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SUBNETWCRKS

P. S. Castro and W. W. Happ
Microsystems Electronics Department
Lockheed Missiles and Space Compary

Sunnyvale, California

Summary

The logic governing the generation of subnet-
works from multiterminal networks can be estab-
lished by associating with each permissible net-
work operation a suitably defined set of reduc-
tions in rank of the indefinite (or equi-cofactor)
matrix of the network. Criteria for uniqueness
and non-redundancy of subnetworks are defined and
applied to evaluate representative large networks
in terms of properties associated with generated
subnetworks,

Definition and Terminology for Subnetworks

The methods of network synthesis can be used
to prescribe the internal interconnections (or
environment) of a "black box" to achieve a given
function. An alternative, and sometimes equi-
valent, method is to begin with a number of cir-
cvit elements and prescribe the interconnections
between the elements to achieve a given circuit
function (or at least as close to it as one can
with the given elements). In contrast to network
synthesis, however, this method commences with a
given "black box" and prescribes the external en-
vironment of the "black box". The term "subnet-
works" will be used to define a network derived
from a given "black box" by specifying a given
external enviromment. Of course, it is then
possible to specify an additional enviromment of
the subnetwork and thus generate further subnet-
works. It is important to examine the properties
of subnetworks in relation to those of the parent
network. This investigation is concerned primar-
ily with establishing the number of non-redundant
subnetworks with a given classification and the
matrix operations required to lead from the parent
network to the subnetwork. Since the matrix gives
all the network properties and the mechanics of
matrix operations is well understood, generation
of the desired network function by the methods
outlined here is possible in principle, but diffi-
cult in practice.

Statement of Problem

A three-terminal network permits the deriva-
tion of the following unique subnetworks: three
unique two-ports and six unique one-ports, as
shown in Fig. 1 and Fig. 2. To define a unique
subnetwork, it will be assumed that an interchange
of terminals as shown in Fig. 3 is not considered
a novel network configuration, since the method of
driving a network will not change its characteris-
tics. Similarly, a one-port may be driven in two
ways, as shown in Fig. L, and is considered only
as a single configuration since its network char-
acteristics are unchanged.

In the first row of Fig. 5, one-ports de=-
rived from an n-terminal network are listed. To
derive these and other subnetworks, techniques
must be developed. Tor example, a two-port net-
work can be constructed in only two distinct ways,
either as a three-terminal network or as a four-
terminal (also referred to as bridge) network.

Generalizing, a p-port suvbnetwork can be con-
structed in p possible ways, using p+l, p+2, p+3,
eeey 2p terminals. For example, three-ports with
L, and 5 and 6 terminals are listed in Fig. 5. Pro-
pverties of unique subnetworks such as those listed
in Fig. 5 require an understanding of the opera-
tions of generalizing subnetworks. These techni-
ques will be examined by topological methods of
analysis and results will be applied to give a
systematic account of subnetworks,

Permi ssible Operations to Generate Subnetworks

Two operations on a given terminal of a net-
work are distinctly permissible:

1. The operation of floating a terminal
specifies that current entering the terminal is
zero. No subsequent operation on this terminal is
nermissible.

2. The operation of shorting a port speci-
fies that two terminals are connected together.
If these two terminals are not to be driven by an
external generator, then this operation must be
followed by either (2.1) floating the combination
or by (2.2) shorting the combination to another
terminal. If (2.1) is selected, no subsequent
operation on the combination is permissible; if
(2.2) is selected, operation (2) must follow.

3. The additional operation of grounding a
terminal may be added. This operation establishes
a reference terminal,

Matrix Reduction to Subnetwork

Indefinite Matrices

An n-terminal network can be uniquely defined
by an admittance matrix of order n-1 if it exists
at all., It is possible to augment this matrix by
addition of a row and column to obtain a resultant
matrix of order n. It follows that the sum of the
elements of each row and of each column are zero.
The reiultant singular matrix was called by
Shekel™ an indefinite matrix and applied to the
analysis of three-tgrminal networks such_as the
transistors. Zadeh® and Castro and Happ3 extended
the use of indefinite matrices to circuit anaﬁysis
and to n-terminal networks. Sharpe and Spain



showed that all cofactors of an indefinite matrix
are equal and coined the term equi-cofactor ma-
trices.

Matrix Operations

In an n-terminal network, each row of the indefi-
nite admittance matrix corresponds to a terminal
current and each column corresponds to a terminal
voltage with respect to an arbitrary reference
point. For indefinite admittance matrices, three
types of operations will be employed which have a
one-to-one correspondence to operations generating
subnetworks.

1. Cross-off one row and the corresponding
column; this operation is the mathematical counter-
part of grounding that terminal, that is, using a
terminal as reference.

2. Invert one row; this operation is defined
by setting one element of the dependent variable
equal to zero and eliminating the corresponding
independent variable, and correspongs in flow
graph terminology (Nisbet and Happ)” to path in-
version and setting the newly generated indepen-
dent variable equal to zero. This operation is
equivalent to floating a terminal of the network.

3. Adding two rows and two corresponding
columns is equivalent to shorting a port which
consists of the corresponding terminals.

Successive application of these three operations
gererates all subnetworks from a given network.

4 piven stbnetwork is independent of the order in
which the above operations are applied in its de-
rivation, and thus caution must be exerted to in=-
sure a systematic, non-redundant enumeration.

A n=port subnetwork has a matrix of order and
rank p., To reduce an n-terminal network to a p=-
-port, (n-p) onerations are required.

A technique for a systematic enumeration of
non-redundant subnetworks will first be illustra-
ted by an example, then to be followed by an inves-
tigation of the logic underlying the generation of
subnetworks.,

Illustrative Example: Four-terminal Network

Consider the one-port and two-port subnet-
works which can be derived from a four-terminal
network., The terminals of a four-terminal two-
port must be taken two at a time and yield six
pairs, one pair serving as input and the other
pair as output, resulting in three unique four=-
terminal two-ports listed in Fig. 6.

Fig. 6 also lists the three-terminal two-ports
which can be obtained from a four-terminal network
which are of three distinct types:

l. one terminal floating

2. two terminals shorted at input or at
output

3. two terminals taken both as reference
terminals.

Since all three-terminal two-ports have one
terminal as a reference, it is always possible to
cross off one row and one column as indicated by
operation 1 in Fig. 6, thereby reducing the L by L
matrix to a 3 by 3 matrix. Subsequent reductions
may be of one of three types as shown in Fig. 6
resulting in a total of thirty unique two-ports.

Similarly, seven types of one-ports listed in
Fig. 7 are obtained by applying matrix operations
1, 2 and 3 in suitable sequence. Sixty-two one-
ports result, which are redundant by a factor of
two, since it is immaterial which terminal serves
as reference and which terminal is driven.

Topological Techniques of Enumeration

Scogg

The enumeration techniques used in the pre-
ceeding illustrative example are valid for networks
of arbitrary complexity but do not provide a suffi-
ciently effective approach to be of practical value
for networks with more than four terminals. Topo-
logical techniques provide a more rigorous method
and a more effective technique for large systems.
So far, a general topological solution to enumer-
ate subnetworks is not available; however, as will
be shown, the laws of subnetwork generation can be
expressed in terms of topological theorems. These
theorems provide an accurate determination of one
class of subnetwork, as well as several recursion
formulae reducing the problem to a voint where an
order of magnitude estimate of the total number of
subnetworks is meaningful.

Applicable Theorems

Theorem 1: If T is number of trees in a (t-1)
terminal network, then the total number of p-ports
having terminals obtained from a (t+1l)-terminal
network is

N(t + 1,t,0) = (T/2)(t + 1)(¢ + 2)

Proof: The number of trees T(t) in a t-term-
inal network is equal to the total number of uni-
que (t-l)-ports networks that exist in the t-term-
inal network. If one more terminal is added to
the t-terminal network and if we are to continue
to have a (t-1)-port subnetwork, then the added
terminal must be either (a) left floating or (b)
connected to an existing terminal. For case (a),
there will be (t+1)T subnetworks, since there are
(t+1) choices of terminals to float. For case (b)
there will be (t/2)(t+1)T subnetworks, since there
are (t/2)(t+1) choices resulting from taking (t+1)
terminals two at a time. The sum of (a) and (b)
give the total stated above., This theorem can be
generalized in the following:

Theorem 2: If K(s,t) is the number of dis-
tinct ways of reducing s terminals to t terminals,
and N(t,t,p) is the number of p-ports networks of
a t-terminal network, then K(s,t)N(t,t,p) =



N(s,t,p) is the total number of p-port networks
having t-terminals obtained from an s~terminal
network., The proof of this theorem is similar to
that of Theorem 1, but considered beyond the scope
of this summary.

Theorem 3: The number of trees in a t-termi-
nal ngtworF is given by T(tz = £(t-2) 44 proven by
Trent®; thus N(t,t,t-1) = t{t-2),

Theorem L4: A 2p-terminal network generates

N(2p,2p,p) = (2p)4/(2Ppl) unique p-ports.

Proof: In a (2p-2)-terminal network the num-
ber of (p-1)-ports is N(2p-1, 2p-1, p-1). If two
more terminals are added it is seem that by using
one of the added terminals in combination with
each of (2p-1) remaining terminals, we have

N(2p,2p,p) = (2p-1)N(2p-2, 2p-2, p-1)

Since the product of all odd numbers up to (2p-1)
is (2p)1/(2Pp1), it is readily verified that

N(2p,2p,p) = (2p)1/(2Pp1)

Tllustrative Example: Five-terminal Network

The number N(5:L:3) of four-terminal three-
ports which can be obtained from a five-terminal
retwork is given by theorem 1 as

N(5:L:3) = (T/2)(t+2)(t+1) = 240
since t = L and T(L) = 16

theorem 3 yields N(5:5:4) = T(t) = 125 with t = §.
Similarly, theorems 1 and 3 yield

N(5:3:2) = (T/2)(%£+2)(t+1) = L5, with t=h
and T(3) = 3,

the remaining entries in column S of Fig. 5 have
to be computed by the methods developed in Section
2. Thus

N(5:2:1) = 160 with the aid of Fig. 8
N(5:3:2) = 240 with the aid of Fig. 9

While the last entry is readily shown by inspection
to be N(5:5:3) = 30, however, a formula for
N(t,t,t~2) appears to require a different approach
from the above and is indicative of problems await-
ing solution. The total number of subnetworks ob-
tained from a five-terminal network is 840, as
shown in Fig. 10.

Summary of Results

Computed values of N(s,t,p) are shown in
Fig. 5. Additional values are provided by the
relationships

(t-2)

N(t,t,t-1) = ¢ = T(t)

N(2p,2p,p) = (2p)1/(2Ppi) = P(p)
and the recursion formulae

N(t+1,t,p) = (1/2)(t+1)(t+2)N(t,t,p)

which is a special case for s = t+l of N(s,t,p) =
K(s,t)N(t,t,p) where

K(t+1,t) = (1/2)(t+1)(t+2)
as well as K(L,2) = 31 and K(5,3) = 80 are known.

An order-~of-magnitude estimate of the number
of subnetworks is made in Fig., 10 and Fig.1ll by
extrapolating calculated values and trends indica-
ted by the above formulae. The one-ports increase
roughly as sl, while the total number of subnet-
works must exceed 857¢ by a factor of the order of
s or 82, Hence, for the total ngmber of subnet-
works an order-of-magnitude of s< appears reason-
able. Fig. 11 is a plot of the number of subnet-
works as a function of p with s as a parameter,
For cunstant s, the number of subnetworks

N(s,p) = N(s,t,p)

has two limiting values, namely 82 ang roughly
sl. Between t?sse limiting values N(s,p) increases
and when o 8172 reaches a maximum of the order-of~
magnitude

1/2 8-1

N(s,s/“)ru s

Calculated and estimated number of subnetworks
are shown in Fig. 11. The implication of these
results are significant and fundamental in the de-
velopment of circuit design concepts, such as ex~
ploration of the distributed parameter networks
developed by Castro and Happ3. Indeed, an entire-
ly revolutionary concept of network synthesis is
foreshadowed by the results here presented. No
longer will the circuit designer assemble various
and sundry components to obtain a desired circuit
response. Instead, it is likely that the circuit
designer of the future will shape his own circuit
function from a multi-terminal element by genera-
ting the subnetwork to fit his specification using
the logic of effectively generating the required
subnetwork.
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REALIZATION OF FUNDAMENTAL CIRCUIT AND CUT-SET MATRICES*

C. C. Halkias and W. H. Kim
Department of Electrical Engineering
Columbia University
New York 27, New York

Summary

A simple procedure for the realization of
a fundamental circuit matrix Bf or a funda-
mental cut-set matrix Cp is given. This pro-
cedure constitutes a necessary and sufficient
condition for the realization of the matrices
Br or Cg of an oriented, connected graph. It
is shown that the problem of realizing Bf or
Cr 1is reduced to the problem of realizing a
resistive n-port with exactly n + 1 nodes; theo-
rems and illustrations are provided.

I. Introduction

The problem of realizing a fundamental
circuit matrix or a fundamental cut-set matrix
had remained unsolved for a long time. The
first solution was offered by Gowlal in 1957.

In 1959 two more solutions were proposed, one
by Guillemin? and another by Lofgren.? In the
same year, Auslander and Trent™ gave an alter-
nate solution and Tutte? published his work on
matroids and graphs. In 1960 Tutte® developed
a realization algorithm in an attempt to give
practical significance to his highly theoretical
results. Other research workers who offered
solutions are: Mayeda7, Okada and Youn in
1960, The reader who is familiar with all the
above solutions must be aware of their
complexity and of the labor involved in attempt-
ing to realize any given fundamental cut-set or
fundamental circuit matrix. In this paper we
give a realization procedure which is based on
the theory of resistive n-port networks. This
procedure is simple and involves no substantial
effort in testing a given matrix for realiza-
bility. If a given matrix is realizable, the
procedure discussed in this paper gives all
possible graphs which satisfy the matrix. If
the matrix is not realizable, then the procedure
forms a proof of its unrealizability.

II. Oriented Graphs

We are concerned with the problem of de-
dermining the conditions under which a matrix
Cy 1is realizable as a fundamental cut-set matrix

* This research was supported by National
Science Foundation Grant G-10354

of a connected graph. The matrix Cp is
assumed to be of order n by e(n <e) and
rank n, to have as elements *¥ 1 and 0 and
that it may be partitioned in a basic formlO

Ce = [Up Cppl (1)

where Uj; 1is a unit matrix of order n.

An interesting necessary condition on the
sign pattern of the matrix Cf follows from the
fact that Cr must necessarily be a unimodular**
matrix. Let the elements of Cr be c¢jj.

Necessary Condition 1

A necessary condition for the realization
of a matrix Cy as a fundamental cut-set
matrix is that for any pair of indices 1, j
(1 # J) ve must have:

ciptjp = +L or 0, for p = 1,2,..,e (2a)

or
cipCjp = -1 or 0, for p = 1,2,..,e (2p)

Proof: Let cjpcyy and cjypcix be different
from zero and let them have opposite signs,
contrary to the above condition,

CihCh = -CikC jk (3)
Consider the subdeterminant
¢ih  Cik

Cij|= = CihCjk-CjhCik ()
cjh cjk

multiply both sides of (4) by cgheyx which is
different from zero, i.e.,

2 2
Cjhe jk Cijl = CjkC3hCih - CjhCikCjk

=2 thcih = i 2 (5)

which contradicts the hypothesis that Cr is a
unimodular matrix.

One of the implications of the first con-
dition is the requirement that if the signs of
the first row of Cg are all (+) or O then every
element of every other row (with all columns
having & zero on the first row crossed out) must
be either (+) or O, or (-) or O; that is, there
cannot be (+) and (-) signs on the same row.

#* A matrix all of whose elements and subdeter-
minants are 1, -1 or O is called a unimodular
matrix (or E-matrix). (See Reference 9.)



Necessary Condition 2

s A necessary condition that a
matrix Cg be realizable as a fundamental cut-
set matrix of an oriented graph is‘that Cp
should not include the following submatrix.
(See References 1,5, 6, 9, 10, 11, 12)

X X o X |-
K = | x x (6)
O X X X

where the x's stand for non-zero elements. This
condition follows from the fact that there can-
not exist in a unimodular metrix a submatrix of
the form K shown in (6).

Let us now consider a simple approach for
the realization of Cp. A realizable Cp
matrix specifies a connected graph with n + 1
nodes and e edges; moreover, it defines a
tree with a specific tree-branch orientation.
If we think of the edges as conductances
dy, dp,..,d, and if we excite the network by
connecting n current generators oriented in
the same direction as the tree-branches at the
node-pairs specified by the tree-branches, then
we obtain the short-circuit admittance matrix
Y of an n-port resistive network with (n + 1)
nodes which has a tree-port-structure.

It is well known thatl® for an n-port
resistive network with (n + 1) nodes

Y= CeDCf (1)

vhere Cp 1is the fundamental cut-set matrix
with respect to thettree corresponding to the
port-structure. Cg’ 1is the transpose of Cp
end D 1s the diagonal matrix with the positive
conductances dj,dp,..,de as main diagonal
elements. If Cp is realizable with (n + 1)
nodes and e edges, then Y i1s realizable; if
Cr 1s not realizable, then Y is not realizable
either. Hence our problem of realizing Cp 1is
equivalent to the problem of realizing the n-port
network with (n + 1) nodes characterized by the
short-circuit admittance matrix Y given in (7).

Iet us assume that the conductances
d;,dp,..,de are all unit-conductances; then the
expression in (72 is reduced to Y = CpCp®, and
the product CeCe® is the Grammlan of the funda-
mental cut-set matrix. We have now reduced the
problem of realizing the matrix Cg to the
problem of realizing the Grammian of Cey as the
short-circuit admittance matrix of a resistive
network with (n + 1) nodes and e unit-conduct-
ances. We now state the above discussions in
the next theorem.

Theorem 1.

The matrix Cp = ([Up Cjp)] with elements
0, +1 1is realizable as a fundamental cut-set
matrix of an oriented graph if and only if the
Crammian Y = CeCp® is realizable as a short-
circuit admittance matrix of an n-port resistive
network containing (n + 1) nodes and e unit-
conductances.

The proof of the above theorem follows
because the short-circuit admittance matrix of
an n-port network described on the resistive net-
work with (n + 1) nodes is given by

Y ='Ce D b (8)
and from the fact shown by Cederbauml3 , that
the congruence of Eq. (8) is unique if Cp is
a non-redundant unimodular matrix* and D is
a positive diagonal matrix. -

Our problem has now been reduced to the
problem of realizing a Y-matrix of order n as
a short-circuit eadmittance matrix of a resistive
n-port network with n + 1 nodes. In order to
make the procedure of realizing Cp simple, we
shall consider the following theorems and
corollaries:

Definition 1

A linear-tree is a tree whose branches are
all contained in a single path. (See Fig. la).

Theorem 2

If a matrix Cp contains a column with
all non-zero elements, then the tree on which
Cs is based is a linear-tree.

Proof: The edge corresponding to the
column with all non-zero elements links all tree-
branches; hence all tree-branches are contained
in a single path and thus the tree is linear.

The order of the tree branches is, of course,
not known yet. .

Corollary 1

The matrix Cpf of order n by e and
with a column of all non-zero elements is
realizable if and only if the Grammian
Y= Cfot is realizable as a short-circuit
admittance matrix of an n-port resistive network
with (n + 1) nodes, e unit resistors, and a
linear-tree port-structure.

Proof: The corollary follows the Theorems
1 and 2.

Theorem

If the matrix Cp contains a column with
non-zero elements in the rows 1,J,..,k, then
the corresponding tree-branches i,Jj,..,k form a
linear-tree if all other tree-branches are short-
circuited.

Proof: The edge corresponding to the
column with non-zero elements in the rows
i,3,..,k links tree-branches i,j,..,k. If all
other tree-branches are short-circuited, then
tree branches 1,J,..,k are contained in a single
path and thus form a linear-tree.

’

* An E-matrix is called non-redundant if it
has no columns with all zero elements and no
two columns in which the pattern of zero and
non-zero elements is identical. An E-matrix
is also called a unimodular matrix.



Corollary 2 S

If the matrix Cg contains a column with
non-zero entries in the rows i,J,..,k, then a
necessary condition for the realization of
is that the matrix Yj J,+.,k Dbe realizable as
a short-circuit admittance matrix of a multi-
port resistive network with a linear-tree port-
structure formed by the ports i,J,..,k. (Not
necessarily in the order i,J,..,k.)

Proof':
1l and 3,

Corollaries 1 and 2 require that we should
be able to determine whether a given Y-matrix of
real elements and of order n 1s realizable with
(n + 1) nodes and a linear-tree port-structure
consisting of n ports. Of great importance for
our purposes is the order of the ports in the
linear-tree port-structure; this will enable us
to derive the tree on which Cp 1s based and
the complete realization of Ce can follow by
inspection. In the following theorem we give
the necessary and sufficient conditions for the
realization of Y with a linear-tree port-
structure. The proof can be found in references
(14, 15).

Theorem U4

The proof follows from Theorems

The necessary and sufficient conditions
for the realization of the n'th order matrix
Y= (y; J] as a short-circuit admittance matrix
of an n-port resistive network with (n + 1)
nodes and the ordered linear-tree port-structure
of Fig. 1b are:

(a) y13> ©

(b)— Vi3 + ¥i-1,341 2 941,53 * V1,34 ©)

for all 1 and J.

In Eq. (9) all elements of the n by n
Y-matrix with an index larger than n or less
than one are defined to be identically equal to
zero. A matrix which satisfies the conditioEs
of Theorem 4 is called "uniformly tapered"l%,15,

On the basis of the previous theorems and
corollaries, we now give a simple procedure for
the realization of Cp. If Cp is not real-
izable, then the procedure forms a proof of its
unrealizability.

Realization Procedure

Let us first interpret two operations on
the matrix Y.

I. Changing signs of all elements of row k and
column k means that the polarity of the k'th
port (and the orientation of the k'th tree-
branch) is reversed.

II. Interchanging rows and columns i and k
means an interchange in the labeling of ports i
and k (an interchange in the numbering of tree-
branches i and k). We now give the reali-
zation procedure.

10

1

-

,  Cage 1l: cf contains a column with all non-
zero elements.
ga) From Y = CpCet

b) Place Y in a uniformly tapered form.*

(If this is not possible, then Cp is not
realizable).

(¢) - From step (b) obtain the order and orienta-
tion of the branches of the linear-tree. ,

(d) With the tree known, the realization of C
can proceed by inspection. All possible 2-iso-
morphic graphsl® realizing Cr can also be ob-
tained by inspection.

Case 2: Cp does not contain a column with
all non-zero elements.
(a) From Y = CpCpt
(b) Examine the column of Cp with the largest
number of non-zero elements in the rows
i,J,..,k and obtain the matrix Yy v ke
(c) Place Y x ina untforal}’ t48ered
form and thus dgf':l\'ré the order and orientation of
tree-branches 1,J,..,k.* (If this is impossible,
the matrix Cg is not realizable).
(d) Repeat steps (b) and (c) for the columns
with a smaller mumber of non-zero elements. By
combining the various tree parts, obtain the tree
on wvhich Cp 1is based. (If this is impossible,
then Cp is not realizable). The realization
of Cf can now be completed by inspection.
The procedure is best illustrated with the
following example.

* It may be required to multiply some rows and
columns by -1 or to interchange some rows
and columns. N



Example 1.

Realize the following fundamental cut-set
matrix.

1 2 5% 5 6 . 7.8 ‘99091 12 23 1k 1526 a7 1489
1SN ] L0 (0)SRTO N (0) 4 2(0)4 (01 1 L 1 O §l0) 10 GIHO) 10, Ay O
O 1 0, {0 NOL [0X40] 01 [0 HOMIL4 0T [0 104 0] ©F 1 <l 10
O Q) LT 10 =0 ¥OLTOE 10" HE Ak 4, S @ "0 (0! 108 4s 0 10
0 0 O M 10 O 400 4 © ©1© A a i gyl (0] 80
g = 6 0@ 0™, @0 6 0 e® 1Y BWYE oA (10)
0O 000011 0000 O0O0O0OCO0OI11I 1-1 0-
0@ © B 0 Bl P o Bue=l €0 O OH0E [0 Re
0O © © 0 0 0 O aA © 06 =1 6 0 0 -1 0.0 0
Step (a).
F_L -1 0 [0) (0] -1 (0]
-1 5 -1 (o] -1 0] -1
2 3 6 -1 0 -1 -1 -1
& -1 -1 6 2 o) -1 -1
W=l 1S o 0 o0 L Sl e1 0 (1)
[0) -1 -1 5 -1 %) -1
-1 [¢] -1 -1 -1 o] 3
L_O -1 -1 -1 o] -1 0] )
Ste b).
Step (b). -
If we consider the 17th column of the
matrix of (10) (this column has the maximum Yu,5,7 . 2 4 -1 (13)
number of non-zero elements) then we have: Tt o T
5 51 < =1
(e)
5 6 -1 -1
Y 12
2,3,4,6 sl b 6 5 (12) One should note here that Y. is also uni-
formly tapered; 74,5
o o 5 ormly tapered;
3 -1 -1
A possible order for tree-branches (or ports) 2, Y = -1 6 2 (13)
3, 4, 6 is shown in Fig. 2a. T,4,5
-1 2 4
Step (c)
. (a)
For the remaining columns with three non-
zero elements we have: The order for tree-branches 1,3,7 2,3,8 and
i 4,5,7 1is shown in Figures 2b,c,d,e.
L 2 -1 25
. " Step (d)
X = 2 -1 Y, = -1
55511 2,3,8 3 (13) Combining the sub-trees of Steps (b) and
=1 =1 3 Al =l (¢), we obtain the tree shown in Fig. 3.

1n



The graph realizing Cs can now be obtained by
inspection, which is shown in Fig. 4

Let us now assume that we are concerned
with the problem of determining the conditions
under which matrix By is realizable as a
fundamental circuit matrix of a connected graph.
The matrix Br of a graph is assumed to be of
order n by e{n < e) and rank n, and to have as
elements ¥ 1 and O and that it may be parti-
tioned into a basic form with respect to a tree
of the graph.

By = [Byp Uyl (14)
where Up 1is a unit matrix of order n. The
fundamental cut-set matrix based on the same
tree is then found to be

Ce = (U -B},) (15)

where U, 1is a unit matrix of order (e - n).
The matrix Cy can be realized as discussed pre-
viously. Thus we reduce the problem of realizing

Bp to the problem of realizing the corresponding
Cr. Since the matrix Bp must be a unimodular
matrix, it is obvious that necessary conditions
1l, 2 are also valid for fundamental circuit
matrices.

Example 2.

Determine if tge following matrix, dis-
cussed by Guilleminl® in connection with the
reallization of an open-circuit resistance matrix,
is realizable as a fundamental circuit matrix

of an oriented graph.

1 2 3 45 6 7 8 91011 12 13 14 15
e =
2t 3 0 0@ 20 0. 10 © 0.0 6 0 0
2 1010001000 O0O0O0COO0
3 1 0010001000UO0GO0TO0O0O0
in 1 00 @1 0 006 1 00 9 0.0 0
5 01 0-10000O01O00O0TO0TO0O
Be = 6 10010-10000010000 (26)
1 1120010000001 0O0TO0
8 O d 1y © 00 0 0 @ 0 ¥ 00
9 I 4" 0 0 00 © © 0« o 9 L0
10 L 0 04 4 04 00 6 0 @ 60 0 @
The cut-set matrix corresponding to the same
tree is:
1 2 3 45 6 7 8 9101112131415
— —

1 1L 0 06 0 0-3-1-1-1 0 -1 -1-1-1

2 0100 0-1000-0-1 0-1

Cp = 3 06 01 00 0-2 00 0-2 0-1- (17)

L 0 00100 O0=1 0120 0-1 0-1
5 orYe 0 0 1.0 6 041 -1 0 0 -1

12



We may now form the triple product Y = Cf D Cft,
where D 1is a unit matrix of order 15.

F; SRS BON B
3 5 1 -1 1
Y = S R . R | (18)
o gl 1 S
_? L o= 1 5

Applying the methods described in previous
sections of this paper we can easily realize the
matrix Cp. Branches 12 and 13 1link the
tree paths 1,2,5 and 1,3,4 respectively.
submatrices of Y corresponding to the ports
1,2,5 and 1,3,h are:

The

1,2,5 (1)

3
Ao ©
pl

WoW 0
IEEN BT
[ TRV
<
[NYERCIRY.)
(S IS ERNY

() ()

It is readily recognized that the order of ports
in these paths is: 2,1,5 and 3,l,4. Thus the
tree is necessarily of the two types shown in
Figures 5a, b. The alternative shown in

Fig. 5a may be excluded because branch 10
links ports 2 and 4 only. The realization
of the matrix Cy and hence of the matrix Bp
is shown in Figure 6.

III. Non-Oriented Graphs

The extension of the realization procedure
to non-oriented graphs is basically straight-
forward. Suppose a fundamental cut-set
matrix Cg contains a column with all 1's.

Then this matrix must be based on a linear-tree.
If Cp 1is realizable, the orientation of the
graph elements can be considered to be as shown
in Fig. 7, end hence all 1l's of Cp can be
taken as +l's. Hence the realization pro-
cedure for oriented graphs is valid also for
this case. If Cp contains a column with 1's
in the rows 1i,J,..,k, then upon crossing out all
other rows of Cg, the resulting matrix is based
on a linear-tree and its non-zero elements can
be considered as +l's. In conclusion we see
that the realization procedure for the matrices
Csr and Bp of a non-oriented graph is identi-
cal to the previously discussed procedure for
oriented graphs.

Example 3.

Det?rmine if the following matrix, given
by Mayeda, is realizable as & fundamental cut-
set matrix of a graph.

13

a b c d e f g h i
'l 8 0 3990
101000100
% ®ilo o 29 1 '8 o1 © (20)
@ 1 1'm & o 0 6 a
We have:
b2 1 2
. P g2 A
Y,36=%% = |11 4 2 (21)
212 L

A transposition of rows and columns 1,2,3,4 into
the sequence 3,4,1,2 results in the uniformly

tapered matrix. Ports 1,2,3,4 correspond to
tree-branches f,g,h,i.
N2l @l A
2 4 212
S € |Le s B (22)
S 28

The realization of this matrix is shown in
Fig. 8. The graph contains exactly 5 nodes
and 9 elements.
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SOLUTION PROCEDURE FOR SINGLE-ELEMENT-KIND NETWORKS*

S. D. Bedrosian and R. S. Berkowitz
Institute for Cooperative Research and The Moore School of Electrical Engineering
University of Pennsylvania
Philadelphia 4, Pa.

Summary

The indefinite admittance matrix provides a
straightforward means for obtaining admittance
parameters for describing the external behavior of
a network in terms of the element values. When
the element values are considered as the unknowns
and the expressions representing short circuit
measurements describing its behavior are taken as
known constants, the relations obtained become a
nonlinear system of equations.

A novel feature in formulating the system of
equations is the exclusive use of transfer ad-
mittance parameters rather than the use of a
reference node. Necessary conditions for "solva-
bility" are given in terms of the 'compound"
matrix. A general solution procedure is discussed
for explicit determination of the element values
of single-element-kind networks. Examples are in-
cluded.

Introduction

We are concerned with formulation of an ade-

quate mathematical theory for network element value

solvability as distinguished from the empirical
techniques usually practiced in electronic mainte-
nance. By solvability we mean the ability to de-
termine uniquely the value of all the unknown ele-
ments of a given multiterminal network. This con-
cept of theoretical solvability was introduced by
Berkowitz.l

The networks being treated are considered to
have a known configuration and are such that
measurements can be made at a limited number of
terminals. See Fig. 1. Three types of nodes are
permitted:

Accessible nodes, A.
terminals)

Partially accessible nodes, P. (terminals
restricted to application or measurement
of voltage)

Inaccessible nodes, I.
cealed" nodes).

(the usual external

(internal or "con-

Then the total number of nodes N=A+P+1.

* This paper is based on Chapter IV of a
dissertation submitted in partial fulfillment of
the requirements for the Ph.D. degree at the Uni-
versity of Pennsylvania, Philadelphia, Pa. The
work was supported, in part, by Contract No. DA-
36-034-507-0RD-3347RD with the Frankford Arsenal,
Army Ordnance Corps.
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Formulation of Equations

The Compound Matrix

By suitable labeling of these nodes we can
write the indefinite admittance matrix as a "com-
pound" matrix (using subscript t for the trans-
pose) .

nodes A B i

"SI sl B

P [T | (1)
Al et A
N ol R - B

This~>n matrix provides a direct method of ob-
taining a "complete set' of parameters represent-
ing short circuit measurements for describing the
observable external behavior of the network, due
to the fact that it facilitates formulation of
the transfer admittance from any pair of nodes in
the network to any other pair. The set of linear
algebraic equations can be represented in matrix
form as:

A _ YAEA AP_P AI 1

1 YR 4YE
1 = vAPEApyPEPyyPTpT (2)
0 = YAIEALPTEP yIgT,

Then, solving for the current at the accessible

nodes, we have

)
A = yA gAyP 'gP (3)
where
1
A R AT T T8t
) - VAMah T (4)
' AT, I.-1PI
) =Ty, (5)

If there are no partially accessible nodes in
the given network, Eq. 4 simplifies to Kron's
reduction formula. Thus, if P # 0 we have both
terms in Eq. 3 and we require the additional
equation for defining |Y The result given
above can be considered as a generalization of
Kron's work.



Since extensive use will be made of equations
4 and 5, we introduce some simplifying notation.

Let, v, = YIyly? (6)

since this matrix product is common to both
equations. Then one can write the negative term
in equations 4 and 5 respectively as,

vyl =¥ (7
and

Yt =¥ (8)
Finally,

[YA]' =% 9)
and

(¥ - vAPY. (10)

The M matrix ripresentation automatically
leads to the Q test,” i.e. B £ Q is a necessary
condition for solvability of a single-element-kind
network having B branches.

_ (independent off-diagonaf) o iy KAR
£ (. element of Y B (S )
(11)

XA(A+2P-1) .

Conditions on the Matrix Elements

At this point a theorem is given which pro-
vides a useful check on setting up the compound
matrix representation of a network.

Theorem 1: A set of necessary conditions for
solvability in terms of the indefinite admittance
matrix }Q (Eq. 1) for the network are:

a. no off-diagonal elements of the matrix
contain more than a single term.

b. the diagonal elements of the YI
matrix must contain 2 3 terms each.

c. the YP submatrix must be diagonal, i.e.
no off-diagonal elements.

d. any B¢ branches of the network, not in-
cident on the inaccessible nodes (I), will appear
only in the submatrix Y, or Y and Yt .

sub-

Proof: Parts a, b, and ¢ follow directly from
the corresponding parts of Theorem C previously
given by Berkowitz.

The Key Subgraph

With respect to part d of Theorem_1l above,
it is observed that the entries in the Y~ sub-
matrix, considered from a topological point of
view, represent a special subgraph of the given

network. This subgraph consists of the subset By
of all branches incident on all of the inaccessi-
ble nodes. Because of its special importance, we
define it as the "key subgraph" G, of the network.
This is shown in Fig. 2, wherein the solid lines
are the By branches and the broken lines are Bg
branches.

Theorem 2: The elements of the matrices ¥
and ¥ defined in equations 7 and 8 respectively
only contain terms involving branches appearing in
the key subgraph G, of the network.

Proof: From Theorem 1, part d, we know that
the non-key subgraph branches of the network (Bg)
will appear only in submatrix YA, or YAP and
Y. The theorem follows directly from the reduc-
tion formulas, equations 4 and 5, and the defini-
tions in equations 7 and 8.

Numbering Convention

Let us be more explicit in terms of equations
9 and 10. 1In general Eﬂq is an A x A symmetric
matrix of the form (shown for A = 3; the diagonal
elements D; of the matrix represent the short
circuit self admittances)

and

&P]' is an A x P matrix of the form (shown for
A=3,P=2)

C4 Cs
—=11C¢ G

YN
C8 Cq

Observe that the above examples follow a uniform
numbering scheme. One proceeds by labeling the
A&A;l) independent off-diagonal elements of the
Y: matrix and then continues by labeling the AP
elements of the [XP]' matrix. This labeling im-
plies that the measured admittances are being ex-
pressed as numerical constants.

Exclusive Use of Transfer Measurements

Another useful observation has to do with the
fact that the sum of the transfer admittances, the
C's, equals the self admittance, the D;j, for each
row in the EYA ' and [¥P]' matrices. This permits
a novel formulation of the system of C equations
by use of all of the off-diagonal elements of the
"accessible'", i.e. the A and P, portion of the
matrix ] rather than the conventional approach of
selecting an arbitrary reference node with its at-
tendant deletion of row and column. Thus, only the
short circuit transfer measurements made on the



network are utilized so that in general,

c,=

=g WA . (12)

Number of Equations

Some remarks are in order regarding the num-
ber of equations versus the number of variables,
i.e. the B unknown elements of the network. The
procedure for formulating equations gives a
straightforward and compact way of arriving at a
complete set of equations C. These are analytical
equivalents to transfer admittance measurements
which can be made on the given single-element-kind
network to completely describe its observable ex-
ternal behavior. The total number of equations to
be expected is a direct function of the number of
accessible and partially accessible nodes. 1In
fact the number of equations C obtained will equal

%A(A+2P 1), even though in many cases B will be
1ess than Q.

For potentially solvable networks then the
number of equations can also be expressed in terms
of branches in the graph G;

(13)

Clearly, B, = B represents a '"maximal" condition.
Such a network has the maximum number of branches
in G for the given number of type A and P nodes.
It must be emphasized that by virtue of our tech-
nique, the inequality implies that when B < Q we
will obtain redundant equations equal in number to
Bq - B. When there are more equations than un-
knowns, one cannot say in general that there is a
solution to the system of equations. The speci-
fied compound matrix method of formulating these
equations assures us of "consistency" in the sense
that there exist values of the unknown which satis-
fy all Bq equations.

General Solution Procedure

Modified System of Equations

The equations derived from single-element-
kind networks have some special characteristics.
For example, the terms are homogeneous multi-
linear algebraic forms;

()

)n(l
E U &y =L (14)
4 L-fn )
where
o= i C/ = -Yrj’ (15)
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and
Yrj = admittance measurements
A = determinant of the key subgraph
arj = coefficient (an integer)
f%(l)(r,j) = functional dependence on number of
internal nodes
%= 1, 2,83 , m
A=l Sl 2650 3 ) Q)
A S 15,23, .y (I41).

Each term is linear with respect to each of its
variables individually. 1In general no two or more
terms of an equation are alike. This also applies
to terms between equations of a set.

With regard to the general form shown in
Eq. 14, note also that the number, n, of linear
variables in the product is related to the number
of inaccessible nodes in the network. For example,
with I = 2 each term consists of a product of three

variables. The relationship implied by 7” (I)(r j)
in Eq. 14 is given by:
n=14+1. (16)

Thus noting Eq. 15, we state:

Theorem 3: The system of nonlinear equations
17 derived from the compound matrix 7y by use of
the generalized reduction formulas, Eqs. 4 and 5,
can be represented by a modified system of equa-
tions, Eq. 19, wherein the determinant A of the
key subgraph Gk is absorbed as a scale factor.

Proof: We can rewrite Eq.
a functional relationship.

14 in the form of

i

A= H (x19 Xps 52 (17)
where
Hy is homogeneous of order n
£ is homogeneous of order n-1
‘/ = 1) 2: 3’ ‘ Q'
Similarly we can write
& = B (% Fys il (18)
Now consider the set of equations
EV — Hn(yl’ Y2) "')' (19)



Then

lt
Hn(y1: Y2, ---) = ZHn(Xl, X2, ...)- (20)

Suppose that y}, Y2 are unique solutions to
et

Eq. 19. Also
b'e = R/"y, (21)
3 A7
; n,_.\n
H (x,) = (\/&) Hn(yj)
= AHn(Yj)
s Ag, (22)
Thus equations 17 and 20 are satisfied. Using
Eq. 21, we can also write,
- n-1
A Ay, = (W5) Oy @
- 1/n _
Pies (a) -,On_l(yj) (24)
n
b= [ﬁn_l(yj)] (25)
Finally then
Xy= ¥y Xan_l(yj). (26)

For convenience, we shall indicate the change of
variables by means of primes on the variables, i.e.
the unknown elements of the network, in the equa-
tions. Then the modified system of equations 19
have the alternate form of representation to Eq. 20
namely:

t
H (%9, X5, BoA) 27

Note that Eqs. 24
a network element
ing it we use the

and 26 define what is, in effect,
scale factor. To simplify writ-
symbol A .

Theorem 4: The solution of the modified sys-
tem of equations, Eq. 27 combined with the equa-
tion for A , the determinant of the key subgraph,
provides a complete solution for the primary vari-
ables which are the unknown elements of the given
network.

Proof: This follows from Theorem 3. The
scale factor then is given by,

19

n

Y

(28)

Topological Implications

Earlier it was indicated that the entires in
the Y! matrix, considered from a topological point
of view, represent a special subgraph G, of the
given network. Further implications are given in
the next theorem followed by an illustrative ex-
ample.

