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PATTERN CHARACTERISTICS OF AN ANTENNA 
FOCUSED IN THE FRESNEL REGION* 

John J. Stangel and William M. Yarnall 
Surface Armament Division 
Sperry Gyroscope Company 

Division of Sperry Rand Corporation 
Great Neck, L.I., New York 

This paper is an expansion of the theory of 
stationary aperture focusing as developed by 
Wehner and Bickmore. The field of a circular 
antenna focused in the Fresnel region is approxi¬ 
mated in terms of finite Hankel transforms of the 
aperture amplitude function. Although the peak 
gain of the focused antenna is comparable to the 
Fraunhofer gain of an equivalent uniformly illum¬ 
inated aperture, the pattern characteristics under¬ 
go second-order perturbations. A series solution 
for the pattern through the focal plane is given for 
an amplitude distribution expressible as a power 
series. The effect of amplitude taper is studied. 

Introduction 

Integral Formulation of the Diffraction Field 

Let S represent the area of a plane, con¬ 
tinuous, finite source in the x-y plane of the co¬ 
ordinate system depicted in Fig. 1, where the 
source point Q indicates an infinitesimal element 
of area in S. Then, the scalar diffraction field at 
the field point P due to the finite source is given 
by: 7 

Up -P 4tt v z rj 

(M ~) + Jk | dS 

For years, the phenomenon of coherent 
antenna focusing at microwave frequencies was 
merely a scientific and mathematical curiosity 
without practical application. But recently, the 
anticipated requirements of space technology in a 
number of areas, including power transmission 
and communications, have stimulated renewed 
interest in the subject. In addition, new pro¬ 
cedures involving aperture focusing have been 
proposed for the convenient measurement of the 
radiation characteristics of modern, high-gain, 
large-aperture antennas.2,3 

Aperture focusing is basically the technique 
of carefully controlling the phase on a radiating 
surface to accomplish optimum antenna efficiency 
in the near field. It is thus possible to achieve 
otherwise unattainable concentrations of r-f 
energy in space. 

This paper is essentially an extension of the 
theory of stationary aperture focusing as develop¬ 
ed by Wehner 4 and Bickmore. 5, 6 These 
authors have shown that, to a first order of 
approximation, the azimuth pattern through the 
focal plane is the same as the Fraunhofer pattern 
of an equivalent unfocused aperture. Starting 
with fundamental concepts of diffraction theory, 
this paper re-examines the characteristics of a 
focused circular antenna to evaluate the deviation 
from a perfect Fraunhofer analog. 

where z is the unit vector is the z direction, s is 
the unit normal of the phase front at the aperture, 
k is the wave number, 2 77/A , and the remaining 
constants are defined in Fig. 1. The complex 
aperture distribution, F (f >17), consists of a phase 
term, $(¿,17), and an amplitude term, A (f ,r¡): 

P(£ ■ v) = , v)e (2) 

If it is assumed that the distance from the aperture 
is large compared to the wavelength, then one may 
eliminate second-order terms in equation (1), 
and the field becomes: 

-jkrj 
u ^jf^)^—— ds (3) 
p vi r 1 I j 

We now make the usual Fraunhofer assump¬ 
tions, that, as it affects intensity: 

and as it affects phase: 

sin e (f cos 0 + T) sin 0) 

* The research reported in this paper was sponsored in part by the Air Force System Command, Rome 
Air Development Center, Griffiss Air Force Base, New York, under contracts AF 30(602)2307 and 
AF 30(602)2532. 
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and 

ZT! A A aZT = COS 0 

where r, 6 , and are the spherical coordinates of 
the field point, P. If we further substitute the 
polar coordinates p and for the rectangular 
system (^,17), thereby implying an aperture of 
circular symmetry, the far-field pattern takes 
the form: 

* 1 k r* 2 'n ci 
UO =A. 1— f J F(p,^)e^kpsin^cos ^'^ 

o o 
(4) 

(cos & + z-s)pdpd0 

Furthermore, for an aperture distribution of 
uniform phase (i.e., = 7 and z- s = 1) 
and circularly symmetric amplitude (i.e., 

= A(p), the above expression reduces to: 

ik e'^kr + ^ 277
U = 4--(1 + cos 0) J o 477 r v y J 

o 

a 
J 
o 

(5) 
, jkpsin 0 cos (<i-</>) . . , 

A(p)e J r *JpàpAÿ 

But, by remembering that Bessel functions of the 
first kind may be formulated as definite intergrals 
by the following formula: 8 

1 2-77 
e)XCOSU cos(vu) du (6) 

' o 

where f is the order of the function, and by re¬ 
membering also that if g is a periodic function of 
u: 

t+<^ T

L f(g)du = J f(g)du 
<P 

o 

where r is the period of g, one may readily ex¬ 
press the rationship of equation (5) as a finite 
Hankel transform of the product, p A (p): 

ik e”^kr + r) 
UO=tP- (1 +COS0) 

r 

a 

o 
(7) 

A(p) Jo(kpsin0) pd p 

Now, consider the solution of equation (3) for the 
field in the Fresnel zone. Then, we assume that 
1/r^ ~ 1/r as it affects amplitude, and rj % 
r - p sin 0 cos (<//-<£) + 1/z p^/2r as it affects 
phase. (According to Hansen and Bailin^, the 

Fresnel approximation holds with reasonable ac¬ 
curacy to focal distances of 0.4 a^/ A. .) The field 
at P becomes: 

2 7T a 
f f 
o o 

F(p.0)e 
jk p [sin 0 cos (</> - p/2r ] (8) 

[(4-h) + (54)]pdpd0 

We here observe that if focusing is to occur 
at a point P (r, 0 , 0) on the z-axis of Fig. 2, 
the phase front in the vicinity of the aperture must 
form a segment of a sphere with center at P (r, 
0, 0). For only then, according to geometrical 
optics, will waves emanating from all portions 
of the aperture attain a common phase at the 
focal point. To achieve this condition, it is 
necessary that the source points along a radius p 
in the aperture be advanced by a phase length s 
with respect to that at the orgin. From the 
sketch, it is immediately apparent that (r + s)2 = 
r2 + p2t or that with the use of a binomial ap¬ 
proximation, s~p2/2r. Then: 

sip) = "2 + y 

a a r „ . z . r. = — cos 0 ~ 
1 r l 

cos 0 1 +— sin0cos Qp - <t>) 

r 7 ,-1/2 
1 +-

r^cos^ö] 

Substituting these approximations into equation (8), 
the field becomes: 

jk e-j(kr +y) 2n a 

Ï77 r J J 
o o 

A(p> jkpsin 0 cos (ii-</>) 

z p I 
(1 + cos0) +— sin0cos0cos ('/'-</>) Pd pd'/’ 

Comparison with equation (5) immediately shows 
that the field of a focused antenna has the form: 

U = U + S U 
P o (10) 
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where SU is a perturbation of the far field solution 
of the unfocused (uniform phase) aperture, Uo, 
and: 

t277 / 477 K 
rx 00 

A(p)e 
jkpsin0cos (0- 4)' 

and the total power radiated is equal to the net 
power flow through the aperture (i.e., the 
surface integral of the Poynting vector on the 
aperture): 

pt4 
00 

Q4) pd pd4 

sin®cos®cos(</'-<í) p2dpd'/> 

But, with the aid of equation (6) one obtains: 

SU = . e~ sin® cos ®f 
2 r2 o 

A(p) Jj(kpsin 0) p2 dp 

UO 

In general, for equations of the types shown 
as (7) and (11), the integral operator may be con¬ 
sidered as defining a transformation of the 
amplitude function A (p) in Lebesque space where 
the kernel is a Bessel function. Then, if A (p) 
satisfies Dirichlet's conditions on the interval (0, 
a), the integral falls into the class of finite Hankel 
transforms. The properties of such transforms 
are studied in detail by Sneddon. 1° Depending on 
the nature of the amplitude function, it may be 
more convenient to redefine the problem for 
solution in an infinite domain. It may be necessary 
to replace the amplitude function by a discontinu¬ 
ous function, A' (p), which is defined as follows: 
A'(p) = A(p) in (0, a), A'(p) = 0 for p > a, and A'(p) = 
A' (-p). Then, the theory of infinite Hankel trans¬ 
forms, which is in a more advanced stage of 
development, may be applied. H 

Antenna Gain 

It is possible to draw some definite conclus¬ 
ions regarding the peak gain of a focused antenna 
without an explicit solution of the integral equa¬ 
tions (7) and (11). We define the gain function as 
the ratio of the power density in a given direction 
to the average power density: 

(12) 

PT 

If we assume, as previously, that z • s ~ 1 for 
both the focused and the unforcused antennas, 
then, for the same power input, the net power 
radiated will be independent of focusing, and 
equation (14) becomes: 

PT =w ff ;*lA(p)| 2pdp (15) 

In re-examing the results previously derived, 
we here note that the unperturbed (Fraunhofer) 
field of equation (7) is 90 degrees out of phase 
with the perturbation of relation (11). Then, using 
equation (10), we see that the absolute value of the 
radiation field has the following formulation: 

I u 1 2 = luo12 + |8U I 2

From equation (14), it follows that the gain of a 
focused antenna is expressible as the sum of an 
equivalent far-field gain plus a perturbation: 

G(r,0, <¿) = Go(0,d>) + 5G(r,?,^) 

where 

or, substituting for 8U: 

77k2
8 r2 PT

,2 

2 
f A(p)Jj(kpsin®) P dP 
o 

(16) 

(17) 

where P (®, d>) is the power radiated per unit 
solid angle in the (0, </) direction, and P-j- is the 
total power radiated. P(0, 4) is given by: 

P (0.«)=||7 r2 I Upl2 (13) 

Evaluating this expression on the peak of the beam 
(i.e., 0 = 0), one observes that íGÇr, 0,4) = 0 , 
and therefore the peak gain of an antenna is the 
same whether it is focused in the Fresnel zone or 
at infinity. 
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Series Formulation of the Amplitude Pattern 

If the aperture distribution, A (p), of 
equations (7), (11), and (14) is not readily expres¬ 
sible in closed form, or if its Hankel transform 
cannot be conveniently ascertained as a simple, 
analytic function, it may be possible to achieve a 
satisfactory solution by writing the aperture 
distribution as an infinite power series con¬ 
verging everywhere within the aperture boundary. 
Accordingly, we let: 

A(P) = Jo am  P2m (18) 

where the am 's constitute a set of constants 
satisfying Cauchy's convergence principle. 
Retention of only the even powers of p is con¬ 
sistent with the condition of circular symmetry. 

We define the finite Hankel transform of order 
V of a function f(x) as the following integral: 

s 
[f(x),s ] = f f(x) (x)xdx (19) 

o 

Let f(x) be represented by an infinite power series: 

fW = i*o Cixl (20) 

Then: 

Xv[f(x), s ] = ifo c. ^[x1, s] (21) 

Now consider the implications of the rela¬ 
tively common differential recurrence relation: 13 

d [ X 1 + j (x) j = x p+ 1 Jp (x) dx (22) 

From this it follows that: 

Í 4 1 _ . i— j F ïz 41 _ z x 1 
x Jv(x)dx = x d x Jp+1(x) 

= dp + 1 - (i-") X1] 

And also, in a similar manner, 

x1 = d [xi Jp+2Wj-(i - v - 2) 

x^J (x)dx 
v42 

And by further repeating this procedure, we may 
arrive at the series: 

x*+1 Mx)dx = d x1+1 Jv+1(x) j 

-(i-v)d [ x1 Jv+2(x)] 

+(i -v/i - v - 2) d [x1-1 Jp+3 (x)] 

....+(-1) 1(i-i/)(i-v-2)... [i-v-2(n-l)] 

i-n41 
x 

Substituting this into the definition of the finite 
Hankel Transform of equation (19), we see that 
this series terminates if ( i- v) is either zero or 
an even integer (i.e., i-v = 2N, where N = 0, 
1, 2.). Then: 

M***) = s1+1Jv+1(s) - (i-v) s1 J v + 2 (s) + 

+ (i. ^(1.^.2) s^J^s)- . 

.... 4(-l) * (i-^Xi- v-2)....4.2 s Mi1-" +2) 

for y > 0 . Or, 
N n 

We may now redefine the integral expression 
in equations (7) and (11) as finite Hankel trans¬ 
forms according to equation (19): 

4A(p)Jo(kpsine)pdp = - 1

k sin 6 

H lA'(x), kasin Ö] 
o ' J

and 

a , 
JqA(p) ^(kpsin 0) p dp = ——J—— 

k sirn 0 

H^x A'(x), kasin 0] 

where x = kpsinô. Using the series nomencla¬ 
ture of equation (18) and the theorem of equation 
(21), we get: 
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a °m_ 
JoA(p) Jo^^O pdp = 2 (ksing) 2™42

m=o v 7

4^ kasin&j 

a 2 co am 
/ A(p) (kpsinß) p dp = hJo (ksin p)2m+3 

^l(x2m+\ kasin # ] 

And, applying equations (23) it follows that: 

a ® 2m+2 
= mio 3ma ml 

m (-2)nJn Ĝ(kasing) (24) 

n=o (m-n) I (kasin ö)11*! 

and, 
a co , 
f A(p)Jj(kpsin 0)p2dp = S am a ml 
o m=o 

m  ("2)njn+2^ka8*n^^ (25) 

n=o (m-n) I (kasin #)n

These identities may now be employed to 
obtain series expansions for the field and gain 
expressions. Then, the Fraunhofer field of 
equation (7) becomes: 

•k k ® 2m+2 
U = -L-(l+cosö) 2 am a ml o z r v z m=o 

m (-2)njn+2(kasin #) 

n=o (m-n) 1 (kasin #)n+1

and its related perturbation due to focusing in the 
Fresnel region is: 

-k e-Kkr+7) 00 2m+3 
8U = ——.-7- sinocos# S am a m) 2 rz m=o 

œ (-2)nj (kasin 0) 

1“ <27) 
n=o (m-n) I (kasin#) 

from equation (11). In addition, the perturbation 
of the gain in equation (17) becomes: 

sin2 2# 

œ 2m+3 , m (-2)n J . ?(kasin #) 
s a-a m! S , -
m=o n=o (kasln^ 

(28) 
2 

These expressions are now in a form which is 
readily amenable to solution by digital computer 
for an arbitary aperture distribution. 

Focused Antenna with Specialized Amplitude 
Distributions 

Under the assumption of an aperture with a 
uniform illumination, the field equations (26) and 
(27) undergo extensive simplification. For such a 
case, the coefficients of the series (18) are de¬ 
fined as follows am  = ao/ 0 for m =O and am = O 
for m>O. Then, the Fraunhofer field becomes: 

ika^ae-^^ J (kasin #) 
Uo ■ -(1 * e». 6) (29) 

• 
which is equivalent to Airy's classical diffraction 
formula for a circular aperture.(‘4J Similarly, 
the Fresnel field focusing correction takes the 
following form: 

SU = ~ ka â

-j(kr+y) J2(kasin#) 
—-sinöcos^ , .—  (30) 2 ksin O v Jr 

Again making use of the right angle phase relation¬ 
ship between the Fraunhofer field and the per¬ 
turbation, we obtain the following expression for 
the normalized power patterns of a focused 
antenna: 

2 
I F(r> ö) 12 = I 1 + cos g ZJ^kasine) । 

2 kasin # 

asin#cos g J2(kasin #) । z 
r ’ kasin 6 

(31) 

Or, if one approximates further that cos 9 % 1, 

|F(r, e) i2 =i2i^^-l 
v ' kasin 6 (32) 

2 
1+ J2(kasin g) I z 771 

Figure 3 is a plot of the pattern of a uniformly 
illuminated focused antenna as described by 
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equation (32) with the focal distances r = æ 
(Fraunhofer) and r = 10 X . On the same coordi¬ 
nate axis is the unfocused pattern of a 10 X aper¬ 
ture at r = 10 X as reported by Hansen and 
Bailin. 15 

To evaluate the effect of inducing an edge 
taper on the illumination function, one may pro¬ 
ceed in like manner. If we assume the coeffici¬ 
ents of the series of equations (18) as: 

a = a X o m o m = o 

m = 1 

am = ° m > 1 

then, the amplitude distribution in the 
becomes: 

A(O = ao
2 

P 

aperture 

(53) 

where e is the relative edge taper in voltage ratio 
and ao is simply a normalizing constant. Then, 
substituting into equation (26), the far-field 
pattern takes on the following form: 

j. jkaa^c e"^kr
Uo = J-d’—-_-(i + cos 0) 

2Jj(kasine) 1-e 4J2(kasin6)l 

kasin 6 e (kasinö)2 J 

and the perturbation due to focusing is: 

2J (kasin ö) 1-e 4J3(kasin 6) 
---- + — • --
kasin 6 e (kasin 0)2

and, the expression for the normalized pattern 
with the usual small angle approximation has the 
following dependence: 

|F(r,e)| 2 2J|(kasin 0) 

kasin 0 
2 

1- e 4J 2(kasinr) X f , . 

e ' (kasin e)2 + 2 Wr [ 2J2(kasine) ( }

1-e 4J3(kasinö) 

e kasin 0 

Equations (34), (35), and (36) are valid for 
all values of e in the interval 1> e >o. For the 
case of an infinite edge tape (i.e., e = o), the 
normalized pattern, equivalent to equation (36), 
reduces to: 

|F(r,e)| 2 = 8J2(kasin 6) 

(kasin 0)2 

J3(kasinö) 

kasin 0 

(37) 

We now recognize that the pattern may be 
written in the form: 

2 2 X |F(r.*)| =|FO(0)| +1^^^)! 

where the correction function, 8 F, is: 

2 e r 
8 F = — 2J2(kasin 0) + Lí . ^(^M 

1 kasin 6 

(38) 

(3?) 

for a circular aperture with an illumination taper 
given by € . This correction function is plotted 
in Fig. 4 with e as parameter. The effect of this 
focusing perturbation on the Fraunhofer pattern 
at a focal distance of 10 X is illustrated by the 
dashed curves in Figs. 5 and 6 for e = 0 and 1/2 
respectively. 

Conclusion 

The foregoing discussion establishes an 
extension to previous techniques for the com¬ 
putation of antenna patterns when the antenna is 
focused at a point in its Fresnel zone. The 
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pattern itself changes slightly from the polar 
pattern that would be observed were the antenna 
to be focused at infinity; the invariance of gain 
is established. 

The Fresnel-zone focusing of antennas offers 
application at ranges less than the usual (2D^)/ Ä. 
criterion, (for testing extremely large apertures) 
in that the observed Fresnel pattern may be cor¬ 
rected to a predicted far-field pattern with great¬ 
er assurance, particularly in antenna systems de¬ 
signed for radio astronomy where the Fraunhofer 
region begins at ranges of hundreds of miles and 
are frequently not tested. Refocusing to a reduced 
range for the test can be accomplished with rela¬ 
tive ease. The test itself can then give a measure 
of comparison to predicted performance. 
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FIG I DEFINITION OF GENERAL FIELD COORDINATES FIG.2 COORDINATE NOMENCLATURE FOR FOCUSED APERTURE 

FIG. 3 PATTERNS OF A UNIFORMLY 

ILLUMINATED CIRCULAR APERTURE 
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FIG. 4 PATTERN CORRECTION FACTOR FOR VARIOUS EDGE TAPERS 



FIG. 5 PATTERNS OF A CIRCULAR APERTURE 
WITH INFINITE EDGE TAPER 

FIG. 6 PATTERNS OF A CIRCULAR APERTURE 
WITH A 6-DB EDGE TAPER 
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POLARIZATION TRACKING OF ANTENNAS 

John F. Ramsay, James P. Thompson, and Warren D. White 

Airborne Instruments Laboratory 
A Division of Cutler-Hammer, Inc. 
Deer Park, Long Island, New York 

Summary 

In Part I of this paper, the polari¬ 
zation characteristics of antennas using 
"geographical" analogies are reviewed. 
From the longitude polarization of a 
dipole and the latitude polarization of 
a loop, a vector description is given to 
the radiation from these basic elements. 
Combinations of dipoles, loops, or dipoles 
and loops can then be readily analyzed 
from simple complex vector formulas 
describing the amplitude, phase, and 
polarization of the far fields. In par¬ 
ticular, turnstile-type combinations pro¬ 
viding nominal circular polarization are 
discussed. 

The vector technique is also applied 
to aperture antennas. It is shown that 
the obliquity factor of aperture antennas 
(1 + cos 9) is a scalar constituent of an 
obliquity vector characterizing the radi¬ 
ated field, whether associated with linear 
or circular polarization. The vector 
antenna pattern for a linearly polarized 
horn antenna is derived and applied to the 
problem of the square horn fed by orthog¬ 
onal TE modes in quadrature. Strong left 
circularly polarized lobes are radiated 
by a nominally right circular horn. The 
reduction of cross-polarization by pro¬ 
viding a square horn with polarized teeth 
is described. The paper contains "geo¬ 
graphical " drawings and sketches of 3 D 
contour plots of right and left circular 
component antenna patterns. 

In Part II of this paper, "Punch-
Through" problems associated with side¬ 
lobe suppression systems are discussed. 
The effectiveness of side-lobe suppression 
systems at any given angle of incidence 
can be determined by the measurement of 
punch-through probability for all possible 
polarizations of the input signal. For 
systems where only random linear polariza¬ 
tions need be considered, a rotating lin¬ 
early polarized test signal Is used, and 
the punch-through probability can be meas¬ 
ured directly as a percentage of a com¬ 
plete rotation that produces an acceptable 
response. 

For side-lobe suppression systems 
that must consider response to completely 

random polarized signals, a rotating lin¬ 
early polarized source can again be used 
as the test signal. In this case, how¬ 
ever, ellipticity measurements are 
obtained on each of the antennas sepa¬ 
rately, and this data can then be used 
to complete the punch-through probability 
by either analytic or plotting techniques. 

Typical results obtained for an 
S-band circularly polarized side-lobe 
suppression system are presented which 
support the conclusion that in a multi-
antenna side-lobe suppression system, 
careful selection of antenna types with 
regard to polarization tracking charac¬ 
teristics must be used in order to mini¬ 
mize the amount of unwanted signal recep¬ 
tion or punch-through. 

Introduction 

Any antenna of reasonable directivity 
has side lobes. The reduction of side¬ 
lobe levels constitutes an Important 
branch of antenna engineering. Yet,' the 
best engineering leaves a residue side¬ 
lobe level. Even a very low side-lobe 
level can impair the operation of certain 
electronic systems, whether radar, commu¬ 
nications, or other. Hence system engi¬ 
neers have devised side-lobe suppression 
systems that are mixed systems—partly 
wave, partly electronic. A common tech¬ 
nique uses an auxiliary low-gain antenna 
for reception In conjunction with the 
high-gain directive antenna. Comparison 
of the signals received on the two anten¬ 
nas allows rejection of signals arriving 
from the side-lobe directions of the 
higher-gain antenna. 

If the higher-gain antenna has a 
certain nominal polarization but, In its 
pattern, has cross-polarized side lobes 
at certain angles, and if the auxiliary 
low-gain antenna has the same nominal 
polarization as the high-gain antenna but 
has no cross-polarized components, the 
side-lobe suppression system will be 
Inoperative at angles where the high-gain 
antenna is cross-polarized--that is, sig¬ 
nals will punch-through. The probability 
that punch-through will occur in a side-

13 



lobe suppression system using circularly 
polarized antennas is the subject of 
Part II of this paper. To secure effec¬ 
tive side-lobe suppression, the two anten¬ 
nas must track in polarization over their 
Joint field of view. 

Part I of the paper reviews the basic 
polarization characteristics of certain 
elementary radiators. The latitude¬ 
longitude geographical approach to polari¬ 

zation is used to give a physical inter¬ 
pretation of complex vectors as used in 
the determination of how antennas gener¬ 
ate cross-polarized components. It is 
shown that nominally circularly polarized 
antennas usually produce cross-polarized 
components, not only in their side-lobe 
regions but even in the main beam. An 
elementary explanation is also given of 
the general antenna pattern obliquity 
factor (1 + cos 0). 

PART I 

POLARIZATION CHARACTERISTICS OF ANTENNAS 

by 

John F. Ramsay 

A. Polarization Loci on Space Sphere 

The far-field pattern of an antenna 
is obtainedpat any range greater than or 
equal to 2D /\, where D is the greatest 
dimension of the aperture and X is the 
wavelength. If, therefore, the antenna is 
at the center of an imaginary sphere of a 
radius of at least 2D2/!, a spherical sur¬ 
face is obtained on which the far field of 
the antenna can be mapped in relative 
amplitude, relative phase, and relative 
polarization. At any point on the sphere, 
the field has a complex amplitude and a 
state of polarization. Thus, if the field 
is probed by a linearly polarized detector, 
always oriented for maximum response, a 
complex amplitude is obtained having a 
state of polarization identical with that 
of the probe—that is, linear in a given 
orientation. If the probe (in the same 
element of the wavefront) is rotated 
through a right angle, in general, a second 
complex amplitude will be obtained, having 
an orthogonal linear state of polarization. 

The two complex amplitudes obtained 
by sampling the field by orthogonal lin¬ 
early polarized probes yield a complete 
description of the state of polarization 
at the given point on the sphere. If the 
amplitudes are numerically equal and pos¬ 
sess a relative phase difference of 90°, 
the state of polarization at the point is 
circular; otherwise the state of polariza¬ 
tion is linear or elliptical. 

Alternatively, the field at a point 
can be sampled by circularly polarized 
probes, first by a right circularly polar¬ 
ized probe and second by a left circularly 
polarized probe. The two complex ampli¬ 

tudes obtained there again define the 
state of polarization at the point. 

In general, the field can be sampled 
by elliptlcally polarized probes with 
orthogonal elliptical polarizations to 
yield the state of polarization. The 
techniques of linear or circular compo¬ 
nent sampling is by far the commonest in 
practice using two probes. Methods using 
three or more probes are also possible. 

The state of polarization at a point 
on the sphere can be found by examining 
the field by a "matching" polarization in 
the probe. In this case, the state of 
polarization of the probe is the same as 
that of the Incident wave; the amplitude 
is zero if the probe has a polarization 
orthogonal to the matching polarization. 

On the surface of the space sphere, 
relative amplitudes or relative phases or 
relative polarizations can be mapped. 
The mapping of relative amplitudes yields 
the conventional contour plot of the 
antenna radiation pattern. The mapping 
of relative phases, though feasible, does 
not appear to have yet been adopted. The 
mapping of polarization is implicit in 
the mapping of amplitude (or phase) and 
can be made explicit. Thus, polarization 
can be mapped on the sphere Independently 
of amplitude and phase. 

For example, the polarization lines 
or loci of a vertical electric dipole in 
its far field are shown in Figure 1A as a 
set of longitudes. The axis of the dipole 
Is the polar axis of the space sphere. At 
the poles the magnitude of the electric 
field is zero but at all other points a 
field exists polarized "longitudinally" as 
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shown. Note that near the poles the field 
of the vertical dipole Is virtually hori¬ 
zontally polarized. 

The vertical magnetic dipole, repre¬ 
sented in Figure IB by a small horizontal 
loop antenna, has as polarization loci a 
set of latitude circles; note that every¬ 
where the polarization Is horizontal. A 
vertical slot antenna In a vertical con¬ 
ducting plane has the same loci as the 
loop. 

On a geographical globe, lines of 
longitude and lines of latitude Intersect 
one another at right angles—that is, they 
are orthogonal. Hence an antenna consist¬ 
ing of a vertical electric dipole and a 
horizontal loop (Figure 1C), fed simulta¬ 
neously, will generate on the space sphere 
the dipole longitudes of Figure 1A and the 
loop latitudes of Figure IB as component 
polarization loci. At any point in space, 
two orthogonally polarized fields exist. 
The relative amplitudes can be made equal 
throughout space, since an infinitesimal 
dipole and an Infinitesimal loop have 
identical space patterns. Since the ampli¬ 
tudes are equal but in quadrature phase, 
as the far field of a loop is in quadra¬ 
ture time phase with respect to that of a 
dipole fed In phase, the resultant polari¬ 
zation is circular at all points on the 
space sphere and has a constant sense of 
circularity. 

If a vertical and a horizontal dipole 
are fed (or receive) together, the compo¬ 
nent loci are the intersecting pair of 
longitude sets shown in Figure ID; it is 
evident that the constituent lines of each 
system are not orthogonal throughout space. 
Although the polarization lines are orthog¬ 
onal in the principal planes, the antenna 
individual amplitude distributions do not 
match In these planes. If the two dipoles 
are fed with equal amplitudes in quadra¬ 
ture (the "turnstile" antenna), a circu¬ 
larly polarized radiation field is obtained 
at only two points on the space sphere— 
that is, only on the normal to the plane 
of the turnstile antenna. The exact pat¬ 
terns of the turnstile antenna are given 
in Section C.3 of Part I, and in Figure 6. 

The turnstile antenna and the dipole/ 
loop antenna can be termed biphase anten¬ 
nas. A three-phase antenna is the tripole 
shown in Figure IE. Three small dipoles 
are spaced at 120° and commonly fed with 
equal amplitudes and rotating phase to 
produce circular polarization; however, 
circular polarization Is produced only on 
the normal to the plane of the trlpole. 
The three sets of oriented longitudes 
indicated in Figure IE Illustrate the 
onset of a pure polarization error caused 
by the tripole. 

Mutually perpendicular loop antennas 
form a system that is the magnetic analog 
of the crossed electric dipole system. 
There are, of course, amplitude errors 
in the relative space patterns, since 
the characteristic doughnut patterns are 
mutually perpendicular. The polarization 
loci of the elements are orthogonal sets 
of latitudes as shown in Figure IF; 
polarization errors are therefore to be 
expected, since individual polarization 
lines are not orthogonal in general. 

The aforementioned geographical fea¬ 
tures of polarization loci assist in 
visualizing and analyzing the polariza¬ 
tion characteristics of antennas. 

B. Resolution of Polarizations 

1. Reference Coordinate System. A 
right-handed Oxyz coordinate system will 
be used, with the origin at the center of 
the space sphere. Elementary radiators 
will be placed at the origin, and aper¬ 
ture antennas will have their apertures 
in the x-y plane (x horizontal, y verti¬ 
cal) and will be regarded as firing gen¬ 
erally in the horizontal z-direction. 

The intersections of the coordinate 
axes with the space sphere will be called 
poles, and the axes themselves polar axes, 
as required. Taking Oz as a polar axis 
of reference, the associated spherical 
polar coordinates are 

ez' 4 

and belong to an orthogonal coordinate 
system having longitudes and latitudes 
with z as the pole, as shown in Figure 2A. 
The radiation pattern data--amplitude, 
phase, and polarizatlon--wlll be expressed 
in terms of 9Z, /z, sometimes written 
9, /. Ox and Oy can be taken as polar 
axes with associated spherical polar 
coordinates 9X, /x and ^y, /y, respec¬ 
tively. A unit vector A is specified in 
the three coordinate systems by 

A= sin 9Z cos /zx + sin 9z sin + cos /zz 

= sin 9 sin / x + cos 9 y + sin 9 cos / z 
y y «y y y 

= cos 9xx + sin 9 

where x, y, 1 are unit vectors at the 
origin in the axial directions. 

x cos /^y + sin 9x sin / z 
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The following relations between the 
coordinate angles are given for reference: 

From the properties of spherical tri¬ 
angles 

cos Ö = sin 9 sin 0 = sin 9 cos X y ry z ^z 

cos 9„ = sin 9„ sin ¡6 = sin 9 cos 0 y z x Cx 

cos 9z = sin 9x sin ^x = sin 9y cos 

sin 9 = V(1 - sin2 9 sin2 / ) 
-a- » y y 

= ^(1 - sin2 9 cos2 / ) z z 

/ P p 
sin 9 = y(l - sin 9 sin / ) y ' z ^z ' 

= til - sin2 9x cos2 /x ) 

sin 9z = ^/(l - sin2 9x sin2 /x ) 

= ^( 1 - sin2 9y cos2 /y) 

At a point on the space sphere unit 
vectors in the tangent plane, 9Z, ^z 
directed to 9Z and increasing respec¬ 
tively, define an orthogonal coordinate 
system (Figure 2A_}. If complex amplitudes 
are known in the 9Z, ^z directions, the 
state of polarization is derived from 
these linear components, together with the 
complex resultant amplitude having that 
state of polarization. It is evident that 
determination of complex amplitudes in the 
9Z, ^z directions amounts to resolving the 
field along a longitude-latitude spherical 
graticule having the z-axis as the polar 
axis. 

2. Horizontal Dipole. A horizontal 
dipole, at the center of the space sphere, 
is oriented to lie on the x-axls (Fig¬ 
ure 2B). A polarization longitude from 
dipole pole B contains a typical point A. 
Through A pass a longitude and a latitude 
referred to the propagation axis Oz, with 
unit vectors 9Z, ^z at A. The unit vector 
characteristic of the dipole polarization 
at A is 9X. The unit vector 9X has to be 
resolved_in the directions of the unit 
vectors 9Z, ^z . 

In the spherical triangle BAC, the 
angle C is a right angle and 

a = BC = /z

b = AC = 90° - 9z

tan A = tan a sin b 

tan 0z

cos 9 z 

Hence, 

sin A =_1_ 

V(1 + cot2 /z cos2 9Z ) 

and 

cos A = — 1 __ 

V(1 + tan2 /z sec2 9z ) 

But resolving "§x

9 = -cos A 9 + sin A X z ^z 

Hence, 

0 =_L_ 
x j ■ ~ 

y(l + tan2 /z sec2 9z ) 

(_©z + tan /z sec 9z ^z ) 

3. Vertical Dipole. A vertical 
dipole at the center of the space sphere 
Is oriented to be on the y-axis (Fig¬ 
ure 2C). A polarization longitude from 
the dipole pole B' contains a typical 
point A'. Through A' pass a longitude 
and a latitude referred to the propaga¬ 
tion axis Oz, with unit vectors 9Z, p z 

at A'. The unit vector characteristic 
of the dipole polarization at A' Is 9y . 
The unit vector 0y has to be resolved in 
the direction of the unit vectors 9Z, ^z . 

In the spherical triangle B'A'C, the 
angle C is a right angle and 

a' = CB' = 90° - / 

b' = A'C = 90° - 9z
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Then 

cot /z 

tan A ' = coFT 

giving 

sin a' = -1-
f/(1 + tan2 /z cos2 ©z ) 

cos Az = — 1 -

V(1 + cot2 0 sec2 © ) V Ci Ct 

Since 

©y = -cos A' ©z - sin A' ^z

then 

0 = _1-
y /-0-2-

W(1 + cot 0 sec © ) V Ct Ct 

{-Q - cot 0 sec 0 £ ) Z, Cl Ct Ct 

4. Vertical Loop. With dimensions 
small with respect to the wavelength, 
a loop antenna is placed at the center of 
the space sphere, the axis of the loop 
lying along the x-axis, which is the polar 
axis of the loop (Figure 2D). A typical 
polarization line of the loop is a verti¬ 
cal latitude circle; this latitude circle 
intersects a longitude and a latitude cir¬ 
cle referred to 0z as polar axis at a 
representative point on the sphere. The 
unit vector characteristic of the loop 
polarization is which has to be resolved 
along Q_ and Ci Ct 

The small latitude circle of the loop 
is orthogonal with the polarization longi¬ 
tude of an /x-dlrected dipole. The latter 
line_of longitude makes an angle A with 
the 0Z unit vector (Figure 2B). Hence, 
the small circle makes an angle 90° - A 
with the $z direction. From Figure 2D 

7 = -cos(90° - A)© - sin(90° - A)^_ ' X Cl Cl 

= -sin A ©z - cos A ^z

Using the values of sin A and cos A 
obtained previously for the horizontal 
dipole, 

7 =_1_ 
x /-9-p-y (1 + cot cos 0z ) 

(-©z - cot /z cos 0Z ^z ) 

5. Horizontal Loop. A loop antenna 
whose dimensions are small with respect 
to the wavelength is placed at the center 
of the space sphere, its axis lying along 
a polar y-axis. A typical polarization 
line of the loop is a small horizontal 
circle on the space sphere (Figure 2E). 
At a representative point on this small 
circle pass a longitude circle and a lati¬ 
tude circle having Oz as polar axis. The 
unit vector characteristic of the loop 
polarization ls_j?z, which has to be 
resolved along ©„ and . Ct Cl 

The latitude circle of the loop is 
orthogonal with the polarization longi¬ 
tude of an Oy-directed dipole. The latter 
line_of longitude makes an angle A' with 
the 0Z vector (Figure 2C). Hence, the 
horizontal latitude circle of the_loop 
makes an angle 90 - A' with the ©z direc¬ 
tion. From Figure 2E 

= cos(90° - A')0Z - sin(90° - A' )^z

= sin A' ©_ - cos A' Ci Cl 

Using the values of sin A' and cos A' 
obtained previously for the vertical 
dipole, 

7 =_I_ 
y /-9-2-V (1 + tan /z cos ©z ) 

(©z - tan 0z cos ©z ^z ) 

C. Vector Antenna Patterns 

Antennas radiate beams. Even dipoles 
and loops can be regarded as radiating 
toroidal beams. Many attempts are made 
to devise antennas that do not radiate 
beams—that is, are isotropic sources. 
Omnidirectional coverage is frequently 
required by users of antennas. Electro¬ 
magnetic waves, however, are polarized 
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and antennas are polarized because they 
radiate or receive polarized waves. 
Because antennas are polarized, omnidirec¬ 
tional coverage is impossible to obtain. 
It is possible, however, to make antennas 
that radiate in all directions but possess 
polarizations that vary from direction to 
direction. These "compromise" antennas 
can be of practical use; their optimum 
design and application require a knowledge 
of the polarization characteristics of 
antennas. The first feature is pure 
polarization, an almost geometrical prop¬ 
erty characteristic of the aperture and of 
the illumination on the space sphere. 

Since antennas radiate beams, the 
energy density on the space sphere is not 
uniform and leads to the familiar space 
patterns of antenna measurements. The 
space patterns, however, cannot be fully 
specified without descriptions of the 
polarizations. Vectors are natural tools 
for describing polarization and hence 
apply suitably to space patterns. Vector 
radiation pattern descriptions will there¬ 
fore be given for some elementary antennas. 

1. Horizontal Dipole. The horizontal 
dipole has a polarization line that is a 
longitude with the x-axis as polar axis, 
represented by the unit vector Along 
the longitude, the electric field varies 
as sin 9X for a short dipole or as 
cos(90° cos ©x)/sin ©x for a half-wave 
dipole. (Short dipoles only will be 
treated in the following.) The electric 
field amplitude can be attached as a 
scalar multiplier to the electric field 
polarization vector to give a vector field 
pattern for the dipole as 

E(©:x) = sin ©x • ©x

along the horizontal x-axis. In the hor¬ 
izontal principal plane the pattern is 
sin ©x and in the vertical principal 
plane the amplitude is constant. In the 
horizontal principal plane (zx), = 0 
and ©z = the pattern angle, with a polar-
l.zation vector ©z (horizontal). In 
E(©z, ^z) we therefore put = 0, obtain¬ 
ing 

E(9Z, ?z) = - cos ©2 . 

In the horizontal plane Q? = -©„ and ©„ = 
90° - ©x; hence z

E(0 , 0 ) = sin © • © ' Z AZ X 

InQthe vertical principal plane (yz), 
0z = 90 , ^z exists but ©z does not; hence 

E(9Z, = ^z

There is no variation with the pat¬ 
tern angle ©z and there is no ©z or verti¬ 
cal polarization. Only horizontal polari¬ 
zation exists (^x at / = 90°), for all ©z 

pattern angles at a uniform amplitude of 
unity, which is characteristic of a 
dipole. 

2. Vertical Loop, A loop antenna 
having its axis lying along Ox has the 
same pattern in space as a dipole, with 
the orthogonal polarization lines repre¬ 
senting vertical latitudes. The vector 
pattern is 

If the pattern is measured in the 
angular coordinates ©z, /z with Oz as 
polar axis, then 

V (1 - sin2 0„ cos2 0 ) 

~L 2 / g y(l + tan2 /z sec2 ©z ) 

(-©z + tan 0z sec ©z ^z ) 

= -cos © cos 0 0 + sin 0 0 z z z "z 

E(©:x) = J sin ©x • 0x

Referred to ©2, / pattern angles 

1/(1 - sin2 0 cos2 0 ) 
E(0Z,/Z) = J < 2 2 g 2

y(l + cot2 02 cos2 ©z ) 

(-© - cot 0 cos 0 7 ) L ¿i Û 

= -J(sin 0 0 + cos © cos 0 • 0 ) ¿a ¿j £ £ 

A vector pattern formulation of this 
type can be checked by physical considera¬ 
tions as follows. The dipole is lying 

a formula verifiable by principal-plane 
considerations. 
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Similar formulas are obtainable for 
the vertical dipole and horizontal loop. 
These vector pattern expressions for the 
basic radiators enable vector patterns to 
be formulated for combinations of elemen¬ 
tary radiators. Combinations that are 
normally expected to produce circular 
polarization are of special interest. 
Before obtaining vector patterns of cir¬ 
cularly polarized antennas, it is neces¬ 
sary to discuss the complex feed ampli¬ 
tudes given to the elementary radiators 
in a combination. 

3. Turnstile, Consider, for exam¬ 
ple, two crossed dipoles--one oriented 
along Ox the other along Oy--the phase 
center of each being at the origin. The 
polarization and pattern characteristics 
of each dipole have been discussed. When 
both are used in combination with a common 
feed, individual complex amplitudes are 
fed to each, differing in general. The 
vector radiation pattern must then be a 
function of the element amplitudes as well 
as the element current distributions and 
the element polarization. 

Suppose the power fed to the x-
directed element is X2, the power fed to 
the y-dlrected element is Y2, the total 
input power is X2 + Y2, and the fractional 
powers to the respective elements are 

o p and Q p 
X + IT X + IT 

The current in the x-dipole will be 

proportional to ( X^ + Y2) and will have 
a certain reference phase. The current in 
the y-dipole will be proportional to 

Y/7( X^ + Y^ ), assuming identical dipoles, 
and will have a phase relative to the cur¬ 
rent in the x-dipole of 6. The normalized 
distributions of current in each dipole 
are l(x) and l(y): in the case of similar 
small dipoles l(x) and l(y) are the same 
constant--say unity. 

The two-element antenna system can 
therefore be given a vector feed excita¬ 
tion 

X _ Ye J6

A(x:y) =-/—a _ l(x)x +-;■ A ;i(y)y 
V(X¿+Y¿) V(X¿+Y¿ ) 

where the excitation ratio is Y/X e^ 6 and 
X, ÿ are unit polarization vectors in 

the Ox and Oy directions. _For electric 
dipoles, the unit vectors x, y at the _ 
aperture transform to or generate the ©x , 
ôy longitudes on the space sphere. 

The vector radiation of two crossed 
dipoles fed with a complex excitation 
ratio is then 

E(ez, /z) = E(©:x) + y e JÔE(ô:y) 

= -cos 0„ cos Æ 0„ z ^z z 

+ Sin / K + y e^ 6

(-cos © sin / Õ -cos / ë ) Z. it ¿i Li 

= -cos © (cos / +y e^sin / )© 

+ (sin - y e Jô cos 0 )ë Z» TV ¿i ¿i 

Nominal circular polarization Is produced 
conventionally for X = Y and õ = -90° 
(right circular polarization); for this 
case 

E(© , ) = -cos © (cos - j sin / ) © Z» Zi u a a u 

+ (sin ,0 + J cos 0 Z, L¡ 

e z(-cos ©z ©z + J^z) 

= cos 0 e 0 + z z e 
-0 ) 
ZA 

On the space sphere ©z represents all the 
longitudes with 0z as polar axis, and ^z 
represents all the latitudes. The vector 
pattern equation describes how the field 
varies in amplitude and phase along the 
longitudes and latitudes when detected by 
a linear electric probe tangential to 
either. It is immediately obvious that 
on a given latitude the amplitude is 
constant; there is only a phase rotation. 
For longitudinal polarization, however, 
the ©z amplitude falls away as cos ©z, 
confirming that in the plane of the 
dipoles the polarization Is In that plane 
only. 

Although the amplitude distributions 
along the longitudes are the same, there 
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is a phase shift of the 0Z patterns from 
longitude to longitude in the same direc¬ 
tion as the phase rotation in the orthog¬ 
onal polarization. The relative phase 
shift between components at a given point 
is -90°. The components are orthogonal in 
space. Hence the behavior of the result¬ 
ant polarization is determined solely by 
the amplitude differences in the linear 
components. Any elliptical polarization 
on the space sphere has then no orlenta-
tion--that is, major or minor axes are 
coincident with longitudes or latitudes. 
In the vector radiation patterns E(©z, /z ), 
the phase factor that is /-sensitive can 
be discarded, leaving the essential nature 
of the polarization as being given by 

E(0, /) = cos 8 0 -

The vector in parentheses indicates that 
the polarization Is right circular every¬ 
where. The complex number In parentheses 
Indicates that the circularly polarized 
field has an amplitude and a phase depend¬ 
ent on its coordinates. The amplitude 
pattern Is 

7(cos2 0 cos2 / + sin2 / ) = sin © Z Z Z X 

and the phase pattern is 

-3— Q = -tan \tan /„ sec © ) cos /z cos 01 ' ^z z' 

the z subscripts having been dropped. The 
polarization is circular on the normal to 
the plane containing the dipoles, right 
circular on the positive z-axis, and left 
circular on the negative z-axis. In the 
plane of the dipoles the polarization is 
linear and in that plane. At points on 
the space sphere elsewhere, the polariza¬ 
tion is elliptical and non-oriented with 
an axial ratio equal to cos 0Z. Contours 
of constant axial ratio are therefore 
latitude-like circles having the z-axis as 
common axis. For positive z, the polari¬ 
zation is right hand, and for negative z 
it is left hand. 

The elliptical polarization radiated 
can be eliminated by substituting a loop 
(or slot) antenna for one of the dipoles. 
The coverage, however, is affected, but 
the polarization is circular everywhere 
in only one sense. This electromagnetic 
dipole was discussed earlier. 

4. Horizontal Dipole and Vertical 
Loop. An x-directed dipole is encircled 
by a small loop having an x-dlrected axis. 
The loop is fed to yield an equal radiated 
power to that from the dipole. The vector 
antenna pattern of the system is 

^z^ = “cos ®z cos A? ez + sln La ¿j Z Z z z 

+ j(sln /z 02 +COS ©z cos /z /z ) 

= (-cos 0 cos / + j sin /„)© z z z z 

—j(-cos © cos / + j sin Æ M z z z z 

= (-cos ©z cos /z +J Sin /z ) 

(®z - J^z ) 

Had the field been measured in a ©x, /x 
coordinate system, the vector pattern 
would have been 

E(©x , = sln ex(®x " A- a. Ji X X 

The amplitude pattern sln ©x is therefore 
invariant with respect to the coordinate 
system of measurement. It Is easy to 
show, however, that 

_ -j tan_1 (tan / sec 0 ) 
ex~^ = e 2 (®z -^z ) 

Hence, the phase angle encountered in the 
field measurement in the 0Z, /z coordi¬ 
nate system is caused by the rotation of 
the circularly polarized detector in 
passing from the 0X, /x system to the 0 , 
/z system. z

The previous examples, crossed-
dlpole turnstile and electromagnetic 
dipole, illustrate the application of the 
vector pattern formulation to "point source" 
circularly polarized elementary radiators. 
Other examples—such as tripoles and 
crossed loops — can be analyzed in a si ml -
lar manner, and the techniques can be 
extended to more complicated radiators of 
the point source type and to arrays of 
such elements. 

Aperture antennas are, however, fre¬ 
quently circularly polarized. What are 
the vector antenna patterns of such radi¬ 
ators? Reflector and lens antennas have 
polarization characteristics that can be 
complicated functions of the vector feed 
patterns and the polarization geometry of 
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the focusing elements. Small aperture 
antennas have polarization characteristics 
determined by both the aperture polariza¬ 
tion and by diffraction at the boundary of 
the aperture and the immediate environment. 
Even a radome can affect the polarization 
performance. 

5. Linearly Polarized Horn Antenna 
and its Obliquity Vectors. The most ele¬ 
mentary aperture antenna is the pyramidal 
horn, long enough to yield negligible aper¬ 
ture phase error and having an aperture 
large enough to be free from edge diffrac¬ 
tion. Horns larger than 31 X 3X are ade¬ 
quate to be regarded as aperture antennas. 
Before examining circularly polarized horn 
antennas, it is advantageous to find a 
vector pattern for a linearly polarized 
horn. 

A square aperture horn Is taken at 
the center of the space sphere, the center 
of the aperture being at the origin and 
the aperture edges parallel to the Ox and 
Oy axes, respectively. The horn is fed 
with a TE10 waveguide mode; it is assumed 
that the mode amplitude distribution exists 
in phase at the mouth of the horn and that 
the aperture wave velocity is close to the 
free-space velocity of light. The elec¬ 
tric field is polarized parallel to Ox, is 
uniform in the x-dlrection, and is cosi¬ 
nusoidal in the y-direction. The aperture 
edges are parallel to the directions of 
Ox, Oy respectively. 

The wave launched from the aperture 
of the horn can be regarded as launched 
from an array of infinitesimal areas in 
the plane of the aperture, each of size 
dxdy. The polarization of the horn is 
then the polarization characteristic of 
an element of plane wave. Such an element 
can be simulated by an infinitesimal elec¬ 
tric dipole in combination with an infin¬ 
itesimal magnetic dipole (for example, a 
loop). Thus, a short dipole oriented 
along Ox and a small loop having Its axis 
along Oy set at the center of the space 
sphere will generate the polarization loci 
of an element of wave from the horn (Fig¬ 
ure 3A). It is clear that the resultant 
polarization will be neither that of the 
dipole alone nor that of the loop alone 
but will be a hybrid dipole-loop polariza¬ 
tion. The far fields of a dipole and a 
loop are in time quadrature when these 
elements are fed in phase: for the dipole¬ 
loop simulation of an element of plane 
wave, the elements must, therefore, be fed 
in quadrature. Thus, using notations 
established above, the vector pattern of 
the dipole-loop combination is 

E(0Z, 0Z) = sin 9X • 9x - sin 0y ■ ?y

The minus sign can be accounted for by 
considering the point on the_z-axis: 
there, 0X = 90° = 0y, ^y = -0X, and the 
fields must add. Then, In terms of the 
öz, ẑ coordinate system 

Ë(0 , /„) = -cos 0 cos / 0 + sin / ¿1 ¿1 Z, Z Zj Lj Li 

- cos ,0Z 0Z + cos 0z sin ,0Z ^z

= (1 + cos ©z ) 

(-cos / 0 + sin / £ ) 

In the horizontal xy plane, ,0Z = 0, and 
the polarization is purely 0Z or hori¬ 
zontal, the pattern being 

-(1 + cos 0)0 
Zi Z| 

In the vertical yz plane, J#-, = 90° and 
the polarization Is purely^z or again 
horizontal, the pattern being 

(1 + cos 0z )^z

But /z = -0Z infinitesimally near the 
z-axis. Hence, the pattern amplitudes 
match. 

