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A GENERAL RLC SYNTHESIS PROCEDURE

By Louis Weinberg
Hughes Aircraft Company .
Research and Development Laboratories
Culver City, California

I. Introduction

There is a wide variety of existing synthesis
procedures, but as anyone conversant with the syn-
thesis field fully realizes, much remains to be
done. The inadequacy of available procedures
shows up particularly in a broad field of communi-
cations, namel{, synthesis for prescribed tran-
sient responsel. In this synthesis both magnitude
and phase are important so that the methods for
realising a prescribed magnitude of transfer func-
tion are inapplicable. Up to the present time
the only procedure that could be used for the
realization of both minimumephase and nonminimum-
phase transfer functions has been the one that
yields a constant-resistance lattice, This type
of lattice suffers from many disadvantages. In
general each of the arms requires close coupled
or lossless coils. An important disadvantage, too,
for those cases in which an unbalanced form of
network is definitely preferable, is that the
series and cross arms are so complicated relative
to each other that without the use of ideal trans-
formers reduction to an unbalanced form is vir-
tually impossible,

The lattice synthesis procedures treated in
this paper realize a given transfer function with-
in a multiplicative constant. No restriction
other than physical realizability is placed on the
function to be realized. .Among the advantages
claimed for the final lattice are that it con-
tains no mutual inductance and all its coils are
lossy, i.e., every inductance may be associated
with a series resistance. In addition, the arms
are of so simple a form as to render the lattice
amenable to reduction to an unbalanced network.
For the case of a transfer admittance, moreover,
reduction can always be achieved with the use at
most of real transformers, i.e., transformers
with winding resistance, finite magnetizing
inductance, and a coupling coefficient smaller
than one,

The dimensions of the transfer function to
be realized depend, of course, on the type.of
system in which the synthesized network is to be
used. If the driving force, for example, is a
pentode which approximates a current source, a
transfer impedance is needed. On the other hand,
a transfer admittance is necessary for a voltage-
source drive like a cathode follower and a cur-
rent outputs Finally, a ratio of output to input
voltage calls for the synthesis of a dimensionless
transfer function. The procedures show how each
of these functions may be realized with the prac-
tical terminations of an open circuit, a resis-

N

tance, or a parallel resistance-capacitance
combination.

II. The Synthesis Problem Presented

In Fig. 1 is shown a general passive, two
terminal-pair network which may be comple%ely
characterized by the pair of simultaneous equatias

I =B+ 758

. (1)
2 = Y * ¥22F;
or by the inverse set
By =2+ %50
(2)

By =550 + 250,

where 21, ® 2y and Y10 = 31 by reciprocity, and

the y's and z's are the familiar short-circuit
admittances and open-circuit impedances, respec-
tively. Useful relations may be derived from the
above basic equations. For example, for a pure
resistance load of one ohm, since numerically

E2 - -12 the second of Eqs. 1 yields

I_"’..L
3 2
B 1y,

an analogous relation being derived for 212 from
the second of Egs. 2.

For the load an open circuit, that is with

I2 = 0, Eqs. 2 yield

[
=
N

"
g N
t?

(k)

while for a short-circuit load, from Eqs. 1 may
be obtained

I Ty,

(s
L m )

In this paper the two terminal-pair network
is particularized to the lattice shown in Fig. 2
for which



1
8y = 3(% + Z,)

(6)
2, = 22, = 2_)
12 2¢7® a’?

an analogous set of relations holding true for the
y's. Thus, with the substitution of Eqs. 6, Eq. L
becomes

x.m“— (7)
a

whereas substitution of the y's for the lattice
transforms Eq. 3 to

%(Yb - Ya)

Y T_.
1l +5(Yb + Ya)

12 @)

It is well known, furthermore, that the gener-
al form for any of the transfer functions is a
rational function given by the quotient of
polynomials

n n=1
a +a .8 + o000 + Qa
ns n=1 seca °

m
bms .o+ bm-l

M=)
s + seee +bo

(9)
i és-sl) (s-sB) 0000 (s—sn) nem

al (8-82) (s-sh). s (S-Sm)

-ﬁ%:j)- b4

where q must be a Hurwitz polynomial, that is,
have all its zeros in the left half-plane, and H
is a positive constant.

E
IITI. Open-Circuited Lattice Realization for K-—z—

B

It is desired to realize the given transfer
function

E
x-é-ﬁg— (10)

as an open-circuited lattice with as large a gain
(that is, as small an H) as possible. The given
function may therefore be set equal to Eq. 7; this
yields

p . "%
K-Hq -Zb_+z-a—. (11)

We break q into the sum of tw polynomialsz,
so that

9= +4Aq, (12)

where 9 is a Hurwitz polynomial, A is a positive
real constant, and q:'L. is the derivative of Q).

This can always be done as demonstrated in the
reference citede After dividing the numerator
and denominator of the resulting K by q to
obtain

==
= Ai{ s (13)
9y )

H(1 +

we expand p/q1 into partial fractions. Its resi-

dues are in general positive or negative real for
real poles, complex for complex poles. A similar
expansion of Aqi/q1 makes the total denominator

of K
W@ (@)

1 E !
) = H(kg )+W 4’-8—-_—8;...)
(14)

Aq
H(1 +
9

where kgd) = 1, and all the residues kﬁd) for
g # 0 are equal to A. If (Zb-Za) and
(Zb + Za) are also thought of as expanded in

partial fractions, the residues of like terms of
p/q1 and (Zb = Z,) may be equated as may those of

H(1 + Aqi/ql) and (2, + za). We thus obtain

k() _ (a) _ (n)
78

» b (w=0,1, 2, eeo m,

Hk(d) where m is degree of q) (15)

k(b) + k(a) -
B B

where the superscripts a, b, n, and d refer re-
spectively to Za, Zb_, and the numerator and de-

nominator of K, while the subscript p designates

the poles s = g + - -

he po . “"hi h“' Jwg, or sp. -ap pr, or
-g in .

gp = M c ou an wp are positive

Solving Eqs. 15 for the unknown Z, and Z
residues as indicated in Eqs. 16 below

b

(v) 1. (d) (n)
ko= (He, T e )

(v) (b) _ Liip(d) (n) (n)
o+ 3B, =T e e 3p) (16)

(a) _ Llia (d) _ (n)
ku '2(m‘u kp )

(a) (a) _1p(d)_ (n) (n)
o, *+ 3, 'Z(Hkp. o, -3, )

finally yields



pfo

(a)_ 1 (n)
aua-E(HA-uun)

BEO
a&b) - %(HA + aén))

pab) . %pén) péf) o1 in)

(17)
p=0 p=0
aéb) - %(H + agn)) aés) - %(H - agn)).

For negative real poles the requirement that
the residues, aia) and aib), be real and positive,

when used in conjunction with the above Eqs. 17,
gives as the condition to be satisfied for u § O

ot

'lﬁ_%l\_él’ (18)

and for p = O we substitute the constant one for A.
This, of course, is the same as the condition that
arises in the Bower-Ordung RC synthesis”’, since
for an RC lattice the poles must all be real. In
the general synthesis considered here, however,

the complex poles must also be provided for. The
real parts of the residues in these complex poles
must not only be positive, but must also be equal
to or greater than a positive constant cu which is

defined below. This is seen by application to the
residues of Za of the condition for realizability

that is derived in Appendix I (with a similar re-
sult holding for Zb):

(a)
L"P \ z_ (19)
(a) w
o ©
or ()
a
(a) o | %%
A g e
1|.(n)
> 25 9 - o, (20)

1

When the constant ¢  is substituted in those rela-
tions of Eqs. 17 foff which p # O, the conditions
to be satisfied become )

2C - a(n)
1> _&HA_P'_._ (21)
and

2c + a(n)

1=—LHA—L— 5 (22)

We need satisfy only the stronger of the
above two inequalities for any specific complex

pole. If aﬁé) is positive, Eq. 22 is the

stronger and must be used to determine the mini-
mum value of H; if apn) is negative, we use Eqg.

21. Therefore, to summarize the two steps for
the complex poles, we must determine first the cu

for each pole and then the value of H necessary
to satisfy the stronger of Eqs. 21 and 22.

By satisfaction also of Eq. 18 for the real
poles we may thus tabulate the necessary value of
H for each pole. In doing this we may use the
equals sign in Eqs. 18, 21, and 22; then we
choose a value of H greater than the largest re-
quired value, which automatically guarantees the
satisfaction of the condition for each pole with
the inequality sign. This is necessary, as is
pointed out in Appendix I, in order that every
inductance appear with an associated resistance
and that each of the partial fraction components
(complex conjugate poles taken in pairs)of

(a) (a) (a)
k k k
Zy, = kga) * sl- ) s2- s ‘e sm- )
1 2 m
(b) (v) (v) (23)
k
Zb-k(b) 4L4 2 + eee 4km_
° 5 s-s

S-Sl S -3

be positive reals Then Za and Zb may be realized

by inspection in the Foster manner for two-element
kind networks; and as Appendix I demonstrates,
every inductance will have an associated series
resistance,

One final point, useful in the subsequent
procedures, is made regarding the constant term
in Egs. 23. As is obvious from Eqs. 17 for p = 0,

we always obtain this constant term. Furthermore,
if the degree of p is less than that of q, then

b
aé )- ags) - é’l’ (2h)
while if the degrees of p and q are equal,

aib) i aéa) +1= %(H +1). (25)

IV. Procedure Using the Integral of q

An alternate procedure is obtained by making
use of the integral of q, designated by q(-1).
This method has the drawback that it may not

always work; it works only when q(-l) is Hurwitz.
It can be easily shown that the integral of a
Hurwitz polynomial, unlike the derivative, is not
always Hurwitz. It is a simple matter in any
particular problem, however, to form the integral,

choosing the arbitrary constant conveniently, and

then check for Hurwitz characterh. The advantage
of this method is that it generally yields a net-
work with a higher gain and coils of lower Q.



The steps in the procedure for synthesizing
an open-circuited lattice begin with

E, 2 -2
K=gf = g

El b * a

'53 (26)

Now q/q('l) is obviously of the same form as
qi/hl’ if q(-l)is Hurwitgz; and the procedure fol-

lows along the same lines as the previous one ex~
cept for a few minor differences. The differences
to be noted are that the constant term in the
partial fraction expansions, i.e., for p = 0, is
nonexistent and the constant A is equal to one.

For this method the useful equations that
correspond to Eqs.l7 are

LEO pEO

aﬁb) . %(H . aﬁn)) aﬁa) - %(H - aﬁn) )

(27)

(v) _1.(n)
Py’ =2y

(a) 1. (n)
LN

which yield for the real poles the condition cor-
responding to Eq. 18,

e
- 1s_ﬁ_._ =1, (28)
and for the complex poles yield the inequalities
that correspond respectively to Eqs. 21 and 22,

- 2c - a(n)

1= (29)
d
= 2c + a(n>
IE_LL—H . (30)

The use of the above equations, along with the
definition of cu given in Eq. 20 allows a syn-

thesis to be carried out.

V. Realigzation of Transfer Impedance
in Form of Terminated Lattice

A. Resistance Termination

To obtain the transfer impedance

E

2
2, = T- ETI (31)

as a resistance-terminated lattice, it is possible
to make use of the dual form of Eq. 3,

1
5(zb - za)

z
2 12 . "
22 1+ -é—(Zb +z)

12 °T+3

. (32)

By proceeding in a manner similar to that in
Section III, we can then make the necessary iden-
tifications for direct synthesis of the lattice.
The network obtained, however, is the same as the
one obtained by application of the reciprocity
theorem and well-known lattice equivalents to the
open-circuited lattice of Section III. For sim-
plicity of demonstration we will therefore con-
sider the method of synthesis of that section as
the basic one from which the other desirable
forms of network are easily derived.

Since, as observed previously in Section III,
a series resistance is always present in each arm
of the open~circuited lattice, we derive an equi-

valent 1attice3’5 by removing one ohm from each
arm, then convert to a current source by use of
Norton's theorem, and finally by use of the

reciprocity theorem obtain the desired network.
The sequence of steps beginning with the previ-
ously realized open-circuited lattice for which

E2
K'ﬁ'% (33)

is illustrated in Fig. 3. The one-olm series
resistance at the output terminals is omitted in
Fig. 3(c) because the output is open—circuited.

An improvement in gain can be effected by
removing more than one ohm from each of the arms.
Suppose, for the sake of illustration, that p is
of lower degree than q so that, as noted in Eq. 2l
R = R, = 1/2H. Then we can remove R, and follow

the same sequence of steps as in Fig. 3 to obtain
a network terminated in R_ = 1/2H with the trans-
fer function
E
2.1p

It is pointed out, finally, that if we stop
at the step given by Fig. 3(c), we realize a
transfer impedance in the form of an open~
circuited lattice, where the shunt resistance is
useful in the instrumentatidn of the network

since it may represent the finite internal resis-
tance of the current source.

B. Parallel RC~Termination

In the instrumentation of a practical cir-
cuit it is often useful to have a shunt capaci-
tance at the input or output of a network. The
immediately preceding method showed how to
obtain a resistance termination for the lattice
network; this part demonstrates the realization
of a parallel RC termination.



The following artifice is restricted in thrat
it can only be used for thLose transfer functions
in which the degree of p is less than the degree
of q. Suppose that the 9 given by the q = q +

Aqi breakdown (similar remarks applying to the

q(-l)procedure) has at least one negative real
zero given by (s + a). (If it does not and we
wish to employ this technique we multiply numer-
ator and denominator of the transfer function by
a linear term (s + b) to obtain a new denominator
from which q. is determined.) Letting the im-
pedance of tlhe desired termination be k/(s + a),
we may then write for the RC-terminated lattice
(using the additional constant k for convenience):

E
210 " Tf - ﬁ%

kp
9
Aq!
H(1 asly
%

RO

Aq!
1
§ )

- kp
H(q; + Aqj)

(35)

H(1 +

Multiplying the transfer function by (s + a)/k
yields

K= (8 + a)lelk

P (36)
9z
AQi
)
%
Now this function K is realized as the vol-
tage ratio of an open-circuited lattice by the
method of Section III, Since the numerator resi-
due in the pole s= -a is zero, it is clear by in-
spection of Eqs. 17 that the residues for Z_and
Z, in this pole are each equal to HA/2. The net-
work which thus has the form shown in Fig. L(a)
can be transformed by removal of the RC combina-
tion from each arm, after which the successive
agplications of Norton's Theorem and reciprocity
give

H(1 +

E
2 14
f27T " B-3¥ (37)

for the final desired form of network. The perti-
nent equations and steps are indicated in Fig. L.

To summarize the procedure, we consider the
given function as Z,, = kp/Hq (this is what we

finally achieve, where k = 1/2(HA)). We then
multiply this by (s + a)/k where (s + a) is a

-l
factor of q (or of q( ‘), if we are using the

integral method). We then synthesize the re-
sulting function as the voltage ratio for an open-
circuited lattice, after which the steps illus-
trated in Fig. 4 will give Ap/(2q) as the desired
transfer impedance for the RC-terminated lattice.

VI. Realization of Transfer Admittance as a
Resistance-Terminated Lattice

As pointed out previously in Section V for
the dual case, it is possible by use of the
equation

1
Y =-1)
- 2°°b a (38)

e Y12
1
1+ ?(Yb + Ya)

12 ° T Voo

to develop the proper identifications for the
synthesis procedure. The simpler approach, how-
ever, is to consider the entire procedure of
Section III carried over to the dual problem; that
is, instead of first synthesizing for a voltage
ratio by means of an oren-circuited lattice, we
now realize

I - Z;z (3%9)
I

in the form of a short=circuited lattice. The
dual of the remarks in Section V(A) now apply so
that we obtain a final transfer function

0"

(N

E (Lo)

™

for the same problem treated in that section.
The final lattice with a resistance termination
will be of the form shown in Fig. 5.

In Appendix II, where the general problem
of the reduction of lattices to unbalanced forms
is taken up, it is shown that the use of real
transformers always allows the lattice obtained

for le to be converted to an unbalanced network.

VIii. Illustrative Example

We desire to synthesize within a constant
multiplier the given
1
-2'
Ha=3q

(82 + 0.76536s + 1) (s° + 1.84776s + 1)

as a resistance~-terminated lattice. The given

le represents the Butterworth approximation to

the normalized low-pass filter with n = L, where

the Butterworth functions are B2n(wz) =1+ w2n
and 2

T2 - y "l‘ﬁ“" .

‘ s=jw lq(s)l o= 14+ 0"




We first realize

I Y -Y

2 P b a
T; Q ib * ia

as a short-circuited lattice and then by trans-
formations obtain the desired Yl2'

! for A=Q.]1 yields

The breakdown q = q + Aq1

q = (32 + 1.61976s + 0.8131159)(324 0.59336s
+ 0.975703)

and therefore

L Ouls09 o RO O.liis0ge 0,283
ql 8 + 0 - . s+, -0

+ conjugates.

By inspection we see

o{™ < o.ubs09 p{™) = _1.0851
af‘,") = =0.Lk509 pé“) = 0,21L83
o = 0.80968 w = 0.39693
o, = 0.29668 w0, = 0.94217,
We find from
%_ﬂ(*i)_l._my_
c =
® o,
that
cl - 0.2660
c, = 0.3411.
By use of Eqs. 21 and 22, we obtain
1{129.8
H2310.3
We choose H=25. Therefore
aéb) - 1205 aéa)- 1205
aib) = 1.L7255 ai“)- 1.027L6

$al 17285

(b)
ay’ = 1.027h6 5
Bia)- 0.5427

p§b) = = 0.5427

.péb) = 0,10742 ﬂéa)--o.loﬂx?.

The lattice arms are then given by

2.05492 (s + 0.,60022)
82 + 1.61976s + 0.813L59

, 25L510 (s + 0,36541)
s° +0.59336s + 0.975703

Y = 1205 +

- 12.5 o 2:94510 (s + 0.95617)
s° + 1.61976s + 0.813L59

. 2.05492 (s + 0,19818)
% + 0.59336s + 0.975703

%

The application of the necessary transfor-
mations gives the lattice shown in Fig. 6 for
which

Yo"

(M

)
q

1l

]
-

(s° + 0.7653%6s + 1) (s° + 1.84776s + 1)

VIII. Conclusion

A method has been demonstrated for realizing
any transfer function by a lattice network. Each
inductance used has an associated series resis-
tance so that lossy coils may be used in building

* the network. General methods for reducing a

lattice to an unbalanced form have been considered
and it was shown that if real transformers are
allowed, i.e., transformers with winding resis-
tance, finite magnetizing inductance, and a
coupling coefficient smaller than one, then the
lattice realizing Y12 is always reducible to an

unbalanced network.

