibre washer takes care of bushing thrust. Cable entry has strain relief spring.

No corners are cut... nothing is overlooked to assure you outstanding performance with Cannon Plugs. So long an engineer's choice, the words "Cannon Plugs" have become part of our electrical language. Continued excellence of design... ability to meet your changing requirements... are good reasons why the Cannon line of connectors continues to excel where specifications must be met. XL Connector Series is just one of the many Cannon types—world's most complete line. Request bulletins by required type or describe your needs.

CANNON ELECTRIC

Since 1915

LOS ANGELES 31, CALIFORNIA

REPRESENTATIVES IN PRINCIPAL CITIES

There are 12 items in the XL line. Insert arrangements available: 3—15 amp. contacts, 4—10 amp. contacts—working voltage 250 volts. Zinc and steel plugs with bright nickel finish are standard. Satin chrome finish also available on steel plugs.

News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 76A)

Improved Organic Coating for Resistors

The new coating, when applied to resistor wire which is space wound on low-loss ceramic tubes, produces high stability for the resistance winding, and offers maximum protection against moisture.

(Continued on page 84A)

The New STAYER MINI-SHIELD

The shield that fits all Miniature Tubes

A flexible shield that snugly fits all miniature tubes because it compensates for all variations in tube dimensions. Mini-Shields are made for both 15 1/2 and 16 1/2 bulb tubes. Send for catalog sheet.

THE STAYER COMPANY INCORPORATED

91 PEARL ST. • BROOKLYN 1, N.Y.

ULSTER 5-6303
In only 1 SECOND!
COMPLETE AUDIO WAVEFORM ANALYSIS with the AP-1 PANORAMIC SONIC ANALYZER

Provides the very utmost in speed, simplicity and directness of complex waveform analysis. In only one second the AP-1 automatically separates and measures the frequency and amplitude of wave components between 40 and 20,000 cps. Optimum frequency resolution is maintained throughout the entire frequency range. Measures components down to 0.1%.

- Direct Reading
- Logarithmic Frequency Scale
- Linear and Two Decade Log Voltage Scales
- Input voltage range 10,000,000:1

AP-1 is THE answer for practical investigations of waveforms which vary in a random manner or while operating or design constants are changed. If your problem is measurement of harmonics, high frequency vibration, noise, intermodulation, acoustics or other sonic phenomena, investigate the overall advantages offered by AP-1.

Write NOW for complete specifications, price and delivery.
TOWER LIGHTING EQUIPMENT
H & P lighting equipment, consistently specified by outstanding radio engineers, is furnished as standard equipment by most leading tower manufacturers.

300 MM CODE BEACON
Patented ventilator dome circulates the air, assures cooler operation, longer lamp life. Concave base with drainage port at lowest point. Glass-to-glass color screen supports virtually eliminate color screen breakage. Neoprene gaskets throughout. CAA approved.

MERCURY CODE FLASHER
Lifetime-lubricated ball bearings. No contact points to wear out. Highest quality bronze gears. Adjustable, 14 to 52 flashes per minute.

SINGLE and DOUBLE OBSTRUCTION LIGHTS
Designed for standard A-21 traffic signal lamps. Prismatic globes meet CAA specifications.

"PECA" SERIES PHOTO-ELECTRIC CONTROL
Turns lights on at 35 f.c., off at 5 f.c., as recommended by CAA. High-wattage industrial type resistors. Low-loss circuit insulation.

ALSO COMPLETE LIGHT KITS
FOR A-2, A-3, A-4 and A-5 TOWERS

PROMPT SERVICE and DELIVERY
First-day shipments out of stock. Immediate attention to specifications and unusual requirements.

WRITE OR WIRE FOR CATALOG AND DETAILED INFORMATION
HUGHEY & PHILLIPS TOWER LIGHTING DIVISION 326 N. LA CIENEGA BLVD. LOS ANGELES 48, CALIF. 60 E. 42ND ST. NEW YORK 17, N. Y.

News—New Products
These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 78A)

Intermodulation Meter
Measurements Corp., Intervalle Rd., Boonton, N. J., announces the development of a completely self-contained intermodulation meter.

This new laboratory standard, Model 31, consists of two principal sections, a test signal generator and an analyzer. The generator section produces two sinusoidal voltages, one of low frequency and the other a high frequency, which are mixed in a 4/1 voltage ratio and applied to the apparatus under test.

The signal is then received by the analyzer section, where it is filtered, amplified, demodulated, and metered. The meter is direct-reading in percentage of intermodulation and input volts.

This instrument is useful for evaluating the performance of audio systems, for the adjustment and maintenance of AM and FM receivers and transmitters; for checking linearity of film and disk recordings and reproductions; for checking phonograph pickups and recording styli; for adjusting bias in tape recordings, for quality control of all audio components and equipment, and for many other applications.

Bolometer Bridge
The General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass., recently developed the Type 1651-A bolometer bridge for maximum flexibility in application, so that it can be adapted to a variety

(Continued on page 81A)
News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 80A)

of power measurement problems. It can be used, not only with General Radio bolometers, but also with those of other manufacturers having resistances between 25 and 400 ohms. Measurements can be made either by a direct-reading or a substitution method. Current range is 0 to 100 ma; power range is 0 to 500 milliwatts.

Matching transformers and other accessory equipment can be assembled from General Radio Type 874 coaxial elements.

Plant Expansion

The General Electric Co., Schenectady, N. Y., has announced that it will reopen its Clyde, N. Y., plant and transfer the production of germanium products now made at the GE, Thompson Rd. plant in Syracuse to the Clyde factory.

W. R. G. Baker, company vice-president and general manager of the GE Electronics Dept., said the transfer is being made because of expanded production requirements for these products, and also to make room for increasing government business at the Syracuse plants.

(Continued on page 87A)

BROADCAST STABILIZED UNIT—JK57MT

The new JK57MT has frequency range from 400 kc to 1750 kc. Nominal temperature 60° F. ±.1°. Adjustable frequency ±.2%, so it can be cut on exact frequency in your equipment. 6.3 volt 1.5 amp. heater. Completely insulated, will hold temperature to −20°C. Can be supplied with octal base (JK87MT) with or without thermometer, and set for various temperatures.

This new crystal features a unique and more positive method of varying the gap. Unlike conventional crystals, in which the entire electrode turns to change the frequency, the JK57MT variable electrode only moves up and down in guides like a piston. This completely eliminates any danger of damaging the crystal.

SKL — introduces for the first time a single broad band booster capable of amplifying all 13 television channels simultaneously. Because of its stability and reliability — a tube failure means only a slight loss of gain, not amplifier failure — the Model 212TV Amplifier can be safely left unattended for long periods of time. Its low noise level, high output, and low impedance make the Model 212TV Amplifier ideal for television distribution systems in hotels, apartment houses, sales rooms and television stations and manufacturers' plants.

