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LIMITATIONS O AMFLITUDE EQUALIZERS*

Herbert J. Carlin

(YROARY

JUL 7 1954

Microwave Research Iustitute

Tolyte~hnic Institute of Brooklyn

Abstract

If ar equalizer amnlitude resnonse curve
is svecified, it will be shown that the mirimum
flat loss obtainable with physical networks is
jetermined. This flat loss, or scale factor on
the resmonse curve, is a function of the equal-
jzer output terminating impedance which is
arbitrary but prescribed, and the svecified
tolerance on input mismatch.

If the outrut impedance is rurely reactive,
the limitations on maximum voltage transfer are
obtained from a corsideration of the open circuit
impedance parameters of tre system. If power or
voltage trarefer to a load vith finite real part
ig to he ortimized, the seattering parameters of
tre svsten are used to determine the limits of
periomeance.

Sxarnles will be given comparirg the per
forman-e of matched and lossless equalizers.
Ir. many rractical cases the latter do not hrave
substantizlly higher gain than the natched
equalizer.

I Defiiitior of Equalizer Frodlem

Tre equalizer vrotlen considered here
concerns the transfer of voltage, curreat, or
vower from a rres-~ribed generator with resistive
interral impedarce to a load whose impedance is
a giver function of freguency. It ie presumed
that a real frequercy function is grecified
whish defines the shape of transfer gain char-
acteristic desired, ard it is required to find
a vassive linear reciprocal eoqualizer network
(a two termiral ovair transducer, or two-port)
which wnen placed between generator and load
produces the svecified gain shape and does so
witr maximum scale factor i.e. minimum flat loss.
4 zain characteristic which ideally is constant
over a finite frequency band and zero elsewhere
will We of major interest, and many of the
results given may therefore Dde regarded as
generalizations of thre concent of maximun
"gain-bardwidth product".(1,

An 2dditioral svwecification is the toler-
ance on inoput mismatch. It is orly because the
equalizer retworks investigated here are not
limited to the lossless case that this snecif-
ication can be set indevendently of thre others.

e Trhis work wms smonsored by Office of

“aval Research under Contract Nonr-839(05),
Proj. Designation NR-C75-216
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In most of the examples given below the extremes
of a matched input dissinative equalizer

(zero mismatch) and a comnletely lossless
equalizer (but not matched) will be compared.

Various asmects of the equalizer probdlem
nave been nreviously considered. Bode(l) dis-
cugses the limitatinns on "gain-bandwidth"
product imposed by a losd with shunt capacitance
when a lossless equalizer is used, and also
gives some consideration to matched equ?lizers
for vo}tage trensfer to a reactive load 2.
Fano'3/ has treated the problem of ontimun
match of an arbitrary load with a losslegs
network and la Rosa and serlin(4) (5. (o, nave
examined this rroblem when the lossless restric-
tion on the matching network is removed. Norde(7)
nas treated matched minimun chase voltage
equalizers for reactive loads. Other work on
smeclal aspects of "gain-dandwidth" prod c§ is
too ex?epsive td be given here. Wreeler!?) and
“ansen'”  are typical referencea.

The vresert narer considers the general
anoroa-h to any equalization problem and stems
directly from the references cited abhove. The
results presented on ontimum voltage transfer
to an arbitrary load (including the purely
reactive load case) have not been given else-
where.

I1  Genernl Apnroach To Equalization of an

Arbitrary Load

There are two basic restrictions which
goverr. the design of an equalizer network. One
of trese is the general requirement of physical
realizability on the overall network which
includes both equalizer and nrescribed load.

The other is the total set of constraints
specifically imposed by the load and this should
be entirely indermendent of the equalizer net-
work. If these constraints are satisfied, thken
wren tre overall network is synthesized, and

the given load removed, the remaining circuit
(the equalizer alone) is physically realizabdle.
The form irn whica t-ese restrictions are stated
st be such as to exnlicitly (and nreferabdbly

in a simple way) involve the transfer gain
function whose scale factor is to be maximized.
The vrocess of firding the optinum equalization
ig then to adjust the gair function within these
general restrictions until the limits of
physical realizability are attained.

The constraints which apply to the
equalization of a load containing dissivation
(the vurely reactive load case is considered




later) are most readily obtained by recresent-
ing the prescribed load over the infinite
frequency spectrum as a nurely renctive 2-nort

with fixed elements terminated in a unit resistor.

(Fereafter the generntnr resistance will be
presumed normalized to urity ' (1C) (11). This
reoresentatisn is alwavs nossible and the sirgle
resistor is sufficient to ac-ount for all tre
nover dissinated in the loac. The "overall
network" is now defined as the equalizer plus
the reactance two nort nortion of the loac.

In order that the "overall network" be
vhysically realizable, %t must have an array of
scattering coefricients' 12/ 511 (v), s > n),
S1o(p) which form the matrix of a nosi%ive
definite or semi-definite Hermitian form for
Re p 7 0 (5) () (12) (13). The algebraic
exrressisn of this requirement gives the general
set of realizability cornstraints vreviously
referred to.

The specific load constraints are obtained
from the fact that at certain real and commlex
freauencies no nower can be transferred to the
load no matter what equalizer network is used.
These frequencies are the voints on Jw and in
the rirht hand half of the p plane at which the
reactive 2-vort nortion of the load has zeros
n{ trznsmission. At these freauencieg the
transmission fector of the overall network

S15 (p) must generally hove a 7zero of
trernsmission of order 2n if the load zero is
of order n. Further the reflection factor
looking in at the back end of the "overall net-
work" i.e. Sy, (p) and generally its first
2n-1 derivatives are comnletely determined by
the reactance 2-vort vortion of the load. These
pronerties follow from a consideration of the
scattering equations for the cascade connection
of a pair of two-vorts(3), and constitute the
"load constraints" referred to earlier. It must
be emphasized that load constraints are independ-
ent of the equalizer.

The 1load constraints amount to the state-
ment that essentially the first 2n Taylor
coefficients of the back end reflection factor
of both load and overall network are equal in
the series exuansion about a load zero of trans-
mission.

These requirements may be expressed in
terms of the Cauchy formulas for the Taylor
coefficients, and as a final result one obtains
integrzl formulas for the logarithm of the
amplitude of the back end reflectinn factor.

If the overall network is specified so that it
satisfies the general realizability requirements
and in addition meets the limits on 1n l 1 ‘
imposed by the integrsl formulas, thren Seefjmi
the prescribed load can always be senarated
from the overall netvork leaving a nhysically
vealizable equalizer 2-port. A statement of
these realizability conditions in the f?rT ?f a
theorem essentially as given by La Rosa b 5)

is as follows:
Theorem 1

The necessary and sufficient condi-
tions that a scattering matrix [S(p)
(p = ¢+ jn) reoresent an overall retwork
comnosed of an equalizer in tandem with a
prescribed lossless 2-port (the reactance
2-port vortion of the prescribed load) is:

(.. (@) Matrix [s] should ve realizebvie
. »

I« 3 (gm) “5(jm) mist be the
matrix of a nositive definite or semi-
definite hermmitian form, with [S] symnetric
and its elements rational functions of p
vith real oo ff§c1ents, and no risnht half
plane poles.t13

(b) Right hand and boundary zeros
of transmis<ion of the load must appear in
the transmission factor S1o(p) of the
overall network with at least the same
multinlicity.

(c)* A set of integral restrictions

on 1ln ll \ of the form
522 Jm)

ol

LJﬂ f1 (m) 1n

1
) \ 52? yd

1dn):x

(1

must be simultaneously satisfied at all the
zeros of transmission of the load. Each
nth order zero contridutes ¥i integral
equations vith

n for a zero at zero or infinity

N, =/2n

i for a zero on jw

2n-no for a right hand zero on the
real axis

4n-2n  for a conjugate pair of

zeros in the right half rlane.

n_1is the order of any right half plane

zero of load transmission coincident with

a zero of back end load reflection factor,

i.e. of the reactance 2-port vortisn of the

load.

This theorem can be avplied in a direct
and simple fashion to a variety of equalization
problems involving a load containing dissivative
elements. Special consideration will be
required for problems involving a purely re-
active load.

-

* The w?§§hting functions fi(m) are tabulated

by Fano . The ¥; are related to the Taylor
coefficients of the load at the zeros of
transmission and are also tabulated in the
same reference.



{11 Fower Transfer Equalization

The anplication of the theorem given in tre
preceding gection requires a determination of
the relationships between the transfer function
which ia to be optimized and the refle-tion
factor amnlitude of the overall network [s?,(Jm].
The integral equations can then be used to
determine "gain-bandwidth" tyne of restrictions
on the equalizer. Part (a) of t'e theoren
contains the necessary informrtion for relating
the reflectiorn factor function sz(Jm) to
the equalizatisn response of the overall net-
work. In the case of power transfer fron a
generator with unit irternal i-mednance to a
lond (renresented in Darlington form,, t'e
insertion vower gair at renl frequencies o” the
overall network normalired to tte availadle
gererctor pover is

PL -

———‘:A =] \SIZ(J')\L {2
P; is the —over delivered to the lop® ) Fc te tte
svailatle generator rover (|v(‘L where V.
—

‘e ¢+ @ -erorntor oyen-circuit volta,e) ¢~ @
‘512(:') tg the amplitude of the volit (e
tranamissicn smefficient of the overall network.
Since this nower transfer function is an ele-ent
of the scattering matrix, it {g directly

related to |Ss5(gn,| by the general realiza-
bility constraints of part (a) of the theorem.
1a Rosa(5) (6, has srown that this portion of
the theoren leads to the following recessary
reouirement on |3 Z(Jm)\ for an equalizer wrich
naxinizes the acn*e factor of rower function
when the shave is svecified.

\slz(.jm)\2 - (1 - syl Qe (el
lszz( Jv‘;\( 511( _](n) \ ( 3

In equation 3, \Sll(Jm)\ is a specified
input reflection factor amplitude function
which sets the tolerance on invut ~igmatchn.
In the special case that the equalizer is
lossless, |Sy;(Jw)| = ‘SZZ(Jm)\ and equation
3 becomes

5,2 = 1= s utel 2 g

(1ossless equalizer)

In another special case where the input mis-
match is zero i.e. sll(p) 2 0 equation 3
reduces to

15000017 = 1= 15001 (5

(matched equnlizer)

Equations 3,4,5 give the desired re-
lations between \Sze(jm)\ and the power

transfer function|Sys (Jw)f2 . The integral
equations, 1, may therefore be exvressed in
terms of the power transfer function and solved
to obtain tre maximum scale factor. The details
of this procedure as well as examples are given

JUL 7 1:a
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in references 4,5,5. The solutior of the
equatisna always gives a unique maximun-gain
scale frctor for a mrescribed shape of power
trensfer function and this cannot be exceeded
by any ohy'sical equalizer. In the case where
the equalizer is to nroduce a flat nass band
with zero emin outside this bard, the solution
for the scale factor is particularly simvle
and is found directly in terms of a ainimum
conatrnt value of |522(Jm)! = |s,5 | over the
orescribed band with |85 )| =1 elsewhere.
Ir tnis cnse it is intereating to compare the
onrtimun lossless and matched equalizers using
equations < and 5

2
10 log |512‘ (lossless)

|512‘3 (natched)

= 10 log(1+15,,[)

£ 3 dv. (6
since |SP2| & 1. In any practical design of a
flat rover equalizer |S,o| 19 corsideradly less
than one 8o tret over a snecified band the gain
of ar ontimun metched desirm is ~uch closer to
the gain of an ootinum lossless equalizer than
the outside 1imit of 3 db. given by equetinn 5.

IV  Voltape Transfer Equalizatinn of General
Disatnative Load

a) Integrml constraints for voltage
transfer

The theorem given in section 2 nay be
aonlied to the nroblem of voltage eaqualization
nrovided t e voltage transfer function can be
related to the scatterins coefficlents of the
overall network. The voltage tranefer function
at renl frequencies is taken to be

P =|_;%_ (7

wrere \Vz\ 1a the amplitude of the voltage
anpearing across the load and {vil ts the omen
circuit (fixed) voltage amnlitude of a norm-
alized gererator with unit {nternal immedance
(pure resistance).

The generator produces a voltage V',
a-ross the one oho resistance in the
Darlirgton representation of the load as a
reactance 2-port terminzted in unit resistance
as shown in fig. 1. This voltage is related to
Vi by the voltage scattering functior
S1o(n) of thre overall network (fig.1). Thus

7'2 = le(p) v (8

Since the vower at t*eainnut to the load
ig the same as thzt delivered to the one ohn
resistor in the Darlington revresentation

19,12 ) S I C ¢

where g(m) ig the input conductance of the load.
Combining equations 7,8 and 9

Q2=‘V22 = lslz(Jln)‘Z
Vl N ams (10

——




Since ISI,(Jm)l 1 it is imnediately
clear that in any phvsical network

2

1
. \< N me) (11

In equation 10 gl(w) is specified by the

load alone and @ is directly pronortinnal to

|Slo(Jm)| Thus a necessary requirement for
nmaximum voltage transfer is to maximize

\S1o(Jm)l consistert with the general theorem
on realizability given earlier. This is
accomplished precisely as in the power transfer
problem when |S1o(jw)] and |S11(Jw)|(prescrived)
are related to |Spo(Jw)| by equations 3,4, and 5.
The general equation for ontimum voltage transfer
may then be written as

2 _ (1= 15,,0am]) (1 [s),(3)] )
Le(w) (12
Isea( Jm)'? 'sll( jn))l

The lossless and matched cases are then given
as

e

2 1= I5,0m)°
4 glw)

1 - '522( Jw)‘

glw
The integral equations for the latter two
cases using equation 1 are:

(lossless) (13

L4

©
1}

(matched) (14

1
% fi(m) 1n ( T - 403(,,,) glw) )
() = Ki (lossless) (15
o
fi(m) 1n ( L > .o
1 - b’ (m) glm)

[
- Ki (matched) (16

The weighting functions f,(m) and the
parametergxi are those tabula%ed in reference 3.

The only difference in form for the
integral constraints in the two snecial cases
is the factor 1/2. However, since @ appears
under the integral sign the solution for maximum
scale factor is generally formed from a trans-
cendental equation so that there is no direct
relation betweer the voltage gain of lossless
and matched equalizers even in the flat transfer
case. In this latter case

2
e2(")) - C wy < m wy
0 0 m( "y m,(tuéd) (17

where ¢ is the voltage gain constant to be
maximized.The integrals 15 and 16 are then
m

1 n) 1 . Gw
5 L;' fi(”’ 1n ('T_:_E;?'ETET
“ = Ki (1ossless) (18

e

‘J" f (m) ln (—~~—l~-———— div
1- 42 g(w)

1"y,

1

= Ki (matched) (19
In effect the problem of a flat voltage
equalizer reduces to the solution of a power
transfer porblem where a non-flat nower gain
curve shane is specified.

b. Example - Flat Voltage Equalizer for
R-L load

As an examrle of a voltage equalizer
troblem consider the case of a load consisting
of the series combination of conil L &nd resistor
R. The voltage transfer characteristic is to be
a high pasas one snecified by:

Ic‘ x (20
0 0\(1<xc

’(X) =

where X is a normalized frequency variable and
X, is its cut off value:

X = m—%-' (21
L

x - —_

e~ "¢ R (22

The load conductance is

1 1
glx) = §— 1+ % (23
Since the load has only a simnle zero of
transmission at infinity the weighting function
f(m) is uni?v and the integration constant g
is given by : i
K ¢ _nR (a2l
S =5
The vossibility of attaining the equal
sign in equation 24 is diztated by equation 11.
If equation 23 is substituted in that equation
then an upper bound is set on P 2(x) for any
value of x:

Oa(x) \( R(1+ x° 2 (25

The vermissable value of voltage gain
increases with x, and thus for flat resvonse

c2< R(1 J,z:) (26
~ _u—.

since the lowest mermissable gain occurs at
cut-off. The unper limit for K = m R can only
be attained if the value of C requi?ed in the
integral equations does not violate XEq. 26. The
integral relations given by Eq. 12 and 19 become:

R = z
A= 1n .
b f K‘o- a dx\( 1'TLR (a7

%




where
A - 1 Matched case
h (28
1  Lossless ceose
2
and 82 =1 -4 C2 (29

>
Fora“~ % O integration of Eq. 27 gives

2
n(l-a) - 1n 1+%: 2 t.an-lx(j 2a tan - Xg
2 2 ' a

a +Zc

= ﬂ/A ’ 827,0

The equal sign is used ir order to determine
whether the value of a (hence C bV Eq.29)
exceeds the limit of Ea. 26. When A = 1, the
only real solution for a in equation 30 occurs
when zc = 0. In that case:

a-a‘=0, C=]-; (31

The limit of Eq. 26 for X = O 1s also
=R, so that for flat transfer over 0 £ X¢0,
the Tmaximum value pemitted by the integral
constraint for a patched equalizer can be
obtained and this flat gain is precisely the
d.c. gain. A lossless equalizer would give no
in advantage, since tre solution of Eq. 30
with A = 172 Tesults in a value of C exceeding
that rermitted by Eci. 26.

For values of Z. 70, negative values of a°
are recuired to satisfy Eq. 3C. Under these
conditions the transcendental equation becomes:

2
ﬂlzc L TR RT: CREE R 1

2 _ .2
zc- b zc+ b
el (32
A
¥here
v2 - -a® = gl =1 (33

R

For values of 0 <X, XL 1.9, the solution
of Ea. 32 for C alvays exceeds that vermitted by
Ea. 25 for both values of A (lossless and matched
cases). In this region, vwhere the value of_mL
ig small at cut-off, the ovtimum flat eain

is given by Eq. 26

C=]R(1+zi) '
2

and the lossless equalizer gives no advantage
in gain over the matched equalizer. For the
medium range of 1,9<¢Z £ 4.8, the flat gain
of a matched equalizer as obtained from Eq. 32

0o$X, 19 (G

s less than that given by Eq. 26, while the
gain of the lossless equalizer is still limited
by Eq. 26. Finally for the high range 4.8<

Ac $Lo, both lossless and mctched equalizers
have gains limited by the solution of Eq. 31.

WhenZ . is very large Eq. 32 is apnrox
imated very well by:

b2#1=2+ﬂzc_
A

z 71 (15

Using Eq. 33, the ontimum gain in this
case is

c = E 2+ ﬂ;c
= A
=wl
~ xc __C — 771
- —2- El“. Me R
A

(36

Thus as the load resistance becomes
negligible compared to the load reactance at
cutofs. the mtio of maximum flat gain of
lossless (A = 1/2) and matched (A = 1)

equalizers becones:

C %loselesa\, r—-‘

C (matched) = (37

Tre comparison of performance of lossless
and metcred equalizers for a flat high pass
gain chr racteristic ig swmarized in graphical
for- in Fig. 2. Tre heavy line is the bound-
ir¢ curve defined vy Eq. 26, and the dashed
curves srow the maximum flat gair. of the loss-
leg: and matched equalizers as prescribed by
the irtezrel corstraints.

v Volteze Transfer Equalization of Reactive
Load

The case of optimum voltege transfer from
a finite generator to a reactive load is an
immortant practical problem. Fowever, the
bagic realizability theorem quoted in gection 2
ig not readily applicabdle. Acrordingly this
equalization problem will be treated in a some-
what different way though the general voint of
view outlired in Section 1 will still be used.
The optimum voltage equalization of an arbitrary
lossless terminetion has not been considered in
any complete fashion elsevhere, so that some
details of the derivation of the realizadility
criteria (general constraints plus load con-
etraints) will be given here. This will also
gerve to further illuminate the basis for the
realizability theorem 1 of Section 2 since the
two derivetions parallel each other. It will
be seen that whereas the scatterirg coefficlents
were a natural tool for handling the equaliza-
tion of a dlssipative load, the omen circuit
impedance elements are more directly applicable
to the reactive load problem.




In Fig. 3a a finite generator of voltage
V1 and unit internal resistance is shown driving
an equalizer teminated in an arbitrary react-
ance. The amplitude ratio of output load
voltage to open circuit generator voltage is

- Iv_e’ = 2|t
1

wherelzle(

(general) (38 a

))lis the amplitude of open circuit

transfer impedance of an overall network shown
ir Fig. 3b, consisting of the equalizer shunted
at the generator side by a 1 ohm resistor and at
the output side by the reactive load.

If the equalizer 1s designed to produce
an inout match, then the voltage reatio may be

written as:
\Zle(w) \

where|Z, (w)| 1s the amplitude of the open
circuit %ransfer impedance of the matching
equalizer plus lossless load. (Generator
resistance is not included.)

(matched
equalizer)

(38

If the equalizer 1s lossless then in Fig.3b
with excitation at the load side of the overall
network, the vower delivered here 1s equal to
that dissipated in the 1 ohm shunting resistor.
Thus

Q 2 =\221 (u‘)\

5 2
= ‘Zle(m)\ = Ree(m)

(lossless equalizer)
(39

where ﬁee(w) is the real part of the open circuit
outnut driving point impedance of the overall
network on gm:

Ree(m) = Re 222( Jw) (Lo
Sirce the equalization functions to be
optimized (Ea. 3%,39) involve the open circuit
impedance parameters, the requirements on overall
network vhysical realizability will be exoressed
in terms of these parameters. The necessary
and sufficient conditions that an onen circuilt
impedance matrix correspond to a physical 2-vort

1s that the matrix be vositive real®™)That ig
2
a.) Rll(m) R?e(vn) - R12 (m) 220, Rll(u\)>/ 0
(W

b.) The open circuit impedances have no voles
in the right half plane.

c.) Impedance element poles on the boundary be
simple and the resicdues of le(p) and 22(p)
at these poles satisfy

2
= 31271 0 a4 =2 0

811800

Eq. 41 1s the major physical constraint in
the equalizer nroblem since if this is satisfied
the remaining two requirements can in general be
met by sultable design of the actual equalizer
network.

The constraints of the load can be easily
established by observing that the reactive load
impedance Z(p) 1s in parallel with the imped-
ance seer looking in at the back of the equalizer.
Thus

z_ -
2= Zp h (Lo
— 7 Z
Zoo*

z ZL (L3

vhere Z,, 18 the back end omen circuit driving
point impedance for the equalizer plus load with
the 1 ohm resistor at the input removed, ard 222
is a similar quantity for the overall network

of Fig. 3b. (z 1s backend equalizer imvedan-e)

Any zero of the reactive load must be simple
and occur on Jn. Further if Z; 1is expanded ir a
povwer series at this zero, the first non vanish-
ing Taylor coefficlent is vositive.* Insnection
of Eq. U2 and 43 show that the back end imed-
ance 252 or 222 must vanish at this point and
in the vicinity of the zero, Py = Jmy e

Z,,(p) = Zee(p) = 2;(r) = a,(p-p,) (L

P=>p;

Equation 27 is in fact entirely indenendent of
the equalizer and its input termination.

The requirement that the back end impedance
of the overall network be constrained by Eq.27
can be expressed in irtegral form by using the
Cauchy formulas for Tayvlor coefficients. These
take the form in the present irnstance of:

1
2 1 (p)
where the closed path of integration is along

Jw (avoiding by small semicircular indentations
any boundary poles) and is completed around the
semicircle of infinite radius ernclosing tre

right half p plane. g,(p) are the welghting
functions to select thé amnropriate Taylor
coefficlent of the load,a;. If the contributions
of the small indentations are accounted for, and
g1(p) 1s modified slightly to be even in w along
Jw, Eq. U5 may be written in terms of R22(m as

Z,() @ =a (5

follows:
2oy
1
0 0] REZ(U)) L) = O dnz (zero at
(l)
m P=o0
” ) (46

(zero at P =«

(47

u/‘R (w) dw TBo om0y
o 22 2 m O

* This follows from Foster's reactance theoremgls)



0
_1-——————2 R ((n) do =T A
2 2 22 1
(U' - '"1 ) E mlz
[-]
b
-1 Zé "
= > 2 (zero at p = _ Jml)
(mm - wy )

" 4 wy (48

In every case by {g the regidue of any 2 >
poles on Jm ard is alvays positive. Such poles
can only reduce the nermissable integration
corstant. The only other possibility of reduc-
ing the rifht hand sides of Eq. Wb, 47,48 is for
Zop (or Za.) the equalizer to have a zero
coincident with 21. Since t-ese relatinns must
all be satisfied simultaneously by Z,5(0r 22?).
it may be necescary to introduce elements in

the equalizer which cause coincident zeros and/or

additional poles on jm. Another poirt which
should be mentioned here is trat referring to
equation 44, equations L5 L6 L7 L8 are yalid
both for the barred and unbarred quantities.

Finally since any zero of the load is a
zero of voltage transfer, the following
physical realizability theorem may be stated:

Theorem 2

The recessary and sufficlent conditions
that a combined netvork corsisting of &
two port and a prescribed reactive termira-
tion be physically realizable is

a) Tre combined retwork nust have a
vosltive real oven circult inredance
matrix.

b) All zeros of the reactive load
impedarce must be cortained irn the
open circuit transfer impedance of
the combined network. (The zeros
are all simole.)

¢) The irntegral constraints giver by
Eq. 46 47,47 ard summarized by tke

form

oD
offi(m) Rez(lﬂ) dn = Ki (49

nust be simultaneously satisfied by
the back end resistance of the combined
network et each zero of the load.

The similarity betweer this theorem and
theorem 1 is odvious.

V1 Flat gein equalization of & reactive load

a)Form of integral corstraints

totype low pass*® equalizer defined by:

A ]Z (u\‘ - ¢y £
=l 2 | = 10" -}C for 0Lw 1 .
P vl \ * \50

0 for 1< ll|‘<w

will be exanmired.

In tre cnse of thre matched equalizer
conditiorn a of theorem 2 leads to

(Matcreé eaualizer)

R () - R (1) %0
(51

22

This is_obtained from equation L1 with
Rll(") :1. 0\(!000

Cow
BlZ('”) = le(m) cos ((P (m,; + 8('“)\ (52

Where § is the minimum ohrse character-
jatic of tre combired netvork (equalizer and
1ond), and 9(m) any phase characteristic
sbtained with a tandem combination of unit
voltage transfer networks, consicéered as nart
of t~e equalizer (1.e. the latier need not be
a minimun phase network.)

Twe function P(+) is directly found
granhically qr-analytirally from the shape
of the 212(«) anriitude fur-tior and is rot (1)
affe~ted by tre scele factor on this function.
9(~) 18 irdevmerdent ?f () and is cortinuous
withr vositive slope. 1, If equation 52 1is
substituted into 51, it is clear that a
necessar- condition for maximum 212(") is
that the equal sign be used. Thus

3 2 2 2
R??(v, 5 \le(w)‘ cos (\P +9) =R 12(m)(53
This means that tre combined metched equalizer-
load netwrk will require ro more than 1 resist-
or{1%/Suppose thet |212(w)]  is recresented as

( ll|<
\zle('")\ = o0& mst
1€ wgw O
( k a positive
integer)
where _
c=2°3 (55

As k—»oo ,the transfer characteristic
defired by equatior 54 avrroaches the gain
ghape given by equation 50 (1t differs by the
factor 1/2).

The mirni~um phase characteristic

gfined
by equation 54 is well aporoxima ted** by:

Ry

* Identical forms for the high pass and band
pass cases are obtaired by a similar analysis.

**At this point there is a certain degree of
non-rigority, but in the final evaluation of

the integrals the exact dependance of pkase on w

As an examole of the application of theorem
1s unimportant provided it 1s proportionel to k.

2, the case of flat voltage transfer for & pro-




-k ? O\(m
L?(m) = -k_n 0 <m\<°° (56
2

Thus the integral equation 49 of theorem
2 for the matched flat voltage equalizer is:

IN

1

1
02 J- fi(l") 0082 (— &: k + e(ru)) dim
o)
0
+ ¢ f f‘ (w)
0 1 ° 0082 (= ']gl + e(m)) dn =
T K,

The second irtegral is easily seen to
avproach zero as k —wo0 Expanding the cosine
term, the first integral may be written as:

1
% j fi(w) dm + 1

[}

n

1
u/' (ri(m) cos 2 6(m))e
o

1
0 B —%"’—dw + % j (fi(m) sin 29(:.1)) .
o]

sin 2k QL dw
n

The second and third integrals in the
above ex ression are merely kth order Fourier
coefficients for a periodic function equal to

(£1(w) cos 28(w)) or (fi(w)sir 28(w)) over
a finite interval, hence the<e irtegrals go to
zero as k becomes infinite. The final repre-
sentation of tre integral constraint for a

matched equalizer with the low pass flat
voltage gain of equation 50 is threrefore:
1

2
2 C f fi(l!)) din = Ki (matched case) (57
(o]
Letting
1
f fi(u)) dn = Ai (58
(o]

equatior 57 may then be written
2

c = Ky
2Ai
Thie equation is independent of whether
minimum or non-minimum vhase networks are used.

(Matched) (59

For a lossless equalizer,equation 39 may
be used directly in conmnection with equation
50 and placed into the expression of theorem 2,
Thue the lossless equalizer with flat transfer
characteristics given by equation 50 must
satiafy:

10

L -]
@ - _ 2
j fi(m) Raz((l))dll) = oj fi(m) ‘212('")| din=

(o]
1
-5 v
o f fi(ln;duv (20
o
or -2 7
® = i  (Lossless case) (61
A:I.

and tre ratio of ovntimum matched and logsless
equalizer gains for the flat transfer case

and reactive load is:
J 2 (62

b) Examnle of a C -LC load.

C (lossless)
c

(matched)

Ag an exammle of the amirlication of the
material giver above suppose it is required
to design a flat voltage equalizer over tre
bard C& m{ 1 for a three elemernt load. Tre
load cornsists of a caracitor C' ir shunt with
a series circuit of coil L and condenger C.

This load impedance has_zeros at n =ep ,
a
and p = + ju)l vith wy = 1

LC
The Taylor coefficients at these zeros
are:
’ 1 (63
(p=w) ag=—r
+
( D= - jml) al = gL (6L

Referring to equations 4% and Y48 and
neglecting the pole residue terms:

K - T e _ hed
1772 T oot (65
KQ = T 51 - L2 (66
u ”‘12 2
For the zero at infinity the weighting
function is unity and 2
1
Al = J dn = 1 (67
)

For the zero at Jm , the weighting

function is fo(m) = _1 and
(w? - m12 )2 R
1
A2 = dw = 1 + 1
< (",2_ (-)12)2 3012(11)12-1) )-knl3
e1n "1 +1 (68
wy - 1

* Presumed outside of pass-band.



Consider a snecific nunerical case with

L Ce (69

ey
el

‘]D—‘ n |D—‘

For these conditions the various constants
may be evaluated to give:

i(l =] A4 (70
A
I 71 S S (1
A, - 0.3 1.40

The only way to satisfy these constraints
simultaneously is to reduce the value of Ky by
using parasitic elements in the equalizer.

This can be done for examvle by use of a shunt
cordernser across the equalizer outnut and in
parallel with the Joad of value C'' = 0.2. As
a result the maximum gain of this equalizer lsa
rot limited by the caracitance ', but by the
series LC circuit and the maximum value of this
gain for a low vass matched equalizer is

c =‘ AT (matched) (72
2.80

and for a lossless equalizer the maximum gain
is

) (lossless) (73

1.40

It is up to the designer to decide whether
a matched input to the equalizer system is worth
sacrificing for a U0 ©/o increase in gain.

c. Design of a finite equalizer network

In the previncus discussion ideal charact-
eristics were assumed for the equalizer
amplitude response. The voltage ein was pre-
sumed absolutely flat in the pass band, ard the
cut-off was taken as infinitely sharc. In order
to apply theorem 2 to the design of a finite
network, a gain characteristic may be assumed
in analytic forn (i.e. an ever rational function
of m which is always positive). The analysis
in such a case involves determination of the Roo
characteristic and its substitution in the
integral equations to determine the maximum
gain scale factor. To illustrate this proced-
ure a simple examrle will be given for the
voltage equalization and match of a unit
capacitive termination®. A Butterworth type of
low pdss response is assumed for a matched
equalizer

lZl (vn)|2 = 02 (7“
e T

l+ o

* This example is taken from a thesis by
1. Yorde for the degree M.E.E, at the @)
Polytechnic Institpte of Brooklym, June 1953.

The amplitude of 2 2(m) 2 is down by %—
at w = 1 which is consiéered the normalized
cut-off frequency. C is a gmin constant whose
maximum value is to be determined by applying
theoren 2.

Equation 7“ may be factored to give the
open circuit transfer impedance le(p) of the
required combined matched equalizer-load net-
work. This function must have no right half
plane voles.

c (15
p2 + IE‘p +1

The impedance le(p) has the zero of the
load at infirity as prescribed by theorem 2
because of the varticular choice of amplitude
function in equation T4.

le(p) =

The real component of le(p) along p = Jwo

NG 1 - (1)2
Rlz(m) = ¢ ——— (76
l+m

and acvrlying equation 53 for the optimum

matched equalizer

(1 - 0)2;2

(1 + ml 2
(17

2 n2
Rez(nr) = R12 (m) =C

The complex impedance Z 2(p) may be
obtained by exranding Roo(w) ?n partial fractions
as described on pages 20&-205 of reference 1.

The result® is

2 0.353 pJ + po+ 1.065p + 1
c Gl 1o - 2
p + 2.82 p° + Up” + 2.82 p+l

zzz(p) =

(78

This function has the load zero at
irfinity as orescribed by thecrem 2.

The integral constraint (equation L7)
gives for unit capacitive load:

fo T 2
R ap = 02 f l -w .
o 22 o G2 &
(1+w)
n (19

2

If the definite integral is evaluated, the
gain factor C is found to bde

C= 1.68 (80
or
t = % - 0.84 (matched case)

(81

* In general if the resulting ZZZ(P) function
does not contain the required load zeros, it is
necessary to form new rational functions for

\le(wxz (possidly by the use of common
numerator and denominator factors) until this
requiremert is satisfied.




The maximum gain for the completely ideal
low pass characteristic (in the matched case)
obtained from equation 59 is

T (1deal) = 0.89 (matched case) (82
go that the simple characteristic of equation
74 is a reasonable compromise.

The final matched equalizer vplus load is
specified by equations 75, 78 and

le(p) = Il

The resultant network is shown in Fig.l a,
Observe that the load capacitance is removable
leaving a physical equalizer, and only 1
resistor avpears in the network,

The design of a lossless equalizer from a
specified |212(m)|2 characteristic which

satisfies theorem 2 is straightforward. The
equalizer network is merely synthesized from
the back end as a reactance 2-port terminated
in a 1 ohm resistor by the Darlington proced-
ure for the svecial Fasﬁ of an infinite
impedance generator. 10) The 1 ohm resistor
(input generator impedance) and load are then
removed, and the remaining lossless netwyrk is
the required equalizer.

For the example of equation 74 with

IZ,] - & ()
Z w = = R_(w
12 1+mu 22

(83
The integral requirement gives

.2
o f —C_ﬂ.& dmw =
l+ow

T
2
and*
0.25 (1lossless
equalizer)
(8l

c = 2 = 1.19

The network is shown in Fig. Ub.
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SYNTHESIS OF RESISTIVELY - TERMINATED
RLC LADDER NETWORKS™

Er-Chun Ho and DeForest L. Trautman
Department of Enginsering
University of California

Los Angeles, California

Many equalizer problems reduce to the design
of a network with specified transmission charac-
teristics between given resistive terminations. In
this note, we shall present a new technique by
which one can synthesize a ladder network employ-
ing no ideal transformers to meet exactly the
requirements of (a) a prescribed general minimum-
phase transmission function ‘,: %except within a
constant multiplier) and (b) arbitrarily given,
finite, purely-resistive terminations Rl and R2 .

The general characteristics of the synthesis
problem under consideration may be represented by

Figure 1.
[ 1,
&5

l’ -

T A,;\‘N i J- RLC

€W E LADDER NETWORK E, R,
L 1 {NO TRANSFORMERS)

4

Figure 1

Any rational function of A (a:r-,») , regular at
» having its poles restricted to the left
half-plane and its zeros restricted to the left
half-plane and on the j-axis is acceptable as & .
(These poles and zeros need not be simple). The
constant multiplier of %: is not always arbitrary,
but subject to the physical restrictions on maxi-
mum power transfer through a passive network when
the terminations are finite resistances, i.e.,

i has a definite upper bound.

Eo|Acyw

A =oo

The first step for achieving this realiza-
tion is to extract a suitable A-matrix (general
circuit parameter matrix) from the given transmis-
sion function and terminations., Then, a network
having the characteristic specified by the ex-
tracted A-matrix is synthesized by a matrix fac-
torization procedure. This approach has been em=
ployed by other investigators =i tor the synthesis
of lossless networks. The more gemeral RLC lad-
der development will be treated in this note. The
ladder development involving no ideal transformers
requires an entirely different technique in the
decomposition of the A-matrix.

If we specify the RLC ladder network by the
general circuit parameter matrix [* *« , then by
network analysis,

A Ape

1 R,
—Ev:—-A,+%;AI,+R,A,,¢W2A" w

and A"A"'— Alell .| (2)

* Work supported in part by Office of Naval
Research.

Premultiplying a constant k to & ,
suitable A-functions constructed from (1) and
(2) are

|
A”-é-ok E: (3)
R E
A-z‘—zl(Jzo'o)kfg"m (4)
2
A, (20 O)kE L )
1 4 ZR. E‘: ﬂ—RI
Ly 'ZF% Lﬂi‘-lt‘l)'k %‘: 6

where k and a , also a constant, are to be
determined later to insure the physical realizabil-
ity of the synthesized network.

In developing this A-matrix into a ladder
network, preliminary factorization of Ay, is gen-
erally necessary. Because A1l has the properties
of 2 » it may always be factored into a prod-
uct of a finite number of non-minimum resist-
ive positive-real functions, eq. (7), by appropri-
ately choosing a set of positive real numbers C1
C2C3 .. .Cg.

E - Pl + o
A,,"é‘”‘ff"loklﬁ i‘ﬂ!.i"‘z *ﬁ..

m3p)

Lokl (X+&a+3)(A+&)(Av&
27 TH (Feghey)(#e4)

|
E “ (Zk,k,kl, k,u)@’éﬁ&'s;z,)z‘lk%fﬁ—f‘}j ]
fotee]ln el 2o, )
e
* (0 KA)(K,A,)(K,A,)(k,A,) (k,A,) o
where A) A2 A3 « . « A, represent the non-minimum

resistive positive real functions and a, k, k2 ,
k3 « o « kn are constant multipliers to be chos-

.
X

en later. In eq. (7), typical factorigation is
shown for m = p . For the case m > p , factors
like sy are also included. It should be
noted that surplus factors are intro-

duced only when needed.

The ladder representation is now obtained
by matrix factorization as follows:

A, A, |1 of|aka 0 [[ka, o© |

N LR R
kA, O kA, O l (e -
0 R_,Il: (] “A1lO r




where the product of diagonal matrices is the ex-
pansion of l‘-- ° . In equation (8), when =
°

are positive real functions (through pro-
choice of a and k ),the first and the last
matrices are the canonical matrices specifying the
simple shunt and series branches of a ladder net-
work respectively. However, the diagonal matrices
are not in the canonical form, thus further factor-
jzation is necessarye. Typical procecure can be
shown, without loss of generality, by assuming that
the factorization of A11 in eq. (7) terminates in
two factors, that is

A, v (akA)(kA,)
Expand the first diagonal matrix in eq. (8) ac-

and =

9)

cording to the following equivalent matrix product.
kA, O | | ! oflv 1|1 ot &5l
0o |-+l nl | < KA oo
hA' | hA. :o |VNA"|L° I?
Using equations (9) and (10), eq. (8) reduces to
eq. (11)
a ) | vo| o[ o
A, Al [ RET™ ’a‘k!;j 1o ||:0kA‘-I 1
: ‘ an
| b A, |
x‘ 0kA| hAz ? !Il I%n
°© flo wrl® 1|

Observe that a triangular matrix can be
moved through diagonal matrices to its right with
the following modification,

I X|d o0}|/d O d, O
1 |
o 10 lo {f 0 <'i
’ ‘ ! ) : u2)
d 0 . X
.o L dozo‘ sd (|>“| ddf d.
| d 2 voa:':o |

This maneuver plus multiplying together similar
adjacent matrices ylelds from eq. (11) a matrix
product, in eq. (13), having component matrices in
realizable canonical form (when the various con=
stant multipliers are properly chosen) except the
remaining diagonal matrix.

A A, |1 Of[v || 0
lela I -
A, A | Rt aka V|| O V]|akAl Y
k ‘ ) o3
A, O ||V Ap )V
x (')’ i l A AR A R,
kAl 0 |

Repeating the above procedure for the re-
maining diagonal matrix in eq. (13), the final re-
sult is obtained,

A, A |

|

. | A, I P
A, Aul: I%AAI*EIRK IHO i ?CIKA 2 KA, |
1 " ‘
[0 ol|! . Vg (N P T
' 1 \a kIGA, K
x‘o |:!k:Az'| |!‘° A0 ’A‘l: zAz)
-\IO |2 l, ol alle ol ”I
’V,l ot y,IHO| |y’||x°l| 14)

15

which is the A-matrix representation of a ladder
network. Further repetition of the above typical
procedure will yield the complete factorization of
eq. (8) into the canonical matrices representing
the general ladder network in Figure 2.

Finally, we must choose the various constant
maltipliers such that all y's and z's are physi-
cally realizable. By equations (3) to (5)

A, .rlfZ 2 RR, E,

'A_l RI\JO -+ ok —E-»; {3}

Ay (2 2 _E

A "R (&) /AR, ak Eo e
where  |&|,..< some constant. From
these two equations, it is seen
that the real parts of 4+ and = can be

made positive and as large as desired everywhere
on the imaginary axis by choosing 0< a < 1

and O < k . In view of equations (15) and (16)
and the non-minimum resistive p.r. properties of
A A2 ¢ ¢ ¢ An, all y's and z's can be made peTre
jmmittance functions by choosing appropriate a,
ky k2 « o o ky o Each of these immittance func-
tions then may be realized by the procedure of
Bott and Duf and consequently the box in
Figure 1 is replaced by & ladder network employ-
ing no ideal transformers, Figure 2. The network
in Figure 2 has Ry and R2 as given and {2

as prescribed except for an additional con=-
stant multiplier + which depends on the values
of Ry and R2 , the choice of a and the upper
bound of

Eo 1A
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EQUALIZATION OF VIDEO CABLES

Philip W. Rounds
Bell Telephone Laboratories
Murray Hill, N. J.

Summary

This paper describes the equalization
of local intracity video cables. An
analysis is made of cable performance at
video frequencies, upon which the equali-
zation plan is based., A network function
is derived for approximating a straight-
line loss slope on a logarithmic frequency
scale. Using this result, a design pro-
cedure for fixed and adjustable cable
equalizers is described.

Introduction

The local wire transmission of tele-
vision signals between studios, control
rooms, transmitters, and long-distance
offices is handled by the Bell System on a
video basis over special 16-gauge, shielded,
polyethylene-insulated pairs which may be
included within the sheath of normal tele-
phone cables. Figure 1 illustrates the
physical construction of these pairs. The
lengths of the video links and the number
of links that may be connected in tandem
are such that a total cable distortion of
several hundred db may need to be equa-
lized to an accuracy of better than .1 db.
The equalization of cables to this preci-
sion requires a clear understanding of the
nature of the cable performance, both as
regards its nominal characteristics and
the types of variation that may be encoun-
tered in service. It also calls for an
equalization plan flexible enough to take
into account all the factors of variation.
Furthermore the video band is logarith-
mically very wide, extending for more than
5 decades from 30 cps to 4.5 mc. An equa-
lizer design technique is needed which is
suited to the wide-band approximation prob-
lem and which will lead to equalizer
structures capable of yielding the desired
performance in manufacture.

Cable Characteristics

Cable Terminations

The loss of a cable section with
arbitrary terminating impedances is equal
to the sum of the cable attenuation and
the reflection and interaction losses which
are functions of the ratio of the cable
image impedance to its terminations.
Flgure 2 shows the image impedance of the
16-gauge video pairs of Figure 1.
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Termination of these pairs in a pure
resistance at each end leads to low-
frequency reflection and interaction
losses which are not proportional to cable
length and which ripple with frequency.
These losses would be difficult or impos-
sible to equalize successfully. Conse-
quently, in the system under consideration
here, the terminals and repeaters have
been designed to match the image impedance
of the cable, thus eliminating the reflec-
tion and interaction losses. Under these
conditions, the total cable loss is equal
to the cable attenuation and is therefore
strictly proportional to cable length.

Nature of Cable Losses

The attenuation of a typical 1000-ft
length of video cable is shown in Figure
3. In this figure, frequency 1is plotted
horizontally and attenuation vertically,
both to a logarithmic scale. At low fre-
quencies the attenuation increases along
a straight line corresponding to a square-
root-of-frequency increase. At higher
frequencies the attenuation also increases
as the square root of frequency, but at a
different level. Between the two regions
there is a smooth, or fairly smooth, tran-
sition. The attenuation behavior in these
regions may be associated with the resis-
tance losses in the 16-gauge conductors.
At the low end of the scale, the distri-
buted capacitance and resistance in the
cable are the contributing factors; at
higher frequencies, the loss change
results from an increase in the conductor
resistance through skin effect. In addi-
tion to the conductor losses, there is
another increment of cable attenuation
which increases approximately as the first
power of frequency and leads to the rise
in the curve at the extreme right of
Figure 3. The magnitude of the linear
component in the figure has been grossly
exaggerated for the sake of clarity. For
16 PSV cable, the actual value of the
linear component is about one-tenth that
indicated in the figure.

Cable Loss Function

With this picture of the cable per-
formance as a guide, an analytical expres-
sion has been found which is capable of
representing the actual cable attenuation
to good accuracy. This expression appears



as equation (1) below.

f+f,

A=K (—2 JT +k fl'A; (1)
(f+fy 1 )

where A = attenuation constant
f = frequency
K, ky, fl, f,, and A are constants

The residual error using equation (1) in
place of the actual cable data is shown on
Figure 4.

