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Solid-State

A new child in the radio engineering family has
grown to astonishing stature during the last few
years. [ts personality is so radically new and its
future is so promising that there can be little
doubt that we are witnessing the early stages of a
new era in radio-electronics, the solid-state elec-
tronics era.

“Solid-state electronics™ may be described
broadly as dealing with the control and utilization
of the electric, magnetic, and photic properties of
solids. The knowledge that special effects can be
produced in some materials when energized by
electric or magnetic fields or by light is not new.
IZarly investigations of these properties by scien-
tists date back to the last century. Nor is the
application of solid-state materials in radio new.
One can go back over the years and find several
examples, notably in detectors, rectifiers, resona-
tors, and transducers.

[t is only recently, however, that we have begun
to make real headway in understanding and
utilizing solid-state materials on a large scale. \We
now see ferromagnetic and ferroelectric substances
emploved for memory cells, ferrites for microwave
attenuators, photoconductors for automatic head-
light dimmers, and electroluminescent materials
for experimental light amplifiers, to name but a few.

The most startling progress to date has been in
the field of semiconductors. The development of
the transistor in 1948 was a major milestone in
electronic progress and already this subject alone
has become a major field of endeavor. And yet the
transistor represents only one of several species
of phenomena inherent to germanium (or silicon),
germanium is only one genus of semiconductor
material, and semiconductors are only one order

Electronics

in the family of solid-state materials. There re-
main many other species, genera, and orders to be
further explored and utilized and many other
devices to be developed.

Most of our fundamental knowledge about solid-
state materials has been developed by physicists,
chemists, and metallurgists, and much of this
information has not vet filtered across to the
engineer. In order for the radio engineer to use
these materials in the creation of new devices he
must first have some understanding of their
fundamental properties. It is to this end that the
IRE is devoting this special issue of its PrRoCEED-
INGS to Solid-State Electronics—to bridge the gap
between the scientist and the engineer.

CONTENTS oF This Issui

In this issue leading authorities in the held
have been invited to discuss the principal classes
of solid-state materials, their properties, and their
applications. These discussions review prior work
in the field, outline in tutorial fashion our present
understanding of the subject, and indicate in
what direction future progress lies. Emphasis is
given to those topics about which little has hereto-
fore appeared in the engineering literature, espe-
cially to those materials which can generate, store,
or are actuated by light.

The issue starts with a tutorial introduction by
Frank Herman to a subject which is basic to an
understanding of solids; namely, crystals. The
reader will find that this discussion of crystal
geometry, energy band structure, and electrical
and optical properties will provide him with an
excellent vantage point from which to view with
greater clarity all of the papers that follow.
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Ferroelectric materials are ol ¢onsiderable inter-
est today because of their applications as electro-
mechanical transducers and camiputer memory
elements and because they exbii™s ¢ azeful dielectric
prop. ~ties which are quite similar (o the magnetic
properties of ferromagnetic mmatc:ials. The next
paper (Jaynes) briefly explains the physics of
nonlinear dielectrics and is followed by a detailed
discussion of ferroelectric crystals and their die-
lectric behavior (Shirane, Jona, and Pepinsky).

The next group of papers deals with what is
thus far the most important class of solid-state
materials—semiconductors. The history of semi-
conductor research (Pearsoi: and Bratrain) is not
only a very interesting story in itself, but provides
some valuable object lessons on how slow we are
to accept new ideas and give up old ones. The most
useful semiconductor device to be developed so far
is the junction transistor. Thanks to intensive
research we now have an almost complete under-
standing of how it works and are making steady
progress in improving its performance (Moll). The
widespread use of germanium and silicon for trans-
sistors and rectifiers has tended to obscure the fact
that these materials are also excellent photocon-
ductors (Schultz and Morton) and are already
being put to good use as such.

The subject of photoconductors leads us into the
general area of photoelectronic phenomena, an
area which is very new and very promising. The
recent knowledge gained from work on silicon and
germanium has led to a much better understanding
of photo-effects in intermetallic semiconductors
(Frederikse and Blunt), has greatly stimulated re-
search into the use of cadmium and zinc com-
pounds for photoconductors (Bube), and in general
has provided considerable insight into the basic
mechanism by which the conductivity of a ma-
terial is increased by exposure to light (Rose). Im-
portant strides have recently been made also in the
development of lead salt photoconductors for use
in infrared detectors (Moss).

As a result of the above advances in photocon-
ductivity, together with the very recent and rapid
progress in the development of electroluminescent
materials, a great deal of attention is now being
given to light amplifiers and related devices. Sev-
eral successful experimental models have been an-
nounced just within the past vear and predictions
are now frequently heard of the many new won-
ders which are waiting around the corner, such as
picture-on-the-wall television. Among the devices
currently being developed is a storage light ampli-

fier (Rosenthal). Once an image is projected onto
its screen, the projector may be turned off and the
screen will store and continue to reradiate the
image, but at an intensity no greater than the pro-
jected image. This is not to be confused with a true
light amplifier (Kazan and Nicoll) which reradiates
a greatly intensified image, but only as long as the
projector is on. Numerous other uses of photocon-
ductive and electroluminescent cells are being in-
vestigated, including color converting screens,
counting and switching devices, and logical net-
works for computers (l.oebner).

It can be seen from the above that not only is
there great practical interest in photoconductive or
light-actuated materials, but also in luminescent or
light-gencrating substances. Recent advances in
our knowledge of cathodoluminescence, or clec-
tron-excited luminescence (Garlick), are having an
important bearing on the study of cathode-ray-
tube screen performance and efhciency. Another
important type of luminescence can be obtained
in some materials by application of an electric
field. A thorough understanding of this phenome-
non, called electroluminescence, will be of interest
and importance to all engineers because of the
host of applications it suggests (Destriau and
Ivey). Our study of luminescence would not be
complete without a survey of present views re-
garding the constitution and preparation of phos-
phors (Kroger).

The next paper (Gorter) deals with a class of
material which in a relatively short time has found
widespread application throughout the radio engi-
neering field, both as perhaps the most popular
form of storage element in computers and in pro-
viding for the first time practical nonreciprocal
devices for the microwave art. This discussion of
ferrites, their chemistry, how they are prepared,
the history of their development, and their many
applications closes the issue.
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The Electronic Energy Band Structure
of Silicon and Germanium”

FRANK HERMAN,} ASSOCIATE MEMBER, IRE

Summary—This article, which is of a tutorial character, is con-
cerned with three broad subjects: (a) the theory of electronic energy
bands in a perfect crystal; (b) the electronic energy band structure of
silicon and germanium crystals; and (c¢) the relationship between
some of the electrical and optical properties of these crystals and their
energy band schemes. The article is essentially an introduction to the
quantum theory of crystals, with silicon and germanium serving as
illustrative examples. As such, the article should appeal particularly
to electronic engineers and physicists working in the field of solid
state electronics. A knowledge of quantum mechanics is probably
not essential to the understanding of major portions of this paper.

The following topics are treated: crystal symmetry and crystal
geometry; electronic quantum states in a perfect crystal; the energy
band scheme; occupancy of the electronic quantum states; the hole
concept; the effective mass tensor; velocity and acceleration of elec-
trons and holes; the spin-orbit interaction and its consequences;
the energy band structures of silicon and germanium; the band
structure of germanium-silicon alloys; theory of lattice vibrations;
the phonon concept; collisions between electrons or holes and pho-
nons; the electrical conductivity; optical absorption and emission
processes.

[. INTRODUCTION

OLIDS CAN usually be classified as crystalline or

noncrystalline. Both types of solids are formed

from atoms which are held together by electrical
forces. In a crystalline solid, or a crystal, the atoms are
arranged in space in the form of a regular array. Thus,
a crystal is a periodic structure. [[ an atomic aggregate
does not exhibit a distinctive periodic structure, it is
classed as a noncrystalline solid. In this paper, we will
be interested in crystalline, rather than in noncrystal-
line solids.

Crystals may be classified as perfect crystals, nearly
perfect crystals, and disordered crystals. In a perfect
crystal, the atomic array is flawless. Each position in the
spatial array is occupied by the proper type of atom, and
there are no atoms present which do not belong to the
array. A model of a perfect diamond-type crystal is
shown in Fig. 1. [The diamond-type crystals include
grey tin, germanium, silicon, and diamond itself.] Each
ball in the model represents an atomic position, and
cach rod a chemical bond joining two atoms together.
The normal atomic positions are called substitutional
sites, while the positions not belonging to the array
which an atom might occupy under special conditions
are interstitial sites. In a perfect germanium crystal,
for example, each substitutional site is occupied by a
germanium atom, and each interstitial site is vacant.

In a nearly perfect crystal, the atomic array contains
a small number of flaws or structural imperfections. If

* Original manuscript received by the IRE, September 19, 1955.
t RCA Labs. Princeton, N. J.

a small fraction of the substitutional sites in a germa-
nium cryvstal are occupied by atoms other than germa-
nium, or if some of the interstitial sites are occupied, the
erystal would be called a nearly perfect crystal. Simi-
larly, if a small fraction of the substitutional sites were
vacant, or il the atomic array were not in proper registry
in a few localized regions, the cryvstal would be a nearly
perfect crystal.

Fig. 1—D>Model of the atomic arrangement in diamond-type crystals.
(After Shockley.)

A disordered crystal may be described in terms of an
example. Consider a perfect crystal composed of two
types of atoms. In such a crystal, the atoms of each type
are arranged in the form of a regular array. Some of the
substitutional sites are occupied by the atoms of one
type, and the remaining sites by the atoms of the other
type. If by some means we spoil the ordering, such that
the atoms of both tyvpes are arranged at random among
the substitutional sites appropriate to the perfect crys-
tal, a disordered crystal results.

It is common knowledge that the crystals which occur
in nature and those grown in the laboratory are never
perfect. Such crystals usually contain a variety of struc-
tural imperfections. The very best natural and synthetic
crystals are nearly perfect crystals. Some types of dis-
ordered crystals can be grown in the laboratory, while
other types can be produced from nearly perfect crystals
by suitable processing. Many of the crystals used in
solid state devices such as transistors are nearly perfect
crystals.

From a theoretical standpoint, perfect crystals are
easier to treat than nearly perfect crystals; nearly per-
fect crystals are easier to treat than disordered crystals;
and disordered crystals are easier to treat than non-
crystalline solids. The theory of noncrystalline solids



1704

has not advanced very far due to mathematical and
physical ditl.culties. Some progress has been made in
dealing with disordered crystals theoretically. The
theorv of perfect and nearly perfect crystals is fairly
well developed.

The usual practice is 1o treat a nearly perfeet crystal
as a perfect erystal in a first approximation, and then to
take the structural imperfections into account in a sec-
ond approximation. When a nearly perfect crystal is
studied in this manner, it is found that some of the
physical properties of the crystal are relatively insensi-
tive to the structural imperfections, while others are
highly sensitive. Many of the electrical and optical
properties of nonmetallic crystals, 7.e., semiconductors
and insulators, are extremely sensitive to the nature and
the concentration of the structural imperfections. [t is
for this reason that imperfections are often introduced
intentionally into synthetic nonmetallic crystals in order
to give these crystals desirable electrical or optical
properties. In contrast, the thermal and clastic proper-
ties of nonmetallic crystals are relatively insensitive to
the presence of small numbers of imperfections.

In this paper, we will confine ourselves to the theory
of perfect nonmetallic crystals. [The only exception to
this rule occurs in Section XI, where we consider ger-
manium-silicon alloys, which are essentially disordered
crystals.] We have imposed this restriction in order to
keep the length of the manuscript within reasonable
bounds. We direct the reader’s attention to the article
by Shockley [1] and to the references given at the end
of this paper for information concerning the effect of
imperfections on the physical behavior of crystals, and
the theory of crystals in general. Ixtensive bibliogra-
phies can be found in most of the terminal references.

Broadly speaking, the theory of crystals is concerned
with the relationship between the physical and chemical
properties of a crystal and the individual and collective
behavior of the electrons and nuclet belonging to the
crystal. While many problems in crystal physics can be
handled by classical methods, some problems can be
treated only within the framework of quantum mechan-
ics. It 1s with the latter class of problems that we are
concerned in this paper.

According to quantum theory, an electron in a crystal
can exist in only a limited number of discrete states. The
allowed states are called the electronic (quantum states.
When an electron occupies one of these quantum states,
it has an energy which is characteristic of the state.
Thus, the energy of an electron in a crystal is limited to
a defmite set of values, namely, the energy values cor-
responding to the allowed states. In a periodic array of
atoms, the quantum states tend to cluster into nearly
continuous groups of allowed energy levels called energy
bands. The existence of energy bands greatly simplifics
the description of the distribution of the allowed states
in crystals.

The major subject of this paper is the energy band
scheme, which determines in part the behavior of the
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electrons in a crystal. The energy band scheme has been
widely treated in the literature [see the general bibliog-
raphy]. Some of the accounts are rather elementary,
while others are intended only for the specialist. Our
version is meant to be intermediate between the more
elementary and the more advanced treatments.

Why is there an interest in the energy band scheme
of a crystal? Many of the physical properties of a crystal
depend upon the nature of the available electronic
guantum states, upon the manner in which the electrons
in the crystal are distributed among these quantum
states, and upon the readiness with which electrons
make transitions between different quantum states
under the action of an applied force. If enough is known
about the energy band scheme of a crystal, one can in-
terpret, analyvze, and predict many of its physical char-
acteristics, especially those depending upon the elec-
tronic behavior. In brief, one can gain a good deal of in-
sight into the physical properties of a crystal from a
knowledge of its energy band scheme.

Much current research is devoted to the elucidation
of the encrgy band schemes of crystals having scientific
or technological significance. The information gained
from such rescarch can prove very valuable in many
applications, as the literature will testify.

In the early portions of this paper, we will consider
the theory of electronic quantum states in perfect crys-
tals from a general point of view, though we favor non-
metallic crystals over metallic crystals in many discus-
sions. The emphasis was placed on nonmetallic crystals
because such crystals are commonly employed in solid
state devices such as rectifiers, transistors, photocells,
etc., and thus are worthy of special attention. In the
later portions, we are concerned almost exclusively with
the energy band schemes for the silicon and germanium
crystals. Throughout the paper, geometrical ideas are
illustrated by the case of diamond-type crvstals. The
necessary background material is provided in those dis-
cussions where it is likely that the general reader will
benetit from the inclusion of such material.

Since we are attempting to cover a rather broad area,
even with the many restrictions we have imposed on the
content of this paper, our treatment is rather superficial
in many places. We have not given the proofs of most
of the statements which are made in the course of the
presentation. It may be taken for granted that the
proofs are to be found in the references cited at the end
of the paper.

We have chosen the cases of silicon and germanium to
illustrate the general theory for the following reasons:
First, these crystals are the basic constituents of many
solid state devices. An understanding of their properties
is of great practical importance. Second, silicon and ger-
manium have been carefully investigated, and more is
known about the energy band schemes of these crystals
than is known about the band schemes of other crystals.
Third, the energy band schemes of silicon and germa-
nium contain many of the features which are likely to be
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found in the band schemes of other crystals. The better
we understand the band schemes of these two crystals,
and the relationship between the band schemes and the
physical properties, the easier it will be to understand
crystals in general. )

The organization of this paper is as {ollows: In Section
1, we discuss the symmetry properties of crystals, and
certain geometrical concepts related to these symmetry
propertics. The theory of electronic quantum states in
crystals, and the theory of energy bands are developed
in Section I11. The manner in which the electrons are
distributed among the available quantum states under
equilibrium conditions is described in Section V. We
also introduce the hole concept in Section 1V, The struc-
ture of an energy band near its extrema is considered in
some detail in Section V. We show in Section VI how
the velocity and the acceleration of an electron or a hole
can be determined from a knowledge of the energy band
structure. The effect of the spin-orbit interaction on the
energy band structure of crystals is considered in Sec-
tion VII.

Having outlined the foundations of the subject, we
turn to the band structure of silicon and germanium.
Recent theoretical and experimental developments bear-
ing on the energy band structure of these two crvstals
are reviewed in Section VIII. We summarize the cur-
rent state of our knowledge concerning the valence and
conduction band structures of silicon and germanium
in Sections I X and X. The band structure of germanium-
silicon alloys is considere:! in Section XI.

The remaining sections are concerned with the phys-
ical implications of what has come before, and with addi-
tional background material. The theory of lattice vibra-
tions and the phonon concept are treated briefly in
Section XII. In Section XIII we discuss the collisions
between electrons or holes and phonons. The relation-
ship between some of the electrical and optical proper-
ties ot silicon and germanium and the band structures
of these crystals is considered in Sections X1\ and X\
The significance of the recent developments in the
theory of silicon and germanium is summarized in the
final section.

I1. GEOMETRICAL PRELIMINARIES

The present section is devoted to a brief discussion ot
crystal geometry and crystal symmetry. Crystal geom-
etry provides a means for classifving crystals and the
symmetry properties determine the coordinate systems
in which mathematical descriptions of the properties of
a crystal will be tractable. For the purposes of this sec-
tion, we will assume that the crystal under consideration
is a perfect crystal of infinite extent.

Let us begin by defining the term “symmetry” accord-
ing to its technical, rather than its common usage. An
object is said to possess (spatial) symmetry if certain
operations, such as rotations or translations, can be per-
formed on the object, with the result that each of these
operations carries the object to a position in space which

Herman: linergy Band Structure of Silicon and Germanium
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is indistinguishable, by any known test, from its original
position. An object is said to be invariant to each of its
symmetry operations. The symmetry of an object is
uniquely delined as soon as we enumerate all the opera-
tions which have the property of transforming the ob-
ject into itself.

The translational symmetry of a crystal can be speci-
fied by any three independent identity periods. By
definition, an identity period is the smallest possible
translation in a given direction which carries the crystal
into itself. Let us choose a convenient set of identity
periods, and let us denote these vector quantities by the
symbols a,, a; and a;. Since these three vectors are re-
quired to be independent, they must not all lie in the
same plane.

Consider the set of vectors

d = da, + dia: + dia, n

where d;, d,, d3 are any three integers. Note that each
vector in the set d is the sum of integral multiples of
the three identity periods. It is obvious that the crystal
will be transformed into itself by any translation d.

The endpoints of the vectors belonging to the set d
form a three-dimensional lattice of points known as the
direct lattice. The vectors d are called the vectors of the
direct lattice, or, more simply, the direct lattice vectors.
The primitive (smallest) direct lattice vectors are the
identity perioc¢s ay, ap, and as.

Since a crystal is a periodic structure, it must possess
a unit ceil. It 1s convenient to choose as the unit cell a
parallelopiped each of whose edges is a primitive trans-
lation vector. In Fig. 2 we show a network of points.

X

Fig. 2—Direct lattice for diamond-type crystals. The primitive trans-
lation vectors and the parallelopiped unit cell are shown.

These points form a face-centered cubic lattice. If we
assume that the network of points corresponds to the
direct lattice of some crystal, the parallelopiped defined
by the dotted lines may be regarded as the unit cell of
the crystal.

The atomic arrangement in diamond-type crystals is
suggested by the model shown in Fig. 1. In this model,
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cach ball represents an atomic position, and each rod a
chemical bond joining two atoms together. A compari-
son of Figs. 1 and 2 reveals that a diamond-type lattice
is composed of two inter-penetrating face-centered cubic
lattices. For convenience, let us call these two sub-
lattices A and B. The four atoms neighboring an atom in
A belong to B, and the four atoms neighboring an atom
in B belong to A. Itis readily established that a diamond-
type lattice has the same translational periodicity as A
or B. Therefore, A or B can be chosen as the direct lat-
tice for the diamond-type crystal. Since the sub-lattices
A and B are physically equivalent, it doesn’t really
matter which we choose. For the sake of argument, let
us take the sub-lattice A as the direct lattice. If we as-
sume that the sub-lattice A is pictured in Fig. 2, then
it follows that the primitive translation vectors and the
unit cell shown in Fig. 2 apply to the model in Fig. 1 as
well. We note in passing that the density of atoms in a
diamond-type crystal is two per unit cell.

In addition to its translational symmetry, a crystal
may have other symmetry properties. For example, a
diamond-type crystal is invariant to an inversion taken
about the point midway between any two adjacent
atomic positions. A diamond-type crystal is also invari-
ant to certain rotations and reflections. These are indi-
cated in Fig. 3, where we have shown an atom belonging
to a diamond-type crystal together with its four nearest
neighbors. [t should be noted particularly that the four
nearest neighbors lie at the vertices of a regular tetra-
hedron, and that each of the symmetry operations indi-
cated in Fig. 3 has the property of transforming a regu-
lar tetrahedron into itself.

4-FOLD

;";grms

ROTATION
AXIS

3- FOLD
ROTATION
-l AXIS

Fig. 3—Some point symmetry operations for diamond-type crystals.