The reader familiar with antenna 
pattern calculations using the Fourier 
transform will recognize (1 + cos 0Z) as 
the "obliquity factor" that prefixes the 
Integral. 

In planes other than the principal 
planes, the dipole loop combination has 
polarization components in both the 0z 
and ^z directions. The vector pattern 
of the horn is then the Fourier trans¬ 
form of the illumination multiplied by the 
vector pattern of the wave element. 

G (u, v) = sine u cosk v g X A 

where sine u = —-—; 

cosk V = (j)2 c°3 v ■ 

(f) - V2

and u = sin 0 cos / ; 
A. Z Z 

v = sin 0 sin / 
A. z z 
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with g = (1 + cos 0 ) A 

(-cos 9Z + sin /z ^z ) 

If the polarization of the horn in 
the aperture plane is in the y-direction 
(Figure 3B), the vector pattern is 

G (u, v) = cosk u sine v g 
y y 

where gy = (1 + cos Qz ) 

(-sin /z 9z - cos /z 9z ) 

6. Circularly Polarized Horn Antenna 
and its Obliquity Vector. If an element 
of wavefront in an antenna aperture is 
circularly polarized, the element can be 
resolved into two orthogonally linearly 
polarized wave elements in time quadra¬ 
ture. The resulting vector pattern of 
the element is then, for right circular 
polarization (Figure 3C) 

Sr = 8X - J gy 
-j# 

= -(1 + cos 9Z) e z (0z -

The radiation pattern is everywhere 
right circularly polarized, has a maximum 
in the z-direction and a zero in the back¬ 
ward or negative z-direction, being a 
cardioid of revolution. Physically the 
pattern can be regarded as generated by a 
pair of orthogonal dipoles and a pair of 
orthogonal loops instead of by a pair of 
dipole loops as used in the wave element 
simulation. 

The aperture of a horn antenna, how¬ 
ever, where fed by orthogonal TE modes is 
not uniformly circularly polarized over 
all wave elements in the aperture. The 
constant-by-cosine property of each mode 
leads to one component being uniformly dis¬ 
tributed, the orthogonal component being 
cosine distributed. Elliptical polariza¬ 
tion is generated in the aperture (Fig¬ 
ure 4); the horn radiation pattern cannot, 
therefore, be circularly polarized at all 
angles. If the aperture polarization is 
resolved into right and left circular com¬ 
ponents, then the right circular component 
distribution will generate a gg pattern 
vector, whereas the left circular component 
distribution will produce a gL field (Fig¬ 
ure 3D) given by 

gL = -(1 + cos 0Z) eJ^(0z+ J%). 

The vector aperture distribution of 
the horn is 

A(x, y) = cos X - J cos y d d 

where x, y are unit vectors along Ox, Oy 
respectively. To resolve into circular 
components, unit right circular and unit 
left circular vectors are defined by 

r = (x - J y) 

(x + J y) 

whence 

^2 A(x, y) = (cos + cos ^-) r d d 

+ (cos _ cos 7 

Unit circular polarization vectors r, 7 
produce radiation vectors gp, gr in the 
far field; thus, the vector radiation 
pattern of the horn fed by orthogonal modes 
is 

E(0, /) = (sine u cosk v 

+ cosk u sine v) gD n 

+ (sine u cosk v 

- cosk u sine v) gT . 

The principal plane patterns of the 
(u, v) transforms for right circular polar¬ 
ization are 

GR(u) = sine u + cosk u 

Gr(v) = sine v + cosk v 

and for left circular polarization are 

Gt(u) = sine u - cosk u ±J 

Gt(v) = sine v - cosk v 1j 

The left circular component is zero if 
u = v--that is, $ = +45°. The right cir¬ 
cular diagonal pattern is then 

GR(w) = 2 sine w cosk w 
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Principal-plane (v = o) and diagonal¬ 
plane (u = v) pattern cuts in the (u, v) 
coordinate system are shown in Figure 5-
The highest levels of left circular polar¬ 
ization occur in regions near the first 
nulls of the right circular patterns, there 
being significant left circular polariza¬ 
tion within the main beam of the right cir¬ 
cular patterns. The maximum level of the 
left circular polarization is -16 db in the 
principal plane shown. The (1 + cos ö) 
polarization factor is, of course, not 
shown in the (u, v) plot. 

7. Toothed Horn . The left circular 
polarization can be reduced by fitting 
teeth to the mouth of the horn, either 
inside or outside. The teeth may be made 
of wires or vanes. These fittings have no 
significant effect on the wave having a 
linear polarization perpendicular to 
their length; the teeth, however, short-
circuit the field polarized parallel to 
them. The effective electrical aperture of 
a mechanically square aperture is then 
rectangular and that of a circular aperture 
is quasi-elliptical for each component 
wave. The E- and H-plane beamwidths of a 
given component linearly polarized wave 
can then be made equal at an appropriate 
level; the orthogonal component is simi¬ 
larly beamwidth-matched. 

If the side of the square horn has 
dimensions a, the teeth (if internal) 
reduce the aperture to a dimension a'X a'. 
The effective aperture for each mode is 
then a X az . 

The vector pattern of the toothed 
horn is, therefore. 

E(0 , O' ) = sine u cosk v g„ 

- J cosk u sine v'g^ 

where u = t  | sin cos PL A Z Z 

vz = ir sin 0 sin / A Z Z 

The left circular component in the 
principal plane reduces to -28 db near the 
base of the right circular beam. At a 
wide angle, however, a side lobe of the 
order of -20 db appears. These values 
apply to the toothed horn having a'=-3-a. 

D. Scalar Antenna Patterns 

A scalar antenna pattern is the 
pattern taken on a pattern range using a 

specific polarization on the antenna remote 
from the antenna whose patterns are being 
measured. The remote antenna can be called 
the range antenna, and the measured antenna 
can be called the test antenna. For 
pattern measurements made at constant range, 
for example 2D2/X, the test antenna can be 
regarded as being at the center of the 
space sphere, and the range antenna as a 
probe antenna on the surface of the space 
sphere. Either the test antenna can be 
rotated to point in any direction and the 
range antenna held at a fixed point on the 
space sphere (for example, on the z-axis), 
or the test antenna can be kept fixed with, 
say, its aperture in the xy plane, and the 
range antenna can be moved over the surface 
of the space sphere. Because the latter 
technique allows the polarization perform¬ 
ance to be analyzed in terms of the motion 
of a point on the space sphere, whereas, 
the former involves antenna rotations and 
rotations of poles and polarization lines, 
the simpler method of holding the test 
antenna fixed and moving the range antenna 
will be adhered to here. Both methods are 
equivalent. 

If the range antenna is linearly 
polarized on the peak of its beam, its 
polarization can be aligned with the unit 
0Z vector at any point on the sphere to 
yield scalar antenna patterns that are the 
coefficients of 0Z in the expressions for 
the vector pattern. Similarly, if the 
range antenna polarization is matched to 
the unit vector ^z, the scalar coefficients 
of ^z in the vector pattern are obtained. 
Thus, for a horizontal dipole the scalar 
patterns are 

|E0<ez’ M = cos ez cos ^z 

and 

|E/ ez’ M = sln ^z 

whereas for a horizontal loop 

|Ee (0z, /z)| = cos 

and 

|E/ ez’ = COS ez sln

For a horn polarized parallel to Ox 

|eq (0 z , 0z )| = sine u cosk v 

(1 + cos 0 ) cos 0 z z 
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|E0Íez’ ^z^ = sinc u cosk v

(1 + COS 0Z ) sin 

where u, v are functions of 9 . 0 . z ^z 

To secure the right circular pattern 
of a nominally right circularly polarized 
test antenna, the range antenna is right 
circularly polarized, since "like antennas 
see each other" and "unlike antennas are 
blind" when polarization is in question. 
The measured scalar pattern of the antenna 
is then obtained by multiplying the vector 
pattern scalarly by a left circular polar¬ 
ization unit vector, since the antennas 
face each other. 

For example, a turnstile antenna of two 
dipoles generating right circular polariza¬ 
tion on the positive z-axis has a vector 
pattern 

Ë(ô / ) = e z (-cos 0 0 + J? ) Ci ¿i Ci Ci Ci 

The measured right circular polarization 
pattern is then 

BR<%. 
(-cos 0 0 + J/ ) • (0 + J? ) Ci Ci Ci Cl Ci 

-J/z
= e (-cos 0z - 1) 

-J/z , 
= -e (1 + cos 0) 

since 

(a0z + b^z) • (0z + J?z) = a + Jb 

defines scalar multiplication of two 
vectors, providing the s£-called "dot" 
product, for which ©z • ez = 1 = ^z ' 

The left circular scalar pattern is 
obtained from the vector pattern by multi¬ 
plication by (0z - J^z), yielding 

-J0 
El/®z’ ^z^ = e i1 - cos ez ) 

J(ir-0z) 
e z (1 - cos 0 ) z 

showing the counter rotation of phase. If 
phase is not measured the right and left 
circular patterns are given by 

E(0) = 1 + cos 0 

Scalar patterns of the other circularly 
polarized antennas including the horns 
described can be similarly obtained by an 
application of the dot product, yielding 
contour plots as illustrated in Figure 6. 

PART II 

POLARIZATION PUNCH-THROUGH IN SIDE-LOBE SUPPRESSION SYSTEMS 

by 

James P. Thompson and Warren D. White 

A. Introduction 

This portion of the paper is con¬ 
cerned with the polarization punch-through 
problem associated with side-lobe suppres¬ 
sion systems with antenna patterns of the 
type shown in Figure In this type of 
system, a relatively narrow-beam antenna 
Is used for the main acceptance antenna 
and a wide-beam antenna is used to reject 
all signals arriving from outside the 
desired acceptance angle. Rejection is 
accomplished by comparing amplitudes of the 
received signal in both channels. When the 
amplitude of the signal received in the 
wide-beam channel is greater than that 
received In the narrow-beam channel by some 
selected threshold value, the signal is 
rejected. The polarization punch-through 

problem associated with such a system is 
that at some angles outside the desired 
acceptance angle unwanted signals will be 
accepted by the system because of the 
polarization characteristics of the antennas 
at these angles. Furthermore, within the 
acceptance angle desired, signals may be 
rejected because of differences in the 
polarization of the two antennas. 

This problem occurs because the polar¬ 
ization of the two antennas at various 
angles is never precisely the same. It is 
therefore possible for a signal outside the 
desired acceptance angle having an orthog¬ 
onal polarization to the wide-beam antenna 
and some in-line polarization component to 
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the narrow-beam antenna to be accepted by 
the system. Conversely, it is possible for 
a signal inside the acceptance angle to 
produce little response in the narrow-beam 
antenna and a large enough response in the 
wide-beam antenna to cause the signal to be 
rejected. This latter problem is not 
usually found, however, since it is simpler 
to have polarization tracking of the two 
antennas over narrow angles close to bore¬ 
sight than it is for large angles off bore¬ 
sight. The point to be understood is that 
the condition for signal acceptance is a 
function of the polarization of the inci¬ 
dent radiation and the polarization dif¬ 
ference between the narrow- and wide-beam 
antennas . 

To show how rejection action depends 
upon the polarization of the incident 
radiation, an example in which the antennas 
are assumed to be linearly polarized and 
the incident radiation is assumed to be 
randomly linearly polarized can be con¬ 
sidered. For this example: 

0 is defined as the angle between 
the polarization of the narrow¬ 
beam antenna and the incident 
radiation. 

/ is defined as the angle between 
the polarization of the wide-beam 
antenna and the incident radia¬ 
tion. 

PN is the maximum amplitude of the 
signal produced at the narrow-beam 
antenna terminals by incident 
radiation. 

Pw is the amplitude of the signal 
produced at the wide-beam antenna 
terminals by incident radiation. 

The amplitudes of the signals in the 
two channels are cos 0 and Pw cos /. 

Conditions for acceptance: 

Pj, cos 0 
3————> acceptance threshold, T. COS ““ A 

Conditions for rejection: 

P.. cos 0 
—-T Pw COS / - A 

The acceptance threshold (T^) is the mini¬ 
mum ratio of narrow-beam to wide-beam sig¬ 
nal power at the respective antenna termi¬ 
nals required to achieve an accept condi¬ 
tion. The actual threshold value that is 
used will be based on the allowable number 
of noise firings and the probability of 
signal detection that is required for a 
given system application. 

If the narrow-beam and wide-beam 
antennas are identically polarized--that 
is, 0 = /--the condition for acceptance is 
independent of the polarization of the 
incident radiation and depends only on the 
ratio Pn/Pw. 

If the antennas are not identically 
polarized, the acceptance curve becomes 
dependent on the polarization of the inci¬ 
dent radiation. This is graphically repre¬ 
sented in Figure 8, where it is seen that 
at a given angle of incidence and for 
orthogonally polarized antennas the polar¬ 
ization angles from 0 degrees to ip degrees 
are accepted. Therefore, if random linear 
polarization is assumed, the probability of 
Intercept at that angle of incidence is 
ip/90. The same results would be obtained 
at other angles of incidence. Thus, at 
any given angle of incidence, if the inci¬ 
dent signal is of random linear polariza¬ 
tion, the system should be considered as 
having a probability of acceptance rather 
than a definite yes-no decision process. 
For angles of incidence close to boresight, 
this probability would be high, since the 
antenna polarizations would be nearly 
identical and P^/Pw would be large because 
of antenna gain characteristics. Con¬ 
sequently, the plot of Pm cos 0/Pw cos / 
would be well above the threshold value 
(T¿) for almost all polarizations. 

To expand the above considerations to 
circularly polarized antennas and randomly 
polarized input signals, it will be neces¬ 
sary to make use of the concept of the 
polarization sphere.(15) Any polarization 
can be represented by a unique point on 
this sphere. Linear polarizations are 
assigned to the equator, with the north 
and south poles being circular polariza¬ 
tions with right and left sense, respec¬ 
tively. Along lines of constant longitude 
are elliptical polarizations that vary from 
linear to circular with increasing latitude. 
The major axis of the elliptical polariza¬ 
tions are oriented in the direction of the 
linear polarization of the same longitude. 

To obtain the probability of acceptance 
for any possible polarization of the input 
signal, it is necessary to find the frac¬ 
tion of the surface of the polarization 
sphere yielding antenna signal outputs 
whose ratio exceeds the required acceptance 
threshold (T^). To do this, it is neces¬ 
sary to obtain some measure of the differ¬ 
ence in polarization of the two antennas. 
This is done by taking ellipticity meas¬ 
urements consisting of the magnitude of 
response in the major and minor axes and 
relative orientation of the polarization 
ellipse formed by these axes at uniformly 
distributed points throughout the antenna 
patterns. A relative measure of the dif¬ 
ference between two polarizations can be 
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obtained by the distance between the points 
on the polarization sphere. Therefore, by 
transforming the antenna polarization meas¬ 
urements to points on the polarization 
sphere, a measure of the difference between 
the polarizations is obtainable. 

Once the measure of difference of 
polarization is found, it is possible to 
determine the probability of acceptance as 
a function of the polarization of the inci¬ 
dent radiation. The details of the theory 
involved and methods for obtaining polar¬ 
ization punch-through probability measure¬ 
ments for the random linear polarization 
input and the completely random polariza¬ 
tion input is described in the next sec¬ 
tions . 

B. Computation and Measurement of Punch-
Through Probability for Random Linear 
Polarization_ 

Since the usual method of antenna 
pattern measurement corresponds so closely 
to the situation encountered under the 
assumption that the incident polarization 
is linear with a random orientation, the 
computation of the punch-through proba¬ 
bility for this case is rather simple. 
Several methods can be used. 

1. Both antennas can be illuminated 
simultaneously and their outputs connected 
to a recording ratio meter. The percentage 
of one complete rotation of the incident 
polarization for which the required thresh¬ 
old ratio is exceeded is the punch-through 
probability at that angle of incidence. 
The same measurements can be taken at other 
angles of incidence to determine the punch-
through probability at these angles. 

2. Both antennas are illuminated 
simultaneously, this time with a pulsed 
source. The two antennas are connected 
to a threshold circuit and the output is 
applied to a counter. If a fixed number 
of pulses (say, for example, 10^) are 
emitted while the source polarization 
rotates through one or more revolutions, 
the counter reading will give the punch-
through probability at the measured angle 
of incidence directly. 

3. Each antenna's response to a 
random linear polarization input is meas¬ 
ured individually, and the response plot 
is made in rectangular coordinates with a 
logarithmic scale of signal strength as the 
ordinate and polarization angle as the 
abscissa. The two patterns thus obtained 
are then superimposed on a tracing table, 
one being shifted in amplitude relative to 
the other by the amount of the threshold 
setting. The portion of the plot for which 
the narrow-beam antenna response exceeds 
the wide-beam response is the punch-through 
probability at the angle of incidence meas¬ 

ured. Similar measurements can be taken 
for other angles of incidence. This method 
has the advantage of not requiring any 
equipment not normally found on a pattern 
range. 

In each of the previously mentioned 
methods, if the antennas are required to 
operate over a wide range of frequency, 
measurements at each angle of incidence 
will have to be made at several input fre¬ 
quencies since the antenna response is also 
a function of frequency. 

C. Computation of Punch-Through Proba¬ 
bility for a Completely Random Polar-
ization Input_ 

1- General Theory . Let the incident 
wave be represented by the complex vectorO^) 

1 

E°e A dpi 5 (!V p

where ui and u^ are any arbitrary pair of 
orthogorfal unit vectors and, 

E is a quantity related to the total 
energy of the wave and Pu is a complex 
quantity characterizing the nature of the 
polarization. 

Similarly, let the equivalent heights 
of the narrow-beam and wide-beam antennas 
be represented by the complex vectors 

where Q is the complex quantity charac¬ 
terizing the nature of the antenna polar¬ 
ization. 
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The output voltages of the two anten¬ 
nas can then be represented by the complex 
scalars 

+ P Q 

VN = • NJ 

i(ON) 
EoNo e

The ratio of these two quantities is 

N« K^) /1 + K 

wo e y 1 + |qn

Our problem of finding the polarization 
punch-through probability can now be 
stated as one of finding that portion of 
the polarization sphere representing the 
incident wave that will yield ratios 
satisfying the relation 

|A| > Ta

The problem Is considerably simplified 
if we make a transformation of the unit 
vectors to cause Qw to vanish. Such a 
transformation Is the following. 

and 

p' is the complex quantity charac¬ 
terizing the polarization of the 
input signal in the transformed 
coordinate system. 

q' similarly is the complex quantity 
N characterizing the polarization 

of the narrow-beam antenna In the 
_* _^transformed coordinate system. 

Q,. and Q„ are the orthogonal polarizations 
w N that produce no response In the 

wide-beam and narrow-beam antennas. 

Since we are interested only in [A| , 
we do not concern ourselves with the trans¬ 
formed phase angles V'w and • We can 
further simplify the expression by making 
the substitutions 

N 
— = T O o 

ia 
= pe 

where p is the desired distance between the 
narrow-beam and wide-beam antenna polariza¬ 
tions in the P'plane and a represents the 
orientation of this distance line in the 
P' plane. 

We then obtain 

— X+P¿peJ^_ 
a = —a r y 

vi + P 

is.‘A 4J 2

Our equation for A is then transformed to 

woe \A + IqU 2

, _/ _ w 
where P = _ —• 

1 + P Q W 

and the condition for punch-through is 

If we substitute 

and solve for P z, we obtain an equation for 
the contour bounding the punch-through 
region in the P'plane 

7= 1 eia teiX /1 + p2 - 1 
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If we now make, a further transformation by-
rotating the p'-plane through the angle a, 
we can eliminate a from the contour equa¬ 
tion and obtain an equation for the contour 
in this new P" plane. 

therefore 

tan (ß - y) = tan ß - tan y 
' r' 1 + tan ß tan y 

Let 

we obtain 

Pz = P^e -1“ 2t p 

1 + t2 \/l + p2

P#= i te1X ^1 + p2 - 1 

which is the equation for a circle centered 
on the point P = -1/p and having a radius 

r = I + p2

Our problem now resolves itself into 
one of projecting this circle in the ?" 
plane onto the surface of the unit sphere 
and then determining the fraction of the 
surface of the sphere that is outside this 
circle. The situation is shown in Fig¬ 
ure 9 and the details of the computations 
are shown in Figure 10. As can be seen, 
the area in question is that portion of 
the surface of the sphere bounded by a cone 
whose apex angle is 2(ß - y). If we were 
to rotate the sphere so that the axis of 
this cone were vertical, with its apex 
pointed down, we could then say the problem 
is equivalent to that of finding all the 
area below the parallel marking latitude 

- (ß - y). The fraction of the whole 
sphere that fits this description is the 
punch-through probability, p, when the 
incident radiation is uniformly distributed 
over the sphere. 

P = 7 \1 + cos (ß - y) 

If the incident radiation is not 
uniformly distributed over the sphere, this 
fraction would have to be adjusted accord¬ 
ingly. 

Now from Figure 9, it can be seen that 
since the sphere is of unit diameter 

tan ß = i (1 + t VI + p 2) 

tan y = i (! - t VI + p2) 

An analytic expression for p in terms of 
$N and QW is

P 
1 + ”QW 

If uy and uo are taken to be unit vectors 
representing circular polarization, Q and 
Qw can be determined from ellipticity1* 
pattern measurements. 

Let r« and r^ be the axial ratios and 
©N and ©w be the major axis orientations 
of the narrow-beam and wide-beam antenna 
ellipticity patterns as shown in Figure 11. 
Then 

_ 1 - r„ 
Q = _Ü 
«N 1 + rN

/^N 

e-2iÔw

Thus we have 

1 - rM 1 -
1 + * 1 + r„ e

If we let 

0 ®W 6 N 

1 ~ rN 210 1 ~ rW 

1 + rN ~ 1 + rW 

1 . I 1 Mi 1 " rw] 210 
1+ |l + rJ|r^)e 
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After considerable 
expression reduces 

manipulation, this 
to 

"(rN " cos 6 + it 1 - Vw) sln 6

(1 + VïP C0S 0 " + rW} Sln 9

ö 9 9 
(rN “ V C0S 6 + C1 “ rNrw) Sln ® 

9 9 P 9 
(1 + C0S 0 + ( rN + rW> Sln 6

Using the above equations for p and p 
with r^, r^ and 0 as input data, a computer 
program can be used to reduce the data. 
Figure 12 is a typical punch-through prob¬ 
ability plot obtained from ellipticity 
measurements on S-band antennas. In this 
case, the narrow-beam antenna was a 
turnstile-fed end-fire cigar type and the 
wide-beam antenna was a simple turnstile 
antenna. Both antennas were circularly 
polarized. 

2. Determination of p and p from 
Charts. p can also be determined graphi-
cally by means of transformations performed 
on the transmission line chart(17). p is, 
in fact, the radius to the point represent¬ 
ing the wide-beam antenna after we have 
rotated the sphere to bring the point 
corresponding to the narrow-beam antenna 
to the center of the chart. 

To enable the complete punch-through 
problem to be solved graphically, a curve 
has been prepared (Figure 13) that is a 
plot of the punch-through probability, p, 
as a function of the threshold (t) for 
several values of p. To facilitate the 
use of this curve with a conventional 
transmission line chart, the curves are 
labeled not in terms of p but in terms of 
Z, the corresponding impedance at the 
standing-wave minimum on a 50-ohm trans¬ 
mission line. The relation between these 
quantities is 

z = 50 

P 
1 - Z/50 

“ 1 + Z/50 

1 - Pw 
1 + PW

50 
1 -

1 + 

since 

and 
-210,, 

e W

-216N e — 1 ' rN 

Q» -^7 

— 1 ” rw 
VttïJ 

For 0JJ and 0y = 0 corresponding to the r 

standing-wave minimums and substituting QN 
and into ZN and Zw, respectively, we 
obtain 

ZN " 50 rN

ZW = 50 rw

To summarize the equation of the curve of 
Figure 13 is 

p = i ^1 + cos (ß - 7 

where 

tan (ß - y ) = — 
1 - t¿ VI + P 

1 - Z¿/50 
P - 1 + Z'/5O 

t = T./T = normalized thresh¬ 
old ratio 

T a  = receiver threshold ratio 

The following example illustrates the 
method. 

Given a Priori 

Dg, = threshold (db) 

= 20 loglo (T) 

Measured from antenna 
response diagrams 

Narrow-beam antenna 
maximum M^j 

Narrow-beam antenna 
minimum mN

Wide-beam antenna 
maximum My 

Value in Example 

D t  = 10 db 

m n  = 1.0 

mN = 0.15 

My = 0.6 
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Given a Priori Value in Example 

Wide-beam antenna in =0.3 
minimum mw w

Relative orientation ö 0 = 12 degrees 

d = relative orientation converted to wave¬ 
lengths toward load, where O.375X 
represents a relative orientation of 
0 degrees. 

Compute 

ZN = 50(VMn) ZN = 7-5 

Zw = 50 zw = 25 

d = O.375 + 0/360 d = 0.40833 

To = <MN + + To = 2-2722 
p 

t = Ta - 10 log T° t = 6.435 db 

To find Z/, (Figure 14): 

1. Plot PN by striking an arc from Z^j to 
the "positive phase angle" axis. 

2. Draw a line from the center to d. 

3. Plot Pw, striking an arc from Zw to 
the line just drawn. 

4. Transform Py to P^ by moving along a 
constant impedance line the same num¬ 
ber of degrees required to move PN to 
the center. 

5. Find Z^ by striking an arc from Py to 
the "impedance ohms" scale. 

This yields a result of Z = 22.5. 

The above assumes that both antennas 
will lie in the same hemisphere both before 
and after the transformation. This means, 
initially, that they both have the same 
sense of elliptical polarization and that 
they are more nearly similar than orthog¬ 
onal. If this is not the case, we must 
think of the chart as two charts back to 
back, with one chart representing the front 
hemisphere and the other the rear. The 
impedance-ohms scale on the rear chart 
should be interpreted as having negative 
numbers. 

To find punch-through probability, p: 

In Figure 13 we proceed on the line 
corresponding to t = 6.4 db until we reach 
the curve for 22.5 ohms (interpolated). We 
then proceed downward and read p = 4.5 per¬ 
cent on the scale at the bottom. 

3- Instrumentation for Taking 
Ellipticity Measurements . The system shown 
in Figure 15 can be used to simplify the 

taking of the ellipticity data required to 
compute the punch-through probability for 
the completely random polarization input. 
The data format obtained on the rectangular 
coordinate plotter is as shown in Figure 16. 
At each incidence angle measured, the 
plotter will produce a line for the response 
of each of the antennas. The top of the 
line represents the major axis response 
(Mw or Mpj) and the bottom of the line repre¬ 
sents the minor axis response (mw or mfj). 
The orientation angle of the rotating 
linearly polarized incident polarization at 
the maximum response points provides the 
major axis orientation angles 0W and 0N . 

D. Conclusion 

It is concluded that in a multi¬ 
antenna side-lobe suppression system, care¬ 
ful selection of antenna types with regard 
to polarization tracking characteristics 
must be used to minimize the amount of 
unwanted signal reception or punch-through. 
A choice of antennas for a given applica¬ 
tion should be based on antenna character¬ 
istics required to satisfy the system 
requirement. In particular, the polariza¬ 
tion tracking of antennas should be one of 
the basic factors affecting a choice of 
antenna type. 
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ELECTROMAGNETIC DIPOLE 

Fig. 1. Polarization characteristics of elementary radiators 
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A REFERENCE COORDINATE SYSTEM 

Fig. 2. Resolution of polarizations. 
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HORIZONTAL DIPOLE AND HORIZONTAL LOOP IN QUADRATURE A. EQUIVALENT 

VERTICAL DIPOLE AND VERTICAL LOOP IN QUADRATURE 

Fig. 3. The obliquity vector (1 + cos Ö; g-

co» 0* + tin 0z) 

WAVE ELEMENT 
Y-POLARIZED 

WAVE ELEMENT 
X-POLARIZED 

WAVE ELEMENT 
RIGHT CIRCULARLY 
POLARIZED 

WAVE ELEMENT 
LEFT CIRCULARLY 
POLARIZED 

D. (A) - (B) IN QUADRATURE 

C. (A) + (B) IN QUADRATURE 

B EQUIVALENT 

9V tin 0* 0* - cot 0z 0^ ) 
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Fig. 4. Circularly polarized aperture components of square horn fed by orthogonal modes in quadrature. 
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Fig. 5. Principal-plane and diagonal-plane pattern cuts of square 
horn fed by orthogonal TE modes in quadrature. 
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ELECTRIC, MAGNETIC, AND 
ELECTROMAGNETIC DIPOLES 

"CIRCULARL Y POLARIZED " HORN 

Fig. 6. Contour patterns of right and left circular polarization components. 
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note: patterns shown can be considered as 
FIGURES OF REVOLUTION ABOUT BORESIGHT AXIS 

Fig. 7. Typical side-lobe suppression system antenna patterns. 

(
P cos ö\ 

vs polarization of incident radiation for 

orthogonal linearly polarized antennas. 
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ANTIPODE OF 

Fig. 9. Stereographic projection of punch-through contour from P" 
plane to unit radius polarization sphere. 

Fig. 10. Details of projection of punch-through contour from P" 
plane to unit radius polarization sphere. 
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Fig. 12. Punch-through probability vs angle off boresight. 
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Fig. 13. Plot of punch-through vs normalized threshold for several 
values of Zw-

d = .375 

zw * 50 r w 

Fig. 14. Illustration of use of Smith chart to obtain punch-through probability. 

9 
360 
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POLARIZATION 
ORIENTATION ANTENNAS UNDER TEST 

INDICATOR (CIRCULARLY POLARIZED) 

Fig. 15. Test instrumentation for taking ellipticity data. 

Fig. 16. Ellipticity data format obtained from rectangular plotter. 
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LOG PERIODIC 
CIRCUIT ANALYSIS 

R. Mittra, Electrical Engineering Department 
University of Illinois, 

Urbana, Ill. 

Abstract 

The paper deals with the analysis of a class of log-periodic 
circuits. Closed form expressions are developed for the 
Foster type LP networks with or without losses. It is proved 
that the locus of the input impedance of these networks on a 
reflection coefficient chart, e.g., on the Smith chart, is a 
circle for networks of order one. It is shown that for a net¬ 
work of a general order the plot is not necessarily a circle. 

The input impedance of a log periodically loaded trans¬ 
mission line is studied. It is found that for certain conditions 
the reflection coefficient plot is very close to a circle but in 
general it generates closed curves of various shapes. 
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SCANNING CHARACTERISTICS OF TWO-REFLECTOR ANTENNA SYSTEMS* 

W. D. White and. L. K. DeSize 

Airborne Instruments Laboratory 
A Division of Cutler-Hammer, Inc 
Deer Park, Long Island., New York 

Summary 

The off-axis properties of two-reflector sys¬ 
tems of the Cassegrain and. Schwarzschild type have 
been investigated on a theoretical basis to deter¬ 
mine the allowable scan angle. Design parameters 
for systems of this type as a function of beam¬ 
width, scan angle, magnification, and aperture 
block have been obtained and are presented in 
graphical form. In addition, a modification of 
the Schwarzschild system that involves overcom¬ 
pensating the reflecting surfaces has resulted in 
a larger allowable scan angle. The effects of 
astigmatism, location of the best focus for off-
axis performance, and the effects upon the radia¬ 
tion patterns are presented in graphical form. A 
method of reducing the effects of aperture block 
by using the secondary reflector as a secondary 
source of radiation are also described. 

I. Introduction 

In recent years, with the advent of very high 
resolution antenna systems for radar, radio astron¬ 
omy, and the tracking of space vehicles, an increas¬ 
ing amount of interest has been generated in two-
reflector systems of the Cassegrain type. This 
type of system is characterized by the ability to 
place the feeds at the rear of the primary reflec¬ 
tor and thus alleviate some of the problems asso¬ 
ciated with the transmission of high powers and the 
use of low-noise amplifiers on reception. Because 
of the extremely narrow beamwidth of these high-
resolution systems, it is desirable to be able to 
scan the beam over some reasonable solid angle to 
ease the target acquisition problem. The off-axis 
or scanning characteristics of this type of system 
are then an important topi in determining their 
usefulness for specific applications. 

At this point, it should be stated that by 
scanning characteristics we are talking about small 
physical angles (in the order of +5 degrees), 
though the actual number of beamwidths scanned 
might be large. In all two-reflector systems, the 
amount of scanning that can be obtained is limited 
by the geometry of the system—for example, an 
appreciable amount of the incident energy must be 

The work reported in this paper has been spon¬ 
sored by the Rome Air Development Center, Air 
Research and Development Command, under Con¬ 
tract AF 30(602)-1980. 

intercepted by the secondary reflector in order to 
obtain good beam formation. Thus, to obtain a 
reasonable scan angle, it is not desirable to use 
toa high a magnification, since for a given primary 
reflector the higher the magnification the smal1 er 
the size of the secondary reflector. This is con¬ 
trary to the usual requirement of minimum aperture 
block; thus, at best a compromise situation must 
exist between scan angle and aperture block. 

Perhaps the most common of the two-reflector 
systems is the Cassegrain system, which uses a 
paraboloid as the primary reflector and a hyper¬ 
boloid as the secondary reflector. The character¬ 
istics of this system have been discussed previously 
in the literaturel>2, an¿ it is not the purpose 
of this paper to consider this system in detail 
but rather to use it for a comparison with the 
Schwarzschild system3 which has better off-axis 
characteristics. 

II. Schwarzschild System 

In a superficial way, the Schwarzschild tele¬ 
scope resembles the more fam i 11 ar Cassegrain tele¬ 
scope. Like the Cassegrain system, it is a two-
mirror system in which rays arriving parallel to 
the axis are perfectly focused to a point. Unlike 
the Cassegrain telescope, however, the mirror cross 
sections are not simple conic sections but are 
transcendental curves. The design satisfies the 
Abbé sine condition and, therefore, the primary 
coma effects are eliminated. Thus, the performance 
of the Schwarzschild telescope for small finite 
feed displacements off axis is superior to that of 
the equivalent Cassegrain telescope. 

In optics, the Schwarzschild system has been 
largely superseded by the Schmidt camera, because 
the Schmidt camera can provide a wider field of 
view. As the prototype for a scanning antenna, 
however, the Schwarzschild system has much to 
recommend it. Unlike the Schmidt camera and sim¬ 
ilar designs, it uses no refracting elements. 
Therefore, it is not subject to the power limita¬ 
tions associated with various forms of dielectric 
lenses. Although a single reflector can be made 
to satisfy the Abbé sine condition by using a 
stepped surface, such a design introduces an ele¬ 
ment of frequency dependence not present in the 
Schwarzschild design. Finally, as in the Casse¬ 
grain design, the focal surface can be placed in 
the rear of the primary reflector out of the beam¬ 
forming region. Consequently, bulky plumbing 
arrangements and elaborate forms of scanning appa¬ 
ratus can be used without interfering with the 
beam formation. 
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Despite these advantages, the Schwarzschild design 
does not appear to have been widely used. In 
part, this may be because it provides a somewhat 
limited field of view as compared with such sys¬ 
tems as the torus reflector. We believe, however, 
that at least in part, the Schwarzschild system 
has been neglected because of a lack of published 
information on its performance capabilities and 
suitable design procedures. The principal refer¬ 
ences have been published in connection with the 
development of the AN/MPG-1 radar. In this case, 
the system was successful in meeting its design 
objectives. The available literature, however, 
fails to give a design procedure that can be gen¬ 
eralized to other applications. 

The present study was undertaken to alleviate 
the lack of information available. Several Schwarz¬ 
schild configurations were analyzed using a ray¬ 
tracing technique. As a result, we are able to 
draw certain general conclusions and suggest a 
design procedure. 

A. General Conclusions 

1. The Schwarzschild telescope is an excel¬ 
lent prototype for a scanning antenna that is to 
produce very narrow beams over small to moderate 
scan angles. Unlike the simple parabolic reflec¬ 
tor, the performance of a Schwarzschild antenna 
cannot be evaluated simply in terms of the number 
of beamwidths in the allowable scan angle—that 
is, the statement that a given design will scan a 
O.5"degree beam +5 degrees does not mean that the 
same antenna will scan a 1-degree beam +10 degrees. 
The same design will probably be capable of scan¬ 
ning a 0.1-degree beam more than +2 degrees. The 
allowable scan angle decreases as the magnification 
is increased. The aperture block that is due to 
the secondary reflector also decreases with 
increasing magnification. Thus, when the required 
scan angle is small, favorable designs having 
little aperture block are possible. 

Unlike Luneberg lenses, Schmidt cameras, and 
Rlm-i lar designs requiring refracting elements, the 
Schwarzschild telescope is not subject to the 
power limitation imposed by the presence of a 
refracting medium. Furthermore, unlike the stepped 
parabola designs, the Schwarzschild telescope sat¬ 
isfies the Abbé sine condition without introducing 
a bandwidth-limiting frequency dependence. 

2. The Schwarzschild antenna will always 
produce better off-axis beams than the Cassegrain 
antenna. The Schwarzschild design gives a coma 
coefficient that approaches zero with zero slope 
on the axis. The corresponding Cassegrain antenna 
will have a coma coefficient approaching zero with 
a finite slope. The other aberrations appear to 
be similar between the two antennas. Thus, the 
Schwarzschild antenna will yield better off-axis 
performance than the corresponding Cassegrain 
antenna. In certain situations, the improvement 
may be slight but there will always be an improve¬ 
ment. 

3. The Schwarzschild design is also applica¬ 
ble to moderately wide-angle scans in the Wheeler 

twist or the folded pillbox form. Designs in which 
the allowable scan angle is appreciable (say 
+5 degrees or more) tend toward a configuration 
in which the secondary reflector is large enough 
to block an appreciable portion of the primary 
aperture. Such designs are still usable if the 
aperture block can be eliminated by independent 
means. Two systems for doing this are the Wheeler 
twist configuration and the folded pillbox design. 

4. For very wide scan angles, the Schwarz¬ 
schild design is not competitive with other antenna 
types. When an attempt is made to design a Schwarz¬ 
schild antenna to cover a very wide scan angle (say 
around +15 degrees) the resulting reflector design 
is so distorted as to make alternative systems such 
as spherical or torus antennas preferable. 

B. Computation of Surface Contours 

1. Abbe' Sine Condition. The Schwarzschild 
telescope is a two-mirror system designed to sat¬ 
isfy the Abbe' sine condition. Most discussions of 
the Abbe' sine condition occur in the literature of 
geometrical optics. The following review is pre¬ 
sented for the benefit of those unfamiliar with 
this literature. 

Figure 1 shows the cross section of the 
Schwarzschild antenna. A ray, parallel to the 
x-axis and separated from it by distance H, is 
reflected first by the primary reflector and then 
by the secondary reflector. The angle between the 
final segment of the ray and the x-axis is a. For 
the system to satisfy the Abbe7 sine condition, the 
following relation should hold. 

sin a 

where F is a constant independent of H. 

Figure 2 shows an expanded cross-section view 
of portions of the antenna. The reflector focuses 
rays that are parallel to the x-axis to a point. 
Stated another way--the reciprocity principle--a 
spherical wave emanating from the focal point will 
emerge from the system as a plane wave whose wave¬ 
front is normal to the axis. For a scanning 
antenna, if the source of the spherical wave is 
moved a small distance (y) normal to the x-axis, a 
new plane wave should emerge from the system with 
a tilt angle © relative to the original plane wave. 
The path length of the ray shown in Figure 2 is 
shortened by the amount 

Ap ~y sin a, ( 1) 

immmi ng that the displacement (y) is small relative 
to the dimensions of the system. If the emergent 
wave is a plane wave with the tilt angle ©, the 
path shortening will be 

Ap = H tan © (2) 
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Equating these two expressions for Ap, we obtain solution can be written as 

or 

y sin a = H tan 0 (3) 

sin a tan 0 

This derivation is an approximation based on 
y being small relative to the dimensions of the 
system (0 is a small angle). When the deviations 
are substantial, superior results can sometimes be 
obtained by, departing from a rigorous satisfaction 
of the Abbe sine condition. 

2. Geometrical Relations. As seen in Fig¬ 
ure 1, there are two segments of the ray between 
the focal point and the point of reflection from 
the primary reflector. We designate the lengths 
of these segments by p and I. If the emergent 
wavefront is to be a plane wave, the following 
equation should hold. 

p + I = tx + t2 + X (5) 

From purely geometrical relations we can see that 

p cos CL - L cos a = t2 - tx + X (6) 

and 

p sin a + L sin a = H (7) 

Since the angle of reflection is equal to the angle 
of incidence, we can write 

a - i = i - a (8) 

and from the small detail of point A (Figure 1) we 
can see that 

Equations 4 through 9 now constitute a set of 
six equations relating seven variables (a, p, 
I, X, H, and i) and three parameters (F, t., and 
tg) • We can eliminate all variables but p and Oí, 
obtaining thereby the equation 

p + Fs - t1 - F 

(1 - s)^ - Fs) (10)

Equation 10 then is a differential equation 
for the surface of the secondary reflector. The 

where 

1 dp 
p ds 

. 2 a 
s = sin -

We thus have a definitive equation for the secondary 
reflector in polar coordinates. 

To compute the surface of the primary mi rmr, 
we first eliminate Oí 'from equations 6 and 7 
obtaining 

2 2 i = p - 2p cos a (t2 - t + x) 

+ (t2 - tx + x) + (Fc - 2Fp) sin a 

We then eliminate I from this equation and equa¬ 
tion 5« Making the substitutions, 

H = F sin a 

sin a = 2~\/s( 1 - s) 

cos a = 1 - 2s 

and solving for x, we obtain 

p 
F s + p(t - 2Fs) 

V - 4. t 1 _ = _ 1 

or substituting for p, its value, we obtain after 
some reduction 

F2
x = -t2 + — s(l - s) 

(12) 

whereas 

H = F sin a = 2 F ̂ (l - s) (13a) 

Without giving the details of the derivation, 
note that the primary mirror can also be expanded 
in a Taylor series of the form 

x H2 . 

r J r 
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The first few coefficients are: 

1 
a4 " 32 

2m + ... 
a8 " ' 61U 

6m3 + .. ■ 
a10 “ ‘ 122,880 

gUm^ + 290m3 + 155>2 + U850m + 8101 
a12 ~ ‘ 2,919,120 

In this expression, m is the magnification and t^ 
is set equal to t2>

3, Relation of Parameters■ A discussion of 
the relations between the various parameters of a 
Schwarzschild antenna will be facilitated by intro¬ 
ducing the concept of the equivalent Cassegrain. 
Figure 3 shows a cross section through a general¬ 
ized Cassegrain antenna. It consists of a para¬ 
bolic primary mirror and a hyperbolic secondary. 
A ray arriving parallel to the axis and striking 
the primary reflector at point A is reflected 
toward the primary focal point B. The secondary 
mirror has a hyperbolic section and one of the two 
hyperbolic foci is coincident with the primary 
focal point at B. The ray is thus intercepted at 
point C and directed to the secondary focal point D. 
The equations for the reflecting surfaces may be 
written as 

In the following, we shall limit ourselves to 
the case where the secondai-y focus lies on the sur¬ 
face of the primary reflector--that is, we limit 
ourselves to the case where t^ = t^ or b = 0. We 
can then write 

f3 + f2 = fx = (m + 1) f2 

therefore 

f 
f, = -^ (IT) 1 m 

f. f 

(18 > 
f 

<19 > 
In other words, 
in terms of the 
magnification. 

the surfaces are completely defined 
equivalent focal length and the 

Since the Schwarzschild and the Cassegrain 
antennas differ only in the higher-order terms of 
the surface equations, we can define the two 
antennas as equivalent if they have the same sur¬ 
face curvatures on the axis and the same surface 
separations. 

The parameters 
can then be written 

of the Schwarzschild antenna 

f 
t - t = f = e<* 
tl " 2 3 m + 1 

(20) 

4. Curve Fitting. Since both reflector sur¬ 
faces of the Schwarzschild system are described by 
irrational equations, they do not lend themselves 
to analytic ray-tracing procedures. Therefore, it 
is preferable to describe the surfaces by either of 
two polynomial approximations: (1) a Taylor series 
terminated after a finite number of terms, or (2) a 
polynomial that is a least-squares fit to a finite 
number of surface points computed by using the 
exact equations. Both methods have been tried. In 
general, the least-squares fit yields a polynomial 
that is a more accurate representation of the 
reflector surfaces over a finite extent than the 
representation from the truncated Taylor series. 

The focal lengths fq, f2, and fj are as shown 
in Figure 3. The equivalent focal length of the 
Cassegrain system is magnified by the ratio f^/fg 
or in other words 

f 
eq 

f3

■ ■ -*1 
(16) 

C. Analysis of Performance 

1. Ray Tracing. To evaluate the ability of 
an antenna reflector system to produce off-axis 
beams, one approach would be to trace rays outward 
from the focal point to a plane surface normal to 
the intended beam direction. The variation of the 
lengths of these rays would then constitute a 
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direct measure of the path error. This path error 
could then be multiplied by the appropriate con¬ 
stant to yield the phase error of the illumination 
pattern. 

In optical ray tracing, the technique is 
usually the reverse of that described above. Rays 
are traced inward from the reference plane until 
they intersect an image plane. This reflects the 
fact that optical devices are normally Judged in 
terms of image quality rather than in terms of 
equivalent beam pattern. An incidental advantage 
of the optical technique is that the effect of 
small focal plane shifts can be investigated with¬ 
out repeating the entire tracing operation. 

The two techniques are related by the fact 
that a small displacement of the image point can 
be divided by the effective focal length of the 
system and the result interpreted as an angular 
aberration. If an inbound ray parallel to the cen¬ 
tral ray and displaced from it by a distance H 
strikes the focal plane at a point e units from 
the central ray, then the angular aberration is 
Ag = e/F radians. This means that if a ray is 
traced outward from the focal point emerging H 
units from the central ray, it will be inclined 
at an angle Ae relative to the central ray. 

Since the wavefront is normal to the direction 
of propagation, the tilt of the wavefront is also 
Ae radians. Assuming that Ae is so small that 
Ag = sin Ae = tan Ag, then the total wavefront dis¬ 
tortion or path-length error is obtained from the 
relation 

Path error = Ap = I A dH cos 0 

The cos 0 factor is introduced since dH is measured 
in the plane of the aperture, whereas the integra¬ 
tion should take place in a plane normal to the 
beam. 

In conducting this study, we were fortunate 
in having available the Elgeet Optical Program. 
This is a program written for the LGP-3O Computer 
by Mr. Gordon Spencer of the University of Roch¬ 
ester for the Elgeet Optical Company. The ray¬ 
tracing portion of this program is capable of 
handling any combination of rotationally symmetric 
optical surfaces, reflecting or refracting, and 
spheric or aspheric up to a total of 35 surfaces. 
Data for aspheric surfaces are inserted by giving 
the coefficients of a 10^-order polynomial. Ray 
data are inserted by giving the coordinates of the 
ray intersection with a plane tangent to the first 
surface and the direction cosines of the ray. The 
output is in the form of the coordinates of the 
ray's intersection with the focal plane and data 
pertaining to the angle with which the ray strikes 
the focal plane. 

2. Reduction Program. For optical applica¬ 
tions, image plane data is usually sufficient; how¬ 
ever, the antenna engineer is more interested in 
beam patterns and needs to know the phase error of 
the illumination. To provide this type of informa¬ 

tion, an optical reduction program was written. 
This program permits the image plane data to be 
translated in terms of aperture plane phase errors, 
and provides a means for evaluating the effect of 
focal plane shifts. The procedure is as follows. 

The outputs of the ray-trace program in the 
form of curves of y versus H and tan a versus H 
are applied as the input to a least-squares adjust¬ 
ment program to obtain a polynomial approximation 
to these curves—that is, 

y = Bo + ßpH + ^H2 + ... + B10H10 (21) 

tan a ? Co + + CgH2 + ... + C^H10 (22) 

The intercept of the shifted focal plane is 

y'= y + af tan a (23) 

where AF is the focal plane shift. The angular 
error is then 

y'- y¿ 
Ae =-y-^ (2M 

where yg is the value corresponding to the central 
ray. Therefore, a new polynomial is formed as 

A^füH1, (25) 
e 0 1

where 

Do =° 

(26) 

B, + AFC, 

Di““4-i/0 

Normally, AF is chosen so that D1 = 0. This is 
the value that provides best focusing for rays 
near the center of the aperture. Where there is 
substantial spheric aberration, however, it is 
possible that better operation for the aperture as 
a whole can be obtained by using a slightly dif¬ 
ferent value for AF. Therefore, the program is 
arranged so that it can be caused to compute its 
own focal position (setting D.^ = O) or it can com¬ 
pute with a focal position that is specified as 
part of the input data. 

Integrating the angular aberration polynomial, 
we obtain another polynomial expression for the 
path error 

AP = cos 0 SEiHi+1 (27) 
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where 

E 
Di 

i 1+1 
(28) 

3. Overcompensation. Figure U shows the 
type of result obtained from the reduction program. 
This is a curve of the path error as a function of 
position along the aperture for two different 
angles off axis. 

The unit of measure used is the focal length 
of the primary reflector. For the configuration 
plotted, this is one-half of the effective focal 
length of the complete system. The curves obtained 
for the equivalent Cassegrain antenna are shown for 
comparison. The Cassegrain system is equivalent to 
the Schwarzschild system in the sense that it has 
the same reflector spacing and the same reflector 
curvatures at the apex. Curves are shown for the 
cases of 5-degree off-axis operation and 10-degree 
off-axis operation. The path error is less for 
the Schwarzschild system than for the Cassegrain 
system. 

In the 5-degree case, the improvement of the 
Schwarzschild system over the Cassegrain system is 
much more pronounced than in the 10-degree case. 
In addition, for the 5-degree off-axis case, the 
shape of the Schwarzschild curve differs markedly 
from that for the Cassegrain; whereas the differ¬ 
ence in shape is minor for the 10-degree curve. 
This suggests that, though the Abbe' sine condition 
ensures the absence of primary coma distortion for 
small displacements off axis, a 5-degree displace¬ 
ment is only marginally small and a 10-degree dis¬ 
placement is definitely not small. 