Cable Phase Function

An accurate determination of cable
phase as well as loss is important in video
design, since the faithful transmission of
television signals requires that the phase
be held linear to a precision comparable
with the required loss precision, counting
one radian of phase non-linearity as equiva-
lent to one neper of loss distortion
Owing to the fact that the non-linear com-
ponent of the cable phase is less than 1%
of the total phase, direct measurement of
cable phase yields little significant
information. The existence of an analytic
expression for the cable attenuation,
however, allows the phase to be determined
to an accuracy equivalent to the loss
determination.

The Sable phase is taken as the mini-
mum phase< associated with the loss expres-
sion of equation (1), modified by the
minimum phase corresponding to the loss-
correction factor of Figure 4. Substitu-
ting the loss, A, of equation (1) in the
minimum-phase integral

- Zh)c A-Ac

¢ 2 2
™ -
o W ~W¢

dw (2)

the corresponding phase is found to be
(consistent units such as nepers and
radians must be used)

2/ (f2-f1)

(
B=K (]1- £+£2 1
( (£+£2) (VT +/T7) £+£q

)
+ kl [tan (l-A)'ZT] [fl-A]%

Although the phase given by the second
term in equation (3? becomes infinite as
A approaches zero, the non-linear compon-
ent remains finite. The character of the
non-linearity may be brought out by sub-
tracting a linear phase and writing the
limit. Thus

(3)
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lim Ekl tan(1-a)% rl-A_g
Ao

= -k 2 log f

o

The minimum phase associated with the loss
of Figure L may be obtained readily to
sufficient accuracy by graphical integra-
tion or by matrix multiplication”.

Equalization Plan

The loss shown in Figure 3 applies to
a representative sample of 16 PSV cable.
Other types of cable, or other samples of
the same cable, might be expected to
exhibit a similar loss pattern. This has
been found to be the case for the cables
that have been examined. In each instance,
equation (1), with appropriate values of
the constants, has been found to be cap-
able of describing the loss behavior to
an accuracy comparable with that shown in
Figure 4.

From these facts a pattern of equali-
zation emerges. By designing fixed blocks
of equalization based on nominal cable
characteristics, and further by providing
ad justable equalizers at the receiving
terminals of each video link to compensate
for the effects of variations in the con-
stants of equation (1), it is expected
that any type of cable likely to be
encountered in service can be successfully
equalized. The fixed equalizers can be
designed in suitable units to handle
various lengths of cable. Through the use
of these fixed equalizers, any circuit
length may be equalized to within one-half
the size of the smallest unit. The adjust-
able equalizers at the receiving terminal
can be used to provide the final incre-
mental adjustment for length.

Equalizer Configuration

Following this plan of equalization,
the fixed equalizers must be designed to
high precision (in the order of .005 db)
so that the requisite number of equalizers
may be connected in tandem without exceed-
ing the overall distortion tolerances.

The desired loss characteristic for a 20-
db equalizer is shown in Figure 5. For
equalizers having monotonically decreasing
loss characteristics over such wide bands,
the bridged-T configuration shown in
Figure 6 has been found to yield good
results. The bridging arm consists of a
resistance paralleled by resistance-capaci-
tance branches which reduce the bridge-
arm impedance, and consequently the equali-
zer loss, in a step fashion at successive




points along the working frequency band.
The final resonant-frequency branch is
added to bring the loss to zero just above
the top useful frequency in order to con-
serve system gain by holding the total
equalizer loss to as low a value as
possible.

Having selected the general configur-
ation of the equalizer, the remaining prob-
lem is to determine how many R-C branches
are needed to obtain the required precisim
of match and how the elements are to be
proportioned to secure the desired
characteristics.

Infinite Slope Approximation

Selection of Loss Function

As a guide in answering these
questions and by way of laying a founda-
tion for the design procedure, we may con-
sider the idealized problem of approxima-
ting a slope of k x 20 db per decade
extending from zero to infinity, as shown
on Figure 7. A characteristic of this
sort may be approximated by an infinite
network with a repetitive pattern of real
zeros and poles of loss (corresponding to
an R-C structure). The loss expression
takes the form of an infinite product.

oo

P=P2n

e® = o
n=-co P=P2n.l

(4)

where 6 = A + jB = loss and phase

p = j2nf

P2, and pp,.) are negative real
numbers

The corresponding loss is found by taking
the logarithm of the absolute value of
equation (4). The resulting expression

becomes 2
loss in db = 10 logy, g _ =20
n==(f2n-1)
2
o 1+(£/f, )

n=woc 1+(£/f5._1)2

where fon = |pp,/2n|

To approximate the desired characteristic,
the frequencies f,, and f3,_ 3, correspond-
ing to the zeros and poles, are selected
as shown in Figure 7 to make the asymptotic
representation of the loss zig-zag about
the desired infinite slope with a uniform
period on a logarithmic frequency scale.
The asymptotic representation consists of
lines having slopes of O db per decade and
20 db per decade alternately, with the
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points of transition being made at the
frequencies f2n and fan.3.

Determination of Loss Error

The actual loss as computed from
equation (5) will round the corners of
the asymptotes. It will thus ripple about
the desired curve with the same period as
the asymptotic representation but with a
much lower amplitude of ripple. The
amplitude of the ripple will depend on
the number of zero-pole pairs per decade
of frequency, being smaller the greater
the number of such pairs. The problem,
then, is to determine the amplitude of
the loss ripple in terms of the number,
h, of zero-pole pairs per decade.

To avoid mathematical difficulties,
this problem is approached indirectly by
way of considering the minimum-phase ripple
associated with the loss ripple of
equation (5). The justification for this
procedure is that a sinusoidal loss ripple
on a logarithmic frequency scale

(6)

is accompanied by a minimum-phase ripple

M = alsin(2nh loglof)1 nepers

B = Ttanh (.4343n°h)] alcos(2nh logyof)]

(7)

which is of approximately equal amplitude.
The periodic loss ripple may be expressed
as a sine series if the end points of the
period are properly chosen. For a slope
of 10 db per decade (k = *1/2), the loss
ripple has even symmetry about the
quarter-period points, so that the sine
series contains only odd order terms. In
this case the shape of the phase ripple
will be identical with the shape of the
loss ripple, and equation (7) gives the
exact relation between their amplitudes.
Since the loss and phase ripples are in
quadrature, it is sufficient to determine
the phase error at the points where the
loss error is zero and equate the maximum
loss error to the phase error so obtained.
For other values of slope, the relation is
approximate.

= afcos (2nhlog,of) ] radians

The minimum phase associated with the
loss of equation (5) may be obtained
directly from equation (4). Thus

-

oo
B= Z

N==00

[tan'l (f/f5,) ~tan”} (£/f2n1 )](8)

From the symmetry of the curves in Figure
7, it can be seen that the loss error will
be zero at the points where the asymptotes



intersect the line of desired infinite
slope. Xhere are two such sets of points,
one at £< = (f2pn)(f2 -1) and the other at
£2 = (f2n)(f2p41) 1?1ustrated by the
points A and | in Figure 7. The frequendes
fon and f2n-1 may be defined mathematically
as follows. As before, let k x 20 db per
decade be the slope of the line to be
approximated, and let h represent the
number of zero-pole pairs per decade. (In
Figure 7, k = -1/4 and h = 1). For con-
venience we can, without loss of generality,
choose the values of frequency for n = 0O
such that (fg)(f_1) = 1. Then

(£20) (£20-1) = 105"

and _k/h
fan/f2n-1" 10
from which
(2n-k)/2h
fzn = 10
and
£n.1 - 10(2n*k)/2h
For the first frequency, A, in Figure
7, £ = 1 and
CS - - 2h
B= I [%an'l 10 e k)/
ne=-oc
-tan (9)

B 10-(2n~k)/2h]

For the 7sgond frequency, B, in Figure 7.
f = 10-1/4h and

N® =0C

oc
- \}an_l Lo~ (2n*1-K)/2n

-tan (10)

-1 lo-(znolok)/zﬁ]

By noting that tan-l X = 90° - t.an-1 1/X,
these formulas may be reduced to

% « tan~! 10K/2h _i 50

[« o
+ ¢ |tan-l 10'(2"'1‘)/2h
n=1

-tan~! 10-(2n*k)/25} (11)
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and
oc

% - I |tan~! 10'(2"’1'}()2h
n=0

-tan'l lo-(2n*l¢k)/2ﬁ] (12)

The numerical solution of equations
(11) and (12) can be simplified by writing
them in a form which will permit the values
to be read from a table of log tangents.
Thus
= (log tan)-1{k/2n1-45°

NI

o (
+ £ ((log tan)=1[-(2n-k)/2h]
n=1l(

-1 )
-(log tan) [-(2n¢k)/2h]; (13)
and

oo |
- % ((log tan)~l[-(2n+1-k)/2n]
n=ol

[§1[e o]

-1 )
-(leg tan) [-(2n¢1*k)/2h]; (14)

These series converge rapidly, so that
their numerical solution is quite simple.

Equations (13) and (14) give the
phase at the points A and B respectively.
The straight line being approximated is
accompanied by a constant phase2 of k x

o, Using this result, it is possible
to compute the phase error for various
assumed values of h. Finally, the phase
errors can be converted into equivalent
loss errors as explained previously.

Curve of Loss Error

This has been done for an assumed
slope of 10 db per decade (k=*1/2) and the
results plotted in Figure 8. For the
special value of k-tl?g, equations (13)
and (14) give identical results. For
other values of k, equations (13) and (14)
give ripples of unequal amplitude, indi-~
cating that the phase ripples are alter-
nately large and small along the frequency
scale. Considering the larger amplitude
only, it has been found by computation
that this amplitude varies as sin(kx180°).
Using this result along with the curve of
Figure 8, it is possible to determine the
complexity of network required to approxi-
mate an infinite slope to any desired
precision of match.




Design of Fixed Equalizers

Degree of Equalizer Loss Function

The solution of this idealized problem
does not give a direct answer to the prob-
lem in hand, since the desired equalizer
characteristic as shown in Figure 5 is not
a constant infinite slope, but rather a
slope which is changing steadily through-
out the band. The results can be used as
a guide, however, in determining the pro-
per density of zeros and poles, if the
equalizer characteristic is viewed over a
limited frequency range as a segment of an
infinite slope and the density of critical
frequencies determined accordingly. This
establishes the number of elements required
to meet a desired precision of match. To
match the curve on Figure 5 to the accuracy
required, a configuration of the complex-
ity of Figure 9 was found to be needed.
The frequencies corresponding to the
geometric mean of the zero-pole frequen-
cles are noted in Figure 9.

Design Procedure

The next step in the design is the
determination of the element values which
will give the precision of match which the
preceeding theory indicates is possible.
This problem might be handled in a variety
of ways, but the availability of modern
computing machinery makes the method of
successive approximations appear t he most
effective and expeditious. Experience
has shown that, starting with an orderly
array of zeros and poles, rapid conver-
gence on the desired result can be obtained
provided that the array remains orderly
during each step of the successive approxi-
mation. This concept of orderly array may
perhaps be made more definite by tracing
the actual steps in the equalizer design.

First Approximation

Considering the bridge arm of the
equalizer shown in Figure 9, the shunt
resistance is determined by the desired
d-c loss of the equalizer. Next, assuming
that L in Figure 9 is zero, C is selected
somewhat arbitrarily to make the equalizer
loss correct at the top of the band, in
this case at 4.5 mc. After this is done,
the lowest-frequency R-C branch is con-
sidered. 1Its reactance is made equal to
its resistance at the branch frequency and
its impedance-multiplying factor is
ad justed so that the combination of the
R-C branch with the initial two branches
will give the desired loss at the branch
frequency. This procedure is repeated
successively adding one R-C branch at a
time until each of the branches is
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included. Finally the inductane L is
added to produce a resonance at the point
where the required equalizer loss as shown
in Figure 5 passes through zero. This
establishes the first approximation in
the design. The orderliness of the array
can be illustrated by plotting a series
of points representing the reciprocal of
the resistance in each R-C branch against
the critical frequency in that branch, as
shown in Figure 10. These points fall on
a smooth curve,

Succeeding Approximations

The next step in the design process
consists of computing the loss of the
equalizer with the assumed element values,
and also computing the loss change with
changes in each element. With these data
in hand, it is possible to arrive at a
second approximation. If care is taken in
adjusting the parameters to retain a
uniform pattern of values as shown in
Figure 10, the process can be made to con-
verge very rapidly on a uniform-ripple
type of characteristic. The result
obtained by following this process through
five successive approximations is shown in
Figure 11.

Phase Equalization

The problem of phase equalization may
merit brief consideration. If the attenu-
ation equalizers were to equalize the cable
loss from zero to infinite frequency there
would be no phase problem, since both equa-

. lizers and cable are minimum-phase struc-

tures (ignoring a linear phase component
in the cable) and the tandem combination
would exhibit no phase distortion. What-
ever phase distortion exists, therefore,
i1s a result of the increasing loss of the
equalized circuit above the working band.
The magnitude of this distortion can be
determined by adding the in-band cable
phase to the computed equalizer phase. For
each of the fixed equalizers, one all-pass
phase section was found to be adequate to
?iizg the phase distortion within tolerable
mits.

Design of Variable Equalizer

Structure Used

As a further example of the appli-
cation of the design technique described
in the paper, we may consider the design
of the variable equalizer used to provide
the final incremental adjustment for cable
length. The desired loss characteristic
for this equalizer is the same as that for
the fixed equalizers. Proportional vari-
ation of the characteristic is obtained by
use of a constant-resistance form of one



of the variable-equalizer structures des-
cribed by Bode4. The configuration of the
equalizer is shown in Figure 12. The two
boxes in the figure are in themselves four-
terminal constant-resistance structures.
If ¢ denotes the transfer constant of these
component networks, the overall performarce
of the equalizer can bg described by the
approximate relation?

8-Ao = pKe 2 (15)
In this expression, 6 is the overall equa-
lizer loss and phase, Ag and K are con-
stants and p is a numerical factor varying
from -1 to +1 as the control resistances
are changed over their complete range from
zero to infinity. When p = 0, the equa-
1izer loss is constant with frequency at
the value Ap. Other values of p will give
proportionate changes in loss above and
below this value as shown in Figure 13.
Equation (15) permits the transfer constarts
9, of the component four-terminal networks
to be determined directly from the desired
overall loss and phase, 6, of the complete
structure,

Design Procedure

For the problem in hand, 6 was deter-
mined from equations (1) and (3), modified
to give reasonable out-of-band performance.
Rather than going into this procedure in
detail, it may serve the purposes of this
paper sufficiently well to note the type
of transfer constant, g, required to give
an overall loss varying as the square root -
of frequency.

In this case
(16)
0-A, = H/T + jH /T

Substituting in equation (15),

-2 = H
e~<9 e (VT + § /)

from which

1

8
or in units of db and degrees

(17)

Equation (17) describes a network haw
ing an infinite slope of 5 db per decade
of the type previously considered. An
approximation technique for this type of
network has already been described in which
the amplitude of the approximation error
may be determined in advance. The only
further step necessary is to relate the

@ = constant - 5 logyof -j22.5°
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error in approximating ¢ to the error in
the overall equalizer characteristic 8-A,.
This may be obtained by differentiation of
equation (19 from which

d(8=-A,)
(6-4,)

= -2 dg (18)

Thus an error of .1l db (.0115 nepers) in
¢ will produce an error of 2.3% in the
overall loss of the equalizer. Knowing
the maximum loss swing of the equalizer
and the desired tolerance in loss, require-
ments may be placed on the transfer con-
stant, ¢, of the component four-terminal
networks in the equalizer. The configur-
ation of the four-terminal networks will
be generally similar to the configuration
of the fixed equalizers.

Problems of Construction

Much of the attractiveness of the
design method described here lies in the
fact that the equalizer configuration can
be selected in advance. This permits an
early evaluation of the problems of con-
struction.

Physical inductors and capacitors are
not ideal devices, but have associated
with them dissipation and parasitic capaci-
tance and inductance. It is important to
choose an equalizer configuration which
will allow the parasitic elements to be
absorbed or at least will allow their
effects to be minimized. This is partic-
ularly true in the case of video equali-
zers where the large low-frequency ele-
ments must be made to function compatibly
with the high-frequency elements through-
out the entire video band. The configur-
ation of Figure 6 was selected with these
factors in mind.

In the bridge arm of the equalizer,
the R-C branches are in parallel, a con-
dition which results in the minimum total
capacitance. Even so some of the low-
frequency branches require large paper
capacitcrs. The effects of dissipation
and series inductance in these paper cap-
acitors is minimized, however, because
they appear in series with large resis-
tances. For the higher-frequency branches,
small mica capacitors are used and the
lead lengths kept short.

In the shunt arm of the equalizer a
series resistor is shown. Part of its
resistance may be combined with each of
the R-L meshes by a transformation which
results in a resistor appearing in series
with each inductor. This resistance value
may then be identified with the winding




resistance of the inductor. The series
resistance available is not large enough

to eliminate the need for magnetic-core
inductors in the low-frequency branches.
The distributed capacitance and high-
frequency dissipation in the magnetic-core
inductors is tolerable, however, since

they are shunted by a resistor of low value.
The higher-frequency inductors are single-
layer solenoids and present no special pro-
blem.

By taking advantage of the favorable
configuration of Figure 6, and by using
care in the mechanical layout of parts and
wiring, the precision of the manufactured
product can be made donsistent with the
overall requirements for video system
equalization.
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APPLICATION OF A MINIMUM PHASE MATRIX TO
ADJUSTABLE EQUALIZER DESIGN

W. R. Lundry
Bell Telephone Laboratories
Murray Hill, N. J.

SUMMARY

A method for calculating the "minimum
phase"” associated with a given loss char-
acteristic by numerical methods is des-
cribed. The process requires a matrix by
vector multiplication which can be per-
formed on a high-speed computer.

By successive applications of this
process a relatively involved equalizer
design problem 1is reduced to two simple
problems.

INTRODUCTION

Recognition of the unique relation
between the real and imaginary parts
of the self- or transfer-impedance of
"minimum phase" networks has led to a
number of improvements in planning the
equalization for transmission systems. The
minimum phase matrix used herein was
originally developed as a special tool for
use in the analysis of a particular wide-
band carrier system. Although a broad
sketch of the method of calculating a
minimum phase matrix is given, the primary
objective of this paper is to show how
minimum phase calculations can be used to
simplify a design problem. The example is
based on a network structure which occurs
frequently in equalization systems but has
received very little attention in the
literature. The procedure depends on the
free use of numerical methods and requires
computing equipment comparable to the 604
Calculator.

I. Minimum Phase Relationships and their
Calculation

Minimum phase network functions, as
a matter of definition, are those having
all their singularities in the left half
of the p-plane. For such functions, an
integral relating the real agd the imagin-
ary parts can be calculated. In one
form this relation is

B(WC) B —

alw
———L—£ dw
o wz-wc

(1)
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where B(we) is the phase shift at a fre-
quency wc72n and a{w) is the attenuation
at the frequency w/2n.

In practical applications of this
integral two difficulties arise. The
first has to do with the limits of inte-
gration. The behavior of a circuit or a
system in the neighborhood of infinity is
always a matter for speculation and judge-
ment. In many cases the behavior in the
neighborhood of zero is equally uncertain.
Fortunately, the denominator of the inte-
grand acts as a welghting function which
makes the behavior of alw) near the
limits of integration relatively unimpor-
tant. Assumptions based on good engineer-
ing judgement can be used in these regions
without seriously affecting the accuracy
of the calculation.

The second difficulty arises from
the need to know alw) in a form which can
be integrated. Most design problems
start with the statement of a desired loss
characteristic in the form of curves or
tabular data. Here difficulties can be
avoided by the use of numerical methods
which permit the evaluation of the inte-
gral without first solving an approxima-
tion problem.

In the main, the present problem can
be solved with a high order of accuracy
by the use of Gregory's Method of numer-
ical integration.?}) This method
assumes, in effect, that the integrand
can be matched by a polynomial of fixed
degree and furnishes the coefficients
required to calculate the integral as the
sum of a series of products. If the
polynomial is of first degree, Gregory's
method gives the familiar trapezoidal
rule. Over a limited range near wc this
method is inadequate because of the pole
in the integrand. This difficulty is
avoided by assuming a polynomial match to
alw) and performing an exact integration
over this interval to determine the Cauchy
principal value.

Enough has been said to indicate the
general nature of the numerical methods
used to calculate this integral. In its




final form the phase is evaluated by using
the formula

N

=i cC
By 5 1%

1 =1,2,...,M (2)

where By is the phase at the ith frequency
and a 13 the loss at the jth frequency.
The cdnstants Cy4 are independent of the
particular loss characteristic involved.
It should be noted that a different set of
constants is required for each frequency
at which phase is to be determined. This
is because both the denominator in the
integrand of (1) and the Gregory coeffici-
ents determine the Cjj and the former
depends on wg.

Equation (2) describes Bi as equal to
a matrix by vector product where the Cij
are the elements of an MxN matrix and tﬁe
a4y are the elements of an Nxl matrix or
vEctor. For brevity, the MxN matrix will
herein be referred to as the "minimum
phase matrix",.

ITI. Machine Computation of Minimum Phase

The elements of a minimum-phase matrix
have been computed for a normalized arith-
metic frequency scale with j taking on all
values between 1 and 63 and i ranging
between 5 and 55. This gives a total of
more than 3000 entries. Calculation of
the minimum phase for problems of this
magnitude becomes practical when there is
available some large scale computing
equipment such as the IBM 604 Calculator.
With such equipment it is possible to have
the matrix values stored on punched cards,
to copy the loss data on the corresponding
cards and then to perform the required
multiplications at the rate of 100 a
minute.

It turns out that the capacity of the
equipment is such as to permit the solu-
tion of 3 simultaneous problems at this
same rate. Multiplications are performed
in the machine and punched on the cards
containing the original entries. The
cards are then transferred to a tabulator
which lists and totals them giving, at
the end of each 63 cards, printed sums
equal to the phase at one frequency. The
machine time required for the complete
galculation of three problems is about one

our.

III. Adjustable Loss Equalizer Design

As an example of the application of
the minimum phase matrix to design

problems, consider an adjustable equalizer
requirement as shown by Figure 1. This
illustrates a type of loss characteristic
which is frequently required in a long
transmission system which may be carrying
both telephone and television circuits.
The solid curve indicates the desired loss
characteristic at one extreme setting of
the equalizer and the dotted curve is its
mirror image about the reference loss,
here indicated as zero. An equalizer
which can be adjusted continuously and
linearly between these two curves is
desired. It will be noted that at one
frequency there is a pivot point where the
relative loss is zero for all adjustments.

One of the best types of adjustable
equalizer which can be used for this job
is shown in Figure 2. This consists of a
2-terminal impedance composed of a resis-
tance in parallel with the input terminals
of a 4-terminal network. The 4-terminal
network is required to have constant
resistance image impedances at both pairs
of terminals and is terminated at its out-
put end by an adjustable resistance. By
properly choosing the constants of this
circuit the insertion loss can be
expressed as

a - ap + jB=Kpe-2(A+JB) (3)

Here a and P represent the insertion loss
and phase of the 2-terminal network with
ao the reference value of a; K is a con-
stant dependent on a,; p is the reflec-
tion coefficient at the output of the
L-terminal network whose image transfer
loss and phase are designated A and B
respectively. This equation is a linear-
ized approximation to the exact express-
ion but is quit? ade?uate for the usual
design problem, (4),(5),(6)

Since only the loss characteristic,
a-a,, was specified, the relation between
the two terminal network loss and the
image transfer constant of the 4-terminal
network is expressed by the second equa-
tion of this figure. It will be noted
that the loss we are interested in
depends on both the loss A and the phase
B of the 4-terminal structure. For
example, the pivot point of the loss
characteristic can be obtained either by
making A very large or by making B equal
to 45°. The problem of choosing a
structure to perform this job is sub--
stantially more difficult than the usual
problem of fixed equalizer design because
of the dependence of the final result on
both A and B. Skill in the design art
is acquired very slowly.



It is apparent from the structural
form that the loss a-a, must be minimum
phase (the jnsertion loss of any two ter-
minal structure is minimum phase). This
suggests that if we determine a value of B
which is consistent with the required loss
characteristic, it will be possible to
solve for A and B.

IV. Minimum Phase of 2-Terminal Structure

Three minimum phase calculations were
run for this particular problem. Two of
these furnish information on the phase of
the network for different out-band loss
behavior corresponding to reasonable
engineering assumptions. The other was
used to obtain the low-frequency phase
behavior in finer detail than provided by
the other calculations. Collectively,
they serve to emphasize the flexibility of
the matrix through the use of different
frequency normalizing constants for each
case.

For this particular design problem,
loss information up to 20 mc was available.
Although the equalizer need not follow the
system loss characteristic above 8.5 mc,
departures must be considered in the light
of their effect on the phase below 8.5 mc.
The system carries television signals and
failure of the equalizer to compensate
corresponding system phase distortion
would have to be corrected by an assoc-=
jated adjustable phase equalizer. In the
hope that this could be avoided, the
minimum phase associated with the solid
curve of Fig. 3 was calculated.

A convenient choice of frequency
interval for this calculation is O.4 mc.
That is, the aj correspond to loss values
read from the curve at 0.4, 0.8, 1.2, ...
20 me. This furnishes the first 50 values.
A reasonable choice for the remaining 13
is the constant value, -6.6 db, corres-
ponding to a constant loss of -6.6 db from
20 mc to infinity. These points serve to
define the loss characteristic quite well
over the higher part of the useful band
(2 to 8.5 mc). In the region below 1 mc
the coarse granularity forces one to
accept a compromise match to the curve
such as is indicated by the dotted line
designated II. This will cause substan-
tial errors in the minimum phase calcula-
tion at the lower frequencies.

An accurate determination of the
minimum phase at low frequencies can be
obtained by using ay read from the curve
at 0.1 mc intervals as indicated by the
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curves designated I. The last usable

value, ag3, will be the loss at 6.3 mc.

For reasons which can be found in refer-

ence (2) the values used are dropped

ge%ow the actual loss in the range 5 to
. mc.

Finally, a case which is more likely
to correspond to a practical equalizer
design is computed. This follows the
solid curve up to 10.2 mc and dotted curve
III from 10.2 to 12 mc. This can be
realized with a frequency interval of 0.2
mc.

A composite presentation of results
of the three computations is given in
Fig. 4. Curves Ia and II together define
the phase of the "best" equalizer, i.e.,
one which would surely compensate both
the variable loss and phase of this
system. Curves Ib and III furnish a
composite look at the phase of a more
practical equalizer. Curve Ib is derived
by adding sufficient linear phase to Ia
to produce an intersection with III at
3.2 mc (again justified by reasoning given
in reference (2)).

V. The que;minal Transfer Constant

The frequency band used for tele-
vision transmission over this system runs
from approximately 4 to 8,5 mc. Over
this band the difference in phase between
II and III of Fig. 4 is essentially
linear. Hence no loss of transmission
quality can be charged to an equalizer
having the phase shown by the upper curve
of Fig. 4. Therefore it was chosen as
the basis for further design work.

From the values of loss
the values of phase shown on this curve,
the transfer constant A + jB of the 4-
terminal network was calculated by means
of the formula

A+jB =(1/2)(1n Kp-1n (a=ao+JB) ]

which follows directly from (3). The
results are shown in Figs. 5 and 6.

given and

(&)

The design of the 4-terminal network
must realize* both A and B. This can be
reduced to (a) the design of a minimum
phase loss equalizer and (b) the design of
an all-pass network giving t he phase not
*An allowance of 1.7

the term -%ln Kp to insure the required
adjustment range. Additive constants do
not affect the minimum phase computation.

db must be made for




realized in (a). Two additional minimum
phase calculations were made to determine
an appropriate split-up. Both, of course,
follow the solid curve A of Fig. 5 but
differ in the assumed out-band performance
as indicated by the dotted lines IV and V.
Only one normalized frequency interval,
0.2 mc, was used for these cases. The
results are shown by dotted curves IV and
V of Fig. 6.

The difference between these curves
and the required phase, B, is shown in
Fig. 7. The dots show the calculated
phase of an all-pass section having a
stiffness ratio b = 1.3 and a critical fre-
quency fo = 19.0 mc. The agreement with
curve IV is good and indicates that the
design of a minimum phase structure follow-
ing the loss curves A and IV of Fig. 5 will
solve the problem. This is a conventional,
fixed, loss equalizer design which appears
to offer no unusual problems.

VI. Further Possibilities

Although few experienced designers
would be likely to need further reduction
of the problem, it should be pointed out
that the minimum phase matrix can be used
in the design of the fixed equalizer.

Assume that this is to be realized by
a single, constant-resistance section of
the bridged-T type. The loss and phase
are related to a 2-terminal impedance,
R+jX, by the formula

eAIB -1 4R jX (5)

Since A and B are known, both R and X can

be calculated immediately. Values of R
o S
I
4} i
i U
D e S Sy e
& W11l
2R T I
R EEnS
- 4 t {
< | FREQUENCY (MC)
E 5[ 1 i I J
Fig. 1

Required loss of adjustable equalizer.
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multiplied by the minimum phase matrix
give the "minimum reactance" associated
with R and serve to resolve X into two
parts. One will be realized automatically
when R is synthesized and the other must
be realized with a purely reactive network
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Summary

Methods are described for compensating a network
to restore the original transient driving force,
except for a possible time delay, and for cor-
recting parts of a transient where desired. Pas-
sive networks can be used to reshape a transient,
to add or subtract any desired waveform anywhere
along the transient, or to trap out undesired
overshoots. The compensating network corrects
the phase and amplitude characteristics of the
network simultaneously.

Introduction

When a transient waveform is transmitted through
a system it often happens that the transient out-~
put does not have the shape desired and it be-
comes necessary to equalize the system to change
the transient to the desired shape. Two kinds
of equalization will be discussed. The first
case will be an attempt to restore the original
signal, with a time delay permitted. The second
case will be a method for changing a given tran-
sient to a desired one, which may be different
from the original waveform.

Res ing a Unit-S Function
If a tuned circuit has a very low Q, there will
be a slight rise in the selectivity curve when
the circuit is resonant to the driving force. In

Fig. 1 Shunt-Peaked Circuit

Fig. 1 let the peaking coil L be added in series
with the load resistor R. The normalized impe-~
dance of this circuit is

2 = 1+ pL/R =
R 1+ PRC + p2LC

1+ pQ
1+p+p%Q
where o, RC = 1, p = 14»/a>°, and Q = woL/R.

(1)

If equation (1) is used to find the rgsponse of
the network to a unit-step of current®, the vol-
tage output is as shown by Fig. 2. All curves

start out with unit slope, and the amount of
overshoot is determined by the Q of the circuit.
The highest Q can be without producing an over-
shoot 18 Q = .25. The curve labeled A, (a) 55
for the semi-infinite constant-slope tilter.

If the reciprocal of the operational form of
equation (1) is taken, the response to a unit-
step function will be given by

Aa) > 1 Ll+s+s%Q_,,1__Q
s 1+ sQ 8 1+ sQ
< 3(a) + U(a) - e=2/Q (2)

where O (a) is the unit-impulse function, U(a)
is the unit-step function, and a = wyt.
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Fig. 2 Unit-Step Response of
Shunt -Peaked Filter

The network having this response is shown by
Fig. 3,

Fig. 3 Compensating Network

and the voltage response to & unit-step of cur-
rent is shown by Fig. 4, for various values of Q.



There is a unit impulse at the origin followed by
the exponential rise to the final value of unity.

This means that any network which has a transient
response to a unit-step function as shown by

Fig. 4 can be cascaded with a system having the
transient response of Fig. 2 to restore the origi
nal signal, which was a unit-step function at the
origin. Since the operational forms of the two
networks are reciprocals, it is evident that cas-
cading them produces an all-pass system with zero
phase shift at all frequencies. Since the net-
work has been compensated to restore one tran-
sient driving force, it will restore any other
driving forece.

[+]
@D

UNIT-STEP RESPONSE = Ala’
(4 [~}
> »

o
)

[s) | 2 3 4 L [
a = Wyl

Fig. 4 Unit-Step Response of
Compensating Network

If, in addition, a network is cascaded with the

above two which has a linear phase shift at all

frequencies and no selectivity, the result will

be an undistorted unit-step response but delayed
in time by an emount equal to the phase shift in
the delay system, at a given frequency, divided

by that frequency. In many applications such a

delay is permissible.

The network of Fig. 3 is quite simple and is

easy to construct. In a later section a general
synthesis procedure will be given which will make
it possible to synthesize any compensating tran-
glent.

Equalization of a Network to Obtain
a Degired Transient

1f a system has the unit-step response shown by
Fig. 2, it can be compensated to change the re-
sponse to a ramp function with arbitrary initial

slope. This compensating network is illustrated
by Fig. 5.
E‘* / —VA:\N;_)" o —o EI T
< (O >/
[ TIME 0 o TIME

Fig. 5 Compensating Network

By equation (1) the operational form of the in-
put signal is
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M) o & _1+s0 . (3
1+ s +s2Q
where @ = apt is the normalized time. The opera-

tional form of the ramp function is obtained by
taking the operational form of a linearly-
increasing driving force with slope 1/a and sub-
tracting another with slope -1/a but delayed in
time by a = a. The operational form of this out-
put response is

@) = 3 [1- o]

as

(4)

The operational form of the compensating network
is the ratio of the output operational form to
the input operational form, or

T(s)=1_'i'_3__+_Q5_2.[1-e'aS]
as (1 + Qs)

=%[1+%-1—i;][1-e'39] (5)

For an example of this type of compensation, the
curve labeled Q = 1 in Fig. 2 will be changed to
a ramp function of varying slope, as shown by
Fig. 6. The first case, a = 1.0, will cause the
curve to rige fdster than

o=l
w 1.2 - Aga)
2 Agla)
2 of 7 e
& 'or —_—— =
& I L L--aga) °

0.6
50 | IF
bod [1L0n!
- am IS
z =
> o4 %" ¢

02 /

0 3 3 4 & € Tt @8 § o

a = wyt
Fig. 6 Compensation to Give Ramp Function

the original signal, but the other two, a = 1.5
and 2.0 will decrease the initial rate of rise.

The inverse Laplace transform of equation (5) will
give the impulse response of the compensating net-
work. This is shown, for the three values of a,
by Fig. 7. There is a positive impulse of
gtrength 1/a at the origin, an exponential rise,
and a negative impulse of strength l/a at a = a,
followed by an exponential decay to the final
value of zero.

The integrals of the curves of Fig. 7 give the
unit-step response of the compensating network.
The three curves, for a =1, 1.5, 2.0, are shown
by Fig. 8; all start out at 1/a and rise exponen-
tially until oyt = a. At this point there is a
sudden drop of 1/a and an exponential rise to the




final value of unity. These curves mean that if
a network has the unit-step response shown by

n{a}

IMPULSE RESPONSE

Fig. 7 Impulse Response of Compensating
Network

Fig. 8, such a network will have just the right
amplitude and phase characteristics to campensate
the transient labeled Q = 1 on Fig. 6 and change
it to the remp function shown.
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Fig. 8 Unit-Step Response of
Compensating Network

To illustrate a more general solution, the curve
labeled Q = 1 of Fig. 2 will be compensated by
removing the first overshoot, leaving the rest of
the curve without change. The new curve will be
the curve QABCDE of Fig. 6.

By means of the convolution integral, an integral
expression for the solution can be obtained.
Thus, if Aj(a) is the original transient, A3(a)
is the unit-step response OABCDE of Fig. 6, and
if n(a) is the impulse response of the compensat-
ing network, we have by the convolution integrel

Q
Az(a) = f A(N) h(a - A)ah  (6)
o]

vhere the unknown function h{a - ) ) is in the
integrand.
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The interval up to point A of Fig. 6 was divided
into a number of equal subintervals (say 10) and
the response Aj(a) was tabulated throughout the
entire range at this interval. These points were
then tabulated on a strip of paper as shown by
Fig. 9. The unknown values of h(a - )\ ) will be
put on the second strip later as shown. When the
two strips are moved along until they line up at
a certain point a as shown (say a = 4) and the
corresponding points are multiplied across, the
resulting products are the successive points of
the integrand of equation (6). The Newton-Cotes
numerical integration formulas can be used to

T
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Fig. 9 Sliding-Strip Method
evaluate this integral.3-4
To start the solution it should be noted that the

curve of Fig. 6 is not to be changed for
0 £ a<1.2092. This means that in the solution
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Fig. 10 Impulse Response of
Compensating Network

for h(a) there is a positive unit-impulse at the
origin, as shown by Fig. 10, and nothing further
until a = 1.2092. At point A there is a negative
impulse of strength 0.5463 since there is a sud-
den change in the slope of the curve of this




amount at that point. Following the negative im-
pulse the curve decreases smoothly from the value
0.5463, which 18 the second derivative of the
curve for Q = 1 at a = 1.2092, to zero at the
point C. At point C there is a sudden change in
slope of amount -0.0891, and the second deriva-
tive is +0.0891, so there {s an impulge of this
amount followed by a smooth decrease from +0.0891
toward zero. Fig. 10 shows the final curve.

The initial part of the curve was obtained by as-
suming a power series expansion at a = 1.2092.
The Newton-Cotes numerical integration formulas
were used to integrate equation (6), with the un-
known ordinates of h(a - A\) of Fig. 10 appearing
in the formula. By setting up the integration
formulas for one tabular interval, and again for
one half the tabular interval, simultaneous equa-
tions were obtained for the unknown ordinates of
Fig. 10. Once the solution was started properly,
the ordinates were entered on the sliding strip
of Fig. 9. By using successively higher point
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Fig. 11 Unit-Step Response of
Compensat ing Network

formules it was then easy to extend the solution
point by point since there was only one unknown
ordinate in each formula. This sequence of steps
gave the camplete curve of Fig. 10.

The integral of this curve is the unit-step re-
sponse, shown by Fig. 11. Any network that has
this unit-step response will compensate the tran-
sient of Fig. 6 to give the corrected ocurve
QABCDE, if the original transient (Q = 1) is
passed through it.

D hesis of i

If a distortionless transmission line, as shown
by Fig. 12, is terminated st both ends with its
characteristic impedance, any pulse that starts
down the line will be propagated without distor-
tion and will not be reflected from the end. The
resistors Ry, Ry, R,, etc., are large compared to
the characteristic ance of the line and do
not load the line. When a unit-ste, of voltage
is applied to the imput, the output from resistor
Rg will be a step of voltage of height depending
on the value of It can be _pplied to the up-
per bus, labeled -, or the lower one, labeled +,
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by the single-pole double-throw awitch shown.

|
Seeft .
g POSITIVE _COEFFICIENTS ) -
A
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a . ~ COLFFICRNTS
out
+ +

Fig. 12 Terminated Delay Line

At the next point on the line the respomnse will
also be a step of voltage, delayed one unit of
time, and the height will be determined by the
setting of Rj.

By setting the successive R's and the polarity
switches properly, it is poesible to construct
any given transient as a geries of steps of volt-
age. The approximation can be made as good as
desired by taking enough steps or taps on the
transmission line.

5 ’ﬂ )””_—‘
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Fig. 13 Step Approximation

As an example, suppose the response of Pig. 8 1s
to be synthesized. As ghown by Fig. 13 the re-
sponse car be approximated by a geries of steps
0,1, 2, 3, ete. If tbe taps on the delay line
of Fig. 12 are properly chogen, and the resistors
and polarity switches are set properly, the re-
sponse of Fig. 13 can be approximated with as
steps as desired. Because of the limited
total bandwidth of the line the discrete steps
will tend to smooth out and s surprisingly good
approximation can often be obtained.

The oscillograms of Fig. 14 show geveral wave-
forms that were synthesized to show how the small
steps disappear. Figs. 14(a) and 14(b) show how
straight-line segments can be approximated. Care-
ful examination will show that there is a slight




irregularity along the sloping lines. Fig. l4(c)
shows how a pulse can be added in the middle of a
square wave, without producing appreciable ring-
ing anywhere else. Fig. 14(d) shows how to put
several irregularities in the center of the
square wave. Figs. 14(e) and 14(f) show how the
polarity of an added pulse can be changed merely
by changing the polarity switches of Fig. 12.

If the incoming signal, curve Aj;(a) of Fig.-6, is
sent through a tapped delay line that is adjusted

Fig. 14 Oscillograms of Waveforms

in accord with Fig. 13, the resulting transient
output will be the ramp function of Fig. 6, As(a).
In this method it 1s not necessary that the origi-
nal step function, or the network that produced
the response Aj(a), be available at the point
wihere compensation is applied. The delay line
simultaneously corrects the amplitude and phase

of the network to produce the desired transient.

Parallel Method of Compensation

If the original signal and network are available,

NETWORK
T0 BE
COMPENSATED

INPUT [ ouTPUT

LEVEL AND
POLARITY
SETTERS

Fig. 15 Parallel Method of Compensation

a tapped delay line can be used to compensate a
transient, as shown by Fig. 15. The error between

3L

the response of the network to the unit-step func-
tion and the desired response is computed. The
delay line is then adjusted with the circuits
shown by Fig. 12, to produce a unit-step response
corresponding to the compensation required. The
level and polarity setters are shown in the block
diagram of Tig. 15.
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(

0
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Fig. 16 Oscillograms of Trap
Compensation

Trap Method of Compensation

If a transient overshoot, such as that shown by
the portion of A1(a) between points A and C of
Fig. 6, is to be removed, a trap can be used to
ring at just the right time, with just the right
amount, to remove the overshoot.

Fig. 16(a) shows an oscillogram of the sweep re-
sponse of a low-pags filter, which is fairly flat
to cutoff but which has a transient overshoot, as
shown by the square-wave response of Fig. 16(b).
If two parallel traps are placed in _one or two of
the cathodes of the tubes in the amplifier stages,
or series traps are connected from the plates to
ground, the transient overshoot can be removed.
Fig. 16(c) shows the traps in place, but with the
Q's too high. Fig. 16(d) shows the traps properly
ad justed, and Fig. 16(e) shows the resulting tran-
sient response. The corner on the square wave can
be made quite sharp if the two traps are adjusted
properly.

The first trap is tuned to a frequency correspond-
ing to the duration of the first overshoot. The
L/C ratio is adjusted to match the impedance of
the filter so it cancels just the right amount of
overshoot. Since the cancellation will not be
perfect the filter will eventually start to ring
again. A second trap is used to cancel this sub-
sequent ringing. Additional traps can be used if
more precise compensation is required.



Conclusgions

1t is often possible to restore the original
driving force in a gystem if a compensating net-
work is used which corrects the amplitude and
phase of the system. The system may be a network,
or propagation paths, and may include transducers.
The resulting over-all response must have constant
gain at all frequencies and a phase shift propor-
tional to frequency at all frequencies.

When a given transient response is to be corrected
to give a different transient, a compensating net-
work can be used. If the transient is passed
through such a network it will modify the tran-
gient to give the desired output. The original
driving force and network need not be accessible.

If the original driving force is available, it can
be passed through a network in parallel with the
uncompensated network, to produce a correcting
transient response. The two outputs are then
added together.

When a low-pass filter has a transient overshoot
it can often be removed by placing rejection traps
in the filter at Just the proper frequency to can-
cel out the transient. Two such traps will usual-
1y give very good suppression of the overshoot.

All of these methods use passive networks only.
No diode clippers or other active elements are
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necessary to shape the pulse in the network. Rip-
ples can be added or subtracted at any part of the
transient. A very simple method of synthesis en-
ables the simultaneous correction of the amplitude
and phase of the network by turning knobs and
throwing polarity switches on a delay line.
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THE GROUP THROKETICAL ASPECT OF LINFAR FOUR-POLF THEORY

Wolfgang Gaertner
Signal Corps Fngineering Laboratories
Fort Monmouth, New Jersey

Summary - A few basic relations are derived
which show hov group theoretical concepts may be
introduced into four-pole theory. The possible
prospectives of the new approach are pointed out.

A. Introduction’

This paper is essentially a suggestive one.
Its purpose is to show how group theoretical con-
siderations may be applied to four-pole theory
which to the author's knowledge has not previously
been done to any considerable extent2. The new
approach to the well established field justifies
itself not only ty the results of its derivstions
but also by adding to the understencing and insight
and thus providing ideas and suggestions on how to
handle certain protlems. Furthermore it will be-
come apparent that group theory may introduce an
additional classifying principle into the extensive
field of four-poles. In some respects the problem
resembles the group theoretical approach to the
symmetry question in crystallography3. If we can
show that certain elements - in our case the four-
pole matrices - satisfy the group postulstes, all
the methods and theorems of group theory mey be
epplied to these elements.

The task of systematically treating fouwr-pole
theory on the basis of the group concept is very
big &nd in this short discussion we only want to
make the first step by actually deriving a few
basic theorems which vill serve as a starting point
for the whole development, We zlso restrict our-
selves here to passive four-poles.

B. Resistanceless Four-Poles in Cascade Arrangement

We start by considering the cascade arrange-
ment of linear resistanceless four-poles at a given
frequency.

THEOREM T.

The linear passive resistanceless four-poles

form a group G with respect to cascade arrengement.