Write today for further information

40 MC TO 220 MC TV AMPLIFIERS

With the Model 212TV Amplifier —

SPECIFICATIONS

- BANDWIDTH
 40 MC — 220 MC
- IMPEDANCE
 52, 72, and 93 ohm unbalanced, 120 ohm balanced
- GAIN
 20 db
- OUTPUT VOLTAGE
 4 volts RMS Maximum
- RESPONSE
 ± 2 db over bandwidth
- PRICE
 $200.00 f.o.b. Cambridge, Mass.
NEWS—NEW PRODUCTS

How Technical Books Are Bought

By Harry C. Waterston

Mr. Waterston is president of Waterston & Fried, Inc., an advertising firm which handles such accounts as Wiley, Reinhold, and Cornell Maritime press, technical and trade journal publishers.

Have you ever thought about the book buying habits of the scientist or technician? Does he generally buy his books from a bookstore or through an advertisement in a professional journal? Is he influenced more by book reviews than by personal recommendations in his selection of books?

The factors that influence book buying in the technical and scientific fields have been of great interest to us. Often we have asked technically-trained friends and acquaintances how and where they bought books. We have checked with publishers whose accounts we handled, for their experiences and opinions. However, we found many divergent theories among publishers as to how technical books are bought.

Our interest in this subject stems from the fact that for almost a decade we have been preparing advertising for books written for special audiences. Chemistry, music, business, medicine, aeronautics, art, radio electronics and many other subjects are included in the list of titles we have promoted.

Recently, we were discussing with William Copp, advertising manager of the PROCEEDINGS of I.R.E., the need for factual information on what influenced people to buy technical books. We both agreed that a survey should be made to secure this important information.

Mr. Copp told us that he and the Institute of Radio Engineers would be glad to finance such a survey, and he suggested that our company conduct it. We were delighted to offer our name and facilities to such a worthwhile cause.

We decided to select 1,000 readers of the PROCEEDINGS of I.R.E. From the list of subscribers we chose the first forty names of each letter of the alphabet. (Continued at Right)

The new S.S.WHITE 80X
HIGH VOLTAGE RESISTOR

(1/2 Actual Size)

4 watts • 100 to 100,000 megohms

Developed for use as potential dividers in high voltage electrostatic generators, S.S.White 80X Resistors have many characteristics—particularly negative temperature and voltage coefficients—which make them suitable for other high voltage applications. They are constructed of a mixture of conducting material and binder made by a process which assures adequate mechanical strength and durability. This material is non-hygrosopic and, therefore, moisture-resistant. The resistors are also coated with General Electric Dri-film which further protects them against humidity and also stabilizes the resistors.

WRITE FOR BULLETIN 4906

It gives complete information on S.S.White resistors. A free copy and price list will be sent on request.

News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from left)

HOW TECHNICAL BOOKS ARE BOUGHT

"What is your usual method of purchasing these books?" was the next question. Here we list four choices and an "Other" for those who purchase their books in an unusual manner.

Buy books from bookstores 52%
Through purchasing agent or other person in own organization 28%
Clip coupon from ads 9%
Write or phone publisher 47%
Other: School and engineering societies, distributors of radio parts, desk copies, etc. 3%

Many checked more than one method of purchasing books. "What guided you in the selection of technical books?" Four choices and an "Other" were listed here.

Due to a clerical error, "publisher's literature" was omitted from the questionnaire. However, the opportunity for a "write-in" vote was available to any subscriber under "Other" guides to selection. Fortunately, every book publisher has exact figures on the selling ability of direct mail literature. Notwithstanding this omission, we believe the statements made by those participating in this survey still give us a clear picture as to what influences them in the selection of technical titles.

Personal recommendation by associates in the field 64%
Book reviews in technical magazines 66%
Recommendation of book salesman 27%
Advertisements for books in technical magazines 37%

(Continued on page 814)
HIGHEST STABILITY in Quality Communications

In today's high-speed telegraph, teleprinter and multi-channel radio communication systems—more than ever before—utmost stability is a vital need. Northern Radio's exclusive answer is the Type 105 Model 4 FREQUENCY SHIFT KEYER. Its highly stable oven has a temperature control of \(\pm 0.1^\circ C \) at 60", with heaters on 4 sides of the inner oven—giving this unit frequency stability unmatched in the industry. And, greatest ease of operation is assured by its completely direct-reading dials.

See the specifications on this outstanding model in the 1950 IRE Directory. For complete data on the precision-built Northern Radio line, write today for your free latest Catalog F-1.

Northern Radio Company, Inc.

143-145 West 22nd Street

New York 11, N.Y.

INCREASED ACCURACY

- **SWEETS .01 sec/cm to .1 μsec/cm**
 Accuracy 5% or greater.

- **.04 μsec RISE TIME**

- **FULLY REGULATED POWER SUPPLY.**

- **VOLTAGE CALIBRATOR**
 5%, Full Scale Accuracy.

Tektronix Type 511 AD Oscilloscope

Price $845.00 FOB, Factory

Increased accuracy in sweep time calibration is made possible by the use of dual Sweep Multiplier dials. The 2 megohm variable carbon resistor formerly used has been replaced by a combination of 1% fixed resistors and a variable element which comprises only 10% of the total.

Electronic regulation of all DC voltages preserves the inherent accuracy regardless of severe line voltage variations.

Write for further information on the Type 511 AD and other Tektronix instruments.

Tektronix, Inc.

712 S.E. Hawthorne Blvd. Portland 14, Ore.
TELECHROME
ANNOUNCES A NEW LINE

• COLOR AND MONOCHROME PICTURE GENERATORS
• COLOR SYNC GENERATORS
• COLOR MONITORS
• COMPLETE STUDIO TYPE COLOR EQUIPMENT FOR DOT, LINE OR FIELD INTERLACE SYSTEMS BUILT TO YOUR SPECIFICATIONS

TELECHROME INCORPORATED
295 W. SHORE DR., MASSAPEQUA, N.Y.

Intermodulation Meter Model 31

• Completely Self-Contained
• Direct Reading For Rapid, Accurate Measurements

To insure peak performance from all audio systems; for correct adjustment and maintenance of AM and FM receivers and transmitters; checking linearity of film and disc recordings and reproductions; checking phonograph pick-ups and recording stylus; checking record matrices; adjusting bias in tape recordings, etc.

TELECHROME CORPORATION
BOONTON NEW JERSEY

News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 82 A)

Publisher's literature... 15%
(Written in under "Other.")

Here, too, more than one classification was checked by most participants.