Appendix I. Partial Fraction Expansion
of a Positive Real RLC Function

For the driving-point functions of two-
element kind networks the Foster method of synthe-
sis can be successfully applied, that is, a partial-
fraction expansion may be made to yield terms each
of which is positive real and therefore realizable
by inspection. Though the method breaks down for

. general RLC functions, it may work for a particular

type of RLC function. In this appendix we deter-
mine the necessary conditions on the residues for
the success of the method#*; we determine, in addi-
tion, the conditions necessary so that a series
resistance can be associated with every inductance;

#These conditions were pointed out by Dr. E. A.
Guillemin in his Network Synthesis course at
Me I. Te




and finally we indicate the a;plication of the
above to the synthesis treated in this paper

The partial~fraction expansion of a positive
real RLC impedance

k
A SN B b+ e
s -8 S -38, 8-8, 5=-8) (1.1)
can be written more explicitly as
Z= 4t Jpl + e S JBl + R +
s +0) - jml S+0; +Jw s+a
plwl (I.2)
2a) (s 40 - a ) R
- ¢ ———— b e
s? + 20,8 + w? S + a
1 o
= zl + 22 + 200

sc that the typical terms z, and z, become apparent.
To simplify exposition we have assﬁmed only simple
poles; we also have considered an impedance, ?he
dual of the following remarks of course applying

to an admittance. In Eq. I.2, o and w) are real

and positive constants, the constants R, o and 51

2_ 2 2
are real, anc w, E0) + ).
like z, (with negative real poles) to be positive

real and hence separately realizable as asimple
driving-point impedance, it is clear that R must

be positive., However, the condition on the residue
of the partial-fraction component Y containing

In order for terms

complex poles is not so obvious, except that it is
necessary for a to be positive. By application to

2, of the well known test for positive real
characterh, the additional condition is found to be

LY P

. (I.2)
4 “

In words, then, the condition for the exis-
tence of a positive real partial fraction com~
ponent z) is that ay be positive and “he angle

formed by the imaginary axis and the radius from
the origin to the pole be greater than or equal
to the angle of the residue of the pole. This is

illustrated in Fig. I.1 where angle ¢ = tan-l

(B /a,) must be less than or equal to the angle
P/

-1 . q
¥ = tan (ol/bl), or the residue may lie any-
where in the crosshatched portion of the plane.

It is desired that the inductance used in
the synthesis of z) have a series resistance

associated with it. Since ﬁl may be positive or

For 517 0, if Eq. I.3
is satisfied with the equality sign, then

ﬁlmi/al = o) and the quantity (o1 - Blmi/ul)
appearing in Eq. I.2? equals zero, so that a
perfect coil is required. (For the admittance
case all of the dissipation would be associated

with the inductance.) On the other hand, if the
inequality sign is used, (o, - ﬁlmi/al) is

negative, two cases arise.

greater than zero, which guarantees a lossy coil,
For the case of a negative ﬂl’ it is possible to

assoclate all of the dissipation with the coil by
making o, - slwl/al = 20, with satisfaction of

Eq. I.3 by the equals sign. Again, satisfaction
with the inequality sign allows some dissipation
to be associated with the coils Thus, in both
cases (B> 0, B <0), use of the inequality sign
calls for an impedance containing a lossy coil;
and since as is demonstrated in Section III, the
lattice synthesis procedure requires that the
lattice arms Za and Zb have g's which are equal

numerically but of opposite sign, it is mandatory
that the inequality sign be used if it is desired
to obtain lossy coils in both arms.

The synthesis procedure of this paper
guarantees that the Za and Zb have positive real

partial~fraction components with lossy coils, and
thus the arms may be realized by inspection in
the Foster manner.

Appendix I[. Reduction of Lattices
to Unbalanced Networks

An unbalanced form of network, that is, one
with a common ground from the input to the output
terminals, is definitely preferred to a lattice.
The problem of converting a lattice to an unbal-
anced network is therefore an important one. This
appendix first considers general lattice equi-
valents, then passes on to reduction of the special
types of lattices that may arise from the synthe-
sis procedure of this paper and finally shows that
the reduction of a network realizing a Y12 is al-

ways possible with at most real transformers.

Lattices may be transformed to unbal anced
3,5,

networks in the following ways

a) A series impedance may be removed from
both Za and Zb and placed in series with both the
input and output terminals (see Fig. II.1(a)).

b) A shunt impedance may be removed from
both Za and Zb and placed in shunt with both the
input and output terminals (see Fig. II.1(b)).

¢) A shunt impedance may be removed from the
series arm Za and considered as a bridge across
the remainder of the lattice (see Fig. II.1l(c)).



The ideal transformer that is necessary may be
removed when the remainder of the lattice has
been transformed to an unbalanced network,

d) A series impedance may be removed from
the cross arm as shown in Fig. II.1(d). Again
the ideal transformer becomes unnecessary when
the remainder of the lattice has been transformed
to an unbalanced network,

e) A lattice may be broken into a group of
parallel lattices (see Fig. II.l(e)),

In any specific problem, to reduce a lattice
to an unbalanced form may require the application
of a succession of the above methods, or it may
first be necessary to resynthesize a lattice arm
before one of the methods may be successfully
applieds Thus considerable ingenuity is called
for. However, the types of lattices that are
realized in this paper, since they contain the
same poles in both arms, are reducible in a large
number of problems. We mention below a few of
the forms which can be recognized as reducible in
general,

If all the residues in the real poles of one
arm are larger than the corresponding residues in
the other arm and, in addition, the coefficients
of the numerators of the pairs of complex poles
in the first arm are larger than the corresponding
coefficients of the poles in the other arm, then
the lattice is immediately reducible to an L
network., Since this is a very restricted form of
network, the residues will rarely have this de-
sired distribution.

A completely general form of unbalanced
network is given if, at any stage of the lattice
reduction process, the lattice arms can be re-
synthesized into the ladder forms shown in
Fig. II.2, where G represents a conductance and
Z an impedance, A two-element kind network is
used for simplicity of illustration. How to
bring this about in general is a matter requir-
ing further investigationi, but when it is pos-
sible the lattice containing these arms can be
reduced to the form shown in Fig. II.3.

For the lattice obtained in the synthesis
of le, it is always possible to effect a re-

duction to an unbalanced network if one of the
residues in a real pole is very large, specifi-
cally, large enough for the method to be applied.
As an example of the reduction procedure when a
large residue is present, consider the six-pole

# After this had been written (in 1951), it
came to the writer's attention that O. Aberth
was conducting an investigation into this prob-
lem for RC networks as his Master's thesis
research at M, I, T.

lattice shown in Fige II.L, whose arms are given
by

Yo = ¥1a * Ypa * Y34 * V) (II.1)
28 + 1 3s + 4 8 2 :
=2 3 * v
8+ 23 +5 s8“ +hs+6 s+2 s+l
and
To " ¥b * Yab * Y30 * Yo
. 3; + 2 S Ls + 7 .2 (11.2)
8° + 238 + 5 s + s +6 s+2
1
#———HS* .

Because of the large residue in the admit-
tance Y3a the lattice can be reduced, First we

remove from each arm the shunt branches Yy
Yoar Y3p» Yip (see Fig. II.5(a)). Since the

drive is a voltage source the shunt branches
may be omitted from the input terminals. Then
we split the remaining lattice into two parallel
lattices with a bridging branch, as shown in
Fig. II.5(b). Finally these may be transformed,
as shown in Fig. II.5(c) to obtain a bridged
twin-tee network with a complicated load.

As a last resort, if all other methods fail,
it is possible by the use of real transformers
always to reduce any lattice obtained in the
synthesis of le by the methods presented in

this paper. The procedure is explained below.

As is well known, any lattice may be reduced
to an unbalanced form by the use of an ideal
transformer. The process calls for a rotation of
the output terminals so that the cross arms be-
come series arms. In order to compensate for this
rotation an ideal transformer providing a phase
reversal is necessary. The procedure is
illustrated in Fig. II.5.

However, we wish to use only real trans-
formers, i.2., transformers possessing leakage
inductance, winding resistance, finite magnetiz-
ing inductance, and core loss; the equivalent
circuit of such a real transformer is an ideal one
with a series resistance and inductance and a
shunt resistance and inductance. We shall now
show that the form of network realized in the
synthesis of a transfer admittance automatically
provides the necessary series and shunt branches.

The general procedure is best explained by
a simple example. Without loss of generclity
suppose we consider the lattice shown in Fig.
II.7(a) where the numerator of ¥y, 18 larger than



the numerator of the same pole in the cross arm,
but the numerators of You and y3b are larger than

the corresponding numerators of Yoa and y3 a®

This is the form of lattice obtained in realizing
a transfer admittance. We may remove yi,, Y,.»

and yBa from both arms and divide the lattice into

a group of lattices as shown in Fig. IIL.7(b).

Then the final step of rotation and use of ideal
transformers which now, moreover, have series and
shunt inductances may be carried as in Fige II./
(c). Each of the networks within the broken lines
represents the equivalent circuit of a real trans-
former.

If it is desired to use physically realizable
mutual inductance without a core-loss resistance,
we may use another method that is often appli-
cable, The lattices that realize a transfer
admittance may be divided into components similar
to that shown in Fig. II.8(a)s It is seen that
the only requirement for the reduction of this
component lattice is that R.b be greater than R a®

For, by removing R - and La from each arm, we then

obtain the network shown in Fig. II.8(b). If
(Lb - La) is negative, we can use the mutual

inductance form of network shomn in (¢) of the
figure for practical realization. All that
remains is to show how to realize a sufficiently
small R a® This happy circumstance often comes

about naturally in the realization of a transfer
admittance. If it does not, it can often be
brought about by the multiplication of numerator
and denominator of le by (s + a) as the first

step in the synthesis procedure, where a is a
sufficiently small positive constant.

; | 2 wa—1p
|- ._oﬁ
LINEAR
K, PASSIVE LOAD €
NETWORK
O— +_]
" 2!
Fig. 1 - Two terminal-pair network.
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Thus, in summary, we see that we may often
arrive at an unbalanced form of network by the
methods presented in this appendix. Moreover, if
we allow realizable mutual inductance in the
synthesis of le, we can always obtain an un-

balanced network.
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Fig. 3
Steps in the conversion of open-circuited lattice for which K=EZ/El=p/Hq to resistance-terminated
lattice with lesEZ/Il:p/Hq. (a) Open-circuited lattice for which K=EZ/El=p/Hq. (b) Lattice equi-
valent to that in (a). (c) Lattice after application of Norton's Theorem. (d) Lattice given by applica-

tion of reciprocity theorem, where ZlZ=EZ/Il=p/Hq.

Fig. 4
Steps in the conversion of an open-circuited lattice for which K=EZ/E1=(s +a)p/(Hq) to an RC-termin-
ated lattice for which Z’E2/11=AP/(ZQ)- (a) Open-circuited lattice for which K=(s +a)p/(Hq)=E,/E,.
(b) Lattice equivalent to that in (a). (c) Lattice after application of Norton's Theorem, where

I,= 2(s+a)E ;| /(HA). (d) Lattice after application of reciprocity theorem with
le.EZ/Il =(l/Z)HAEZ/(s+a)El=(HA/Z)K/(s +a)=Ap/(2q).

SI51Y
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Fig. 6
Network realized in the illustrative example where
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Fig. I.1
Graphical illustration of pole and

residue relationship.
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Fig. II.2

Desirable form of lattice arm impedances,

where GnaEan and Z, = Zha-

G)0-6p

AAA Py o
G20-G2p

i M
|

-0

Unbalanced network corresponding to lattice
with arms given in Fig. II. 2.

Fig. II.1

Methods for the conversion of lattices to

unbalanced networks.
a) Removal of a series impedance from each arm. &

b) Removal of a shunt impedance from each arm.

c) Removal of a shunt impedance from series arm.

d) Removal of a series impedance from the cross
/

o S ———
arm. .
Fig. I1I.4
e) A single lattice decomposed into two lattices in Six-pole lattice to be reduced to
parallel,
unbalanced network.
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Fig. II.5
Steps in reduction of lattice that contains a sufficiently large residue.
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Fig. I1. 6

Reduction of a lattice by use of ideal transformer.

Fig. I1.7

Reduction of a lattice by use of real transformers.
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(b)

(¢)

Fig. II. 8

Reduction of a lattice by use of mutual inductance.
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A General Theory of Wide-band Matching

by

Richard La Rosa and lierbert J. Carlin

Microwave Research Institute
Polytechnic Institute of Brooklyn
Brooklyn, New York

It is often desirable to terminate a
resistive generator in a resistance equal to the
generator internal resistance. This is particu-
larly true if the generator represents a length
of nearly lossless transmission line because
standing waves on the line can be avoided by ter-
ainating the line in its characteristic imped-
ance.

When a resistive generator supplies
Jower to an arbitrary complex load impedance, a
two terminal pair matching network can be in-
szrted between the generator and load to termi-
aate the generator in an impedance which is
1lmost equal to its internal resistance. When
the matching is to be done over & broad band of
frequencies, it is often not possible to obtain
the desired quality of match with-a lossless
natching network; a lossy matching network must
therefore be used. Lossy matching networks are
1lso used to insert controlled amounts of attenu-
ation for equalization purposes. when lossy
natching networks are used, attenuation can be
controlled independently of the matching func-
tion as long as the power-transfer efficiency is
Jelow a certain limit presented in this vaper.
‘he power~transfer efficiency is the ratio of
Jover actually reacning the load to the available
powsr of the generator.

Thz given load is represented¢ by a
lossless L=-pole E terminated in a unit resistor.
fhe tandeam comdination of the matching network D
and the lossless network E is a network S as
3hown in Fig. 1

Matching Network and Part of Load Representation
Combined to Form a Single Network
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The network S is characterized by a
scattering matrix (S) given by

S S
11 12 ‘
s =

The reflection coefficient of interest

is [811] and the power-transfer efficiency of
the matching network is [S12]2. R. M, Fano
founc the restrictions on these quantities for
the case of a lossless matching network and
H. J. Carlin and R. LaRosa® found in convenient
form the limitations on |Sy»|2 when a lossy
matching network makes Sjj identically zero,
R. LaRosa and H. J. Carlin have consideredlt the
general case of a dissipative matching network
where the input reflection factor mey have any
desired value.

(1)

The lossless network E imposes restric-~
tions on the output reflection coefficient Spjp
which are best expressed as integral formulas
involving log |Sy5| in the integrand, These in-
tegrals were tabulated by R. M. Fanol using a
method shown by H. W. Bode3. The integral re-
strictions essentially establish the lower limit
of |3p2] over the entire frequency range.

The functions [Sy;| and |812|2 are in
turn limited by |Sp2| through the inequality

Islzlzs(l*lslll) (1'|522|) (2)

as long as

I551 2 15y, | (3)

There is no advantage in violating in-
equality (3), so that inequality (2) controls
the upper limit on [S72]|2. Inequality (2) shows
that for given |S1;| and |Spp| functions the
greatest power-transfer efficiency is obtained
when (2) is exactly satisfied as an equality.
This condition exists when the matching network
contains no more than a single resistor.

Inequality (2) shows that for minimum
insertion loss networks (i.e. one resistor) in-
creased input mismatch |S77| will allow in-
creased power transfer Sy, 2 up to the point
where [S11| equals |Spo|; at this point the dis-




sipation in the matching network goes to zero and 2 H. J. Carlin and R. LaRosa, "Broadbanc Reflec-

concitions for a lossless matching structure are tionless Matching with Minimum
gefined. If |$77]| is increased beyond this point Insertion Loss". Proceedings of
another inequality becomes operative and [Sp7| the Symposium on Modern Network
decr=ases. The maximum power transfer is obtained Synthesis, Polytechnic Institute
with a lossless matching network. of Brooklyn, 1952, p. 106l.

The techniques used and results dis- 3
cussed above cen also be applied to the matching H. w. Boce, "Network Analysis and Feedback Am-
of an arbitrary generator to a resistive load. plifier Design", D. Van Nostrand

Company, Inc., New York, 1945.

Relonances| L R. Ladosa and K. J. Carlin, "A General Theory
1 of wide-band Matching with Dis-
K. 1. Fano, "Theoretical Limitations on the sipative lL-Poles". Report No.
‘ Broadband hatching of irbitrary R-308-53, PIB-2L7, Microwave Re-
Impedance". Journal of the search Institute, Polytechnic
Franklin Institute, Vol. 2L9, No. Institute of Brooklyn, Feb. 17,
1, p. 57, Jan, 1950, and Vol. 249, 1953. Project Designation 075-215
No. 2, p. 139, Fedb. 1950. Contract No. NOnr-292(00).
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SYNTHESIS OF ELECTRIC FILTERS
WITH ARBITRARY PHASE CHARACTERISTICS

Byron J. Bennett
Stanford Research Institute
Stanford, California

I Introduction

This paper will deal with an insertion-loss
method for the synthesis of electric filters,
placing particular emphasis upon approximate real-
ization of specified phase characteristics. It
will be shown thats

1. A specified phase characteristic may be
aporoximately realized in a filter network, pro-
vided that the approximating phase characteristic
can also be realized in an all-pass network.

2. An attenuation characteristic approximat-
ing a constant pass-band value in Tschebyscheff
equal-ripple fashion can also be realized in the
same filter network.

Discussion will be confined primarily to the
synthesis of low-pass filters. However, the same
general method applies to other filter types.l The
confornal transformation avplied here in the low-
pass case 1s not applicable to band-pass or high-
pass filters, but the general philosophy involving
the analogous potential problem still anplies in.
these cases. The method to be described will lead
directly to filters wkich have approximately the
attenuation and vhase characteristics desired,i.e.,
additional phase-correcting all-pass networks will
not be required. A practical design procedure
will be outlined first and then proof will be
given that the procedure does lead to a network
having aporoximately the attenuation and phase
characteristics prescribed.