We represent the four-pole by the matrix
4. B
C. D,

where for simplicity we assume B; and Ci # 0.
Equation (1) represents the following relations:

(1)
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\// ’41' Z -B/'/é‘
//=Ci 1/2-01' /2

The direction of the currents and voltages is as
indiceted in Fig. 1,
2

/,

20wl

2
Fig. 1

(2)

If we define the vector

(3)

end introduce the matrix

/0
M=1o -

The cascade arrangement of the four
«..+F, as indicated in Fig, 2

m
is described

& (s

1 /

(4)

poles Fp, Fo,

- ——

£

2

Y

Fig. 2

by the equation

Fy By - MLSS (5)

where the Fj
Since the Fj
sistanceless
that

stand for the matrices (1).
are to represent linear pessive re-
four-poles we have the requirement

*]
for any relation (2). Let us see of what form A,
B, C, and D must be to satisfy equation (6), we

know from an article by TELLEGEN and KLAUSSZ that
(6) is equivalent to

/‘?c[l/,/, i WA (6)



Vi=2.,/,
V=221

+ L i
*ZZZ /2

(7)
with Z11, Z22 imaginery end
>
= - 8
L, /2 ()
The asterisk (*) denotes the complex conjugate.
We may transforn(7) into (2) and find
. L 4
v, = ¥ Y /e
21 21
/ 7 (9)
N A
22/ Z-zl
where (2) stands for the determinant
Z// Z/Z
, real (10)

/2/ =
ZZ2/ 2Zzz
and we assume that Zp1 # O.

must have the general form

Te see therefore that F

A
C

F =C D (11)
C
with A/C, D/C imoginary, B/C real, C complex. (12)

These relations look & little different from the
usuel form since the reciprocity relation is not
assumed. To prove theorem I we heve to show that
the set of the matrices Fy form a group with re—
spect to multiplication, which means that they have
to fulfill the following postulates:

a) Every product of any two metrices end the squre
of every matrix is a member of the set.

b) The associative law holds: Fy(FcFp) = (FiFk)R

c) The set contains a unit matrix Fy for which Fu
Fi = F4Fy = Fj for every matrix of the set.

d) Every matrix of the set hes an inverse, Fx =F%
80 that Fin = FiFi- -Fu

Ve now prove these four postulates.
Proof of property a) If Fy and Fy ere elements

of the group then also F1 = Fi.Fx is also en ele-
ment of the group:

. é;.
/:} = ( /
,qu gf' (13)
F - x D
ol Cx D«
Bz
/j _ /4,1
4 Ce Do
F; end Fy have the same form as equation (11)
A4 B
F;=C; Ci C?
/ 25 (14)
cCr
=
F/(: C)( V.4 1.4
D« :
/ Cx (1)
where —A-'. ’ QL 5 Aﬁ 2 —D—K are purely
C; C; CK C‘(
imaginary, Bi and B are real, and (7, s

C: C

are cemplex. By multiplying equations

(14) and (15) we get

or

4 A B: A B B DA
C: Cx Cx C: Ce C Cx

(- - (17)
/:[ (:;C;( /1x [z. éi( Z)/ _425
Iy = 0o—+—
Cx C; Ce GCi 67/

where now
fﬂj
Ci
A

C

is real,

D«

=l is imaginary,

K C ~x (18)

is imaginary,and

is real

;
Ax
Cx
B«
Cx
If we now reduce equation (17) to the form of
equation (11), it follows that

b £
o [Ae  Di) [CrCe
Ee-CCK (CK +C,') D.l

(19)

/> A,
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and we see that in F

4_1 .A’A!+Q’ —A_“.,«-Q" is imaginary,
C.l C/' 6( C;' CK Cf

é‘_e = A; é’...@’.ﬁ /4".* Urlys real,
Ce C:‘(T; C Cuf |Ci C:

A( D,'
+

- is complex,

C K C /
Q’ é“+ Q’Q‘/ -/—K+ QI. is imagina
CTJf & (;'(:( I'd C;. ) o

Therefore Fj 1s an element of the group defined by
the invariance of (6).

(20)

Proof of property b) The associative law hdds
for matrix multiplication in general and need not be
demonstrated separately in this special cese.

Proof of property c) A unit element exists

/0
o /

/Cuz

(21)

such that

(22)

R F=FR £

and this is readily verified. Since (21) cannot be
put into form (11) the invariance of (6) has to be
proven separately in this case. (21) is the repre-
sentation of

S -rms., (V] [k

- 23
/ -/s (23)
the direct connection of the two pairs of terminals
4 o Ty /%
+ < 1 N
v, 7
[ e 4

Fig. 3

Proof of property d) For_ every element Fy there
exists an inverse element Fi~' such that

o A N

(24)

The inverse of 2 metrix

CI. DI. (25)

(26)

or Q,' Q' \

Y R - (27)

is imaginary,
(28)

is real,
is imeginary,

Therefore Fi'l belongs to the group.

The physical significance of the inverse element is
clear from Fig. 4.

—_————

|/;- “I/;—I equivalent to b L
: — ===
Fig. 4
Fith this the proof of theorem I is completed.

We notice that the group G is infinite and non-
commutative,

C. Passive Linear Four-Poles Containing Resistors

THEOREM II:

The passive ljinear four-poles coptaining re-

sistors do not form a group with respect to ecscade

arrengement.

We prove theorem II by a special example:

The general conditions for the Z matrix of a passive
four-pole are




2. m+im), ne/n'-L-J £’

nejn+L+0', my+Jm,'| (29
wwere 171, 2 0, M, >0, M,My-1°L'* 20 (%)
%e consider the four-pole

v m, n
= 1
n m, (31)
with 2
m, >0, my, >0, M, M- >0 (52
The corresponding F matrix is
m., . mum;-n’
F = n’ n (33)
1, Mg
n n
and its inverse
me- 5 - 1L
1 _ n n
F m mz_nz , ﬂ)_' (3/-0)
n n
Transforming back to the 2 matrix we obtain
7= T m,-h** M, me-117% | (35)
_n __m.
m, my-n*> m,m,-n?
or
Z-,’ MI N

N M, (36)

But here
M <0, M <0 (37)

in contradiction with the condition (30) for the
passive four-pole. Therefore theorem II is proven
since we showed that for a special case no inverse
element exists. Physically this is a very plausi-
ble result. It is impossible to restore the power
lost in a four-pole containing resistors by means
of & passive four-pole. The group theoretical
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treetment of the passive four-poles containing re-
sistors therefore has to be taken up together with
the active four-poles, after the resistanceless

four-poles are sufficiently investigated. For the
present purpose we consider the passive four-poles

_ [mjm! 5 nejn=2-y 2
z Nn+jn'sl+j2"s M, + )M, [(38)

as the sum of the matrices Zo + Z/?e's

= .[”,7' ,/f)if m‘.’{"_/"p’
Z J”*J,_/m, +ny—l)”£ 39)

the second of which is the zero matrix if the net-
work does not contain resistors. Then we divide
the passive four-poles into an infinite number of
classes containing infinitely many elements, each
class having one &and only one matrix Z, and all
the matrices Zpgg Which satisfy the conditioms for
passivity. This classification can still be workal
out in more detail. We chose the Z, as the repre-
sentatives of these classes and discuss in the fal-
lowing the group theoretical properties of these
regresentatives. In theorem I we have proven that
they form a group. Let us now consider its most
important sub-group.

D. Passive Linear Four—Poles
Satisfying the Reciprocity Relation

THPOREM II1:

The passive linear resistanceless four-poles
which satisfy the reciprocity relation form a sub-

group Gr of the Group G.

If we calculatelFilfron (9) we get
/F'/ = Z/Z
’

Lz
In the general case of passivity without resistors

we have
Z,,=-(4yn) = -~

(40)

Za, = Arjn = K* w
and (40) becomes
A
[Fi = - Zx (42)




where " is the complex conjugate of &KX . The re-
ciprocity relation for the Z-metrix requires that

L.,, =2Z,, (43)
or
K= -X*
(44)
oL is imagiﬁary end
//C//=/ (45)

All that we have to show in addition to what hasg
been showm in equations (13) through (28) is that
the combination of two elements

/L'/. and/-_,( for which
[ <7 [A) =/ (46)
gives also the value 1 for the determinunt
/‘4;7/ = /“;'3[:(// (47)

But it is a well known property of metrices that if

Fo = FrFa (48)
then
//—__e/ = /F,//Fx/ (49)
which with (46) proves (47).
The unit element
e}
;;/ = // (50)
[0/
also satisfies (45) and the inverse element
with the determinant
7 /
(A 7 (51)
N

exists. With this, Theorem III is proven.

So far we found that the group theoretical
treatment of passive four-poles containing resistars
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has to be taken up together #ith the active four=
poles, and that the pussive resistanceless four-
poles form & group of which the four-poles that
satisfy the reciprocity relstinn constitute a sub-
group. We may also point out that there are many
more relations among the four-pole matrices which
became spparent during the preperation of this
peper but could not be included due to limitations
in time and space.

E. The Ideal Gyrator

Now let us consider matrices of the general
form Fi, the determinant of which has the value

Ji --

Tris problem is of considerable interest since in
connection with net-work synthecsis the ouestion has
arisen, if the set of known four-pole elements is
complete and its investigation resulted in the dis—
covery of the ideal gyratord. Ve are going to de-
scribe hovi the problem is attacked by group theory.

<
%

X (52)

We know alresdy that four-poles vhich catisfy
the reciprocity relation form a group with the de-
terninant

/N

It therefore becomes obvious that there rust le =t
least one more element in addition to the clessical
four-poles which gives rise to a matrix of form
(52). To cut the discussion short we at once con-
sider the simplest case

K = K™

(45)

(53)
or ==/
//C’/' (54)
and yAR O B
T C 0
(55)
From (54)
- BC--y (56)
or /
6’:5 - (57
and the conditions for the passive Z-matrix
/
Z/z= -5 ) 22/ s~ )

C



VA 2 - (ié7'L/)7 I)

(59)
2?21 - /4?‘+J//7 (60)
x
21 12 B ‘E?JZ/
(61)
we fet / (62)
B = ~-
C
From (62) wni (27)
/
B- ¢ (s7)
it follows that B and C are rcal.
“e thur obtain an ~lement
L= ORY: (63)
1 i 0
S,
or its more femilicr T-matrix
0o -5 (64)

Z= s o

the iaeal vyrator.5

It c¢-n row be rhown thct for the realiation
of +he mrct renerel passive resistinceless four-
pole n~ additional element is required.

This is an interesting example which chows how
by purely group theoretical reasoning we are led to
a new four-pole element. One may expect that the
same procedure will leed to similar discoveries in
the fields of active four-poles and milti-poles in
general.

F. Illustrations of the Basic Principle

In the preceding ergument the basis for the
group theoreticel approach to four-pole theory wes
sketched and we now want to add a few examples of
how the whole structure of the set of four-pole
matrices mey be investigated and classified by
group theoretical reasoning.

THEORMM V2

The ideal gyrators enf the ideal transformers_form

a_sub-group G; of G.

The combination of two ideal gyrators Fy and
Fy vith the gyration resistsnces sy and 8y

- S - 0 S
/:f - ? F. = / ()

/ & /
5. 9 Se

)

(65)

gives

- /& @)
/:-[ S S« (66)

an ideal transformer of transformation ratio Si/sk-
The combination of an ideal transformer Fl and an
ideal gyrator Fp

r 8, Sm
mc o
N 0

(67)

gives
Si Sm
50 P
.:Sf ??rn ()

an iderl gyrator. The cescade arrangement of an
even nunber of ideel gyrators glves an jderl trans-
former of transf rmation ratio

Fr F = (68)

SJ 53
S; Se

(69)

whereas an uneven number gives an ideal gyrator of
the gyration resistance

S, - Ss '~S5 e (7)
52 ,54....
The inverse element for
0, 5, (1)




is

:;;

F/' 0

(72)

0
1
Si
The unit element

F. (73)

belongs to the group. It may be shown that there
erxists a sub-group of rational gyration resistance.
Further we see thut the ideal gyrotor transformer
sub-group is infinite and is the direct product
group of the cyclic sub-groups of order 2 generated
by each individual ideal gyrator with the gyration
recistence

0O S
/

5. 0
/0

o /

There are several more types of sub-groups of
Gg which were omitted in the present discussion.
We only went to mention one more:

F

i

F

(74)

(75)

F.* £,

THE IDEAL TRALSFORMER SUB-GROUP

Among the matrices with

[F] -1

we ecspecially consider the matrices of the form

(76)

a

0

F;‘ » a real, (77)

O
y
a

the ideal transformers the passivity of which can
be proven directly. We thus have

THEOREM _ Vs

The ideal transformers form a group Gt, which
is a sub-group of the gyrator - transformer sub-

group with the determinant |Fi] = 1 and thus sat—
isfying the reciprocity relation.

Proof:

L2

a, C)
Fr o= /
0, =
! (78)
o 0
S o /! (79)
= 79
A «
a,'d,( O
E‘ /L_/r- 0 / (30)
a; dx
We see that Gy is commtative.
The inverse element for
;: N ar o
“\o / (81)
a,
is
/
£ fa; © (82)
0O a;
The unit element belongs to the group. It czn be

shown that there exiscts a sub-group of ratinonal
traacformation ratio.

G. G

oncliding Remarks:

The preceding pcper may serve as a starting
point for & program of investigiting circuit theory
from the basis of group theory. After discussing
the passive four-poles and classifying them accord-
ing to the different sub-groups analogous consider-
ations will be applied to active four-poles and
<n-poles in general, as it is.felt that the group
theoretical approach may prove useful in system-
atizing net-work theory. At the same time con-
nections with the many existing theorems of four-
pole theory will have to be established, Finally
the frequency dependence of four-poles as reflected
in group theoretical lanpuapge will have to be in-
vestigated and evaluated with respect to thelr cau-
tribution to the general problem of linear circuit
synthesis,
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A MATHEMATICAL TECHNIQUE FOR THE ANALYSIS OF
LINEAR SYSTEMS

John R. Ragazzini and Arthur R. Bergen
Department of Electrical Engineering
Electronics Research Laboratories
Columbia University
New York 27, New York

Introduction

The spécification of a linear system
or network often takes the form of its re-
sponse in the time domain to a test func-
tion. A common test function is the unit
step or ramp function although there are
many cases where the input function is an
arbitrary function of time. In any case,
the determination of the response of the
system is a relatively straightforward mat-
ter involving the solution of a set of lin-
ear differential equations. However, while
straightforward, obtaining numerical val-
ues for the response as a function of time
is an involved and tedious task not read-
ily amenable to the use of desk calculators
and similar computational aids. The alter-
native has been to apply numerical methods
leading to numerical results which closely
approximate the actual solution.

The application of numerical methods
to the solution of linear differential
equations is not new!. It has also been
recognized that the program for obtaining
a solution can be described in terms of
operational procedures<’ What has
been lacking in previous work, however, has
been an interpretation of the methods being
employed in terms of the physical problem
as well as a simplified and orderly tech-
nique for setting up the problem by the
average engineer. By applying techniques
which were developed primarily for the an-
alysis and synthesis of sampled-data feed-
back control systems, this order and rela-
tionship to the physical problem can read-
ily be established. The technique of the
z-transformation*’S or pulse transfer func-
tion® has been employed to solve problems
in feedback control systems in which data
is being sampled at one or more points.
This established and direct approach is the
one which has been applied in this paper to
the numerical solution of linear systems.

The z-Transformation

In order to describe the z-transforma-
tion, reference is made to Figure 1 where
a time function r(t) is sampled by means of
a sampling switch S at equal intervals of
time separated by a time T. The output of
the switch r*(t) i1s a sequence of pulses
which may be represented for mathematical
purposes as a series of impulses or delta
functions whose areas are equal to the amp-
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litude of r(t) at the respective sampling

instants. Thus
() =% r(nD)s(t-nT) (1)
r*(t) = r{nT)é(t-nT 1

The Laplace transform of the pulse se-
quence 1is given as

s

n= -

r(nt) ¢NT8 (2)

It 18 noted that the Laplace transform of
such pulsed functions always is in terms
of € nT8 and it has become customary to
replace this exponential by a new variable
z = €T8 thus accounting for the name "z-
transform." A very useful characteristic
of these transforms is that the infinite
series given in equation 2 may usually be
expressed in closed form so that tables of
z-transforms can be constructed®’® in much
the same manner as tables of ordinary
Laplace transforms.

One of the most useful properties of
the z-transform is that it is possible to
obtain the pulsed output of a linear sys-
tem by expressing a pulse transfer func-
tion G*(z) which relates the input and
output z-transforms. Schematically this
is shown in Pigure 2 where the output c(t)
is sampled synchronously with the input to
give a pulse sequence c¢*(t). In terms of
z-transforms, this relation is expressed
as .

c*(z) = w*(z) R*(z) (3)

It i1s readily shown that W*(z) must be the
Laplace transform of the sampled output
c*(t) when the input r(t) 1s a unit im-
pulse. The pulse transfer functions W*(z)
can be expressed in closed form and tdbles
of such transforms are available in stand-
ard works on sampled data systems>’®, An
abridged table is given in Table I. Thus,
the process of obtaining the transform of
the pulsed output of a linear system sub-
Jected to a pulsed input is exactly anal-
ogous to that for continuous systems em-
ploying the ordinary Laplace transform.

To obtain the output pulse sequence in

the time domain, the z-transform C*(z) can



pe inverted by contour integration, by ref-
erence to available tables or far more sim-
ply for the purpose at hand, by a process
of simple long divislon. This will be de-
monstrated later in an 1llustrative exam-

ple.

Feedback systems can be treated by
this technique by deriving relationships
between the pulsed input and pulsed output
for various configurationss. One such con-
figuration which is of particular value to
the application being discussed in this pa-
per 1s shown in Figure 3b. The relation
petween the z-transform of the input and
output 1s given by:

c*(z)= Ra*(z) (%)

1 + HBG*(z)

where RG*(z) signifies the z-transform of
R(s)G(s) and HBG*(z) the pulse transfer
function corresponding to H(s)B(8)G(s). It
1s noted in passin that the z-transforms
corresponding to R%S)G(B) or H(s)B(s)G(s)
are not equal to the products R*(z)G*(z

and H*(z)B*(z)G*(z) respectively. The
whole transform R(s)G(sg or H(s¥B(s)G(s)
must be looked up in the tables. Inversion
of equation 4 yields the sampled output
time function in response to an input r(t).

Application of Method
To Continuous Systems

The application of the z-transform
technique to the transient solution of a
linear continuous system will be 1llustra-
ted by applying 1t to feedback systems since
this is where the most saving in complexity
occurs. The technique used is to replace
the continucus system shown in Figure 3a with
the sampled model of Flgure 3b whose re-
sponse adequately approximates the actual
response. The system 1s assumed to be low-
pass so that the output c(t) or ¢_(t) con-
tains but few high frequency comp nents.

The output is sampled Dby S at a frequency
which is high enough to cause the error in-
troduced by the model to be small. This
requires a choice of sampling frequency at
least twice the highest frequency component
expected at the output.

It is assumed that the frequency at
which the systenis frequency response 1s
down approximately 40 db marks the highest
expected output frequency. At this fre-
quency, only the forward gain need be con-
sidered. Therefore, as a general rule the
sampling frequency should be chosen such
that 1t is at least twice the frequency for
which the forward galn 1is down approximate-
ly 40 db.

The output c(t) in Figure 3b which 18
fed back to the input through the switch S
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is a pulse sequence at the point x and
bears little resemblance to the output
which is fed back in the actual system.

To reconstruct more closely the actual
function fed back, an element B 18 intro-
duced. B can be chosen to reconstruct

the original fed back function to as high
a degree of accuracy as desired. However,
to prevent undue and generally unwarranted
complexity a simple element is introduced
which reconstructs a polygonal approxima-
tion to the actual function by converting
each pulse into a triangular generating
function as shown in Figure 4. This tech-
nique2’3 can be represented by a block
described by a transfer function B(s).

The requirement on B(s) 1s that its re-
sponse to a short pulse or, in the limit,
an impulse of the same area, be a trian-
gle as shown in Flgure 5a. Such a re-
sponse is not physically realizable since
jt 1s initiated at a negative time but
this is of no concern since the model 18
only mathematical in nature. The combina-
tion of the sampling switch operating syn-
chronously with a period T and the triangle
function generator B replace the direct
connection which existed in the actual sys-
tem. Any errors 1in computation resulting
from use of the model are caused by the
failure of this combination to faithfully
reproduce the output ¢(t) in the feedback
line.

The transfer function of the triangle
function generator 1s obtained by taking
the Laplace transform of the triangle time
function in Figure 5a. It 18 observed by
referring to Figure 5b that this impulsive
response 1s the sum of three ramps, one
advanced by the sampling time T and having
a positive slope of 1/T, the second, a
ramp at the origin having a negative slope
of 2/T and third, a ramp delayed by a
sampling time T having a positive slope of

1/T. The Laplace transform of these three
components 1is
B(s) = —-e'® - 2 41 T8, (5)
Te? Ts? Te?
which becomes
Ts _ma . 2
Bls) = 5= (1 - °°) (6)
Ts

The Laplace transform of the loop
gain of a feedback system or the cascaded
gain of an open loop system 1s the prod-
uct of the transforms of the various com-
ponents. Applying the z-transformation to
these components as indicated in equation
4 18 an operation which ylelds the pulse
transfer functions for which tables are
available. For transforms which contain
only powers of 8 and exponential terms




such as those in equation 6 the z-transfor-
mation 18 quite simple as shown by refer-
ence to Table I.

Thus, Aif it is desired to obtain the
response of a feedback system such as that
of Figure 3a to a test function whose La-
place transform 1s R(s), the first step 1s
to replace it with a model as shown in Fig-
ure 3b. A choice of sampling frequency T
is made using the guides previously de-
scribed. The pulse transfer functions
RG*(z) and HBG*(z) are then computed. These
will generally be 1glthe form of a ratio
of polynomials in z ~. To obtain the out-
put of the model system at sampling in-
stants, substitution is made in equation 4
and an inversion of the output z-transform
Cc*(z) is carried out. This may be done
using standard inversion theorems but for
this purpose, it 1is far more useful to first
expand Cc*(z) into a power series in z by
long division. C*(z) is then in the form

-2 -2

-3
*
c*(z) = co t ¢z +e,z o +c,2z

-4 -5

n
z + CgZ

(7)

+ c +...cnz +..

4

The magnitude of the output of the model
system at sampling instants is simply the
coefficient of each of the terms in the ex-
pansion at a delay corresponding to the in-
stant in question. As an example, the out-
put at the fifth sample time 1s c4 in eq-
uation 7.

Since the z-transform of the output
pulse sequence C*(z) 1s the ratio of two
polynomials in z, the process of expansion
of C*(z) 1into a power series in z 1is car-
ried out by long division. This may be
done either by hand or by means of a desk
calculator. The process may be terminated
whenever the desired number of points is
obtained. This procedure is clarified by
means of the illustrative example which
follows later. An important advantage
which results from this method of inversion
is that it 1s unnecessary to obtain the
roots of the denominator of C*(z) or C(s).
This 1is generally the most time consuming
operation in the inversion procedure for
higher order feedback systems. On the other
hand, unless extensive tables of z-trans-
forms are available, the roots of the in-
ternal transfer functions G(s) and H(s)
must be found. In feedback systems, this
is only a minor problem since the linear
system generally consists of decoupled com-
ponents having relatively simple individual
transfer functions. In obtaining the re-
sponse of linear networks whose transfer
functions can be expressed only in terms of
higher order polynomials, however, the prob-
lem of obtaining roots still remains.
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Illustrative Example

To 1llustrate the application of the
technique, the response to a step func-
tion of the system shown in Figure 6a will
be computed. Following the rule of se-
lecting a sampling frequency at a value
where the forward gain is about -40 db the
convenient value of 1 sample per second
is chosen. The forward gain is -30 db at
this frequency. The sampling switch and
triangle generator next replace the direct
feedback path of the actual system as
shown in the block diagram of the model
in Pigure 6b. The Laplace transform of
the sampled output, C*(z) 18 related to
the input by the z-transform relationship
given in equation 4. The numerator of
this expression, RG*(z) is the z-transform
corresponding to the Laplace transform,
R(s)G(s):

"(z) ad|—1 | %L __1_[(s
ronte) j[szum)] 5[3 s(s+1)J()

From Table I this becomes (for T = 1)

-t 2-1(1-6-1)

(1-z7%) (1-¢7*z7%)

RG*(z) = (9)

1-z-*

which upon substitution of values and sim-
pPlification becomes

z=* | 0.3679 + 0.2642z1
1-z7* (1-z7*)(1-0.3679z"%)

RG*(z) = (10)

Similarly, the term HGB*(z) is the z-trans-
form corresponding to the Laplace trans-
form H(s)G(s)B(s):

HGB'(z)iESIEEEil:E:Elf—J

s%(s + 1) o

which from Table I simplifies to

"(z) = 2(1-27)% Z|Ly - L __
HGB* (z) = z(1-z )3[;3 s=<s+1)](12)

which with further application of Table I
and with the substitution of numerical val-
ues becomes

HGB* (z) = 9:1321 + 0.4198z™+ 0.08022"2

(l-z_l)(1-0.3679z-1)

(13)
Substituting the individual components from



equation 10 and equation 13 into equation
4 and simplifying, the z-transform of the
output sequence becomes

c*(z) = (14)
0.36792 " + 0.2642z "
1.1321 - 2.0802z"% + 1.3962z~% - 0.4481z~

It is recalled that this expression
4s the Laplace transform of the output C
taken at sampling instants only. Inversion
of equation 14 ylelds the values of the
output at each sampling instant. This is
most conveniently done by expandigg equa-
tion 14 into a power series in 2z by means
of simple long division. By carrying out
the long division with the aid of a desk
calculator, the z-transform of the output
pulse sequence 18 obtained:

c*(z) = 0.3250z >+ 0.8305z~% + 1.12527°

+ 0.97182"7

PO (15)

+L17212°+1.094z7° + 1.0111z~°

The inversion of this expression into the
time domain is simple since the heights of
the output ordinates of the time function
at each sampling instant is the coeffi-
cient of the corresponding term in z-D.
These ordinates are plotted 1in Figure 7.
For purposes of comparison, the curve for
the actual response obtained from the
exact solution of the differential equa-
tion is also plotted. Correspondence of
the two results in no case exceeds two per
cent at sampling instants where both func-
tions are accurately known.

It is to be noted that the example
worked out above 1s a simple one which
might be solved just as well without re-
course to numerical methods. However, even
this simple case demonstrates that at no
time was it necessary to solve the charac-
teristic equation of the overall system for
i1ts roots and that the operations involveu
are all simply handled on a calculating
machine. The use of z-transform tables
furthermore makes procedures used in solv-
ing the problem analogous to those normally
employed in solving similar time domain
problems.

Arbitrary Inputs

The previous discussions centered
about those cases where the laplace trans-
form of the input function, R(s), is known
explicitly. Often, the input function 18
not so avallable but is given merely as an
experimental curve or number series repre-
senting a curve which is not readilly -
place transformable. In that case, the
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procedures outlined previously can be
applied directly by using the number 1t-
self or sampled sequence 1n place of
R*(z). PFor instance, if an arbitrary
function designated by r(t) were applied
to the system, then the transform of the
gampled function, R®(z) would be merely

R*(z) = r(o) + r(T)z”t + x-(2'l‘)z-2

+ ... ram)z™ + ... (16)

This cannot ordinarily be expressed 1in
closed form but would be carried as a
number series with as many terms as de-
sired in the expressions for the output
sequence transform.

For use in such cases, the computa-
tion models which more conveniently apply
are shown in Figure 8 for the open and
closed circuit cases respectively. The
triangle function generator 1s B(s) as
before. For the feedback case, the loca-
tion of the sampler and triangle generator
shown here is not as desirable as that
used with systematic inputs. The reason
18 that it is desirable, from the viewpoint
of accuracy, to place the sampler in a po-
sition where the high frequency content
of the time function 1s minimal. In the
case of low-pass feedback systems, this
generally occurs at the output of the for-
ward transmission path. Nevertheless, the
error introduced by the high frequency
components of the sampler can be minimized
by proper cholce of the sampling frequency.

For the cases shown in Flgure 8, the z-
transforms of the output c*(t) are given
by

c*(z) = Ba*(z) R*(z) (a7
and

c*(z) = __Ba*(z) Rge(y) (18)

1+HGB* (z)

respectively. It is noted that R*(z)

appears here as a separate component and
that it can be 1inserted independently as

a power series in z-! of the form given in
equation 16.

Computation Errors

One of the problems common to numer-
i1cal methods 1is that of determining the
error introduced by approximating a dif-
ferential equation by a corresponding dif-
ference equation. In cases under dis-
cussion, this resolves jtself into the
problem of ascertaining the error in the
results introduced by a specified sampling
frequency or, conversely, the determination




of the sampling frequency required to ob-
tain a specified error. Explicit solutions
for sampling frequency to obtain a speci-
fied error are not, in general, known. How-
ever, an approximate error can be easily
obtained for various specific system con-
figurations, using the techniques previous-
ly described. As an example an expression
for the error in the system of the 1llus-
trative example will be derived.

The definition of error can be best
understood by referring to Figure 9. Es-
sentially, the difference between the out-
put of the actual system and model system
18, the computation error. The Laplace
transform of this error is given by

& (s) = c(s) - Cm(s) (19)

The Laplace transform of the sampled out-
put of the model, C#(s) can be expanded
into an infinite series®

Ll

Cm'(s) = %;

This approximation holds for the system
considered here because the contributions
of other than the central term of the ser-
ies, C(s), are small, since the sampling
frequency is chosen to be high compared to
the pass band of the system.

(s) (20)

1
N o
Cn(s+njw°).~ T Cm

Substituting the central term only in
equation 19, there results for the system
error

(21)

E(s) = a(s)R(s) _ R(s)G(s)
1 +6G(s) 1+ %B(B)G(s)

Simplifying this expression, and making use
of the fact that G(s) and B(s)a(s)/T are
approximately equal,

[ B(s) - 1) [6(s) J°R(s)

E(s)= =
[1 +a(s))

(22)

The triangle function generator transfer
function B(s) is given in equation 6 in
terms of exponential operators. If these
exponentials are expanded into a power ser-
ies, equation 22 becomes

T*s

36 : w(s)c(s)+...

Es) =~
(4]
(23)

TE™ w(s)c(s) +

where W(s) represents the overall trans-
mission function,
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(24)

W) = G(s) _

1+G(s)

Consistent with the approximation made in
equation 20 only the first term of equa-
tion 23 need be considered. Thus a model
for obtaining the approximate computation
error in a low-pass feedback system 1s
given in Figure 10. The output of the
triangle function generator, Cyp(s) 1s a
polygonal approximation of the actual out-
put C(s) and, for purpose of error compu-
tation, differs from it only negligibly.
Thus, it may be stated that

c(s)=~c*(s)B(s) (25)

The Laplace transform of the error func-
tion then becomes

& ()5 I5" B(s)u(s)c (s) (26)
Eo(2)2 5 (z-2-27") C*(2)W*(2) (27)

where W*(z) 1is the pulse transmission func
tion of the system.

Now if the original problem being
computed was the response of the system
to a unit step input, W*(z) can be found
with acceptable accuracy by obtaining the
first back difference of the approximate
output already computed. While a delay of
about one-half a sampling interval is in-
troduced this is readily eliminated by
shifting forward the first difference by
one-half a sampling interval. Thus,

we(z) 2221 (1-2"%) c*(2) ] (28)
T m

If this technique 18 applied to the
illustrative problem given previously, the
value of the error at sampling instants is
shown in Figure 7. The error can be com-
pared to an exact computation of error and
it 1is noted that the results agree closely.
At least insofar as the illustrative exam-
ple 18 concerned, the general rule of samp-
ling a low-pass system at a frequency at
which the forward transmission is down ap-
proximately 40 db is a good one leading to
errors in the order of a few per cent.

Conclusions
The physical interpretation of numer-

ical techniques for obtaining solutions
described by linear differential equation



18 a fruitful one. It leads to an under-
standing of the effect of the sampling
procedure on the solution. In additlion,
the expression of numerical techniques in
terms of the z-transform leads to a solu-
tion in terms of & sampled-data system
analogous to the original continuous sys-
tem. These sampled-data systems have been
studied extensively and are in a state of
development which makes their use by en-
gineers a straightforward procedure. Thus,
the numerical solution of the output of
linear systems in response to elther sys-
tematic or arbltrary input functions is a
practical process comparable to convention-
al transform methods.
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Introduction

The analysis of linear time varying systems
is inherently more difficult than the analysis of
constant coefficient systems. There are two
reasons for this. In the first place the response
of a linear time varying system is a function of
two variables, namely the time at which a distur-
bance is applied, and the time at which the
response is measured. This is contrasted to a
constant coefficient system when the response is a
function of only one variable, the time difference
between the application of a disturbance and the
measurement of the response. In the second place
the response of a linear time varying system must
usually be described by more complex functions
than the exponential functions which describe the
response of constant coefficient systems.

The pencil and paper analysis of linear time
varying systems is usually ruled out because the
complex functions which are required to describe
their response are either not known or not tabu-
lated. For this reason and because of time con-
siderations the analysis of linear time varying
systems is usually performed upon an analog com-
puter. While the computer eliminates the diffi-
culties associated with complicated functions
required to describe the response, it does not
overcome the added complexity involved because the
response is a function of two variables. 1In this
paper we will describe a technique which may be
used to instrument a linear time varying system
upon an analog computer which to a certain extent
reduces the complexity associated with describing
a system response which is a function of two vari-
ables.

The Analysis of Linear Systems

There are two basic methods of analyzing
linear constant coefficient systems. The first
method uses the steady state response to a sine
wave of various frequencies to describe the system.
The second method uses the transient response to
an impulse or step function to describe the system,
Cnce either of these characteristics is known the
response of the system to any arbitrary input may
be determined.

Either of these techniques may be used to
analyze linear time varying systems. However, the

transient response method is by far the simplest
when an analog computer is used in the analysis.
There are two reasons for this. In the first
place the frequency response of a linear time
varying system is a function of time. If the
response of the system is to be analyzed at more
than one instant a variety of frequency response
curves is necessary. In the second place an
analog computer operates in the time domain

and the obtaining of frequency response character-
istics, while possible, represents a long and
tedious procedure. In addition frequency response
curves cannot be operated upon by the computer for
further system analysis.

The transient response method for linear time
varying systems lends itself quite readily to an
analog computer hecause a time varying system
usually appears to be in the transient state. In
addition the impulse or step function responses
which are used to characterize the system are
functions of time and can therefore be operated
upon by the computer for further analysis.

The analysis of a system usually reduces to
determining the response of that system to arbi-
trary driving functions. The response of the
system to initial conditions can be obtained by
solving for appropriate equivalent driving func-
tions. If the response of the system to an
impulse is known, we may determine the response to
an arbitrary input by using the convolution inte-
gral. Let h_l(t,tl) be the response of the system
at time t to an impulse applied at time t,. The
response 8, to an arbitrary driving function of
f(t) is obtained froml o

oo
Eo(t) = ff(tl)h_l(t.tl)dtl
(-]

Here f(tl) has been assumed to be a nonstatistical
function., In the case where we have white noise
input with spectral density W,, the standard devi-
ation of the output (o) _may also be obtained from
the weighting function.2 )

-
d'z(t) = 1/2 Iwo(tl)[h_l(t.tl)]zdtl
(]

In practice, we generally use normally dis-
tributed noise since in this case the probability



distribution of the input is not changed by the
system and the response may be described by two
simple parameters, the mean and the standard devi-
ation.

1f we attempt to use an analog computer to

perform the above mathematical operations we run
into some difficulty. The reason for this is that
the integrating procedures described above are
with respect to t,. the time at which the fmpulse
is applied. If our system is simulated upon the
computer and an fmpulse introduced, the resulting
weighting function is a function of t, (the time
of measurement of the response) for s particular
value of t,. The computer could be operated 8
number of limes always introducing the impulse at
a different time t, and measuring the response at

a particular value of t. The weighting function,
q}t.tl) could then a determined point by point for
s particular value of t as a function of - This

procedure is long and does not allow the computer
to perform the integrations described in Equations
(1) and (2), except on 8 greatly expanded time
scale.

The analog of a lineer time varying system,
therefore, does not provide us with the desired
weighting function for easy system analysis. More
desirable would be a system which provides us with
the impulse response as a function of the time at
which the impulse is introduced. This new system
is called the adjeint system, and its validity and
fnstrumentation have been described by Laning and
Battin.3

we will show how the adjoint system can be
synthesized from the original system from the
block diagram, using relations between various
weighting functions. Long mathematical argument
is avoided, so that the physical nature of the
problem becomes more apparent. A short appendix
contains a discussion of the mathematical aspects
of the problem, but this material is not necessary
to the development.

ggm_a_eummwmummm

We will need the relations developed below in
the sections to follow.

In the transient analysis of constant coeffi-
cient systems one is usually concerned with the
response of the system to fmpulses, steps, ramps.
etc. Because superposition applies. it may easily
be shown that the response to a step is the time
derivative of the response to a ramp. In addition
the response to an impulse is the time derivative
of the response to a8 step. Similar characteristics

may be shown to apply to linear time yarving
systems,

we call the response of a system to an im-
pulse or any of its derivatives or integrals,
"weighting functions”. We first consider the

system shown in Figure 1. (u(t) is the unit step
function).
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Ramp Response

Combining two ramps of magnitude 1/at, and
separated by Atl. we have the result shown in

Figure 2.
i
b —-—_-—-—— - — == —
!
S GRS l >
t t+at,
8, - ’ bt ) - h (T 4at)
LA —_—— —_— ——
ot
— - — '
Figure 2

Step Response

Now we go to the limit as Ati’o. The input in
Figure 2 then becomes 2 unit step. and if we call
the response to this ho(t.tl), we have

iahl(t.t!)
Aty

)
ho(t.tl) = -

Similarly. (4)

2

- holt.ty) = d hp(t.ty)
h_y(tty) = - holtetl) =3 U0l

2ty 2 2

|

It is interesting to note these derivative
relations between the weighting functions are all
with respect to t;, the time at which a distur-
bance is applied. These relationships apply to
all lipear time varying systems. It would now
seem reasonsble to look for some relationship
between the weighting functions which is particu-

lar to the system to be analyzed. If this can be

done we may then formulate a differential equation
with the desired impulse response as the dependent
variable and the time at which a disturbance is




applied, t), as the independent variable.

Also of interest is the response of a time
varying gain element to impulse and doublet
functions. We have summarized the results in
Figure 3. The result in Figure 3b follows from
Figure 3a, if we differentiate input and output
with respect to t,, a procedure Justified by the
superposition property of linear systems.

8‘*‘%’ > —[fh)J—%»«— f(n)S(r—T”
(@)
587 8(1-7,) —)—Ff‘)]—#f'(fl)S(?-f’) -
' - #1118 (+-1)

(b)
Figure 3
Impulse and Doublet Response
Time Varying Feedback System

Consider the feedback system shown in
Figure 4,

Figure 4
Time Varying Feedback System

Here 1/p is the transfer function represent-
ing integration. There are two integrations in
the above loop and the system in general would
have two initial conditions. Let us determine the
driving functions which are equivalent to a unit
initial condition at point (B) at time t).

Suppose we have a § function at time t) at
the input:
(5)
ei(t) = S(t-tl)

It is easy to see that this particular input will

LN

give an initial condition of magnitude £(t)) at
point (A) and nothing at point (B)

Next consider a doublet at the input:

6(t) = g -1 6)

The output of the f(t) block is
(1)) g (t-ty) - f'(tl)é(t-tl)

The input (6) produces an impulse of magnitude
f(tl) and an initial condition of magnitude

-f'(t]) at point (A). The impulse continues
through the circuit to produce an initial condition
of magnitude Kf(tl) at point (B) and magnitude
-f(t)) at point (A). The input required to produce
a un}t initial condition at point (B) alone can be
made up of a combination of (5) and (6) in the
following manner.

S (1)

-1'(1,)-1(1,)

e  E——

Figure 5
Effects of Impulse and Doublet

To obtain the desired unit initial condition at
(B) we need. referring to Figure 5, an input of

1
RTTE,T 6'(t-tl). But this places at point (A)
the initial condition:

') _ 1. 1000,
Kf(ep) kK fp)

Now this can be cancelled if we introduce a Y
function at the input of magnitude

1 £'(1)) ]
£t [.§(1+?TEI§") .

Therefore, the total input required to place a
unit initial condition at (B) is

M
1 1 £0)) oo
8= KT(tD & t-t + g ¢ () ) 8(t-t))

The response due to this input is



(8)
h_p(t.t)) Aoty i)

¢ Kf(t,) k(e ket ”

ot l(t.tl)

A gecond and different way to put s unit
{nitial condition at point (B) is to introduce a
unit step function as shown in Step 1 of Figure 6.

STEP |

ui??)
_ A
?-{f(?)1 ?’Jb’}TIK} {B' é)T.
L < ] I
L - J
TEP ult ?I)
r | + |
»— (same) —eO>
-? S - 'lu(?t)
3{# :l
L ‘ J
STEP 3 ult ?l)
—ult-1) F————————— ———— "
! > (same) } O
Q> 7 4
. <
u(?-?l)- ho"") J
Figure 6
Second Input to Put Unit at (8)

This input can be moved around the loop as in
Steps 2 and 3 of Figure 6 without changing the
output. The net respoase, as shown in Step 3 is

9)

e, u(t-ty) - ho(l.ll)
Now, since this response (9) is due to a unit
initial condition at (B). as was (8)., the two can

be equated. We call this the method of equivalent
inputs. The resulting equation is
(10)
hoo(t.ty) . "-]“"l) LI ) "-1“"1)
Kf(t)) Kf(tl) K;z(tl)

u(l-ll) - "o("‘l)

or, collecting terss (11)

1 2 n_jlt.ty) (e, ty)
e K2t _l__L + 1 1/ « "o“"’l)
1 () Kf(t,)

U(l"l)

We note in passing that (10) gives a relation
between weighting functions, which can be used to
find & third when two are already known. Now,
differentiating with respect to t, and letting to
be the time of observation, (11) becomes
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JL 22 (g » (0
K;:T =12l )+ & _—{"-l“&‘])‘]
1 ity oy Lrce))

- h-l(‘2"l) = - 6(‘2"l)

This is a differential equation with the impulse
response function as the dependent variable and
. the time st which sn impulse is introduced as

the independent variable. The time of observation
to is a parameter of the equation. In order to
put (12) into s form suitable for computer instru-
mentation, we mske the change of variasble,

t = tz-ll

where t is real computer time. Then (12) becomes

2
O [ n_1(ty.tg-t) _
= 2? [:"f(t‘ 3) ] Ol [—l—“h' Ligtart.
2" K3t L f(e,-1)

+ "_1“2~‘2"’ = §(0)

A block diagrass of this equation is shown in
Figure 7.

"_n('p'z'”'\

8in e I P
e ! g L L L
<
< _J
Figure 7
Block Diagram of Adjoint
And, rearranging, we have finally the block dia-
gram in Figure 8.
h-lﬁz,?z-?)
Sin 1 .
>>—{gx W (]
] \
1
,______———_——-—4 \
Figure 8

Adjoint Systes




Comparing Figure 8 with Figure 4, we note the
following:

1. The order of elements around the loops is
reversed.

2. The time varying element in Figure 8
starts with the value f(t,) which was its final
value in Figure 4. The argument, (t5-t), decreases
as time goes on.

3. The positions of system inputs and outputs
are reversed in the two figures. The inputs to
both systems are impulse functions.

4. There is available in the system of
Figure 8, the function h_ (t .t2-t). This is one
of the weighting functions, but measured at t =t
for varying time of application of the impulse.
This is a function which can be used in the way
described in the introduction to find the résponse
to a general input, or the mean square response to
a statistical input.

The properties listed above are those of the
adjoint system described by Laning and Battin.3
The adjoint, therefore, has then been arrived at
through a physical argument., A mathematical
discussion of the adjoint and an example of the
method of drawing the block diagram for an adjoint
system will be found in the appendix.

It is interesting to plot representative
weighting functions produced by the two systems,
the original, Figure 4, and the adjoint, Figure 8.
These might be as shown in Figure 9.

htt,1) h(t,,1,-1)
hit, 1)
Originol  System Adjoint System
Figure 9

Typical Responses of System and Adjoint

Conclusions

The method discussed has led to a development
of the adjoint system by a physical argument,
avoiding the discussion of Green's functions and
the like. It may, therefore, provide more physical
intuition in understanding the adjoint system. The
Equation (10) can be used to find other weighting
functions graphically from ones already computed.

The system used for illustration of the
method can be changed to fit specific problems.
However, the adjoint system can be drawn immedi-
ately, and the counterpart of Equation (10) found
from it.

The authors wish to thank R. K. Roney of
Hughes Aircraft Company for his part in discussions
relating to this work, and Barbara Pudewa for her
help in preparation of the manuscript.

Appendi x

It has been shown3 that the adjoint system may
be used to obtain the weighting function for a
linear time varying system as a function of the
time of application of the impulse. In this
appendix we will show for a simple system how the
adjoint is obtained from the block diagram; how
the equation for the adjoint system is related to
that for the original system; and how the solu-
tions of the two system equations are related.

Let us consider the servo with varying gain

shown in Figure 10. The input is an impulse

function at time tl.

o g f i}y

l

|

— <

Figure 10
Time Varying Serxvo

The equation describing this system is

L N IO e
K t dt
o
The system could be simulated as shown in
Figure 11,
Kof
St1-1) 6
.o

]
<

Figure 11
Computer Block Diagram for Figure 10



In Figure 11, we define the impulse response as

9°(t) = h_j(t.t))

Now the adjoint system is found from the original
by:

1. Turning each element in the loop around.
and reversing the direction of signal flow.

2. Letting the variation of time varying
elements start from some time t,. and run backwards
relative to their action in the“original system.

4. Interchanging the input and output of the
system. The new input is §(t). We will show that
the output is h_l(tz.tz-t).

Following these rules, we have in Figure 12
the adjoint system for Figure 11. We will call
the impulse response of this new system Go(t).

KO(TZ-T)

8 (n Y
g <
L >— -'r\-\|> j

L~

Figure 12

Adjoint System for Figure 11

The equation for the system in Figure 12 is

(14)
d _1_ @6 (t)
(v - 6,(t) = dt[l(o(tz-t) 0
we change variable, x = to-t, Oo(tg-x) =
) (x.tz). and (14) becomes
o ~ (15)
1 r) = -
) g_;[k_o_;eo(x.zz)] +8_(x,t) = 5x-ty)
This equation is the adjoint® of
(16)

1] d = -
Wx & hop(xty) + h_(xt)) = S (x t)

* The adjoint equation is obtained by replacing
each operator
¢ s by " £ G0
n > ax" y &= i;ﬁ n'X

where we have used h_l for the solution since the

equation is the same as (13). Now a property of
the solutions of a pair of adjoint equations like
(15) and (16)* is (under certain conditions on
initial values which are satisfied here)

CIRE AR RIEEIRTE S 2V

so that
Qo(x. '.2) = h-l(tZ' x)

or

Go(tz-x) = h_l(tzn x)

Now, letting x = t,-t, we have

90(") = h_l(tzctz-‘)

which is the desired result.*®
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INTERCONNECTION OF LINEAR TRANSDUCERS*

Herbert Kurss
Microwave Research Institute, Polytechnic Institute of Brooklyn
Brooklyn 1, New York

Summa;x

The analysis of a network whose internal
structure is that of a linear graph is well known.
In particular, the elimination of hidden meshes in
a mcsh analysis or hidden nodes in a nodal analysis
has been amply discussed. The point of this paper
is to extract and extend the alrebra involved and
thereby scolve more general problems such as the
interconnection of multiport linear transducers
where the linear graph characterization is either
invalid or irrelevant.