The terminology used in Fig. 3 may be explained as
follows: A rotation axis is said to be an = fold axis if the
allowed angles of rotation are given by the expression
2xp/n radians, where n is an integer, and where p=0,
1,2 - - - n—1. A rotation about an axis is known as a
proper rotation. If a crystal can be transformed into
itself by a rotation about an # fold axis, followed by a
reflection in the plane perpendicular to this axis, the
crystal is said to possess an 7 fold alternating axis. An
alternating axis is sometimes called a rotation-reflection
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axis, and the rotation followed by the reflection a rotary-
reflection or an improper rotation. An ordinary reflection
is an improper rotation by the angle zero, while an inver-
sion is an improper rotation by the angle = radians.
Since proper and improper rotations leave at least one
point of the crystal fixed in space, such symmetry opera-
tions are known as point symmetry operations.

We now return to the general theory. Let us introduce
three new vectors by, ba, and bs, and let us require that
these vectors satis{y the following conditions:
.b—za..—jz"rifizj- ,7=1,23 (2
BRIEINET g iy T
Note that the vector by is perpendicular to the planc
passing through a; and aj, etc. Consider the set of vec-
tors

h = lllbl + hgbg + Il;;b;;, (3)

where iy, I, and kg are any three integers. The endpoints
of the sct of vectors h form a lattice known as the re-
ciprocal lattice. {Each vector h has the dimensions of a
reciprocal length.] The vectors h are known as reciprocal
lattice vectors. The vectors by, bs, and b; are the prim-
itive translation vectors of the reciprocal lattice.

The concept of a lattice in reciprocal space finds an
immediate application in the representation of periodic
functions in the crystal (direct) space by three-dimen-
sional Fourier series. Let the function F(r) have the
same symmetry properties as the crystal. For example,
F(r) might be the crystal potential or the crystal charge
density. Since F(r) must be invariant to any translation
by a direct lattice vector d, we must have:

F(r) = F(r + d). (4)

It is easily demonstrated that F(r) can be represented
by a three-dimensional Fourier series of the form:

F(r) = E;J(h) exp (ih-r), (3)

where the f(h) are Fourier coefficients, and where the
summation is carried over all reciprocal lattice vectors
h. The proof is elementary. Suppose we apply the trans-
formation r—r+d to (5). This gives:

Fir+d) = Zh:f(h) exp [ih-(r + d)]. (6)

Consider the factor exp (h-d). Making use of the defi-
nitions (1) and (3), and the relations (2}, we readily es-
tablish that h-d=2n(hd,+hds+hids) =27 times an
integer. Hence. exp (th-d) =exp [2wi(integer)] =1, and
it follows that (6) = (5). But this is essentially the perio-
dicity condition (4). We may conclude that the periodic
function F(r) can be represented by the Fourier series
given by (5).

It can be shown that the lattice reciprocal to a face-
centered cubic lattice is body-centered cubic. Since the
direct lattice for a diamond-type crystal is face-centered
cubic, the reciprocal lattice for such a crystal must be
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body-centered cubic. We show a body-centered cubic
lattice in Fig. 4. It is convenient to choose for the unit
cell of reciprocal space the truncated octahedron shown
in ig. 4, rather than a parallelopiped. To demonstrate
how the truncated octahedra fill all of reciprocal space,
we have displayed in Fig. 5 four truncated octahedra
centered at four adjacent lattice sites of the body-
centered cubic (reciprocal) lattice.

Fig. 4—Reciprocal lattice for diamond-type crystals. The truncated
octahedron is the unit cell, or the reduced zone.

Fig. 5—Cluster of four truncated octahedra.

I11. ELECTRONIC QUANTUM STATES
IN A PERFECT CRYSTAL

In this section, we will discuss the general nature of
the quantum states which are available to electrons in a
perfect crystal. \WWe will also show how the available
quantum states can be cataloged with the aid of the
energy band scheme.

When an electron occupies a given quantum state, it
can be represented by a wave function which is char-
acteristic of this state, and it will have an energy which
is also characteristic of this state. The wave functions
and the energy levels corresponding to the various
quantum states can be determined by solving a certain
set of wave equations.

The wave equation (Schrédinger equation) for an
electron may be written in the following form:

i
|:— : V4 V(I')] ¥(r) = Ey(r), (7
87Pm

where & 1s Planck’s constant, m the mass of an electron
in free space, and V* the Laplacian differential operator.
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V(r) is the potential acting on the electron represented
by the wave function ¥/(r). E is an energy parameter.

In the course of its motion through a crystal, an
electron will be attracted by the nuclei, and repelled by
the other electrons. The crystal potential V(r) is so con-
structed as to take all of these attractions and repulsions
into account in some suitable manner. For the purposes
of the present discussion, we will assume that all the
electrons in the crystal are acted upon by the same crys-
tal potential, V(r). We make this assumption in the
interest of simplicity.

The most characteristic feature of the crystal poten-
tial V(r) is its symmetry. The crystal potential must
have the same symmetry properties as the crystal itself.
In particular, V(r) must be invariant to any translation
which carries the crystal into itself. Thus, we may write:

V(r) = V(r + d), (8)

where d is any direct lattice vector. [t is possible to solve
the wave equation (7) in a relatively simple and straight-
forward manner because the potential 1'(r) is a periodic
function.

The crystal wave equation (7) will have nontrivial
solutions which satis{y the imposed boundary conditions
(see below) only if the energy parameter E is set equal
to any one of a number of distinctive values. These
special values of E are known as the energy eigenvalues
of the wave equation. The solutions ¥(r) corresponding
to these choices of E are called the crystal eigenfunctions.
Each quantum state is characterized by a particular
cnergy eigenvalue and by the corresponding crystal
cigenfunction. Thus, when an electron is in some quan-
tum state, its energy will be given by the energy eigen-
value appropriate to this quantum state.

In order to avoid the complications which arise when
we attempt to impose realistic boundary conditions on
the crystal under consideration, it is desirable to work
with a mathematical construct known as a cyclic crystal.
Briefly, a cyclic crystal is a representaitve sample of an
infinite crystal. The cyclic crystal may be defined as the
portion of an infinite crystal enclosed by a parallelopiped
with concurrent edges Na,, Na,, Na; whose center
coincides with the origin of coordinates. The quantity N
is an arbitrary, large integer, and a,, a., and a; are the
primitive translation vectors of the direct lattice. It is
readily established that the cyclic crystal contains
exactly NV unit cells, each of volume a;- a» X a;.

The cyclic crystal concept is fully defined only after
we introduce the so-called cyclic boundary conditions.
The cyclic boundary conditions require that any two
points in space are to be regarded as physically equiva-
lent if they are separated by a vector of the type:

N =Y |ma, + n.a: + nsa;|, 9

where n1, 1y, and n3 are any three integers. In the follow-
ing discussion, we will assume that all the functions
with which we deal are defined only within the confines
of the cyclic crystal, and that the cyclic boundary con-
ditions apply to all these functions.
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As first shown by Bloch, each solution of the crystal
wave equation (7) satisfving the cyclic boundary con-
ditions

¥(r) = y(r + N) (10)

must have the form
¥(r) = exp (ik-ru(r), (1)

where #(r) is a modulating function having the same
translational periodicity as the crystal, and where kis a
quantity which we will tentatively call a wave vector.
A wave function of the form (11) is known as a Bloch
function.

The wave vector k appearing in (11) is restricted to
the following set of values:

k = .\'—l(klbl + kﬂgb-_} + ksbg], (12)

where N is the large integer detining the size of the cycelic
crystal; by, ba. and bj are the primitive translation vec-
tors of the reciprocal lattice, and &y, &y, and k3 are any
three integers. If k were chosen to be different from any
of the values given by (12), the Bloch function (11)
would not satisfy the cyelic boundary conditions. It is
easy to demonstrate that the allowed values of k are
uniformly distributed in reciprocal space, and that
their density is N3 per unit volume.

One can show that any two Bloch functions whose
wave vectors differ by a reciprocal lattice vector de-
scribe the same type of wave behavior. Therefore, such
wave functions are physically equivalent. The inclu-
sion of physically equivalent solutions in our catalogue
of solutions can be avoided by restricting the range of
k in reciprocal space. This is most easily accomplished
by requiring that k lie in the central unit cell of the
reciprocal space. (k may also lie on the boundaries of
this unit cell.) Wave vectors which lie in the central
unit cell of reciprocal space, or on the boundaries of this
unit cell, are known as reduced wave vectors. Hence-
forth, the symbol k will be used to designate a reduced
wave vector, rather than any wave vector, and the
central unit cell will be called the reduced zone. |The
reduced zone for silicon and germanium is the truncated
octahedron shown in Fig. 4.]

To summarize: Each crystal eigenfunction of the
wave equation (7) satisfying the cyelic boundary condi-
tions (10) is a Bloch function. Each Bloch function is
characterized by a reduced wave vector k. There are
N allowed values of k, and these are uniformly distrib-
uted in the reduced zone.

The crystal wave equation actually has a number of
eigenfunctions and energy eigenvalues f{or cach of the
allowed values of k. These may be distinguished from
cach other by introducing an integral index g. IZach
eigensolution of the wave equation is uniquely specitied
by a reduced wave vector k and by an index 8. The
assignment of the index § to the solutions for each choice
of k will be discussed shortly. For the present, we
merely note that each energy eigenvalue can be written
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as Fs(k), and that each Bloch function, or crystal
eigenfunction, can be expressed as follows:

‘l/ﬂ(kv r)

where u3(k, r), for each choice of 8 and k, is a modulat-
ing function having the same translational periodicity
as the crystal; that is,
u3(k. r) = ug(k, r + d),
for all k and B.
We may now write down a set of crystal wave equa-
tions, one for each quantum state 8, k:

= exp (tk-r)us(k, r), (13)

(14)

h2
[_ lq v+ V(r)] Ya(k. r) = Eg(kKWs(k. r). (15)
8rim

The available electronic quantum states are given by
the solutions to this set of wave equations. Since each
electron in the cryvstal must occupy one of the available
states, the only allowed energy levels are those corre-
sponding to the energy eigenvalues /£3(k). Any energy
level not included among the energy eigenvalues f3(k)
may be termed a forbidden energy level.

We will not attemipt to explain here how the crystal
potential V(r) is calculated in practice, nor will we
attempt to describe the methods whereby the crystal
cigenfunctions Ya(k, r) and the energy eigenvalues
(k) are actually evaluated. Rather, we will proceed
on the following three assumptions: (a) the set of wave
equations (15) provides an adequate means for deter-
mining the available quantum states; (b) the crystal
potental 17(r) is known; and (¢) the solutions to the set
of wave equations have been determined.

The allowed energy levels Fg(k) form a spectrum on
an energy scale, which may be called the electronic
energy spectrum. The spectrum for a typical crystal is
composed of a number of deep-lying, widely spaced
lines, and a number of higher-lyving, closely spaced
bands. The deep-lving lines correspond to the energy
levels for the core electrons. While the core electrons are
involved in many physical processes, such as X-ray
emission and absorption, they play no important role in
those processes with which we will be principally con-
cerned, namely, clectrical conduction and optical ab-
sorption and emission processes. Therefore, we will not
consider the core energy levels further,

The broad bands, which lie above the core energy
levels, may be divided into two classes, the valence
bands, and the conduction bands. In all crystals, the
conduction bands lie above the valence bands. The dis-
tinction between valence and conduction bands in non-
metallic erystals will be considered in the next section.
The clectrons whose energies lie in the energy intervals
spanned by the valence bands are appropriately called
valence electrons, and the electrons whose energy levels
belong to the conduction bands are called conduction
electrons or free electrons,

We wish to emphasize that the energy levels for the
valence and the conduction electrons are confined to
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very defnite energy ranges, and that these energy
ranges are often separate’l from each other by finite
energy intervals which are called forbidden bands.
In the case of nonmetallic crystals, with which we will
be primarily concerned, the only forbidden band of in-
terest is the one between the highest valence band and
the lowest conduction band. Whenever we speak of a
forbidden band in the remainder of this paper, we will
always have this particular forbidden band in mind.

So far, we have only treated the energy spectrum in
terms of allowed and forbidden levels on an energy
scale. We will now consider the energy spectrum in a
more general sense. Consider the set of energy levels
I25(k) corresponding to a particular value of k, namely,
(k). Fo(K), I23(k) - - - . I k lies at a general point of
the reduced zone, each energy level will usually occur
only once in the catalogue of energy levels. In such a
case, we can assign the index g to the various quantum
states in the order of ascending energy; that is, we label
the states with 8 such that:

F(k) < Ex(kY < Es(k) - -, (16)

Once this assignment is made, we can define, in an un-
ambiguous manner, a set of energy functions Fs(k) sat-
isfving the following relation:

Ev(k) £ Eq(k) S Eq(k) - - - (17)

lor all choices of k. In (16), the svinbol FEsz(k) denotes
the energy level corresponding to the quantum state
B, k. In (17), the symbol /:3(k) denotes an energy func-
tion which describes the k-dependence of the energy
cigenvalues specified by the index g. In this article, we
will sometimies use the svmbol £3(k) in the first sense,
and sometimes in the second sense. The context will
usually suggest which sense is intended.

The quantum state 3, k is said to be nondegenerate if
the energy level Fs(k) occurs only once in the catalog of
energy levels specilied by the reduced wave vector k.
If a given energy level is repeated n times, for some
choice of k, the n quantum states having this energy
level in common are said to be n fold degenerate. Thus, if
Fs(k) = Eg-(k),thestates 3, kand 3’, kare two-fold degen-
erate. EKnergy degeneracies occur most often for values
of k lying at symmetry points or along symmetry axes
of the reduced zone. It is usually possible to predict the
occurrence of energy degencracies by symmetry argu-
ments. The equality signs in (17) allow for energy de-
generacies, The states corresponding to a value of k
lving at a general point of the reduced zone are almost
always nondegenerate.

We now come to the heart of the subject, the concept
of an energy band. An energy band is deiined as the set
of N* quantum states associated with the N3 allowed
values of k and with a particular value of 8. An energy
band may also be defined as the set of N3 energy levels
Fs(k) associated with the N? allowed values of k and
with some value of 3. The energy function £z(k) de-
scribes the k-dependence of the energy band 8.
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The energy band functions Eg(k) have several inter-
esting properties. These will be described briefly:

The energy band function Ez(k) is a continuous func-
tion of k throughout the reduced zone. The function
Es(k) is also a differentiable function of k throughout
the reduced zone, with the exception of those values of
k for which the band 8 comes into contact with some
other band or bands; that is, £z(k) will be differentiable
where it is nondegenerate, and nondifferentiable where
it is degenerate. \Where Ez(k) is differentiable, all the
derivatives of FEs(k) with respect to the components of
k, in all orders, can be uniquely defined. The differenti-
ability of f5(k) will prove important in Section V.

The function FEz(k) has the same rotational symmetry
in the reduced zone as does the reduced zone in recipro-
cal space. Let R be any proper or improper rotation
which transforms the reduced zone—or the reciprocal
lattice, for that matter—into itself. [The center of rota-
tion is placed at the central point of the reduced zone.|
When R acts on k, it carries k into a new position in the
reduced zone. We will denote the new position by the
symbol R(k). Since Ez(k) has the same rotational sym-
metry as the reduced zone, £3(k) must be invariant to
each of the rotations R. Therefore, we may write:

Es(k) = E3|R(k)]. (18)

If Eg(k) attains its maximum or its minimum value at
k = ko, it must have symmetrically equivalent maxima
or minima at each of the points R(k,).

It can be shown that the inversion operation is always
included among the symmetry operations R. Thus,
whether or not the crystal has a center of inversion,
the tunction Eg(k) will be invariant to inversion about
the central point of the reduced zone; that is, we will
have, for all crystals, the following relation:

Eg(k) = Es(—k) (10)

et us denote by the symbol K any point in the re-
ciprocal space. [\When K lies in the reduced zone, it
becomes a reduced wave vector k.] It is not difficult to
prove that E3(K), regarded as a function of K, has the
same syvmmetry properties as the reciprocal lattice. In
particular, £3(K) has the same translational periodicity
in reciprocal space as the reciprocal lattice. Hence, we
may write:

where h is any reciprocal lattice vector. It follows from
(20) that the energy function £3(k) must assume equal
values at any two points on the surfaces of the reduced
zone which can be joined by a reciprocal lattice vector.

What is the relationship between the nature of the
crystal potential V(r) and the nature of the energy band
functions £5(k)? The symmetry properties (18) and
(20) are associated with the translational symmetry of
the crystal potential. The occurrence of energy degener-
acies, i.e., contacts between adjacent energy bands,
is related to all the symmetry properties of the crystal
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potential, particularly the rotational symmetry proper-
ties. It is not necessary to solve the set of crystal wave
equations (15) in order to determine the nature of the
contacts between energy bands and the symmetry of
the various energy bands. Such information can be ob-
tained by symmetry arguments alone. On the other
hand, the exact form of the various energy bands—by
which we mean the width and the location of the max-
ima and the minima and similar items—can be deter-
mined only by solving the wave equations (15); that is,
the form of the various energy bands depends upon the
exact nature of the crystal potential, rather than upon
its symmetry properties alone. Thus, there is a limit to
what symmetry arguments can tell us about the energy
band structure of a crystal.

It is often necessary to have a firm picture of the k-
dependence of an energy function Eg(k). The k-depend-
ence of an energy function can be indicated in a variety
of ways. For example, Es(k) can be represented by a
family of constant energy surfaces in the reduced zone.
This type of representation requires a three-dimensional
drawing. It is sometimes more convenient to show the
intersection of the family of constant energy surfaces
with some plane in the reduced zone, usually a plane
passing through the central zone point. The intersec-
tion, which may be drawn in two dimensions, consists of
a family of equi-energy contours, one contour for each
constant energy surface. The intersection may also be
shown as a conventional contour map in three dimen-
sions, with energy plotted vertically, and the plane
laid out horizontally.

The representation used most frequently in practice
shows FEg(k) plotted against k for a particular direction
of k. This gives a line—an energy profile—for the energy
band B. If Eg(k) is plotted against k for a few well-
chosen directions of k, a reasonably complete picture
of the k-dependence of Eg(k) can be developed. We will
have occasion to use various representations for fz(k)
in the course of this article.

It is desirable to define in precise terms the expres-
sion “width of the forbidden band” for the case of a
nonmetallic crystal. Let us designate the highest valence
band and the lowest conduction band by the symbols
“yal” and “cond.” The width of the forbidden band, or
the energy gap Eg,, 18 given by:

Euup = Econd(kc) - E\'ul(kv)' (21)

where k. is a point in the reduced zone where the lowest
conduction band reaches its lowest energy value, and
where k, is a point in the reduced zone where the high-
est valence band attains its highest energy value.

L.et the energy separation between the highest va-
lence band and the lowest conduction band at the point
k be denoted by the symbol Ee(k) [“vert” for verti-

cal]. By definition, we have:
Evert(k) = Econd(k) - Eval(k)- (22)

If k,=k., as may be the case for some nonmetallic
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crystals, then:

Eﬂﬂr’ = Evon(kr) = Evrr'(kr)- (23)

On the other hand, if k,# k., as is the case for silicon
and germanium, we may expect to have:

Em\p < Evort(k)v (24)

for all values of k. The distinction between the minimum
value of (k) and the minimum energy separation
Eegap is an important one for crystals in which k. k..
We will return to this when we discuss the optical prop-
erties of nonmetallic crystals in Section XV.

IV. OccuraNcy oF THE ELECTRONIC
QUANTUM STATES

In this section we will explain how the electrons are
distributed among the available quantum states under
equilibrium conditions.

The occupancy of each quantum state 3, k is strictly
limited by the Pauli Exclusion Principle. According to
this principle, no more than two electrons can occupy a
given quantum state 3, k. I[ two electrons occupy the
same quantum state, they must have oppositely-
oriented spins. The state of an electron is really not
fully specified if all we know about the electron is which
quantum state 3, k it occupies. In addition to this infor-
mation, we must be given its spin orientation, which
can assume one of two possible values. For simplicity,
we will sometimes assume that the specification of the
clectron spin orientation is included in the index g.
Whenever we refer to an electronic quantum state by
the indices B8 and k, we will usually have in mind the
state associated with either spin orientation, the par-
ticular orientation being given by 3. In certain contexts,
we will use the symbols 8 and k to refer to the pair of
quantum states having 8 and k in common. On such
occasions, we will generally speak of the quantum state
B, k as a double quantum state; 7.e., a quantum state
capable of double occupancy by two electrons having
oppositely-oriented spins. It should be noted that the
two clectrons occupying the (double) quantum state
3, k have the same energy, Eg(k), and the same Bloch
function Y(k, r).

The distribution of the electrons among the various
quantum states under conditions of thermal equilibrium
is governed by the Fermi-Dirac statistics. These statis-
tics take into account the restriction on the occupancy
of states imposed by the Pauli Exclusion Principle. Ac-
cording to the Fermi-Dirac statistics, the probability
that a quantum state with energy E is occupied by an
¢lectron of either spin orientation is:

1
exp [(E — §)/kT] + 1

where ¢ is the so-called Fermi energy, T the absolute
temperature, and k£ Boltzmann's constant. [Although
we use the svmbol k& both for the Boltzmann constant
and the magnitude of the reduced wave vector k, there

fo(E, T) = (25)
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should be no confusion since the Boltzmann constant
always aprears together with 7 in the combination £7.]
fo(E, T) is called the Fermi distribution function.
At the absolute zero of temperature, the Fermi dis-
tribution function has the following characteristics:

1 E<t¢
folE, 0) = {3} E =t (26)
0 E>¢

There is a sharp cutoff in the distribution of the elec-
trons among the available states. The states tor which
E <& are fully occupied, and the states for which E> £
are totally unoccupied.