Formulation of the Problem
tion Voltage Ratio

II
A. e I

It is required to design a network to be in-
serted between Ry and R, in Fig. 1 such that the
resulting output voltage (E, in Fig. 2) will vary
with frequency in a prescribed manner. The net-
work will be designed so that a given insertion

is obtained, in which EZ and EZO are the

0
output voltages with and without the network,re-
spectively. (Figs. 1 and 2.) 1In order that the
network may be composed of linear, lumped, and
passive elements, the ratio xg_ must possess cer-
0

ratio

tain well-known propertiess

1. It must be a rational function of p,
where p is a complex frequency variable. (p =
d + Jw where w is angulor frequency. )

2. Its zeros and poles mus. occur in conju-
gate pairs.
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3. Its poles must appear only in the left
half of tre p-plane since they are natural modes.

4. It must be equal to or less than the
quantity R1 v for all values of w.
2 F,
(E?h =F +R uwhen the network matches R, and R2
By 2F R,

so that maximum power transfer is obtained.)

T

FIG. |
CIRCUIT WITHOUT FILTER NETWORK

4

GIRCUIT WITH FILTER NETWORK

Bs An Examvple of Ideal Filter Charact tic

It is thus necessary to find an approximating
function, to be called W(p), which meets all the
requirementsEof Section IIA so that it may be

realized asqzaa » and yet has characteristics

which approximate desired transmission character-
istics. The functiosn having desired transmission
characteristics will be termed W'(p).

For purposes of illustration it will be as-
sumed that W'(p) has the characteristics of an
ideal filter?»3 (Fig. 3)3

1. Its magnitude shall be a constant, unity,
in the pass band which shall extend over the nor-
malized frequency range, -1 < w < 1.

2. Its magnitude for all other values of w
shall approach zero.

3. The phase associated with W'(p) shall be
a linear function of w over the frecuency range
-1.103 <Ww< 1.43.




It has long been known that characteristics
such as those shown in Fig. 3 cannot be realized
exactly by a W(p) which meets the requirements
enumerated in Section IIA. Accordingly, such char-
acteristics are only approximated by a given W(p),
end then a network which realizes the given W(p)
is found by standard realization techniques,

is
' {}
E 2 iwen
[}
-1.43 -1 )5 W= 143
1
-2 \\\\\\:
w(p)*
Fi6.3 h—
MAGNITUDE AND PHASE OF W'(p} VERSUS w
(G=0)

* Multiply vertical soale by 2 to get radianse

C. The Proposed Method
The method proposed for obtaining a proper
W(p) is as followss

1. The phase-frequency characteristic de-
sired is approximated by means of a rational frac-
tion F, (p), which possesses all the characteris-
tics negessary for realization as ;g_ of an all-pass
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network, i.e., Fu,(p) mests all conditions of Sec-
tion ITA, and its magnitude-frequency characteris-
tic is constant for all w. This approximation may
be accomplished by any one of a number of methods.
One of the best existing methods, making use of

Tschebyscheff Zolynomial series, has been proposed
by Darlington.

2. The pass-band portion of the prescribed
magnitude-frequency filter characteristic is then
approximated in a Tschebyscheff equal-ripple
fashion without altering the phase characteristic.
The steps outlined in the following sections deal
specifically with this aspect of the problem.

IIT Practical Procedure for Obtaining a
Proper Approximating Rational Fraction
W from a Given All-Pass Ratio
Fraction F, (p)

prleiracendirtinl ) : 1

A. Int ct

In this section the necessary steps for ob-
taining a given approximating filter function W(p)
will be outlined, assuming that an all-pass ratiom
al fraction Fap(p) has already been obtained. The
procedure will be divided into two parts. The
first part will deal with obtaining a rational
fraction G(p) whose magnitude is a Tschebyscheff

20

equal-ripple characteristic in the pess bandj
rroof for the steps involved in this first part
vill be given in Section IV, The second part will
deal with obtaining a W(p) from a miven G(p).

Thus, the design vrocedure will begin with an
all-pass rational fraction,

N(-
N(p) &
which has a phase-frecuency characteristic aooroxi-
mating the desired phase-frequency characteristic.
In Eq. 1, N(p) is a Hurwitz polynomial, i.e., its
zeros are in the left half of the p-plane. The
pole-zero arrangement for an Fy (p) having three
poles and three zeros is shown in Fig. 4. The
objective will be to find an approximating rational

fraction, W(p) =k N(k;) » in which M(p), be-

cause of quadrantal arrangement of its zeros in
the p-plane, will have a constant phase-frequency
characteristic in the pass band."

FoplP) =

P-PLANE
o

PO+ jw

x

FI16.4
POLES ANO ZEROS OF AN ALL-PASS
RATIONAL FRACTION Fgp(p)

Thus, W(p) will have the same vhase cheracteristic
as Fgy(p), and if M(p) is nroperly chosen the
magnitude of W(p) will be a Tschebyscheff equal-
ripple approximation of the pass-band magnitude-
frequency characteristic of W'(p). The constant
K is real and should be so chosen that

W(p)] —ﬁ—al * R for all w. 4
s or a o ac—
P lp=jos 2V T2 .

tical consideration sometimes further governs the
choice of ¥. This will be discussed in Section V.

B. Steps in Obtaining G(p) from F, (p)

An initial objéctive will be the determina-
tion of a rational fraction

2

L
G(p) = -%ﬁ%(qy > (2)

The pole-zero arrangement of a W(p) obtained
for the illustrative example of Section VI is
shown in Fig. 7. For another W(p), the zeros
might be complex but they must always occur in
quadrantal symmetry.



where L(p) is a pdlynomial whose zeros occur in the
pass band and the real constent A is chosen so
that G(p) ]p=jw veries between limits of 0 and 1 in

the pess-b:md region. After G(p) is deternmined, a
few simple steps will lead to W(p). The polynomisl
L(p) may be considered to be a generalized Tscheby-
scheff polynomial whose coefficlients depend upon
the location of zeros of N(p). It will be inter-
esting to note that if AN{p)N(-p) is a constant
equal to unity, L(p) will be a Tschebyscheff poly-
nomial. ¥

The procedure for determining G(p) is:

1. The quantities 2., 22, ZB""Zn are found

by making use of the equation
1

(p,° + 1)

Zn = ’n ’

3)

where the pn's are the locatlons of the zeros of
N(p) [or the zeros of N(-p)]. In the solution of
this equation only the Z.'s with the positive real
parts are used.

2.1 The even part of the polynomial
=n
P(2) = iv_rl (z-;zi) is transformed back into the
p-plane, aga}n using the transformation
_ 2 2 — SlE!
2 ={p®+ 1) . Arational fraction U(p) = T(p)
P
will be obtained from this step.
3. The polynomial S(p) will have either
(a) the same number of zeros as N(p)
when n is even, or
(b) one less than the number of zeros
in N(p) when n is odd.
The polynomial L(p) must have the seme number of
zeros &s N(p). Thus if (a) applies, L{(p) = S(p),
and if (b) applies, L(p) = pS(p).

4. The square of L(p) found in step No. 3
will form the numerator of G(p), and N(p)N{-p)
will be its denominator. The real constant A is
now chosen so that G(p) will have a magnitude-
frequency characteristic which oscillates between
0 and 1 in Tschebyscheff fashion in the pass band,
il.eey -1 <cw < 1.

In Fig. 5 the poles and zeros of a typical
G\p) are shown. If the G(p) having these partic-
ular poles and zeros is obtained from the Fg.(p)
having poles and zeros slown in Fig. 4, then the
pole locations of G(p) are the same as the loca-
tions of the voles and zeros in Fa (p). The zeros
of G(p) are always located in the Bass band on the

*  AN(p)N(-p) would never be equal to unity in the
the application discussed here since this would
mean that all natural modes would occur at in-
finite frequency. The statement was made mere-
ly to indicate the relationship between L(p)
and Tschebyscheff polynomials.
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jwraxis. Now G(p) does not have all the character
istics which Eg_ must have. It has nroperties
20

No. 1 and No. 2 tabulated in Section IIA, but not
vronerty No. 3, and verhans not nroperty MNo. 4.
The magnitude of G(p) does vary between limits of
0 and 1 in the pess band, and it will be easy to
obtsin a W(p) from G(p). The next objective will
be determinstion of W(p), which will have:

1. The significant proverties of G(p),

2. Property No. 3 and nroperty No. 4,

3. A nmagnitude-frequency characteristic
which annroximates a constant value in the nsss
band within a svecified tolerance.

lw
P-PLANE

x iox
2

2

2
x -jl x

FIG.§
POLES AND ZEROS OF THE
RATIONAL FRACTION G(p)

C. Steps in Obtaining W(v) from G(p)

1. If the ratio of the maximum magnitude of
W(p) in the pass band to tre minimum in the pass
bend is r, G(p) may be modified to achieve this
ratio by subtracting a nositive real constant B
from F(p), i.e.,

_ _ M(p)
H(p) =G(p) - B = N(p)N(-0) * (4)
where the constant B is determined from the
equation®¥

Subtracting the constant B from G(p) does not
affect any of the necessary characteristics which
G{p) possesses but obtains the snecified ratio of
the maximum magnitude of H{p) to the minimum mag-
nitude of H(p) in the pass band. This may be seen
from Fig. 6 in which a magnitude-freguency plot
of a typical G(p) ]p= o, 15 shown. It may be noted
that 1if the real positive constant B is greater
than unity, then, when it is subtracted from
G(p)]p='w which is also real and positive for all

w, no zeros of the resulting H(p) occur in the

= Alternatively, B may be closen to obtain a
given rate of cutoff.



pass band. The reason for subtracting B fronm G(p)
instead of adding is also easily seen from Fig. 6.
Subtraction of B results in a low stop-band value
for the absolute magnitude of H(p)] _. , whereas

addition of B would lead to a higher stop-band
than nass-band value.

rs 8-
B;' Gljw)
B
B
W - _—L l
- t Ll w —
FIG. 6

CURVE OF G{jw) VERSUS « SHOWING EFFECT OF
SUBTRACTION OF A REAL CONSTANT FROM Gi{p)

2. In order to obtain a function which poss-
esses property No. 3, H(p) is modified to form a
new rational fraction «(p) by removing the noles
in the right half of the p-plane and doubling the

poles in the left half of the p-plane. Thus,
. M(p)
[(N(p)]

Therefore, Q(p) meets all conditions except No. 4
and, in addition, its magnitude has a specified r
in the pass band.

3. In order

W(p) must be less

to meet condition No. 4., ise.,
than By By por all w, &(p) is

271 2 .
merely multiplied by an appropriate constant K.

Thus,
K M(p)
2
(N(p)]

In this manner, a W(p) which
characteristics desired for

W(p) = . (7)

approximates the
By "end, in addition,
E

meets all necessary conditions of has been
obtained (Fige. 7). 20

IV Proof That the Steps Outlined in Section
111 Produce G Posgessing an Equal-
R le M tude Ch cterigtic in
e Pa Ba

The procedure in this section is directed
toward determination of a G(p) from a given Fap(p)
as outlined in Section III. However, the proce-
dure is more detailed in order to show that G(p)
indeed has a Tschebyscheff characteristic in the
pass band. The reason for inclusion of some of
the steps may not be apparent until the end. At
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each step a new function is formed using some of
the properties of the function in the previous
step.

TWO ZEROS AT

jw
INFINITE FREQUENCY e
x2 il
+xz —0
o7
x2 it
FIG. 7

POLES AND ZEROS OF A TYPICAL W(p)

A. Tre Rstional Fraction Fy(p)

Suppose a rational fraction Fy(p) is formed
from a given Fap(P) by replacing the zeros of
Fap(p) by poles. Thus,

1
BP) = Weywep ()

The zeros of this function are located at infinite
frequency. In Fig. 8 the nole locetions of the
Fx(p) function corresmonding to the all-pass nole
and zero locations of Fig. 4 are shown.

ALL ZEROS AT jw
INFINITE FREQUENCY P-PLANE
X X
X X:
3
X X
F16. 8

POLES AND ZEROS OF Fy (p)

B. The Rational Fraction C(P(Z)

Now a G(p) which approximates a constent in
the pass band, -1 <w < 1, is to be obtained.
Therefore, some means should be talen to alter the
p-plane of Fig. 8 so that a filter-like magnitude-
frequency characteristic is obtained. A step in
this direction is row attempted by introducing the
condition that tre notential be constant over the
normalized pass-band region. Mathematically, this
may be done by considering the analogous notential
problem of Fig. 9 in which unit positive charges



are at the pole locations and all negative charge
is distributed on a conducting surface in the pass

2,19
band. The transformation z = —2 +*1F 413

D
transform the pass band and hence the conducting
plate of Fige. 9 into the entire imaginary axis of
the Z-plane of Fig. 10.

NO ZEROS (UNIT NEGATIVE

CHARGES) AT INFINITE jw
FREQUENCY P-PLANE
X it X
=—ALL NEGATIVE
CHARGE ON CON-
DUCTING PLATE
L - o
NIT POSITIVE 5!
guAnss—-—x . X

FI16.9
ANALOGOUS POTENTIAL PROBLEM ASSUMING
CONSTANT MAGNITUDE (SCALAR POTENTIAL)
IN THE PASS BAND

"
-
v
+~
>

nN°
o0

ty
3 e Z-PLANE
x §| x

e CONDUCTING PLATE

2,8 'R

x

FiG6.10
POTENTIAL PROBLEM AS SEEN IN THE Z-PLANE

Since two values of Z exist for each value of p,
two Riemann surfaces are needed to describe the

Z-plane. Only one sheet in the Z-plane i3 essen~
tial to the potential problem, however. The com~
plex Z-plane potential, ¢(2), is now evaluated in
the right half of the Z-plane using the method of
images, i.e., the conducting plate is removed and
the poles in the left half of the Z-plane are re-

placed by zeros. Tre rational fraction et
mey be written:

&2 _ im

7 ) (9)

(Z+Z
Z-Zi

where the real parts of 2,, ZZ""Zn are all posi-
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tive and Zi =‘Qi_pi—)-

The entire imaginsry axis of tre Z-plane
corresponds to tte 9ass bornd of tte p-plane. It
is next convenient to nerform a few mathematicel
manipulations in the Z-plene before returning to
the p-olane.

C. Tre Rational Frection f(2)

The magnitude of the rstionsl fraction c“'(z)
is absolutely constant on tr(% imaginery axis in
the Z-plane, and thus if e¥(2) ig transformed back
into the p~plane, its magnitude in tre mass band
will be absolutely constant. However it will be
impossiblg to obtain an absolutely constant megni-
tude for _2_ with a finite number of lumped cir-

20
cuit elements. Acc(osdingly, csteos will now be
tal'en to modify e¥{2) in order to obtain a func-
tion whose magnitude on tle imeginery axis varigs
about & conctant velue in equal-rvipvole fashion.

Since the magnitude of c<p(Z) is equal to
unity on tre imaginary axis of tre Z-plane, and
since its vhase is a monotone function of the
imaginary component of Z, then on the imaginary
axJ(E of the Z-plane tre magnitude of the function
#(2) &+ (-1)? varies between O snd 2. The magni-
tude of the function £(2), defined by

z) n
P 4 (1)
£(z) = bl (10)
varies between O and 1 in equal-ripple fashion.
It should be noted that the numerator of f(Z) is
the even vert of the polynomial P(Z) needed in
step No. 2 of 5ection IIIB.

D. Tre Rationsl Fraction gz(2)

In order to obtain a rotional fraction in the
p~plane, the following function of Z should be
formed s

g(2) = £(2) £(-2) .
The magnitude of this function also varies between

0 2nd 1 in equnl-ripple fashion along the imagi-
nary axis of the Z-plane. When

op) = g(@]y (R 1)
p

(11)

(12)

is obtained, its magnitude will vary between the
sarne limits in the pass band. The zeros of g(2)
appear on the imaginary uxis of tte Z-vlane and
are double. Threrefore the zeros of G(p) anvear in
tle vass band and are double. The poles of G(p)
are, of course, the zeros of N(p)N(-p). In Fig.5
the voles »nd zeros for the rational fraction
G(p) corresmonding to the all-pass nole-zero
configuration of Fig. 4 are shown.

V Realization Methods

Once a W(p) which meets all necessary and
sufficient conditions has been obtained, the net-
work may be synthesized by any one of a variety of



methods. For instance, constant-resistance lattice
sections in tandem connectlons night be used to
realize a ygiven W(p). In some cases it may be
desirable to isolate sections of the network by
means of vacuum tubes. In many caeses it may be
convenient and desirable to realize the network cs
a reactance four-pole. If reactance four-pole
realizatlion is desired, it may always be obtaiged
by methods introduced by Norton or Darlington.

If the network is to consist of nure reac-
tances, two prgperties in addition to the four
oroperties of ;3_ listed in Section IIA are neces-
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sary in order to avoid ideal transformers. These
additional properties are:
B E
1. If # 0 at zero freqguency, then
ELO 1 Y 0

must be equal to unity at zero frecuency.

i B
2. If # 0 at infinite frequency,then .2
% g
nust be equal to unity at infinite frequency. Tkis

meuns thet in many low-pssc filter cuses, B nust
be chosen to produce a W(p) which is zero at in-
finite frecuency, r:ther than to oroduce a given
r as discussed in Section IIIC.

If these adjustments csn be tolerated, i.e.,
1f r meets specificetions, practical reactence
four-pole realization without ideal transformers
is in many cases norsible even though zeros of
W(p) are comnlex.

VI A Design txample

A filter which has magnitude-freguency and
phase~frequency characteristics which anoroximate
those shown in Fig. 3 will now be designed. Tre
reactance four--ole to be obtained will operate
between a conctant-current source and e l-ohm
resictance.

The zeros of N(-p), obtained by the Tscheby-
scheff -olynomie:l serles metrod ares

p, = 0.572¢0 ,

P, = 0.51679 + j1.10250 ,
P3 =Py = 0.51679 - j1.10250 .