As a preliminary the framework of trans-
ducer theory is outlined. (Figure 1). The novel
feature beyond the customary treatmentl is the
partitioning of the analytical variables into two
sets suggestively denoted as concealed variables
and accessitle variables. Whereas the transducer
constraints are imposed upon the entire assemblage
of analytical variables it is only the accessitle
variables which directly participate in determining
the observables?. The natural occurrence of con-
cealed variables and indeed the motivation for the
accessible-concealed terminology is illustrated by
the interconnection of transducers. (Figure 2).

It is essential,at this point, to develcp
methods by which one can modif'y the constraints
and variables of a transducer in an unobservable
manner. In particular those methods (Figure 3)
which exploit the aforementioned partitioning are
accorded special attenticn. The discussion of
these latter methods was previcusly initiated3 and
is supplemented here.

A simple but basic type of constraint is the
vanishing of a single dependent variable. Jets of
such constraints, hereafter referred to as con-
cealed constraints, are removed by the Campbell
(elimination of concealed circuits) formula , the

.This work was performed for AFCRC under Contract
AF-16( 604 )-890,

I ANALYTICAL VARIABLES
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Xo * '[XA]

Fig. 1 - Transducer behavior,

Kron (partitioned matrix) reduction forrule, or a
variant of Cramer's rule. (Figure 4) (For details
see reference 3). It is then shown how problems
with arbitrary but linear constreints are reduci-
ble to problems with concealed constraints. Indeed
the general case can be so reduced by an im-
bedding procedure which rerards the sirultancous
occurrence of dependent and independent vari-
ables as a sinrle vecter in a hirher dimensional
space (Figure 5) (A variant of thLis schere in
which the imbedding is done symmetricallv was
employed by M.BE., Reed% in his nodal analysis of

a linear graph when the branch impedances vpo-
ssess mutual inductance.) However, the reneral
imbedding, though foolproof, may yet irnvolve
needless cormputational complicaticns and hence

it is wisest to use matrix algebra as an ad-
junct to or replacement of the imtedding pro-
cedure. For example the impedance-transducer
connection of impedance-transducers is reduced

to concealed type constraints when one writes

the connecting equations in e judicicusly im-
bedded form and merely adds this to the un-
connected performance equations. (Ficure 6)

The same device suffices for the interconnection
of scattering matrices (Figure 7). Finally the
use of matrix multiplication, typified by the
Kron connection "tensor", is discussed,

(Figure ®)
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DYNAMIC CHARACTERISTICS OF FOUR-TERMINAL NETWORKS

N, W. Happ
Sylvania Elsotric Products, Ino,
Eleotronics Division
Ipswioch, Massachusetts

Abstract

A set of six anti-commuting symbols is used
to establish systematiocally relationships
between dynamic charaoteristics of four-terminal
networks, Numerous examples are zZiven, several
from transistor oirouits. The method is parti-
oularly useful in conjunction with signal flow
graphs,

l, Dynamioc Characteristics: Notation

A get of dynamio ocharacteristios of the
form (3 x/d ¥)z oan generally desoribe the per-
formance of a non-linear network ovsr a suitably
small region of operation, A four-terminal net-
work, as shown in Fig, 1, imposes an interdepend-
ence between the four basic variables, Ej, Ea,
I}, Ip, which may be interpreted as input and out-
put voltage and the co-responding currents, Thus
X, ¥, and z in the expression (dx/dy), can be
any of the four basic wvariables, yielding 4! or
24 dynamioc oh:racteristics. Of these, 12 are
listed in Table 1, the remaining 12 are obtained
by interchanging subsoripts 1 and 2,

Relationships between dynamic characteristios
can be obtained rapidly and systematically

(1) by defining an anti-commuting symbol,
called the deviation of x with respeot to y,

(x, y) = -(y, x) (1.1)

(11) by expressing dynamio charaoteristiocs
as ratios of two deviations:

( 3 x) - (x4 2)
dY/, Yy 2
As an example, oonsider the product of two

dynamio oharacteristiocs, From (1.1) and (1,2)
one obtains in the terminology of Table 1

(1.2)

700 {00 o(E1, 1) )(13,19) (11,8;) _ _ A;O
12 11 T, T )(E,T,) (B, 1, 1

Thus, the 24 dynamioc oharacteristios of a four=
terminal network can be expressed as ratios of
six deviations:

(31932)(81911)(81)12)(82911)(82912)(11912)

Table 2 lists z, y, g, h, a, and b oirouit
parameters by stating the network equations in
terms of deviations as defined by (1,1) and (1,2).
The ocorresponding flow graph shows

(1) The partial derivative, e.g. 2"
(dE}/d1;)1,, marked by an arrow,

(11) The 1ndopondgnt variable or souroce,
marked (e), e.g, Ij.

(111) The dependent variable or sink, marked

(0)9 LX) & El'

(1v) The network equation, e.g. Ey =25, I
*+ 23, I,, an equation being oquiva}on%
to all %ho arrows terminating at one
point,

In addition Table 2 shows that the notation
defined by (1,1) and (1,2) leads to a conoise
formulation for the following:

Passive network (Ej,Iy)=(I,,E,) (1.3)
Symmetrical network (EI,IZ§~(§1,EZ) (1.,4)
Uniqueness

(EloIl)(82912)*(119E2)(EI,12)*(32,11)(11,12);0
1

The uniqueness condition (1.,5) states that the

Z, ¥y & h, a, b parameters represent the same
physioal network, hence (1.5) is used when ocon-
verting from one set of parumeters to amother

and was used in obtaining the oirouit determinant
in Table 2,

The purpose of the investigation is:

(1) to derive rigorously equations (1,1)
to (1,5),

(11) to examine those properties of the
(x,y) symbols which are relevant to the analysis
of four-parameter networks,

(111) to demonstrate the usefulness of the
method of doviations by exemplss, partiocularly
in conjunotion with the flow graph technique,

2. Derivation of Basic Relationships Between
Dynamio Characteristios

The deviation of x with regpect to y is
here defined as

(x,y) '(%%%)

y (2.1)
It follows that -
(x,z; -f 9
P ('a'f) . (1.2)

which is independent of t., The parameter t may
remain unspecified as far as oaloulations of

dynamic characteristiocs are concerned. Also from

(2.1) s
(xyx) = 0 (2.2)
(xy,2) = x(y,2) + y(x,2) (2.3)

If a funotional relationship between x, y and ¢
exists,
f (x,}',z) =0 (204)

Denoting partial differentiation of £ with respeot




to x as fx, we have from (2.1) and (2.4).

(x,8) £x* (7,8) fy * (z,8) £4 = O (2.5)
let s assume the values x, ¥, 2 consecutively,
then the three equations (2.5) are not independ-
ent, and the determinant Dj vanishes, where

Dy " (x,x) (y,x) (2,%)
(x,y) (¥,¥) (2,¥)

(X,Z) (Y,t) (Z,Z) (2.6)
Taking (2.2) into account, we have
Dy » 0 if (x,y) = =(¥,2) (1.1)

To show that (1,1) is not only a sufficient but
also a necessary condition for (2.4), we may
compute from (1.1) end (2.3)

(z,xy) = yig,x) + x(z,¥) (2,7)

Setting z = xy, we have from (2.2) and (2.3)

(xy, =) = = [(my) + (D] (2.8)

which is satisfied if, and only if, (1.1) holds,
Several interpretations of the parameter t
and of the concept of deviation are possible:

(a) The deviation may be regarded as the
response (or fluctuation) of x due to 8 stimulus
(or drive) t with the variable y held constant,
Thus (x,y) is equal in magnitude but opposite
in sign to the fluctuation of y with x kept con-
stant under the same drive &, namely (¥,X)e

(b) A geometriocal interpretation of (2.1)
is possible by considering a surface in the x,
y, t soace, The direction and the scale of that
soordinate "axis" must be adjusted to sstiafy at
all points the relation

3x
—— = ]
33’)1;

since (2.1) gives (%,x) =1 end (t,y) = 1 (2.10)

(2.9)

The dimension of each quantity in (2,9) and (2.10)
should be carefully noted. For the purpose of
computation it 1is rarely necessary or desirable

to specify t. Indeed the arbitrary nature of t

in the deviation (x,y) is similar to the arbit-
rary nature of s in (2 x/dy)y when a sot of
mutually dependent partial derivatives are all

in the s plane, such that the above expression
becomes a funotion of x end y only.

(o) Alternatively, the deviation of x with
respect to y may be defined as the determinant

(xy) = (%_:-)' (%%)'
(%%),- (%}'Lr (2.11)
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where r and s are arbitrary functions which are
similar to t in (2.1) and which may remain un=
specified when evaluating dynamic characteristios.
This definition already implies (1,1) and
(r,8) = 1 (2.12)

Most of the recent work 1,2,3,4,5,6 on dy-
pamic characteristics or 'gmall signal’ cirouit
parametors of active four-terminal networks has
been done in connection with equivalent oircuits
for transistors, hence several applications of
this technique to transistor oirouits will be
given,

Anti-commuting symbols similar %o the
deviation (x,y) have been used for "small
parameter" systems in thermodynamics »8, celes-
tial dynamicsgalo and quantum dynamios i,
where the symbol (x,y) is froquently referred to
as Jacobian, Poisson bracket or Perturbation.
The term deviation appears more appropriate
since a fluctuation of x at constant y is
measured by the mean deviation or by the
standard deviation of x from it squilibrium
value, In the case of dynamic characteristiocs
of oircuit elements, it is also sometimes ocon-
venient to think of the deviation (x,y) as the
R4S deviation of x from it s equilibrium velue
as a result of a small test signal applied to
the ocircuit. -

3, The Four-Terminal Network: Uniqueness

oF

Any four-terminal network is gubject to a
requirement of uniqueness; namely, given any
two of the basic variables, there must be omne,
and only one, value for each of the other two
basic variables. This requirement corresponds
to the ‘equation of motion' in mechaniocs and
to the 'equation of state ' {n thermodynamios.

Thus if we assume that there are four basio
variables as shown in Fig, 1 these are not in-
dependent but related by an equation

F (Ey, Epy I3 Ip) =0 (3.1)

Differentiating F with respect to t at constant

s, we obtain

(E l)*-a_g (E e)*——-?F (1 .)_QF (1,,8)=0
1’ 332 29 311 1? 312 20 )(3.2)

The

F
35

oongsecutively.

Let s equal Ej, Ejy 11, Ig
ndependent if the

four equations (3, 2) are

determinant
0 fo (33)
where
(E3,Bq)(E,E )(E;,1,)(E,1,)
1 1’ 1’ ’
o2 (32.313(82,82)(32.1{)(32.1§)
(11’31 (11)32)(11011)(11)12)
(12’31)(12’32)(12,11)(12’12) (3.4)
Eveluating the determinant with the help of

(1.1), one obtains D ® (El,Ez)(Il,Iz)¢(Ez,11)
1(31)12)*(11)31)(1*’12) (3.5
Since the four baslc variables Ej,Ep,I;,1, are




oonneoted by two relations, or oconstraints, p?
must have a double zero and henoce

Deo (1,6)
This is the uniqueness ocondition.
It is instruotive to examine the alternative

definition of the deviation as given by (2,11),
Substituting (1.2) into (2.11) ylelds

(x,y) = 0
(x, r r
ls,rg s,r
Clearly (1,6) and (3,6) are equivalent under the
normalization

(3.6)
(r,s) =1 (2.12)

4. The Passive Network: Reoiprooity

Table 2 shows that the ocondition for a
passive network oan be stated oonoisely in terms
of deviations as

(31:11) - (12: 32) (401)
This reoiprooity oondition does not hold in
oirouits with aotive elements, suoh as vaouum
tubes or transistors. In thermodynamics a
similar reoiprooity requirement oxists, namely
the Seoond Law of Thermodynamios, and in
Meohanios, a reolprooity requirement ocours in
Newton's Law of Aotion and Reaotion. Analogous
quantities and laws are compared in Table 3.
Although the reoiprooity ocondition has been
experimentally well oonfirmed, its theoretiocal
foundation has been a souroce of error and oone
fusion., A summary and oritioal disoussion of
this problem was given by doGroot13, who
oontrasts satisfaotory and unsatisfactory deri-
vatiom of the reoiprocity relation and remarks
that "it seems rather amazing that one ocan arrive
in 80 many inoorreot ways at the correot answer"
and shows "how one ocan get ocorreot answers with
incorrect methods", Since numercus derivations
of the reoiprocity relations given in the
literature are based upon methods oritioilged
by deGroot, a proof is here presented which is
based upon the Prinoiple of Least Dissipationl
and which follows olosely the work of deGrootl$
and Onaagerls.

The power dissipated in a four-terminal net-
work 1s
P=BIj+B I, (4.2)

also, for a passive network, P {5 a minimum or

QP
(%—E'Z)Bl 0 whenI) =0or I, =0 (4.3)

Noting that P is a funotion of E, and E
we oan evaluate (4.3) with the aid of Table %
and we obtain, after differentiation and sgub-
stitution from Table 2,
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Y2 ® ¥p) (4.4)

Alternatively using deviations we have from (4.3)
and Table 2

hence, if P is a minimum, (4.1) follows at onoe,
Similerly, if P is a funotion of E,) and I

'3") «0 when1I, = OorE, =0 (4.6)
hence |a| =1 (4.7)

Using deviations, (4.6) ylelds

similarly, if P is minimum, (4.1) follows at
once,

When dealing with dynemic oheracteristios
of passive networks, it is frequently advantageous
to reocognize symmetry properties of the system,
Equ. (1.1), (1.3), and (1.5) remain invariant,
if eaoch of the four basio variables EI,EZ,II,IZ
teke the place of another in a oertain allowed
sequence, This allowed secuence is given by the
rotation of the square, Fig, 2, about any of its
axes of symmetry, provided that the voltages E;
end E, ohange sign if the statlonary dotted line
1s orossed by one of the voltages,

5. Equivelent Dynamio Charaoteristios

It is often possible and desirable to re-
pleoce ocertain dynamio oharaoteristios by others.
Frequently it 1s neoessary to investigate the

validity of suoh substitution, As an example
oonsider
6 _ oo o . 0)2
(Y:1 ] e (33) (5.1)

Ariting this in the notation of Table 1 with the
aid of (1.2) gives

(1,Ep) (I 1)) _(Ip,Ep)?

(1,,1,)
R Lt
and after oross multiplioation ‘
(12, 12)(E2,E) )+( 11, B, )(E), 1,)+(15, B, )(Ey, I5)=0

whioh is equivalent to (1.3) and (1.5). Bence
(541) 1s true for passive (or oompensated) net-
workg, but does not hold for aotive metworks,

Using the analogue thermodynamio quantities
of Table 3, (5.1) gives Rankin's equations re-
lating the speoifio heats, while the mechanioal
analogues of Table 3 give the relation between
%roug and phase velooities, if substituted into
5.1).

More insight into the relationships between
dynamio charaoteristios oan be gained by the



effeotivelgsi',of signel flow graphs. This
technique™™? js extensively used in the analysis
of servomechanisms and has recently been applied
to oircuit analysis. The basio rule is: a point
represents a dynamio variable, whioh is determin~-
ed by the arrows terminating at that point, As

en example oonsider

o o
in Fig, 3a Il-Y.n E, + Y;z E,
= YOO 80
Source or generator (G) and sink or load (L) are
frequently omitted in drawing the flow diagrame
1f Fig. 3a and Fig. 3b represent equivalent

oirouits of the same set of ourrents and voltages,
the resulting transmission between points mus t

be the same, thus:
1
(3 1) -Y'O-A': £°
JE, By 12 1 11 (5.3)
91 o 00 ¢ ,80
(?SE{) 2, AR SRR AR (5.4)
80
Eliminating Aq) ylelds
o ° o _ ¢80 ¢80
(4] - 1)) 2 " T N2 (5.5)

Clearly (5.5) reduces to (5.1) if the oirouit
satisfies the reoiprooity relation (1.3).
Similer relationships oan now be derived effort-
lessly by rotation of the square in Fig. 2.
Consider, for instanoe the substitution,

g, I, B, I, (5.5)
N ¢
E, I -1 B (5.6)

o o, ,80 sc ,80

(Y5 = Yp2) 21 * M2 A21 (5.6)
Sinoe there are innumerable similar rel-.tiomns

between dynamio oharacteristiocs, no attempt will
be made to summarize or tabulate these, Rather,
the aim of this investigation is to present a
few typioal examples whioh exhibit the power and
direotness of the method of deviations in oon-
junotion with flow graphs,

6, Dynamic Charaoteristios of Devioces: Examples

To investigate dymsmio oharaotoristios of
devices, it is convenient to distinguish three
types of four-terminal oirouit elements, (For
each type of devioce en j1lustrative example is
given in Table 4,)

(1) aotive elements, suoh as -he transistor.
Generally all 24 dymamio oharaoteristios oan be
oomputed, From an energy point of vi-w, an
aotive element is equivalent to a passive element
plus an internal souroe of energy.

(11) unilateral elements, suoch as the vaouum
tube, These are aotive elements i4n whioh the
signal flow ooours omly in one direotion, Feed-
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baok is absent and not all deviation ocan be
oomputed, It is usually possible, however, to
oonvert a unilateral element into an aotive net-
work by the appropriate use of additional passive
elements to provide feedbaok.

(111) pessive elements, suoh as the trans-
former, Energy is dissipated ingide the system
in eooordance with the Prinoiple of Least
Dissipation, as no internal souroces of energy
are present, Feedbaok and feedforward oompensate
each other, as will be seen presently and net-
works are therefore often referred to as oom=
pensated networks.

The flow graphs shown in Table 4 are intend=-
ed as an aid in visualizing the funotional
relationships between voltages, ourrents and
dynamio oharaoteristios of the devioe, It is
always understood that these relationships are
known at the outset of the analysis and that
they ere meaningful. The task is then to use
the appropriate method for extracting from the
flow graph the desired solution, whioh in our
oege ie the evaluation of dynamic oharaoteristios,

The problem of oonstructing & flow graph
from known dynamio oharaoteristios leads frequent-
ly to several alternative solutions for the
same devioce, The desired form of the flow graph
depends on how we perceive the pertinent function-
al relationships between the dependent and in-
dependent variables of the devioce, The follow-
ing examples will i{llustrate this,

(1) The Trensistor. Table 5 shows the
oconventional wiring {oirouit) diagram and the
oorresponding flow greph, While comparatively
1ittle information 1s obtainable from the former,
the flow graph permits straightforward evaluation
of the dynamio oharaoteristios. For instanoe,
when the emitter is grounded and the load is
conneoted to the oolleotor, as shown in the
seoond column of Table 5, three paths lead from

I, to Vo. Henoe
avo) (Vz, Il)
=T - -1 = pr +Tre =T
( % Iy (I 1) ° ¢ =

Sinoce all parameters in the flow graph are
resistances, it is oonvenient to set (I;, Iz) -1
and to enter the value of (1y, V,) in Table 5.
Similarly the other three deviations oan be
evaluated by following the flow path from each
souroe to eaoh sink, Finally (V1, Vp) must be
oomputed from (1,5)s Thus Tabls 5 oontains in
conoise form all 24 dynamio ohareoteristios for
eaoh of the six possible oircuit oonnections of
the transistor,

Table 4 inoludes the flow graph of
junotion transistor as desoribed by Ryderls.
this partioular oase it was found desirable to
desoribe the performanoce of the devioce in terms
of six parsmeters, We oan readily evaluate the
flow path from each souroe to each sink, for
instanoe

In

(By,E2) = rg * Tp (1-a) provided (1;,E1)=1




An interesting alternative deigription of
the junotion transistor due to Chu'” makes use
of the similarity of minority oarrier diffusion
in a transistor and signal propagation in a
transmission line, Table 5 gives the flow dia-
grams: The generalized base width @ of the
transistor corresponds to the generalized length
of the transmission line, Indeed the flow graph
will desoribe a transmission line, if 2, = Z¢ ,
whioh is the characteristio impedance of a
(passive) transmission line, For the tranmsistor,
Zy / Z¢ , these equivalent charaoteristioc im-
pedances ocan be expressed in terms of design
parameters (base width, diffusion oconstant,
frequenoy, eto,) of the tramsistor,

The references listed at the head of each
oolumn in Table 4 ocontaln a detailed explenation
of each paramster shown in the corresponding flow
graph, A physical interpretation of these
parameters is therefore not attempted here,

(i1) The Vacuum Tube, Table 4 includes two
examples of the vaouum tube as a oircuit element,
Flow graphs and deviations are given in each
oage, Some deviations cannot be computed when
the vaguum tube is conneoted as a unilateral
aotive element, i,e, when a signal in the output
oircuit will not affeot the input circuit,
Numerous other examples of flow diagrams for
vacuum tube oiroults are given by Masonl®,

(111) Energy Converters. The transformer
i1s given as an example of an energy oconverter in
Table 4 with the ocorresponding deviation,
Additional examples are presented in Table 6,
Energy oonverters ocontain no internal source of
energy and hence must obey the resiprocity rela-
tion (1.3)s In some applications it is prefer-
able to define the direcstion of current flow as
the direotion of energy flow, this means replac-
ing Iy by (~I2) in Fig, 1, end ochanging (1,3)
into fel, I;) = (Ep, I,) (1,3+)
(1.4) into (Ej, 123 - %Ez, L) (1.4+)
This oconvention was used in Table 6, The
uniqueness condition (1.5) remains invariant,

The funotional relationship between variables
of the devioe are often perceived as a olosed
ohain of dependenocy, consider for instanoce, the
(d.c. shun:g generator in Table 6, The torgue
(T) in the armature depends upon the svead (W),
the ourrent delivered (1) is determinsd by the
torque (T) and in turn affeots the back - emf (E).
The chain of dependency is closed by the -~ often
linear -~ relationship between E and W, The
funotional relationship E — W may be oonsidered
as feedbaok while the other link between the
mechanical and eleotrical system, T-I, is
referred to as feedforward, the reference direo-
tion 1s that of energy flow in the deviase. By
writing out the equations that correspond to a
feedback flow gravh, and bv solving these equa-
tions in terms of dependent and independent
variables, it is always possible to convert a
olosed chain into an open chain and viceversa,

It is, therefore, incorreoct to speak of a devioce
as "oontaining" feedback; as pointed out by
Masonl » "feedback is only present if we peroeive
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a olose chain of dependence; The relationship
between dynamioc charaoteristics and feedbaok
parameters is disoussed in the following seotion.
#iith the aid of the metiod of deviations,
techniques will be develooed to express four-
terminal networks in terms of feedback parameters
or, vioceversa, to eliminate feedbaok parameters
from a network.

7. Technigues for the Analysis of Four-Terminal
Flow Graphs

Some of the results of this seotion are
tabulated as follows:

Table 7: Elementary Opserations - Two Terminal
Flow Graphs

Table 8: Equivalent Junotions - Three Terminal
Flow Graphs

Table 9 and 10: Equivalent Four-Terminal Flow

Graphs

A number of techniques have proven helpful
in the analysis and synthesis of flow graphs,
these techniques are mainly based upon the
elementary operations defined in Table 7,

Ae Path Inversion

Recalling that each point or junotion
represents an equation, it is useful to distingush
between two types of junctions shown in Table 8,

(1) contributive jun:tions, such as

al) +bI, =1, (7.1)

(11) distributive junctions, such as
(7.2)

Junotions conneoting more than three vari-
ables oan always be replaced by a seriss of oon-
tributive and distributive junctions, (7.1)
and (7.2) must remsin invariant under permissible
transformations; An exampls of a permissible
transformation is the inversion of path between
I, and I, in Table 8, (1), (1i), (iii), and (iv).
Slnoe any path may be oconsidered a sequence of
distributive and contibutive junotions, we can
interchange a dependent wariable and an independ
ent variable by inverting a complete path conneot~
ing these two variables, 4 oconversion of this
type is shown in Table 9, column 2, This flow
graph 1s obtained from the "g" parameters in
Table 2 by inverting the path from B} to I,,
Noting that 1/2)) = g,, it follows from the
path inversions shown 1n Table 8, that there is
a change of sign at the ocontributive Junotion,
812*-8)2, but no ohange of sign at the distribu-
tive junotion, g,)—=g,,. Other equivalent flow
diagrams with mixed or hybrid parameters oan be
obteined by repeated path inversion and are
listed in Table 9,

B, Symmetry Inversion

Frequently it is possible to invert a flow
pattern on the basis of its symmetry properties,




An examination of Table 5 will reveal that the
right side and the left side of the table are
mirror images of each other, provided that sub-
soripts 1 and 2 are interchanged upon refleoction,
Similarly Table 2 follows from its first row,

if me replace consistently the following symbols.

g - y—»g —h —>a —=b
E, - 1,—1, —E —E —>E
O e s R e 4
2 2 2 2 2
1° - E5 —»Ef —1y—E —E
= I LG SRS
2 2 2 2 2 1
By applying these symmetry oonsiderations to

Table 9 and Table 10, we oan increase sixfold
the number of tabulated equivalent flow graphs,

¢, Casocade Convers ion

1t is understood that flow 1is possible only
in the direotion of the arrow. A path will now
be defined as one assigned route from a souroce
(independent variable) to a sink (dependent
variable) and it is numerioally equal to the
product of all its branches (dynemio ocharacter-
jstios)., The transmission from given souroce
to a ziven sink is defined as the sum of all
paths between thase given points, Thus, two
distinot types of transmission oxist,

(1) casoade Transmission oonsists of a
finite number of paths and is defined as the sum
of all paths from souroe to sink provided that
no individual path traverses any junction more
than onoce, In Table 8, (v) and (vii), the
casoade transmission from I to 1, is a + bo.

In Table 8, (ix) and (xi), the casoade trams-
mission from I; %o I2 is bo,

(11) Peedback Transmission consists of an
infinite number of paths, and is the sum of all
paths oonneoting a given source to a given sink,
In Table 8, (ix) end (xi), there are N pgths
from I to I each contributing ob (abc) s Thus
the fesdback or total transmission is the sum

of all paths
i N_ ob ob
ob (abo)Me === = ==
N=0 1l-abo R (7.3)
20

where R is the return difference

path which is defined as:

return difference= casocade transmission
total transmission

of a given

(7.4)

Casoade oonversion consists of replacing
paths in parallel by a single path, Conversion
of Fig, 3(a) to Fig. 3(b) is an example, By
this method the deviations listed in Table 9
can be computed rapidly from the corresponding
flow diagrams, For instance for column 2 in
Table 9, we have

B22 = &1 %11 812

D, Feedbaok Conversion

tr2 ”

Any part of a glven path which oan be
traversed by the flow more than once is referred
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to as a "loop". The total transmission once
around the loop is defined as the loop trans-
mission, For a given loop we have
Loop transmission + return difference * 1 (7.5)
The return difference in (7.5) refers to a
specific loop m and it is denoted by R. Ifa
branch or a junction of a path is traversed by
the feedback flow of the loop, then the return
difference R of the path is sum of the return
differences of all loops touched by that pathe
R= & By (7.6)
1f, however, a loop links another seoond loop,

the second loop must be replaced before evaluat=
ing the first,

In Table 10, the return difference of the
loop in column 1 is given by

(EZaI ) (ElaI ) (E aE ) (IlaI )
R=1- - (_"‘27
(ET]:T%’ (B Ty (1,Ey) (Ey,I2
which was obtained with the aid of (1.5). From
column 1 in Table 10, we obtain
(Elysz)

cascade transmission from Iy to E, is (W

(E),Ep)1

total transmission from I, to Ey is —=
smiss 1 1 '(Il,Ez)R

which is equivalent to (Ey,I5)
(T, T2)

Rapid evaluation of flow graphs with feed-
back, such as those given in Table 6, is thus
readily achieved. The most ocommon forms of
feadback flow graphs with the corresponding
deviations are listed in Table 10.

8, Logarithmio Te chniques

Dynamioc characteristios have been o xpressed
as the ratio of two deviations in agcordanoce
with the definition (1.2). On the other hand, it
is possible to express impedanoces and admittances
of passive networks as a ratio of two polynomials
in w , the frequenoy impressed upon the network,
It is, therefore, permissible to equate each of
the six deviations of a network to a polynomial
in W . Indeed it ocan be shom that the power
of this polynomial in @ depends upon the elemente
that couple the two variables correlated by the
deviation, while the magnitude of ,the coeffioclents
of this polynomial depend upon the magnitude of
the coupling elements. This association between
the deviation of two variables on the one hand
and a frequency ocharaoteristio on the other hand,
has a very praotiocal appliocation, It permits us
to desoribe the complete frequenocy response of
all dynamio charaoteristios of a metwork by a
9% of at most six 'log-magnitude' versus 'log-
frequenoy' ourves,

As an example gonsider the transformer as
analyzed by Mishkinz , for which the deviations
are given in Table 4, No generality is lost by




taking the windings in the primary (N}) end in
the seocondary (N;) as wnity., Using the notation
of Table 4 and denoting the magnetic reluctanoe
by 1/Lp, we obtain,

(EI’II) - (IZ)EZ) - Zm = me (81)
(1),Bp) = Zp*Zy = Ry (14 ToW) (8.2)
(E),1p) = 23#¢2; = Ry (14 ¢ W) (8.3)
(E1,Bp) = Ry Rz(l’ts“) (1+zw) (8.4)

where T, = 1/«'2 = (Lp *+ Ly)/Rp
Ty ot ey e Ly ¢ L1)/Ry

Let T, = L 2/R) Ry and Ty = Ly, Ty = 1/00,

substitution of (8,1) to (8.4) into (1.5) yields
't.'l o‘t'z - Ts *T,

and T T, -T2 =Ty T,

This simply means that v, and W, are always
'sandwiched' between Wwa and W, Thaf is, if
T1>7T 2

then T52T12T 2Ty oOr Wi W)W W,

Note that (El,Il) =1if W= I/Lm on account

of (8,1). From the break frequencies, the
asymptotes to the frequency response have been
plotted in Pig. 4, By division of any two
deviations shown, any desired dynamic character-
lstios is obtained as a funotion of frequency,

Another useful logarithmic technique in
csonjunoction with deviations is to replace the
basic variables in Fig, 1 by their logarithm,
The uniqueness relation (1,5) remains invariant
under this substitution and a set of 'logarithmio!
dynamic characteristios can be ocomputed, Simi-
larly (1.5) remains invariant, if a set of
variables is replaced by their respeotive ex-
ponentials, and en alternative set of dynamie
characteristics results, Indeed, the
"sensitivity" of a variable x at constant y ocan
be expressed as (x,y)/x=(1n x,y) or equally well
in terms of (1n x, ln y),

The methods developed in the previous
seotions to analyze dynamic charaoteristios of
networks can, therefore, be applied with equal
validity to obtain relationships between the
sensitivities of the ocircuit paremeters of a
network,

9. Synthesis of Four-Terminal Networks

Several ways of adding of t#o or more four-
terminal networks are possible, for instance
following combination of n:tworks are frequently
uged:

(1) 1in series

(ii1) 1in parallel
(1i11) as feedback elements
(iv) in cascade

The method of deviations may be used to
advantage to compute the dynamioc characteristiocs

of a combined (or synthesized) network from the
dynamic characteristios of its oomponents,

As an example oonsider netsork A which was
obtained by oombining in oascade networks B and
C. The dynamic oharacteristics of saoh network
ares

A: (EI,IZ)’(EI’Es):(EI’13)3(11,33)’(11,13),(?3’13
Bt (EI:II)I(E ’EZ)’(SI'12)'(11’E2)'(11’13'(E I
C: (EZ)IZ)I(EZ,E3)I( 2,13)3(12,33)3(1291 7(§I3)
On ocascading B and C to form A, the output from
B had to equal the input to C, thus Ep and I,
were eliminated in forming A, The problem now
facing us is to express the deviations of A in
terns of the deviations of B, The solution can
be written down by inspection, for instance

(E),E5)=(E1,Ep)(E5, 1) = (Ep,1,)(Eg,Ey)
(Ez,Iz)

which follows direoctly from the uniqueness
conditions (1.5) and demonstrates the advantage
of this method over matrix and other methods

in computing dynamio characteristics of combined
networks,

10. Generalization: The Multi-Terminal Network

Consider a network with n indevendent
voltazes and n independent currents. To establish
a more powerful notation, the case n=2 is first
briefly reviewed,

n=2 Let the voltages and ocurrents 31,82,11,12
of a four-terminal network have a one-to-one
correspondence to the variables k,j,m.n taken
in any order. If (3 x/8y), = (x,2)/(y,z), the
network equations of Table 2 can be written

(m,d) 4 (myk)

+
m - (5,3) ¢ * (k7 ]
(kcy J,m,n = E1:32911,12)
that is, any one-to-one correspondence between
the two sets’ of variables is allowed, giving
six sets of two equations each. Differentiating

m at constant m and differentiating n at constant
m ylelds,

(10.1)

(m,n) (J,k) = (m,k) (J,n)'(myj) (k,n) (10.2)
Consistency requires (x,y)=-(y,x) (10.3)
For a passive network (El,Il)-(Iz,Ez) (10.4)

For a symmetrical network (El,Iz)=(Il,Ez) (10.5)

=3 If (a!/BY) U, v = (z,u,v)/(y,u,v)
Then the network equations of a six-terminal
network become:

(,0,0), (1,k,4),,(1,4,1)
1. (PO

giving twenty sets of three equations each,

(10.6)

(l,m,n, i, J)k'ElnEZ;Esy I, Iy, 13)




again any one-to-one correspondence between the
two sets of variables is allowed, giving twenty
gets of three equations each,

Differentiating 1 at constant m and n and
differentiating m at oonstant 1 and n, we obtain,

(i,j,k)(l,m,n)-(l,j,k)(i,m,n)*(l,k,i)(j,m,n)*
’(1)1)3)(k)m)n) (1007)

Consistenocy requires

(x,y,2)==(2,y,x) for adjacent symbols (10.8)
For a passive network (EI:II:ES)'(IZ’EZ’Es)
(E1,T1,75)=(T2,E2, I3)

» 2y 0 Oyollo o
(1%,¥ 030110 (10.9)

For a symmetrical mnetwork (E1,12,13)=(12,El,13)

(E7,15,E3)=(15,E],E )
(1}2,% ogclicg }10?10)

Example Express Myp=(1;,Bp,I )/(Eg,E ,13) in

Terms of derivatives having (E yEps B } as independ-
ent veriables, From (10.7) ané (io.g)
(Il’El’Ig)(EI’E%’Eé).(ES’El’13)(11’E1’E2)§
+(Eg, 13,8 ) (15,8

Dividing both sides by (31,32,33) twice ylields
My Lazliotssl1ats2
¥here L33-(13,31,32)/(33,31,32)
Ly2"(13,E5E)/(Es ExeEn)
Ly3=(1y,Eq, sE{HE )
13" 11 By B0/ 8 230 210 72
L32’(13.33:31)/(Egp33.31)

The result required is thus: Myp7Lg o= (L alsa/bas)
A summary of relations between L paremeters and

M parameters with the corresponding flow graphs

is given in Table 1ll.

n>»3 The number of network equations correspond-
Tng (10.1) and (10,6) are given by (2 n)!/(nd)?
gets of n equations each. The number of dynemio
characteristics will thus be n2 (2 n)!/(nd)2 or
2,24,180, 1120, 6300, for n=1,2,3,4,5 respective-
ly. Extension of the method given above to net-
works with n»3 is straight foraard and, although
the ocaloulation becomes exceedingly tedious, it
presents a oconsiderable saving in time over
solving the equations explicitly by conventional
methods, The oase of n*4 finds application in
the theory of thermoelectric and thermomagnetio
effeotsls, but such an enalysis is considered
beyond the scope of this paper.

Sumnary

A mathematical teohnique is developed for a
systematic and rapid analysis of the functional
relationships between variables (voltages and
ourrent) of a network. For the four-terminal net-
work six snti-commuting quantities, referred to

as 'deviation' are defined so that each 'deviation'
correlates any two variables of the system.
Elementary rules for a ocaloulus of 'deviations'

are developed and are represented graphically by
flow graphs, i.e. di'agrams exhibiting the topologk
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cal properties of feedback systems,

Conditions for (i) uniqueness, (ii)
reciprocity, (iii) symmetry and (iv) stability
of a network are derived using the caloulus of
‘deviations' and are in part based on arguments
adapted from recent developments in the thermo-
dynamics of irreversible proocesses, power
dissipation taking the place of entropy production.
Other analogies between eleoctrical networks
and thermodynamic systems as well as mechanical
systems are used to show that concepts from
oircuit theory (such as feedback or reoiprooity)
and the technigques (in partioulsr, those developed)
can be used to advantage in other fields of
engineering,

With the ald of the calculus of deviations,
relationships between dynemioc characteristios,
including hybrid parameters and feedback
parameters, are investigated systematiocally.

Numerous examples pertaining to passive,
unilateral and active (in partiocular transistors)
networks illustrate the power and directness of
these techniques. The method is also useful
in conjunoction with logarithmic technigques, in
the synthesis of two or more networks and in
the analysis of 'multi-terminal' networks.
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Table 1

Open-Circuit and Short-Circuit Parameters

Voltage Ep
Current 11

Current I

asbgolute Pressure P
3pecific Entropy S
Specific Volume V

Momentum P
Time Coordinate T

Displacement Coordinate Cj

Dynamioc Impedance: Z Admittance: Y Amplification: A
Charaoteristiocs
Oriving Transfer: Driving Transfer: Leiving Transfer:
point: point: point:
in 22 h 2 A Ao
Open Cirouit 331) ( 95, (3 Il) ‘211) (331 9E,
(supersoript oo) ? 11 . 21, . ?E . ?E, . DE, 9E,
Current Constant 2 1 2 I1 I2
Short Circuit (’a Ey (331 (2 I 2L ('3 I (3 11)
(supersoript se) ?”A 21, 9 QE, 21, ’biz
Ep E Ey Ey Ey Ex
Voltage Constant 2
Table 3, Analogues
Networks Thermodynemics Mechaniocs
Voltage Ey Absolute Temperature T Energy H

Uniqueness 3quation of State Equation of Motion
E2 = f(El, Il) paf(V, T) Q = f(H,T)
Reciproocity Reversibility Action and Reaction
This Paper Maxwell's Equations Hamilton's Equations

(Elp Il) - (12) Ez)

(1, ) = (V, P)

(1, T) = (g, P)

Prinoiple of
Least Dissipation

Thermodynamioc
Equilibrium

Principle of
Least Aotion

69




Table 2

Standerd Circuit Parameters for Four-Terminal Network

Flow Graphs

Network Equations ©® Independent Variable Passive Symmetrical Cirouit
O Dependent Variable Network Network Determinant
El-(El’Ig)I £ (EI:I]) I E, E2
LT " T2Ty) 2 e 2 212 7 %2y 117 %2 121= 211255721525
AN . ~ . . (B, E
. (Ez,lz)l (Eg1y) | 2 222 \Ep 1p)=(15,E.) (21, 1,)=(1),E,y) | 12l (TI_,Ia)
- " 2 142
I I,
E E
(13,2,) (1,,Ey) 3N 2

I,= ’ 1251 - . . _

1 (EI:EZ)EI + (_._.EZ,EI) E, ' AN ’ iz * Y21 Y11 * Y22 1By Y11Y227 Y122,
( ) ( ) " N\ yre (1,,1.)
I2,22 12,5y | Ey,13)=(15,32) (51, 1,)=(1,5,) | iyd= ‘130

= 1l ) 2y22/) |\ ' y A2

T° @50 * (B,,E,) B2 %12 ,\2,\\,\ ’ 27 e (F,52)

I I2
e m 0
(13,15) (I13,E,) ) 2
Il.(31»13)131 * (T,5)) 2 l e el =1 lel= £1122-8)265)
9 922 (13,E,)
t ] - = 1
gz.(Ez,Iz;EI . 2*132,51; 1, ; | (By, 1) )=(1p,8,) [(Ey, Ip)=(1), E,) |led (51:1:)
(E]_:Iz E g
S I.J\ g — ‘Iz
912

EO—%— ¢
(%1,E2) (8),1;) oy pe2

t J 1 f . . = = -

(T, (5,1,) "2 , hy, = = hyy It =1 thi= hyyhy,-h by

“n‘ V“

22 [(Byy1,)=(1,,E,) [{E), I,)=(14,E ) [In)= (Ey, Ip)

1,5 )7 U5 By ) (B, I2)=(1), By

12,(_le,32)11 »Uzoli) g, i (T, E7)

(1),E3) (Ez, T)) L =3I
2

(Bplpdp o (1,5 4 | E—=——m¢

I I,,E ! — Mt

Ey= 12 2By + 10727 1 la) = 1 a,, ® -a lal= a;y8,,-8,,a
£, 1, ,E,) 2 1

5 5 (B3, 1)

11'(11’12) 2+ (Il,zz) I Q2 (El,ll) (Iz’EZ) (El’lz)a(ll,gz) ja) = ( l’E
(Eztlz) (12,32) 2 Iz, 2)
(Ep, 1,) (E,,1,) .