Theorem 5: Given a potentially solvable
single-element-kind network of B branches, there
exists a subset CX of the complete set of the sys-
tem of equations C derived by use of the indefinite
admittance matrix 7. Solution of this ck subset
of the system of equations implies solution of the
network.

Proof: Theorem 1 indicates that branches B¢
of the network not occuring in the ke¥ subgrax%
can only appear in matrices YA, or YAP and Yt ]
From Theorem 2 we know that matrices Y and only
contain branches By within the key subgraph of the
network. Theorem 4 permits absorbing A as a scale
factor. Examination of the indefinite admittance
matrix # and the matrix manipulations leading to
the matrices fﬂﬂ ' and YP]' indicates that there
will always exist a subset gk of the C system of
nonlinear equations for a potentially solvable
network 2 the number of branches By in the key
subgraph and which exclude the Bg "free' branches
of the network not found in this subgraph Gy. On
the other hand, the subset of equations C* is equal
in number to the non-key subgraph branches Bg in
the network. In particular there is one equation
for each of these branches. Furthermore, these
equations can always be written so as to emphasize
the simple relationship of the excluded branch to
the branches in the key subgraph. Consequently,
explicit solution of the gk subset implies solu-
tion of the C system of equations which in turn
implies explicit solution of the element values
of the network itself.

A useful restatement of Theorem 5 is that:
the set of transfer admittances, C*, remaining in
the [YA]' and [YP]' matrices,after excluding there-
from elements derived from all of the diagonal
entries and the nonzero off-diagonal entries of
the accessible portion of the 77 matrix, must be
solvable for the network itself to be solvable.

Corollary: Solution of the system of equa-
tions for a maximal network does not entail the use
of redundant equations.

Proof: A maximal network is defined as one

in which By = B. For this case the subset C* is
equal to By in number.

Examples

Detailed Example

The following example illustrates the key
subgraph and related concepts. In particular the



complete set of equations, derived from the com-
pound matrix and the generalized reduction formu-
las, is divided into two mutually exclusive sub-
sets gk and gf.

Consider the twelve branch network (B,=B=12,
Bk=9, Bc=l) of Fig. 3 with all three types of
nodes. The indefinite admittance matrix * for
this network is, with zero entries omitted:

A B I

Nodes 1 2 3 ! 4 5 6, 7 8
1|b4x+y -y -x -b
A2| -y gthty+z -z -h -8

3 =2 d+z -d

; '_;“ a+x -a

P5 j+k -k -3

6 n -n

.7 i -k ~-d -k -n{d+h+k+n+i -i

I8 -b -8 -a -j -i a+b+g+j+i

The key steps in obtaining the equations represent-
ing admittance measurements on this network from
the %} matrix’'are as follows:

. a+b+g4j+i i
(¥1) L (29)

1
A i d+h+k+n+i

where the determinant for the key subgraph is

A = (a+b+g+j) (d+h+k+n)+i(a+b+g+j+d+h+k+n) . (30)

Let A = a+big+j+i and D = d+h+k+n+i.
Then
bi bD
Yo = L gi+hA hi+gD
A
da di
Then
b2D bih+bgD bid
¥ = Llbin+tbgd nA+2ghi+g?D dgi+dha

bid dgi+dhA a2

-
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and

[ abD biK+bjD bin
7 =i ahi+agD hkA+gik+hij+gjD hnA+gin|.
adi dKA+d1 j dnA
Then we finally get
(31)
- A(b+x+y)+b2D  ya +bih+bgD bid

s ]
E{‘S =21| yA +bihtbgD - A(g+hty+z %+th 2 A +dhA+dgi
A D

+2ghi+g
' bid zA+dhA+dgi - A(d+z)+d?A
and
(32)

[ x A+abD bik+bjD bin

s =l . SE Axr s .
E¥ = —= | ahi+agD hkA+gik+hij+gjD hnA+gin]|.

N

aid dkA+di j dnA

Then the gk subset of the system of equations for
this network is:

¢, =b'i'd’
C, =b'i'n'
€ = a'i'd’
€y = d'n'a’
Cs =Db'i'k'+b'j'D’ 38y
97 =a'h'i'+a'g'D"'
Cg =h'n'A'+g'i'n'
€y = d'k'A'Hd"L"
Cg =h'k'A'+g'i'k'+h'i'j'+g'; D’
where
A' = a'+b'+g"+j'+i' = bheti’
D' = d'+h'+k'+n'+i" = dlg+i’.
The gf subset of the system of equations is:
Cp =y'A+b'i'h'+b'g'D' = y'A'+b'Cy/a’
Cy =z'A+d'h'A'+d'g'i’ = z'a'+d'Cg/n’ (34)
€, = x'A+a'b'D' = x'A'+(95-¥75g6)/74.



After anrrocrriate maniopvlation of the system of

equations for

where

and

Ts

this network -e find that:

1
¥ 2CsTLe)  C5€12\ 3

- Mo S

= 120/C NG /%
= 1#03°C/C 0Ls/Co
a*Bly,/06

d )
alCo- ;-y;'gc_é_)":'a' Y
710

Sfy1CCy0 _ gt
CLyTLy, P

Cls LBy

-6—11‘09912

-b—
dl

€811 CeC0

M1C86C10" (€7 10812

Suhéo | ok

Then it follows that,

b!

nt

i t12 3/
= d'/y
= ag/e,
- am,
- g
= b'C0/C,
- am,

(35

(36)

2

g' = b'ql

gé/b'n'.

These nine elements of the key subgraph permit one
to evaluate the scale factor A for the individual
elements. Actual admittance measurements used in
the solution equations yield the primed values.
The primed values are proportional to the desired
original element values by the scale factor. The
equation defining the determinant of the key sub-
graph yields the scale factor A when the primed
element values are substituted therein. Sub-
sequently, the unprimed element values are used in
the same equation to yield the value of the de-
terminant itself. With this we can solve for the
three non-key-subgraph elements x, y, and z.

x = C,-(C5-T5Ce) /1y
y = C;-bCqy/a (37)
2z = 93-(199/1'1 N

Numerical Results

In Fig. 3 let the element values in mhos be:

a=b=g=j=1

L. A=17, D =11, & = 68.
Then the computed results are as tabulated below:

Transfer Measurements

Notation Measured Value
Numbering | Short circuit Jﬁssumed
Convention | Admittance Nominal |Assumed Error

C Ty, .0b8235  .09265 +5%
QS Ylg 0.,25000 0.2625 )
Cq Toq 0.75000 0.7375 )
99 Y26 0.50000 0.5?50 )
910 Y?h .088235 09265
96 Y16 .088235 .08382 -57%
C. Y2h 0.25000 .23750 "
"
911 YB; 0.50000 L7500 )
912 Y36 0.L1179 .39120
<) 1)), L.25000 L.2500 mone
Cy Y5 L.50000  k.5000 "
"
9h Y23 6.16176  6.1618



The two sets of calculated transfer ad-
mittance measurements given above are used with
the set of solution formulas, equations 35 through
37, for the twelve branches of this network given
in the previous section. The resulting element
values are listed below. Note that the first
column of results is based on the ideal condition
of perfect measurements and calculations. The
second column is based on introduction of assumed
measurement errors of +5% for the C* subset only.

Calculations

Network Ideal Meas. Deviation

Branch Case Error dny 7
a 1.000 0.959 -4
b 1.000 0.959 -4
d 2.000 2.064 + 3
g 1.000 0.895 -11
h 2,000 2.357 +18
it 3.000 3.498 +17
j 1.000 1.271 +27
k 2.000 1.681 -16
n 2.000 1.868 -7
X 6.000 6.021 + 0
y 4.000 4.013 + 0
Z 4.000 3.920 -2

Observe that the maximum deviation does not occur
for the concealed branch i as may have been ex-
pected. This is a function of the magnitude of
the errors in the specific measurements.

Networks Related by Key Subgraph3

Further significance of the key subgraph of a
solvable network can be illustrated. The totality
of branches in the network is divided into the key
subgraph and its complement. Hence, the number of
branches in a given network can be written as the
sum

B = By + By (38)

If one can solve a sufficiently general case hav-
ing a given key subgraph, one can find many re-
lated networks which can be considered as menbers
of this family of networks. The number of net-
works in the family is given by

23f (3)
For purposes of illustration, we can use the net-
work shown in Fig. 3. Here we have, B = 12,

By =9 and Bf = 3.

Consequently, using Eq. 39 we get,
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Total Number of
Branches Networks
B + 3 .

Bje o+ 2 3

By +1 3

B, 1

The eight resulting networks are shown in Fig. 4.
It is emphasized that the initial detailed so-
lution of the general case (in this example

B = 12) readily yields the remaining indicated
solutions by virtue of the fact that the non-key
subgraph B¢ branches of the network occur as in-
dividual solution equations. 1In order to be able
to use this simple deletion procedure no special
case is required in setting up the indefinite ad-
mittance matrix #

Conclusions

A systematic procedure has been described for
formulating the system of equations representing
the observable external behavior of a network with
partially accessible as well as accessible termi-
nals. The concept of the key subgraph was intro-
duced. It was shown that it is possible to select
a subset of the system of equations which include
only branches of the key subgraph as variables.
These are found to be adequate for determining the
element values of the network.

Details of the systematic explicit method used
to solve the system of equations for the example
presented will be the subject of a future paper.
In addition to this explicit method of solution,
attention is invited to a forthcoming paper” on an
implicit method using maximum likelihood esti-
mation procedures. Both of these techniques are
suitable for digital computer use.

Appendix
List of Symbols
B Actual number of elements in the network

or branches in its graph.

B. Number of concealed branches in the key
subgraph G,. These join internal nodes.

Bf Number of non-key subgraph (or "free")
branches in the network or its graph. These join
two accessible or an accessible and a partly
accessible node.

By  Number of branches in the key subgraph Gy
of the network.

B Maximum number of branches permitted by

the Q test, i.e. Bq = Q.



9] General transfer admittance measurement.
Also the complete set of measurements for the ex-
ternal behavior of the network.

gf The subset of measurements involving non-
key subgraph as well as key subgraph branches as

unknowns. There is one such measurement for each
of the Bg branches.
c®  The subset of measurements involving only

branches of the key subgraph as the unknowns.

Gk The key subgraph for the network or its
corresponding linear graph.

Q Number of admittance functions which
specify a passive linear bilateral network.

A Determinant of YI submatrix of the in-
definite admittance matrix,7ﬁ , expressed as a
compound matrix.

A Scale factor related to the determinant
of the key subgraph.
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Fig. 3. Network for detailed example.
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THE IMAGE-PARAMETER DESIGN OF THE GENERAL TWO-SECTION ELLIPTIC-FUNCTION FILTER

W. N. Tuttle
General Radio Company
West Concord, Mass.

Summary

Elliptic-function filters, which are
optimum designs for many practical requirements,
have found limited use because of the difficulties
of design. It is shown that electrical symmetry
requires that two-section filters be matched at
the internal junction on an image-impedance
basis. For the range of designs which can be
realized in the ladder structure, therefore, the
general fifth-order elliptic-function filter is
a pure Zobel design with symmetrically modified
end reactances. This fact provides the basis
for simplified design formulas for filters with
any desired ripple level and any sepsaration
between the pass and stop bands.

Introduction

A previous paper 1 Showed that a limited
class of two-section elliptic-function filters
can be realized as pure Zobel designs by proper
choice of the m values and the resistance
termination ratio. This class of filters is
restricted in that only a single level of pass-
band ripple is available for each width of the
cutoff region. It is frequently desirable to
obtain much lower ripple levels when a low
reflection coefficient is needed, or much
higher ripple levels when maximum discrimination
in the stop band is the prime specification.
When the full range of elliptic-function designs
is available, two-section filters are versatile
enough to satisfy a large variety of practical
requirements. However, no simple design
procedure has been available to handle the
general case, and inferior designs are still
used extensively because of the cost and
difficulty of obtaining an optimum design.

The present paper describes an extension
of the previous results to the general case,
and is based on the fact, which has not
previously been reported, that the larger class
of filters, although not purely Zobelian, must
nevertheless have their sections matched at
the internal junction on an image-impedance
basis. This requirement, which is necessary
for electrical symmetry, applies to fifth-
order Butterworth and Tchebycheff filters as
well as to elliptic-function filters. All
three types of two-section filters, therefore,
can be realized as pure Zobel or prototype
filters with the end reactances symmetrically
modified. The quantity determining the end
reactance modification constitutes an
additional design constant which permits these
more general types of filters to be realized
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by image-parameter methods. The design
formulas are considerably simpler than those
of the usual synthesis procedures and lend
themselves readily to routine filter design
with a desk calculator, or, using auxiliary
charts, with a slide-rule.

It should be emphasized that in the case
of three or more sections matched junctions
are not necessary for electrical symmetry. In
these cases successive mismatches can compensate
one another so that over-all electrical symmetry
is possible without matching. The method of the
present paper, therefore, can not be directly
extended to three or more sections.

Proof that the Sections Must be Matched

The proof will be given for the circuit
shown in Fig. 1, which is the usual configuration
for the two-section low-pass filter, but the
proof is similar for the corresponding case of
mid-series terminations. It is assumed that
this filter is electrically symmetrical, as is
the two-section elliptic-function filter. The
first step is to split off equal amounts from the
two end capacitances so that the sum of the
remainders is equal to the center capacitance.
Then the center part can be divided into two
sections each having equal end capacitances.

The original filter has then been broken down
as shown in Fig. 2.

The equal end capacitances g can be
either positive or negative, so that the
capacitances Cj and Cg of the component sections
can be less or greater, respectively, than the
end capacitances of the original filter.

In a Zobel filter section, the three
image parameters R}, w. and m determine the three
element values, C,, L2 and C,. The usual
equations can be inverted ans the elements of
the general symmetrical filter of Fig. 2 can be

described in terms of the image parameters. For
the first section the values are
1
WP e — (1)
c C
A
L
RZ = i (2)
ZCA



2h 1 3)

So far this is a purely formal description
of the original filter. This was assumed to be
electrically symmetrical, however, and since the
capacitances g which have been removed from the
ends are equal, the remainder in the middle
must still be symmetrical. The central portion,
then, is electrically symmetrical and consists of
two Zobel sections in tandem. It remains to show
that this is possible only if the sections are
matched.

The last point can be proved from the
general symmetry requirement that the open- and
short-circuit impedances must be the same from
both ends. If the branch impedances of Fig. 1
are replaced by z; 23 z3 z; and zs5, the open-
or short-circuited impedances can readily be
written down and equated. For either case
the symmetry requirement can be shown to be,
21‘-22 =)

(2223 + 2324 + 2224)(21_:_32 ) %)
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The reactance values of the arms of the
Zobel sections can be computed from the usual
equations and put in the form

-Ryw
X = I (P (5)
my W
SR - - ®)
“’;2:1 B (1-mf)m2
X3 = -RyRpwejwe s 62
w(leclm2 + Rz“chl)
x, = ZRowesw (8)
ey = Clamlys
c2 T2
xg = -Rawca (9
mow
Equation (4) gives
(% = x)x1x5 = (x2x3 +x3%4 + x2%,) (x] - x5) (10)

and the reactance values can be substituted from
(5) to (9). Since the equation must hold for all
frequencies, the terms in the various powers of
w can be equated to determine the conditions on
the image parameters necessary for electrical
symmetry. It is found that after cancellatipn
there are only _constant terms and terms in w".
Equating the w
expression finally yields

2. 2 2 2
Rjwep = Rchz (11)

terms and simplifying the resulting

Equating the constant terms gives

R2 = R2
1 2
Hence from (11)
wz = wz
cl  e2

It has thus been shown that the two Zobel
sections in the central portion of Fig. 2
must be matched at their junction on an image-
impedance basis. Hence the whole filter, which
is the general symmetrical two-section filter
including all the elliptic-function designs
realizable in the ladder configuration, is either
a pure Zobel filter or a Zobel filter with
symmetrically modified end reactances.

Derivation of the Design Equations

The insertion loss of an electrically
symmetrical reactance filter can be expressed
in terms of the arms of the equivalent lattice
by the formula

2] as)
L =10 log, [1 v Ao, ]

where the loss is in decibels and u = X_/R

and v = Xy/Rt are the ratios of the lattice-arm
reactances to the terminating resistances. For
the pure Zobel filter with the end reactances
unmodified Saraga® gives the formulas

m + X
8 = e 11 "2 - (15)
+ m1m2 X an;
A ) -
L+ mm x% - T mym- g
Vs S5 m) + mgy x (x2- 1) (16)

where r is the ratio of the design resistance to
the terminating resistance, x the ratio of the
frequency to the image-parameter cutoff
frequency, and m) and mp are the m values of the
two Zobel sections.

The additional end capacitances g can be
included by taking

Qa7
1 5 e & Ex
u' u
lT & Le o (18)
Vi v

and the value of the characteristic function

becomes
TN 1 - gx(u + v) + (1+g2x2)uv

u'- v'

£ =

u-v (19)



The reactance values for the two-section
Zobel filter can be taken from (15) and (16)

giving 2 1
S s
l+gxj{a__x +b b (1+g2x2) T
Em=’ b2 -l 2 462 -1) x°-1
_ b
2 1
LIS S ol i
e [ o
x(x2 - 1) b

where a and b are abbreviations for mj; + my)
and 1 + mympy, respectively.

If the numerator and denominator are
multiplied by

abx (x2 - 1)(x2 - %)

the denominator becomes

1

b2(x2 - b)2 - azxz(x2 -1

which reduces to

1 - mz)(l - mz)(x2 - . )(XZ - __l__z
1 2 1 - m? 1 - mf )

Finally, collecting the terms of the numerator
by powers of x, the characteristic function is
obtained as

-abx (Ax* - Bx? + €) (21)
2 2 B b 1 2 1
r(l-mp) (1-m3) (x” - Y(x" - _____2)
¥ e m{ 1 - mj
where
= 22 a b
A = 14+ 1r°g° +rg (b + a) (22)
292
1 + rg 2
IESAE ST N (% + ;) +1 - r2(23)
b
2
rg , 1l -r
c B e
ab b s

In (21) the insertion-loss poles appear
in the denominator as the familiar rejection
peaks of the m-derived sections, and the
finite zeros in the numerator as the roots of
the biquadratic expression.

Equation (21) gives the characteristic
function for two matched Zobel m-derived sections
with the end reactances modified in accordance
with the new parameter g. To realize the
elliptic-function response, giving equal pass-
band ripples and equal stop-band valleys of
insertion loss, the procedure of the earlier
paper - can be followed, and the poles and
zeros located according to the expression,

2 2 2 2
Ry(y® - a9)(y" - &;)
o ‘ g (25)

22y Dislid ey 55 1
83, (y -az)(y -;%“)
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where a; and g, are the Cauer parameters and
the frequency variable y is with respect to

v f1fy , the geometric mean of f],the end
frequency of the pass band, and f; the
beginning frequency of the stop band.
be noted that the poles and zeros are
symmetrically located about the mean frequency
of the cutoff region, so that their distribution
is specified by only the two constants, a, and

It will

a;. These are defined in the usual terminology
of elliptic functions, as follows:
a; =Jk sn(%g » k) (26)
34 = J? sn(%E , k) @n
where k = sin fl/f2 = sin 6.

The Cauer garameters have been tabulated by
Glowatzki or can be obtaineg conveniently from
tables of elliptic functions A short table
at 5° intervals of © is given as Table I. The
entire design of the elliptic-function filter,
can be carried through in terms of image
parameters and the additional quantity g if the
constants A, B and C of (22)-(24) can be chosen
to give the pole and zero locations specified by
(25), and if the constant H can be given the
value corresponding to the desired ripple level.

The frequency variable y in (25) is
related to the corresponding quantity x in the
image-parameter expression (21) by

y = X fco (28)
where f ol e f. /J/fyf5 . This change of
variable in (25) gives

a2 a2
2 2 2 4
Hx f..(x" - o A
co E-2---)(x 2 )
E - co co (29)
25 2l 1 2 1
B St hats TN ey
feo a4 feo @
Comparing (29) with (21) it is evident that
HYEES abA
7 i 2
aZ a, r(l - o)A - mg)
2
and since 1 - m% = fco az and 1 - m% = fio ag
the constant H is given by
w o= 222 (30)
rfco

If the roots of the biquadratic expression
in the numerator of (21) are equated to the
values specified in (29), the following conditions
are obtained on the coefficients A, B and C.
B =

Ac (1)

C = Ad (32)



2 2 az a
a2 + 34 2 8,

where ¢ = fz and d = f4
co co

Taking the values of the coefficients from
(22)(23) and (24) conditions (31) and (32)
become respectively

%J+ 1-2 = 0
(33)

1 a 2
(1 + r2g2)(g-c)+rg[g+ % -c(%+
and

1+ rzgz)bd + rg [bd(% + %) - %—] -(1 - r2)= 0
(34)

The sum of (33) and (34) gives the quadratic
in the product rg:-

1
(1 + rzgz)(c - bd - %) - rg [(% + @)

a b
- eb)G+ D] = 0 35)
This can be put in the form,
r2g2 - 2Ffrg +1 = 0 (36)
where
2yl e-b)@+2)
Fo= 2 - )
2 (c -~ bd - g)
The solution is
rg = FQ1 - 1l - ;E ). (38)
For large values of F the solution is
conveniently obtained from the series
11 1
rg 2F * 5;3 +Tepo t ot (39)

and for F greater than 9 the first two terms give
the result within about 10°6. When rg has been
obtained, substitution in (33) gives r and hence
also g. The product rg can be substituted in
(22) to yield A, which, with r, gives the
constant H from (30). The constant H with a
third elliptic-function parameter, A , determines
the maximum pass-band ripple £ and the stop-
band valley height from the expressions,

o, = 10 log (1 + W A (40)
oy = 10 logo(1 + w2/ al) 1)
The quantity A is defined as
A= 1022 &, 0 m &, 0 (42)
3

Values of A are included in Glowatzki's tables
and in Table I.

In the procedure above outlined it will be
noted that f] and f; determine @ and hence the
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Cauer parameters ap, a4 and A. These quantities
with f., determine the entire filter design. 1If
fco is fixed with respect to f]; and fy, then
only one elliptic function filter with a
particular ripple level &« P is possible. The
quantity f.,, which is usually thought of as the
end of the pass band, actually is an additional
parameter which must be varied in its location
between f) and f, to obtain the desired ripple
level or value of the constant H. It has not
been found feasible to compute the required
value of f., directly from H or frome ,. But
by computing for each of a series of values of

6 a group of filter designs with different
values of fco a chart can be prepared giving the
required value of f., for any desired ripple
level and any separation between the pass and
stop bands.

Such a chart is shown in Fig. 3 covering
ripple levels down to .00l db, corresponding to
1,52 per cent reflection factor. The dashed
line at the upper right shows the limit of
designs reslizable in the ladder structure. The
limit corresponds to one of the end capacitances
going negative, that is, to the negative
additional capacitance g being equal to the
unmodified end capacitance of the section with
the lower value of m. Designs at the limit can
be used and require one less element in the
high- or low-pass case and two less elements in
the band-pass case. They are not usually of
interest because the minimum stop band loss is
less than 20 db. The design with .001 db ripple,
for example, gives 19.5 db minimum loss in a
frequency ratio of 1.4 to 1.

The need for using a chart to determine feo
at the start of the design does not imply an
approximation in the computation as will be seen
in the following section. An error in selecting
feo will cause the pass-band ripple to depart
more or less from the desired value but the filter
will still be a perfect elliptic-function design.
The chart shows that the variation of f¢, is
considerable in going from one ripple level to
another so that it is easy to meet practical
specifications on ripple level.

Design Procedure

A performance chart for two-section filters
is generally preferable to formulas for arriving
at the best design compromise to meet given
specifications. The chart of Fig. 4 gives the
frequency ratio as a function of the minimum
stop-band loss for various constant pass-band
ripple levels. The chart shows, at the left,
the limit of ladder realizibility, discussed
above, and, by the dashed line, the designs
realizable as pure Zobel filters by the method
of the previous paper *. The ripple level of the
Zobel design is generally between 0.02 and 0.1
db, which is in the middle of the useful range.
When ripple levels of this order are satisfactory,
advantage can be taken of the simpler design
procedure, the filters being identical.



The general design procedure will be are obtained from the usual Zobel design

illustrated by a numerical example. Assume . equations modified by the addition of the
that a low-pass filter is needed to work between quantity g to the end capacitances. These are
500-ohm resistances, pass frequencies up to 1 kc my .

and provide at least 50 db insertion loss at 1.7 . C,b = — + g-= 1.27985 £

kc and beyond. A ripple level of about 0.3 db ts

is acceptable. Fig. 4 shows that 50 db can be L, = 2mr = 1.07098 h
obtained in a frequency ratio 1.48 for a ripple 1 - ol

level of 0.5 db or 1.59 for 0.2 db, so the C. = 1 . 0.45002 f
specifications are within the capabilities of 2 2mr

a two-section filter. Taking 6 = 40° gives a m; + my

frequency ratio of 1.56, between the above limits, C3 = — = 2.16051 f

and permits the use of the Cauer parameters

directly from Table I. For this angle the f¢o L = 2m.r = 1.32082 h
chart, Fig. 3, shows that f., = 0.90 gives a 4 2 2
ripple level of about 0.3 db, and will be taken 1-mp £
for the design. 04 = = -16055
. 2mor
For 6 = 40° Table I gives
C = =2 ,g = 1.50553 f
5 . .

a, = .5116709

To obtain the final design from the

a =
4 7713694 normalized design it is necessary to locate the

Then mé = l'az fgo m = .7197509 end of the pass band with respect to the highest
1 ) . frequency to be transmitted, in this case 1 kc.
2 2 If f] is taken as 1.07 kc then f; = f] csc @
mé¢ = 1l-a, f = ,8876577 1 2 1
2 2JICO ™2 = 1.665 kc, which satisfies the specification
limit of 1.7 kc. It is desirable to place f}
a = 1.607409 slightly outside the desired pass band because
b = 1.638892 dissipation effects are most pronounced near
¢ = 1.057800 the end of the band. It must be emphasized
d = »2374303 that the performance figures which have been
given are for ideal filters with no dissipation
From (37) and (38) . in the elements.
F = 2.267231 Since £2/f,f, = £, and £ /f. = sin @ i
c 1 n t
rg = .232449 e e O 172
He f 33 - - - :
nce from (33) . £, £,£.,// sin ©
ro= 743994 The quantity 4/ sin 0 is the ratio of the
g = .312434

end of the pass band to the mean frequency of
the cutoff region, and is included in the

The values of r and g are the two final tabulated Cauer parameters as ag. In this case

quantities required to complete the design of the value is obtained from Table I as .8017404.
the filter, but it is useful as a check to

compute H and from H the values of o< and"c’(a Hence f. = 1.07 x 0.9 + .8017404 =

to compare with the specification limits. 1.20114 kc.

From (30) and Table I The conversion factors are therefore,

H = 9.108732 : c. - 2t = 0.26501 uf
A = .02841309 M WL
and these values in (40) and (41) give Lo = Re = .066252 h
2nfe

X = ,281567 db

P
g * 50.1188 db, and the final element values are

which satisfy the specification limits. C; = 0.3392 uf
B L, = 0.07095 h

The quantities f.o, mj, my, T and g, which N C = 0.1193 uf

have been determined, fix the design of the filter C3 = 0.5726 uf
normalized for an image-parameter cutoff frequency L, = 0.08754 h
of 1 radian per second and for terminating - C, = 0.04255 uf
resistances of 1 ohm, The element values Cs = 0.3990 uf.

N ”~
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The computation as above outlined is very
simple except for the steps of determining the
coefficients of equations (33) and (35) and
solving for r and g. These steps can be
eliminated by using additional charts. Figs. 5
and 6 give r and g, respectively, as functions of
@ for the same constant ripple levels used in
the performance chart, Fig. 4, and the fco chart,
Fig. 3. To avoid interpolation error one of
these ripple levels should be selected if possible.
With these charts filter designs accurate enough
for most purposes can be obtained by slide-rule
computation, The steps are the same as above
outlined as far as the determination of m; and
my. At this point the charts of Figs. 5 and 6
are entered to obtain r and g and the element
values then obtained from the modified Zobel
design equations as before.

Discussion

Examination of the f.,, r and g charts
shows how the ripple level is varied in filters
with the same width of the cutoff region. Fig.
6 shows that the filters with large ripple are
those with the end capacitances substantially
increased over those of the pure Zobel design.
This decreases the damping effect of the
terminating resistances, giving stronger reactive
control and hence increased ripple and increased
rejection., Also Fig., 5 shows that these filters,
at least for small 6,have a lower design resistance
relative to the terminating resistances, further
reducing the damping. The filters with low
ripple have the end capacitance reduced below
the Zobel value, and, as pointed out in the body
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of the paper, cease to be realizable when one
of the required end capacitances becomes
negative,

Fig. 3 shows that in the filters with
large ripple the image-parameter cutoff frequency
is close to the end of the pass band but that
in the flat filters it is far removed. 1In the
filter for 6 = 45° and &, = .00l db, for
example, the cutoff frequency is l4 per cent
beyond the middle of the cutoff region. 1In the
sharp-cutoff filters, those with large 8, the
critical frequencies are so close together that
little variation is possible and fco is always
beyond the middle point.
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Fig. 1.
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Structure of two-section low-pass filter.
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Fig. 2. Breakdown of filter into two symmetrical sections by use of
supplementary end capacitances.
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SOME PROPERTIES OF MULTITERMINAL RC NETWORKS S

Sidney Darlington

'

Bell Telephone Laboratories,
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Murray Hill, New Jersey

Summary

This paper 1s concerned with trans-
formerless, multliterminal, grounded RC
networks, for which the complete admit-
tance matrices are‘:assumed to be speci-
fied. Most of the remarks refer to 3-
terminal networks, but suggest generali-
zations for n terminals. Certaln
propertlies of the admlittance matrices are
noted, and from these some canonical con-
figurations are conjectured.

Specifically, i1t 1s easlly shown
that admittance poles at finlte frequen-
cles and the corresponding residues, can
easlly be realized without transformers,
in any of many ways, but specific real-
!zations impose lower bounds on the admit-
tances at zero frequency and on the resi-
dues of poles at infinity. Thus poles at
finite frequencles may be said to be
bought at a price 1n terms of behavior at
zero and infinity. By means of simple
circults, it 1s easlily shown that the
price may be pald entlirely at zero or at
infinite frequencles, or it may be divided
between the two. The conjectured canon-
lcal configurations are composed of build-
ing blocks which appear to cost the least
in terms of behavior at zero and infinity.

The conjectured canonical conflgura-
tlons are consistent with the so called
serlies-parallel theorem, whlch was conjec-
tured in 1955 but has not been proved or
disproved. Furthermore, 1f the configura-
tions are indeed canonical, they represent
a substantlally stronger theorem. They
also suggest that direct specificatlions of
necessary and sufficlent conaitlons on the
over-all admittance matrices must be ex-
tremely complicated.

Introduction

This paper concerns a so-called
classical network reallzation problem.
Each such problem concerns networks of a
particular class or type, and some partic-
ular external property of those networks.
The external property 1s characterized by
a functlon of frequency or time, or by a
combinatlion or set of such functions. The
network class and the chosen property, in
comblnation, determlne a class of func-
tions, or of (finite) sets of functions.
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In most of thls paper, the network
class is the class of all three termlnal
networks of positive resistors and capac-
itors, but with no transformers. The
results may be applied also to networks
of resistors and inductors or inductors
and capacitors, by means of very well
known transformations on the frequency
variable. Many of the results are easily
generallized to transformerless networks
with more than three terminals. Through-
out the paper, the functlon class 1is a
class of sets of functions of the frequen-
cy varlable, s = lw, namely the driving-
point and transfer admittances which com-
pletely characterize the currents in
external short circults due to voltage
excitations.

One object of a realization problem
1s to determine necessary and sufficient
conditions which define the function class
in mathematical terms. Another 1s to
find a method of constructing, or design-
lng a network in the network class when
glven any member of the function class.
Usually, there are many so called equiv-
alent networks in the network class
corresponding to any one member of the
function class. A deslgn method 1s
usually appropriate only for some par-
ticular subclass of the network class.
When the network subclass 1s sufficient
for realizing the entire function class
it 1s said to be canonical.

Many different classical realization
problems have been attacked, correspond-
ing to different network classes and dif-
ferent function classes. Many have been
solved, some in various different wiys
using different canonical networks.
Others have defled solution, thanks to
mathematical difficulties. Perhaps the
most important of these relate to passive
networks without transformers. A great
deal of classlcal network theory achieves
mathematlical simpllicity and elegance by
including networks wilth transformers in
the network class. A familiar example 1s
W. Cauer's theory,c which may be applied ,
to three terminal networks of positive
resistors and capacitors plus transform-
ers. In practical applications, transform-
ers are highly undesirable. While some
progress has been made toward a compre-
henslve reallzation theory for transform-




erless passive networks, severe mathemat-
ical difficultles have kept 1t very slow.

Thls paper reports a small, but per-
haps slgniflcant advance 1n the general
area. Slmple relationships are developed
which give a much better understanding of
networks in the network class. They lead
to a conjectured canonical three-terminal
network subclass made up of quite simple
building blocks. On the other hand, the
function class 1s not delimited in terms
of both necessary and sufficient mathe-
matical condlitions, nor is the canonlcal
nature of the network subclass established
rigorously. If the network subclass 1s in
fact canonical, the mathematical bound-
aries of the function class must be very
complicated 1ndeed.

A three terminal network is commonly
viewed as a two-port, or two-terminal-palr
network in which the two ports share a
common terminal. Fig. 1 1s a block dia-
gram. Two driving-point admittance
functions, Yj3, Ypp, and one transfer ad-
mittance function, Y5, completely deter-
mine the external current-voltage rela-

tionships, 1n accordance with
g el =Yg
(1)
I, =-Y .E + Y. .E

2 1271 22 e

The separate admlttances may of course be
represented collectively as the admlittance
matrix:

Y -Y

4L 182

&

—-Y12 Y,

22

We are concerned here with finding a
network when glven a complete set of the
admittance functions. In a related, but
somewhat simpler problem, only one or two
of the functions 1s given, and at least
one may be chosen arbitrarily (within the
general function class). Solutions to
this problem are already known,> but they
are not easily modified to fit our present
problem.

The present problem was brought to
the aythor's attention by H. M. Lucal, in
1955. He proposed a specific synthesis
technique for networks 1in our network
class, using a so called serles-parallel
decomposition. He dld not claim that his
method works more than some of the time.
However, the author conjectured that _
Lucal's method 15, 1n fact, canonical,
and 1n the six intervening years the con-
Jecture has been nelther proved nor
disproved.
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The serles-parallel decomposition is
roughly as follows: Figs. 2A and 2B
1lJustrate respectlvely the parallel and
series connection of subnetworks. When
the subnetworks are connected in parallel,
thelr short circult admittances may be
added. When they are connected 1in series,
their open circuilt lmpedances may be
added. For a serles-parallel decomposi-
tion, one separates the admittance
functions or the impedance functlons into
parts approprlate for parallel connected
or series connected subnetworks. Then
one decomposes each subnetwork in a simi-
lar way (after transformation between
admittance and impedance representations),
and so on untll the subnetworks are single
branches.

The present paper supports the seriles-
parallel conJjecture, although 1t does not
prove 1t. It also goes further, and con-
Jectures a canonical configuration in
which more speciflc subnetworks are con-
nected in parallel. The subnetworks
themselves have a quite spesclal series-
parallel configuration. It 1s shown that
they can always be used to realize the
finite poles which can be realized when
transformers may be 1ncluded, but general-
ly at a price 1n terms of restrictions on
the behavior at 8 = 0 or », The price
depends 1n a complicated way on the resi-
dues at the finite poles.

Driving-Point and Transfer Admlttances

We shall derive new 1nsight from an
analysis which 1s almost, but not quite
conventional, To establish the point of
departure, and 1ts utility, we must review
some well known network theory of an
extremely elementary sort.

In Fig. 1, the two ports of the net-
work share terminal 3. Glven the network
with three external terminals and no
further instructlons, one can form two
other two-ports by using terminal 1 or 2
as the common terminal. The new admit-
tance functions are quickly established
as linear transformations on the old.
Thus, all that can be establsihed about
the network from 1ts external propertles
can be establlshed, in principle, from
the properties of any one of the three
possible two-ports. However, with any
such representation one 1s likely to miss
important relationships which stem from
the 1nherent three-way symmetry of the
network as a three-terminal device.

A well known representation which
retains the three-way symmetry is the so
called 1ndefinite matrix Y:
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Celietn s Lapd -lag (3)
Y33 -Yo3 Y33

It relates the currents into all three of
the terminals to appropriate voltages. It
is necessarily singular, for Kirchoff's
current law makes the three currents sum
to zero. To obtain the matrix Y., for in-
put and output terminal pailrs shgring
terminal j, simply remove row J and column
J from Ye

Corresponding to the general three-
terminal network there is an equlvalent w
network. It is represented in the usual
two-port form 1n Fig. 3A, and rearranged
in a symmetrical delta in Flg. 3B. It 1s
an 1maglined network which has the same
external propertles as the general network
It 1s useful as an ald to understanding
the external properties. It 1s not gen-
erally a physical embodiment of the
admittance matrix, for the three two-
terminal branches cannot generally be con-
structed out of positive physical compo-
nents.

The indicated relations between the
admlttance of the two-terminal branches
and the off-dlagonal elements in matrix Y

are easlly established. Then it 1s
quickly shown that
M- Ve W Lo
Yep = e T Yog (4)
Y =Y + Y
33 13 23
Thus Y is not only singular. It 1s singu-

lar in a particular way. The direct sum
of the rows or columns 1s ldentically zero,
not Jjust a weighted sum with unspecifled
coeffilcients.

From (4), the external behavior of
the three-termlnal network may be specl-
fied in terms of Yjp, Y33, Y23 (as func-
tions of frequency) rathér than
Y11, Yoo, Yi2. The three way symmetry
achlieved in this way we shall find very
11luminating.

Frequency Functions

Much of classlical network theory
stems from partial fraction expanslons of
frequency functions. For present pur-
poses, the appropriate expansions are
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Kci] s

IS
P c

(5)

+ K s

+ K, by

n;
Ty 2 ), 1
o=1
Kwij 1s the residue of Y;4 at a pole at
8 ="», We will also refer to K and
Ko1j as residues, although in sg% ct fact
they are residues at poles of Yjy/s.

Either or both of Koij and K°°1J may be
ZISIIC

In classical two-port theorye,
Y11, Ypo, Yip are covered by 1,J = 1,2.
Then necessary and sufficlent conditions
for realization with positive resistors
and capacitors plus 1deal transformers
are

84 = real and > O
Kpij = real
e
= nonnegative definite (6)
Koz %22
p =0, 0, » .

The condition on the residue matrix can
be broken into:

Ko11» Koo 2 ©
2
Ki11¥pe2 -~ %122 © (7)
p=o0, 0, @

The same set of sg's 1s used in the
expansions of Yy7, Ypp, Yip. It 1s
understood that K;14 = O may be used to
remove some of the poles from certain of
the admittance functions, but the second
condition in (7) requires a nonzero Kp11
and Kp22 for every nonzero Kpl2'

To avoild reference to a specifle
choice of common terminal, we may simply
lte't) dy in (5) run over 1,2,3. Then,
from (49

= Koy * Koy (8)

Ko11
Using this relationship in (7), and in
the corresponding condition on K 33
gives P



. (9)
Kyp3 + Kopg 2 0

Ko12 Kp13 * o1 Koo *+ Kop3 Kp3 20

p = 0, 0, ® ,
This 1s an alternative set of necessary
and sufficlent conditions for realization
with positive resistors and capacitors
plus ideal transformers. (Actually, only
two of the first three condltions need be
stated, for then the third 1s implied by
the fourth condition. The three are in-
cluded here to retain the three-way

symmetry.)

Behavior at Zero and Infinite Frequencles

The constants Koij determine the
admittances at s = O:

Yij(o) =K (10)

olj °

We shall refer to the corresponding matrix,
Ko, as the behavior of the network at
s = 0, Similarly, if there is a pole at

8 = »,

Yyy(so ) =Ky 8 (11)

We shall refer to the corresponding resi-
due matrix K, as the behavior of the net-
work at 8 = o, Changes in Ko and Ke do
not change the finite poles, or the
corresponding residues, but they do change
the admittances at all frequencles except
the poles.

Well known properties of transformer-
less networks include the following: When
a three termin%; network of positive
resistors and capacitors includes no
transformers,

Koij >0

KmiJ >0 (12)

1,3 = 1,2,3

The behavior at s = 0 is the same as for
the simple resistance network illustrated
in Fig. 4A. The behavior at s = = (pole
and residues) 18 the same as for the
simple capacitance network illustrated in
Fig. 4B. Thus, the behaviors at zero and
infinity can be realized, by themselves,
with positive resistors and capacitors,
whenever the admittances are appropriate
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for any transformerless network of posl-
tive resistors and capacitors.

We shall assume hence forth that con-
ditions (12) are satisfied by our admit-
tance functions,.