The implication is that, for an antenna to 
scan a given finite sector, better results might 
be obtained by departing somewhat from the true 
Schwarzschild design. To test this hypothesis, the 
following procedure was tried. 

1. A primary reflector contour was chosen in 
which the deviation from a parabolic shape was 
twice that of the Schwarzschild primary reflector. 

2. A corresponding secondary reflector was 
computed that would maintain equal path lengths to 
the focal point for a plane wave coming in par¬ 
allel to the axis. The resulting system is termed 
100 percent overcompensated. 

Path-error curves are shown in Figure 5 for a 
range of off-axis angles. From Figures U and 5 it 
can be seen that in the region of 5 degrees, both 
the Schwarzschild system and the overcompensated 
systems give asymmetrical path-error curves, but 
that the direction of the asymmetry is reversed. 
The curve for the Schwarzschild system is roughly 
symmetrical at a point well to the left of center. 
The overcompensated system is roughly symmetrical 
at a point well to the right of center. The impli¬ 
cation is that, had we introduced less overcom¬ 
pensation, the curve could have been made symmet¬ 
rical. As will be seen, this implication is borne 
out. 

In Figure 5> the overcompensated antenna 
10 degrees off axis is still asymmetrical to the 
left though somewhat nearer to a symmetrical pat¬ 
tern than the Cassegrain antenna, or true Schwarz¬ 
schild antenna. The effect of varying the com¬ 
pensation is much less pronounced on the right side 
of the graph than on the left. 

At first glance, Figure 5 may appear somewhat 
confused especially on the left side. Closer 
inspection, however, will show a definite pattern. 
At small angles off axis (2 degrees), the curves 
tend to go up on the left side and down on the 
right. This is the condition of the negative coma. 
As the angle increases (4 to 6 degrees) and because 
of spherical aberration, the left part of the curve 
continues to go up but the right part reverses. At 
about 8 degrees off axis, the effects of coma have 
almost disappeared and we have a nearly symmetrical 
picture in which the dominant component is spherical 
aberration. As we continue to go still farther off 
axis, positive coma is apparent; the right end of 
the curve continues to increase but the left part 
decreases. Near the center, the 8-degree curve is 
below the 6-degree curve, though they intersect 
farther out. The 10-degree curve is well below the 
8-degree curve on the left side, even though it is 
still positive at the left end. If we continue 
farther, the left end of the curve will eventually 
go negative. 

It may be questioned whether the overcompen¬ 
sation has accomplished much, even at 10 degrees 
off axis, since the right end is not affected much 
and the path error on the left (though of reversed 
sign) is still large. The answer is that a sym¬ 
metrical path-error curve is desirable, since this 
can be compensated in some degree by focus shift. 
For these curves, the focal point was calculated by 
nulling Dp the focus-error coefficient of the 
angular aberration. This ensures optimum focus for 
the rays near the aperture center. It does not, 
however, ensure best focus for the entire aperture. 
Later in this paper, we will present examples to 
show how a modification of the focus shift can be 
used to minimize the errors over the aperture. 

Since the implication from Figure 5 is that at 
moderate angles off axis (say 5 degrees) somewhat 
less than 100-percent overcompensation would be 
desirable, curves were computed for a 50-percent 
overccmpensated system with a magnification of 2. 
In this region, the 50-percent overcompensated sys¬ 
tem appears to be near to an optimum. 

4. Effects of Magnification Changes. For a 
given application, we have a variety of Schwarz¬ 
schild configurations that can be used. Given a 
particular aperture diameter, we can use a long 
focal length resulting in a large fj/D ratio or 
we can use a shorter focal length. Given the focal 
length, we can use a relatively shallow primary 
reflector and a low magnification, or we can use a 
deeper primary and a higher magnification. While 
the magnification stays fixed, the effect of varying 
the focal length can be determined from curves of 
the type shown in Figure 5, by appropriately adjust¬ 
ing the scales. Changing the magnification, how¬ 
ever, necessitates a new computation. 
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From one point of view, that of minimizing the 
aperture block that is due to the presence of the 
secondary reflector, it is desirable to use as high 
a magnification as possible. On the other hand, 
the magnification cannot be increased indefinitely. 
Figure 6 shows a family of Cassegrain antennas with 
the same parabolic primary reflector but different 
magnifications and thus different hyperbolic sec¬ 
ondary reflectors. The dashed line shows that a 
ray arriving parallel to the axis is reflected to 
the same focal point regardless of the secondary 
reflector used. A ray (solid line) that makes a 
finite angle with the axis is reflected to dif¬ 
ferent focal points depending on the magnification. 
Note, however, that the ray misses the smallest of 
the secondaries completely. This is an unsatis¬ 
factory condition. As we shall see later, the 
performance deteriorates rapidly as this condition 
is approached. 

Figure 7 shows what we call the "critical 
angle.” We define this angle as the angle off axi s 
at which a ray strikes one edge of the primary 
reflector, crosses over, and barely strikes the 
opposite edge of the secondary reflector. In other 
words, when rays arrive at angles greater than the 
critical angle, the secondary reflector is com¬ 
pletely missed by the rays. This angle decreases 
with Increasing magnification and decreases as the 
primary reflector's focal length is shortened. 

Although Figures 6 and 7 are shown for a 
Cassegrain system rather than for a Schwarzschild 
system, we can expect the same general trends in 
the Schwarzschild system as well, since the two 
systems are superficially alike. In themselves, 
these curves do not tell us the exact limitations 
on the performance of any given configuration; they 
do indicate a trend wherein maximum usable magnifi¬ 
cation decreases as the angle of desired coverage 
is increased. 

To examine the problem in more detail, sev¬ 
eral cases were computed with a magnification of 4. 
Since 100-percent overcompensation seemed too much 
for a magnification of 2, we used smaller degrees 
of overcompensation. Accordingly, the first curves 
computed were for the true Schwarzschild system and 
for systems having 25- and 50-percent overcompensa¬ 
tion. It turned out, however, that these overcom¬ 
pensated systems produced results varying but 
little from those of the true Schwarzschild sys¬ 
tem. Greater degrees of overcompensation were then 
tried, and performance curves were computed for 
100- and 200-percent overcompensated systems. 
Figure 8 shows the path error curves for the 
200-percent overcompensated system. 

To some degree, these curves show the same 
trends as those shown in Figure 5 (magnification 
of 2), though the effects of spherical aberration 
are less prominent. Comparing Figure 5 with Fig¬ 
ure 8 indicates that, for small angles, Schwarz¬ 
schild system performance is relatively independent 
of magnification. At large angles, however, the 
curves deviate substantially on the left sides, 
though the right sides are still símil ar 

Figure 9 is a plot of the coma coefficients 
for various cases and indicates graphically the 
effect of magnification. This Illustration is 

normalized In terms of the effective focal length— 
that is, all the systems plotted have an effective 
focal length of 10 units. Consider first the 
curves for: (1) the single parabola, (2) the Casse¬ 
grain system with a magnification of 2, and (3) the 
Cassegrain system with a magnification of U. These 
three curves are tangent at origin. This indicates 
that, for small angles off axis, the performance 
of a Cassegrain antenna is a function only of the 
effective focal length and is independent of the 
magnification. As we go farther off axis, however, 
we find that the Cassegrain curves deviate from 
those of the parabola; the higher the magnifica¬ 
tion, the earlier this deviation becomes apparent. 
This was already known in a qualitative way, but 
it was not known that the marked deviations set in 
so early for moderate magnifications. 

In both cases, the Schwarzschild curves 
approach the origin with zero slope, but the 
higher magnification results in substantially 
greater error even at relatively small angles. 
This implies that for a system of given effective 
focal length, it is better to use a long focal 
length primary reflector and small magnification 
rather than a short focal length pri mary reflector 
and greater magnification. This is counter to the 
requirement of using high magnification to mini¬ 
mize aperture blocking. In practical cases, a 
compromise must be made. 

Although the two curves for 100-percent over¬ 
compensated systems start with the same negative 
slope, the higher-magnification curve reverses 
direction faster and intersects the axis again 
at a much smaller angle. The implication here is 
that, for a given coverage angle, much less over¬ 
compensation is required with a low magnification 
system. 

Figure 10 shows the same information as does 
Figure 9, but here we have a constant primary 
focal length. (Each system plotted has a primary 
focal length of 5 units.) From this set of curves, 
it is apparent that holding the primary focal 
length constant and increasing the magnification 
does reduce coma in a Cassegrain system, though 
the reduction is not as great with large angles 
off axis as it is with small angles. For the 
Schwarzschild systems, the lower magnification 
results in somewhat less coma, though the curves 
are not greatly different. 

5• Use of Very High or Very Low Magnifica¬ 
tions. Although low magnifications tend to 
increase the size of the secondary reflector, 
there are at least two cases in which aperture 
blocking that is due to the presence of the sec¬ 
ondary is not a problem. The first of these is 
the case where scanning is required in only one 
dimension. Here, we can use a folded pillbox type 
of design as was used in the AN/MPG-1. 

The other method of avoiding aperture block¬ 
ing is by using the Wheeler polarization twist 
principle. This system uses a grid-type secondary 
reflector that reflects one polarization but is 
transparent to the orthogonal polarization. The 
primary reflector is covered with a diagonal wire 
grid spaced one-quarter wavelength in front of the 
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main reflecting surface. This converts an inci¬ 
dent wave that is horizontally polarized to a 
vertically polarized wave. Thus, if the secondary 
reflector is arranged to reflect vertical polariza¬ 
tion and transmit horizontal polarization, and if 
the feed horn is vertically polarized, then a wave 
emerging from the horn will he reflected by the 
secondary reflector. Upon striking the primary, 
it will be converted to a horizontally polarized 
wave and, on reaching the secondary a second time, 
will pass through. 

Because of these possibilities for using low 
magnifications, computations were made for the 
Schwarzschild antennas of m = 1 and of m = 1/2. 
For these low magnifications the deviation from 
simple conic surfaces is quite apparent. These 
structures are not usable for values of H/f^ as 
large as for the case with structures having higher 
magnification. On the other hand, they may be 
usable at larger angles off axis. 

Computations showed that the path error curves 
were more symmetrical than the corresponding curves 
for the higher magnification. This is an indica¬ 
tion that spherical aberration is becoming rela¬ 
tively more important than coma. The question 
arises as to whether it might not be possible to 
compensate for this effect. By leaving the sec¬ 
ondary mirror unchanged and deforming the primary, 
it is possible to introduce a certain amount of 
negative spherical aberration for the on-axis case 
and thereby decrease the maximum aberration at the 
limit of scan. In addition, the aberration remain¬ 
ing can be partially compensated by an appropriate 
focus shift. 

In cases where the required scan angle is 
small (say 1 or 2 degrees), it may be possible to 
obtain a satisfactory solution to the aperture 
block problem simply by using a relatively high 
magnification (say 10, or so). To investigate 
this possibility, computations were made for a 
Cassegrain antenna having a magnification of 10. 

The antenna computed had a primary fj_/D ratio 
of O.25. At about 2.6 degrees off axis, a ray 
striking the edge of the primary reflector is Just 
tangent to the secondary at a point near the apex. 
Figure 11 shows the path-error curves at several 
lesser angles. Note that the performance is good 
at angles of 1/2 degree and 1 degree off axis, 
but rapidly deteriorates as the critical angle is 
approached. 

To accommodate rays as much as 2 degrees off 
axis, the diameter of the secondary reflector need 
only be about 14 percent of the primary diameter. 
Thus, the blocking would be only about 2 percent 
of the area of a circular aperture. At this angle, 
the path errors are such that the system could be 
used with a nominal beamwidth of 1 degree. If the 
scan is limited to 1 degree off axis, the path 
error is greatly improved, and the system can be 
used with a nominal beamwidth of about 0.15 degree. 

6. Astigmatism and Focus Shift. In most of 
the foregoing discussion, we have treated the 
optics as a two-dimensional problem. This is a 
legitimate procedure when the system is to be used 
for one dimension of scan only, as was the case 

with the AN/MPG-1 antenna. When a full three-
dimensional system is used, we can scan in two 
dimensions by appropriate motion of the feed horn. 
Here, however, another source of aberration must 
be considered. This additional aberration, which 
is called astigmatism, results from the fact that 
focusing in the direction of the scan does not 
occur at the same point as the focus in the orthog¬ 
onal direction. The effect is shown in Figure 12, 
which illustrates a cross section through a 
200-percent overcompensated system having a magni¬ 
fication of 4. Shown on this plot is the locus of 
the meridional focal points. Note that this locus 
is sharply curved. To check for astigmatic effects, 
ray-tracing computations were made for a fan of 
rays lying in a plane normal to the scan direction. 
This was done for fans at 4 degrees and 8 degrees 
off axis. The ray-tracing results were then proc¬ 
essed in the normal manner, and the transverse 
focal points were computed. The results are shown 
as crosses in Figure 12. Note that the meridional 
and transverse focal points are indeed separate. 

To evaluate the seriousness of the astigmatic 
effects, path-error computations were made with the 
focal point specified. Curves were computed for 
both meridional and transverse fans at the merid¬ 
ional focus, at the transverse focus, and at an 
intermediate point midway between. The results 
are shown in Figures 13 and 14. Figure 13 shows 
the results for the meridional fan 4 degrees off 
axis. Curve 1 is the path error at the meridional 
focus. This is the same as the 4-dgree curve of 
Figure 8. Curve 2 results when the focal point is 
shifted midway between the meridional and trans¬ 
verse foci, and curve 3 results when the focal 
point is at the transverse focus. Note that the 
maximum error is not increased as we go from 
curve 1 to curve 2. In fact, the optimum focus 
would appear to be a point intermediate between the 
meridional and average foci. Accordingly, curve 4 
was computed, which is for a focal point one-
quarter of the way from the meridional focus to 
the transverse focus. This point appears to be 
near the optimum focal point for the transverse 
fan. 

Figure 14 shows the corresponding curves for 
the transverse fan. If we have a circular aperture, 
the focal point that minimizes the errors in the 
meridional fan is not the focal point that mini¬ 
mizes the errors in the transverse fan. The best 
compromise appears to result in a maximum path 
error about 50 percent greater than that computed 
for the meridional fan at the meridional focus. 
This is the case when we have a pencil beam scanned 
in two dimensions; however, if we had a rectangular 
aperture in which the aperture dimension normal to 
the direction of scan were less than one-half the 
aperture dimension in the direction of scan, then 
we could largely ignore the astigmatic effects — 
that is, astigmatism introduces a significant but 
not fatal effect in the case of a pencil beam, but 
can be largely ignored in the case of the usual 
type of fan-beam radar. 

As previously indicated, at a magnification 
of 4 the Schwarzschild and the overcompensated 
systems have little advantage over the Cassegrain 
system when we are as far as 8 degrees off axis. 
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If 8-degree coverage is desired, a lower magnifica¬ 
tion should be used. In this case the coma effect 
is larger than the astigmatic effect, so that the 
optimum compromise focus is very near to the 
optimum meridional focus, and the maximum path 
error is about that occurring in the meridional 
fan. 

Similar computations have been made for the 
100-percent overcompensated system having a magm' -
fication of 2. At 4 degrees off axis, the average 
focus gives reasonably good results, the wrfmm 
path error in both the meridional and transverse 
fans being less than that for the meridional fan 
at the meridional focus. At 8 degrees off axis, 
the optimum focus is somewhat closer to the trans¬ 
verse than to the meridional focal point. Again, 
at the optimum focal point the maximum path error 
is somewhat less than that for the meridional fan 
at the meridional focus. 

D. Design Criteria 

1. Nominal Beamwidth. Although path-error 
curves of the type previously shown permit the 
evaluation of a given configuration when a design 
has been evolved, they are not in the most con¬ 
venient form for designing an antenna to meet given 
specifications. For this purpose, we have prepared 
the curves shown in Figures 15 through 17. Roughly 
speaking, these curves convey the same information 
as the path-error curves, but it is plotted in a 
different manner. Note that the curves are plotted 
as curves of allowable scan angle versus nominal 
beamwidth. For each magnification, there are 
curves for several values of the fj_/D ratio. The 
nominal beamwidth is defined as 480 times the ratio 
of maximum path error to aperture diameter. The 
logic behind this definition is based on the 
assumption of a one-eighth wavelength allowable 
path error and an illumination that yields a beam¬ 
width of 6OX/d degrees.* For example, if it is 
desired to radiate a 1-degree beam, the aperture 
should be about 6o wavelengths in diameter, and 
the maximum path error should be less than or 
equal to one-eighth wavelength or 1/480 of the 
aperture. 

For some cases, particularly when it is 
desired to minimize side-lobe levels, it may be 
desirable to hold the path error to less than the 
one-eighth wave nominal tolerance. In other cases, 
it may be that the illumination pattern is such 
that the beamwidth is substantially different from 
6OX/D degrees. These cases do not require that 
new curves be drawn. All that is necessary is 
that the nominal beamwidth used be related to the 
actual beamwidth by the equation. 

B = actual beamwidth, a ’ 
Bn = nominal beamwidth used with curves, 

* This beamwidth is achieved with about 10 db of 
cosine taper in a rectangular aperture. 

= 8 PeA, 

K2 = Ba/(60X/D), 

= path error allowed. 

Suppose, for example, that it is desired to hold 
phase errors to a maximum of 30 degrees correspond¬ 
ing to a path error of X/12. Thus, 

K - 8 _ 2 
K1 12 - 3 

Further suppose that the illumination pattern used 
yields a beamwidth of 8o\/D degrees. Thus, 

We then have 

In other words, if the actual beamwidth desired is 
1 degree, we look up the curve for a 0.5-degree 
beam. For example, in Figure 16 we see that with 
a magnification of 2 and an fp/D ratio of 0.5, we 
can scan about +4.4 degrees. If the fj/D ratio is 
increased to 0.667, the allowable scan range is 
increased to ¿5-9 degrees. If the required scan 
were, say +5 degrees, we could conclude that the 
ratio fp/D should be greater than 0.5 and need not 
be as large as O.667. A value of 0.55 would prob¬ 
ably be adequate. 

2. Choice of Magnification. While the pre¬ 
viously outlined procedure can be used to determine 
the proper fp/D ratio, once the magnification is 
fixed, determining the optimum magnification is a 
somewhat more complex process. It is unclear as 
to just what feature of the overall design should 
be optimized. To illustrate the problem, one 
example has been worked out in some detail. Sup¬ 
pose that the antenna is required to scan through 
an angle of +5 degrees, and that the nominal beam¬ 
width should be 0.25 degree. Consider first, the 
case of a magnification of I/2. From the design 
curves, we pick off points of beamwidth versus 
fp/D that permit us to draw a curve of beamwidth 
versus fp/D ratio for a 5-degree scan angle. 
Interpolating graphically, we estimate that 
fp/D = 1-46 is required for a 0.25-degree beam¬ 
width. We treat the other magnifications in a 
similar manner, thereby obtaining a curve of mag-
nification versus fp/D ratio for a beamwidth of 
O.25 degree and a scan angle of 5 degrees. 

If we were attempting to minimize fp, the 
resulting curve would indicate that a magnification 
of 2.5 or so would be an optimum; however, there 
is no reason a priori to assume that fp is the 
quantity that should be minimized to obtain the 
most desirable design. Table I gives several other 
pertinent dimensions normalized in terms of unit 
aperture diameter. 
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Table I 

Dimensions of Schwarzschild. Antenna 

Primary Effective Reflector 
Magnifi- Focal Focal Separa- Secondary 
cation Length Length tion Diameter 

1/2 1.46 0.73 0.487 O.9O5 

1 O.94 O.94 0.47 O.685 

2 O.73 1.46 0.487 0.455 

4 0.86 3.44 0.688 0.372 

Nominal beamwidth 0.25 degree, required scan angle 
+5 degrees, aperture diameter 1 unit. 

The diameter of the secondary reflector is the 
diameter required to intercept all of the rays at 
the maximum off-axis angle. At the higher magni¬ 
fications, only a small portion of this diameter 
is being used at any one time. 

In some cases, the choice of magnification 
can be determined by the fact that a certain effec¬ 
tive focal length is desired to match a particular 
feed structure. In other cases, it may be desired 
to minimize the diameter of the secondary reflec¬ 
tor and thereby minimize the aperture block. Were 
it not for the requirement of covering a finite 
sector of scan, the minimum aperture block would 
correspond to a very high magnification degener¬ 
ating in the limit to a simple parabolic primary 
and a point secondary. Figure 18 shows how the 
diameter of the actual secondary required varies 
with magnification; there is a minimum in the 
curve at a magnification of about 3-5. This then 
would be the optimum magnification for this exam¬ 
ple if aperture block were the main consideration. 

One more feature of magnification will be 
noted; in all cases except the case of magnifica¬ 
tion of 4, the focal region is substantially 
smaller than the secondary reflector. Thus, in 
these cases, interference to beam formation due 
to the presence of the feed structure can be 
expected to be minor in comparison with that due 
to the aperture blocking. In the case of a magni¬ 
fication of 4, however, the situation is reversed 
and the focal region becomes larger than the sec¬ 
ondary reflector. This is another factor that 
tends to limit the maximum magnification used in 
a given application. 

3. Effects of Overcompensation. The curves 
of Figures 15 through 1? give design data for the 
true Schwarzschild antenna that satisfies the Abbe 
sine condition. Figures 19 through 22 give com¬ 
parable data for certain overcompensated systems. 
Note that these curves are characterized by a hump 
at small angles of scan--that is, at small angles 
off axis, these antennas will not support as narrow 
a beamwidth as the true Schwarzschild antenna. 
This is the region where the overcompensation pro¬ 
duces negative coma. Note, however, that at larger 
angles off axis, after we are over the hump, the 
overcompensated antennas will support smaller 
beamwidths. For example, Figure 16 shows that at 

6 degrees off axis, a Schwarzschild antenna with a 
magnification of 2 and an fp/D ratio of O.667 will 
support a nominal beamwidth of 0-52 degree, whereas 
Figure 19 shows that a 50-percent overcompensated 
system will support a beamwidth of about 0.4- degree, 
an improvement of about 23 percent. On the other 
hand, Figure 20 shows that 100-percent overcompen¬ 
sation is too much for this case, since the same 
f]_/D will only support a nominal beamwidth of 
0.84 degree or more at 6 degrees off axis; however, 
if it were required that we cover, say +9 degrees 
of scan, 100 percent overcompensation yields better 
results than are obtained with either the true 
Schwarzschild antenna or the 50-percent overcom¬ 
pensated system. In general, the benefits to be 
derived by overcompensating are of a somewhat sec¬ 
ondary but not insignificant nature. It is reason¬ 
able to base a design procedure on finding the 
first rough approximation to the desired parameters 
without taking account of the possible benefits 
that might accrue from the use of overcompensation. 
After the preliminary choice of parameters is made, 
we can then investigate the possibilities of fur¬ 
ther improvement of performance through the use of 
overcompensation. 

4. Effects of Astigmatism. Figures 15 
through 17 and 19 through 22 do not reflect the 
effects of astigmatism. Therefore, the question 
arises as to what extent, if any, a design based 
on these illustrations is deteriorated by astig¬ 
matic effects. If a fan beam is being radiated, 
the focus may be chosen as optimum in the narrow 
direction of the beam, and the astigmatism is 
unlikely to affect the other direction very much 
in the usual case—that is, astigmatism can be 
largely ignored for fan beams. 

When a pencil beam is desired, it is found 
that astigmatism is a minor but not negligible 
effect. Except when coma is nulled (by the use of 
overcompensation), the dominant aberration appears 
to be the coma. In the cases checked, the maximum 
path error at the optimum focus was somewhat less 
than the meridional path error from the meridional 
focus, except in the vicinity of a coma null. 
Thus, we believe that if the preliminary choice of 
parameters is based on Figures 15 through 17, the 
resulting design will be satisfactory despite the 
effects of astigmatism. 

5. Design Procedure Summary. Ideally, it 
would be desirable to base a design procedure on 
a set of curves that show a direct relation between 
the design parameters and the pertinent performance 
characteristics, such as gain and side-lobe level. 
This has not proved to be feasible in the present 
case. For a given configuration, the relation 
between maximum path error and fi/D ratio can be 
shown by a single curve, and is independent of the 
operating frequency. The relation between side¬ 
lobe level and fj_/D ratio, however, involves 
another variable and requires a whole family of 
curves, one for each beamwidth. The relation 
between path error and side-lobe level cannot be 
simply expressed, since it depends on the shape of 
the path-error curve. 
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Additional factors that prevent us from going 
directly from performance characteristics to final 
design are the variables introduced by the possi¬ 
bility of overcompensation and the need to consider 
astigmatism in some cases. Thus, the procedure 
used must involve a certain amount of "cut and try 
operation," if precise control of the performance 
characteristics is desired. A tentative path-error 
tolerance must be selected; then use the curves of 
Figures 15 through I7 to arrive at an initial 
design. This design performance can then be com¬ 
puted in detail, including the effects of astig¬ 
matism and overcompensation, if applicable. After 
the resulting radiation patterns have been com¬ 
puted, the performance can be evaluated and the 
path-error specification revised as necessary. 
This process is then repeated until a satisfactory 
design evolves. 

Despite these limitations, we believe that the 
procedure is useful. We believe that the first cut 
based on Figures I5 through I7 will be close enough 
to the final design to decide whether the overall 
configuration will be satisfactory, or whether a 
different type of antenna should be investigated. 

Attempts to express the data of Figures 15 
through 17 in a single analytic formula have had 
only limited success. The formula, 

where 
B = nominal beamwidth in degrees and 

0 = allowable scan angle in degrees, 

results in curves that are roughly similar but sub¬ 
stantially different in detail. It is not known to 
what extent this is due to the inherent complexity 
of the problem, and to what extent it is due to the 
computation inaccuracies. 

III. Side-Lobe Reduction 

In all two-reflector systems, including the 
Cassegrain and Schwarzschild systems, the goemetry 
of the system is such that the secondary reflector 
presents an obstacle to incoming or outgoing energy. 
The effect of such an obstacle is to alter the 
amplitude illumination across the antenna aperture, 
resulting in a radiation pattern that has higher 
side lobes and a lower gain than that of the aper¬ 
ture with the obstacle removed. Both of these 
effects, a higher side-lobe level and a lower gain, 
are undesirable and tend to put severe limitations 
on the use of two-reflector systems. 

For some applications, it is possible to 
reduce the size of the secondary reflector to the 
point where the effects of aperture blocking are 
negligible. In other applications, however, nota¬ 
bly wide-angle scanning, a large secondary reflec¬ 
tor is usually necessary to obtain adequate per¬ 
formance. Since it is impossible to physically 
eliminate the blocking obstacle, a method must be 
found to negate its blocking effect without com¬ 

promising its performance as a secondary reflector. 
If the aperture distribution of the unblocked aper¬ 
ture can be duplicated with the blocked aperture, 
then the radiation patterns of both apertures will 
be identical. From an economical standpoint, it 
is also desirable to utilize the secondary reflec¬ 
tor in any method to reduce the side-lobe level. 
With this in mind, four methods have been con¬ 
sidered to reduce the increased side-lobe levels 
that are due to aperture blocking. All of the 
methods use some modification of the secondary 
reflector. The four methods are: 

1. Serrated secondary reflector, 

2. Hyperboloidal lens with grid-type sec¬ 
ondary reflector, 

3- Bootlace secondary reflector, 

4. Semi-bootlace secondary reflector. 

All of the above methods were moderately suc¬ 
cessful in reducing the side lobes due to the aper¬ 
ture block of the secondary reflector. Rather than 
going into the details of each technique, we will 
briefly discuss the simplest technique--the semi¬ 
bootlace technique. In this technique, a 11 
element is placed on the front of the secondary 
reflector and fed by means of coaxial line through 
an amplifier and a phase shifter to a second ele¬ 
ment feeding the rear of the secondary reflector 
as a secondary aperture. By varying the phase 
shifter and the gain of the amplifier, the illumi¬ 
nation across the total aperture is adjusted to 
fill in the null due to the blocking of the sec¬ 
ondary reflector. 

Typical results using this technique are shown 
in Figures 23 and 24. Figure 23 shows the measured 
radiation pattern of a Cassegrain system having a 
secondary reflector 0.21 the diameter of the pri¬ 
mary reflector, and Figure 24 shows the measured 
radiation pattern of the same system using the sec¬ 
ondary reflector as a secondary source. From the 
figures it can be seen that an improvement of about 
8 db in side-lobe level is obtained. It is inter¬ 
esting to note that the second side lobe rather 
than the first side lobe was the limiting factor 
on the lowest obtainable side-lobe level. It is 
thought that this is the result of forward spill¬ 
over from the feed. 

IV. Conclusions 

In general, the Schwarzschild antenna fits 
best in applications where the required scan angle 
as measured in degrees is relatively small, though 
it may be considerable when measured in beamwidths. 
An example would be a tracking radar having a frac¬ 
tional degree beamwidth where a limited rapid scan 
action is desired to provide ease of acquisition, 
and to relieve the response time requirements on 
the drive system. Other applications, such as pin¬ 
cushion trackers, artillery spotting radars, damage-
assessment radars, etc., readily present themselves. 
In the nonradar field, there are satellite and 
space communications problems in which the antenna 
requirement is similar to that of a radar tracker, 
and in which a limited rapid scan action would be 
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desirable. Another case in which Schwarzschild 
antennas of this nature might prove useful is in 
scatter-communications links, where the direction 
of arrival is somewhat uncertain because of the 
nature of the propagation medium. In a conven¬ 
tional system, the usable antenna gain is limited 
as a result of this uncertainty. With a Schwarz¬ 
schild antenna, it would be possible to use a beam¬ 
width narrower than the uncertainty, and to use a 
diversity system based on direction of arrival. 

In applications where more substantial cover¬ 
age sectors are required, it may still be possible 
to use the Schwarzschild principle, provided that 
the aperture-blocking problem can be solved either 
through the use of the Wheeler twist principle, or 
through the use of the folded pillbox configura¬ 
tion. Although there are other types of optical 
systems, such as the Luneberg lens and the Schmidt 
camera, which give wider fields of view, the 
Schwarzschild antenna may still be preferable 
because it does not require any refracting media 
with its consequent power limitations. Other sys¬ 
tems, such as spherical reflector and torus types, 
can provide wide coverage without refracting media, 
but for small to moderate coverage sectors, the 
Schwarzschild antenna is expected to be more com¬ 
pact. 

In applications such as general surveillance 
systems where relatively large coverage sectors are 
required, the Schwarzschild antenna is not compet¬ 
itive. Spherical and torus types have no coma 
regardless of the coverage angle. Although they 
must have large f^/D ratios to keep the spherical 
aberration within bounds, the required f^/D ratio 
is independent of the sector covered. The Schwarz¬ 
schild antenna, though it can be quite compact for 
small angle coverage, requires larger and.larger 
f]_/D ratios as the coverage angle is increased. 
The exact break point will depend on the detailed 
system requirements. For very narrow beamwidths, 
the range of application for the Schwarzschild 
antenna will be greater than when the beamwidth is 
larger. Under no circumstances, however, does it 
appear that the Schwarzschild antenna would be 
applicable to a large, such as 4-0 degrees, field-
of-view requirement. 

In the past, attempts to use the Schwarzschild 
design have been hampered by a lack of published 

information from which design parameters and per¬ 
formance characteristics could be readily obtained. 
Precise data for a particular application will 
still require a substantial amount of computation. 
The curves in this paper, however, provide a means 
for estimating the parameters required to meet a 
given set of performance specifications. If safety 
factors are included in the performance specifica¬ 
tions, they can be used as the basis for a final 
design. If the most efficient design is desired, 
however, it appears that the design procedure 
should be an iterative process. The initial design 
is based on the curves in this paper and an 
assumed path-error specification. The performance 
of the initial design is then investigated in 
detail including the effects of overcompensation 
and astigmatism, if applicable. The initial path¬ 
error specification is then revised as necessary 
and the process repeated. 

Attempts have been made to devise a simple 
algebraic formula relating the pertinent design 
considerations. To date, however, these attempts 
have not yielded a usable result. Apparently, the 
problem is sufficiently complex so that it defies 
representation by a simple formula. 

Several methods of reducing side-lobes due to 
aperture blocking in two-reflector systems have 
been suggested and demonstrated, however, much 
remains to be done in improving these techniques 
and devising methods that will work as the beam is 
scanned. 
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Fig. 1. Cross section of generalized Schwarzschild antenna. 

Fig. 2. Expanded cross section of antenna. 

X- AXIS 
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Fig. 4. Performance of Cassegrain antenna vs Schwarzchild 
antenna, (m = 2) 
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Fig. 5. Path-error curves, 100-percent overcompensated system (m = 2). 

SECONDARY FOCUS 

Fig. 6. Family of Cassegrain systems having a common parabolic primary reflector. 
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Fig. 7. Critical angle vs magnification as a function of f^/D ratio of primary reflector. 

Fig. 8. Path-error curves, 200-percent overcompensated system (m = 4). 

59 



C
O
M
A
 
C
O
E
F
F
I
C
I
E
N
T
 

I. CASSEGRAIN ANTENNA 
2. SCHWARZSCHILD ANTENNA 
3 100% OVERCOMPENSATED ANTENNA 

4 CASSEGRAIN ANTENNA 
5. SCHWARZSCHILD ANTENNA • m = 2
6. 100% OVERCOMPENSATED ANTENNA f| = 5

Fig. 9. Coma coefficient vs angle off axis (normalized for effective focal length of 10 units). 
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Fig. 10. Coma coefficient vs angle off axis (normalized for primary focal length of 5 units). 
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Fig. 11. Path-error curves, Cassegrain antenna (m = 10). 
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Fig. 12. Cross section showing focal points of 200-percent overcompensated system (m = 4). 



P - PATH ERROR 
e 

f, = PRIMARY FOCAL LENGTH 

Y = DISTANCE FROM CENTER OF 

APERTURE IN PLANE OF SCAN 

CURVE I : MERIDIONAL FOCUS 

CURVE 2. AVERAGE FOCUS 

CURVE 3: TRANSVERSE FOCUS 

CURVE 4'. OPTIMUM FOCUS 

YA 

Fig. 13. Path-error curves, meridional ray fan, 200-percent overcompensated system (m = 4) 4 degrees off axis. 

P, = PATH ERROR 
e 

f, = PRIMARY FOCAL LENGTH CURVE I’. MERIDIONAL FOCUS 

Y = DISTANCE FROM CENTER OF CURVE 21 AVERAGE FOCUS 

APERTURE IN PLANE OF SCAN CURVE 31 TRANSVERSE FOCUS 

Fig. 14. Path-error curves, transverse ray fan, 200-percent overcompensated system (m = 4) 4 degrees off axis. 
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Fig. 15. Allowable scan angle vs beamwidth, case m = 1. 

Fig. 16. Allowable scan angle vs beamwidth, case m = 2. 
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NOMINAL BEAMWIDTH IN DEGREES 

Fig. 17. Allowable scan angle vs beamwidth, case m = 4. 

Fig. 18. d as a function of m. 
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Fig. 19. Allowable scan angle vs beamwidth (m = 2), 50-percent overcompensated antenna. 

Fig. 20. Allowable scan angle vs beam width (m = 2), 100-percent 
overcompensated antenna. 
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Fig. 21. Allowable scan angle vs beam width (m=4), 100-percent 
overcompensated antenna. 

Fig. 22. Allowable scan angle vs beam width (m = 4), 200-percent 
overcompensated antenna. 
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Fig. 23. Radiation pattern of normal Cassegrain at X-band. 
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Fig. 24. Radiation pattern using semi-bootlace system at X-band. 

70 



ANNULAR SLOT MONOPULSE ANTENNAS 

K. C. Kelly and. F. J. Goebels, Jr. 
Hughes Aircraft Company 
Culver City, California 

Summary 

This paper describes the design and perform¬ 
ance of annular slot planar arrays which generate 
pencil beams and monopulse tracking beams in both 
principal planes. These planar arrays consist of 
a transmission line in the form of a radial wave¬ 
guide whose upper plate contains annular groups of 
linear slots. Monopulse operation is obtained by 
dividing the transmission line into four independ¬ 
ently excited quadrants, each of which is propa¬ 
gating a field configuration identical to the 
dominant radial waveguide mode. The antennas 
radiate linear polarization. In contrast with 
many other types of two-dimensional waveguide slot 
arrays, the antennas can be fabricated inexpens¬ 
ively. Small diameter versions are shown to 
possess the following electrical and mechanical 
advantages when compared to a dish antenna of 
comparable size: 1) better gain through increased 
aperture efficiency, 2) improved backlobe sup¬ 
pression, and 3) compact size and lower weight. 
The experimental design was done at X-band. 

Introduction 

1 2 
This paper is the third in a series ’ which 

illustrates the utilization of annular slots in 
the design of planar array antennas for various 
functions. This interest in annular slots persists 
because the radial waveguide fed annular slot 
antenna has numerous fabrication advantages when 
compared to planar arrays formed by a multiplicity 
of slotted rectangular waveguides. To date how¬ 
ever, these radial waveguide antennas fail to 
promise the aperture efficiencies that have been 
achieved at Hughes in a decade of studies, experi¬ 
ments, and production on slotted rectangular wave¬ 
guide arrays. Circular apertures of any extent 
may be generated since the radius at which the 
radial waveguide is terminated is a variable under 
the control of the designer. Annular slots, or 
their approximation in the form of ringed groups 
of short linear slots, may be concentrically 
arrayed to fill one plate of the chosen extent of a 
radial waveguide. Radiation pattern synthesis 
with concentric arrays of annular slots has been 
treated extensively by Bickmore, and solutions 
for the modes and impedances of a radial waveguide 
are widely available. Thus, attainment of par¬ 
ticular antenna performance characteristics is a 
matter of determining, (1) the waveguide mode to 
be employed, (2) the arrangement of the short slots 
which build up each annulus, and (3) the slot con¬ 
ductances . 

The studies reported here were directed 
towards the development of broadside pencil beam 
antennas which could also provide difference 
patterns in two orthogonal planes. These antenna 
pattern characteristics form the basis for mono¬ 
pulse tracking systems. The generation of a sum 
beam and two difference beams is also necessary 
for a variety of synthetic conical lobing systems 
for tracking radars. Linearly polarized antennas 
are treated in this paper. 

The following sections describe the simplest 
radial waveguide modes which lend to these 
objectives. Also described are the feeding 
techniques used, the impedance relations which 
apply for this non-uniform transmission line, and 
the theoretical predictions and experimental 
results obtained in the program. One feature of 
the results is the use of non-resonant annular 
slots to circumvent the usual radial waveguide 
array problem of a restriction to full waveguide 
wavelength radial spacing between the annular 
slots of a broadside antenna. Improved aperture 
efficiencies were realized with the half wave¬ 
guide wavelength radial spacings that were made 
possible by the use of alternations in the phase 
angles of the non-resonant annuli. 

The aperture efficiency obtained, combined 
with the reduced antenna weight, moment, and 
backlobe radiation make these antenna attractive 
for replacement of small dish antennas with front 
mounted monopulse feeds. 

Theoretical Considerations 

The Waveguide 

A radial waveguide is a non-uniform trans¬ 
mission line which may be described in terms of a 
p, z polar coordinate system. Two pertinent 
examples of radial waveguides are the full cylin¬ 
drical and 90° cylindrical sector regions shown 
in Figure 1. The aperture to be generated must 
contain four independent sectors to obtain the 
three sets of aperture phasing which produce the 
sum, azimuth difference, and elevation difference 
beams. Therefore, attention is immediately 
restricted to the 90° sectoral radial waveguides. 
For ease of launching and for preservation of the 
mode, it is best to employ the dominant mode if 
suitable. On examination it is found that the 
dominant E mode cannot be fed at p<^-. This fact 
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limits freedom of placement of the innermost 
annulus of a concentric array of annular slots. 
This restriction does not exist for the dominant 
H mode in a 90° radial waveguide sector. Thus, 
the dominant H mode was adopted in this study. 

The fields of the dominant H mode in a 90° 
radial, waveguide sector are given by4 

(1) 

where 

T] 
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mode, replaced by its value 

Y - ï] (4) 

where 

is the constant and 

V 
I 
b 

the 
the 
the 
the 
the 

voltage, 
current. 

is 
is 
is 
is 
is 

IT 
P 

H 
P 

i) 2 
b' 

b *10 
np k 

rms mode 
rms mode 

H z 

plate separation in the z direction 
free space wavelength, 
intrinsic admittance of the medium. 

(Kiop) 

K10 

n 
b z

- cos 
b 

. 1 „ (2) -3 ÿ Hx

The time dependence exp (jwt) is suppressed here 
and throughout this discussion. Solution of the 
transmission line equations for this mode shows 
I and V to be the Hankel functions 

“ “J 

mode propagation 

2V . 
= — sin 

Tip 

21 
“ b“ Sln

. V 
np 

o^^loP' sin (gz) 

waveguide. The fields in 
are then. 

H^ 2) (K-lqP) sin (£ z) 2k_ 

^lO 

n 
b Z

n 
b z

ff -1 H 
z b i 

cos (£z) 

b Kio 

. 2n

k ■ r 
is the free space propagation constant. The 
important features of Equation (3) are: (1; the 
only currents in the top and bottom plates of 
the radial waveguide are purely circumferential 
since these currents are derived from i x H , 
and (2) these | directed currents are independent 
of ÿ. 

The Annular Slot and Its Radiation Pattern 

Figure 2 illustrates the appearance of four 
slotted sectoral waveguides combined to form a 
circular aperture with a single quasi-annular 
slot. Consider the case for which the quadrants 
one and four are 180° out of phase with quad¬ 
rants two and three to cause the currents at 
radius p to have the instantaneous directions 
shown by the arrows near the periphery. Further, 
note that all slots are excited with the same 
amplitude since the amplitude of the inter¬ 
rupted currents is independent of ÿ. Also, slot 
lengths, L, and inclinations, C, are constant 
(except for mirror symmetry in inclination 
directions). Then it fellows, for the illus¬ 
tration in Figure 2, that all vertical field 
components from the aperture reinforce on the 
axis, and all horizontal components cancel. The 
annulus produces linear polarization in the 
vertical plane in this instance. 

Experience and analysis shows that the far 
field pattern of closely spaced short linear 
slots (arc spacing <:0.7X) in the quasi—annulus 
of Figure 2 is not significantly unlike that of a 
continuous annular slot. Therefore, for the 
case in Figure 2, the electric field in the 
equivalent continuous annular aperture is 
described by 

ir ~ o sin Ÿ o'' cos 
Eslot a ep 7sTnV C0S c + ÆosYV Sln C ( 5) 

Applying Hickmore's equations^ for the ê com¬ 
ponents and deriving, by duality, equatißns for 
the e^ components, the far field voltage patterns 
in the ft, 0, <p space coordinate system of Fig¬ 
ure 3 are 

F S lkP cos 0 .. . . „x 
e J (2m+l) (kp sin V 

, (-l)m sin 0 T . .'I . 
síTÕ- J(2m+1) 'kp sin 9 7 cos

to 

J'(2m+1) ^kp sin 9 q cos 9 sin ^ 2m+l) <P 

with the exp (-jkR) and 1/d factors suppressed.* 

*The theoretical difference patterns were also 
derived from ßickmore's results. 
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Here J and J' are the Bessel function of the 
first kind and its derivative, respectively. 
Equation (6) gives the sum beam pattern from a 
single element. The radiation field is linearly 
polarized parallel to the plane <p = C? When 
C = h5° > the H plane and E plane beamwidths are 
both equal to^ZO.U0 and the first sidelobes 
are 7.3 db down. p

Arrays 

The sidelobe suppression and aperture effi¬ 
ciency are improved, with respect to a single 
annulus, when several annular slots are concen¬ 
trically arrayed. In that case, the far field 
pattern becomes 

N °° [kp cos C 

VS E \ exp /j ^m<)' ' n

n=l m=0 

(-l)m sin Cn

J (2m+l) ^Xn^ + sin 0 ^(2m+l)^xn^ 

cos (,2m+l)<p 

(7) 

N oö 

% a X X \ exp /j^J 

n=l m=0 

cos C 
_1 
sin 0 

(-l)nkon sin C 

J(2m+1) ^n^ + (,2m+l) * 

J'(,2m+l)^Xn^J C0S 9 Sin ( 2m+1)<p

where 

X = kp sin 0, 
n n ’ 

A = voltage amplitude of nth annulus, 

zl = ohase of nth annulus, 
n 

N = number of annuli. 

Gain, Bidelobes, and Cross Polarization 

Ideally, an annular slot for a linearly 
polarized pencil beam should have an excitation 
with the form® 

Eslot a êp Sin * + C0S * • 
(8) 

In contrast with the form given in Equation (5), 
this form produces a linearly polarized beam 
with no cross polarized lobes. The far field 
pattern of the ideal linearly polarized excita¬ 
tion may be derived from Equations (6) or (7) 

by taking just one term, the m = 0 term, in each 
of the infinite summations indicated. The 
effects of these other terms, for the case where 
C = U5°, may be summarized by the following: 

1. First sidelobes are -7.3 db instead of 
-7.9 db, for a single annulus; 

2. First sidelobes tend towards -15.8db 
instead of -17.6db, for a uniform amplitude 
array of several appropriately spaced 
annular elements; 

3. Cross polarized lobes are approximately 
-2Odb instead of -o»db; 

U. The gain is reduced by C.6db. 

Generally, these consequences are not 
serious in view of the advantages in the sim¬ 
plicity of the structure. Techniques for obtain¬ 
ing the ideal annular slot excitation® did not 
appear to lend themselves to the monopulse 
objective of this program. 

The Tilt Angle "C" 

The peak values of the Ÿ and p components of 
Equation (8) are equal. The same is true of 
Equation (5) if C = 45°. Since an approximation 
to Equation (8) is sought, the computations 
reported above have emphasized C = hí°. The case 
of C = 1*5° produces equal beamwidths in the E and 
H planes. Furthermore, this case would produce 
maximum gain but for the fact that the H plane 
pattern differs from the E plane pattern by a 
multiplicative term cosine 0. Maximum gain occurs 
at approximately 1*8° for an array of closely 
spaced in-phase annular slots with uniform 
excitation. 

The gain, first sidelobe level and beamwidth 
are plotted versus the angle C in Figure 4. The 
theoretical values given apply to an array of 
closely spaced annular slots (< 0.7Aradial 
spacing) with a uniform amplitude distribution. 

A final comment on Equations (.5) and (8)j 
analysis of measured radiation patterns of a 
single annulus strongly suggest that mutual 
coupling causes the behavior of the slot system 
pictured in Figure 2 to resemble that of 
Equation (8) more nearly than that of Equation 
(5). This is reasonable in view of the fact 
that coupled systems generally cannot contain 
sharp discontinuities across regions. 

Design and Experimental Results 

Wavelength Radial Spacing 

To demonstrate the theories stated above, a 
series of X-band annular slot antennas were con¬ 
structed. The units were approximately 7.5 wave¬ 
length in diameter. Standing wave array design 
was employed in order to avoid the losses asso¬ 
ciated with the power absorbed by a matched 
termination used in traveling wave arrays. Under 
this condition the radial dependence of the 
standing wave electric field (E^) in the 
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radial waveguide is given by J,(K- Op), the Bessel 
function of the first kind. When a short circuit 
is placed in the radial waveguide so that J^(K^p) 
= 0, (p being the radius of a cylindrical 
short circuit) then the radii at which the Bessel 
function of the second kind (K p ) - 0, 
designates the radii for the maxima of the circum¬ 
ferential currents in the plates of the radial 
waveguide, however, the currents at the radii 
which correspond to odd roots of N, are 180° out 
of phase with those at the even root radii. It is 
not possible to use the inclination of the short 
slots as a means to obtain in-phase radiation 
from out of phase currents (as is commonly 
practiced in the design of linear arrays on rec¬ 
tangular waveguide) since the inclination of the 
linear slots comprising an annulus are constrained 
by the radiation pattern requirement for each 
annular group. Thus, only three resonant annular 
slots were employed in the initial 7.JX aperture 
design. An annular slot was located at each of 
the three in-phase roots of which are available 
in the 7.SX diameter air-filled radial waveguide. 
For uniform aperture illumination and C = A5°, 
this case produces a theoretical gain figure of 
22.5 db. 

In order to design for a uniform amplitude 
distribution using these non-uniform transmission 
lines, two admittance expressions are needed to 
obtain the condition for correct power division 
between successive annuli. One expression gives 
the radial dependence for the characteristic 
admittance of these sector transmission lines for 
any radius, and the other, the input-output 
admittance equation. These are respectively, 

2 

W = Ar (V + No2 (9) 

\ n(p) Y, out(po) Ct(x,y) + jï(x>y) 
1 1 . \ P / = ■ - y -r — -- - - ---- --

Y°P Y'out^ po^ +^x,y) ot (x>y) 
(10) 
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. Jo(x)No(y} - No^ Jo^ 
û(x,y} “ J1(x)N1(y) - ^(x^y) 

“ Ni(x)J0W 
ct x̂>y) = Jo('x')No(y) - Ño(x)Jo(y) 

J,(y)N U) - N,(y)J (x) 

k ,yJ - J^xJN^y) - iÇ^y) 

Thus, ljn(p) is the normalized admittance 
occurring at radius p when a normalized admittance 

Y'out^ po^ is Placed at Po where P0>P- appro¬ 

priately employing these equations, the required 
admittance values for a uniform amplitude distri¬ 
bution were obtained for each array. 

A limited slot conductance measurement 
program sourht to obtain the appropriate conduc¬ 
tance values for the slot configuration shown in 
Figure 2. The test apparatus consisted of a 90° 
radial waveguide sector on which the slot plates 
were measured; a transition section which provided 
a workable admittance transition from radial wave¬ 
guide to standard rectangular waveguide; and a 
rectangular waveguide admittance measuring stand. 
The equivalent network parameters of the equations 
which describe the admittances in the radial wave¬ 
guide in terms of the admittance in the rectangular 
waveguide were evaluated and provided the means 
for obtaining annular slot data. Each of the four 
sectors performs the same electrical function so 
all data was taken on one quadrant. Ground planes 
were erected to simulate mutual coupling between 
quadrants. 