It is interesting to note that, while 52% purchase books from bookstores, only 2% say they are influenced by the recommendations of a book salesman. It is obvious, therefore, that the technical book buyer must be sold on a book—its subject matter, its advantages to him in his field, the name and authority of the author, and its publisher—before he walks into a bookstore.

Another interesting point is that while 37% admit that they are influenced by book advertisements in technical publications, only one-fourth of these actually clip coupons from ads to purchase books.

We also thought it would be a good idea for technical people to express their preference for book publishers in their field. This question was asked: "What book publishers do you consider publish the best books in your field?" No check-list was supplied here. Each person wrote the names of the publishers he thought best. A total of thirty-seven publishers was named. The leaders were:

McGraw-Hill... 84%
John Wiley & Sons... 61%
Van Nostrand... 30%
Dover... 26%
Prentice-Hall... 5%
Macmillan... 5%
Cambridge University... 5%
Oxford University... 2%

No questionnaire is complete without some space for "Special Remarks." So we provided space for free expression for those who were good enough to take the trouble to fill out the form. The following are a typical "cross-section" of the comments we received.

A Canadian commented:
"Textbooks are very expensive in Britain. American books are prohibitive now on devalued Sterling."

A Cambridge, Mass., subscriber offered this suggestion:
"Eliminate elementary review material from many books and thereby reduce the price, which is generally too high."

A Brooklyn, N. Y., member observed:
"Most books in the field tend to start with too few assumptions about the knowledge of the reader. Elementary material should be confined to strictly elementary texts. This is a policy that all publishers should follow more consistently than they do."

(Continued on page 85 A)
News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 82)

From Buffalo, N. Y. (after mentioning the three leaders):

"Other technical publishers are apparently too proud to push their wares."

From Dallas, Texas:

"Would undoubtedly buy more technical books if they were written by experts; locally ... publishers are selling their market short—scientific men must be given more information, not just an outline of the subject.

A Naval Commander in Portsmouth, Va.:

"Want to see more books on the Philosophy and Nature of Scientific Theory to arouse interest in fundamental research in this country."

A Challenge from Pasadena, Cal.:

"There ought to be a more effective way of bringing books to the attention of scientific people than methods now in use."

This St. Paul, Minn., subscriber was very critical:

"I find that manufacturers' data is generally as complete and cheaper—too many books carry the same material."

A Cynic from Pittsburgh, Pa. cried:

"What best books? Most are revisions of revisions."

An Advertising-conscious New Yorker wrote;

"Advertisements undoubtedly have an unconscious effect in my purchases of technical literature."

Improved Flexible Electrical Conduit

An improved flexible electrical conduit has been devised by Elliott Solero, of National Electric Products, Corp., 130 E. Chestnut St., Chicago. It is suitable for use in places where it is desirable to minimize the cost of electrical installation and where a flexible conduit is necessary to permit of easy movement of machinery. The conduit consists of a flexible metal tube made of longitudinal fiberglass yarns, and a spiral wrapping of metal foil, with an outer braided jacket of aluminum wire. Conventional conduit construction makes use of a spiral armor of interlocked aluminum strip over a braided aluminum wire jacket. Using less metal than the conventional type, the new conduit is lighter, has greater flexibility, and offers more uniform shielding and provides better resistance to damage from moisture, flame, oil spray, and fumes.

The new conduit is expected to find wide usage in applications involving high-frequency currents—notably in aircraft radar equipment, automotive radio insulation, etc.

(Continued on page 86)
FOR BETTER PERFORMANCE
BETTER BUY ACME Electric TRANSFORMERS

You write the specifications and
Acme engineers will design a
transformer with the exact output
characteristics to provide "top" per-
formance for your product. And re-
member, in addition to quality per-
formance, Acme also can provide
quantity production in custom de-
signs for transformers.

ACME ELECTRIC CORPORATION • 4412 Water St., Cuba, N.Y., U.S.A.

CHECK small inductors

...Quickly and
Accurately—

with this TYPE 110-B
QX-CHECKER

The QX-Checker is a production type test instru-
ment specifically designed to compare the
reactance and relative Q of small RF inductors
with approved standards. The two factors, re-
actance and relative Q, are separately indicated,
one on the meter and the other on a condenser
dial, so that the deviation of either from estab-
lished tolerances is immediately shown. Built to
laboratory standards, the QX-Checker is a sturdy,
toolproof instrument for use in production work
by factory personnel.

ACCU RACY OF COIL CHECKS: Inductance values be-
tween 5 and 35 microhenries may be checked to an
accuracy of ±0.5%. Smaller values down to 0.1
microhenries may be checked with increasing
accuracy.

INDICATING SYSTEM: Q indicating meter with well ex-
panded 3½" scale shows departure of Q from
nominal value. Vernier condenser scale calibrated
directly in terms of percent departure from known
standard over range of ±15% to ±20%. Cop-
parance scale is also provided reading changes of 50
mmf. to ±50 mmf. from nominal circuit capacitance
of 500 mmf.

POWER SUPPLY: 110-125 volts, 50-60 cycles, also 200-
250 volts, 50 cycles.

DIMENSIONS: Width 12½", Depth 18", Height 8½".

WEIGHT: 26 lbs. PRICE: $415.00 f.o.b. Boonton, N. J.
A limited supply of these instruments
available from stock.

BOONTON RADIO Corporation
BOONTON, N. J., U.S.A.

News—New Products

These manufacturers have invited PROCEEDINGS
readers to write for literature and further technical
information. Please mention your I.R.E. affiliation.
(Continued from page 85A)

New Small Coupler

A new Micromatch, Model 570, series
designed as a transmitter component to
continually monitor if power output,
vswr, and sidetone is being produced by
M. C. Jones Electronics Co., 96 Main St.,
Bristol, Conn.

Model 570 has a frequency range of 20
to 2,000 Mc., and an impedance of 51
ohms. It is supplied with RG-9/u cable,
or female N-type connector which accepts
FG-21/U connector attached to RG-9/U
cable.

Meter scale reads 0 to infinity. A vswr
of 3.0 corresponds to approximately half
scale deflection.

Audio frequency output available for
monitoring when used with an AM trans-
mitter. (Continued on page 87A)

don't fail
to see the

AMPEREX TUBE

advertisement
next month
(January issue)
on the inside
front cover
News—New Products
These manufacturers have invited PROCEEDINGS
readers to write for literature and further technical
information. Please mention your I.R.E. affiliation.

(Continued from page 86A)

Frequency Standard
The new Type 2005, frequency standard, with an output frequency of 60 cps
accurate to 1 part in 100,000 in temperature range from 0 to 60° C. has been de-
signed by American Time Products, Inc.,
580 Fifth Ave., New York 19, N. Y.

Output power is 10 watts, 115 volts
approximate sine wave. The input is 115
volts, 50 to 400 cps 45 watts.