The retionzl fraction Fap(P) = g ;? has the

phuose-frecuency charecteristic plotted in Fig. 11.
Tre cteps outlined in Section IIIB will now be
followeds

1. From &. 33

Z 2.01194 ,

0.£1769 - j0.31693 ,

|

SN
|

2; = 4 0.21769 + j0.315693 .
Ze

Tie even nart of P(2) is 3.6477222 +

2y

2
1.54797 and, ulen tte transformation 7 = 12_stl)§

1s used, the corresponding n~plane ratlional
fraction U(p) is

2
U(n) = 5.19569p" + 3.64772

2
p

3. Thus,
S(p) = 5.19569 o° + 3.64772 ,
L(p) = pS(n) = 5.195695° + 3.64772 p.

4e Finally,
G(p) =m%1—‘(2)'12—' s
p)N(-p)
_ 26.2952° + 37.9055% + 13,3062 .
Alp® + L.5688p% + 1.5757p2 - 0.72117]

If 4 is now closen go thet G(jl) =1, then

& a0 A 2
20.  » T .20 + 30
G(p) = 1950 + 37.905p" + 13.3060

1.30660° + 2.1753p% + 2.1849p° ~ 1

g 0 T T T T
2 INFINITE LOSS POINTS:
- ws 288
w - 301 we®
o
HE ]
a8 2 ol
4z 3
fa o
§, E o
g L
§ [ X} [+X ] .2 1.6 20 24

@ (RADIANS PER SEC.)

FIG.i¢

PHASE AND ATTENUATION CHARACTERISTICS FOR
A TYPICAL FILTER NETWORK

ihis G(p) meets conditions No. 1 and No. 2. In
addition its mv rnitule varies in Tschebyscheff
menner between tle linits of O ¢nd 1 in the »ess
band, i.e., ~1 < w < 1. Stevs outlined in Sec-
tion IIIC for obtaining W(») from G(p) will now
be folloved.

1. From Eq. 5, B niglt be obtained for a
given r. However, #s u step necessary in-order
to evoid use of «n ideel transformer in this
marticular case, B is chosen so that H(p) = 0 at
infinite frecuency. Thus

B = 19.4685 ,
end from E(. 5
r = 1.05415 .

From Zg. 4

_ohedd5D* ~ 29.2310% + 19,4685
1.3866p0 + 2.1753p% + 2.1849p% = 1

H(p) =

2. Fron Lig. 6



oy ke dd5D = 20,231 o +.19.4585
«(p) = % 5 A :
1.3866p" + 4.4549p° + 2.3316p
+ 11.5975° + 9.75125p° + 4.8859p+ 1
3. Another step necessary to rvoid use of an

ideal transformer is to choose l. in Eg. 7 so that
W(o) = 1. With L ig chosen, condition No. 4 is

still met since =7 Ry +R , and W(p)
Loamy,

will certainly be less than infinity at all real

¢}

frequencies. Thus, Eq. 7 becones
i) -0.2283201' - 1.501455° + 1
1.3866p + 4.4549p5 + 9-3316;31'

+ 11,5970 + 9.75125p° + 4.8859p + 1

In Fig. 11 curves of sttenuation =nd ohszse shift
vs. freguency for thls W(p) are stown. The atten-
uation characteristic was obtained from the for-
mulas

Attenuction (db) = 20 1og10 IiT%TI 5

The networl whick realizes W(p) is stown in Fig.
12.

1238p 1492p

1.293p

F16.12
CIRCUIT OF LINEAR - PHASE ELECTRIC FILTER

Tre overticular network shkown is designed to oper-

ate between an infinite-impedance constant-current
source and a l-ohm resistance. Ilowever, a network
vhich realizes this same W(p) could have been de-

signed to operate between finite resictances. Tre

resistances might even have been equal, i.e.,

Rl N R2 =1, since for all w the highest abso-

212
lute magnitude of W(p) is unity.

VII Design Veriations

Discussion of design nrocedures h: s been
formally restricted to low-nass filters. Alttough
the same general avnroach may be used for design
of other filter types, the conformel transforma-
tion is different for each tyne. For instance,
for the high-pass filter the transformation is

Z = (p2 + 1) .

The design nrocedure outlined always results
in a W(») taving double oles, and if any zeros of
W(p) occur &t infinite frecuency, they must be
double. Many practicable cices, notebly many
vacuun tube intersteges, recuire an odd number of
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zeros «t infinite frecuency. In order to obtain
an aoproximating function W (p) which Las an odd
number of zeros at inflnite frequency, the follow-
ing nrocedure, resulting in a W_(p) with a pass-
band magnitude-frequency charac%eristic whose
rinples about a constant value are nearly(but not
exactly)equal, may be followed

1. A oroper W(p) is obtained.

2. A polynomial formed from those zeros
which occur in the finite n-vplane is approximated
by means of ¢ volynomiel raving double zeros.

Tris may be done by means of Tschebyscheff poly-
nomial series. The approximating polynomial may
have less zeros than the polynomial to be aporoxi-
mated. Tris will mean more zeros of W,(p) at
infinite frequency. In any case, all zeros will
be double after ti'is aporoximation. Since the
poles are already double, a rational fraction
W,(p), having no double noles and an odd mumber of
zeros at infinite frequency, will be obtained when
the square root is taken. The function Wo(p) will
have one-half the phase of W(p).

VIII CONCLUSION

Filters having the same phase characteristics
as a given all-psss transfer function may be syn~
thesized using the method outlined in this naper.
The extent of tre pass band may be arbitrarily
chosen, and if no zeros of transmission are re-
quired at infinite frequency, then either an eqgual-
ripple approximation to constant magnitude in the
pass band may be mede #s close os desired, or a
given rate of cutoff may be clocen. However, if
transmission zeros rre required at infinite fre-
quency, the size of tte puss-band ripples and the
rate of cutoff of the magnitude-frecuency charac-
teristic devend unon the bandwidth of the filter,
i.e.y the slze of the rinples and the rate of
cutoff will be smaller for smaller bandwidths.

The general method involving the analogous poten-
tial problem is apolicable to filter tynes other

tr.an low-pass. The chief differences will be in

the conformal transformation.

In order to obtain filters whose nass-band
nagnitude-frequency characteristic is an equal-
riople anvroximetion of a constant value, double
netursl modes are required. A4lso, when these
filters rust hnave transrission zeros at infinite
frequency, an even murber of them is obtained,
ilowever, by merns of a desifn vrriation described
in Section VII, filters ray be synthesized vhich
have single notwrnl rodes and an odd number of
transmission ci-ro= rt infinite frequency. The
pass=band racmitude-frequency charocterristic of
these filters wi'l be a close, although not
exactly equal-ripple, approrriration to a constant
value,
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Abstract

This paper describes the development of a
stagger -tuned, band-pass amplifier at ultra-
high-frequency using grounded-grid triodes and
having a prescribed gain-magnitude response.
For the first time, the concepts of stagger-
tuning have been extended to grounded-grid cas-
cades so that triodes designed for ultra-high-
frequency operation can be effectively utilized
to obtain amplifiers having large gain-bandwidth
products and low noise-figures.

The amplifier described uses high perform-
ance, disc-seal triodes with special four-termi-
nal interstages. The special interstages ac-
complish the impedance transformation needed
for grounded-grid amplifiers and in addition
have a frequency characteristic which is approx-
imately that of a single-tuned circuit. Because
of this frequency characteristic, stagger-tuning
is employed to conserve gain-bandwidth product;
however, the nature of the characteristic re-
quires the use of novel low-pass to band-pass
transformations to determine the correct inter-
stage tunings for a "maximally-flat" type of
response. The feedback effects occurring be-
tween adjacent interstages are incorporated in
the alignment and tuning procedure.

The design and performance of an amplifier
having a gain of 50 decibels, a bandwidth of 50
megacycles, and a maximally-flat gain charac-
teristic will be presented.

Text

If one is to build high-gain band-pass ampli-
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fiers for receiver or carrier applications with
center frequencies in the ultra-high-frequency
region, the use of pentodes and conventional
techniques of stagger-tuning is ruled out. This
paper describes the use of high performance
triodes in a modified stagger-tuning scheme, in
order to achieve 50 decibels of gain at 400
megacycles with a filter-type amplitude-fre-
quency response, 50 megacycles wide, to-
gether with a relatively low noise-figure of 4
decibels.

It is seen immediately that the frequency
specifications make the task a difficult one.
The center frequency requirement places the
problem in a region between lumped elements
for lower frequencies and transmission line
or distributed elements for the higher fre-
quencies. The bandwidth requirement calls for
efficient interstage networks and high perform-
ance electron tubes. The traveling-wave tube,
which is an excellent very-wide-band amplifi-
cation component, is not well suited because of
its relatively high noise-figure, and because of
the lack of a controlled filter-type gain charac-
teristic.

A review of conventional electron tubes
eliminates the pentode from consideration be-
cause of the detrimental effects of transit-time
and lead-inductance loading. Similarly, other
tubes must be precluded with the exception of
presently available disc-seal triodes. Transit
time and lead-inductance effects are negligible
with these triodes at the frequencies of interest;
however, the structure of the triodes necessi-




tates the operation of the triodes in grounded-
grid connections, in general. Of the available
triodes of this type, the WE 416-A has by far

the highest performance figure, a practical gain-
bandwidth product of approximately 700 mega-
cycles. 1, 2

A. Grounded-grid Triodes

Considerations in the grounded-grid triode
can best be seen by examining the equivalent
circuit shown in Figure 1. For modern triodes,
the cathode-to-plate capacitance can be neglected
The output circuit of the triode consists of the
output capacitance and the plate resistance in
parallel. At the input, in addition to the input
capacitance, there is the electronic loading and
the transferred impedance from the interstage
connected to the plate, The grounded-grid
triode can be considered an impedance trans-
former having a step-up ratio of ( u+ 1). Thus,
the impedance transferred from the plate to the
grid circuit, together with the electronic loading,
is:

(rp+ ZinK+ 1)

M +1

where it should be noted that Zian 1 includes
Cout of the tri_ode but not rp. If the transferred
impedance, “!"K4 1, is for the moment ignored,
the high input conductance, approximately equal
to gm, if u+1=u, necessitates the use of
four-terminal interstages which provide an im-
pedance transformation. An additional require-
ment on interstage K comes from the transferred
impedance, Z‘“K-l- 1//4+l, which will in gen-
eral exhibit a variation with frequency, and thus
a two-fold appearance of the characteristics of
an interstage is produced. Thus means must be
provided either to incorporate this transferred
impedance or to minimize it. A combination of
both of these methods will be used in this paper.
If these non-unilateral effects of grounded-grid
triodes can be properly incorporated in the inter-
stage network, the stages can be considered
unilateral.

The gain function (output voltage / input
voltage) of an individual stage will be:

Mkt 1
MK

Egk+ 1 z

Egk

ng Tk (1)

where EgK is the grid-to-cathode voltage of the
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Kth triode, 8my, MK are the conventional trans-
conductance and amplification factor of the Kth
triode. Tk is the transfer impedance of out-
put-voltage to input-current for the interstage
connected to the plate of the Kth triode:

Eout - E8K+1

Z
Tk -
in Ix

The total gain function of an amplifier of n
tubes and n interstages will be:

E
out
~

K (#2721
Ein Wz

n
Z
; ng T (2)

K-

The gain of a stage or an amplifier will
refer to the magnitude of the gain function at
the center frequency, W, of the stage or the
amplifier.

B. The Interstage

As implied previously, the center fre-
quency specifications necessitate either the use
of lumped elements of extremely small value
or else the use of transmission-line elements
which at these frequencies will be quite large
and bulky, Lumped elements are usually pre-
ferred, and the interstage networks must be
simple in configuration for the realization of
these elements.

The amplifier requirements of high gain
and a square-type gain characteristic lead one
to consider stagger-tuning. Stagger-tuning
provides a means of conserving gain-bandwidth
product, and in addition, through stagger-tun-
ing, existing approximation techniques can be
used to obtain a desirable frequency charac-
teristic, such as a maximally-flat, band-pass
characteristic. If the criterion of network
simplicity is kept in mind together with stagger-
tuning techniques, the desirable interstage
specifications considered to this point can be
summarized as follows. The interstage must:
1. Provide an impedance transformation;
hence, a four-terminal interstage must be
used.

2. Be simple in configuration and consist
of simply realizable lumped elements.

3. Incorporate the nodal admittances of
the grounded-grid triode, and

4. Provide a single pole of the transfer
impedance in proximity to the frequency
region of interest.



An interstage which satisfies these require-
ments is shown in Figure 2.

In comparing Figures 1 and 2, it can be
seen that the conductances and capacitances can
be supplied at least in part by the input and out-
put admittances of the grounded-grid triode. An
extensive investigation of the properties of the
interstage has made it apparent that no addition-
al conductance should be introduced and that C,
should not be increased, if possible, above the
value ‘'supplied by the triode. Therefore, G .

» C1 = Cout» C2 = Cijp 4t padding. In this

section, the transferred impedance from the
following interstage will be neglected; therefore,
G2 . gm. The effects of the transferred im-
pedance will be taken up in the next section.

Although this network appears to be a low-
pass type, through a proper choice of the values
of the network elements, this network will provide
a band-pass gain characteristic which is approxi-
mately that of a single-tuned circuit. This can
be seen from an investigation of the transfer
impedance of the interstage.

E
ZT- —~out 1 /s3+(g_i+G2)SZ+
C2

Lin LC)C,
GG G, +G
(L p2172) sy G142 (3)
s CiC; LC,C,

where s - complex frequency variable, ¢4 jw
CS = C1C2 / (C1+ CZ)

Equation (3) can also be written in terms of the
poles (points of infinite gain) of the transfer
impedance:

Zp = H/ (s+T) (s+ <+in) (s+- j§)

= H/s3 (20047) 32 < T+A) s+ 72 (4)
where: hz :‘2_'.')2

These poles can be plotted in the complex fre-
miency nlane as in Figure 3,

Also shown in'Figure 3 is the pole-zero
plot of a simple, single-tuned GLC circuit.
If o of the complex pole pair, -« 2 j‘7 , can
be made small in relation ton , the response
of the network will be approximately that of a
single-tuned circuit in the real frequency region,
we The center frequency of the inter-
stage, W, is defined as the angular frequency
of maximum magnitude of the transfer function.

Methods will be advanced later in the paper
which will permit the design to commence in

a low-pass domain with subsequent transfor-
mation of the design data to the actual band-
pass domain, thereby eliminating the necessity
of closely aporoximating a single-tuned charac-
teristic in order to utilize stagger-tuning con-
cepts.

In the design procedure for an entire
amplifier it is usual to specify that each inter-
stage realize a particular complex pole pair,
-2 j?' Knowing the desired pole locations,
the remaining elements of the interstage, L
and C, can be obtained by equating the corres-
ponding coefficients of (3) and (4). Three non-
linear simultaneous equations result, which
can be solved to provide the following design
formulas.

2 @
c,% &C, - 22 -
C1 G
2 (22 T) (6)
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In addition to the design of the interstage,
attention must be given to the tuning of the
interstage. Tuning adjustments must, in
general, be employed because of the impossi-
bility of producing at ultra-high-frequencies
the exact values of the small network elements,
For the interstage, at least two elements
should be variable in order to provide adjust-
ment of center frequency and bandwidth. In-
vestigations have shown that L and C, are
convenient elements to be varied to adjust
center frequency and bandwidth, respectively.
The adjustments of these two elements do not
provide completely independent variations of
center frequency and bandwidth; however, these
two elements provide the greatest independent
adjustment.

C. Feedback

The characteristics and formulas just



presented were obtained with the assumption that
there was no feedback from the following inter-
stage. That is, the effects of the transferred
input impedance originating in the interstage
connected to the plate of the triode were assumed
negligible. It remains, then, to investigate
these effects and to determine how to incorp-

orate or to minimize them if they are pronounced.

A thorough mathematical presentation of this
interaction proves to be very cumbersome and
quite devoid of practical worth. However, for
the situation where bandwidths of the order of
only 10-20% of center frequency are required
and where high performance triodes are used,
a first order knowledge of feedback can be pro-
vided through simple graphs,

For first order effects, the feedback from
the (K4 2)th triode to the Kth interstage can be
assumed negligible. In addition, it can be shown
that only the real part of the transferred im-
pedance, #inK+ 1, need be considered to obtain
an accurate measure of the feedback. This
quantity, Re Zing4 1, will have approximately
the same frequency characteristic as the trans-
fer impedance “TK4 1 of the parent interstage
with the exception of being about twice as sharp.
Therefore, only the input conductance of the
triode {which is element G in Figure 2) will
exhibit the feedback. Since only a first order
knowledge is desired, the plate resistance of
the triode can be ignored, thus G; = 0. The
transfer impedance of interstage K can then be
expressed as:

ZTy (jw) = /[GZ( _ Wi+
lcz
jwl_1 _ 2)] (10)
LC,

- H/ [ M+ jN]
In (10), it is seen that only M contains GZ'
while N does not; thus, M will contain the feed-
back, Graphs of M and N for a representative
situation (as in Figure 4) provide a means of
visualizing the effects.

The first case to investigate is where the
center frequency of interstage K+ 1 is equal
to the center frequency of interstage K, i.e.,
Wok4 1 =WoK = Wo. In Figure 4, the approxi-
mate location of W is shown, and it is seen
that in this region, the magnitude of N is small
compared to M. Therefore, the effect of M is
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predominant in ZTK, and a decrease of GZK
because of the frequency peak of ZinK+ 1 at
Wy will produce an increase in the magnitude
of ZTK. For the two stage combination, the
overall magnitude of the transfer function in
the frequency region near(, will be increased;
however, the overall band-width of the com~-
bination will be decreased because the relative
sharpness of the real part of the transferred
impedance from interstage K< 1 produces an
increase of ZTK only near Wyoy. See Figure 5,

Next, wWok + 1 is assumed to be less than
Wok. If the difference of the two frequencies
is not too great, oK 4 1 will be located in
the region of minimum Mg. Therefore, any
variation of Mgk, due to the transferred im-
pedance, willzl‘)roduce little if any effect on the
magnitude of

Finally, for WOK+ 1> s %K-O'l will
probably lie in the minimum region of Nk,
and any variation of MK will appear directly
in the magnitude of 2Tk,

For these last two situations, a peak in
the magnitude of “Tg will appear in greater
or lesser degree at Woyg 4 ;. For the cas-
caded response of two stages it is convenient
and informative to assign the feedback effects
to the parent stage of the feedback, K+ 1 ,
rather than the actual stage K. Thus, stage
K+ 1 , through feedback, effectively has a
greater gain at its center frequency, Wok + 1,
and consequently, has a smaller effective
bandwidth. Where feedback is present in an
amplifier, it can be minimized and absorbed by
increasing the original bandwidth of stage K+ 1,
such that with the narrow-banding effects of
feedback, the proper effective bandwidth for
the stage is obtained.