At any finite temperature, the cutoff in the state
occupancy becomes somewhat diffuse. It is easily
shown that the Fermi distribution function is appreci-
ably different from either unity or zero only in a range
of energy of the order of BT centered at the Fermi en-
ergy level £. The Fermi function is equal to § at the
Fermi energy level for all values of the temperature.

The following approximations are sometimes useful:

fo(E, T) = exp |~(E — §)/kT); E —¢> 0;
E—Et>EkT. (27
1= fo(E, T) = exp[—(¢ — E)/kT); t—E>0;
¢t — E> RT. (28)

The fraction of the available states which will be occu-
pied at temperature T in the range E, E4+dE, where E
lies considerably above £, is given by (27). The fraction
of the available states which will be unoccupied at tem-
perature T in the range E, E4dE, where E lies consider-
ably below £, is given by (28). {The distribution of the
occupied and unoccupied states is worked out for a spe-
cial case in the appendix.]

In a nonmetallic crystal, 7.e., in a semiconductor or
an insulator, the Fermi energy lies in the forbidden
energy band separating the highest valence band from
the lowest conduction band. At the absolute zero of
temperature, all the core and valence band states will
be fully occupied (see below), and all the conduction
band states will be totally empty. In a fully occupied
band, there are no higher energy states within the band
into which an electron can jump. Since the electrons in
a fully occupied band cannot gain energy from an ap-
plied electric field, such electrons cannot contribute to
the electrical conductivity. The nonmetallic crystal
will behave like a perfect insulator at absolute zero tem-
perature because all of its electrons belong to fully oc-
cupied bands.

At finite temperatures, some electrons will be ther-
mally excited from states lving near the top of the highest
valence band to states lying near the bottom of the
lowest conduction band. The electrons in a partially
filled band can gain energy from an applied electric field
because they can jump into the unfilled states in the
band. Consequently, the electrons in the partially oc-
cupied conduction band and the electrons in the par-
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tially unoccupie’l valence band can contribute to the
electrical conductivity, and the nonmetallic crystal will
lose its insulating properties at finite temperatures.

The Fermi energy will normally lie near the center of
the forbidden band in a (perfect) nonmetallic crystal.
In the temperature range for which E,,,>>kT, the dis-
tribution of the occupied electron states in the conduc-
tion band is given by (27), and the distribution of the
unoccupied electron states in the valence band is given
by (28). When the electronic distribution can be de-
scribed by (27) and (28), the electrons are said to obey
the Maxwell-Boltzmann or the classical statistics. The
Fermi-Dirac statistics reduce to the classical statistics
whenever the exponential term in the denominator of
(25) is vastly different from unity. This condition has
been anticipated in (27) and (28).

In a metallic crystal, the Fermi energy lies in an al-
lowed energy band, rather than in a forbidden energy
band. This allowed band is called the (lowest) conduc-
tion band. Since the (lowest) conduction band is par-
tially filled, and since the electrons in a partially filled
band can conduct electricity, the metallic crystal will
conduct electricity at all values of the temperature, in-
cluding absolute zero. In practice, nonmetallic and
metallic crystals can be distinguished by the difference
in the temperature dependence of their electrical con-
ductivities over a wide temperature range.

Let us now explore the nature of fully occupied bands
in some detail. It will be recalled that an energy band
B is formed by the N* (double) quantum states asso-
ciated with the N* allowed values of k and with a par-
ticular band index 3. If each of the N? quantum states
is doubly occupied (by two electrons having oppositely
oriented spins), the band is said to be fully occupied.
According to this usage, a fully occupied band accom-
modates exactly 2N? electrons.

A necessary condition for a crystal to be nonmetallic
is that the number of electrons per unit cell be even.
Consider a cyclic crystal containing N® unit cells, and
containing Q electrons per unit cell. Such a crystal will
have QN? electrons in all. Since each energy band can
accommodate no more than 2.N3? electrons, it follows
that the QN3 electrons can occupy an integral number of
bands only if Qis even. At the absolute zero of tempera-
ture the Q/2 lowest bands will be fully occupied, and the
remaining bands totally unoccupied, provided Q is
even, and provided there is a finite energy separation
between the band 8=Q/2 and the band g=0Q/2+41.
But this is just the condition for the crystal to be non-
metallic.

The condition that Q be even is not a sufficient condi-
tion for the crystal to be nonmetallic. If Q is even, and
if the energy band 8=Q/2+41 touches the energy band
B=Q/2, there will be no finite energy separation be-
tween the highest occupied state and the lowest un-
occupied state at absolute zero temperature. In this
particular case, the crystal will be metallic, rather than
nonmetallic.
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If Q is odd, the crystal will necessarily be metallic
since an integral number of energy bands will not be
fully occupied at absolute zero temperature. In fact,
if Q is odd, one band—the (lowest) conduction band—
will be exactly half filled at the absolute zero of tem-
perature.

We now introduce the hole concept, one of the most
important concepts in the physics of nonmetallic crys-
tals. Consider a nonmetallic crystal at the absolute
zero of temperature. At this temperature, the core and
the valence band states will be fully occupied, and the
conduction band states will be totally empty. Let us
remove a single electron from the crystal. The state left
vacant by the removal of the electron is known as a
defect electron state or a hole state.

The vacant state is an available state into which an
electron in the band containing the vacant state can
jump. The existence of an available state into which an
electron can jump makes electrical conduction possible.
This type of conduction is knowi as hole conduction
since it involves a hole or a defect in an otherwise filled
band.

It can be shown that the behavior of all the remain-
ing electrons in the crystal is equivalent to the behavior
of a single positively charged particle known as the hole.
By suitable manipulation, the properties of a hole can
be deduced from a knowledge of the properties of the
missing electron to which it corresponds. This theme is
developed further in Section VI, where we show how the
velocity and the acceleration of a hole can be calculated.
It is interesting to note that a hole can be represented
by the wave function of the missing electron. In writing
down a wave equation for a hole, care must be taken to
give the hole a positive, rather than a negative charge.
\When the crystal is in its state of lowest energy, the
hole will occupy a state at the top of the highest valence
band; that is, there will be a vacant electronic state at
the top of the highest valence band.

Let us turn to another nonmetallic crystal at absolute
zero temperature. This time, we will inject an electron
into the crystal. Since all the valence and core states are
fully occupied, the electron must assume a conduction
band state. When the crystal is in its state of minimum
cnergy, the injected electron will occupy a state at the
hottom of the lowest conduction band. Such a state is
called an excess electron state. More generally, the
states occupied by the electrons in a nearly empty band
are called excess electron states. Similarly, the unoccu-
pied states in a ncarly filled band are called defect
electron states or holes states.

A hole owes its existence, at least its conceptual exist-
ence, to the fact that the electrons in a nonmetallic
crystal can be arranged into open and closed groups,
i.e., into partially and totally filled bands. If an open
group contains relatively few clectrons, the behavior of
these electrons can be treated in a straightforward
manner. The electrons are regarded as occupying excess
electron states, and are handled accordingly. On the
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other hand, if a group is a few electrons short of being a
closed group, the electrons in this group can be treated
more conveniently in terms of the defect electrons or
holes.

The hole concept, then, is a convenient means for
representing the electrons in a nearly closed group in
terms of the electrons which arc needed to close the
group: that is, the behavior of the electrons in a nearly
filled band can be treated in terms of the holes corre-
sponding to the electrons, which, if present, would com-
plete the flling of the band.

As we have already mentioned, the clectrons in a filled
band, i.e., a closed group, cannot contribute to the
clectrical conductivity. On the other hand, the elec-
trons in a partially filled band, i.e., an open group, can
contribute to the conductivity. In a nonmetallic crystal,
the electrons in the lowest conduction bands and those
in the highest valence bands are the only ones forming
open groups. The electrons belonging to the lower va-
lence bands and to the core bands generally form closed
groups. Thus, in many problems, the only states of in-
terest are those lying near the top of the highest valence
band or bands—where the holes reside—and those lying
near the bottom of the lowest conduction band or bands
—where the conduction or “free” electrons reside.

Since many of the dyvnamical attributes of electrons
and holes can be deduced directly from the energy band
structure, and since electrons and holes occupy states
near the extrema of energy bands, it is desirable to in-
vestigate the extrema of energy bands in some detail.
This is done in the next section.

V. STRUCTURE OF AN ENERGY BAND
NEAR ITs EXTREMA

In this section we will examine the structure of an
energy band having a number of extrema located at a
set of symmetrically equivalent points in the reduced
zone. We will be concerned chiefly with the structure
close to the extrema, which may be minima or maxima.
For the present, we will assume that the energy band
under consideration is nondegenerate at its extrema;
that is, the energy band does not touch any other band
or bands at its extrema. We will remove this restriction
toward the end of this section.

Since we will be dealing with a single energy band in
the discussion to follow, we will suppress the band index
B and write the band function as [£(k). As we have al-
ready mentioned, the function F(k) is differentiable at
those points in the reduced zone where it is nondegen-
erate. Since E(k) is assumed to have its extrema at a
set of points where it is nondegenerate, /5(k) can be ex-
panded as a Taylor series at each extremum. Because
the various extrema are symmetrically equivalent, it is
suff cient to treat a single extremum, say the one occur-
ring at k=k,. The Taylor series will not contain first
order terms because E(k) is an extremum at k= k,. We
will retain only the constant term and the second order
terms, and drop all higher order terms, because we are



Fig. 6—Two equi-energy contours irm the plane K.=0, for a band
having six extrema located at the midpoints of the 100 axes in
the reduced zone. The contours are shown in a portion of the
extended reciprocal space as well as in the reduced zone

interested only in the portion of the band lyving close to
k. IFor reasons which will become apparent, we write
the Tavlor series as follows:

E(K') = E(k — ky)
= E(ko) + (h2/872) 2. 2 (k'k]/m*), (29)

where 7, j=x, ¥, 2, and where:

1/m;* = Qu/ )2 [2EK")/ok/Ok] v o (30)

is the 77 component of a certain tensor which is known
as the effective mass tensor because its components
have the dimensions of a reciprocal mass. The effective
mass tensor measures the curvature of an energy band
at its point of definition. The physical significance of
the effective mass tensor will be considered in the next
section.

It is always possible to choose a coordinate system
in which the nondiagonal (7%5) components of the ef-
fective mass tensor vanish. The (nonvanishing) diag-
onal components in this coordinate system are known
as the principal components of the effective mass tensor
Denoting the coordinates of k' =k — ky in the new frame
of reference by the symbols k', k', and &/, and writing
the principal components as m,*, n*, and m.*, we may

(k')?
+ -—*—] (31)

m.

replace (29) by the diagonal expression:

(ks')?

*

) (k) )?
(k') = E(ko) + —;[ +
&

m.* »y

Since the effective mass tensor measures the curvature
of the energy surface at its point of definition, the three
principal components are positive at an energy band
minimum, and negative at an energy band maximum.
[.et us now consider the nature of the constant energy

surfaces
E(k) = constant (32)

in the neighborhood of the extremum at k= ko. If the
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Fig. 7—Two equi-energy contours in the plane K.=0, for a band
having three extrema located at the midpoints of the square
face centers o the reduced zone. The contours are shown in a
portion of the extended reciprocal space as well as in the reduced
zone.

three principal components are all equal, the constant
energy surfaces will be spherical. When two components
are equal, and the third different, the constant energy
surfaces will be ellipsoids of revolution. If the three com-
ponents are all different, the constant energy surfaces
will be general ellipsoids.

The constant energy surfaces near the top or bottom
of an energy band having several equivalent extrema
will consist of a number of symmetrically equivalent
ellipsoids. For the purpose of illustration, consider an
energy band for a crystal having the translational peri-
odicity of a face-centered cubic lattice. For such a
crystal, the reducedl zone is the truncated octahedron
shown in Fig. 4. If the extrema occur along the 100 axes
or along the 111 axes with the zone, the constant energy
surfaces will consist of six or eight ellipsoids of revolu-
tion, respectively. If the extrema occur at the square
{ace centers or at the hexagonal face centers, the con-
stant energy surfaces will consist of three or four ellip-
soids of revolution, respectively. For other locations of
the multiple extrema, the constant energy surfaces will
consist of a certain number of (general) ellipsoids. If
the band has a single extremum, the extremum must
lie at the central zone point, and the constant energ)
surfaces near the extremum must be spheres.

In Figs. 6 and 7 we have shown the intersection of two
constant energy surfaces with the plane K.=0 in a
portion of the extended reciprocal space, as well as mn
the reduced zone. The heavy dots in these figures repre-
sent the loci of points belonging to the reciprocal lat-
tice [cf. Figs. 4 and 5]. We have arbitrarily drawn the
cllipsoids of revolution as prolate, rather than oblate.
A portion of the extended reciprocal space has been in-
cluded in these figures in order to dramatize the fact
that /(K) has the same symmetry properties as the
reciprocal lattice. [cf. (20) above.] Symmetry relations
(18) and (19 are also illustrated by these drawings
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Up to this point, we have assumed that the energy
band under consideration is nondegenerate at its ex-
trema. By making this assumption, we were able to
expand the band function as a Taylor series in the neigh-
borhood of each extremum. We now turn to a more
complicated case, namely, an energy band whose ex-
trema occur at points of degeneracy. In this case, the
band function cannot be differentiated at its extrema,
It can be shown that the constant energy surfaces near
each extremum must be warped surfaces, rather than
ellipsoidal surfaces. \Ve will give specific examples of
such warped surfaces when we come to the valence band
structure of silicon and germanium in a subsequent sec-
tion.

By way of summary, we have shown in Fig. 8 several
types of band structures. In Fig. 8(a), we show an
energy band having a single extremum at the central
point of the reduced zone. The band is assumed to be
nondegenerate at the central point. As we have already
indicated, the constant energy surfaces are spherical.

Fig. 8—Typical cqui-energy contours in the plane &, =0 for several
cases. In (a), the contour is a circle, in (b), the contours are
ellipses; in the remaining figures, the contours are warped.

We have drawn a circular equi-energy contour to repre-
sent this situation. In Fig. 8(b), we have an energy band
with+extrema occurring along the 24 [1, 3, 0) axes. Eight
of these lie in the plane £, =0. The band is again assumed
to be nondegenerate at the extrema. The constant en-
ergy surfaces near the extrema consist of 24 general
ellipsoids. We have drawn the elliptical equi-energy con-
tours lving in the plane k. =0 to represent this case.
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In Figs. 8(cy) and 8(c2), we show the warped contours
corresponding to two energy bands which come into
contact with each other at the central zone point. The
cqui-energy contours for the two highest valence bands
in silicon and germanium have the forms given by these
figures. In Figs. 8(d,), and 8(ds) we have drawn the
warped contours corresponding to two energy bands
which are degenerate at the square face centers of the
reduced zone. These two figures should bhe compared
with the elliptical contours shown in Fig. 7, which corre-
spond to a nondegenerate band.

V1. VELOCITY AND ACCELERATION OF
ELECTRONS AND HoLES

In this section, we show how the instantancous ve-
locity and the instantaneous acceleration of an electron
or a hole subjected to an applied force can be determined
directly from the band structure.

Afewintroductory remarksarein order. Under equilib-
rium conditions, the electrons in a crystal occupy quan-
tum states whose properties do not change with time.
Such quantum states art called stationary quantum
states. The eigensolutions of the crystal wave equation
(13) describe stationary quantum states. Under non-
cquilibrium conditions, which exist whenever the crystal
is subjected to an external force, the electrons in the
crystal occupy quantum states whose properties change
with time. Such quantum states are called nonstation-
ary quantum states. An electron in a nonstationary
state must be represented by a wave function appropri-
ate to such a state.

It is possible to construct a nonstationary state wave
function from the wave functions of the equilibrium
stationary states by superimposing a number of Bloch
functions with adjacent values of k, such that the super-
position forms a wave packet. Let us construct a wave
packet from the Bloch functions belonging to the energy
band B, and let the mean reduced wave vector of the
wave packet be denoted by k(1). We use the symbol
k(1) to indicate that the composition of the wave packet,
and hence the value of the mean reduced wave vector of
the packet, changes with time. It can be shown that the
time rate of change of k(t) is directly proportional to the
applied force. The actual relationship is:

k(1) = (2x/h)Fs[k(t)], (33)

where Fglk(t)] is the instantaneous value of the applied
force acting on the electron in the nonstationary state
B, k(t), i.e., on the electron represented by the wave
packet described above.

The instantaneous average velocity of an electron in
the nonstationary state 8, k(/) is given by:

valk(i)] = (2n/h) grads Ey[k(s)).
The electron velocity, which corresponds to the group
velocity of its wave packet, is given, then, by the gradi-

ent of the energy function Eg(k), evaluated at the posi-
tion of the mean reduced wave vector of the wave packet

(34)
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The instantancous average electric current produced
by the motion of the electron is:

is|k(t)] = — evs|k( ], (35)

where e is the magnitude of the electron charge.

The instantancous value of the force exerted on an
electron in the state 8, k(f) by an applied electric field
E() and an applied magnetic ficld 3e(¢) is:

Fslk(n] = — e[E) + (1/0)vs{ k()] X 30()],

where ¢ is the velocity of light. This expression is valid
for steady applied fields as well as for applied fields
which vary slowly in time. [If the periods of the applied
fields are long compared with the mean time between
successive collisions of the electron with the lattice, the
fields may be regarded as slowly varying; otherwise, the
fields are rapidly varying, and (36) does not apply.]

The instantaneous acceleration of an electron in the
state 3, k() is related to the applied force in the follow-
ing manuer:

valk(t)] = {(21r/11)'-’gradkgra(lkEg[k([)]} -Fslk(t)], (37)

where

(36)

(2w/h)? grad, grad, Eg|k(n) ] (38)

is the effective mass tensor appropriate to the instan-
taneous position of k(t) on the energy surface Fg(k).

An electron (or a hole) moving through a crystal will
collide with the lattice from time to time. [We will dis-
cuss such collisions in Section XII1.] Whenever a col-
lision occurs, the electron (or the hole) will either gain or
lose a certain amount of energy. As a result, the electron
(or the hole) will make a transition from one quantum
state to another. The various expressions given above
apply to an clectron during the time interval between
successive collisions. The analogous expressions for a
hole will be described shortly.

In the course of its wanderings through the crystal, a
conduction band electron will occupy a certain number
of quantum states in succession. These quantum states
will all lie near the bottom of the conduction band.
Therefore, a conduction electron will always have a
positive effective mass tensor; that is, the electron will
always occupy states for which the principal compon-
ents of eflective mass tensor are positive. [At the bottom
of a band, the curvature of the energv band is upward;
hence the effective mass tensor is positive in such a
region.]

We now turn to the case of a hole. A hole can be repre-
sented by the wave packet for the missing electron to
which it corresponds. For the purposes of thefollowing
discussion, we will assume that the missing electron
state is specified by the wave packet 8, k(f). Hence, the
hole may be denoted by 8, k(f). The instantancous aver-
age velocity of the hole 8, k(t) is given directly by (34)
above. The current due to the motion of the hole is
given by (35), with —e replaced by +e. The change in
sign is required because the hole carries a positive,
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rather than a negative charge. The force exerted by
applied electric and magnetic fields on the hole is given
by (36). with —e replaced by +e.

The effective mass tensor for the hole 8, k(t) is given
by the negative of (38). Since the state 3, k(f) lies near
the top of the valence band, the principal components
of the effective mass tensor (38) are negative. [The
curvature of the energy surface is downward at the top
of a band.] Hence, the effective mass tensor for a hole is
a positive quantity. The instantaneous average accelera-
tion of the hale is given by (37), provided two changes
of sign are made. The first change of sign occurs in the
force term [ —e replaced by e, and the second change
occurs in the effective mass term [the negative of (38)
is taken]. The double sign change is of course equivalent
to 1o sign change at all. We may summarize the case of
a hole by saving that a hole behaves like a positively
charge:d particle having a positive effective mass tensor.

The essential idea we wish to convey here is that the
instantaneous velocity and the instantancous accelera-
tion of an electron or a hole subjected to an applied field
can be determined directly from the energy band struc-
ture. These attributes are among the few attributes of
electrons and holes which can be obtained in the ab-
sence of any knowledge concerning the wave functions
for these particles. Most of the properties of clectrons
and holes cannot be determined unless the wave func-
tions for these particles are known.

VII. SPIN-ORBIT INTERACTION

In this section we describe spin-orbit interaction and
its effect on energy band structure of a crvstal [2].

The mteraction between the magnetic dipole field
associated with the spin of an electron and the magnetic
dipole field associated with the orbital motion of the
same electron is known as the spin-orbit interaction. The
energy associated with the spin-orbit interaction, or the
spin-orbit energy, is usually a small fraction of the total
energy of an electron. The gross features of the band
structure of a crystal can be obtained even if the spin-
orbit interaction is neglected since the spin-orbit energy
is so small. However, the fine details in an energy band
scheme cannot be derived without taking the spin-orbit
energy into account.