The primary factors which control the 
annular slot admittance or coupling are the angle 
of inclination (Angle "C") that the linear slots 
in an annulus make with the circumferential current 
tangent, the number of short slots in an annulus, 
and slot length. Two characteristics of the data 
aided in the acquisition ot the annular slot admit¬ 
tance values. First, the fact that the variation 
in annular slot conductance, for small changes in 
angle "0", was similar to that of angle variations 
with an edge slot in the narrow wall of a rectang¬ 
ular waveguide?; thus, the power radiated could be 
predicted in terms of the equation for a resonant 
length edge slot. Secondly, the phase variations 
of each annular slot admittance as a function of 
slot length closely resembles that of a displaced 
longitudinal shunt slot in the broadwall of a 
rectangular waveguide; hence, the curves for the 
latter could be used to acquire the necessary 
phase value for each annulus. By utilizing these 
relationships the collection of slot data was 
facilitated. 

As disc ssed previously, the aperture of one 
array consisted of three in-phase resonant annular 
slots. The annular slots were positioned at 
radial distances which corresponded to the odd 
roots of N (K^-p); these were kp_ = 3.123, 
kpg “ 12.218 ana kp^ = 21.175 on the waveguide 

for which k/K^ = 1.1*21. In designing for a 

uniformly illuminated aperture the relative power 
to be radiated for each annulus becomes 

P (pp = 1.000 

P (p2) - 3.912 

P (p3) = 6.780 (11) 

since the amount of power radiated per annulus is 
proportional to its radius. Through application 
of (9), (10) and (11), and subject to the condi¬ 
tion that the radial waveguide be matched at the 
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input, the required absolute conductances for each 
annular slot were determined to be 

G(p1) - 65.94 (loAihos) 

G(p2) - 71.4h (loAihos) 

G(p3) » 71.70 (loAihos) . 

Initial data suggested that smaller conductances 
might be more readily obtained so a new conduc¬ 
tance value for each annular slot was then com¬ 
puted Cfor an input vswr of 1.2)yielding conduc¬ 
tance values of 

G(p ) - 56.29 (IO-6 mhos) 

G(p2) = 6O.99 (10-̂ mhos) 

G(p3) = 61.21 (lO^mhos) 

The set of conductance values corresponding 
to a vswr of 1.2 was not reached in the time 
alloted for this phase of the experimental pro¬ 
gram. Figure 5 summarizes the values that were 
used in an array design. Subsequent data has 
shown that the desired values may be more closely 
obtained. Furthermore, these values may be 
obtained with the angle "C" more closely con¬ 
strained to 45°. 

The array designed in this phase of the 
program is shown in Figure 6. bach quadrant is 
fed by a magnetic dipole (a slot) at its apex. 
These are fed in turn by a coax line in a manner 
similar to that shown in the early prototype 
in Figure 7. The principal plane radiation 
patterns are shown in Figure 8. The antenna gain 
was determined to be 20.5 db, or 2 db below theo¬ 
retical for the case. One decibel of this may be 
accounted for by losses in the feed structure. 
The second db loss is probably accounted for by 
the fact that the slot conductance value objectives 
were not realized at the time of the array's con¬ 
struction. 

The front to back ratio (backlobe suppression) 
was found to be better than —45 db. 

One-half Wavelength ¿¿adiai Spacing 

The three ring aperture described above has 
an outer ring radius of 21.175 radians. A uni¬ 
formly illuminated circular aperture of this size 
has a theoretical gain of 26.5 db. A gain of 
26.2 db is predicted by equation (7) for the case 
of in-phase annular slots at each of the five 
roots of within the aperture (Cn 's = 45°, A^ 
all equal). The fact that the currents at odd and 
even roots of are in phase opposition could not 
be overcome by staggering the tilts of the short 
slots. As described earlier, the slot tilts are 
firmly tied to the shape of the radiation patterns. 
In this matter, the rectangular waveguide planar 
array has a significant advantage since staggered 
slot tilts, or staggered slot offsets are rou¬ 
tinely employed to achieve in-phase radiation with 
half-wave element spacing. 

Three methods were considered for including 
two more annular slots in the aperture. One was 
dielectric loading to produce nine roots of N. 
in the given aperture, and thus have five in-phase 
roots for slot location. Another was the inclus¬ 
ion of obstacles with a transmission coefficient 
of 1 Xn and located at the roots of between 
the outer four roots of N . Though possible, 
these two methods were rejected because of weight 
and complexity, respectively. The third approach 
combined the phase of the radiators and the phase 
of the exciting currents in a manner which 
reduced the phase error. Since the phase of the 
currents of the successive roots of are given 
by 

an = exp/j(n-l)n_7 (12) 

one may choose the admittances of successive 
annular slots to be non-resonant and to have 
alternating phase angles, ßn, of 

ßn " exp^j(-l)n r7 

The net phase radiated by the nth annular slot 
will then be 

- exp/j £(n-l)n - (-l)nJ _7 

- j exp/j (-l)n (7 -y)_7 
(14) 

So, non-resonant annular slots having admittances 
with phase angle y with successively positive and 
negative sign will combine with the n phased 
successive roots of to produce cophasality 
to plus and minus the complement of y. Figure 9 
illustrates the gain versus the non-resonanoe 
angle, y. Obviously, y = 90° is impractical but 
withy = 60° the real part of the admittance is 
sufficiently above zero to obtain radiation and 
a reasonable input vswr. It should be noted that 
the large susceptances tend to cancel at the in¬ 
put as a result of the alternating signs. The 
theoretical patterns shown in Figure 10 illus¬ 
trates the fact that the main beam and first 
sidelobes are fairly insensitive to y. The far 
out sidelobes account for the loss in antenna gain 
for small values of y. 

In view of the foregoing, slot data was 
gathered to construct a five annulus experimental 
unit with y = 60°. 'The theoretical gain for this 
case is 24.2 db when all C 's are equal to 45°. 
The admittance values sougRt were 

ïx = (39.5 + j84.7) (10"6mhos) 

Y2 = (42.4 - j60.5) (loAihos) 

Y3 = (42.8 + J91.8) (10-6mhos) 

- (42.9 - j61.3) (10-6mhos) 

Y5 = (43.0 + j92.1) (lO^mhos) 
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These values actually represent phase angles of 
65° for n = 1,3,5 and -55° for n - 2,1*. The 
shorter linear slots gave large phase angles more 
readily. The far field for this case is iden¬ 
tical to that fori = 60°. To lessen the time to 
prototype construction, a unit was constructed 
when the slot data was appr axõmately proportional to 
the desired values, to wit, 

Y^ “ (11.7 + jh9.W (10“^mhos) 

Yg ” (16.9 - J18.Ü) (10~^mhos) 

Y^ = (12*.!* + jl*0.8) (10"^mhos) 

Yh = (11.5 - J13.1) (10-6mhos) 

Y5 - (15.2 + J65.O) (lO"6mhos) 

The innermost slot presented the greatest diffi¬ 
culty and its geometry departed from that of 
Figure 2. 

The radiation patterns shown in Figure 11 com¬ 
pare the theoretical and experimental patterns 
for the five annulus array of non-resonant radi¬ 
ators pictured in Figure 11. The antenna gain 
was found to be 22.0 db after correction for vswr 
and for sum-difference circuit losses. 

Conclusions 

In the course of this program it has been 
demonstrated that monopulse antennas are readily 
designed around the use of a radial waveguide. 
Improvements in the match between theoretical 
and experimental patterns can be expected when 
improved slot design data is compiled. The rad¬ 
ial waveguide appears to lead to the most simple 
mechanical configuration of the several wave¬ 
guide types which may be used for a circular or 
nearly circular slot array. Productized versions 
of the experimental antennas described herein 
have been produced inexpensively with the aid of 
modern metal forming techniques and chemical 
milling of the slots. Weights in the order of 
100 grams have been achieved with thin metal 
versions of a 7.5^ diameter X-band antenna. 

With respect to small monopulse dish antennas, 
lightweight radial waveguide monopulse antennas 
offer a modest improvement in aperture efficiency, 
a marked improvement in back lobe suppression, a 
marked reduction in moment about the gimbal axes, 
and are competitive in fabrication costs. Other 
programs in which the authors are involved firmly 

establish the fact that various forms of rect¬ 
ilinear waveguide fed arrays offer the ultimate 
in aperture efficiencies in the design of both 
large and small monopulse antennas. Fabrication 
costs are greater than costs for radial wave¬ 
guide antennas, however. 
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(a) RADIAL WAVEGUIDE OF CYLINDRICAL CROSS SECTION 

GENERAL VIEW SIDE VIEW 

(b) 90° RADIAL WAVEGUIDE SECTOR 

Fig. 1. Two types of radial waveguides. 

Fig. 2. A typical quasi-annular slot element. 
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Fig. 3. Annular slot aperture and space geometry. 

Fig. 4. Gain, sidelobe, and beamwidth variation with short slot tilt 
angle, C. 



(RADIANS) 
NUMBER 
OF SLOTS 

ANGLE 
"A" 

ANGLE 
"B" 

ANGLE 
"C" 

SLOT 
LENGTH "L" 

(WAVELENGTHS) 

SLOT 
ADMITTANCE 
(MICROMHOS) 

3.123 1 45° O' — 20° 32' 0.571 35.51 *j 35.48 

12.218 5 9° O' 18° O' 37® 3' 0.508 57.24 + j 5.214 

21.175 8 5° 37' IIo 15' 60° 0.498 61.21+j 5.408 

Fig. 5. Slot admittance data for three annular slot 
array. 

Fig. 6. Productized three annular slot monopulse 
antenna. 

Fig. 7. Disassembled prototype annular slot monopulse 
antenna showing coax feeds. 
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Fig. 9. Theoretical gain of five element array as a 
function of annular slot admittance phase angle. 

Fig. 8. Comparison of theoretical and experimental 
radiation patterns of three annular slot array. 

Fig. 10. Theoretical radiation patterns of five element 
array for y = 90° and 50° with C = 45°. 
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Fig. 11. Comparison of theoretical and experimental 
patterns of five annular slot array. 

Fig. 12. Productized five annular slot array. 
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RADIATION CHARACTERISTICS OF SLOT ANTENNAS 
COVERED WITH A PLASMA SLAB IN THE PRESENCE OF A STATIC MAGNETIC FIELD 

PERPENDICULAR TO THE SLOT 

H. Hodara 
The Hallicrafters Company 

Chicago, Illinois 

Summary 

It is shown that the presence of a gyrotropic lossless plasma slab covering a rectangular slot radiator 
does not alter significantly the radiation pattern in the vertical plane when the static magnetic field is 
perpendicular to the slot. The plasma covered antenna remains omnidirectional and the radiated power is 
not significantly reduced when the cyclotron frequency exceeds the operating frequency by one order of 
magnitude ((J, 2'* > 

It is also found that the matching between the antenna and its surrounding is sharply improved, if the 
antenna is covered with such a slab, at critical combinations of the plasma slab parameters and the operating 
frequency; this finding may be useful for plasma diagnostics, in order to determine the slab width L, the 
plasma frequency Up, and the collision frequency "V , by varying and u. 

Introduction 

The radiation characteristics of slot antennas covered with a gyrotropic plasma slab are analyzed in this paper. 

The slot is assumed to be supported by a perfect conductor, infinite in extent in the x-y plane; the plasma is rendered 
gyrotropic by means of a uniform static magnetic field impressed perpendicularly to the slot (Figure 1) . An expression is 
first developed for the radiation fields for the case of a slot of arbitrary geometry and excitation. The radiation fields are 
then evaluated explicitly for a rectangular slot across which an electric field in the TE^q mode is impressed rigidly. 

Radiation patterns for some values of the plasma slab parameters are calculated for the case of an infinitely long 
narrow slot excited by a constant voltage V across it. 

Derivation of the Vector Wave Equation in Anisotropic Plasmas 

The steady state matrix form of Maxwell's equations is: 

(1) 
-mvih 

e <L ' IH 
V r 

where p and e v are the vacuum permeability and permittivity respectively and u is the wave frequency in radians per 
second. V The relative dyadic permittivity @r has components given by the following matrix in the case of a z-directed 
static magnetic field IBq: 

(2) 

el 

"*2 
0 

*2 

*1 

0 

0 

0 

e3 

given by 

(3) 

The matrix components in terms of the plasma frequency 

fv-t- |u) 

-% 
,2 + ( v+ ¡<4 2 D 

1 
V+ ¡u 

cyclotron frequency and the collision frequency i) are 

Eliminating IH in favor of IE in (1) gives the vector wave equation for the electric field 
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2 
(4) V X (V X E) - ßy € • IE = O 

where ßv, the wave number in vacuum is given by 

2 _ 
(5) ßv --¡upv¡uev

Mathematical simplicity for the geometry under consideration dictates the choice of Cartesian coordinates, x,y,z. 
Expansion of the vector wave equation (4) in terms of rectangular coordinates using (2) yields: 

(6) 

2 2 2 2 
9y + 9z + ßv el ^Vy’ßv^5 -9x9z 
2 2 2 2 

-(ßve2 + 9x9y) 9x +92 +ßv e, - 9y9z

Ex 

E = 0 
y 

E 0 
z 

where Vy, the transverse operator, is: 

(7) 7=19+19 T XX y y 

Eliminating E^ and E in favor of Ez in (6) yields a fourth order partial differential equation. This equation is readily 
obtained by rewriting (6) ^as follows: 

(8) 

°11 °12 °13 

°21 °22 °23 

°31 °32 °33 

Ex 

E = 
y 

E 
z 

0 

0 

0 

where the differential operators 0.. in (8) are identical with the corresponding terms in (6) . 

The first two rows of (8) give: 

°11 °12 Ex 

°21 °22 Ey 

"°13 

-°23 

yielding for E* and E : 

(10a) DEx = (0i 2°23 - 0, 3022)Ez

(10b) DEy = (021013 -0230, !)Ez

D is the determinant of (9) : 

(11) D . 0„ 022 - 0, 202]

Substitution of (10a) and (10b) into the third row of (8) yields after multiplication by the differential operator D from (11) : 

(12) { 031 (0]2023 - 0]3022 ) + 032 (02,0,3 - 0230n ) + 033 (0n 022 - 0)202] ) I Ez = 0 

Expansion, manipulation, and simplification of (12) in terms of the explicit expressions for the 0's from (6) yield the 
desired differential equation for Ez-

a o o 9 9 2 2 2 442 
(13) + 2ßve,e30z + e39z + ^v *T *3 } Ez = ° 
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where 

4 4 2 2 2 
(15) VT = 9 + 29 9 Z + 9 

T X X y y 
2 2 

The method of separation of variable does not work for (13) because of the cross-term 9Z . This difficulty is eliminated 
by taking the double Fourier transform of Ez with respect to x and y, namely 

(16a) Ez(k,p,z) = Eze ' kXe ' Py dx dy 
-oo ”oo 

The two bars above E indicate double Fourier transform, k and p are wave numbers in the s and y direction respectively. 
The inverse transform is defined as: 

CO co 

(16b) Ez(x,y,z) = Ez(k,p,z)e' e' Py dk dp 
-CO “CO 

Applying (16a) to (13) , noting that 

(17a) (¿)2 \ \ V,2E e”i kXe-'Py dx dy = -(k2 + p2)T 
Zrr J J I z z 

-co -oo 
oo oo 

(17b) f¿) \ V E e *kxe i py dx dy = (k2 + p2) Ë 
J J T z z

-co -oo 

and letting 

2 2 2 
(18) u = k + p 

gives 

(19) 0 

Solution of (19) by the method of characteristic roots gives,after substitution of 

(20) y = iß = 9J ) 

in (19), the following solution for E 
n=2 z

(21) Ez = V*0 enz(k,p)e* n 

n=-2 

e is a mode amplitude; substituting (21) in (19) yields the eigen values for ß : 
ri7 

There are four values to ßn given by the four possible sign combinations. Substituting (21) into (16b) gives the solution 

forEz n = 2 „ « n = 2 

(23) Ez(x,y,z) = J.O Jenz(k,p)e' e' Pye'^n dk dp = * 0 enz

n = -2 -oo -oo n 2 

Equation (23) is given the following physical interpretation: The field components are made up of two pairs of sets of 
modes, set 1 and set 2. To every pair of values k,p corresponds two modes in each set, a forward mode ß_n and a 
backward mode ßn, where: 

(24) ß.n = -ßn (n = l,2) 
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The mode members of each set have a respective phase veloc ity given by 2 u is the angular frequency of the 

electromagnetic wave. The mode numbers k,p take on continuous real values between -«and +«, . They form two con 
tinuous spectra corresponding.to the two orthogonal transverse direction x and y, since the geometry of the problem is 
unbounded in this direction. ' ' 

Expressions for the Transforms of the Field Components 

The previous derivation shows that all field components are of the same form as (23) . 

n = 2 oo 

(25a) Hz(x,y,z) = ^n * 0 hnz(k,p) e' kXe' Pye' ßnZ dk dp 
n = -2 -oo 

where 

(25b) hnz<k,p) = (^J Hnz(x,y,z)e ' e ' PZe ^nZ
-co 

In particular 

Because of the linearity of Maxwell's equations, each component of the sum (24a) and (23) satisfies (1) . Substituting (16) 
and (25) for arbitrary sus cript n into (1) yields: 

(26a) penz - ßneny = - Upvhnx

(26b) ß e - ke = -up h 

(26c) ke - pe = -uu h ny K nx Mv nz 

(26d) kh - ph = ue eoe 
ny r nx v 3 nz 

(27a) ph - ßh = ue (e,e + e_e ) 
nz ny v' I nx 2 n/ 

(27b) ßh - kh = ue (~e9e +e,e ) nx nz v z nx 1 ny 

The transverse mode amplitudes can be expressed in terms of the longitudinal ones through the set of equations (26) 

k 

P 

(28) 
enz 

1 

u2

2 
>c 

h 
nz 

e 
ny 

h 
nx 

h ny 

pUV 3

-kueve3

enx -pup 

kup v 

kßn 

Pßn 

where 

(29) ß 2 = ß 2e - u2 
C v □ 

Substituting (28) and (29) in (27) gives the determinantal equation, 

~9 9 " I 2 T-7-7-7—7--r- -

■0nßye2 u [A el-0n> u + <0veT- 20n0vV 0n7^ 

, 2299 4 2 2 2 4 1 no 
[A <T - * < 3<e_ <T - 2B„ b„• mJ w2.2.2

Equation (30) shows that enz and hnz are not independent. The coupling between the longitudinal modal components is 
due to the anisotropy of the medium. If the determinant of (30) is equated to zero, the resulting determinantal equation 
yields, of course, ß's identical with (22) . 

At this point it will be enlightening to re-derive (22) as follows. Since e„, and h„ are related algebraically 
through (30) , let nz nz ay 
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(31) h = Y e ' nz n nz 

Y is a function of u, ß , w and the constitutive parameters of the medium; it has the dimension of admittance, hnz and 
en have the dimensions’1of current times distance and voltage times distance respectively. For each mode, that is for 
each pair of values of k,p and a given value of n, a model can be conceived consisting of a transmission line of charac¬ 
teristic admittance Yn with voltage enz and current hnz-

Substituting (31) into (30) yields two equations for Y , 

Xv2 

2 2 
_ JVW_ 
‘ 2 2 2 42 22 4 I 

€t ‘’’.’.Ç'.'j 

(32a) 

(32b) 

Equating the RHS of (32) gives the determinantal equation for ß which becomes after a few manipulations 
2 

(33) + j ¿iX ’ + el) + ^ = ° 

The first curled bracket of (32) is in general different from zero. Equating the second curled bracket to zero yields the 
two possible values of ß for uniform plane waves in a gyrotropic plasma with a static magnetic field parallel to the 
Poynting vector, 

v plane wave 

Equating the third curled bracket to zero, 
2 

4 2F 2 el+e3 2l F 4 2 2 ,eT . 2 €1 4 “1 
(34b) ß„ - 2ß„ -ßv J - » 

gives the determinantal equation for ß in its most general form for the problem on hand. (34b) is identical to (19) if (20) 
is used. The resultant expression (22) for ß is repeated for convenience, 

Note that (35) reduces to (33) when u = 0, i. e. in the case of two single uniform plane waves. Thus (34) is the general 
determinantal equation since it contains the second bracket of (33) . 

The expressions (31a) and (31b) for the mode admittance Y are greatly simplified by using (5), (34) and the following 
relation 

” 4 2 2 4 2 2T 2 2 2 2 
(3Ó) e3[ßn -2ßnßvei + ßveT u [ßy (eT - ßn + -uej 

obtained from (34b), thus 

(37a) Y n ^n“^ 

Further manipulations yield the alternate form 
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(37b) 
n 

Note that 

(37c) 
n -n 

Substituting (30) into (27) and using the relation for the wave admittance of vacuum. 

(38) 

gives the expressions for the transverse field components in terms of e! 
nz 

nx 
V 

(39) 

The transforms of the total longitudinal fields are obtained by applying (16a) to (23) 

¡ßnz(40a) e 

Similarly 

(40b) 

after using (31) . The transforms of the total transverse field components are obtained by means of (39) , 

^'P'2* 

ß< n c 
Pßcß" +kßv Y 

Kn V (41) nz 

H (k,p,z) nx r

Isotropie Case 

Let Y be the admittance of the unbounded isotropic plasma 

(42) 

then a few algebraic manipulations on (37) show that 

e 
ny 

H (k,p,z) 
ny 

1 

u' 

h 
ny 

h nx 

When the anisotropy of the medium is removed by letting approach zero, the expressions for the modal admittances 
simplify considerably. 

Eny(k,p,z) 
n = 2 

J*0
n = -2 

-kß e-Y + pß Y 
V 3 V 'n n 

ißnz e e, 

-kß Ye+ pß Y 
rv V 3 rKn n 

= I"* 0 Vnz^M 
n = -2 

Pß Yweo + kß Y 
r v v J ’n n 

ß3 

pß 6oY + kß Y 
r v J v n n 

0 Y

n = 2 

= In *° 
n =-2 

n = 2 

kßc ßC
'n v 

e nz 

“eve2 

ei-(u2 +Pn2) 

enz 
u2

ßc Yn 
kß ö” "Pß — c ßn V 

n = 2 

E (k,p,z) = ^n*0 

n = -2 
n = 2 

Hz(k,p,z) = * 0 

n = -2 

ßn 

' hnze' ßnZ n nz 
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(43) Lim ' = Y 
w,—*0 Y 
b 1 

Note that positive and negative values of ¡Y for n < 0 in the limit case (u^ = 0) do not correspond to forward and back¬ 
ward waves but instead correspond to the firsP set and second set of modes respectively. It will be recalled that these two 
sets of modes are the ones that reduce to right handed and left handed circularly polarized waves in the cases of uniform 
plane wave propagation. 

In the isotropic case 

\ 2 2 
(44) Lim ß = ß - \ ß e„ - u 

U-r0 n J
b 

and (40) reduces to 
¡ßz , "¡ßz

(45a) Ez(k,p,z) = (elz + e2^e + (e_i z + e_ 2z)e 

(45b) Hz(k,p,z) =/elz -e2z)e¡PZ +/e_1z- e_2z)e 'ßZ

The factors preceding the exponential of (45) are the backward and forward modal amplitudes for isotropic media, 

(46a> elz + e2z = ez+

(^b) e_lz +e_2z = ez

(46c) eiz -e2z = hz+

(46d) e-lz” e-2z = hz” 

e ” , h - are forward waves; e , h are backward waves, z z z z 

Substituting (46) into (45) yields 

(47a) Ez(k,p,z) = 6%'^ + eze 'ßz

(47b) Hz(k,p,z) = bze'P +hze 

Note that in the isotropic unbounded case e*, e , hz , hz are independent until boundary conditions are imposed. 
Furthermore in a problem where TM modes are absent, e+ ẑ = e+2z • 

As a special case, the forward transverse field modal components for unbounded vacuum are derived as these expres¬ 
sions will be needed later on. In vacuum, 

2 2 2 2 
(4® Pc“*ßo =ßv “u

(49) ß— _ßo

(50) Yn Yv

Denoting the forward mode amplitudes by an "o" suscript and substituting (46), (48), (49), into (39) for n —1,-2 gives 

87 



kß p A 
Ko r y 

V 
pß -k ^v 

Yv 
-pßvYv kßo

kßVYv Pßo 

The problem of interest consists of an arbitrary radiating aperture in a perfect plane conductor of infinite extent in the 
x-y directions located at z — 0. The plane conductor is covered with a slab of anisotropic plasma of width L and situated 
in vacuum. Hence, the secondary boundary of the problem consists of a plane interface between the gyrotropic plasma 
and vacuum at z = L. (Figure 1) 

In order to solve for the field components throughout space: 1) the field components in the plasma slab must be 
matched to the vacuum field components at z = L, 2) the plasma field components in the slab must be matched to the 
applied or exciting field over the conductor. The conductor is excited with an applied electric field of component 

Exa(x,y,0) and Eya(x,y,0) over the aperture; naturally the electric field components vanish over the conductor;Ea and Ha 
cannot be specified independently over the plane z = 0 since H is determined by E from Maxwell's equation. This is 
analogous to the network problem in which if the voltage source (applied E-field) and the network parameters (geometry of 
the region) are specified, the current (H-field) is then determined. 

The boundary conditions will be applied to the Fourier transforms of the field components. 

Boundary Conditions at z = L 

Using (39), (40), and (51), the two longitud inal and four transverse modal components are matched at z = L, 

(52a) 

(52b) 

(52c) 

(52d) 

(52e) 

(520 

n = 2 

)n*° .3«„elP"L -

n = 2 
V ¡ß L 
) n * 0 Ye e n = / n nz 

-¡ßoL 

n = 2 

n = 2 

^n * 0 

n = -2 

n = 2 

\n # 0 
•— 

n = -2 

ß . n = 2 

kßc7 e eA1” - )n*0 

ßn nZ n = -2 

i ¡V \=2
Pßcß enze + >n *0 

n -9 n-Z 
n = 2 

¡ß L V 
pß e_Y e e n + > * 0 
v o V nz /, 

n = -2 

¡ßL V 
-kß e Y e e n + )n * 0 V 3 y nz 

n = -2 

¡ßnL ,e 

ßv 

PF V 

ßv 

k Y ' V 
e e 
nz 

PßvTT 

n 
kßv V 

-jß„L 
h e ° oz 

LR k "i ßOL 
- kßohoze

, -iß0L he 
oz 

kß Yne < 
rn n nz = *PßvYveoze ' ß°L

lßnL _ o -¡ßoL 
- -Pßoeoze

ißnL LR -' ß°L 
enze - "kßoeoze

pß Y e e 
r n n nz 

ißnL 
- pß h e 
r o oz 

-ißoL 

Only four out of the six equations in the set (52) are independent. Any two equations can be expressed as a linear 
combination of the others, thus: 

n = 2 

(53a) p(52e) - k(52f) = 5n *° Y e elßnL = u2ß Y e e’ iß°L( , * 3 v nz rv V oz 
n = -2 
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Similarly using (53b) with (52e) or (52d) yields 

(55a) 

0 (55b) 

(55c) 0 e, nz 

(55d) 0 
nz 

Boundary Conditions at z = 0 

Let the Fourier transforms of the applied electric fields be 

(56a) 

(56b) 

0 
n n = -2 

0 
V n 

linear combination of the above equations The set (57) is equivalent to the following set obtained by a 

enz 
2 = a 
u t 

y 

enz 

n = 2 

\n * 0 

ra 
y 

e nz 

.ip"L

iV 
enz 

2-a 
U E 

X 

n =-2 
n = 2 

5n *0 

n = -2 

n = 2 

'Sn 0 

n =-2 

n = 2 

I"*0
n - -2 

a. . -ikx -ipy 
Ey (x,y,0) e e dk dp 

¡ßnL 
ß Y e n n 

C rt “ikx ’ÍPy JL J E* (x,y,0) e e dk dp 

n = 2 

(53b) p(52c) - k(52d) = ^n*0 

n =-2 

e lr° h oz 

2 Tn 
-u ßv 77 e> 

1 
1— e

-iß L 
+ ßoe ° hoz 

Equations (52a) , (52b) , (53a) , and (54b) form one of the possible sets of four equations at the boundary z = L. This set 
will be used in the solution of the problem and is repeated below for convenience: 

Equating the transforms of the transverse electric field components, Ex and Ey , from (41) to (56a) and (56b) respectively, 
gives after setting z = 0 

ißnL R -¡ ßoLe e = -p e e nz o oz 

Any four equations or four linear combinations of the above set (52) constitute a set of independent equations. Thus 
using (53a) with (52e) or (52b) gives 

_ 2 

(54d 2"*° Pr/nW'0"1 " 
n = -2 

n = 2 

(54b) ^n * 0 

n = -2 

ßo -¡ ßoL 
-9" e = 0
ßc 

ra
X 

-iß0L 
e_ 

*3 %z

ißnL 2 ßv -¡ßoL 
nze - -u — hoze 

V 

ißnL 
ne e , 

Po 

\ 2 r ß 
(57b) )n*0 pß f 

.¿■-I L
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(58a) 

(58b) 

n = 2 p 2 

5n*° TT e"z + (p Êy° +kíxa) = 0
n =-2 n 

n = 2 y 

2n *° ßv^ enz + <kÇ - pV> = 0
n = -2 v

Th^set of s¿x equations (55a,b,c,d) and (58a,b) will yield the transforms of the field components in both regions in terms 
of Ex° and Eya . For convenience, the set is repeated below in matrix form 

0 

0 

0 

0 

-(p?y + kK^ 

-(k V - P Ë a) y X 

Solution of the Far-Field Components 

Let A be the determinant of the square matrix (59) . Ae is the determinant of the same matrix after substituting for 

its fifth column the column matrix of the RHS of (59) . Similarly Ah is obtained after substituting the same column matrix 
into the sixth column of the original matrix. 

The solution for A, Aeoz and Ahoz is tedious but straightforward (an understatement!) the results are given below: 

4 ß “¡2ßob F o T 
(60) A = - JL p—2 (ß, Y, - I ßo(ß, Y, - ß2Y2) G, O2 + F2̂  Y,c, G2 - ß^G,)j 

(61) A%z = (ß l Y1 ’ {" Vx[(0 l Y1 i ßj’l Y, -s 2Y2)}ßc2Vy [(c, -c^ +ißo^ - ^) j 

(62) 

and h„ are given by 
oz °z » z y r \ V 2 f S1 s2 1 

bo(bly1-b2y2)gl92 + f (b]yi c1s2 - b2y2c29]) A

zäol\ V F bo S1 s2 ' Vv 2 r bo s~ s, 

h =-Y b 2eib°'’ b2/2 > J Ah°z
oz vc -*-2-——’-“ —△— 

bo(biy] -b2y2)g1g2 + f (b^c^ - bjy^g, ) 

The following notation has been introduced in the above equations: 
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(64a) Vx = (p E ° + k E^) 

(64b) Vy = (k ï ° - p Ex°) 

(65a) sn = sin ßnL 

(65b) cn = cos ßnL 

(66) ßc = bcßv

(67a) ßo = boßv

2ir L 
(67b) l=ßvL = -jç 

(68) Y = y Y n 'n v 

s 2 
(69a) Gn = e3ßocn + ¡ JL ßc = gnßv

(69b) F2 = ßc2 - e 2̂ = f2ßv2

The far-field components are given by the inverse transforms of eQZ and hoz. Thus 

(70) Hqz = ÍÍ hoz(k,p)e' kXeipye' ißoZ dk dp 
-OO 

The evaluation of the inverse transform is readily obtained by the method of stationary phase. The method is described 
elsewhere® and a physical interpretation for it has been given in a previous paper. ® Because (70) is a double Fourier 
transform, the method of stationary phase must be applied twice in succession. This is best done with the following change 
of variables. 

X 

(71) y = r 

z 

=0 se 
S0 Sg (eg = cos 0, Sg = sin 6, etc.) 

ce 
k 

(72) = u 
P 

c 
(c = cos v, s = sin v) V V 

sv 

Using (48), (71) into (70) and integrating over the u-v plane defined by (72) gives 

<73) - J 

0 0 
Let, 

(74) X,(u,v) = use(c0Cv + s^) 

Define, 

(74a) J = X] 
dv 1V 

(74b) = X, 
dvz vv 

(74c) V = V 

is the value of v that makes 

(2) As shown elsewhere' 

= 0. 
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(75) 

Defining 

(76) 

¡rX(u,vs) 
e + high order terms in — 

Substituting the RHS of (75) into (73) and integrating according to the rule of (75) gives 

(77) H(x,y,d -
r x2 

vv 5 5 uu 5 5

It is easily shown that 

(78a) u = ß sQs V 0 

(78b) vs = 0 + ir 

(78c) ßQs = ßo(us,vs) = ßvc0

(79a) X. (u ,v ) = ß s2„ 
’vv s s rv e 

which yields the final results: 

_ (2ir)2 ¿ w-;) 
Hoz(x,y,z) V 0

(8l) 
°0 

s0 

e (k , p ) oz' s Hs 

h (k ,p ) oz' s rs 

The far-field components are obtained by means of (63) and (8l) into (80) . 

Radiation Power Density 

The radiated power density is given by Poynting vector 

(82) = ^^(E x IH^) 

"ÓC' stands for the "real part of" and for conjugate. 

Expanding (82) in rectangular coordinates, using expression (51) in conjunction with (80) for the rectangular com¬ 
ponents and changing to spherical coordinates r,0,z yields after a few manipulations 

(83) hoz<ks'Ps) 

se 

2 
) 

where Ir is the unit vector in the r-direction and 

(84) 

Radiation from a Rectangular Slot Excited in the TE]q Mode 

As an example of the applications of the results (80) and (81) to the evaluation of radiation fields, consider a rectan¬ 
gular slot in which the source distribution is forced to be sinusoidal. The long dimension of the slot extends from 
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y = - — to y = — and the short dimension from x = - S to x = ̂  . 
2 2 2 2 

(85a) E a = — cos Z y 

The exciting field is 

(85b) E a = 0 
y 

The Fourier transform of the applied fields are 

V = a 
(86a) E x 2w 

(86b) 

(87a) ’ 2ir L‘ 

(87b) 

(88) 1 ; 

(89) 

ka 
2 

ksa 

bcos(Pvses0 È), 

2 J ^vS0S0 

a 
ßvsec0 2 

Vx xs 

2 

then in the 0 = 0 plane, 

a 
It will be seen in the next section that the transform of an applied constant Ex -field across an infinitely long narrow 

slot is identical with (89) except for one constant factor-^. ; hence the patterns of the infinite slot and the rectangular 
slot are similar in the 0 = 0 plane. n

The radiation fields are then obtained by substituting (81) and (87) into (63). The radiated power follows from substi¬ 
tution of (63) into (83). 

For a narrow slot, 

L TT2 - (ßvS0S0b)2

" (ßv^ 

y . Sin (ßvsgc0 2 )n rbcosl 

sin h? 

Substitution of (81 ) into (86a), using (64a) gives V and V 
A / 

V b 
S« TT“ — V «-B 

xs 

= a 
E = 0 
y 

V r sin > 

b cos 

n2-(pb) 2

V = — I-
ys 2’ L », “ 

PVS0C0 2 

Radiation from an Infinitely Long Narrow Slot 

For this case 

(90) Ey = 0 

(91) p = 0 

= _ V 
(92) E —*• E = z— (single bar indicates transform with respect to x only) X X Z1T 

Substituting (90) , (9l) , (92) into (64) gives 

(93a) V = k— (note that V in this case has no longer the dimension of volts) 
x 2ir x

(93b) V = 0 
y 

Substituting (93) in (63) yields the transforms of the radiation fields 

(94a) _ ibo' V k 
oz 2> ßy

b^3
MMyi-^yJ^igi+f^iyi^^ 
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(94b) 
V k 
2w ß 
rv 

h = -e oz biyib2X2 

s, s2
e3bo(c)-c^ + i^c 

bo(b]y] -b2y2)g]g2 + f Os] X]C]g2-b2y2c29p 

by the stationary phase method shows the following changes in equation (80) : 

(2ir) (95b) 

(95c) 12 e 

Evaluation of EQz(x,y,z) and H$ (x,y,z) 

(95a) 

thus giving 

(96) 

where 

(97) 

Eoz^ 

H (x,z) 
oz 

\ (2k) 2

W C0e
eoz<ks) 

h (k ) oz s 

k = - ß sin 6 s V 

Note that in this 2-dimensional problem ^here the geometry is dependent of y-direction), ks is obtained from its 3-dimensional 
counterpart by simply making 0 = 0. Thus it is seen that the radiation from rectangular apertures (3-dimensional problem) 
has a pattern in the 0 = 0 plane similar to the pattern obtained from the infinitely long and narrow slot. 

The radiated Poynting vector becomes after substituting (94) and (97) in (83) 

(98) 

Ip is un '^ vecf°r in the p-direction in p,6,z system of coordinates (Figure 2) . This expression can be reduced to 

”” 'nr - ip.P = I ".A112 * zKK'I!)4 
r V 

by means of (51) in the case of p = 0. The first term in (99) is the contributions from TE-modes and the second term is the 
contribution from TM-modes. 

Calculations of Radiation Patterns for the Infinitely Long Narrow Slot Antenna 

To facilitate the radiation pattern calculations, the bracketed quantities in (94) are defined as normalized radiation 
intensities N^ and Ng. Thus (94) become 

V k 
KA’I ■ * f |Nh(k,)| 

rv 

00OW MM 5 £ |N.(k,)| 

Expressing e (k ) and h (k ) 
oy s oy s 

in terms of eQz and hQz through (51) for the case p = 0 and substituting into (99) gives 

"oi> Vi (IwNwl2) 4 
“ V 

A normalized gain function G(0) is defined as 
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Kp 
(102) G(® = -—^2 

1 Tv v

7 P\ 
Thus, 

(103) G(6) = (I NJ2 + I Ne I ) c\ 

evaluated for k$ = -ßvSg. 

The gain function defined by (103) although quite complicated reduces to a simple expression under the following restric¬ 
tions 

(104a) 

(104b) 

(104c) 

V = 0 

2 2 _ 2 
U << « Up 

Under these restrictions (103) becomes 

(105) G (6) 
4)c2

where the various symbols in the above expressions are given by 

u 
(106a) b = P' 

V uu^ 

(106b) s = sin bl 

(106c) c = cos bl 

(106d) I = 
A 

G(6) is plotted in Figures 3, 4, and 5 for several values of c and s. In Figure 3, G(0) = 1 corresponds to the radiation 
pattern of an infinitely long narrow slot in the absence of plasma. Figures 3 and 4 show that the power radiated by the slot 
antenna over a broad angle is not significantly reduced in the presence of a lossless gyrotropic plasma slab. Figure 5 shows 
that the radiated power is significantly increased (as much as 27 db) for some critical combination of slab width and 
plasma, cyclotron and signal frequencies. This occurs at 

(107) 2^ = (N+|)* N = positive integer > > 1 

This increase in radiated power over the free space antenna pattern can be explained on the basis that G(0) is derived 
for a constant applied voltage V. In the absence of plasma, the input impedance Z¡n of an infinitely long narrow slot is 
highly reactive (capacitive) ; hence for a given applied voltage V, the radiated power Pr is given by: 

(108) 

where Rr is the radiation resistance. 
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capacitive reactance may decrease the reactance in such a way that the ratio increases over its free space value. 
lZ in I 2

The presence of a gyrotropic plasma slab over the antenna although changing both the radiation resistance and the 
R, 

As 0 departs from 0° the radiation pattern should approach a null rapidly; this is due to the fact that as 0 increases the 
plane wave along this direction encounters increasing attenuation due to a lengthening of its path through the plasma and 
approaching a mode of propagation transverse to the magnetic field. However, because of the assumption (104) , in 

2 2 
particular t) < < , it turns out that the component of the cyclotron frequency along the direction of propagation, 

namely w cos 0, is higher than ü for angles below 85°, and plane wave propagation along this angle can still be con-
b 

sidered to be in the quasi-longitudinal mode. 

The net result is then an increase in radiated power since V is fixed. Hence for the proper combination of plasma para¬ 
meters, a gyrotropic slab with a static magnetic field perpendicular to the slot may improve the matching between a long 
narrow slot radiator and its free space environment. 

(2) According to the stationary phase analysis , the radiation field at one point is determined essentially by a plane 
wave originating at the slot and arriving along the radial direction 0 locating that point. 

Conclusions 

It is shown that the presence of a gyrotropic lossless plasma slab covering a rectangular slot radiator does not alter 
significantly the radiation pattern in the 0=0 plane when the static magnetic field is perpendicular to the slot. The plasma 
covered antenna remains omnidirectional and the radiated power is not significantly reduced when the cyclotron frequency 
exceeds the operating frequency by one order of magnitude ><•?) • 

It is also found that the matching between the antenna and its surrounding is sharply improved,if the antenna is covered 
with such a slab, at critical combinationsof the plasma slab parameters and the operating frequency; this finding may be 
useful for plasma diagnostics, in order to determine L, andV by varying Bq and o. 
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X 

Figure I. 

ARBITRARY APERTURE SLOT RADIA¬ 
TOR COVERED WITH GYROTROPIC 
PLASMA (STATIC MAGNETIC FIELD 
PERPENDICULAR TO PLANE OF APERTURE). 

Figure 2. 

INFINITE SLOT RADIATOR COVERED 
WITH GYROTROPIC PLASMA( STATIC 

MAGNETIC FIELD PERPENDICULAR 

TO THE SLOT). 
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In this paper the propagation characteristics 

of a variable dielectric medium are investigated. 

Specifically, the medium is an infinite dielectric 

slab imbedded in free space but whose dielectric 

constant merges continuously into the free space 

value at the boundaries while attaining a maximum 

value at the center of the slab. In solving Max¬ 

well’s Equations in such a medium, it is shown 
that certain solutions of the fields in the medium 

reveal the existence of trapped modes within the 

slab. The solutions are expressible in terms of 

hypergeometric functions which simplify to hyper¬ 

bolic functions for the lowest ordered modes. The 

governing conditions which establish the existence 

of these modes are also used to determine the ap¬ 

propriate cutoff frequency of each mode. 

I. Introduction 

It is fairly well known that an infinite slab 

of dielectric of a finite thickness will guide 

electromagnetic energy. The guiding effect or 

trapping of these waves within the slab is due to 

the total reflection of the waves at the free-

space dielectric interface. For a fixed thickness, 

there exists a frequency below which total reflec¬ 

tion at the interface is no longer possible, so 

that energy is transmitted across the interface. 

Above this frequency, the energy is considered 

trapped within the slab. 

If the slab of dielectric has a variable di¬ 

electric constant such that there is no distin¬ 

guishable boundary between free-space and the 

dielectric, it is not quite as obvious that energy 
will be trapped. In a variable medium, however, 

there will be a continuous bending of the rays, 

and it is this gradual refraction which plays the 

same role as total reflection does at the inter¬ 

face of a distinguishable slab. 

In this paper, the trapping of electromagnetic 

energy by a smoothly varying dielectric slab is 

investigated by actually solving Maxwell's equa¬ 

tions in the medium. The particular medium 

studied has a dielectric variation based upon the 

Epstein-Eckart potential "well" that was introduced 

in the mid-1930’s because Schroedinger’s Wave 

Equation could then be solved in terms of known 
r 1 functions. x

It will be shows that, under certain condi¬ 

tions, solutions of the wave equation in such a 

medium can be obtained which possess the charac¬ 

teristics of trapped waves within the slab. These 
solutions also show that these trapped wave are 

modal in character with each trapped mode having a 

particular cutoff frequency. 

In part II, the wave equation in the medium 

is derived from Maxwell’s equations and is then 

transformed into a form for which solutions are 

known to exist. This form is the hypergeometric 

equation whose solutions are hypergeometric 

functions. 

In part III, certain particular solutions of 

the hypergeometric equation are shown to be rep¬ 

resentative of trapped waves if certain restric¬ 

tions are imposed upon the parameters of these 

solutions. These restrictions form the basis for 

determining the cutoff frequencies of the modes 

and also permit calculation of the phase veloci¬ 

ties of the trapped waves. 

In the last section, the first three modes 

are derived and the field equations are reduced 

to hyperbolic functions. 

II. Derivation of the Wave Equation 

Maxwell’s equations (in m.k.s. units) in a 

medium are: 

- 3D BE 
VxH = —= Keeo — (la) V-D=V-KeE = 0 (1c) 

St e ° St e ° 

BB BH 
VxE =- —= -1^—(lb) V-B = 0 (Id) 

du du 

where H, B, D, and E are the usual field vectors; 

eo and are, respectively, the permittivity and 

permeability of free space; and Ke and Km are, 

respectively, the dielectric constant and relative 

permeability of the medium. 
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Operating on Eq. (lb), and making use of Eq. 

(la) and (1c), we obtain the vector wave equation: 

-V— VK-E -v2p=.KK (2)
Ke e I m e o^o 

In order to simplify the problem, assume that 

Ke is a function of one variable (Ke = Ke(x)) and 

that waves are polarized in the plane perpendicular 

to the x-direction. Under these conditions: 

Cartesan coordinates, there is no loss in gener¬ 

ality if the y-axis is chosen such that it is co¬ 

incident with the vector E. Then E = jEy(x,z), 

where j is unit vector in y-direction. 

If: 

Ey = C(z) $(x) (5) 

Eq. (4) results in two equations upon separation of 
the variables: 

VKe - E = 0 

so that Eq. (2) becomes: 

_ 
V2Ë ’ —" = 0 (3) 

3t 2

If E is assumed to have a harmonic time variation, 
Eq. (3) becomes: 

+KmKeko2E = 0 (4) 

where use has been made of: 

1 d2n 
ndJ 

,9 j 1 d2$ , 9
-k 2 and --+ k 2 K_ = k, 2z $ dx2 ° e z (6) 

where k z2 is the separation constant. 

The first of Eq. (6) yields immediately: 

jk zz 
0(z) = e (7) 

while the second of Eq. (6) is: 

d2$ 
. —- + ko2Ke $= kz2$ (8) 

dx2

£OMO = k o = —■ and k - 1 for most materials, 
C o 

At this point, the form of the dielectric 
variation is identified to be: 

and where C is the velocity of light, and Xo is 
the free space wavelength of the wave. For 

Ke(x) = 1 + Ksech2—— (9) 

If the variable x is transformed by: 

2x 

FIG.I PLOT OF K e AS FUNCTION OF X 

Í = -e L
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Eq.(8) becomes: 

f2
d2$ d$ 
-+ £-
df2 di 

ko2L2Ki k02L2

4(l-i)2 4

kA2 

4 
4> = 0 

In this equation, let the dimensionless quantity 

L2ko2 L2kz2

and let 

Equation (10) is now rewritten: 

ko2L2K 

di2 di I (1-i) 2

0 

If we assume $ = (1 - i) af f and substitute into Eq. (11), we will have: 

(10) 

(10a) 

(11) 

i(l -i) -^4+ [2/3 + 1 - (2/3 + 2a + l)i]-^ + a(a +2/3)f = 0 
di2 di 

(12) 

provided the following definitions are made: 

/32 = -X and a ^-^[l -11+ 4H] (13) 

Equation (12) is known as Gauss’ Equation or the hypergeometric equation 2, which is: 

i(l - i) -- + [c - (a + b + l)il —— - abf = 0 (14) 
di2 di 

where 

a - a 

b = 2ß + a 

C = 2/3 + 1 (15) 

There are 24 particular solutions to this equation. The solutions, however, are not all valid for all 

values of the variable, i. Since the range of interest encompasses all values of x from -°0 to +«, the 

solutions which can be used for evaluating the trapped waves must be valid over the range of i from 

-® to 0. Forsyth^ lists all 24 solutions and the range of convergence for each. It is from among 

these that the solutions corresponding to the trapped waves must be found. 

III. Solutions Corresponding to Trapped Waves 

For waves that are trapped within the slab, the solution must decay exponentially for large |x|. 

The solutions which have this asymptotic behavior would correspond to the trapping of energy within the 
slab with no energy transfer in the x-direction. Hence the problem is to find, among the 24 particular 
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solutions to Eq. (14), one that will decay exponentially for large |x| and is valid over the range from 

.®< x <œ or -oo <0. 

A solution to Eq. (14) which is valid for -oo<f<0 and 2<f<+°o is:^ 

f4 = (1 -i)'b F Jb, c - a; b +1 - a; 

where F [b, c-a; b + 1 -

F [a, b; c; 

Substituting in Eq. (16) 

$ = (1 -f) a 

we have: 

a; 1/1 - is a hypergeometric series, defined according to: 

. ab a(a+l)b(b+l) 9 a( a +1)(a +2)b(b + 1)(b +2) o 

l.c 1.2c(c +1) 1.2.3 c(c +l)(c +2) 

the values of a, b, and c as defined in Eq. (15), and recalling that: 

(16) 

(17) 

(18) 

* = ^(1 -i)’ 2/3 F 2£+a, 2/3 + 1 -a; 2/3 + 1; (19) 

If this is to be the solution of the trapped waves, it must reduce asymptotically to exponentially 

decaying functions. At x = -æ, or £ = -æ we note that Eq. (19) reduces to: 

2x1 

= ^(-i)- 2̂  = [-e L (20) 

since F [a, b; c; 0] = 1. 

Equation (20 is an exponentially decreasing function for negative values of x provided ß is a positive 
real quantity, which is possible for k z >k Q, since from Eq. (13): 

L2k 2 L2k 2 z o 
(21) 

At x = +», or £ = 0, Fq. (19) cannot be used because F [a, b; c; 1] does not converge. It can, however, 

be expressed as the sum of two hypergeometric series that do converge for small Using the known 

formula, Eq (16) may be written: 

*4 
ni - c)Hi+b - a) f r(c)r(i-c)r(b+i-a) 

r(i - a)r(i +b - c) ’ r(2-c)r(c-a)r(b) 
j^(c - 1) 5 

e f 5 (22) 

where 

Í! = (1 -f)' a F Ja, c -b; c; 

fi = (1 -i)’“ F Ja, 1 - a; 2/3 + 1; (23) 
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and 

fe = fl-c (1 -f)c-b-l F b +1 -c, 1 - a; 2 - c; —— 
3 l í - 1J 

fe = (1 -i)'a F a, 1 - a; 1 -2/3; 
3 I S - 1J 

Hence, Eq. (19) becomes: 

r(2/0+ i)n-2/B)r(2/8 + 1) ¡2^ -ß i s 1 
r(l -2/8)r(2/8 + l -a)r(2/8 + a) s l Í-1J 

(24) 

(25) 

From relations involving Gamma Function, the coefficients of fj and f$ in Eq. (22) can be reduced to: 

r(-2/8)r(2/8 + 1) _ sin rra 
H 1 - a)r(a) sin 2irß 

(26) 

and 

r(20 + i)r(-2/8)r(2/S + i) 
r(l -2/3)r(l + 2/3 - a)T(2/3 + a) 

oo 

n 

n=o 

a a 
1 +- 1-
„ 2/3 + n H 1 + 2/0 + n 

(27) 

(See Appendix.) 