(Continued on page 88A)

Compare
for results!
Compare
for price!
and you will choose
the GREEN
ENGRAVER

The Green En-
graver offers
great speed and
convenience. Quickly
cuts up to four lines
of letters from 3/64" to 1" on curved
or flat surfaces whether made of metal,
plastics or wood... operates by mere-
ly tracing master copy—anyone can
do an expert job. Special attachments
and engineering service available for
production work. Just the thing for
radio, electronic apparatus and instru-
ment manufacturers.

For quality engraving on
• Panels • Name Plates • Scales
• Dials • Molds • Lenses • Instruments
•... also does routing, profiling and
dimensional modeling.

GREEN INSTRUMENT CO.
361 Putnam Ave
Cambridge, Mass.

...Now available
for the first time...
in convenient reference form
comprehensive technical, test
and application data on
NEY PRECIOUS METAL ALLOYS
for sliding contacts, slip rings and non-
corrosive, wear-resistant parts.

This catalog contains the boiled-
down results of more than ten years' work in the solution of special con-
tact and bearing problems in the electrical, electronic and scientific
instrument fields. In addition to out-
lining the characteristics, applica-
tions and physical properties of Ney
Precious Metal alloys, photographs
and dimension drawings of a wide
range of contacts, wipers and
brushes now available as standard
production items are also included.

Engineers and designers are invited
to write for copies of this useful
data book, Bulletin R-12. We also
offer the Ney Research Department's
important reservoir of practical ex-
perience in this field for work on
new or special applications.

THE J. M. NEY COMPANY
171 ELM STREET, HARTFORD, CONN.

SPECIALISTS IN PRECIOUS METAL METALLURGY SINCE 1812

...Useful Data Book

Burlington
RUNNING TIME METER

• Designed for use on AC lines
where successful servicing of elec-
tronic or electrical equipment de-

deps upon the regular servicing of
such equipment based on actual op-
erating time. Unit has a
range of 9999.9 hours and resets
automatically at 10,000 hours. Can
be supplied for either 120 or 240
volts, 60 cycle operation and has
operating temperature of —55 to
+55° C.

• The Running Time Meter is housed
In Burlington's attractive, black bak-
elite 3" square or 3½" round case.

Write Dept. 1, 120 for further details.

BURLINGTON INSTRUMENT COMPANY
BURLINGTON, IOWA
NEW WIDE BAND D.C. AMPLIFIER
MODEL 120

A precision instrument designed for use as a preamplifier in conjunction with an oscilloscope, vacuum tube voltmeter or other instruments.

SPECIFICATIONS

FREQUENCY RESPONSE: Within ± 1 db between D.C. and 100,000 cycles per second.

GAIN: Approximately 100.

INPUT CONNECTION: Double channel, can be used for single ended and push-pull signals or as a differential amplifier.

INPUT IMPEDANCE: One Megohm shunted by approximately 15mm in each channel.

DUAL INPUT ATTENUATOR: One to one, 10 to one, 100 to one and "off" positions in each channel independently adjustable.

OUTPUT CONNECTION: Push-pull or single ended.

OUTPUT IMPEDANCE: Less than 50 Ohms single ended or 100 Ohms push-pull.

HUM AND NOISE LEVEL: Below 40 microvolts referred to input.

LOW DRIFT due to regulated heater voltage in input stage.

MOUNTING: Metal cabinet approximately 7" wide by 7" high by 11" deep.

Write for descriptive literature on the Model 120 D.C. Amplifier and other Furst laboratory instruments including Regulated Power Supplies.

FURST ELECTRONICS
14 S. Jefferson St., Chicago 6, Ill.
These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 88A)

This exciter replaces the crystal oscillator in a transmitter and produces mark and space carrier shift for transmission of teleprinter or telegraph signals. It is composed of 6 main sections: keying circuit, reactance tube, shifted oscillator, crystal oscillator, modulator and power amplifier. Passing through the keying stage, a keying signal is limited in amplitude, then fed to the balanced reactance tube oscillator where it varies the frequency according to applied intelligence. This shifted frequency is heterodyned with the output from the crystal oscillator in the modulator stage, and the sum frequency drives the power amplifier.

Outstanding feature of the Type 105 Model 4 is the highly stable crystal oven which has a temperature control of ±0.1°C at 60°, with heaters on all sides of the inner even.

Other features of this unit are direct reading frequency calibration of: shift from 0 to 1,000 cps; mixer and output tuning dials from 2.5 to 6.7 Mc; output frequency vernier +600 cps.

(Continued on page 91A)

If You Use Radio Parts

You Need SUN RADIO’S BIG NEW CATALOG

Sun Radio’s New Electronic Parts catalog contains latest complete listings of component parts, instruments, tubes, wire, accessories. In an entirely new, easy-to-use, easy-to-file 8 1/2 x 11" format. For industry, research, universities, technical schools, technicians, engineers. Write for your FREE copy. Dept. C-1

IT’S KINGS FOR CONNECTORS

Pictured here are some of the more widely used R.F. coaxial, U.H.F. and Pulse connectors. They are all Precision-made and Pressurized when required. Over 300 types available, most of them in stock.

Backed by the name KINGS—the leader in the manufacture of coaxial connectors.
Write for illustrated catalogs, Department “T”

Manufacturers of Radar, Whip, and Aircraft antennas Microphone Plugs and Jacks. Radar Assemblies, Cable Assemblies, Microwave and Special Electronic Equipment

For Stability ... CONTINENTAL “NOBLELOY” RESISTORS

- Engineered Performance
- Metal Film
- Range 1/2 ohm to 30 megohm
- Ratings, 1/2, 1, 2 and 5 Watt
- Tolerance 1/2%, 1%, and 5%

The “Nobleloy” type X resistors assure dependable operating characteristics for many critical applications at economical savings.

Write for further details

CONTINENTAL CARBON, INC. CLEVELAND 11, OHIO
News—New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 89A)

Television Marker Generator

A new television marker generator, Type S01, designed particularly for use with TV sweep-signal generators, has been announced by the Radio Tube Div., Sylvan-nia Electric Products Inc., 1740 Broadway, New York 19, N. Y.

Crystal-controlled signals are provided by an entirely-separate self-contained crystal oscillator which may be operated at any frequency, fixed by a plug-in crystal with-

(Continued on page 91A)

Crystal-controlled signals are provided by an entirely-separate self-contained crystal oscillator which may be operated at any frequency, fixed by a plug-in crystal with-

(Continued on page 91A)

WHAT SCARCITY?

There never is a scarcity of QUALITY and VALUE in BUD VARIABLE CAPACITORS

Today is the time to look for savings! Note the prices on our condensers and compare. You will find that the entire Bud line maintains greater value while giving you the best quality and service. Illustrated below are two types of Bud condensers—there are over 400 different variable condensers in the Bud line. Consult your dealer for your requirements.