In Section 111, where we developed the theory of
energy bands, the spin-orbit interaction was omitted in
the interest of mathematical simplicity. Since the effect
of the spin-orbit interaction is actually quite small, it is
permissible to solve for the energy band structure with
the spin-orbit interaction neglected, and then to take
account of the spin-orbit interaction by perturbation
methods. When such a program is carried out, the en-
ergy level Egm*dificd(k) in the modified (improved)
energy band scheme can be related to the corresponding
energy level Egorisinal(k) in the original band scheme in
the following manner:

[ogmodified k) = Egoricinal(p) 4 AR (k), (39)
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Fig. 9—Schematic diagrams of the energy band structure of silicon.
The band scheme with the spin-orbit interaction neglected is
shown at the top, and the band scheme with the spin-orbit
interaction taken into account is shown at the bottom. The
conduction band edge occurs along the 100 axes, while the valence
band edge occurs at the central zone po'nt. The width of the for-
bidden band is 1.08 ev at room temperature. The spin-orbit
splitting (in the lower drawing) at the valence band edge is prob-
ably about 0.035 ev. In the interest of clarity, the spin-orbit
splitting is not shown to scale.

where AF (k) is the change in the energy level for the
quantum state 8, k due to the spin-orbit interaction.
The various expressions given previously for the veloc-
ity and acceleration of an electron, for the effective mass
tensor, ete., remain valid for the modified energy band
scheme.

In crystals having a center ol inversion, such as the
diamond-type crystals silicon and germanium, the num-
ber of energy bands does not change when the spin-
orbit interaction is taken into consideration. In such
crvstals, each quantum state 8, k can be occupied by no
more than two electrons, both in the original and in the
modified energy band scheme. This follows from the
Pauli Exclusion Principle. In the original band scheme,
two electrons must have oppositely oriented spins if
they occupy the same (double) quantum state 8, k. In
the modified band scheme, the situation is more com-
plicated, and we will not attempt to deseribe it,

If the state 8, k in the original band scheme is a non-
degenerate state, and if this state is well separated in
energy from the neighboring states having the same
value of k, the spin-orbit shift Afiz(k) [cf. (39)] will not
produce anv marked effect apart from the shift itsell.
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Fig. 10—Schematic diagrams of the energy band structure of ger-
manium. The spin-orbit splitting is omitted from the upper figure,
but included in the lower figure. The conduction band edge occurs
at the hexagonal face centers, while the valence band edge occurs
at the central zone point. The width of the forbidden band is
0.65 ev at room temperature. The spin-orbit splitting at the
valence band edge is approximately 0.28 ev. The lowest conduc-
tion band has three types of minima: four 111 minima (at the
band edge); one 000 minimum; and six 100 minima. The 000
minimum lies 0.1 ev (or slightly more) above the 111 minima:
the 100 minima lie 0.18 ev above the 111 minima.

On the other hand, consider two states 8, k and ', k
which are degenerate in the original band scheme; i.e.,
Fgorieinal (k) = Egoriginal(k) In  some cases, the shifts
AFs(k), AEs (k) will be equal, and again nothing re-
markable happens. However, il the shifts in the two
states due to the spin-orbit interaction are different,
the energy degeneracy will be resolved, and the two
states will be separated in energy in the modified band
scheme. The separation in energy produced by the
spin-orbit interaction is called the spin-orbit splitting.

[t can be shown that the detailed nature of the
energy band structure is strongly modified by the spin-
orbit interaction in a region where the spin-orbit inter-
action is responsible for the resolution of an energy
degeneracy. The detailed nature of the energy band
structure is usually modified only slightly in a region
where the spin-orbit interaction does not resolve an
energy degeneracy, and in a region where there is no
energy degeneracy to resolve.

To set the stage for the remaining sections, and to
illustrate the general nature of spin-orbit splitting, we
show in Figs. 9 and 10, above, our best estimates of the
energy band structures of silicon and germanium. These
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estimates are based partly on the available experimental
evidence [3], and partly on the theoretical calculations
perfornted by the author [4] and by others [5]. The
drawings are schematic, rather than exact.

What we have actually shown in Figs. 9 and 10 are
the energy profiles of the higher-lying valence bands and
the lower-lyving conduction bands along the 100 and 111
axes ol the reduced zone. The energy profiles for these
bands along the diagonals of the square and the hexag-
onal faces of the reduced zone are also shown. The
profiles marked “double™ represent the profiles of two
energy bands which are degenerate in the particular
directions shown.

For the convenience ot the reader, we have again
drawn the reduced zone in Fig. 11, with certain points
conspicuously marked.

Fig. 11—Reduced zone for silicon and germanium. The factor
(2x/a) has been omitted in labeling the various points in the
reduced zone.

The band schemes for silicon and germanium are dis-
played according to the original scheme (spin-orbit
interaction neglected), and also according to the modi-
fied scheme (spin-orbit interaction included), for the
purposes of comparison. The modified band schemes
correspond to reality; the original band schemes are
merely approximations to the true state of affairs.

The more interesting features of the band structures
of silicon and germanium, with the spin-orbit interac-
tion taken into account, will be considered in the next
three sections.

VL. BAND STRUCTURE OF SILICON AND GERMANIUM:
RECENT HISTORY

In this section, we will indicate some of the landmarks
in the recent research which has led to our present un-
derstanding of the energy band structure of silicon and
germanium, particularly the energyv band structure in
the neighborhood of the valence and the conduction
band edges.

A few definitions are in order: By a band edge we
will mean the position or positions in the reduced zone
at which an energy band function Eg(k) reaches its
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minimum or its maximum value or values. Suppose a
given energy band has an extremum at k=k, The
region of the energy band function associated with
values of k lving close to ky will be called the neighbor-
hood of the band edge at ka. If an energyv band is non-
degenerate at its extremum or extrema, the correspond-
ing band edge is defined by a single energy band, i.e,
by the energy band in question. A band edge is defined
by two energy bands if the two energy bands are de-
generate at their common extremum or extrema. The
terms valence and conduction band edges will alwavs re-
fer to the edges of the highest valence band and the
lowest conduction band.

The early work [6] on the electrical and the optical
properties of silicon and germanium was based on the
following model of the valence and the conduction
bands: (a) The valence and the conduction band edges
were both assumed to occur at the central point of the
reduced zone; (b) The valence and the conduction band
edges were each defined by a single energy band;: (¢)
The constant encrgy surfaces near the valence and the
conduction band edges were spherical in form.

This model —which we will call the simple model-
was adopted for two very good reasons. First, the model
offered decided mathematical advantages. Most of the
theoretical calculations associated with the electrical
and the optical properties could be carried out in a
relatively straightforward manner in terms of this sim-
ple model. Second, the intrinsic properties of silicon and
germanium were not known with suff.cient accuracy
to warrant the use of a more refined model. Up until
about five vears ago, the simple model proved adequate
for most purposes.

The situation began to change as soon as careful
measurements were performed on highly purified single
crystals of silicon and germanium. [t was found that
the results of such measurements did not agree in certain
respects with the theoretical predictions stemming from
the simple model. The large and anisotropic magueto-
resistance effect observed in germanium by Pearson
and Suhl [7], and the mobility anomalies obtained by
Pearson, Haynes, and Shocklev [8] for the same crystal
suggested that the simple model was not the correct
one. Shockley [9] believed that the experimental data
might be interpreted as evidence for the following mod-
el: The valence and the conduction band edges were
each defined, not by one spherical energy surface, but
by three warped energy surfaces which came into con-
tact with each other at the band edge. According to this
picture, the valence and the conduction band edges both
occurred at the central point of the reduced zone. Since
this three band model had many attractive features,
it was adopted in many circles.

An alternate possibility for the conduction band
structure was suggested by the work of Herman [10]
and Herman and Callaway [11]. Their theoretical calcu-
lations indicated that the conduction band edge in
diamond-tvpe crystals might not occur at the central
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zone point at all, but, rather, at a number of equivalent
poits away from the zone center. The most likely possi-
bility was a conduction band having six equivalent
minima located at six symmetrically equivalent points
Iving along the 100 axes of the reduced zone. Since the
caleulation for germanium [11] was based on rather
crude assumptions, the results were not very reliable.
However, this work pointed the way to a new type of
model, which, for convenience, we will call the one-
band, many-valley model.

[The qualifying term “one-band” is used to indicate
that each of the equivalent minima (or valleys) is de-
fined by a single energy band. In the case of a one-band
many-valley model—which is also known as a non-
degenerate, many-valley model—the constant energy
surfaces near each of the equivalent minima are ellip-
soidal in form. On the other hand, if two bands were to
come into contact with each other at the various posi-
tions in the reduced zone of the conduction band edge,
the structure would be called a two-band, many-valley
model, or a degenerate, many-valley model. Here, the
constant energy surfaces near each minimum would
consist of two families of warped surfaces.]

The work of Herman {10] and Herman and Callaway
[11] indicated that the three-band model was the cor-
rect one for the valence band structure of diamond,
silicon, and germanium.

Shortly after this work was reported, it occurred to
Shockley [12] that the method of cyclotron resonance
absorption might be used to determine the nature and
form of the valence and conduction band edges in a
semiconductor such as germanium. In a cyclotron
resonance experiment, a microwave electric field is
applied to a sample in a direction perpendicular to an
external magnetic field 3. Under the influence of the
magnetic field, the charge carriers (electrons or holes)
rotate in closed orbits. An absorption occurs when the
angular frequency of the microwave field, w, corre-
sponds to the rotation frequency or cyclotron frequency
of the charge carriers. Under these conditions, the
charge carriers pick up energy from the electric field.
The rotation frequency at resonance is given by:

e3C

W= —

(4
m*c

Three cases are to be distinguished. [For simplicity,
we will consider the resonance associated with the charge
carriers belonging to a single band.] (a) Spherical energy
surfaces (the simple model): In this case, there will be
only one absorption peak. The frequency at which this
peak occurs is mdependent of the orientation of the
crystal with respect to the applied field directions.
Here, the quantity m™* is a direct measure of the (scalar)
effective mass of the carriers. (b) Ellipsoidal energy
surfaces (one-band, many-valley model): lLet a, b, and
¢ be the direction cosines between the direction of the
applied magnetic field and the principal axes of a par-
ticular elliposid, and let m,*, m,*, and m.* be the prin-
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cipal components of the effective mass tensor for this

ellipsoid. Resonance due to carriers rotation associated

withthis ellipsoid occursat frequency w =eX/m*c, where:
mg*m o m ¥

1/2
m* = [ = = :| .
atm* 4+ bmp* 4+ *m *

For a general orientation of the crystal relative to the
applied field directions, there will be a different reson-
ance peak for the carriers in cach of the several ellip-
soids. The principal components of the effective mass
tensor, and the orientation of the various ellipsoids rela-
tive to the axes of the reduced zone, can be determined
by examining the behavior of the absorption spectrum
as the orientation of the crystal relative to the applied
field directions is changed. (¢) Warped energy surfaces
(three-band model; two-band, one- or many-vallev
model): In this case, no general relation between the
effective mass m™* appearing in (40) and the components
of the mass tensor can be stated. However, if an
analytical form involving certain arbitrary constants
can be assumed for the energy surfaces on the basis of
theoretical considerations, the values of these constants
can be determined by examining the absorption spec-
trum, particularly its dependence on the orientation of
the crystal in the resonant cavity,

A great deal of pertinent information bearing on the
structure of a band near a band edge can be deduced
by cvelotron resonance absorption measurements be-
cause the absorption frequencies are directly related to
the curvature of the energy band surface near the band
edge. [The effective mass tensor measures the curvature
of an energy band at its point of definition.]

The first successful cyclotron resonance measure-

(41

ments on germanium and silicon were performed by the
Berkeley and the Lincoln Laboratory groups [13]. The
results of these experiments indicated that the one-
band, manyv-valley model was the correct one for the
conduction bands of both germanium and silicon. In the
case of germanium, it was found that the equivalent
minima were located along the 111 axes of the reduced
zone, while in the case of silicon, the equivalent minima
were located along the 100 axes of the reduced zone.
IFurther details will be given in a subsequent section.
At about the same time that the evelotron resonance
work on germanium was being done, Meiboom and
Abeles [14] succeeded in establishing— by a theoretical
analysis of the magnetoresistance data of Pearson and
Suhl [7]—that the conduction band edge in germanium
occurred at a number of equivalent points lving along
the 111 axes. The Meiboom and Abeles result was in
substantial agreement with that obtained by the cyclo-
tron resonance absorption measurements, both as re-
gards the orientation of the ellipsoids relative to the
axes of the reduced zone, and the ratio of the longi-
tudinal and transverse effective mass components,
Subsequent magnetoresistance measurements on silicon
by Pearson and Herring [15] confirmedd cyclotron reso-
nance result for conduction band structure of silicon,
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The magnetoresistance effect is the change in the
electrical resistance due to the presence of a magnetic
field. The magnitude of the change is influenced by the
relative orientation of the crystal axes, the magnetic
field direction, and the direction of the electrical field
which is responsible for the current flow. The aniso-
tropy of the magnetoresistance effect is closely related
to the anisotropy of the energy band containing the
charge carriers. Under favorable conditions, it is possible
to infer the nature of the anisotropy of the energy band
from the nature of the anisotropy of the magnetoresist-
ance effect. However, the interpretation of magneto-
resistance data is not as clear-cut as is that of cyclotron
resonance data.

Another experiment which is capable of shedding some
light on the structure of energy bands is the piczo-
resistance effect. This is the change in the electrical
resistance due to a shearing stress, i.e., a nonhvdro-
static stress. The piezoresistance effect in silicon and
germanium was studied by Smith [16]. Smith inter-
preted his data for silicon as evidence for a conduction
band structure involving 100 ellipsoids. (He was not
able to make unique predictions for the remaining cases.
However, in the light of what we now know about the
band structures of silicon and germanium, all of Smith’s
results appear quite reasonable.)

We will now leave the conduction band structure
and turn to the valence band structure.

The validity of the three-band model for the valence
structure of germanium was first brought into serious
question by the infrared absorption measurements
performed by Briggs and letcher [17], and by Kaiser,
Collins, and Fan [18]. These investigators found three
temperature dependent peaks in the absorption spec-
trum which they attributed to inter-valence band hole
transitions. However, this fine structure in the absorp-
tion spectrum could not be reconciled with the three-
band model. The nature of the valence structure of
germanium remained somewhat of a mystery until the
cyclotron resonance absorption measurements by the
Berkeley and the Lincoln Laboratory groups [13] pro-
vided the essential clue.

The cyclotron resonance absorption work [13] indi-
cated that the valence band edge in germanium occurred
at the central point of the reduced zone, and that it was
defined by two bands which came into contact with
cach other at the central zone point. This result implied
that the three-band model was a correct first approxi-
mation, but that an essential ingredient had been left
out of the theory of energy bands in its then current
state, namely, the effect of the spin-orbit interaction.

It was soon established by Dresselhaus, Kip, and Kit-
tel [19], and by Elliott [20], that when the spin-orbit
interaction is properly taken into account, the three
top-most valence bands in germanium break up into
two higher-lying bands, and one lower-lying band, in
the neighborhood of the central zone point. Thus, the
valence band edge is actually defined by two bands,
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rather than three. The two-and-one band model pro-
vided a natural explanation for the anomalous results
obtained by the infrared absorption measurements
[17, 18]. Kahn [21] was able to fit the experimental data
of Briggs and Fletcher very nicely to a theory he de-
veloped based on the two-and-one band model.

Cyclotron resonance absorption measurements on
silicon [13] indicated that the two-and-one band model
also applied to the valence structure of this crystal.
Although this result has not been definitely confirmed
by other types of measurements, the validity of this
result does not seem open to question.

To summarize: The conduction bands of silicon and
germanium are described by the one-band, many-
valley model, while the valence structures of these
crystals are described by the two-and-one band model.

IX. BAND STRUCTURE NEAR THE VALENCE BaNp
EDGE IN SILICON AND GERMANIUM

As we have already noted in the previous section, the
band structure near the valence band edge in silicon and
germanium was determined by cyclotron resonance
absorption measurements. The experimental evidence
indicates that the valence band edge in both crystals
occurs at the central point of the reduced zone, and
further, that the valence band edge is defined by two
bands which come into contact with each other at the
central zone point. In the neighborhood of the band
edge, the k-dependence of the energy surfaces for these
two bands is given by the following expression:

In*
wim

+ VE% 4+ CHkER + k2R + BRD)), (42)

E(k) = —

[ A&

where 4, B, and C are constants, and where k., k,,
and k; are the cartesian coordinates of the reduced wave
vector k. The magnitude of k is denoted by k. In writ-
ing down this expression, we have placed the zero
of energy at the valence band edge.

The negative and positive roots correspond to the
highest and to the second highest valence bands, re-
spectively. We will refer to the former as 11, and to the
latter as V2. The experimental values for 4, B, and C
are as follows:

Silicon [22]: A= 4.1 B=1.4 C= 3.7
Germanium [22]: 4=13.0 B=8.7 C=11.4.
The form of (42) was suggested by the work of Dressel-
haus, Kip, and Kittel [19], and of Elliott [20], on the
theory of spin-orbit splitting in diamond-type crystals.

In the region of the valence band edge, the constant
energy surfaces for V1 and V2 are warped surfaces.
The warped surfaces for V1 are anisotropic, i.e., non-
spherical, to an appreciable extent. The warped sur-
faces for V2 are nearly spherical; that is, their aniso-
tropy is quite small. These remarks apply both to silicon

and to germaninm.
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In those applications where mathematical simplicity
is of the utmost importance, it is desirable to neglect
the warping and treat the surfaces as though they were
spherical. The warped surfaces can be approximated
by spherical surfaces having the same average curva-
ture by writing:

12

(43

E(k) = — [4 £ VBT +C?%6)k

Tim

The plus and minus signs refer to V2 and V1, respective-
Iv. Use of this spherical approximation introduces a
negligible error in the case of V2, but a significant error
in the case of 171,

Since the constant energy surfaces for V1 and 172
are warped, there will be a spread in the effective masses
for the holes occupying these two valence bands. The
spread in the effective mass values is appreciable for
the holes in 1’1, but quite small for the holes in 172,
The spherical approximation given above can be used
to determine average values [or the effective masses
of the holes in V1 and V2. The results are as follows:
Silicon:

(m*y1)=0.49 m {(m*yy)=0.16 m Ratio=3.1

Germanium:

(m*v)=0.28 m (m*e,)=0.044 m Ratio=6.4

A third valence band, 173, is separated from I't and
1’2 by the effect of the spin-orbit interaction. The maxi-
mum of V3 lies slightly below the common maximum
of 11 and V2 at the central point of the reduced zone.
Denoting the magnitude ot the spin-orbit splitting at
this point by the svmbol [, we may describe the k-
dependence of the energy surfaces for 1’3 mear the band
edge of 173 by the following expression [19, 20]:

E(k) = — E, — (1%/8x*m).1 k2% (+h

The constant energy surfaces for 1’3 are strictly spheri-
cal near the band edge. The effective masses for the
holes in 173 in silicon and germanium are readily deter-
mined; they are:

Silicon: my3*=0.24 m.  Germanium: n*=0.077 m.

The best current estimates for f, are [21]:

Silicon: E,=0.035 ¢v; Germanium: E,n=0.28 ev.

The most remarkable feature ol the valence band
structure of silicon and germanium is the presence of
three valence bands near the valence band edge. This
means that there are three classes ol holes, correspond-
ing to unoccupied states in the three valence bands
V1, V2, and V3. The holes in each class have different
dynamical characteristics. FFor example, the effective
masses for the three types of holes are different. There-
fore, the holes in V1, V2, and V3 will contribute to the
clectrical conductivity and to other electronic trans-
port processes in different ways [{or a further discussion,
see references to Section XIV}].

PROCEEDINGS OF THE [RE

December

What are the relative hole populations in the three
valence bands? At temperatures for which kTKE,,
[E. is the spin-orbit splitting at the central zone point|,
the number of holes in V3 will be negligihle compared
with the number of holes n either 1’1 or V2. There
will be an appreciable hole population in V3 only when
kT 1s of the order of or greater than £,,. At room tem-
perature, where 27 =0.0235 ev, there will be an apprecia-
ble number of V3 holes in silicon, but virtually no 1’3
holes in germanium. In the case of silicon, all three
types of holes will be involved in electrical conduction
at normal temperatures. In germanium, only two types
of holes, those in 1’1 and 172, will contribute to the
electrical conductivity at normal temperatures.

X. Baxp StructurRE NEAR THE CONDUCTION
BAND EDGE IN SILICON AND GERMANIUM

The conduction band edge occurs along the 100 axes
of the reduced zone in silicon, and along the 111 axes in
germanium. The constant energy surfaces are prolate
ellipsoids of revolution near each conduction band mini-
mum in both crystals. The longitudinal and transverse
effective mass components, m* and m.*, for the elec-
trons in silicon and germanium have the following
values at 4°K, the temperature at which cyclotron res-
onance experiments are performed:

Silicon (22]:

m*=0.98 m m*=0.19 m m*/m*= 5.2;

Germanium [22]:

m*=1.5Tm m*=0.082 m m*/m*=19.0.