Rank-One Residue Matrices at Finite Poles

Important concepts will be clearer
if we impose, temporarily, the followlng
arbitrary restriction: The equal sl is
to apply to the last condition of (9) for
all finite poles (p=0), but not necessar-
ily for p = O or ». The corresponding
residue matrices have rank one. ‘Equations
(9) become

Ko Koz + Kqo Koz + K3 K3 =

K K

0l2 "0l3

v
o

+ Ko1o Kooz + K3 Kp3

+ K K

012 Kwp3 ¥ a3 Kep3z 2 0

Ke12 %013
We shall remove the restriction later on,
but only at a cost of some qulte subtle
complications (1n conditions for realiza-
bility without transformers).

Consider the implications of these
equations regarding the signs of the
three residues Kg12, Kgl13, Kg23 corres-
ponding to a single pole. Because of the
first three equations, no more than one
of the three residues may be negative.
Because of the fourth equation, elther
two are zero or at least one 1s negative.
Hence

Theorem (proved): When the
residue matrix Kqs has rank

one, out of Kj;10, K s K 0
elther two arg zerooggd 0333

1s positlve, or else one is
negative and two are posltlve.

When a residue matrix need not have rank
one (for example our Ko and Keo) 1t 1s
still true that no more than one of the
three transfer admittance residues can be
negative, However, all three can now be
positive, or one can be zero with the
other two positive,

Given a set of admittances we can
now classify, or characterize the set by
a pattern of O's, +'s, and -'s character-
izing the residues KciJ of the three
transfer admittances. “The pattern may be



displayed as a table such as the
following:

Pole Number 312 Eli Egi
i + 0 0
+ - +
3 = = = (14)
4 0 + +
5 + 0 0
6 + - +

If only the finite poles are represented,
and are subJject to the rank one residue
condlition, each row contains elther two
O's and one + or else one - and two +'s.

Realization of Single Poles with T Networks

The partial fractlon expansions
suggest, of course, W. Cauer's celebrated
canonical network for two-ports made up
of resistors and capacitors plus 1ideal
transformers. In Cauer's network, a
number of subnetworks are connected in
parallel. Each admittance, Y;i4, of the
comblnation 1s simply the sum Of the cor-
responding admittances of the parallel
connected parts. There 1is a separate sub-
network corresponding to each admittance
pole. More exactly a single subnetwork
realizes a set of partlal fractions, in
the varlous admittance functlions but all
correspondling to a single pole. 1In Cauer's
network, most of the subnetworks include
1deal transformers. We now examine alter-
native subnetworks, which avoid the trans-
formers but usually include negative
resistors or capacitors. When all the sub
networks are connected together, the nega-
tive components can frequently be
cancelled by positlive components, as we
shall see.

Conslder the simple T network 1llus-
trated in Flg. 5, in which two branches
are reslstors and one 1s a capacitor. The
corresponding transfer admlttance functions
may be arranged as follows, 1in which g4
and gy, are conductances and ¢ is capacl-
tance.

v B € Ep s €2 Bp
ab 8, + 8y S + so 8, + 8y
S
Yac -t & 3% 8,
(5)

Y. . g =
RICH 8 5 + s

o)

By T 8y

5 c
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The three functions have a common
finite pole, wlth a rank one resldue
matrix. This suggests using a separate T
as a subnetwork for realizing each finite
pole of a set of admlttance functions of
general degree. The application 1s com-
plicated, however, by the added constant
term in Ygy.

The constant term dlsappears 1f a
sultable negative resistor is connected
between the external terminals a and b.
The comblnation of the T and associated
negative resistor 1s 1lllustrated in
Fig. 6. We may use 1t as a subnetwork in
synthesizing a network of positive com-
ponents provided we can introduce, even-
tually, posltive resistors which cancel
all such negative resistors. Appropriate
synthesis formulas for the subnetwork are
as follows:

K s
= oy =
Yﬁj s+sc, 1,7 a,b,c
8a = Kiae
(16)
8 = Kgpe
o = Koac + Kcybc
)
o
_ - X . Kc,'ac chc
€ab T “oab ~ Ec * Koo

The last equation 1s a simple rearrange-
ment of our condltion for a residue
matrix of rank one.

Ef, out ol K K s K one is
< O and two are >c%? teg%§nalg22, by, (€
can be identifled with 1, 2, 3 in such an
order that Kgzeo and Kgpe are > 0. Then
(16) defines a corresponding network in
which g3, gp, ¢ are > 0. The corres-
ponding negative resistor (Fig. 6) 1is
bridged between terminals 12, 13, or 23,
whichever corresponds to Koij < 19k

If, out of K TN 5 K , two are
zero and one 1s pgggtivg}3a, 8?30 can be
identifled with 1, 2, 3 1in such an order
that Kgge > 0 and Kgphe = 0. Then gz and
¢ are > O while gy = O and also ggp.
Since a zero admittance 1is an open cir-
cult, the network of Fig. 6 now degener-
ates Into the single branch 1llustrated

in Flg. 7. Tne single branch is con-
nected between terminals 12, 13 or 23,
whichever corresponds to K >10)

ol

The properties of these networks are
further illustrated by a comparison with
Cauer's canonlcal subnetworks. Fig. 8



indicates exact equivalences. Note that
the orientation of our networks depends on
the voltage ratio ¢ of Cauer's 1ldeal
transformer, but that the various orienta-
tions cover all values of ¢.

From Fig. 8, T networks (and degen-
erate T's) may be used as subnetworks in a
transformerless counterpart of Cauer's
canonical network, provided the negative
resistors can somehow be absorbed (or else
may be tolerated as such). However, the
chance of avoiding negative components 1is
much improved if one has avallable also a
second T configuration.

Consider the T network illustrated
in Fig. 9, in which two branches are
capacitors and one is a resistor. As
before, all the admittance functions share
a common finite pole. Now, however, Ygmp
has also a pole at 8 = », instead of a
nonzero behavior at s = 0. The pole at
infinity may be removed by bridging a neg-
ative capacity between terminals a and b,
as 1llustrated in Fig. 10.

The networks illustrated in Figs. 6
and 10 are externally equivalent, in the
usual network sense. Appropriate synthe-
sis formulas for the two capacitor T are
as follows (corresponding to (16) for the
two resistor T):

$ g

O'iJ——S‘FS 1] diyspd = a,b,c

gac obe
wh = Koab =2 Koac chc
ab Sg (Koac+Kobcjsc

The components of the two T configurations
are positive under exactly the same con-
ditions. They degenerate into the same
single branch 1llustrated 1n Blg.. s undex
the same conditions. A cholce between
them may depend upon whether a negative
resistor or capacltor is more easlly
absorbed.

More generally, two T networks, one
of each kind, may be connected 1n parallel,
to realize a single finite admittance pole.
Both a negative conductance and a negative
capacitance are assoclated with the combl-
nation, but each 1s smaller than 1t would
be in the absence of the other. The
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configuration is i1llustrated in Fig. 1l1.
While it 1s more complicated than the
equivalent single T subnetworks, 1t is
important for general synthesls techniques
which we shall consider. Appropriate
formulas for the components are as follows
(combining (16) and (17)):

K ] K s
Y = q isj_ + (l_q) _0_1_.:'_
ol] s + s s + 8
o] o
0<ggl
K sac
g, = K, » cy = (1-a) s,
chc
8y = Ko s Cpy = (1-a) —gg— (18)
K + K
i gac cbe _ »
c=q 52 s &= (1-a)K K o)
K
o = s » gab
“8ap T 4 Koab ? Cab ~ (1-a) )

o

A well known theorem requires q to
be the same for all 1j, so long as the
residue matrix of the comblnation is to
have rank one.

Theorem (known): When two
parallel connected networks
of reslstors and capacitors
have a common admittance
pole, the residue matrix Kg
for the combination has rank
one if and only if:

a. The residue matrices for
the two networks have
rank one,

b= Kg = qu, where q 1s a
scalar.

The second condition requires, of course,
K& = qK%14 » and this requires the
samg sign sefuences as the Koij's in a
table 1like (14).

General Synthesls in Terms of T Networks

We can now put together a network
realization of the complete admittance
functlons. Corresponding to each non-
degenerate finite pole (a pole of all the
admittance functions) one may choose a T
circult of either kind, or a parallel
combination of the two, accompanled by
the appropriate negative component or
components (Figs. 6 and 10). Corres-
ponding to each degenerate finite pole,
there is a single two-terminal branch



(Fig. 7). Corresponding to the behavior
at s = 0 and », there are the subnetworks
of Fig. 4. The complete network is formed
by connecting all these subnetworks in
parallel.

The negatlive components which come
with the T networks are connected between
external terminal pairs, 12, 13, 23. So
are the positive components which corres-
pond to K, 3 and K,y s+ and represent
behavior at“s = 0 an8 ». All the positive
and negative components of any one kind

resistors or capacitors) across any one
terminal pair may be replaced by a single
component. Then the complete network
takes the form illustrated in Fig. 12 (in
which single 2-terminal branches (Fig. 7)
may be included as degenerate T's)., It is
a complete realization of the admittance
functions, without transformers. All the
components are positive 1f and only if

Ko1g 2 845

Korg 2 ©

13

T (19)

12, 13, 23

conductance and ¢ cltance across ter-
minals 1J associated with the T networks.

where -gyq+ and —cig are the total negatilve
apa

For the most general choice of the
T networks

L (20)

% 'Kn11
Sag = & ity g
1)

For any one cholce of 1j, index T takes on
only those integer values such that

Knii < 0. The constants qgn may be chosen
arbltrarily (and independently) 1in the
range O < an £ s

The restrictions on Koq4 and Ky
are a minimum for choices of ghe an's gf

a specilal sort. Let the partial fgactions
of the admittance functions be so numbered

that sy increases with M. Then make every
Qn = 0 or 1 except for one, 1in such a way
that
%) 2( Kﬂij) i qu( KuiJ)
N<u &)
Kyt “Kma
¢ q = (1-q ) —HLl 4 2 I
)l W su sn
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Given any other cholce, there is always a
cholce of this sort which reduces both
81 J and Cyj- The reason stems from the
factor l/s in the second equation, which
reduces contributions to cij at larger sn-

In (21), p may be any N from (20),
and then 0 < q, < 1. The permissible
choices establ¥sh a relation between 13
and gy 4, which 1s 1llustrated in Fig.

13} ﬁgte i1ts concave upward, broken
stralght line character. The values of
Kot 15 Kmij may be represented by a point
in ghe same capacltance-conductance plane.
Then (19) requires the point to be 1in the
positive quadrant and above the cij'qij
curve.

There are three such conditions, cor-
respondlng to 1j = 12, 13, 23. Because
Kg114 < O for no more than one 1j, the
three conditlons correspond to nonover-
lapping subsets of the admittance poles.
Thus p and q, may be chosen independently
for each.

When added to the necessary and suf-
ficlent conditions on networks which
include transformers, the new conditions
complete a necessary and sufficlent set
for passive network synthesis in terms of
our parallel combination of T subnetworks.

Residue Matrices of Rank Two

In the above, we simplified the
argument by assuming, temporarily, that
all finite poles have rank one residue

matrices. Now suppose a pole at s = -84
has a rank two residue matrix. This
requilres

K12K13 + K12K23 + K13K23 > 0 (22)

All three of the transfer admittance
residues may now be > 0. Then the cor-
responding partlal fractions may be
reallized as a physical m network, like
Fig. 4 except that each branch is like
Flg. 7.

On the other hand, one of the trans-
fer residues may still be negative, with
the other two posltive and too large for
the rank one condition. A portion of one
of the partial fractions with positive
residues may now be split off and real-
ized as in Filg. 7; -- Just enough so that
the reduced residue matrix has rank one.

A more subtle alternatlve uses two
T subnetworks 1n parallel. Recall that
the parallel combination can have a rank
one resldue matrix only if Y/ d = q Ygij’
where q 1s the same for all fﬁ. By
choosing q differently for different 1],
one can obtaln a parallel T combination
with a rank 2 matrix.



In either case, the conditlons on
Yoij and Ywij are determined entirely by
the ' negative ' residue Kg13 < 0, and in
exactly the same way as gefore. Thus our
previous conclusions are unaffected by
rank two residue matrices. There may be
additional branches across external termi-
nals, but condition (19), equation (21),
and Fig. 13 remain unchanged. However,
more sophlsticated subnetworks, which we
must now consider, may be affected 1n much
more subtle ways.

More Complicated Bullding Blocks

When combined with the previously
known condition Kg4 4, Kiy4 > O, our net-
works of parallel TS gstablished the
followiling:

Theorem (Proved): When a
three-terminal network of
positive resistors and ca-
pacitors 1s used to realize
a given admittance matrix,
the realizabllity of the
finite poles 1s the same
whether or not transformers
are used, but omission of
transformers must be pald
for by restrictions on the
behavior at s = O and/or o,
Any restriction beyond Koij’
Koij > O may be paid en-
tirely in terms of behavior
at s =0, or at s = », or
partly in terms of each.

The curve in Fig. 13 established an upper
bound on the pprice of no transformers, in
terms of minlimum permitted Koij: Keoi §-
However, 1t 1s not necessarily a 1eagt
upper bound. It 1s easy to find circults
which pay lower prices under more
restricted conditions.

A convenlent generalization retailns
the parallel connection of subnetworks,
but adds new kinds of subnetworks to our
T's and two-terminal branches. The new
subnetworks usually include one or more
negative components between external
terminals. They are useful when the nega-
tive admittances are smaller than those
required with equivalent combinatlons of
our previous subnetworks. The partial
fractions corresponding to a slngle pole
may be divided into portions assigned to
several subnetworks.

Two subnetworks which come at re-
duced prices are illustrated in Figs. 14A
and B. Each has two finite poles, with
rank one residue matrices, and also Kpi
and Kojj = 0. In terms of restrictions on
the behavior of the complete network at
s = 0 and », one costs nothing, and the
other costs less than the equivalent pailr
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of T networks. Thus, when they can be
used, these subnetworks ease our previous
restrictions. Unfortunately, they can be
used only under rather restricted con-
ditions.

Recall our discussion of the signs of
residues, 1llustrated by the table in (14).
When a set of admittance functions 1s
given, a pattern of residue signs 1s es-
tablished. Suppose the resldue matrices
have rank one. Then, in any division of
partial fractlons into separately reali-
zable parts, the parts must retain the
same slgn pattern. The sign pattern for
any two nondegenerate poles may take
either of the following two forms

Pattern Pole Kcij Koik chk
A ik + - +
2 - + +
B a0k - + +
- + +

(23)

On the other hand, our new subnetworks can
have only the first pattern (A), and
simply cannot be used even for portions

of rank one partial fractions which follow
the second. There are other restrictions
on their residues, but these are the most
important.

There are many other possible sub-
networks with two finite poles. There
are many more wilth more than two poles.
When given residue matrices have rank one,
only those subnetworks may be used whose
residues match the sign pattern of the
corrasponding complete partial fractions.
When residue matrices have rank two, 1t
may or may not be necessary to match sign
patterns, depending on residue magnitudes.
Then rastrictlons on synthesis applications
become complicated in the extreme.

On the basis of laborious studles of
specific configurations, which need not
concern us here, the author has arrived
at two conjectures., First

Theorem {Conjectured): The
parallel T configuration 1s

a canonical network for the
subclass of our n2twork class
such that the residue slgn
pattern (14) contains only
-'s and O's in one of the
three columns.

Second, consider the general ladder 1llus-
trated in Fig. 15. Each series branch
may be a resistor or a capacltor or the
two in series. Each shunt branch may be



a resistor or a capacitor or the two in

parallel. It follows that
sx
Y -
ab v
ao+als+...a s

N (28)

OIS M Wl 15 OIS Ve

The terminals a b ¢ may be connected to
the terminals 1 2 3 1n any order.

Theorem (Conjectured):
Parallel connected subnet-
works of the sort deflned

by Fig. 15 and Eg. (24) con-
stitute a canonical trans-
formerless three terminal
network of positive resist-
ors and capacltors.

Networks with More than Three Terminals

The synthesis of three-terminal net-
works 1n terms of parallel T subnetworks
i1s easlly generalized for networks with n
terminals. The short circuit admittances
may be collected in an indefinite matrix,
like (3) except of order n. They may be
expanded 1n partial fractions, like (5)
except that 1 and J now run through 1,...,
n. The counterpart of the T subnetwork is
the star configuration 1llustrated in
Fig. 16.

In the star, each branch may be a
resistor or a capacitor (but not both) or
an open circult. Then the admittance in
branch 1, to terminal i, is

¥y, =8 or cys oro0. (25)

The typical correspondlng transfer admit-
tance 1s

NG ;

4 T ni L - S— — . (26)
\ y L,gk“"icks
K=

It may be rearranged as follows:

-1 Yi(—sO)YJ(—so)s

YiJ N Y 8 ¥ Sy W Qij
L/. Sk
} "
S, = = (27)

The added term Qj4 depends on the
components i1 and J, in branches 1 and j.
If they are both resistors Q14 1s a
constant. If they are both cgpacitors
Qq ¢ 1s proportional to s. If one 1s a
registor and one a capacltor, Q44 = 0.
When Q14 # O, 1t may be removed “by assoc-
iating a negative resistor or capacitor
wlth the star, connected between external
terminals 1 and j. When there are more
than three nonzero Yi’ more than one pailr
of external terminals require negative
components.

The admittances agaln have a single
finite pole, and the residue matrix has
again rank one. When components 1 and J
are similar (both resistors or both capac-
itors) K14y 1s agaln negative. When they
are dissimilar, K44 1s agaln positilve.

As before, there 1S a one to one corres-
pondence between negative K;; and terminal
pairs which get negative assoclated com-
ponents.

Glven a set of partial fractions
corresponding to a single admittance pole
and wlth a rank one, nonnegative-definite
residue matrix, one can always find a
corresponding star of positive components
(plus associated negative components
across certain of the external terminals).
There are, 1n fact, two corresponding
stars, with capacitors and resistors
appearing in one where there are resistors
and capacitors in the other.

Star networks corresponding to all
the partial fractions in a given set of
admlttances may be connected in parallel,
in a transformerless counterpart of
Cauer's canonical network for (n-l)-portsﬁ
All components are at once positive ex-
cept for possibly negative components
across external terminal palrs. All com-
ponents willl be positive provided the
behaviors at s = 0 and » meet conditions
which depend in a complicated way on the
residues at the finite admlittance poles.

The penalty for no transformers is
somewhat flexible, in regard to divisilon
between restrictions on K and Ke1 g,
but 1t 1s not so arbitrary &4s before. The
trouble 18, a single star may require an
assoclated negative resistor and negative
capacitor (across different terminal
pairs). Then the choice 1s betwesen con-
tributions to restrictions on Koij and

Kwk1 OT KooiJ and Kokl'

Speculation regarding subnetworks
wlth a lower penalty than stars, like the
ladders for three-terminal networks, 1s
still too vague to justify further re-
marks here,
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iterative parameters positive real, equal and
coincident witn its conjugate matching parameters.
For this to be possible, the invuriant stability
factor, s, of eacu stage, assumed equal, must be
greater than (or equal to) unity.

At the freguency of maximum power gain, fo.
the cuain network consists of m individual two-
port networks with symmetry in self’ parameters
(p11 = 922) ana with or without symmetry in trans-

fer parameters (p12 = Py, O p12#p21).
rrom the aefinition of transmission para-
neters

P (37)

P =p =

o1 02 =F

o1 p02 [¢]
= e = "
L (py1, i Fyp = (p,) (38)
In (37) and (33), upper case letters refer to the
'chain network' and lower case letters to the
individual 'stage networks'.
From (38) and 7Table 1

B ) (39)
P2 P \pyz \p12
where P21 and P12 are the forward and reverse
transfer parameters of the chain network. Also
m
PyFo=(p4E,) (40)
PotFo2 = PotPo2 = P1qFaz = FyoFay = PyqPopPyoPyy
(41)
where P11 and P22 are the self parameters of the

chain network.

From (24), (25) and (40)

Blc = 810 = Pyq B2 (42)
Po2 = Pgei Poy = Pre
G1c = Glo = l:y1 y2 = (slc) = (glo)m (43)
Po2 = P02 = PGc = Pge
Por = Po1 = PLc = ch

(26)

and (43) yields u

= 8

w

(44)

where s is the stability factor of the individual

stages and S that of the chain network. From
(26) 0 B
2 = |22 ()
Bnax ¢ ° © P15 max ¢ N P12
rrom (45) B (29), and (44) it tollows that
m
Gmax e~ (Smax c) (46)

53

is the MAG of the
that of the chain

In (45) and (46), g o o

individual stages and G
network, max ¢

(46) is capable of a physical interpretation.
Each stage is correctly conjugate matched at its
ports due to the 'port parameters' of its imme-
diate neighbours, when the source and load ends
of the chain network are terminated in conjugate
matching pesrameters appropriate to the end
stages (1st and mth) in isolation. As such the
power gain of each stage equals its NMAG in iso-
lation and tne power gain of the chain network
the continued product oi' the individual MAG's.

Having grasped this principle, it may be
used for the case of non-identical stages to
follow in tne next Section, in order to make the
¥A'r ot the chain network t.e maximum possible
without recourse to external feedback.

If the interstage networks, considered part
of the stages in rig. 2 ao not provide correct
matching, but the end terminations are readjus-
ted to retain conjugate matching of the chain
network, the available power gain is reduced
below the maximum possible; this reducticn is
accompanied by a corresvonding increase in the
value of tne invariant stability factor of the
chain network suca that tne product of the gain
and stability flactor is conserved. This conser-
ved product equals the measure of non-reciprocity
or' the chain network, a factor unaffected by
port terminations of the individual stages or
chain network (Refer Appendix).

V. Synchronously Tuned Non-Identical Stages

Consider a chain of m non-icentical stages,
synchronously tuned to f and coupled to each
other through lossiess réactance two-port net-
:orks; let this coupling be such that for a
source parameter of the first stage equal to its
coniugate matching immittance in isolation, at
t :e input port, and a load parameter of the last
stage equal to its conjugate matching i.mittance
in isolation, at the output port, these inter-
stage networks provide conjugate matcaing in
between., This is iilustrated in Figs. 3 and 4.
As mentioned in “ection 2 the terminations
dPG, dp, are arbitrary and are useful ir ensuring
stebility, controlling bandwidth, stabilising
power gain and reducing turns ratio of transformer
to a value less than ten.

The turns retio of an 'ideal' interstage
matching transformer between qth and (q + 1)th
stages for h or g matrix environments is given

byv*

. o —
°q + 1 t Qp a+1p
p=hasg Lc Ge

(47)

*(47) and (48) are exact only for 'ideal' trans-
formers; here reactunces of windings are very
great compared with load impedances., iFor practi-
cal near ideal transformers these equations are
approximate, With non-ideal transformers these
equations are inapplicable and it is better to
check or adjust transformational properties ex-
perimentally under operating conditions,



vwhile for z or y matrix eunvironments it is given
by

q +1 2
fee ) (i)
» = (em——— L3
1
CR SR B | B
p=2zory
where 5t

P is tne real oart of the conjugute

metched source purameter of the (q + 1)th stege
in isoliation anu quc the real part ol the con-

Jjugate matcnea load parzmeter of' the :th stage in
isolation. rig. 4 shows the detailed arrangements
t'or the gth stage with the device network embedded
in h and y environments. By the principle of
duality the corresponding arrangements ror g and
z environments may be obtained; for these cases
the 1l.beiling of turns as primary and sesccniary
must be interchanged.

#or such an arranzement as in rig. 3, the
power gain of each stage in the chain equals its
! AG in isolation and the MAG of' the chain network
equals the continued product of the individual
MAG's. Hence

q=m
G max Q=I ‘ qgmax ¢ (14'9)
q = 1

where G is the MAG of the chain network and
max ¢

q

g - the MAG of the qth stage in isolation,

mex

48 shown in the Appendix, the 'measure of
non-reciprocity',

|p21 / P12 I ’

of a chain network equals the continued product
of the measures of non-reciprocity of the indivi-
dual stages. Therefore

q=m q
P, /P, | = ) (50)
21 12| F q
B2
q=1

From (26), (49) and (50) it follows that
the stability factor, S, of the chain network
equals the continued product of the stability
factors of the individual stages.

q=n

sT

q=1

1 (5%)

For unilateralised stage networks

|921 / Pip

and s are infiinite but -

< o 18 finite.(49) is

still applicable,

If interstage mismatch exists, but conjugate
matching is retained at the ends of the chain net-
work, its MAG is lowered below maximum value

whereas S is increased above minimum value; but
the product is conserved this being equal tc

Fo /P

of the chain network, a factor unaffected by
port terminations of individual stages or chain
network,

VI Alignability of Cascaded Stages

For the situation considered so far, tiere
were resistances and reactances on both sides of
eacn stage, If the frequency of }AG, fo, is to

be varied or in the presence o1 spreads in device
parameters, the reactances to be used snould be
in part variable; it is then necessarv to
'align' the amplifier, i.e., to tune the individual
circuits as to obtain the aximum power gain ior
the amnlifier at the central rrequency fo. Ir a

systematic tuning o1’ circuits or stages trom one
end to the other and vack to the same end in the
reverse order renders all the circuits or stages
'tuned' and the available power gain is practi-
cally the MAG (i.e. within a small fraction of a
db), the amplifier may be said to possess a
"good alignability". Good alignability is a
basic requirement of amplifiers having two or
more tuning circuits.

If the stability factor, s, of each stage
in a chain oif' any number of stages is > 10, each
stage is slightly aft'ected by the tuning ot its
immediate 'neighbours' (one on either side for
intermediate stages) but practically unafiected
by more aistant neighbours. This is because the
interactions due to the 'internal loop gain' of
two or more stages (i.e. with S 3 100) is negli-
gibl:: small as a consequence of the important
theorem of Section III.

The requirement of' good alignability imposes
a lower limit on the stability factor of each
stage (s 210) and hence an upper limit on
P21
Pia

g oft [O%1i0) A

max C

This does not automatically mean a reduced power
gain f'or eacn stage. An amplifier stage mav
yield a large power gain wit: s 210, a simple
example being a graded base transistor in the
common emi.ter configuration at low frequencies
(f w< f‘a).

The above requircment for s, makes the
internal loop gain modulus o:i each stage less
than or equal to a tenth, This figure of 0,10
is a half’ of that observed by Holmes9, Stanle:
and Phvlip-Jones'Y to avoid excessive skew in
gain-frequency response for common emitter trans-
istor amplifier stages with Vo4 real and complex
respectively.



VII Bandwidth of Cascaded Stages

If the individual invariant stabitity
ractor of' each stage is equal to or greater than
ven, in ithe computation of half power bandwidth,
the efrect of' the 'internal loop-gain' of each
stage may be taken into account in its 'total
port oarameters' with conjugate matching termina-

tions. Assume that the total port parameters are
ot the rorm =
B = e [1 SEC R CVE LR t)_l
: 7 (52)
. N ' Sp -t
'n2 = P2 [1 + 39, L&/ = B f‘)_l
over tne rrequencies of interest, f being the

rrequency of' MAG. If the stages are coupled as in
#ig. 4 (b) and (52) aoplicable in the appropriate
parameter matris z or y, the Q's of the tuned
circuits trom left to rignt of ¢ -ain (refer Fig.3)
are

1 1 2 2 3 m-2

cnae Q

Qs (Qpp + 0p1), ( %2 * Qp1)- (
respectively, wnere the sunerscripts indicate the
stage number. For the case o Fig. 4 (a), it (52)
is applicab.e, the intermediate tuned circuits can
have an appropriate 0 only if Qp2 >> Qn1 (or vice
versa)., For the case Qp2 >>hp1 the G's ot the
tuned circuits from left to right are approxi-
mately

2 2 5) m-2
sz Qp1).....( sz
over the frequencies of interest, an example being
a cascaded transistor amplifier in the common base
configuration with impc lance in series at emitter
lead and admittance in shunt across collector base
terminals of' each stage.

The bandw&dth equ.tion for t e chain net-
work is given by 2

1 1
Qp1’ ( sz = Qp1)s(

2 m-

Poyeree

1p 4 m
24 Pt Py I ¢

p2 *

m-1 m-1 m m
ol TR e vl

(55)

(93) or (57) as anpropriute, reduces to a
polynoniai equation in y = t/ fo’ which can be

solved for bancdwidth by Lin's method11. .here
there are only two real roots tor this eauation
bandwiath is unamrbiguously determined. “his is
so far a wide range of active two-port networks
including vzlve and transistor amplifiers that
are synchronously tuned. Only such networ.s are
considered f'or bandwidth in this paper.

Pandwidth solution is further simp.ified
wnea the numerator of (55) or (57) as aporop-
riate containing ratios of magnitules of the
torward transfer parameters at a bandwidth ana
centrel frequencies, is close to unity. For
vacuum device amplifiers, this is true ror a

m-1

m-1 m m
Qq)s 0y, + Q) and Tq,  (53)

p1
wide range of frequencies; for junction tran-
sistor amplifiers such an approximation is
valid when the oandwidth is narrow or in the
case of common base and common emitter ampli-
fiers with series elements at input port and
shunt eiements at output port (h-environnent )
when the bandwidth is a small fraction ol

o 1 (9%

their respective cut or'f frequencies (f&and
f, respectively). Assuming one ot' these cases
reduces to

2
1 2 m=1 m
P21 Pon o L Mot or e o

R 1 2 22
[1 + Qp1 x) 1+ ( sz + Qp1) X o ]
(56)
Superscripts indicate the stage numvoer,

subscript, £, a bandwidth f'requency and subscript,
fo the centrai frequency.

where p = z or y and x = (f/ B fo/ igh)

Similerly where Qp2>> Qp1 (or vice versa)
in the h or g environment the bandwidth ecuation
f'or the chain networks is

2
1 m-~1
P

2 n
et s .4 W S

g (m-1Q

Nl

m 252 m 2 2
p2 * 0p1) x} [1 4+ Qp2 x] (55)

1. 2 m-1  m
Po1 Poqce-:  Poy Doyl gy

2 P . 2
(14 1op1 1 [+ (1Qp2 -24p1)2x o (S 1Qp2- me1) ] [ Qe

where p = h or g with Q , >> L (or vice versa)

and x = (f/ £ - fo/ o)) (58)

55

m £ 2



[F, A2 2235 4 2 212 y
% cee |1
AR S Qg + 70,,) “x
where p = z or y
Simiiarly (57) reduces to
[ =2 oS2RNE I
1+ QX _JL1+(Qp2
m q q+1
where p = h or g and Qp2 >> Qp1

Usually the stages are identical or near
identical, the variations being due to device
parameter spreads about the average. Even for
non-identical stages the input and output port
N's can be made Q 1 and @ 2 respectively taroug-

out. ror such situations (59) and (60) simplify
to
140 x =2

2 12
[1 +Q xJLn(QpZ » 2
p=zory (61)

2 2 m-1 -
1 + 0 x [j+ (sz Qp1 x [_+Qp2 x =2

P=horg Q,» Q, (or v1ce versa)

where the superscripts have been ommitted.

)2 2 m-1 2 | 125y

In order o design an individual stage and
state the number of such stages required for a
chain of near identical stages, given the overall
specifiications like

Gmax eV f.o’ B &e and Pre (63)

it is first necessary to obtain an approximate
explicit expression for the fractional bandwidth
{FBii), B, @, in terms of the Q factors Qp1, sz
and the number of stages, m.

For (62) to be valid Q p2 >>Q ( or vice

versa).
by

Therefore it can be closely approximated

m

t + (4, up1)‘ZxZJ ¥ 2 (61)

p = h or g; sz >> Qp1 (or vice versa)

and YV 2
FBW = o = x = Q—ig—{z - 1]
° | %p2 p1| J
(65)

where B is half power angular bandwidth.
If sz >>Qp1
be closely approximated to give

W o ! 3.21 n_ o

w Qp2 + Qp1

(or vice versa), (61) can also

o
p=2zo0ory

Q

02 >>Qp1 (or vice versa)

Qp1) zxz:J... [:1 + (m—1

m

Q 1)2)(2 lz'Pinz x2 u2(59)
pt’ " ]

». 227 m2 BT
e ) X e T2

For the z or y environment use of (66) when
sz =0 i gives maximum error; this error

decreases rapidly with the number or stages,

m, as hown in Fig. 5. Ifn__>0n or vice
p2p(

versa) the error is even further reduced.(65)
and (66) are important. Each ot .hem (as aprro-
priate) leads to a simnle design procedure for
the build up of' cascaded amplifiers on a stage
by stage basis with even non-unilateral electron
devices, Yor unilateral stace networks the
total port parameters reduce to the total self
garameters: here Qp1 equals Q1 and 0p2 equals
o

VIII

The MAG of' an ‘'absoiutely stable' amplifier
stage equals the quotient of' its 'measure of non-
reciprocity' and 'invariant stability factor'.

A stage that is 'potentially unstable' may be
stabilised by adding extra real parts to its
self parameters and/or by unilateralising feed-
vack; a well defined VAG may tnen be realised
Extra real parts may be required in some cases
to increase bandwidth and/or to reduce the turns
ratio of interstage matching transformers when
suca stages are cascaded.

By suitable additions of passive linear
R, L and C elerents at the two-ports ot a device,
the conjugate matching terminations of the
modifiea network may oe made positive real and
equal thus coinciding with its 'characteristic
parameter’'. It is then possible to cascade
any number of' such stages; the MAG of a cuain of
of m such identical stages equals the MAG of an
individual stage raised to power m. So also lor
the measure or' non-reciprocity and invariant
stability factor. With mismatch in between, but
with conjugate matching terminations at the source
and load ends of such a chain network the VAG is
lowered and the stability factor increaseu; this
happens in such a manner as to conserve their
product which equals the measure of non-recipro-
city ot the chain network, a factor unaffected
by port terminations of individual stages or
chain.

Where each lossless interstage network
matches the conjugate matching load parameter of
the preceding stage, in isolation, with the
conjugate matching source parameter or the succee-
ding stage, in isolation, conjugate matching
terminations at tne source and load ports of the
chain network realises the maximum power gain.
The MAG of a chain of m such stages (identical or
non-idential) equals the combined product of
their individual MAG's; similarly for the measure

Conclusions




of non-reciprocity and invariant stability t'actor.
Here too, the product of MAG and stability f'actor
equals the measure of non-reciprocity or the
chain network.

If the stability factor ol' each stage in a
chain or stages is equal to or sreater than ten.
that etage is slightly affected by the tuning of
its immediate ‘neighbours' but practicaily unatfec-
ted by its more distant neighoours. This restric-
tion on stability factor values ensures tnat the
internal loop gain of each stage be equal to or
less than one tenth; the 'alignability' of' the
tuning circuits is greatly facilitated and the
*skew' in power gain frequency response due to
internal freedback practically disappears.

When the magnitude of the square or the
continued product of tae forward transfer para-
meters of the stages is nearly constant, the
individual invariant stability factors are equal
to or greater than ten and the 'total port para-
meters' of these stages expressible in terms of
O tactors Qp1, Qp2 (identical for stages) the

bandwidth of the chain network (compared of m
stages w:ose individual forward transfer para-
meters are equal or unequal) is simply obtained
with good ac.uracy in terms of Qp1’ sz ana m,
For unilateralised stages each 'total port para-
neter' reduces to the corresponding 'total self
Y viz § d .
parameter' viz )p1 equals Q1 an p2 equals 02

The generality of the tneory developed, coup-
led witn its simplicity and close accuracy makes
it useful in the design ot synchronously tuned
multistage cascaded amplifiers. This is treated
elsewhere.
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Apvendix

Measure of Non ‘eciprocity of Chain Network in
terms of the leasures of Non Reciprocity of the
m Constituent Networks.

The 'A' matrix (associated matrix) of the

chain network is the continued product of the
]

a' matrices of the constituent networks. Thus
for a chain of two networks
1 1 2 2
A B g1 B2 89 Mo
of = e B 12
3 “Sap o
N o i 2 1. 2 2
AL TR Ph R VI P Rge TP
"M, & i B G, € g 2 (67)
821 849 * 8p085 8531 212 * a5 ay,



The determinant of this product matrix as From matrix interrelations

obtainable from (67), h12 eV 4o
Ar SpRAGT AT (70)
21 21 21 21
8, = (13111322 - 131 ?1521) (2a”2a22 = 231 22a21) Henze rrom (69) and (70) the ratio of the
2 = for<ard to rever® transfer parameters of a chain
- 1R o m aiff'erent stages equals tne continued pro-
E A (68) duct of the ratios of tne same ractors of the
a individual networks,

an. equals the product of the deterimants of the

indiviaual factor matrices. P q=m q
P
2 _21 (71)
Therefore, by induction P12 N a5
2
B owdy 8 .o 8 (69) it
» S 4 (50) now rollows from (71).
Re(dz()l m(dzﬁ) Im(dzL>Re (dZL )I"T
S d d
dzn dzxz
eI
‘ideal’
d !
Re (4ymlt, ) | m{® R, )T
% e
dy dy
21 22
‘ideal’
d _ d, _ .d d 12/5(d, 4
Pg = b4 39, 5% T/20%, )
d = 4 _ 44 d, fody Ao yp2
pp = % - 1%, 3% 2%, %)
T =

d, ,d d, ,d ¥
{ ( B pG) ( P pL)}

Fig. 1. Modified two-port network whose iterative
parameters are positive real and equal.
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stage |
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Fig. 2. A chain of m identical two-port networks; its four-pole
parameters are given by above equations.

stage | stage m
~R [ & [ o] [0l [TRe
IPLC = Zfac m-lfi.t‘= mf(’;c
p=h, 2z, yo g

Fig. 3. A cascade of m non-identical two-port networks whose
MAG equals the continued product of the MAGs of the m

networks.
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Fig. 4. (a) Part of a chain of non-identical stages ar-
ranged to have conjugate match in between for con-
jugate matched terminations at the ends of chain
network: h case. g case is obtained by the princi-
ple of duality (with interchange of turns of trans-
former).
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Fig. 4. (b) Part of a chain of non-identical stages ar-
ranged to have conjugate match in between for
conjugate matched terminations at the ends of chain
network: y case. z case is obtained by the princi-
ple of duality (with interchange of turns of trans-
former).



Fig. 5. (a) Exact and (b) approximate solutions for
fractional bandwidths of cascaded stages for
Qp1 = sz (maximum error case); p = z or y.

Table 1

Interrelations between four-pole immittances and transmission parameters.

Transmission in terns of Four-pole in terms of
parameters four-pole immittances irmittances transmission parameters
5 2 b =
Py P11” P22 ,{(pu’ "22) . p12p21} Pl Por* Po2 o
0 7 z =P P, "~ Po2
p Py~ P Piy* Pos )2 d p P,*P
2 | P2 Pu. u) - p12p21} 22 oML
1l - 2
2 2 PorPos
’ P21 — : NAMY, ’
- 2222 p
i [P1y 220 V2] ey 20 727 =Py po) P21 1 - p Py, T
+
e Ple 8 . <&L__Egz.*p
2 =
Epu’pm)/z]‘ﬂpu’pzz)/?] P12P2 L L A
Po1” Po2 P11” P22 *11" Pag Pa1 ~ Po2
Po1Po2 P11P22" P12Pay P11P227P12P2) Po1Po2
P Py P /P12 Pa/P12 P /Pry

t+ positive sign for z parameters and negative sign for y parameters
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COUPLED MODE THEORY, WITH APPLICATIONS
TO DISTRIBUTED TRANSFORMERS

V. R. Saari
Bell Telephone Laboratorles, Incorporated
Murray H11l, New Jersey

SUMMARY

The normal modes of uniformly distributed
systems with two coupled modes are derived. Sev-
eral sets of boundary conditions which seem of
practical importance have been applied, resulting
in network parameters and equivalent circuits.
(Some considerations of applicability of the re-
sults to ferrite-core distributed transformers
are made.) The treatment is extended to bal-
anced, nonuniform systems. An interesting new
family of solutions to the differential equation
arising in the consideration of nonuniform sys-
tems is discussed, and application 1s made to a
practical example (tapered lines of constant
characteristic impedance).

INTRODUCTION

The theory of coupled modes in coupled uni-
form transmission lines was developed in consider-
able generality before 1941 by persons working on
cross-talk problems in communications systems.l
This present paper concentrates particularly on
two-mode systems, making the method clearer, it is
hoped, for those dealing with practical englneer-
ing problems. The handling of a few sets of
boundary conditions and the derivation of two-port
network parameters and equivalent circuits con-
stitute new contributions, as well as the discus-
sion of applicability of these results to such
partly distributed structures as bifilar trans-
former windings on ferrite cores.

Perhaps more generally interesting 1is the
treatment of (balanced) nonuniform systems with
the aid of some recently discovered solutions of
the linear second-order differential equation with
variable coefficlents. (It may be mentioned that
nonuniform systems can often be handled by a per-
turbation method developed by B. K. Kinariwalal
for an analogous problem in time-varying net-
works. )

GENERAL SOLUTIONS FOR TWO UNIFORMLY
DISTRIBUTED COUPLED LINES

It has long ago been shown‘2 that normal modes
exist and can be found by straightforward means
for any set of uniform coupled transmission lines.
No attempt will be made here to apply boundary
conditions to systems having more than two prop-
agating modes.