Substituting these into Eq (25), we obtain: 

sin to 

sin 2nß 
1 - a; 

00 

+ n 

nBo 

a a 
+- 1-
2/3 + nJ [ 1 + 2/3 + n 

l-a; 1-2* £ (28) 

With this form, it is possible to investigate the asymptotic character of 4> as xor ÇH). Recalling 

that ß is a positive real number as required for an exponential decay at x --®, Eq. (28) shows that as 
X—+O0 or ^-O, the first term is an exponential decay while the second term is an increasing exponential. 

Since the trapped waves must decay for large |x|, the second term must vanish. By virtue of the infinite 

product in the coefficient of the second term, it will vanish for 

- - -1 or a = -2ß -n, n = 0, 1, 2,’" 
2ß +n 

(29) 

Under these same conditions, 

sin no. 
sin 2w/0 

(-l) n . 
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Substituting for a and ß from Eq. (10a), (13), and (21), Eq. (29) is: 

Rewriting this leads to: 

J [1 - ÍTh^k] = L K2-ko2’-n (29a) 

where n - 0, 1, 2, • • • 

y 2 

ko. 
Jl + kQ2L2K = 2Lko

-i 

1 +2n +1 (30) 

represents the criterion for trapped waves to exist in the dielectric slab when 
the fields no longer decay exponentially and this may be considered as the 
wave. If k z - ko, Eq. (30) becomes: 

Equation (30) thus 

kz > ko. When k z = k o, 

cutoff frequency of the 

cutoff 

n(n + 1) 

— K 
(31) 

where k is the free space phase constant of the cutoff frequency for a particular value of n. 

Thus it is seen that for each integral value of n, there is a distinct cutoff frequency for the 
trapped wave which is indicative of its modal character. 

The separation constant k z is related to the phase velocity of the trapped modes. For a particular 
frequency related to a particular kQ, only one k z can exist in a certain mode. To find its value, 

Eq. (30) must be solved for k z. Since the equation is transcendental; a graphical solution is indicated. 

In Fig. 2, both the left-hand side and right hand side of Eq. (30) are plotted along the ordinate as 

a function of koL. The solid curves represent the left-hand side for different values of K, while the 

dotted lines represent the right-hand side for different values of n. It is noted that the dotted lines 

are for k z/kQ = 1, which intersect the solid curves at values of koL corresponding to the cutoff value 

kCnL. If a frequency above cutoff is considered, the dotted lines have a positive slope corresponding 

to a fixed value of k z/kQ. As an example, assume that a frequency corresponding to kjL is trapped in 

the n = 1 mode, and that it is desired to determine its phase velocity, Vx = cc/kz. Assume also that 
K = 2. Referring to Fig. 2, extend k 1L 

the line AB is drawn. From Eq. (30) the 

and solving for k z, we have: 

IV. 

Since it has been shown that Eq. (19) represents the trapped modes for a = -2ß -n. this relation 
may be substituted into Eq. (19) to give: 

which corresponds to n = 1, 

(32) 

Slope AB1 2
(33) 2 kz - kl 

to point B. Since the mode is one 

slope of AR is: 
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$ = (34) -n , 4/3 + 1 + n ; Iß + 1 ;---
2x 

1 +e L

hypergeometric series is 

series (Eq. 17) that the 

Since the first parameter of the 

definition of the hypergeometric 

For n - 0, or the lowest mode: 

a negative integer, it can be seen from the 

series terminates after a finite number of terms. 

2x^ -2ß 

L $ = -e 

which simplifies to: 

ß 

The complete solution for the field is then, from Eq. (5), (7), and (36): 

Jkzz
1 l2 x -sech4 — 

2 e 
L 4 

ß -2ß 

$ = 1 1 --e 

and 

sech2—• -Eyn = i 4 L 

For n - 2: 

ß -2ß 

1 1 $ = 1 --e 

1 + e 

and 

+ 2 r 
2 Ey, 1 n 

The approximate plots of the three lowest modes are shown in Fig. 3. 

2x 

L 

2x 

T 

2x 

L 

2x 

L 

2x 

T 

"4 

Similarly, for n - 1: 

jk zz 

-2 = e ch2^ 

Eyn - o 

jk zz 
-e 

-sec 
4 

2 tanh— 
L 

2(4/? + 3) 

2/3 + 1 2x1 2

U‘r ] 

1 u2 x—sech^— 
4 I. 

2(4>S + 3) 

2x 2/3 + 1 

T 

2 

T 

4/9+3 
- se 
4/9+2 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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V. Conclusions 

The analysis shows that a variable dielectric slab will guide waves in much the same manner as a 

uniform dielectric slab in free space. These guided waves are trapped within the slab according to 

distinct modes. Each mode possesses a cutoff frequency that is dependent upon the maximum value of 

dielectric constant and the width of the slab. The guiding of the waves in the medium resembles that 

of other dielectric guides in that frequencies well above cutoff are more contained within the slab. 

In addition to this resemblance, the phase velocity of the trapped wave decreases with increasing 
frequency. 
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Appendix 

Simplification of the coefficieints of Eq. (25) 

Since : 

Rl + z) = zRz) 

and 

Rz)R-z) =- csc(t7z) 
z 

and 

R z)R 1 - z) = 77 esc ( 77z ) 

Then : 

R-2/3)R2/3 + l) = 2£R-2ff)R2/3) = esc(277/3) _ sin77q 
Ra)Rl-a) Ra)Rl-a) eserra sin(277/3) 

From Eq. (Al), (A2), and (A3), we also obtain: 

Applying Eq (A5) : 

F(1 + 2ßW(-2ßW(\ +2/3) 
Rl - 2£)R1 + 2/3 - a)V(2ß + a} 

But: 6

RzpRZ2) “ ’ 

nz1 +z3jrz2 -z3) ' n 1 
n«o 

so that: 
00 

Rl+2/3)R-2/3)Rl+2/3) 
RI -2/3)Rl + 2^-a)R2^+a) 

n‘o 

a 
2/3+n 1 + 2/3 + n 

R 2/3) RI + 2£) 
R2£+a)Rl + 2/3 - a) 

Z3 

Z| + n, Z2 + n 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 
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SUBMERGED ANTENNA PERFORMANCE 

W. L. Weeks and R. C. Fenwick 
Collins Radio Company 

Richardson, Texas 

Summary 

This paper gives the results of a theoretical 
and experimental study of the characteristics of 
antennas in lossy environments, such as wires 
buried in the earth or sea. A criterion for the 
evaluation of such antennas (for surface waves 
or any other single mode of propagation), called 
relative communication efficiency , is defined 
and a mathematical formula for its calculation 
is derived. A number of specific evaluations 
are presented, with emphasis on horizontal wire 
antennas. The results of experiments to deter¬ 
mine the input impedance and current distribu¬ 
tion on wires of different sizes and different 
insulation thicknesses are summarized and com¬ 
pared to a simple theory. The results of 
measurements of the field strength of horizontal 
wires and arrays are presented and compared to 
the theoretical results. The signal to noise 
ratios observed with submerged receiving antenna 
structures are discussed. 

1. Introduction 

It is sometimes impossible or impractical to 
employ the best antennas for a given communica¬ 
tion link. This may be so because of military 
or aesthetic requirements and/or structural 
difficulties. It may even be necessary to sub¬ 
merge the antenna structure into a lossy medium, 
although in the absence of other requirements 
this step is clearly inadvisable. In such in¬ 
stances it is especially important to have a 
precisely defined criterion for comparing one 
possible antenna structure to another. The ob¬ 
ject of this report is to define such a criter¬ 
ion, to illustrate the use of this criterion in 
a few common situations, and to present the 
evaluations and characteristics of basic sub¬ 
surface antenna types. The results are appli¬ 
cable to such diverse problems as very low fre¬ 
quency communications, submarine communications, 
hardened communications and airport communica¬ 
tions. 

If the antenna is under the surface of the 
earth or sea, fields are established in the 
medium (earth or sea) and these propagate out¬ 
ward. However, in the absence of some fortui¬ 
tous earth duct propagation, the attenuation of 
the spherical waves traveling in direct paths 
is very much greater than the 6 db/octave value 
which characterizes free space. The energy is 
dissipated by the conductivity of the earth or 
sea, and since, for example, the added attenua¬ 
tion of direct waves at 100 kc/sec is typically 
in the range from 175 to 17500 db/mile, the 
signals must reach the receiving site by some 
mechanism other than straight line propagation 
through the earth. 

2. Modes of Propagation 

The main modes of propagation in a communi¬ 
cation system in which one or both terminals is 
submerged are 1) ground or surface wave propa¬ 
gation (to ground stations) 2) sky wave propa¬ 
gation 3) VLF and ELF mode propagation (which we 
regard as the general case of types 1) and 2), 
and 4)"Direct" paths (to aircraft). These modes 
of propagation have been individually examined 
in detail^. While there are a few performance 
features which are peculiar to certain modes 
(especially the horizontally polarized sky waves 
and direct waves), the important trends in the 
performance are the same for all modes of propa¬ 
gation. Consequently, for economy, we will con¬ 
fine most of our attention here to the ground 
wave, or surface wave mode of propagation. As 
a matter of fact, in certain communications 
systems the surface wave mode may be the only 
important mode of propagation. 

In order to attach a precise meaning to the 
mode, we will define the surface wave fields to 
be the fields (at say lOXor more distance) on 
or not far under the surface of the earth which 
are produced by a point vertical electric di¬ 
pole on the surface of the earth, assuming no 
atmosphere and no ionosphere . This problem has 
been studied by Sommerfeld, Weyl, Burrows, 
Norton and others. The results are summarized 
in Stratton 1 si book, in Sommerfeld 1s^ book and 
by Walt3>4 who treats the horizontal dipole 
source. To the extent that earth curvature can 
be neglected, the most significant features of 
the surface wave field for the present considera¬ 
tions are the following: The electric field has 
both a vertical component (Ez) and a longitudi¬ 
nal (in the direction of propagation) component 
(E/o), the ratio of which depends upon the ground 
constants. All field components fall off ex¬ 
ponentially with depth below the surface of the 
earth. Specifically, the field components, be¬ 
neath the surface, at a given distance, have 
the form 

Eze = Cn'1 e’J1*2 e-j^ 

E^ - Ce-i^e-^ G)

where _ 

n = /6r ” J ——— > the complex index of 
* “ 0 refraction of earth 

k = 2 TT / X , ' air 

z = depth below the surface (positive 
downward) 

C = a complicated quantity Involving 
distance and ground constants. 
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It follows from (1) that, beneath the sur¬ 
face, the ratio of components at a given posi¬ 
tion is 

— = 1 . (2) 
« 

However, from the preceding references or the 
simple argument which follows, the ratio of the 
field components in the air is 

= n , (3) 

The simple argument goes as follows: tangen¬ 
tial E must be continuous at the surface so 
Epa = Epe at the surface. But normal D must 
also be continuous, so € aEza = €eEze- Dividing 
the latter equation by the former 

2 
Eza _ €eEze _ n EZe 
Epa eaEpe Epe

so that given equation (2), equation (3) follows. 
The form of equations (1), (2), and (3) is 
responsible for several important features in 
the antenna evaluations. 

The fact, as stated above, that the mode 
of propagation is defined by a consideration of 
the fields produced by a particular point 
source placed at the receiving location is cen¬ 
tral to the discussion. Such a device is also 
very useful in the evaluation of which of 
various modes of propagation is likely to be of 
most importance. But mainly it serves as an 
anchor point in what sometimes seems to be a 
sea of confusion. 

3. Criterion for the Comparison of Antennas : 
Relative Communication Efficiency 

When an antenna is in a lossy environment 
it is difficult to apply the usual concepts of 
gain and efficiency to describe the performance. 
For this reason it has been found quite helpful 
to define another, related, quantity in order 
to compare the performance of antennas in lossy 
environments. The criterion for comparison will 
be called relative communication efficiency , 
(RCE) . 

The relative communication efficiency is 
defined in the obvious way. Given that the in¬ 
put powers to a pair of antennas, s, and t, 
(standard and test) are equal, the definition 
is the ratio 

Power density at Receiving Position 
when t is transmitting_ . 

RCEt,s = Power density at Receiving Position 
when s is transmitting 

Usually, if an antenna comparison is desired 
(as opposed to a system comparison), the power 
density referred to above is that in a given 
or desired mode of propagation. Then 

RCEt s = (5) 
Edm, s 

where the notation t means power density in 
the desired mode when the test antenna, t, is 
transmitting, and P¿m s is defined similarly. 
There is obviously another perfectly equivalent 
expression for the relative communication effi¬ 
ciency. It is the ratio of the power inputs to 
antennas s and t which is necessary to produce 
the same power density in the desired mode at 
the receiving position: 

RCEt s = LlSElitj—S (6) 
E input, t 

In practice, for convenience in the deter¬ 
mination of transmitter power requirements, the 
standard antenna is often taken to be a quarter 
wave vertical monopole, so that standard propa¬ 
gation charts and calculations can be employed. 

4. Reciprocity Theorem and Derivation 
of Basic Formulas 

It seems that the easiest way to obtain a 
useful formula for comparing antennas is to em¬ 
ploy the reciprocity theorem. It will be re¬ 
called that the following theorem can be deduced 
vigorously from Maxwell's equations 

J^(E2 • Ji - H2 ' Mpdv ■ J2 - ' 

M2)dv (7) 

In this formula, source 1 consisting of elec¬ 
tric currents and magnetic currents M^ gene¬ 
rates field Ei, Hi, while source 2 consisting of 
J2 and M2 generates the field E2, H2. The 
materials must be linear and isotropic, and the 
sources must be finite and operate at the same 
frequency, but otherwise the theorem is per¬ 
fectly general. For brevity, in this report we 
will exclude magnetic current sources from the 
discussion and we will almost always be concerned 
with the currents on the wires. In such a case 
the reciprocity theorem is 

y E2-Ii(íi)dfi = f Ei-I2(í2)dí2 (8) 

where £i and£ 2 are variables which measure 
length along the thin line currents, Il and I2. 

FIELD E2 DUE TO 
SOURCE I 2

POINT DIPOLE AT 
RECEIVING POSITION 

FIELD E| DUE TO 
SOURCE I| 

-(12 

r “•-< 
TEST ANTENNA t OR 
STANDARD ANTENNA s 
AT TRANSMITTING POSITION 

As we will use this theorem, the source I2 
will be the antenna under consideration. In the 
comparison process, it will be first antenna t 
and then antenna s. The theorem will be useful 
to us in that the field E2 (which is that due to 
either the test or the standard antenna) at the 
receiver can be found by the simple expedient 
of regarding 1^ as a point dipole at the receiv¬ 
ing position Ii(£) = ^8(r-rr)> where rr̂ is the 
location of the receiving position, and p is a 
unit vector showing the orientation of the 
point source. When this source is used in (8), 
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the result gives an expression for the component 
of E2 in the direction of p , at the receiving 
position: 

E2p(rr) = fty I2(£2) ^2 (9) 

To repeat, is the field at the position of I2 
which is generated by a unit point dipole in 
whatever environment actually exists (and I2 is 
the transmitting current distribution of 
first antenna t, and then antenna, s.). This 
quantity E^ is known, and it defines the mode of 
propagation which we are concerned with in the 
comparisons. Normally (although not necessarily) 
this will be the same mode of propagation for the 
antennas under comparison. We can apply equation 
(9) twice, once for the test antenna and once for 
the standard antenna and obtain the following two 
equations: 

Et = <ít> d£t 
r < 10 > 

Es = / Er Is (¿s) d£t 

where Et and Es are respectively the desired com¬ 
ponents of the fields at the receiving position 
produced by the test and standard antennas. 

Making use of equation (10), it is quite easy 
to obtain a formula for the relative communica¬ 
tion efficiency. Since the power density in the 
desired mode is proportional to the square of the 
field strength, if we require that the power den¬ 
sities produced by antennas t and s be the same 
at the receiving position, this implies 
IEt p =|e s I 2 and therefore 

|/el- It(£t)d£t| 2 - L/k-Is^s) d£s 2 (11) 

Now the condition can be satisfied in general 
only if the current amplitudes are different, 
which means that the input powers will be diffe¬ 
rent. The ratios of power inputs can be obtained 
with the aid of the familiar relationship 

pinput - ^|lin| 2 Rin (12) 
and the definitions 

it(£t) = , is(Cs) = • 03) 
I in, t Iin,s 

With the definitions (13), the condition (11) can 
be written 

Ilin.tH/vMet)^ | 2 = 
(14) 

llin.spl^l^s^^s I 

and then, with (12), the input powers introduced 
into the expression and the ratio of these ob¬ 
tained so that from (6), the equation is 

RCEt(S = 
Ejnput,s Rjn, s 
input,t Rin,t 

? 

2 
• (15) 

This is the basic formula for the comparison of 
a pair of antennas. It is equivalent to the 
standard methods for comparison of antennas in 
free space or lossless environments (gain and 
efficiency) but it is applicable to any situa¬ 
tion for which the reciprocity theorem holds 
(linear, isotropic media). 

Since this criterion has not often been used 
in the literature, it is worthwhile to apply it 
to a familiar example for purposes of illustra¬ 
tion. Let us therefore compare a £ vertical 
monopole with a good ground system to a 20" mono-
pole with the same ground system, for communica¬ 
tion in the surface wave mode of propagation. 
The current distribution (as a transmitter) on 
the quarter wave vertical is essentially sinu¬ 
soidal: 

Is Iin,s cos z
A 

and the surface wave field produced by a distant 
point dipole, Eiz, is constant over the wire. 
The integral for the quarter wave vertical is 
then X 

iJÉrisCCs)^! 2 = |Eiz/^Ç dz| 2 =| Ei«x| 2 
o 2tt 

In the short monopole, the current is linear to 
a good approximation: 

Xt = lin.t C 1 - f z) A 
so the integral in question is 

L/Éi-vct)^! 2 = |ei z^  (^^dzj 2 =|e z^| 2 . 

2 

It follows then that RCE for the short vertical 
compared to the vertical is 

4 

Rin A RCEr _ = _ xn’4 
t,s «in vTT 

Now a quarter wave vertical with a good ground 
system may have an input resistance of about 37 
ohms of which perhaps 1 ohm arises from ohmic 
losses. The short vertical might have an input 
resistance of 2 ohms of which about 1 ohm is 
due to ohmic loss. The relative communication 
efficiency of the short monopole compared to the 
quarter wave vertical is then 

RCEt,s ¿
.46 . 

If the system were constructed so that the 
losses in both structures were negligible, 
Rin X ~ 36, R X ~ 1 

4 

ohmic 
then 

so that 

RCEt s = .91 (no losses) 

With this assumption, the antennas are per¬ 
fectly efficient so the value .91 for the RCE 
represents the gain of the X vertical over the 
A. vertical. 4 
To 
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5. General Features of Antenna Performance 

Effect of Orientation and Position 

The main factor which determines antenna 
performance in surface wave communication systems 
is the relative size of the field components of 
the surface wave and this, mathematically, de¬ 
pends on the position of the complex index of 
refraction factor, n, in the equation (see equa¬ 
tions 2 and 3). To illustrate this point, con¬ 
sider the performance of very short thin anten¬ 
nas with uniform current along their lengths. 
Let the vector £ designate the orientation of 
the antennas. With such short antennas, the 
integrals in (15) are 
gives the result 

RCEt,s = 
Rin, s 

Rin, t 

trivial and that equation 

El-ât 

Er% 

2 

2 

The comparison of a short vertical and short 
horizontal in air can be readily made (t implies 
horizontal, s implies vertical). The quantity 
Ej • ât = Epa cos 0, where 0 is the angle be¬ 
tween the horizontal antenna and the direction 
to the receiving site (location of the point 
vertical 

RCEt,s = 

J,). This leads to the result 
2 

Rln,s Epa COS0 ; 
Rin,t Rza

Rin, s 
Rin, t 

COS0 
n 

short horizontal 
to short vertical 
at the surface 

(16) 

where the last step follows from equation (3). 
The horizontal antenna is most effective when it 
lies along the line to the receiving antenna, 
but since Rin s and R¿n t could be comparable 
in size, the fiorizontal’is much less effective 
than the vertical since the complex index of 
refraction |n| i is typically quite large. 
If we assume that the input resistances are the 
same, the relative communication efficiency, in 
db, in the end-fire direction is given approxi¬ 
mately 

RCEt,s 

by the equation 

-42.5 + 10 log — db 
^mm 

short horizon-
, tai to short 
vertical wire ' 
at surface 

Ça is conductivity in millimhos per meter.) 
It is to be emphasized that results (16) and (17) 
apply to short antennas at or just above the sur¬ 
face. 

If both antennas are under the surface, 
conclusion is opposite. If we maintain the 
tion t for horizontal, s for vertical, then 
relationship is 

RCEt,s 

2 
_ Rin,s Epecos0 
Rin,t Eze 

2 (short 
= |n COS0I J short 

I under 

Rin, s 
Rln’ t 

n COS0 

horizontal to ' 
vertical, both 
the surface 

the 
nota-
the 

(18) 

Equation (18) shows that if the antennas must be 
buried, the horizontal antenna is better than 
the vertical one by the same factor that the 

vertical is better than the horizontal when both 
are Just above the surface. It is rather sur¬ 
prising to realize that burying a vertical anten¬ 
na and keeping its orientation vertical results 
in about 85 db loss in efficiency. 

Effect of Depth 

Of course, burying an antenna to greater 
depths decreases its effectiveness in surface 
wave communication. A quantitative evaluation 
can be made by computing the relative communica¬ 
tion efficiency of a pair of short horizontal 
antennas, one at the surface, and one at a depth 
h. The expression, (1), for the surface 
field 
plies 

RCEts
2 

can be employed in (15) as follows 
at depth, s implies at surface) 

Elp(o) 
Eip(h) 

_ Rin,s 
Rin, t 

e -Jnkh
2 
_ Rin,s 
Rin, t 

wave 
(t im-

Rin,s -2h (Antenna at depth h, 
Rin> t e 8 relative to antenna (19) 

at the surface) 

where 8 is the skin depth. In decibels, this is 

RCEt,s “ -8. 686 t + 10 log Rln^ 8 Rin,t 
(db) (20) 

This result holds for any type of antenna hav¬ 
ing a well defined depth and this loss appears at 
the transmitter and the receiver if both are bur¬ 
ied. Resistance variation with depth is discussed 
in section 7. 

In the foregoing, the actual value of RCE is 
most strongly influenced by the position of the 
complex index of refraction ( |n | = ¡jj^) in the 
equation and by the attenuation with depth. 
Both of these factors appear in the same way for 
all of the modes of propagation mentioned above, 
so the general features are the same for all 
modes of propagation. 

6. System Considerations 

For the purpose of comparing systems, the 
familiar concept of system loss, which is de¬ 
fined , , , 

Power delivered to the receiving 
_ antenna load_ 

ystem oss power input to transmitting antenna 

can be employed to compare systems. If two 
systems, s, and t, have the same power input, the 
relative system loss is 

Relative system loss » (21) 
rrec,s 

where Prec t Is the Power delivered to the load 
connected to the receiving antenna in system, t, 
and Prec s is defined similarly (same input power 
to both systems). 

Although not necessary, it is helpful at this 
point to introduce the concept of receiving an¬ 
tenna cross sectional area, Arec and to show that 
the ratio of the receiving cross sections for a 
pair of antennas is the same as their relative 
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communication efficiency (RCE) defined earlier. 
The cross section is defined as follows 

P 
a — rec 
Arec - p7— , where P£nc is the power density 

in the incident field, so the ratio of receiving 
cross sections of a pair of antennas in the same 
incident field is 

Arec,t prec,t 
Ã^7 " P~^ (22) rec,s rec,s 

The power received can be calculated from an 
equivalent circuit for the receiving antenna. If 
the load is a conjugate match for the antenna, 
the power delivered to the load is 

1 V 2 

Prec = 8 V- • (23) 

To demonstrate the equivalence to RCE, it will be 
recalled (or can be shown) that the open circuit 
voltage produced in wire antenna by a field E^ is 

Voc = /El ' d£ (24) 

where !i(£) = 

(23) using Voc

W  . Therefore if we evaluate 
I in 
from (24) for each antenna, t, 

and s, and so replace Prec ,t and prec s in (22), 
the result is 

Arec, t _ Rin,s / E1‘^t^t^ dCt I 
Arec,s Rin, t / E1‘ ^(¿s^^s I 

(25) 

A comparison of this equation to equation (15) 
shows that the ratio on the right is the relative 
communication efficiency defined above so that 

A rec, t 
A rec, s RCEt,s 

which was to be demonstrated. 

Now if we compare two systems, s and t, the 
relative system loss, if both transmitting an¬ 
tennas have the same power input, is 

Relative system loss^ = 
t, s 

Einc,t Arec,t 
p, A inc,s rec,s 

A trans rec,s 
RCEt,s RCEt,s X RCE t » c, s 

Itrans rec 

(26) 

In words, whether or not the systems employ the 
same antennas as receivers and transmitters, the 
relative system loss is the product of the rela¬ 
tive communication efficiency of the transmitting 
antennas times the relative communication effi¬ 
ciency of the receiving antennas. This result 
greatly enhances the utility of the specific 
values of RCE which are presented in this and a 
companion report. 

7. Theoretical Model for Antenna 
with Comparison to Experiment 

It should be clear from what has been said 
above, and, in particular from equation (15), 
that in order to compare antennas by the RCE cri¬ 
terion, we must know (1) the current distributions 
on the antenna when it is transmitting (2) the in¬ 
put resistance of the antenna. These quantities 
can, at least, be determined experimentally (and 
this has been done). Moreover fortunately, a 
relatively simple theory gives good approximations 
for certain simple types. 

The Buried Wire as a Lossy Transmission Line 

If the antenna consists of an insulated wire 
which is buried deeply enough (how deep is 
"enough" is discussed later in this section) in 
the earth or sea, a good theoretical model for 
the structure is a transmission line which con¬ 
sists of an insulated perfect conductor immersed 
in an infinite lossy medium. The input impedance 
to and current distribution on such a line can be 
determined from standard transmission line theory, 
once the propagation constants have been deter¬ 
mined. 

Propagation Constants 

Consider a 

complicated and 
equation for the propagation constants of the TM 

d = 2o¡ 
D=2oo

structure which consists of a per¬ 
fectly conducting wire of dia¬ 
meter d, surrounded by an in¬ 
sulator which has a diameter D 
and dielectric constant €2» 
Immersed in an infinite lossy 
medium. Clearly, there are 
many possible modes of propaga¬ 
tion on this structure. The 
propagation constants for any 
of these modes can be found by 
solving the electromagnetic 
boundary value problem in cy¬ 
lindrical coordinates. This is 
a straightforward, if somewhat 

tedious task, and the resulting 

modes is 

Hn(2)' (k3ao) 

k2^3 [jn(k2aj) ^n(k2an^ ' Nn(k2aP Jn(k2ao)] 

k3€2 [Jn<k2ai) ^n(k2ao^ ’ Nn(k2ai) ^(k2ao)j 

where k2 = (y^ k3 “ 

^22 ” -fj^p.e.2 , /j2 = > 

k22 + /22 “ k32 + ^2 • 

yz is the propagation constant along the line, 
ai and ao are the inner and outer radii of the 
insulator, Jn, Nn are the Bessel functions of 
1st and 2nd kind, respectively, and h(2) = Jn -
jNn. The lowest order of these TM modes is the 
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one which passes into the familiar TEM mode for 
coaxial lines as the conductivity of medium III 
goes to infinity. In general, the roots to equa¬ 
tions (27) must be found graphically or by trial 
and error (with a digital computer) but the com¬ 
putations are involved since the arguments of the 
Bessel functions are complex numbers. For many 
interesting values of d, D and O’, equation (27) 
can be approximated, incorporating the small argu¬ 
ment approximations for the Bessel functions. If 
this is done, and the added restriction is imposed 
that the conduct ivity is high enough so that 
Yy» yz or k^ ¿/cutter /-45° , the following equation 
for the propagation constant may be derived ( 8 is 
the skin depth in medium three). 

/z j 7r/4 + ln7^(.89) ao/8 . 2
y2 “ ( In ao/ai ' 

The overall approximation should be acceptable if 
ao/8 is less than about .1 since the Hankel func¬ 
tions will then have an argument of less than 
about .3. 

Figs. 1 and 2 display the real and imaginary 
parts of the propagation constant, 

Xz _ az p /3z 

/3d /3d J /3d 
relative to the intrinsic propagation constant for 
the insulating sheath 

( y2 = J * 

as determined by the approximate equation, (28). 
Note that the phase constant is typically a fac¬ 
tor of two or more different (greater) fromßD , 
which itself may be a factor of two or so greater 
than free space. For this reason, the resonant 
lengths of buried wires (antennas) are typically 
quite different from those of antennas in free 
space. 

Input Impedance 

To employ the foregoing transmission line 
model as an antenna we must identify the feed re¬ 

gion and, probably, intro¬ 
duce some kind of termina¬ 
tion. For example, we can 
represent each half of a 
symmetrical dipole antenna 
by the device of introduc¬ 
ing an infinite ground 
plane perpendicular to the 
wire, and imagine that an 
ordinary coaxial cable is 
connected to the ground 
plane and the center con¬ 
ductor. This specifies 
termination, a free end of 

the wire can be insulated from the lossy medium, 
or connected to the lossy medium (either directly 
or through another circuit element such as a chok^. 
In lieu of good information about the impedance of 
the termination if connected directly, we can in¬ 
troduce theoretical models which remove the diffi¬ 
culty. To represent the "grounded" state, we 

COAX I ANTENNA -1 WIRE J 

j d T 

FEEDPOINT MODEL CUTAWAY 
VIEW 

feed reeion. As a 

imagine that another infinite conducting plane is 
introduced, and the center wire is joined to it. 
To represent the "open" state, we imagine a per¬ 
fect magnetic conducting plane inserted so as to 
make a perfect open circuit. In either case the 
structure is essentially idealized to a coaxial 
transmission line with a thick lossy outer con¬ 
ductor, with either a perfect open, or perfect 
short at tne free end. 

To the extent that the transmission line model 
is valid, the input impedance and current distri¬ 
bution can be determined from lossy transmission 
line theory, once the complex propagation constant 
has been determined. The input impedance to the 
line section is 

Zsc = Zo tanh/^ (grounded end) (29) 

Zoc = zo coth/JL (insulated end) (30) 

where JI is the length of the line section (half 
length of dipole antenna) , Xz = a + j/3z is the 
complex propagation constant, and Zo is the cha¬ 
racteristic impedance (V/I on an infinite line) 

Z ~ (L_ In ao ) ^z (31) 
27T ai jeue 2

where ao and a^ are the outer and inner radii of 
the insulator and 62 is the dielectric constant of 
the insulator. Identities 655.3 and 655.4 in 
Dwight's tables can be employed to separate the 
real and imaginary parts of the input Impedance: 

tanh / i 

coth y 1 

sinh2azl + j sin2X^J 
cosh 2az¿ 4- cos 2x^1 

sinh 2azi - j sin2X^l 

cosh 2azl - cos 2>3 Z1 

In a0 ^2. sinh 2a j sin2Æl — 0O_ z 0O_ Z

1 cosh 2azl + cos 2X^1 

a .-3* sinh 2a_/ + ^sin2X3J 
Q /3o Z /3q_ Z 

a< cosh 2a,1 + cos 10 1 x Z z 

fa slnh 2az{ - Il sln2/^ 
a^ cosh 2azl - cos 2 0^1 

a4 cosh 2a 1 - cos2X3 1 
1 z z 

(32) 

(33) 

(34) 

(35) 

where 
g is the relative permittivity of the insula¬ 

tor. The propagation constant is given in the sec¬ 
tion above. 

These equations, (33) and (35), show that the 
condition for resonance is, + sin 2X^1 = sinh 
2azl, where the plus and minus signs giveöz short 
circuit resonances and open circuit resonances 
respectively. The input impedance for short 
lengths is of special interest. This Is discussed 
in a later section. 

Current Distribution 

The next item of interest is the current dis-
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tribution on such submerged wires. If we call the 
current at the input Io, the following expressions 
give the current distributions on end fed wires, 
as determined by conventional lossy transmission 
line theory: 

I(z) = —^9 e”^z + eZiz"21)l encj grounded (36) 
sc l+e' 2̂  L J

I(z) = —ipn . |e"/z - 2̂1 end insulated(37) 
oc 1-e L J

In many practical structures, the attenuation con¬ 
stant, Clz, is relatively quite small. In such a 
case, the approximation e/z = e-^2 (l+az), and 
similar forms can be employed to give the follow¬ 
ing approximate expressions for the current dis¬ 
tribution: 

I e’W  T « 1 
Isc< z) = -2——(2) cos/3z(i-z)+ja (l-z)sinß (1-z) 

l+e-^ L z J 

(38) 

I e-^ r « 1 
Ioc^ Z^ ” ° -2/1 2[j sin^(A-z)+az(l-z)cos ẑ(/-z)J 

(39) 

From these expressions it is quite clear that if 
azX is small, then the current distribution is 
sinusoidal, to a good approximation. If, in addi¬ 
tion, the antenna is quite short, the wire having 
a grounded end has almost a uniform current dis¬ 
tribution while the wire having an insulated end 
has almost a linear current distribution. 

Modeling Considerations and Experimental Facility 

The propagation constant solution given by 
equation (27) is exact for the ideal medium. The 
evaluation of it however involves approximations. 
The impedance expressions are also exact for the 
idealized terminations. In practice, such ideal 
terminations can not be or are not employed. Con¬ 
sequently, the validity of the foregoing repre¬ 
sentations has to be verified. Effects of proxi¬ 
mity to surface and other environmental details 
should be (and were) studied. 

Controlled field experiments with antennas 
buried in the earth are inconvenient and expen¬ 
sive. Field experiments in the ocean are also 
troublesome (especially working in the state of 
Iowa). Consequently, a modeling procedure was 
adopted. A modeling facility based on accepted 
modeling theory was constructed. Basically, the 
facility consists of a large tank of water with 
a means for varying the salt concentration in 
order to vary the conductivity of the medium. 
Fig. 3 is a photograph of the facility including 
the device for holding the wire at specified 
positions and the attachments for current distri¬ 
bution measurements. 

Comparison of Measured and Calculated Impedances 
and Current Distributions 

Figs. 4 to 7 give some typical values of in¬ 
put impedance to center fed dipoles, including 

both calculated and experimental values. The cal¬ 
culations are based on equations (32)-(35) for the 
impedance and (28) for the propagation constant, 
which have been programmed for a digital computer 
(Fortran). Figure 8 gives a comparison of cal¬ 
culated and measured current distribution on an 
end fed wire operated between its third and fourth 
resonances. In view of the approximations, and 
deficiencies in the model as discussed below, it 
is seen that the agreement is very close, and we 
conclude that the theory gives a very useful 
engineering approximation. 

The main deficiencies in the theoretical model 
as applied to the modeling facility are 1) the 
wire is assumed to be at infinite depth and 2) the 
terminating impedance is assumed to be either a 
perfect open or a perfect short circuit. These 
points are discussed below. Another deficiency of 
the theoretical model is that no provision is made 
for the inhomogeneities which characterize most 
installations in soil. The performance details 
are quite sensitive to the characteristics of the 
material immediately adjacent to the wire, except 
in the case of short grounded-end wires. 

Effect of Proximity to the Surface 

All of the theoretical models described in 
this section are based on the idea that the an¬ 
tenna is far enough under the surface that any 
effect of the interface is negligible. The inter¬ 
face does have an influence, but experimentally 
it is found that the changes are not drastic as 
long as the antenna is in (as opposed to over) the 
lossy medium. Fig. 9 gives the effect of depth 
on resonant frequency and input resistance. The 
measured values are expressed relative to those 
at large depths. 

Once the antenna is out of the lossy medium, 
the properties change very rapidly. Fig. 10 shows 
the resistance and reactance of a 15 ft. antenna 
at different (small) heights above salt water. It 
is interesting to note that most of the changes 
take place within a distance of + one skin depth 
from the water surface. 

Effect of Terminating Impedance 

The effect of a non-ideal terminating imped¬ 
ance can be included in the theory. The correc¬ 
ted expressions for the impedance are: 

2 Z 
Z = zrzQC + ZQ2 1_ 

Zoc + Zr £ |Zr

or Z = Z 2 Zr + Zsc PERFECT 
° Zo2 + zr Zsc GROlJND 

where Zo is the wire characteristic impedance, Zr 
is the terminating impedance, and Zoc and Zsc are 
the input Impedances where Zr = 00 and Zr = 0 res¬ 
pectively. 

The change brought about by the inclusion of 
a resistive termination instead of a short circuit 
is illustrated in Figs. 4 and 5. The resistance 
of the "ground stake" was computed from standard 
formulas. The data Indicate that for precision, 
the resistance of the ground termination should 
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be included in the calculation. 

Effect of Actual Ground 

In the theoretical models, it is usually ne¬ 
cessary to imagine that the actual earth is cha¬ 
racterized by a single value of conductivity (and 
dielectric constant). In practice, this is not 
the case. The conductivity varies with location, 
depth, moisture state and season, to name a few 
factors. Of course, the effects due to the latter 
two factors, moisture content and season, are 
greatest when the antenna is on the surface, with 
a thin insulating sheath (small Ç.) 

d 
An experimental determination of the effect of 

season and moisture content under such conditions 
was made with a 1500 ft. wire lying on Iowa earth 
(in a soy bean field). The impedance of the wire 
under different environmental conditions is shown 
in Figs. 11 and 12. 

8. Characteristics and Comparison for 
some Specific Antenna Types 

We will now summarize the performance charac¬ 
teristics of several specific antenna types. 

Short Antennas 

A subsurface dipole antenna is electrically 
"short" at frequencies much below its resonant 
frequency f^ . In practice dipole antennas can 
be considered short at frequencies below one half 
of the resonant frequency if the ends are open, 
and below one quarter of this resonant frequency 
if the ends are shorted to ground. Formulas for 
the impedance and current distribution can be de¬ 
rived by employing small argument approximations 
in equations (29) - (39) above. If this is done, 
the result for the impedance of short grounded 
end types agrees with the results published ear¬ 
lier by Moore^ and Wheeler^, as given below. 

The input resistance of a short dipole or 
monopole (end fed wire) with grounded ends is 
given by 

Ro = - 307T 2 i = . 3 fmcLft

and reactance by 

In 1.588 $ . 
sc 7T d 

In practice, the resistance of the grounds, Rg, 
will Increase the input resistance so that 

R = Ro + 2Rg . 

If the grounds are single vertical rods of length 
Í and radius a, and I >>a, for d.c. 

Rv ” — (In — - 1) ■ s 27TCT v a ' 

It is interesting that reactance of short ground-
ed-end wires is not a function of insulation 
thickness or permittivity. 

Approximate equations for the short open 
ended dipole are 

R = = Hr11

and 4 -7.2 X 10 10 . D à 1200 r In 3 
er<*>L d 6 rR 

These equations are not as useful as the ones for 
grounded ends; however, because the actual termi¬ 
nating impedance changes the input value and the 
terminating impedance is much more difficult to 
estimate. 

The current distribution on short antennas is 
nearly uniform or decays almost linearly, depend¬ 
ing respectively on whether the ends are grounded 
or ungrounded. Attenuation or end effects are 
seldom if ever great enough to seriously alter 
the current distribution from that which would be 
obtained by considering the wire and medium as a 
lossless coaxial transmission line with phase con¬ 
stant ß . 

Relative communication efficiency of short 
wires is given in Table I. In Table II measured 
RCE values are compared to calculated values. 

Resonant Monopoles and Dipoles 

In the manner of lossy transmission lines, 
subsurface wires exhibit resonances which present 
attractive impedance properties. The lowest order 
resonance is of primary interest since it requires 
shorter length wires and in many cases gives effi¬ 
ciency and pattern characteristics superior to 
those of longer wires operated at higher order 
resonances. 

The general theoretical expressions for input 
Impedance and measured Impedances are given in 
section 7. Theoretically, for a half-wave, open-
ended dipole at depth 

R X/2 = 115Lft f X/2 mc (dipoles) (40) 

(half for monopoles at f x/4 ) 

if sinh azL ~ azL, which is often the case, or 
should be. The resonant frequency f occurs 
approximately where /3ZL = IT for dipoles or where 
ßgL “ 7r/2 for monopoles. In theory, at the fre¬ 
quencies defined by these criteria 

but it is often the case that 1" Prac * 
tice equation (40) nearly always has given values 
lower than those measured, both at the surface and 
at depth, which has also been the case with the 
more exact analysis. Values of R measured in 
the laboratory typically run 25 to 3d% higher than 
those given by (40). 

Resonant resistance R ^2 f°r grounded-end 
dipoles is a function of end grounding resistance, 
and is higher with better grounds. Figure 4 de¬ 
monstrates the effect. Resonant frequency is re¬ 
latively independent of the grounding resistance. 

In almost all cases it should be quite ade¬ 
quate to assume a cosinusoidal current distribution 
on open-ended, half-wave dipoles and quarter-wave 
monopoles. Figure 13 gives a typical resonant di¬ 
stribution. No measurements of relative phase 
have been made, but for reasonably small®z the
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phase is theoretically nearly uniform. 

Relative communication efficiency of resonant 
types is given in Table I. In Table II measured 
RCE values are compared to calculated values. 

Traveling-Wave Monopoles and Dipoles 

When sufficient attenuation occurs or a wire 
is terminated so that the reflection from its end 
is negligibly small, the wire is said to be oper¬ 
ating as a trave ling-wave (TW) antenna. Such 
antennas possess very great bandwidth at the ex¬ 
pense of length or efficiency. The length re¬ 
quired is determined by the value of a z on the 
wire in its environment at the frequency of opera¬ 
tion. If 20 db is specified as the required at¬ 
tenuation, then the required length is 

2 3 ^rw = , (41) 

measured from the feed point. A TW dipole would 
thus have a length 21™,. Lengths half of that 
given by equation (41) may be acceptable in prac¬ 
tice. 

The TW antenna has almost unlimited bandwidth 
at frequencies above that where (41) applies. The 
input impedance is primarily resistive, but ex¬ 
hibits a small capacitive reactance component. 
The resistance has a mean value of 

R = -Ê2- 1 n (2) Æâ (monopoles) (42) 
V t r d p D 

(twice this for dipoles) 

and the reactance has a mean value of 

X = - 1 n (2) (monopoles) (43) 
d P D

(twice this for dipoles) 

For the lengths given by (41) the input impedance 
is theoretically very close to the values given 
by (42) and (43). For shorter lengths the resis¬ 
tance and reactance oscillate around the values 
given by (42) and (43). A 348-foot monopole in 
sea water gave measured impedances close to theo¬ 
retical when operated in the trave ling-wave mode. 

Equations (36) and 37) give current distribu¬ 
tion for TW operation if a Â is assumed very 
large. The result is 

The Relative Communication Efficiency expres¬ 
sions are given in Table I. 

The dominant feature in the radiation pattern 
is the factor cos0, where 0 is the angle measured 
from the end of the wire, as indicated in equa¬ 
tion (If) for a short antenna. In general, for 
single wires, the azimuthal variation is included 
in the RCE calculation by using cos01Epa| 
for "E" in/E'i(£)d£ over the wire, where 0 = 0 
off the unfed end of monopoles. The practical 
result is that " ßo" can be replaced by ")3ocos0" 

9. Directional Properties 

in RCE expressions derived without including the 
COS0 terms, (or "F" by "F cos0" in Table I) 

10. Arrays 
Crossed Elements 

It is possible to operate submerged antennas 
in crossed arrays. The pattern depends on the 
phase and amplitude of the input current to the 
crossed elements. To illustrate this point, con¬ 
sider a pair of short elements with uniform cur¬ 
rent distributions forming a "ground cross." In¬ 
troduce coordinate axes, x, y along the crossed 
dipoles, with unit vectors x and y. Then the 
total current for the crossed dipole array is 

i = ix x + eJ* iy y 

where is the phase difference between the ele¬ 
ments. To find the open circuit voltage or eval¬ 
uate RCE, we need the expression E'1. If the in¬ 
coming wave makes an angle 0 with the x-axis, the 
quantity is 

®l'i = Eiixc°s0 + E^ly sin0 

As an example let the amplitudes be the same 
ix = iv = 1. Then 
Ä y 

y*Ei'id£ = E^i (cos0 + e^^sin0) , 

The magnitude of the open circuit voltage squared, 
or the factor in the RCE expression is then 

IJ" El'idfp = (1 + 2cos>X^in0cos0) . 

This expression is essentially the pattern of the 
crossed dipoles. It shows that if the phase dif¬ 
ference is an odd multiple of y , the pattern is 
omnidirectional in the horizontal plane. 

Parallel Elements 

It is also possible to construct an array 
with parallel elements. If the elements of the 
array are short, and the array is not so large 
that the field amplitude at a distant field point 
is different for different elements, then it can 
be shown that the space factor in the horizontal 
plane (surface waves) is the same as the space 
factor of the elements in free space. The differ¬ 
ence from free space is, that because they are 
located in a lossy medium, the individual elements 
can be located physically much more closely to¬ 
gether without mutual impedance interactions. Thus 
if the overall array size is small compared to a 
free space wavelength, the pattern of the array is 
very nearly the same as the pattern of a single 
element. The open circuit voltage expression is 

y^l' dad^ = COS0 (series connection) 
°r • (44) 

= Ep x COS0 (parallel connection). 

Since the pattern of an array is the same as 
that of a single element, it might seem that a 
small array has no advantage over a single ele¬ 
ment. This is not so, however, as can be illu¬ 
strated by calculating the relative communication 
efficiency for an array compared to a single ele¬ 
ment. For the parallel connected array, it fol¬ 
lows from (15), (16) and (44) that the RCE of a 
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small array compared to a single element (current 

is) 
Ri 

RCE = 
rN 

¡/El' iad£|2 
iFTW 

R 1 

Thus, if the elements can be situated so that 
their mutual resistance is negligible, the resis¬ 
tance of the N parallel connected elements is 
rn à and so the relative communication effici¬ 
ency is proportional to the number of elements. 

In view of this, a very important piece of 
information is the mutual impedance of the ele¬ 
ments as a function of their spacing in a lossy 
medium. This problem has been attacked theoreti¬ 
cally and experimentally. Measured values of the 
impedance between two identical, parallel, side 
by side, resonant dipoles is shown in Fig. 14. 
The dipoles were at least three skin depths under 
the surface. Fig. 15 shows the mutual impedance 
of similar dipoles close to the surface. From 
these figures it appears that the mutual resis¬ 
tance is negligible when the spacing is something 
over two skin depths. (Since a skin depth can be 
a small fraction of a free space wave length, 
this implies that many elements can be employed 
and still have an array which does not violate 
the small array criterion.) 

The unique aspect of subsurface arrays is 
that up to a certain width with a certain minimum 
spacing, an efficiency gain of N times is achieved 
with N elements with essentially no change in 
horizontal plane pattern (directivity). Studies 
indicate that a width of approximately 0.2 free 
space wavelength with element spacing of two skin 
depths are accurate limits for this condition 
(elements being resonant dipole elements near the 
surface). It is also worthy of note that the 
relative communication efficiency in the direc¬ 
tion off the ends of the elements is increased by 
a factor of N no matter how wide the array is 
made (neglecting feed line problems). This ob¬ 
servation can be important in point to point com¬ 
munication systems. 

The efficiency increase of small arrays has 
been verified experimentally by field strength 
measurements. The results are included in Table 
II, which also gives a comparison of experimental 
and calculated values of RCE for other antenna 
types. 

11. Near Field Considerations 

In some of the applications of submerged an¬ 
tennas, the frequency may be so low that the 
transmitter and received are separated by a dis¬ 
tance of the order of a wavelength or less. If 
this is so, many of the foregoing results are not 
applicable, since they are based on expressions 
for the distant fields. The same general proce¬ 
dure can be followed if the antennas are nearby, 
but near field expressions must be employed. 
Some specific results have been obtained3 based 
on Wait's* formulas for the near fields of hori¬ 
zontal point dipoles. 

12. Noise Considerations 

As the foregoing discussions indicate, sub¬ 

merged antenna structures are quite inefficient. 
If a submerged antenna is employed as a receiving 
antenna, however, the inefficiency may not be a 
major consideration. This is so because the com¬ 
parative worth of receiving antennas is determined 
by the signal to noise ratio and impedance which 
they present to the receiver input. In the low 
frequency bands, the most important sources of 
noise are usually electrical disturbances (storms) 
in the atmosphere. Most of the noise fields reach 
the receiver via a propagation mode in which the 
fields are related as indicated in equations (2) 
and (3). 

Moreover, the noise sources are typically ef¬ 
fectively distributed almost uniformly in the 
horizontal plane. Consequently the response of 
submerged horizontal antennas in these noise 
fields is different from that of the vertical an¬ 
tennas, because of the difference in the horizon¬ 
tal plane patterns. If the submerged antenna is 
designated, t, and the vertical antenna designated, 
s, as in the discussion above, it is easy to show 
that the ratio of the noise powers (generated by 
uniformly distributed noise sources) delivered to 
a matched load is 

2 7T 
°rec,t,noise 1 f 
p-■—1 ;— = 2V RCEt s<0)d0Free,s,noise J u>s

0 
The main item of interest is the signal to noise 
ratio. The relative signal to noise ratio can be 
written 

i-I ¿N_t _ prec,t,signal prec,s,noise 
prec,s,signal FreCj t,noise 

kN;s 

RCEt>s(0s) • . 
I RCEt>s (0) d0 
*0 

where 0S is the azimuthal bearing to the signal 
source relation to the end of the horizontal 
antenna. For many submerged structures, the 
field pattern varies as cos0. (cos^0 or cos 30 for 
some, e.g. grounded end dipole at second reson¬ 
ance, Table I). In this case the integral 
<2^ 
] RCEt>s (0) d0 =7T RCE t>S(max

0 
Then 

^t = 2 RCEt|S (gs) 
(—) RCEt,s,max 
^N's ’ ’ 

The conclusion is that if the submerged horizon¬ 
tal antenna is oriented so that the maximum in 
its pattern is directed toward the signal source, 
then the horizontal antenna delivers twice the 
signal to noise ratio as the vertical antenna, in¬ 
dependent even of the depth of submersion (since 
the noise and signal are equally attenuated). This 
is true (only) as long as atmospheric noise great¬ 
ly exceeds antenna noise, which is commonly the 
case at low frequencies. 