Here, as elsewhere in this paper, the mass of an electron
in free space is represented by the symbol m. Since the
energy band structure varies slightly with temperature.
the effective mass components are actually temperature
dependent quantities. The room temperature values for
m* and m* will be somewhat different from the values
quoted above. It is possible to obtain values for the ef-
fective mass ratio m,*/m* over a wide temperature
range from magnetoresistance measurements [14, 15].
However, the values obtained in this manner are not as
accurate as those obtained by cyclotron resonance ex-
periments.

Cyclotron resonance and magnetoresistance experi-
ments do not provide information bearing on the exact
location of the conduction band minima in the reduced
zone; these experiments merely indicate along which
axes of the reduced zone the minima must lie. In order
to determine the exact location ol the minima along the
appropriate axes of the reduced zone, it is necessary to
turn to other types of measurements.

In the case of silicon, there are two lines of experi-
mental evidence [23, 24] which suggest that the mimima
occur along the 100 axes within the zone, rather than
at the square tace centers, 1.e., at the intersection ot the
100 axes with the zone boundaries. [Theoretical con-
siderations support this view.] Kohn's analysis [23] indi-

cates that the minima lie between } and # of the way
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from the zone center to zone boundaries; that of Mac-
farlane and Roberts [24] suggests that the conduction
band minima lie roughly 7/9 of the way from the cen-
tral zone point 1o the square face centers. Therefore, it
appears that there are six equivalent minima, rather
than three, as would be the case if the minima were to
occur at the square face centers.

In the case of germanium, the experimental evidence
is conflicting. The work of Enz [25] and Conwell [26]
suggests that the minima are more likely to occur at the
hexagonal face centers than within the reduced zone
along the 111 axes. [Our own work [4] supports this
view.] On the other hand, the analysis of Macfarlane
and Roberts [27] indicates that the conduction band
minima lic roughly 2 of the way from the central zone
point to the hexagonal face centers. Since we favor the
former alternative, we have placed the conduction band
edge in germanium at the hexagonal face centers in
Ifig. 10. 11 this is correct, as we believe it is, the conduc-
tion band edge occurs at four equivalent points, rather
than eight. In other words, there are four minima,
rather than eight, at the conduction band edge.

The width of the forbidden band, Fg,,. can be deter-
mined by several methods [28]. One of the most common
involves a measurement of the change in the electrical
conductivity with temperature. The conductivity is
proportional to the number of electrons in the conduc-
tion band and holes in the valence bands, and the num-
ber of carriers (electrons and holes) in turn depends on
the ratio of the width of the forbidden band to the tem-
perature [cf. Appendix]. llence, the width of the for-
bidden band can be obtained by studying the temper-
ature dependence of the electrical conductivity.

Another common method for determining /g, is to
measure the spectral distribution of the optical absorp-
tion. The photon energy at the onset of absorption is a
measure of the band gap. It is generally found that the
values for [ig, determined by electrical conductivity
and optical absorption measurements are in substantial
agreement. Since the band structure changes with tem-
perature, the width of the forbidden band is a temper-
ature-dependent quantity. [The change in the band
structure with temperature is due to the thermal expan-
sion of the lattice.] Typical results for Eg, at room
temperature are as follows:

Silicon [24]:
Faan=1.08 ev.

Germanium [27]:
Egun,=0.65 ev.

According to our best estimates, and to the available
experimental evidence [29, 30], the conduction band in
silicon approaches the valence band closely only in the
neighborhood of the 100 minima. In the case of ger-
manium, the conduction band appears to have three
different types of minima; all three types of minima are
not far removed from the valence band maximum on an
energy scale. Optical measurements [29-31] suggest
that the conduction band has a minimum at the central
point of the reduced zone, and that this minimum lies

Herman: Inergy Band Structure of Silicon and Germanium

1721

0.1 ev (or slightly more) above the 111 minima-—which
detine the true conduction band edge. Our interpreta-
tion {32] of the observed variation [33] of the optical
absorption edge with composition in germanium-silicon
alloys [cf. Section XI] leads us to postulate the existence
of six minima lyving along the 100 axes of the reduced
zone. We estimate the energy separation between the six
100 minima and the (four) lower-lying 111 minima to be
about 0.18 ev. The 111 minima, the 000 minimum, and
the 100 minima are all shown in Fig. 10. Thus, the con-
duction band in germanium approaches the valence
band closely at points in the reduced zone other than
the points at which the conduction band edge occurs.

The [ree, i.e., the conduction band electrons in silicon
will occupy states near the six 100 conduction band
minima over the entire temperature range from abso-
lute zero to the melting point. At low and moderate
temperatures, the vast majority of the free electrons in
germanium will occupy states near the four 111 con-
duction band minima. At elevated temperatures, a
small fraction of the electrons will occupy states near
the 000 minimum, and a still smaller {raction will oc-
cupy states near the six 100 minima. The clectrons in
different types of minima will have different effective
masses and hence different dynamical characteristics.
However, the electrons in the 111 minima will exert the
dominating influence over such processes as the elec-
trical conductivity over the entire temperature range,
by reason of their superior numbers.

XI. BAND STRUCTURE OF GERMANIUM-
SILICON ALLOYS

Since silicon and germanium are both diamond-type
crystals, and since these two crystals are formed from
elements occupying adjacent positions in column IV of
the periodic table, one should expect that the energy
band structures of silicon and germanium are related to
each other in some manner. Some insight into this re-
lationship can be gained by examining the solid sub-
stitutional alloys of germanium and silicon over a range
of composition starting with pure germanium and ex-
tending to pure silicon. In a germanium-silicon solid
substitutional alloy, the germanium and silicon atoms
are arranged at random at the lattice sites of a diamond-
type lattice. Christian [34] has succeeded in growing
single crystals of germanium-silicon alloys of various
compositions in the germanium-rich and silicon-rich
portions of the composition range.

Because an alloy is not a perfect crystal, but rather
disordered crystal [cf. Section I}, it does not have an
energy band structure in the strict sense. However, one
can speak of the energy band structure for an alloy in
loose sense. The electronic energy spectrum of an alloy
[35] contains a number of energy intervals in which there
is a high density of allowed states; these intervals may
be called allowed bands. The energy spectrum for an
alloy also contains a number of energy intervals in which
there is a low density of allowed states: these are essen-
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tially forbidden bands. \While the transition from an
allowed band to an adjacent forbidden band is sharp in a
perfect crystal, the transition is rather gradual in an
alloy. One may visualize the electronic energy spectrum
of an alloy as consisting of a number of allowed bands
[regions of high state densities] having small tails
[regions of low state densities] which extend into the
forbidden bands [regions of negligibly low state densi-
ties).

Since the lattice constants of perfect silicon and ger-
manium crystals differ by only a few per cent, and since
germanium and silicon atoms have the same valency,
it is likely that the tails in the energy spectrum of a
germanium-silicon alloy represent a minor rather than
a major feature of the energy spectrum. In the following
discussion, we will treat the germanium-silicon alloys
as though these alloys have energy spectra (energy band
structures) which are very similar to the energy spectra
of perfect crystals. We will assume that the optical
gap—the photon energy at the onset of optical absorp-
tion due to the excitation of electrons across the for-
bidden band—is a measure of the width of the forbidden
band.

The author has proposed a theory of the energy band
structure of germanium-silicon alloys in order to explain
the observed variation of the optical gap of such alloys
with composition, The experimental results are as fol-
lows [33]: In the region 0 to 15 mol per cent silicon, the
optical gap is found to increase linearly with composi-
tion. Between 15 and 100 mol per cent silicon, the varia-
tion of the optical gap with composition is nearly linear,
but the slope of the optical gap vs composition curve in
this region is roughly one half as large as the slope in the
former region. Further, there is a sharp break in the op-
tical gap vs composition curve at 15 mol per cent silicon.

The explanation put forward by the author [32] runs
as follows: As silicon is added to germanium in the range
0 to 15 mol per cent silicon, the lowest conduction band
moves away from the highest valence band. However,
the 111 minima in the conduction band move away from
the valence band at a more rapid rate than do the 100
minima. In the range just mentioned, the 111 minima
lie below the 100 minima, and the variation of the op-
tical gap with composition is determined by the rate at
which the 111 minima move away from the valence
band edge.

At 15 mol per cent silicon, the 111 and the 100 minima
coincide on an energy scale. Between 15 and 100 mol
per cent silicon, the 111 minima lie above the 100
minima, and the variation of the optical gap with com-
position is determined by the rate at which the 100
minima move away from the valence band edge. Since
the 111 minima move more rapidly than the 100 minima,
the slope of the optical gap vs composition curve is
larger in the former range than in the latter.

The 000 conduction band minimum moves away from
the valence band edge at a more rapid rate than either
the 111 or the 100 minima. Consequently, the 000 mini-
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mum does not play a role in determining the optical gap
over the entire range of composition from pure germa-
nium to puresilicon. The valence band structure changes
continuously over the composition range; the valence
band edge remains at the central point of the reduced
zone for all compositions,

Magnetoresistance measurements on germanium-
silicon alloys have been performed by Glicksman [36] in
order to test the validity of the theory described above.
Glicksman'’s results tend to support the theory. Cyclo-
tron resonance absorption measurements on a few sam-
ples of germanium-rich and silicon-rich alloys have been
reported by the Berkelev group [37]. The cyclotron
resonance results are consistent with our theory.

The fact that a theory of germanium-silicon alloys
could be proposed solely on the basis of one piece of ex-
perimental evidence—the variation of the optical gap
with composition—suggests that similar theories can
be developed to explain the generic relationships which
must exist between the energy band structures of similar
or related crystals. The author [38] has taken a first step
in the direction of linking the energy band structures of
diamond-type crystals on the one hand with those of
certain zinc-blende-type crystals on the other.

NI11. LATTICE VIBRATIONS AND PHONONS

In this section we will make a briet departure from
the theory of electronic energy bands, and discuss the
theory of lattice vibrations. We will describe the gen-
eral nature of lattice vibrations, and the manner in
which the normal modes of vibration can be cataloged.
It will be seen that the lattice vibrational spectrum has
many features in common with the electronic energy
band spectrum. The phonon concept will be considered
briefly at the end of this section. The information to be
presented below will find an immediate application in
the next section, where we treat the collisions between
electrons or holes and phonons.

The nuclei in a crystal can be set into oscillation about
their equilibrium positions by the application of heat,
by optical excitation, and by other means. Since the
motions of the various nuclei are coupled together, a
nuclear vibration will generally involve all the nuclei in
the crystal. Any vibration of the nuclear assembly is
called a lattice vibration because the nuclei in a crystal
are arranged in the form of a lattice.

Any lattice vibration can be resolved into a certain
number of normal modes of vibration, just as any peri-
odic function can be analyzed into its harmonic com-
ponents. Each normal mode describes a possible type
of vibration. The total number of normal modes of vi-
bration is equal to the total number of vibrational de-
grees of freedom of the nuclei in the crystal. Consider a
cyclic erystal containing N3 unit cells, with 4 nuclei per
unit cell. Since each nucleus has 3 vibrational degrees of
freedom, and there are A N? nuclei in the cyclic crystal,
there must be 34 N?® vibrational degrees of freedom in
all; hence 34 N* normal modes of vibration.
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Each normal mode of vibration is essentially an elastic
wave. As such, it can be classified according to its fre-
quency, its wavelength, and its direction of propagation.
In special cases, it can be classified according to its di-
rection of polarization as well. [If all the nuclei in the
crystal vibrate in the same direction, this direction is
the direction of polarization; if different nuaclei oscillate
in different directions, a polarization direction cannot be
assigned.|

Each normal mode can be characterized by a reduced
wave vector q. The wavelength, X, of a normal mode is
given by the expression: A=2m/g, where ¢ is the mag-
nitude of q. The direction of g defines the direction of
propagation of the mode. The reduced wave vector g
has the same geometrical properties as the reduced wave
vector k employed previously in describing the elec-
tronic quantum states. Thus, the reduced wave vector g
is restricted to a sct of N* allowed values. The allowed
values of g are uniformly distributed in the reduced
zone.

We will denote the angular frequency of a normal
mode by the symbol w,(q), where p is an integer ranging
from 1 to 34. [4 is the number of nuclei in the unit cell.]
IFor each choice of g, the subscript u labels the angular
frequencies according to the following scheme:

0= w(qg) < wlq)---

Since there are N? choices of g, and 34 choices for u, the
34 N3 normal modes are fully accounted for.

It can be shown that w,(q), regarded as a function of
g, is a continuous function of q throughout the reduced
zone, for each choice of u. The N® normal modes asso-
ciated with each index u are said to form a branch of the
vibrational spectrum.

The long wavelength modes belonging to the three
lowest branches of the vibrational spectrum of any
crystal correspond to sound waves. For this reason,
these three branches are called the acoustical branches.
[t can be shown that:

< wzi(q). (43)

w,(q) >0 as ¢—0 for u =1, 2, 3. (46)

In the region of very small ¢ (very long wavelength),
w,(q) is directly proportional to ¢ for cach direction of
propagation. Hence the phase velocity is a constant for
the long wavelength modes of each acoustical branch,
for a given direction of propagation. This is a well known
characteristic of sound waves.

Since sound waves can generally be classified as either
longitudinal or transverse, we can further classify the
acoustical branches as follows: The branch containing
the longitudinal sound waves is called the longitudinal
acoustical (ILA) branch; the other two are known as the
transverse acoustical (TA) branches.

If a crystal has only one nucleus per unit cell, there
will be only three branches in its vibrational spectrum,
nan-ely, the three acoustical branches. However, if
there is more than one nucleus per unit cell, there will be
additional branches. These additional branches are
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called the optical branches. [In polar crystals, which
contain two nuclei per unit cell, the modes in the addi-
tional branches can be excited optically; hence the desig-
nation “optical branches.”] In a crystal having 4 nuclei
per unit cell, there will be 34 — 3 optical branches.

If we examine the function w,(q) for any optical
branch, we find that as ¢ approaches zero, w,(q) ap-
proaches a finite value rather than zero, as was the case
for the acoustical branches.

For each mode belonging to the long wavelength
region of an acoustical branch, all the nuclei in each
unit cell vibrate in the same direction. For each mode
belonging to the long wavelength region of an optical
branch, the nuclei in each unit cell generally vibrate in
different directions. This is an important distinguishing
feature of acoustical and optical branches.

Since diamond-type crystals have two nuclei per unit
cell, the vibrational spectrum for such crystals contains
three acoustical branches and three optical branches.
The two nuclei in each unit cell vibrate in opposite di-
rections for any mode belonging to the long wavelength
region of any optical branch. If the common direction of
vibration is parallel (perpendicular) to the direction of
propagation, the mode is termed a longitudinal (trans-
verse) mode. The optical branch containing the longi-
tudinal modes is called the longitudinal optical (L.O)

branch; the other two are called the transverse optical
(TO) branches.
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Fig. 12—Lattice vibrational spectrum for germanium, based on the
calculations by Hsieh. The transverse branches are dexenerate
along the 100 and the 111 axes, and are non-degenerate along the
110 axis. The symbols TA, LA, LO, and TO refer to the transverse
acoustical, longitudinal acoustical, longitudinal optical, and
transverse optical branches, respectively.

The lattice vibrational spectra for silicon and ger-
manium have been calculated by Hsieh [39] on the basis
of an approximational method developed by Born [40]
and later elaborated by Smith [41]. The lattice vibra-
tional spectrum for germanium, as given by Hsien's work
(cf. Table I of reference [39]), is shown in Fig. 12 above.
We have plotted w,(g) vs q for q lying along the 100, the
110, and the 111 axes of the reduced zone. The six
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branches are labeled in accordance with the notation
described above: LA stands for the longitudinal acous-
tical branch, etc. The transverse branches are degen-
crate along the 100 and the 111 axes, but not along the
110 axis. The vibrational spectra for silicon and ger-
manium are very similar, at least so far as form is con-
cerned. A good picture of the vibrational spectrum for
silicon can be obtained from Fig. 12 by doubling the
energy scale. Since the work of Hsieh is based on a num-
ber of approximations, the results should be regarded as
approximate, rather than exact.

We now return to the general theory. It can be shown
that the vibrational energy of each normal mode of vi-
bration is quantized. That is, the vibrational energy of
a mode can assume any one of a certain set of discrete
values, and no others. The allowed values of the vibra-
tional energy of a normal mode are:

n+ 1/

where n is a positive integer or zero, and where v is the
frequency of the mode. The state of excitation of the
normal mode is specified by the quantum number #n.

When a crystal is in thermal equilibrium, the total
vibrational energy of the lattice is distributed in a cer-
tain manner among the various normal modes. It can
be shown that, under conditions of thermal equilibrium,
the average value of n, (), of a normal maode having
frequency v is given by Planck’s law:

1

exp (w/kT) — 1

(47)

(n) =

(48)

The average vibrational energy (/2) of the mode is given
by:

(E) = [(n) + §)hw.

The total vibrational energy of the lattice can be ob-
tained by summing (£) over all the normal modes.

At the absolute zero of temperature, (n) =0 for all the
normal modes. At very low temperatures, the only nor-
mal modes which are excited to any appreciable extent
are those having very low frequencies. These modes are
of course the long wavelength acoustical modes. At
moderate temperatures, all the acoustical modes become
excited. The optical modes do not become excited to any

(49)

significant extent until the temperature reaches rela-
tively high values.

The vibrational amplitude associated with a normal
mode is directly proportional to the square root of the
vibrational energy of the mode. As the temperature is
-aised, the vibrational amplitude of each normal mode
increases. It follows that the nuclei will oscillate more
and more violently about their equilibrium positions as
the temperature is raised. However, the nuclear dis-
placements will generally be quite small compared with
an inter-nuclear spacing, over the entire temperature
range from absolute zero to the melting point.

It i1s convenient to describe the state of excitation of
the various normal modes in terms of the phonon con-
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cept. A phonon represents a unit quantum excitation of
a normal mode of vibration. The state of excitation of a
given normal mode is given by the quantum number #,
which is a measure of the number of phonons contained
in the mode. If a normal mode is excited by a unit
amount, a phonon is created; if a normal mode is de-
excited by a unit amount, a phonon is destroyed. It
should be noted that a phonon is not a lattice vibration
as such, but rather a unit quantum excitation of some
normal mode of vibration.

To sum up: The possible vibrations of the nuclei in a
crystal are given by the normal modes of vibration. The
normal mode frequencies form a spectrum, the lattice
vibrational spectrum. The energy content of each nor-
mal mode is quantized, and the state of excitation of a
given normal mode is given by the number of phonons
(n) contained in the mode. The distribution of phonons,
and the distribution of vibrational energy, among the
various normal modes, under conditions of thermal
equilibrium, are given by the functions (42) and (43),
respectively. The vibrational amplitudes of the nuclei
in a crystal increase with increasing temperature.

XIII. CoLListoNns BETWEEN ELECTRONS OR
HoLES AND PHONONS

In the earlier sections, we were concerned with the
nature of the available electronic quantum states, and
with the manner in which the electrons are distributed
among these quantum states under equilibrium condi-
tions. In Section VI, we considered the behavior of elec-
trons and holes under nonequilibrium conditions. We
showed how the instantaneous velocities and accelera-
tions of electrons and holes, between successive collisions
with the lattice, can be determined from a knowledge
of the energy band structure. In the previous section, we
treated the vibrational quantum states of the lattice
vibrations. In the present section, we will tie some loose
ends together, and consider the collisions between elec-
trons or holes and the lattice. We will explain how an
electron or a hole can be forced from one quantum state
to another by sutfering a collision with the lattice. In
order to avoid duplication, we will only treat electron-
lattice collisions. The remarks we are about to make
concerning such collisions apply to hole-lattice collisions
as well.

Whenever a collision between an electron and the
lattice occurs, energy will be transferred from the elec-
tron to the lattice, or vice versa. If the lattice gains
(loses) energy, one of its normal modes may be excited
(de-excited) by a unit amount. While other mechanisms
of energy transfer exist, the one just mentioned is by far
the most important. Therelore, we will ignore the others,
and confine ourselves to the collision process involving
the unit excitation or de-excitation of some normal
mode.

Consider an electron initially in the state 8, k. Let us
assume that the electron interacts with the normal
mode v, q, and that as a result of the collision, the elec-
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tron makes a transition to some state 3/, k' which was
initially unoccupied. In any collision, cnergy and mo-
mentum must be conserved. In quantum mechanics,
these conservation requirements limit the possible tran-
sitions between states. The rules governing possible
transitions are called selection rules. The momentum
conservation rule takes the form:

kK =k+q+h,

where h is a reciprocal lattice vector. This is a mo-
mentum conservation rule because the product of any
quantity in (50) and (h/27) has the dimensions of a
momentum. The reciprocal lattice vector h appears in
(50) to guarantee that k’, k, and g all lie in the reduced
zone or on the boundaries of the reduced zone. Since the
propagation (or wave) vector of the electron is changed
as a result of the collision, the electron is deflected, or
scattered, by its interaction with the normal mode.