BUD "CE" TYPE DUAL MIDGET CAPACITORS

1. Extremely efficient, they embody everything that any other condenser has PLUS a positive rotor wiping contact in the exact electrical and physical contact permitting the design of balanced circuits.
2. Ball bearings are featured on this double bearing condenser for centering and elim-

nation of end-play.
3. Any of three methods of mounting can be used.
4. Alignment is maintained by 4 rigid tie rods.
5. Two solder lugs on each stator permit the placement of other components for effi-

cient, short lead design.

BUD "CE" MIDGET CONDENSERS—SINGLE BEARING

1. Any of the three methods of mounting can be utilized.
2. Extended rotor shaft allows ganging of two or more condensers.
3. Smooth operating and noiseless bearings permit operation on high frequencies and prevent capacity changes.

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Max. No. of Plates</th>
<th>Air Gap</th>
<th>Distant Behind Panel</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-2032</td>
<td>3</td>
<td>0.030"</td>
<td>3.1/2"</td>
<td>$2.97</td>
</tr>
<tr>
<td>CE-2033</td>
<td>5</td>
<td>0.030"</td>
<td>3.1/2"</td>
<td>3.77</td>
</tr>
<tr>
<td>CE-2034</td>
<td>7</td>
<td>0.030"</td>
<td>3.1/2"</td>
<td>4.64</td>
</tr>
<tr>
<td>CE-2035</td>
<td>10</td>
<td>0.030"</td>
<td>3.1/2"</td>
<td>5.80</td>
</tr>
<tr>
<td>CE-2036</td>
<td>15</td>
<td>0.030"</td>
<td>3.1/2"</td>
<td>7.86</td>
</tr>
<tr>
<td>CE-2037</td>
<td>25</td>
<td>0.030"</td>
<td>3.1/2"</td>
<td>10.93</td>
</tr>
<tr>
<td>CE-2038</td>
<td>50</td>
<td>0.030"</td>
<td>3.1/2"</td>
<td>15.33</td>
</tr>
</tbody>
</table>

G-H, "CUSTOM-MADEUFACTURED" CAPACITORS

Girard-Hopkins PERMANOL impregnated, paper-dielectric capacitors have consistently supplied the answer to the capacitor problem of many manufacturers of precision electronic equipment. If you require permanent, non-ageing characteristics, maximum stability, low power-factor change with frequency and utmost protection against voltage breakdown, G-H PERMANOL will meet your requirements. Custom-manufactured for you in any reasonable capacity, tolerance and working voltage any type of container...small or production quantities.

One of the best equipped capacitor manufacturing plants on the Pacific Coast

GIRARD-HOPKINS
1000 40th Avenue, Oakland 1, Calif.
KENYON TRANSFORMER CO., Inc.
840 BARRY STREET • NEW YORK 59, N. Y.

KENYON “T’s”— high quality, uniform transformers, are your best bet for development, production and experimental work. For over 20 years, the KENYON “K” has been a sign of skillful engineering, progressive design and sound construction.

Now— reduce inventory problems, improve deliveries, maintain your quality— specify KENYON “T’s,” the finest transformer line for all high quality equipment applications.

New Catalog Edition! Write Today! KENYON new modified edition tells the complete story about specific ratings on all transformers. Our standard line saves you time and expense. Send for your copy of our latest catalog edition now!

A Sylvania Electric TR tube showing Metex gasket loose and in position

The properties— electrical and physical— which make Metex Electronic Gaskets effective in this, and other demanding HF and UHF applications, are due to their being made from knitted (not woven) wire mesh. The hinge-like action of the knitted mesh permits controlled resiliency of the finished gaskets. These can be die-formed to close dimensional tolerances, when required. There is practically no limit to the metal or alloy which can be used.

If the equipment you are manufacturing or designing requires a resilient conductive or shielding material, our engineers will welcome the opportunity of working with you. A letter, addressed to Mr. R. L. Hartwell, Executive Vice President and outlining your requirements, will receive immediate attention.

METAL TEXTILE CORPORATION
637 EAST FIRST AVE., ROSSELLE, N. J.
out tuning. It provides check points at fundamental frequencies ranging from 2 to 20 Mc, and has useful harmonics up to at least the sixth.

Two marker pips may be used to set video and if circuits and traps, as required by some TV manufacturers, or the variable marker may be brought into coincidence with the crystal marker to check dial reading with crystal frequency or crystal frequency harmonic.

The oscillator provides frequencies ranging from 15 to 240 Mc in four bands: 15 to 30 Mc; 30 to 60 Mc; 60 to 120 Mc; and 120 to 240 Mc. With an appropriate crystal inserted in the panel socket, the oscillator will operate at any frequency between 2 to 20 Mc, and will provide useful harmonic output up to the sixth for all band calibration.

Front-Surface Mirrors

Zenith Optical Laboratory, 123 W. 64 St., New York 23, N. Y., announces the development of their Zeno-Kote process, for producing front-surface mirrors which are durable and tarnish-resistant. The reflecting surface is produced by thermal evaporation of a special aluminum alloy upon high vacuum. The reflecting surface is then protected by the deposition of an extremely hard but transparent film, which in no way affects the reflectivity of the mirrors.

Mirrors produced by the Zeno-Kote process have a reflectivity of about 93 per cent in the visible spectrum, and they can be made to meet any optical or dimensional tolerance.

The usual aluminized front-surface mirrors are very delicate and can be cleaned only with great difficulty, whereas front-surface mirrors produced by the Zeno-Kote process can be dusted or wiped without damage to the reflecting surface.

These mirrors are suitable for use in precision electronic and optical equipment, where high and permanent reflectivity characteristics are necessary.

(Continued on page 912)
PROFESSIONAL CARDS

LESTER W. BAILEY - Registered Patent Agent
Senior Member IRE
PATENT OFFICE PRACTICE specializing in ELECTRONICS MECHANICS RADIO
LINCOLN-LIBRARY BUILDING
PHILADELPHIA 7
Broad & Chestnut Streets Rittenhouse 6-3267

ALFRED W. BARBER LABORATORIES
Specializing in the Communications Field and in Laboratory Equipment
Offices, Laboratory and Model Shop at:
32-44 Francis Lewis Blvd., Flushing, L.I., N.Y.
Telephone: Independence 3-3306

HAROLD J. BROWN
Vibrators
Vibrator Power Supplies
Electrical Contact Systems
Mattapoisett, Mass.