Two coupled modes existing in a uniformly
distributed one-dimensional system (Fig. 1) are
each characterized by a voltage and a current (or
thelr analogs) which are functions of time only.
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FIG.1 INFINITESIMAL SEGMENT OF TWO-MODE LINE

The differential relations in the frequency domain
between these four quantities may be written as
follows 1if there are no other significant inter-
acting modes.

dVl
ax 21157700 (2)
dV2
gl P (2)
dIl
gl LA R TP (3)
dI2
Ix " Ya1'1 V22" (1)
Taking a linear combination of the variables, we
write
Z +mz
d ( 12 22
— (V. +mv,) = - (? +mz, :(} e > (5)
dx 1 2 shis 21 8 zll+mz21 2
-7 ny
d ( 12 22
= (I.+nI_ ) = = <? -ny :(} + > (6)
ax 1t wVaNy T ¥y

where 1t 1s assumed that m and n do not depend on
X.

The new variables Vp = (Vi+mVp) and
I, = (I;+nlIp), can be separated when m and n
satisfy the following relations:

. . e
G i |

(1)



and

zl2+mz
n =

211

22

o,

(8)

Thus each pair of functions Vy and I, corresponds
to a normal mode of the system. There are two
pair of values which satisfy (7) and (8), namely,
(m,n;) and (mp,np); and these can be determined
very easlly.* There is now a new set of four dif-
ferential equations (5)-(6) which 1s equivalent to
the set (1)-(4). Wave equations in the normal
variables are obtained by differentiating (5) and
(6). These can easily be integrated, and the
familiar telegrapher's equations in each of the
four variables are obtained:

Vmi = (Vlo+miV20) cosh y4x
(I10+n1120) sinh 7x (9)
= Vlo+m1V20 sinh 7ix
By Zo
i
+ (I o B ) cosh 7% (10)
where
L BVACTRERP OO
= propagation constant (11)
< 211" %01
b T N - |
= characteristic impedance (12)
and
i=1,2 (13)
The "arbitrary" constants in Egs. (9) and (10)

have been expressed in terms of the input val-

ues Vio and Ijp and the output values Vpg and Ipng
of the total voltage and total current in the sys-
tem. This facilitates the application of boundary
conditions.

*(It can be shown that for passive systems,
manl = -1; and for balanced systems,

mnp =
=1.)

m =n = -1 and m, =
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SYMMETRICAL, NONUNIFORM SYSTEM - A NEW FAMILY OF
EXACT SOLUTIONS FOR THE SECOND-DRDER D.E. WITH
VARIABLE COEFFICIENTS

It can be shown that the four normal variables
of a balanced two-mode system whose electrical
parameters vary with distance satisfy second-order
nonlinear differential equations of the type**

o

d de
TR (1n u) ~ uvl = 0
dx

(14)

where the variables and the corresponding func-
tions u(x) and v(x) are listed in the following
table:

k % " 'k

LoV s, ¥ Weiy
R R I e TR T AT el |
0 - Ll Fa¥n,. ma%e WY
oL, oy, ity W s Y,

The corresponding solutions are sometimes expres-
sible in closed form. For example, when the
relationship between u and v can be expressed as

- o (% + au”)

where oy is a constant and g is a function of x,
then the general solution for 6 is

(15)

alfug dx aefug dx

0 =C,e + C_.e

1 (A (26)

This can be shown by substituting (16) into (1k).

For the case in which g is a constant, we
have

8% (17)

and

Bfudx+

6 =C.e Cze-Bfu =

(18)

This special case is that of a constant-impedance
tapered line. Boundary conditions are applied
below to such a coupled system.

**This equation can also be written as

a/1 a0
dx\u dx

form wherein d6/dx contains u as a factor.

= vO, which suggest solutions of the



Another large class of solutions for 6 is
obtained by solving (15) for a, and thus obtaining

=k (-1% /Isk) (19)

%

in which k; and k are required to be constant with
respect to x.* The following set of generating
relations is thus obtained:

ug = QEIE T §EI a; (1n g) (20)
7= EEI 9% = kug (21)
g= o (22)
The corresponding general solution i1s¥*¥
. }_iﬁlizk_ 1+k
6 = cl<%> + cg<> 4 (23)

It turns out that this solution is valid as long
as u and v satisfy the condition

N/k ax \//;

When uv is constant, the lines are the
familiar "exponential lines", in which phase ve-
locity does not depend on the physical dimensioms.

ov = (24)

*This class of solutions was given in a
technical memorandum which was circulated by the
author at the Bell Telephone Laboratories prior to
the time when the same solutions appeared in an
article by I. Sugai. The present paper shows
these solutions and the corresponding relations
between u and v in relatively simple form.

**This method can easily be revised to yield

d 9 a6
-3 + s ix + t

dx
are functions of x.

solutions for = 0, vwhere s and t

These solutions are

_l+:£ﬁfﬁd
JE

2ofLE [ [
6 = C3e

under the condition that

/C - — 1ln

\/ k dx \/z

n
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APPLICATION OF BOUWDARY COWDITIONS - DERIVATION
OF NETWORK PARAMETERS AND EQUIVALENT CIRCUITS

1. Uniformly Distributed Systems

Equations (9)-(10) imply that the normal
variables at the remote terminus of a line of
length { are given by

V1L+miV2L = Mi(V Vo = Nizoi(IlO+n1I21)
(25)
%
Il&+n112£ = Z;_ (V +miV20) + Mi(IlO+niI2O)
i
(26)
where
Mi = cosh 7iL (27)
and
N, = sinh 74 (28)

It is sometimes more convenlent to apply the
boundary conditions to the following equivalent
set of equations, which express the "initial"
values in terms of the "final" values of the
variables:

b Mo
T T Mi(I +n112L) Z (V1L+m1V2L) (29)
1
Vgt Vo = 2 iN (11L+n112&) + Mi(vl£+miV2L) (30)
It is considered that the '"cascade" param-

eters (also known as "ABCD" parameters) are the
most convenient form into which to render the
results for each set of boundary conditions.
(Multiplying a chain of cascade-parameter matrices
corresponds to connecting the respective four-
terminal networks 1In tandem to form a new four-
terminal network.) For passive networks, an
equivalent circuit based on the cascade param-
eters 1s shown in Fig 2. The voltage trans-
formation ratio aj; = R eJe may be complex, with
R representing the ratio of magnitudes and 6
representing phase shift. (For active networks,
the circuit is the same except in that the cur-
rent transformation ratio A/aj; no longer equals

l/hll.)

The term "delay line", will be used to denote
a system which incorporates a transmission line
in such a way that the input voltage appears be-
tween the two terminals at one end of the line
and the output voltage appears between the two
terminals at the remote end (Fig. 4), as opposed
to the "ordinary transformer" connection in which
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FIG.2 EQUIVALENT CIRCUIT FOR PASSIVE NETWORKS

the input and output ports are not electrically
remote from one another (Fig. 3). "Floating
system", will denote a system wherein there is no
significant connection to ground at either port
(Fig. 4) although there may, in general, be dis-
tributed leakage to ground along the line.

BOUNDARY CONDITIONS:

Vio V20

— —

Lo T20 Vio =9 V20 -0 2120
V14=0 V22=0 I0=921V207922120

LOW-FREQUENCY EQUIVALENT CIRCUIT
(PASSIVE, BALANCED LINE WITH ;= V5=¥;p):

_Z_:I (Z"E%L )R
Zm
(o 0 > o W O
u% %
(o

= O

FIG.3 GROUNDED"ORDINARY TRANSFORMER"

a. Grounded ordinary transformer. Applying
the boundary conditions from Figs. 3 to Egs. (25),
we obtain two expressions relating Vi, Voq, I 0
and Ipp. Eliminating I;0 or Vig, we obtain rela-
tions 1n which the coefficients are the aij's.
The results are

1
11 = 7 (Ml -m N M Z )

2

z
=1+ = (31)
/?11%%y VS,
M:L\N Z * 4
1701
2(2, 42 IN.Z
a . = L NN (n,-n )2 2 _— ( e M) 1 Ol&
12 " A 12 217701702

M2, 2t - W2

E-3r o
=0 \5z - % 32
=0 \z, ~ "
= % M My (my-my ) (Z..+2_ )% < N.Z
e LLSTRC 1%01
g
=3 77 (33)
1
2ap = 5 (naNaM Zopmm My M2, ) (34)
where
A= My N0 Ml Zoy M2 3200 - W, - (35)

The first arrow in each expression denotes the
value approached when the system becomes balanced
and when the distributed stray to ground vanish.
The resulting equivalent circuit for the passive,
balanced, low-frequency case* without strays to
ground 1s shown in Fig. 3 A similar result for

a floating delay line is shown in Fig. L.

*This simplification is actually valid
only if 74 3 0. To justify its use when
f>0, it is assumed that 4 <& and that
the Q of the circuit is large.
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FIG.4 FLOATING DELAY LINE

b. Two-wire autotransformer Applying the
boundary conditions from Fig. 5 to Egs. (26), we
obtailn a relationship between I20’ I3, le’ Ilo

BOUNDARY CONDITIONS:

V& © V2o

—

Tio

_1'3 I3=1,,-120
Vio =9 Vag* %213

Iip=05\V20* 02213

V. o=V

12 20 2*':

EQUIVALENT CIRCUIT (PASSIVE, BALANCED LINE WITH Yu=Y22= Y2 )

N,
M+ 20
2:1 iy 15
i; é(zq.) %Mwl
z-z.
Qg2 wv—o
Z+Zy |
% % % ‘§1Q (f—» 0}
—

FIG.5 TWO-WIRE AUTOTRANSFORMER
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and Vog. Combining this with Egs.
tain equations involving only Vl
I3; and IlO can be eliminated from these to yield
an equation of the form Vip = aj1Vpoptaynl The
network parameters aj; and ayp are thus obtained
directly from this. %The expressions must be
simplified using the trignometric identity

cosh2x - sinh@x = 1 before reducing to the forms
shown below.) If, Instead of eliminating Ijg, we
eliminate Vi, we obtain the form

(29), we Ob-
g2 Vags Tpg and

I10 = ap1Vop+apoI3. The results can be shown to
be
8y, =g (m A-m A -B.+B) (36)
1 " KK m, A -mA,-B, +B,
P (E,NZ _~EN.Z_ _) (37)
12 A2—Al 12702 "2"1%01
5 1 -2
8, = ——— F-MF + (D D -F F )
21 " AR M FomMFy n,-n, i
NN 2 Zo1 2 Zoz
e Ve, Ngo (38)
2l 02 01
8y, = E)) (39)
22 ~ K A1 gy B,
where
A = N2(Ml+n2)Z02 A, = Nl(M2+”1)7‘01 (ko)
B, = Mln +1)N . 02 B, = ( +1) 5 01 (L41)
D = M2(M1+m2) D, = Ml(Meml) (42)
F = Mlm2+l F,= M2ml+l (43)
E, = nNZ E, = nN.Z . (bk)

If the system 1s passive and contains no
tributed leakage to ground, it can be shown
(m= m2) that

dis-

1
NE Z[ MCEN

[

- E Ml(l-m) -2 -

s 2mN2Z02(M1+1)] ~2 (i)

2N1201

M1+l
2(M1-l) + mN

(m+1)z Z

01%2 (46)

812

NQZO2
0l

21 1+m

N1N2Z02

Ml+1 + =

ZM1+15N2202 (h7)



A [ e 2 N 201" %00
= T AINZ
22 1%01 2%02 W AINZ
(48)
where
A = - m(Ay-A)) = mN 2 (M +1) - N Z, (m-1)

—N,Z

Zop(M+1)  (49)

Tl'le arrows indicate the results when the system
also becomes balanced (m — 1). The elements of
the equivalent circuit (Fig. 5) for this case are

E}E_..le()l (50)
B e
and
a2 CTOAPLL N ..
a, 2N WLz, © NEg e * Wz,
(51)

A similar eguivalent circult for a three-wire auto-
transformer is shown in Fig. 6.

LINE SEGMENT

V2 O VY —
./z'., Y?/\N:/ Zov/ 12N
Uy 0 3Y
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EQUIVALENT CIRCUIT ( PASSIVE, BALANCED LINE WITHOUT DISTRIBUTED
ADMITTANCE TO GROUND):

142M
M
O MV 2%
[ ° 2N z
3(142Mm T+2m <0
Mz +2Z,00 A
O d o

F1G.6 THREE — WIRE AUTOTRANSFORMER

y < /3(z-2,)
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2. A Nonuniformly Distributed System

The normal varisbles on a nonlinear two-mode
line such as has been discussed above may be
expressed as functions of distance x as follows:

rx x
Gl wa %[ wedx
L2 g8 +C e (52)
where
k = 1,2,3,b (53)
and
91 = Vl-V2 = q;B
62 = vl+v2 =9,
(54)
63 = Il-Ia =] q)l
914 = Il+I2 = o,

The arbitrary constants may be written in
terms of the terminal values of the variables (the
added subscript £ always denoting the particular
value occurring at the end of the line):

1
G By Py
k1T My (%% ) o)
i
%% * By Tk o)
C =
k2 - M (0,0, ) ¢
where
ot
%3l Oukgkdx
My =@ (57)

In the special case of Egs. (17)-(18), where
u and vk are proportional for all k, we have

.2
e T Pei% (58)
It can now be shown that
2 V11712
Biy = — = =, = constant (59)
Ve SR Ny
1 1
Bis 2 g w =fy; = =g~ (60)
12 Bap a3 Bay



/¥4y
521 = Eg = —li——lg = constant (61)
v 2/ 211%%15
S N
oo = Bup By By (62)
X
BllJ‘o(zll_zlz)dx
Vl-V2 = Clle
X
_Blljio(zll-zl2)dx
+ 012e (63)
pX
[
Ba1l o( 11+%0)0x
V1+V2 = C21e
4321J (zll+z12)dx
+ Cype (6k)
X
a11J,0(211'212)dx
I,-I, = Cye
rx
P11 O(zll'zle)dx (65)
+ 032e
B rx(z +z_)dx
21 11 “12
I,+I, = e
X
-azlJ‘o(zll+zle)dx
+ Chee (66)
The constants Cyp4 can be obtaired easily from
Egs. (55) and (Sg), for example,
B, (V ) - (1,,-1,,)
CPty” 2L 120
Coql = (671)
B11.J O(zll'zlz)dx
2611e
o Pl + (1) (68)
12 L
-Blljjo(zll-zlz)dx
ZBlle

Let us calculate the network parameters for the
case of a floating delay line (boundary conditions
of Fig. 4). From Eq. (63), we obtain
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V10720 = C11%02 (69)
1/ 1
VoV = 5 (G + Y Vyy)
10 20 2 M11 M11 1 22
i (o - en)
G — - — eI (70)
NN EE T N V)
Hence, for any passive balanced nonlinear two-
mode line on which the distributed Z43 's and yy13's
are proportlonal to one another, we have, for
delay-line type external connection,
2 (g + )
8, =3 + = (71)
11 2 M;I M
2
a . -1
1 ( 1 ) 11
8, =z (M, - )= (72)
12 7By W i) T ey,

It remains, now, to consider a particular func-
tional form for uj(x) in order that we may cal-
culate a typical Mj;. Let us consider that the
taper is sinusoidal, with a minimuml ull at x = 0

and a maximm at x = {; that is,
- o1 -
u = Juo(l + a sin bx) = - vy = Z11'Z12
P11
Y. . -Y
_ ll2 12 (73)
P
From (57),
rn/éb
BllJ 5 Juo(l + a sin bx)dx
Mo - e (74)
u0511 ( >
My = (75)

Thus, given uy, &, b, and B3y, the network
parameters are easily obtained.

PRACTICAL CONSIDERATIONS - SEMI-DISTRIBUTED
TRANSFORMERS

1. Self-Capacitance of Windings and Core Response

Transformers consisting of & parallel or
twisted pairs of wires wound on ferrite cores
have recently become popular for use in high-
frequency applications such as interstages in
transistor IF amplifiers. Such a transformer is
shown in Fig. 7 with a toroidal core. The fre-
quency range over which the equivalent circuits
given earlier are applicable can be extended up-
ward by introducing the following consideration.
There 1s & time delay (4in the realization of full
self and mutual inductance) which is associated
with the time required for a wave to propagate
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FIG.7 BIFILAR WINDINGS ON MAGNETIC CORE

around the core. This should suggest the inclu-
sion of capacitance in shunt with the winding
inductances. The capacitance should resonate with
the corresponding inductance at a fregquency for
which the core length 1s a multiple of one wave-
length. Actually, part of this capacitance is
distributed along with the inductance; while the
other part can be represented by a transmission
line of length A/2 at the first resonance* ter-
minated in a capacitance. The interconnections
are shown in Fig. 7.

The analysis of the circuit which consists of
the windings and the portion of the core under
them proceeds as has been shown above. The Imped-
ance parameters Z;; of the line must, of course,
contain the effect of the distributed self capaci-
tance. It can be shown that the effect of this
capacitance (or of a more general shunt self-
impedance element) is simply to multiply each
element of the impedance matrix by a current-
splitting factor g (Fig. 8). This factor is
uniform only when just one of the two normal modes
1s excited in the system. The magnitude of the
characteristic value of q for the difference
(transverse) mode 1s less than unity; whereas the
magnitude for the sum (longitudinal) mode 1is
treater than unity. It may be shown that for a
balanced system, these two characteristic values
are, respectively,

*Velocity of propagation 1n the core varies
as 1/ ,/uu€; electrical length varles as JVUES
impedance varies as /u75.
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FIG.8 SYSTEM SEGMENT INCLUDING SHUNT SELF IMPEDANCE

Z b
o Y S S
% T Z 2 Z . Qo = (76)
x y M x y M
Normally, the relation
(77)

7, =2 .7
Zaalya = 230t

is satisfled, so
system become

the values of q for an unbalanced

JZ 120
gy =g A (78)
/% .7
- o/ Yl y2
q = 2 (79)
Equations (11)-(12) for the difference mode
become
n= 7= Sy g tmtdey  (80)
and
{Z .+m_ 2 )q
7, =z . Joilii (81)
0l 0d

Y1150

4
(The values of m and n are not changed by the fac-

tors g.) A similar set of relations hold for the
sum mode.

2. Multiple-loop Cores and Effective Turns Ratios

In order to achieve minimum leakage induct-
ance and maximum uniformity of parameter distribu-
tion in a transformer it is desirable to use a
toroidal. core. However, it is simpler, from a
manufacturing standpoint, to wind the colls on a



bobbin and slip the bobbin on one leg of a rec-
tangular core. A multiple-loop core is often
chosen. It should be remembered that the manner
in which the windings are connected to the exter-
nal terminals will significantly affect the
characteristics of the transformer even at low
frequencies if the number of turns in the windings
is small. For example, a two-wire autotransformer
on & two-loop core will not have precisely a 2:1
ratio if each wire dces not thread both loops as
many times as the other. This is true be-
cause each of the several legs branching away from
the one which holds the bobbin carries only pert
of the total magnetic flux. -

CONCLUSION

The normal modes of uniformly distributed
systems with two coupled modes were derived. Sev-
eral sets of boundary conditions which seem of
practical importance have been applied, resulting
in network parameters and equivalent circuits.
(Some considerations of applicability of the
results to ferrite-core distributed tramsformers
were made.) The treatment was extended to balanced,
nonuniform systems. An interesting new family of
solutions to the differential equation arising in
the consideration of nonuniform systemswas dis-
cussed, and application was made to a practical
example (tapered lines of constant characteristic
impedance).
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TRANSIENT ANALYSIS OF A PARAMETRIC OSCILLATOR*

Edwin D.

Banta

General Atronies Corporation
West Conshohocken, Pa.

Summary

The parametric oscillator is investi-
gated for use as a phase-synchronized
oscillator; for such use the buildup
rate, the phase errors occuring during
buildup, and the final amplitude are all
of interest., The paper begins with the
general circuit equations of a three tank
parametric device and shows a derivation
of three first order, nonlinear differ-
ential equations specifying its perfor-
mance. The only restriction is in the
form assumed for the nonlinear capacity
(this restriction could be removed, in
principle, at the cost of more elaborate
mathematics). By use of "coupled mode"
theory these three equations are simpli-
fied into three nonlinear, first order
differential equations which do not in-
volve time explicitly.

These equations are applied first to
the small signal case to study the effects
of loading and detuning upon the signal
buildup. A general expression is obtained
for the buildup rate, a, and several spe-
cial cases receive detailed discussion.
The principal result is that o« is propor-
tional to the square root of the idler
frequency and inversely proportional to
the geometric mean circuit capacity.

These small signal equations are next
used in an analysis of the signal phase
error accrued during buildup. Phage error
is defined as the unpredictable portion of
the oscillator phase relative to the phase
of a synchronizing signal. It is found
that by virtue of its extra degree of
freedom, the idler tank, the phase error
is less than occurs in a conventional
oscillator operating under the same con-
ditions.

The report continues with a considera-
tion of the steady state configuration of
the parametric device. This is possible
since the differential equations are not
limited to the small signal aporoximation.
Explicit formulae for the steady state
voltages in each tank are obtained re-
sulting in the Manley-Rowe equations.
These equations show that the idler fre-
quency should be small to obtain maximum
output at the signal frequency. It was
stated previously that the idler frequency
must be large to maximize the buildup rate

*This work was sponsored by Rome Air De-
velopment Center under Contract AF 30-
(602)-2283,
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and to reduce phase errors. Thus a de-

sign compromise 1is necessary.

In conclusion, an approximate buildup
analysis showing saturation is presented.
Interestingly, the form of buildup is the
same as that for the Van Der Pol oscil-
lator.

Introduction

The analysis of parametric devices se-
parates into two classes: 1in the first
and more extensive class it is assumed
that the parametric agent is a time vary-
ing element; this follows from the small
signal approximation; i.e., the pump
voltage dominates a nonlinear element
which, in turn, exhibits a time varying
characteristic determined by the pump
voltage. In the second class the cou-
pled, nonlinear circuit equations are
kept; however, most of the analysis in
this class concerns power relationships,
not transient behavior.

The present paper analyzes the tran-
sient parametric oscillator by means of
the "coupled mode" approach. This me-
thod has the advantage of retaining, in
its first approximation, the nonlinear
dependence needed for a meaningful dis-
cussion of saturation effects. Finally,
while only the three tank parametric
oscillator is described in detail, the
method is applicable to parametric de-
vices with any number of tuned circuits.

General Circuit Equations

The simplest nondegenerate parametric
device contains three separate tuned cir-
cuits, called the signal, idler, and pump.
A typical circuit using a semiconducting
diode as a nonlinear reactance is shown

in Figure 1. At time t=0 the switch is
closed and the signal source is discon-
nected from the signal tank, which is

left with stored energy in its elements.

A principal part of this analysis is de-
voted to relating these initial conditioms
in the signal tank, as well as any initial
conditions in the idler tank, to the final
state of the oscillator.

For mathematical convenience the diode
resistance Rp is assumed to be absorbed
into the individual tank loadings; simi-
larly, the fixed diode capacity is trans-
ferred into the Cg's, leaving only the
variable capacity for Cp(V). Further,
since the primary effort is to be a non-
linear analysis, it seems justifiable to



choose the simplest Cp(V) which gives pa-
rametric action. This form is

CO
op(V) = g2 ¥ (1)

o]
Mode Equations. With the circuit of Fi-

gure 1 and the assumptions made above the
circuit equations are

Lplyy + Bp(Ipq-Ip) = Vp6K3 (22)
%?[CKVK] = Ty T (2v)
Ve = =Iplpq + VpéK3 (2¢)
d co -
I=35% [vcp(v)] =2 v, vy (24)
where K ranges over 1-3 and &g3=1 for

K=3 and zero otherwise. These equations
can be combined to eliminate I and Iy
with the result

. . V V.6
e oK o DED
IK + GKVK LK + LK (3a)
. I C .
K 0
V), = it 9t TY (3b)
X CK CK
in which Gp = l/RK.

These two real, first order differen-
tial equations can be combined into one
complex, first order differential equa-
tion as follows:l multiply Eg. (3b) by
Ax eand add it to Eq. (3a).

%?(IK+GKVK+>\KVK] =
A c, V E de T N
K[ K 'K 0 K p°x3
=[1- =] — D vV + (3c)
S g Ig Cx Ig s

RN Jer
Now choose Ay such that GKAK— - XEEE’l°e'

1y ul' 1.2 + gio} = dug
4Qg X

in which w, and Q
ings. Finagly, le%

x

have their usual mean-

ar(t) o
K K 'K
= I +(G+A, )V, = I — (%)
Blae gt v G L SR
whence Eq. (3c) becomes the mode equation
c 2 Wb
Y Aral o 4v Po K
ag = lwgag-lop/Ly v~ g5~ + (6)
° /Ty
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In terms of this variable

a
Vg = Im K (72)
(off (g )
/Cx -
\ 4QK
a G
I, = Re £ _ Vi 2—‘-‘ -
/Ty
a a, G
Re ——f:K - In kK (7o)
Lx Cp(l - =)
4QK
and
wKJL
T ey —2t aK]2 (8)
-
=
4QK

"Coupled Mode'" Method.
tion oi Eq. (6) let
iw .t
aK = AKe
where w is the actual radian carrier
frequency of oscillation in the K tank;
thus Eq. (6) becomes

To begin a solu-

| (9)

2 v é

AK+i(le—wK)AK =
di conigg,
at s

[~iw VT 22
Twg/ Ty T
K

The "coupled mode" method argues that if
Ay varies slowly, the only significant
terms on the right hand side of Eq. (10)
are the slowly varying ones. Thus, by
virtue of the term
e—lel

(10)

t

’

the only significant terms in the bracket
expression are those with a factor

iwg T
e K1,

In order to decide what terms these
are,a relationship between the three
frequencies wy, wp and w3 is needed. It
turns out tha% for parametric oscillation
to occur it is necessary that

Wy Wy = g+ ) (2525)
where 4 is small compared to any wy and
it represents the error in circuit ad-
justment.

By use of the "coupled mode" method,
Eq. (11) and an assumed pump voltage of



the form

Vp = Vpo

it is found that the appropriate equations
for the Ayx's are

cos(w3t + ¢p) (12)

Ay o+ ag = By = (o - PImAzhy"  (13a)

by + Lo - By = (u, - PInphshy” (13b)
ig

o v oe P

A3 1. [QB]AB = —(w3)n3AlA2 + _§7f§_- (13¢)

9
where n, = n(l + i@E)

a o wK

K = 2Q¢

PR g
/0,05 T,

(Certain small terms involving Ay have
been deleted from the right hand side of
these equations.) In addition, it has
been assumed that A is due entirely to

errors in the signal and idler frequencies,

not in the pump frequency; this condition

usually applies in practice.

Small Signal Theory

Small signal theory implies that Az is

a constant independent of Aj and Ap. Thus

ig

p

- (14)
While Eqs. (13%a) and (13b) can be com-

bined and written in operational form as

A3 = Qs fE; v

{(D+al— %?)(D+a2+ %é) -

mnguyep(i- 75) (= g gl hy =0 (15)

This equation is solve
lution of the form Ke®

by assuming a so-
whence it is

found that
a~ +Q
= 172 +/772 [ LI
Bt -/ﬁo e gge) (1 T,

ia 1a Qq=Qr=108
E 1 y 2 3 Rt 2
1+ 5= 52 + (Sg—r) (16)
where
Q¥ C W, W
BT PR: O 172
a. = / (17)
o] 2Vo 0102

is the buildup constant for the ideal case
of no loading and no detuning.
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Jdeal Case. When there is no detuning
and no loading the buildup rate is given
by ag, which shows the funectional depen-
dence of buildup upon the circuit para-
meters. It is important to note that
for rapid buildup the signal and idler
capacities should be as small as possi-
ble, and if all other parameters are
fixed, the idler frequency should be as
high as possible. A conflicting reason
for limiting wp will be discovered in
the discussion of power distribution be-
tween the signal and idler.

Detuning - No Losses, In this cage Q)=
a2=O and Egq. (16) becomes

2 A 8 Ay2
@ = 5o (- 7o) (- )= (3) (18)
This quantity is clearly quadratic in 2
so that with sufficiently large detuning
a becomes imaginary and the parametric
oscillator degenerates into a frequency

converter. IFurthermore a achieves its
maximum value for a detuning
2
a “(wy+w,)
A= [¢] 1 2 (19)
e 1%

However since A, is assumed to vary slow-
ly compared witﬁ WK,
2
<<

% w192
amd the amount of desirable detuning
given by Eq. (19) is negligible. Thus,
as a general rule, detuning is detri-
mental to the buildup rate.

Losses - No Detuning. In this important
case 0=0 and Eq. (1b) yields

al+a2

@ = - === g
+] 2 iay ia, (al—u2)2
-.ao[1+ —EI][I— 'GE]+ S (20)

while in most practical cases

2° >> (ag+ay)?
so that Eq. (20) is
aq+a a a
12 + il 7 =i 2
@~ - === ao[l + g(;{ - GE)] (21)

This shows the buildup rate to be de-
creased by the mean damping of the two
tanks. In addition, a frequency bifur-
cation occurs; its significance will be
discussed in connection with its effect
on phase uncertainty.



Initial Conditions

To discuss phase characteristics during
buildup it is necessary to define the con-
stants in the solution equations

A
i(w,- =)t
1”7 t ~-at
e [An?a +A; e at] (22a)
L(wy= )% at -at
a, = e [A21e +A,oe 1 (22v)
However, by the coupling conditions Apy
and App are linearly dependent upon Ajj
and Ajp. This is proper since Ajj an&
A%Z are complex, thus requiring }our con-
stants: the two initial voltages and the

two initial currents.
Ideal Case. In this case Eq. (13b) becomes
simply

L *

A2 = wznA3A1
t

andtby equating coefficients of e®" and
e—a
®
- /-2 *_igp
A1 =Ja] A1 e
(23)
A = - 23 A ¥ eiﬂp
22 wy 21

Substitution of these quantities into
Eqs. (7) gives, after some arithmetic

_ 1
244 = [/lel+/5514§;sec¢p] +

W
+ i[/ﬁIVl-/ﬁzvzj;%cscﬁp] (24a)
24y, = [/iIIl-/i'z'Izj;E—secﬁp] +
[
+ i[/ﬁzvl+/5;V2/;%csc¢p] (24v)

At this point it is convenient to as-
sume that sinusoidal currents are applied
to the signal and idler tanks for t20. To
avoid confusion with Iy the coefficients
will be denoted by Jg; thus at t=0

J
= — 1 .
Il—chosOI Vl— F]_TI 81n01 (25a)
2 .
12=J200802 V2= W 51n02 (25b)

where Og is the appropriate phase at t=0.
Clearly then:

b oGy 38 /Tpdy [oy -1 (262)
11 2 2 w2
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- /I3y S0 _ Tpdafoy iy (260)
12 2 w
tano,
tan ¥ = tang

Loading-No Detuning-Quiescent Idler. 1In
The case of Tinite loading but no detuning
the algebra becomes more complex; however
in the case of a quiescent idler (Jp=0)
the results are still simple. In analogy
with Eq. (26a) it is found that (approxi-
mately)

JIJL1 sin2§l

a, = 3 1+ 2Q1 =
vl b aq+ay
y+iw t- _'Z"t
le o ,
a_(1+iB)t -a_(1+iB)t
. {e 0 +e ©° } (27)
where a o
1 2 1,1 1
B=4(=-====(=-3% and
Wy Wy 4 Q
siné
tany = [1- 12 11
4Q1 cosO1 + 55; sino1

Phase Error During Buildup

From Equs. (23) and (16) it is seen
that as the time from start increases

_— [JLlJl . /L2J2 Bl e-iY-igl] .
1 2 2 W,

a . t+imw, t+i6
. e [¢] 1 1 (28)
Since the second term in the bracket
may be complex, ay is not necessarily in
phase with the inItial excitation. Clear-
ly the worst case occurs when the pump
signal and idler phase are such as to
make the second term pure imaginary;
then the additional phase shift

a ffUy 92
g = tan 1 /21
€ L 0, 3;

This quantity is the amount of unpredic-
table phase shift, unpredictable since the
phase relationship between the pump, sig-
nal and idler cannot be assumed known in
general.

(29)

In principle it can be made to vanish
by adequate damping of the idler tank
prior to buildup, since #¢=0 if J2=0,
although in practice, this is not usually
possible,



In addition to the phase uncertainty
due to initial conditions in the idler
tank, Eq. (27) shows that even if J2=0 a
phase uncertainty can exist; in this case
it is on the order of'aj/w;. By way of
comparison a conventional oscillator in-
troduces an unpredictable phase error of
a,/wi. The improved performance of the
parametric oscillator is due to its extra
degree of freedom, represented by the
jdler tank.

Eq. (27) also shows that a; is initially
essentially a modulated carrier, due to
the exponential factors ¥ ipt, but that as
t increases one sideband decays exponen-—
tially while the other builds up. The re-
sult is a net change in frequency of B, due
to the finite Q's of the two tanks; it is
not, however, a phase error since it is
perfectly predictable. This change in fre-
quency is the significance of the complex
a referred to previously.

Large Signal Analysis

In general as the signal and idler vol-
tages build up the pump voltage begins to
be influenced as shown by Equation (13c¢).
The following section outlines the large
signal theory for the ideal case, but the
results will be qualitatively correct for
most practical circuits.

Steady State Conditions. In the steady
state IK:G 80 ThAY 1n the ideal case Egs.

(13) become

W MAsA," = wymAgA ¥ = 0 (30)
ig

X&e__p (31)

a = ~w_n A, + 31
3A3 3 3Al 2 2\/L—3

Clearly in the nontrivial case
(30) requires Az=0 so that Eq.

Voo
laa,1 = |ay11a,] = 5 ~
Z/f;b3n|1+ia3|

A1#0. Eq.
(%1) yields

Cc C
vV 1+2

° 1+ 525
w3"

(The term a3z is retained since the pump
must have a"finite Q for Eq. (14) to be
finite.) This equation gives the limit
curve which relates IAll and |A,| at sa-
turation.

A second relationship is found from‘
Egs. (13a) and (13b). By forming their
ratio:

(32)
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* * \ »
A w, A
1 1l 2
o = (33)
L ~w, &F
from which it follows that
e ® 2
14,12 = i 18512 + N (34)

where L is a constant. This equation
holds for all time, and in particular, it
is also valid at saturation. Thus Egs.
(32) and (34) allow computation of the
saturated values of |Ay] and |A2], as
shown graphically in Figure 2

Manley-Rowe Equation. By its definition

[Ax[¢ is the total energy in the KB cir-
cu§t so that the power
_d 2
but from Eq. (34) this gives
5_1 = ;Q (35)
1 2

which is the familiar Manley-Rowe equa-
tion. It shows that if the available
power is to go primarily to the signal
tank, wj >> wp, but this is the converse
of the condition necessary for fast build-
up and low phase uncertainty due to resi-
dual idler current. This is roughly equi-
valent to the usual gain-bandwidth product
conservation, i.e., fast buildup (wide
bandwidth) results in low gain; the phase
uncertainty forms an additional side con-
straint.

Approximate Nonlinear Buildup. It is pos-
sible to construct an approximate analysis
of the buildup with the aid of a few rea-

sonable approximations: first, if |Az|

varies slowly, |&3|~0 and
\'s
R (36
QxPx ™ WzNP1PH 36)
33 /I 3'F1%F2

3

where py = |Ag|. Second, from Eq. (34)
it is c§ear tgat by the time p; becomes
several times its initial value the con-
stant /1 becomes negligible, so that

Y
pl = E p2 (37)
is valid for almost all time.

By use of the approximations contained
in Eqs. (36) and (37) and the assumption
that the idler is initially quiescent,
Eq. (13a) becomes

'S
Py = wlﬂpz[fL_n; o w3ﬂ9192] 1—3

=+ agloy-ney ] (38)



with
(8

el
onchCZ

2 0
A= 20,Qzn"/a_ =
2855 o CBVon
The solution of this equation is
a t
= 8

P10 20t

/i+xp102[e 2

S04

(

39)

which shows the amplitude is limited as
time becomes infinite to the saturated

level given in Eq. (32)

It is of some interest that Eg. (39)
is identical in form with that found by
Van Der Pol as an approximate solution to
his famous equation for the behavior of a
triode oscillator.
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MAXIMUM SAMPLING RATE FOR SUPERREGENERATIVE AMPLIFIERS*

Don N. Thomson
General Atronics Corporation
West Conshohocken, Penna.

Summary

This paper presents the results of a
study to determine the maximum sampling
rates permissible for a superregenera-
tive amplifier. Quantitative results,
theoretical and empirical, are reported.
For a VHF superregenerative amplifier a
sampling rate of several megacycles can
be achieved.

Introduction

The superregenerative amplifier (SR)
is very useful for some applications be-
cause of the extremely high gain that
can be achieved in a single stage._  Vol-
tage gain-bandwidth products of 1010 cps
are readily achieved. Because the SR
samples the input signal the maximum
bandwidth is determined by the permis-
sible sampling rate.

One particularly useful application
of the SR is as the amplifier in a re-
circulating loop data processor. It is
convenient to operate with phase infor-
mation, the SR being operated in a sa-
turated mode. For this mode of use, two
important parameters of the SR are phase
distortion and dynamic range.

In subsequent sections the theory of
the SR is reviewed and general relations
are developed between sampling rate,
dynamic range, and phase distortion.
Then an equation is developed relating
dynamic range to the sampling rate. Fi-
nally some experimental results are
given for vacuum tube, transistor, and
parametric SR's.

Description of the Superregenerative
Amplifier

The fundamental signal behavior of
the SR was described in some detail by
Bradleyl in the late 1940's, but Brad-
ley's work did not include the phase
relations in the amplifier, nor the
noise problem. A paper by George and
Urkowitz< derived the noise relations
for certain cases. Finally, under a con-
tract with the Signal Corps, General
Atronics extended the SR theory to in-
clude the general noise problem as well
as the problem of phase distortion.>,4

*This work was sponsored by Rome Air
Development Center under Contract
AP 30(602)-2283.

a) Qualitative Theory. Basically,
the SR design makes use of the extremely
high regenerative gains which exist when
an oscillator is building up. The SR
consists of a parallel tank shunted by
a conductance that can be varied from
positive to negative as shown in ideal-
ized form in Pigure 1(a). When the
switch is in the G. position the tank is
heavily loaded and very little voltage
exists across it. If the switch is then
changed to the G=G; position and if Gy
is small, the signal is being driven in-
to a tank of very high Q. When G3=0 the
tank acts as a perfect integrator and the
envelope of the voltage across the tank
increases linearly with time. The con-
ductance versus time is shown in Figure
1(b) and the voltage versus time is shown
in Figure 1(c). The time interval during
which the signal is integrated in the
tank is called the "listening" time, t;.
At the end of the listening time the con-
ductance is made negative. The envelope
of the tank voltage then increases expo-
nentially from the value it had at the
end of the listening period. If the
switch is returned to the positive con-
ductance after a buildup time t,, the
energy in the tank is rapidly damped. If
to, is sufficiently short, the active ele-
ment that produces the negative conduc-
tance does not saturate. Such a mode of
operation is termed the "linear" mode
because the value of the envelope at the
end of the buildup period is directly
proportional to the drive current. If,
on the other hand, the active element is
allowed to saturate, the g(t) and e(t)
are shown as in Figures l%d) and 1(e).
In this case e(t) reaches a peak value
which is limited by saturation effects;
at the same time, g(t) must become zero
because G=0 is the only condition which
will permit a steady envelope, e(t).
The solid curve of Figure 1(d5 shows the
g(t) curve if saturation had not occurred;
the dashed line shows the effect of sa-
turation. The saturated mode is known
as the logarithmic mode because the area
of the envelope of e(t) is proportional
to the logarithm of the drive current.

Certain qualitative features of
the SR performance can be deduced from
the above description:

1) There should be as much decay
in the t, period as there is gain in the
t1 and t2 intervals if the buildup in



each cycle is to be independent of past
history.

2) If a noise source is present it
is desirous that Gl be small and that %
be as long as possible, compatible with
the signal duration. This is because the
tank becomes a perfect integrator when
G1=0 and the signal voltage builds up
ccherently and linearly during t,, where-
as the noise voltage only increases as
the square root of t-5.

3) If the signZl is pulsed and
G%—O the best performance is obtained
when the pulse is coincident with the
listening interval.

4) If noise exists during both the
listening and buildup periods, but is
larger during buildup, it is desired that
buildup occur as rapidly as possible.

5) The bandwidth can also be deduced
in a qualitative manner. If Gy is approx-
imately zero and |Gz| is much greater than
G1, then the final value of the envelope
in the linear mode is determined almost
entirely by the signal which enters dur-
ing the listening interval, tl. Then the
SR can be represented by a lifiear ampli-
fier preceded by a tank and preceded by
a switch which connects the source to the
tank for a time equal to t1. And the
bandwidth is determined by the bandwidth
of a gated high-Q circuit.

An important factor which is not obvi-
ous from the above description is the
fact that the SR is "phase transparent".
By this is meant that the high level SR
signal out of the SR has a phase which
is determined by the phase of the low
level signal fed into the SR.

b) Basic Equations. The following
equations give the value of the signal
envelope and of the noise envelope at a
time t=t;+to, measured from the start of
the listening period. The assumed g(t)
function is that of Figure 1(b). The
equations ignore the quench period on
the assumption that perfect quenching
exists, PFurthermore the equations assume
that aj<<w,, lap|<<w,, and that the sig-
nal is at center frequency, w,.