The second sclection rule is an energy conservation
condition: The energy gained or lost by the clectron
must be equal to the energy lost or gained by the normal
mode. That is:

Lg (k') = Eg(k + q + h) = Eg(k) + v, (51)

where fi3(k) and Fg(k’) are the initial and the final
clectron energies, respectively. 11 the normal mode is
excited by a unit amount [the minus sign in (31, a
phonon of energy hv is created; if the normal mode is de-
excited by a unit amount [the plus sign in (51)], a
phonon of energy /v is destroyed. The interaction be-
tween a normal mode and an electron leading to the
creation or to the destruction of a phonon is commonly
called an electron-phonon collision.

We will confine our remarks in the following discus-
sion to the collisions between electrons and phonons in
non-polar crystals such as silicon and germanium. First,
we will consider a nonpolar crystal in which the con-
duction band has a single nondegencrate minimum
located at the central point of the reduced zone. [This
situation might obtain in the case of grey tin.] In such
a crystal, the phonons most likely to be involved in
clectron-phonon  collisions are the long wavelength
(longitudinal) acoustical phonons. When an electron
collides with a long wavelength acoustical phonon, it
will gain or lose a small amount of energy, and it will be
deflected only slightly; 7.e., its reduced wave vector will
change only slightly. [Explanation: Long wavelength
acoustical phonons have small reduced wave vectors g
and small energies ho.) Hence, electron will make a tran-
sition from its initial state to an adjacent final state.

Second, let us consider a nonpolar crystal in which
the conduction band has a number of nondegenerate
minima located at well-separated, symmetrically equiv-
alent points in the reduced zone. [This is the case for
both silicon and germanium.] In such a crystal, the elec-
trons can collide with both long and short wavelength
acoustical phonons under suitable conditions. If an
clectron collides with a long wavelength acoustical

(50)
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phonon, it will make a transition between two states
both of which lie ncar the bottom of the same conduc-
tion band minimum. This type of collision is quite simi-
lar to the one described above, in that the electron gains
or loses a small amount of energy, and changes its re-
duced wave vector only slightly. If an electron collides
with a short wavelength acoustical phonon, it can make
a transition between two states which lie near the bot-
toms of different conduction band minima. In this case.
the electron will be strongly deflected: the short wave-
length phonon has a large reduced wave vector q. Fur-
ther, the electron will gain or lose an appreciable amount
of energy: the short wavelength phonon has an appreci-
able energy hv.

At very low temperatures, the collisions with long
wavelength acoustical phonons will account for nearly
all the collisions. At moderate and high temperatures.
both types of collisions will occur. At high temperatures,
collisions with the long and short wavelength optical
phonons will also occur. [In polar crvstals such as sodium
chloride, collisions with (longitudinal) optical phonons
are the most important ones at all temperatures. |

The probability per unit time of an electron making
a collision is 1/7, where 7 is called the collision time.
The collision time for an electron will depend upon its
dynamical characteristics, such as its energy, its effec-
tive mass, and its direction of propagation. These in turn
depend upon the state it occupies prior to the collision.
The collision time will usually exhibit a marked tem-
perature dependence. In general, the collision time will
decrease as the temperature is increased.

In the next section we will discuss briefly the theory
of electrical conductivity and show how the electron-
phonon  collisions provide a dissipative mechanism
whereby the energy gained by electrons from an ap-
plied electric held is transferred, in an irreversible man-
ner, to the lattice. The energy thus gained by the lattice
appears in the form of heat energy. We will see that the
collision time plays a central role in the theory of elec-
trical conductivity.

XIV. ELkctrican CONDUCTIVITY

In this section we will show how the clectrical con-
ductivity of a crystal is related to the quantum states
which the charge carriers occupy, and to the collision
times of these carriers. We will also give references to
recent work dealing with the clectrical properties of sili-
con and germanium.

When a crystal is in a state of thermal equilibrium, its
electrons are distributed among the available quantum
states in the manner described in Section V. In a non-
metallic crystal, there will be a certain number of clec-
trons in the conduction bands, and a like number ol
holes in the valence bands. In the interest of simplicity,
we will confine our attention to the conduction band
clectrons, and assume all the electrons occupy states in
the lowest conduction band. Since we will deal only
with a single band, we may suppress the band index 8.



1726

Under equilibrium conditions, the current density
due to the motion of the electrons (in the lowest con-
duction band) is given by the following expression:

Jo = (52)

= /200 [ Vs,
where dk=dkidk.dks [cf. (12) above). The integral is
carried over the entire reduced zone. The factor 2 in
front of the integral sign takes the double occupancy of
each quantum state k into account. v(k) is the velocity
of an electron in the state k. We will assume that the
electronic distribution among the available conduction
band states is governed by the Maxwell-Boltzmann or
the classical statistics. Thus, we have:

Jo(k) = exp [ =} E(k) — &} /kT),

where £2(k) is the energy of an clectron in the state k.,
and where £ is the Fermi energy.

It is a simple matter to prove that J, is identically
zero. The proof involves the following considerations:
(@) The velocity v(k) is equal to (2w/h) grady (k)
lcf. (34) above|. (b) The energy function (k) satisfies
the symmetry property E(k) = E(— k) [cf. (19) above].
(€) v(k)=—v(—k) since grad, FE(k)= —gradE(— k).
(d) To each electron in a state k, there corresponds an
electron in the state — k; i.e., fo(k) =fo( — k). It follows
that the currents associated with the motions of the
various electrons cancel in pairs, leaving a zero net cur-
rent. WWhat we have shown is that there is no current
flow when the crystal is in thermal equilibrium.

Suppose a steady electric field € is applied to the
crystal. In this case, the crystal will be in a state of non-
cquilibrium, and the electronic distribution will depart
from fo(k), the equilibrium distribution function. \Ve
will label the non-equilibrium states by k[ = k(f)], and
we will denote the non-equilibrium distribution function
by f(k). For convenience, we will suppress the time de-
pendence of k, and write k(f) simply as k.

In the presence of the field €, there is a nonvanishing
electric current density given by

(53)

T = = (et [ viosmix (54
It should be noted that while fo(k)=fo(—k,), f(k)
#=f(— k). As we will see below, it is possible to express J
as follows:

J = cE. (55)

This relation defines o, the conductivity tensor. In
cubic-type crystals such as silicon and germanium, the
nondiagonal components of ¢ vanish identically, and
the electrical conductivity tensor reduces to a scalar
quantity. In other words, the current flow will be parallel
to the direction of the applied field in silicon and ger-
manium,

The electrical conductivity associated with the con-
duction band electrons can be determined if the energy
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band structure is known, .e., if v(k) is a known function,
and il the noncquilibrium distribution function f(k) is
known. For the sake of argument, we will assume that
v(k) is given. We will now consider the manner in which

f(k) is evaluated.

The distribution of the clectrons among the available
quantum states may vary because the electrons are
accelerated by the applied field during their motion
through the crystal. The distribution may also vary as a
result of the collisions between the electrons and the
phonons. The rate of change of f(k) due to the action of
the applied field is given by the expression: —e(27/h)E-
gradyf(k). We will denote the rate of change of f(k) due
to collisions by the symbol [df(k)/d!)con. Under steady
state conditions, the following equality must be satis-
fied:

af(k
—e(2x/h)E-grad, f(k) = [ﬂ] (50)

coll

The collision term is generally a complicated integral
which can be explicitly evaluated only if the collision
mechanism is known in sufficient detail.

In many cases of physical interest, it is possible to ex-
press the right-hand-side of (56) in terms of the depar-
ture from equilibrium in the following manner:

laf(k)/ot)can = — [f(K) = fo(k)]/7(K). (57)

This relation defines the quantity 7(k), which is called
the relaxation time for an electron in the state k. In
order to establish the physical significance of the relaxa-
tion time 7(k), we will assume that the distribution f(k)
is set up by an applied force which is suddenly removec
at time ¢ =0. The rate of approach to equilibrium is then
given by:

A f(k) = folk))/ot = = [(k) = fo(k)}/7(k).  (58)
The solution of this differential equation has the form:
(f(k) — ,fo(k)]t = [f(k) - fu(k)]t=n exp [—f/T(k)]- (59)

Thus, 7(k) is the time constant of the decay of the sys-
tem from its initial, nonequilibrium state to its final,
equilibrium state. The relaxation time 7(k) is essentially
the collision time defined at the end of the previous sec-
tion. The terms relaxation time and collision time can
both be used to refer to the quantity defined by (57)
above.

We will assume that a relaxation time can be defined
in the sense of (57); that is, we will assume that the col-
lision term appearing in (56) can be expressed in the
form (57). Thus, we may write:

—(2we/h) E-grad; f(k) = — [f(k) — fo(k)]/7(K). (60)

This equation, which is known as the Boltzmann trans-
port equation, may be rewritten as:

(k) = fo(k) + (2me/h)r(K)E-grads f(K).  (61)
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Since f(k) departs only slightly from fo(k) for the fields
€ normally of interest, we may replace f(k) by fo(k) on
the right-hand-side of (61). This gives:

fk) = fo(k) + (21re/h)‘r(k)6-gradkf0(k)

(62)
= fo(k) + er(k)v(k)-Edfo( k) /AF(K).
Writing:
Ji= Z Uijej; Lj= x5, (03)

we have for the {j component of the electrical conductiv-
ity tensor:

gij = — (e*/41r")fr(k)v.-(k)v,-(k)afo(k)/aE(k)dk. (o4)

The electrical conductivity component o depends upon
the weighted average of the product T(k)vi( k)v;(k),
the energy gradient of the function fo(k) serving as the
weighting function. It is not diffcult to show that
the clectrical conductivity is directly proportional to
the number of electrons in the conduction band. The
temperature dependence of the electrical conductivity
is due to the change in the number of electrons with tem-
perature, and to a lesser degree to the change in the
relaxation time with temperature. The electrical con-
ductivity and its temperature dependence can be deter-
mined if (k) and E(k) are known.

We have gone through the preceding analysis not so
much to obtain specific results, as to bring out the inti-
mate relationship between the energy band structure
and the electrical conductivity tensor. By studying the
clectrical conductivity, its temperature dependence,
and certain related electrical properties, such as the
magnetoconductivity and the piezoconductivity, it is
often possible to obtain useful information bearing on
the energy band structure. Reversing the argument, we
may say that a knowledge of the energy band structure
—and a knowledge of the relaxation time—is essential
to the proper understanding of the transport of elec-
tricity (or heat) by the electrons, and of the change in
this transport produced by a magnetic field, a mechan-
ical force, etc.

Since the primary emphasis of this paper is on the
cnergy band structure, rather than on the electronic
transport properties, we will not attempt to describe
the electrical properties of silicon and germanium here.
Instead, we will conclude this section by listing the vari-
ous types of transport processes which have been inves-
tigated in order to elucidate the energy band structure
of silicon and germanium. The interested reader might
consult the original papers for further information. The
theory of electronic transport processes in silicon and
germanium is treated most comprehensively in the
papers by Herring [42], Herring and Vogt [43], and
Brooks {44].

The transport processes of interest are the following:
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(a) Electrical conductivity and its temperature depend-
ence [42-45]

(b) Hall effect and magnetoresistance [14, 26, 42-44, 46]

(¢) Electrical conductivity and its pressure dependence
(44, 47]

(d) Piezoresistance (16, 42-44, 48]

(e) Thermoeclectric power [42-44, 49]

(f) Dielectric constant at microwave frequencies [42-
44, 50]

(g) Magnetic susceptibility [25]

XV. OprTICAL ABSORPTION AND EMISSION

In this section, we will describe some of the mecha-
nisms which are responsible for the absorption and emis-
sion of optical energy in perfect (nonmetallic) crystals.
We will be primarily interested in absorption or emission
processes involving the destruction or the creation of a
photon having a frequency lving in the infrared or visi-
ble region of the electromagnetic spectrum.

As is well known, a photon represents a unit quantum
excitation of a monochromatic electromagnetic wave.
We will denote the frequency of the photon by the
symbol vynoran, and the propagation vector of the photon
by the symbol guporen: The energy of the photon, or
light quantum, is simply Avpheten. The photon wave-
length is given by: Aphoton = 27 /@photon, Where Gphoton 1S
the magnitude of gpnoton.

One of the simplest absorption acts involves the de-
struction of a photon and the excitation of an electron
from some initial state 8, k to some final state 8/, k'.
The final state must be unoccupied before the excitation
process occurs [Pauli Principle]. Energy and momentum
must both be conserved during the absorption act. The
momentum conservation sclection rule takes the form:
k' = k+qphoten. Since the wavelength of an infrared or a
visible photon is very large compared with a lattice con-
stant, the photon momentum is a negligible quantity.
Therefore, we may drop the term gpnoton, and rewrite
the momentum conservation rule as follows:

k' = k. (65)
Since the reduced wave vectors of the initial and final
electronic states are equal, the electronic transition is
called a vertical transition. [Visualize energy plotted
vertically and k plotted horizontally. The line connect-
ing the initial and the final states on an energy band
diagram is a vertical line.] Energy conservation rule is:

Fg (k') = Eg(k) = Es(k) + v photon, (66)

where f55(k) and Eg (k') are the initial and final elec-
tronic energies, respectively. The corresponding emis-
sion act is governed by the same rules as govern the ab-
sorption act: (a) The final state must be unoccupied
before the emission takes place. (b) The electronic tran-
sition is vertical, 7.e., k’=k. (c) Energy is conserved:

Eﬁ'(k’) = Eﬁ'(k) = Eﬂ(k) - h"phumnn (67)
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where the various symbols have the same meaning as
hefore.

Consider a crvstal for which the valence and the con-
duction band edges occur at the same point in the re-
duced zone. The minimum photon energy required to
induce an clectron transition across the forbidden band
at the absolute zero of temperature is a direct measure
of the width of the forbidden band at this temperature.
Suppose we excite an electron from a state at the top of
the valence band to a state at the bottom of the con-
duction band. If the electron returns to the initial val-
ence state by emitting a photon, the energy of the
photon will be equal to the width of the forbidden band.
The emission act may be described as the radiative re-
combination of an electron and a hole.

A second type of absorption or emission involves (a)
the destruction or the creation of a photon, (b) the
transition of an electron from some initial state to some
final state, and (¢) the creation or the destruction of a
phonon. As before, the electron must make a transition
into an unoccupied state. For these processes, the mo-
mentum conservation condition takes the form:

k’ = k + qphonon + h-

where @uuonon 18 the reduced wave vector of the phonon,

(68)

and where h is o reciprocal lattice vector. The term
Quhoton has again been omitted. h appears in (68) to in-
sure that k, k/, and g,uonon all lie in the reduced zone or
on the boundaries of the reduced zone. An electronic
transition involving the creation or the destruction of
a phonon is called a nonvertical transition because the
reduced wave vector of the electron changes as a result
of such a transition.

The energy conservation conditions for the four pos-
sible types of nonvertical electronic transitions may be
written as follows:

Fs (k")

Ivjd’(k + q;»lmntm + h)
Lﬂ(k) i /“’phnnun + I’Vphntmn

(69)

where the minus signs refer to creation processes, and
the plus signs to destruction processes.

Consider a crvstal in which the valence and the con-
duction band edges occur at different points in the re-
duced zone, namely, k. and k. where k,# k. This
situation obtains in both silicon and germanium. At
absolute zero temperature, there are no phonons present,
and the absorption or emission of a photon cannot pro-
ceed with the destruction of a phonon. However, the
absorption or the emission of a photon can proceed if a
phonon is created. The minimum photon energy re-
quired to induce an electronic transition from the top of
the valence band to the bottom of the conduction band
at absolute zero temperature is:

hyplmcon = I'Jcond(kc) - Evnl(kv) + ]”’phunon
= lfpmp + hl’phonon- (7())

Thus, the threshold for optical absorption due to non-
vertical electronic transitions occurs at a frequency
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higher than that corresponding to the width of the for-
bidden band, Egp. As the temperature is raised, the
phonon population increases. At moderately high tem-
peratures, there will be enough phonons present for
optical absorption at the threshold to proceed by the
destruction of a phonon. In this case, we have:

lIVphnmn = E(‘ﬂllll(kt‘) - lf\':\l(kr) - I“’phonun

= Etzup - ’IV,,],.,,....‘. (71)
In this temperature range, the optical absorption edge
occurs at a frequency lower than that corresponding to
the width of the forbidden band.

It follows that the optical absorption edge will ex-
hibit a temperature dependence which is related to the
temperature dependence of the phonon population. As
the temperature is raised, the width of the forbidden
band will change slightly due to the thermal expansion
of the lattice. The change in FEg,, with temperature also
influences the temperature dependence of the optical
absorption edge.

A third mechanism for absorption of radiant energy
involves the excitation of the normal modes of vibration.
In this tyvpe of absorption, the electrons do not make
transitions between states; only the phonons are in-
volved. Since this mechanism is not directly related to
the clectronic energy spectrum, we will not discuss it
any further. The interested reader might consult the
paper by Lax and Burstein [51] for information concern-
ing the lattice absorption in nonmetallic crystals.

It is instructive to examine the relationship between
the optical properties of silicon and germanium and
their energy band structures (30, 44, 52].

The optical absorption in crystals such as silicon and
germanium is due to four effects: (a) lattice absorption:
(b) absorption due to the excitation of electrons or holes
within their respective bands; (¢) absorption due to the
excitation of free holes from one valence band to an-
other; and (d) absorption due to the excitation of elec-
trons across the forbidden band.

The lattice contribution to the absorption spectrum
consists of a number of bands. These bands have not
vet been unambiguously correlated with the lattice
vibrational spectrum, though attempts in this direction
have been made [51).

The absorption due to the excitation of free electrons
from states in the conduction band to other states in the
conduction band is directly proportional to the number
of free clectrons present. This type of absorption is
characterized by an inverse square dependence on the
wavelength of the incident light, and can be observed
at wavelengths above the wavelength corresponding to
the threshold for fundamental absorption, i.e., absorp-
tion due to the excitation of electrons across the forbid-
den band. At wavelengths below the threshold for funda-
mental absorption, the free electron absorption s
masked by the much stronger fundamental absorption.

We have already discussed the absorption due to free
holes in germanium [21} in Section XIII. The most in-
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teresting feature of this absorption is the fine structure
in the absorption spectrum due to interband hole
transitions. The absorption due to free holes in silicon
exhibits an inverse square dependence on wavelength
1o the highest wavelengths at which measurements have
thus far been performed. A fine structure due to inter-
hand hole transitions is expected in the far infrared, a
region of the spectrum which has not vet been fully ex-
plored. The fine structure in germanium appears in the
near infrared because the spin-orbit splitting in ger-
manium is considerably larger than the spin-orbit split-
ting in silicon,

The width of the forbidden band, /., and the tem-
perature dependence of £, can be determined by exam-
ining the behavior of the threshold for fundamental ab-
sorption at low levels of absorption as a function of tem-
perature. .\ theory of the absorption near the absorption
cdge in silicon and germanium has been developed by
Mactarlane and Roberts |24, 27]. This theory is essen-
tially a phenerzenological extension of the work of Hall,
Bardeen, and Blatt [33]. Maclarlane and Roberts assume
that the only phonons which participate in the absorp-
tion are the phonons in the longitudinal acoustical
branch of the vibrational spectrum. According to the
selection rule (68). the reduced wave vector of the pho-
nons must be equal to k., the reduced wave vector for
clectrons at the bottom of the conduction band. [In
silicon and germanium, k. =(0, 0, 0), and A= (0, 0, 0).]
The theory of Mactarlane and Roberts |24, 27], leads
directly to the values for fig., and by ponon. and indirectly
to the value of k.. Typical results for /2, arc as follows:

Silicon:
Eip=1.14 ev at T=0°K;
E ., =1.08 ev at T=300°K.

Germanium:
Eqp=0.73 ev at T'=0°K;
Ep=0.65 ev at T=300°K

The values obtained for hvyhouon, the energy of the longi-
tudinal acoustical phonon, are:

I honon = 0.052 ev:
thhonon - ()022 V.

Silicon:
Germanium:

In order to determine the values of gpuonen | = ko, 1t is
necessary 1o make some assumptions concerning the
nature of the lattice vibrational spectrum. Macfarlane
and Roberts calculated the spectra for silicon and ger-
manium by the same procedure that lsich [39] em-
ploved, namely, the method developed by Smith [41]. In
the case of silicon, Maclarlane and Roberts found that
k. lies 7/9 of the way from the central zone point to the
square face centers. A similar value for k. was obtained by
Kohn [23] on the basis of his interpretation of hyperfine
splitting data. We think that the Macfarlane and Rob-
erts result for k. is a recasonable one.

In the case of germanium, they found that k. lies
3 of the way from the centrial zone point to the hexag-
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onal face centers. On the other hand, Enz [25] and
Conwell [26], by density-of-states arguments, conclude
that k. is more likely to lie at the hexagonal face centers
—a conclusion with which we are in agreement. It is
possible that the Macfarlane and Roberts analysis of the
optical data is oversimplified, or that the lattice vibra
tional spectrum which they use is unreliable.