The conclusion can be drawn that in a
stagger-tuned arrangement the center fre-
quencies of the interstages should be assigned
in a decreasing order as one progresses from
the amplifier input to the output. This arrange-
ment will minimize the effective bandwidth
shrinkage of the individual interstages. At
the input to the first stage it will be seen that
the feedback present at this point can be in-
corporated through a proper tuning adjustment
technique.

With the proper interstage arrangement, a



grounded-grid amplifier can be assumed to be
composed of unilateral interstages. Although

the feedback can be ignored to a first order, if

a desired response is to be realized very closely,
it will probably be necessary to adjust some s
stages empirically in order to incorporate and
minimize the feedback that appears.

D. The Staggered-triple

In using conventional stagger-tuning with
pentodes, one usually determines the number of
stages in a staggered-arrangement from the
desired selectivity needed in the pass-band
shape or from the desired overall magnitude of
gain. It is well known that the most efficient
use of the gain-bandwidth limitations of the
interstages and tubes is obtained in an n-uple
arrangement where n is the needed number of
single-tuned interstages. Of course, practical
considerations often dictate a compromise
between ease of realizability and efficiency.

For stagger-tuning with the triodes and
interstages of this paper, it can be shown that
ideally the most efficient arrangement is again
an n-uple. However, as noted in the last section,
a small amount of empiricism will probably be
necessary in order to obtain the desired effect-
ive interstage bandwidths. In addition, it will be
seen in the next section that it is not possible
in general to find the exact tuning data to realize
exactly a desired frequency characteristic.
Therefore, the small empirical adjustments
will also be needed to compensaté for tuning
inaccuracies, In order to realize as closely as
possible a desired frequency characteristic, it
will be necessary to determine which stages
need adjustment. The larger the value of n
(the number of staggered interstages), the
smaller will be the bandwidth requirement for
certain of the interstages. The feedback effects
from the narrow stages will be greater than for
broader stages, necessitating greater empirical
adjustment. For a large value of n, it will not
only be difficult to establish which stages need
adjustment, but also how much adjustment is
necessary. This follows because of the close-
ness of the center frequencies of the individual
interstages. Thus, although a large number of
stages is desired for most gain-bandwidth effi-
ciency, a small number is desired for the feed-
back problem. These considerations point to
the staggered triple as the best compromise
arrangement for these grounded-grid amplifiers,
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For a triple where the individual interstages
have center frequencies at either the ex-
tremities or the center of the pass-band, the
empirical realignment can be easily and
accurately provided following an inspection
of the overall triple response.

The staggered-triple will have a pole
complement as shown in Figure 6.

The output of the last stage of the triple
will usually be furnished with a load such as
a terminated coaxial cable., If, for example,
an amplifier is designed for use in a 50 ohm
coaxial system, G of the last stage will be
supplied by terminated 50 ohm cable rather
than the input conductance of another 416-A.

On the basis of the amplifier gain magni-
tude, the best stage for this decreased load-
ing would be the wide stage of the triple.
Placing this stage last is not in accordance
with the arrangement for minimum feedback;
however, the interchange of the low frequency
and center frequency stages produces a negli-
gible increase in feedback. Thus, the triple
arrangement from input to output that will be
ugsed is: high-frequency stage, low-frequency
stage, center-frequency stage.

E. Wide-Band Synthesis Procedure

Because of the required ratio of band-
width to center frequency of only 10-20%, and
because a small amount of empirical adjust-
ment has been permitted, it might seem
sufficient to employ narrow-band synthesis
techniques. The usual narrow-band technique
is to consider the region in the band-pass
plane near the desired center frequency as a
low-pass region, positioning the complex poles
in this region in accordance with knowledge of
the low-pass situation, i.e., ignoring the
presence of poles outside of this region, If
such a technique is used for the interstages
of this report, a serious distortion of the
frequency characteristic of the amplifier
results primarily due to the presence of the
real poles. Even for the modest bandwidth
requirement herein, the empirical correction
of this distortion to make a close realization
of a desired characteristic is a very tedious
and lengthy process,.

A procedure to obtain wide-band, cas-



caded amplifiers of desired pass-band shape
is to investigate the desired type of interstage,
with respect to poles and zeros of the transfer
function; to determine the poles in a low-pass
situation which will realize the desired fre-
quency characteristic; and, finally, to evolve
a conformal low-pass to band-pass trans-
formation which will transform the low-pass
pole positions to actual band-pass positions
which can then be realized by the desired inter-
stage type.

This process can be used here except that
it has not been possible to find a simple trans-
formation which is exact with respect to the
actual poles of the interstage. However, trans-
formations have been found which evolve poles
approximating closely the actual poles of the
interstage. One such transformation is:

P = -s(sz+ 1) (11)

The low-pass pole configuration which provides
a maximally-flat transfer characteristic and
which is compatible with a triple is shown in
Figure 7. Also shown in Figure 7 are the poles
in the band-pass plane that are evolved through
use of (11). It is seen immediately that the
band-pass poles of Figure 7 are not physically
realizable because of the poles in the right

half plane. However, if the negative real poles

of the triple, shown in Figure 6, are close to
the origin, say, 3/71 72 73 /W, <K 0.3,
(11) will provide 2/ close approximation to
desired performance.

If the mean coordinate of the real poles is
greater than 0.3, a tilted pass-band results.
For the 416-A triode, and with triple speci-
fications for a 400 megacycle center frequency
and 50 megacycle bandwidth, the real pole
locations are 0.5 %(1 0. If for simplicity
the mean value of 7/“).— 1 is assumed, the
error in the transformation is as indicated by
the upper curve of Figure 8. This large error,
incurred because the negative real poles are
not close to the origin, leads one to consider
another simple transformation which neglects
the real poles entirely,

p= -j(s+1) (12)

The error due to this transformation, again
for the 416-A, is shown by the lower curve of
Figure 8.

The nearly equal and opposite nature of
the errors from the two transformations in-
dicates that approximately valid interstage
locations can be obtained for the 416-A by
an arithmetic comparison of the pole positions
evolved by the two transformations. These
mean locations are shown in Table 1. The
validity of these locations can be established
analytically; however, for the purpose of this
paper, the results from an experimental
amplifier may suffice.

The complex pole locations thus can be
used with (5) - (9) to determine the network
elements and gain of the triple. It is still
necessary to establish the tuning data of the
individual interstages of the triple. The
approximate transformations, (11) and (12),
can again be used to obtain this data. For
the two necessary adjustments, it is con-
venient to adjust the center frequency and
the frequency of the upper 3-decibel band-edge.
The frequency characteristic of the interstage
is then completely defined. These two fre-
quencies can be obtained by noting for each
pole in the low-pass plane, the low-pass
frequencies corresponding to the interstage
center frequency and upper band-edge.

These low-pass frequencies can then be
substituted into (11) or (12) where the complex
variables are now considered to be pure
imaginary, and the real frequencies of align-
ment are obtained. For the 416-A amplifier,
a mean comparison can again be used to ob-
tain valid, accurate tuning data.

Rather than use an averaging process as
above, a method has been devised which will
provide accurate tuning data for any mean
pole location. The method is derived for a
criterion of zero tilt at band-center for the
triple, and results in:

ve e (wioy =)

where v is an alignment frequency in the low-

pass Blane !gggm th jv-axis), and a
2 3 ]) is the mean real pole

locatlon

Thus, if it is not desired to predict
accurately the performance of the amplifier,
either (11) or (12), together with design form-
ulas, can be used to determine the order of



magnitudes of L and C2. {13) can then be used
to tune the amplifier properly to realize a
desired frequency characteristic.

F. The Practical Amplifier

Using the techniques described to realize
a desired band-pass gain characteristic with
a staggered-triple, a complete amplifier will
be available with the addition of a suitable
input circuit. Also, attention must be given
the problems of actual tuning procedures.

The input circuit should possess the follow-
ing properties:

1. A low noise-~figure for the amplifier
2. The incorporation of the feedback
effects from the high-frequency stage of
the triple

3. A broad-band transfer function when
operated with a low-impedance source.

The simplest input circuit will be a direct
connection of the signal source to the input of
the first triode, together with shunt inductance
to resonate the input capacitance of this triode,.
This connection is shown in Figure 9.

It can be shown that this circuit will pro-
vide a satisfactory transfer characteristic, in
spite of a mismatch, for reasonably low levels
of source impedance.

In a manner similar to that used for the
interstages, a qualitative knowledge of the
feedback effects on this circuit can be simply
obtained. Such an investigation points out that
the feedback effects are much greater here than
are encountered in later interstages. However,
the effect of feedback at the input can be in-
corporated through the use of the following
tuning procedure. First, the single-tuned
input circuit is resonated at the center fre-
quency of the overall amplifier. The source
is then connected and the output of the first
stage of the triple is monitored. This first
stage of the triple can now be adjusted for the
proper center frequency and bandwidth, and the
narrow-banding effects of the feedback will
automatically be compensated.

It should be noted that this adjustment
technique could theoretically be used for the
individual interstages; however, it is difficult
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in practice to introduce the source to the in-
put of an internal triode without effecting a
frequency distortion in the alignment.

In practice, high-impedance probes
directly-connected into the input of each
interstage, except the first, couple energy to
the interstage; and the output of the interstage
is monitored with a high impedance crystal
detector circuit which is also permanently
connected to the interstage. The permanent
connection of these probes and monitors pro-
vides for a constant loading effect on the
interstages.

The actual tuning of an amplifier should
be started with the last stage of the triple,
progressing toward the input. At the input,
however, the input circuit should be resonated,
as mentioned above, before tuning the first
stage of the triple.

An estimate of the noise figure of this
input circuit can be obtained through the use
of conventional formulas. For the purposes
of illustration, a WE 416-A triode will be
used, and a center frequency of 400 mega-
cycles and a source impedance of 50 ohms
will be assumed. For this triode, the transit
time effects are negligible at 400 megacycles,
and for careful construction of the input
stage, circuit losses can be neglected. The
noise figure of the input {and consequently
the amplifier, since the power gain of a 416-A
is large) is then approximately:

Fxx14__ 2.5
gm R Source
For a g,, of 0.04 mhos and a source im-
pedance of 50 ohms, a noise figure of 4
decibels can be obtained. 3

(14)

If it is desired to cascade these staggered-
triples, a requirement of the last stage of the
first triple is a very constant resistive load.
That is, the second triple of the cascaded
system must have an extrememly flat input
impedance, constant, say, within 1% over a
band of 15% of center frequency. To accom-
plish this it has been found necessary to em-
ploy an active input network for the second
amplifier rather than a passive network,
Such an active network is a grounded-cathode
triode. Thus the input becomes the familiar
cascode circuit, as shown in Figure 10.4



For triodes such as the 416-A, the real
part of the input impedance of the grounded-
cathode triode is sufficiently large to be negli-
gible with respect to a resistance which is
equal in value to the source impedance. The
imaginary part of the input impedance is capaci-
tive and can be resonated with an inductance.
The feedback effects for the cascode will be
similar to the direct connection because of the
single-tuned circuits. Here again, then, the
feedback can be incorporated through proper
tuning adjustments,

With this cascode circuit an extremely flat
input impedance of desired magnitude can be
obtained, Because of this flat input-impedance
magnitude, cascading of two or more ampli-
fiers can be accomplished without any diffi-
culties due to inter-action between the indi-
vidual amplifiers. It should be noted that al-
though the noise figure of a cascode circuit can
be remarkably low, it is not so in this version
because 'of the grid resistor added for broad-
banding reasons, But since the cascode follows
a first triple with high gain and low noise-figure,
the second triple has almost no effect on the
overall noise figure,

G. Practical Example

An amplifier has been constructed using the
design procedures outlined in this paper. The
amplifier consists of a cascode input circuit
and a staggered-triple employing 416-A triodes.
The amplifier specifications were for a center
frequency of 400 megacycles, a 3-decibel band-
width of 50 megacycles and a maximally-flat
gain characteristic. The cascode input circuit
was chosen to illustrate the triple used in sec-
ond (and later) stages in a cascade of triples,
The direct input circuit is even simpler to
obtain, The complete amplifier is shown in
Figure 11. A schematic diagram of the ampli-
fier is shown in Figure 12, with only the r-f
circuit shown and those network elements

supplied by the triodes indicated by broken lines.

The tuning data for the amplifier were ob-
tained in the manner indicated in Section E (see
Table 1), After the initial tuning of the ampli-
fier, a slight tilt is usually sustained in the
gain characteristic because of the incomplete
absorption of the feedback effects and because
of the approximate nature of the transformation.
Therefore, an inspection of the initial results
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is needed to determine which stages need
further trimming in order to realize the de-
sired overall characteristic of the amplifier.

The actual performance of the amplifier
is shown in Figure 13. The observed in-
sertion gain of 50 decibels, for Curve "b"
of the figure, agreés almost exactly with the
calculated value, which value included the
gain increase at the amplifier input due to
the feedback from the first stage of the triple.
The cascode input circuit of the amplifier
provided an input impedance which was con-
stant within 1/2% over the pass-band,

TABLE 1

Complex Pole Locations and Tuning Frequencies
for a Maximally-flat, Staggered-triple

Center frequency: 400 3-db bandwidth: 50

Center Hi Freq. |Lo Freq.
Freq. stage| stage stage
Pole location -24.9 + -11,35¢+|-14,1 +
j402. 35 jaz1 j377.8
Tunings. . .fy 400 420.6 377
3 db 423.6 431.6 390.7

All values in megacycles
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NETWORK ANALYSIS WITH THE AID OF THE MATRIX GENERATING POLYNOMIAL'

by
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Brooklyn 1, New York

I. Introduction

This investigation arose from an attempt to
simplify the derivation of a longlneglected for-
mula published by G. A. Campbell.* Not only was
this attempt successful, but from this new and
physically evident derivation the important
Sylvester identity2 was an immediate by-product.
The surprising feature is that the Campbell for-
mula is the solution to a network problem while
the Sylvester identity is regarded solely as a
mathematical matrix identity. This feature was
emphasized when it was soon apparent that the
technique, implicit in this new derivation, allow-
ed one to derive with remarkable simplicity the
Jacobi ratio theorem3 as well as theorems on equi-
valent networks. Here then is a technique which
bridges the gap between the network analyst and
the mathematician and whose ultimate range of ap-
Flicability is yet to be charted. In order to
accommodate the mathematical inclinations of vari-
ous groups, the following equivalent epitomiza-
tions of the core of the technique can be given:

A. The characterization of a network by
its input-output relation, or

B.. The characterization of a matrix by
its generating polynomial, or

C. The characterization of a (finite
dimensionzl) operator by its spectral
surface.

The following pages shall elaborate upon this
point of view and indicate its fruitfulness as a
means of simplifying and unifying derivations,
correlating otherwise scattered formula, and ex-
tending known results.

II. The Network Element as an Operator

In this paper it is sufficient to define a
multiterminal network as an operator which effects
a transformation between two electrical vectors.
As can be said of any operator, depending upon the
choice of a vector basis, one can obtain a multi-
tude of matrix representatives. In particular,
the voltage and current vectors give rise-to the
impedance and admittance matrices while the in-
cident and reflected wavess result in the scatter-

2

* This work was performed for AFCRC under con-
tract AF 19(122)-3.
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ing matrix. (This definition of a network as an
operator is strongly indicated when one deals
with a multiterminal waveguide junction or a non-
linear network in the small signal region, es-
pecially if these networks are non-reciprocal as
occurs for a gyrator.l)

It should be remembered that an operator acts
upon vectors in its domain .and transforms them
into vectors in its range, but the domain and
range may by accident or intent be contained in a
larger dimensional space. The Question of equi-
valent networks is then identified with the ques-
tion of those operators which have the same pro-
jection onto a given subspace. This shall be con-
sidered in later sections.

Although abstract operator viewpoint offers
a convenient means for exhibiting the unity of
the various topics, it shall be only sparsely and
parenthetically used and a network shall, in
general, be equated to a matrix representative.

III. The Generating Polynomial of a Matrix

Classical terminology describes the sum of a
power series in a single variable as being the
generating function of its coefficientss ( For
example, the Bessel functions of integral order
can be so defined and G. N. Watson hence refers to
them as Bessel coefficients.é) Analogously, a
polyriomial whose coefficients are the various
minors (or subdeterminants) of a matrix can be
said to generate the minors of the matrix. Such
a polynomial is a generating polynomial of the
matrix. When formed by the mathematical process
of polarization7 (described below), this shall be
called the generating polynomial of the matrix.
More precisely, given an arbitrary matrix A =
[1j], one introduces an awxiliary matrix @ =

E\ij] and defines the generating polynomial of A

with respect to  as the polynomial in the A's
obtained from the expansion of the determinant
JA + @|. Essentially, this considers the n th
order determinant |A| as a homogeneous function
of its n? elements 2335 and when each ajj is aug-
mented by an indeterminate Aj4, one obtains the
TompleTe polarization of this determinant, i.e.,
A+ gf.

The implications ¢f this generating poly-
nomial can be gleaned from ‘he fact that the spec~
tral theory of a finite operator is but the
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special case wnich occurs when & = AE where \ is

a scalar and E is the unit matrix. The total set
of values of the scalar A\ for which |4 - AE| =

is then denoted as the spectrum of A. This spec-
trum consists of a finite number of complex points
since a polynomial in a single variable of degree
n has at most n distinct roots. Conseguently,
when viewed as a generalization of this spectral
theory, the vanishing of the generating polynomial
can be said to cdefine the spectral surface.

In passing, one should note that the bilinear
form or inner product often associated with a
matrix £ corresponds, essentially, to the generat-
ing polynomial of A~X1 obtained when ® has a rank
of unity.