The peak envelope as determined by
a pulsed signal which is properly aligned
with the listening period is

o -ty la |t

EZ 20~ The 2772 (1)
il

where I_ = peak signal current
G1,G5 = conductance during listening

and buildup periods

aq,8, = 6,/2C, G,/2C
t1,t> = duration of listening and

buildup periods

78

The mean square noise envelope is

—5 2ma; —% ~2a, 1y 2]a,lt, )

En = _E_? INl (1-e Ye (2)
i

where INl = mean square noise current per

radian bandwidth during the
listening period.

It is assumed for the above equation that
the circuit parameters are sufficiently
ideal that the noise contributed during
the buildup period is negligible. One
other equation of interest is that which
gives the value of the RF envelope at the
end of the buildup period due to a cur-
rent transient at the beginning of the
listening period. For the simple case of
a ramp of current having a rate of rise
of I/6 the relation is
-t e, l®
a 1 1e 2472

~

2
Eq- S5 (3)
5 w_“C6
0
(If the transient occurs at the end of the
listening period the
St
factor becomes unity.)

The equations for the signal and
noise envelopes are derived in detail in
Reference 3. The equation for the tran-
sient is a simple extension of the de-
tailed theory given in Reference 3.

One additional comment must be made
regarding the conductance-time waveform,
g(t). The ideal waveform of Figure 1
does provide the best attainable S/N
ratio for the SR, in theory, but it is
highly impractical. The switches which
produce the rapid changes in conductance
would create intolerably high transient
energy., In Reference 3, however, it is
shown that a much softer g(t) waveform
can be used with very little loss in S/N
performance. In Figure 2 is shown a
specific form of g(t) which causes ne-
gligible loss. The conductance is varied
linearly during the listening period from
the positive value G, to the negative
value Go.

Limitations on SR Performance

For the saturated phase~sensitive SR
two performance factors must be consi-
dered: dynamic range and phase distor-
tion.

The dynamic range of the SR is defined
a8 the ratio of the power output to the
equivalent noise input. The input noise
consists of thermal noise plus transient
energy introduced by the switching action.

Phase distortion is an inherent pro-
perty of the SR. By phase distortion is



meant differences between output phase and
input phase which are not invariant.

Phase distortion in the SR arises from
two sources (in addition to noise). The
first source is the result of a short
listening time. At the end of t; there
is both a steady state and a transient
voltage term and the net phase is not
identically the phase of the signal.
second source is caused by the rapid
changes in the conductance, especially
during the turn-on period.

The

of the first source is
shape of the applied

The phase error
dependent upon the

signal pulse. TFor a half-sinusoid
a13
A, = =% (4a)
il " 2
o]
for a rectangular pulse,
A |
A¢1 = m . (4v)

With typical numbers the sinusoidal pulse
would cause little error, but the rectan-
gular pulse could result in appreciable
errors at high sampling rates.

The error due to the turn-~on is a func-
tion of the way in which g(t) changes. If
a{t) rises from zero to ¢y in a time A%,

la |

Aﬂ = ——— (Sa)
2" oy 2t
0
for a quadratic rise,
«
0, = gl (5b)

20 °(8%)

The quadratic rise will cause negligible
error but the linear rise can cause a
significant error for very high sampling
rates.,

Using the equations presented above,
the general relations can be developed
hetween phase distortion and dynamic
range versus sampling rate and center
frequency. It is assumed that a1t1<<1.

a) Sampling Rate. As the sampling rate,
f_, is increased %) must decrease. The
vgltage envelope due to thermal noise
level is proportional to /%7, whereas the
envelope due to signal is proportional to
t7. The transient is little affected if
tﬁe switching times are fixed in duration.
Then both the signal-to-noise ratio and
the signal-to-transient ratio decrease as
fg increases, The phase distortion either
increases or remains constant, depending
on the shape of the input pulse; usually
some increase will be expected though not
as much as indicated by Equation (4a).
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The saturated output power is constant.

The net result is that as fg is in-
creased the dynamic range must decrease
and usually the phase distortion will
increase.

b) Center Frequency. Phase distortion
and transient energy both decrease as wg
is increased. Thus it is desired that w
be as high as possible., However, many
active devices suffer a loss in gain and
an increase in noise figure at high fre-
quencies, so that a compromise must be
sought. The investigation reported herein
was for VHF.

Dynamic Range versus Sampling Rate

The previous section presented the
pertinent factors and some qualitative
relations. In this section will be de-
veloped a quantitative relation between
sampling rate and dynamic range.

Consider the ideal conductance func-
tion of Figure 3a (and the corresponding
RF envelope of Figure 3b). The buildup
time t, is divided into tz, the time for
buildup, and t4, the duration of the
saturated pulse. Since t4 and t; must be
about equal (for a recirculating loop
processor),

1
t = ?; = 2t1 #) B t3 (6)

To simplify the analysis consider some
specific numbers. Let the required gain
be 70 db and let the decay during ty be
120 db. (These are desirable values for
a sweep integrator.) The gain occurs
mostly during t3, so

& 70

5~ F (from Equation (1).

.
The limitation on t3
be considered.

a) Buildup Speed. tg is min%mized by
maximizing up. It can be shown’ that for

vacuum tube circuits, under the best con-
ditions

la2| =

and to must now

—E0 L
4/cqc

(o)

(N

where ¢] and co are the input and output
capacitances., It is interesting to note
that |a is proportional to the voltage
gain-bafidwidth product of the active de-
vice used., For the 6688 pentode the_cal-
culated value was approxima?ely 5x108.
The measured value was Tx10/. Using the
measured value, t3=120 nanoseconds; if
the calculated value could be achieved,
t2=18 nanoseconds. For the 2N769 tran-
sistor no calculation was mad$ but the
measured value of ap was 6x107.



b) Quenching. The conductance curve
of the SR is generated by turning the ac-
tive device on and off and by applying a
quenching switch across the tank during
the listening period. The best switch
discovered was the 2N240 transistor. With
optimum series resistance the desired
120 db of quenching could be achieved, in
theory, in 30 nanoseconds. In practice
it was found that close to 100 nanoseconds
was required to provide the gquenching.
Some of this loss was due to limited rise
times of the applied switching waveforms.
Using Equation (6) and the calculated
conditions of t3 and to,
-8
~ ts - 5x10
= 2
If the measured values of t3 and to are
used,

T (8a)

t, - 2x1077

t, = -2

all 2
Finally the dynamic range can be
expressed as a function of t,. At high
sampling rates the sensitivi%y is limited
by the transient cnergy which is indepen-
dent of tj. The signal energy integrated
during the l}stening period is propor-
tional to t,°. The dynamic range is de-
fined as th& ratio of the peak envelope
(with input sufficient to provide satura-
tion) to the signal power that produces
a unity signal-to-interference ratio.
Then DR = P,/Pg, where Pg is the signal
power required for unity signal-to-tran-
sient. Since the transient power is es-
sentially independent of t7 but
Py '@ 1/t%,

(8b)

2
P T
DR = _92%——L— (9)

The saturated output power is con-

stant. Then by use of Eq.
DR(db) =

P
(8)out’

20 log kl(ts—kz) (10)

where ko, = t +t3 ko has a valpe of

5x10~° sec tgeoretical or 2x10~/ sec mea-
sured. The value of ky is obtained em-
pirically. It is noteé that Equation (10)
is valid only above about 1 mc where tran-
sient interference predominates; below
1l me DR varies with the first power of t
With a good vacuum tube circuit DR=117db
at 1 mc. Using this measured value in
conjunction with Equation (10) the curves
of Pigure 4 can be derived.

The important fact regarding Equa-
tion (10) and Pigure 4 is that there is
a definite upper limit to the sampling
rate: when the listening time becomes
zero the dynamic range must be zero. The
sampling rate which produces this condi-
tion is found to have a maximum theoreti-

1°
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cal value of 20 megacycles, and a proba-
ble practical value of about 5 megacycles.,

Experimental Results

Before describing the experimental re-
sults it is desirable to comment on two
factors. The first is that the SR was
being investigated for use with low impe-
dance delay lines. For such use it is
convenient to provide an input buffer am-
plifier and an output buffer amplifier.
The input buffer amplifier provides gain
and it does not increase quenching prob-
lems because it feeds directly into the
SR tank. The output buffer is a wideband
unity gain pentode "cable driver" and usu-
ally does not require quenching. Both
buffers are properly considered as part
of the SR. For the experiments the input
buffer was employed for convenience. The
output buffer was not included, however,
because it is not usually a limiting fac-
tor and its use would not have simplified
the measurements. With the use of an out-
put buffer the source and load resistances
are approximately equal and voltage-
squared ratios can be used in place of
power ratios.

The other factor to be noted is that
the experiments could not be conducted
in exactly the way implied by Equation
(8). It is very important to insure that
the quenching is adequate and this can on
only be done by having the SR reach full
saturated output in the absence of input
signal. This has the effect of forcing
the use of a larger value of t2. The
effect becomes appreciable as the limit-
ing sampling rate is approached.

a) Vacuum Tube SR. The best vacuum
tube circuit was found to be a balanced
configuration as shown in Figure 5. The
SR tubes are 6688. A 7721 is used as a
buffer and the buffer is considered to
be part of the SR. The balanced confi-
guration provides a first order cancel-
lation of the transient caused by turn-on
of the tubes and by turn-on of the swit-
ches. The switches are 2N240 transistors.
It was found necessary to quench both the
plate and grid circuits.

Considerable care was needed to opti-
mize the switching waveforms applied to
the SR grids and to the bases of the
switches. The limiting transient energy
appeared to be that induced by the
switches. The approximate modulation
waveforms are shown in Figure 6.

The builgup speed, up, was found to
be about 7x10'/ as opposed to the calecu-
lated value of 5x10°, Adequate quench-
ing proved difficult and it was found
necessary to provide about 0.1 us for
this action. The operating frequency was
90 mc.



~

The resulting dynamic range as a
function of sampling frequency is shown
in Figure 7. It is seen that the re-
sults follow the expected trend, but the
dynamic range falls more rapidly than
predicted. This can be explained in part
by the measurement technique, as discussed
at the beginning of this section,

b) Transistor SR. The transistor cir-
cuit also employed a balanced configura-
tion as shown in Pigure 8. A 3N25 tetrode
was used as a buffer and 2N769 transis-
tors were used for the SR. The switches
were 2N240's. The carrier was 75 mc.

The measured w, was 6x107. The re-
quired switching timg was about 0.1 us.
The curve of dynamic range versus sampling
rate is shown in Figure 7. It is observed
that the curve closely parallels that of
the vacuum tube SR. The difference in
the absolute values is probably due pri-
marily to the lower output voltage at-
tained with the transistor. However, it
also appeared that the transient balance
was not as perfect.

Parametric SR

The parametric SR was investigated be-
cause it was originally believed that a
form of switching might be implemented
which produces less transient energy.

The paremp SR was investigated theo-
retically for buildup speed and phase
distortion. Only the lower sideband up
converter is useful. It was found that
the paramp SR causes less buildup phase
distortion than the conventional SR; +the
listening time phase distortion is of
course the same._The buildup rate of the
parametric SR is5

Ac lewz
oyl = —=22 (1)
4/cqc
172
where Ac = peak change in capacity at
the pump frequency
wl,mz = signal and idler frequencies
Cy,Cp = equivalent total capaci-

tances of signal and idler
tanks.

The calculated buildup rate of a VHF para-
metric SR was found to be_about equal to
that of the pentode (4x108) if a good mi-
crowave diode was used with an optimum
pumping frequency.

For the measurements a VHF diode7was
employed. The computed ap was 4x$0 and
the measured value was ahout 2x10/.

A measure of dynamic range versus sam-
pling rate was not obtained for the paramp
SR for two reasons. MFirst, the design of
the SR which produces the best value of wp
causes large values of idler and pump
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voltage to exist across the signal ter-
minals. Since all these frequencies were
at VHPF it was not possible to separate
them because the required narrowband fil-
ters would ruin the buildup performance.
(This problem would be alleviated for a
microwave paramp.) A second and more
fundamental reason for terminating the
parametric SR effort was that it had
nothing to offer in the way of buildup
speed and the problem of providing a ba-
lanced switching action is more complex.

It is concluded that for VHF operation
the parametric SR is not as useful as a
vacuum tube SR. For microwave frequencies
the paramp SR may be practical.

Conclusions

This paper has presented the outlines
of a quantitative theory for the maximum
sampling rate of SR's. It is shown that
as the sampling rate is increased phase
distortion must increase and dynamic
range must decrease, Experimental results
showed buildup times and quenching times
longer than predicted. When the measured
buildup and switching time were employed
in the theory, the theoretical and mea-
sured curves of dynamic range versus sam-
pling rate agreed in trend. The lack of
detailed agreement is apparently due to
the measurement technique.

The results of the investigation are:

1. If the theoretical buildup rate
and quenching rates could be obtained the
dynamic range would be usable at a samp-
ling rate of almost 20 mec.

2. With practical (i.e., measured)
values of buildup rate and quenching
speed, the maximum theoretical sampling
rate is 5 mc.

3. Measurement with a vacuum tube SR
shows usable dynamic range at 4 mc.

4. The transistor SR follows the same
trend as the vacuum tube SR but has a
dynamic range poorer by 10 to 15 db.

5. At VHF the paramp SR offers no
advantage in buildup rate and poses more
complex switching problems.

The very high gain-~bandwidth product of
the SR makes it very useful for certain
applications. But the limiting sampling
rate restricts the information bandwidth
that it can handle.
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OPTIMUM NONLINEAR FILTERS FOR RANDOM SIGNALS
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Introduction

Following the classical work of “fener on
optimum linear filters for random signals, there
has been a lot of interest in optimization with
the more general case of nonlinear filters. It
has been shown that the “Jiener filter is truly
optimum for Gaussian probability distributions
only, and in all other cases nonlinear filters
may be found that will give much lower mean-square
error between the desired output and the actual
output. Important contributions have beeﬁ made by
Singleton,1 Bose,2 Rosenbrock3 and Zadeh.
Singleton has shown that for optimizing a non-
linear filter one must determine higher order
auto-correlation functions of the input along with
higher order cross-correlation functions between
the input and the desired output. However, un-
less the system is very simple, it is impracti-
cable to calculate these correlation functiors,
even with the aicd of computers. Rosenbrock's
approach again involves a knowledge of higher
order joint probebility distributions, which are
almost impracticable to calculate, as already
pointed out. The classification procedure, as
introduced by Zadeh, is indeed quite elegant, but
one again encounters the problem of computing
higher order probability distribution functions,
In his work, Zadeh has restricted his attention
mainly to canonically realizeble forms which in-
volve. a knowledge of only the second order proba-
bility distributions for optimization in the mean-
square sense, Thus, the practical utility of his
work is, evidently, very limited for designing
nonlinear filters. Bose's theory, for the experi-
mental determination of optimum time invariant
nonlinear systems, is quite simple mathematically,
but its utility is limited due to the large number
of gate circuits, averaging devices, etc., which
are required for a reasonable accuracy.

In other words, it may be stated that the
problem of optimization of nonlirear filters is
mathematically intractable for continuous random
inputs. A great headway can be made, however, by
sampling the random signals. An important contri-
bution is the development of "staircase techniques"
by Prasad.5 Prasad has defined "nonlinear corre-
lation functions" which can be computed with the
aid of a moderate size digital computer, and can
be used for the optimization of nonlinear filters
for a given random signal.

In this paper, staircase techniques have been
used for the calculation of nonlinear correlation
functions for a given non-Gaussian signal super-
imposed with Gaussian noise. These have been used
for optimizing different kinds of nonlinear fil-
ters, and the mean-square error between the desired
output and the actual output has been calculated
in each case, These have been compared with the

value of the mean-square error for the optimum
linear filter, and it has been shown that a non-
linear filter with memory gives a considerably
smaller error.

Theory of Staircase Systems

In his work, Prasad has presented a compre-
hensive theory of the analysis and optimization of
nonlinear systems subjected to random signals
sampled by staircase functions. The theory will
be discussed briefly, before going into the appli-
cation,

The "staircase function" x(t) is defined as
below:

- ]
Ix(t) = 2 x(nT) P(t-nT)
n=-oo

(2.01)

where  x(t) is a given function of time,
T is the sampling interval, selected
in compliance with Shannon's Sampling
Theorem,
P(t-nT) is a rectangular pulse of
duration T and unit height, applied
at t = nT,
and n is an integer.
Consider & linear system having the weighting
function w(t)s Its response to the pulse P(t)
is given by

o0

u(t) = f“ w(T) P(t-T) 4

(2.02)

The "staircase P-response" of the linear
system is now defined by

Ju(t) = Z_u.n P{t-nT)

n=0

(2.03)

where u, = u(nT)

The continuous output of the system to a
staircase input I x(t) is given by (Fig. 1).

o0
¥(t) = 2 x(nT) u(t-nt)

(2.0k4)
n==gco
and the staircase output is given by
= k
Iy®) = 2/ ux_ . P(t-kr) (2.05)

k=0 r=o0

The output of a zero-memory (or instantaneous)
nonlinearity fC J to the staircase input I x(t) is

o0
r@-x(tﬂ- Z_r[xn] F(t-nT)

nN=wco

(2.06)



A storage nonlinear system of "first order"
is shown schematically in Fig. 2. 1In this case,
the staircase output is given by

X
Tyt) = % T up £ (xpeop) P(E-KT) (2.07)
r=0

It may be pointed out that the simple re-
lationships given in equations (2.06) and (2.07)
result from the fact that the operators P(t-nT)
form an orthonormal set in the time-domain.

Equations (2.06) and (2.07) may be used for
developing optimizing equations for filters sub-
ject to random inputs. Consider the linear sys-
tem of Fig. 1. In this case, one has to design
the linear filter in such a manner that the mean-
square error between the desired output z(t),
which is the noise-free signal, and the actual
output y(t) is reduced to a minimum. It can be
shown that the mean square error for a random
input in which the noise and signals are uncorre-
lated, is given by

-7
€ =¢ (0)-2¢ (0) + ¢ (0)(2.08)
32 57 52 52 Ivry
where @ (mT) = staircase auto-correlation
X2 52
function of the desired output z(t)
N+¢l-m
el D D) amm D
2N+l=m p=-N
[ (mT) = staircase cross-correlation function
3252 between the actual output and the
desired output.
N+le-m
1 —
= z(nT) y(n+m T)
2N+1-m n-ZN 7
and @ (mT) = staircase auto-correlation
JYLY

function of the actual output
y(v).

Prasad has shown in his work that the linear
filter may be optimized by finding u,, its P-re-
sponse ordinates, by solving the following set of
simultaneous equations:

N

2 up 8

r=o0 _rx.rx( e QI’XJZ(ST)

for 8 = 0, 1, 2, saeeeaey N (2.09)

vith the aid of a digital computer these can
be solved conveniently, and the mean-square error
may be computed by using the following relation-
ships for the linear filters:

Y
) (0)=zzurur¢ (r-s 1)

(2.10)
Iy r=0 S=0 JIXxSXx
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N
and @ (0) = Z up B (-rT) (2.11)
I2IY r=0 IxJXz

A comparison of these equations with the
tiener filter was made by Prasad in some numerical
examples, and the resulting mean-square errors
were about the same. However, the computational
advantages of the staircase techniques are obvious.

In the case of an instantaneous power series
filter, for which
M
y(t) = Z-

!

o’

the optimum a,'s may be calculated from the
following set of simultaneous equations:

M
/«-21 8u ,{0) = £,.,(0)

for r = 1, 2, 440y M,

(2.12)

where and @, are nonlinear correlation
functions defined as below

N
1 >
BuelD) = Hn s 2 Gn) ()’ ()
N
- 1 r
and @) (kT) = Xvii:’?_l- n-z.u(x") 2.k (2.1h)

The mean square error in this case is given
by

€?

M
R g_z”(O) -;:L; ydrz(o)

M M
P22

2.15
e veo P 2

arié/ur(o)

In the general case of a no-memory multipith
nonlinear filter shown in Fig. 3, the optimizing
equations are

M
p
=0

where the nonlinear correlation functions are de-
fined as

é]‘fp rr_ (D

a1 N
= 1im — :E;

2.1
N=>n 2N+ 1 n=-=N ( 7 )

i;k(xn) fr(x'l'Mk)



and
1 N
brepral) = Mgy 2 £0e) mpy  (2:18)
N n=-N
The mean-square error is given by
— M
ge . . )
win = %, (0 -2 % Sufpe, g2 ©)
/h
. Z a_af (2.19)
M=o r=0 M T T AT

minally, for the storage nonlinear filter
shown in Fig. 2, the optimizing equations are
given by

N
Z up ¢_rf_rf(\r'5] T) = Bp, (sT)

r=0

Bor 510, Ly 2 otebieisieryNp) (2.20)

where N-3
2k

N_S*lz ft"f?] £ E(P+s-r]
p=0

for rds
N-r

2
p=o

forry s

ber re(lr=s]T) =

£0p) £ Bpyrosd

1
n-r+l

Ner
1

gk~ 2 ) £
p=0

for r=s (2219

Comparison of Different Types of
Filters for a given Random Input

Starting with 1000 samples of a given non-
Gaussian signal, the random input x(t) was ob-
teined by superimposing 1000 samples of a random
Gaussian noise. The various linear and nonlinear
correlation functions, defined in the previous
section, were then calculated, These were used to
calculate the following

(a) the optimum linear filter

(b) The optimum instantaneous power-series
filter with the first five terms only.

(¢) the optimum instanteneous power-series
filter with the first ten terms.

(d) optimum nonlinear storage filter derived

from the one in (b) followed by a
suitable linear filter,
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and (e) optimum nonlinear storage filter derived
from the one in (c¢) followed by a suit-

able linear filter.

The mean-square was calculated for each of
these optimum filters, and the values, normalized
with respect to that for the optimum linear filter,
are shown below:

Serial Type of filter Mean-square
Number error, normalized
with respect to
that for the
linear filter
1. Linear 1.00
25 Instantaneous nonlinear
pover series with the
first five terms. 1.65
3. Instantaneous nonlinear,
power series with the
first ten terms. 1.12
L% Storage nonlinear filter
(#2 followed by a
suitable linear filter) 0.85
Se Storage nonlinear filter
(#3 followed by a
suitable linear filter) 0.68

Conclusions

It will be seen from the comparisons made in
the previous section that, for the given random
signal, the optirmum nonlinear filters with storage
give a considerably smaller mean-square error. It
may be emphasized that only the simplest kinds of
nonlinear filters have been considered. The
staircase techniqiies may be applied to more com-
plicated nonlinear filters, with the possibility
of a smaller mean-squere error. An interesting
possibility is the use of the multipath nonlinear
filter with storage, the calculations for which
require a fairly large computer.
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Abstract

The errors caused by nolse and dynam-
1cs of an input variable are formulated
for linear servo systems In terms of the
servo nolse bandwidth relative to the
input channel bandwidth, the input signal-
to-nolse ratio, and the error constants of
the servo. The input varilable dynamics

are assumed to be defined by a finite time-

power serlies, The order of the servo is
then chosen to make the steady-state
dynamic error finite. The optimum servo
bandwidth 1s formulated for minimum com-
bined error, which 1s given in terms of
the signal-to-nolse ratio and the appro-
prilate derivative of the input variable.

These results have particular appli-
catlon to radar tracking, AFC, phase-
locked loops, etc., where the dynamic
range.of the error 1s bounded. This
dynamic range, the signal-to-nolse ratio,
and the accelerations of the input are
then mutually constralned and impose broad
performance limitations on linear time-
invariant servo systems.

Introduction

In many communication and radar sys-
tem applications, the servo 1input variable
is remote from the servo and 1s conveyed
by 1ts modulation of a parameter of an
electromagnetic wave. Demodulation
reproduces the input varlable with the
thermal noise of the system causing
apparent nolsiness of the 1nput varilable.

Since the modulation bandwidth is
usually much greater than the actual
spectrum of the 1nput variable, the servo
1s capable of reducing the apparent nolse
by averaging in time. As the servo band-
width is reduced to affect this smoothing,
the response to the input varlable 1s
impaired. Thus, confllcting requirements
on the servo bandwidth exist. It 1s
evident that the comblned error due to
motion of the input variable and to the
thermal nolse cannot be made arbitrarily
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small, and that some minimum combined
error exists.

Most error detectors in such systems
have limited dynamic range in the sense
that they are linear and of proper slope
only for small errors, For the servo to
properly follow the input variable, the
combined error must be less than the error
dynamic range. Thus the need frequently
arises in preliminary system considerations
for a simple technique to evaluate the min-
imum combined error. The work presented
here 1s intended to meet thils need with
relatively general and appropriate restric-
tions on the input varlable and the shape
of the servo transfer function.

Steady-State Analysis

The systems under conslderation have
the form shown in Filgure 1. They comprise
an input variable, a carrier that is modu-
lated by 1t, a communication 1link, an
error detector, demodulator, and a servo
forward path G(s) (Figure 2). By restrain-
ing the generality of these elements to a
few parameters, a relatively simple method
of evaluating combined noise and dynamic
errors can be developed.

For the steady-state analysis, it is
assumed that the input variable 1s 1in the
form of a finite time power series (equa-
tions 1 and 2).

-,

(1)

( ) HI‘]
X(s8) = E
r=0 s

(2)

where the ar's are the maximum expected.

The servo model has the simplest
transfer function that will result in a
finite steady-state error in response to .
the input variable. The transfer function3




H(s) = 1 -

th

is descriptive of an R order servo.

The lag error is found from equa-
tions 2 and 3 by means of the filnal value
theorem:

®lag = 550 SX()[1 - H(s)] (4)

= Im
o i

(5)

As would be expected, the lag error
is proportional to the highest order
acceleration and inversely proportional
to the Rth

The rms fluctuation of the output
varlable 1s formulated by first relating
the error demodulator output thermal noilse
voltage to an apparent nolse on the input
variable, Then, the output nolse is
formed from the spectral character of the
apparent input noise and the power
frequency-response of the closed loop
transfer functlon.

The error demodulator in Figure 1
usually produces a voltage in the form:

Vdem ~ nvsig(x = B * Yeslise (6)
where
n has the units of volts per
unit error per volt of signal,
(x - y) = error,
v = system noise voltage at the
noise demodulator output,
Vsig = signal voltage.

The use of some form of AGC permits the
extraction of a voltage proportional to
the error. The apparent error detected
by the servo 1s

Vdem

a8 = y)apparent - Veia (7)

v
nolse (8)
nv

sig

(x -y) +

The last term in equation 8 1is interpreted
as the apparent nolse added to the input
variable due to the thermal nolse of the

power of the servo bandwidth W, -

communication link. The rms value of this
apparent noise is then

i da
Tk (9)
'
sig
g = (10)
B Vnoise

where p 1s the signal-to-nolse voltage
ratio.

The parameter n depends on the error
detector design. It usually cannot be
adJusted without causing the signal-to-
nolse ratlo to also change, and there
usually exlsts an optimum design which
maximizes np. This design procedure can,
for example, take the form of selecting
the width and shape of the "early" and
"late" gates in the time discriminator of
a radar range tracking servo or of pre-
scribing the "squint" angle and radilation
pattern of a monopulse radar angle track-
ing antenna.

The rms output nolse is found from

Oy =W F(w) H(Jw) H*(Jw) dw (010
where
oy = rms output noise,
F(w) = power spectral density of

vnoise'

Assuming that the nolse spectrum is
white out to a band limit frequency Bl’
which 1s very much greater than the
servo bandwldth w,, equation 11 can be
approximated by

pl BR
AT B, (12

where p = S/N, the signal-to-nolse voltage
ratio, and

By = [ H(Jw) H¥(Jju) ar  (13)

For the transfer function given by equa-
tion 3, the servo nolse bandwidth, BR’

is proportional to Wy



1 2 R

U Rl WE ] ey | SRS,

cos R > tan » 5 2) ]
o w o+ wg

n/2
= u, %ﬁ [1 -2 sinRx cos R(g - x]
n/2

(15
+ sin2R x] sec2 x dx

(16)*

where Kg 1s the integral in equation 15.
The rms output nolse is then

g Ko
np B

(17)
y e 1

ag

Since the servo bandwidth 1s very
small compared with the input bandwidth,
By, the probabllity distribution for the
output noise 1s very nearly gausslan, with
the mean value gilven by the lag error, and
with the standard deviation gilven by equa-
tion 17.

The probability that the magnitude of
the instantaneous error will, in the steady
state, exceed a 1limit L 1is then

dx exp -~

(18)

Minimizing this probability that the error
will exceed a preset 1limit, by means of
adjusting the bandwldth w,, 1s approxi-
mately effected by minimizing the sum of
the standard deviation and the lag error
which 1s called the comblned error, eT,

_ b
3 '3
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R e b o'R
1 w_R n

©°
to

(19)

Setting the derivative of er with respect
to wy equal to zero ylelds the optimum

bandwidth under these condlitions as

Al
4R2Bln292a§ PR+1
Yopt Kq
for 'R.& 1;
1/3
- 2 22
woptl = (8B1n pcaj
for R/'=. @,
o . = |8 2,22
opt, oo Prep

The minimum combined error is then

1 R
KRag 2R+1

ep = (R + I\m=5

min 4R Bin“p
for R = 1;

. V3
- I o R
min Bln p

for R = 2,
Ve |\
g = L:8[veme
min Bln p

(21)

(£2])

(23)

(24)

(25)

These results for the minimum com-
bined error are plotted in Figure 3 for
the cases of constant velocity input to
a first order servo, and of a constant

acceleration input to a second order
If the displacement dimension of

servo.

the acceleration term 1s normallzed to
units of the error demodulator dynamic



range, then the minimum combined error is
automatically compared with the dynamic
range.

For example, consider a type one
radar angle tracking servo with a target
having a constant velocity of one beam-
width per second, with a signal-to-noise
ratlo of 10 db, with n equal to one volt
per beamwidth per volt of signal, and with
a PRF of 200 pulses per second making B,
equal to 100 cps. Then the abscissa in
Figure 3 1is 0.001 and the minimum combilned
error 1s 0.15 beamwidth. If the signal-
to-nolse ratio were 30 db lower--that is,
were it minus 20 db--the minlmum combilned
error would be 1.5 beamwidths for which
tracking would not be possible. The
tradeoffs in transmitter power, antenna
galn, nolse figure, etc. are faclilitated
by use of these results. For instance, in
the example above, 1t can qulckly be seen
that the minimum combined error in beam-
wildths varies inversely as the sixth root
of the antenna galn and inversely as the
cube root of the transmitter peak power,
assuming a pencil beam,

These results assume that the lag
error and the signal-to-nolse ratio are
statlonary, or vary only very slowly com-
pared with the servo time constant. 1In
the latter case, 1t may be desirable to
automatically tune the servo bandwidth to
optimum 1n accordance with predictions or
measurements of the accelerations and/or
the slgnal-to-noise ratio.

In some 1nstances, the initial values
of the derivatives of the input varilable

are predictable to some accuracy. Then, a
noise-free prediction signal
By @1 =B )"
r 7
y(e) =y T (26)

(where p. 1s the error in the prediction
of ap) can be made available and sub-
tracted, leaving as the net input varilable

pLa t

R
= s TR (27)

Substltuting prar instead of ar into the
precedlng results extends them to include
this use of prediction.

Transient Case

By making the order of the servo one
unit higher than the highest order non-
zero derivative of the 1nput varilable, the
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steady-state lag error 1s reduced to zero.
The instantaneous dynamic error is

R-1 r [tR_l -0 t] (28)

a

gh-r-1
o TR 1T

R-r-1

e(t) =
at

Assuming that ap = O for r # R - 1 results
in the error given by equation 29

il t

0 L P
TR =177

R-1

W

e(t) (29)

which has a maximum given by equation 30.

R -1

3
wO

- ( (30)

R-1
®max ~ TR - 17 )

Thus, when the input variable 1s a pure

(R - 1)th power parabola, the peak tran-
sient error of the assumed Rth order servo
varies inversely as the (R - 1)th power of
the servo bandwidth Wy

Taklng the combined error as the sum
of the peak error and the standard devia-
tion of the output nolse permits the
determination of an optimum bandwidth with
respect to the acquisition error. Thus,
with

a R-1 w
P - = W I | 1 /%R%
“r T TR - T | eug Y | By (31)
then
R _2_
. 2npaR_1(R - 1) B, |2R-I
Yopt ~ “I(R - 1)t K (32)
and
PO - MR {4 s
T R-1
min R =1)4
e (33)
1 \ Rl
SR=
R-2 2 R-I
Kqe? [(r - 1):]" apy
2R
l&(R - l) Bl'r]2p2
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and the residual steady-state rms noise
output 1s

[ 2ap g (R - )" 1
o =
VoL R - 1) By (ne) R

ST
2R-1
] (34)

~

These results are useful in evalu-
ating the assumed type 2 servo in
acquliring a constant velocity input with
zero initial position error. The results
for R = 2 are

4 /By

opt, = (E’ 5 nea; (35)

&>

)2/3

e
22
Bln p

>

T2 (36)

1/3
.1.%( )

min

a
1
o, = 0.975
Yo (B1n§;§

1/3
) (37)

The errors are plotted in Figure 4.

In some applications, 1t would be
undesirable to have a steady-state noise
error of about half the dynamic range, as
indicated by the ratio of (37) to (36).
Reductlion of the servo bandwidth at a
rate and to an amount consistent with
stabllity and practical considerations
1s therefore 1ndicated after acquisition.

Conclusions

Although these results lack gen-
erality, they have the advantage of
simplicity and rapid preliminary estima-
tlon of system requirements and perform-
ance capabilities,
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The extenslion of the method of min-
imizing the sum of the dynamic and rms
noise errors to other transfer functions
and other classes of input variables
could follow the same procedure used
above. The considerations given here
mlght also be useful as criteria for
adaptive servo design.

It has been tacitly assumed that the
principal sources of error in the system
were thermal nolse and dynamic errors.
other sources of error exist,or if it is
desirable to smooth actual noise on the
input variable such as the presence of
glint in radar angle tracking, somewhat
different consilderations apply (ref-
erence 1).

It
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DESIGN OF RELAY TYPE SAMPLED-DATA CONTROL SYSTEMS
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Summary

The discrete describing function and
its use in the analysis and design of nonlinear
sampled-data systems are presented in this
paper. For a nonlinear sampled-data system,
the input and output signals of the nonlinear
element may be in the form of pulse trains.
Therefore, it is natural to define a ''discrete
describing function' N(z) which is equal to the
ratio of the z-transform of the output to the
z-transform of the sinusoidal pulse-modulated
input of the nonlinear element. In this paper,
the discrete describing function for a relay
with dead zone is derived; although, using the
same method, other types of amplitude-depen-
dent nonlinearities can be treated in similar
fashions. The discrete describing function
N(z) is used to derive the critical regions of
-1/N(z) which correspond to the critical point
(-1,jo) for linear continuous-data systems.
Stability study of the nonlinear sampled-data
system is made by investigating the relative
positions of the critical regions and the linear
transfer locus Gj(z) of the system. The
effects of varying the gain and the sampling
period on system stability is readily observed.
Reshaping the linear transfer loci by digital
or continuous-data controllers may be done in
the usual manner using z-transforms.

The discrete describing function has at
least the following advantages:

1. The discrete describing function is
natural for sampled-data systems; it is analo-
gous to the use of the conventional describing
function for continuous-data systems.

2. The method can be applied to
sampled systems with or without hold devices.

3. Systems with more than one sampler
can be studied.

4. The actual output of the nonlinear
element, rather than the fundamental compo-
nent of the Fourier series representation, is
used.

5. Compensation with digital controllers
as well as with continuous-data networks can

99

be designed in a straight forward manner.
Introduction

The study of relay-type sampled-data
systems by means of describing function
technique has been made previously by Chow
and Russell®. In these early investigations,
the nonlinear element, for which the describing
function is derived, is considered to include
the sampling switch, the zero-order hold and
the relay. For a sinusoidal input whose
period is an integral multiple of the sampling
period T. the output of the nonlinear element
is a periodic rectangular wave. Thus, the
conventional describing function technique
ordinarily used for continuous-data systems
can be applied directly, and the nonlinear
sampled-data system is essentially treated as
a nonlinear continuous-data system. These
early studies are subjected to the limitations
that a zero-order hold device must be present
and there is only one error-sampling switch
in the system.

1

The nonlinear linear system under
investigation is shown in Fig. 1. The sampler
is assumed to be ideal, which means that the
output of the sampler, e *(t), is an impulse
train. The operational characteristic of the
relay is shown in Fig. 2.

If the error signal e(t) is sinusoidal
with period Tc = nT, where n = 2, 3,
and T is the sampling time in seconds, e¥*(t)
must also be a periodic function; although it
may not have the same frequency as e(t).
Since e*(t) can have values only at the samp-
ling instants, the period of e*(t) must also
equal nT. Thus, based on the characteristics
of the zero-order hold H, the relay R, and
G(s), the time functions h(t), m(t), c(t) must
have the same period as e*(t). This is a very
important feature of this nonlinear system.
Under the condition of self-sustained oscillation
r{t)=o0; hence

e(t)= r(t) - c(t) = -c(t) (1)

which means that e(t) must also have the same



period as c(t).

Modification of System Configuration

The z-transform of the output of the
system shown in Fig. 1 is written as:
C(z) = E(z) LNG(Z)J (2)

where NG(z) denotes the z-transform of N(s)

G(s). The overall transfer function of the
system is:
Ol & . BElel L (3)
R(z) 1+NG(z)

It is clear that the describing function
technique is not very useful here since NG(z)
cannot be separated into two functions of N
and G. A modified block diagram of the
system is suggested in Fig. 3, in which, the
zero-order hold and the relay are transposed.
From the analytical point of view, the system
behavior is not altered by this modification.
In this case, the nonlinear element N is con-
sidered to include only the relay R whose out-
put v*¥(t) is a train of impulses having con-
stant amplitudes. The input to G(s) is not
affected by the change. In terms of the
z-transform, the analytic description of the
modified system in Fig. 3 takes the following
form:

C(Z) =
R(z)

N(z)G1(z)
1+N(z)Gl(z)

(4)

where N(z) is defined as the discrete describ-
ing function of the relay, and Gj)(z) is the
pulse transfer function of the zero-order hold

and the linear system G connected in cascade.
Now, the study of the stability of the nonlinear
sampled-data system involves the investigation
of the equation

(5)
(6)

1+N(z)G(z) = O
or 1

The Discrete Describing Function
3,4

and the Critical Regions

The derivation of the discrete describ-
ing function N(z) is based on the assumption
that the input signal to the sampler is a
sinusoid. Consequently, the input to the re-
lay in Fig. 3 is a sinusoidally modulated
impulse train. N(z) is defined as the ratio
of the z-transform of the output v*(t) to the
z-transform of the sinusoidally modulated
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input of the relay, e*(t); that is
V(z)
Me) = By

Suppose that the input to the sampler is given
by

(7)

e(t)=E cos(at+¢ )=E(cosg cos at

8
-sin at cos¢g ) 8
The z-transform of e(t) is
E(z): —EZ
ol T <27 cos aTFl (9)

[(z-cos aT)cosg -sin aT sin¢]

Since the period of the self-sustained
oscillation is an integral multiple of T, only
these periods are considered in deriving N(z).
This N(z), when applied to Eq. (6), will de-
fine the conditions for self-sustained oscilla-
tions to occur in the system.

Referring to the block diagram of Fig.

3, the output of the zero-order hold, mf{t), is
either constant or zero between any two suc-
cessive sampling instants. For a given period
Tc of c(t), m(t) may have many possible
forms. Figure 4 illustrates some possible
forms of n(t) for Tc=4T. However, since the
error signal e(t) is assumed to be sinusoidal
having period Tc=4T, only a few of the wave-
forms of n(t) illustrated in Fig. 4 may occur
in the system. In fact, when the phase shift

of eft) is varied from O°to 360 and Tc
=4T, m{(t) can have only the waveforms of
Figs. 4(a), (b) and those of (a) and (b) shifted
by nT (n= 1. 2. ...). It is important to
note that the function of Fig. 4(b) has one
positive and one negative relay correction dur-
ing each period Tc; the waveform of Fig. 4(c)
has two successive positive and two negative
relay corrections during each period. These
have to be considered separately, even though
they have the same period Tc. Similarly, it
can be shown that for all Tc=nT, n=even
integers ,the number of positive relay correc-
tion signals is equal to that of the negative
relay corrections during one period Tc. This
number of correction is designated as A For
Tc=2T, it is apparent that A can only be unity.
In general, for Tc=nT, n=even integers, the
values of A can be 1, 2, 3, (n-1).

For a given period of Tc=nT, n=even
integers, the loci of -1/N(z) form regions in
the decibel versus phase shift plot, each for
one possible value of A . These regions are
defined as the critical regions for the specific



T. and A . The symbols
o S
N(z) | max N(z) min

are used to indicate the boundaries of the
regions. It can be shown that all the periodic
functions generated by shifting the waveform
of Fig. 4(a) have the same critical region.
This means that the study of the conditions of
self-sustained oscillation is independent of the
phase shift of m{(t) once T. and A are given.

However, for T, = nT, n = odd inte-
gers, the number of positive and negative
relay corrections may be different. In this
case, the designation of the type of oscillation
by & =1, 2, 3, ..., is inadequate. It is
necessary to designate this type of oscillation
by Ajj, where i is the number of positive
relay corrections and j is the number of nega-
tive relay corrections during each period.