The absorption spectrum for germanium exhibits a
second rise bevond the threshold for fundamental ab-
sorption [29, 30]. This second rise may be attributed to
clectronic transitions [rom the top of the valence band
to the 000 minimum of the lowest conduction band.
While the electronic transitions from the valence band
edge to the conduction band edge (the 111 minima) re-
quire the assistance of phonons, the electronic transi-
tions from the valence band edge (which occurs at 000)
to the 000 minimum do not. The second rise is pro-
nounced because the intensity for direct (vertical) tran-
sitions is considerably greater than that for indirect
(nonvertical) transitions.

Further experimental evidence bearing on the energy
separation between the 111 and the 000 minima of the
conduction band and the valence band edge comes from
radiative recombination measurements [31]. The in-
tensity of the light emitted when 000 clectrons recom-
bine with holes is much greater than the intensity of the
light emitted when 111 electrons recombine with holes.
The relationship between corresponding absorption and
emission processes can be studied fruitfully with the aid
of the principle of detailed balancing.

XV SIGNIFICANCE

The theoretical and experimental work which has
been done on silicon and germanium during the past
few years has taught us a great deal about the energy
band structures of these erystals. Many of the important
features of the energy band structures are now fairly
well understood. The realization that the spin-orbit
interaction can often play a profound role in determin-
ing the detailed nature of the energy band structure is of
major signiticance.

The band structures of silicon and germanium have
been found to be remarkably complex. Instead of a
single minimum at the conduction band edge, there are
six minima in the conduction baud of silicon, and four
minima in the conduction band of germanium, at the
band edge. The conduction band of germanium has
auxiliary minima lving above the four minima which
define the conduction band edge. The structure near the
valence band edge in silicon and germanium is compli-
cated by the warping of the constant energy surfaces in
this region. The structure is further complicated by the
existence of three valence bands, two of which define
the valence band edge, the third being separated from
the first two by the spin-orbit interaction.

The results for silicon and germanium suggest that
the band structures of other nonmetallic crystals are
likely to be complicated; the band structures of some
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nonmetallic crystals may even be more complex than
those of silicon and germanium. The experience we have
acquired in investigating these two crystals should prove
extremely valuable in connection with the exploration
of the band structures of other crystals.

The theory of the electrical and optical properties of
silicon and germanium is greatly complicated by the
complex nature of their energy band structures. While
some of these properties can be correlated in a satisfving
and convincing manner with the energy band structures,
others cannot, at least at present. Much work remains
to be done before the theory of silicon and germanium
can be regarded as a completed theory. While many old
problems have been solved during the past few years,
we have become aware of many new problems, and
some of these still defy solution.

APPENDIX

Calculation of the Number of Electrons and Iloles in a
Nonmetallic Crystal Having a Particular Energy Band
Structure

In this appendix we will show how the position of
the Fermi energy level in the forbidden band of a non-
metallic crystal having a particular type of band struc-
ture can be determined. We will also indicate how the
clectrons and holes are distributed in the conduction and
valence bands, and what their total numbers are.

We will work with a crystal having the following
band structure: The valence band edge is defined by two
valence bands which come into contact with each other
at the central point of the reduced zone. The upper
valence band will be denoted by the symbol 171, and the
lower, by 1°2. We will assume that the constant energy
surfaces for 1’1 and 1'2 can be approximated by spheri-
cal surfaces in the neighborhood of the valence band
cdge. Let us place the zero of energy at the valence band
edge, and let us denote the scalar effective masses for the
holes in V1 and V2 by the symbols my* and my.*. The
energy band functions for the two valence bands are:

Eg(k) = — (h¥/8x0)(k¥/mg*): B = V1, V2 (72)

Since V1 lies above V2, the curvature of Eyi(k) must be
less than that of Ly, at the valence band edge, and we
have: my* > my™.

We will assume that the lowest conduction band has
M minima which are located within the reduced zone at
a set of M symmetrically equivalent points. We will
assume [urther that this conduction band is nondegener-
ate at each of its minima. The conduction band edge is
defined, then, by the M symmetrically equivalent and
nondegenerate minima of the lowest conduction band.
The constant energy surfaces close to each of the A
minima are ellipsoids. Let one of these minima occur at
k=ko, and let us introduce the definition: k’
=(ka'. k', k") = k— ko, where the components of k' are
measured along the principal axes of the ellipsoids as-
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sociated with the minimum at ko, The energy of an
electron occupying a state in the neighborhood of ko is
given by the following expression:

Eoond(k/) = Egap + (]’2/87"2) [(kal)z/ma*

+ (k)Y mp* + (k)Ym*|, (73)

where Eg, is the width of the forbidden band, and where
ma*. my*. and m* are the principal components of the
eflective mass tensor for the minimum at ko. The zero
of energy is again at the valence band edge.

let the quantity Deae(E)dE denote the number ol
clectrons per unit volume whose energies lie in the range
Ii, E4dE. The electrons in all A/ minima, of both spin
types, are counted by the density of states function
Deaec( ). It can be shown by simple algebraic arguments
that D..(E) is given by:

Dacol E) = 8(2)V3(x M/ h¥)(mFm*m*) H(E — Egp)''*;
E 2 Epy (74)

The density of states for the holes in the two valence
baunds is:

Dhares( ) = Dyi(E) 4+ Dyo(E), (75
where:
Dy(E) = 8213/ 3) (mis* 12— E)12;
8=V V2 EZ0. (7o

We will assume that the distribution of the occupice |
(electron) states in the conduction band and the dis-
tribution of the unoccupied (hole) states in the valence
bands are governed by the classical statistics. Therefore
the electron distribution function is

fereolE) = exp |—(E — £)/kT]:

where ¢ is the Fermi energy, measured with respect to
the valence band edge. The classical distribution func-
tion for the holes is:

Trores(E) = exp [—(& — E)/kT];

The total number of electrons in the conduction band,
Nelee, 1s Obtained as follows:

EZ Egp. (1)

E=0. (78)

Dc-luc(E)_/clcc( E) dE

Egap
= J()V23 (M /B8 (ma*my m ¥ VA(RT)3?
(Egap - E)/kT]

\'elec =
cexp |— (79)

Similarly, the total number of holes in the two valence
bands, Nholes, 1S:

Nootes = f Dot E) frotel EAE (80)

=4(2)1/21r3/2(1/h3) I_(mVl*)3“ + ("lv-z*)“? |(kT)3I'.‘
- exp [—&/kT).
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Since we are dealing with a perfect crystal, the number
of occupied states in the conduction band must be equal
to the number of unoccupied states in the valence bands.
In other words, New=Nholes. By equating (79) and
(80), we can readily determine the value for the Fermi
energy:

£ = (1/)FEp — (1/2)(RT) log ¢, (81)
where:

M (m*mp*m*)?
(”lvl*):i/‘l + (”lv2*)-’i/2

Substituting the value for £ given by (81) back into (79)
or (80), we obtain the desired result:

\yv.-lco = ]Vholes = 4(2)”27|'312¢”2h—3(kT)3/2
cexp [— Fgap/2kT].

(82)

(83)

The temperature dependence of Nejee Or Nnotes should be
particularly noted. It should be observed that the
cnergy band structure enters in two places in (83),
namely, in ¢ [cf. (82) above], and in figap.
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Nonlinear Dielectric Materials®

E. T. JAYNES,{ SENIOR MEMBER, IRE

Summary—The following is a brief description of nonlinear di-
electrics from the standpoint of the fundamental physics involved.
Specific available materials and technical applications are considered
only by way of illustration of general properties. It is shown that,
although dielectric nonlinearity and ferroelectricity are quite differ-
ent phenomena, the fact that ferroelectrics have high dielectric con-
stants makes them the most likely materials to exhibit a high degree
of nonlinearity at electric field strengths safely below the breakdown
values.

INTRODUCTION

r TYHE MACROSCOPIC electromagnetic properties
j[ of matter are commonly described by specifying

the current density J, electric displacement D,
and magnetic induction B as functions of the electric
and magnetic “intensities” E and H. In the majority of
substances these relations are found to be linear, leading
to the definitions of the conductivity, dielectric con-
stant, and permeability tensors. The meaning of the
word “linear” must be made more precise as soon as we
consider time-varying fields; in particular, we must be
careful to distinguish between nonlinearity and dis-
persion. The simple statement that D(¢) is proportional
to E(f) will not do; by common usage it is understood
that linearity is concerned with such a proportionality
in the frequency domain rather than in the time do-

main. Thus, consider a Fourier integral representation
of the fields:

o0
E() =f E(w)e™tdw
—x
- (1)
D{) = f D(w)e™'dw
By linearity we mean that the material is characterized
by some unique function e(w) such that

D(w) = e(w) E(w). (2)

This corresponds in general to no simple relation be-
tween D(t) and E(f). Thus, a linear dielectric material
is characterized intuitively by the following conditions:

1. No frequencies are present in D(f) which not are
present in E(f).

2. If Ey{t) produces D,(t), which we write com-
pactly as E;—D, and E,—D,, then (a,E,+a.E,)
—(a1D1+4-a.D;), with similar definitions for linear
conductors and magnetic media.

It is possible to have one but not both of these con-
ditions satisfied : for example, consider the corresponding
magnetic properties of water placed in a strong but in-
homogenous magnetic field. For applied frequencies

* Original manuscript received by the IRE, October 14, 1955.
1 Microwave Laboratory, Stanford University, Stanford, Calif.

within the range of the proton Larmor frequencies, con-
dition 1 is satisfied but not the superposition condi-
tion 2.1

Strictly speaking, all such linear laws may be regarded
as approximations for several different reasons. In the
first place, they would presumably fail in any material
substance at sufficiently high field strengths: i.e., break-
down or saturation effects would occur. Secondly, there
really are no unique relations between the above vectors
since in the work of the highest accuracy one would al-
ways expect to find that, for example, the electric dis-
placement does not depend only on the clectric field, but
also on every other physical condition of the material
such as temperature, state of stress and strain, degree of
illumination, and even the entire past history of the
specimen. Thus, even if it should be found that D is
exactly proportional to E at constant temperature, the
fact that the dielectric constant so defined is a function
of temperature gives rise to electrocaloric effects, in
which a sudden change in electric field produces a
change in temperature. Thus, the lincarity or non-
lincarity of a substance could depend on its degree of
thermal contact with its surroundings; 7.e., on whether
it is operated under isothermal or adiabatic conditions.
Similarly, if a dielectric is linear under conditions of
constant stress, it might not be so under conditions of
constant strain. In practice, however, these are usually
extremely small effects.

Finally there are more esoteric examples provided
by modern physical theories, according to which even
a perfect vacuum should have nonlinear properties.
In quantum electrodynamics one finds that the phe-
nomenon of scattering of light by light (a violation of
condition 2) should occur due to the formation and
subsequent annihilation of electron-positron pairs;?
the cross-section for this process is, however, so small
that experimental confirmation is not to be thought
of. Another effect is predicted by General Relativity;
an electromagnetic field contains energy and there-
fore mass. This produces a gravitational field which
can in turn deflect a light beam, again in violation
of condition 2. Once again, we do not expect any ex-
perimental confirmation in the laboratory! In order to
be extremely cautious about the experimental situation,
however, we note that electrical measurements of the
highest accuracy are never performed with intense
fields; if appreciable deviations from Maxwell’s equa-
tions did occur in free space at field strengths in excess

1 F. Bloch, Phys. Rev., vol. 70, p. 460; 1946,

A. Bloom, Phys. Rev., vol. 98, p. 1105; 1955,

? O. Halpern, Phys. Rev., vol. 44, p. 855; 1934.

H. Euler and B. Kockel, Naturwiss., vol. 23, p. 246; 1935.
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of 10% v/cm or 10% oersted, they would almost certainly
have escaped experimental detection thus far.?

In spite of the above considerations, the vast majority
of substances is found to be linear to a high degree of
accuracy at all field strengths commonly attained, hence
we denote as “nonlinear™ only those substances in which
there are substantial and easily demonstrable effects
arising from violation of conditions 1 or 2 above, oc-
curring at easily produced field strengths. Each such
substance is potentially capable of important technical
applications, since by violation of condition 1 we gener-
ate harmonics and beat frequencies, while violation of
condition 2 enables one to modulate one signal by the
presence of another.

In the case of conductivity and permeability, sub-
stances which are nonlinear in the above sense have
long been known; thyrite and, to a certain extent,
electrolytic cells and various solid-state devices, such
as rectifiers, may be regarded as media with nonlinear
conductivity (more correctly as circuit elements with
nonlinear conductance), while the hysteresis and satura-
tion effects in ferromagnetic materials respresent great
nonlinearity. By contrast, nonlinear dielectric materi-
als, although not entirely unknown in the past, have
not until recently been available in forms of interest to
electrical engineers. Probably the earliest known exam-
ple of dielectric nonlinearity was the discovery, over
80 vears ago, of the Kerr clectro-optical effect.* Glass
and many liquids, in particular nitrobenzene, develop
optical birefringence in fairly strong electric fields;
thus the dielectric constant at optical frequencies varies
with a low-frequency electric field in violation of the
superposition condition. An example of a nonlinear
capacitance at microwave frequencies is provided by
crystal rectifiers, particularly the germanium welded-
contact variety,® in which the barrier capacitance varies
strongly with bias voltage. By far the most important
nonlinear dielectrics, however, are the ferroelectric
crystals or ceramics.

FERROELECTRICS

From a phenomenological point of view, ferroelec-
tricity may be defined as the electric analog of ferro-
magnetism, and the fundamental criterion of ferro-
electricity is the existence, at certain temperatures, of
hysteresis between D and E. The static electric displace-
ment then depends not only on the applied electric
field but also on the past history, in such a way that
with sufficiently slow periodic variation of E we ob-

3 There is, of course, indirect evidence associated with atomic
theory suggesting that the laws of electrostatics hold at field strengths
far beyond this limit; for example, the fact that the wavelengths of
the spectral lines of hydrogen can be calculated to great accuracy on
the assumption that the electric field of the nucleus is a coulomb
field. However, this could hardly be called an electrical measurement.

¢ M. Born, “Optik,” p. 365, J. Springer, Berlin; 1933.

8 H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers,” Chap. 13,
M.I1.T. Radiation Laboratory series No. 15; McGraw-Hill Book Co.,
Inc., New York; 1948.
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tain a D-E hysteresis loop exactly like the familiar
B-IT curves of ferromagnetic materials. Above a cer-
tain temperature T, called the Curie point, this hys-
teresis disappears, but the relation between D and E
may remain appreciably nonlinear up to temperatures
far above T.. Since oscillograms illustrating these
effects have been published recently in this journal,®
they will not be repeated here. In the neighborhood
of the Curie point more complicated phenomena are
sometimes found.”

Several distinct classes of ferroelectrics, with widely
different chemical composition and crystal structure,
are now known. The first to be discovered was Rochelle
salt (sodium potassium tartrate tetrahydrate), widely
used for its piezoelectric properties.® This substance
appears to be unique in that it possesses two Curie
temperatures (—18°C and +23°C) and is ferroelectric
between them. Other ferroelectric tartrates®!® show
only a single Curie point. Mueller!! has shown that the
electrical, mechanical, and thermal properties of
Rochelle salt can be correlated very satisfactorily by a
single thermodynamic free-energy function valid on
both sides of the Curie points. This is important not
only from the standpoint of economy of description,
but it indicates that the ferroelectric-“paralectric”
phase transition at the Curie points is probably not a
very drastic rearrangement from a molecular point of
view as is the case in many phase transitions, for exam-
ple, that between diamond and graphite.!* This con-
clusion seems well established also for the other classes®®
of ferroelectrics.

Another class of ferroelectrics is represented by the
salt potassium dihydrogen phosphate, KH.PO, and
other substances of similar chemical composition and
crystal structure (7.e., the alkali and ammonium phos-
phates and arsenates)." Although they have found
applications based on their electro-optical properties,
the fact that their Curie points are at liquid-air temper-
atures limits their usefulness as nonlinear dielectrics in
the purely electrical sense. KH,POj, is at present unique
in that the molecular mechanism of its properties (dif-
ferent arrangements of hydrogen bonds) is probably

s \V. P. Mason and R. F. Wick, “Ferroelectrics and the dielectric
amplifier,” Proc. IRE, vol. 42, pp. 1606~1620; November, 1954.

T\W. J. Merz, Phys. Rev., vol. 91, p. 513; 1953.

8 W. G. Cady, “Piezoelectricity,” McGraw-Hill Book Co., Inc,,
New York, 1946.

9 W. J. Merz, Phys. Rev., vol. 82, p. 562; 1950, vol. 83, pp. 226,
656; 1951,

10 B, T, Matthias and J. K. Hulm, Phys. Rev., vol. 82, pp. 108;
1951,

it H, Mueller, Phys. Rev., vol. 47, p. 175; 1935, vol. 57, pp. 829~
842; 1940, vol. 58, pp. 565-805: 1941, Zeit. Krist., vol. 99, p. 122,
1938, Ann. N. Y. Acad. Sci., vol. 40, p. 321; 1940.

2 R, Smoluchowski, et al., “Phase Transformations in Solids,”
John Wiley & Sons, New York; 1951.

18 H. R. Danner and R. Pepinsky, Phys. Rev., vol. 99, p. 1215;
1955,

4 G, Busch and P. Scherrer, Naturwiss., vol. 23, p. 737; 1935.

G. Busch, Hely. Phys. Acta., vol. 11, p. 269, 1938.

C. C. Stephenson and J. G. Hooley, Phys. Rev., vol. 56, p. 121;
1939,

\V. Bantle and P. Scherrer, Nature, vol. 143, p. 980; 1939.

J. and K. Mendelssohn, Nature, vol. 144, p. 595, 1939.
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understood with greater certainty than for any other
ferroelectric.15:16

The third class of ferroelectrics,!” represented by the
cubic form of barium titanate, BaTiO; and several
similar substances, is at the present time the most
interesting from a theoretical standpoint and the most
useful in terms of applications. The Curie point of
BaTiO; is at 120°C, and at room temperature the most
nearly perfect crystals grown to date? exhibit hysteresis
loops with coercive force as low as 600 v/cm and a
spontaneous polarization of about 26 microcoulombs
/cm?2, very much higher than in the first two classes of
ferroelectrics. The dielectric properties of BaTiO; single
crystals above the Curie point have been measured by
Drougard, Landauer, and Young,!® with results that
may be summarized as follows. For crystals that are
free to distort in accordance with their electrostrictive
properties (i.e., under conditions of zero stress), the
behavior is given within experimental error by the free-
energy function

F(P, T) = Fo(T) + A(T)P* + B(T) P, 3

where P is the diclectric polarization, Fy the free energy
at zero polarization (which is irrelevant for dielectric
properties, although it largely determines the specific
heat of the material), and A, B are linear functions of
temperature, given by the empirical equations

A = 3.8X 10 (T — 105)
B = 45X 10-% (T — 175),

(4)

which are in cgs units, with the temperature in degrees
centigrade. The electric field is, from thermodynamics,

E =090F/;3P = 24P + 4BP3. (5)

Therefore, the incremental (small signal) dielectric
constant is

e =1+ 4x(dP/dE) = 1 + 4x/(24 + 12BP)?
~ 17.42/(24% + 3BE?), (6)

the approximation being valid at field strengths for
which the cubic term in (5) is small compared to the
linear one. Since B is negative in the temperature range
where these experiments were performed (119°C to
150°C), we have the rather surprising result that
application of a biasing field increases the dielectric
constant of the crystal. This phenomenon is seen
clearly in the oscillograms of Merz,” and may be shown
by thermodynamic arguments'® to be connected with
the fact that the crystals exhibit a first-order transition
at the Curie point; t.e., as the temperature is lowered,

5 J. C. Slater, Jour. Chem. Phys., vol. 9, p. 16; 1941.

18 C, C. Stephenson and J. G. Hooley, Jour. Am. Chem. Soc., vol.
66, p. 1937; 1944,

7 von Hippel, Breckenridge, Chesley, and Tisza, Jour. Ind. Eng.
Chem., vol. 38, p. 1097; 1946.

18 M. E. Drougard, R. Landauer, and D. R. Young, Phys. Rev.,
vol. 98, p. 1010; 1955.

¥ E,. T. Jaynes, “Ferroelectricity,” Princeton University Press,
Princeton, N. J., Chap. 3; 1953.
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the spontancous polarization jumps discontinuously
from zero to a finite value (about 18 microcoulombs
/em?). Some of the first crystals grown, which were
less perfect, cxhibited a second-order transition and, as
required by thermodynamics, a positive sign of B.20
It must be remembered, however, that this increase due
to bias occurs only under conditions of zero stress, and
therefore can be seen only at sufficiently low frequencies,
below all of the mechanical vibration modes of the
crystal. Measurements made at Stanford University
by Mr. V. Varenhorst at frequencies of 20, 40, and 120
mcs showed in all cases a decrease in diclectric constant
with bias voltage. The results were complicated by
temperature hysteresis effects which persist above the
Curie point and are not understood, but in a typical
case at 40 mcs and 130°C, application of a biasing
field of 1700 v/cm lowered the diclectric constant from
6,700 to 6,000.