W. J. BROWN
International Electronics Consultant
AT PRESENT IN GREAT BRITAIN
Will undertake assignments for American or British Clients. Please address inquiries to 11 Public Square, Cleveland 13, Ohio.
TO 1-6498

EDWARD J. CONTENT
Acoustical Consultant
Functional Studio-Theater Design
PM - Television - A.M.
Audio Systems Engineering
Roxbury Road
Stamford 3-7459

CROSBY LABORATORIES, INC.
Murray G. Crosby & Staff
Radio-Electronic Engineering,
Research & Development
PM, Communications, TV
Test Equipment
Offices, Laboratory & Model Shop at:
126 Herricks Rd., Mineola, N.Y.
Garden City 7-0284

Richard B. Schultz
Electro-Search
Radio-Interference Reduction; Development of Interference-Free Equipment, Filters, Shielded Rooms
Gladstone 5-5353

ELK ELECTRONIC LABORATORIES
Jack Rosenbaum
Specializing in the design and development of Test Equipment for the communications, radar and allied fields.
333 West 36th St.
Telephone: New York 19, N.Y.

WILLIAM L. FOSS, INC.
927 15th St., N.W.
Republic 3883
WASHINGTON, D.C.

PAUL GODLEY CO.
Consulting Radio Engineers
P.O. Box J. Upper Montclair, N.J.
Offs & Lab.: Great Neck, N.J.
Phone: Montclair 1-300
Established 1936

HERMAN LEWIS GORDON
Registered Patent Attorney
Patent Investigations and Opinions
Walter Building 100 Normandy Drive
Washington 4, D.C. Silver Spring, Md.
National 2497
Shepherd 2433

HOGAN LABORATORIES, INC.
John V. L. Hogan, Pres.
APPLIED RESEARCH DEVELOPMENT. ENGINEERING

MEASUREMENTS CORP.
RESEARCH & MANUFACTURING ENGINEERS
Harry W. Houck Jerry B. Minter
John M. van Beuren
Specialists in the Design and Development of Electronic Test Instruments
ROCKTON, N.J.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer & Physicist
High Frequency Heating--Industrial Electronics
Applied Physics and Mathematics
549 W. Washington Blvd., Chicago 6, Ill.
State 2-8021

B. A. AND BURNS, INC.
Consulting
Electronic Engineers
240 HIGHLAND AVE.
NEEDHAM, MASS.

SERVO CORPORATION OF AMERICA
Henry Blackstone, President
Consultants on Electronic Control Problems
For Industry
New Hyde Park
Long Island, N.Y.

TELREX, INC.
M. D. Enocino, Pres.
H. F. ANTENNA SPECIALISTS
- The Skill to Design
- The Facilities to Produce
Asbury Park, N.J.—Phone AP 2-7352

TECHNICAL MATERIEL CORPORATION
COMMUNICATIONS CONSULTANTS
RADIO/TELETYPE - FREQUENCY SHIFT
INK SLIP RECORDING - TELETYPewriter NETWORKS
121 Spencer Place, Mamaroneck, N.Y.

PROFESSIONAL CARDS

WHEELER LABORATORIES, INC.
Radio and Electronics Consulting - Research - Development
R-F Circuits — Lines — Antennas
Microwave Components — Test Equipment
Harold A. Wheeler and Engineering Staff
Great Neck, N.Y.
Great Neck 2-7806

News New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 93A)

CORRECTION NOTICE

Wide-Band Decade Amplifier

Type 500-A wide-band decade amplifier has been developed by Technology Instrument Corp., 1518 Main St., Waltham, Mass., for general laboratory use and for special applications requiring zero phase shift on high stability of gain. To increase the general utility of the amplifier, compact construction, cabinet or rack mounting, and ac operation from a self-contained power supply have been incorporated in the design.

Input impedance is high enough to permit measurements in most circuits without upsetting normal conditions.

Output impedance is low enough to permit operation into a wide range of loads without causing a variation from the indicated gain of 10, 100 or 1,000 times.

Maximum output of 20 v on any gain setting assures sufficient amplitude for the operation of most devices used in conjunction with general purpose laboratory amplifiers.

Zero phase shift from 20 cps to 100 kc (all instruments adjusted as close as practical to zero—some might exhibit an error of 2° unless requested otherwise) makes possible the extension of phase measurements to 5-mv levels, when used with TIC Type 320 phase meter.

Gain stabilized by feedback, so that it is constant with line voltage or tube changes.
INDEX AND DISPLAY ADVERTISERS

<table>
<thead>
<tr>
<th>Section Meetings</th>
<th>38A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Branch Meetings</td>
<td>44A</td>
</tr>
<tr>
<td>Membership</td>
<td>49A</td>
</tr>
<tr>
<td>Positions Open</td>
<td>50A</td>
</tr>
<tr>
<td>Positions Wanted</td>
<td>54A</td>
</tr>
<tr>
<td>News-New Products</td>
<td>68A</td>
</tr>
</tbody>
</table>