.21 2h . .. . )
E, (31,11)E1 + ( 1’_31) I vl =1 b1 b,, 1b) = b) by, Byab,)
Io,E
(31:11) (il"‘al 1Y
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Table 4, Floa Graphs for Devices

Transformer Triode
Devioce Admittance Impedance Ground Grid Ground Cathode Junoction Transistor
References Mishkin (21) Knausenberger (6) Ryder (18) Chu (19)
Wiring Diagram I n et G, -2 L < Ly tlz L. < Ly -
Subsoripts: - - == e en A " - X
£ = s —) LR by
1 - input £, o €, ot €2 ) N7 | ol NP € T € £ T
2 = output e . c_. g 2 €2 :.4 ] L & ' ! ! ‘
0 - ground NN [ o | P = | [ Vo, [
—___LF].OW Gra h L’-T‘?'h - 1s ‘IT ‘1-?-:;-1;' ;‘- 1’. 1’4 G-I‘! ';‘7’1! ifv \-’u, r-& kv\cwhg ,;—L‘
b 2 -Ze ~ <
l’ 'lm "zz Y, ‘V... ‘Yz Z,' 'z. 'l, v." / ‘Vp ,.' 4’. ‘b“qc com@p”” cwehd ‘cma
| | Vd vod A
Pl | et 4= || T = =
Equivalent Variables
I, -1, I, -1, Ip-I' Io-Ip 1 -1 I‘-Io I¢g -1
E) - By Ep - Eq Ep - Eq Eo - Ep Eg - B Ee - Eg Ee - Eg
Subsoripts p - primary oirsuit g - grid b - base
s - secondary circuit p - plate o - collector
m - magnetio oirouit o = cathode ¢ - emitter
Deviations
(11,12) 1 v1Y2+Y1Ym+Y2Ym 1 Yng ' g0 Y¢Y, tanh @
(11,8) ~In - Zg == Ty 8o*Mbo o Yo/oosh @
(I,E2) Zp * Zg WY (2g*Zo)(1+p)*2p Yg+ YpZo (Yp*m) ' 1 Y¢
(81,12) In+ 11 Yn+ ¥, Zg ’ -Yp go("b"'c )“lko’i‘bo) Y,
(Bg, I) -Zp =Yy 2g(14p) -8y a Y /cosh @
]
(By,E2) 2)25*2 Iy 2o 1 2g2,*Zglo (1+p) 1+2,(Yp*ey) re *ry (1=a) tanh @
Cirouit Connections 0 1 2 0 1 0 1 2 0 1 2 0 1 2 0 1 2
m P s m P s g ° P ° g P b € ° b € °
Remarks In- magnetomotive foroce - voltage amplifiocation M voltage amplifiocation
Ep - flux linkages - mutual conductance a - ourrent amplification
Zy - generalized reluctance Yp - plate conductance r{, - majority ourrent base resistame
N - transformer winding 8 = collioctor conductance
Nl - NZ -] Equivalent oharaoteristic impedances:
Zo'l/Yo
Zo=1/Y
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Table 5,

Flow uraphs of Zquivilent firc:its for -hs lransistor

(Tl’ 12 =] (Vl, Vz) E3 l'b Pe ¢ Te l" & r‘ Fb - Ty ‘m
«irins Diagram I -1, I == -, I -, I > -, I == -, - -,
Subsoripts \ e —e — — - - —a
ubsorip ' : ' i [} 4
1 - source y : v LN r
2 = load v v, .- 1 A D Vv Y "' - N - i N e
0 - ground 4 A 4 ‘, Va
e - - - - - *— - * - - -~ o
Circuit Cornsction 1 0 2 1 0 2 1 0 2 1 0 = 1 0 2 1 0 2
€ b o b € [ b o € € o b € b o b €
Flow Diagram Sy = rwlia | ool el el | il ity e e iie
Subscrints '% Y
— EUR S TR (O XX O IS A 2 P I X% A A O P A N ) Y.
€ - emitter J p o TN ) Y.
6 = ocolleotor ARl B e Svaaeva gl e e v o W N T et R
Deviations
’
(V2,Iz) ry ¢ Iy r -r L Ty = T Te T |
(n,1,) Ty * Te ry, * T ry torg r,*Te =T T, * T = 1 ry*r '
(Il,Vz) Ty + ry To *Te ~ Ty [To* Te - T ry*r ry+r Ty, ot Te '
(11"’1) Ty Te To = Tp r, Te - Ty rp+r ll




€L

I-Armature Current

E-Baox ENF

T-Motor Torgue

W-Angular Speed

Q-Flow(£t>/sec/rad)

P-Pressure(lb/ftz)

Be=voltage at
recei ver (S*)

Is-ocurrent at
rsceiver (S+)

Table 6. Energy Converters
Generator Motor Pump Transmission Line Electromeznetic #ave| Thermoelectris et
Y - - - - - s - - A - - - . - L - -2 R
5 * x Jume Lent €
o ot Pl
b ] | o " % 8y . - . " b «b
‘\ml \x.ﬁ.
+ >—'7 - > TS L2 5 %
T-Generator Torgque I-Armature Current | T-Torque of Pump E-voltage at sender{E-electric field in|T -temperature
(s) S gradient
W-Angular Speed E-Back EMF W-Angular Speed I-current at sender|H-magnetioc fleld in TS ~heat flow
(s) S

S

S*

Es-glectric field inEx-voltage gradient

H+-magnetic fleld inly-ocurrent flow

Generator

Load

M - Motor

L - Load

M = Prime Mover

L - Load

S = Sender

S* - Receiver

S - Stationary
System
Ss-Moving System

H - Heat Souroce

L = Elsotriocal
Load

friotion and inertia

Z - armature imped-

B - friotion and

7 - charactoeristio

o = velooity of

G = electriocal

ance inertie] impedance light conductivity
armature impedance B - friotion and
insrtia| Z - leakage(f£t%/1v/ TK - thermal
sec) oconductivity
@ - (attenuation v-relative velooity| E-thermoelestric
Generator constant K - Motor constant | K = Flow constunt oconstant x length of S with respect power

of line)
cosh?@ + sinh%e=1

to 3*
@ = tanh (v/o)

T = temperature




Table 7, Two-Terminal Flow Graphs: Elementary Operations
a b ab
MULTIPLICATION — o P — o B> e
a
sl
~ a+b
o« » —_—
) —
ADDI TION - ————— ——
b
g~
—_ (a+b)"'
RECIPROCAL <:> = a9
-t
Cc
)
1 Z‘ LS = L _— ab/R
= [ l-o0 —
Table 8, Three-Terminal Flow Graphs: Equivalent Junctions
Contributive Junoction (o) . Distributive Junotion @
ol e bl Iy ol,e blp Iy
PATH 1y Iy 1/b A b
— I L.__ I, Iy
1, I, = 1, l 13 Y f— ;
INVERSION e Ty Iy . Iy
(1) (11) | (111) (1v)
by b 1 o 1
CASCADE ! el g
b/\c =, ¢ . o\ e = b o
CONVERSION B SRR 2 \;
¢ asbe Iy Ly .
(V) (v1) (vir) (VIII)
I‘ R+ 1-abc Ra1-abe
FEEDBACK )| o VR b
b ¢ = G L I. — I, 1z
CONVERSION N/l' — el R R = b
1, o I 1 %
Iy Iy
(1x) (x) (x1) (x11)




Table 9, Hybrid Parameters For Four-Terminal Flow Graphs
Flow Grngh
€ s €, [ €, €2 € [ € [ € €2
Junctions: - O | wp—e—Ce | O | = - | - - | O
\ 2 . £ n/ru
o Contributive 'u‘ .} bon l»;‘ §ou . ':u g N g :‘ ): '
: N N
@ Distributive - vl et e - T R '17/ - o=
® Multiple
(13,1,) 1 1 1 1 1 1
Eq,1 - o
( 1s 2) 211 231 hll hlzlzzhzl h11+z12h21 zn bzzzlz
(15,E,) 12 “2118)2 h)2822 )2 2)127%11%22 %12
Eo,1 z - - -
(Eg»Ip) 11821 821%)1 232021 22021 *a b1z bllzm"z%
(115E) 82212821 |B227821%11812 222 22 “822%0) 22511
E o o
(E1sEp) 21822 211822 by12%22 hyy222 812221 2)2%12
Table 10, PFeedback Paremeters for Four-Terminal Flow Graphs
Flow Graph
LR L € € € [ € &% € o € € g
Junctions: e I ol Baa ) pe | - - - » -y > e | - ¢
N T %12 |
O Contritutive nob bows nd [" done w1 ’v; | 1) ’:, b "4 A fou n . “""
[ ] - N [ - - o e >$’ - b
@ Distributive 1 1 1 1, 1 Iz 1 (L) L 1z 1 e 1
@ Multiple
1,1 - - - - -
(1,1,) l-gy B, [LoBy) Yy 080 -P12Y22%12Y1) 2P Ba2Y12 | P11 N1262 1-h,,8y,
(E)p 1)) g by -b12¥22%12 by by, h)
1,,E - - - o
(13,Ey) 85212 h11912852 12 g22%12M1 | “B22%12M11 g12h
(EgsIp) hy185 “822Y23P11 12 -h1822 82101 “hz1822
(13,Ep) 822 822 8,911 %12 822 822 822
(Ey,B,) hy) 8y hy8,, -812°21 hy18,, h)1822 hy1822
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Table 11,

Relations between two sets of dynamic characteristiocs for
oircuit with three currents and three voltages,

Independent P
Variables

Dopendent 1 1 1 1 1 -
Variables o 1 2 3 1 2 '3

L - Parameters
L11-(11,E2,E3)/L
Ly2=(1),E5,E))/L
Ly3=(I3,E,,Ex)/L
Lp)=(1,,E,,E;)/L
Loz=(15,E3,E1 ) /L
L23*(15,E),E,)/L
Ly1=(I3,EpyEq)/L
Lp *(Ig,Ey,E))/L
Lgg=(13,Ey,Ep)/L
L=(Ey,E,,Ey)

M - Parameters

My3=(1),Ep, 1)/
Myp=(1), Ty, By )M
Mn-(Il,El,Ez)/\(
MZI'(IanZ’ 13)/M
Mpm(1p, 1,,Ep )M
M2z=(1,,E),B,)/M
Mz1=(EsyEpy I3) M
M32=(Egy 13,Ey )
My3=(Eq,Ey,E, ) M

M=(Eli£2)E3)
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SOME TECHNIQUES FOR NETWORK SYNTHESIS

by

George L. Matthaei
Division of Electrical Engineering
University of Californmia
Berkeley, California

Summary

A method is presented for realization of any
ninimm-phase transfer function in a c-r (i.e.,
constant-resistance) ladder. Such networks have
applications similar to those of conventional RIC,
c-r bridged-T's but possess the advantages of more
flexibility in design, fewer elements, and often
less loss.

C-r networks using two pole and zero arm
immittances are particularly easy to design. Then
simple formulas can guide the designer to networks
without unnecessary elements. Straight-forward
techniques are presented for realization of the
arm immittances. The realization process is
facilitated by rules for making RIC continued-
fraction expansions by nforward" and "reverse"
division.

Introduction

We shall first outline techniques which
taken together provide an organized system for
realizing any second-order imnittance function
without the use of coupled coils. Herein, the
term, "second-order immittance", will be used to
refer to any impedance or admittance function
having two poles and zeros. As Bode shows,l such
immittances can be used as basic building blocks
in the synthesis of nconstant-resistance" net-
works having transfer functions of arbitrary com-
plexity. In the latter part of this paper a
constant-resistance network which is apparently
new will be described.

Three Classes of Second-Order Irmittances

Any second-order immittance function can be
expressed in the form:

F(p) = EE%_"_ELI_" (1)
p +ep+d

where % a, b, e, and d are constant coefficients
and p 18 complex frequency variable p= o+ Jwe.
Brune shows that for such an immittance to be
realizable in a passive network, F(p) must be
what he calls a positive-real (abbreviated p-r)
function.? It can be shown that for this rela-
tively simple case the conditions for p-r charac-
ter may be reduced to:

A. All non-zero coefficients must be real
and positive.

B. Re F(jw) © 0 for all p = jo. (2)
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It can also be shown that if condition A is satis-
fied, condition B will be satisfied if and only if

b-ae +dgS2 4ebd . (3)

The ease with which any given F(p) can be
realized depends very much on the nature of its
Re F(jw) characteristic. In general, we may
divide p-r, F(p) functions into three classes:

Class I. ke F(jw)] occurs at w = 0 as
shown in Fig. 1. F(p) ¢ e shown to be a p-T,
Class I function if p-r condition A is satisfied
and

b . ad - be >d
€>3 e gd - b e (L)
Class II. Re F(jm)' .. occurs at w = co as

shown in Fig. 2.- F(p) canBé shown to be a p-rT,
Class II function if p-r condition A is satisfied
and

b-gdse,
a - ge

Class I1II. Re F(ja))l in.
value of w as shown in Figl:ng.

g<%whileo< (5)

occurs at a finite
F(p) will be a

p-r, Class III function if: p-T condition A is
satisfied, while (3) is satisfied, while (L) and
(5) are not.

Some special cases are often of interest., 1If
in (1) b = 0, and condition A is satisfied then
either (3) or (L) will yield

338
g e . (6)

In this case if (6) is satisfied, F(p) is a Class
I function which satisfies (2) with an equal sign
at w = 0., Herein we shall refer to immittance
functions that satisfy (2) with an equal sign at
some frequency @ as "minimum real part" functions.

If g = 0 in (1) and condition A is satisfied,
then either (3) or (5) will yield

Esec
a

In this instance if (7) is satisfied, F(p) is a
p-r, Class II, minimum real part function.

(7)

When F(p) = & +b (8)
ep
F(p) is a reactance function and will be p-r if
and only if p-r condition A is satisfied. Eq. (2)

is satisfied with an equal sign for all o in this
case, thus (8) is simltaneously a Class I, 1I,
and III function.




The general one-pole and -zero function
F(p) = 2.t b (9)
ep +d

also needs only to satisfy p-r condition A in
order to be p-r. This function can never be Class
III, but will be Class I if a/e > b/d and Class
II if afe < b/d,

Continued Fraction Expansions

The input impedance function of the ladder
network of Fig. L may be represented by the con-
timued-fraction expansion

Lin= 2 * L . (10)
Y o+ 1

e Z3+ 1
!h + ... 6tc,

Also the input admittance of the network in Fig., S
may be analogously represented by

Y, =Y, + 1 . (1)
in 1 Z‘Z pe T
13 + 1
Zh“’ 1
etc.

Some kinds of immittances are very easily realized
in these forms by making a continued-fraction
expansion by use of what shall herein be referred
to as forward and reverse division.

Let

n n=1
5 p * eeee t Qpt+tq
“nf’E In-1 ; 1P " %32y
B + By 1P 4 aeas +hp+h
be an immittance of arbitrary complexity. We

shall define forward division as long division
carried out in the manner indicated by:

F (p) =

k n
hp + oo +hyp+ ho}qnp * oo *qP*q .(13)

Similarly reverse division will be defined as long
division carried out in the manner indicated by:

ho + hlp * eee + hkpk)qo +qlp * eee "qnpn (1)

It should be noted that for (12) to be p-r, the
highest powers in the numerator and denominator
polynomials cannot differ by more than one, and
likewise for the lowest powers.

An important kind of continued-fraction ex-
pansion can be made by use of the following oper=-
ations involving forward and reverse division:

1. Ifq >0 but h, = 0, then F (p) has a

pole at the origin, and it can be removed by one
step of reverse division. The result will be of
the form

q
F (p) = h—l% + F(p), (15)

where Fl(p) will not have a pole at the origin
and will be p-r if Fo(p) is p-r.

2. If q, = 0, but h, > 0, then F,(p) has a
zero at the origin. 1In this case the function is
inverted to make the zero at the origin become a
pole and then operation 1 is applied to remove

the pole. In this case the result is of the form
1 1
F (p) = = (16)
o 1/F,(p) h, ’
—_— Fz(p)

QP

where F2(p) will not have a pole at the origin and
will be p-r if F (p) is p-r.

3. If terms g, and h  are present and F (p)
is a Class I p-r function, then a step of reverse
division will remove a constant equal to
Re F(jw))min = Re F(JO) = F(0), and the remainder

function F3(f>) will be a minimum real-part p-r
function. The result is of the form

b
F (p) = B’ F3(p) . (17)

Ir Fo(p) is not a Class I function but its re-

cirrocal is, reverse division may be applied to
l/Fo(p) to give

F(p)=—2Lt _ = 1 ) 16
o(P) T, By o (16)
Q 3

The remainder function F.(p) or F}A(p) will have

a zero at the origin so Can be broken down further
by operation 2,

L. Ifn=k +1, then F, (p) has a pole at
infinity which can be removed by forward division
to give

q
F (p) = —“hf “ F(p) (19)

I-‘h(p) will not Lave a pole at infinity and will be
p-r if Fo(p) is p-r.

S. If n=k -1, then F (p) has a zero at
infinity. In this case the function is inverted
to make the zero a pole, and then operation L is
applied to give

- 1
FolP) = . (20)

k

— + Fe(p)

Q. 5

Fs(p) will not have a pole at infinity and will be
p-r if F (p) is p-r.

6. If F (p) is a Class II function and n = k,
then a step o? forward division will remove a
constant equal to Re F,(jw = Re F(jeo) = F(oo),
and the remainder function F/(p) will be a minimum
real-part function. The result is of the form




Fy(p) = 52 * Fe() - (21)

If Fo(p) is not Class II but its reciprocal is,
forward division may be applied to 1/F,(p) to give
1
F (p) = . (22)
q_‘; + F6A(P)

The remainder function F6(p) or Fg (p) will have a
zero at infinity so can be broken down further by
operation 5.

By use of these six operations numerous
immittance functions can be campletely broken into
a continued fraction of simple p-r terms. These
terms can then be identified as series impedances
or shunt admittances of a ladder network in ac-
cordance with eq. (10) or (11). Msny readers will
recall that Cauer's continued-fraction method for
synthesis of RC, RL, and IC i.mmittanceﬁ utilizes
what amounts to these same operations.4 Not so
widely recognized is the fact that these operations
are also helpful for synthesis of RLC networkse.
The necessary condition which makes it possible to
completely expand an immittance this way is that
after each step of forward or reverse division,
the remainder function or its reciprocal must be
a Class I or II p-r function. If the remainder
function and its reciprocal are both Class III,
additional techniques must be introduced in order
to break down the remainder function,

Synthesis of Second-Order Immittances

The simplest network which can represent a
second-order immittance will be determined by the
properties of the given irmittance and will vary
conciderably. The realization methods about to be
described provide a straight-forward approach for
realizing any second-order p-r function,

Type A Realization

Any Class I or II F(p) can be realized
quickly by making a contimed-fraction expansion
by use of forward and reverse division. Such
realizations will be referred to as Type A reali-

zations. Consider the example:
222 +5p +2
F(p) = (23
P) p2 +2p +2 )

Eq. (L) shows this to be a Class I function. Ap-
plying reverse division (operation 3) gives

2+
Rp) = 1+ Pty

where the remainder is a Class I function with a
zero at the origin, By inversion ard reverse
division (operation 2):

1
)=t
—_— 4
3p 3+p
As indicated in connection with eq. (9), the re-

(2L)

(25)

mainder is easily seen to be Class I.
division (operation 3):

By reverse

F(p) =1 + 5 £ 2 . (26)
—+bLf9+9P
3p T
3+p
Inverting the remainder and dividing gives
F(p) =1+ . (@7

1
(5 +w) ('gzp‘l'%)—

If F(p) is construed to be an impedance, we may
associate (27) with (10) and Fig. L, and the net-
work will be as shown in Fig. 6A. If F(p) were
an admittance, we should associate (27) with (11)
and Fig. 5 to get the "reciprocal" network to that
of Figo 6Ao

If the remainder of (25) is inverted it will
become Class II., A different realization can be
obtained by performing this inversion and then
finishing the expansion by use of forward-division

operations, The result is
- 1
F(p) =1 + 3 n . (28)
—_—
3 s 1
s /L

Fig. 6B shows the corresponding network if F(p) is
an impedance.

Type A realizations will require no more than
five elements. Some will require less; for ex-
ample function (8) needs only two elements.

Type B Realizations

Some F(p) are Class III as they stand, but

become Class I or II when inverted. The function
1/F(p) will be Class I if
ad - be Zb

g< b/d and @-b ~a° (29)
while it will be Class II if

g>b/d and 0<2=BIS2 (30)

a-ge §g
To get a network, we may start with
1
F(p) =

and then expand 1/F(p) just as in a Type A reali-
zation. Due to (31), what would normally be the
first term of the expansion will be missing. This
simply means that the network of Fig. ; would have
z, = 0 while Fig. 5 would have Y, missing.

"Type B" realizations also require no more
than five elements. It is interesting to note
that in some cases where F(p) is Class I or 1I,
1/F(p) will be Class II or I, respectively. In




such instances there will often be a total of four,
distinctly different, five-element equivalent cir-
cuits of which two can be obtained by the Type A
method and the other two by the Type B.

Type C Realization

If neither F(p) nor its reciprocal is a Class
I or II function, then the Type A and B procedures
fail, Any Class III function can be realized by
Brune's method, but his method requires unity-
coupled coils in order to realizg a Class III
function of the form of eq. (1).% If unity-
coupled coils are to be excluded, the simplest
procedure appears to result from breaking the
Class III function into the sum of a Class I,
minimum real-part function plus a Class II, mini-
mum real-part function. This gives

(a-t)p +b
+

2 . tp
2 . (32)

F(p) = 4
p +ep+d p

+ep +d

It can be shoun that both terms in (32) will be
p-r if p-r condition A is satisfied and

gdfe St & a-yple, (33)
Consider the example

2

pc + Lp + 7
Fp) = T (31)

In this case (33) can be satisfied on both sides
by an equal sign if t = 1/2. Eq. (32) becomes

3.5p + 7
+2p+1

p2 +0.5p
P + 2p +1 p7

F(p) = . (35)

The two terms in (35) can be expanded in continued
fractions to give:

Fp) = g—q— » —y 3 . (36)
Se—y Lp.—1 _
P 1+ 5 3.5 3.5p + (]}7)

Eq. (36) represents two ladder networks connected
together, If F(p) is construed to be an im-
pedance, the realization is as shown in Fig. 7.

Observe that Fig. 7 represents two, three-
element ladders comnected in series., In most
cases it will only be possible to satisfy (33)
with an equal sign on one side. Then one of the
ladders will have four elements while the other
will have only three., In general it will be
found that this type of realization will require
no more than seven elements, It can be shown that
if F(p) fails to qualify for Type C realization,
then 1/F(p) also fails to qualify.

Type D Realization

If F(p) satisfies p-r condition A and eq.
(3), but doesn't satisfy the conditions for Type
A, B, or C realization, then what will herein be
called a Type D realization appears to be neces—
sary if unity-coupled coils are to be avoided.
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The first step in this realization is to subtract
a constant o, (see Fig. 3) from F(p) so that the

result will be a minimum real-part function Fi'(p).
The constant o<, can be found by finding the

smallest root e 0(1 of

(v - hdz)dkz + (hgd2 + Lbd - 'zuw)a<k

+ (W - Lgdb) = 0 (37)
which will satisfy
W= o, U

>, (38)

"% -za,
k

where
Web - ae +dg,

and U=2d -e?,

the a, b, ¢, d, and g parameters being those of
(1).” If there are two 0(k roots of (37) that
satisfy (38), then the larger one is o<, in Fig.

3 while the smaller one is o< .. The frequency at
which the minimm or maximum o} Re F(jw) occurs
can be found from

¥ = 3Ax (39)

where @ will be the frequency of the minimum
point and @, will be the frequency of the maximum;
¥ for k = 1, 2 being given by (38).

Now the minimum real-part function F'(p) may
be expressed as

F'(p) = F(p) - 2 (ko)
- 82'2 +a'p + b! . (L1)
p- te'p +d!

Application of either forward or reverse division
to (L1) will give a non-per remainder; so instead
from (L1) we shall form the equivalent function

Pp) - SRR
JpP +aw?
+ (e +K)p° + (dr + Ke')p + d'k

p3
(b2)
LE'P + (a4 gk - J)p? + (b' + aK)p
p3 + (e! + K)p2 + (d' + Ke')p + d'K

where 2 -
e! '
K.%a)lz and Jﬂbjx- .
d* - @y

Both terms of (L2) are p-r; the first having a
zero at infinity, the second having a zero at the
origin, and both having zero real part at W The

circuit is now obtained by expanding both terms of
(42) in contimied-fraction expansions, starting




s

the first term with inversion and forward division
(operation 5) and the second term with inversion
end reverse division (operation 2).
Fig. 8 shows a realization for the impedance
1.1 p2 + 0,813 p + 0.29394 (L3)
p2 +2p +2

F(p) = 2(p) =

Note that for this impedance case, &) is real-
i{zed as a series resistance and the continued-
fraction expansions are realized as two ladders
comected in series. It is interesting to note
that this same network can be obtained by the
method of Bott and Duffin. The technique de-~
scribed herein, however, has the advantage of
eliminating the work of finding the real, positive
root of a third-degree polynomial.” Type D reali-
zetions will require no more than nine elements.
1f (L3) had been an admittance, the structure
would have taken the form of a conductance and two
ladders all connected in parallel.

The Kanges of Realization

To give a better inslght into when these
different kinds of realization are possible, Fige
9 illustrates the various ranges of zero locations
of F(p) eq. (1), when the poles are located at
p==-2%J3l. Only the second quadrant of the p-
plane is shown since no zeros can occur in the
first or fourth quadrants and the second and third
quadrants are gymmetrical with respect to the real
axis. With these given poles, F(p) will be p-r if
jt has a real, positive constant multiplier and
the zeros occur in conjugate pairs such that the
second-quadrant zero lies within the outer curved
comtour. If the zero lies within the cross-
hatched region marked (45 deg. cross-hatch

1ines falling from left to right), then the
function is Class I and can be realized with a
Type A realization. If the zero is in the A’II

region (LSO cross-hatch rising from left to right),
F(p) is a Class II function and Type A realization
is again possible. Note that the region of Type B
realization (horizontal cross-hatching) over-leps
the Type A region in places. Where they overlap,
both F(p) and its reciprocal are Class I or II
functions; and where they do not overlap, either
F(p) or its reciprocal is a Class III function.

If the second-quadrant zero lies within the outer
contour but outeide of the regions of Type A or B
realization, then both F(p) and its reciprocal are
Class III p-r functions.

The region of Type C realizability overlaps
all of the region of Type A realization and part
of the region of Type B realization; however,
since more elements are required for Type C, one
would probably want to use it only when the zero
lies in one of the unshaded regions marked C. The
region of Type D realization overlaps part of the
region of Type C realization and part of the
region of Type B; but again since Type D reali-
zation requires the most elements of all, it would
usually be undesirable unless the second-quadrant
zero lies in one of the vertically cross-hatched
regions marked D. If F(p) has simple zeros on
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the real axis, amy of the Type A, B, C, or D
realizations may be possible depending on the
relative locations of the zeros. It is inter-
esting to note that the boundaries of the various
regions of realization in Fig. 9 all have geo=
metric symmetry with respect to the circle about
the origin which passes through the poles,

Synthesis of a Constent-Resistance Ladder

Let us now consider the design of a ladder
network having a constant-resistance input and a
prescribed, minimum-phase transfer function., We
shall stipulate that the network is to be driven
by a generator with a one-ochm internal resistance,

and the ladder impedance is to match this. The
transfer function may be written as
H
1 t Voltage
T a — = =
(p) A1 }{2 Ale(p) Output Voltage (L)

where and are polynomials, A is a constant,
and Tm(p) will be defined later. We shall tempo-
rarily stipulate that T(p) is a non-minimum real
part p-r function; however as we shall see, this
stipulation is easily removed.

If the generator has an internal resistance
of one ohm and the network has an input resistance
of one ohm, then the zero-impedance voltage gener-
ator in a Thevenin equivalent circuit will see the
resistance:

i) !

_—n] =

Z, m2m=2

. (L)

Here one should note that the zeros of an im-
pedance will be natural modes of vibration if it
is driven by & zero-impedance generator; the poles
will be natural modes of vibration if the im-
pedance is driven from an infinite-impedance
source. Introducing into both the numerator
and denominator of (L4S) will give the circuit
natural modes of vibration corresponding to the
zeros of H1 when zi.n is driven by either a zero
internal impedance source or &an infinite internal
impedance source. It can be shown that the zeros
of (LL) will be natural modes of vibration, hence,
s'ﬁﬁcifying (4S) in the way that we have will give
(LL) the proper zeros,

Now let us define
- Re ) (Jw)

>0 L6
) I ”
and
Hy(30)
= R (0 B
L) i )

Both 4/1 and Wz will be greater than zero

since T(p) was stipulated to be a non-minimm real
part p-r function. Now the function (L4LS) may be
expressed as the contimued fraction




{5

)

1
+
K,H, - K
( 2 1“2"2) (5K, )
b
- 1
1+ Zl + !2 o ,
where each term of the expansion will be p-r if Ky
and K, are constants such that

(L8)

(L9)

0< 1(1S 1/1 (50)
>
and K, ® 7/2 . (51)

A circuit for expansions (L8) and (L49) is. shown in
Fig. 10. The transfer function of this circuit
has the zeros of (lLlL) due to (L5). The frequen-
cies of infinite loss (poles of eq. (Lk)) are
caused by the signal being shorted out by the
shunt branch Y, at frequencies corresponding to
the zeros of H,. The series branch L.I. servesg as

what Guillemin and others have called a “zero-
shifting” branch, agd it will not cause any points
of infinite loss.3s® Thus the points of infinite
loss will be determined by the poles of 12; and
these are the same as the poles of (LL), as they
should be. From such reasoning it can be seen
that the network in Fig. 10 has the transfer
function (L4), at least within a constant multi-
plier. By carrying out the synthesis in a similar
but dual manner, the constant-resistance network
in Fig. 11 is obtained, This network also has the
transfer function (L4) within a constant multi-
plier.

Since the input impedance of the transmission
network in Fig, 10 (or in Fig. 11) is a constant
resistance, the impedance level of one section of
this type can be adjusted so that its input will
serve as the proper constant load resistance for
another section. In this manner any number of
such simple sections can be designed separately
and then cascaded together to give a ladder net-
work whose transfer function is the product of
the section transfer functions (or the product of
the section transfer functions within a constant
multiplier, depending on how the transfer function
is defined)., Thus as with other constant-resist-
ance networks,l the realization of a complicated
transfer funcvion can be greatly simplified by
carrying out the realization in small parts.
should be noted that the transfer function for
each component section must be a non-minimum real
part p-r function, but the overall transfer func-
tion need not be p-r! The process them is to
select poles and zeros for each section of the
ladder so that the section transfer functions
will be non-minimum real part p-r. If it should
be impossible to factor the overall transfer
function into a complete set of p-r factors, ad-

ditional factors of the form (p - pl)/(p - pl)

It
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can always be introduced so as to make p-r factor-
ization possible, Thus any minimum phase transfer

function can be realized within a flat loss factor
in a constant-resistance ladder.,

If the overall transfer function is factored
so that each section transfer function has either
one or two poles and zeros, then the branch im-
mittances of the sections will have only one or
two poles and zeros and the synthesis techniques
previously mentioned can be used to carry out the
design in a straight-forward manner.

Ladder and Bridged-T Flat Loss Comparison

Since these networks will often have unequal
terminations, let us define our transfer function
in terms of the voltage availlable at the load
conductance GL (or resistance RL). Thus,

E2

- g - -
P avail, LE, PLoavaid,” 0L 5 avaga, » (52)
where Pg Avail, is the avajlable power of the
generator, E, and R, are as defined in Fig, 10,
PL Avail, is the power available at the load, and

EL Avail. is the voltage which this generator

would cause across the given load G, if the gener-

ator and load were perfectly matched by an ideal
transformer. From (52),

E

. (53)
g
2NR, Gy

B, avasl., "

It appears logical to define the transfer function
then as

T(p) = EM_
L

the ratio of the available load voltage to the
delivered load voltage. Eq. (5L) is essentially
an input over output ratio as is (L), Since the
delivered load. voltage cammot exceed the available
voltage,

’ (54)

|23 - (55)

Bl avaa, ’ >
——— =] ,
B

Any transfer function (5L) that satisfies (55) with
an equal sign at some steady-state frequency jw is
a minimum-loss transfer function.

Let us define

T (p) = .% (56)

as a minimm-~loss transfer function. Then A:[ in

(Lk) is a constant factor equal to or greater than
one, which indicates the flat loss of the network.

For the networks of Figs. 10 or 11, A) 1is computed

to be
K
‘\’2
== .
K

(57)




The smallest value for A (and the least flat loss)
will be obtained when (525) and (51) are satisfied
with equal signs to give:

| i, '/\tjz :
1

Since any minimum-phase transfer function
which can be realized in ons conventional consgtante
resistance bridged-T section can also be ri&lized
in one constant-resistance ladder section,™ the two
have about the same realm of application, and it
appears relevant to compare their attemation
factors. The smallest attenuation factor for the
conventional constant-resistance bridged-T is
computed to be:

(58)

1
-, 9
| tn. "5 (59)
Since tremsfer function (56) has no flat loss, fram
(50) and (51) it can be seen that both 7/, and

1 , mst be no greater than one. Hence the

ladder A1| mn, Will always be less than the bridge-
T A2| min. except when both methods of realization
give minimm-loss transfer functions, i.e. except

when Ayfpin, * Aol mtn, = 1°

Some Practical Considerations

Let us assume that the poles and zeros of a
complicated transfer function are to be factored
into groups and then realized in a chain of con-
stant-resistance ladder sections. Let us suppose
further that each section is to contribute two
poles and zeros to the overall transfer function.
It may be possible to group the poles and zeros
so that most or all of the section transfer func-
tions are Class I or II p-r functions. Each
section that has a Class I or II transfer func-
tion will have a second-order, Class I or IT im-
mttances in both arms, and considerably fewer

elements will be required than if Class III im-
mittances were imvolved.

Let us suppose
2

BB, * . *D . 4 (Input/Output) ratio

pc +ep +d

has been factored out to be realized as one sec-
tion of the ladder. It can be shown that if (60)
satisfies eqs. (L), then (60) and all of the arm
jmdttances in Figs. 10 and 11 will be Class I
functions. Then the corresponding minimm-los8
transfer function (56) is

(60)

- Ef, avail.
’

d + +b
Tm(p) - i;( +ep *+ d) Ep (61)
for which
‘Vl Ld vz -], (62)

If (60) satisfies eqs. (5), then (60) and
the arm immittances in Figs. 10 and 11 will all
be Class II functions, The corresponding mini-
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mum-loss transfer function is

Ji(e? sapeb) | Epoavan,
T,(p) g(“p'f_:ﬁ_d) i, (6)
for which

V= Vy,=1. (64)

Note from (58), (62), and (6L), that if (60) is a
Class I or II function, the section will require
no flat loss.

If (60) is Class III, the miltiplier required
in order to form the minimm-loss transfer func-
tion Tm(p) can be determined as described in the
Appendix. This is of interest for pre-determining
the flat loss of the section, but it is not a
necessary step in the design procedure. Defining
(60) as H,/H,, the values of (46) and (L7) can be
determined by applying eqs. (37) and (38) to (60)
and its reciprocal. The values of 4 1 and 7}2
obtained would not be the same as those computed
from Ty(p), and eqs. (57) to (59) would no longer
hold, but the resulting network would be the same.
If (60) is Class III, at least one of the arm im-
mittances will be Class III.

Let us realize the Class I, p-r, minimum-
loss function

2.759 p°_ + 6.897 p + 5.000
? + 4,000 p + 5.000

L 2.759(p *+ 1.25 + 3 0.5)(p * 1.25 = J 0.3) (¢g)
(p+r2+31)(p+2-31) g

If in the design, (50) and (51) are satisfied with
equal signs, the arm immittances will be minimm
real-part functions, and the network will have no
flat loss. Doing this and using the configuration
in Fig. 10, the network is as shown in Fig. 12,

It is imteresting to note that this circuit uses
only eight elements (excluding terminations) in
order to realize the transfer function (65), while
a conventional constant-resistance bridged-T would
use ten, and a constent-resiztance lattice would
use sixteen.

Ta(P) =

If any of the branch immittances used are
two pole and zero Class III functions and if (%0)
and (51) are satisfied with equal signs, either
Type D realizations or impractical Brune reali-
zations with unity-coupled colls will be required,
The branch immttances would be minimum real-part
functions and Type D realization would require
eight elements for each Class III immittance., If
eqs. (50) and (51) are satisfied by the inequality
signs, then the branch immittances will not be
minisum real-part functions. By doing this it
will be possible sometimes to obtain Type C reali-
zations (usually 7 elements), or Type B reali-
zations (usually five elements) for the Class III
immdttence branches. Of course the price for the
reduction in number of elements is additional flat
loss,




If some cases the designer may wish to ac-
count for coll and condenser dissipation. If the
circuit resulting when (50) and (51) are satiefied
with an equal sign camot be adapted to this, by
using the inequality signs (thus increasing the
flat loss) it will usually be possible to modify
the realization to account for coil and candenser
dissipation.

In some cases this method of synthesis will
give unequal terminations. It should be noted
that if the configuration in Fig. 10 gives a rise
in impedance level from input to output, the cire
cuit of Fig. 11 will yield the identical transfer
function (54) with a drop in impedance level from
input to output, Thus if a chain of sections with
unequal terminations are to be connected together,
some conmtrol can be exerted over the impedance
levels at the ends by choosing between the sec-
tions of Fig. 10 and Fig. 11, or by using some of
each,

When transfer functions are defined as in
(5L), then the overall transfer function for a
chain of constant~resistance sections is exactly

T(p) = T]_(P) TQ(P) seee Tn(P) ’ (66)

where the Tk(p) are the transfer functions of the
individual sections. One might at first think
that if all of the component sections have mini-
mum-loss transfer functions, then T(p) would also
have a minimm-loss transfer function. However,
note that this is true only when the magnitudes of
the individual transfer functions all have the
value one at the same frequency p = jw., For this
reason the designer will sometimes introduce extra
loss by realizing a complicated transfer function
in a chain of simple sections rather than in one
complicated section. The design simplicity ob-
tained will usually be worth the price, however.

A somewhat more complete discussion which
indicates how the equations in this paper were
derived will be found in Reference 7.

Appendix
Suppose that we have a Class III function

T ( -B‘?—"P—’ 2 1)
mP) +ep+d)

where 8, b, e, and d are known but B is to be

determined so that the minimum value of |T,(jo)f

is one. The correct value of B can be determined

by examining several trial values., The first is
Be=dfb. (68)

The second is
B - 1 Y

(61)

(69)

8l

A possible third and fourth value may be obtained
by forming the polynomial in Q:

(@ - 12)% + (20¢ + L2 + Ld2)Q
+ (0 - Ld?) =0, (70)
where C = 2b - &2 and D = e2 = 2d; and then se-
lecting roots Q = Qe which satisfy
_ (QC + D)
2(q, - 1)

For each Q that satisfies (70) and (71) there is
a trial value

B=fYo .

The desired value of B is the largest value ob-
tainsble from (68), (69), or (72). Eq. (68) will
be valid when |Tm(3w)ln,; 1 occurs at the origin,

(69) when it occurs at infinity, and (72) when it
occurs at

ta = 237y -
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AN ITERATIVE METHOD

FOR

R C LADDER NETWORK SYNTHESIS #

R, E, Scott and N. DeClaris
Research Laboratory of Electronics and Department of Electrical Engineering
Massachusetta Institute of Technology
Cambridge, Massachusetts

Summary

An iterative procedure 1s described for
synthesizing R C ladder networks from their pole
and cero positions. Criteria for convergence are
developed and an example is given.

The iterative procedure for network synthesis
starts with a given set of poles and zeros. A
netvork topology is chosen by inspection, which
vlelds the required zeros and provides enough
flexibility to determine the poles. Arbitrary
element values are assumed and then each tuned
circuit is "relaxed" in turn to give a correct
resonance at one of the poles. For the general
RL C circuit it is sometimes difficult to pick the
correct network topology by inspection, and no
general proof of the convergence has yet been
offered. For the R C case where all the poles and
zeros are on the negative real axis, the network
configuration is known to be a ladder and hence the
first difficulty is overcome. It can also be shown
that if the relaxation is carried out in a pre-
scribed way the process must converge.

The principal advantages of the iterative
method over any of the conventional ones lie in
the added flexibility which it gives the designer
in the choice of the form of the network, and in
the numerical simplicity of the computations
which are self-checking at every stuge in the
procedure,

The Properties of R C Ludder Networks

The pertinent properties of R C ladder net-
vworks are summarized in the following theorems.

Theorem 1:

The transfer impedance of an R C two-terminal-
pair network is of the form,

TT
izl(s + “1)

where all the a,'s are reul, distinct, und
positive ana thée 3. .'s occur in complex conjugute
pairs. Furthermore n §;m."

Corollary 1

If the R C network is of the form of & single
ladder then both a, and bi are real, distin-t
und positive.

Theorem II

The driving point impedance of an R C net-
vwork is of the form,

n
Z),(s) = T1(s + 3y)
Tris + ay)

where a, and b, are real, distinct and positive
and form an Al%ernating sequence when arranged
according to the order of their ascending magni -
tude beginning with 1y and m=n or m=n+l.

Theorem I11]

The sum of two polynomials with real and
negative zeros which alternute ulong the real
axis of the complex plane forms another poly-
nomial whose leros are also real and alternate
with the zeros of the above polynomisals.

Theorem 1V

All the poles of a trancfer impedunce of
a two-terminal-pair network are contuined in the
driving point impedance viewed from uny pair oT
terminals.

.This work was supported in part by the Signal Corps, the Air Materiel Command, and the Office of

Naval Research.

**There is an additional condition for the constant multiplier K.

i8 made in this paper.
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Iterative Procedures for RC Ladder Networks

A convenient procedure for realizing R C
1adder networks consists of the following:

1. Arrange the zeros and poles in sequences
of ascending order of magnitude and associate
poles and zeros in pairs.

2. If the pole lies to the left of the zero
jt will be realized by a type 1 section. ( see Fig.l)
If it lies to the right it will be realized by a
type 2 section. (see Fig. 2)

3., Assume arbitrary values of the elements in
the complete network. (Note: the shunt R's are
redundant elements which give the flexibility
required for a general case.)

L. Iterate the shunt R's one by one. Adjust
the residues of the R C circuits to keep the
Lagrangian energy functions negative at all the
poles. This last condition is necessary to keep
the resistors all positive.

The Series and Shunt Component Sections

The series section is shown in Fig. 1. Let
Zo and Z; be the driving point impedances of two
r°C networks. In particular let,

_Talse) . Tiswa))
L=
TT(s+n1)

with the additional condition that q <n1.

(3)

7 =
° E( s+a;)

After a few algebraic manipuletions one
obtains:

THstng) (ssa) 11 (s%q )
—ﬂ(5+mi) R, (s+a) 1 (s+p)+aR, T{(s*q)

where:

.

(4)

o~

11

- (5)

In accordance with Theorem III,

(sva) TT (s#p)vaRyT(sva) = K T1(s44,) (6)

where there is at least one d = do’ such that

d;> a
The exact location depends upon R,. Finally

the poles of 2 (s) are determined from the
11
polynomial

T s TT(sarory [ Ticsnp Tcssay+ Tlesra) TTsvm)

( s+a)]

(7
It can be shown that the above polynomial has
real zeros a, one of which is a_> a the exact
location depending upon R}. 1t%can be stated
therefore that a pole a_ 18 constrained by Ry
to give °J>‘“ The cholce of R, is arbitrary,

817

and can be used to control the nature of the
energy functions.

A similar analysis will show that for net-
works of the type shown in Fig. 2 Rl constitutes
the constraint on a pole aj such that,

0o
where

(8)

0=l
R,C
with Ry setting the impedance level.

Convergence

For the transfer function of an R C network
the system equations take the form

Aijx+y=Cijx (9)
vhere
C1j = Xi Sij ij = g:izzcker
(10)

and x and y are the desired voltage and current
functions.

This equation can be written as
(Aijﬂiﬂ.) x+y=0 (11)

or

\Aij - "11\3 =g, =0 (12)

vhere 1Lis the unit matrix.

It must be pointed out that due to its
special form the matrix A, has only the diagonal
elements and elements adjacent to the diagonal.
The element Ci' is independent of s and further -
more there ex1§t Bi such that

Aij(Bi) =0 1=1,2,...0 (13)
Since the determinant
| a5 |
is of a polynomial in n power of s the Bi are
the only possible roots and
‘ AiJ(Bi) + Cij \ = Ki (14)

vhere K1 is a real number.

Equation 14 in expanded form constitutes n
systems of n simultaneous and interrelated
equations whose elements Ci' are necessarily the

J
same in all systems.




In the iterative method an arrangement is It is obvious that (o) 2
made by which all the elements of the matrix (Ai') (2)_ (1) %2
in Eq. 13 are known with the exception of the *1 = x2 —TST_ + ... (23)
element a, (diagonal). & first guess of these a
i 22
elements }s made and one computes the error *1 as

follows The higher terms omitted since
i
i_47(py) (o) (o)
T (15) %2 2 %
AII(ui) Now 2
i 2£0)_g ()2 (o) , (1)
wgere A7(8,) is the determinant of the matrix and X(l) _ 12 "12 11 ™M for s=_ (24)
All(B ) is"the co-factor of the element ay- A 2 - ° B2 :
new matrix is written for which: ! 33
i+1 _ i i or
%y T %y M (16) (1) ol 2
X2 =22 - 712 (25)
The superscript denotes the order of iteration. (o) q33(qll_xl)
After n iterations (n being the total number of ?33
poles or n+l the number of rows of the matrix A, .)
ij for
2
n+l a, ., . 2
T R BT « I SR VN W
U U Rt T RN 11 %3311
(17) the process converges since
and )‘](.‘) > )‘(11)
n+l 02
A(n)= q(o)_)\'(l) | ‘ G(O)_)\'(l)_ _(i%j_l—_ (18) Example
P B ) (1)
11 22 2 i=3 ii i ] i—l-xi—l
2 Given the truncfer function
o . s
. he f . = z —
;g e?eing the first guess element value. There 212(5) (s+1) (543)
a(o)_x(l) o2 find the network.
A2 [ (o) 4(1) M2 ] (19)
1 (o) (1) 22 "2 (o) . (1) The poles and zeros arranged in a se-uence
al’ -\ DANEEYY .
22 2 11 "1 of ascending order are:
. poles: =]l =5}
or: 5 zero: 0 0o
2 < .
x( )= a(o) - xil) - —T_%g__TT) (20) The pole (-1 ) is associated with the zero
1 11 ng - A (0) and the pole (-3) with the zero at (00).
Note that both section types must be used.
-— And the network takes the form shown in Fig. 3.
b
2 2
a a a Suppose that 4C, = C,. (Arbitrary condition.)
k(l) = [,(0) 12 A 12 (21) As a first choice 1dt: < -
1 22 o) a 11  a
a 22 22
= N R, = &
2 22
and
5 Match the impedances for s = -1 at the se~tion
2t0)2 a? 2l ab. That is,
12 12 [ he ], (22)
’1(0)—)\,(1) Q(o 2 q(o e zl(_l) S —22(—1) R
22 M2 22 22 or
zh: ?gife values of elements aij are computed for Rl = —-(-3) = 3
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Now match the impedances at section cd, for

s = -3.

YB(_B) = - YL(—B)

1
R,

12
= --(——g) =] R2 =] %2-

Going back to section ab and with s = -1

o (23 - 23
B =50 =7
it section cd for s = -3
. -(-3.975) R, = .253
R/ : 2 *
For s = -1 at section ab
Rl =,—(-3.66A) = 3.664
After a few iterations
Rl = 3.33 R2 = iA
Cy=1 €y 7%
cl
LT
. R, i
Z'_' Z‘ R‘ Zo C3S R C

Fig. 1 - Series element network type I.

S
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Fig. 2 - Shunt element network type II.
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NETWORKS TERMINATED IN RESISTANCE
AT BOTH INPUT AND OUTPUT

By Louis Weinberg
Hughes Research and Development Laboratories
Culver City, California

Abstract

In this paper a lattice with & resistive ter-
mination at both input and output is realized. Any
physically realizable transfer function--impedance,
admittance, or dimensionless voltage ratio--may be
realized by the metltod presented. The method used
nay be based on either of two previous procedures
that realized open-circuited lattices. If the
given transfer function has a numerator of lower
degree than its denominator, then an even more
practical termination may be obtained at both in-
put and output, namely, one that has a shunt cap-
acitance in addition to the resistive termination.
The lattice arms contain no mutual inductance and
may always be designed to have no pure inductances,
that is, every inductance oresent in an arm has an
associated series resistance.

Introduction

The problem of realizing a general transfer
function by a lattice network is an important one
in modern network design, and has been treated in
a number of papers.'~” Only onel of the available
procedures, however, demonstrates how to obtain
the practical and desirable form of lattice that
has resistance terminations at both input and out-
put. Here a different method is presented for real-
izing a general transfer impedance, transfer admit-
tance, or dimensionless voltage ratio as a lattice
terminated at both ends in resistance. No mutual
inductance is necessary for realizing the lattice
arms and every inductance may be designed to pos-
sess an assoclated geries resistance, so that in
building the network lossy coils may be used. Fur-
thermore, it is often desirable from a practical
point of view to obtain a network with a shunt ca-
pacitance at the input and output terminals; it is
clear that the physical realization of such a net-
work requires that the numerator of the transfer
function be of lower degree than the denominator.
When this condition holds, the method of this pap-
er achieves the desired capacitance at both input
and output terminals,

The first part of thf ?ethod may use either
one of the two procedures's” for realizing an open-
circuited lattice. The procedure explained in

this paper starts with the technique of partial
fraction expansion;! it will be clear to the reader
how the other method” may be similarly adapted.
Only a brief summary of the partial fraction meth-
od is given in order to establish definitions and
necessary formulas; for further details the reader
is referred to the reference.

After the realization of the open-circuited
lattice it is necessary to remove a constant from
each of the lattice arms. To show this is always
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possible a discussion is given of the variation
along the j axis of the real part of the lattice-
arm driving-point functions. Then the explanation
of the synthesis procedure is completed and an il-
lustrative example is worked out.