The motivation for the introduction of the
generating polynomial intc network analysis is
clear from ivs physical interpretation. For de=-
finiteness, consider a network wnose behavior can
be stated by the matrix equation V = ZI where
Z Edlj and Zjj are inte arnzl impedance para-
meters waich represent the network. The effective
extaernal couplings or termirations can also be
characterized by a matrix, & = Ekij , which re-
lates the same voltage V end current 1 by the
equation V = =3i. For example, =M1 s the input
iwpeoance at terrminal 1 when terminzting impedances
\ij are comnected between the remaining terrinals.
Combining these last two equations, one can eli-
rinate the voltage to torm {Z + R)I = G. It is
now a well known result tnat s non-trivial current
I car exist if and only if |2 + @| = 0, i.e., if
znu only if tne ceterminant of the matrlx (Z + R)
vanishes. This single ecguation, a polynomial in
the A\'s, is then the input-output relation of the
network.

Two networks are called eguivalent with re-
spect to 2 class of terminations when each network
oresents the same input-output transformstion for
any set of terminations in the class. In other
worés, networks are called equivalent when their
generzting polynomials are ecuivalent, i.e., de-
pencent in the mathematical sense. It is then a
simple but vital fact that the corresponding poly-
nomial coefficients are vroportionsl, i.e., corres
ponding coefficients have a common ratio. Here
then is the parent to a family of ratio theorems.

It is of interest to note that the number of
terms in the generating polynomial |A + &| is
egual to thes numter of minors of the matrix &.
;f,R is noa-singular and of order n, there are
ncq ainors of orcer m where the binomial coef-
{icient pCi; is defined b" the gencrating poly-
nomial (1 + x)0 = 2 C (M1, The total number of
minors of all oruers 1s then E,p = 2n6n =
2nt/a! nl. (This last statement presumes the con-
vention tnat the minor of orcer zero is unity.)

Of course, 51nc= the matrix has only n¢ distinct
elements only n¢ of these minors are independent!

Iv. ng_gggobi Rg}%o Theoren
(Function2lly Related Operagggil

The Jacobi ratio theorem relatss the minors
of a matrix to the minors of its inverse and ap-
plies directly to networx theory wherzs, for ex-
ample, the inverse of an impedance matrix is an
sdrittance watrix. (The theorem states3 that
every ratio of a minor of 2 non-singular matrix
to the corresponcing complementary cofactor of

thz inverse matrix has the same value.) From the
rhysical esquation, ss given above,

V= Zl = «3I , it follows that
771 V= I-= 1V , and hence
|Z+s:|=0<F% lzl+>.1|

{the symbol & reads "implies anc is implied
by" or "if anc only if".) The =quivalence of
these generating polynomials already contains the
Jacobi ratio theorem but the presence of &1 is
slightly swkward., This is not serious since &
can choose with a simple form, for example a
diagonal form, wience &1 is evzluated dirsctly.

It is illuminating to observe the zbsence or
removal of @1 in the mathematical derivation of
the Jacobi thzorem in this implicit form of ecqui-
valent gensrating polynomials. This derivation
~roceeds from the simple identities

-1 -1,

2+R=2E+27 Q) =(E+ Q)2
which mersly postulatz |Z] s O. The associated
determinants are relatecd by the similar equation

2zt | lz].

lzllE « 277 2| =
Since the expansion of a deter:inant is ot re-
ducible into factors, no information is lost when

lz + Rl = |E + QZ-l

this is put in the form of ecuivalent polymomisls
namely,

~ -1, RS |
|Z+2] =0 & |E+27 2] =0 & {z+r277|=0.

From this the specific details of the Jacobi
theorem are readily obtained. Upon accepting the
additional hypothesis |R| #= O, one can employ
the identity

|z + Q] = ot 27t

) 2
to obtain the result of the previous physical de-
rivation, nemely,

z+gl-=0 & Jgt+zt -0

From the above mathematical derivation, it
is clear how one extends the results to any two
functionslly relsted matrices. Thus, if matrix
7 is a known function of matrix S, 2 = f(S), it

follows that



[Z+8 =0 & |[£(s) + 8] =o0.

For example, the relative impedance matrix ZR and
the scattering matrix S are related by

Zp = (5+E) / (5-E)
and hence
|zﬁ+9| =0 & |(8+E)+ ¥S-E)| =0,
a total of .0, relations between the Zg and S

matrices when each has order n. It is significant
to rewrite the zbove results as

12; + 2] =0 & |5+ (E+s)/(E-)] = O.

This indicates the sufficiency of a single con-
struction for z generating polynomial since a
aifferent constiruction can otten be reduced to the
question of functionally related operators.

V. "Elimination of Concezled Circuits"t

(The Projection of an Operator)

4, familiar problem in analysis is the elimi-
nation of concealed circuits (linear constraints).
(it microwave frequencies this corresponds to
fixed terminations at some of the terminal glenes
of a multiwaveguide junction.) In matrix terms
this permits the following typical illustration:
given

5 ann 22l 23 (1% ' . *1
y a,, a a x All E x
2| .| % 22) %23 2| _ | 2
| &
Y3 231 232l 233 %3] [Al 8, [|x
when x3 is eliminated, deterrmine %' in
T N a! q' X X
1 11 12 1 Rk
= ] =
P 31 352 | % R

(¥ore succinectly, one secks the projection of an
operator onto a subspace which in this illustra-
tion is its range.)

One immediate solution of the problem ex-
ploits the above incicated partitioninﬁ of the
matrix to obtain the reduction formula

1

' o= - A x- A .
A Al Ao fh 1‘.3

Llternatively, one can invoke Cramer's rule
(a part of the Jacobi ratio theorem) to obtain

=) Mitalbn ||
il D U e PR PHEC I I R
- ol ]|
= at A

3 13 f231 433 || V3

L1

and hence
-l . L |fafa
lal [ 412 4p
(4, ., denotes the cofactor of a, ..)
1J 1J

The Campbell solution is more involved but
the simplicity of its derivation by the polynomial
technique shall now be incicated. The equivalent
generating polynomials are:

1t M1 22t Mo 3,
B1 " A1 @2t Ay 3py

a

31 832 333

IMag + My255.c = Matrpee ¢ -ee ¢ o] =0 or

IAls, Mifisee = Mafisay t ot A = O

where « = 11'22 (accessible ter-
_ minals) End Ax/i'=Aij-c
¢ = £ = 33 (concealed ter- J
minals)
and

1 1

A1t M1 22t M
1 1

2 IR TR PR PP

] 1
fxl + X11a22 - k12321 + eee

(The svmbol A3 4.kl denotes the minor which con-
jakl while

this minor is cdenotedl by Aij-kl' With the gener-

tains the product ay the cofactor of

al case in mind 8jj.c can be describac as the pri-

mary9 superdeterminant of the concealed deter-
minant ac, this superdeterminant formed with re-
spect to the accessible element ajs.) The ratio
of corresponding coefficients in these polynomials
contains the Campbell formula as applied to the
above illustration, namely,

1 1
81 %12 1 #1°c #2ec

1 1 a
31 22 € [ 81.c 222-¢

1 A Aarz

AL A—(/21 A—(/22

(When the Campbell formula is equated to the pre-
vious partitioned matrix recuction formula, one
obtains a cheap derivation of an identity noted by
Cullis9.) But, in addition to this Campbell for-
mula, the equivalence of the generating poly-



nomials also contains the important Sylvester
1dent1ty which for this three dimensional case
assumes the form of the single equation

|a|/ac

lall =

Both the Compbell formula and the Sylvester
identity can be embodied in the single statement:
When two matrices have the same accessible ter-
wminals and with respect to these they effect the
same transformation then every ratio of the co-
factor of an accessible minor of one of the ma-
trices to the cofactor of the corresponding ac-
cessible minor of the other matrix has the same
value.

VI. ilteration cor icdition of Concealed Circuits

(Operators with tne Same Projection)

# pasic tneorem on equivalent neuworks is tne
statement:

IT PSG = 5, then A SFAQ
(wnere ® reads "is equivalent to")

The proof is immediate for from the hypotnesis,
FeG = &, it follows that
|a+g| =

|P]aesif]2] = [PaCag]

and, consequently, i and PAG have ecuivalent gener-
ating polynomials.

A4 simple but important corollary occurs when
& = =\E for then & ® PAP~1l for all non-singular
matrices P.

A4 corollary more directly applicable to net-
work snalysis (and indeed synthesis) is the follaow-
ing:

B .
By Ay 2,10 |
If A=|--|--|and @ = --:-- then £ S PAG
; |
fq IA,J_ -0 |0-
| By E|O
wrere P = i T ; Q= -1
9 Y| @

and P, P2, G and @ are arbitrary.

This corollery is in no way limited to re-
ciprocal networks. However, if the network repre=-
sented by the matrix A is reciprocal, i.e., if the
matrix is symmetrical and the equivalent matrix is
to be symmetrical, then ¢ is the transpose of P
(¢ = PI) anc one obtains the familiar resultl®
A= pipT,

The ciscussion is easily extended to equiva-
lent networks with a cifferent number of conceal-
ed circuits by the remark that

L2

=1 O
J
=

o>

The validity of this is evident since by the
Laplace expansion of a determinant

regardless of the cimension of E.

VII. Compcund Networks in General

Before the interconnection of multiterminal
networks is susceptible to treatment by the gener-
ating polynomizl a bit of space work must be cone.
Suppose two networks, distinguished respectively
oy suvscripts K and L, are to be interconnccted.
For variety, the scattering formalism shall be us
wherein the incident wave a is transformed into
the scattered wave b by the scattering matrix S.
It shall be presumed that the behavior of the net-
works are given by

by =S¢
gy OBy &
i.e.,
b SK1° X £
= - - = s
b 015 (& =

both before and after compounding. (For definite-
ness, one might consider each of the two networks
as a four-terminal pair magic tee and the networks
are then interconnected with the aid of a gyrator
so as to form a four-terminal pair circulator.+t)
The spade work alluded to above consists of elim-
inating the concealed bj to obtain b' = S'a' where
all the b] are independent and the new matrix S!
is square so that b' anc a' are vectors of the
same dimension. For example, from the connection
constraints it is relatively easy to find matrices
C1 and C2 such that C; b = b' and a = C2 a' whence
the goal is achieved by S' = C; S Ca.

It is at this point that the generating poly-
nomial scheme is applicable. As expounced in the
preceding sections, one can now obtain equivalent
networks by the elimination, alteration, or zaddi-
tion of as many concealec a; as desired.

VIII. Compound Networks sAmenable to

Matrix Multiplication

If the networks are rore special and the
interconnections are of a more mocest nature than
envisaged above, it is possible to cast the re-
sults of the preceding section in the form of a



matrix multiplication scheme as commonly used for
the tandem connection of quadrizoles. The results,
without a deteailed derivation, shall be listed for
the case of a quadripole connected to a three-ter-
minal pair network where for each network the ter-
minal observables are not Vi and I; separately

but rather their ratio. This result has special
relevance for a microwave network since the maxi-
mum knowledge gained from slotted line imgedance
measurerents is merely the set of coefficients in
the generating polynomial which occur when the
polarizing matrix @ is diagonal. These coef-
ficients are all the principal minors of the im-
pedance matrix and no other minors. (Incidentally,
since there are A.Cp = 2" principal minors for a
matrix of order n, including unity as the minor of
orcer zero, it is readily shown that 27 - 1 inde-
pendent impedance measurements suffice to deter-
mine these principal minors and additional such
rmeasurements add no new information. Thus, from
the fact that the non-reciprocal or gyrator aspect
of a network is not ceterminable from the princi-
pal minors, it follows that the gyrator effects
can not be determined from measurements which ce-
pend only upon the ratio Vi/I; at each terminal,)

Let the terminal pairs of thz initial six
pole be numbered 1, 2, and 3 while the quadripole
terminal pairs are numbered 4 and 5. Furthermore,
let terminal pairs 3 and L be directly connected.
Then with primes to denote the elements of the
equivalent three-terminal pair network and a use
of subscripts explained in section 5, the equiva-
lence can be stated oy the following matrix equa-
tion:

11 211-33
L3 252-33 }
21-22 %2233
! 3
[ 2 Zyegy |
22 222-33 Zuy Zuyess
L1.22 411422:33 1 Zgg
1 Zyy |

(The horizontal lines within the matrices serve

as a reminder that these are prgportional or frac-
tional~“ matrices which are only defined by the
ratio of their elements.)

L3

IX. Conclusion
The preceding sections have touched upon
facets of multiterminal neiwork analysis each of
which coulé be expanded upon at great length.
This was avoidec here since the point which was to
be stressed was the ease and cdirectness in which
basic results were obtained with the aid of the
single technique of characterizing a matrix by its
generating polynomial, Armed with a working know-
ledge of this method, one should be able to repro-
duce and extenc the results contazined herein.
Moreover, the vroceedings can be made palatable to
the mathematician as well a2s to the engineer.
However, for a ceeper insight into the mechanism
and a more co-ordinatec view of the various topics
the operator view of a network has ruch to recom-
mend it.
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CONDENSED VERSION OF

TWO NzW EQUATIONS FOR THE DESIGN OF FILTERS

By Milton Dishal

Federal Telecommunication Laboratories

Nutley, N. J.

I. INTRODUCTION

There are some situations where a selec-
tive circuit which is equivalent to an inverse
amm, i.e., constant-K-configuration filter is
to be designed, and the unloaded Q) of the elements

to be used is sufiiciently high for them to be
considered 'mon-dissipative'., 1his paper pre-
Sents Ewo equations which, for the non-
dissipative case, specify the exact element
values required for the filter to produce that
attenuation shape having the highest possible
rate of cutoff, i.e., the Chebishev attenuation
shape.

II1. SOME EXAMPLES OF NON-DISSIPATIVE EQUIVALENT-
NVERSE=-ARM FILTERS AND THE THREEZ CIRCU
"OHJTANTS AT ICH MUST BW, CORIGCTLY ADJUSTED

Because so many of the selective circuits
now being used, or designed, seem physically
so different from the basic inverse amm configura-
tions, many engineers new to the field do not
realize that the design equations for the con-
stant K configuration can be applied.

It thus seems worthwhile calling attention
to a few of these equivalent inverse arm filters
to stress the wide applicability of the two
design equations to be presented.

It will be noticed that with one exception
the bandpass examples are from the U.H.F. and
microwave region, because it is mainly in this
region that the ratio of unloaded Q to fractional
mid-frequency Qo is high enough for the

W
elements to be considered non-dissipative.

Figure la shows a common direct-coupled
waveguide bandpass filter using four resonctors;
in another language it would be called a quad-
ruped tuned bandpass filter. The equivalence
of this to the fundamental constant K configura-
tion (either bandpass or low pass) has been
excellently described in W. W. Mumford's paper.
(Reference 1 to which the reader is referred.)
In the "lang uage™ which this present paper will
use, the design information which the engineer
must possess (and which is required for all
equivalent constant K configuration filters)
is:

L

1. The required coefficient of coupling

Kr(r+1) between adjacent resonators. This fixes
the size of the opening which must be made in
the wall between adjacent resonators, and as

is well known this opening can take the form

of a slot parallel to the electric field vector
which will give the equivalent of mutual-
inductance coupling between resonators, or a
slot perpendicular to the electric field vector
vhich will give the equivalent of "low-side"
capacitive coupling between resonators, or a post
parallel to the electric field vector which will
give the equivalent of self-inductance coupling
between resonators, or in general any kind of
opening which will allow some of the electric
and/or magnetic field of one resonator to enter
the adjacent resonator.

2. The required resonant frequency (f,) of each
resonator. This fixes the distance between

the walls of each resonator. As is well known
the coefficient of coupling mechanism must be
correctly considered a part of each resonator

to which it is connected; otherwise the passband
mid-frequency will not coincide with the
resonant frequency.

3. The required singly loaded Q(Q1) of the
first resonator (produced by correctly coupling
the generator to this first resonator); and
the required singly loaded Q (Q,) of the last
resonator (produced by correctly coupling the
load to this last resonator), If a teminated
wave guide is used on each side of the filter,
then this fixes the size of the opening in

the first and last wall of the structure of
Figure la; or if desired, these first and last
walls can be completely closed off and, as
Figure la attempts to show, the generator and
load can be capacitively coupled to the first
and last resonators by probes (or magnetically
coupled by loops). Whatever the method used,
this generator and load coupling must be ad-
justed until the first and last resonators
respectively have the required singly loaded
Q1 and Qp.



The above three well-known circuit
constants have been discussed in a previous
paper (Reference 2) and methods of measuring
and adjusting them have also been presented
(Reference 3).

Continuing with some other examples
of equivalent-constant -K structures,
Figure 1b and lc show that by discarding
the wavegulde concept in favor of the
coupled resonator concept, additional useful,
and different-looking, filters can be
built with the same four resonators. Figure
1b shows the four resonators of Figure la
rotated by 90 degrees and placed together
insuch a way that the openings between
adjacent resonators produce the equivalent
of "high side" capacity coupling. Figure lc
shows the same four resonators arranged
in yet another physical configuration which
will still produce the same small-percentage
bandwidth filtering action: there is
equivalent "high-side" capacity coupling
between resonators 1 and 2, mutual inductance
coupling (due to a vertical slot) between
resonators 2 and 3, high-side capacity
between resonators 3 and L and the generator
sets Q1 by being inductively coupled to
the first resonator and the load sets
Q) by being inductively coupled to the
last resonator.

Figure 2 is included to stress the
fact that the "different-looking" filters
produced by using coaxial resonators are
also equivalent to constant-K configuration
filters insofar as bandpass response and
required circuit constants are concerned.

Figure 3 shows a triple tuned
bandpass filter which while physically in
no way resembling the classical inverse
am structure, still is described by exactly
the same design constants as the inverse
amm structure. It is the spherical resonator
which is so designed that three of its resonant
modes occur at the same frequeney, i.e.,
are degenerate. The two screws shown project
into the cavity and correctly adjust Kjo
(the coefficient of coupling between the
first resonance and the second resonance),
and K23 (the coefficient of coupling between
the second resonance and the third
resonance). The opening on the left
is of the proper size to allow the temminated
waveguide shown to load properly the first
resonance, i.e., to set Q1; and the opening
on the right allows the temninated waveguide
shown there to load properly the last
resonance, i.e., to set 03.