The noise power delivered by a submerged hori-
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zontal wire antenna is implied by the foregoing 
equation: 

p Ip rec,pwr,noise = — RCEhor vert ' rec,vert,noise 

The noise power of an array is given by the same 
type of expression provided the pattern of the 
array is substantially cosinusoidal. If the pat¬ 
tern is different, the term RCE must be divided 
by the directive gain (relative to the cosine 
pattern). 

In practice, noise levels measured with sub¬ 
merged antennas have been found to be lower than 
those expected on the basis of the discussion 
above, even with a very small depth of submersion. 
The reason for this, especially in stormy periods, 
may be that some of the noise on a vertical an¬ 
tenna may be impulsive, due to charged particles 
striking the antenna. Of course, such charged 
particles cannot directly strike a submerged 
antenna. 
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Fig. 1. Normalized attenuation constant on insulated wires in a conducting medium. 

119 



N
O
R
M
A
L
I
Z
E
D
 
P
H
A
S
E
 
C
O
N
S
T
A
N
T
 

120 



Fig. 3. Antenna modeling facility utilizing a salt water 
tank. 
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WIRE ; $20 PVC INS., d * .0374 IN., 0s . 1138 IN., €r « 3.2 ; DEPTH: 2 |/2 in. 
CALCULATED END GROUNDING RESISTANCE: 18.5 OHMS TOTAL 

Fig. 4. Comparison of measured and theoretical resistance of a grounded end 15 foot dipole in salt water. 
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Fig. 5. Comparison of measured and theoretical reactance of a grounded end 15 foot dipole in salt water 
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Fig. 6. Comparison of measured and theoretical impedance of an open ended 15 foot dipole in salt water. 
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Fig. 10. Measured impedance of a 15 foot dipole vs height above salt water. 
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Fig. 11. Resistance of a 1500 foot dipole lying on the ground. 
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Fig. 13. Measured current distribution on a resonant dipole in salt water compared to a cosine curve. 
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Fig. 14. Mutual impedance of parallel side-by-side half-wave dipoles in salt water. 
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Fig. 15. Mutual impedance of parallel side-by-side half-wave dipoles on the surface of salt water. 
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Table I. Relative Communication Efficiency of Basic Subsurface Antennas. Reference: Perfect Quarter Wave Vertical 

TYPE 
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-. •- :z0Zo^ ^Zo 
< J L X J 

SHORT 

^air 
f 'Vt I- 'V, -- '•/. 

<C 
+ 

+ 

+ 
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« 

INTERMEDIATE 
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"IÄhf* sm — I 

14411 
Tlñ 

3611 I moi F v 

R In I« |-Ft A

SK^+iFjel^-COS^ 

FIRST ORDER 
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ï »IrI'ÍV ¥) 

TRAVELING 

WAVE 

14411 ßo (a i + j ßt ) 2 sen 3» i* 144 
R 

II ^,(a,4¡3,) sen Bi I2
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+ 
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-► 
Si 
2 
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SECOND ORDER 

RESONANT 
* ^lÀl'(^)*('«OSrf) 

NOTES I R IS TOTAL INPUT RESISTANCE 
2. L IS TOTAL LENGTH. 
3. DEPTH LOSS IS OMITTED. 
4 TO INCLUDE AZIMUTHAL DEPENDENCE SUBSTITUTE ßo COS FOR ßo AND FCOS<£ FOR F. 
^¡0 FOR RADIATION OFF THE UNFED END OF END FED WIRES. 

5 p. RESONANT FREQUENCY . ßo 
' RESONANT FREQUENCY IN AIR ’ 

6. Io IS FEEDPOINT CURRENT. 
7. f| IS THE FIRST ORDER RESONANT FREQUENCY. 
8. EXCEPT FOR TRAVELING WAVE OPERATION THE EFFECT OF az ON CURRENT DISTRIBUTIONS IS ASSUMED SMALL. 
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Table n. Summary of RCE Measurements. Reference: Perfect Quarter Wave Vertical 

^This assumes the measured resistance, which is lower than would be the case with’ perfect 
grounds; the assumed current neglects the effect of finite grounding resistance, the 
inclusion of which would tend to decrease the calculated efficiency. 

ANTENNA TYPE 

ASSUMED SOIL 
CONDUCTIVITY 

mhos/m MEASURED RCE 

CALCULATED 
RCE USING 
MEASURED R 

MEASUREMENT METHOD 
AND ASSUMPTIONS 

1500 foot dipole 
at 125kc open ends 
(first resonance 
at 137kc) 

10 -2 (Cedar 
Rapids) 

-38 db -36.6 db F.S. Measurements; 
1500 ft. dipole used 
for transmitting 

348 foot end fed, 
grounded end, at 
24kc. Electri¬ 
cally short 

4.8(Pt. Loma) 
ocean 

-79.6 db -79.4 db 
(using 
calculated 
impedance) 

Reception of station 
NPG; F.S. measured 
with whip. Azimuthal 
orientation not pre¬ 
cise. 

100 foot end fed, 
grounded end, at 
342kc, first 
resonance at 
970kc 

4xl0*2(Dallas) -44.1 db -45.5 db Reception of station 
DAL, F.S. measured 
using similarly 
oriented loop. Uni¬ 
form current assumed. 

As above, 210kc 4xlO~2(Dallas) « -48 db 
(signal 
weak) 

-50.2 db As above, station 
unknown. 

As above, open 
ended, at 342kc 

4xlO' 2(Dallas) -49.7 db -51.4 db Method as above, 
linear current 
assumed. 

As above, ground¬ 
ed end, at 820kc 

4xlO"2(Dallas) -38.6 db -38 db 1 

(using cal¬ 
culated az) 

Methods as above; 
station WBAP. Meas¬ 
ured shortening 
factor used. 

As above, open 
ended 

4xlO"2(Dallas) -39.7 db -39 db As above. 

As above, ground¬ 
ed end, at 860kc 

4x10“2(Da lias) -40.0 db -37 db 1 

(using cal¬ 
culated^) 

Method as above, 
station unknown. 

As above, open 
end 

4xlO -2 (Dallas) -41.7 db -38 db As above 

4 element array 
of 50 ft. di¬ 
poles spaced 14' 
apart, at 4.8mc 

- +6.5 db 
relative to 
a single di¬ 
pole element 

+6 db Average current 
of array elements 
was made same as 
single element. 
F.S. Measurements 
were made at 3À 
off the antenna 
ends. Mutual coup¬ 
ling was small. 
6db and 3db assumed 
power increases have 
been subtracted. 

2 element array, 
as above 

- +3.5db 
relative to 
a single 
element 

+ 3 db 
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FM BACKSCATTER SOUNDING AS A MEANS FOR MONITORING 
PROPAGATION CONDITIONS DURING SHORT-WAVE BROADCASTS 

Robert B. Fenwick 
0. G. Villard., Jr. 

Radioscience Laboratory 
Stanford University 
Stanford, California 

Summary 

Employment of megawatt power levels in short¬ 
wave broadcasting, the declining sunspot cycle, 
and the growing number of broadcasters competing 
for spectrum space make it increasingly desirable 
for transmitter personnel to know when unusually 
low MUF's prevent a given broadcast from reaching 
its destination. Affected transmitters can be 
either shut off, thus saving running costs, or 
retuned to propagating frequencies. Backscatter 
sounding is known to be a satisfactory means for 
determining propagation conditions along the trans¬ 
mission path, but owing to the practical problems 
of integrating such sounding into broadcasting 
operations, has not been appreciably used as yet. 
It is shown that application of the FM ranging 
principle to backscatter sounding is feasible, 
permitting the broadcasting carrier itself to be 
used for sounding purposes without disturbance to 
transmitter operating conditions or appreciable 
annoyance to the distant listener. It is necessary 
that an associated receiving site within the 
ground-wave range of a given transmitting plant be 
available. Useful sounding measurements can be 
made with the aid of equipment normally found in 
any receiving station. In fact, an operator can 
gauge skip distance by estimating the pitch of an 
audible tone. On balance, this technique appears 
to have significant practical advantages in com¬ 
parison with the pulse or modulation-correlation 
alternatives. 

Introduction 

During much of the time, in international 
short-wave broadcasting, transmissions are beamed 
towards a specific "target", which may represent a 
comparatively localized area. (For example, the 
B.B.C. aims transmissions at the East Coast of the 
U.S.A., while simultaneously broadcasting in the 
same waveband—but using different antenna direc¬ 
tion—towards Central America.) According to 
present-day practice, broadcasting schedules are 
set up months in advance in accordance with pre¬ 
dicted ionospheric conditions. To ensure that the 
listener receives a signal, in the face both of 
normal departures from predicted conditions, and 
ionospheric storms, it is customary to transmit 
the same program simultaneously in at least two, 
and sometimes three, adjacent wavebands. Thus the 
listener can choose whichever frequency reaches him 
best. From the standpoint of the broadcaster, this 
comparatively uneconomical procedure is suitable so 
long as the cost of running parallel transmissions 
is not exorbitant, and so long as there exists an 
adequate supply of frequency assignments. 

This state of affairs is now in the process 
of being changed by pressure on frequency assign¬ 
ments caused both by the increasing number of 
nations desiring to conduct shortwave broadcasting, 
and by the decrease in MUF's accompanying the 
approaching sunspot minimum. In addition, many 
broadcasters are now raising power to the quarter 
or half megawatt level,1 so that power and tube 
charges are becoming an increasingly large fraction 
of the total running expense. (The staff needed 
to operate a 250-kilowatt station is normally no 
larger than that needed for a 50-kilowatt counter¬ 
part. ) 

In these circumstances it is desirable to 
consider the use of backscatter sounding as a 
means for determining, at the transmitter, whether 
a given broadcast is reaching its destination. The 
feasibility of such a procedure is well estab-
lished2,3, but the most practical technique for 
incorporating such sounding into normal broadcast¬ 
ing operations has not yet been determined, and 
the only use of backscatter operations thus far 
appears to have been experimental. It is the pur¬ 
pose of this article to propose the use of the FM 
radar technique for backscatter sounding, as an 
alternative to the pulse and correlation radar 
techniques which have already been explored.5 
It is believed that the FM technique has certain 
practical advantages and that it should not be 
difficult to conduct such soundings in a routine 
manner as a part of normal broadcasting operations. 

Uses of Backscatter Sounding in Broadcasting 

Backscatter sounding can assist practical 
broadcasting operations in the following three 
main ways (presented in the order of increasing 
technical complexity): 

a) It can determine when a given frequency 
has ceased to propagate at all (i.e., f4000 MUF is 
less than the operating frequency). 

b) It can determine whether a broadcast aimed 
at a comparatively nearby target is "skipping over" 
that target, owing to lower-than-expected iono¬ 
spheric bending power, and 

c) It can—at least during the nighttime 
hours—determine whether transmission to a target 
at a given multi-hop distance is comparatively 
strong. 

It should be pointed out that the above deter¬ 
minations are by no means infallible; backscatter 
sensing can be "spoofed" by unusual ionospheric 
conditions such as SID's and sporadic E. However, 
backscatter can be expected to give correct answers 
during a high percentage of the time. 
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With the aid. of this information, a broadcast 
operator can do the following: 

a) If a given broadcast is clearly missing 
its target, or if—due to lowered MUF's—trans¬ 
mission at that frequency has ceased entirely, the 
transmitter might as well be shut down so as to 
save power. 

b) If alternative, lower frequencies are 
available, the transmitter can, of course, be 
retuned to such a frequency and transmission 
resumed. At the present time, broadcast schedules 
are worked out in advance by international consul¬ 
tation so as to avoid mutual interference, and no 
provisions are made for alternate frequencies in 
the event of poor ionospheric conditions. Although 
providing alternate frequencies will undoubtedly 
be difficult, owing to the spectrum shortage, there 
seems to be no reason, in principle, why it could 
not be done. 

c) If no lower, alternative frequencies are 
available, it may be possible to retune the trans¬ 
mitter whose frequency has failed to a frequency 
which is propagating and run it in parallel with 
an existing transmission on that frequency, either 
for the purpose of increasing the total power 
radiated to a given target area, or for the purpose 
of widening the effective target area being covered 
at a given power level. 

d) If a broadcast is going out at two differ¬ 
ent frequencies at different power levels, it may 
be possible to rearrange the transmitters to 
advantage. For example, a normal procedure might 
be to use 50 kilowatts at I5 Me and a 250-kilowatt 
transmitter at I7 Me. If the backscatter shows 
that IT Me has failed, due to low MUF's, but that 
15 Me is getting through, it will obviously be of 
advantage to use the high power at 15 Me. 

Periods of exceptionally low MUF generally 
last from several hours to days; hence operators 
have adequate time in which to reschedule the 
deployment of transmitters. 

e) In the event that transmission is to 
multi-hop distances, and control of the vertical 
directivity of the transmitting beam is available, 
it may be possible, using backscatter as the indi¬ 
cator, to maximize the power delivered to a distant 
target area. This may be done by adjusting the 
vertical antenna pattern so as to concentrate the 
radiated power in the range of vertical angles most 
effective at any given time in delivering signal to 
the distant receiver. 

Practical Problems of Measuring 
Backscatter at Broadcasting Plants 

At first thought it might seem that the best 
technique for measuring transmission conditions by 
means of backscatter would be to install a separate 
sounder, either fixed or variable-frequency. How¬ 
ever, the difficulty immediately arises that if 
such a sounder is installed at a transmitting plant, 
it will be blocked by the outgoing broadcasts. On 
the other hand, if it is installed at an associated 
receiving station, interference to receiving opera¬ 
tions can be expected from the sounding transmis¬ 
sions. To install and man an entirely separate 
sounding station would be prohibitively costly. 

Because broadcasting beams are comparatively 
narrow, and propagation conditions are not, in 
general, the same in all directions from a given 
location, it is desirable to use the broadcasting 
antenna for sounding, rather than a less-expensive, 
less-directive sounding antenna. Since broadcast¬ 
ing beam antennas are large and expensive struc¬ 
tures, to duplicate them for sounding purposes 
would be uneconomical. 

Three techniques for obtaining range informa¬ 
tion are well known: pulsing, frequency modulation 
(FM), and modulation-correlation. The first and 
last of these have been previously explored for 
sounding purposes^*5, but to the best of the 
authors' knowledge FM has not. 

It would be a convenience if reception for 
sounding purposes could be conducted at the 
transmitting plant. Unfortunately, this does not 
seem possible unless it were acceptable to pulse 
simultaneously all the transmissions being radiated 
by a given station. Only in this way could block¬ 
ing of a sounding receiver be prevented. 

Comparison of Sounding Techniques 

Since most transmitting plants at the present 
time have nearby associated receiving stations, for 
relaying purposes, it seems wisest to locate sound¬ 
ing receivers at these receiving sites. 

In choosing a technique for ranging purposes, 
it is necessary to take the following considerations 
into account : 

(1) The effect of sounding on normal trans¬ 
mitting operations. 

(2) The effect of sounding on the distant 
listener. 

(j) The length of time required to obtain a 
measurement, and 

(1) The relative complexity of the receiving 
and recording equipment required. 

Items (1) through (3) are important, because 
it is desirable to sound comparatively frequently 
throughout the broadcast day. Brief intervals of 
sounding during program breaks for station identi¬ 
fication should suffice, since the time constant of 
the F layer for normal electron-density changes is 
On the order of one hour. 

A comparison of the three techniques is given 
in summary form in Table I. It can be seen that 
on-off pulsing at the transmitter presents adjust¬ 
ment complications which, while not insuperable, 
are nonetheless troublesome. From this viewpoint, 
either correlation or FM sounding is certainly 
preferable, since the former offers no transmitter 
complications at all, and the latter can be carried 
on without disturbing the normal amplitude modula¬ 
tion of the station in any way. 

Description of FM Sounding 

A wide variety of modulating waveforms could 
be applied to amplitude-modulated carriers for 
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Table I Comparison of the Pulse, FM, and. Modulation-Correlation Techniques for 
Obtaining Ionospheric Backscatter Information During Short-Wave Broadcasts 

PUISE RADAR FM RADAR MODUIATION-CORREIATION 
RADAR 

Effect on trans¬ 
mitter operation 

Troublesome—requires change No effect 
of bias levels, disconnection 
of modulator; changes load on 
the power supply. 

No effect 

Effect on distant 
listener during 
sounding intervals 

Troublesome—pulses very 
annoying owing to receiver 
gain increase due to AGC 
action. 

Relative complexity Requires receiver modified for 
of receiving and pulse reception; oscilloscope; 
recording arrange- camera or special magnetic tape 
ments required for recording. 

No change in 
average gain 
level, but FM will 
produce a percept¬ 
ible "growl". 

Uses unmodified 
receiver; standard 
tape recorder for 
recording; operator 's 
ear gives first-order 
answer. 

No effect 

Comparatively complex; 
requires either variable 
delay device for correl¬ 
ation, or multiple delay 
devices. 

Length of time 
required for 
measurement 

Very short—instantaneous 
measurements possible 

Very short—instant¬ 
aneous measurements 
possible. 

May be long if program 
material does not contain 
suitable frequency 
components. 

ranging purposes. For example, an audio modulating 
impulse could be applied to the carrier through the 
ordinary modulator, so that ranging could be done 
by means of the sideband energy. However, this 
technique would produce an uncomfortably strong 
audio signal at the listener's receiver, and is 
accordingly undesirable. 

there is a "turn-around" transient generated each 
time the direction of the transmitter frequency 
change reverses. In practice, the duration of 
this transient is so short that the effect on the 
ear (or on a frequency analyzer) is negligible. 
The over-all effect is as if a continuous tone 
were present. 

Since home-type short-wave receivers are de¬ 
signed to respond to AM, it is possible to reduce 
annoyance caused to the listener by making the 
ranging modulation a frequency modulation of the 
transmitted carrier. Although various alternatives 
are possible, it is convenient from the receiving 
equipment standpoint to frequency-modulate the 
transmitter with a triangular waveform, and observe 
at a nearby site the audio-frequency beat note 
generated when the backscattered energy combines 
with some of the outgoing signal. The distribution 
in slant range of the backscattered energy can then 
be determined from a measurement of the frequency 
spectrum of the audio-frequency beat. The strong¬ 
est backscatter returns from a slant range close to 
that of the edge of the skip zone, for the usual 
situation in h-f broadcasting where the operating 
frequency is well above the f2-layer critical fre¬ 
quency. Thus a first-order one-hop skip distance 
determination can be made simply by taking note of 
the strongest component of the audio-frequency 
beat signal, and estimating or measuring its pitch. 
This component will also—in most cases—be the 
lowest-pitch component present. 

For the case of a single target having no 
appreciable depth in slant range, FM radar operation 
is as illustrated in Fig. 1. The transmitter fre¬ 
quency variation and the time variation of the beat 
frequency fb generated by a target at a range of 
r kilometers, are shown. It will be observed that 

Additional targets at slant ranges other than 
the one shown will produce additional audio-fre¬ 
quency tones having pitches proportional to the 
target slant ranges. 

Choice of Frequency-Modulation Parameters 

The following considerations determine the 
choice of parameters for frequency modulation of 
the above type for the broadcast-sounding applica¬ 
tion. First, the echo slant range interval of 
greatest practical interest extends from a minimum 
range of about 750 km, to a maximum of approximately 
35OO km for one-hop propagation, (if multi-hop 
working is of interest, the maximum range will be 
extended accordingly.) Second, during the sound¬ 
ing intervals, it is desirable to confine the 
bandwidth of the transmission—insofar as this is 
possible—to the normal channel width of about 
5 kcs, in order to minimize adjacent-channel inter¬ 
ference. Third, it is desirable that the frequency 
modulation not be any more noticeable at the dis¬ 
tant receiver than is necessary. 

The average home short-wave receiver can be 
assumed to have an IF passband whose response is 
comparatively flat over an interval 5 kc wide. 
In spite of this, even a small frequency modulation 
of the transmitted carrier will cause an audio out¬ 
put to appear at the receiver because of non-
uniformities in the transmission-versus-frequency 
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characteristic of the ionospheric circuit, caused 
principally by the effect of multipath trans¬ 
mission. (These same transmission non-uniform-
ities are responsible for selective fading.) The 
voltage waveform which appears at the second de¬ 
tector of a distant receiver will consist of the 
fundamental of the transmitter sweep frequency 
and its harmonics. If the fundamental sweep 
frequency can be kept low, not too much energy will 
fall within the audio passband of a typical receiver, 
which normally has a low-frequency cutoff on the 
order of 100 cps. 

As a consequence of these considerations a 
reasonable choice would be to sweep 2000 cps repet¬ 
itively with a triangular waveform of frequency 
2.5 cps. This represents sweeping at the rate of 
10,000 cps2. The round trip time delay associated 
with a typical backscatter echo at 1000 km slant 
range (about 750 km actual range, assuming F2-
layer propagation) is I/15O second. In this time, 
the transmitted frequency would have shifted some 
67 cps; thus the audio beat note corresponding to 
an isolated target at that slant range would 
consist of bursts of 67 cps tone lasting for a 
time interval equal to approximately one-fifth 
of a second. Each burst would contain roughly 
thirteen cycles. There would be "gaps" between 
bursts—each I/15O second long—due to the round 
trip travel time of the echo energy, as shown in 
Fig. 1. The width of the gap corresponds to 
roughly 1/2 cycle at 67 cps. 

An echo at double the slant range produces a 
beat note of twice as high a frequency. The 
propagation time delay is doubled (1/75 sec), but 
this is still small compared with the time of one 
sweep (1/5 sec). Thus the total number of cycles 
per burst has been increased. 

An echo at 4000 km slant range (normally the 
maximum for one-hop backscatter) will produce a 
tone consisting of bursts of 268 cps energy, inter-
tupted by 1/37 sec gaps. Thus the audio-frequency 
waveform will consist of repetitive 46 cycle pulses 
of 268 cps energy separated by gaps whose width is 
approximately 7 cycles of 268 cps energy. 

The wider the gap in the bursts of audio tone, 
the more difficult it will be for a spectrum ana¬ 
lyzer to determine the pitch of that tone with 
accuracy. This circumstance sets an upper limit 
on sweep rate for targets at a given range, if the 
interval in the spectrum over which frequency is 
to be swept is held constant. 

Thus in practice a compromise has to be found 
between frequency interval swept (which determines 
adjacent-channel interference, and—in part—the 
audibility of the FM at the distant receiver) and 
sweep rate, which determines the pitch of the 
resulting tone, and its degree of contamination by 
turn-around transients. (Sweep rate will also 
affect annoyance given to the distant listener and 
—to some extent—transmitted bandwidth.) 

In the preceding example, an audio beat note 
of 67 cps corresponded to a slant range of 1000 km. 
This is an inconveniently low frequency. By 
recording the signal on a standard magnetic tape 
recorder at 1-7/8 i.p.s., and playing back at 
7-1/2 i.p.s., this frequency can be increased to 
the readily-audible value of 268 cps. 1000-km 
energy then produces a tone of 1072 cps. 

Degree of Annoyance Given to a Distant Listener 

As mentioned earlier, non-uniformities in the 
transmission versus frequency curve of the iono¬ 
sphere circuit will cause an effective increase in 
the fading rate of the signal, as received by the 
distant listener, during frequency modulation. 
This will show up as a low frequency "growl" with 
an audibility depending on the number of fading 
nulls present at the receiver per sweep of the 
transmitted signal. 

The practical effect of this may be estimated 
from the following. A low-power 12 Me experimental 
c-w transmission from Puerto Rico was frequency 
modulated at a 6 cps rate with 66O cps total devia¬ 
tion. This transmission was monitored at Stanford, 
California (5750-km distant), and at Smyrna, 
Georgia (24-20-km). In each case the signal was 
translated down to the audio frequency range, and 
frequency-amplitude-time plots made. Examples are 
shown in Fig. 2. 

Each frequency sweep provides one vertical 
line on the record. The intensity of the line is 
determined by the signal amplitude at each fre¬ 
quency represented along the line. Dark areas are 
intervals of low signal amplitude. 

It is found that approximately one null per 
sweep is normally present on the longer path, and 
appreciably less than one null per sweep on the 
shorter path. Assuming one null per sweep as a 
representative number, a signal frequency-modulated 
over a 2 kc interval might average J nulls per 
sweep. If the sweep rate is 5 per second, the 
fundamental frequency produced at the distant 
receiver detector would be about 15 cps. Taking 
harmonics of this waveform into account, frequen¬ 
cies up to 150 cps may be expected to appear in 
the output of the receiver. 

Occasionally, up to 3 nulls per sweep have 
been observed in the 66O cps band on the longer 
path. The record of Fig. 2a is unusual, and shows 
two. For the Puerto Rico to Georgia path, between 
zero and one null per sweep is normal. Thus the 
record in Fig. 2b is typical, with slightly less 
than one null per sweep. 

It seems clear from these results that the 
distant listener will be conscious of the FM, and 
that the noticeability of the FM will be greater 
the longer the path. However, such sounding should 
not be too annoying if carried on for 10 to I5 
seconds at a time, at 15-minute intervals. 
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Performance of a Typical Installation in 
the Presence of Ionospheric Backscatter 

Operation of the FM ranging system with back¬ 
scatter as the target was tested at a Stanford 
University field site at I529 PST on 3 October 1961. 
A radio frequency of I5.3 Mes was used. Transmit¬ 
ting and receiving antennas were J element Yagis 
directed north. The transmitter output power was 
600 watts, and the receiving site was 6 miles north 
of the transmitting site. 

The FM deviation in the experimental system 
was 2 kc, but the modulation waveform was a 7-1/2 
cps triangular waveform instead of the 2.5 cps 
waveform as shown in Fig. 1. The effect of this 
difference is to increase the pitch of the audio 
frequencies obtained by a factor of three, and to 
increase the effective width of the turn-around 
gaps by a factor of three. A frequency-amplitude-
time plot of the audio spectrum obtained is shown 
in Fig. 3« Note that the turn-around transients 
are not severe enough even in this case to deteri¬ 
orate appreciably the quality of the record. 

To the ear, the signal of Fig. 3 sounds noisy, 
but it none-the-less has a clearly-defined pitch. 

Frequency-Modulating the Transmitter 

Any of the standard frequency-modulating tech¬ 
niques can be used to obtain the desired waveform. 
In the experimental case described above a react¬ 
ance-tube modulator, driven by a Hewlett-Packard 
waveform generator, was used to modulate a variable 
frequency oscillator. In the case of short-wave 
broadcasting, where crystal control is necessary, 
an arrangement such as that illustrated in Fig. 4 
could be used. The output of a crystal oscillator 
is mixed with a low-frequency variable oscillator 
which is frequency-modulated in the desired way. 
Extreme linearity of frequency versus time is not 
required in the system proposed. 

Receiver Considerations in the FM System 

In FM backscatter sounding, the receiver must 
be able to produce a beat between the transmitted 
signal (normally available by ground-wave trans¬ 
mission between transmitter and receiver), and 
backscattered energy. In principle, a single 
receiver and antenna can perform this function, 
provided that the ground-wave in this antenna 
happens to be appreciably stronger than the back¬ 
scatter. If the ground-wave is not adequately 
strong, backscatter components at different ranges 
will intermodulate, thus giving rise to spurious 
audio-frequency components in the receiver output. 
Too much ground-wave pickup will cause loss of 
sensitivity in the receiver, since the over-all 
gain must then be reduced in order to avoid over¬ 
loading of the diode detector or the last IF stage. 

If the normally-used antenna at the receiving 
station picks up too weak a ground-wave, selection 
of an antenna headed more nearly toward the trans¬ 
mitter may improve the situation. The strength of 
the backscatter coming back along the direction of 

fire of the transmitted beam is normally so great 
that no particular receiving antenna directivity 
is required. For raulti-hop sounding, however, it 
may be desirable to use a receiving antenna directed 
in the same azimuth as the transmitter beam. In 
this event, if the ground-wave is not strong 
enough, it may be possible to add a second antenna, 
beamed directly at the transmitter, in which 
ground-wave pickup is maximized. (Use of vertical 
polarization may be helpful.) 

The output of the "reference"—or ground-wave— 
antenna may be mixed with that of the "si gnal 
or backscatter—antenna at the receiver input 
terminals, as shown in Fig. 5* The over-all layout 
is shown in Fig. 6. 

On the other hand if the ground-wave signal at 
the receiver is too strong, it may be possible to 
employ an antenna having a null in the direction 
of the local transmitter, while maintaining a 
reasonable gain in the direction from which the 
backscatter is arriving. If this fails, more 
separation between receiving and transmitting 
stations may be required. 

It is desirable--although not necessary--for 
the receiving signal antenna of Fig. 5 to be 
directive to control ground-wave signal strength, 
and to suppress backscatter from undesired direc¬ 
tions caused by transmitting antenna side-lobes. 
(To the extent that the transmitting antenna is 
undirectional, the backscatter received will be 
from the target area.) 

Probably the most difficult situation arises 
when the receiving station is located "behind" the 
transmitting antenna, and the ground-wave is too 
strong. This situation will require the si gnal and 
reference antennas to be pointing in the same 
direction, toward the transmitter. Tn this case, 
discrimination between the backscattered energy 
and the ground-wave energy can be done on the basis 
of vertical angle of arrival and/or polarization. 
In a situation where the receiving station is in 
the direction of the transmitter beam, and the 
ground-wave is strong, the reference receiving 
antenna should have a high front-to-back ratio. 

Reducing Intermodulation and Estimating 
Ground-Wave/Backscatter Intensity Ratio 

At the expense of some equipment complication, 
the problem of obtaining the correct amount of 
demodulating-signal injection can be largely over¬ 
come by the scheme shown in Fig. 7. (This arrange¬ 
ment was actually used in the experimental test of 
Fig. 3, although the simpler one-receiver technique 
has also given good results.) In this arrangement, 
the antenna aimed at backscatter (upper channel) 
is designed to pick up as little ground-wave as 
possible. The ground-wave channel (the lower one) 
has its gain adjusted to prevent overloading. 

An especially simple, practical embodiment of 
Fig. 7 employs two inexpensive receivers, Collins 
type 75S1, which happen to have conversion oscil¬ 
lator voltages brought out to external terminals. 
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The conversion oscillators of the reference receiver 
are disabled.; the reference receiver mixers are 
fed by the signal receiver oscillators. The antenna 
for the signal receiver (upper channel) was directed 
toward the distant area illuminated by the trans¬ 
mitting antenna, while the reference receiver an¬ 
tenna (lower channel) was directed toward the trans¬ 
mitter. IF output of the reference receiver re¬ 
placed the BFO input to the product detector of 
the signal receiver, thereby providing a strong 
demodulating voltage that was relatively free from 
backscatter components. The output of the product 
detector is then essentially free from intermodu¬ 
lation components, as may be seen in Fig. J. 

The amount of ground-wave signal present on a 
particular antenna at a given receiving site within 
the skip-zone of the transmitter may be readily 
estimated by noting the fading characteristics of 
the received signal as displayed by the usual "S" 
meter. If the signal fades regularly to zero, there 
is comparatively little ground-wave present. On 
the other hand, if the range of signal amplitude 
variation during fading is limited, the backscatter 
is comparatively weak compared with any ground-wave 
simultaneously present. This determination can be 
made comparatively quickly in practice, since meas¬ 
urements have shown that the spectral width of 
ground backscatter is in the order of one to two 
cycles per second^. Moreover, the center of the 
backscatter spectrum is often displaced from the 
transmitted frequency by one or two cps7. These 
circumstances imply that a combination of ground¬ 
wave signal plus backscatter should fade through 
the normally-expected range of values within a few 
seconds' time. 

Methods of Analyzing the Receiver Audio Output 

In general, increasing amounts of information 
can be obtained from the audio output of an FM 
system at progressively increasing complexity and 
cost. The simplest possible analyzer is the human 
ear, which can tell whether backscatter is present 
or not, and estimate its approximate range. Con¬ 
siderably more precise information can be determined 
with the aid of visual or graphical spectrum ana¬ 
lyzers, which provide quantitative information on 
the range-amplitude structure of the backscatter. 
If the received tone is too low-pitched to be 
heard, a magnetic tape recording of the tone may 
be made and speeded up on playback. The record of 
Fig. 3 was obtained by recording the receiver out¬ 
put on a $150 home-type tape recorder, and later 
analyzing it on a Kay Electric Company "Sonalyzer" 
spectrum analyzer. In the analysis the tape was 
speeded up 8 times to bring the spectrum within 
range of the instrument. However, the frequency 
scale shown in the figure corresponds to real time. 
It would be desirable, in broadcasting, to tape¬ 
record the received signal for "first order" aural 
analysis immediately, and to have the records on 
hand for later, more comprehensive, analysis by 
spectrum analyzer at some central location. 

A useful method of analyzing the backscatter 
record is to pass the signal into a manually-tunable 
selective audio amplifier. The range interval(s) 

of maximum backscatter amplitude (presumably, the 
boundaries of the region(s) where the transmission 
is being heard the strongest) can be rapidly and 
easily determined in this way. 

Another method of determining the range of the 
strongest component of the backscatter is to use 
an audio frequency meter. (The strongest component 
normally is found at a slant range close to that 
of the skip distance.) As a test of this, the 
signal illustrated in Fig. 3 was fed to a Hewlett-
Packard 5OOB frequency meter. A comparatively 
steady reading, having a value very close to that 
of the strongest component of the backscatter de¬ 
termined from the sound spectogram, was obtained. 
Such a meter is inherently insensitive to other 
frequency components which may be present, provided 
only that they are weaker than the one being reg¬ 
istered. 

Conclusions 

It has been shown that the FM ranging prin¬ 
ciple can be applied to backscatter sounding, and 
that this technique should be useful for sounding 
at brief intervals during short-wave broadcasting 
in order to obtain propagation data. FM ranging 
has the following significant practical advantages 
in comparison with the pulse or modulation-corre¬ 
lation alternatives : 

1) No change of d-c operating conditions is 
required at the transmitter. (Many complications 
arise if the transmitter must be pulsed.) 

2) FM modulation causes much less annoyance 
to the distant broadcast listener than would pulse 
modulation. (The nature of the effect of the FM 
on the listener's receiver has been assessed with 
the aid of records from actual FM tests over typi¬ 
cal h-f braodcasting distances. It is concluded 
that the listener annoyance caused by such modula¬ 
tion, as received in a standard AM receiver, would 
be small.) 

3) Much simpler receiving and recording ar¬ 
rangements are required for FM sounding than for 
either the pulse or modulation-correlation schemes. 
The operator can use an unmodified receiver; his 
ear can provide first-order answers. The simplest 
type of magnetic tape recorder suffices to record 
the information. 

4) The FM system can obtain data nearly in¬ 
stantaneously, as can the pulse radar. The corre¬ 
lation radar may require a longer time if the 
modulating waveform does not have suitable frequency 
components. 

In applying the FM principle to broadcasting, 
it is Convenient to frequency-modulate the trans¬ 
mitter with a triangular waveform. Most broad¬ 
casting plants have associated receiving stations 
within ground-wave range. At such a station the 
beat note generated when backscattered energy 
combines with some of the ground-wave signal can 
be heard in a standard receiver. The resulting 
tone is "noisy", but nevertheless has a fairly 
well-defined pitch, since most backscatter will 
be concentrated at a range corresponding very 
nearly to the one-hop skip distance. Methods for 
controlling the groundwave signal needed for 
demodulating the backscatter have been shown. 
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Either the operator's ear, a simple tunable 
selective audio amplifier, or a direct-reading fre¬ 
quency meter can furnish first-order information 
on skip distance. Range-time records of pulsed-
radar-like quality can be obtained by means of a 
standard audio spectrum analyzer. Actual FM system 
tests have shown that "turn-around" transients do 
not appreciably affect the final frequency analysis. 

Experience suggests that a 2 kc deviation at 
a rate of 2.5 cps (triangular modulation) provides 
the best balance between information gained and 
annoyance caused to the listener. If the sounding 
modulation occurs during those intervals when pro¬ 
gram modulation is momentarily absent, there is no 
possibility of exceeding the spectral bandwidth 
normally occupied by the station. 

On balance, FM backscatter sounding appears 
preferable to the alternatives in many respects. 
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Fig. 1. (a) Waveform of transmitted frequency as a 
function of time suitable for an FM ionospheric 
radar. Also shown is received frequency as a 
function of time for a single-range target at r 
kilometers slant range, (b) Audio output frequen¬ 
cy as a function of time for a receiver receiving 
both waveforms in (a). 
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Fig. 3. Spectrum, analysis of an experimental FM 
ionospheric backscatter sounding. 

Fig. 2. (a) Frequency-time-amplitude record of FM 
signal transmitter at 12 Me over 5750 km path, 
(b) Similar record taken for a 2420 km path. 

Fig. 4. Block diagram of a system providing stable 
triangular frequency modulation yet with crystal 
control. 

Fig. 5. Schematic diagram of a simple method for combining ground-wave and backscattered wave using 
one receiver. 
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Fig. 6. Typical FM backscatter system geometry. 

Antenna directed toward 

Fig. 7. More elaborate method for obtaining proper ground-wave 
demodulation at receiving station of an FM ionospheric radar. 
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PRECIPITATION SCATTER AS AN INTERFERENCE SOURCE IN 
COMMUNICATION SATELLITE SYSTEMS 

Arnett S. Dennis 
Stanford Research Institute 
Menlo Park, California 

Abstract 

Communication satellite systems operating at 
frequencies as high as 3 Gc are now in the active 
planning stage. A number of recent papers have 
dealt with the interference produced at the ground 
receiving sites of such systems by tropospheric 
scatter from sources below the radio horizon. 
However, theoretical and experimental data from 
the field of radar meteorology show that scatter¬ 
ing by precipitation particles at 3 Gc can easily 
exceed the tropospheric scatter component by sev¬ 
eral orders of magnitude. The precipitation scat¬ 
ter is approximately isotropic in most cases and 
hence the scattering volume need not be on the 
Great Circle path from the interfering source to 
the receiver site to be effective. Minimum sepa¬ 
rations for satellite terminals and interference 
sources computed considering only tropospheric 
scatter are therefore completely inadequate to 
guard against precipitation scatter. 

Introduction 

At the present time satellites are being con¬ 
sidered as active relay stations for long-range 
communication systems. The large bandwidth re¬ 
quired to make such systems feasible has led to 
suggestions that they be operated in the SHF re¬ 
gion, with frequencies from 2 to 10 Gc appearing 

most favorable at present.Because of the low 
power outputs of satellite transmitters, very sen¬ 
sitive receivers will be required at the ground 
terminals, with some manufacturers suggesting ef-

o 
fective noise temperatures of less than 100 K. At 
such receivers interference problems will be 
acute. Several writers have analyzed in detail 
the potential interference arising from tropo¬ 
spheric scatter of signals originating below the 

1,2 
radio horizon. 

Further consideration indicates that at the 
frequencies being considered precipitation scatter 
will be a more serious problem than tropospheric 
scatter. Indeed, Gordon concluded as early as 
1952 that forward scatter from heavy rain could 
exceed tropospheric scatter signals even at wave-

3 
lengths over 1 meter. Since then an experiment 
in eastern Canada using 11-cm equipment has shown 
forward scatter from rain exceeding the tropo¬ 
spheric scatter component by as much as 15 db on 

4 occasion. 

It is the purpose of this paper to apply what 
is presently known about the scattering of SHF 
radio waves by precipitation in an attempt to pre¬ 
dict interference levels at the ground terminals 
of communication satellite systems. 

Review of Scattering Theory 

Most theoretical treatments of the scatter¬ 
ing of radio waves by precipitation have been 
based on a treatment given by Gustav Mie in 1908 

5 
of the scattering of a plane wave by a sphere. 
The solution consists of an infinite series of 
spherical Bessel functions involving the complex 
dielectric constant of the sphere and the function 
a, defined as nD/K, where D is the diameter of the 
sphere and A is the wavelength of the incident 
radiation. The series of Bessel functions can be 
considered as a series of electric and magnetic 

multipole terms. 6 For a < < 1 the electric dipole 
term predominates and the formula for the scatter¬ 
ing cross-section, Q , reduces to the Rayleigh 
formula 

Q s 3X4
(1) 

The scattering cross-section is defined as the 
area which, when multiplied by the flux density 
of the incident wave, yields the total energy 
scattered by the particle. K is defined by the 
equation 

K (2) 

where m is the complex refractive index of the 
particle. For the frequency range from 2 to 10 

2 
Gc, I k| is near 0.93 for water and 0.20 for ice. 

As a Rayleigh scatterer functions as an 
electric dipole, the scattering is not isotropic; 
those regions at right angles to the incident 
electric vector are favored. These necessarily 
include a radar set viewing such particles. 
Therefore the concept of a back-scattering cross¬ 
section is introduced. The back-scattering cross¬ 
section, a, of a particle is defined as the scat¬ 
tering cross-section of an isotropic scatterer 
which would return the same amount of power to 
the radar. For the Rayleigh case it is given by 

c (3) 

As individual precipitation particles show 
some independent motions within a storm, the 
radar return from an array of precipitation par¬ 
ticles is an incoherent fluctuating signal whose 
mean intensity is proportional to the sum of the 
back-scattering cross-sections of the individual 

, 7 
particles. In the Rayleigh case, T), the radar 
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reflectivity per unit volume, is given by 

n = Z14 
, 4 

2 
Z (4) 

where Z is the sum of the sixth powers of the par¬ 
ticle diameters per unit volume. For cases where 
the relationship a < < 1 is not fulfilled, there 
is no simple relationship between q and the parti¬ 
cle diameters. 

Radar Reflectivity of Various Forms 
of Precipitation 

Reflectivity of Rain 

The Rayleigh approximation is valid for all 
but the largest raindrops at frequencies up to 10 
Gc. As Eq. (4) shows, the radar reflectivity is a 
function of drop-size distribution as well as of 
the amount of liquid water present per un vol¬ 
ume. However, there is a tendency for drop-size 
distribution to be determined by rainfall rate, 
and hence Z can be expressed in terms of rainfall 
rate R. One frequently quoted empirical relation¬ 
ship, based on drop-size distributions obtained in 
the Montreal area, yields, upon rearrangement, 

T] (rain) = 6.9 x 10 12 R1’6 (f^) 4 (5) 

where q is expressed in m \ R in mm hr”1, and f 
6 Gc 

denotes the frequency in gigacycles. This func¬ 
tion is shown in Fig. 1 for rainfall rates of 1, 

5, and 25 mm hr 1 . 

Field measurements in the 3-Gc region have 
~8 5 —1 shown reflectivities around 10 ’ m in steady 

light rain and up to 10 m in heavy thunder¬ 
storm rain,®but some hall may have been involved 
in the latter case. At 10 Gc the reflectivities 
are correspondingly higher. These results are in 
fair agreement with predicted values, but there is 
an unexplained tendency for measured values to run 
several decibels below those computed from drop-

g 
size distributions. 

Reflectivity of Snow 

The derivation of a simple Z - R relationship 
for snow is complicated by the irregular shapes 
and wide variations in size and dielectric proper¬ 
ties exhibited by snowflakes. A treatment of the 
problem and some experimental data are given in a 

9 
recent article by Gunn and Marshall. Their sug¬ 
gested formula for the reflectivity of dry aggre¬ 
gate snowflakes at a precipitation rate of 1 mm 

-1 
hr is shown in Fig. 1. 

In general, the radar reflectivity of dry 
snow is comparable to that of rain yielding the 
same rainfall rate, but snowstorms seldom yield 
rainfall rates (melted) greater than 3 to 4 mm 

hr . Melting snow yields stronger radar echoes, 
which reach a maximum of 6 to 12 db above those in 

the rain below the melting level. 10 The enhanced 
radar echoes,known as the bright band, occur in a 
layer some 300 m thick. The bright band is most 
important for nearly horizontal beams. Polariza¬ 
tion effects are present in both dry and melting 
snow, but more important in the case of melting 

11 
snow. 

Reflectivity of Hail 

In the frequency range which we are consider¬ 
ing (2 - 10 Gc), the Rayleigh approximation breaks 
down for all hailstones except very small ones. 
Theoretical treatments of scattering by hail must 
be given in terms of the Mie scattering functions. 

The calculation of the higher order multi¬ 
pole terms of the Mie expressions for Q and a is 

s 
complicated by the fact that the complex refrac¬ 
tive index of water is a function of wavelength 
and temperature. Nevertheless, some progress has 

12 13 been made through the use of modern computers. ’ 
The contributions of the higher order multipoles 
Increase with increasing a. Whenever the frequen¬ 
cy of the incident radiation matches the frequency 
of one of the sphere's natural modes of electro¬ 
magnetic oscillation, resonance effects appear. A 
plot of a vs a shows a very complicated behavior, 
with numerous peaks and troughs due to interfer¬ 
ence among the various multipole contributions. 
Experimental verification of this behavior has 

14 been obtained by Atlas et al. and by Gerhardt 

et al. 15

Recently the computer programs have been ex¬ 
tended to scattering through angles of less than 
it. The scattering patterns for large spheres are 
very complicated, with numerous marked side lobes 
Herman and Battan find that, in certain size 
ranges, the power density scattered forward into 

a cone with scattering angles less than 30° ex¬ 
ceeds the back-scattered power by more than 10 

16 
db. When it is considered that hailstones come 
in a variety of shapes and have internal varia¬ 
tions in dielectric properties, it is apparent 
that extrapolations of measured scattering cross¬ 
sections with respect to either scattering angle 
or frequency are not, in general, reliable. How¬ 
ever, the findings of Herman and Battan on the 
preponderance of forward scatter for large hail¬ 
stones are likely to find experimental confirma¬ 
tion, on the average. 

Hail usually falls from thunderstorms accom¬ 
panied by heavy rain showers, so the return from 
the hail cannot be measured separately. Recent 
measurements of the radar reflectivity of hail¬ 
storms in Arizona, New England, and Great Britain 

have yielded values of q up to 10 6'5 m 1 at 3 Gc 
. in -2> ^ -1 * 17,18,19,20 and 10 m at 10 Gc. These exper¬ 

imental results are entered on Fig. 1. It should 
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be noted that they were not adjusted upward to 
allow for attenuation between the radar and the 
storms under observation. 

Geometry of Scattering Problem 

Continuous Wave Transmission 

In order to compute the power received at an 
antenna through precipitation scatter, one must 
consider the geometry of the problem as well as 
the scattering cross-sections involved. 

If there are scatterers in the volume common 
to the main beams of the transmitting and receiv¬ 
ing antennas, their contribution to the scattered 
signal will usually be predominant. A convenient 
formula for this case with isotropic scatterers 
in the common volume is 

n 
p t] V r - (6) 

where P is the power received,* 
r 

p is the incident flux per unit area in 
the common volume, 

T) is the mean reflectivity of the scat¬ 
tering array per unit volume, 

V is that part of the common volume oc¬ 
cupied by the scatterers, 

and fl is the solid angle subtended by the 
r receiving antenna at the common vol¬ 

ume . 

In satellite systems with sensitive ground 
receivers, side lobes can be important, especially 
where intense but localized storms are in progress. 
In such a case Eq. (6) can be conveniently rewrit¬ 
ten as 

g/2
P = p T) V -5- (7) 
r (4rtRr) 

where ï) is the mean reflectivity of the vol¬ 
ume (say, that of a shower) supplying 
the signal, 

V is the volume occupied by the scatter¬ 
ers , 

g is the gain of the receiving antenna 
r in the direction of the scatterers, 

R is the distance from the scatterers 
r to the receiving antenna, 

and the other symbols are as defined previously. 

Pulsed Transmission 

It is incorrect to treat cases with pulsed 

* Strictly speaking, the received signal is inco¬ 
herent with P representing the mean power re-
r -

ceived. 

transmission in terms of mean power, because 
errors can be produced by pulses of interference 
even when the mean signal-to-noise ratio is large. 

For cases with short pulses and sufficiently 
extensive arrays of scatterers, the pulse length 
will determine the size of the region contributing 
to the scatter signal received at a given instant. 
Let a pulse of duration t be emitted from an 
antenna, starting at time t = 0. Then at any time 
t > t an illuminated volume of length cr is to be 
found moving out along the transmitter beam, where 
c is the speed of light. Figure 2 shows a plan 
view of the relationships among a transmitter T, 
the transmitted beam, and a receiver R outside the 
beam. At a given instant, let the illuminated 
volume by given by I I2, with beamwidth considera¬ 

tions neglected. The contributing region is given 
at that instant by where C^R = C^I^ and 

C2R = Cglg- From geometrical considerations 

C1C2 V2 + C2R - C1R

and to a first approximation 

c c — ---
1 2 1 - cos e 

(8) 

The speed with which the contributing region 
moves out along the beam varies as its length so 
that, neglecting attenuation and variations in the 
particle array, the total amount of energy scat¬ 
tered per unit length into unit solid angle re¬ 
mains constant. The power arriving at the receiv¬ 
er, however, varies as the length of the contrib¬ 
uting region. Thus the scattered power must be 
divided by (1 - cos 9) to yield P , the peak power 

received at R via scattering through the angle 9. 
In addition, the free-space losses between the 
contributing region and the received must be con¬ 
sidered. From Fig. 2 it is seen that Rr is given 

by d'/sin 9, where d' is the perpendicular dis¬ 
tance between the receiver and the beam. For the 
case where the pulse length determines the extent 
of the contributing region, we have, then, 

P r 

where A 
minated 

Differentiation of this function with respect 
to 9, assuming g a constant, shows that P has r r 
its maximum at 9 equal to 0. There is no maximum 
at 9 equal to jt/2, as one might expect at first 
glance. This behavior appears to be verified in 
the photographic records of rain-scattered pulses 

4 
obtained by Doherty and Stone. 

(9) 

section of the array of illu-is the cross 
scatterers. 

. I) . -ó sin 9
(4nd') 

pAcr 
1 - cos 9 
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Numerical Examples 

General Comments 

Although there are several criteria which 
must be satisfied if communication satellites are 
to share frequencies with existing services, we 
shall limit our discussion to the interference 
produced at a ground terminal of a satellite sys¬ 
tem by existing radio systems. 

The seriousness of the interference produced 
by precipitation scatter in a given communications 
link will depend upon the signal-to-noise ratio, 
the modulation system employed, and other factors 
beyond the scope of this paper. In our numerical 
examples we shall follow the procedure used in 
Ref. 1, where the interference power level is com¬ 
pared with the existing noise level, rather than 
with the desired signal. Making the desired sig¬ 
nal strong enough to override the total receiver 
noise will suppress any noise-like signal which is 
itself below the total noise level. 