The typical procedure for the deriva-
tion of -1/N(z), - 1/N(z)]| max, and 1/N(z))
min is given in Appendix I for Tc 4T. The
expressions for -1/N(z), -1/N(z)| max, and
-1/N(z)| min for the relay type nonlinearity
are derived for Tc 20T iy IBH 6T, and
are tabulated in Table I.

The corresponding critical regions are
plotted in decibels versus phase shift in Fig.5
through Fig. 9. By use of the same principle
and procedure, the critical regions of -1/N(z)
for Tc 7T, 8T, can be obtained if neces-
sary.

Examination of the expression derived
for -1/N(z) and the conditions on e(t) to give
each value of A , leads to the following con-
clusions:

1. The discrete describing function
N(z) of the relay under consideration is a
function of the frequency a, amplitude E, and
phase shift g , of the input sinusoid e(t), and

a function of the relay dead zone D.

2. The regions bounded by the loci of
-1/N(z) | max 2nd -1/N(z)|min in the amplitude
(decibel) versus phase shift plot for T¢ =nT
(n 2, 3, ...) are symmetrical about the
-180° axis. The maximum widths for the
critical regions are (20/T¢ )T for T = 4T, 6T,
8L ednn T, 0 even integers, and (2W/T¢ )
(T/2) for T, = nT, n = odd integers. When n
is very large, the critical regions become very
narrow, and finally approaching a straight line
along the -180° axis as n approaches infinity.
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3. For certain values of £E and A ,
-1/N(z) is infinite, and the critical regions ex-
tend to infinity (open region). The asymptote
of the 'I/N(Z)'max boundaries is always the
-180 deg. axis, while the asymptotes of the
-1/N(z)| pyin Poundaries are - + (2%/T, )(T/Z"]_‘c
=nT for n-even integer >2, and - £(2 T/T)x
(T/4)| T, =nT for n=even integers greater thanl

Stability Study and Limit Cycles
Using Gain-Phase Plot
and Discrete Describing Function

The condition of self-sustained oscilla-

tion in the System of Fig. 3 is defined as when
Gi(z) = - 1/N(z) (10)

Since the left-hand side of Eq. (10) is the z-
transfer function of the linear plant, and the
right-hand side consists of the negative in-
verse of the discrete describing function of the
nonlinear element, the stability analysis of the
nonlinear system with sampled-data follows the
well-known procedure of the describing function
and gain-phase plane studies of a nonlinear
system with continuous-data. In terms of the
gain-phase plot of Gj(z), the graphical stability
study of the sampled-data system consists of
the following steps:

1. Plot Gj(z) on gain-phase coordi -
nates for T¢ 2T, 3T, 4T, using T as a
parameter on the loci.

2. Superpose on the gain-phase coordi-
nates the family of critical regions of -1/N(z)
f TN 27 S 4Ty

The following conclusions can be
reached from the inspection of the relative
position of the Gj(z) loci and the critical
regions:

1. If a portion of the Gj(z) locus for
some T falls within the critical region of this
T for a certain relay dead zone D, (when D
varies, the critical regions of -1/N(z) simply
shift up or down along the -180 degree axis)
then there exists a set of E, ¢, A and T,
such that

Gy(z) = -1/N(z)

Consequently, for any sampling period T, the

portion of the Gj(z) locus that lies in the cor-
responding critical region will produce a self-

sustained oscillation at T, ¢4 and E, charac-
terized by A , and the system is unstable.



2. If the same G (z) locus for more

than one value of T_. falls within their respec-
tive critical regions, for the same value of D,

the system can have more than one mode of
oscillation.

3. The T's along the portion of G (z)
locus outside the corresponding critical region

provide a stable system.

One special condition is when the relay
dead zone D becomes Zero, and the relay is
considered to be ideal. From the physical
viewpoint, the relay will provide a corrective
output whenever there is a signal at its input,
no matter how small this signal may be.
Under this condition, some types of oscillation
disappear in the nonlinear system, and some
can only appear for several discrete values of
A. For instance, when D=0, the sustained
oscillation of the type, T.=4T and A=1 can
only occur in the system when the phase angle
@ of e(t) is a multiple of , W/2. This is
observed by referring to Fig. 12-39 in which
the critical regions for A=1 and 2 are shifted
to -oo along the -180 deg. axis when D
becomes zero. Evidently, the critical region
for £ =2 degenerates into a region which is
bounded by two vertical straight lines with the
left and the right hand boundaries located at
-225 deg. and -135 deg., respectively. The
critical region for & =1 is degenerated into a
single vertical line along the -180 deg. axis.

For T, =6T and D = 0, self-sustained
oscillation of the type, A =1 can no longer
exist. This isdue to the period of 6T of the
sinusoidal e(t). This e(t) will produce more
than two relay corrective signals in either
direction during one period, while A =1 speci-
fies that there can be only one positive and
one negative relay corrections during each
period T, . Referring to Fig. 12-41, the criti-
cal region for A=1 is a closed region; when
this closed region is shifted to -oo along the
-180 deg. axis, it is no longer expected to

enclose any portion of the Gj)(z) locus for T =6T.

Similarly, the critical region for A =3 becomes
a vertical strip centered along the -180 deg.
axis, with its left and right hand boundaries
located at the -210 deg. and -150 deg. lines,
respectively. The critical region for A =2 is
narrowed down to a vertical line along the

-180 deg. axis. For T.=8T, the sustained
oscillations are characterized only by A =3 and
A =4, and those of 8 =1 and 2 are eliminated.

The following numerical example illus-
trates the application of the critical regions
in the sinusoidal study of a nonlinear sampled-
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data control system.

Illustrative Example

Consider that the open-loop transfer
function of the relay type sampled-data system
of Fig. 3 is given by
1

s(s + 1)
The sampling period is one second, and the

relay has a dead zone of 0.1. With reference
to the system configuration of Fig. 3, we have

G(s) = (11)

-Ts
1 b 1l - e
QG (s) = s(s + 1) s (12)
The z-transform of Gj(s) is given by
z{(T - 1 + 0 L e e'T(T +1)
Gi(z) = {(z - 1Mz - e"l)
(13)

The loci of Gj(z) with T as a variable para-
meter are plotted in Fig. 10 for T_ 2T BTy
4T, 8T. For the relay dead zone speci-
fied (D=0.1), the normalized critical regions of
Figs. 5 through 9 are shifted down by 20 db.
Then, superposition of these shifted critical
regions on the G (z) loci of Fig. 10 shows that
four modes of oscillations are possible in this
system when T=1 sec: The results are tabula-
ted in Table II.

These results are obtained by observing
that when D=0.1, the T=l sec. points on the
G1(z) loci fall inside their respective critical
regions only forthe four above listed modes of
oscillations. When D=1, the critical regions
of Figs. 5 through 9 are not shifted; it is seen
that all the T=1 sec. points on the Gj(z) loci
fall outside their respective critical regions,
and the system is always stable (without sus-
tained oscillation).

The amplitude of oscillation of c(t) can
be computed directly from the Gj(z) loci. For
r{t)=0, the amplitude of c(t) is equal to the
amplitude of the error e(t). Therefore,

E = |et)] =lct)} (14)

Also, self-sustained oscillations occur when
G(z) = -1/N(z) (15)

For certain T, and T, z is a point on the unit
circle in the z-plane, say, z), we can write
1G1(2)) = |-1/N(z))] (16)

The values of |-1/N(z)| tabulated in Table 1



suggest a simple method of predicting the
amplitude of oscillation of c(t) from the values
of Gy(z)). From Table I, it is observed that
|-1/N(z)| =kE, where k is a constant for any
Tc. From Eqs. (14) and (16) we have

1

Equation (17) implies that whenever the Gi(z)
locus for a certain T is given, the locus of
the amplitude of oscillation of c(t) is related
to the Gj(z) locus by only a constant factor k.
However, it should be kept in mind that Eq.
(17) is valid only for the portion of G)(z)
which lies inside the critical regions for the

same T.. For example, for T, =4T, and A=1,
from Table I,

|-1/N(z)] = E (18)
Therefore, Eq. (17) gives
E = |Gy(z)|g, =47 (19)

which means that when the system has a self-
sustained oscillation which is characterized by
Tc=4T andA=1, every point on the Gj){(z) locus
inside the critical region in the gain-phase
plot represents the amplitude of c(t) for the
corresponding sampling period T. In the
present example, for T=l sec., the following
value of E is obtained from the G](z) locus

in Fig. 7:

E = |G,(z)| s S 0.31 (-10 db)

(20)
Similarly, for Tc =4T and A =2, Table I gives

|-1/N(z)| = 0.707E =|Gl(z){TC=4T

(21)
Therefore, for T=1 sec., E=0.31/0.707=0.438

It is interesting to compare the results
which are obtained in this example by use of
the sinusoidal analysis with describing func-
tion to those of the same system which are
computed by the difference equation method 5.
While the difference equation approach gives
only the solution to a particular set of initial
conditions, it is extremely difficult to deter-
mine what are the possible modes of oscilla-
tions under various initial conditions. However
the describing function method introduced in
this paper does point out that for the system
under study, with T=] sec. and D=0.1l, only
the four modes of oscillations listed in Table
Il are possible under any initial condition.
The results in Table II show that the ampli-
tudes of self-sustained oscillation which are

103

predicted by the two different methods are

quite close, except for mode 2 when T _ =4 sec.
and 4 =2. It should be pointed out that %both

the difference equation and the discrete des-
cribing function methods deal with the system
response at the sampling instants only.
Furthermore, the describing function method
assumes that the input to the sampler is
Sinusoidal and only the fundamental component
of the relay output is considered to be signifi-
cant.

In reality, the oscillations in a non-
linear system are seldom sinusoidal. There-
fore, the accuracy of the sinusoidal analysis
depends entirely on how much the output c(t)
differs from a sine wave. In fact, the ampli-
tudes of oscillation listed in Table II which
are determined by the discrete describing
function are extremely close to the results
obtained by Chow using the conventional
describing function method.

Nonlinear Systems with More
Than One Synchronized Sampler

One distinct advantage of the discrete
describing function method is that it can be
applied to nonlinear system with more than
one synchronized sampler. Figure 1l shows
the block diagram of a nonlinear sampled-data
system with two samplers which are synchron-
ized to open and close at the same time. The
closed-loop transfer frunction of this multi-
sampler system is

Clz) _ _N(z)G)(z)
Rz} 1+ Gy(z)H(z)N(z)

(22)

The stability study of the system now involves the
investigation of the following condition:

G, (z)H(z) = -1/N(z) (23)
For the relay-type nonlinearity with dead zone,
all the critical regions shown in Figs. 5to 9 are
still valid for this system.

Nonlinear Systems Without Zero-Order Hold --
Finite Pulse Width Considerations

The nonlinear system studied in the pre-
ceding sections is considered to have a zero-
order hold following the sampler. If the zero-
order hold is absent, and the sampling duration
of the sampler can be assumed to be infinitesi-
mal, the describing function technique presented

here can still be applied. Instead of plotting
Gi(z), which includes the transfer function of the



hold, it is only necessary to plot the locus of G(z)
in the gain-phase plot and the same critical regions
are used.

However, in some cases, with the ab-
sence of a hold device, a finite pulse width has to
be considered. In this case, an approximation can
be made if the narrow pulses with width p are
approximated by flat-topped pulses. The sampler
can then be represented by an ideal sampler follow-
ed by a fictitious hold device which holds the samp-
led signal for p second only, and then drops to
zero instantaneously until the next impulse comes
along. The transfer function of Gj(s) is written

1-epS

G (s)= s G(s) (24)
1

The z-transform of Gl(s) is

Gy(z) = 1 - 2 P/T) Z[G—‘ss—)](p <« T) (25)

Conclusion

A discrete describing function utilizing
the z-transformation has been introduced for a
relay-type nonlinearity for sampled-data systems.
The critical regions which are defined by the
describing function are used to study the con-
dition of self-sustained oscillations by investi-
gating the relative position of the Gi(z) loci and
the critical regions. The effect of varying the
sampling time T on the system stability is shown
clearly on the Gj(z) loci. It is shown that the
method can be applied to multisampler system as
well as systems without hold devices. It might be
pointed out that the discrete describing function
method can also be applied to other types of
amplitude dependent nonlinearities, such as
saturation with dead zone.

Appendix 1

Derivation of the Z-Transform-
Describing Function N(z)

Case (I) Tc= 4T. & =1:

If the output of the zero-order hold is
assumed to be of the form whown in Fig. 4 (b),
the Laplace transform of the relay output v*(t)
can be written as

- -4T
eZTS'f-e4>S

V¥(s)=1 - Faon

= el
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The z-transform of which is

V(z) = z[v*(sﬂ = =t (27)
Thus 1 E(Z)
TTN{z) = V{z)
_ -EZz cos § - sin ¢) xzz_'i
22 + 1 Z2

_E(zcos 9 - sin )]
z

(28)

When Tc = 4T, z = 1/90° =j, Eq. (28) becomes

1 = E(sin 0 - jcos ¢)
N(z) J
= E/-180° + ¢ (29)

Referring to Fig. 4(b), the limitations on the
magnitude of e(t) are:

E cos ¢ >D and E |sin ¢} < D for

-45° < g <45°

Em'm = D/cos§ and E ax® D/ 1sin@!

Hence

‘ = E /-180° + 0

1
N |max max

__ D

- o o
Y / -180° + ¢ (30)

and 1
'Nl min ® Egyqn / -180° + 7

o
cos 0 / -180° + ¢ (31)
Let
E! = E /D and E! . =K . /D;
max max min min

then
1] 1l i
-l ax - N E=E o

1 o
=z — -180" + ¢ 32
[sin 0| - B

o= -3
N| min NIE=E'"

1

= =550 /-180° + ¢ (33)

The critical region for the condition of
self-sustained oscillation characterized by
Tc = 4T and A = 1 is the region enclosed by the



loci of
' '

1
N imax

given above, and is shown in Fig. 7.

Case ([I) Tc =4T, A= 2:

It is shown in Fig. 4(c) that when a
system has a sustained oscillation of period

T ¢ = 4T, the output of the hold circuit can also
have the form of A= 2. The Laplace transform
of v(t) corresponding to the waveform shown in
Fig. 4(c) is

sT __-2sT , e-38T

Vi(s)=1l+e
-sT
+e-4ST + e_SST v..=1+e-281 (34)
Thus, 2 4 4
V(z) = 2 (35)
< + 1
Thus - 1 - . E(zcosd - sin g) (36)
N(z) z+1
1
and for z= j, - Nyz) = 0.707 E/-135°+¢  (37)

The range of § as indicated in Fig. 4(c) is
between 0° and -90°. The limitations on E are:

E =0 E_. = —2— for -45949<0°
max min |sin G|
1 D o o
= = S < =
Emax (< <] Emin o5 g for 90°< <-4
Thus
; o o
1 = @ for 0 > 0>-90 (38)
- Nimax
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1, ! 1
" Nlmin {sing|
for - 45°< ¢ <0°

/135° 4+ ¢

. (39)

1 _ 1 N
"N,mi.n - cos U /.ﬂ.'._a.

for -90°< ¢ < -45° (40)
The critical region of Tc = 4T and & = 2 is
plotted in Fig. 7.
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-1/N(z) for various modes of oscillation

Table 1

(relay with dead zone)

T A -'/N(l) _l/N(Z)max -I/N(z‘min Arg.(-1/N) Range of ¢
2T| 1| E cos ¢ 0o D -180° -90°< ¢ < 90°
0.866D 0.866D -150%+ ¢ | -30°<¢ 4 <0°
cos(60°- 1) cos(60°-14])
3T| 1 0.866E
0.866D 0.866D o o o
-150°+ -60°¢ & < -30
cos ¢ cos(120°-]4d}) ¢ L0
0.75E 0o 0.75D o o )
A LN Vet (R Tt =
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D D o
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L cos(9P - |41]) cos ¢ g 2 y
4T oS CO(:.(;87?,$') -135°+ d -450<d 5 00
2{0.707E
oo % -135° - ¢| -90°< ¢ < -45°
1|1.31E 1. 31D 1. 31D -126% S ad s P
cos ¢ cos(7 -|4}) P
o]
"I‘Z 0.954E 0.954D 0.954D -180 + ¢ | -18°%<é< 0°
5T 5in(18°+ |@]) | sin(54° -{d])
2|0.81E 0.81D — 9.81D -126° + -72°¢ ¢ < -36°
cos(36 +[d]) cos ¢ 4 2 6
0.772E oo 0.772D -180°+ ¢ | -18° < 02
23 sin(18°- [4]) 0
1l1.5E 1'513 1.5D -180°%+ @ -30%¢ ¢ < 30°
cos(60 - |d|) cos ¢
0.866D 0.866D - s G
6T| 2 |0.866E cos ¢ cos(120°+ ¢ ) @ o S < k| =G0
0.866D 0.866D o o )
: -90° + -120 -90
cos ¢ cos(6P + & ) ¢ =oise
310.75E oo _"Lwd -120°+ ¢ | -90°< ¢ < -60°
COs
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Table 11

Mode of Tc(sec) Amplitude of Oscillation
Oscillation A Describing |Difference
Function Equation
1 4 1 0.31 0.30
2 4 2 0.438 0...352
3 5 2 0.572 0. 5725
4 6 3 0.838 0.80

o) — — = - = e - 1
e® (1) Hold im(t) clt)
— Relay G(s)
i | Circuit |
Sampler g E——— ] ——te— g

Fig. 1. Relay type sampled-data control system.

Output

+M 1

Input

Fig. 2. Relay characteristics.

107



* »
() Syett X e [T L[~ Fold | mtt [
ircuit |
Sampler g e e e ———— 1
G, (s)
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O\ < \ ) t
T2 —31 4r  5r—er
(o) Sinusoidal error signal, T.=4T.
m{t)
. I l t
fi 20 23T 4T 5T 6T
(b) Output of hold circuit, 8=I.
m(1)
O t
ki 2T 3T 4T 5T aT
(c) Output of hold circuit, A=2.
m(t)
Ol [ t
2T 3T a7 or
(d) Output of hold circuit.
m (t)
0 l t
T] 2T 3T a7 5 2
(e) Output of hold circuit.
m (t)
T oT 3T 5T er !
(f) Output of hold circuit.
Fig. 4. Possible configurations of m(t) for Tc =4T.
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AN ALGORITHM FOR STOCHASTIC CONTROL THROUGH
DYNAMIC PROGRAMMING TECHNIQUES

Paul P. Chen
The Boeing Company
Renton, Washington

Summary

An algorithm based on the concept of state and
dynamic programming is derived for designing an
optimum controller for a linear plant subject to
noise. The controller is optimal in the sense
that the behavior of the plant satisfies the ex-
pected mean quadratic performance index (EMQPI)
defined in the paper.

The optimal control problem is formulated as a
problem of multi-stage decision processes in dy-
namlc programming. By solving a functional equa-
tion obtained by applying Bellman's principle of
optimality to the control process in question, the
algorithm is formulated. The algorithm generates
the sequence of control signals which minimize the
EMQPI. 1In addition, it gives the minimum of the
EMQPI for the specified sequence of control
signals.

The control signal is found to consist of two
components: (1) a linear combination of the sys-
tem state variables, and (2) a noise-balance com-
ponent which minimizes the noise-induced deviation
of the actual plant output from the desired output.
An example is given to illustrate the iterative
procedure and the asymptotic behavior of the
algorithm.

The design is optimal for a class of system
inputs, and is applicable to both sampling and
continuous systems. The design procedure is dev-
eloped to make full use of a digital computer.

Introduction

Scientists and engineers in the control field
search constantly for novel techniques and new
theories for automatic control. The inauguration
of the theory of dynamic programming has led to
new ways for the mathematical formulation, ana-
lytical treatment and computational solution of
control problems. The modernization of digital
computers has facilitated and accelerated the re-
search in this direction.

Recently a number of papers applying the tech-
niques of dynamic programming to the treatment of
control problems have appeared in the literature!
Kalman and Koepcke! have achieved essential re-
sults in both the mathematical and the engineering
aspects of the optimal control problem where a
linear, stationary plant to be controlled satis-
fies the generalized quadratic performance index.
Their investigation is restricted to the determin-
istic case. However, in reality most physical
systems are subject to random disturbances. This
paper describes an investigation of the optimal
control problem similar to that originally dis-
cussed by Kaiman and Koepcke, but in the stochas-

tic case, that is, when the plant is subject to
random noise with a known probability distribution.
The performance criterion used for the stochastic
case is the expected mean quadratic performance
index as defined in the next section of this paper.
The algorithm obtained due to dynamic programming
is ideally suited to digital computation.

Problem Formulation

A schematic diagram of the system considered
is shown in Figure 1. It is assumed that the
linear plant is preceeded by a sample-and-hold ele-
ment so that the input to the plant will be a
piecewise constant function of time. 1In this way,
the problem can be formulated as a descrete time
model which is not only a more realistic descrip-
tion of many physical systems, but also readily
accepted by a digital computer. The noise input
can be added to the control signal or applied at
any state variable location of the plant. Roughly
speaking, the problem is to find the control sig-
nal, m(t), to the linear plant which is subject to
noise, such that the output of the plant, c(t),
will, at all times, follow as closely as possible
some predetermined behavior. For example, the
desired behavior for the plant output may be the
system input, r(t).

To make the paper reasonably self-contained,
the description of the plant, the system input,
and the performance index in the deterministic
casel will be briefly stated below.

The Plant

The linear plant, X, with a single input and a
single output is assumed to be described by an nth
order differential equation with constant coeffi-
cients. It can be decomposed into n first order
differential equations by selecting n state var-
iables, x], x2, ... xq. The vector-matrix diff-
erential equation describing the plant can be
written as:

X = AX + hm )
where:
&l
X2 . .
X = , an n-dimensional vector
’.‘n
A = n x n constant matrix
m = control signal
h = n-dimensional constant vector represent

the effect of m on X



X = the derivative of X with respect to time

The variable x} can always be selected as the plant
output, c, that is:

x‘(t) = c(t)\. (2)
The solution of (1)'can be written as7:
t
X(t) = 0" (t) x(0) +f o(t=t)h m(1)dt (3)
0

where ox(t) is the solution of the matrix differ-
ential equation:

6% = A0™ with ¢*(0) = I (unit matrix) (&)

and is called the transition matrix of the plant.
Since the control signal, m8 is piecewise con-

9.

L]

stant, it can be shown that
X (kT+7) = 0% (7) X(KT) + m(kT)H (1) (5)
where T is the sampling period, 0 £ 1t =T, k=0,
1, 2, ..., and:
X T x
H™ (7) =‘/h ¢" (1) hdt . (6)
0

The Input

Let (}(t)} be a class of system inputs for
which the system is designed to be optimized. An
element, r(t), of this class is defined as:

r(t) = y‘(t) for t 20

=0 <0 (7)

where y|(t) is the first component of the input
state vector:

Y(t) = oY(t)Y(0) . (8)
The matrix, ®Y(t), is the transition matrix of an
£th order ordinary linear differential equation
with constant coefficients, and Y(0) is an arbit-
‘rary constant vector. Thus, ¢Y(t) and Y(0) det-
ermine, respectively, the specific class of system
inputs and the particular member of that class.
For example, the class of all step and ramp func-

tions {}(t) can be described by the differential
equation:

2r(®) _

dt?

. . 1 e
Select the input state variable as (:2) = (F)

the vector differential equation describing the
input can be written as:

Y1

Y2
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and the transition matrix as:

01
oY (1) = e(OO)T - ((')f) )

Thus, the input,r(t), is described by the transi-
tion equation as given by equation (8):

r(O)‘

r(1) [ ¢

r(t) 01/ \r(0)

where r(t) is satisfied by r(t) = at + b for all
constants a and b through arbitrary selection of
r(0) and r(0).

If the actual system input does not belong to
the class of signals for which the system is opti-
mized, then the input may be approximated over one
sampling period by a member of that class so that
the system can be nearly optimized. This approxi-
mation has been discussed by Lees'”, and Kalman
and Koepcke.‘

The Performance Index

The input state vector, Y(t), and the plant state
vector, X (t), can be combined to form the system
(input-plant) state vector, Z(t), as:

X(t
2(t) =(Y§t§> : (9
By defining
e (t)! o
ot =(-a---;5y-(z)-) (10)
. (H)
H(t) = <-I-b7(t.:)-> ’ (”)

the system transition equation can be written as:

(12)

With the above definition, the quadratic perfor-
mance index over the interval 0 = t s NT can be
defined as:

Z(kT+7) = @(v)Z(kT) + m(kT)H(x) .

NT
N =jZ) [Zt(t)QZ(t) + xmz(tﬂ w(t)dt (3

where Q is a positive~definite (n+£) square matrix
characterizing the kinds of errors specified for
performance measurement, A Is a positive constant
which indicates the weight of control cost with
respect to the minimizing errors, and w(t) is a
weighting function of time. The symbol, Z;, de-
notes the transpose of the vector, Z. 1If errors
are considered only at sampling Instants, equa-
tion (13) will be reduced to:

* N 2
5 - kEII:Zt(kT)QZ(kT) AT 0’ (k=) T (k) . (1)



The term, Z,(0)QZ(0), is omitted here in view of
its fixed value from the given initial conditions
of the input and the plant.

The following example is given to illustrate
the nature of Q. In a unit feedback system a
plant, whose Laplace transfer function is

L is subject to a ramp input, r(t) = t,

S(s+1) 1
whose transfer function is R(S) = 52 The system
can be decomposed as shown in Figure 2. If the

system error squared, e2 = (r-c)Z, and the error
rate squared, & = (r-¢)%, are considered as error

terms,
1 0-1 0
0 1 0-1
Q=1 0 1 o
Q =il @ 1
and e2+é2 = ZtQZ. Observe that Q is generally
symmetric.

Noise Consideration

In general there are three ways by which ran-
dom variables are introduced into control systems.
(1) The control signal, m, can be contaminated by
some random noise, f, in which case the plant In-
put is some function of the control signal and
noise. Usually the plant input is the control
signal plus noise m¢f. (2) Noise disturbances due
to system environment occur at places other than
the plant input location. This may be the case
where a plant consists of several component parts
and noise occurs at the connection locations of
the component parts. In most cases the noise
location can be selected as a state variable. (3)
Some of the elements of a control system contain
parameters which exhibit randomness, that is,
there are noisy components in a control system.
Only the first two cases are discussed in this
paper.

The vector differential equation describing
the plant, when noise is considered, can be
written as:

X = AX + hm + gf (15)
n-dimens ional constant vector represent
the effect of noise on X.

where g =

Let the probability distribution of the noise
be P(f). Assuming noise occurs only at sampling
instants, that is, impulsive noise only, the ex-
pected state of the plant denoted by E[X] can be
expressed by the probabilistic transition equa-
tion:

E[X(kT+7)] = 0™ ()X (KT) + H* (1) m(KT)
+j 6" (x) f (kT) P(f) df (16)
where G*(1) is the response of the plant 1 seconds

after a unit impulse is applied at the noise
location, when the plant is initially in state

X = 0. When the plant input through the hold is
the control signal plus noise, then GX = HX. The
probabilistic system transition equation becomes:

E[Z (kT+1)]

= o(1)Z(KT) + H(1)m(kT)

d/‘G(T)f(kT)P(f)df (17)
where
X
i) < (.‘i.@l) (18)
0
- -%
Let JN and JN be defined as
¥*
J J
- N ~% N
R o W (=)

and be called, respectively, the mean quadratic
performance index (MQPI) and the sampled mean
quadratic performance index (MQPI*). The expected
values of MQPI and MQPI* for stochastic processes
are given by:

= NT 1~
EDN_J > FJIT\/(; {‘/ [z, (v az(e)] p(f) af

+ sz(t§w(t)dt, (20)
and
EDNJ=% g{ [z, (kT)az (k1) ]P(f) af
+ AT m (k-l)'l}co(k) (21)

and are represented by EMQPI and EMQPI*, respect-
ively.

Statement of the Problem

The problem discussed in this paper can now be
precisely stated below:
Given: 1. A linear plant X described by equation
(15)
2. A random noise f of known probability
distribution P(f)
3. A class of inputs Y described by equa-
tion (8).

Find a sequence of control signals m(o),
m(2), . m(N-1), such that the EMQPI is
for any initial conditions of the plant,
input, Y(0), as N approaches infinity.
denote the minimum of the EMQPI for this
sequence of N control signals, that is:

N

is denoted by I, that

m(1),
minimized
X(0),_and
Let Iy
opt imum

I, &

N Min

m(o) ,m(1),..

As N approaches infinity, I
is,

(22)
.m{N=1)

N

I =Lim I
N+oo

(23)



The problem, then, is to specify m(o), m(1),...
to give' I for given X, f, Y and Z(0).

Principle of Optimality

The basic principle by which the optimum con-
trol signal is obtained was developed by Bell-
manll, 14 This principle, the '"principle of opti-
mality', states: "an optimal policy has the pro-
perty that, whatever the initial state and the
initial decision are, the remaining decisions must
constitute an optimal policy with regard to the
state resulting from the first decision.'" The
problem of deciding m(0), m(1), ..., m(N-1) for N
sampling periods can be viewed as an N-stage
multidecision process in dynamic programming.
When applied to the problem of this paper, the
principle of optimality can be stated as: an
optimal sequence of control signals, m(0), m(1),

. m(N-1), has the property that, whatever the
initial state, Z(0), and the initial control sig-
nal, m(0), the remaining sequence, m(1), m(2),...
m(N-1), must constitute an optimal sequence with
regard to the state, Z(1), resulting from the
first choice m(0). Note that Iy is a function of
2(0) and N. The effect of any initial choice of
m(0) for the time interval 0 to | will be to con-
vert 2(0) into a new state Z(1). It follows then
that at time, t = 1, the problem of determining
m(1) will be the same as that of determining m(0)
at t = 0, except that the initial state, Z(1),
will be used instead of Z(0), and the remaining
length of time, N-1, will be used instead of N.
This argument is the application of the principle
of optimality and makes it possible to write the
principle mathematically as:

1,020~ = :i(g)GD‘(Z(O))]

| EEN_‘(Z(I)Z'}. (24)
Starting with N = 1, equation (24) gives:
1,((0)) = % Min E[J (2(0):m(0))} . (25)
1 T o) [1 ]

Equation (24) is the functional equation produced
by a mathematical transiteration of this princi-
ple.

The Functional Equation

In this section, the formulation of functional
equations by the mathematical transiteration of
the principle of optimality will be demonstrated
for stochastic control processes. An analytic
solution of the functional equations will be given
in the next section. The expected system state at
the (k+1)th sampling instant for T = | can be ex-
pressed by (17) as:

E[z(k+1)] = 0(1)Z(k) + H(1)m(K)

+ ’f G(1) fP(f)df . (26)

115

The first two terms on the right side of equation
(26) represent the system state at time k+l for a
noise-free condition, and will be denoted by
29(k+1) . Let the expected (mean) value and the
second moment of the noise be denoted respectively
by f and f, that is,

F = [fP(f)df (27)

f = [F2P(f)df ; (28)
equation (26) is reduced to

E[z(k+1)] = 29(+1) + 6(1)F . (29)

If system errors are interesting only at the
sampling instants and are weighted equally at all
sampling instants, that is, w(k) 1 Sfiolr (k=M1 ;87)
...,N, the EMQPI* by virtue of equations (21) and
(27) to (29) becomes:

[z - ¢ £ {2
+ 2%6,02%(0) + 6,06 + an’ (k-1)}. (30)

The principle of optimality yields the functional
equation,

= | 1 Y
I,(z) = :23){59,@ (@]

s e[1y., eon ]} 31)
where:
EET(Z(O)Z' L z‘:(l)de(l) + z?etqzd(l)
+ ?atQG + AmZ(0) . (32)

Note that Z(1) is the state resulting from a
transition depending upon noise. The last term in
equation (31), which represents the expected min-
imum of the expected quadratic performance index
from the random initial state, Z(1), for an N-1
stage process, has the meaning as below:

iy e - [ e
+ Gf)]P(f)df ;
Equations (31) to (33) are the fundamental equa-

tions from which the following analytic results
are obtained.

(33)

Solution of the Functional Equation

Analytic results are obtained by proceeding
inductively with equation (31). For a single~
stage process, N = 1, thus l:_l= 0, and equation
(31) is reduced to:

i¥z0)) = min e[3¥(z0))] . (34)
@) = Hin [5] 2]

Observe that E[?T(Z(O)i] is a function of m(0) by



virtue of equation (32); its minimum can be obtain-
ed by making its derivative with respect to m(0)
equal to zero, that is,

dE [47 (2 (0)) )
Er]n(O)_] = H,a[62(0) + Hm(0)]+ G QH

+ am(0) =0 . (35)
The optimal control signal starting from the ini-
tial state for a single-stage process is the sol-
ution of m(0) in equation (35) and will be denoted
by ml(O), thus,

m (0) = a (1)Z(0) + f8(1) (36)
where:
- -all)_
D) = a+d (1)
B(]) = _bQL
ad (1)
a(l) = -0 QH
b(1) = -HtQG
d(1) = HtQH .
Since the performance criterion is quadratic,
the extremum will necessarily be a minimum.!3 Sub-

stituting (36) into (34) and combining terms which
are quadratic in Z(0), linear in Z(0), and con-
stants, it follows that the minimum of the EMQPI*
from the initial state over one sampling period is:

1(Z(0) =z, ©M()2(0) + 27 (1)2(0)

+ Fu() + TV (1) (37)

where:

HO) = v (Dar() + xa(la, (1)
K (D= €, (Nav(1) + r8(1)a, (1)

(1) = g2(1) (H,QH + 3) + 2B(1)G QH
V(1) = 6,Q6

v(1) =0+ Ha (1)

E(1) =B(1)H +G .

The matrix, M(1), is a symmetric, positive, defin-
ite matrix.

Theorem

If a system is subject to random noise, f, with
probability distribution, P(f), mean, f, and sec-
ond moment, f, and is described in discrete version
by the state-transition equation, Z(k+1) = ¢Z(k)

+ Hm(k) + Gf(k), at the initial state, Z(0), the
first control signal which minimizes the EMQPI*
over the interval 0 s t = N is:

m(0) = a, (N)Z(0) + fB(N) (38)

where:
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a(N) = Xfﬁ%%y (an #+n vector)

B(N) = Kgﬁ%%i (a constant)

a(N+1) = -Qt[ﬂ(N) + Q]H (an #+n vector)
b(N+1) = -HtI:H(N) + Q6 - K (NH (a constant)
d(N+1) = Ht[h(N) + QJH (a constant).

The minimum of the EMQPI* when the performance
measure is weighted equally at all sampling in-
stants, is:

Iy(2(0) = [z, @KM2(0) + 2F Nz (0)

+ Fum) + ?V(Nﬂ (39)

where:

MN1) = v, (W D)[HN) + QJv(N+1)

+ X.a(N+l)at(N+l) (an £+n square matrix)

K, (M1) = gt(N+I)I:M(N) + Qv (n1)
+ AB(M1)ay (1) + K (N) ¥ (N+1)
(an 2+n vector)

U(N+]) = 52(N+I)|:Ht[M(N) + QQH + 2]
+ 23(01) [6,[MN) + Q1 + K (H]

+ U(N) + 2Kt(N)G (a constant)

V(NHI) = Gt[M(N) + QJ6 + V(N) (2 constant)
Y(N+1) = 0 + Ho (N+1)
E(N+1) = B(N+1)H + G

for N = 0 2, «eey A >0, with M(0) = K, (0)

e

= U(0) =v() =o0.

Equations (38) and (39) give the algorithm
from which the optimal control signal and the
minimum of the EMQPI* are generated. As can be
seen from (38) the optimal control signal consists
of two components: (1) a linear combination of
the system state variables, which is a component
to guide the plant to follow its desired output,
and (2) a component proportional to the mean value
of the noise to minimize the noise-induced devia-
tion of the actual plant output from the desired
output. The EMQPI*, when the optimal sequence of
control signals is used, results in (39) which
consists of quadratic and linear terms in 2(0),
and constant terms proportional to the squared
mean value of the noise and to the second moment
of the noise.

Proof: The theorem is verified by mathemati-
cal induction. The theorem is true for N = 1, as
it can be seen that equations (36) and (37) result
from direct substitution of 1 for N in equations



(38) and (39). Let the induction hypothesis be
equations (38) and (39). The principle of opti-
mality and equations (39) and (33) yield:

o1 @) =y Hin (e[ 2]
eI

2
M Z. ()QZ(1)P(f)df + A (oz}
gﬂy‘g) M + m

+f|:zt(l)M(N)z(|) + 28K (N)Z(1) + FuN)

(40)

+ fv (N)]P(f)df (41)

By virtue of equations (27) to (29), equation (41)
becomes:

0){2‘:(1) [M(N)+szd(|)

= =—— Min
m(

+ 2f{st[n(u)+qj + Kt(N)}Zd(I)
+ ?{st[n(n)@]s + v+ FLum)
+ 2K, (N) 6] + Am? (o}. (42)

Notice that Zd(l) is a function of m(0). It is a
straight forward process to obtain the minimum of

the expression,f ) in equation (42). Make
%ﬁ&%y = 0 and solve for m(0). The solution of

m(0), thus obtained, will be my,,(0), and equals

equation (38) if N is replaced by N+1. Substitute
M ] (0) |nto equation (42); it is easy to show
that ](z(o))

N is replaced by N+1. Thus, the hypothesis is
true for N = N+1, and the theorem is true for all
positive integers N.

is the same as equation (39) if

The theorem gives the first optimal control
signal. For successive optimal control signals,
the principle of optimality reveals that the
optimal control signal at the (k+1)th stage for an
N-stage control process, m!(k), is the same as the
optimal control signal at the first stage for an
N-k stage process, mN-k(o)' Thus,

Corollary I:

my, (K)

where m, (k) and (0) are linear functions of
Z (k) amu Z(0) respectlvely.

= mN_k(O) for k =0, 1, 2,...N-1|

For a deterministic case, f = [ 0, equa-

tions (38) and (39) reduce to
Corollary 2:

m, (0)
I(Z() =2, ()HN)Z(0)

= a,(NZ(0) (43)

()
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This is essentially the same result as derived by
Kalman and Koepcke for the deterministic case.

The theorem formulates the algorithm to gener-
ate the necessary constants of the optimal control-
ler descrnbed in the next section. Starting with
M(0) = K _(0) =U(0) =Vv(0) =0, for N =0, a(l),
b(1), d(f) are obtained from (38), then M(1),
Kt(])’ U(1) and V(1) are obtained from (33). The
terms a(2), b(2), d(2) result by substituting M(1)
and Kt(l) into (38) for N = 1, and the cycle re-
peats as desired for any N. Thus, the optimal
control signal at the instant when there are N
sampl ing periods left until the end of the process,

m, (0), for any N is readily calculated by (38) for
tNe given knowledge Z(0) which can usually be
measured or predicted for physical systems.

An Alternative Derivation of the
Optimum Control Signal

If (1), the expected state instead of the ex-
pected error is used to formulate the EMQPI%*, that
is,

e[r]) = 2R, (]2 (k] + aP (k-1 (45)

and (2), the expected state is used to formulate
the minimum of the expected quadratic performance
index, instead of the random state used to formu-
late the expected minimum of the expected quad-
ratic performance index, that is, the last term in
equation (31) be replaced by,

o, €zal) ,

then the functional equation can be formulated with
equations (45) and (46) by the principle of opti-
mality and proceed inductively as before. The
derivation of the optimal control signal is a
straight forward process; it results the same as
equation (38). The minimum of the EMQPI* thus ob-
tained is the same as equation (39) except that:

(46)

UNe1) = € (1) [MH(N)+Q] e (Ne1) + 2K (N) € (N+1)
+ 2 (n1) + U
V(N) =

Optimum Synthesis

It can be shown thaf the iterative process of
the algorithm converges. 5 The terms, a(N) and B(N),
converge to a constant vector, a, and a constant,
B, as N approaches |nf|nlty If a(N), B(N) con-
verge to a, B at the N iteration, then, for

N 2 N
a(N) =«
B(N) =B }. (47)

From equation (38), it is clear that for all
N 2 N, the optimal control signal at the initial
stage for an N-stage process is the same as that

for an NT-stage process. That is,



ny(0) = my_(0)
If a system operates for a reasonable length of
time such that N can be considered as infinity,
the optimal control signal at any sampling instant,
k, can be represented by:

m(k) = a,z(k) + 8 (48)
where o Z(k) is a linear combination of the state
variablés and the term fg is a constant, called
the noise-balance component, W. The additional
error in J introduced by using equation (48) in-
stead of equation (38) for m, is negligibly small
when N is reasonably larger than NT'

The optimal controller can be designed accord-
ing to the schematic diagram shown in Figure 3.
The feedback coefficients ay, ay, ...a,,,, are
components of the vector, «, de%ined in equation
(47) . The additional constant signal, W, to the
controller is the noise-balance component defined
in equation (48). When the sampling period is re-
duced to be reasonably small, the system becomes
nearly continuous, and the controller thus result-
ed will minimize the EMQPI* as well as the EMQPI.