Ls

Finally, Figure L shows a three resonator filter
using mechanical resonators for the filter
elements. Here, the coefficient of couplings

K, and Ky5 are set by the material and diameter
ané "gap" Soint used for the quarter-wave-long
(approximately) thin rods which connect two
adjacent resonators. Q3 of the first resonator
is correctly set by the thin low Q resonant

rod connected to the first resonator, and

the last resonator is similarly correctly loaded
by the low Q rod connected to it. The coils,

by magnetostrictive action convert the electric
energy to mechanical energy and then vice versa
and because of the unfortunately poor coupling
produced by this phenomenon is usually negligible
elcctrical loading coupled into the first and
last resonators.

There are many other examples of filters
which at first glance do not resemble the basic
inverse amm configuration, but which actually
are equivalent to it; and in all of these many
filters the designing engineer must know the
required numerical value for all the coefficient
of couplings in the structure; the required
numerical value of the singly loaded Q of the
first resonator and that of the last resonator;
and the proper element values or physical
lengths to produce the proper midfrequency,

(or design information exactly equivalent to these
three quantities).

ITI. THE TwO PAIRS OF DESIGN EQUATIONS

Figure 5 gives the two pairs of equations
which, when infinite Q elements are used,
supply the engineer with the above described
information for two cases which often arise in
practice: (a) both the generator and load are
resistive, and (b) one of these, either generator
or load is reactive., An example of the first case
would be the microwave preselectors designed
to work from a 50 ohm generator and into a
300 or LOO ohm mixer crystal; while an example
of the second case would be the loaded-on-one-
side-only interstage networks used in IF
amplifier strips.

As indicated at the top of the figure,
the attenuation shape which will te obtained
will be the optimum Chebishev attenuation
shown in Figure 7C. It is important to realize
that the design equations of Figure 5 are given
in terms of the"valley bandwidth" (BW,) which
is the bandwidth between the points on the
skirt which are down by the same number of db
as the peak to valley ratio (V Vv)' The
quantity Sn is a function of the number of
resonators n used and the peak-to-valley ratio
desired and the reader should note that as
(Vp/Vv) approachs unit Sn becomes very large



and therefore the required K's will be a large
number times the fractional valley bandwidth.
However, a required bandwidtk at some other
db down rather than at the valley db down

is very often specified and it is therefore
necessary to get the numerical relationship
between the valley-db-down-bandwidth and

the specified-dt-down-tandwidth by using

the shape equation at the top of Figure 5.

IV. THE DESIGN FOUATIONS FOR THE
BUTTER'ORTH [tHSPONSE

In the 1limit, when the peak to
valley ratio is made to be zero db, Sn will
become infinite and simultaneously the
valley bandwidth will become zero. By
correctly approaching the limit we find
that the following simple changes in the
equations of Figure S will give the
design equation for the Butterworth response.

(a) In place of the valley db down
bandwidth (BE_ ) in the equations, use the
3 db down bandwidth Bwjdb.

(b) Use unity for the numerztor of the
coefficient of coupling equations and for
the denominator of the Q equations.

V. ArPLICATION OF THE D=SIGN EQUATIONS
TO THE LOW rASS LALDER

If one writes the transfer impedance
equations for the low pass ladder and
compares them to those obtained for the
bandpass case and uses a suitable normalizing
procedure it is found that in the low pass
case the frequency variable w (i.e., 2nf)
is exactly equivalent to the bandpass case
frequency variable

L6

(4 ) = Bw
-\_I_/Jo wJ) =R/

and in the low pass case the quantity

// b L.ur/'a C bl #

is exactly'equivalent to the well-known
coefficient of coupling of bandpass

coupled circuit theory; and the quantity
L/R in 1 series arm and RC for a shunt

arm are exactly equivalent to the well-known
resonant frequency Q of bandpass circuit
theory. Thus to apply the equat.ions

of Figure 5 to a low pass ladder we do the
following:

use

in place of Bwv/fo v

in place of Q; use Ll/Rl or RyCy
in place of K ) use

1/V chr+1 or
11/Vcrl‘(r+l)

r(r+l

2. M. DISHAL, "Design of Dissipative Bandpass
Filters Producing Desired Exact
Amplitude-Frequency Character-
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Synchronously Tuned Multiple
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froc. IRE v 39, pp 1LL8-1LSS,
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CONVENT IONAL AMPLIFIERS

william E, Bradley
Co=Director of Research
Philco Corporation
Phila., Pa.

For present purposes let us agree to de=-

fine a conventional amplifier as one in
which feedback 1s negligible so that the
interstage coupling networks are effective-
ly 1Isolated from each other by the vacuum
tubes of the amplifier, As is implied by
the adjective "conventional", such ampli-
fiers are at the present time almost uni-
versally used In electronic equipment. The
vacuum tube used Is almost always a pen-
tode, Iriodes driven from the grid re-
quire neutralization and are more diffi-
cult to utilize in such circults, Grounded
grid triodes however isolate the input
from the output fairly effectively and are
here considered to be conventlional ampli-
fiers. Most of the following discussion
deals with amplifiers consisting of simple
interstage coupling networks separated by
pentodes.

In order to compare conventional ampli-
flers with other types, consider first
thelr performance as a function of fre-
quency., The over-all amplification of a
set of such stages iIs the product of all
of the tube transconductances multiplied
by the product of the separate transfer
impedances of the Interstage coupling net-
WOoTKS .

@ 7 @ @

= ORVING RONNT SAPEDANCE OF TWO-TEAMINAL INTERSTAGE NETWORK
Zin |- oF TeE on

NETWORK

Fig. 1 - Conventional amplifier chain,

The limitations of conventional ampli-
fiers In gain and bandwidth result from

L8

the shunt capacitances of the Input and
the output terminals of each tube to
ground, These so-called "parasitic"
capacitances dominate the design of such
amplifiers for most purposes,

To obtaln the highest stage galn, the
transfer Impedance of the Interstage coupl-
ing network must be made as high as possi-
ble over the desired band, subject to the
condition that the shunt capacitances at
each end of the network must Include the
parasitic capacitances of the tubes, Net-
work theory shows that there are limits to
the transfer Iimpedance which can be obe
tained under this condition; it also shows
that the transfer Impedance is likely to
fall off rapidly outside of the band for
which it Is designed.,

This leads to the most outstanding
peculiarity of conventional wide-band
amplifiers, which is that they are part
amplifier, part filter, Thelir ablility to
re ject unwanted frequenclies close to thelr
wide pass=band iIs often useful as, for ex-
ample, In televislon receliver design. It
is also true that the amplitude and phase
characteristics through the pass=band are
subject to convenient control with a mini-
mum of design difficulty.

The extremely direct and flexible de-
sign of the frequency characteristics of
conventional amplifiers is due to the fact
that they are really chains of simple
filters each of which s easy to design
and ad just. The overeall transfer Impedance
of the amplifier 1s simply the product of
the separate stage transfer impedances and
therefore very complex over-all character=-
istics can be obtained reproducibly from
such chains,

At this point two main branches to the
subject at interstage coupling design can
be distinquished. The first branch deals
with the design of the best possible single
stage. Here the ideal is usually to obe
tain flat frequency response and linear
phase characteristic across the entire pass=
band, The final video stage of a tele=
vision receiver is often designed this way
as are many of the video ampliflers re-



quired in television studio and broadcast-
ing equipment,
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Fig. 2
Parasitic capacitances absorbed in
filter structure.

The interstags couplings for such am=
plifiers are wave filter sections which
have shunt capacitances across each
section, These shunt capacitances absorb

the parasitic capacitances of the tubes
while the filter properties of the net=-
work ensure equal transmission across the
pass=band, Very good approach to ideal
characteristics can be obtained with a
single stage in this way if enough circuit
elements are used in the structure,

Usually only a few circuit elements are
used and the result is a compromise be-
tween ideal performance of the single stage
and complexity of structure.

The voltage amplification per stage
through the pass band obtained in this way
with a four=-terminal interstage coupling
is

2 gn

M = Tae
where C is the mean parasitic capacitance
of the tube, The amplification is half of
this for the same tube type with a two=
terminal interstage coupling. Since then
the shunt capacitance is the sum, not the
mean of the two parasitic capacitances,

The second branch of the general sub=-
Ject of interstage coupling design takes
as its objective optimum over-all perform=
ance of a set of cascaded stages. The
frequency response of any one stage of the
set may be very far from ideal, It is
usual in such amplifiers to employ very
simple interstage coupling networks,

L9

seldom using more than two inductances per
stage and usually only one, The designer
of this form of amplifier is principally
concerned with how the stage responses

can be made to fit together to achieve the
results which he desires, Because the
interstage couplings are simple and non~
interacting it is possible to control the
complex resonant frequencies of these net-
works with great precision, These com=
plex resonances correspond to poles and
zeros of the over~all amplification of the
set of stages, One of the greatest ad=-
vantages of this type of amplifier is the
ease with which these poles and zeros can
be placed in prescribed patterns in the
complex frequency plane to realize accu=
rately design goals,

The gain obtained in this way iIs not
greatly different from that obtainable
with ideal filter interstage couplings
and carries the advantage of simplicity of
circuit adjustment and flexibility of de=-
signe.

Fig. 3 - Three-stage maximally flat amplifier.

As a simple example consider the ampli=-
fier shown in Figure 3, Here a low pass
amplifier achieves a maximally flat ampli-
tude characteristic with only one "peaking
coil", Its three poles are arranged on a
semicircle, In spite of its simplicity the
mean low frequency gain per stage of this
amplificr Is as hich as can be obtained
with any two=terminal interstage coupling
networks, Since it has only three poles,
however, the frequency resronse does not
remain flat all of the way to the nominal
band 1limit, Nw, but is down 3 db at that
point,
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Fig. 4 = Use of zero in right-hand plane.

The design possibilities of so=called
conventional amplifiers are still not
common knowledge to design engincers, For
example, It Is not welleknown that not
only the amplitude but also the phase
characteristic may be controlled through
the pass=band to achieve equal amplifica-
tion and constant time delay for all pass=-
band frequencies, A simple case s 1llus~
trated in Figure 4 where the gain and
phase shift for the three pole, maximally
flat response can be compared with those
resulting from four poles and one zero in
the right-half plane., The amplitude re-
sponses are not very different for the two
cases but the phase characteristic of the
second pattern is much stralghter, corre-
sponding to improved transient response,
with no loss of selectivity. A general
recive for obtaining perfect amplitude and
phase characteristics through the pass-
band is shown in Figure 5,

Interstage coupling networks providing
zeros in the rlght=half plane may be
readily constructed using principles
similar to those used in designing brldged
T equallizers or resistance compensated
filters, A commonly used example is the
resistance compensated trap circuit used
in television receivers which provides a
zero on the Jw axis for adjacent channel
attenuation, Changing the value of the
compensating resistor in such a direction
as to increase 1ts effect moves the zero
over into the right-half plane.

An important property of conventional
amplifiers in general Is that the trans-
conductances of the tubes do not affect
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Fig. 5
Ideal pass band obtained by distribution
of poles and zeros on circumference of circle,

the shapes of the gain and the phase
characteristics, This Is not generally
true of other forms of amplifiers involve

ing feedback or, more generally, in which
the pole and zero locations are functions

of transconductance, Hence conventional
amplifiers may have their gain controlled

over wide 1imits with no appreclable change
in transient response, This is important
in amplifiers intended for pulse communica=-
tion or televislon use,
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) BMOGE CIRCUIT FORMED BY CAPACITANCES

Fig. 6
Compensation for grid-to-plate
capacitance.

Even small traces of spurious feedback
from plate to grid can spoil the precision
of design of conventional pentode amplie-
fiers, especlally if the gain per stage s
highe Figure 6 shows the screen neutral=-
ization circuit used Iin a television re-

ceiver band-=pass amplifier with type 6CB6



tubes, This circuit is able to substan-
tially eliminate interaction between the
interstage coupling networks used, The
intermediate frequency amplifier pole and
zero locations used in the design of a
production receiver are shown in Figure 7,
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Fig. 7 - Pole pattern of the TV-90 IF,

A pentode tube for a conventicnal wide=-
band amplifier has a figure of merit which
varies directly with the transconductance
and Inversely as the parasitic capacitance
of the tube. From a practical point of
view, the figure of merit defined in this
way 1Is slightly misleading since the ex-
ternal circuits add some parasitic capac-
ity but, of course, do not affect the
transconductance, It follows that a nhigh
transccnductance is a more valuable asset
for many applications than a low shunt
Capacitance,

The figure of merit fcr a number of cone-
ventional pentodes iIs illustrated in
Figure 8, It is interesting to notice
that the figure of merit of the subminia-
ture pentode 5702 is very high while the
shunt capacitances of this tube are so low
as to be very much affected by the capac=-
itances of the associated wiring. When
these capacitances are added the 5702,
while still a very good pentode, is not
greatly different in perfermance from
several other pentodes.

The upper frequency 1limit to convention=-
a2l tube operation is probably somewhere
above four thousand megacycles, if grounded
grid triodes are considered to be conven-
tional, ExXtreme delicacy of construction
of the tube elements and difficulty of
connection to them discourage at present
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Fig. 8 - Pentode figure of merit.

the application of tubes of this type above
the UHF band. The UHF band itself seems
to be within reach of ccnventional struc-
tures although large scale commercial use
of amplifiers in television tuners for
this band Is only beginning.

The good and bad points of conventional
amplifiers can be sumnarized as follows,
On the bad side it can be said that:

1, Grid to cathode capacitance is
subjJect to some variation in tube produc=-
tion, This makes the frequency character-
istics of conventional wide=band amplifiers
change slightly when tubes are replaced
without circuit read justment,

2. They tend to be slightly non=
linear,

3. Their absolute level of gain is
subject to drift with change of gp.

4, They have an amplification per
stage which varies inversely as the bande-
width so that conventional amplifiers are
of doubtful utility for bandwidths greater
than about thirty megacycles using present.-
ly avalilable commercial tubes,

The good points of conventional ampli-
flers are:

l, The ease and accuracy with which
good frequency response and transient per-
fcrmance can be obtained in a predetermined
frequency band together with rejection of
frequencies outside this band.

2. Thelir relatively low cost,

3o The Independence of their fre-
quency characteristics and trancient re-
sponse with respect to changes of tube
transconductance,



BROAD-BAND FEETBACK AMPLIFIERS

Harold K, Beveridge
Raytheon Manufacturing Company
Newton, Mass,

The introduction of television and radar
imposed the problem of designing wide-~band i.f.
and video amplifiers. Techniques using double-
tuned circuits, staggzer tuning, shunt peaking, and
geries peaking are fairly well known. The use of
resist ive feedback from plate to grid in i.f. and
video amplifiers was pointed out by Harold A.
Wheelerl, The practical design of this type
amplifier was started at the National Hesearch
Council in Ottawa, Canada, by the author and
A.J. Perguson and later continued at the Naval
Research laboratory in Hashingtonz. The purpose
of thie morning's paper is to indicate the simple
baesic circuits and their performance and to dis-
cuss some of the second order effects so important
in amplifier design.
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Fig. 1

Pig. 1 shows the basic feedback configuratim.
The coupling networks used between such steges
may be very simple and still give effective gain
bandwidth performance.
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A qualitative understanding of this type of
feedback can be obtained by considering the
behavior of a single video stage. This is shown
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in Fig. 2A. BRo is the plate load for the desired
gain, Consider the input impedance ZI due to the
feedback resistance R,

Fig. 2B illustratee the low frequency case.
It is apparent that the impedance presented is
purely resistive (iR in phase with€9)., In a
manner similar to Miller effect, the impedance
is given by

R
1 ; A
A is the absolute voltage gain of the stage.

zi =

Next consider the circuit behavior at a
frequency corresponding to the 3 db point in the
output circuit, Fig. 2C. The feedback current
1R is about 70% its previous value and it lags
45°, Thue, the input impedance Zi shows an in-
creased resistive component and a large inductive
component, This will tend to "tune out®™ Ci, This
type of feedback is most useful if a constant
current generator is used to drive Zi., This
allows the rieing impedance characteristics of Z1i
at higher frequencies to result in an increase in
gain to compensate the fall-off of gain due to the
decreasing impedance in the output circuit. This
is the basic mechanism by which this type of feed-
back produces broad-banding.

PAIR

—t

Q‘

Fig. 3

Adding a tube to drive the circuit previously
shown produces what has come to be called a "feed-
back pair®. This is shown in Fig., 3. R is chosen
80 that it effectively loads the plate of the
first tube with a value about equal to Ro. Thus,
the low frequency voltage gain of each stage is
about the same. By adding inductances to tune
both circuits to the same frequency, the amplifier
becomes an i,.f. or band-pass amplifier.
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There is an exact correspondence in these
amplifiers between the video and i,f. case., The
total bandwidths are identical for both. That 1is,
the semi bandwidth of the i.f. is just one-half
the video bandwidth. This follows from the normal
gsituation of having reactance change at twice the

rate when deviating from a center frequency (band-



pass case) than occurs when increasing from sero
frequency (low~pass case).

The transmission characteristics and gain
bandwidth product of a feedback i1,f. pair and a
stagger pair are nearly alike,

The pass-band shape of a pair can be adjusted
by varying the value of Ro,

Bandwidth may be varried by varying R.

PAIR
40 T R=74K

Fig. &4

The effects of the termination are shown for
the 1.f, case in Fig. 4. When Ro = oo , the
response is markedly doubled peaked. There is a
value for Ro that gives a flat response. Lower
values of Ro result in a single peaked response,
It 1s not obvious, but equivalent results will be
obtained by removing Ro and replacing it with an
equivalent resistance across the first tuned cir-
cult, or by placing 2Ro across each circuit,
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Fig. 5 shows on an absolute scale the gain
and measured bandwidth obtainable using 6AKS tubes
operated at a Gm of 4,500 umhos, a total circuit
capacity of 9.5 UUF, feedback resistors as indi-

width 1imit of 5 me.

cated, and Ro adjusted for approximately flat
response, Capacitance shunting the feedback
resistance establishes a practical lower band-
The greatest bandwidth
shown 1s 30 mc at 1 db, corresponding to a gain
of 12 db for two stages.
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Fig. 6

Fig. 6 shows a feedback *triple". For the
1.f, case, 1t 1s practically identical to a
stagger triple. As in the case of a pair Ro in
the triple may be placed across the first circuit
instead of the last without altering the band-
pass characteristics. However, unlike the pair,
if 2Ro 1s placed across the first and last cir-
cuits, the amplitude response of the amplifier
becomes unsatiefactory. It is difficult to com-
rare exactly gain bandwidth performance of pairs
and triples as the result 1s somewhat dependent
upon the number of stages used. Results were
measured on & six-stage amplifier using in one
case three pairs and in the other case two triples,
When adjusted for equal gain, the triples gave 20%
more bandwidth.