DISPLAY ADVERTISERS

<table>
<thead>
<tr>
<th>Acme Electric Corp.</th>
<th>86A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Radio Corp.</td>
<td>24A</td>
</tr>
<tr>
<td>Airtron, Inc.</td>
<td>79A</td>
</tr>
<tr>
<td>Allen-Bradley Co.</td>
<td>15A</td>
</tr>
<tr>
<td>Allison Radar Corp.</td>
<td>74A</td>
</tr>
<tr>
<td>American Lava Corp.</td>
<td>17A</td>
</tr>
<tr>
<td>Amperex Electronic Corp.</td>
<td>86A</td>
</tr>
<tr>
<td>Andrew Co.</td>
<td>68A</td>
</tr>
<tr>
<td>Armour Research Foundation</td>
<td>52A</td>
</tr>
<tr>
<td>Arnold Engineering Co.</td>
<td>31A</td>
</tr>
<tr>
<td>Astatic Corp</td>
<td>70A</td>
</tr>
<tr>
<td>Lester W. Bailey</td>
<td>94A</td>
</tr>
<tr>
<td>Ballantine Laboratories</td>
<td>44A</td>
</tr>
<tr>
<td>A. W. Barber</td>
<td>94A</td>
</tr>
<tr>
<td>Barker & Williamson</td>
<td>75A</td>
</tr>
<tr>
<td>Bead Chain Mfg. Co.</td>
<td>93A</td>
</tr>
<tr>
<td>Bell Aircraft Corp.</td>
<td>55A</td>
</tr>
<tr>
<td>Bell Telephone Labs.</td>
<td>2A</td>
</tr>
<tr>
<td>Bendix Aviation (Red Bank)</td>
<td>45A</td>
</tr>
<tr>
<td>Bendix Aviation (Research Labs.)</td>
<td>52A</td>
</tr>
<tr>
<td>Berkeley Scientific Corp.</td>
<td>93A</td>
</tr>
<tr>
<td>Billey Electric Co.</td>
<td>49A</td>
</tr>
<tr>
<td>Boeing Airplane Co.</td>
<td>50A</td>
</tr>
<tr>
<td>Boonton Radio Corp.</td>
<td>86A</td>
</tr>
<tr>
<td>Breeze Corp.</td>
<td>48A</td>
</tr>
<tr>
<td>Harold J. Brown</td>
<td>94A</td>
</tr>
<tr>
<td>W. J. Brown</td>
<td>94A</td>
</tr>
<tr>
<td>Browning Labs.</td>
<td>74A</td>
</tr>
<tr>
<td>Bud Radio, Inc.</td>
<td>91A</td>
</tr>
<tr>
<td>Burlington Instrument Co.</td>
<td>87A</td>
</tr>
<tr>
<td>Cambridge Thermionic Corp.</td>
<td>73A</td>
</tr>
<tr>
<td>Cannon Electric Development Co.</td>
<td>78A</td>
</tr>
<tr>
<td>Camga Corp.</td>
<td>92A</td>
</tr>
<tr>
<td>Caphart-Farnsworth Corp.</td>
<td>54A</td>
</tr>
<tr>
<td>Capital Radio Eng. Inst</td>
<td>58A</td>
</tr>
<tr>
<td>Centralab</td>
<td>33A, 34A, 35A, 36A</td>
</tr>
<tr>
<td>C. P. Clare & Co.</td>
<td>23A</td>
</tr>
<tr>
<td>Cleveland Container Co.</td>
<td>5A</td>
</tr>
<tr>
<td>Sigmund Cohn Corp.</td>
<td>71A</td>
</tr>
<tr>
<td>Communication Products Co.</td>
<td>62A</td>
</tr>
<tr>
<td>Communications Equipment Co.</td>
<td>90A</td>
</tr>
<tr>
<td>E. J. Content</td>
<td>94A</td>
</tr>
<tr>
<td>Continental Carbon Co.</td>
<td>89A</td>
</tr>
<tr>
<td>Cornell-Dubilier Electric Corp. (Cover III)</td>
<td>58A</td>
</tr>
<tr>
<td>Cossor, Ltd.</td>
<td>88A</td>
</tr>
<tr>
<td>Crosby Labs.</td>
<td>94A</td>
</tr>
<tr>
<td>H. L. Dalis</td>
<td>77A</td>
</tr>
<tr>
<td>Daven Co.</td>
<td>9A</td>
</tr>
<tr>
<td>DeJur Amsco Corp.</td>
<td>43A</td>
</tr>
<tr>
<td>Dow Corning Corp.</td>
<td>70A</td>
</tr>
<tr>
<td>Allen B. DuMont Labs.</td>
<td>22A</td>
</tr>
<tr>
<td>E. I. DuPont de Nemours & Co.</td>
<td>52A</td>
</tr>
<tr>
<td>Eitel-McCullough, Inc.</td>
<td>20A</td>
</tr>
<tr>
<td>Electrical Industries</td>
<td>85A</td>
</tr>
<tr>
<td>Electrical Reactance Corp.</td>
<td>3A</td>
</tr>
<tr>
<td>Electro-Motive Mfg. Co.</td>
<td>7A</td>
</tr>
<tr>
<td>Electro-Search</td>
<td>94A</td>
</tr>
<tr>
<td>Eli Electronics</td>
<td>94A</td>
</tr>
<tr>
<td>Emsco Derrick & Equipment Co.</td>
<td>75A</td>
</tr>
<tr>
<td>Ene Resistor Corp.</td>
<td>19A</td>
</tr>
<tr>
<td>Federal Telecommunication Labs.</td>
<td>28A</td>
</tr>
<tr>
<td>Ferrari Electric Inc.</td>
<td>49A</td>
</tr>
<tr>
<td>W. L. Foss</td>
<td>94A</td>
</tr>
<tr>
<td>Franklin Institute</td>
<td>52A</td>
</tr>
<tr>
<td>Furst Electronics</td>
<td>88A</td>
</tr>
<tr>
<td>General Electric Co.</td>
<td>10A & 11A, 25A, 37A</td>
</tr>
<tr>
<td>General Precision Laboratory, Inc.</td>
<td>21A</td>
</tr>
<tr>
<td>General Radio Co.</td>
<td>Cover IV</td>
</tr>
<tr>
<td>G. M. Giannini & Co.</td>
<td>76A</td>
</tr>
<tr>
<td>Girard-Hopkins</td>
<td>91A</td>
</tr>
<tr>
<td>Paul Godley</td>
<td>94A</td>
</tr>
<tr>
<td>H. L. Gordon</td>
<td>94A</td>
</tr>
<tr>
<td>Green Instrument Co.</td>
<td>87A</td>
</tr>
<tr>
<td>Guardian Electric Mfg. Co.</td>
<td>41A</td>
</tr>
<tr>
<td>Haydu Brothers</td>
<td>80A</td>
</tr>
<tr>
<td>Helipot Corp.</td>
<td>53A</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
<td>26A & 27A</td>
</tr>
<tr>
<td>Hogan Labs.</td>
<td>94A</td>
</tr>
<tr>
<td>Hughes Aircraft Co.</td>
<td>55A, 58A</td>
</tr>
<tr>
<td>Hughey & Phillips</td>
<td>80A</td>
</tr>
<tr>
<td>International Resistance Co.</td>
<td>12A & 13A</td>
</tr>
<tr>
<td>JFD Mfg. Co.</td>
<td>81A</td>
</tr>
<tr>
<td>Jacobs Inst. Co.</td>
<td>55A</td>
</tr>
<tr>
<td>Jet Propulsion Lab.</td>
<td>55A</td>
</tr>
<tr>
<td>Kenyon Transformer Co.</td>
<td>92A</td>
</tr>
<tr>
<td>Kings Electronics</td>
<td>89A</td>
</tr>
<tr>
<td>Kollman Inst.</td>
<td>69A</td>
</tr>
<tr>
<td>James Knights Co.</td>
<td>81A</td>
</tr>
<tr>
<td>Lambda Electronics</td>
<td>68A</td>
</tr>
<tr>
<td>Langenir Mfg. Co.</td>
<td>72A</td>
</tr>
<tr>
<td>Lavoie Labs.</td>
<td>73A</td>
</tr>
<tr>
<td>Lenkurt Electric Co.</td>
<td>58A</td>
</tr>
<tr>
<td>Magnecord, Inc.</td>
<td>46A</td>
</tr>
<tr>
<td>P. R. Mallory & Co., Inc.</td>
<td>6A</td>
</tr>
<tr>
<td>Manufacturers Thread Grinding, Inc.</td>
<td>95A</td>
</tr>
<tr>
<td>Glenn L. Martin, Inc.</td>
<td>58A</td>
</tr>
<tr>
<td>W. L. Maxson Corp.</td>
<td>51A</td>
</tr>
<tr>
<td>Measurements Corp.</td>
<td>84A, 94A</td>
</tr>
<tr>
<td>Melpar, Inc.</td>
<td>59A</td>
</tr>
</tbody>
</table>