Example

To illustrate the foregoing development of the
algorithm, the noise-balance component, the feed-
back coefficients, and the minimum of the EMQPI*
are calculated for the system in Figure 4 by using
an IBM 709 digital computer. The noise considered
is unit impulse noise (f=1) with Bernoulli distri-
bution, that is, P(f=1) = p and P(f=0) 1-p where
p = I/b. The noise is added to the control sig-
nal (type 1 noise) and to the integrator (type 2
noise) at sampling instants only. The class of
inputs for which the system is to be optimized is
the class of all ramps and steps. There are two
performance indexes. The first is the sum of the
squared error and squared error rate, e< + é<;
the second is the squared error, e2, only. The
control cost is weighted equally for both indexes,
that Is A = 1 for both. According to the above
specification the problem is calculated in three
cases defined in Table 1. For example case 3 is
to design the controller for the system which is
subject to the impulse noise at the integrator so
that the sum of the squared error and the squared
control signal is minimized for the class of all

ramp and step inputs. Let:
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1 OAN1E 50 0
[0 1 0~ {o
%=1 0 3 0 2o =l s
0-1 0 1 0
150=1 0
0 0 0 O
L =1-1 0 1 0
0 0 0 O
where T = 1. The input data used to formulate the

algorithm for the three cases are listed in Table
2. The noise-balance component, W, and the feed-
back coefficient, a, of the optimum controller are
calculated with the algorithm. With this control-
ler, the minimum of the EMQPI* is calculated by
using equation (39). 1In this example f = ¥ = p,
the constant terms_in equation (39) can be com-
bined as FAU(N) + fV(N) = pL(N), where L = pU+V.
The results are tabulated in Table 3.

The asymptotic behavior of Ege convergence of
the terms a, B, M, K, L, and Iy is discussed
below. The terms, o, B, K and L converge with
accuracy to the 5th decimal place at the lh4th,
16th and 16th iteration for cases 1, 2, and 3 re-
spectively. The terms, o and B, converge mono-
tonically to constants. Their rate of convergence
for case 3 is shown in Figures 5 and 6 and appears
to be close to exponential. The same terms for
cases | and 2 have similar behagior and the cor-
responding figures are omitted!® The constant, L,
the last element of the matrix, M, myy, and the
last element of the vector, K, ki, are asymptotic
to straight lines of non-zero slopes. The rate of
approach of L, myy and ky is shown in Figures 7, 8
and 9. The remaining elements of M and K converge
to constants faster than do myy and k4. The fact
that L increases with the number of stages or time
is expected; it can be seen in equation (39) that
L associates with the noise and the control cost,
both of which contribute to Jy as N increases.

The asymptotic behavior of i* is shoyy in
Figure 10. In this example the limit of Iy as
N + @ is pAL where:

AL = Lim [L(N+1) - L(N)]
N-+co

This is verified by the fact that Z MZ and pKtZ in
(39) are constants at large N and that L incréases
by AL at each stage as N + oo.

Conclusions

A method for designing an optimum controller
for a linear plant subject to random noise is
introduced. The controller is optimum in the
sense that the system will satisfy the expected
mean quadratic performance criteria. This invest-
igation serves as another example of the appli-
cation of dynamic programming techniques to stoch-
astic control problems. Iterative formulas for
performance indexes such as the squared system
error which is weighted unequally at all times can
be derived with the principle of stochastic con-
trol developed in this paper. This approach must



be extended in the engineering aspect to formulate 8.
the algorithms for designing an adaptive control-

ler, that is, a controller for a plant which is

subject to random noise of unknown probability
distribution, or for a plant which has parameters
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19



(3

Fig. 2. System decomposition.

Class
of
Inputs

Noise-balance Component No;se
W ]
Tnpily Yot ek o i
state | |
Varlables: i
)
Y

Plant

OQutput
——e—c

Controller

Plant
State
Variables

Fig. 3. Schematic diagram of the optimum controller.

Type | Noise Type 2 No
f 1 f =1

1 1
o P =3

ise

Fig. 4. The system in example.

120



%

G|

5

Fig. 5. Feedback coefficients of's for case 3.

10

Number of Iterations N
(where N is also the number of remaining control stages)

15

Case

. M

10

Number of Iterations N

Fig. 6. gfor case 3.

121




30
//
3 //
20 /// /,/
Casel3
L i o
15 / 1/
Casle 1 /
/ Ca y/
10 l/ pd )
AEas g
e KhZy
5 ,; _
/ -
0 /
1 5 10 15
Number of Jterations N
Fig. 7. L for cases 1, 2, and 3.
20
16
14
P
. 10 / Cases 2 § 3
6
4
‘v
0
5 10 15

35

Number of Iterations N

Fig. 8. m,, For cases 1, 2, and 3.

122




=) Casqg 2

> \\ Cage 3

_|2 \
\
\\
-16 ™
-20
5 10 15

Number of Iterations N

Fig. 9. k4 For cases 1, 2, and 3.

24

20

o
=

\
\\X_a- ]

8
\:‘Case 3
X \ e~ |1 Case |
—
2
-3 5 10 TS

Number of Iterations N

Fig. 10. The minimum of the EMQPI* for cases 1, 2, and 3.

123



Cases
1 2 3
Specification
Noise Type 1 Type 1 Type 2
Performance Index e2 + e2 ez e2
ramps ramps ramps
T steps steps steps
TABLE 1. Case Classification in Example
Cases
Input Data ! 2 3
Q ®| ®] ®I
H H| H] Hl
G HI H] G‘
Q QI Q2 Q2
A 1 | 1
2(0) ZO Z0 Z0

TABLE 2. Input Data for the Algorithm in Example

Symbols e
Q, a, 03 ay, W 1
Cases
1 -0.62780| -0.61504 | 0.62780 1.61504 | -0.06250 | 0.35073
2 -0.70070| -0.58915 | 0.70070 1.58915 | -0.06250 | 0.25689
3 -0.70070| -0.58915| 0.70070 1.58915 | -0.09932 | 0.48774

TABLE 3. Results of the Example.
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DOUBLE MEASURFMENT WITH BOTH SAMPLED
AND CONTINUQUS INPUTS

’ - Je Co Hung
The University of Tennessee
Knoxville, Tennessee

Introduction

A vital problem in the field of control and
communication systems is multiple measurement.
The problem is raised from the fact that in the
modern control systems the instruments used for
signal measurement are in general far from ideal
due to the unavoidable instrument noise. As & re-
sult, the exact value of the measured signal can
hardly be obtained. Scientists have been striving
to explore the methods of obtaining the best esti-
mate of the true signal from the noise-contami-
nated signal. It is very often that the required
signal appears in several different forms. For
instance, a practical problem occurring in guid-
ance and control systems involves the separately
obtained measurements of a position signal and its
first derivative. It is obvious that the best
estimate will be obtained if all the possible
measurements are employed and their results are
weighted and combined in an optimum way. Measure-
ment of this kind will be referred to as multiple
measurement. In the case of single measurement,
the fundamental problem of extracting and predict-
ing a signal from a mixture of signal and noise by
means of an optimum physically realizable filter
was first proposed by Wienerl who solved the prob-
lem on the basis of three assumptions, namely:
(1) the time series representing the true signal
and the noise are stationary and their auto-and
cross-correlation functions are known; (2) the
performance criterion of the filter is to minimize
the mean square-error between the estimated value
and the true value of the desired signal; and, (3}

the operation used is assumed to be linear. Sub-
sequently, further develogments were made by Zadeh
and Ragazzini, 2 pranklin,’ and Lees! to include

the cases of continuous-data finite memory filter,
sampled-data infinite memory filter, and sampled-
data finite memory filter respectively.

In the general case of multiple measurement,
the measurable signals may sppear in discrete
forms as well as continuous forms. Therefore the
measuring system may have contimuous inputs and
sampled inputs of various sampling rates. Theory
on the general optimum multiple measurement,
giving the best estimate of the desired signal,
has not been developed., Recently, Hsieh and
Leondess, and Bendat? have treated a few special
cases of multiple measurements. Their cases are
special in the sense that the inputs of a measur-
ing system are either all continuous, or all
sampled with same sampling rate,

It is important to note that the theory of
the general optimum multiple measurement cannot be
obtained by a simple extension of the theories for
the special cases mentioned in the last paragraph.
The fundamental difference between the general
cases ‘and the special cases mentioned lies on the
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following fact. For multiple measuring system
having either only contimuous inputs or only
sampled inputs of the same sampling rate, the op-
timum system is time-invariant if the input sig-
nals are stationary. But, the optimum multiple
measuring system having continuous inputs and
sampled inputs of different sampling rates is time-
varying even though the inputs are stationary.
Therefore the transfer function of an optimum
multiple measuring system is, in general, & func-
tion of several variables, where the number of
variables depends on the number of different input
sampling rates. In this paper a procedure of op-
timm double measurement, having one sempled input
and one continuous input as shown in Fig. 1, will
be developed.

This system has important applications in the
field of linear filtering and prediction, and in
reduction of the load on a digital computer in a
trajectory tracking system. For example, in guid-
ance control, the available signals guiding the
control of the vehicle frequently appear in both
sampled and continuous forms. The measuring in-
strument used for continuous measurement is usually
mich more noisy than that for discrete measurement.
Using the theory developed in this chapter one can
weight and combine these two signals in an op-
timum way to obtain the best information. The
second application originated from a missile tra-
Jectory tracking problem, where the trajectory of
the missile is determined from the available input
data. Accurate determination of the discrete
points on the trajectory can be made using a digit-
al computer. However, when a large number of
points on the trajectory are required, very close
to each other, a computer with a very large ca-
pacity is needed. To reduce the load capacity and
to fill the information between the discrete de-
termination of digital computer, an analog com-
puter can be used in parallel with the former, as
shown in Fig. 2. It is known that the analog com-
puter introduces more computation error than the
digital computer does. The final results pro-
duced by the two computers can be combined in an
optimum fashion to give the best continuous de- |
termination of trajectory, using the theory de-
veloped in this chapter.

In the following, the method of solution for
the optimum system under a general input condition
and the error analysis of the obtained optimum
system are developed. An example is given to
illustrate the method. It is quite often that the
noise in a sampled-data channel is negligible and
the channel may be considered noise-free. Under
this condition, a simplified method may be used
for solution. another example is given to




illustrate this simplified method. It is also
shown in the exampls how the qualities of the
estimated signals obtained by double measurement
and single measurements compare.

Main gssumptions

There are four main assumptions upon which
this research is based, namely:

(1) The actual signals measured by the
measuring instruments are assumed to be
linearly related to the desired signal.
The relationships may be represented by
the linear time-invariant transfer func-
tions Mj and Mp, (Fig. 1).

(2) The time series representing the sipmals
and random noise are assumed ergodic
stationary, and have rational spectral
density functions.

(3) The criterion of performance used is to
minimize the statistical mean square-
error between the estimate and the de-
sired signal.

(44) The operation of the optimum filters is
assumed linear.

vhile these four assumptions are not chosen arbi-
trarily, they can be justified for many practical
considerations.

System Description

Fig. 1 is a general schematic representation
of the system. In the figure, r is the desired
stationary random signal to be estimated by the
measuring system, The measuring system contains
two parts, the measuring instruments which are
fixed, and the optimum filters which are to be
synthesized. The desired signal is measured by
two different noisy measuring instruments whose
operations are assumed linear and time-invariant
having linear stationary transfer functions M; and
M. 1In practice, the measuring instruments seldom
have exactly linear operations. However, the small
nonlinearities, which are usually undesirable, may
be considered as equivalent instrument noise. The
noise appearing at the output of each measuring
instrument is denoted by n; and no which repre-
gsents the resultant of the internal noise, the ex-
ternal noise, and noise equivalent of the nonline-
arity of that particular instrument. Quantities
ry and rp, are the hypothetical continuous outputs
of the measuring instruments, which are the mix-
tures of the clean signals ry,, rp,, and the noise
ny, np, respectively. One actual output of the
measuring instruments appears in sampled form
while the other appears in continuous form. These
outputs are also the inputs to the optimum filters.
The function of the optimum filter Hj and Hp is to
weight the output of the measuring instrument M;
and Mp in such a way that the outputs of two fil-
ters, when added, give the best continuous esti-
mate, re, of the desired signal in the least-
square sense., The hypothetical error generating

scheme is shown on the figure by dashed lines.
Before putting the system performance into the
analytic expressions, a preliminary thought will
be given about the nature of the optimum filters.
The thought will lead one to an important obser-
vation which governs the number of variables con-
tained in each optimum filter transfer function.

Time Varying Characteristic of the Optimum
Filters ---- An Observation®

For single-rate multiple measurement, the op-
timum filters are stationary if their inputs are
stationary. But the optimum filters of multiple
measurement are time-varying even though their in-
puts are stationary. This important characteris-
tic must be included in the system analytic ex-
pression.

In Fig. 1, filter H; receives input r; at all
instants, while filter H, receives input r{ inter-
mittently. Since the output of Hp relies on its
input only at sampling instants, the output be-
tween the sampling instants is produced entirely
by a prediction operation based on the previous
sampled input. The farther the time is away from
the previous sampling instant (referring to Fig.3)
the more unreliable the prediction is. Therefore,
when the input rj is less noisy than the input ry,
one would expect that the filter H; weights its
input heavier in between the sampling instants than
near the sampling instants, and the filter Hz
weights its input heavier at and near the sampling
instants than in between the sampling instants.

As a consequence, the impulse response of the op-
timum Hy, which is hj(t,7), must be a function of
two independent variables t and 7, where t is the
time distance between the application time of in-
put impulse and the observation time, and 7° is
the time interval between the last sampling in-
stant and the observation time. In the same
manner, the impulse response of the optimum Hp,
which is hp( f,7T), is also a function of two in-
dependent variables £ and 7 . 7 has the same
meaning as in h; and £ is the number of sampling
instants between the application instant of the
input impulse and the last sampling instant. 1In
other words, H; is periodically time-varying fil-
ters whose period is the same as the sampling
period of the discrete input rf.

Analytic Formulation of System
Input-Qutput Relation

Having considered the nature of the optimum
filters, one is in a position to formulate the
system analytic expressions. 1In Fig. 3, T is
sampling period, t is the time of observation,

t - PT -7 is the instant when an impulse be
applied to filter Hy. The functional notation of
the two impulse responses of these filters are
hl(t,‘r) and ho( p,T). These notations assume
the following physical meaning. hy(t,7") is the
outout of filter Hy at time t in response to an
input impulse applied t seconds before observation
time. ho(f£,7T) is the output of filter Hp at



time t in response to an input impulse applied
PT +7T seconds before the observation time. The
observation time is 7" seconds behind the last
sampling instant of the sampled channel.

The estimate, which is the output of the
measurinc system, is the algebraic sum of the out-
puts of three filters, and is given by

ro(t) = .a/l” rl(t-tl)hl(tl,’r) dtl

+ £, rolt-p g (£, T (1)

where t is a dummy variable and f£ is a dumrmy num-
ber. It should be noted that the response of any
physical filter cannot devend on its future input,
so the condition of physical realizability re-
quires that the integration and the summations in
8q. 1 be taken over all the past inputs only.

Mean Square~Frror

The error of the estimate is
a(t) = r(t) - re(t) (2)
and its squared value is
o?(t) = r2(t)-2r(t)r (1) + r 2(t)  (3)
By substituting %as. 2, and 3 into 1, one obtains
e2(t) = rl(t)
a0 a0
-0-,{ I’l(t-tl)hl(tl,T)dtl./o‘ rl(t—tZ)hl(tziT)dt2
o0 -~
+ 2f2=°r2<t-v- Ty (fyT) TL(t = ty ) hy(b,7)dty
o0 o0
=2 fz=° ro(t=T=fT)ho (£,T) r};or?(t-'r- T T)hs(e,T)
0
-2r(t) /] ry (t-t1)hy (£1,7)dL,
«Q
-2 r(t)rZD ro(t=T= £ Thho (£,7) (L)
where ¢ is a dummy number and t, is a dummy
variable. Averaging both sides of Eq. L over the

ensemble of all possible combination of inputs and
denoting this mean square-error by I, gives

L& §(t)

e

)

rZ(t) - i r{t)ry(t-t1) hy(ty, T)At,

2 Z, T8 (v-T2 p ™o (p,7)

+

{” J:m ry(t-ty)r) (t-to)hy (ty, 7Iho(tp, 7)dt, dty
+ 2 Z 4" £ (t-Ly )rp (8T~ £ T)hq (£, Pho( p Pty

o

¢ £ & U (b-7= e Dha (£, 7o (& 57 (5)

=0

The wavy symbol, ; in ®q. 5 means that the
quantity under the symbol is ensemble averaged.

In the theory of random processes, the corre-
lation function of two time functions x(t) and
v{t) is defined as

Boy(tys t) = x(25) ¥ (t,) (6)

which is 2 function of two variables tj and to. It
is called auto-correlation function if y(t) = x(t),

and cross-correlation function if y(t) # x(t).

then the random processes are ergodic, the
correlation function depends only on the time dis-
tance between ty and t, rather than on both t; and
to, themselves., Denote this time distance by,
then 7q. 6 bscomes

by (1) = x(8) ¥ (84 7)

Furthermore, under this condition, the ensemble
mean, averaged over all possible x(t) y (tv+7) is
equal to the time-avsrage of any x(t) y (L+1 )
over all t., That is

(1)

x(t) v (4+ ’l)Ta
lim LI x() ¥ (t+7) dt (8)

Ta—>w (e
(-]

where T, is an arbitrery long time intervsl over
which the time-average is taken. Therefore Eq. §
can be expressed in terms of the correlation func-
tions of the desired ard the actusl signals. 1In
practice, the exact time fManctions of the random
signals are never known. The informstion given
for the synthesis of the optimum filters are
either the correlation functions of the signals,
or their transforms vhich are also called the
spectral density functions. Writing Eq. § in
term of the correlation functions helps one to
obtain the solution of optimum filters as func-
tions of these known guantities.,

I 4o Pealo)
ber(@) = 2 Brip (b (07 Mty

2 % Br e (T4 pTIR(£,7)

T A0
&4 rérlrl(tl-tz)hl(tl,—r)hl(t2,7’) dt, dt,

[}

Gt

2 /,w«é

+

; ryrp (V1-T- £ 1 (41,7 (£,7) Aty
+ %?- dr?,z(fr—rT)hg(r,T)hg(O',"r) (9)

Eq. 9 is the general form of the mean square-error
which is to be minimized in the following section.

Minimization

In this section the necessary amd sufficient
condition, that the optimum filters, hl, h2 must
satisfy to ensure a minimum mean square-error, is
obteined by the method of calculus of variations.

From now on the impulse responses hy(iy,7T)
ard ha( p,T) will be represented by hy(tq) and
hy(£), respectively, to simplify the mathematical

expressions. It is understood that these two
functions are also functions of T.

Let gy and g3 be any differentiable function
satisfying the condition
g1(t1) = 0
ga(f) =0

t1<0 (10)
T<9



where g's are also functions of 7"« Then, if his’
in Eq. 9 are replaced by (h + eg)'s, where € is a
small real number, the effect will be to increase
I by an amount of AT which is called the vari-'

ation of I. The variation AT is obtained from
Eq. 9 as /
‘IsZE e (eT- fT)[égz(f)hg(T’)

o cep(ring(p) +€& gy(p) gy(e)]
s
* 981("2)“1(*'1’ +egy (1)) gl(tg)] dt,dt,
- ?E 8.

(rT+'r)6 g (p)
b 2{ ﬂrlr(t‘l) eg)(ty) dty

c2z ) e r, (B2 F1- T)|eea(p iyt

regy(ty)hy(£) » gy (Pey(ty)] dty

Assume that for any physical realizable g's, I has
continuous derivatives with respect to€. This
implies unique derivative at each point, and
assures the differentiability of T with respect to
€. his for which T = I, is minimum must satisfy
the condition

4 d
[de (1 *"I)L'o '[—5?

for all physically realizable g's, Differenti-
ating Eq. 11 with respect to ¢ and then settinge
equal to zero, gives

[fe o0

&=0

(11)

o

(AI)]

€ =0

(12)

T3 b (T P {ea(piha(@ + g @ny(p) |

b{'" {D érlrl(t/_;_-tl) [gl\tl)hl(t2)’g1<t2)h1(t1)]dt'1dt2

- 224, (e TIn(p) - 3 b (1)Ey ()3

o

.2 f /[ brlrz(tl-fr-'r)%g(r)hl(t1)+g1(t1)h2 (f)] dt,=0
(13)

By changing f tod and ¢ to £ in the first term

and noting that 2T is even function, the
first term becomes
232 cT- h,(g~)- (1)
T ﬁ!‘21‘2( fT)gz(f) 2(
Similarly, the second term mgy be written as
© ©

Combining Eqs. 13, 14, 15 and rearranging the
terms
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2/ g+ (t'y)y )ar r (t2-t1)h1(t2)dt2
v zér ry (tl f1- T)hZ(f) - r r\“])]dtl

. 2;g (L 8, Y PT-TOh (bt + S8

(e T-PTihy(a) - ¢r2r(fT-‘r)] -0 (16)

Since Eq. 16 must hold for any physically realiz-
able g's, it requires that the expressions inside

the brackets must equal to zero indivicdually. That
is,

" Bepey (b=t )0 (82)d% + 5 B 1, (1= PT-Th2(p)

- rlr(tl) =0 tZ0 (i)
s Bepr, (1P T-Thy (4)dt + Z @ o (T-pThg(@)
brzr (Pr-T) =0 fZzoO (18)

The above derivation has shown that Egqs. 17
and 18 impose the necessary condition that the
optirmm filter ht's must satisfy. The coniition is
also sufficient. For

2
1/2 [%Q(AI)J s %g_ Br e, (¢ T -PT)e1 (Pley ()

Lo

a9
ﬁrlrl(tz'tl)gl(tl)gl(tz) dtydt,

+ 22{ dr r, (1 fT- Ty (N (81)aty 20 (19)
which shows that at the extreme point the variation

function concaves upward and the point is 2 mini-
mwm, The Z sign, in Zq. 19, holds, since the
equation has the form of

A2+ 2AB+B2- (1\+-B)2
which is always nonnegative for real £ and B.

(20)

Eqs. 17 and 18 are two integral equations
representing the basic relations in the design of
optimum linear filters shown in Fig. 1 on a mean
square-orror basis. Solution of these equations
yields the optimum filters. It is observed that
Eqs. 17 and 18 resemble the convolution inte-
grals?l and summations. This suggests that their
solution may be obtained by transforming the
equations to and solving the equations in the
frequency domain. Since the integral equations
hold only for certain ranges of the time variables
and since the correlation functions have non-
vanishing values outside these ranges, some modi-
fications have to be made in taking the transforms.



Solution of Integrel Eguations

let

L) (ty) = {" ¢r3r3

}%,d“z’l (FT+ 7-t1dh2(p ) - ¢r,r(t1)

(t,-t)) hy(ty) dt,

(21)

£2() = £ fryry (tg- £ -7 b (b)) Aty
+2°¢r2r2("'T° £T) hp(e) - ¢r2r(fT+7’) (22)

Then, Eqs. 17 and 18 are equivalent to
f' (tl) =0 tyz o
f‘2(/’) =0 }';o 2L)
Taking the two-sided Laplace transforms of Eqs. 17

and 18 with respect to t; and f, respectively, one
obtains

(23)

brlrl(S)H, (s) + brlrz(S)Hg(z)e-sr-mrlr(s) = Fy(s)

(25)
T-
[Br e, (®) Hy(se® ]" « Brr,(2) Hp(2)

- (8,0 (2657 = F,(2) (26)

x
where [ ] denotes that the term inside the
brackets is Z-transformed,

3 (s), 8, _p (2) = the power-spectral density
Ty Ter2 functions of ry and rf
respeclively, and

5,.1,.2(8), Grlr(S), 6,.?,.1(8), G,.?r(S)
= the cross-spectral density
functions of the signals ry,

r, and the desired signal r.

Wote that ih(s) is a function of s and 7, and
Ip(z) is a function of 2z and T, The transfer
function Fy(s) and Fp(z) should be analytic on the
left=half of the s-plane and inside unit-circle

of the z-plane, respectively, since fj(t) and f2(f)
vanish over the range (0,00) as expressed in Eqs,
23 and 2L. In other words, F(s) may have poles
only in the righi-half s-plane, while Fy(z) may
have polss only outside the unit-circle of z-plane.
Fucther, from Bq. 2L, f5(P) = 0 for £Z0, there-
fore Fp(z) can be expressed as an ascending poly-
nomial in the positive power of z without the
constant term,

a

Fo(z) = 2 Z

I

where all the poles of 7(z) are outside the unit-
circle of z-plane.

cfzf ] zG?(,z)
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In the following, Laplace transforms are
represented by upper case letters, and their com-
plex conjugates are represented by barred upper
case letters. For example,

R = R(s) =X[r(¢)], R = R(3)
Also, Z-transforms are represented by starred
upper case letters, and their complex conjugates
by starred upper case letters topped with bars.
For example,

R* = R(z) = R¥(s) =‘ot[r*(t)] s
¥ = R(z"1) = Rr#(3)

Using the simplified notation defined Eas.
25 and 26 become
L)% Hy + D p

-s7
151 IQH:G 'ﬁrlr"Fl

(27)

-1 st T * - sTY"
Z [GrzrlHie T Rz 15r2r232 5B ]@rzre ]:G2 (28)

which are to be solved for H, and H:. Because of
the mixing of the Laplace trlnsform and the Z-
transforms, Fqs. 27 and 28 cannot be solved
directly by the method of matrices. 2 method of
elimination end substitution will be used instead.

]
Multiply Eq. 27 by _F2T1 gives

)
rirn
0. D O D
s H.eST , T1F2 Tory - S P
Tory 1 g, . A S
N 11
P
+ rzrl FleST. (29)
]
1f1
Z-transform 9. 29 and then multiply it by 271,
=l s—r* = b!“l!'?al'?!‘l N
2z [Qr2rlHle ] + 2 il‘ B H
1'1
[ S Or r =
2 e rirar o
o e e v S e
Y‘ll‘l rlrl

By sudbtracting one from the other, the terms con-
taining Hy in Eqs. 28 and 30 can be eliminated as

* *
# ] ]
- ) o PN o of
z 1}1 12 "2°1 -1 sT
. - = 3, e
2 QI‘2P2 [—5!._1;.;_} Z [ I‘2I' }

[0 )
o] rarror o ror L
-z|_1_£es +o-zl 21Fes (31)
8 r < LI 1
11 11
or simply



Batlin T ol
z'IH; [ S 1 .
2T'2 g
159
3. B, *
= 2-1[ <‘25 Vil '2”1) ST
r2r ]
L ¥ 0]
EI' r <
* = sT
s 0y 22| g2LRe (32)
L Ty7y
5 _ B
L
The factor |3 e L2 Gl in the left-
r2r2 Gr -
3

hand side of Eq. 32 is a rational function in z,
and is symmetrical with respect to z and z=l, 1t
can he written as the product of two factors

) F3 L4

- | oo ik ey

r'all
or'2 5
i

(33)

where Y*has all its poles and zeros inside the
unit-circle, while ¥ has all its outside. Sub-
stituting Eq. 33 into ®q. 32 and dividing both

sides by T* give
[ J ) *
I -1 053 o <P o 1
< YiH? u Z—:;;-[Qrzr < _1__2_L—>es'r + G_2__
B =
(3k4)

D
Bkl
.12
L3 ! [ SRl
Y | @
Hara

®
s
Fl e

In general, a rational algebraic function
Q(z) in z can be written as a partial fraction
expansion in terms of the roots of the denominator
and 2 polynomial P(z) in z.

a) - | = € A

- + P(2)
lo(il<1 2=04y lBjI>1 z= Fj
- b} {om} (3%)
i o
where 1
A Z A,z-
Q(z)} o weles B ees s
{ 2 oy =1 pJ<1 oz 9
is analytic outside the unit-circle, and
i 2. e+ P() (37)

{Q(Z)}o T g B

is analytic inside the unit-circle. Note that the
constant term of the polynomial P(z) should be
grouped into Qo(z). The reason for doing so will

become apparent later.
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In ¥q. 34, the term on the left-hand side is
analytic outside the unit-circle, since Hg is
implemented to be a stable function and Y* is
analytic outside the unit-circle by definition.
The first term on the right-hand side of Fg. 3k,
vwhich is completely known, may have poles both
inside and outside the unit-circle. Using the
method characterized by Tqs. 35, 36, and 37, this
term may be written as the sum of two terms, one
is analytic outside the unit-circle and the other
is analytic inside the unit-circle. The second
right side term of Eq. 34 is known to be analytic
inside the unit-circle from the definition of

G; and Y;. The last term

Q 3+
L - -
. S 1

11

(38)

on the right-hand side of Eq. 34 again may have
poles both inside and outside the unit-circle.
This term is not completely known, therefore the
partial fraction techniqus of Eq. V-20 cannot be
applied. Examining Eq. (38) closely, one sees that
all its inside poles are known, since they are the
inside poles of the known quantity

#*

]

r2r1

7 o
o

Denote these poles by o ,'s, then the part of Eq.
(38) which is analytic outside the unit-circle
may be expressed as

x 2: Aiz

Tox 2=1
g 1ok 32)

3 2
1 e 1

o - F
65
riry

eST

where [0l <1, and A, 's are constants to be deter-

mined. Then Eq. 3l €an be written as
+*
1 °r rbr r
-1 1 2" T2
o Y - 3 - =1
Hp = {(rzr g ) e
g0
-1
A2 3 D &
et Z _1_I . )& 1[@ T2 !‘21'1) oS
N - - = |\*r,r ~ =1
1 Oz 7 2 ]
b, q1 b rlrl
o [} % >
. G; N i ral'y g e571 n
=, "NA% | Coim. . ¥ 0)
el ¢l T | "

the left~hand side of which is analytic outside
the unit-circle while the right-hand side of it
is analytie inside the unit-circle. In order to
satisfy Bq. LO both sides must equal to a con-

stant Kl.



Thus, %

=~ r.rr.r
o 7 it sT
2 TQ H2 - ""?— ')I‘QI‘ 'T;-r—'——' e
h 11
A4z_1

——— T K
i 1- O(iz‘ 1

Dividing by 2~ lv* anq rearrancing the terms, one
obtains

*
L} b))
E 0 S PO i § 9
2T T e N

LSL]
=)
8 F N 2 K
+ = + -1 (hl)
i R o e
1 diz

Examining %q. 41 one sees that the term HE does not

have a z term, arl the factors

-1 DB o
2 QI‘ SFT rll" T2r1 es—r
T 2 —3;—;———-— and
a2 i
Alz-l

do no¢ have a constent term. Consequently, Kp
must be zero. The optimum H; is

LI .y
% 2~1 PrT Ty Ny
:!? == a&r2r s e ==s » e
SRS ¢ rit A

Zi '-:5;—** (h2)
i 1- diz-l /

i
IN

x

+

C | |
x

T™e unknown constants A;'s are remained to be de-
termined. Rememberingz that in separatinz the
function Q(z) into {Q(z)}i and{Q(z)}o , as shown
in %a. 35, the constant term of the polynomial
P(z) was prouped into {O(z)}o. This should be so
because if [Q(z)}i contained a constant then the
expression for H%, Eq. L2 would have a prediction
term z which is not physically realizable.

The transfer function H, can be obtained by

substituting ©q. 42 into 27 ard proceeding as foll~

ows: In Eq. 27 the power spectral density Drlrl’

which is a rational and even function in s, may be
written as the product of two functions

~ §r1r1 (L3)

where X has all its poles and zeros on the LHP
while X has all its poles on the RHP. Substitut-
ing ™. L3 into 27, dividine both sides by X, and
rearranging the terms,

dA !

[}
>4l IH

) -5 . e~3T p R
[ rlr r112 2} + —}_— (LI’J)

Function H, is then to be obtained using a method
similar to“that for obtaining H; i
Let U(s) be a closed function in s, which

may have essentisl singularities on either LHP

or RHP but not on both. Further, U(5) vanishes,
being at least of the order of i as w approaches
©, Then U(s) may be written as

u(s) - {u<s)} ) {u<s)} (1)
L R

vhere {U(s)} has all its poles on the LHP while
L
{U(s)}R has all its poles on the RHP, and both
these tw> functions are closed.

In Eq. 40, the left-hand side term has only
LHP poles, since Hy is implemented to be a stable
function and X has only LHP poles by definition.
The second term on the right-hand side has only
RHP poles from the definitions of F; and X. The
first term on the right-hand side may have poles
on both sides of the s-plane. This term can be
separated into two parts using the method
characterized by Eq. 45. Therefore ®q. L} may be
expressed as

1 -sT
X Hl - {.:_ [brlr - 52'1!'2 e HzJ

% f

1 -s7 )
=1=—1 2 -3 . e
X [ T Rl = 7

in which the left-hand side is analytic on the
RHP vhile the right-hau! side is analytic on the
LHP. In order to satisfy this equation beth
sides must be equal to a constant ¥5. Since the
output of a physical system must vanish as w
approaches @ , so Ko= 0. Thus

X Hy <Lt P e 6T \
1 {?_ [ rr 67‘11?2 e H‘;] =0
L

Dividing this expression by X and rearranging
the terms, the optimum H2 is given by

By » doddula. oo -57-”J
1 X {X [ rlr r1r2 € H-E ()-lé)

L

It remains to determine the constant 4.'s
contained in Eq. 42. This can be @one by sib-
stituting both Eqs. 42 and U6 into Eq. 28 and
comparing the coefficients of the terms having
like poles. It should be remembered that both

optimum filters H; and Hy are functions of two
variables,



It is interesting to note that if the sampled

branch does not exist, tgen Hg = 0. Eq. L6 becomes
Hy = e rif (47)
X X 2
which is the well known iliener filter 1 as it

?
if the continuous

= 0 and all the
to the input ry
Fq. L2 becomes

should be. On the other hand,
branch does not exist, then H

correlation functions relating
do not come into the calculation.

E:ﬂ}r2£571*
_Y'*

(L8)

vhich is_similar to the result obtained by
Franklind,

Error Analysis

Yhen hy and h, are the optimum functions, the
necessary and sufficient condition expressed by
Fqs. 17 and 18 must be satisfied. Substituting
these two equations into 7q. 9, the mean square-
error of the optimum system is given by

Boe(©) = Bpp(0) = /¥ r (1)1 (42, )ty

% B e (£ 70 TINR(L57) (L9)

Eq. L49 gives the mean square-error of the optimum
system in terms of filter impulse responses and the
correlation functions. The mean square-error can
also be expreased in terms of frequency domain
quantities as

rale) = [CHoerl] - [ K72, 1

pee

b o, T 2]
r:o

Q. 49 may be used to find the mean square-error
when the correlation functions and filter impulse
responses are known. On the other hand, when
spectral density functions and filter transfer
functions are known, one should use Ea. 50.

t2=o

(50)

Example I

To illustrate the method presented in
previous section, consider a simple case where the
sampled-input is noise-free and tlLa noise in the
continuous input is uncorrelated with the signal.
The spectral density functions of the signals and
noise, shown in Fig. 1, are

[

rr = D

Lo

I 2

=5
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) =
TiT —
2ol ks
[ =0
e
ﬁnlnl = 1 (white noise)
The sampling puriod T=1. Since signals and noise

are uncorrelated Eq. 33 reduces to

*
[ ]
bty - SRR
r2r2 3. -
S
o *
2
& [}
=lgrr - oo | = [ aillhic e WY (51)
s L Qr1r1
Using the given data, this equation gives
h 3
= 4-s?
e O -
gl _§-52
Li-s
- 0.705
(1-0.0592) (1-0.059z"1) (52)
Thus,
* 0.839
ol AA\-C % S
1-0,059z-1
(53)
Pa o %89
1-0.059z
The factor &
3. D *orp, D !
(ﬁ,,-w eST = _ﬂ:r_ eST
. o r Ir.r
i 1M1
hesﬂ' ‘
) 8-5°
= 0.0839(b+az) (Sh)
(1-0.059z) (1-0.059z%)
where
a = sinh f%
b = sinh (1-7)[8

To find the poles of the last term of Eq. L2,
which are inside the unit-circle, one sees that
the quantity



Brory

et a e
Bryry Oy 8-52 2
has a IHP pole at s = -[8. Therefore "_.E.l_
ol
has an inside-pole at
2 2 Ueash P (04059 (55)

Substituting Eqs. 53, Sh, and 55 into Eq. 42
results in

- (10.059271)z

H Adede
0.839

N

z-l __il-0.059z)_
0.839

0.0839(b+az)
(1-0.0592) (1-0.059z=1)

1

. 10059271 A
0.839  1-0.0892 "

{

Thus, the optimum HZ is given by

= (1-o.os9z'11z
0.839

-1
0.1z (b+az)
1-0.059z1

A
+
} 0.839

hE

K (56)

Bt = _0.1(b+0.059a) + A _
4 0.839

where K is a constant with respect to z, but a
function of 7. To find the optimum H,» Eq. L3 is
first used to give

2
g Mo xS
3k L-s
Therefore
x = _8
2 s
(57)
X = _JE_:JE
? -8
Note that
Drlr > Erlr2 = Oyt —~B'——§— (58)
h -s

Substituting Eqs. 56, 57, and 58 into L6

o s + 2 s =2 [ N = N e—s7k]
- s+ [8 g =V8L L = s? I} =iat®
5+ 2 L _ S+ 2 e~57 g l
s+ I8 |([8-5)2+s)] =o[B( 8-s>(2+s>j
5 L
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Therefore the optirmum Hl is

0.828 L™ Tk  0.828 e 7 (s2) &

1 s+ /8 * s{ -8 52 - 8

H (59)

It should be pointed out that the term inside the
secord braces of Eq. V-61 does not converge for
Re(s} = -o, Therefore the residue of the LEP
term cannot be found. However, the residue of the
RHP terms can readily be evaluated. So the part,
which is analytic in the RHP, is obtained by
teking the difference between the originel term and
the RHP term. Consequently the residue of Hy at
the RHP pole s = fg-vanishes resulting in 2 stable
filter,

The constant 4, or K, or Eq. 56 is obtained
by substituting both H% and Hy inte Eq. 28 and
equating all the terms having like poles which
are inside the unit-circle, one obtains the

equation
-7 28T

- 0.828 e + 0,705 K + 0.121 ¥ e~ = Q.

Solving this equation the value of K is found

8T
K = —Le175 e (60)
140475 2787
This completes the solution of this problem. The
solution is rewritten in the following.
~[8T
3 1.175 e e
PEATIESS 278 T )
1+ 0,175 e
" 0.828 he—S7~K 0.828 e-/§7~K(s+2)
‘N + - (62)
V4 74
s+ 8 s -8 s -8

It is interesting to note that when 7T = 0

HE = k=1

(63)
By =0
as they should be, since the sampled-input is
noise-free and should have complete transmission
at sampling instants,

The impusle responses of hz(}D) and hy (t)
are given by

hz(}°) o

where é&ho is the Kronecker delta, and

e
-2[€T

a1l 175 e—
1+ 0.175 e

3¢, o

(6L)

hy (6) = 0.828 & 1% + 1Lk K sinh J8 (4=P) U(t-T)

- 0.585 e-ﬂ§7’K sinh JBt - 0.828 e-J§7; cosh JBt

(65)



Tables 1 and 2 show the calculated values of ho(p)
and hy(t) as functions of £, T, and t, T, respec-

tively. The impulse response curves are shown in
Figs. I and 5.

Exact reslization of the filters expressed by
Eqs. 61 and 62 requires the use of amplifiers
having exponentially timas-varying gain. A proposed
schematic diagram for filter Hy is given in Fig. 6.
However, since the impuls~ response of Hg is one
dimensional as shown in Fig. 4 , this filter can
be approximated by lumped constant networks using
curve-fitting technique. Filter Hj, as expressed
in Bq. 62, can be realized by first plotting the
impulse resnonse surface of this filter and then
approximate the response surface by means of
passive network elements and varying gain amplifier.

The mean square-error can be calculated using
Eq. 50 as®

fee(0) = 0.828 - 0.828 o187y

The value of K is glven by Eq. 0. Thus,
(o) = 0.828 - 0.22 (66)
2T, o178
Pee gL 1 0,195

This equation gives the mean square-error averaged
over the entire ensemble, and is a function of 7,
the time distance between the last sampling instant
and the observation time, Table 3 lists the values
of ye(0) for various values of 7 , and the result
is plotted in Fig. 7. The mean value of Z,,(0)
averaged uver all 7T is found to be

1
/Eee(O) dT= 0.57LS

(~]

(67)

It is worth while finding out what reduction
of the mean square-error has been made with this
optimum filtering system compared to the mean
square-error of the 'iener's and Frarklin's filters.
“hen only the continuous input is used, the optimum
filter is derived by wWienerl s

1 5rlr

H, =

2 e e —— 6

s (68)
L

where X and X are defined in Eq. L3. Using the

given spectral density function, one obtains the
optimum filter,

Hy - 0628
s+ 18 {650
The mean square-error is given by
SR T -

Dee(O) 3 Er_— {SQE?Tr - mrlz‘l Hy Hl] ds

o, b 8 - 5% (0.828)3
= _;#_ '/‘j [ g 5 J ds

27y ~Je- U =8 Y agf g2

=1 -0.172 = 0.828 (70)
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Comparing the mean square-error of the double
measurement to that of Wiener filter

0.5745 - 0,828 _ _ 0.2535

————— = - L2 ¢ 71
0.5745 0.57U45 i
shows that the former system reduces the mean
square-error by Ll.2 per cent.
when only the sampled input is_used the
optimum filter is found by Franklin3 as
a
1 i
H,(s) = ——
»(8) w*[t?*] s (72)
L
where K B 3
and W* has all its_poles and z2ros inside the
unit-cirele while W* has all its outside. Using
the given spectral density function,
L
WPt o
]
0.9817 1 3
-1
1 - 0,135 2 1-0.135 2
* 0.9817
e
1= 10.0357™
and V-J-* = __1_.__
1-0.1352
Hence,
- Q= 0t 38
=== . (73)
s + 2
The mean square-error is
J® -
Doe(0) = L s [ 8y - 8o HH,]ds
279 =j= [
o0
o1 A% b 0.9817
- L/ = Jas
2Ty jeo 4 (s+2)(s-2)
=1 - 0.245 = 0,755 (7h)

Comparing the results of Mms. V-78 and V-89 shows
that the double measurement reduces the mean
square-~error by

0057,-15 — O . 755
0.57L5

= 31.4 ¢ (79)



Simplified Method of Solution
for a Special Case

A general method has been presented for
solving the set of simultaneous integral equations
of a2 general double messurement having one sampled
and one continuous input. The procedure is quite
involved as can be seen from “xample I. Com-
plication is encountered especially in determining
the unknown coefficient A, in Wgs. L2 and 46 when
substituting both equations into Eq. 28 and com-
paring the coefficients of the partial fraction
terms having like poles. However, a shortcut can
be used to determine these coefficients for an
important special case which occurs quite often
in guidance control.