Realization of Open-Circuited Lattice

It was previously shownb that a general trans-
fer impedance, which can always be written within
a multiplicative constant in the form

E
_ 2 _ p{s)
212‘ TI * q(s) (1)

sm+am_l =1, ... a,s+a

" n n-1 %, (mg n+l)
4+ ... + b s+b
1 o

s *bn-l

may be realized as the open-circuited lattice shown
in Fig. 1 for which

1 o
212 -E(Zb—za)' (2)

If the poles of 712 are simple and its numera-

tor is of lower degree than the denominator, the
partial fraction expansion of the impedance of each
of the lattice arms has the form

nk

Possie

) -5,

(3)

Considering complex conjugate poles as combined
into one term, we find that each of the partial
fraction terms has the significant positive real
characteristic, that is, the terms are separately
realizable by inspection. Thus bhe two types of
terms that occur are given by

(S (L)

and k2 k

(5)




2a2(s+d2)
= ’

+0,.8+ |S ‘2
s % 2|

where a, a); Oy d2’
constants, and d2

andozare real and positive

is not greater than 202. These

terms are immediately realizable in the forms shown
in Figs. 2 and 3, and the complete lattice has arms
containing a series connection of such networks.

When m =n one or both of the expansions for
the lattice arms contains a constant term, and when
m=n+l at least one of the arms will contain a pole
at infinity. Corresponding to these terms a series
resistance and a series inductance, respectively,
will be present in the lattice arms. For a 212

that possesses multiple poles the method of reali-
zation explained in reference L introduces a con-
stant term into each of the lattice arms. We
shall see that this precludes obtaining a shunt
capacitance at both input and output even when m<n;
however, the method of reference 5 permits the de-
sired capacitance to be obtained for this case.

Variation of the Real Fart of 2

We now show that the real part of Y = % for

s = jw, denoted hereafter by Re[¥(jw)], has no zeros
for all real values of w including infinity, where
7 represents the form of the driving-point imped-
ance of each of the lattice arms; that is, the lat-
tice arms have nonminimum-conductive driving-point
admittances. As a result a conductance may always
be removed from each of the lattice arms without
destroying the positive real quality of its driv-
ing-point function.

Since z; and 2, given respectively in (L) and

(5), represent driving-point impedances, their real
parts along the j axis are never negative. It is
furthermore clear from inspection of (L) that the
real part of z is nonzero at the origin and de-

creases monotonically to a zero value at infinite
frequency. Similarly, for terms of the form of zy,

inspection of (5) shows that Re[zz(jw)] is also

finite and nonzero at the origin and has a zero
value at infinite frequency, though its intermed-
jate variation is not monotonic. It, too, posses-
ses no zero in the real part for finite frequen-
cies. If we consider the given le as a proper

fraction with simple poles, then each of the lat-
tice arms is of the form given by (3) and the real
part of Z is the sum of the real parts of the two
types of terms considered above, Suppose we now
write

My
My )

Z = 6)

where o, and n, represent respectively the even

and odd parts of the numerator, while m, and n,
play the same roles for the denominator. Then
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n, - n
rel2 ()] 212 ()
my =M = 0

and the above reasoning yields the conclusion that
the numerator (mlm2 - n1n2) possesses no zeros for

real w and is therefore always positive. The to-
tal function Re[Z(jw)] has a zero at infinity.

As for the admittance Y= %,its real part is given
by

- n.n

12

Re[Y(jw)] : m1:2 )

_nl

(8)
5= jo

from which we note that it tas the same numerator
as Re[Z(jw)] . Therefore Re[Y(jw)] is always posi-
tive and nonzero except possibly at infinite w.

But it is also nonzero at infinity, for the degree
of the denominator will be greater than that of

the numerator in (8) only when Z possesses no other
terms except one or more of the form of z, in each

of which the constapt d is equal to 20. oince it
is always possible to make d less than 20, we
may state the conciusion: the he[Y(jw)] is always
positive and nonzero for all (finite and infinite
real) values of w.

Hestricting the discussion to a proper frac-
tion containing only simple poles represents no
loss in generality,for the same conclusion applies
in the otler cases., If multiple poles are present
in the given transfer impedarice 212, a term whose

real part is positive and nonzero for all w is add-
ed to the lattice arm impedances. If in le the

degree of p is equal to the degree of q, a constant
is added to one or both of the lattice arm imped-
ances. Finally, if the degree of p exceeds that

of q, none of the transfer functions is physically
realizable with a resistance termination at both
inout and output, as is demonstrated below.

It has been shown3 that a transfer voltage
ratio is not physically realizable if the degree
of its numerator is greater than the degree of its
denominator, that is, if a pole at infinity is
present., But we desire networks terminated in re-
sistance at both input and output. For such net-
works the same rational function within a constant
multiplier represents the transfer voltage ratio,
the transfer admittance and the transfer impedance.
Thus all three types of transfer functions are
unrealizable in the form of the desired network if
the degree of the numerator exceeds that of the
denominator. Another way of seeing this is to
note that if an open-circuited lattice is synthe-
sized whose transfer impedance is given by such
an improper rational fraction, then at least one
of the impedances of the lattice arms must have a
pole at infinity. Consequently a conductance can-
not be removed from the corresponding admittance
because its real part will have & zero at infinite
frequency.

Completion of the Synthesis Frocedure




The open-circuited lattice that has been de-
rived may now be converted to the desired form. We
have seen that the real part of each of the lattice-
arm admittances will have one or more positive non-
zero minima; we now determine the smallest minimum
of both admittances and denote them resnectively by
Ga and Gb' It is then vossible to obtain an equiv-

alent lattice> by removing from each of the arns a
conductance of value less than the smaller of Ga

and Gb and placing it in parallel with the input

and output terminals of the lattice. This trans-
formation, shown in Fig. L, thus yields the desired

E
resistance terminations for Z ., To obtain K= 12
I 12 bl

and Y., = 5 requires merely an application of
12" E;

Thevenin's theorem to the input;
network of Fig. 5 for which:

this yieids the

K =
2

- (%)
1

and 1
= L
12 E1
GE

.2 (10)

It is clear from the above equations that the
constant gain factor achieved for the transfer vol-
tage ratio is directly proportional to G. This
makes it desirable, if one is interested in gain,
to remove as large a conductance as possible from
the arms. However, one may be more interested in
using low-Q coils for the realization of the lat-
tice arms, which problem we discuss below; in this
case it is necessary to retain a large conductance
in each of the lattice arms.

For realizing the remainder of the lattice
arms, that is, the admittances Y; and Ié in the

network of Fig. 5, we may use the Bott—and-Duffin
procedure, This yields a network containing pure
inductances but no mutual inductance. However, we
desire that every inductance possess an associated
series resistance; to achieve this we substitute

a new variable (s-h) for s before using the Bott-
and-Duffin method, that is, we make use of the tech-
nique of predistortion introduced by Darlington.?

Predistortion requires that for each arm ad-
mittance we first determine the equation of the
curve in the left half of the complex plane that
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represents the locus on which the admittance has a
zero real part. For examnle, working with the
series arm,

'
Yl! Ya + (Ga - G)

up(0,m) + 3V, (0,w)

u2(o,w) + jv?(o,w)

’ (11)

we obtain the curve

Re [Yl] -0

= U u, + V.V

195 1Y = f{o,w) = 0.(12)

Considering o as an implicit function of w given
by f(o,w) and evaluating the derivative

of
do dw o
T 2=
3o

we find the smallest minisum vi.ue of o, that Gy

the voint at which the curve is closest to tte J
axis. To cach of the zeros and poles of Yl we nay

now add the positive constant which is chosen less
than or equal to this minimum distance, without

destroying the positive real quality of Yl. Then,

after realization of the arm by the Bott-and-Duf-
fin procedure, the network obLtained is corrected
for the predistortion: for every L a series com-
bination of L and a resistance of Lh ohms is sub-
stituted, while every C is replaced by a parallel
combination of C and a conductance of Ch mtos. A
similar procedure is followed for the diagonal arm.

Finally, if the given transfer function is a
proper fraction, it is clear that the admittances
of both of the lattice arms will nossess a pole
at infinity and a corresponding shunt capacitance
in their network representations. Thus, a capaci-
tance may be removed from each of the arms yield=-
ing an equivalent lattice with a shunt capacitance
at the input and output terminals.

Y
The steps in the synthesis procedure may n)w
be summarized as follows:

1. Realize the given function as an open-
circuited lattice by the method of reference L or
reference 5,

2. Obtain an equivalent lattice with a shunt
conductance at the input and output terminals., If
the degree of the numerator of the given transfer
function is lower than that of the denominator,
also remove a shunt capacitance from each of the
lattice arms.

3. Predistort each of the remaining lattice
admittances as explained above. Then realize each
arm by the Bott-and-Duffin procedure, after which




the networks obtained are corrected for the predis-
tortion.

L. If necessary use Thevenin's theorem on thre
input to obtain the given type of transfer function

Illustrative Example

To demonstrate the complete procedure, we
realize tre nonn.inimum—-rhase voltage ratio

Ke C2 . 52- s - 12.L

1 lOs2 + Lbs + 60

as a resistance-terminated lattice.

First we represent the above function as the
transfer impedance of an open-circuited lattice.
Using the method of reference L we find

<2 + 6s + 10
Zb = 5
5s€ + 235 + 30
7 = 7s + 22.L .

2 5q2 + 23s + 30
The series imvedance Za is immediately realizable
by insrection as

Upon attemnting to remove a conductance of one rho
from Yb we obtain the positive real remainder

Ls? + 17s + 20
Y, -1=73
s¢ + 6s + 10

Thus this conductance may be removed from the lat—
tice arms to yield an equivaient resistance-termi-
nated lattice. The remainder of the diagonal arm
adnittance has a zero real part curve whose closest
point to the j axis occurs at 0 = =2. Substituting
the new variable (s=2) for s in the remainder, we
obtain

Y = h52 + 8 +2 ,

s 4+ 28 + 2

which ve now realize by the Bott—and-Luffin oroce-
dureb as the network shown in Fig. 6. This net-
work is then corrected for the predistortion.
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liow applying Thevenin's theorem to the input
of the lattice thus obtained, we finally realize
the lattice shown in Fig. 7.

Conclusion

Any realizable transfer voltage ratio, trans-
fer admittance or transfer impedance may be real-
jzed by the method presented in this paper as a
lattice terminated in resistance at both its input
and output terminals. 1o mutual inductance is
necessary aud each inductance has an associated
series resistance so that low-Q coils may be used
in building the network. When the transfer func-
tion is a orover fraction, then a shunt capaci-
tance may be obtained at both the input and output
terminals.
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APFROXIMATING BAND-PASS ATTENUATION AND THASE FUNCTIONS y
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Abstract

A préblem that often arises in synthesis is to
obtain transfer functions that give an approxi-
mation to assigned attenuation and phase functions
over a stated frequency interval. In this paper
approximation in two different senses is discussed:
(1) derivative matching (Taylor), and (2) nearly
equal-ripple (quasi-Chebyshev). The first tyre is
used as an intermediate step in the second.

An existing method usins Chebyshev polynomial
series gives nearly equal-ripple approximations to
en assipgned attenuation function in both the "low-
pass" and "band-pass" intervals.l This method can
be used to approximate phase alone or phase and
attenuation simultaneously but only in the low-
pass interval. By stressing the concept of con-
formal mapping this method can be extended to the
band-passcase.

This paper gives the extension for obtaining
the solution to these problems (approximation of
phase alone or simultaneous phase and attenuation)
in the band-pass interval. The procedure uses an
elliptic function conformal mapping. In the cases
of all-pass linear phase or linear phase coupled
with constant attenuation the nearly equal-ripple
approximations are shown to be simply related to
the Taylor approximation.

I. Introduction

In applying network theory to practice, we
usually find that the work is divided into these
three well-known parts: (a) studying the demands
placed on the network function in the light of
what is physically realizable, (b) finding an
approximation to these demands that will yield a
physical and economical network and (¢) realizing
the network in terms of its structure and element
values., In this paper the methods discussed are
useful in the approximation problem, part (b),
when the demands, part (a), are made in terms of
the usual steady state characteristics over the
"band-pass" interval.

For the case where the specified interval
includes zero freouvency, the low-pass case, the
approximati?n problem has been fully treated by
Darlington.* Approximation of band-pass attenvation
functions can also be accomplished by this tech-
nique. However, this method is not applicable to
approximating bend-pass phase or the simultaneous
approximation of band-passattenuation and phase, *

¥ If the bandwidth ratio is sufficiently close to
unity, i.e. the narrow band case, the low-pass
techniaues may be applied to band-pass problems
by the usual low-pass to band-pass transfor-
mation methods. If the bandwidth ratio is too
large then the methods described in this paper
can be used.
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The types or senses of approximation that we
consider are two: first, the Tavlor, and second,
the quasi-Chebyshev approximations. The Taylor
arproximation is mainly useful as a means for
getting the second type, the quasi-Chebyshev
approximation. In the Taylor or powver series
approximation a sinple point on the frequency axis
is selected at which the value of the network
function and as many derivatives of it as possible
are set equal to the corresponding values in the
prescribed function. Thus, by means of derivative
matching we get a "maximally-flat" error curve
that represents the difference between the pre-~
scribed function, say y, and the approximating
network function, say y.

In the true Chebyshev, or equal ripple apjrox-
imation, the maximum magnitude of the error curve
in the useful (non-zero) frequency interval is
made a minimum. As a result of this, the error
curve ripples about zero with positive and nega-
tive peak values that are all equal in magnitude.
Instead of trying to find an exact solution (which)
has been obtained for a few special functions) we
seek a certain type of nearly eaual-ripple solution
that we shall refer to as a quasi-Chebyshev approx-
mation in this paper. ‘e may define this type as
a solution obtained by the following method.

The prescribed function Y is expanded into a
series of functions where the individual functions
Ei oscillate about a constant value in an equal-
ripple fashion. Thus

o)
y=2
i=o
Then a network or approximating function y is
obtained in which @®
y =2 af (2)
i =0 -
and wherein as many ajare set ecqual to the corre-
sponding aj as possible.

aiE o (1)

For the low-pass interval and for band-pass
attenuation functions, the functions Ej are
Chebyshev polynomials., For the approximation of
band-passphase or phase and attenuation, this
paper presents methods where the functions E; turn
out to be a set of elliptic functions,

However, instead of defining the quasi- -
Chebyshev approximation in this manner, which
becomes too complicated for the bandpass case, we
can use the following alternate definition that
applies to both the low—pass(ChebysheV'polynomial
serlies method) and band-passcases, The definition
proceeds as follows:

The useful interval of freouencies along the
w-axis in the p-plane is transformed into a circle
in another plane related to the p-plane by a con-




formal mapping. “ith the center of this cirecle

as the expansion point a Taylor (power) series
expansion is made which gives the desired network
transmission function ¥ on the circumference of
the circle.* The approximating network function

y is then constructed that matches as many coeffi-
cients as possible of the Taylor series of Yy in
this transformed plane, As a convenient intro-
duction for the band-pass problem, we briefly review
Parlington's work with this later definition in
mind.

II. Conformal VMappings-Attenuation And
Fhase Invariant Transformations

If a conformal mapping is made relating the
p-plane to another plane, say the € -plane, then
the attenuation and phase functions in the p and
€_planes have the same velues at the point p and
the corresponding point in the €-plane.,“ This
concept is used when mappings which have certain
helpful symmetries are utilized in a particular
problem.

In the type of conformal mapping used here,
the set of singularities from the p-plane are
mapped into another plane where the original set
of singularities is increased into two or more
sets. These sets are always S etrical about
some line in the mapped plane. Removing one or
more of the sets of these singularities results
in a simplification of the synthesis problem. The
resulting attenuation and phase functions are
still readily related to the original and hence
we refer to this removal process as an attenuation
and phase invariant transformation.

II.A, lov-lass Interval Mappings and Transformations

Ve can illustrate the above by first consider-
ing the mapping used by Darlington for the low-pass
case shown in Fig. 1. Here the p-plene (with its
useful interval extending from -1 to 41 along the
w-axis) is transformed over into the Z-plane by
the relation

(3)

Thus, the useful interval lies along the circum-
ference of the circle of unit radius centered on
the origin of the Z-plene. ‘le then use the
further mapping fror the Z-plane to the W-plane
where Z = ¥ Here the useful intervael is re-
peated periodically along theqr-axis, the axis of
imaginaries in the W-plane.

p = ¥z - 1/2).

Firure 2 shows examples of network singulari-
ties in the p-plane which are to be transformed
into the 2 and -planes. In Fip. 2(a) the ration-

» A transfer function is expressed as a rational
fraction in terms of which the numerator and
denominator factors are poles (natural modes)
and zeros. The corresponding transmission
function is obtained by taking the logarithm of
the transfer functdon.
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al function R(p) is the actual network function.

If only attenuation is-to be considered, the "power”
function R(p) R(-p) in Fig. 2(b) contains only
information relating to attenuetion with zero phase
along the w-axis. If only phase is under consid-
eration, the "all-pess" function, R(p)/R(-p), is
useful since attenuation is constant along the
w-axis.

Figure 3(2) shows the singularities in the
Z-plane that result from transforming from the
p to the Z-plane the singularities shown in Fig.
2(b). FMpeure 3(b) shows the result after the
singularities are mapped into the W-plane. We
now note that removal of all the singularities in
the left half-plane of the W-plane only effects
the attenuation by reducing it to one-half of its
initisl velue. This transformetion or removal of
singularities introduces an extraneous phase
function along the¥ -axis. This phase is not
to be confused with the phase function of the
oripinal network transfer function shown in
Fig., 2(a). The remaining sinpularities in the
V_plane are nov mapped back into the Z-plane.

The transfer and transmission functions that
are obtained after the renoval of the singulari-
ties are referred to as the reduced functions.

A1l the singularities are now external to the unit
circle, |2| =1, as shown in Fig. 3(a). This
clearing out of sinpularities from the circle,

[zl =1, is an importent step since it allows us
to expand the reduced attenuation function into a
pover series about the origin in the Z-plane with
wssurance that the power series will converge in
the unit circle. Since the singularities of

~ig. 3(c) are symmetrical about the axis of imag-
jnaries in the Z-plane, the power series expansion
for the reduced transmission function contains
only even order terms in Z.

Figure 4 pertains to the phase invariant
transformation. Figure 4(a) is the result of
transforming singularities from Fig. 2(c) into
the Z-plane. These singularities are then mapped
into the W-plane as shown in Fig. 4(b). There we
note that removal of the left half-plane singu-
larities only reduces the phase by a factor of one-
half everywhere along the useful interval., After
this removal of sinpularities there is an extran-
eous attenuation obtained at the useful interval.
These ripght half-plane singularities are now mapped
over into the Z-plane as in Fig. 4(c). Again the
unit circle is clear of sinpularities and a power
series expansion about Z = 0 is in order. The
singularities of Fig. 4(c) are anti-symmetrical
about the imapinary axis of the Z-plane and the
power series expansion for the reduced transmission
function contains only odd order terms in 2.

As Darlington shows pover geries expansions
for the assigned attenuation and phase functions
can be readily obtained. Network functions can
then ke found so that in terms of Z-plane anslysis
the assigned and network power series have iden-
tical coefficients up to a certain degree set by
the mumber of singularities in the network function.




Fipure 5(a) shows the result of multiplying
the transfer functions contained in Fig, 3(c) and
Fip. 4(c). The transmission function that results
from taking the lorarithm of the rational fractions
in Fip. 5(a) contains toth even and odd terms.
Since we know that in the power series for the
transmission function of Fip., 5(a) the even (odd)
terrs evaluated alonp the useful interval pive true
attenuation (phase) the extraneous term can be
ipnored. Hence the rational function shown in
Fip, 5(a) can be used in lieu of that shown in
Fig. 5(b) which contains all the singularities
transformed from the r-plane.

We can restate the ideas in the ahove para-
craph in the following manner. (The following
method is more useful since it can be extended to
the case of attenuation and phase invariance in
the band-pass interval,) First we may consider
that the assipned attenuation and phase, 4 + j
are due to an infinite network (reference 1, p. €40
footnote). On removine the sinpularities of this
network that lie in the unit circle of the Z-plane,
we have the resulting reduced transmission function
"u" 4 i"5" slonp the useful interval in the Z-plane.*
The reduced network that corresponds to the actual
network with the unit circle clear of singularities
is found so that its transmission function "u" +
j"p" approximates "a" + i"E" in the Taylor sense
at Z - C, Thus on reconstructing the entire
(actunl) network function we end up with the quasi-
Chebvshev approximation of u + jE , Since the
extraneous terms are removed.

I1.B.Band-PassInterval Faprings and Transformations

In the band-pass case we require different con-
formal rappines and furtlter attention must be given
to the attenuation and phase invariant transfor-
mations that are used., Fipure € shows the geom-
etry of the mapping that we use in the following
discussion,

For the band-pass case the useful range con-
sists of two intervals along the w-axis, These
have been normalized so that we are interested in
frequencies that satisfy the relationship Viﬁ jluﬂ
S INK . OIf we always make sure that the network
functions we deal with have with every complex
sinpularity its complex conjugrate, then considera-
tions relating to the attenuation and phase in the
interval for plus frequencies will automatically
give the proper values for the negative frequency
interval. Thus, in what follows, wve shall refer
to the useful interval alonp the plusw-axis as
the useful interval,

In order to transform the useful interval
into a circle we use the intermediate elliptic
function mapping in the w-plane

p =\Vk' tn(w,k). (4)

* The quote marks are used to indicate the
presence of extreneous phase and extraneous
attenuation whiech occur on evaluating the
reduced functions along the useful interval,
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Thus, in the w-plane we have an infinity of rec-
tangular "cells,” of dimension 2K by 2K', extend-
ing into both directions, One cell is shown in
Fip. €(h). Corresponding to each cell is one
Reimann surface of the p-plane. By means of the
exponential function mapping,

I
Ix

2 =e |,

(5)

the horizontal straipht lines representinf the
useful interval in the w-plane are mapped into
circles concentric about the origin in the z-plane,
In what follows the annulus that hes the inner and
outer radius a and q‘l, respectively is referred
to as the unit annulus.¥ This is shown in

Fip. 6 (c).

Fipure 7 pertains to the attenuation invar-
iant transformation for the band-pass case, In
Fig. 7(a) we show a typical transfer function in
the p-plane being modifiod for the situation where
we are interested in attenuation only. Thus the
singularities are symmetrical about the w-axis.
The sinpularities are mapped into the w-plane
LFig. 7(b) ) and at this point we see that if we
remove all singularities above the horizontal
line w = jK°, the attenuation will te reduced
everywhere along the line w = jK' by a factor of
one-half, but it will still have the same func-
tional form. ‘"hen we further map these sinpu-
larities into the z-plane|Fig. 7(c)] the circle
of redius a centered on the origin of the z-plane
is now free of singularities, Hence, we can, as
in the lowpass case, expand the attenuation into
@ power serles and obtain a representation along
one mepping of the useful interval, namely, the
circle of radius q in the z-plane. As Yefore,
an extraneous phase term has been introduced, but
since ve see that reconstructing the entire
function rives the true attenuation function, it
can be ignored, The sinpularities inside the unit
annulus give a contribution to the attenuation
4y that is evaluated along the circle of radius q.
U§i&g a power series representation we can write

91y = Re¥ha;at. '
i=1 (7)
If we investirate the attenuation contributed by
the sinpularities that are outside the circle of
radius g, we find that the contribtutions due to
the sinpularities in successive annuli all add.
Hence, if we call the term in the attenuation due
to the poles and zeros in the annulus, which has
inner and outer radii a q~¥ + 2 angd ™% respec-
tively 4(»)swe can express their contribution to
the attenuation as
e 2v i
Yq) TReE 8,(q% 2

Thus, the total attenuation due to all singu- -~
larities between radius q and infinity can be
written in the following fashion:

(8)

@ @ aizl ()
a = ReElu(_v) = Rel§=l 1 Prik
=-q
* The parameter g is defi?ed by
-iTK
q=e K (¢)




We next consider the problem of phase in the
bandpess case. Here we use the "all-pass" function
shown in the p-plane in Fig. g(a). Mapping these
to the w-plane Fig. 8(b) , we can again remove
all singularities above the horizontal line
w = jK! and obtain a reduction of phase slope in
the useful interval by a factor of one-half. ‘e
are concerned with phase slope instead of phase
since a closer investigation shovs that now the
average phase over the interval is not under our
control.?2 We again map the remaining singulari-
ties into the z-plane where we can write out the
phase contribution due to the unit annulus in
Fip. #(c) in the following manner:

@®

= i Z i
B(1) re¥ ) 0,2 (10)
Surming up the contributions due to all rings,
where the vth annulus rives the contritution
= (1)t Reg b, (02”12} (11)
F) =i 1

we have the following relation for the total phase:

@© %% 'oi Z
=25 g, =ReZ) T o (12)
?i &) i2, ., q21
Arain, we note that due to these removal of singu-

larities effects, the resulting transmission
function has both a phase and an extraneous atten-
uation.

In order to be able to apply the same for-
mulae that are used in band-pass Taylor approxi-
mations, a further mapping is useful., This
relates the s-plane of Fip. 9 to the z-plane by
the transformation*®

= Ll=2z (13)
s J 1 +2
e note that if we consider the area inside the

two circles to be "cut-out" of the s-plane (con-
sider only the portion of the z-plane that 1s

the unit annulus as being of interest) then there
is a one-to-one correspondence between the s-rlane
and the p-plane. Furthermore, the guacdrants are
in the same order in both plenes, which i s helpful
in studying realizability.

_ Yoreover, since the coefficients for U y «nd
B(1)can be readily obtained from those of T bnb g,
the unit annulus branch of the transformation need
only be considered. Hence, in place of expanding
in terms of z, we can expand our desired functions

in a pover series about the points s = jl. The
useful interval becomes a circle of radius
j (14 q3)/

2q/(1-32) centered on the point s =
(1 - ao~).

e

% The overall mapping relation between the p
and s-planes can be written in the one
formula

o =¥k ta {UK/n el G4e)/(-e bk - (14)
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vith respect to simultaneous attenuation and
phase invariance we can rephrase the last para-
graph of Section II. A in terms of the s-plane
analysis. First the singularities of Fig.la)
rives the attenuation (1] the real part of which
corresponds to a(1)along the useful interval.
Similarly in FigJ/o(b) we obtain the phase j"B)"»
the imaginary part of which is jp(1)along the use-
ful interval. WYe again introduce the concept of
the infinite network that produces the assigned
transnission function 4 and F in the useful inter-
val. Carrying out the removal of singularities of
the infinite network so that the unit annulus end
its various mappings becomes clear of sinpgulari-
ties results in the transmission function "3(1)"
+ j"I@)". Matching coefficients for the power
series of "a(1)' + "B and Wy 4+ "B at the
point s = jl gives the ouasi-Chebyshev approxi-
mation in the band-pass case [ as in Fip. 10(c)).

I1II. Taylor Approximations For PRand-Pass
Attenuation And Fhase Functions

In this section we study band-pass Taylor
approximetion techniques that must be used to
obtain bandpass quasi-Chebyshev approximations. e
1imit ourselves to discussing all-pole transfer
functions. However, other transfer functions can
be handled by siqilar methods .2

As a first step we write out the assigned
phase f in a Taylor series about the pointw= 1.
Thus

E = Eo + El (1) + EZ (ua-l)2 + ... (15)

The expression of the reciprocal of the network
transfer function in terms of p is
(16)

e\l+Jp=l+eip+ep2+..o-=Pn(p)'

2
Splitting Fn(p) into its even and odd parts we
then have

_ _0dd[Pn(p) | _Ofw) _ N(x)
tan § = 5 Even L¢n(p)]  E() ~ D(x)

(17)
where we have let p = jw andw-1 = x.

As an example let us consider the case n = 2.
Hence

ejx + e,
tanf3= —x‘-2x+e -1 (18)
If we writeP = (E)) * (Elx + P x>+, Jand

making use of the trigonometric ideﬁ%ity concern-
ing the tangent of the sums of two angles, we

have = = = 9 )2
to + X + ﬁzx + 0(x7)

1- T 8% +54x2 + 0(2)
where t tang_ and0(X) means terms of order x3
and higher. (In case f,=7we can rewrite our
aquation in terms of the cotangent. )

tan § (19)

Now both tan f and tang could be expanded
into power series in x and as many of the coeffic-
ients of like powers of x could be set equal in
order to get the Taylor approximation, In place




of this operation which gives nontractable equa-
tions for the coefficients of the polynomial,
Pn(p), we keep the forms shown in Eq. 18, Hcnce

) 2ot fyx + E v 0(x0) (20)
-x< - 2x + e - 1 l-to; X +Fé x< + OTi})
where £ means approximates, bross multiplying and
equating coefficients of like powers of x gives a

set of linear equations in term of the polynomial
coefficients, & and e, .

e.x +t e

If the phase P, and phase slope py 1re speci-
fied at_band center (w=1), the error is of
order X< and the ?gefficients are

2?0
e, = === ==
Bt b1 - ) (e
2 °
-1 =—= ~ -
K: Py~ I‘o(l - goyl)

For certain applications, either ;o or : is not

specified. In this case,the error term may be

ralsed to the order of x”. The coefficients are

found by solving the following set of equations:
e - t.o(e2 -1) +0 0

(1 - tyleg - pyley - 1) + 2F (22)
“to(Py T B)e) - Byley - 1) 42 vt =0
For a solution the determinant formed by the co-
2fficients ofe; , e2-1 ard the remaining column
must be zero, Hence
i = \T 3 =2, 2, =~ = = %
(By * 280t "+ (1-25) ")t "+ €, -B,) 1 -2y = 0.(23)
If we insert the specified values we can
solve for the real solutions of_ the unspecified
phase term, that is, fort, orfg) . For each solu-
tion we must further test for realizability, etc,

If neither‘Bo nor Bl are specified, as in de-
lay equalizer design, it may be possible to match
one more term. Methods for handling this case are
discussed in reference (2),

For the case where phase and attenuation are
to be considered, we write

o2 = |rn(p)|? = M + D2 = D2(1 + tany), (24)

Thus a

e =

(=

(25)

cos B 7,
On lettingu = 4y tux + U X *+..., we have the

following expression,

ed00 _ D cos go
sin g D (26)

where D = D(x) at (x) = 0. °

Expandirg the exponential e 7% and equating
it to the right-hand side of Equation (26) we can
equate like coefficierts of X and obtain a set of
linear equations for the coefficients e; .

We must necessarily specify coefficients of
the power series expansion of the phase up to the
highest specified coefficient desired in the at-
tenuation characteristics, On combining this set
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of linear simultaneous equations due to attenuation
specifications with the set due to phase demands,
a solution for the coefficients e, can be obtained,

For certain applications g, or py or ¢, and
Fp are not specified. In these cases, techniques
sﬁhilar to those in phase only approximations can
be used to increase the accuracy of the approxi-
mation at the expense of additional computations,

It should be stressed at this point that the
major difficulties in getting quasi-Chebyshev
solutions lie in the Taylor part of the problem.
The numerical work is straightforward in the case
all phase terms are specified, but when higher
order matching is desired by leaving fo or F
unspecified, the required computational worklln-
creases rapidly since real roots of auxilary
polynomials such as in Equation (23) must be fourd.

IV. Examples of Quasi-Chebyshev Approximation

As a recapitulation we shall design a wide-
phbase discriminator (a phase-difference net-
in which the phase difference varies linsarly
frequency) that is to be R-C realizable,

band
work
with
One proceeds in the following manner:
1. Translate the data into the commensurate
Taylor approximation,
2. Set up the simultaneous equations relat-
ing the coefficients of the network poly-
nomial to the phase slope and the mid-
band phase. Since the phase slope is
unspecified, we first obtain the auxilary
polynomial in pland solve for its real
roots,

Solve the set of linear simultaneous
equations for the n coefficients of the
network polynomial.

Find the polynomial that gives an R=C
realizable network,

Solve for the roots of the polynomial in
the s-plane,

Transform the singularities from the
s-plane to the p-plane by means of the
relations given in Eq. (14),

In order to do step (1) for a linear all-pass
phase difference in the useful interval, we first
set 2p = 2kow. Then from the transformation of
Eq. (4) Lsee Fig. 6(b) ] we can write for the useful

interval

w=—XK

dn(u,k) (27)

Letting

v = (28)
we have .
1—=L 2 X (=-4qg) . (29)

dn{u,k)  2hk!' * K fgl 1+ g cos(iy).

Since the constant term is not under control,
we henceforth omit it, Hence by means of the re-




1ationships given in the appendix one obtains

- _ _2mko X _ i )

By =R iél (- q)* cos (Lg)- i (30)
Converting to the variable z where z = qe€ ¥
zives .

s - -2k 5yt (31)

P1) = & k'
where we understand that the phase invariant trans-
formation is to be applied. Hence
5 = 2itko
i Kk’ °
For the one-half, all-pass phase in the s-plane we
write

(32)

- 2

- - \
1/2 F(1) il El x+p, X + ... (33

Leaving Eo unspecified we have by the relationship
in Eq. (30),

- _ __Tko 2
By = G o
7 =010, (35)

which completes step (1).

Equations (34) and (35) contain the interest-
:ing result that the reduced phase in the s-plane
is a Taylor aoproximation to linear phase at s = jl.
Hence any band-pass Taylor approximations for
linear phase can be reused to get a quasi-Chebyshev
approximation in the p-plane. To do the work of
step (2), we substitute in the equations given in
Section ITI. Letting #o7 459, we solve for the
real roots of the polynomial in P1. The values ob-
tained are py t 0.3090 and + 0,8090, Solving
for the values of e} and €2 (step 3), we find that
pl = +.3090 glves a R-C realizable network (step
L) with e] = -1.236 and €3 = ~0.236, This has
roots at s = -0,1681 and s = 1.4040 (step 5).
Transforming these points back through the z and
w-planes to the p-plane (step 6), we have for the
bandwidth ratio 1/k' = 5.76 (modular angle 6 = 30°),
rocts at p = -0.142 and 1.485. In the "g]11-pass”
phese-difference function the opposite type of
singularities occurs at the point p = +0.142 and
-lo 10850

Figure 11 shows the final result obtained in
the desirn of a wide-bend phase discriminator,

The lower curve ShoWn ig the deviation from 2
1lirear phase characteristic.

‘ie next consider the quasi-Chebyshev approxi-
mation to an ideal filter. ( 3(w) = constant and
Pw) =K we) Using the results in the appendix,
Eruations (36) - (38) we find that for -0y =9,
remuires that K; =9j =0, Hence by Equation (£4)
we find that the 4, for the intermediate Taylor
anproximation of G are also zero. Thus, the band-
pass quasi-Chebyshev approximation to an ideal
filter can be obtained directly from the results
of a Taylor approximation to an ideal filter since
our preceding example has also shown that linear
phase in one approximation remains linear in the
other,

Avoplying the method to the case where the net-
wnork function is an all-pole function with 4 poles

gives the result shown in Fig. 12, Although the
Taylor approximations in this case guarantee only
an error of the order of the third degree in phase,
the quasi-Chebyshev phase approximation has an
error of the fourth degree (i,e,, there are four
points of zero deviation from linear phase), This
is due to the fact that the fourth order term is
much larger than the third order term in the Taylor
approximation, and this effect is carried over into
the quasi-Chebyshev approximation.

Figure 13 c7ows & quasi-Chebyshev approxima=
tion to a linear phase characteristic. The net-
jork function is an all-pole function with 4
natural modes, Various methods proposed for suc-
cessive apnroximation techniques could be used to
further improve these solutions if the ripple
errors were considered excessive at any point.

Vy, Conclusions

A technique has been shown for approximating
an arbitrary phase or phase and attenuation charac-
teristic in the band-pass interval, A nearly equal-
ripple (quasi-Chebyshev) solution is obtained.

The t~chnique described requires the use of (1)
conformal mappings that put the useful frequency
interval onto a circle, () certain attenuation
and phase invartant transformations, and (3) a
Taylor anproximation,

Although one of the mappings is done by means
Af elliptic functions, the elliptic function ma-
nipulations are of minor importance in the numer-
ical aspects of the problem. Rather the familiar
Taylor series approximation is the part wherein
most of the computation 1ies, As a result, the
band-passquasi—Chebyshev technique of approxima-
tion is a useful method for obtaining a solution
to many synthesis problens,

Acknowledgrent

The euthor is indebted to pr, D, F, Tuttle,
Jr., who acted as advisor during this research.
The work reported was done at Stanford University
under Office of Naval Research Contract Néonr251
Task 7 (NRO73 360), jointly sponsored by the U. S.
Army Signal Corps, the U, S. Air Force, and the
U. S. Navy (Office of Naval Research).

Appendix

In order to determine the coefficients for
the expansions in the various planes the follow-
ing formulae pertaining to attenuation and phase
are used.

The assigned attenuation is first expanded
into a Fourier series in terms of the variable ¢
vhere ¢ = (iu)/k, Hence

. =2 Ki cos i¢ . (36)
For many functions the corresponding Fourier
series expansions in the ¢ variable have been
given,® If the desired functions have no simple
analytiecal expres-ions, then trisonometric inter-
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lor series expansions at the point s
the following relationship where y
either u

polation methods can always be used.”

The attermuation in termms of thej%r-nlane co~-
efficients can be Yritten for z = ge*"” as

&, q
T=2—2— cos iy . (37)
21
1-g
Hence . a4 o
@ = -(q" - ¢ %) Ei . (33)

For phase the an%}o%gus relationships are

p =281 cos iy =o—= cos iy

21 (37)

l+gqg

and hence

i = (q; *q )3 (40)
In order to get the coefficients for the Tay-
j1, we have

(1$orresponds to

(1) °F Py’
Y1) (z) =Zﬁiql cos iy =ZEL o (41)

where the second equal sign assumes that attenu-
ation and phase invariance have been considered.
Now let & -~ 1 = x and furthernore let

Yy (2 lxd) =y, (0 (42)
If we expand ytl)(X)into a power series
yl(l) (x) =Zal xi ’ (1‘3)

it can be shown that the following relationships
hold between the ¢ and the d coefficients:

w-PLANE

1‘ 2-PLANE
(.,
)

Fig., 1
Conformal mappings for the low-pass interval,
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where (;) = i»

g

4 =-1/2¢

d, =1/4 () + 3,) (44)
33 =-1/8 (El + 232 + 33)

EI4 = 1/16 (c; + 3c, + 333 +c,)

g = (-1/z)flL81 + () g, + S Yo, + .3, ]
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AN APPLICATION O

SYNTHESIS TO THE DESIGN

F MODERN NETWORK
OF CONSTANT-TIME-DELAY

NETWORKS WITH LOW-Q ELEMENTS

Leo Storch
Hughes Aircraft Company
Culver City, California

Summary
- e

The design of lumped-constant delay
networks has been dominated by image -para-
meter filters, with particular attention de-
voted to linearizing their phase -angle versus
frequency curve in the case of the m-derived
or more complex sections. This type of de-
sign is characterized by the assumption that
all reactors are lossless and by the cascade-
connection of several alike sections in order
to obtain a desired over-all bandwidth-delay
product. The low-pass filters usually turn
out to be of the bridged-T type with negative
mutual inductance, a capacitor in the bridge
arm, and maybe added shunt capacitors across
input and output terminals. They appear to
have poor pulse and square-wave response on
account of an additional high pass band with
an uncontrolled phase characteristic. Refer-
ences 1 to 4 will orient the reader in this
field, with no slight intended to the numerous
papers not mentioned here.

With the advent of modern network syn-
thesis, a more flexible approach has become
feasible. One can afford to concentrate on
the over-all transfer function and to synthe-
size subsequently a suitable network reali-
zation, rather than being limited to adapting
one of the relatively small number of tract-
able network sections to a specific application
and achieving the desired over-all effect by
cascading several sections on an image-irm-
pedance basis. In Part 1 of this paper, a
realizable low-pass approximation of the ideal

distortionless delay operator ke Plo (t, = de-
lay time) will be discussed. It is a "best"
approximation in the sense that it produces
nmaximally flat'' delay in the frequency do-
main and accordingly a rather symmetrical
impulse response in the time domain, which
is centered about t = to and approaches the
Gaussian curve in the limit. This transfer
function will be synthesized in Part Il of the
paper in the form of a passive low-pass
ladder network. A resistor will be associated
with each reactor, which can be chosen to
correspond to a rather low Q at the reference

frequency wgq =1T . These resistive elements
o

are taken into account as part of the synthesis
procedure, so that their presence causes
merely a fixed loss but no distortion of the
desired transfer function. In Part III, the
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circuit for the ninth-degree approximation
(Figure 6) is used as an illustration of the
method and oscillograms of its square-wave
response (Figure 7) are compared with those
of a conventional bridged-T network of com-
parable delay -bandwidth product (Figure 8) but
approximately twelve times as much coil
weight and volume.

Part I: A Realizable Low-Pass Approximation
—of the Ideal Delay Transfer Function

ke Plo

An ideal delay network would produce an
output which is exactly like the input but
shifted along the time axis in the positive di-
rection by tyr the desired delay time. A net-
work which had the property that fout(t)

- -pt
fin(t-to) would have to possess e"Ploas a
transfer function and a & -function at t = tp a8

an impulse response. This follows from a
theorem in Laplace transform theory, that if

-1 _
fin(t) =;f ‘—Fin(p)l , where fin(t) = 0 when

t<0, then f if, and only if,

out(t) = fin(t-ty)
_ -1 P 1 _-1
fout(t) -x {__Fin(P) € {} _ﬁ [Fout(p)]'

and from thg definition of 'transfer function"
F
out(p)
in(p)

what, an ideal distortionless delay network is
characterized by the transcendental transfer

Relaxing this requirement some-

function ke -pto' since the positive real con-
stant 'k' is responsible merely for a fixed
gain or loss without introducing distortion in
its usual meaning®. The prominent prope rty
of a distortionless delay network is the linear
relationship of phase-angle versus real fre-
quency (p = jw) for the infinite range 0 w { .

But a finite, linear, passive, lumped-con-
stant network is never associated with a trans-
fer function outside the class of rational func-

P
tions of p = 6 + jw and expressible as T(p)=6(p_)_

(p) '




a a a

o _ o _ o
Np) P QN toap
)

where the coefficients are positive integers

(11)

Tnp) " 0

(2ZN-r)!
TPl (N-r)!

r 2
2N-r . 1.
=<r>.E-3-s N (ZNer)], (12)

and in particular

a

(2N)!

a = =l357.
° ZN(N)!

--- (2N-1).

Q
It may be reassuring to compare %
o

with the McLaurin series of ep, i.e., eP

0
= zﬁ ;1,- pr. If a_ in (12) is expanded, then
r= .

it is seen that (r > 1)

%]

_r _ (N-1) (N-2) (N-3) .... (N-r + 1)

©  r(N-g) (N-1) (N-3) .. (N-550)

Y]

Since both the numerator and the denominator

ax' i
contain 'r' terms, — — —, as N 00, SO
a r!

Q

that % equals the McLaurin series of eP

in the limit. Two questions are likely to arise
in the reader's mind: (a) why not use the
straightforward McLaurin series in the first
place; (b) how would the properties of a net-
work synthesized on the basis of the McLaurin
series differ from those of a network based on
(11) and (12). These questions can be fore-
stalled by the simple statement that a poly-
nomial formed from the first N terms of the
McLaurin series of eP is not a Hurwitz poly-
nomial when N is larger than 4. !5 Therefore,
it is not eligible as the denominator of a
realizable transfer function for N larger than
4, which includes the majority of applications.

3. Delay and Loss Properties of TN(p)

The study of the amplitude and phase
characteristics of the transfer function (11)
and the choice of a suitable N are greatly
simplified by taking advantage of the relation-
ship between Bessel polynomials and the

spherical Bessel functions

g
Zx “Hy + 1/2) (x)’

for which reasonably comprehensive tables
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have been publishedlb In this context, it is |
necessary to deal with real frequencies, i.e.,

P = jwty = ju. Inasmuch as it can be shown! 7

that

_ =N /m ju N .
YN 1)‘1 Ve E‘” TN-1/2(u)) JN+I/Z(1;I

ju (13)

by (10) and (11),

(%)

. . . N
and since QN(Ju) = (ju) YN
therefore,

TNGu)

e Y

a (14)
TN+ N )
SV e E‘” J-N-I/Z(u)'J'JNH/Z(u]

(2N)!

where a =
° N

as in (12).

One is now in the pleasant position of being
able to study and explore the properties of the
transfer function merely by looking up values
in published tables and multiplying them by

uN+l rather than having to devote time and
energy to the numerical evaluation of N'th
degree polynomials. Expression (14) has the
additional merit of displaying explicitly the
distortion with respect to the ideal delay opera-

From
-j6

tor e Y,

T ... = Ae
N(ju)

. I A .
= (Distortion factor) - e " = (aed ). e7JY, (15)

it follows that phase distortion as measured by
the angle of lag"" € " with respect to the ideal
value of 'u' radians is given by

J

-1

e = tan-! “N+1/2(u)

-nN;

(16)
-N-1/2(u)

-

and amplitude distortion is given by

a
A= °

N+l ) =« 2 2
g {ZU E -N-1/2(u) ¥ T N1 /200
(17)

The loss L = -20 log A db tends to the Gaussian
form

172

lOuZ
L—
RZN-TiznTo 9°

with increasing N. which corresponds to an ap-

proximate 3 db bandwidth of Usab */(2N-1) ¢n 2.

These approximations are serviceable for
values of N larger than 3.




There are two methods of defining delay which
are in common use, phase delay tph

0

do .
, and group delay tg ol Al In the region of

nearly constant delay, they are approximately
equal. For the chosen transfer function (14)
as derived from (11):

0 €

tph'@'to“ -3 (18)

and
de dé
R AL
1
= - 1
=todl T IR 2 g (19)
u' s 0 NC1/2(u)” T N#1/2(u

where t_is the nominal or zero-frequency
delay. Expression (19) is useful for quanti-

tative purposes, but a more vivid impression
of the delay characteristic is obtained by ex-
panding the distortion term in (19) in a

McLaurin series, which certainly converges
in the vicinity of u = 0:

42N J2N+2
t =t 1 - -5 + —_—
g ° a (2N-1)a
o] o
AN -2)

uZNtd ] (20)

The absence of the terms in uZ, u4, .

- (ZN-I)Z(ZN-3) a?‘o

u2N-2 i dicates that the first N-1 derivatives
of t are zero atu = 0. This explains why the

delay network synthesized on the basis of (11)
has been characterized as "'maximally flat
in analogy to the usage of this term in insertion
loss design The delay is closely equal to
its D. C. value t, up to a certain upper fre-
quency which is a function of N, and then it de-
clines steadily and smoothly as the frequency
increases to infinity.