The total receiver noise consists of contri¬ 
butions picked up at the antenna and internally-
generated noise. These can conveniently be de¬ 
scribed in terms of an antenna temperature, T 

a 
and an effective receiver noise temperature, T , 
according to e

P = (T + T ) k b (10) n a e 

where is the total noise power, 

k is Boltzmann's constant. 

and b is the effective receiver bandwidth. 

and are expressed in degrees Kelvin. 

T involves at various times noise contributions a 
from galactic sources, the sun, black-body radia¬ 
tion from the earth, attenuation noise from pre-

21 cipitation, and so on. T can be as low as 
o a 

15 - 30 K under optimum conditions, but during 
o 22 rainy weather it can rise to 100 - 150 K. 

Since T^ for maser amplifiers can be reduced to 

15 - 30 K, it appears that T rather than T will 
a e 

be the limiting factor on system performance in 
many cases. As a reasonable estimate, we shall 

use 100°K for the sum (T + T ) and 10 Me for the a e 
effective receiver bandwidth in making our compar¬ 
isons. Then, from Eq. (10), 

P = - 139 dbw (11) 

Scattering from Stratiform Precipitation 

Consider the receiving antenna in a situation 
where uniform light precipitation extends from the 
ground up to height z^ over a large area. Let the 

precipitation be illuminated uniformly above some 
height, z , by an interference source below the 

o 

horizon. The power received is independent of the 
receiving antenna pattern as long as all the gain 
is directed through the illuminated layer. The 
situation is shown in Fig. 3. The received power, 
worked out on the basis of either Eq. (6) or Eq. 
(7), is 

x2 
pr = P - (zæ - zo) sec (12) 

where | is the angle between the receiving antenna 
beam and the vertical, and all other symbols are 
as previously defined. Equation (12) is derived 
assuming a flat earth and will not hold for values 

of | approaching 90°. 

Assume that the interfering source is a back 
lobe of 0 db gain on a troposcatter transmitter 
200 km away, emitting 20 kw in a 10-Mc band at 3 
Gc (see Fig. 4). In this case z^ would be approx¬ 

imately 2.5 km. With moderate rain (5 mm hr”1) 
extending up to 5 km over the receiver site, we 
would have for a vertical beam, using Eq. (12) and 
Fig- 1, 

—7 4 -2 —ft 1 —1 9 
P _ (10 ' w m )(10 • m )(0.1 m) (2.5 km) 
r 4n 

= - 152 dbw 

Comparison with Eq. (11) shows that the interfer¬ 
ence from this troposcatter transmitter is 13 db 
below the noise level. 

Scattering by Convective Storms 

Convective storms are characterized by strong 
vertical motions, high rainfall rates, and large 
raindrops, and hence by high radar reflectivity. 
This is particularly true of hail-bearing thunder¬ 
storms, which sometimes have their maximum reflec¬ 
tivity at heights of 5 to 10 km, and extend up-

18 wards to 15 or 20 km. It should not be thought 
that hailstorms are rare occurrences; evidence is 
accumulating that a majority of thunderstorms in 
the continental United States are characterized by 

23 24 hail aloft at some stage during their existence. ’ 

Let us now consider the case of the troposcat¬ 
ter transmitter discussed in the last sub-section, 
but replace the layer of precipitation by a thun-

-7 -1 derstorm with reflectivity 10 m in the receiv¬ 
er beam, extending up to 12 km. In this case P 

r 
is found to be approximately - 136 dbw, or 3 db 
above the total receiver noise in our example. 
Thus, with a thunderstorm in the receiver beam, 
forward scatter could be the limiting factor on 
system performance, even with the interference 
source below the horizon and pointing away from 
the receiver site. It should be noted that this 
example used a frequency of 3 Gc; at higher fre¬ 
quencies the scatter interference would be greater. 

As a further example, consider the case shown 
in Fig. 5. Here a thunderstorm is located 200 km 
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from a carefully engineered receiving antenna, 
whose gain in the direction of the storm is -10 db. 
Using an effective earth radius of 1.5, which is 
typical of warm, humid air masses, to account for 
refractive effects, we find that those portions of 
the storm above 3.5 km are above the radio horizon 
at the receiver site. (This derivation assumes no 
terrain or artificial shielding.) The thunder¬ 
storm is illuminated by the main beam (25 db gain) 
of an airborne C-band weather radar 500 km away, 
which is emitting 1-psec pulses of 20 kw peak power 
at 5.3 Gc. A straightforward calculation shows 
that p, the incident flux density at the storm, is 

_ o 
-47 dbw m . As a typical thunderstorm is some 10 
to 15 km in diameter and extends upward about the 
same distance, a reasonable estimate of the illu¬ 
minated cross-sectional area more than 3.5 km 

2 
above ground is 100 km . Then, using Eq. (9), we 
find P , the interfering power received at R, to 

r 
be -128 dbw for isotropic scatterers with T) equal 

to IO*5 m 1. During the time (order of 10 ^sec) 
the contributing region is passing through the 
storm, it produces an interfering signal 11 db 
above the prevailing noise background. 

From this it appears that the radar's side 
and back lobes could produce additional signifi¬ 
cant contributions by illuminating any other 
storms which happened to be within the radio hori¬ 
zon of the receiver. In a typical summer shower 
situation, the emission of each pulse from the 
radar would be followed by the arrival of numerous 
bursts of interference spread out over a period oí 
several hundred microseconds. Since the pulse 
repetition period of a radar is of the same order, 
interference could be virtually continuous. 

In the above no allowance has been made for 
attenuation, which could largely eliminate the 
contributions from certain storms if other intense 
storms lay between them and the receiver site. 
However, we note again that the radar data given 
above were not corrected for attenuation either, 
and so the results should be comparable. Further¬ 
more, we have not allowed for the tendency for 
hail to scatter more strongly forward than back¬ 
ward, which could add several decibels to the 
received power. Polarization has also been neg¬ 
lected, but for scattering through an angle of 

20°, changes of polarization would introduce no 
more than a fraction of a decibel change in the 
received power. It should be noted, too, that all 
examples given used typical rather than extreme 
values for transmitter power, radar reflectivity 
of precipitation particles, and storm dimensions. 

Comparison with Tropospheric Scatter 

In the last example given, the peak power re¬ 
ceived via the radar's main beam was computed at 
-128 dbw. Allowing for the antenna gains assumed, 
the basic transmission loss is 

= 43 - (- 128) + 25 + (- 10) db 

= 186 db 

where Pt is the transmitter power, 

Gt is the transmitter antenna gain, 

and G is the (realized) gain of the receiving 
r antenna. 

Fig. V-l of Ref. 1 (extrapolated) indicates that 
the basic transmission loss over a 700-km path at 
5.3 Gc for troposcatter propagation is near 265 
db. In our example, the power received through 
the tropospheric scatter medium would be reduced 
another 20 db or so, since only a side lobe of the 
radar antenna pattern is directed toward the re¬ 
ceiver, and tropospheric scatter propagation is 
limited for practical purposes to Great Circle 
paths. In such a case the tropospheric scatter 
component can safely be treated as negligible 
compared to the precipitation scatter component. 

Conclusions 

Any high-output source of microwave radiation 
can create interference at a ground terminal of a 
communication satellite system, if it illuminates 
precipitation particles above the radio horizon of 
the receiving antenna. Because the scattering ap¬ 
proaches isotropic, interference is not limited to 
those cases where the storms lie on the Great Cir¬ 
cle path from the source to the receiver. As 
thunderstorms frequently extend to 10 - 20 km 
above ground, it appears that, in areas where they 
occur, high-power ground-based transmitters cannot 
share spectrum space in the centimetric region 
with communication satellite systems, unless spa¬ 
tial separations of the order of 1,000 km are im¬ 
posed. For airborne equipment the required sepa¬ 
rations are necessarily greater. 
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Fig. 1. Radar reflectivity per unit volume as a function 
of frequency. 

Fig. 2. Relationship between illuminated volume and 
contributing region. 
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Fig. 3. Scattering from stratiform precipitation. 

Fig. 4. Illumination of stratiform precipitation by back 
lobe of a tropospheric scatter transmitter. 

Fig. 5. Coupling of receiver to air-borne radar by 
precipitation cells. 
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Summary 

The main purpose of the new antenna system, 
described herein, is to enhance high-frequency 
communications by reducing the effects of multi¬ 
path and interference. The experimental ISCAN 
system, designed for reception of long distance 
h-f communications, consists of two principal 
parts: a linear array of vertical dipoles over 
63OO feet long and an electronic beam forming 
matrix. A single, fixed-beam radiation pattern 
is available at each of the 11: terminals of this 
matrix. The beams have the shape of coaxial con¬ 
ical shells and adjacent beams overlap each other 
at the half-power points. These beams are formed 
by the use of tapped delay cables which is an in¬ 
herently broadband method. Inertialess scanning 
of an antenna beam is achieved by rapid switching 
of the ih beams in sequence using electronic 
gating circuitry. This effectively scans the 
antenna beam up to 30 degrees off the array axis. 
A visual oscilloscope display is provided to show 
the relative outputs of the multiple beams at all 
times. 

Introduction 

Directive antennas of several types have been 
available for use in the high-frequency range for 
a number of years. Curtain arrays and long wire 
radiators such as rhombics have been used exten¬ 
sively for long-range communications and short¬ 
wave broadcasting. The beamwidth of a fixed-beam 
antenna cannot be made too narrow or it will not 
encompass all directions of arrival of the major 
modes from a distant h-f station. If, however, 
the antenna beam can be steered fast enough, it 
can be made more directive until the beam is so 
narrow it selects one mode only. 

Best known among the antennas with fairly 
high directivity which have been successfully 
steered are the curtain array, Wullenweber, and 
the rhombic array used in the MUSA system.’ Each 
these antennas has certain beam steering restric¬ 
tions; the steering angle of the curtain array 

is fairly limited, the Wullenweber steers only in 
azimuth and the MUSA system steers only in eleva¬ 
tion. These three steerable beam systems have 
several common limitations, namely, they are large 
costly, and the beam steering is relatively slow. 
It may well be too slow for optimum reception of 
long-distance h-f signals. 

The purpose of the ISCAN ( Inertialess Steer¬ 
able Communication Antenna) development 2, 3, ü 
was to produce a steerable h-f array, of lower 
cost and with improved performance compared to 
the MUSA system, particularly for optimizing long 
range global communications and rejecting inter¬ 
ference. 

The ISCAN system represents an economical 
h-f receiving array with multiple, highly direc¬ 
tive beams having the shape of conical shells. 
These beams overlap each other to cover a given 
solid angle in space and can be continuously 
monitored by separate receivers. At the same 
time the outputs of these beams can be switched 
sequentially by electronic means to a single re¬ 
ceiver giving, in effect, very rapid beam scan¬ 
ning of a conical sector in space. 

Theory of Operation 

The present experimental ISCAN system con¬ 
sists of the antenna array, cabling, and associ¬ 
ated electronic circuitry for generation and con¬ 
trol of the multiple antenna beams as well as a 
visual display for monitoring the detected outputs 
of the multiple antenna beams. The frequency band 
of operation is 12 to 18 me, which was chosen to 
suit the particular communication circuit and time 
of experimentation (1961-62) and represents a good 
compromise between performance and cost. There is 
no fundamental frequency range restriction imposed 
by technical limitations. The present system is 
used for reception only, but it could be adapted 
for transmission, also, by suitable modification. 

* Work performed under Signal Corps Contract DA-26-039-SC-78293. The 
views of the authors do not purport to reflect the position of the 
Department of the Army or the Signal Corps. 
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The antenna is a linear array 96 wavelengths 
long (at 15 me) which generates multiple beams 
covering angles of about 5° to 30° off the array 
axis. It is composed of 21* vertical, center-fed 
dipole antenna elements mounted on 2Í» wooden pol® , 
as shown in figure 1, which are non-uniformly 
spaced and aligned to form an array 6,312 feet 
long. The system is installed at Windmill Point, 
Maryland, with the array axis aimed toward Cfentral 
Europe. The array forms It fixed beams which have 
the shape of coaxial conical shells. Adjacent 
beams overlap each other at the three db points 
as shown pictorially in figure 2. Inertialess 
scanning of the antenna beam is achieved by rapid 
switching to each of the 11* beams in sequence 
using electronic gating circuitry which effec¬ 
tively scans the antenna beam up to 30 degress 
off the array axis. 

The formation of multiple beams is achieved 
by the use of tapped delay lines inserted in the 
signal oaths from the 21* antenna elements to the 
summing point (combiner) of the array. These de¬ 
lay lines compensate for the individual delays of 
the signals in space. A particular beam is formed 
when the delays are adjusted such that the antenna 
element signals, for that angle of arrival, reach 
the summing point at precisely the same time and 
are added vectorially in phase. The differential 
time delays generated in space between antenna 
elements depend only upon the angle of arrival and 
not upon the frequency of the received signal. 
Therefore the ISCAN steering system, which uti¬ 
lizes time delay rather than phase shift, is in¬ 
herently broadband. 

The geometry used for analysis of the time 
delays required for the array elements is given 
in figure 3. The array elements are arranged 
linearly and numbered 1 through 21*. A signal 
arriving at an angle m with respect to the array 
axis will arrive first at element No. 21*. This 
same wavefront will reach element No. 1 at a 
later time which is prooortional to the distance, 
Dj cos w. If the signal induced in element No. 21* 
is allowed to travel in a coaxial cable toward 
element No. 1 the signal will arrive at a point A 
at the same time the parallel wavefront arrives 
at element No. 1. The distance of point A from 
element No. 21* is 

Da - -j- cos ep (1) 

where 

D]_ • distance of element No. 1 from 
No. 21* 

c - velocity of light 
V = velocity of propagation in the 

cable. 

If the remaining distance between point A and 
element No. 1 is equally divided, it is possible 
to locate a summing point, as in figure 3, which 
receives the signals induced in elements No. 1 
and No. 21* at precisely the same time. 

Signals induced in the remaining 22 elements 
will arrive, via the direct cable route to the 
summing point, earlier than the signals from ele¬ 
ments 1 and 21*. They experience less delay either 
because their path length is shorter or because 
they utilize less cable at the slower velocity of 
propagation. For this reason, the proper amount 
of fixed delay cable is added to the cabling from 
each element such that the total travel time of 
each signal from the parallel wave front location 
at element 21* equals the time delay of the inter¬ 
connecting cable from element 21* to the summing 
point. The total amount of cable required from 
each element to the summing point is determined 
from the following time relationship 

Tnc - DsP - Dn cos ® (2) 
V c 

where v, c, and are as defined above, and 

Tnc - time delay of cable connecting 
element n to the summing point, 

Dsp - distance of summing point from 
element No. 21*, and 

Dn - distance of element n from ele¬ 
ment 21*. 

The maximum value of ® is 30 degrees for the 
ISCAN array and was chosen to accommodate the 
largest expected downcoming angle of arrival of 
the ionospherically reflected h-f signals. Equa¬ 
tion (2) shows that, for smaller values of CP, 
less delay is required in each of the element 
signal paths if the position of the summing point 
is fixed. It is therefore possible to position 
taps along a portion of each delay cable so that 
additional beams can be formed between zero and 
30 degrees. An analysis 5 reveals that the total 
amount of cable, including element transmission 
lines and delay cable, is minimized by locating 
the summing point near antenna element No. 5. 
Location of the summing point near the array cen¬ 
ter would require about 60 percent more cable. 

A simplified diagram which illustrates the 
beam forming method is given in figure 1*. Beams 
in five different directions are formed simul¬ 
taneously by the use of multiple-tapped delay 
lines in each channel. Each group of taps shown 
joined together in the diagram is connected to a 
power adder or combiner. The outputs of the five 
combiners, A, B, C, D, and E represents five 
antenna beams displaced from one another by the 
desired angular increments. By use of r-f gates, 
electronically controlled, at the outputs of each 
combiner the antenna beams can be sequentially 
sampled at a very rapid rate for signal comparison. 
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This produces, in effect, inertialess beam steer¬ 
ing. Figure h shows only six antenna elements 
and five beams, whereas the ISCAN array consists 
of 21* elements and generates 11* beams overlapping 
at the half-power points. 

Figure 5, the overall system diagram, shows 
all the major components and the interconnecting 
r-f cable. The control point for the array is 
located near antenna element No. 5 and the actual 
tapped delay cable is designed for beam steering 
about element No. 13. These two parameters were 
so chosen to minimize the total amount of tapped 
delay cable as well as system coaxial cable. 

The Antenna Array 

Array Design 

The physical area occupied by the antenna is 
very small since the interconnecting cable is 
buried under ground and the only parts visible 
are the 21* self-supported wooden poles on which 
the dipoles are mounted. The antenna elements 
are non-uniformly spaced and constitute an un¬ 
filled array in which the element spacing varies 
from about 20C to 350 feet that is, about 3 to $ 
wavelengths at mid-band. The use of an unfilled 
array results in a considerable reduction in 
system cost since a conventional filled array 
with half-wavelength spacing would have about 192 
dipole elements plus all the additional cable and 
fittings associated with the dipoles. The non-
uniform spacing, wherein element position is de¬ 
termined by a polynominal relationship, is a new 
design concept of Avco which oermits control of 
pattern sidelobes in the important spatial sector 
(within 30 degrees of the array axis). The over¬ 
all length of the array was chosen to provide 
beams narrow enough to resolve multipath or inter¬ 
fering signals. The two lowest beams are only 1*.O 
degrees apart in elevation angle and the two 
highest are 1.2 degrees apart. 

Figure 6 illustrates the position and rela¬ 
tive beamwidth of the 11* overlapping beams as 
they exist in the elevation plane. The amplitude 
reduction at the lower elevation angles is caused 
by operation over soil of average conductivity. 
Since the array generates beams in the form of 
conical shells the azimuth plane beam patterns 
decrease in beamwidth in a similar manner as the 
off-axis angle increases. A typical calculated 
beam pattern showing sidelobe structure is given 
in figure 7. This pattern shows the sidelobe 
control provided up to angles of about 1*0 degrees 
off axis which is considered very adequate for 
the intended application of the array. The side¬ 
lobes at more than 1*0 degrees off axis average 
about 13 db below the main beam. 

The actual directivity of the unfilled array 
may approach 18.9 db above isotropic (including 
5.1 db element directivity) assuming that the 

signals from all 21* elements add coherently and 
the noise contributions add randomly. The direc¬ 
tivity, calculated from patterns and assuming 
perfectly conducting ground, averages about 18.5 
decibels above isotropic. Neglecting the effect 
of finite ground conductivity the directivity of 
all 11* beams is nearly the same because each 
fills about the same solid angle in space. 

An effort was made to insure that the side¬ 
lobe levels, within 30 degrees of the array axis, 
were kept below a reasonable level. Statistical 
calculations were made to establish tolerances 
for phase and amplitude errors in the array so 
that these did not contribute sidelobes above -20 
db*. Adjustments for both phase and amplitude 
were provided in each element signal path to keep 
errors within the permissible tolerances. Actual 
field tests performed after installation proved 
that the array could be adjusted to operate with¬ 
in these limits. 

Antenna Elements 

Each of the twenty-four elements of the ISCAN 
array consists of a vertically polarized center-
fed dipole. Each dipole element, 29' 2" long 
overall, is supported by insulating rods on a 
wooden telephone pole, as in figure 8. An air¬ 
core auto-transformer, connected across the di¬ 
pole ends at the feedpoint, transforms the dipole 
impedance down by a factor of about one-half. 
The impedance is resistive and 35 ohms at 11*. 2 
me. The intentional mismatch to the cable of 73 
ohms characteristic impedance serves to reduce 
mutual coupling effects between elements and to 
improve "phase-tracking" over the frequency range. 

The feedline coaxial cable is routed down the 
inside of the lower dipole tube where it joins 
the coaxial cable choke at the bottom of the low¬ 
er element. The cable choke is resonant at ap¬ 
proximately 17 me and effectively isolates the 
dipole from the feed cable and ground, thereby 
eliminating the need for a ground screen or 
radials. Both the cable choke and matching trans¬ 
former are encapsulated with a low-loss RTV 
silastic for protection against moisture and 
weathering. 

Effectiveness of the center-fed dipole and 
isolation choke were verified by impedance meas¬ 
urements on the highest and lowest elements of 
the array. Phase tracking of these two elements 
was calculated from the impedance data and figure 
9 shows that the relative phase shifts of these 
two elements differ by less than 7 degrees across 
the 12 to 18 me band. 

Element Cables 

The transmission line, which couples each 

•Except for the two sidelobes adjacent 
to the main beam. 
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antenna radiator to the control point, is one-
half inch, haberline jacketed, 70-ohm, Foamflex 
coaxial cable (made bv Phelps-Dodge). This cable 
is a semi-rigid coaxial line with a solid copper 
center conductor, foamed polyethelene dielectric, 
and aluminum outer conductor. It has a nominal 
attenuation of 0.32 db per 100 feet (15 me) and a 
velocity of propagation of 0.82. This cable was 
chosen for its low attenuation and good tempera¬ 
ture characteristics which allow it to be used in 
extended lengths without the need of pre-ampli¬ 
fiers at each antenna element. The cable was 
buRied in a trench three feet deep running the 
length of the array to prevent ground plane dis¬ 
tortions and to provide a fairly constant temper¬ 
ature environment for the cables during seasonal 
changes. 

About 56,000 feet of this Foamflex cable is 
reauired for the element cabling and another 
22,000 feet of the same 70-ohm cable, without the 
haberline jacket, is used for the fixed and tapped 
delay line. The total cost of cable is only about 
10 percent of the total cost of the experimental 
antenna. 

Beam Forming System 

Control Point 

All of the system components are located at 
the control position, near element No. 5, inside 
a semi-trailer van which is temperature controlled. 
These components include the fixed and tapped de¬ 
lay cables, the r-f driver amplifiers, tap ampli¬ 
fiers, combiners, programmer, and visual display 
arranged schematically as in the system diagram 
of figure 5. The general layout of the control 
van, figure 10, shows how the fixed and tapped 
delay cables are arranged. 

The r-f driver amplifiers are installed be¬ 
tween the interconnecting element cables and their 
associated fixed delay cables in order to compen¬ 
sate for the individual attenuation of the various 
lengths of cable and for the differences in effec¬ 
tive height of the individual dipoles. The largest 
element cable has an attenuation of about 18 db. 
Also, isolation amplifiers (tap amplifiers) are 
provided at each tap of the tapped delay cables 
to reduce standing wave effects on the cables due 
to tao loading. Fach combiner utilizes a specific 
tap on each cable to collect the 21* separate 
signals which are combined to form one of the 11* 
beams. Any of the combiners can then be connected 
to an ordinary communication receiver for continu¬ 
ous use of a given beam. Since the beams are 
broad-band, any number of communication receivers 
can be connected to any one of the 11* beams through 
the use of multicouplers; however, provision for 
just three receivers has been incorporated in the 
present ISCAN system. The use of multiple re¬ 
ceivers permits simultaneous reception of a number 
of communication channels at various frequencies 

and of various modes of propagation at each fre¬ 
quency. 

R-F Driver Amplifiers 

The transmission lines from the antenna ele¬ 
ments, upon entering the control van, are con¬ 
nected to separate r-f driver amplifiers. These 
amplifiers provide terminations for the element 
lines and their outputs drive the fixed delay 
cables. The amplifiers are wide band, covering 
10 to 20 me, and gain control is achieved by al¬ 
tering the amount of negative feedback around 
the the second stage which results in a signifi¬ 
cant reduction in intermodulation distortion. 
The feedback, which is applied through a variable 
capacitor, allows for the gain variation with a 
nearly constant phase shift. The 21* driver ampli¬ 
fiers are constructed on rack-mounted chassis, 
two amplifiers per chassis, and placed in a fan-
ventilated, rack-type cabinet along with a power 
supply and 21* variable delay lines as shown in 
figure 11. The delay lines provide fine adjust¬ 
ment of the fixed delay for each signal path and 
are equivalent to approximately 1*0 feet of the 
Foamflex cable. 

Typical performance of the driver anplifiers 
is listed below: 

1. Noise Figure - Average 5.7 db at vari-
ousgains over the passband. 

2. Intermodulation Distortion - Third 
order products 50 db below two 25 mv 
signals induced in the antenna. 

3. Input VSWR - Less than 1.5 from 12 
to 13 roc. 

1*. Output VSWR - Less than 2.0 from 
12 to 18 me. 

5. Gain at 15 Megacycles - Continuously 
variable from 10 to 37 db. 

6. Phase Shift Relative phase shift be¬ 
tween two amplifiers at various gains 
over the passband ♦ 1*°. 

Tap Amplifiers and Combiner 

Figure 12 shows the construction of a tap 
amplifier chassis which contains 11* Type 2N706 
grounded emitter amplifiers mounted on a single 
printed circuit board. The tap amplifiers pro¬ 
vide isolation and drive signals through the 
inter-connecting cables to the combiner. Trans¬ 
istors were chosen to conserve space and power 
along with the need for a relatively high input 
impedance to allow direct connection to the de¬ 
lay cable without causing appreciable disconti¬ 
nuity. The tap amplifiers are capacitively 
coupled from the cable through a variable capa¬ 
citor which is used as a gain adjustment since 
the outputs of all the 336 tap amplifiers must be 
equal. The cable tap itself consists of a direct 
connection to the inner conductor by means of a 
small screw which is supported and insulated from 
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the outer conductor, by a Rexolite bead. The 
aluminum block, which supports the tap amplifier 
chassis in figure 12, also clamps the 111 coils of 
each tapped delay cable where the taps are made. 
Note the small volume, 7x7x3 inches, occupied 
by this assembly of lú amplifiers. 

Eight-foot lengths of RG-71/U, 93-ohm co¬ 
axial cable, are used to connect the 336 tap 
amplifier outputs to the lb combiner circuits. 
Each of the It antenna beams is formed by combin¬ 
ing appropriate tap signals from the 2b antennas. 
The 2b tap signals are fed to a common bus in the 
combiner rack, see figure 13, where a resistive 
termination is provided. The combiner rack also 
includes the r-f gate circuits, (one beside each 
combiner bus), the programmer, and the power sup¬ 
ply. 

Programmer and Display 

The programmer provides the timed signals 
necessary to control the r-f gate circuits and 
the oscilloscope sweep for the visual display. 
These circuits seouentially sample each beam of 
the ISCAN array and apply the output to a re¬ 
ceiver whose i-f output is displayed on the oscil¬ 
loscope. The display receiver, oscilloscope, and 
three auxiliary receivers are located in the dis¬ 
play console, as shown in figure lb. The three 
rotary selector switches for the auxiliary R-390 
communication receivers are positioned below the 
display oscilloscope. Toggle switches are also 
located on the control console to enable the 
operator to turn ON or OFF any or all of the 
driver amplifiers in the process of checkout and 
adjustment of the array. 

The programmer circuit consists of a clock 
multivibrator, four bistable multivibrators, and 
a diode matrix. The output of the diode matrix 
furnishes the control signals for the r-f gates 
which all have a common load resistor. Vertical 
deflection for the display oscilloscope is pro¬ 
vided by the lb gated signals which appear across 
this common load. The horizontal sweep voltage, 
derived from the clock circuit, is delayed in 
time to coincide with the output of the R-390 
receiver. 

The display, as observed on the oscilloscope, 
consists of Ih vertical lines corresponding to the 
relative signal strength of the beams. The repe¬ 
tition rate of the display can be adjusted over a 
range of approximately 20 to 60 times per second. 
It is a simple procedure for the system operator 
to observe the displayed output of the lb beams 
and select whichever one he deems best for opera¬ 
tion with one of the auxiliary receivers. 

System Performance 

Operation 

Installation of the ISCAN system was com¬ 
pleted on 30 June 1961, and although the system 
has been operational since that time the evalua¬ 
tion of performance is far from complete. How¬ 
ever, the Signal Corps has conducted some opera¬ 
tional tests, employing short pulse transmissions 
from Germany, which prove the ability of the ar¬ 
ray to separate multipath signals and interfer¬ 
ence. The signal consisted of 0.5 millisecond 
pulses at a repetition rate of 25 per second arid 
carrier frequencies of 13.565 me and 18.208 me. 
A comparison was made, on a dual trace oscillo¬ 
scope, of the outputs from the ISCAN array and a 
typical broad beam receiving antenna. The dis¬ 
play showed that the broadbeam antenna might pick 
up from one station as many as b or 5 multipath 
signals at certain times, with delays of one to 
several milliseconds between them. It was possi¬ 
ble, by beam selecting with the ISCAN array, to 
receive any one of these signals and essentially 
reject the others. 

Figure 15 shows a photograph of the ISCAN 
visual display for a long range signal taken at 
three different times about 30 seconds apart. A 
short period of system operation using the oscil¬ 
loscope display is sufficient to show that multi¬ 
path occurs frequently and that rapid changes in 
angle of arrival can occur. The multiple narrow 
beams of the ISCAN system along with the provi¬ 
sion for rapid sequential sampling and visual 
display offer an advanced capability for the 
study of ionospheric propagation when combined 
with data gathered by other research tools. The 
primary objective is, of course, improving long 
distance communication. 

Reliability 

The operational period has not been suffi¬ 
ciently long to fully evaluate the system relia¬ 
bility, noise figure, and intermodulation distor¬ 
tion. Nevertheless, a design study reveals that 
the system itself is inherently reliable because 
of the redundancy of signal paths in the equip¬ 
ment. Each of the 2b signals routed to a com¬ 
biner arrives via a separate antenna, cable, 
amplifier, and delay line. A malfunction in any 
one or even several signal paths will not appre¬ 
ciably affect the overall system performance. 
Should several of the signal paths in the equip¬ 
ment cease to function, the effect is to reduce 
the array aperture causing a reduction of antenna 
gain and an increase in beamwidth and sidelobes. 
But the system will continue to operate with only 
moderate degradation in performance. 

Mention has been made previously that the beam 
forming system involved no complicated electronic 
or mechanical phase shifting. The simplicity of 
the overall ISCAN system promises a rather high 
degree of system reliability. 
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Conclusions 

Satisfactory performance has been achieved 
from the ISCAN array although system evaluation 
has not been completed. Data obtained to date 
proves that it is possible to produce broadband, 
multiple antenna beams from an array using tapped 
delay lines and to achieve inertialess beam steen¬ 
ing by electronic sampling of these multiple oven-
laoping beams. The ISCAN system has sufficient 
directivity to discriminate against multipath and 
interference and thereby enhance long-distance, 
h-f communication. The antenna system is inher¬ 
ently very reliable because it makes use of re¬ 
dundant signal paths. It has been experimentally 
verified that chase and amplitude errors can be 
controlled within acceptable tolerances. The 
non-uniformly spaced, unfilled array greatly re¬ 
duces cost without sacrificing performance. 

Other significant accomplishments are the 
development of a ground-independent antenna ele¬ 
ment, very accurate measurement of electrical 
cable length, development of r-f amplifiers (some 
transistorized) with good noise figure and phase 
tracking, and design of a visual display which 
permits the system operator to observe the rela¬ 
tive outputs of the multiple beams at all times. 

The experimental antenna is only a first 
step towards development of an operational system. 
A final version would include automatic beam se¬ 
lection, provision for angular diversity, and 

possibly polarization diversity or automatically 
adjusted optimum-polarization. 
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Fig. 5 System Diagram 



Fig. 6 Elevation Beam Pattern», Including Element Factor 

(The Response From 0 to 30 Degrees Has Been Ploted on The Basis of Calculations Every 0.2 
Degrees Higher Angles Have Been Calculated And Plotted Only Every Degree. ) 

Fig. 7 Calculated Antenna Pattern for Twenty-Four Dipole Elements, Non-

Uniformly Spaced, with Illumination, Steered to 25° 
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Fig 9 Phase Shift versus Frequency for Two Antenna 
Elements at Different Heights Fig. 11 Front of Driver Amplifier Rack 
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SUPERDIRECTIVE ANTENNA ARRAYS FOR 
IMPROVED VLF RECEPTION 

R. O. Schildknecht, Sichak 
Associates, Nutley, N. J. 

Abstract 

Superdirective antenna arrays offer a practical and signifi¬ 
cant improvement in the reception of VLF radio signals. Based 
on supergain techniques, such arrays enhance the SNR by the 
use of a highly directional pattern without occupying more 
than a few per cent of the space that would be required for a 
conventional array, and do not degrade the bandwidth. 

Supergain techniques are not usually of practical interest 
because of unavoidable losses in efficiency and in many cases, 
drastic reduction in bandwidth resulting from interaction be¬ 
tween elements. 

It is shown that most of the problems with superdirectivity 
are peculiar to the case of efficient antennas, and do not apply 
to VLF receiving antennas in which extremely low efficiencies 
are easily tolerated. 
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THE COUPLING AND MUTUAL IMPEDANCE BETWEEN CONICAL LOG-SPIRAL 
ANTENNAS IN SIMPLE ARRAYS 

John D. Dyson 
Electrical Engineering Laboratory 

University of Illinois 
Urbana, Illinois 

Summary 

The radiation characteristics of the conical 
logarithmic spiral antenna make it attractive as 
an element for circularly polarized arrays. The 
design of such arrays requires a knowledge of the 
radiation coupling and mutual impedance between 
these log-spiral elements as a function of rota¬ 
tion as well as element spacing, and for some 
array configurations a knowledge of the location 
of the phase center of the elements. 

A general consideration of the conical log¬ 
spiral antenna as a locally periodic, slow wave 
structure is outlined, and in so-doing a quasi-
empirical formula for the location of the 
antenna phase center is developed. 

An investigation of the mutual impedance 
between the log-spiral antennas has shown it to 
be very low. Information on this impedance and 
on the coefficient of coupling between antennas 
is supplied for two different geometrical array 
configurations and for various antenna parameters. 
Pattern modification due to the presence of para¬ 
sitic elements has been investigated. For ele¬ 
ment to element spacing of at least one half 
wavelength, this consists primarily of an in¬ 
crease in beamwidth. Radiation patterns for 
several arrays, including one 4 element conical 
array are shown. This latter array should be of 
interest as a primary antenna or as a feed for 
a large parabolic reflector in telemetry appli¬ 
cations. 

1. Introduction 

There are many applications which require 
a circularly polarized field with narrower beam¬ 
widths and higher gains than can be secured with 
the individual planar and conical logarithmic 
spiral antennas which have been developed to 
date1. Many of these applications have been 
filled by constructing arrays of helical antennas. 
For wide band applications, it would appear that 
a considerable advantage could be obtained from 
the extremely wide bandwidth of the conical log¬ 
spiral antenna as an array element. Thus, al¬ 
though the array factor of conventional arrays 
would be a limiting factor, the element factor 
could be made essentially independent of fre¬ 
quency over a considerable band of frequencies. 
In addition to bandwidth, the conical log-spiral 
antenna is unique in that the radiated fields are 
essentially circularly polarized over consider¬ 
able angles off the axis of the antenna. 

There are various geometrical configurations 
that can be used when arraying the conical 

9 
antennas. Four of these are shown in Figure 1. 
The parallel array and the collinear array would 
have a frequency dependent array pattern; how¬ 
ever, the conical array and coaxial arrays could 
theoretically be designed to be independent of 
frequency. The conical array has the same 
geometry as that used by DuHamel and Berry when 
arraying log-periodic elements.$ This geometry 
limits the array to a few log-spiral elements; 
therefore, to obtain very narrow beamwidths from 
an array the conventional parallel configuration 
may offer the only solution. In addition to the 
use of arrays as primary radiators, consideration 
has recently been given to using an array of two 
contrawound conical log-spiral antennas as^t^e 
feed for large parabolic tracking antennas. 

The design of arrays of conical antennas 
requires a knowledge of the radiation coupling 
between antennas to determine the effect on the 
element pattern, and the mutual impedance between 
antennas to compute the element terminal imped¬ 
ance. Since a simple rotation of these antennas 
about their axes allows phasing of the array, a 
knowledge of the radiation coupling and mutual 
impedance as a function of rotation as well as a 
function of element spacing is desirable. The 
determination of the element to element separation 
requires a knowledge of the location of the ele¬ 
ment phase center. The purpose of this paper is 
to supply this information for parallel and 
conical linear arrays over a restricted, al¬ 
though representative, range of antenna param¬ 
eters. 

2. Coupled Antennas 

Consider a two element array in which cur¬ 
rents I and I flow as a result of voltages Vj 
and V àppliedacross the feed terminals of the 
two eíements. As far as these terminal voltages 
and currents are concerned, the two antennas may 
be represented by the general four-terminal net¬ 
work in Figure 2a. 

In this network, is the mesh impedance 
of mesh 1 (less the generator impedance) and is 
the impedance of antenna 1 with antenna 2 present 
and open circuited (not equal to the self-imped¬ 
ance of antenna 1 when isolated). Thus, we have 

V2 = ̂ l1! + Z22 J2 

where Z is the mutual impedance between the 
antennas? In the usual case where the medium is 

165 



reciprocal, Z^2 = Z2 . 11 v2 = °’ the inPut Pre¬ 
sented to the generator at reference plane by 
antenna 1 with antenna 2 present is 

Z12 Z21 

Z22 
(2) 

Rearranging; we can express this ratio as 

V1 2 
ï; = zn (1 - k > 

where 

k=-^-

/Z11Z22 

(3) 

(4) 

The complex number k is defined to be the co¬ 
efficient of coupling between antennas one and 
two . For identical antennas Z = Z and 

11 22 

If antenna 1 is driven and antenna 2 open cir¬ 
cuited, I2 = 0, and it can be shown that 

k = (6) 

Thus the measurement procedure is reduced to the 
determination of one impedance and the complex 
ratio of two voltages. This method has advan¬ 
tages of accuracy and ease of measurement over 
the short circuit-open circuit method or the 
symmetric-antisymmetric method when measuring low 
values of mutual impedance. These advantages 
have been pointed out by Stratoti and Wilkinson 
who measured the coupling between short helices. 1*1

The impedance of the antenna and its mutual 
impedance with the other antenna, referred to the 
feed terminals, are the basic quantities of in¬ 
terest. However for the conical log-spiral, which 
radiates a broad lobe off the apex of the cone, 
it is not practical to attempt to measure the mag¬ 
nitude and phase of the voltage across the feed 
terminals which are situated at this apex. Thus 
it is necessary to measure the coupling and mutual 
impedance at some length of a transmission line 
and, taking into account line loss, transform 
these quantities down this line to the antenna 
terminals. Although it is not convenient to 
establish and measure the open circuit voltage at 
reference plane A2(apex terminals of antenna 2), 
it is still desirable to use the impedance-
voltage-ratio method, hence we force I ’, the 
current at the desired reference plane B in 
Figure 2b to be zero. For I ' = 0, and Z = Z 2 * 11 22’ the terminal impedance Z^ and the mutual im¬ 
pedance Z^2 can be expressed in terms of the 
measurable quantities Z' , Z’ , and Z* at 
reference planes B and B ana the characteristic 
impedance and length of tne transmission lines 
involved. 1

The coupled energy measured at the antenna 
terminals may be only a partial indication of the 

interaction of antennas operated in an array. 
This is true in particular for traveling wave 
antennas as has been recognized by several 
authors. Recently Rupp12 has proposed that this 
measured characteristic be referred to as the 
"terminal coupling factor” to differentiate it 
from a "pattern modification factor". He aptly 
points out that since traveling wave antennas may 
couple to each other in a directional manner a 
pair of such antennas may be considered to be a 
radiating directional coupler. Under certain 
conditions it would thus be possible for more 
coupled energy to be radiated than transmitted to 
the terminals. For these reasons a study was 
made of the modification of the radiation pattern 
due to the presence of parasitic elements. 

3. The Phase Center 

In the parallel array the effective spacing 
of the antennas is simply the separation between 
the axes of the cones. In the conical array the 
effective separation is the spacing in wavelengths 
between the phase centers of the antennas. Thus 
a knowledge of the relative position of the phase 
center is required to calculate conical array 
patterns. In this section we shall outline a 
general application of the "backward-wave concept" 
to the conical log-spiral antenna and in so doing 
develop a quasi-empirical formula for the loca¬ 
tion of the phase center of the radiated field. 

13 Mayes, Deschamps, and Patton introduced 
the basic idea that the logarithmic periodic 
antenna could be considered to be a locally 
periodic structure whose period varies slowly 
increasing linearly with the distance to the point 
of excitation. It was pointed out that for normal 
operation there is a radiation region with a phase 
of excitation such that the structure will radiate 
toward the feedpoint. Among such structures the 
backward wave zig-zag antenna is the counterpart 
of the log-periodic zig-zag, and the backward 
wave bifilar helix the periodic counterpart of the 
conical log-spiral antenna. To apply this concept 
to the conical log-spiral antenna, it is instruc¬ 
tive to consider some of the techniques which have 
been useful in the study of helices. 

Consider the truncated portion of the wire 
version of the conical log-spiral antenna shown 
in Figure 3. This structure is of the same basic 
geometry as the helix, and a local period of the 
structure can be defined in terms of a helix with 
parameters equivalent to the corresponding log¬ 
spiral parameters averaged over that period. The 
study of periodic structures such as the helix 
has been facilitated for a number of years by the 
use of the "k-ß" diagrams to display the fre¬ 
quency variation of the propagation constant along 
the structure. Recently this approach has been 
applied to radiating structures.14-15 

The solution of the determinantal equation 
for the real phase constants on the helix, as a 
function of ka, requires that the fields go to 
zero amplitude as the distance extends to infinity. 
As a result we require 
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Iß a| > ka n (7) 

where ß is the phase constant of the n-th space 
harmonic on the structure, k is the phase con¬ 
stant of wave propagation in free space and "a" 
is the radius of the helix. Thus there are 
regions on the k-ß diagram where the roots of the 
transcendental equation are real, corresponding 
to slow waves. Similarly this condition produces 
so-called "forbidden regions" in which solutions 
are complex. 

The boundaries of these^gegions can be 
expressed by the inequalities 

. Iß la 
Il ka n _ i i kaIm I + —r < — -—g < |mI-—p 

cot 5 — cot 5 — cot 5 
and (8) 

ka < N 
cot £ — 2 

where for multi-wire helices in the higher modes 

m = -1 + n N (9) 

è is the pitch angle, N is the number of wires or 
arms, and n is an integer. For a two wire sym¬ 
metrical helix with the arms excited with a 180 
phase reversal, the k-ß diagram takes the form of 
Figure 4. 

The parameters normally plotted for the 
helix are the pitch normalized to the wavelength 
in free space and to the wavelength of the surface 
wave. On the conical spiral the pitch distance 
on the surface is p', and 

p* _ ka _ ka 
X " cot 4 ~ tan a o 

(10) 
p1 _ Ba 
X " tan a s 

where a is the average radius of the period with 
pitch p’, X the wavelength in free space and X 
the wavelength of the surface wave. These are Ihe 
parameters used in Figure 4. 

Sensiper has shown that a good approximation 
to the locus of phase constants on the helix for 
ka in the range of interest here, is a straight 
line drawn through the origin with slope 

= sin Ê (11) Ba 

and the boundaries of the m = 1 forbidden region. 
Such an approximation assumes propagation of ener¬ 
gy with the speed of light along the arms. Al¬ 
though the determination of the propagation con¬ 
stant along the surface of the cylindrical helix 
applies to the infinite structure, it has been 
shown that the solution is useful for interpreta¬ 
tion of the characteristics of the finite mono-
filar endfire helix and the finite backward 

18 wave bifilar helix with thin wire arms. 

On the conical spiral the ratio of the 
velocity of the slow wave to that in free space 
is given by 

ka 
Ba 

P cos a (12) 

The radius "a” of the cylindrical helix is 
a constant, therefore as the frequency of opera¬ 
tion is increased the parameter ka increases. 
Under the above approximation, as ka is increased 
the propagation constant of the wave propagating 
along the surface of the structure away from the 
point of excitation increases and as it approaches 
that of the 1st backward space wave there will be 
strong coupling between these waves. When 
coupling begins the propagation constant will 
depart from the straight line approximation. The 
slope of this curve at any point on the curve, 
is the ratio of the group velocity of the surface 
wave, V , to that in free space and hence when 

’ g 

(13) 

propagation in the surface wave stops. This 
point corresponds to one end point of a stop 
band. For ka above J^is point the propagation 
constant is complex. In the open structure 
this implies a transfer of energy to the back¬ 
ward space wave, and experimental evidence indi¬ 
cates that the effective phase center of the 
antenna is located in this region in normal back¬ 
ward wave radiation. As ka is increased further 
it is possible to force the beam to scan through 
the visible region of the spectrum. 

d(ka) Vg 
d(Ba) ~ V o 

In the above discussion we have considered 
operating conditions with a change in ka. On a 
periodic structure such as the helix, with con¬ 
stant radius and pitch angle, a change in ka 
implies a change in the frequency of operation. 
On the conical log-spiral antenna the spiral 
angle a is constant but the radius "a" is a 
linearly varying function of the distance from 
the apex along the conical surface. Thus a 
change of ka can result from either a change in 
position on the cone or from a change in fre¬ 
quency. Further, on the structure of infinite 
length any particular value of ka can be found 
for any frequency of operation. Thus, to con¬ 
sider the behavior of the structure one of these 
two variables must be held fixed. Again, we 
will consider only those waves predicted by the 
straightline approximation above, since there is 
experimental evidence indicating that only the 
lowest order mode consistent with the excitation 
and winding of the arm contributes significantly 
to the radiation pattern of the two arm balanced 
conical antenna when opeggted such that there is 
negligible "end effect”. 

If we assume operation at a fixed frequency, 
a wave propagating along the arms away from the 
apex implies an increasing ka. Hence at some 
point on the structure, the propagation constant 
of the surface wave associated with the flow of 
energy along the arms increases until there is 
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coupling of energy to the backward space wave and 
rapid radiation. Experimental evidence indicates 
that the position of the phase center, expressed 
in wavelengths to the apex, remains essentially 
fixed. 2 Therefore since a/X at the phase center 
remains constant, ka remains constant for all fre¬ 
quencies of operation, excluding those frequencies 
where normal operation is distorted by the finite 
truncations of the antenna, i.e. end-effect. The 
operating point of the frequency independent 
antenna does not scan along the line ka = Sa cos a 
with a change in frequency; instead the parameters 
ka and Ba scale with frequency. 

In Figure 4 if we calculate an expression 
for the intersection of the asymptote 

ka = Ba cos a 

and the edge of the m = 1 forbidden region, we 
obtain 

, sin a ka = --
1 + cos a (14) 

which is the circumference such that the antenna 
is phased to radiate backward along the surface 
of the cone. However, a study of the symmetry of 
the conical antenna indicates that all radiation 
from that along the surface of the cone out to 
that at an angle of 9 from the surface will 
radiate in the backward direction. Thus it can 
be shown that the average circumference, of the 
period such that the following relationship is 
satisfied is the approximate region on the conical 
log-spiral structure that is phased for backward 
radiation. 

sin a < ka < sin a_ 
1 + cos a — — 1 + cos a cos 9 o 

(15) 

If the efficiency of excitation of the first 
backward space wave is high enough it can be 
postulated in the light of the above discussion 
that the radiating region is confined to approxi¬ 
mately that circumference which satisfies equation 
(14). However, Sensiper has shown that the 
approximation due to the use of the asymptote and 
the region boundaries results in a ka that is 
slightly high since the coupling between these 
waves forces the curve down. Thus, this inter¬ 
section point can be considered as only an upper 
bound for the start of the backward wave radiating 
region. 

The measured phase centers of several 
antennas with narrow constant width arms and with 
cone and sgiral angles varying from 15 < 9 < 
30° and 60 < a < 83° are plotted in Figure°5. 
These phase centers occur at a ka considerably 
below the intersection point and their location on 
the k-B diagram may be approximated by a straight 
line. 

The orientation of this line is interesting. 
The distance between the intersections of the 
asymptote for that particular antenna and this 
line, and the edge of the m = 1 forbidden region 
is directly related to the beamwidth of the 

antenna. As this distance decreases more of the 
active region is moved into the visible region 
of the spectrum and more energy is radiated at 
an angle from the surface. Wire antennas wound 
with an a of 60 have a wide beamwidth (on the 
order of 120 ) while those with a = 83 have 
patterns with beamwidths on the order of 70 
degrees. The line also implies that at a spiral 
angle a of 45 the antenna at the phase center 
(and hence we could expect the major portion of 
the active region) is phased to radiate at an 
angle from the axis of the antenna. In agreement 
with this, it has been determined that thin wire 
antennas wound with an a of 45 have multiple 
side-lobes and a major portion of the radiation 
directed in an endfire direction. 

The data plotted in Figure 5 is for wire 
antennas. From pattern information, and a pre¬ 
vious study of the near fields on the planar 
antenna, we could expect the slope of the approxi¬ 
mate locus of the phase centers for antennas with 
wider exponentially expanding arms, to become 
more negative and thus more nearly parallel to 
the region boundary, with a minimum change for 
large a. 

If we calculate an expression for the inter¬ 
section of the phase center line and the asymptote 
taking into account the cone angle 9 , we get 

1.2 sin a 
1.4 + cos a cos 9 o 

(16) 

This expression is plotted in Figure 6. A family 
of curves, one for each value of 9 could be 
plotted, but for antennas that are good unidirec¬ 
tional radiators the cone angle varies as 10 < 
29 < 45° and therefore .996 > cos 9 > .924. 
Thus cos 9 — 1, and it is felt that°the single 
curve is sufficient. 

A recent study of the near fields on the 
conical log-spiral antenna by McClelland indicates 
good agreement between the measured characteris¬ 
tics of the near fields and those that might be 
predicted in tegys of the applications of the 
above concepts. 

4. Experimental Considerations 

The conical log-spiral antenna with con¬ 
trolling parameters and an associated coordinate 
system is shown in Figure 7. For the present in¬ 
vestigation a series of antennas with parameters 
29 = 15 , D = 17.5 cm^ d = 4.5 cm, h = 47.3 cm 
anâ a = 60, 73, and 83 were used. The antennas 
were constructed from 1/4 inch copper tubing 
supported by 1/2 X 1 inch wood struts as shown in 
Figure 8. The feed cable RG-141/U was carried 
through one of the arms to the apex of the cone. 

All measurements were made at a frequency of 
610 me which, for these antennas, was near the 
low end of the range of frequencies where the 
antennas could be expected to operate in a fre¬ 
quency independent manner. Thus the active region 
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was at the lower portion of the antenna and in 
the case of parallel antennas the coupling could 
be expected to be the tightest. 