Metal Textile | 92A |
Eugene Mittelmann	94A
Mycalex Corp. of America	18A
National Union Radio Corp.	59A
New York Transformer Co.	66A
J. M. Ney Co.	87A
North American Aviation	59A
Northern Radio Co.	83A
Ohmite Mfg. Co.	29A
Panamatic Radio Products	79A
Pickard & Burns	72A, 94A
Potter Instrument Co.	39A
Presto Recording Corp.	64A
Radio Corp. of America	32A, 56A & 57A, 59A, 96A
RCA Service Co.	51A
Revere Copper & Brass Inc.	63A
John F. Rider Co.	83A
Robinson Aviation	91A
Rollin Co.	71A
Servo Corp. of America	94A
Shalkcross Mfg. Co.	30A
Sheldon Electric Co.	47A
Sorensen & Co.	38A
Spencer-Kennedy Labs.	81A
Sperry Gyroscope Co.	58A
Spargue Electric Co.	16A
Stackpole Carbon Co.	8A
Standard Coil Products Co., Inc.	60A & 61A
Staver Co.	78A
Geo. Stevens Mfg. Co.	40A
Stoddart Aircraft Radio Co.	14A
Sun Radio & Electronics	89A
Technical Material	94A
Technology Instrument Corp.	42A
Tektronix Inc.	83A
Telechron Corp.	84A
Telex Inc.	94A
L. H. Terpening Co.	76A
Transradio Ltd.	85A
Triplet Electrical Inst. Co.	67A
Truscon Steel Co.	4A
United Transformer Co.	Cover II
Wells Sales Inc.	88A
Westinghouse Electric Corp.	59A
Wheeler Labs	94A
S. S. White Dental Mfg. Co.	82A
Wilcox Electric Co.	65A
Workshop Associates	77A

ONE OF OUR PRECISION PRODUCTS

END LOADED COAXIAL WAVEMETER

- Temperature stabilized by use of low coefficient invar
- 1700-2200 MC

Manufacturers Thread Grinding, Inc.

P. O. Box 66
EATONTOWN, N. J.
ASBURY PARK 1-1019

PROCEEDINGS OF THE I.R.E. December, 1950
You've seen television. Now you'll see it in its finest form—giant projections of special events, transmitted only to theatres on private wires or radio beams to make movie-going better than ever!

Success of the system comes from a remarkable RCA kinescope, and something new in projection lenses. The kinescope, developed at RCA Laboratories, is in principle the same as the one on which you see regular telecasts. But it is small—only a few inches in diameter—and produces images of high brilliance. These are magnified to 15 x 20 feet by a "Schmidt-type" lens system like those used in the finest astronomical telescopes.

Because of its size and shape, the new projector is referred to by engineers as the "barrel." It's already going into theatres, where you'll be seeing giant television—shot from a barrel.

See the latest wonders of radio, television, and electronics at RCA Exhibition Hall, 36 West 49th St., N.Y. Admission is free. Radio Corporation of America, Radio City, New York.

The same research laboratories which developed RCA's new theatre television system also give you big, brilliant pictures on 1951 RCA Victor home receivers.

RADIO CORPORATION OF AMERICA

World Leader in Radio — First in Television
Businessmen call it reputation ... accountants refer to it as goodwill ... production men think of it as reliability. Reliability has a dollar-and-cents value entirely apart from the quality and price of the capacitors you buy.

That is why so many leading radio equipment manufacturers insist on C-D capacitors. They know that C-D's extensive manufacturing facilities, reliable service, dependable quality are features that cannot be measured in dollars and cents. Typical of this C-D reliability is the:

"Blue Beaver**
Electrolytic

- Special formation process—developed by C-D engineers after years of research —insures low leakage; good performance at high temperatures; long life at high voltages.
- Low contact resistance between anode and lead wires and negative lead to can, by unique assembly procedure. Contact resistance checked on kelvin bridges and maintained at low value.
- Special separator material prevents breakdowns under most adverse conditions.
- A positive acting diaphragm vent—developed in C-D labs—insures proper venting when needed.
- Special insulator around positive lead eliminates shorts to can.
- Extreme care in assembly to eliminate all contamination plus the finest raw materials obtainable insure a unit free from corrosion.

For details on these and other C-D electrolytics write for catalog. CORNELL-DUBILIER ELECTRIC CORPORATION, Dept. M12, South Plainfield, New Jersey. Other plants in New Bedford, Brookline and Worcester, Mass.; Providence, R. I.; Indianapolis, Ind.; and subsidiary, The Radiant Corp., Cleveland, Ohio.
for Bridge Measurements of Impedance
BETWEEN 10 AND 165 MC

Direct-Reading Resistance Range 0 to 200 OHMS —
independent of frequency except for small corrections.
Direct-Reading Reactance Range 0 to ±230 OHMS at
100 Mc — inversely proportional to frequency.
Coaxial Adapter Supplied for Measurements on Coaxial
Systems — eliminates errors from connecting leads
and from residual terminal capacitance. Standing-wave ratio of unknown coaxial system unaffected by terminal capacitance of bridge.

The new Type 1601-A V-H-F Bridge brings to
the v-h-f frequencies a means for measurements
of impedance of antennas, lines, networks and components, having the same accuracy and simplicity of measurement enjoyed by users of the popular G-R low-frequency Type 916-A R-F Bridge.
With this bridge the range of conventional bridge
techniques is extended to 165 Mc. It is equally suited to measurements on coaxial-line systems as on lumped parameter circuits.
It is designed for direct-reading measurements of relatively low impedances, but measures high impedances indirectly and equally well.
For resistance measurements the accuracy is ±(2% +
1 ohm), subject to correction for inductance in the capacitor used to measure the resistance. A correction chart

is supplied with the instrument. The ohmic portion of the accuracy statement varies between 0.1 and 1.0 ohm.
For reactance measurements the accuracy is ±(5% +
2 ohm). The ohmic uncertainty varies between 0.1 ohm
at 100 Mc and 2 ohms.
This bridge is especially suited to measurements of resistors, capacitors, inductors, transmission-line networks and antennas.

The Type 1001-A V.F.H Bridge set up to measure the antenna of WCBS-TV on the Chrysler Building, New York City. The antenna consists of 16 radiating elements. Measurements of the impedance variation of an individual element over the operating frequency band as well as impedance measurements of the whole array were made easily and accurately.