Clearly the number of stages may be increased
beyond three. The theoretical case for an in-
finite chain has been worked out by A.J.Pergusond,
The longer chain produces a small increase in
gain bandwidth product compared with triples,

Gain control 18 a problem in feedback
amplifiers. The bandwidth of these amplifiers is
a function of the Gm of those tubes having re-
sistance in shunt, Gain control is usually
achieved by controlling the Gm of a tube around
which there ie no feedback. In the case of a
pair or triple, the first tube 1is available for
gain control purposes. In some cases, it is allow-
able or even desirable to have bandwidth increase
when gain is decreased. The introduction of the
germanium diode allows such control if placed
across each tuned circuit (1.f. case), Varying
the current through the diode varies the degree
of loading across each circuit.,

Inasmuch as the bandwidth of a feedback
amplifier is a function of tube Gm, the question
arises as to the practical problems with such
amplifiers. Tests were conducted on two types of
fixed tuned 60 mc 1.f, amplifiers. One amplifier
contained two feedback triples, the other two
staggered triples. Measurements of gain and band-



width were made on each type amplifier with a
large number of 6AKS tubes. The results are shown
in Pig. 7. It is seen that the spread in bandwidth
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was only 2 mc for the feedback amplifier compared
with 4 mc for the stagger tuned amplifier. The
feedback amplifier exhibits even better char-
acteristice with respect to gain stability showing
a change of only 4 db compared with 11 db in
stagger tuned, TFeedback amplifiers, in general,
show good repeatability in production.

The amplifiers so far descridbed have employed
the simplest possible interstage coupling networks.
It is possible to uss more complex coupling net-
works, By splitting the circuit capacitance into
two parts, a further improvement in gain bandwidth
product may be achieved. The factor of improvement
may approach two.

DOUBLE TUNED

P

Tig. 8

Pig. 8 tllustrates a typical i.f. stage using
a double-tuned circuit as the interstage coupling.
R.Q. Twiss™ has worked out the theoretical
analysis of such an amplifier and verified
experimentally the results, It should be pointed
out, however, that the more complex networks with
larger gain bandwidth factors have poorer transient
characteristics,

An improvement in gain bandwidth product can
be achieved in the video case by splitting the
capacitance with an inductance as shown in rig. 9.
If the capacitances are equal, an improvement
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Tig. 9

factor approaching two is possibdle,

Second order effects play a very large part
in the practical design of wide-band amplifiers,
and particularly sc in the case of feedback
amplifiers, The treatment of the impedance be-
tween cathode and ground, the transit angle in
the tube, and the capacitance shunting the feed-
back resistance are all important.

Grid input loading in pentodes at high
frequencies is generally appreciated as being
present, However, it is of interest to know how
much of this is dus to transit time effects and
how much due to cathode lead inductance. This
has been measured.

6AKS INPUT CONDUCTANCE

e
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Tig. 10 shows the input conductance of a
6AKS5 tube as a function of frequency with a 500
UUF cathode by-pass capacitor, It should be
noted that the input conductance is zero at 47 mc,
The frequency at which the total cathode lead
inductance series resonated with the by-pass
capacitor was measured and found to be about
48 mc. At this frequency the impedance between
cathode and ground is practically zero, and the
effect of cathode lead inductance is zero. As
the input conductance is also practically gero,
1t is concluded that transit time loading is small
compared with loading due to cathode lead in-
ductance, The change in input conductance would
tend to produce a small slope on the flat top of
an amplifier, Reactance between cathode and
ground may be used either to advance or retard the
plate current phases in a tube relative to the
applied voltage between grid and ground., It is
quite practical to retard or advance the plate
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current by 4 or 5 degrees, choosing the cathode by-paes capacitor in such
a way as to leave the total cathode path to

At i.f, frequencies in feedback amplifiers, ground elther slightly inductive or capacitive,
there are two second order effects which compli-
cate design, Tortunately, they are of opposite Gain bandwidth product has been measured on
sign and can be used to cancel ons another. They feedback pairs and triples. The circuit capacity
are transit angle effects in the tube and the un- was 9,5 UUF and a tube Gm of 4,500 umhos. With
avoidable capacitance which shunts the feedback voltage gains per stage of two or three the
resistance. product for both pairs and triples was about 55 mo
times. With voltage gains of eight per stage,
e € the product for pairs was 65 mc times and for
=y triples 75 mc times. All the above 1s based on

3 db bandwidths and 100 db of gain.

VOLTAGE GAIN FOR FEEDBACK COMBINATIONS

GAIN = S g
-
GAIN=Q, FOR Gm, =G,
~ Gm, DN
; —_ —0
v ic eg G,
: GAIN = —*—%’:‘,’GG" o G
R
e —_ Gm,
Yig. 11 o I T
GAIN= -S02 ﬁ o S
First, let us consider transit angle. This G |.—_G;l_é| SGa
has been meaeured on the GAK5 at 60 mc and found Gm T

to be 119, Tig. 11B 1llustrates the relation-
ships, If left uncorrected, this leads to an
assymmetrical response, Actually capacity always
shunts the feedback path, For a certain capacity, Fig. 12aA
the current iC will add to 1R to produce 1 in
Phase withC . An approximate correction of this
sort is deeirable.

GAIN= GG—'"‘-[_G'L—GI o
It is worth while considering a numerical " " emes,
example. The highest practical value of R is
about 20,000 ohms, The total capacity, which

should shunt it, is 0.04 UUP (for 1l%correction),

o——

The tube itself has approximately 0.02 UUF, This #
leaves 0.02 UUF for the end-to-end capacity of caneSme | e — r
the feedback resistor. Actually most half watt G, '*:&%&"G%G' o 36
carbon resistors have end-to-end capacities of ' G
the order of 0.3 UUF, about fifteen times too ome Gm,
great. GAIN'GG—":', IF G, * -G,

A resistor suitadble for feedback amplifiers GAIN®0, FOR Gm,= G,
was developed by the International Resistance
Company. It is known as the MPM and has a Fig., 128
capacity of 0.02 UUF. Probably there are now
other deposited film resistors suitable for this Two important parameters in amplifier design
purpose. are, of course, overall bandwidth and voltage

galn per stage. The product of these two quan-

Yor very wide-band amplifiers, the value of tities has been given above. Relatively simple
the feedback resistor may be of the order of expressions for voltage gains are given in Fig.l2,
1,000 ohms, In this case the capacity in the These apply only for the low frequencies in video
ordinary half watt carbon composition resistor amplifiers and the center frequency in i.f., am-
is about right to compensate for transit angle. plifiers.
The foregoing may lead the designer to ask what
can be done for intermediate values of feedback The exact mathematical analysis of feedback
resistors. Actually, the practical answer to amplifiers i1s cumbersome. However, with know-
this problem is to select the most applicable ledge of the second order effects, gain bandwidth
of these two resistor types. Further adjustment product, and the gain equations in this paper,
of effective transit angle may be obtained by the practical design of such amplifiers is rel-
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atively simple.These amplifiers, within limits,
using resistive feedback eliminate the need for
shunt peaking, the use of double tuned circuits,
and stagger tuning. Resistive plate to grid feed-
back amplifiers are inherently very stable and
show good repeatability in production.

lHarold A. Wheeler, "Wide-Band Amplifiers for
Television", Proceedings of the I.R.E., Vol. 27,
rp 429-438, July, 1939.

2g,¥W. Beveridge, "Information on Broad-Band Feed-
back 1.f. Amplifiers”, Combined Research Group,
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Oct. 22, 1945,

3A.J. Ferguson, "The Theory of 1.f. Amplifiers with
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Research Council of Canada, Ottawa, Canada.

“R.Q. Twiss, "The Theoretical Design and Exper-
imental Response of Single and Coupled Circuit
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TRAVSISTOR £t LIFIERS

Rs L. Wallace, Jr.
Bell Telephone Laboratories, Inc.
Murray Hill, N.J.

Mr. Wallace will discuss some of the proper-
ties of transistors which result in limitation of
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pandwidth and will indicate the order of perform-
ance which has been achieved.



DISTRIBUT'ED AMPLIFIERS

W. G. Tuller
Emmett H. Bradley
Melpar, Inc.
Alexandria, Virginia

With the advent of greater interest in milli-
microsecond oscillography, the need for broadband
amplifiers having increasingly high upper cut-off
frequencies has become apparent. The conventional
technique of cascading amplifier stages is inade-
quate to provide sufficient broadband operation
since the maximum operating frequency of such a
system is determined by its maximum "gain-band-
width product®.1,2,3 However, the distributed
amplifier is not limited by the conventional re-
strictions on bandwidth,l,5,6 thus making possible
the realization of amplifiers having a flat fre-
quency response from de.c. to several hundred mega-
cycles.

The basic philosophy of the distributed ampli-
fier is not new; it was originally discovered by
W. W. Percival7 in 1935. Not until 1948 was this
circuit recalled to the attention of an electronic
age, hard pressed with the need for amplifiers
having greater bandwidths. 1In their original
paper,8 Gington, Hewlett, Jasberg and Noe present-
ed a comprehensive design procedure which ulti-
mately led to the realization of this broadband
amplifier,

Following the publication of their paper,
considerable interest was created in this new cir-
cuit oddity, which applied traveling wave concepts
to obtain amplification at video frequencies.
Theoretically, such an amplifier could be designed
to have as large a gain as desired over an arbi-
trarily wide bandwidth. It was soon found, how-
ever, that this was not the case since the upper
cut-off frequency is limited by the high frequency
characteristics of the tubes as well as by the
geometric configuration of their envelopes.

In recent years, considerable work has gone
into the development of wide band distributed
eﬁplifiers using multi-grid tubes.9,10,11,12,13,
1,15 At the present time, these amplifiers are
commercially available with bandwidths in excess
of 200 megacycles.l »17  several govermment agen-
cies have developed distributed amplifiers whose
upper cut-o{g Bsquencies were as high as 40O
megacycles. -? The men largely responsible for
the development of these circuits have expressed
their belief that this frequency represents the
maximum upper cut-off frequency for distributed
amplifiers using commercially available multi-grid
tubes. Distributed amplifiers are limited to use
at frequencies below 500 megacycles by the charac~
teristically large effect of lead inductances, and
grid loading in tetrode and pentode tubes.

The effects of grid and plate lead inductances
can be largely overcome by using m~derived trans-
mission 1ines having a negative mutual coupling.
Grid loading resulting from the transit angle and
the presence of cathode lead inductance in the
tube can be partially eliminated by inductively
loading the screen grids and by using tubes having
twin cathode leads. Even when great care is given
to the consideration of these effects, the attenu-
ation along the plate and grid lines remains suf-
ficiently large to limit the maximum operating
frequency of these amplifiers. A representative
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group of distributed amplifiers along with their
characteristics are tabulated in Table I.

In order to increase the operating frequency
of the distributed amplifiers of the future, there
are at least three alternatives.

1. A multi-grid tube can be designed having
symmetrical lead pairs with small lead inductances,
a large transconductance, small grid loading at
high frequencies, and a large figure of merit
(ratio of transconductance to input capacitance).

2. A tube development program can be initi-
ated to develop a new type of vacuum tube similar
to the transmission line tube proposed by V. J.
Fowler.20

3. New techniques for employing tricdes in
distributed amplifiers can be developed.

The first and second proposals do not provide
an immediate solution to this problem since tube
development programs are time consuming and expen=-
sive. The latter approach appears more attractive
for a number of reasons.

l. In recent years, triodes have been devel-
oped for operation at ultra high frequencies.

2. Many of these tubes have been designed
to minimize lead inductances.

3. The effect of grid loading in these tubes
is considerably less than in a mlti-grid tube.

In the fall of 1950, Melpar, Inc., began the
development of a distributed amplifier using ultra
high frequency triodes. The problem is, however,
more difficult than it might first appear. If the
multi~grid tubes in a distributed amplifier are
directly replaced with triodes, a considerable por-
tion of the signal in the plate line is fed back
into the grid line through the grid-plate capaci-
tance of the tubes. This feedback becomes suffi-
ciently large and of the proper phase to cause
instability dve to this inter-element coupling
when more than a few tubes are utilized. For that
reason a new technique had to be developed in
order to eliminate this effect.

A circuit using paired triodes and called a
"paraphase distributed amplifier" has been devel-
oped which does isolate the grid and plate lines.
From the schematic diagram shown in Figure 1, it
can be seen that the tube pair is comprised of a
cathode follower driving a grounded grid amplifier.
When a number of these tube pairs are spaced equi-
distantly along two transmission lines having an
equal velocity of propagation, amplification is
obtained in a manner similar to that in a conven~
tional distributed amplifier. There are several
advantages of this circuits

1. The system uses triodes which minimize
the effect of grid loading and transit time, and
thereby make it possible for the amplifier to have
a bandwidth of approximately two and one half times



that of any video or distributed amplifiers in use
at the present time.

2. The problem of coupling between the grid
and plate lines is avoided by this particular com—
bination of tubes, thus reducing the possibility
of instability in the system.

3. Since the input tube of the paraphase
tube pair behaves very much like a cathode follow-
er, the system provides amplification without in-
version and operates satisfactorily with maximum
input signals of approximately three times those
used in conventional grounded cathode amplifiers.

In order to verify the theoretical investiga-
tions, a five tube pair paraphase distributed
amplifier has been designed and tested. Prelimi-
nary tests on the five tube pair stage revealed a
low frequency gain of 3 db. The voltage gain for
the unit was flat within #l db up to 940 megacycles
with the exception of a -7.8 db dip at 700 mega-
cycles (Figure 2). The shape of the amplifier re-
sponse appeared to be quite sensitive to changes
in the plate voltage. By increasing the number of
tube pairs, the stage gain can be increased propor-
tionally without a serious reduction in bandwidth.
The 5675 ultra high frequency triode was chosen
for use in this amplifier because of its favorable
figure of merit and geometric construction. Con=
siderable care was required in the layout of the
chassis in order to reduce the coupling effects
between the transmission lines and to minimize the
effect of stray capacitances. In Figure 3, the
chassis layout for this breadboard amplifier is
shown,

The 5675 pencil triode is not well suited for
use in a driver or output stage. The maximum grid
swing of this tube is small because of the rela-
tively small operating voltage. Since the trans-
conductance of the 5675 is only 6200 upmho, an im-
practical number of tubes would be required to
develop an appreciable power gaine. Furthermore,
the large output signal traveling down the plate
line would cause the instantaneous plate potential
of the tubes to fluctuate greatly. Since the
transconductance of these tubes is quite sensitive
to changes in plate voltage, serious signal dis-
tortion would result. For these reasons, parallel
work has been done on a paraphase distributed ampli-
fier using 2C39A triodes. A stage using five tube
pairs was designed similar to the previous model.

Considerable difficulty was encountered in
the layout of this stage because the 2C39A has one
side of the filament connected internally to the
cathode. Since the triodes in the paraphase cir-
cuit operate with the cathodes above ground poten-
tial, a method of supplying the filaments from an
isolated supply had to be developed before the unit
could be tested. This problem was solved temporar-—
i1y by the addition of a cathode line on which the
needed filament voltage was supplied from an isola-
ted storage battery. (The addition of a cathode
1ine in the distributed amplifier should be avoided
if possible because its low impedance reduces the
gain per tube pair.) From experimental tests on

the unit, it has been found that the low-frequency
voltage gain is 8,6 db, and the amplifier response
is flat within #2.5 db up to 470 megacycles
(Figure L). 1In addition to the investigation of
its frequency response, the 2C39A stage was sub-
jected to an impulse test. A test pulse, five
millimicroseconds in duration and having a rise
time of half a millimicrosecond, was fed into the
amplifier while the output of the amplifier was
applied to the plates of a high speed oscilloscope.
Although the vertical deflection on the cathode-
ray tube was extremely small, it was possible to
determine with the aid of a cylindrical lens that
the rise time of the pulse transmitted by the
amplifier was not appreciably different from that
of the original pulse.

There are several areas of uncertainty that
mst be resolved before success of the paraphase
distributed amplifier can be predicted, and there
are several difficulties to be overcome:

1. It can be shown that nearly thirty tube
pairs (5675's) are required to give an optimum
stage gain of e, the Naperian logarithmic base,
into a load impedance of 50 ohms. It has been
pointed out that in conventional distributed
amplifiers using pentodes there is a limit to the
number of tubes that can be used in one stage;
beyond this number, stage gain decreases because
of line losses. In an amplifier analysis made at
the Allen B. DulMont Laboratories,2l it was found
that the maximum gain was obtained with twelve
6ANS tubes per stage; larger numbers of tubes af-
forded less total gain. This particular number is
not directly pertinent to the paraphase distribu-
ted amplifier, but it is important to realize that
the number of tubes per stage cannot be increased
without 1limit. Whether thirty pairs can be used
will not be known until a large stage has been
built and tested.

2. A serious problem is the inefficiency of
coupling between stages. It can be shown that the
total gain of several cascaded stages is propor—-
tional to (1 +P ), where P is the interstage re-
flection coefficient and m is the number of stages.
For a plate line of characteristic impedance 120
ohms and a grid line of 50 ohms, P = -0.,412. With
five stages of 5675's, the quantity (1 +pP )", which
represents the effective coupling efficiency of the
complete amplifier, is 0.07, or 7 per cente If
this coupling efficiency can be improved, a con-
siderable reduction will result in the size of the
amplifier, but there is no basis for optimism on
this point. Although an awareness of the problem
has existed from the very beginning, no satisfac-
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