5. Measured Coefficient of Coupling 

The magnitude of the coupling coefficient 
for parallel antennas is plotted in Figure 9. 
The measured coupling as a function of separation 
shown in Figure 9a is low, approximately -27 db 
for a of 6 0 , and -41 db for a of 73° and 83° at 
S = X/2. The coupling rapidly decreases as the 
spacing increases^ with antennas having a wider 
beamwidth (a = 60 ), being more closely coupled 
than those with a narrower beamwidth. There is 
some scatter of the measured points for larger 
separations. This was attributable to back 
scatter at the site. Although the antennas were 
outdoors, it was determined that there is approx¬ 
imately a 5 db possible error due to the site 
for separations of a wavelength or more where 
the coupling level was -50 db or greater. These 
spurious reflections did not prove bothersome 
when the separation was fixed and the parasitic 
antenna simply rotated. 

The variation in terminal coupling as a 
function of relative rotation of the parasitic 
antenna is plotted in Figure 9c. The antennas 
are more closely coupled when oriented in a like 
manner, and loosely coupled when rotated 90 with 
respect to each other. Thus, although a rotation 
of the antennas to phase an array would cause as 
much as 10 db variation in the coupling, the 
general level of coupling is so low that, as 
indicated later, the change in mutual impedance 
is small compared to the self impedance of the 
antennas. 

Terminal coupling between right and left 
hand wound antennas shown in Figure 9b is on the 
same order of magnitude as that between like 
antennas, with the coupling between the contra¬ 
wound antennas actually a little higher for close 
spacing. The term contrawound is used in this 
paper to mean an antenna with a winding of the 
opposite sense to that of the antenna to which it 
is coupled. It is not used to mean one antenna 
with arms wound in both a right and left hand 
direction. The character of the curves is un¬ 
doubtedly a function of the reflections at the 
site which return with the opposite sense of 
polarization. The dashed lines may be a more 
valid estimate of the true coupling. The data 
as a function of rotation does not exhibit a 
well-defined character and again the variations 
are probably due in part to reflected energy. 

Figure 9e indicates that the coupling from 
the n-th to the n + 1 and at least to the n + 2 
element must be considered. It is interesting 
to note that there is almost a 90 shift between o curves B and C. This 90 shift was observed for 
83 antennas but only a 20° shift for a = 60° 
antennas. The period of curve C shifts slightly 
along the horizontal axis with rotation of the 
center antenna, indicating that there must be 
some coupling through or reradiation from the 

center antenna as well as direct coupling between 
the outside antennas. 

The coupling between conical log-spiral an¬ 
tennas in a conical array is considerably greater, 
as shown in Figure 10. Data was taken lor a 
range of ip, the array angle. For minimum ip, 
approximately 17 , the struts of the antennas were 
just touching. In this position the separation 
angle between the surface of the cones was 2 de¬ 
grees. Unlike the parallel case, the surfaces of 
the cones are now closely coupled over the portion 
of the antenna that supports a strong surface wave, 
In addition the tip of the parasitic antenna is in 
strong fields radiated back toward the tip of the 
driven.element. Measured values of terminal coup¬ 
ling were approximately -18, -26, and -35 db for » 
of 60,73, and 83. As the radiation patterns indi¬ 
cate in a later section, in this case more of the 
coupled energy appears to be reradiated than re¬ 
flected back to the feed. 

As the array angle was increased, coupling 
decreased to a minimum at an angle of approxi¬ 
mately 35 to 50 depending upon the spiral angle 
a. A further increase in + increased the coupling 
due to the fact that the antennas were tending to 
radiate more energy toward each other. In the 
limit when = 180 there is maximum coupling. 

This curve should be interpreted in con¬ 
junction with the radiation patterns which 
indicate that the array angle will normally be 
limited to around 60 or less to maintain reason¬ 
ably low side lobes. Since S is a function of +, 
the dual scales on Figure 10(a,b,c) may be used 
as a nomogram to convert 41 to spacing in wave¬ 
lengths. 

Figure 10b indicates less variation with 
rotation. The increase in variation with increas¬ 
ing a is due in part to the fact that these curves 
are taken with X/2 between phase centers and hence 
the array angle (and of more significance the 
separation angle) is smaller for the a = 83° 
antennas. 

For small array angles the coupling between 
contrawound antennas in a conical array shown in 
Figure 10b, is on the same general level as that 
for identical antennas. It however does not 
increase with an increase in the array angle since 
the two antennas are of opposite sense of polari¬ 
zation. Figure 10e indicates that in this array 
as well, the coupling to the second antenna in an 
array is on the same order of magnitude as the 
coupling to the nearest neighbor. 

6. Mutual Impedance 

The real and reactive parts of Z and of the 
mutual impedance, Z , for parallel antennas is 
shown in Figure 11. zAs the coefficient of 
coupling indicates, the mutual impedance is low. 
For an a equal to or greater than 73° the real 
and reactive parts for antennas with the same 
sense of winding are less than 1 ohm. For 
antennas with opposite sense of winding they are 
less than 2 ohms. The real part of the self 
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impedance of the antennas for these cases lies 
between 110 and 160 ohms. 

The mutual impedance between elements in a 
conical array is larger than it is in the parallel 
array. At first inspection Figures 12b and c may 
be misleading, however pattern considerations will 
limit the normal range of a to approximately 60 
or less and in this range the mutual impedance is 
quite low for the 73 and 83 antennas. At 
spacings up to S = A./2 there is little difference 
in the general level of the mutual impedance be¬ 
tween the same or oppositely sensed antennas. 

7. Radiation Patterns — Parasitic Arrays 

The radiation patterns of the individual 
antennas are shown in Figure 13. Also shown is 
the distortion in the individual element pattern 
due to the presence of a parasitic antenna in 
parallel and conical arrays. For all patterns the 
feed line to the parasitic element was terminated 
in its characteristic impedance. There was how¬ 
ever some mismatch between the line and the 
antenna. For parallel antennas the principal 
change is the introduction of some squint in the 
E. pattern taken in the plane of the array and a 
broadening of the beamwidths in this plane at a 
spacing of one half wavelength. As the separation 
is increased this pattern modification diminishes 
until at one wavelength the patterns are very 
similar to the single element pattern. Pattern 
modification is less when the parasitic antenna 
is one with an opposite sense of polarization. 

As previously pointed out, when the antennas 
are placed in a conical array the separation be¬ 
tween the surface of the elements is reduced and 
there is consequently considerably stronger coup¬ 
ling. For the smallest array angle used, = 17 , 
i.e., an angular separation between the conical 
surfaces of 2 , pattern modification is quite 
severe for antennas with the same sense of polar¬ 
ization. Modification is much less where the 
parasitic element is of opposite sense although 
for this close spacing the patterns taken in the 
plane perpendicular to the array are slightly 
distorted. In addition the axial ratio on axis 
may rise sharply as indicated for a = 83 . 
Patterns taken in the plane perpendicular to the 
array were essentially unchanged for the same 
sense antennas. 

The presence of a second parasitic element 
restores symmetry to the pattern but it again in¬ 
creases the beamwidth. Although the terminal 
coupling varies considerably with rotation of the 
parasitic element, the effect of such rotation on 
the radiation pattern is usually small compared 
to the effect due to the physical presence of the 
element. 

As the array angle is increased the pattern 
distortion rapidly diminishes and for a separation 
angle of only 10 the element pattern is modified 
only slightly by an oppositely sensed parasitic 
element. 

The modification in the element beamwidth 
of an a = 83 antenna due to one and two para¬ 
sitic elements is indicated in Table No. 1. 
Changes for 73 antennas are of the same order 
of magnitude as those shown for 83 , those for 
60° antennas are considerably less. 

Table 1 

Approximate half-power beamwidth of isolated 
element and with parasitic and contrawound o 

parasitic antennas present. S = X/2, a = 83 , 
20 = 15° 

$ = 0° $ = 90° 
Antennas Array --g- g- g-

0 4> 0 

Element - 68 64 72 

With CW Par Parallel 66 60 68 

With Par. Parallel 98 74 69 

Par.each Parallel 119 100 65 
side 

With CW Par Conical 67 54 72 

With Par. Conical 65 55 73 

63 

64 

60 

54 

63 

60 

Most of the pattern modification can be 
explained in terms of array theory. A phase 
delay of less than tt/2 in the excitation of one 
element of a two element array scans the beam of 
the array toward this unit. In Figure 13e, the 
separation between the element phase centers is 
approximately À/4 for + = 17 . The radiation 
patterns taken in the plane of the array in this 
case are approximately those of a two element 
array with S = A./4 and a phase delay of ir/4 to 
one element, this would indicate that a signifi¬ 
cant portion of the energy is coupled to the 
parasitic element and reradiated with a phase 
delay. The excitation of an array with an equi¬ 
valent phase advance to one element scans the 
beam in the opposite direction. In the parallel 
parasitic array in Figure 13b, the energy 
coupled to the parasitic antenna is delayed 180 
by the separation. A further delay in reradiat¬ 
ing the energy will appear as a phase advance 
to that element. The result is a squint away 
from the parasitic antenna. 

The fact that a rotation of the parasitic 
element has only a secondary effect would indi¬ 
cate that the net phase delay, excluding element 
separation, in the excitation of and reradiation 
from the parasitic element is approximately the 
same for any orientation. 

8. Radiation Patterns — Driven Arrays 

The electric field radiation pattern of the 
isolated, a = 73 , elements used are shown in 
Figure 14. These patterns may be approximated 
very well by cos^’ 0 and cos 1*3 0 functions. 
The radiation pattern of a parallel two element 
in-phase array with half-wavelength spacing was 
calculated using an assumed element function of 
cos^’^ 0 as a compromise between the isolated 
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element functions of Figure 14. As shown in 
Figure 15 this calculated pattern is in good 
agreement with the measured pattern except that it 
is approximately one degree narrower at the half¬ 
power points. Since Figure 13 indicates that the 
element pattern is broadened when the element is 
placed in a linear array a new element function 
was assumed by fitting a cosine curve to these 
pattgrns.Q A calculated array pattegn using 
cos’ (9+4 ) + .04 for E^ , and cos' 9 for E^, was 
approximately 1 degree wider than the measured 
patterns. 

The geometry of a conical array is indicated 
in Figure 16 where the electric field at a dis¬ 
tant point is given approximately by 

n 4^ + E = cos (9 + -) exp j(Bd sin — sin 9) 

(17) 
n 4j 4j

+ cos (9 - -)expj(-Bd sin — sin 9) 

n 4* 
where cos (9 + —) is the assumed element function, 
d is the separation between element phase centers, 
+ is the array angle, and 9 the angle from the 
axis of the array in the plane of the array. 

The radiation pattern of a two element in-
phase conical arrag was calculated from (19) using 
n = 1.5 and 41 = 34 (S = .5X). This pattern is 
compared to the measured patterns in Figure 17. 
The half-power beamwidth of the measured E^ 
pattern is within one degree of the calculated 
pattern and there is good agreement between the 
patterns for 9+40 degrees. Beyond 9 = 40 the 
measured patterns are somewhat narrower than 
calculated. The E^ array pattern is somewhat 
narrower than calculated; better agreement could 
be secured by using a slightly modified element 
function. 

Measured radiation patterns of several two 
and three element arrays are shown in Figure 18. 
The arrays, when excited with the elements in 
phase, have predictable patterns for a given 
element spacing. A total array angle of 60 to 70 
appears to be the maximum useable angle for 
reasonable side lobes for both two and three 
element conical arrays. A three element, a = 73 . o o " 
conical array of 15 cones with 33 between axes 
of adjacent elements has a pattern half power 
beam width of approximately 40 . Beyond this the 
beamwidth rises. 

The array may be phased by a rotation of 
one element. The similarity between the patterns 
in Figure 18c and Figure 13e may be noted. Rota¬ 
tion of the one element 180 in an excited array 
places a null on axis. Patterns for this case 
and those for the in-phase condition are essen¬ 
tially the sum and difference patterns. Suitable 
hybrid circuitrg2permits the use of these modes 
simultaneously. 

When interpreting the conical array patterns 
it should be noted that a change in the array 
angle +, which brings about a change in the 

spacing between the phase centers of the ele¬ 
ments is not equivalent to a change in the ele¬ 
ment spacing in a parallel array. In a parallel 
array the change in radiation characteristics 
with frequency can be simulated by maintaining 
the frequency constant and varying the element 
spacing, provided the element pattern does not 
change with frequency. In a conical array this 
is not true since a change in 41 changes the 
orientation of the element pattern with respect 
to the array geometry. The element pattern can 
be approximated by a function such as cos 11 

(0 + ^ ). Thus a change in S, and hence 41 effec¬ 
tively changes this function as well as changing 
the element spacing. 

That the conical array geometry does pre¬ 
serve the beamwidth of the array with changing 
frequency of operation is shown in Figure 19. A 
"conical quad-spiral array" with representative 
radiation patterns is shown. The particular 
array shown has a nominal gain of 12 db over a 
circularly polarized isotropic source. The band¬ 
width may readily be extended to cover the 220 
through 2400 me telemetry bands and the capabil¬ 
ity of covering this complete range of fre¬ 
quencies with a single antenna should make it 
attractive for telemetering and acquisition 
functions. In its present form, or with two of 
the elements replaced by contrawound units to 
obtain selectable polarization, it should make an 
excellent feed for a large parabolic reflector. 

9. Conclusions 

A consideration of the conical log-spiral 
antenna as a locally periodic slow wave structure 
has led to somewhat better understanding of its 
characteristics and operation. Under this con¬ 
cept an approximate expression for the location 
of the phase center of the antenna has been ob¬ 
tained. 

An experimental investigation of the coupling 
between conical log-spiral antennas indicates (1) 
that coupling is low; on the order of -30 db or 
greater for element to element spacing of X/2 or 
more in a parallel array. (2) This coupling 
varies with rotation, being a minimum for a 90° 
rotation between elements. (3) Coupling is on 
the order of 10 db greater in the conical array. 
Minimum coupling for 15 cones occurs at an array 
angle of approximately 35 to 50° depending upon 
the spiral angle a. (4) Changes in the basic 
element pattern caused by the presence of other 
elements are minor for an element to elemsit 
spacing of at least one-half wavelength, and 
consist mainly of a broadening of the element 
pattern beamwidth in the plane of the array. (5) 
A good approximation to the array pattern of 
small arrays may be gained from the use of the 
isolated element pattern function. 

A four element conical array that should 
prove useful as a primary radiator or as a 
primary feed for a large parabolic reflector has 
been constructed to operate satisfactorily over 
an 8 to one range of frequencies. This range of 
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frequencies may be readily extended to cover the 
220 through 2400 telemetering bands with one 
antenna. 
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PARALLEL ARRAY 

COAXIAL ARRAY 

CONICAL ARRAY 

COLUNEAR ARRAY 

cosa P' cos a 

Fig. 1. Possible configurations for arraying the 
conical log-spiral antenna 

Fig. 3. Truncated portion of conical log-spiral 
antenna 

Fig. 2. Equivalent network for coupled antennas Fig. 4. "k-B" diagram for bifilar helix 
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Fig. 5. Measured phase centers for several wire 
arm conical log-spiral antennas 

Fig. 7. A conical antenna with associated 
coordinate system 

Fig. 6 Approximate circumference in wavelengths 
at the phase center of balanced wire arm 
conical log-spiral antennas 
10 < 2 0 < 45° 

Fig. 8. Conical log-spiral antennas, a = 60,73 
and 83°; 29 = 15°; d = 4.5 cm; D = 
17.5 cm. ° 

174 



C
O
U
P
L
I
N
G
 
I
N
 
d
b
 
C
O
U
P
L
I
N
G
 
I
N
 
d
b
 
C
O
U
P
L
I
N
G
 
I
N
 
d
b
 

RELATIVE ORIENTATION OF PARASITIC ANTENNA 

<a> 

Fig. 9. Magnitude of coupling coefficient measured between parallel antennas 

(»Erratum: In b above add +10db to indicated coupling Vs S for a = 83°) 
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Fig. 

RELATIVE ORIENTATION OF PARASITIC ANTENNA 

(c) 

IN DEGREES 

(e) 

f IN DEGREES 

(b) 

RELATIVE ORIENTATION OF PARASITIC ANTENNA 

(d) 

10. Magnitude of coupling coefficient measured between antennas in a conical array 
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RELATIVE ORIENTATION OF PARASITIC ANTENNA 

(e) 

(c) 

RELATIVE ORIENTATION OF PARASITIC ANTENNA 

(f) 

Fig. 11. Mutual impedance measured between parallel antennas 

(Subscript C indicates parasitic antenna is contrawound) 



oh
ms

 

RELATIVE ORIENTATION OF PARASITIC ANTENNA 

(•) 

Fig. 12. Mutual impedance measured between antennas in a conical array 
(Subscript C indicates parasitic antenna is contrawound) 



WITH PARASITIC ANTENNA WITH CONTRAWOUNO PAR ANT 

r • 1 40 

(b) 

WITH PARASITIC ANTENNA 

Electric field radiation patterns of conical log-spiral antennas with and without 
a parasitic element present. All patterns taken in plane of array. 20^ = 15 



Fig. 14. Radiation patterns of isolated conical 

log-spiral and assumed element function, 

a = 73°, 29o= 15° 

-E T - CALCULATED 

-Egl EXPERIMENTAL 

r 2C-l5-73-3lw 3F 6l0mc 
-E*J 0 « VAR. </> « 0* 

-ßd Sinf/2 Smö 
♦ Cos'’ (9 - f/2)e 

Fig. 16. Geometry of 2 element conical array 

E - CALCULATED 

EXPERIMENTAL 

2C-I5-73-3IW CA 

d VAR. » 0° 

Fig. 17. Array pattern of 2 element conical, 

in-phase, array. S = X/2, + = 34, 

a = 73° 

Fig. 15. Array pattern of 2 element parallel 

in-phase, array. S = À/2, a = 73° 
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TWO-ELEMENT ARRAY PHASED BY ROTATION OF ONE ELEMENT 
(LINEAR ARRAY IN |«O PLANE) (0 ) 

TWO-ELEMENT CONICAL ARRAY PHASED BY ROTATION OF ONE ELEMENT S»X/2 

(LINEAR ARRAY IN^'O PLANE) 

(c ) 

Fig. 18. Electric field patterns of several arrays 

20 = 15° 

THREE-ELEMENT PARALLEL ARRAY VARIABLE SPACING 
(UNEAR ARRAY IN | *0 PLANE) 

(b ' 

TWO-ELEMENT CONICAL ARRAY WITH VARIABLE ARRAY ANGLE ♦ 
(LINEAR ARRAY IN ÿ * 0 PLANE! (d > 

Axial ratio recorded on axis of array, a 73 



Fig. 19. A "Conical Quad-Spiral Array" with 

representative E field radiation 

patterns, r = axial ratio on axis 
20 = 20°, a = 80°, + = 50° 
O * ,
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^[EC^) - < E^J >] [Belg) - < E^) > ]> 

= UN < [A(X )cos X ] [A(X ) cos X *_] > 
I in m K m m ¿ 

- < AÍX ) cos X > < A(X ) cos X > L 
m ml m m ¿ J 

= UN A2 [cos ki^+^g) + cos ki^-^)] 

- -V [Eo - 11 ^o^ - 1 1 } (15)
UN¿ 1 ° 2 -1

o 

so that the correlation coefficient is found to 
be 

Pa “ { SU2 + *1 } +S^2 - *1}

- 2 - j- [ SUJ - 1] [s(^) - 1 ] ï (18) 
o J 

(b) Cosine-Squared Amplitude Distribution : 

. 2 ,kn « 
\ = cos (^ ) . 

o 
This corresponds to a U to 1 amplitude 

taper. 

N 
o 

p - ïï~TTÎÜTT7F) { 2 Z ox 
[cos k (*1 + *2) + cos k^ - J 

- F IEo(*l - 1 1 ^Eo^*2^ ‘ 1 1 } (1M
o J

III. Specialization to Uniform and Cosine-Squared 
Amplitude Distributions 

The expressions in the preceding section will 
now be applied to two special cases of practical 
interest: the uniform and cosine-squared ampli-
tude„distributions. Closed-form expressions for 
H, a , and p are obtained for both of these two 
cases. 

(a) Uniform Amplitude Distribution : Aj^ = 1. 

N 
o 

E = 1 + 2 ) cos M 
oa / , 

k=l 

2N + 1 
= sin (—^  * ) / sin(|/2) = S(*) 

(15) 

pa = d - f ) sw + f (16) 
o o 

¿ = r { ^o + [s(2*) - 1 J - r [s(*)-u2[ 
o'* O J 

(17) 

E . = 1 + 2 ) cos2(t£~) cos ki|i 
°b L 5NO 

k=l 

= J |2S(*) + S(* + 2n/jNo) + S(t - 2n/5No) } 

(19) 

% = (1 - I-) EobW + F <20)
o o 

2 = N_ f 2 N
ab N 1 U o 

o *• 

+ |[S(2n/5No) + i S(U«/5No)+ ¿ S(2|) 

+ j S(2i|í + 2rt/3No) + I 3(2* - 2«/3No ) 

+ i S(24t+Uä/3No)+ J S(2*-Ux/jNo)- ] 

- r [E»b<*> - 1 12} < 21 > 
o J
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= N 
% No%(*1)%(*2)

{ ïï [2 S(*i+*2) + 2 S<*r*2)

+ S(*1+*2+2rt/3No) + S(*1-*2+2n/3No ) 

+ S(* +* -2«/3N ) + S(f1-to-2n/3N ) 

+ £ SC^+^+i+it/iT^) + r 

+ Ç S(*1+i|Î2-Un/JNo) + i S(i|r1-i|(2-4n/3No) - 8 ] 

- F - 1] - 1] } <22) 

IV- Limiting Bounds of Radiation Pattern 

Consider now an array of 201 elements 
(N = 100). In order to be specific, several re¬ 
strictions will be imposed on the relative values 
of the progressive phase shift a. and the element 
spacing d: 

a > - 2ird/\ (23) 

a > (2jtd/x)- 2n + ÿo (24) 

< (2nd/\) - n (25) 

Condition (23) is to require that the main beam 
appears at * = 0. The results to follow will 
therefore not pertain to arrays phased for in- . 
creased directive gain in the endfire direction’ 
Condition (24) is to insure that grating lobes 
will not appear in the visible range, may be 
taken roughly as the location of the first mil 1 . 
For (2nd/\) = n, conditions (23) and (24) are 
very nearly the same for large N ; but the latter 
is more restrictive as (2ird/\) becomes greater 
than it. Condition (25) is imposed to require that 
the lobes at x|r = + n remain in the visible range. 
It is to be noted that conditions (23) - (25) do 
not represent a weakness in the general develop¬ 
ment. The validity of the expressions in the 
preceding section do not depend on these re¬ 
strictions. 

It is interesting to plot the "normalized 
variances" 

o p 
°na = VN (26) 

P p 

%b = (27) 

for the uniform and cosine-squared amplitude dis¬ 
tributions . Normalization renders a 2 and a 2 

na nb 
independent of N, the number of deleted pairs of 
elements. These curves are plotted in Fig. 2. 

Examination of Fig. 2 reveals that the nor¬ 
malized varianges for both cases assume essential¬ 
ly constant values (2.0 for the uniform case and 
1.1 for the cosine-squared case) except when >|( is 
close to 0° and 18o°. This is consistent with 
the consideration of adding random phasors. The 
constancy of a ¿ and a 2 in the side-lobe region 
, na nb ° 

results from the fact that the phase of the ran¬ 
dom phasors spreads over a 2it range, largely in¬ 
dependent of i|r. Near * = 0, the phase distribu¬ 
tion clutters around small values, and normalized 
variances tend to increase with i|r. In the vicin¬ 
ity of = it, the phase approaches the two alter¬ 
nate values 0 and it, causing a rapid increase in 
normalized variances. 

With the variances known, limiting bounds of 
the radiation patterns can be computed. The 
limiting bounds of E(i|r) are taken as < E(*) > 
+ 3oU)- For a normally distributed AE(i|r), the 
probability that E(<|r) falls within these bounds 
is O.9987. The computed results for the uniform 
amplitude and the cosine-squared amplitude cases 
are plotted for N = 25 in Figs. 3 and 4 respec¬ 
tively. In each case the pattern E for the 
full 201-element array is also shown. These 
curves are useful in that they set the limits for 
what will happen to the radiation pattern. For 
example. Fig. 3 shows that for an array with 
uniform amplitude distribution the first (highest) 
side-lobe level will not be higher than -9.7 db 
when 25 pairs (25^) of elements are removed 
at random from a 201-element array (as compared 
with -13-2 db.) The bounds in the intermediate 
range of * are particularly easy to interpret be¬ 
cause they do not vary there. 

Bounding curves for E(i|r) with other prob¬ 
ability limits can, of course, be similarly com¬ 
puted and plotted. 

V. Effects on Side-Lobe Levels and Beamwidth 

The computations leading to the bounding 
curves for E in Figs. 3 and 4 did not require the 
consideration of the correlation, or mutual 
effect, of E values at different values of \|i. 
However, when one considers such questions as the 
probability that the half-power beamwidth is not 
increased by more than a certain percentage, the 
probability that the first side lobe does not 
deteriorate by a specified amount, or the prob¬ 
ability that all side lobes are below a speci¬ 
fied level, Joint events are involved, and one 
must examine the correlation coefficients be¬ 
tween these events. 

The uniform amplitude distribution is a 
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special case in this respect because the variance 
for E , of, is zero at * = 0. As a consequence, 
E (o) = < E (0) > is not a random variable and 
joint probabilities are not involved in the cal¬ 
culations for half-power beamwidth and first 
side-lobe level for the uniform amplitude case. 
In any event, both and have been calculated 
for values of corresponding to side-lobe loca¬ 
tions. Their absolute values are always less than 
0.0Ó, and the probability of joint events regard¬ 
ing the side loves is approximately equal to the 
product of the probabilities of the individual 
events. For the cosine-squared amplitude dis¬ 
tribution, a?(0) 0 and ^(O) is itself a ran¬ 
dom variable. While it is always possible to 
make conservative calculations by letting E, (O) 
assume its minimum value < E^O) > intuitive 
considerations* of symmetry properties seem to 
justify the use of < E^O) > . This approximation 
makes possible the computation of results which 
otherwise would be unobtainable due to inherent 
difficulties in evaluating double integrals in¬ 
volving conditional probabilities. Due to the 
smallness of a , it is also felt that the prob¬ 
ability that all side lobes are below a speci¬ 
fied level would be very nearly equal to the 
product of the probabilities that each side lobe 
is below that level. 

There now remains the question of where the 
new locations of the side lobes will be after N 
pairs of elements have been removed. Note from 
Eq. (9) that < E > and E° have the same lobe 
locations. Let denote the location of the 
kth side love of the original, undisturbed array, 
and i|r that of the array after N pairs of ele¬ 
ments nave been removed at random. The probabili¬ 
ty that the kth side lobe is less than, say, 
-L db. can be written approximately as 

pjkth S.L. level < -l} = p( } 

(28) 

in view of the discussion in the preceding para¬ 
graph. The right-hand side of Eq. (28) can be 
rewritten as 

p|-B < E(\Usk ) < B | = 4> (z+ ) - 0 (z_) (29) 

where B stands for < E(o) > 10"L/2°, 4>(z) is the 
standardized Gaussian cumulative distribution 
function 

z 2 

<p(z) = — [ e'y /2 dy (50) 
J2n JN -oo 

»Quantitative results obtained by a procedure in¬ 
volving numerical integrations for a particular 
case bore out the validity of this approximation 

and 

z+ = [B - < EUsk)»/aUsk ) (51) 

z_ = [-B - < E(*sk)> ] /a(* sk ) • (32) 

If the original side-lobe location i|rgk, instead 
of * , , is used, one would have 

sk 

p/ -B < E(|°k) < = $(z°) - 4>(z°) (55) 
L J 

with 

z° = [B - < E(*°k) > ] / a(*°k) (3M 

and 

z° = [-B - < E(*°k) > ] I aU°k) (55) 

The task at hand is then 
(29). This amounts to a 
z+, and z° with z 

to compare (55) with 
comparison of z° with 

In the intermediate range of it, the curves 
in Fig. 2 show that the variance o2 is essential¬ 
ly constant. This constancy of variance there 
can be readily justified for any arbitrary 
amplitude distribution, as discussed in the pre¬ 
vious section. Because < 
same lobe locations ÿ , , SK 

E > and E have the 
one concludes that 

I < E(*gk )>|<| < E(*°k) >| (36) 

Relation (56), together with the constancy of a, 
leads to the following inequalities: 

when < E(|O. ) > is positive, and 
SK r\ 

(37) 

(38) 

when < E(i|i°k) > is negative. For the values of 
L considered and < E(i|/°k) > negative, the fol¬ 
lowing relation holds: 

5 < z+ < z° (39) 

which makes the first term in Eq. (29), and in 
Eq- (33) practically unity. When < E(>t°k) > is 
positive 
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3 
o 

Z (40) 

which makes the second, term in Eq. (29) and in 
(33) practically zero. Hence, 

p[-B < E(*°k) < b} < p|-B < E(*sk ) < B }(41) 

The probability that the kth side lobe is below 
a specified level calculated with the assumption 
that element removal did not shift the lobe loca¬ 
tion is therefore less than the actual value, and 
consequently is on the conservative side. 

For cosine-squared amplitude distribution. 
Fig. 4- shows that the first side lobe occurs at 
♦gi = 3 which is already in the range of constant 

. For uniform amplitude distribution, the 
first few side lobes occur somewhat before the 
range of v where a can be considered constant. 
Detailed calculations at these side lobes have 
been made. It was found that in the neighborhood 

the change in < E > overcompensates the 
corresponding change in a and that inequality 
(41) still holds. a

Figure 2 shows rather violent changes in 
variance in the neighborhood of f = it. However, 
when symmetrical pairs of radiators are removed 
from an array with an odd number of elements, 
♦ = n would remain to be a side-lobe location, 
and (41) becomes an equality. 

The probabilities that the first side lobe 
lies below -L db when N pairs of elements are 
removed at random from a 201-element array have 
been calculated for both the uniform and the 
cosine-squared distributions, and are plotted 
versus N in Fig. 5 with L as a parameter. The 
first side-lobe levels for the original array 
are -13.2 db and -22-5 db for the uniform and the 
cosine-squared distributions respectively. It is 
clear that, as N decreases toward zero, the prob¬ 
abilities approach 1 when L < 13-2 or 22.5 as the 
case may be, and approach 0 when L > 13.2 or 
22.5. Apart from the difference in L values, the 
curves for these two cases are quite similar. 
Much interesting information can be derived from 
Fig. 5> For instance, by removing 25 pairs of 
elements from a 201-element array at random, 
there is a probability of 31^ that the first side 
lobe will be equal to or lower than -26 db for the 
cosine-squared case, an improvement of 3-5 db 
from that of the original array.' 

In Fig. 6 are shown curves for the proba¬ 
bilities that all side lobes are below specified 
levels. The consideration of the other side 
lobes has significantly different effects on the 
probability curves for the uniform and cosine-
squared cases. For the cosine-squared case where 
there is a good deal of side-lobe suppression 
(-22-5 db for the undisturbed array), all lobes 
are affected significantly by the removal of 

radiator pairs. This accounts for the rapid drop 
in probability curves as N increases. For the 
uniform case, the first side lobe is predomi¬ 
nant; the other side lobes are not as significant¬ 
ly affected by the removal of radiator pairs. In 
fact, comparison of the dashed curves in Figs. 5 
and 6 shows that changes occur only when N exceeds 
15. Examination of the dashed curves in Fig. 6 
also reveals the existence of broad maxima in 
the neighborhood of N = 25 for probability 
curves indicating improvement in overall side¬ 
lobe structure. These results are in general 
agreement with what is known about the side-lobe 
behavior of arrays with uniform and tapered am¬ 
plitude distributions“’?. Tapering yields sup¬ 
pressed side lobes which are more susceptible to 
change than the one high side lobe in the uniform 
case, when either elements are removed or ex¬ 
citation coefficients are varied. 

Probabilities have also been calculated for 
changes in half-power beamwidth for both the uni¬ 
form and the cosine-squared cases. Let P rep¬ 
resent the probability that the half-power beam 
angle is not increased by x per cent. The 
results in Table 1 have been obtained. It should 

Table 1 

N = 100, N = 25 o 

Px\ \ = 1 Ak = cos2(kn/2NQ ) 

0.91 0.80 

1056 0.99 O.94 

be noted that f does not specify a spatial 
angle. Since 4» = (2nd/x) cos 0 + a, the 
actual 0^ corresponding to a i|r depends on 
both (d/k^ and a. Table 2 will be helpful in 
interpreting the results in terms of the spatial 
angle 0^ for d = \/h. 

0^w is the spatial angle measured from the 
direction of maximum radiation to the half¬ 
power point. 
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Table 2 

N = 100, N = 25 
o ’ 

Original ©bw
5* in *bw 10* in ^bw

Broadside, a = 0 

Endfire, a = -n/2 

O.5I0

7.6° 

5-9* in 0bw

2.6* in 9bw

U.8* in öbw

5.2* in 0^ 
bw 

Broadside, a = 0 

Endfire, a = -ä/2 

0.64° 

8.6° 

4.7* in 0t 
bw 

2.3* in e, bw 

9-4* in ©, 
bw 

4.6* in 0, 
bw 

o 
A. = 1; \ = cos (kn/5N ) 

VI. Conclusions 

The effects on the radiation pattern when N 
pairs of symmetrically located radiators are re¬ 
moved from a large (2N + 1) -element linear array 
have been studied as a°statistical problem. Under 
the condition 1 « N « N , the probability dis¬ 
tribution for the change in field intensity, ÄE, 
is found to be approximately Gaussian by invoking 
the Central Limit Theorem, and expressions for 
the expected value and the variance of the field 
intensity are found as functions of >|i. Two spe¬ 
cific amplitude distributions, described by 

= 1 and = cos¿(kn/3No), have been considered. 

It has been possible to determine the limit¬ 
ing bounds of the radiation pattern, the prob¬ 
ability that a certain side lobe does not deteri¬ 
orate by a specified amount, the probability that 
all side lobes are below a specified level, and 
the probability that the main-lobe half-power 
beamwidth is not widened by more than a given 
percentage. Calculations have been made for the 
two amplitude distributions for a 201-element 
array, and the results have been plotted. The 
curves presented herein should be useful to serve 
as guides in estimating the probabilities of 
success, or of failure, when pairs of radiators 
are removed from a large, symmetrical, linear 
array. 
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Fig. I. Linear array of 2No+1 omnidirectinal radiators 

No = IOO 

Fig 3 _ Radiation pattern and <eo>t 3ffa bounds: Ak = I 

No=l00, N= 25 

N, NUMBER OF PAIRS REMOVED 

FIG.5 PROBABILITY DISTRIBUTION FOR FIRST 

SIDELOBE LEVEL 

_ A » Co«2(-K-Z) 
3N, 

-A fc . I 

FIG6_ PROBABILITY DISTRIBUTION FOR 

SIDELOBE LEVELS 

_ Ak«Co»2-LZE 
* 3N. 

- Ak’ 1
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Summary 

This paper considers a non-uniformaly spaced 
array. By starting with a continuous aperture 
distribution, the pattern function is formulated 
from a Lesbegue-Stieltjes integral point of view. 
A spacing weighting function can thus be gener¬ 
ated. Based upon the methods of mechanical quad¬ 
rature, the integral is reduced to a summation 
which represents the pattern function of a corres¬ 
ponding array. 

As an example, a symmetric linear array of 
74 isotropic sources at an average spacing of 
1.82 wavelengths is considered. The side lobe 
level is found to be less than -14 db for |u| < 
0.98 and below -10 db for |u| < 2. If these 
elements were uniformly spaced, secondary beams 
of 0-db level would occur at u = + 0.552, + 1.10, 
and + 1.66. 

A systematic optimization in a certain sense 
by a high speed computer has also been carried out. 
It indicates that a slight improvement in per¬ 
formance is possible. 

Based upon Legendre-Gaussian quadrature, two 
other linear arrays, both spacing and amplitude 
weighted, are studied. For relatively small u, 
their patterns are practically identical to that 
due to the corresponding continuous distribution. 

Introduction 

The general method used in designing an 
antenna array usually follows a uniformly spaced 
arrangement. However it may be emphasized that 
this method is originated perhaps from a mathe¬ 
matical convenience rather than some other con¬ 
siderations such as cost, etc. For a small array 
it may not be a serious problem in considering the 
over-all cost of a system, but it seems to be in 
quite a different situation for many extremely 
large arrays nowadays used for radio astronomy 
research and high resolution long range radar 
system. Therefore, it is somewhat doubtful that 
the application of conventional methods with 
uniform spacing is justified in these cases. Un¬ 
fortunately very little is known about the non-
uniformly spaced array except a few investigations 
made in the last few years. 1

During the fall of 1959, this author made an 
investigation on a non-uniformly spaced array 
which was proposed to serve as a feed for the 
University of Illinois radio telescope. Even in 
such a case with only a few hundred elements, it 
has indicated the possibility of reduction in 
total number of elements by 33^ without much 
sacrifice in the antenna performance. However, in 

confronting the difficulty in justifying the 
proposed method of generating the spacing weight¬ 
ing function to be optimum and also general (in 
fact both are probably not true) we have devised 
a numerical optimization procedure (in a certain 
narrow sense) by using a high speed computer. 
These methods and the results pertaining to the 
telescope have been reported previously^ and 
subsequently in a paper.Recently it is^very 
fortunate to have learned that Dr. Maffet inde¬ 
pendently proposed the same method in generating 
the spacing weighting function and also Dr. Andrea-
sen^ seemed to have used a similar technique in 
numerical optimization. Although as far as this 
author knows nothing has been achieved in proving 
that this spacing weighting function is optimum, 
(in the sense that the peak side-lobe level is 
minimized) nor has an algorithm been found for the 
optimization in a very general sense, yet their 
findings seem to have added more confidence in 
these perhaps temporarily content techniques and 
also prompt this author to present some pre¬ 
viously unreported results. 

Theory 

Uniformly Spaced Array 

For simplicity we restrict our discussion to 
a linear array. The starting point of this 
approach is to regard a uniformly spaced array as 
a numerical integration approximation to an 
integral for its corresponding continuous distri¬ 
bution by the so-called trapezoidal rules. Let 
the desired radiation pattern be 

oo 

P (u) = [ f (x)e^ 2lrxU dx (1) 
o J ° 

-00 
where 

u = sin 0 - sin 9 , o' 
9 = the scan angle of the beam with 
° respect to the normal to the array, 

9 = the observation angle also referred 
to the same normal, 

f (x) = the magnitude of the aperture dis¬ 
tribution normalized such that 
P (0) = 1, and it equals identi¬ 
cally to zero for |x| > a/2 

a = the total aperture dimension in X. 

Now it is to be approximated by a discrete 
array, namely one with the following aperture 
distribution 
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N 
f(x) = ^TT f <x> 6<x-x > 2N+1 o m=-N m 

where 

(2) 

2N+1 = the total number of elements. The 
assumption of odd numbers here is 
immaterial to the theory, 

6 = the Dirac delta function, 
X = the location of the m-th element, m 

Since f (x) = 0 for |x| > a/2, the above equation 
can be rewritten as follows 

oo 
f(x) = f J x) S 6<x-x ) zN+1 o m=—oo in 

For a uniformly spaced array with a common 
spacing d = a/2N 

x = m a/2N (4) m 

Substituting the above into (3), and using 
the convolution theorem in Fourier transforms, one 
immediately obtains 

oo 
P(u) = P (u) * E 6(u-m —) o m=-oo a 00 2N 

= S P (u-m —) = Rep P (u) (5) m=-oo o a 2N/a o 

where * denotes the convolution ogerator and 
ReP2M/a Po(u>’ following Woodward , denotes a 
function which is the sum of infinitely many P 's 
each displaced by 2N/a along the u-axis. Equa?ion 
(5) indicates precisely the difference between 
P(u) and P (u). Since P(u) is a periodic function 
with a period 2N/a, the so-called grating lobes 
will appear at u = m(2N/a), m = 0, +1, +2, .... 
To avoid the appearance of any grating lobes other 
than the one with m = 0 in the visible range, one 
is forced to choose a sufficiently large N. For 
a two-dimensional array similar results can be 
obtained with P periodic in both u and v where 
u = sin 0 cos v = sin 0 sin <p. 

Spacing Weighted Array 

It is seen from the above that the existence 
of large grating lobes is a consequence of the 
periodicity in element spacing as given by (4). 
To avoid this one has to abandon any periodicity 
in spacing. It is well-known that there are 
available various quadrature methods in numerical 
integration which do not require uniformly spaced 
sampling points. To follow our previous approach 
(1) may be rewritten as 

oo 
Po(u) = ( e/2irxu dF(x) (6)

-oo 

where 
x 

F(x) = J" f(y) dy (7) 

-a/2 

This is generally called the Stieltjes integral 
with a weight or measure F(x). If one divides 
F from 0 to F(a/2) into 2N equal intervals each 
equal to △ F, then the approximation to (6) be¬ 
comes 

N 
P (u) P(u) = K E e* riU (8) o n=-N 

where K is a normalizing factor such that P(0)= 
P (0) and x satisfies o n 

F(x ) = nF(a/2)/2N (9) n 

This method of division is motivated by the 
Lesbegue integral, roughly in a sense that f(x) 
is divided into intervals such that each interval 
on x contributing the same amount of power to the 
beam maximum (for more detail see Ref. 2). This 
method has been applied to the design of the 
University of Illinois radio telescope. However, 
in that particular design, such a spacing weight¬ 
ed array has been used incorporated with a 
second array amplitude-weighted in order to meet 
the requirement of very low side-lobe level. The 
performance of this spacing weighted array has 
been previously reported only very briefly. In 
Figure 1, it shows the pattern for u = 0 to 2. 
It is 132Ä. long, with 37 pairs of elements sym¬ 
metrically located. The difference between this 
array with the one previously reported is 
that (a) one pair of elements is added due to a 
frequency change for the telescope; (b) the 
central portion namely the amplitude-weighted 
array is absent and the gap so created is closed 
(in order to show more precisely the behavior of 
the spacing weighted array); (c) due to (b) the 
function f(x) in (7) used to generate { x J is 
thus a truncated cosine-square function, namely 

f(x) =2 cos2 I (Ö+ > if l xl< a/2, 

= 0, otherwise; 

and x is given by the solution to n 

a . ir . — sin — (x 
ir a i 

a . , a . 2n 
„ + 9 ) + (Xn + 9 } =T n z n z o (10) 

The set of spacings so obtained is finally 
subject to a systematic optimization by a computer 
as discussed above (also Ref. 2) and the final 
results as shown in Figure 1 indicate that the 
peak value of the side-lobe is lowered by only 
about 1 db and the spacings as given by (10) are 
only slightly perturbed. It should be noted that 
in Figure 1, except for u = 0 to 0.05 only the 
envelope of the side-lobes is shown. Since the 
average spacing is about 1.82Ä., if they were 
uniformly spaced secondary beams of 0-db level 
would appear at |u| = 0.552, 1.10, 1.66 etc. It 
is also interesting to note that for an array 
uniform both in magnitude and spacing the side¬ 
lobe level near the main beam is always -13.2 db 
which is extremely difficult to reduce; On the 
other hand that of this spacing weighted array 
is at about -26 db. 
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Legendre-Gauss Array 

It is well-known that in numerical integra¬ 

tion the Gaussian quadrature in general provides 

the highest accuracy or for the same accuracy it 

requires the least number of points. Obviously 
the Legendre-Gaussian quadrature becomes one of 

the most attractive methods. 

Suppose f(x) is an even function, then (1) 

becomes a/2

P (u) = i i f(x) cos 2irux dx 
o b J 

0 

b 

= i J" cos (2irx) dy (x) (11) 

0 

where x 

y(x) = Í f(x) dx 

and 0 
y (a/2) = b 

Let 

y = (z + l)b/2 

Then 

P (u) = -1 I cos [2irx]dz(x) 
o 2 J 

-1 

1 N
- E Heos 2iruxi

(12) 

where 

2N = total number of elements, 

H = the weighting coefficient corres-

1 ponding to the i-th root z^ of the 

Legendre polynomial of N degree , 

is a solution to 

f(x) dx = b(z^ + l)/2, 

and 

(13) 

Due to the fact that if z. 

Legendre polynomial so is -z^, 

(1) in another manner, instead 

is a root of a 

one can formulate 

of (11), as 

follows 

P (u) = i 
o b 

a/2 

( \ J2irux, 
; f ( x) e dx 

-a/2 

J2irux . 
eJ dy(x) 

(14) 

where x 

y(x) = y f(x) dx, 

-a/2 

Now making the same substitution as in (12), 

one obtains 

N 

p (u)= 1 [ S H. eJ 2irUX i 
° 2 J 2 i= N 1 

-1 

N 
= cos (2iruxi) (15) 

where x^ is a solution to 

dx = b(z^ + l)/2 

and z, = i-th root of the 
degree 2N instead of N as 

Legendre polynomial of 
given by (12), (13). 

There are formulas for the upper bounds of 

the errors in these quadrature methods; unfortu¬ 

nately, they are not very useful in the present 

application unless u is very small. It is due to 
the fact that first the exponential or trigonomet¬ 

rical function in the integrand of (6), (11), and 

(15) must be retained in the summation in order 

that each term can be physically interpreted as an 

isotropic source. Secondly these upper bounds, 

being proportional to the 2Nth or 4Nth derivative, 

could become extremely large valued by Berstein's 

theorem. Nevertheless, this does not necessarily 

imply that the actual error involved is that 

large as^ well illustrated by an example given by 

Rosser. 

As an example to these methods as shown by 

(12) and (15) the following function is again 

assumed 

2 
f(x) = cos irx/a for |x| < a/2 

= 0 otherwise. 

For a = 132À, 2N = 80, the patterns are computed 

and shown in Figure 2 where for|u| = 0 to 0.2 an 

expanded scale has been drawn to show the detail 

structure of the main beam and its neighboring 

lobes; while for |u| = 0.2 to 2 only the envelopes 

of the side-lobes are shown to avoid the confusion 

of many fast oscillating curves. It is interest¬ 

ing to notice that the approximate array given by 

(12) gives a pattern almost exactly the same as 

that of a continuous distribution for |u| up to 

0.2 as expected. The first side lobe is -32 db 

and the rest are even much lower. For |ul =0.2 

to 0.35 it is still below -30db; however, after 

that it begins to build up to -13 db at |u| = 

0.625 then drops to -17 db at u = 0.75. However, 

it is somewhat unexpected to find that at this 

point the pattern breaks up so suddenly into a 

random behavior and remains so thereafter. The 

second approximate array as given by (15) gives a 

pattern almost identical to the one above except 

that the well behaved portion is extended to |u|= 

0.4; even for |u| = 0.5 it is still below -30 db. 

Unfortunately after that it builds up at a very 
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fast rate until reaching about -5 db at |u| = 

0.77. Then it drops sharply to -40 db, and be¬ 

haves well again for a range until it reaches 

-6 db at |uI = 1.54. Although no calculation has 

been made beyond |u| = 2, it is reasonable to 

believe that it will eventually behave in a 

random manner as in the first approximation. On 

the other hand calculation has been made for a 

portion of |u| beyond 2 for the first approximate 

array, and it shows a randomness very similar to 

that in interval of |u| between 1 and 2. In fact 

it is probably true that in most cases of non-

uniform spacings the pattern will behave in a 

random manner for large |u|. Investigation along 

this line of thought on a randomly spaced array 

has been conducted with some interesting results 

which will be reported elsewhere. 

The spacing of these arrays runs from .06Ä. to 

4X. Since in Legendre-Gaussian quadrature the 

end points are not included in the samples, the 

actual aperture is about 12A. shorter; neverthe¬ 

less the beam width is even slightly sharper than 

that of P (u) according to calculation. It is 

also wortß noting that the weights H and roots 

z^ are universal constants depending on the 

degree of the polynomial used; tables for degrees 
up to 96 are available. 5

Finally it may be noted that no optimization 

has been applied to either of these arrays. It 

is believed that a substantial improvement prob¬ 

ably can be achieved for the second approximate 

array since there are only a few high level peaks 

and the rest are at a much lower level. Also it 

is important to note that the amplitude weighting 

for these arrays has a range of 24 dbs instead of 

80 dbs if they were uniformly spaced cosine¬ 

square weighted in magnitude. 

Conclusions 

(1) A non-uniformly spaced array has the 

potential to provide wide bandwidth, large scan 
angle, and to reduce the number of elements re¬ 

quired. These advantages become even greater 

for large antennas, and higher dimension arrays. 

(2) A spacing weighted array as discussed 

here has a predictable behavior for relatively 

small |u|, while for large lu|, the random be¬ 

havior prevails and may be estimated in a proba¬ 
bilistic sense. 

(3) In general non-uniformly spaced arrays 
particuarly those presented here, have low side¬ 

lobe level for small |u| and increasing side-lobe 

level for large |u|(eventually reaching a more or 

less saturation level) in contrast to that of a 

continuous array. This may not be a serious prob¬ 

lem in consideration of the yet unaccounted for 

directivity of most antenna elements. 

(4) The range of amplitude weights can be 

cut down to a much more realistic value by using 
a spacing weighting. 

(B) In view of (2) and (3) above if ex¬ 

tremely low side-lobe level is required for an 
antenna with a moderate number of elements, a 

combination of an amplitude weighted array and 

a spacing weighted array (or one with both spac¬ 

ing and amplitude weighting as discussed above) 

is probably the most promising approach to 

furnish a solution because at small |u| both 

their predictable behavior will guarantee a good 

resultant performance in that region while for 

large |u| the side-lobe level is essentially 

that of the non-uniformly spaced array alone. 

For an example refer to Ref. 2. 
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Fig. 1. The field intensity pattern for a linear spacing weighted 
array of 132 À in length and 74 elements. For u^0.05 only the 
envelope of the side-lobes is shown. The half-power beamwidth 
is approximately equal to 0.6°. 
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Fig. 2. The field intensity patterns for two linear arrays both 
amplitude and spacing weighted according to the Legendre-
Gaussian quadrature. Both arrays have a nominal length of 
132À, and a total of 80 elements. For > 0.2 only the envelopes 
of the side lobes are shown. (A) is derived from the polynomi¬ 
al of 40 degree, (B) from that of 80 degree. The half power 
beamwidth is approximately equal to 0.57°. 