Growth of good single crystals of BaTiO; is still a
difficult and costly art, and most of its applications to
date have involved the ceramic material, often with
various added impurities. The ceramic also exhibits
dielectric nonlinearity, a typical result® being a decrease
of diclectric constant with biasing field such that a
field of 10 kv/cm lowers € from 1,400 to 1,100, while a
field of 30 kv/cm lowers it to 700. Similar results have
been found at Stanford University, with an interesting
additional qualitative observation that the loss tangent
of a ceramic at radio frequencies may be lowered sub-
stantially by application of a biasing field of a few
kv/cm. Further data on properties of ceramics have
been given by von Hippel.?!

Many details concerning the physical properties of
BaTiO; have been omitted here; in particular the phe-
nomena of domain formation and motion which are
essential to an understanding of the properties of single
crystals below the Curie point. These have been de-
scribed by Forsbergh,? Merz,®? and Little.? A recent
discussion of the theory of ferroelectrics has been given
by Devonshire.®

THEORY OF DIELECTRICS

It might be supposed that with modern knowledge
of the properties of atoms and molecules, it would be
a straightforward matter to calculate the dielectric
constant of any material of known composition from
first principles. Unfortunately, this turns out to be an
extremely complicated problem on which little progress
has been made; only in the case of gases where the di-
clectric constant is very close to unity and the similar
case of dilute solutions of polar molecules in nonpolar
liquids can one claim quantitative success. Although it

20\V. J. Merz, Phys. Rev., vol. 76, p. 1221; 1949.

1 A, von Hippel, “Dielectric Materials and Applications,” John
Wiley & Sons, New York; 1954.

32 P, W, Forsbergh, Jr., Phys. Rev., vol. 76, p. 1187; 1949.

3 \V. ]J. Merz, Phys. Rev., vol. 88, p. 421,1952;vol.95, p. 690; 1954.

% E. A, Little, Phys. Rer., vol. 9§, p. 978; 1955.

3 A. F. Devoushire, Phil. Mag. Suppl., vol. 3, p. 85; 1954.
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is easy to describe in words the mathematical proce-
dure that would give a rigorous treatment, in practice
onc¢ must make from the start drastic simplifications
which make it difficult to interpret whatever agreement
or disagreement with experiment is found. The basic
reason for this is that the properties of a crystal are not
merely the properties of a single molecule, multiplied
by the number of molecules present, but the interactions
between them are an essential part of the picture, and
these are never taken into account in a correct way.
From the point of view of quantum mechanics, we would
have to say that it is not meaningful in any precise
way to speak of the states and behavior of individual
molecules or atoms, but the only really correct attitude
is the global one in which we enumerate the possible
quantum states (wave functions) of the crystal as a
whole. Almost without exception, however, theoretical
treatments of dielectric properties of solids have been
based on the concepts developed by Clausius and
Mosotti about 100 years ago. Here one regards a solid
as composed of a large number of polarizable objects
(in various cases the mechanism of polarization may be
thought of as distortion of electronic distributions of
atoms or ions, motion of ions, or rotation of molecular
aggregates having a permanent dipole moment) each
with polarizability «, so that each object, in an electric
field F, develops a dipole moment

M = oF. (7

The field F is not, however, the same as the macro-
scopic applied field E; because of the interaction of the
polarizable objects with each other, there is an addition-
al term commonly taken as proportional to the net
polarization, with a proportionality constant 8, known
as the Lorentz factor.

F = E+4 BP. (8)
Lorentz showed that if the polarizable objects are ar-
ranged in a cubic or random array, and each main-
tains the same constant dipole moment (no thermal
agitation effects), 3 would have the value 47 /3. If there

are N of these polarizable objects per unit volume, the
polarization is

P = NaF = Na(E + BP),
so that the dielectric susceptiblity becomes
x = P/E = Na/(1 — NaB). 9
Introducing the dielectric constant
e =1+ 4y, (10)

and assuming the Lorentz value 3=4w/3, we arrive at
the well-known Clausius-Mosotti formula

e— 1 4rVa
e+2 3

which is presented in some textbooks as if it were a
rigorous relation.

, (11)
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Many refinements of this treatment have been made,
and a very complete account of them may be found in
the recent book of Béttcher.® They have led to some
improvement in agreement with experiment but not
to any appreciably deeper understanding, because the
basic concepts remain the local polarizability and local
field F, which in modern theory no longer have a precise
meaning. Nevertheless, this classical treatment con-
tains enough of the truth to be very useful in giving a
qualitative understanding of dielectrics, provided cer-
tain precautions are observed. In the first place, (11)
cannot be used when the polarizability is due to freely
rotating permanent dipoles (i.e., polar molecules) ex-
cept in the case of high dilution when it reduces to

e — 1 =4rNa K 1.

From statistical mechanics, one can calculate the polar-
izability of a rotating dipole of moment M, with the
result o= M?/3kT, with k Boltzmann’s constant and T
the temperature in degrees Kelvin. Eq. (11) predicts
an infinite dielectric constant, <.e., ferroelectricity, when
Nof3>1, so that this should occur at sufficiently low
temperatures for any substance with rotating dipoles.
However, if we insert the numerical values, we find that
many polar substances should be ferroelectric at tem-
peratures far above their boiling points! This is the
famous “4m/3 catastrophe,” which was resolved by
Onsager?” with the observation that strong correlations
between the motions of nearby dipoles reduce the effec-
tive Lorentz factor; the results of his approximate
treatment are obtained if we formally replace 8 in the
above equations by 4r/(2¢+1); the opposite conclusion
is then obtained that ferroelectricity does not occur
unless the polarizability becomes infinite.

The fact that ferroelectricity is so easy to “explain”
when one uses poor mathematical approximations has
long plagued theoreticians and has delayed any reliable
understanding of the true cause of ferroeelctricity. For
example, Rochelle salt was for many years treated as an
assembly of rotating dipoles exhibiting the catastrophe
of (11). Another example of a model which predicts fer-
roelectricity as a result of poor approximation is an array
of harmonic oscillators interacting with each other. Such
an oscillator with a particle of charge e, mass m, and
resonant frequency w has a temperature-independent
polarizability of e?/mw?, and therefore according to the
above equations one can always produce a ferroelectric
array by making the resonant frequency sufficiently
small. However, this model is so simple that it can be
treated rigorously; an orthogonal transformation of
coordinates enables one to find the states of the arrayv
as a whole, and it is found when the problem is treated
correctly that ferroelectricity cannot occur unless the
polarizability of a single oscillator becomes infinite. We

® C. J. F. Bottcher, “Theory of Electric Polarisation,” Elsevier
Press, Amsterdam; 1952,
%7 L. Onsager, Jour. Am. Chem. Soc., vol. 58, p. 1486; 1936.
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also note that Slater’s theory of KH,PO,, already men-
tioned as probably the best available theory of a ferro-
electric, does not make use of electrostatic interactions
but rather ones of a more direct mechanical nature. In
spite of these and other considerations,? many people
believe that in barium titanate we have the realiza-
tion of the classical polarization catastrophe; in the
present writer’s opinion it is doubtful whether any
existing theory is free of the effects of poor approxima-
tions of the above type, and interactions other than
electrostatic may well be the essential ones.

If, disregarding these precautions, we assume that a
classical type of theory should have at least a qualitative
usefulness, what can be said about the expected occur-
rence of diclectric nonlinearity? According to the above
equations, this would require that either the polariza-
bility or the Lorentz factor be field-dependent. We con-
sider separatcly the three cases that the polarization
is due to: (a) rotating permanent dipoles; (b) transla-
tional motion of ions; or (c) electronic distortion of
atoms or ions.

(a) Rotating Dipoles. The polarizability a= M?/3kT
given above is an approximation valid only at field
strengths F such that M F<&kT. The exact expression,
first calculated by Langevin in 1905, is

o = (M/F)L(a) = M*/3kT — M'F/45BT% + - - -,

where L(a) =coth a—a™! is the Langevin function and
a=MF/k1. From this we find that at e =1 the polariz-
ability is lowered by about 6 per cent, and for a>35,
L(a) is essentially equal to unity, so that a« varies
inversely as the internal field F. Since molecular dipole
moments are of the order of 10~!8 esu, we find that at
room temperature an appreciable nonlinearity could
be expected only for F greater than about 4X10* esu,
or 1.2X107 v/cm. Since we must remember to use the
Onsager field for F, the applied field E would have to
be of the same order of magnitude; thus a measurable
nonlinearity due to saturation of rotating dipoles could
be expected only at very low temperatures and intense
field strengths.

(b) Translational Motion of Ions. Here the prospects
are considerably brighter. In many types of crystals
the size of the lattice is determined by the larger ions
that have to fit into it, and if small ions are also present,

28 ], M. Luttinger and L. Tisza, Phys. Rev., vol. 70, p. 954, 1946;
vol. 72, p. 257; 1947.
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they may be free to move in the interstices, through
distances of an appreciable fraction of an Angstrom,
but cannot move further due to contact with the
larger ions. It is seen without any calculation that this
results in a contribution to the polarization of the crvs-
tal which saturates rather abruptly at a certain value.
KH;PO, is undoubtedly of this type, with movable
hydrogens; other crystals of similar structure, even
though not ferroelectric, might be expected to show
nonlinearity. However, materials with high dielectric
constants should provide the most favorable possibili-
ties, since according to the above equations we then
obtain an internal field F which is considerably “ampli-
fied” above the applied field E. If appreciable motion
occurs, the Lorentz factors might also vary.

(c) Electronic Distortion. As a simple example, con-
sider an atom which has a ground state ¥, with energy
E,, and an excited state y; with energy E,, such that the
matrix element of the dipole moment operator between
them,

1‘101 = ef *ZlﬁldV
Yu
does not vanish.? Using quantum mechanics and statis-
tical mechanics,® the following formula for polarizabil-
ity may be obtained:

| Ma|* tanha
a0 =
kT a

where

21:2]1/2

(H(E — EQt 4+ | Ma
a =
kT

[t is seen that appreciable ncnlinearity requires that a
be of order unity or greater and that the term in F?
must contribute substantiallv to a. Therefore, since
Ma will typically be of the order of magnitude 10~!8esu,
if the two energy levels are sufficiently close together
the situation is about the same as in the case of rotating
dipoles. If a high dielectric constant leads to great
internal field strengths, these conditions might be met,
although it appears that the case of movable ions re-
mains the most favorable to development of strong
nonlinearity.

® [, I. Schiff, “Quantum Mechanics,” McGraw-Hill Book Co.,
Inc., New York, sec 25; 1949,
10 See ref. 19 (pp. 58-60) for a similar calculation.
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Some Aspects of Ferroelectricity”
G. SHIRANE{, F. JONAL, axp R. PEPINSKY§

Summary—Some recent developments in the study of ferro-
electricity are described. Special consideration is given to crystal and
domain structures, and their contributions to the dielectric behavior
of ferroelectrics and antiferroelectrics.

I. INTRODUCTION

ONSIDERABLE attention has been devoted to
(g ferroelectric crystals in recent years, both be-

cause of their practical value for electronic and
acoustical applications, and because they pose very
intriguing and fundamental problems in solid state
physics.

Rochelle Salt, KH,PO; and BaTiO; are well-known
ferroelectrics. They exhibit certain remarkable dielectric
properties which are in many ways analogous to the
magnetic properties of ferromagnetics. These analogies
are the sole basis for terminology ferroelectric (used both
as noun and adjective) and ferroelectricity. Just as ferro-
magnetic materials show a hysteresis effect in relation-
ship of magnetic induction and field, ferroelectrics show
hysteresis in dielectric displacement vs applied electric
field relation. This behavior appears only in certain tem-
perature ranges, depending on material concerned.

In its ferroelectric phase a crystal is spontaneously
electrically polarized. The most important property of
a ferroelectric is that the direction of polarization can be
altered by an applied electric field. In typical ferroelec-
trics the spontaneous polarization diminishes as the
crystal is heated, and it disappears at a temperature
which is called the ferroelectric Curie point. The diclectric
constant in the direction of spontaneous polarization is
generally high and shows a very high peak at the Curie
point; above this point, further heating results in a
rapid decrease of the dielectric constant, according to
the Curie-Weiss law. This law was first evolved to de-
scribe the temperature dependence of magnetic per-
meability in ferromagnetics.

The spontaneous polarization is accompanied by a
spontaneous strain, and piezoelectric and elastic anom-
alies accompany the dielectric anomaly. Due to the
polarization and strain, the symmetry of a crystal in its
ferroelectric phase is lower than that of the nonpolar
phase. This departure from the higher symmetry is

* Original manuscript received by the IRE, August 22, 1955,

t Dept. of Physics, Tokyo Inst. of Technology, Oh-okayaa,
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t Dept. of Physics, The Pennsylvania State University, Uni-
versity Park, Pa.

§ Physics Dept., Brookhaven National Lab., Upton, L. I., N. Y.
ger{nalr;ent address: The Pennsylvania State University, University
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slight, and a macroscopic ferroelectric crystal generally
consists of multiple twins. A twin individual is known
as a domain. Within a domain the polarization is uni-
formly directed; adjacent domains are twin individuals
oriented and, hence, polarized in different directions.
Domain orientations can be altered by application of a
field. This domain reorientation is responsible for the
D vs E hysteresis loop.

These are basic properties of ferroelectric crystals.
They are treated in detail, and for various examples in
the following sections. The field of ferroelectricity is
already rich in experimental, theoretical, and practical
developments, and we cannot hope to review all of
these. Our special aim will be to discuss crystal and
domain structures, and to relate dielectric properties
to these as far as seems presently feasible.

[1. SoME GENERAL CONSIDERATIONS
A. Crystallographic Properties

It is well-known that crystals can be divided into 32
classes, according to their rotational symmetries (cf.
Cady [1], p. 17). Of these classes, 11 have a center of
symmetry, and are called centrosymmetric; the remain-
ing 21 are noncentrosymmetric. Crystals in 20 out of
the 21 noncentrosymmetric classes show the phenome-
non of piezoelectricity; i.e., upon application of an ex-
ternal stress, an electrical polarization is created within
the crystal. 10 out of the 20 piezoelectric classes are
called pyroelectric. Crystals in these latter classes arc
already polarized, since they possess at least onc axis
which shows properties at one end different from those
at the other. The electrical polarization is usually
masked by surface charge, and occasionally by twinning;
but it can usually be observed in a nonconducting crys-
tal if the temperature of the crystal is altered, and a
change in the polarization is therewith induced. Hence
the name pyroelectricity: electricity released by heat.

Very occasionally the direction of polarity of a pyro-
electric crystal can be reversed by application of a
sufficiently high electric field. Such reversible pyroelec-
trics are ferroelectrics. The reversal, of course, must be
possible at field strengths less than the breakdown
strength of the crystal.

Whereas one can deduce the presence of piczo- or
pyro-electricity as soon as the crystal class is established
(by optical or X-ray means, e.g.), dielectric mecasure-
ments alone can establish the presence of ferroelectric-
ity. The latter word is thus a dielectric, not a crystal-
lographic, term.
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Certain materials, generally closely related to known
ferroelectrics, show a dielectric behavior which merits
the term antiferroeleciric (see Section 111, H). It is not
possible to define the term antiferroelectric crystallo-
graphically; the definition again involves dielectric be-
havior as well as structural properties. This point is
deserving of present emphasis, since it has been con-
fused in certain previous publications.

B. Analogies between Ferroelectricity and Ferromagne-
lism

The words ferroelectric and antiferroelectric are per-
haps unhappy choices, and are based solely upon analo-
gies between the dielectric behavior of certain crystals
and the magnetic behavior of ferromagnetic materials.
Firstly, it is found that ferroelectric crystals are gener-
ally comprised of multiple twins. In each twin individual
the spontaneous polarization is directed along a specific
crystallographic direction. But the twin individuals are
disposed at various angles to one another crystallograph-
ically; hence the polarization is in a different direction
from one individual to the next. These individual
regions are called ferroelectric domains, in analogy with
magnetic domains in ferromagnetic crystals. The prop-
erties and macroscopic physical effects of ferroelectric
domains will be considered in detail in Section VII.

Fig. 1—Ferroclectric hysteresis loop (schematic). OE =Spon-
taneous polarization P,, OF =Coercive field strength E..

Secondly, the very characteristic hysteresis loop,
which results when one plots magnetization vs alter-
nating magnetic field in ferromagnetic materials, has a
precise analogy for the electric case. A ferroelectric
hysteresis loop is shown schematically in Fig. 1. Its
cause is immediately understandable on the basis of the
domain concept. Consider first a crystal consisting of an
equal number of positive and negative domains; 1.e.
the domains are anti-parallel with respect to some given
crystallographic direction. Upon increasing the field in
the positive direction, the positive domains grow at
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the expense of the negative domains. The polarization
increases very rapidly (Fig. 1, OA), and reaches a satur-
ation value (BC), at which point all domains are aligned
in the direction of the field. This means that the crystal
now has a “single domain” structure. When the field
is reduced to zero again, a few domains remain aligned.
At zero applied field a finite value of the polarization
can be measured, called the remanent polarization P,
(OD). Extrapolation of the linear portion BC of the
hysteresis loop back to the polarization axis yields the
value of the spontaneous polarization P, (OE). In order
to annihilate the remanent polarization P,, we must
apply an electric field in the opposite (negative) direc-
tion. The field needed for this purpose is called the coer-
cive field E, (OF). Upon further increase of the field in
the negative direction, uniform alignment of the dipoles
can again be achieved, this time in the direction op-
posite to the previous one (GH).

The ferroelectric hysteresis loop can be directly ob-
served on a cathode ray oscilloscope by means of a
simple circuit first described by Sawyer and Tower [2].
The value of the spontaneous polarization P, can be
determined by measuring the distance OE on the ob-
served loop on a calibrated screen of the cathode ray
tube. It is also possible, of course, to determine the
temperature dependence of the spontaneous polariza-
tion P, of the ferroelectric crystal, by observing the
change of the distance OE as a function of the tempera-
ture of the crystal.

Most ferroelectric crystals have a transition tempera-
ture above which they are no longer polar, even though
they may still be piezoelectric. This transition tempera-
ture, which marks a phase change, is called the Curie
temperature or Curie point. The dielectric constant,
generally quite high, shows a very high peak at the
Curie temperature; above it the dielectric constant
decreases very rapidly according to a relation which is
known, again in analogy to ferromagnetism, as the

Curie-Weiss law:

+ = M)

€= €+ —— -
T —

lere € represents the dielectric constant, ¢ the elec-
tronic contribution to the dielectric constant, C the
Curie constant, T the absolute temperature and @ the
characteristic temperature (also called the extrapolated
Curie temperature). 0 is generally lower than the transi-
tion temperature.

C. The Dielectric Constant

Both the anomaly of the dielectric constant at the
transition point and the Curie-Weiss law are character-
istic features of a ferroelectric. In fact, they are predicted
by the thermodynamic theory of the transition. The
definition of the dielectric constant of a ferroelectric
crystal descrves particular attention. The dielectric
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constant is linearly related to the slope of the P vs E
curve. Well above the Curie temperature, in the non-
polar state, the relation between polarization P and
field E is linear, and, therefore, the dielectric constant
is field-independent. In the ferroelectric region, however,
the existence of a hysteresis loop clearly demonstrates
that the value of the dielectric constant depends on the
field strength with which it is measured. If the applied
field is very small, no new domains are created and no
movement of the domain boundaries takes place. In
this case one measures the dielectric constant of the
crystal with no interference from the domain structure.
This quantity, which is called the initial dielectric
constant, is directly proportional to the slope of the
virgin curve OA (Fig. 1) at the zero point; and it is this
constant to which we refer when we speak of the dielec-
tric constant of a ferroelectric crystal.

D. Other Properties of Ferroelectrics, and their Inter-
relations and Interpretation

It can be shown, on the basis of thermodynamic
calculations, that a number of other changes are to be
expected at the transition temperature. The spontaneous
polarization is accompanied by the spontaneous strains,
consequent upon the atomic shifts taking place within
the lattice. Not only does the dielectric constant show
an anomaly at the Curic temperature, but so also do
the piezoelectric moduli and the elastic constants which
are connected with the spontaneous strains. Moreover,
there will generally be an anomaly of the specific heat
at the transition temperature, and the shape of this
anomaly will depend upon whether the transition is of
the first or of the second kind.

Several phenomenological theories have been de-
veloped to relate the results of macroscopic measure-
ments. Among these are treatments by Mueller [3]
for Rochelle Salt and by Devonshire [4, 5] for BaTiO;.
The general procedure is to expand the free energy as
a function of independent variables such as polarization
and stress, and to determine the coefficients of expan-
sion in such a manner as to match the experimental
results.

A main purpose of both theoretical and experimental
studies is to account for physical behavior in terms of
specific crystal-structure models. Phenomenological
theories cannot hope to provide specific model informa-
tion, but they can disclose what thermodynamic
properties are important, and what features are to be
sought, in a model. An excellent recent article by Devon-
shire [6] discusses these matters.

The most fruitful approach to development of specific
models is via X-ray and neutron crystal dif<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>