With equations (14) to (19) representing
a complete description of the pertinent charac-
teristics in compact form and in terms of
tabulated functions, it is hardly a chore to
evaluate the loss and delay distortion versus
frequency for a given N and t,, or to establish
the required value of N for specified attenua-
tion or delay distortion versus a given delay-
bandwidth product. The phase-angle, group
delay, and loss characteristics of T9(ju) are

drawn in Figure 1. This particular value of
N has been chosen for illustration because the
circuit realization and response for T9(ju) are

described in Part III of the paper.

w18-19

4. The Impulse Response Corresponding
to T
N(p)-
The transfer function may be written as
2 7%

- _ er(p) _ sz + Y4P + pr

= =e

N(p)

Y, P + Y3p3 + Y5P5 +
‘e L (21)

where the exponent F(p) is expanded in a

McLaurin series.

T
N(p)

analytic in the vicinity of the origin and up to the

boundary set by the radius of convergence.

Since for real frequencies p = ju the odd powers

in the exponent of (21) determine the phase

angle (-8) [see 1s5)] .

_de
T dw

must agree with (20). Therefore: y, = -1, and

Y3 Yg =Yg T - - YoN-1 0. Let f(t/to) be

the impulse  response corresponding to TN(p)

This is permissible since
is a low-pass transfer function and

t

g (22)

2 4
=ty [—Yl + 3y3u - 5ygu

and expand the exponential underneath the
integral sign in the Laplace-transform equation,
where ty has been inserted explicitly on the
right-hand side of (23):

P_ [ plt-t)
T o = f - ‘o dt/t
Np) © © f (t/to) © AN
(o]
co [0 o]
o S L g, et dt/to] (R (23)
k=0 () o
If
5 'Ylp - . P
Tnp) © © Tnp) -~ ©
2 4 6
sz + Y4p + pr
= e
2N+1 2N+3
. V2Nt 9 Y2N+3 P T
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- eFC(p)

is also expanded in a power series about p = 0,

. P - 2
TNy~ € 'l+n(p)+l/ZF c(p)

3
+1/3! Fc ., and set equal to (23), it

+ . .
(p)
follows that the first N odd moments of the im-

pulse response with respect to the mean t = to
are zero, i.e.,




o
2m-] _ _
f f(t/to) (t-t,) dt = 0 for m =

(o]

1, 2, .

Consequently, the impulse response is symmet-
rical about t = ty to the extent that the 3rd, 5th,
7th . . and (2N-1)st central moments vanish
(the 1st central moment is zero by definition).
Perfect symmetry is approached as N—» oo,
since all odd central moments tend to zero as
N—> oo.

An independent check is available for the

above statements. If ;\}Ixe roots of QN(p) are
introduced, QN(p) = rI;Il (p - Pr), then

@
Lo - kzl v = Ao T

(24)

N
g/ ag -y Ln (p -P,)
r=1

After each term [n (p -pr) is expanded in a

McLaurin series, it follows that:

N

e 2 /P (25)
r=1

Burchna.llZl

has shown that when QN(p) 15 given
by (11) and (12), then

N

z (l/pr)zm-l = 0.

r=1

N
z 1/,0r = -1,
r=1

(26)

4, . . . . N.

This is a welcome corroboration that the 3rd,
5th, 7th . . . and (2N-1)st central moments are
equal to zero. Furthermore, QN(p) 18 a unique

solution, except for a constant multiplier, if
the maximally flat delay property in accordance
with (26) is postulated.

An exact description of the impulse re-
sponse would require a knowledge of all the
roots of QN(p)' which can only be acquired by

solving for the roots of an N'th degree poly-
nomial for each specific value of N. However,
a certain amount of general information about
the nature of the roots is available2l;

(a) all the roots of QN(p) are simple

(b) QN(p) has only one real zero when N is odd;

.N.

10

S
ifpi is the real zero of Qi(p)'

DT 07 SN

(c) QN(p) has no real zero when N is even

then (-1)

(d) QN(p) and QN+l(p) have no root in common
(e) all roots of QN(p) lie outside the unit

circle for N > 1.

N
(f) since a  =ap: z l/prz-l
r=1

(g)

sincCe aN_l 2\

patn(31).

N
and I o, cen™ea <N Lasn on
r=]

The roots of QN(p) have been tabulated in refer-

ence 19 for N from | to 9 and an approximation
of the impulse response has been described
there, which tends to a Gaussian curve for large N.

The calculated impulse response corres-
ponding to T9(p) is plotted in Figure 2.

5. A Class of Transfer Func tions for "Maxi -
mally Flat" Delay Networks.

Although Part II of this paper is concerned
with the realization of TN(p) exclusively, itis

worthwhile to mention that a whole class of
realizable transfer functions can be deduced
immediately from TN(p)' each member of

which furnishes maximally flat delay. This
class is given by:

Q Q

- _No) M(-xp)
s = . 0 M{N
MNGB) T Ty g 0AMS

The total zero-frequency delay equals (1+x)t,

where 'x" is chosen so as to equalize the use-
ful frequency range of QM(-xp) and of QN(p)'

‘SM, N(p) appears to have a smaller total delay
in general than TM+N(p)’ but its rate of trans=

mission loss is lower in comparison. As M
approaches N, 'x' approaches "l ' and the loss
bandwidth continues to increase. Finally,

M = N corresponds to an all-pass network with
a zero-frequency delay of 2ty. The only mem-
ber of this class which is a minimum-phase
transfer function is so, N(p) = TN(p) . All others




ppssess zeros in the right half of the p-plane.

The loss and delay characteristics of

SM, Nip) can be obtained by combining

L = 20 log (Ay, - Ay
tph=to[1+x-(5M+ EN)], and
d€ de
M N
ty = to [“"'(“d’u_ + Tx_):\

with (16) and (17).

If the realization of SM, N(p) is attempted

by the method of Part II, it is necessary first
to multiply numerator and denominator by a
Hurwitz polynomial which makes the over-all
numerator an even function of the frequency
variable used in the L.C development. If this
variable is 'p" (i.e., d = 0), then the multiplier

is Q and the class of modified transfer
M(xp)

functions is given by:

. _9e) . Omioxp) Imixp)
M,N(p) ~ Q

M)  ON(p) Mixp)

. 1ML

Part II: The Ladder Network Realization of
T
N(p)

In Part I a rather convincing case has been
made with regard to the suitability of TN(p) as

the transfer function of a low-pass lumped-
parameter delay network. Also fairly simple
expressions have been set up in terms of tabu-
lated functions to guide the choice of N in
meeting given requirements regarding delay,
bandwidth, and distortion. It is now necessary
to find a suitable configuration of specific re-
sistances, inductances, and capacitances,
which actually possesses TN( ) as its transfer

function. It is particularly desired that the net-
work be unbalanced and that coils with only low
Q's be required in its construction. Since the
source of the signal is likely to be a vacuum
tube, i.e., a high-impedance (constant-current)
generator, the emphasis will be placed on reali-
zing TN(p) as a transfer impedance, so that

TN(p) will equal the ratio of output voltage to

input current of the resulting network. The
method of designing a network so that TN(p) is

represented by the ratio of output voltage to in-
put voltage is quite analogous and is useful when
dealing with a low-impedance (conatant-voltage)
generator.

1. Network Synthesis on a Quasi-Reactive
Basis.

The choice of a constant as the numerator
in the transfer function (11) opens the way to an
uncomplicated method of synthesis as well as
to a very attractive network configuration. The
key to the dominating position occupied by a
constant in the numerator is the fact that it
makes the network realizable as a ladder struc-
ture and that the numerator retains its evenness
in the frequency variable under the transforma-
tion p = 8-d““, where '"'s" is an auxiliary fre-
quency variable and "d" a constant, The combi-
nation of these two properties sufficiently makes
it possible to develop the network on a quasi-
reactive basis in the auxiliary "s" domain by
the straightforward Cauer process 3, butto
arrive at a final network which has a uniform
loss component attached to each reactance.

The loss components may be proportioned so as
to reduce the required Q's of the coils to rather
low values at the expense of a fixed transmis-
sion loss. It goes without saying that the suc-
cessful restriction of the actual synthesis
process to the 2-element LLC case is rather
attractive as compared to a general RLC
method of synthesis.

The transfer impedance of a two-te rminal-
pair, finite, linear, bilateral network, terminated
by a normalized load resistance of 1 ohm, is
easily derived from the equivalent T-section
(Figure 3) as:

\' z
Z = 2 =! 12 (27\
tr ri_ T+ z,, 0

Let '"d" be chosen such that the shift of the real-
frequency axis to the left, implied in the trans-
lation p = s-d, does not carry it past any of the
roots of QN(p)' and let the transformation

p = 8-d be carried out in (11) obtaining:

* a a
TN( ) —*o =% = %
s
Qus)  Ones) T HN(e)
%o 28

e (28)
z ars
r=0

#
Here Gl:(s) and HN(s) repreae:t the even and
odd parts, respectively, of QN(B) . Since the

numerator is even in 1gt, (28) may be realized
within a real multiplier as the transfer imped-
ance of a low-pass, reactive network as follows.
Let the constant in the numerator be changed to

*
a . in order to make the D.C. value (s=0) of

(28) equal to "1'" as required for the transfer
impedance of a low-pass reactive network when




ideal transformers are excluded. After

arranging thg terms, so that

re-

4a
H (o]
z, N‘GS? (29)
1+ —s)
Hnis)

the following identifications are prominent in
view of (27):

*i
a
* o
2y, = ?‘—— (30)
N(s)
G*
Shep— (S]] (31)
202 H;;
N(s)
G*
¥ _ TN(s) . . .
Surely, 2y, = ——— isa driving-point reactanc
H
N(s)

function inasmuch as QN(s) is a Hurwitz poly-

nomial by hypothesis (see Part I, section 1).

e

*
%* ao .
Furthermore, z21, F—%— is an odd function
H,
N(s) *
. G
L " 3 3 RS N(s)
of "s", its poles are also poles of z2,, T —
HN(s)

and the numerator is of lower degree than the
denominator. Therefore, the Z:r of (29) is

realizable by a reactive network.

1.1 The Ladder Development

Synthesis by means of Cauer's straight-
forward development of a reactive ladder net-
work?Z3 is particularly applicable, since the
structure of the numerator is so simple. This
method does not require finding the roots of the

x
N'th degree equation QN(s) =0 and it leads to a

network which requires only N reactances for
an N'th degree transfer function (11), which is
the smallest possible numberZ4. The principal
step required by this method is the expansion of

the single reactance function z

G* 22
= _Nis) in a continued fraction in "s'", pro-
H
N(s)

ceeding as explained in connection with (2} and

remembering that ¥

¥ () = —*1—when N is odd. All the coefficients

222

E'3
(s) =2z,, when N is even and

112

N) of the continued fraction

must be non-zero and positive. If zero or nega-
tive terms should appear, it would indicate that
"d'" has been chosen too large or, much more
likely, that not enough significant figures have
been retained in calculating the ar's and in the

subsequent computations, which may happen
when N is quite large. It follows immediately
% .
2215 a ladder n(ﬁt
work (Figure 4) with inductances of values a

that the circuit diagram of 2

2k
in the series arms and capacitances of values
" ) 11
a1 in the shunt arms (k 1, 2, .} . The
computations of the component values may be
; N
3
hecked by ) o’ D o H -
checke y Q-] - an Q=
k a k=1 a
0 0
3
A degree-reducing, common factor of GN(s)
%
and HN(s) would have to be an even polynomal

in "'s", which would possess roots on the real -
frequency axis Re[s]= 0 or in the right half of

But such a factor must be ruled out,
AN i«
. N(s) = ON(s)
+ HN(s) and thereby violate the condition that

*

the s-plane.

since it would also be contained in Q

QN(s) must be a Hurwitz polynomial. The ladder
development of Figure 4 actually corresponds to
(31) and not just to some sub-multiple thereof.
If a pair of input terminals is put across C].
£
for N odd or even, then z,, has no finite zeros

of transmission, since none of the network arms
is resonant at a finite, non-zero frequency; fur
*
thermore, z,, can have at most a pole at s = @
*
in addition to the poles of z)5 which occurs when

N is even and is'due to the numerator being higher
in degreg by "1'" than the denominator. Therefore.

a
*
z2),* —7‘0—— as required by (30). All that remains
HN(s)

to be done is to connect a l-chm_load resistance
across the zZZ-lerminals (output terminals), in

*
order to complete the network realization of 2
tr
of (29).
*
11 Pes

cause it does not affect the transfer impedance
at all. It will be shown, however, in section 9,
that the input impedance Zin in Figure 5 is finite

Nothing has been said so far about z

for all real frequencies. Since this means that
the residue condition applicable to LC networks25
is automatically fulfilled with the equal sign in

this synthesis procedure, z

5K

is uniquely deter -
. 11
mined.




1.2 Final Network

To remove the effect of the initial fre-
quency transformation p = s-d, the network
arms S - LZk and s - CZk-l must

be replaced by LZk(p+d) and CZk-l(p+d)’ res-

pectively; i.e., a resistor d- Loy must be

placed in series with the inductance L, and a

. 1
resistor H_C;(_: must be shunted across the

capacitor C,, 4+ where k =1, 2, 3, ..., I2\-](for

N even) or ‘_“%—1 (for N odd). By (11). (28), and

(29), the resulting network of Figure 5 has the
transfer impedance
*

a

(o]
z, =—1T .
a_ Nip)

tr (32)

which equals TN(p) except for a constant multi-

plier. The price which has to be paid for the

insertion of the resistive components is the
*

a
fixed loss corresponding to k =-ai, which may

*

be calculated from a = QN(p) p = -d For
small values of '"d" (d{ {1), the loss is some -
what less than 20 log -l—l_—d- db. Finally, the

normalizations are removed by multiplying all
' .
L s by to RL, all CZk-l's by tolRL, and all

if a nominal delay to (in seconds) and

a load impedance level RL (in ohms) are desired.

The new impedance level introduces a factor RL
in (32), i.e.,

*
Z,,. = (ag RL/ao) TN(p)’ If Q has its conven-

=L for all net-
to
work arms and varies linearly with frequency.

tional meaning, then Q = I at w,

2. Dlustrative Example: The Realization of

T;}pY

The effect of increasing an even N by "
is to add a capacitor across the output terminals
without changing the number of coils in the net-
work. One will usually, therefore, prefer an
odd N in order to maximize the delay-bandwidth
product for a given number of coils, usually
bulkier and more expensive than capacitors.

Let N = 9, which possesses a delay-bandwidth
product suitable for an application the writer
had to deal with, and let ty =1.25 milliseconds,
R; = 4000 ohms.
and delay properties of T9(ju) are shown in

Figure 1, the 'u' scale of which may be

The loss (with respect to D.C.

)
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converted to a direct frequency scale corres-
ponding to tg = 1. 25 milliseconds by multiplying

each value of "u'" by 128 cps.

First, the ar‘s of (12) have to be calcu-

lated for N = 9. This may be done with the
help of factorial tables2f, or by a direct
method after writing out the terms and cancel-
ling common factors in numerator and denomi-
nator. The polynomial QN(p) may also be

obtained by recursion [ see (9)]:

_ 2
Qpy = BV 1 p) H P F-2(p)

with Q_1 =1, QO = 1; but this method is not

(33)

efficient for large N's. One obtains for Q9(p):
9

= E arpr = o 45p® 4 990p ' + 13,860p6

e T S

+135,135p° + 945,945p" + 4, 729, 725p°>

+ 16,216, 200p° + 34,459, 425p

+ 34, 459, 425. (34)

Secondly, a value of nd' is chosen on the basis
of the coils to be used or of the fixed loss that
can be tolerated. The upper limit on 'd", im-
posed by the condition of physical realizability,
is not li kely to be a hinderance in practice,
since itis 1.5 for N = 2 and higher for larger

N's; e.g., d - 6.29 for N = 9. The loss,
max
A

increases as ''d" grows larger.
indicates that for tg = 1. 25
- 4000 ohms, which were

of course,
preliminary analysis
milliseconds and RL

required values for the particular application,
the maximum required inductance will be about
1.5 henry. Ifa toroidal molybdenum—permalloy
dust core of 0.8 inches outside diameter is
decided upon, the minimum Q among the coils
equals 4 at fo = 128 cps (fo =_ZT¥_.Q(1)—?Z—5= 128 cps).

Therefore, the value of "d" may be fixed at
0.25, which corresponds to a fixed loss of
2.2 db for N = 9.

*
Substituting p = 8-0.25 in (34), the ar's

may be obtained by means of synthetic division.
The large number of significant figures is due to
machine calculation and not indicative of re-
quired accuracy. Expanding the ratio of the odd
to the even part

Vio) - (6 +902.258 " + 1315,605.49255
+ 3,864, 041,038 +27,181,586.98) +
(42. 7588 + 12204.93758° + 789, 490. 7758
+13,003,312.98% +27,181,586.9)




in a continued fraction, introducing the loss
components, and removing the normalizations,
the network of Figure 6 is obtained. It may
be worth noticing that the spread in the values
of the elements is not too large and that a gen-
erator impedance higher than 29, 200 ohms can
be accommodated without affecting the exact
transfer characteristic.

The ladder configuration makes it pos-
sible to dispense with stringent tolerances for
the network components, as required for the
conventional bridged-T image-parameter delay
networks. Even so, the measured amplitude
and phase response are indistinguishable from
the calculated curves of Figure 1. The time-
domain behavior can be judged by Figure 2 and
the oscillograms of Figure 7. For each square-
wave input of Figure 7A, the response of the
maximally flat delay network of Figure 6 is
shown in Figure 7B, and that of a bridged-T
delay network™® (Figure 8) of comparable delay
and linear phase-shift bandwidth is shown in
Figure 7C. The superior square-wave response
of the maximally flat delay network is rather
pronounced. The more than 12:]1 reduction in
weight and volume achieved by means of the
present design may be of considerable interest
in view of today's prevalent need for miniaturi-
zation: the total weight of the coils is only
2 ounces for the maximally flat delay network
of Figure 6, but it exceeds 1-1/2 pounds for
the bridged-T delay network of Figure 8 (coil
Q's are about 30 at 128 cps), with a similar
ratio for the relative volumes.

A comparison may also be made with a 4-
section constant-k filter delay network, which
has the same general configuration as the net-
work of Figure 6. Its tg would differ from ty

by one percent at somewhat less than u = 1. 3,
assuming even infinite Q's for the coils. The
same error occurs for the maximally flat delay
network of Figure 6 not until u = 6. 08 and even
its loss is not down by 3 db from the D.C. value
until "'u" reaches 3.38. The only debit that can
be charged against the maximally flat delay net-
work, in competing with the constant-k filter,
involves cascade-connection, which is discussed
further in section number 3. Incidentally, the
coils and capacitors of the constant-k filter are
much larger for the same R, and t,» being 5

henry for the coil and 0. 31 uf for the capacitors
per section.

These comparisons are a measure of the
improvements achieved by transfer-function
synthesis as compared to classical design of a
network with a similar configuration.

*Designed by J. E. Taber of the Hughes Re-
search and Development Laboratories.

3. Cascading of Delay Networks of the
Type of Figure 6.

There are applications which require
several equal or unequal increments of delay
rather than a single fixed value. When the
over-all fixed transmission loss is not exces-
sive, the question arises how maximally flat
delay networks, designed on the transfer
impedance basis, can be cascaded without
having to insert isolating amplifiers. All pre-
requisites for cascade-connection are fulfilled
if the input impedance Zin is equal to a constant

resistance, preferably RL' independent of fre-

quency. This is not the case for the synthesis
procedure of section number 2, which controls
P and z,, but does not shape zy,» at the ex-

pense of additional elements, in order to main-
tain a constant imput-impedance level. This
method of synthesis does, however, produce an
input impedance which is finite along the whole
real-frequency axis and thereby paves the way
for transforming the network into a 'constant-
resistance' filter.

If the transmission matrix for the network
of Figure 5 is given by

Vl A, B VZ
8 s (35)
Il cC , D I2
then
N, R & (36)
C+D

For a ladder network, the elements of the trans-
mission matrix are entire rational functions of

the impedances of the series arms and of the ad-
mittances of the shunt arms. Since thess are
LZk' (p+d) and CZK-I - (p+d) in Figure 5, A, B, C,

and D are all po.lynomials in '"p". Inasmuch as
z = Y2 1 (37)
o T T EYD

in the present notation, the denqminator of (36)
cannot differ from the Hurwitz polynomial
QN(p) by more than a constant. It follows con-

clusively that Zin is finite along the whole real-

frequency axis, including p = 0 and p = ®. This
being the case, a driving-point impedance Zicn

can be developed such that Zin + Zicn equals a _

constant for all real frequencies. A network
arm connected in series with the input terminals
does not alter the transfer impedance Ztr of a

network. Therefore, Zicn may be connected in




such a manner, in order to establish a fixed
input-impedance level and enable cascading of

the desired number of these networks, designed (1)
for equal or different amounts of delay.
(2)

While this method of input-impedance
compensation is exact, it would appear to be
rather wasteful in element for practical pur-
poses. The number of elements needed to
construct an would equal the number used in (3)
the original network of Figure 6. No general
approximate solution has been attempted, but
a rather serviceable approximate compensating
impedance has been worked out readily for the (4)
network realization of T9(p) (Figure 6). The

added series arm, shown in Figure 9, and con-

sisting only of a few elements, is sufficient for (5)
good compensation over the major portion of

the pass-band. Several of the networks of

Figure 9 have been operated in cascade with

complete success, undistorted and properly de- (6)
layed outputs having been taken from each

junction point of two of these networks and at

the termination.

It should be realized that the cascading of (7
maximally flat delay networks increases the
rate of transmission loss, since the loss curve
per network is bell -shaped rather than roughly (8)
square. More precisely, a total of N reac-

tances distributed equally among 'mn'" networks,
each of degree %‘ and contributing a delay ?o.
has a 3 db bandwidth of

uy g % ‘E\/(ZN -n) dnz . (38)

but a network designed directly on the N'th
degree basis has a 3 db bandwidth of

uy db“:’\/(m - Aa2 . (39)  (10)

which is n\fg-g%:—\ times larger than (38). It

stands to reason that cascading normally would
only be used when the additional tap-points are
required. Otherwise, the network should be
synthesized on the basis of the full N, since in (12)
this manner a greater useful delay-bandwidth

product is obtained at the expense of more

lengthy calculations.

(9

(11)

(13)

Acknowledgements (14)

The author is indebted to Dr. Louis
Weinberg for stimulating discussions on network
synthesis and to Mr. F. G. Rasmussen for
making laboratory tests and taking the oscillo-
grams, both of whom are with the Research (15)
and Development Laboratories, Hughes Aircraft
Company.

ns

Bibliography

U. S. Patent 2,250,461; 1941 (L. Batchelder).

M. H. Herb, C. W. Horton, F. B. Jones:
"On the Design of Networks for Constant
Time Delay, " Journal of Applied Physics,
v. 20, June 1949, pp. 616 - 620.

C. F. Floyd, R. L. Corke, H. Lewis:

"The Design of Linear Phase Low-Pass
Filters, ' Proc. of the Institution of Elec.
Engineers, FPart TTA, 1952, pp. ({7 - 787.

C. M. Wallis: 'Design of Low-Frequency
Constant Time Delay Lines, " A. I.E.E.
Transactions, PartI, 1952, pp. I35 - 140.

M. F. Gardner, J. L. Barnes: "Transients
in Linear Systems, ' v. L} Wiley, New York,
1942, p. 236.

M. J. Di Toro: 'Phase and Amplitude Dis-
tortion in Linear Networks, " Proc. I.R.E.
v. 36, January 1948, pp. 24 - 3b.

H. W. Bode: "Network Analysis and Feed-
back Amplifier Design, ' van Nostrand, New
York 1945, Chapters I and XI.

A. E. Guillemin: i"Modern Methods of Net-
work Synthesis," Advances in Electronics,
v. @I, Academic Press, New York, 1951,

p- 275.

H. S. Wall: "Polynomials Whose Zeros
have Negative Real Parts, " The Am. Math-
ematical Monthly, v. 52, June-July 1945,
pp. 308 - 322. A. E. Guillemin: 'The

Mathematics of Circuit Analysis, "' Wiley,
New York, 1949, pp. 395 - 409.

W. Cauer: "Frequenzweichen konstanten
Betriebswiderstandes, WE.N.T., v. 16,
1939, p. 116.

A. E. Guillemin: "Communication Net-
works, " v. II, Wiley, New York, 1935,
pp. 198 - 202.

G. N. Watson: "A Treatise on the Theory
of Bessel Functions, " Cambridge University
Press, 1952, p. 303.

O. Perron: 'Die Lehre von den Kettenbruechen, "

Teubner, Berlin, 1929, p. <26

H. L. Krall, O. Fink: "A New Class of
Orthogonal Polynomials: The Bessel Poly-
nomials, "' Am. Math. Soc., Transactions,
v. 65, January 1949, pp. 100 - IT5; see

p. 101.

K. E. Iverson: "The Zeros of the Partial
Sums of eZ,"M.T.A.C., v. VII, July 1953,
pp. 165 - 168.




(16) Mathematical Tables Project, N.B.S.:

'"Tables of Spherical Bessel Functions, "
2 vols., Columbia University Press,
New York 1947,

(17) Reference 14, p. 103.

(18) W. H. Huggins: '"Network Approximation

in the Time Domain, ' Air Force Cam-
bridge Research Laboratories, Report
E5048A, p. 34 et seq.

(19) W. E. Thomson: 'Networks with Maxi-

mally Flat Delay, " Wireless Engineer,
v. 29, October 1952, pp. - .
Corrections: ibid., p. 309.

(20) V. D. Landon: "Cascade Amplifiers with

Maximal Flatness,'" R.C.A. Review, v. 5,
1941, pp. 347 - 362 and 481 - 497.

(21) J. L. Burchnall: '"The Bessel Polyno-

(a)
(v)

(c)

mials, " Canad. J. of Math, v. 3, 195],
pp. 62 - 68,

E. Grosswald: "On Some Algebraic Prop-

9}

6 [ Vs
‘£ b} L Tgq: 4 . /
s0[2 -5 4
|
' 4
4a0( -4
| LOG |T
30 3 / |42 oc
® 1 -
o 2 1
20| -2 .
o] b J/ /
/ _—
M, r -
0 2 3 a4 5 & 7 8 9 ©
"R 7
tg/t
1.00} 3/to
098 1 T 1 1
0.96 1 “ t
094} 1 + + 1
092 ! ! ! t
1
0.90 1 1 1
1 1 | 1 1 1 L
(o] | 2 & q L3 6 7 :]
u—-.
Fig. 1

Transfer function To(Ju): (a) loss;
(b) phase angle; (c) group delay.

16

(22)

(23)
(24)

(25)

(26)

erties of the Bessel Polynomials, " Am.
Math. Soc., Transactions, v. 71, Sept.,

T95T, pp. 197 - 210,

S. Darlington: ''Synthesis of Reactance
4-Poles, " J. of Math. and Physics,

v.
Part IV, '"Dissipative Reactance Networks. v

18, Sept. 1939, pp. 257 - 337. Bee

Reference 7, pp. 216 - 223,

Reference 8, p. 286, et seq.

Reference 11, p. 203.

Reference 8, p. 274.

W. Cauer: "Theorie der linearen
Wechselstromschaltungen, "v. 1, Becker
und Erler, Leipzig 1941, p. 373.

N.B.S., Applied Math.Series 16: 'Tables
of n! and F(n+l/2) for the First Thousand

Values of n. "' U.S. Dept. of Commerce,
1951,

vi

tof (1/10)

0%

|
|
|
|
l
I
|
ll
l
|
|
1
1

Yt

- IMPULSE RESPONSE DUE TO Tg (p)

1L g )

Fig, 2

7, o2 2 e
07 1 Ty,

Fig. 3 - Equivalent-T network.,




*

*
Lasap Lg=ag Ln® an
INPUTO-T ’%‘"‘ T - - 1 — T - QUTPUT
TCprar T Cyeay T Cnr an-t -
o ] h
* N S,
N EVEN ¥V
[122' HE©) (S)]
Lz!a; L4=a:
INPUT o AL LGN - == -0 QUTPUT
kool Gyl el —
L 1 ©
*
Gpls) 1 ]
N 0DD |25 —% i * i
[22 HEs)  Wis)
sMean.p M ronast e w, |
. - 2° o agftee ——
Vi gk TN sany sN3 vamgsN 54 NSt N se,
R
s

Fig. L - Ladder development of 295,

1,~~ Lz dLz La dlLa L d-Ly e V]
r vm‘-'MT-fU‘ﬂ\'J\N\r—- ANN—O-
[ ]
| <L J_ i 1 e t l
¢, F $3C CF $8Cs O $dCx e
\" g V.
| — # 2
|
. by _(,_,,l_,__b_}

N EVEN: Cx=Cn-1, Ly =LN
N ODD: Cx:=Cn, Ly=0

MAXIMALLY FLAT QELAY NETWORK

Yo
Zy s 1 ° a; N

755 343
=], 15h 3740 108h 2700 mh 1880 mh 8564 -1y
T T A T AAA TTDAAA TIAA o5
‘ | | 1
v T T { 1 | T f Vzt
o371 |oo776| | 00578| |00346| | 00072 [ |
u'#,; w2 u':)u'f"} u'~i b
292 515 2693 0.111 055 | 34K
ko Tka TKa $MEGn T MEGa 1 Ta
, |
] - ‘ |
+ -+ + -+ +

MAXIMALLY FLAT DELAY NETWORK FOR Ty (p)
R +4KQ , 1,125 MILLISEC, Q4 AT 128 cps

1 i
1? ~0.777¢ 112510 Tw

Fig. 6

117

o/ o

REP RATE 200/SEC

——

PULSE: 1,25 MILLISEC.
ON-5 MILLISEC OFF

Fig. 7

(a) Square-wave response of 1,25 milliseconds
delay networks; (b) maximally-

flat; (c) bridged-T.

0.0125 uf 0.0125uf

—i— -
o-l'«['/rr!fn::?;:"w»k ‘[‘melo-;,l%p —

=0, 1uf* O.luf TFO.1uf Iy,
v, T aK
Q

0.043h j 0.043h 0.043h
BRIDGED-T DELAY NETWORK
(OVER-ALL DELAY 1.25 MILLISEC)

Vo 12 ;i125:10%0

vi L
(ACTUAL COIL Q's ABOUT 30 AT 128 cps)

0.0125uf

f

At

o—

Fig. 8

1.35h 34090 B

MAXIMALLY
FLAT DELAY
NETWORK FOR| V,

T9(p)

R

’ 7 2009
49KQ

MAXIMALLY FLAT DELAY NETWORK FOR
CASCADE — CONNECTION
R =4K, t,=1.25 MILLISEC., Q=4 AT 128c¢cps
v, Iy -j1.25-10°w

L x5 —=077
v, 1, 0777 ¢

Fig. 9




A TRANSISTOR ANALOG
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Abstract

One approach to transistor
circuit design is through the use of an
equivalent circuit, The performance of
the transistor under conditions where the
equivalent circuit is valid may be pre-
dicted once the parameters of the equiva-
lent circuit are known, However, at
frequencies well within the useful oper-
ating range of junction transistors, the
reactive parameters in the equivalent cir-
cuit become important and computation is
very tedious, The same may be said of
computations predicting the effect of
variations in the equivalent circuit
parameters,

The usefulness of the equivalent
circuit concept may be extended by con-
structing a transistor analog. The analog
employs a pentode vacuum tube as the active
element of the equivalent circuit and
variable resistances and capacitances as
the passive elements, By adjusting the
control voltages on the tube and choosing
the proper values for the passive elements,
the analog may be made to perform exactly
like a transistor except for a transform-
ation in impedance level and frequency
scale,

There are certain advantages to
be found in studying transistors by mak-
ing measurements on the analog;

1. Circuit performance of

118

realizable transistors may be evaluated
before the transistors are actually avail-
able,

2. The effect of varying the
parameters of the equivalent circuit may
be quickly determined and the information
thus obtained may be used advantageously
by device people,

3. Measuring equipment may be
much simplified and stray capacities
ignored if the analog is designed to
operate at frequencies lower than those
at which the transistor will operate,

The analog described in this
paper is based on a modified equivalent
circuit of a grounded emitter transistor
developed by L.J. Glacoletto, The im-
pedance level of the analog is 10 times
that of the transistor in order that the
relatively large (L0,000 y mhos at 1 ma,
emitter current) mutual conductance of the
transistor be represented by a single
pentode tube, 1In addition, all capacities
of the analog are 10 times those of the
transistor so that data may be derived
from the analog at frequencies lower by a
factor of 100 than those at which the
transistor will operate,

Measurements made on the analog :
have shown good agreement with those made
on transistors.
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Summary

The analogy between junction-transistor triodes
and vacuum-tube triodes is sufficiently close that
conventional vacuum-tube switching circuits such
as multivibrators can be transistorized simply by
changing the values of the circuit constants and
replacing the vacuun tube with a junction transis-
tor. The associated circuits will be at lower
impedances and will operate at lower voltages,
the currents will remain of the same magnitude.
Because of the alpha cutoff frequency, & transis-
torized switching circuit operates from dc to hun-
dreds of kilocycles 8 second. Such measured char-
acteristics of multivibrators as d-c potentials,
gate widths, and repetition periods are in good
agreement with theoretical values.

but

I. Introduction

Most switching circuits that have been
designed with transistors have used point-contact
types and are not very similar to switching cir-
cuits designed with vacuum-tube triodesl. However,
the analogy between Junction-transistor triodes
and vacuum-tube triodes is sufficiently close that
many conventional vacuum-tube switching circuits
(mutivibrators and flip-flops in particular) can
ve transistorized by changing only the values of
the circuit constants and not their configuration.
The connections to the plate, grid, and cathode of
the vacuum tube can be replaced by connections to
the collector, base, and emitter, respectively, of
the junction transistor. As alpha (the current
gain from emitter to collector) approaches unity,
this replacement becomes & vetter one, since col-
lector current then approaches emitter current in
value, corresponding to the equality of plate and
cathode currents in the negatively biased vacuum-
tube triode. Furthermore, if the transistors are
n-p-n types, the power supply and waveform polar -
ities of the vacuum-tube circuit are maintained in
the transistorized version; for p-n-p types, the
polarities are reversed.

Two Junction-transistor circuits analogous
to the familiar one-shot cathode-coupled multivi-
brator and the Eccles-Jordan flip-flop are
described. Also described is a less conventional
free-running multivibrator using junction-
transistor triodes. This circuit has a square-
wave output, whose repetition rate is controllable
by a single RC time constant.

1I. One-Shot Multivibrator
General
Figure 1 is a generalized schematic diagram
of a one-shot emitter-coupled multivivrator using

n-p-n Jjunction transistors. It has been drawn to
emphasize its similarity in configuration to the
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FIGURE 1

ONE - SHOT EMITTER~COUPLED MULTIVIBRATOR
USING N-P-N JUNCTION TRANSISTORS

familiar one-shot cathode-coupled vacuum-tube cir-
cuit. Operation is quite similar to that of the
vacuum-tube version. In the quiescent condition,
transistor To is on in the saturation region by
the positive return of 1ts base resistor (Ry)-
the same time, the biasing network for transis-
tor Ty, consisting of resistors R; and Rp, cuts
off T1 by maintaining its base sufficiently nega-
tive with respect to the common emitter potentiul,
which is determined by the conduction of Tp. Cor-
responding to the vacuum-tube case, the circuit
may be triggered (as shown in Figure 1) by & nega-
tive pulse on the collector of Ty coupled through
an isolating crystal diode. After the circuit is
triggered, & rapid regeneration takes place until
Tp is turned off and T, is turned on. Tp is held
off until capacitor C %as discharged sufficiently
to bring the bvase of Tp vack approximately to the
common emitter potential (now determined by the
conduction of T,). When this point is reached,
regeneration takes place once more, and the cir-
cuit is restored to its initial condition, thus
terminating a gate.

At

Gate Width

An approximate expression for gate width (T)
may be derived as follows. Initially, since T, is
on in the saturation region, the collector, base,
and emitter of T2 are all at about the same poten-
tial,

R E
e cc

o R, R
q 412

e Rp*hy

(This condition is in contrast with the vacuum-
tube case, in which a tube at zero bias still has
appreciable plate-to-cathode voltage drop.) After
triggering, vhen Ty is turned on, its collector

(1)




drops in potential by

AV . = A1t _(ileFc;g ) Eee = B (2)
17 R *R, [R(R +R)) R

provided T; is in its active region, Q) 1s its
current gain (assumed constant), the impedances Ry
and Ry are sufficiently low to maintain the base-
to-ground potential of Ty at RpE.c/(Ry + Ry) and
the base-to-emitter voltage drop in T} is neg-
lected. This same drop, AV, (shown in Figure 2),
appears on the base of To. w%en the exponential

v

i

2 e
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.
. €. -(e,-Av))
X GATE wiDTH (T)e T LOG e

-4y,

Lh
|

FIGURE 2. BASE - TO-GROUND VOLTAGE OF T..
ONE - SHOT MULTIVIBRATOR

waveform on the bvase of T, (which is heading for
Ecc with the time constant T = C [R;) + Ry, |)
passes through the new ccmmon emitter potential
(RpEco/ [R] + Ry ] ), the gate is terminated.
Therefore the gate width is

E +Avc1'Eo

T=17T log =S¢ A E
1 ce
R1 + R2
=C(R;, +R) log L
R R,
1 + Rb
,\.
R
1l + R2 R
S S . o .
1+ Re (ﬁl- + w;-) L R1 Re ’
2 &
—/
[ =
2
|1 +==
i RB2\ (R
‘-::CRb log R + R R ’
1 e 1 e
+R—
12
Ry ® R, Roia =~ 1 (4)

Choice of Pase Resistor ib_

There is a maximum permissible value of Ry,
to ensure initial operation of T, in its saturated
region. Larger values of Ry, shift the operating
point of T, to its active region. Such operation
is undesirable, because, for rapid recovery after
the gate, capacitor C should discharge rapidly
through the relatively low btase-to-emitter imped-
ance of T, when it is in the saturated region.
This maximum value of R, can te related to the
other circuit constants.

Assume that T> 1s in its active region and
make use of the relations for its collector cur-
rent (Ic2) and emitter current (Igp) derived by
R. F. Shea“ for single-battery operation,

R a.E
1 1 +-21 4 2 ¢ce
co

Y

Teo = — R, (5)
1 - Q2 +q
I,-1
Ip=—2_co (6)
2
where I.o 1s the collector current of To for zero

emitter current, and @ 1s the current gain of Ts.

The maximum value of Ry is the value that
Just causes the collector-to-base voltage (Vep) to
drop to zero; therefore

Veo = B - TeoRio - Teofe = © ()
If the values of I.o and I, from equations 5
and 6 are substituted into equation 7, the maximum

value of Rb is found to tve

RL2(a2Ecc * IcoRe)

e Tk sy (O
%PLo

1l -q co

> Re + Rip

Thus large values of Ry, are permfssible for high
values of ay or I.o- However, the value of I o
must be small to prevent the gate width (T) from
being reduced from the value given in equation 3.
This is the case since negative emitter-to-base
bias in T,, while reducing the emitter current to
a small value in a good transistor, does not
reduce the current flowing in the collector-base
circuit much below the value of Ico- Thus, in
addition to the desired charging of capacitor C
through the long time constant (T ) there will be
an undesired charging by IcO' Since I.o varies
with different transistors and temperatures, it is
not a good practice to make the gate width a func-
tion of I.,.

(8,)

=

(9)

Values of Ry much smaller than (Rp)may may
be undesirable for at least two reasons.




1. Longer recovery time in terms of gate width
will result because of the relatively smal -
ler ratio of time constants for charging of
capacitor C during the gate and after the

gate.

2. Slower rise time of the collector waveform
of Tp will result because of increased
minority-carrier storagé in a more heavily
saturated Tp.

Experimental Circuit

An experimental circuit was constructed with
the following values of constants (1% tolerance
resistor values):

Ry, = 3300 ohms R, = 3300 ohms
RLQ = 2200 ohms R2 = 2200 ohms
Rb = 33,000 ohms Ecc = 15 volts
R = 2200 ohms C = 0.1 uf
€ (measured value
0.106 uf)

For the transistors used (Texas Instruments

Type 201), a@ > 0.95 and I, < 10 pamp at room
temperature. From equation 9, (Rp)gay i equal to
42,000 ohms; thus, & value of 33,000 ohms is per-
missible. The theoretical value of gate width T
from equation 3 is 1800 psec and from equation 4
ig 2100 psec. Measurements made with 14 different
transistors in the circuit gave a gate width of
about 1460 usec + 10%. The discrepancy of about
20% between the measured value and the theoretical
value of gate width from equation 3 may be attrib-
utable to the following factors.

1. The jump (AV.,) was about 15% less than the
theoretical value--chiefly because the value
of a; used in equation 2 should be an aver-
age value, since a is not completely inde-
pendent of collector current and voltage.

2. The several-tenths-of-a-volt potential dif-
ference between base and emitter of T) vhen
Ty is turned on were neglected in equa-
tions 2 and 3.

Equation 3 states that gate width T should
be independent of collector supply voltage E...
For a pair of average transistors, the variation

with E.. that was found experimentally is shown
in Table 1.
Table 1
E.c in volts T in usec
5 1270
10 1470
15 1550
20 1600

With C = 0.005 uf (measured value 0.0046 uf)
instead of 0.1 pf, substantially the same frac-
tional agreement was found as that above with
regard to a comparison of theoretical and measured

gate widths. (The theoretical value of gate width
from equation 3 is 80 psec.)

I11I. Flip-Flop
General
Figure 3 shows a symmetrical flip-flop using

p-n-p Junction transistors. It has been drawn to
emphasize its similarity in configuration to the

RL
(3.3%)
— )
] -
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FIGURE 3. SYMMETRICAL FLIP-FLOP USING
P-N-P JUNCTION TRANSISTORS

familiar Eccles-Jordan flip-flop vacuum-tube cir-
cuit. Operation is quite similar to that in the
vacuum-tube version. There are two stable
states--T; on and Tp off, and vice versa. Trig-
gering (to be discussed later) from one state to
the other is possible because of the cross-
coupling capacitors (Cy) and the emitter bypass
capacitor (Cg).

D-C Analysis

If several simplifying assumptions are made,
a d-c analysis, useful from an engineering stand-
point, can be made as follows. Assume identical
ideal junction transistors--that is, when tran-
sistors are turned on in their active region,
a = 1 (therefore, base current = 0) and base-to-
emitter voltage = O. When transistors are turned
off, all currents are equal to O. Denote the
current in the "on" transistor by I,, the collec-
tor swing between "on" and "off" states by V,,
the base-to-emitter bias on the "off" transistor
by Vy, and the collector-to-emitter voltage of the
"on" transistor by V.. The following equations
can then be written:

R.E
1 - 2 cc ‘
o Re(RL + R+ RQ)

(10)




IORL(Rl + R2)

vV =~~~ - = (11)
o RL + Rl + R2
R,V
20
V. = =0———— (12)
b Rl + R2
(R, +R,)E
1 2" ce
Ve "R+ R+ R~ e " Vo (13)

L 1 2

Simultaneous solution of equations 10 through 13
gives the following expressions for the resis-
tances, 3L’ Re, R,, and R, as functions of Ecc,
Iy, Vo, b, and V% (this &nalysis applies equdlly
well or better to the vacuum-tube flip-flop, pro-
vided the "on" tube does not draw grid current):

Ecc(vo - vb) L
R = 1,V + V) o
fo._otVe )
e Vo
Io<Tb - 1>
2
E (V. -Vv)
cc' O b
Ry =10{?cc(vo - V) - v (Vs Vc{] (16)
VE (V. -V)
bce' o b
R2 =1 rEcc(vo - Vb) - Vo(vo + Vc):' (17)

Experimental Circuit

A practical circuit, based on equations 1k
through 17 was designed as follows. Values of
Ece = 6 v (-6 v actually, since p-n-p transistors
were used), Ip = 1.2 ma, Vo =3 v, W, =1 v, and
Ve = O v were chosen. Note that, since the tran-
sistors are not ideal, a greater -than-zero value
of V. is expected to ensure operation of the "on"
transistor in the active region. From equa-
tions 14 through 17,

R, = 3,330 ohms
R, = 1,250 ohms
R, = 6,670 ohms
R, = 3,330 ohms

The nearest 5% tolerance RMA values of

R = 3,300 ohms
Re = 1,200 ohms
R, = 6,800 ohms
R, = 3,300 ohms

were actually used. From equations 10 through 13,
the corresponding theoretical values for I, Vo,
V,,, and V, are 1.23 ma, 3.06 v, 1.00 v, and

-B.OQ v respectively. Measurements on five RCA
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type 2N3L4 and five each of Radio Receptor types
RR 14H and RR 34H p-n-p junction transistors gave
values of I, (emitter current actually) = 1.0

to 1.0k ma, V, = 2.4 to 2.7 v, Vp = 0.5 to 0.6 v
and V. = 0.6 to 0.9 v. The measured values of
alpha for these fifteen transistors varied from
about 0.95 to 0.98 at the manufacturer's rated
operating points. Best agreement of measured and
theoretical values was obtained with the higher-
alpha units. All fifteen transistors had low I.,
and emitter characteristics with a sharp knee
within 0.1 v base-to-emitter potential. Thus,
the 0.5 to 0.6 v value of Vy, actually measured was
more than enough to cut off the transistors.

Binary-Counter Operation

Figure 4 shows a triggering circuit (similar
to that used with vacuum tubes) for operating the
flip-flop as a binary counter. The crystal diode

+ -

—)D——o TO RASE T,

TRIGGER

INPUT o_._l

—-ql»——v TOBASCTz
+

TO COMMON EMITTER

FIGURE 4. BINARY-COUNTER TRIGGERING CIRCUIT FOR FLIP-FLOP

connected to the base of the "off" transistor has
a greater reverse bias than the crystal diode con-
nected to the base of the "on" transistor. Thus
the positive input trigger is routed to the "on"
transistor and starts the regenerative action that
ends in the other stable state of the flip-flop.
The following trigger is similarly routed to the
new "on" transistor and changes the flip-flop back
to its original state, and so.on, resulting in a
binary-counter action. This description of trig-
gering assumes that the proper values of capac-
itors C; and C, (in Figure 3) have been chosen.
Smaller values of these capacitors can be used
when transistors with higher alpha cutoff frequen-
cies® are used. Too-large values slow up the
operation of the flip-flop. For the transistors
used, which had alpha cutoff frequencies from O.4
to 0.9 Mc, values of C; and C, equal to 0.0025 uf
gave satisfactory triggering. The flip-flop con-
nected as a binary counter operated at trigger
repetition rates up to about 100 kc. Three iden-
tical flip-flop stages, in which the collecter
waveform of Tp of the first stage was connected to
the input of the second stage and so on, were suc-
cessfully cascaded to make a scale of 8.

* Alpha cutoff frequency is defined as the fre-

quency at which the magnitude of alpha is 3 db
less than its low-frequency value.




Iv. Free-Running Multivibrator

General

Figure 5 shows & free-running emitter-
coupled multivibrator using n-p-n Junction tran-

sistors. It is intended for application as an
Ecc (POSITIVE)
R, Rz
(G p——————= OUTPUT
e
E T T L-'v\/\/— £,
Re
Ry .
Ra

FIGURE 5. MULTIVIBRATOR SQUARE -WAVE GENERATOR
USING N-P~N JUNCTION TRANSISTORS

approximate square-wave generator, whose repetition
rate can be adjusted vy adjusting the value of the
single capacitor Cy. Undoubtedly, the process of
transistorizing described in Sections 11 and III
could here be reversed to obtain an equivalent
free-running cathode-coupled multivibrator using
vacuum tubes.

The operation can be explained by referring
to Pigure 6, which shows the vase-to-ground wave-
form of Tp. Neglecting base-to-emitter potential

1 1 "
|7, OFF, T.0N | T,ON,T, OFF | T,OFF, T2ON 1

FIGURE 6. BASE-TO-GROUND VOLTAGE OF T,,
SQUARE - WAVE GENERATOR

differences when a transistor is turned on in its
active region (the intended region of operation

for this circuit), it is seen that changes of state
of the multivibrator take place vhen the base-to-
ground potential of Tp reaches & value of Ey (T2
off and T, on), or a value of Ej(Ry + Ry)/Ry (Ty
off and Tp on). Capacitor Cp is & small peaking
capacitor and does not affect this reasoning.
Through proper choicg of the circuit constants,
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the "off" periods of Ty and Tp can each be made
equal to one time constant of the exponential
waveform on the base of Tp. This choice, in turm,
should lead to minimum fgactional time Jitter of
the output "square wvave"3. These time constants
are approximately equal to cl(Rl + Rc), neglecting
the effects of collector output impegance of Ty
and base input impedance of Tp. Thus, if the
above conditions are met, the theoretical repeti-
tion period of the output will be approximately

gircuit-Constant Be}g}ggnshipg

The relations necessary among the circuit
constants to obtain the desired operation can be
derived as follows. From Figure 6, two equations
are obtained:

. El(R3 + Rh)

1l Rh
E2 = 2 (18)
B+ AVy - Bp = €(Ep - B)) (19)

where
of Tl’

E R.R
1 15
Avcl = cle Rl:) KRI + R5>

if oy is the current gain of T (essumed constant)

and the base input impedance of To is negligible.

Solution of equations 18, 19, and 20 leads to

relations for Ep, Ra, and RIRS/(Rl + Rg) as func-
an

€ = 2.718 and the jump in collector voltage

(20)

tions of Ep, Ry, AVer:
AV
cl
32=E1+1+€ (21)
3 El(l + €)
R R \'}
RiRs A (23)
Rl + R5 alEl

To see whether there is enough middle-
frequency gain to ensure regeneration when voth Ty
and Tp are turned on, consider that the loop is
opened at the vase of Tp and an input signal ey is
injected there. The ratio of ey, the resultant
output signal at the collector of Ty, to e) can be
calculated approximately a8 follows. Neglecting
Ry, T, 18 simply & grounded collector stage (with
approximately unity voltage gain to its emitter)
feeding a grounded base stage T, having a source
impedance of R and a load impedance of
RyRe/(Ry + R;). Thus the open-loop middle-
frequency gain is

el R3 Rl + R5 2

.
.

(24)




meking use of equations 22 and 23. Thus, for the
desired circuit, ey/e; = 1.86, which is greater
than unity as required for regeneration.

Experimental Circuit

An experimental circuit, based on values of
Ey = 7.5 v, Ry = 5,600 ohms, AV,y = 7.5 v, and
@) = 0.95 for Type 201 transistors, used circuit
constants (1% tolerance resistor values) with the
following values (selected using equations 21
through 23):

R3 = 3,000 ohps E2 =9.5v
Rl S R5 = 12,000 ohms Ecc =20 v
R2 = 2,200 ohms

The values chosen for Ecc and ensure operation
of T) and T, in their active regions when they are
turned on. For convenience, the voltages E) and
Ep were derived from a low-impedance bleeder con-
nected between £.c and ground. Bleeder resistance
values of 2,400 ohms, 470 chms, and 1,800 ohms
(reading from Eq.e to ground) were selected; they
gave open-circuit values of El = 7.7 v and

FQ = 9.7 v.

First, a value of C) = 1.0 uf (measured
value = 1.1 uf) for low-frequency operation was
chosen (C5 = 0). The corresponding theoretical
repetition period of the output ig 2C (R + RS)’
equal to 0.053 sec. Measurements made with four-
teen different transistors gave an output period
of 0.033 sec + 11% and a duty cycle of 0.54 + 8%,
When the impedance of the bleeder supplying the
voltages E) and was reduced by a factor of 5,
the ratio of measured to theoretical repetition
periods was increased from the above value of 62%
to a value of 72% without change in duty cycle.

Theoretically, repetition period and duty
cycle of the output should be independent of sup-
ply voltage E,.. Table 2 shows the measured per-
formance for an average pair of transistors when
E is varied.

cc
Table 2
Repetition Period
Ecc in volts in seconds Duty Cycle
5 0.017 0.53
10 0.027 0.54
15 0.031 0.55
20 0.033 0.56
25 0.034 0.55

Next, a value of C; = 0.001 uf (measured
value = 0.0010k uf) for higher-frequency operation
was chosen. The value of Co for best shape of the
output without affecting its period was determined
experimentally to be about 500 puf. (Co performs
a function here corresponding to that of a small
capacitor bypassing the cathode resistor of a

vacuum tube to improve its high-frequency

response.) The corresponding theoretical repeti- "
tion period of the output is 50 usec. Measure- |
ments made with the same fourteen transistors gave

an output period of LO usec + 20% and a duty cycle

of 0.58 + 7%. In this case (compared with

Cy = 1.0 uf), the low alpha cutoff frequency of

some of the transistors™ lengthened the rise and

fall times and thus caused the average ratio of
measured to theoretical periods of the output to

be raised while increasing the variation of meas-

ured period.

The reasons cited under the one-shot multi-
vibrator to explain discrepancies between theo-
retical and measured performance are also appli-
cable here.

V. Conclusions

It has been demonstrated that some vacuum-
tube triode-switching circuits of the multivi-
brator type can be transistorized with Junction
transistors without changing the circuit config-
uration. In the experimental transistor circuits
cited, measured periods were about 70 to 80% of
those calculated from the theory. Repeatability
of results with different transistors was about
+10% of the center value,

The method of transistorization demonstrated
is believed to be applicable to a great variety of
vacuum-tube triode circuits of both switching and
linear types.
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Summary

The design of transistor circuits is hindered
by the loading effects demonstrated by transistors
which is not usually present in vacuum tube cir-
cuits. A pure synthesis procedure takes into
account these loadings. It is shown that a com-
plete transistor can be removed at a time during
a passive synthesis procedure, thus making
possible an active synthesis procedure for tran-
sistors. The technique involves finding the
relationship between the impedance parameters
of a partitioned network and the original network.
An example is shown to jllustrate the technique.

Introduction

The primary purpose of looking into the
synthesis of transistor circuits is to produce
four terminal networks having prescribed fre-
quency characteristics with gain. Secondary
purposes of such a synthesis technique are to con-
trol impedance levels, elenent values, and even
produce the frequency effects of RLC passive
circuitry using only RC elements and transistors.
Synthesis is needed since transistors are not
amenable to the building block concept which has
characterized the use of vacuum tubes in producing
networks having prescribed frequency characteris-
tics with gain. The disqualifying factor for
transistors is that none of their admittance
parameters are negligible, whereas vacuum tubes
often have zero input admittance and zero trans-
fer admittance from the output to the input ter-
minals. This causes the loading effects of
transistors.

The procedure described here makes full use
of the existing passive network synthesis tech-
niques and introduces 2 method of removing a
transistor at a time from a ladder develomment.

Transistor Removal Equations

Linear transistors are characterized by four
parameters which can be the impedance or admit-
tance ones, Four are required because transistors
are active networks, and none of these four can
be neglected. The transistor removal equations
are based upon the geometry jn Fig. 1. The tran-
sistor parameters used here are based upon
equations (1) and 2).

o)

Ep

zyy * 12 (1)

Ilzlz + 12222 (2)

It is postulated that the network N which is
characterized by the impedance parameters 213,

212, 221, and z22 can be partitioned into two
networks, Na and Np, which when connected as
shown will produce the same overall impedance
parameters as does N. Each of the networks Na
and Np are also characterized by sets of impe-
dance parameters with the appropriate subscripts.
The parameters of network N may be found using
the parameters of N and Np.l

211a(211b*222a )~212a%21a

Zyq = (3)
H Z11b * %22a
2551 (211542222 )~212b%
o O L 22a)7212b%21b )
211b * 222a
21222
215 = - ].ZizIZb (5)
11b " “22a
2.2
Zy = 21a“21b (6)
211b*%22a

In a synthesis procedure, the parameters of
N would be known or assumed quantities, the para-
meters of Ny or Np would be those of a transistor,
and the other set of Ny or Np, would be the para-
meters of the network connected to the transistor.
Equations (3), (&), (5), and (6) may be solved
for the parameters of Na or Npe.

2412 CTAN
- 11422b (7)

zZ
La Zoob"%22

A Z =]
222116~ Db
=
%208 = 7. —z.. (8)
226”222

212221b

(9
222b™%22 )

212a *

A A
a  ZpppT222

2112223~ Aa
20 5 . (11)
112”211

Z

. _Mia%2 "0 (12)
211a™%11
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212221a
211a~%11

212b (13)

221212a

211a™%11 e

221b

Equations (7), (8), (9), and (10) yield the
necessary relationships if the network N is to be
realized by a passive network N; followed by an
active network Np; equations (11), (12), (13) and
(14) yield the necessary relationships if i is to
be realized by an active network N, followed by a
passive network Np. These are not sufficient
relationships that the passive network will be
realizable itself, This matter is left to the
ingenuity of the synthesizer in the selection of
suitable transistors.

These equations or the geometry shown in Fig.
1 do not indicate that only one transistor can be
rasoved to create a network N having a prescribed
frequency characteristic with gain. Once the
network N, or Ny, is removed in the form of a
transistor, the parameters of the Ny or N, can
be further subdivided with due regard to realiza-
bility conditions. Ladder developments of four
terminal networks are then possible as is the
situation with passive network synthesis,

Example of the Synthesis Procedure

As an example to illustrate a few of the
points concerned with this procedure, let the
following open circuit transfer function be
realized as a transistorized amplifier.,

S

is+55is+0.l)

An open circuit transfer function may be associ-
ated with the relationship

2

H(s) = _L

‘n

The zeros of z1; may be associated with the poles
of H(s), and the zeros of 2) o taken as the zeros

of H(s). There remains to select suitable poles
of leo

H(s) = K (15)

(16)

The selection of these poles is also con-
cerned with the impedance level of the net-
work if N, is a transistor and with the realiza-
bility of the N, network. The poles in this
example are selected such that

- _(8+0.1)(s+5)
21 = 250 135,09 tonics)—

The selection of the multiplicative factor 250
is somewhat arbitrary, but large values quickly
lead to unrealizable Ny. The synthesis will
proceed upon the basis of removing transistors

(17)
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by the removal equations and forming a ladder
development of the passive parts which also
realize the zero of the transfer impedance.

Realization

A 125 ohm resistor is first removed in
series from z); before a transistor is removed.
This series resistor will reduce the gain but
does provide for source resistance.

2y = 125 + 1255°46985+71.1

(18)
8%+, 595+0.405

1
il

A transistor is next removed. The part%cular
choice of transistor depends upon the z7;. The
value of zjjp which must load this transistor
is obtained by use of equation (11), Equation
(11) can be rearranged to be as follows:

]
1| e 2 ]

= B ;
22t l - 211 J

As a necessary condition for 2z b to be realiz-
able the coefficients of the polynamials forming
2)1p must be all positive. Considering the
numbers in z 1 and equation (17) and having
available da%a of several transistor parameters,
a suitable choice can be made, In this example

i
Livs (ﬁut)

Clearly g)1)t must be larger than 1/125 mho and
ry1¢ larger than 201 omms. A large value of
8ot 1s desirable to maintain a low impedance
level of 211be An X22 grounded base which meets
these specifications has the following para-
meters: :

Z11b (19)

riit

ST (1S qu-1) + 5(698 4. - 4-59) (T4 0" 40)

SYr-28Y 5(4.51-‘%:).(0,405- -;’t‘:‘;> (20)

e

ryy¢ = 1770 ohms r;, = 1737 ohms
r,op = 604K ohms l/gllt=118 ohms

~
riot = 574K ohms 1/322t= 41500 ohms

Using the appropriate parameter values in
equation (20), there results

0.246 5°+5.935+41
2.565°+11, 53+1

211,=25600 (21)

A shunt resistor must be removed from 211b
to enable Sperating currents to reach the
collector.“ This resistance should not be very
large or else excessive power supply voltages
will be required. In this example the resistance
in shunt is 25,600 ohms minimmm and is reasonable
for a 0.5 ma operating point. The size of this
resistance is governed by the 1/822t: and the




cjoseness of the constant terms in the original
z13 equation. The relative value of these constant
terms is under the control of the designer through
the selection of the poles of 211 and its multi-
plicative factor. The maximum resistance seen
looking into the 1,1' terminals of a transistor

is the ry3y, and this results if the load is an
open circuit. The minimum resistance seen look-
ing into the 1,1! terminals is 1/gj;, and this
results if the load is a short circuit. Conse-
quently, for the impedance level of the z}éb to
be small, the impedance level of 2] should be

about 1/811¢

The shunt 25,600 ohm resistor is removed,
followed by the removal of a series capacitor
to realize the zero of 212. The resulting
impedance function is given by

1 + 0,0478s

1 + O.4Llhs (22)

2)15=25300

At this point it is well to consider the
characteristics of an impedance function which
when placed in equation (11) can produce a
realizable function. First and foremost, if
transistors are used having positive parameters,
t he impedance function must have the same powers
of s present in both the numerator and denomi-
nator. This restriction is evident in equation
(20). 1If all these terms are not present, then
some of the resultant coefficients will be nega-
tive. Transistors having negative parameters may
be deliberately used to overcame this difficulty.
This restriction is a reflection of the fact
that a transistor represents a resistance to
ground viewed from either set of terminals, and
if it is to be removed fram an impedance func-
tion, that impedance function must have a
resistance to ground.

If another transistor is to be removed, it
must also have a shunt resistance for furnishing
bias current, If all the shunt resistance 1is
removed from equation (22), then the resulting
function will not yleld a realizable loading
impedance for the second transistor. Only part
of it can be removed. If 50,600 ohms are re=
moved in shunt, the resultant jmpedance function
is

S 140.0478s
211p =5%0 135,785 (23)
Again, using equation (19)
i 5(7.4103..( a1t) +(So6ooye- 1)
l-l&:(;;;) (21‘)

s(oat - 3———-;": Y+ (- f_JP—a"e°

For this transistor, gjy must be larger than
3.59X10'5 mhos and ryj must be larger than
50,600 olms, These values suggest a grounded
collector transistor. An ideal transformer
could be removed at this point to lower the
impedance level such that a grounded base tran-
sistor could be removed. If a TA 153 is opera-
ted grounded collector, its parameters are:

127

rt 800,336 ohms rp= 18K ohms

Tooy = 18,056 ohms 1/874=2720 ohms

ry = 800K ohms 1/52%:61.3 ohms

With these parameter values used in equation
(24), there results

= 14'0.006285
150 =75.83s (25)

The impedance function 2zjj¢ admits of removal of
a shunt resistance for blas purposes. The
remainder of this impedance function may then

be removed as a series resistance and finally a
shunt capacitance. Figure 2 illustrates the com-
plete circuit and the various impedances.

e

The TA1l53 operated as a grounded collector
stage has a gain of slightly less than unity.
This stage does serve to illustrate its use as an
impedance transformer since the zero frequency
resistance of z1jp is 50,600 ohms and the zero
frequency resistance of z1j¢ is 1150 ohms. These
stages allow a reduction in impedance level with-
out appreciable loss in gain, Once the impedance
level is low enough, a grounded base circuit may
be used to produce gain.

Experimental Verification

The analytic solution of the circuit in
Fig. 2 yields

_ (s+0.1)(s+5)
211 = 250 733565545 (26)
L
_ _5.0X10's .
12 (5+0.09)(s+4.5) (27)
E, 200 0

E; - is+0.lszs+55

Figure 3 is an experimental gain frequency curve
of this amplifier. The frequency has been denor-
malized to facilitate testing. The break fre-
quencies are 114 and 5710 cycles per second. The
largest error is about 1/2 of a decibel. Dis-
crepancies can be explained by element tolerances
and fremency characteristics of the transistors
which have been neglected.

Pole Zero Configurations

Equation (19) might be interpreted as com-
puting the pole zero locations of a network to be
placed in tandem with a transistor such that the
loading effects of the transistor shift these
poles and zerga to where the specifications de-
mand they be.” The pole zero configuration of
the specifications, 211, are shown in Fig. 4.
The selection of the poles is almost arbitrary,
but they were chosen close to the zeros to




produce two polynomials defining the impedance
function without a large spread in coefficient

values between corresponding powers of the numera-

tor and denominator. The poles in this example
were also chosen to produce an RC driving point
impedance, The poles and zeros of the loading
impedance for the first transistor are also
shown in Fig. 4, Figure 4 may be interpreted

as a root locus plot. The form of equation (19)
suggests this concept. With the minus signs,
the poles and zeros move in opposite directions
to those encountered in servomechanisms. The
gain factors are the g ¢ and l/rllt for the
zeros and poles respec%}vely. Theé root locus of
the effects of the second transistor can be
shown similarly. This is illustrated in Fig. 5.
Transistors having certain negative parameters
may be used to cause the root locus plots to go
in opposite directions. The example shown here
has caused the poles to move to the right and the
zeros to move to the left, With the opposite
motion, RC networks can be transformed into RL
networks, and vice versa,

Other Uses of Equations

The equations in the series (11), (12), (13),
and (14) which were not used have little bearing
upon this example. Equations (13) and (14) de-
ternine the transfer impedances of the network
Npe Equation (12) determines the z55 of Np. The
importance of these equations is that they show
the poles of the impedance parameters include at
least those in the transfer impedances., This is
the justification of realizing a four terminal
network by means of a ladder develomment of one
of the driving point impedances.,

With the specifications of a required tran-
sistor amplifier, the impedance parameters of the
network may be determined by any of the methods
used in passive network theory. As an example,
if an amplifier is required which is terminated

J 1
e N 4= 1= Na T % "'__'22
EN| 4 Z =€l | Zsa Zzan e 2o | TE,
f - zﬂ l" +—2 —t zﬂ! zlu . = Z!O Zzu +—2

Fig. 1 - Block diagram of the partitioning,
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in a resistance, the transfer function may be
considered to be Y12 divided by y,, plus the
terminating resistance. The yp, %ﬁus obtained
can then be developed in a ladder network in a
manner similar to that shown in the numerical
example,

Conclusion

A major difficulty associated with this
procedure is the transistors. The parameters
vary considerably with operating point and the
characteristics of the network are likely to be
sensitive to these parameter changes. Also, it
is necessary to measure the parameters of the
specific transistors contemplated for these
circuits as the tolerances between transistors
of the same type number are much too great,
Effective transistors having parameters not
available in single transistors can often be
obtained by the connection of two or more
transistors. 1In spite of these difficulties,
the synthesis procedure has yielded a logical
approach to the realization of transistorized
amplifiers,

The material in this paper was carried out
as part of contract No. D.A. 36-039 sc-15544
between the Signal Corps and Purdue Research
Foundat ion,
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NETWORK PARTITIONING TECHNIQUES APPLIED
TO THE SYNTHESIS OF TRANSISTOR AMPLIFIERS

H. Markarian
School of Electrical Engineering
Purdue University
Lafayette, Indiana

Sumary

Two methods for applying network partition-
ing techniques to the synthesis of transistor
amplifiers are described. The syntheses of a
differentiating and a Butterworth amplifier serve
to illustrate and to bring out some of the advan-
tages of these methods. 1In the case of the
differentiating amplifier a passive network
realizing a given transfer function is synthe-
sized first., This is then partitioned, and each
part resynthesized using transistors and passive
elements, In the second example the partitioning
1s achieved by mathematical manipulation; ani
through a proper choice of transistor connections
camplex poles of the transfer function are real-
ized without using inductors.

Introduction

When a network Na with short circuit para-
meters y1o; and ypp, and a second network Ny
with open circuit parameters z1op and zj3p, are
connected in tandem as indicated in Fig. 1, the
overall open circuit voltage transfer ratio is
given by the following relation:

Za _ o (-y12a) Ky g
it e Yo2a *
a 233y
where
212b
Ky, = 2
b~ 7, (2)

This is merely an extension of the relation given
by the Thevenin's Theorem and can be easily de-
rived by taking the two-terminal pair network Ny
to be the load of Na. The convention concerning
the positive direction of current at the terminals
of a two-terminal pair network is responsible for
the negative sign associated with Y124 in (1).

Application of Partitioning

The usefulness of the partitioning formula,
as (1) may be so called, lies in the fact that it
relates the overall voltage transfer ratio of a
network to the indicated parameters of its two
constituent two-terminal pair sections. For a
given overall voltage transfer function it is
tnus possible to compile by the use of this rela-
tion a list of network pairs satisfying the
specification. The most basic application of
partitioning to the synthesis of transistor ampli-
fiers consists of finding in such a list a network
pair, one member of which can be identified as a
trausistor, The companion member in the pair can
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then be realized using passive elenents and put
in tandem with the transistor to give the speci-
fied open circuit voltage transfer ratio within

a multiplicative constant., Depending on whether
the transistor takes the place of N, or Ny, this
procedure can be described as the removal of a
transistor by partitioning starting from the send-
ing or the receiving ends respectively, While the
use of a list of acceptable network pairs helps to
i1lustrate, its compilation is in practice un-
necessary, with a knowledze of the parameters of
the transistor to be used and some idea of the
desired topology of the final network the desigrer
can arrive at a satisfactory network pair after
only few trials,

The merits of partitioning as a design tool
become apparent when the transfer functions to be
realized are camplicated or when the amplifier is
to have more than one transistor, This is ob-
vious, for example, in the case of an amplifier
with two transistors, Partitioning in such
instances makes things easier by providing
immediate access to the interstage coupling net-
work.,

Even though partitioning is generally
carried out mathematically on the given open
circuit voltage transfer function, it is found
advantageous to follow a somewhat different
course for its present application. The latter
procedure involves the following steps,

1. A number of passive networks satisfying
the given open circuit voltage transfer
function are synthesized,

2. By inspection the one that looks the
most favorable is chosen,

3. The chosen network is partitioned into

N3 and Nyp. Parameters y3y5,, Y22a» 211lb
and zj,), are determined,

4. N, and Ny are resynthesized according to
these parameters using transistors and
passive elements,

An example that illustrates this procedure *
follows. In a second example, partitioning is
done mathematically at the outset.

First Example

Let it be required to synthesize a differen-
tiating transistor amplifier that realjzes the
following open circuit voltage transfer function:




s 3)
B, Ts+2)(s+h) 3
Multiplying the numerator and denominator of
(3) by
1
gives
. As
&2 C(s+3)
Ey s+2) (s+l . (5)
C(s=3
Considering that
Ep Z12 6)
= z
1 |1,=0 11
12
s - (7
Y22

the admittance
network are

functions specifying the passive

As

12 %7 eAY ©
) Rl (%)

Figure 2 shows a passive network that realizes
(8) and (9). Some experience at this point will
help to see that it is possible starting at the
dotted line to mroceed forward and backward
removing two transistors, one on each side.
Therefore, this passive network can be considered
to be satisfactory enough to serve as the frame-
work for the amplifier design. The following
parameters are determined for the partitioned

network:
- 1/3 s
Y12a = e (10)
- 1/3 s
Y22a ~ C(s+3 (ll)
= = ¢
The correctness of (10), (11) and (12) can be

verified by substituting them into (1), which
gives

E 1/3 s
Ey (8+2)(s+4)

I+ is to be pointed out that the impedance
level of the final network as well as its topo-

. (13)

logy depends on the choice of {4). Reverting
mementarily to the idea ot a 1ist of accertable
network pairs, it is possible to think of (4) as
some kind of an independent variable which the
contents of the list are a function of. Thus, if
after deciding upon a network pair the transistor
amplifier does not turn out to be entirely satis-
factory from practical considerations, it is
necessary to try a different passive network pair
corresponding to a different value of the inde-
pendent variable (4). This may be accomplished
by just changing the pole location, or it may
require the introduction of additional factors

in the numerator and denominator of (4). The
latter artifice amounts to the introduction of
redundant elements in the network, which may be
required to provide otherwise lacking biasing
paths.

To proceed with the synthesis, reference is
made to Fig. 3, which gives not only the final
result but also serves as a legend for the nota-
tion used in the calculations that follow. The
section taken up first for transistorization is
Nps although it could just as well have been Nj,.
Recalling that

- e
11b s + 83 ° (12)
a shunt capacitor of 1/C farads is removed, This
leaves to be realized
v _3C
Z15p T g e (1)

For this section a grounded emitter connected
junction type transistor, J #2, is chosen with
the following open circuit parameters:

ryy = 431.8 £
= . K98
T 31.8
rl2 = -71903 K
= . . 1
T 20,7 X (15)
If a load of 1000 o is taken, substitution into
(46) gives
11
Z2)9p T 1486 . . (16)
This is in parallel with the 1000 £ resistor
providing the bias path to the input of the
transistor. Now, invoking ()
' - _3c__ 1000 X 1486
11b ~ 78 1000 4'%&83 an)
Therefore,
c=1595 . (18)
The synthesis of iy, is thus completed, The value

of C that has been established governs the syn-
thesis of N,. Substituting this value into (11)
gives
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(19)

s
3X1595 (s+3) °

The removal of a series capacitor of a magnitude
1

Y22a =

F constitutes the first step, and
leaves to be realized

v

1
3 1595 . (&9)

1]
Y22a =
The transistor chosen for N;, J #1, is of the
Junction type with its emitter grounded, and has
the following open circuit parameters:

ry = 428.7 a

r, = 27.7 s

r, ==-840 K

ryy = 10.2 K . (21)

Making the source impedance equal to 600 ohms and
substituting this value with (21) into (47) gives
after inversion

y228. = w .

1
33800 (22)

As this value is lower than what is required in
(20), it is necessary to hang a resistor, R,

across the output of the transistor J #1. The
value of this is
R=—p >t = 5600 - (23)
Y22a = Y22a

The synthesis of the differentiating transistor
amplifier is completed; only the calculation of
its gain remains, The simplest way of doing this
is to determine y}1o, and z3op actually realized
and to substitute these together with y,s, and
271p into (1). These are computed to be

- S
Y12a = 70.5(s43) , (24)

_ 56000
Z1p = - Tﬁ—'s 2.5 (25)
and
E
2 882 s
= = . 26
E) ’12=o Ts+2)(s+8) (26)

Second Example

The synthesis of a Butterworth amplifier
will be carried out using only resistors and
capacitors., To do this, use is made of a
quality of grounded emitter stages that exhibit
a RL impedance at one end when a RC network is
connected at the other end. Similarly, a RL
network is transformed into a RC network. Using
(46) and (47) it is very easy to prove this.

132

The open circuit system function of the ampli-
fier to be synthesized is

) _ A
5y als sowy seprn (27)
1 I,=0 87428 +28+1
Multiplying the numerator and denominator by
1
C(s+0,5)(s+1.05) (28)
gives
. A
B _ _T(s+0.5)(s+1,05) -
E) 53428242541 ?
C(s+0.5)(8+1.05)
where the denominator now is
D(s) = 33+232+25+1 (30)
C(s+0.5)(s+1,05)

This is first expanded in a partial fraction and
then its terms regrouped,

_ 1 0.0957 ,0.5818
D(s) Gls + 0.5 + s+1.05+s+0.5
= 1f. 0.9 57) ;( 0.5818
A= i I o
=1 S+2.964Y , 0.4 f 842,205
C(s+o.os 541,05 )+ c (s+0.5 S

The expanded D(s) is now substituted back into
(29), obtaining

A
2 _ C(3+0,5)(s+1.05) (32)
g 1 5+2.964), 0.4 2.205
c(5‘°'°5 s+1.05 ) ¢ (s t Te+0.5
Comparing this with (1), the following term
associations can be made.
_.Al - 9
Y12a © Sramoo
C( 5"'1.05)
1 6
=1 (540.0 S_2_LL_)
aza =  (s+0.05 s+1.05 /| 2
A2 7 .
Kb N s40,5
1 o.a( s+2.205) 3
= Dats [ 842.20) L)
211p G s40,5 J

All the information needed for the synthesis of
Ny and N, is contained in (33) and (34). Even
though not essential, it is helpful at this point
to synthesize (33) and (34) into a passive net-




work. Reference to Fig. 4 showing the synthe-
sized network clearly reveals the course to be
followed.

starting at the dotted line and proceeding
right, a shunt resistor of 25¢C ohms magnitude is
renoved leaving
s+0.5 )

842,394 (35)

' c
2110 ~ T0.36 (

To the left of the dotted line a shunt capaci-
tor of 1/C farads is removed leaving

(

These are both shown in Fig. 5. The syntheses
of Ny and Ny, have now progressed to points where
the removal of a transistor from each is in
order.

342,964
s+1.05

) _ 0.05
Yooa T ¢

(36)

The transistor chosen for Na, J #3, is of
the junction type and is operated with its emit-
ter grounded through a resistor of 200 ohms.

''he purpose of the resistor is to improve the
stavility of the circuit. The short circuit

parameters of this stage are:
gy = 594 X 100 v
gy = -3:92 X 100 v
By = be15 X 102 v
gyp = Leo5 X 10é v (37)

The transistor in Ny, J 4, is also operated
with its emitter grounded through a resistor of

200 ohms, and is again of the jinction type. The
open circuit parameters of this stage are:

ry = 422.L 5

ry; = 2184 O

ry, =552 K s

ryy = 8 K (38)

To remove the transistor J #3 from yéZa’ (36)
and (37) are substituted into (52). The adnit-
tance remaining after the removal of the tran-
sistor simplifies to

00 6] (50000-293C)s+(1 000-307.2C
=58 ,4X10
Y222 [%M.SC-SO,OOOSs+%15.2C-M£,0005(3};)
which is physically realjzable within the range,

. (40)

185 € 3450

On the other hand, the transistor J #4 can be
removed from 21y bY substituting (35) and (38)
into (50), the remaining impedance simplifying to
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o (61,,6C=360,000)s +(32.3C-865,000) |
Z11b 123'5‘,—652 = )5 + (%5 - 0.50) 1 (1)

This is physically realizable within the range

730 L C 5570 (42)

Tb? ranges'?f the constant multiplier C for

¥22a and 231p respectively happen to be partially
overlapping. Had this not been the case it would
have been necessary to try different transistors
or go back and change the partitioning.

Choosing a value of C common to both ranges,
¢ = 3450, (43)

and substituting this into (39) and (11) gives

1

Y22a < P s * 550 ° (L4)
and

t ! 1

Z11b = 5115 + . (145)

FLI R

s +

10 62900

This completes the synthesis of three pole Butter-
worth amplifier using resistors, capacitors and
two transistors. The gain A in (27) is calculated
to be 1550,

Conclusion

partitioning has been described and two
examples given {llustrating its application to
the design of transistor amplifiers. The repre-
sentation has not aimed at comprehensiveness, its
aim being to point at some of the possibilities
ot the method. The fact that C, and the variation
of OA with frequency have been neglected should
not be taken to demerit partitioning. It can just
as effectively be used to provide compensation or
to synthesize networks utilizing the transistor
characteristics to realize speciried system func-
tions.
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Appendix

Following is a 1ist of formulas referred to
in the text. The order in which Ny and Ny are to
be taken together with the conventional positive
directions of voltages and currents are indicated
in Fig. 1.

(u6)

Z Z
2 =z _ _“12a “2la
117 T2 s 0a * 21b




212b 2%21b

=z - (w7
%22 22b T s + 211p
215 = “12a *12b (48)
Z22a * 211b
2 Z251p
221 - 218+ 21 (Ag)
222a * 211b
_ 212a 22la
‘b T 22t T e
2
2la
z =z (51)
12b M2 e
. _Y1ov Y21b
Yopa = ——AL g (52)
Ya2b = Y22
e Tl
el | Nol N | e,
o J B }4 -0
Fig. 1
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13k
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A NE# EQUIVALENT CIRCUIT FOR JUNCTION TRANSISTORS
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Abstract
LA NI

Based upon the work of Shockley and Early
on junction transistors, a new equivalent
sircuit consisting essentially of two trans-
mission lines 1is presented. One line is used
in the emitter ocirouit to represent Shookley's
forvard diffusion prooess of minority carriers
in the base region and the other line used in
the collector ciroult represents the Early effect
which feeds the collector signal back to the
emitter olrcuite

Approximate equivalent oircuits for grounded
base and for grounded emitter connactions are
also derived from this new oircuit and are oom=
pared to conventionally established eguivalent
oircuits, Thus a unified view is established,

Introduotion

An equivalent cirsuit is useful to analyze
the funoction of a device beoause (a) it allows
a olearer insight into the operation of the
device, and (b) it offers son analytioal solution
by well jeveloped oironit theory. The first
equivalent ocircuit for junction transistors was
introduoced by Shockiay, et alii, for low
frequency operationv. Essentially, it conmsists
of an equivalent ourrent senarator, known as the
a generator, which responds to a siznal current
in the emitter (imput) oircuit and transfers this
signal ourrent into the colleotor (output)
circuit, Since the impedance of the output
oirouit is very high and the input impedance is
very low, the junotion transistor will yleld
power zain as an amplifier, This type of operatbn
is known as a grounded base appliocation.

1f the signal frequency 1is increased, the
transit time of transferring charge oarriers
from the smitter to the colleotor in the base
region becomes increasingly appreociable. The
charge transfer effioiency will drop, thus the
transfer ourrent of the transistor will decrease.
This oharge transfer prooess takes place by
diffusion, and is analogous to the charge flow
on a transmission line, Therefore, equivelent
oirouits using a transmission 1ine have been
suggested, Yot, there is no equivalent oirouit
that gives a lucid analog to the estahlished
theory of the jumotion transistor. This paper
attempts to fill this gap. The basio desizn
theory for junction transistors has been published
recently by Earlys. This paper will use some of
his results,
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A "Two Transmission Line™ Cirocuit

A new equivalent oircuit for a one
dimensional junction transistor is shown in
Figure 1, The essential part of this oirouit
oonsists of two transmission lines shown by
solid lines, One of the lines, connected
primarily in the emitter oircuit of the transistor
and coupled anilaterally to the collector circuit,
represents Shooklsy's forward diffusion process
of the minority oarrisrs in the base region® %,
The other line, connected essentially in the
sollector oircuit and coupled unilaterally
back to the emitter circult, represents the feed-
back effect due to 3pace charge layer widening
discovered by Ear1y4. Other behaviors of the
tronsistors are represented by lumped circuit
slements shown by the dotted lines. Among them,
CTe and CTo are the emitter and colleotor barrier
capacitances raspeoctively. Gg 1is a lumped
conductance repreaenting an equivalent leaxage
in the emitter barrisr due to impsrfect injeotion
efficiency of the emitter, Similarly G, is a
oconductance representing the leakage (e.g. due
to the surface) between the collector and the
base of a practical transistor. Between the
internal base and the outer base terminal of the
trensistor is a lumped base resistance ry .

Under normal conditions, Ge and Cre oan generally
be neglacted and CTo, Go', and ry may not remain
constant over wide frequenoy rangeés. More exaot
representation of these parameters in an equivalent
oircuit is beyond the socope of this paper.

Diffusion Process

A one dimensional pnp junction transistor is
schematiocally shown in Figure 2(a). Under a
normal bias condition, the emitter injeots holes
into the base region, The excess hole density
in the base region near the emitter end will
cause diffusion of the holss toward the ocollector
end., Holes diffused will be colleoted by the
ocollector, since the latter is properly biasd
to receive holes, A small fraotion of the holes
will disappear during diffusicn in the base
region due to recnmbination, The diffusion and
recombination processes oan be desoribed
enalytically by the ocontinuity equation 32 for a
one dimensional case as follows:

ot B, 0
At T dx?

(1)

where p’ 1is the excess hole density of the n=type
base region (whioh is egqual to the difference
between the hole density p and the thermal
equilibrium hole density pn)s T s the mean life-
time of holes; and D is the diffusion constant of




holes in the n region,

The boundary condition for p’ at the emitter
end (x=0) depends upon the injection level of
the emitter, At the other end (x=W,), beoause
the elsotric field intensity in the collector-
base barrier is high, eny hole in that region
will be accelerated toward the colleotor with
high speed, and there will be no appreciable
hole density in that region, Thus the bo undary
condition for p’ at x=W, may be taken as zero,
The solution of (1) with a normal d.c. bias
condition will show a space distribution of p’
such as the ons shown in Figure 2(b), Becauss
of this sloping characteristic, there is a hole
density gradient in the x direction, end the
diffusion of the holes in the forward direction
takes place, The diffusion ocurrent Ip is related
to the hole density gradient by:

ap’
ax (2)

Physical Analogy

Ip = - qD

These relations are analogous to the flow of
charges in & trensmission line, In faoct, the
differential equation to desoribe an RC trans-
mission line has exaotly the same form as (1),
Transmission line theorys glves the oharge
density on the line as

29, _gq+L 3%
at o ro bxz (3)

where Q is the linear charge density of the line
(ise, oharge per unit length), r 1is the series
resistance per unit length of the line, o and g
are the shun! capacitance and conductanoce per
unit length of the line. By comparing (1) and
(3), one obtains a complete analozy between the
diffusion and recombination processes in the base
region of the transistor and the RC transmission
line as listed in Table 1,

The analogy shown in Table 1 sugegests that
the forward diffusion process of holes in the
base region of the junoction transistor can be
represented bv one RC transmission line (a) with
the receiving end short cirouited, but (b) with
an output impedance corresponding to an open
oirouit, A short oirouit transmission line
followed by an equivalent ocurrent generator i'sfy
therefore, used for the forward transmission
process as shown by the Shockley line in Figure L

Effeot of Space Charge Layer Widening

As Early pointed out4, a variation of
colleotor voltage V, will oause a variation of
the colleotor-base barrier thickness Xpe This
in turn will cause a variation of the base width
Woe The variation of the base width will
correspond to a short oircuit position at the
reoeiving end of the Shookley line, shifted back
and forth according to the variation of Voe For
a fixed input voltage on the 1ine, this movement
of the short oircuit point will oall for an in-
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orease or deorease of the input ourrent and

thus a signal current corresponding to the
variation of output voltage will appear at the
input end, The dynamic characteristics of this
feedbaok process is desoribed by the same trang-
mission line equation (Eq. (3)) in the case of a
line and by the sams continuity equation (Eq. (1))
in the oase of a transistor. Therefore, this

type of feedbaok process in the transistor due

to the space oharge layer widening can be repwesemt-
ed by another RC transmission line shich is
coupled unilaterally from the colleotor side back
to the emitter oircuit as shown by the Early line
in Fizure 1. It will be shom later that the

two lines are of the same length and the same
propazation constant but different impedance
levels,

Experimental Verification

Mgasured results of the forward ocurrent
amplification factor a over a wide frequenoy
range of junction transistors has verified the
Shookley line in the equivalent circuit.
Measured results of Early effeot and variation
of collector capacitance over wide ranges of
frequencies and emitter bias ourrents can be
explained by the Early line, These experimental
results have been published elsewhers,

Analytical Proof

Followinz Shookley's diffusion theory and
inocluding the space oharge layer widening effect,
Early has obtained a set of theoretiocal expressions
for the short olrouit admittance of the above one
dimensional junction transistors3., A slight
alternative version of them including only the
prineipal part of the transistor (called the
plementary transistor) may be written as follows:

1
Ie(leiwr)? W 1
Yeo 'E%‘Q'cot}:E‘wo;L) coth 73(1eJur)?
1
_qle(l4jwr)= Wo 1
= kT cobhéWZ}L) csch 77(14 Jwr)? (4)

Yce =
Io[ &W % w 3
Yee = ——‘1(-—)(1'r*lwt)E coth Z0(14 jwz)=
[ avc L L N
T, (W 5 L
Yec = = _Ln(-g—vc)(mwr)e csch Zo(1+jwz)?

-~

where, Yoes Yoor Yoo» o0d Yo, are the four
elements of the short circuit admittance matrix
(y3] of the elementary transistor. The intrinsioc
ourrent amplification faotor as of the colleotor
Junotion is assumed equal to uni ty,

In order to prove that the new equivalent,
oirouit in Figure 1 is a ocorrect representation
of such an elementary transistor, it is now
only necessary to show that a set of short
olrcuit admittance matrix (ocalled (Y] ) of the
solid 1line oirocuit in Figure 1 is equal to the
( y1 matrix of Equation (4),

Applying transmission line theory, one can
immediately find the elements of the (Y) matrix
as follows:




’

Yll' —1—1- - -i-l = -1-' coth 91
w1 A
/
Y Jl2. “12 .. L ceoh o
2l v 2 Zy
1, iy &
-t2.12.2 ootne
22 vy vy 29 2
le’ 44 _'1{.,}_ osch 82
V2 V2 22
1/2
Where Z) * (21/71) / and Zy = (z,/¥ )1/2 are the
characteristic impedances of the ho%kley and

Early lines risgeotiwly, e " 11(y121)1/2 and
9, " 12(y222) /2 are the overall propagation
funotions of the two lines., As,

y1 = 8+ ¥
y, = B, ¢ I
2 2 2 (6)
21 = !‘1
22 = !‘2
one obtains:
1
o = Lls(e/e))”
pS
6y = 4[!‘%2(10j("c2/g2)]?
1
(r;[%})$ (7)
Zl = lojwc g1 12'—
1
Zo (rofE0)2 -

(Lo g /2)2

The coefficients of the (YJ matrix do conform to
those of the (y] matrix. By identifying the
corresponding terms, the relations in Table 2
are obtained.

Both lines are of the RC type with the
same eguivalent length with an equal propagation
function, but with different characteristic
impedances. The forward current amplification
factor a of the transistor, whioh is partioularly
of general interest, equals the product of the
injection efficiency Yand the transfer ratio 8 .
Since only the latter is of concern here, one
can find from Figure 1

/Bg% s -—:-i-g - gech 6 ¢ - gech ‘%2(1,_3“,[)% (8)

Evidently 8 has also been correoctly represented
in this new oirouit.

Approximate Equivalent Circuit for Grounded Base
Connection

Replacing the two lines in the new e quivalatt

oirsuit wita two appropriate RC filters, one
obtains an approximate equivalent oircuit for
grounded base aepplication. This oircuit may be
drawn in "T" form as shown in Figure 3.

In Figure 3, the distributed parameters of
each line have been essentially lumped into e
geries resistance, @& shunt capaocitance and &
shunt conduoctanoe. Besides, the latter shunt
ellements can be combined with CTe, CTos Ge' and
G, to give Ces Co» Ge, ond G, as shown.

Again, the aie current generator in a
conventional T oircuit is of general interest,
We oan easily prove that the equivalent ourrent
generator 1é shown in this T circuit is equal
to the former as follows:

7 ’
il - 11 = 11/10
2 T+3w R1Cq 1+Jw RyCe

i "__f&_.——ie (9)
®  T+iw R1Ce

where R Cq = reCe " 1/(24() and when vy®i; = Oe

The ocurrent generator 11” in the emitter
cirouit is an Early feedback generator. It may
be converted into an equivalent voltage generator

Vp if so desired, Cq and C, may be identified
as the total emitter and collector barrier
oapacitanoce, Gg and G, may be teken as the
total equivalent barrier leekage conductance.
Ky sorresponds to the theoretical low frequency
emitter resistance re, while Ry is & similer
equivalent resistance in the 6ollector circuit
due to the Early effect, These parameters are
related to the physiocal constants of the
transistor and to the circuit parameters of the
conventional eguivelent T oirouit as shom in
Table 2. Moreover, these parameters will have
further signifiocanoce in the grounded emitter
cirouit desoribed below.

Approximate Equivaelent Circuit for Grounded
Emitter Conneotion

The T circuit is a basic equivalent ocirouit
for junction transistors. Although it is most
conveniently used for grounded base applioation,
it can be used for grounded emitter epplication
too, A m oircuit in a Jjadder structure oen be
obtained which offers not only a simpler snalysis
in grounded emitter appliocations but also leads
to some physioal interpretations, This ladder
cirouit whioch has been known elsewhere is shown
in Figure 4(a).

In Pigure 4(s), all the elements have been
expressed in terms of those parameters of the
original T oirocuit, The form of this oirouit
suggests that grounded emitter junotion
transistors are analogous to vaouum tubes at
high fregquencies. Acoordingly, a blook diagrem
interpretation of this oirouit is given in
Figure 4(b).

This diasgram j]1lustrates that funoctionally
the grounded emitter junotion transistor operates
as a system of three parts: 8 low pass RC filter,
a wide band amplifier and an RC feedback networke
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