Frequently, the noise in the sampled input is
so small that the input may be regarded as white-
noise. Furthermore, the functions M2 and Ml,

representing the characteristics of the measuring

instruments, are often minimum-phase. Under such
condition
°r2r2 =0y Mp W
b =8, M M o+ 3
LT LRLET I Bl n_n
i %
Y n. o 6n g,
Rl "2
orlr2 0 M Mo mr2r1 = Ppp Mo My
err = 2pp Drzr = Bpp 2
then Egqs. 27 and 28 become
- 3¢ —S?’_ %
5r1r1 Hy + 8. ¥ M e ™ = 8. My + Fy (76)
vy 5T % N *
(e Fp My By o %+ [2 ¥ Wp]* 13
=y o .
= [.61'1‘ M2 e T]* + ZGQ" 77y

The solution of H, and Hy may readily be obtained
from Bqs. b1 and k6 as

-1 57 >
e 2 [ [V T TP
YT i
L (18)
T T T T
al,
H, = _}_.‘ Lol (1-vye ST’HQ)} (79)
I .
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where " =
T+ Foe Oopr M2 ¥
pA 3 v
g !
XX =0
r.r
) : &
.o M
and Olj's are the poles of _rr_2._l_ 5
S sh]

which are inside the unit circle.

Instead of substituting Zqs. 78 and 79 back
into 77 to determine the unknown constants Ay's,a

more convenient method will be explored to find
these constants. Multiplying Eq. 76 by M2 5T

]
and Z-transforming the whole expression, gives

bl i <
Op 25T =
%rlrl & a } i [ﬁrr ) ”2]

Hy

+" B T
= P 2
[ﬁrr #ele ] $ [? . Fl] (30)
M
Subtracting Eq. 77 from 80
#* 3
p.r i
l:(_ 11 _ Bpr Ml> My ST H]:J = [—_— eS Fl - zG”é
41 Ml
or, after a simple calculation,
- * . *
M. Mo s7
y| 2. T w - fak e F -2G% (81)
o i ] 1
M ¥
In general Hl may be written as
i N

where Dy is a finite polynomial in s, D; is a

finite polynomial in 2z, and ¥ is a mixed poly-
nomial of both s and z. Substituting Eq. 82
into 81, and multiplying both sides by D;

1 "1

Since ¥ and M, are minimum phase, the right-hand

#*
sT 3+ % %
e F]_:} D2 - ZG2 D2

side of this equation has all its poles outside
the unit-circle while the left-hand side has poles
both inside and outside the unit-circle. Sepa-
rating the left-hand side term into two parts,

one has only inside poles and the other has only
outside poles, this equation becomes



* *

Since the left-hand side of this equation is
analytic outside the unit-circle both must be
equal to a constant K3 Thus,

" v 1
%T% QST _—] - K3
M D
1 1 N

In Eqs 83, the quantity Y2 does not have IHP
¥y

(83)

pole, while the quantity N  has only IHP poles
21
which are the roots of Dyj. Therefore the poles of

_ *
=
il

s
e ?'Hl] are all due to the poles of H
To ea\tisfy Eq. 83, it is necessary that[

1.
N es’r T
Dl

has zero residue at its various poles on the
z-plane. An equivalent statement describing this
condition on the s-plane is the following.

i

- (1) The residue of N __ at each real pole or

Dy
each complex pole whose imaginary com-

imaginary component is not equal to "I
mast vanrish, T

#*

M
(2) The sum of the residues of [__?_ eSTl],:l
¥ D

at the complex roots of D, vhose imagi-
nary components are equal to n T

T
must vanish,

Sime _1_ is in general not zero at the roots of

3+
Dy

D; the above statement can be put into a more
convenient form as follows.

(1) Residue[ Hl] o]
real pole of Hy, or
p complex pole of H, whose
imaginary part2z n TG
= T
. (8l)
(2) zResidues [1M_2_ egrnl] —————1 o

M .
complex poles of Hy
whose imaginary part
=n _TC

T

Eq. 84 offers very helpful information in
determining the unknown constants A;'s of Eags. 78

and 79. This is done by finding the residues of
*
Hy or [ f2 esTHIJ at various poles of H; and
M
1

setting them equal to zero, as expressed in Eq. 8k.
Since these residues are function of the unknown
constants they can be solved for the constants. In
the next section an example is given to illustrate
this method,

Example IT

Consider a measuring system shown in Fig. 8
where the sampled chammel measures the desired
signal directly while the continuous channel
measures the rate of change of desired signal. So
My = 1 and My = s, let the various spectral density

functions be
N

3. B ce———— TR = =

rr (h-sz)(-sz) Drgrz ﬁ1‘21' 61'1'2
& . 8-s°

11 L-s?

(85)

) =1

niny
b g e

- " —

Ty TT1 (Uas®)(-s)

The sampling period T is assumed unity. Eqs. 78

and 79 are used to get the solution of the optimum
filter transfer functions H‘?" and Hy. First, '
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3*

Drr Mo Mo :l
)
nry

h 3
{ s2(8-s?) ]

_ 0.311(1+0.1892) (1+0,1892~1)

(1~2) (1-2"1) (1-0.0592) (1-0.0592™1)

Therefore,

o o _0.558(1+0.18927%)

(1-2-1)(1-0.059z")

7 . 0.558(1+0.189z)
(1-2) (1-0.0592)

The quantity

Drr M2 Ml_ . -4
Trlrl s(8-5°)

(86)

has an IEP pole at s = 'fg, so the corresponding
inside-pole of

- *
_E%E_fg_!l_ is at
RS ]

Zz = q €3 0-0590

In Eq. 79 the quantity

= * - ST ¥
{Vbrr M? = ] = \'\—?-—T—]

where

s (L-s“)

0.5 d1(1+d22)

(2-2)(1-z"0)

0.01043 (b+az)

(1-0.0592 ) (1-0.059z )

1- T
T

———

1-T {
sinh /8T
sinh (1-T) /8

(87)

€88)

(89)
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Substituting Eqa. 85 through 88 into 78,
2(1-2"1) (1-0.0592"1) .
0.558(1+0.189z71)

(1-2)(1-0.0592)z~% [ 0.5d; (1+dp2)
0.558(1=).189z) (1-2)(1-z"%)

0.010k3 (b+az) ]}

*
Hy =

(1-0.0592) (10,0592 1) J[  1-0.0895-1

i

) 1.27(14).os9z'1) ) [0.0176(b+0.059a)-4] (1-z"1 )
0.558(1+0.189zT) 0.558(1+0.1892 )

Let

= . o + A —— (90)
K = 0.0315 (b+0,05%a) oS

Then 3 !
gt . _1.27(1-0.592 ) - K(d-z )
2 1+ 0.189z7%

(51)

Now 8-32

X=13
riry L-s?

80

8+ 8 )
24+ 8

(92)
X = 8 -8
2 -8
Substituting Eqs. 91, 92 and §.. into 79,

H]_’ s8+2 { 5=2 =l (-s)

s+ JB | s-[8 s2(h-s?)

[]._e-s'r'( 1.27(1—0.0592—1)-K(1—z-1) )]
1+ 0.189z-1 /

which, after evaluating the LHP braces,

{87

H = 0.293s + 1.h1h (s+2)(0.276K - 0.325) e
+
1 Ts(s + B )

be=ST [ (1=271) K - 1.27 (1 - 0.059z™%)
- e L (93)
S(S _8) 1+ 0.1892

The last step d4s to determine the constant K. This
is done by applying to ©q. 93 the residue condition
expressed in Eq. 84. Residue of H, at s = 0 is

Residue [HI] - 1okl 0.5=0 (9L)
s=0 8



and the residue of H, at s = =B = -2.828 is

3

-/87T
Residue [Hl] = =0,207 - 0.0477e 8
s== 8

-J§7; %

+ (o.9h9ef§7'+ 0.0405e (95)

Letting Eq.
found as

9% equal to zero, the constant K is

K = __.0:0L77¢" T; 0,207

0.949¢' E T+ 0.0405e-VB 7 (e

The final solution of the optimum filters is there-
fore given by Tqs. 91, 93, and 96. Note that when
T=0

Hy « 1

H1=O

Tables L, 5, and 6 give the calculated values of K,
H3, and Hy as functions of their variables. The
impulee responses of ho(n) and hl(t) are shown in
Figs. 9 and 10,

Conclusions

In generzl a multiple measurement may consist
of sampled-inputs of various sampling rates as
vell as continuous inpbuts. 4 system of this type
is referred to as multirate miltiple measuring
system, Tt is explored in this paper that a multi-
rate multiple measuring system is time-varying even
though its inpnut are stationary.

A double measurement with one continuous-input
and one sampled-input has been treated in detail.
It is proposed that the set of simultaneous inte-
gral equations, which impose the necessary and
sufficient condition of the optimum filter, be
solved in the frequency domain using the method of
undetermined coefficients, The solutions are the
transfer functions of the optimum filters., Very
often the sampled-input of this double measure-
ment may be considered noise-free. £ residue con-
dition is developed to simplify the determination
of the unknown coefficients under this situation.

Methods of evaluating mean square-error of the
optimum system in frequency domain as well as in
time domain are given., Two examples are worked out
to illustrate the methods. It is found, in a typi-
cal double measurement, the mean square-error is
Lh.2¢ lower than that of Wiener's filter and 31.L%
lower than thet of Franklin's filter.
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MINIMAL TIME CONTROL WITH MULTIPLE
SATURATION LIMITS

S. 5. L. Chang
New York University
New York 53, New York

Summary

General rules are proved for minimal time
control of a linear system with the constraints
that both the manipulated variable _jt) and its
derivative m(t) are amplitude limited: (1) m(t)
is always at its extreme value unless m(t) is at
its extreme value, (2) the minimal time path is
unique and consequently optimum switching bound-
aries can be defined, and (3) the choice of m(t)
maximizes a Hamiltonian with a modified adjoint
function.

The above rules arec applied to third order
control systems with decidedly favorable results.

Introduction

The paper is aimed at removing one essential
but impractical condition in the present optimum
control theory. In both Pontryagin's maximum
principle and the better known "bang-bang" con-
trol, the manipulated variable or rudder is as-
sumed to be inertialess.!™® Its position can be
changed instantly from -a to a. Yet this is
never true in actual ships and planes.

The problem can be considered as a special
case of a more general problem, that of optimal
control in bounded phase space. For instance, in
controlling an airplane, the elevator and ailer-
ons are limited in both speed and displacement.
One way to remove the multiple limits on the
movements of the controls is to consider the ve-
locities of the elevator and ailerons as controls
only, and to regard the displacements as phase
coordinates together with the other dynamical
variables of the airplane. Then the phase coor-
dinates representing the displacements are
bounded.

The general problem of optimal control in
bounded phase space has been investigated by the
writer among others.®~® A necessary condition
for optimal control was obtained and was also
shown to be sufficient under certain conditions.
While the result is simple enough, its rigorous
proof is quite lengthy and involved.®

Using considerably simpler mathematics, the
present paper gives an independent proof of a
necessary and sufficient condition for minimal
time control with multiple saturation limits.
The condition is then shown to be identical with
the writer's more general result.

In practical terms, the condition means that
the minimal time control for a system with multi-
ple saturation limits is a pang-bang system. At
all times either the velocity or the displacement
of each control is at its maximum value. For the
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autonomous case optimum switching boundaries are
shown to exist and examples are given to illus-
trate its construction.

Analytical Preliminaries

The Problem

The control problem is defined by
(1)
(2)

where x and ¢ are column vectors of nji dimensions,
m,al,az,bl and bz are column vectors of np dimen-
sions, and F and B are matrices. The vector rela-
tion (2) means that the inequalities hold for each
camponent. The elements of F,B,a1,a2,b1,b2 and ¢,
are bounded and continuous functions of time. The
vector X is the state vector representing the dy-
namical state of the system. The vector m is the
control vector which can be varied at will within
the limitations of (2). It is further assumed that

(3)

The inequalities (3) assure that the full range
of m can be utilized.

< m < b2

Bi<ii<be Di<ge<le

The initial condition is represented by x(0)
and m(0) at t = 0. The terminal condition is
given in terms of a vector function g(t) of ny
dimensions in two different ways:

The Rendezvous Problem. The function §(t)
is required to be a possible trajectory which can
be traced without using extreme values of m(t)
and m(t)

EeR oYMt
= 3 (4)
a1 <M < az, by <M < b2

The problem is to find a m(t) such that

x(1) = (1) (5)
(1) = T (6)

for minimum T. Once (5) and (6) are satisfied
for scme T, it is then possible to make x(t) =
g(t) for t > T by choosing m(t) = N(t) for t > T.
The rendezvous of two vehicles is Illustrated in
Fig. la.

The Interception Problem. Let [x] denote a
vector made up by niy or less components oflf:
The problem is to find a m(t) such that




(x] (D) = [5] (D)

for minimm T. In general [x] (t) = (g} (t) can-
not be maintained for t > T. The interception of
one vehicle by another is 1llustrated in Fig. 1lb.

(7

Reduction of the Problem

For the rendezvous problem, let x(t) denote

x(t) - §(t), and m(t) denote m(t) - T](t) Then
X = Fx + Bn (8)
and
a1 Sim< a2 (9)
b1 <m< b2 (10)

where a1 = a3 -1, a2 =82 -1, by =by - 7 and
- - ~ = s ws L) -

b2 = P_a - T] The problem becomes that of finding
m(t) So that

x(T) =0

n(T) =0

with minimm T.

For the interception problem, a T(t) satis-
fying (4) may not exist and m(t) cannot be de-
fined. Therefore

x
where

=£-é+§§

iC

and the problem is that of finding m(t) so that
[x] (T) = O with minimm T.

In the subsequent development, the underlin-
ing of the variables will be omitted. It suffices
to say that both the rendezvous problem and the
interception problem can be reduced to the form
of (1) and (2), the inequalities (3) remain valid,
and the terminal condition is either
and (11)

X - =D -

or
[x] (D) = (12)

Solution of the Differential Equation by Linear
Transform

Consider the homogeneous equation

Fx (13)

Let tz > ti. Due to the linearity of (13),
x(t2) is related to x(t1) by a linear transform
A( t2:t1)

on

x(t2) = A(ta,t1) x(t1) (14)
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The Dependence of the Function A(tp,t3) on

t1 can be Exhibited by Two Conditions: The first
condition is obtained by letting ty = t
,f;(ta,tz) = (15)

The second condition is obtained by differentiat-
ing (14) with respect to ti:

dA(ta,t1)
oty

x(t1) + A(ta, t,) —ﬁ‘i

i [ BA(tz,tl) + A(ta, t1) ~F_:(tl)] x(t1)

Since the above equation must be satisfied by
arbitrary x(ti), it follows that

dAltaz,t1)

+ A(tz,t1) F(t1) = (16)

The se Response Function of (1) is
readily obtainable from A(tp,t3): Consider a
system initially at rest and an impulse m(t) is
applied at t3-:¢

m(t) =a 8(t - ta1-)

where & is a constant vector, and tj- 1is less
than ti3 by an infinitesimal quantity, then (1)
gives

35.(1‘-1) = E(tl) el (17)
and (13) holds for t > ti. From (14) and (17)
one obtains:
x(t2) = A(ta,t1) B(t1) & (18)

Therefore A(tz,t1) B(ti) is the response of the
system at tz due to an unit impulse at t;.

The General Solution of (1) is obtained by
Superposition: Let x(0) represent the initial
condition of the system at t = 0, and m(t) repre-

sent the subsequent input. Then g{T) at some
later instant T can be obtained by adding all the
contributions:

T
x(T) = A(T,0) x(0) + If A(T,t) B(t) m(t) at
0

T
+ [ A(T,1) g(t) dat (19)
0

The Accessible Region in Enlarged State Space

Let z be a vector of ny + nz components:

z{ = Xi i=1,2.

. Ny



Zny+k = Dk k = - N2

The vector z is the enlarged state vector, and
the ny + nz - dimensional z-space is the enlarged
state space.

Starting from any given point z(0), the set
of all possible points z{ T) which can be reached
at t = T with (1) and (2) satisfled is denoted as
R(T). R(T) is the accessible region of the sys-
tem at t = T.

The following lemmas can be readily proved
by treating m as the control vector and 2z as the
state vector:

Lemma 1. R(T) is convex.

Lemma 2. If a point C in z-space can be
reached at T but not at any time prior to T, then
€ is a boundary point of R(T).

The Rendezvous Problem

For the rendezvous problem, ¢ = O, and the
terminal point is the origin O. The necessary
%nd sufficient conditions fo§ a control vector
m(t) and its resulting path X(t) to be the mini-
mal time control and path pair will be studied:

Necessary Condition for the Optimal Path

Let z( t) represent & minimal time control
which reaches O at t = T. As R(T) is convex, and
0 is a boundary point of R(T), there is a support
plane which passes O, such that none of the points
of R(T) is on the other side of the support plane
Let h' denote a row vector which is normal to the

support plane and points away from R(T). As O is
on the support plane
'l - 2] >0 (20)

for any point EST) belonging to R(T).

Let ki represent the first ny components of
h', and hz represent the remaining nz components
of h'. Tnequality (20) can be written as

A A

hi(x(T) - x(T)] + ha(m(T) - m(T)] 2 0 (21)

Let the row vector ¥'(t) be defined by
G0

Using (19) and (22), (21) can be written as

[T
0

where ’13( t) is any other allowed control function.

= B AT, t) (22)

(OB -n(t)] dt + hA(T -1 > 0
(23)

Let (¥'B)y represent the i-th component of
the row vector §'B. Written explicitly, (23) be-
comes -
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T
Z{J (1'B)3(t) [mg(t) - my(e)] at
i

0

+ hot [My(T) - mi(T)]} >0

Since the camponents mi( t) can be independently
selected, the above inequality must be satisfied
for each component:

| (4B} (8) Oy(8) - my(6)] at
0

+ hai[mi(T) - my(T)I >0

i=1,2... nz2 (24)
Inequalities (24) can be used to test the

optimality of a given Qi(t) . The given fj(t)can-
not be optimal if (24) is not true with some al-
lowed my(t). Thus by choosing different functions
for mij(t), a set of necessary conditions on m-_|_( t)
in conjunction with (¥'B)i(t) and hai can be ob-
tained:

Condition 3¢ (¥'B)i > O in any finite in-
terval in which ﬁi is at its upper limit; apd
(¥'B)y < 0 in any finite interval in which @y is
at its lower limit.

Proof: Suppose ﬁi = azi(t) in an interval T.
Let 1t be assumed that (¢'B); < O at ty in 7. Be-
cause (¥'B){ is a continuous function of t, there
is a finite interval 7' about ti in which (§'B)4
< 0.

Because of (3) it is possible to choose &
ﬁi(t) satisfying

fi4(t) - m(t) >0 dinT'

= 0 elsewhere.

The choice of my(t) is illustrated in Fig. 2a.

As (24) is contradicted by this particular choice
of mj(t), the assumption that (¥'B)y < O at t; is
not valid.

Condition 22 Let t1 < t < t2 be an interval
wﬁich ich mi(t) is not at an extreme value, tz # T,
(t2)is at an extreme value of m;. A function
cpj_(t) is defined as
ta
pi(t) = j\ (y'B)4 (t') at'

t

(25)

Then



Bi(t) = bas(t) 1f oi(t) >0
: (26)
Bi(t) = biy(t) 4ir @y(t) <
Proof: If @4(t) > O but éi(t) = bai(t) - ¢
it is then possible to show a contradiction. Let

m (t) = b21(t) for an infinitesimal interval 6t,
and compensate for the change at tz2 as illustrated
in Fig. 2b. Inequalities (3) insure that the
compensation at tz can always be made. Thus,

=~ ¢ 6t

mi(t') - mi(t') t<t! <tz

] t' <, or t' > ta.

As Qi( T) = my(T), only the integral in (24) needs
to be evaluated:

T t2
f (§'B)y [1/1\11 -mildt = - ¢ 6t . (¢'B)4 dt’
J
0 t
= - e btgi(t) <o

Condition 3: If ﬁi(tl) is at an extreme
value of m, then 9;i(ty) = O.

Proof: If ﬁi(tl) is an extreme value, f (ta)
is not. It is then,possible to choose a my(t)

which differs from Bi(t) by ¥ ¢ for an interval
6t near ty, and by + ¢ for an interval 6t near
tz as illustrated in Fig. 2c. Then

Bi(t) - mi(t)

J

The only possible way of satisfying ( 24) is

=+ ¢ 6t t1 <t <tz

0 t<ti, t>tz

(v'B)y [y - mi] dt =+ ¢ 8t + y(t1)

i(ta) =0 (27)
In general, 9i(0) # 0.

In the final interval in which
t2 =T, and

Condition 4:
m(t) is not at an extreme value,
91(t) can be redefined as
T
o1(t) = j (¥'B)3 at + hay
t

Then (26) and (27) remain valid.

Proof: Consider any change in m for an in-
finitesimal interval t - 6t to ¢
m(t) = ﬁ(t) +e
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Then l/!\l(t') -m(t') = - ¢ 6t for all
1llustrated in Fig. 24.

t' >t as is

T
r (4'B)1 (s - mi) dt + hag [ﬁi(T) - mi(T)]
0

= - e pi(t) 8t

The remaining part of the proof is the same a&s
before (conditions 2 and 3).

The aRove conditions are valid fo every com-
ponent of m(t). Since m; is limited, i is a con-
tinuous function of t. The interval 0 to T can
be divided for each component i into bang inter-
vals in which fij is,at an extreme value and pang
intervals in whic i is not. As a result of con-
ditions 2 and 4, my is then at an extreme value.
In the bang intervals @ (t) maximizes (¥'B)3 my.
In the pang intervals, éi maximizes @iMmi. How-
ever as gj = O in the bang intervals, #j can be
sald to meximize gymj at all times. The ine-
quality

o1 fis > o1 my
is true for all values of t.

The vector §' satisfies the matrix differen-
tial equation ~
0

dat (28)

+4'F=0

Eq. (28) follows from (16) since '(t) = h'A(T,t)
by definition. The function @4(tJ" is contimuous
in t and satisfies the following conditions:

pi(t) =0
®1 * (¥'B)y = O in a pang interval

in a bang interval
(29)

Let 9' be the row vector whose components are @y .
In any given problem, the vectors ¢' and @' are

unknown as h' is usually unknown. ~ The result of
the present section can be summarized as follows:

A necess condition for 1/1\1 t) to be a minj-

mal time control function is that there exist
continuous vector functions y'(t) and @'(t) satis-
fying (28) and (29) such that

(¥'B)y ﬁi > (¥'B)4 my in bang intervals

A . (30a)
Pimj 293 my for all t
i=1,2...

nz (30b)

Uniqueness of the Solution

A system is called "normal" if none of the
components of y'B can be zero over a finite in-
terval unless §'(t) = O for all t. As ¥v' is re-
quired to satisfy (28), the condition of normality
is & condition on the matrices iand E For



example, if (1) describes two independent systems,
then some components of ¥'B can be zero while
others are not. A more detailed discussion of
this condition is given in Lasalle's paper?

For a normal system, if a control vector
ﬁXt) causes the enlarged state vector z to move
from its initial value to the origin in time T,
and ¥' and g' exist such that (28), (29), and
(30)are satisfied by the set T, y' and @', then
it is not possible for any control vector,to move
z to the origin in time less than T, and m is the
only one which does the job in T. =

To prove the above assertion, assume that
there is a control vector m(t) which moves the
enlarged state vector z to the origin in time T',
T < T. Letm =0 for the duration T' < t < T.
Then m 0 and x = O for the same duration.

A
Let X and x denote the path resulting from
m and m respectively. Then

d ' A - 1
5 L (x =2

Sy FE - x)

-

~—

¥ B(

e w-

B2 - %) +

s 8>

P A

' B(f - m)

A A
Since X(0) = x(0), and X(T) = x(T) = O the inte-
gral of the left hand side of the above equation
vanishes and

wa

<=

g 4
ot

L ) I (¢'B); (Mg - m;) dat

[ pi!

>

) dt =

P

B(m -

-

[y
(0]

(¢'B); (my - my) dt (31)

where Tig represents the bang intervals, and Tik
S

represents the pang intervals of mj. In the pang
intervals
n
N A - . A
(v B)i (m]'_ - mi) dt = - Pi (mi - mi) dt
iy vvv
Tik ik

A =1
- - oy - mp)| ¢ ,r pi(fy - y) at
Pt < o

Tik
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An interval T{k ends either as ﬁi reaches an ex-
treme value, in which case ¢; =0, or at t =0,

and t = T, in which case my - mj = O. Therefore
A
pi(my - my)) , =0
T5k
aend (3) becomes
[ A
0= z z (y'B); (B - my) at
i J v
TlJ
+ 2‘ F pi(my - my) at (32)
k J,
Tik

Referring to (30) the only possibility for {32)
to hold is mj = Mmj in Ty4, and My = my in Tiy.
Thus there is only one way of reaching (Q,§§ =1 (0)

in T or sooner and the assertion is proved.

The Interception Problem

For the interception problem, the terminal
state is not a single point z = O in the enlarged
state space, but is a hyperplane defined by [x] =
0. At some T, R(T) touches the hyperplane, and
the tangent point represents the terminal state
of minimal time control. Following the same steps
as before, the same necessary conditions can be
proved with additional boundary conditions on ¥'

and ©': A
wi(T) =0 for all camponents i with
x4 not in [x]
(33)
®'(T) =0

These conditions replace the boundary conditions
on x and m, as xi(T) and 3(T) are now unknown.

But given a set of functions Q, v', ! satis-
fying all the necessary conditions (28), (29),
(30}, and (33), it cannot be proved that no other
m(t) causes the system to reach a point on Exdi=
0 at some earlier time. The only uniqueness con-
dition one can prove is that no other m&t) causes
the system to reach the same giT) at T.

The Hamiltonian Formulation

Let the ni + nz - dimensional square matrix

G be defined by
= FB)
o

-

2

(34)

.-

Let the (ni + nz) x nz matrix K be defined

et

by

o

A

(35)



where Q is n) x np dimensional, and 1 is nz x nz

dimensional. Then (1) can be written as
z2=0z+Km
~ N A

L

(36)

The inequalities (2) become bounds on the state
variebles Znj;+y, Zpnyte--- 2n2 end control vector
th and define allowed regions Z and U in z and m
spaces. Let the n; + ng dimensional a.dJoint
function be denoted X ', then )&' is a row vector:

= (!'J 9') (57)
Fram the general theory‘,> x' satisfies
X! +x! 6= g(t) N (38)

where %'. is a row vector of nj + nz dimensions
perpendicular to a support plane at z pointing
outward if z is a boundary point of Z, and N' = 0
ifz is an interior point of Zj and {(t) > O.

. A necessary and sufficient condition for
m(t) to be optimal is that a function x' satis
ing (38) can be found such that the choice of M
maximizes the Hamiltonian

R=x'Gz+K@ =x'

~— G

‘xg‘ maximizing H is

Gz+g'm

Sincs&' G 2z 1is independent of
equivalent to (30b).

Because 21, 22 ... an are unbounded, the

first n3 components of 'ﬂ are always zero. Eq.
(38) gives
P HYE=0 (39)
@'+t B = (e (40)

Eq. (39) is identical with (28). Since Tni+i = O
in a pang interval of my, (29) is satisfied in a
pang interval. Since {(t) > 0, p4(t) =0 is a
solution of (L40) in a bang interval if and only
if (30a) is true. Thus the equivalence between
the general solution and the present special so-
lution is established.

Examples

@ A system with multiple saturation limits is
illustrated in Fig. 3. The integrator and two
nonlinear blocks represent that both m and m are
amplitude limited: |m| < a, |m| <b. The plant
is assumed to be linear and time-invariant
(autoncmous) .

As there is a unique minimal time trajectory
from each point in the enlarged state space, the
optimum value of h is defined at each point.
Furthermore, the optimum m can only be = b in the
interior of the state space, and 0, £ b at the
boundaries where |m| =+ a. The state space can
be divided into regions according to the sign of
m. The dividing boundaries are the optimm
switching surfaces and curves.
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Example 1.
1

G(s), =
o2
This example has been worked out by Doll and

Stout.!® Their result is in complete agreement
with the present theory.

Example 2.

0.25

¢s) =<z o5

In terms of normalized coordinates xi, Xp,
and x3, the controlled system as specified above
can be written as

Jf¢1.=1k'3

X2 = - 0.5 xa + 0.5 m(t)

%3 = m(t)

e(t) =c(t) -~ r(t) = 0.5 x3 + 22 - xa

lxa(t)| <2
Im(t)] <1

The optimum boundaries are obtained by trac-
ing back in time from the origin. Fig. 4 shows
the projections of the optimum boundaries on the
X1 = X2 plane. The heavy curves ABC and DEF are
the upper and lower edges of the optimum boundary
on the two planes x3 = + 1 and - 1 respectively.
BO and EO give the final switching boundaries
which are also extremal paths leading to the ori-
gin. The boundary surface below EB is formed by
extremal paths m = 1 originating from points on
FE and ending on AB or BO. The boundary surface
above EB is formed by extremal paths (i = -1)
originating from points on CB and ending on IE or
EO.

Fig. 5 gives the responses c(t), m(t), and
m(t) of the optimum nonlinear system to & unit
step input at t = 0. In contrast, the response
c(t) of the same controlled system with a linear
controller is shown in a broken curve. The lin-
ear controller is specified by

(s + .05)(s + .5) [R(s) - C(s)]

(s +1)(s +1.5)

M(s) =

It is to be noted that the comparison is made at
an input amplitude most favorable to the linear
system as it is Just about saturating. At a low-
er input amplitude, the responce of the linear
system does not change in shape, but the response
of the optimm system becomes even faster. At a
higher input amplitude, the linear system satur-
ates and its response deteriorates rapidly. The
response of the optimum system becomes slower but
does not change in character.
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Introduction
Anageaiiad iy

The increasing complexity of modern warfare
has resulted in the need for highly sophisticated
techniques for tracking targets in a counter-
measures environment. This paper describes
the application of a technique known as Operation-
al Dynamic Regeneration (ODR) that aids the
tracking phase of a tracking radar by predicting
future target position. The degree of improve-
ment it effects in enabling the smooth and ac-
curate tracking of a target is illustrated.

There are three major sequential phases of
operation of a tactical tracking radar. These
are designation, acquisition, and tracking. In
the designate phase of operation, the radar is
programed to the general location of the target
within a certain accuracy that depends upon the
available information. In the acquisition phase,
the radar beam is scanned around the area in a
preprogramed scan pattern. When the beam
crosses a target, the radar stops moving in the
preprogramef pattern and commences tracking.
This transition may be either manual or auto-
matic.

In a realistic environment, tactical tracking
radars, have difficulty in continuously tracking
targets, because of fades caused by natural
phenomenonor man-made jamming interferences.
However, with tracking radars used for instru-
mentation, fades caused by natural phenomenon
and high target dynamics are the primary con-
cern.l There is a need for techniques that
will accurately predict future position for
reasonable intervals of time, so that redesig-
nation and reacquisition by the radar will be
unnecessary. The ODR system described ac-
complishes this by means of regenerative
techniques that continuously generate angular
and range tracking signals for the radar from
prior knowledge of target position, velocity, and
acceleration.

Before deriving a mathematical model for
any aided-tracking scheme, however, it is
necessary to decide what conditions are most
likely to exist in the anticipated environment.
In addition, the equipment should operate in a
set of coordinates that require the least amount
of equipment for practical implementation.
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It is questionz{ble whether continuous range
tracking can take place in an actual counter-
measures environment. Therefore, for a
tactical system, a realistic design to aid angle
tracking should not depend on range tracking.

In addition, it is assumed that the target is flying
a straight-line path and is maintaining a con-
stant velocity. The last two assumptions are
necessary in order to minimize the complexity

of the equipment. If the target were to deviate
from a straight-line path, or change its velocity,
it would be necessary for the operator to introduce
new information into the aided tracking equipment.
However, should range tracking be possible over
positions of the target's flight path, future range
position could also be predicted by means of ODR.

Discontinuities in the predicted target paths
are inherent in many regenerative trac%ing
systems for certain target positions and
maneuvers; it is desirable to eliminate these. In
addition it is desirable for an aided-tracking
scheme to produce information that is fairly
straightforward and easily obtainable. ODR, a
regenerative system that meets these require-
ments, has two main functions. Its first function
is to perform aided angle tracking for a target
flying a straight-line path with a constant velocity.
This portion of the system assumes that range
tracking has never taken place. Should range
tracking be possible over a portion of the target's
path, the second function of ODR is to predict
future range position by solving the target-traject-
ory equation for a constant-velocity target.

To develop an aided—tracking system for an
instrumentation tracking radar, a different
environment exists. In all probability, range and
range rate will be known accurately for most of
the target's path. Therefore, an aided-tracking
system, in angle, could depend on range tracking.
A system that could aid tracking for such a situ-
ation also will be illustrated in this paper. The
ODR system will be able to predict future target
position by assuming that the target is flying a
straight-line path and maintaining a constant
velocity. Range, range-rate, and angular-velocity
information will be utilized in the regenerative
device. As will be illustrated later, the instru-
mentation required to predict future angular posi-
tion is considerably reduced when range and
range-rate information are available.



Precision- Tracking Considerations

The ODR system is applicable to precision,
tracking radars used for instrumentation and
tactical missions with both land-based and ship-
board installations. This paper analyzes ODR
in a set of coordinates used by shipboard radars,
since this is generally a more difficult and
interesting case. In addition, both a tactical and
an instrumentation tracking radar will be consid-
ered for the shipboard case.

One of the most critical problems associated
with the design of a naval tracking radar is stab-
ilization against ship-motion dynamics with a -~
load that exhibits severe resonance effects in an
environment of external torque loading due to
winds. In order to achieve acceptable perform-
ance, a stable line-of-sight independent of such
factors as ship motion, structural resonances,
and external torque loading must be established.
The magnitude of this problem is increased
greatly because of the frequency characteristics
of ship-motion dynamics and nonlinear character-
istics of mechanical resonances. 2:

Ship-motion frequencies are usually in the
same portion of the frequency spectrum as target
dynamics. However, an optimum tracking loop
requires that the target dynamics be separated
from the ship-motion dynamics. A simple method
of achieving this, without introducing additional
errors, is to place a minor gyro feedback loop
around the external input. Then, the tracking
loop need compensate only for target dynamics,
while the minor gyro feedback loop compensates
for ship-motion dynamics and external torques.
A general configuration illustrating this con-
struction is shown in Fig. 1. The minor and
major feedback loops are called the stabilization
loop and track loop, respectively.

ODR Model for a Tactical Tracking Radar.

To derive a model for regenerative tracking,
it is necessary first to consider the properties of
a constant-velocity target flying in a straight-
line path as viewed from the radar-antenna co-
ordinates. In addition, it is necessary to con-
sider that the radar, which is stabilized about
the line-of-sight, tracks a target in two stabilized
planes: elevation and traverse. Figure 2 il-
lustrates the system coordinates.

The position of the target relative to the ship
is defined by the vector R = Rr where R is the
magnitude of the range from the ship to the tar-
get, and r is a unit vector directed along the line-
of-sight to the target. The rate of change of R
in space, dR/dt, is given by eq. (1):

R . dGR) . R, pdE
dt = dt _rdt"Rdt )
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I
The target's acceleration is given by eq. (2):

d2(R) . ; &R, dR dF o d%
dc? de2 dt dr  dt2

©)

The total angular rate of rotation of the target
about the line-of-sight is defined by eq (3):

w =wtt + wrr + o€ (3)
where
t = unit vector in a plane perpendicular to r
and is directed along the traverse axis
e = unit vector perpendicular to both randt
and is directed along the elevation axis
w¢ = traverse angular rate
wp = range angular rate
we = elevation angular rate

By means of eq (2) and (3_), it can be shown that
the total acceleration of rR in space may also be
written as shown in eq (4): *

2 ot ..
——g—)d G =;‘[R-R(w 2+w 2)}
de2 t e

+t [-Rt:J —ZRw +Rw ] (4>
€ e rt

+é[Rc:J + 2Rw +wa]
t t re

Since the target is assumed to move at a uniform
velocity, the acceleration of IR is zero. The
components of d2(rR)/dt2 projected onto a set of
mutually orthogonal axes must also be zero and

are defined by eq (5), (6), and (7):

2

d%(R)

(5)

.R-R(wtz*wez)=0

1]

0

-R(;J —ZRw +Ro_w
€ € r t

(6)

=R¢.o +2Rw+wa 0
t t r e

™



The ratio of range-rate to range, R/R, may be
written as shown in eq (8) from the relations

given in eq. (6) and (7):

R i
— T o o ke (8)
R 2p

The angular rate of rotation of the target in a
plane perpendicular to the line-of-sight (p) is
defined by eq.(9):

®)

The ratio of range-rate to range also may be
shown to be equivalent to that given by eq.(10).
This is obtained from eq. (5) and (8):

(10)

If eq.(8) and (10) are combined to eliminate the
ependency of the tactical tracking radar upon
range3 and range rate, the following results:

. N
1 @p7%0)
2P i

If this expression is solved for A;.eq.(l 1) results:

a

2p

- 2p3

€3

Equation (11) describes the angular motion of
a constant-velocity target flying a straight-path
course. By solving this equation, the ODR system
may generate angle-tracking signals for a tactical
radar, independent of range and range rate.

The angular rate p, as defined previously, is
greater than zero except in the unusual case where
both we and wy are simultaneously zero. There-
fore, the inverse of p ordinarily will be finite, a
very desirable feature in generating eq.(11). If
the orthogonal components of o were generated
separately, a singularity of this kind would be
more likely to occur. In addition, the instrumen-
tation required to generate separately the com-
ponents of o would be considerably more complex
than that required to generate o from eq.(11).

A method for ODR in range is to assume a
constant-speed target; specifically, the value of
target speed prior to a target fade or jamming.
Before the loss of range track, the speed will be
computed by means of (12) and its value would be
held fixed. From kinematics, the motion of a
particle in space is given by eq.(12):
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v =L ®7+ (er)?

(12)

where
R = target range rate
p = angular rate of rotation of the target in a
plane perpendicular to the line-of-sight
R = target range

With this implementation, regardless of any tar-
get maneuvers (as long as it maintained a con-
stant velocity), the solution would generate the
true range of the target.

Should the radar be usable to normally track
in range, the predicted value of range rate,R ,
could be computed by means of eq (13).

s r"‘& 2
™ Vo - PRY

(13)

where

Vo = value of target speed when normal range

track is lost
t & )

R, =Rop + ‘f"o R dt = predicted value of
target range

Ro = value of target range when normal range
tracking is lost

t, = time when normal range tracking is lost

It is important to note that there is an ambigu-
ity with these computations when the target
maneuvers to a 90-degree crossing. Beyond these
points it is impossible to determine by this
technique whether the target has maneuvered in-
ward or outward (whether R goes negative or
positive from zero). To eliminate this problem
without the need for performing any additional
computations, it probably could be assumed that
the target range rate always reverses direction
after crossing at 90 degrees to the target line-of-
sight.

ODR for an Instrumentation Tracking Radar

When deriving a model of regenerative track-
ing radar, it is reasonable to assume that range
tracking is possible over most of the target path.
Therefore, it can be assumed that ODR will have
range and range-rate informarion available. The
instrumentation required to predict the future
position of a target flying a straight path at a
constant velocity is greatly simplified when this
information is available in addition to angular
velocity.



A regenerative tracking model can be derived
for this case starting with eq,(6) and (7). Solu-
tions for we and w, are obtained from (6) and (7),
respectively. The results are illustrated in (14)
and (15):

[.{
7 . =& ZF ue +wrwt (14)
- R 3
“‘t—-2R“’t—'r'e (15)

It is the instrumentation of these simple equations
that makes ODR possible for this case. By cal-
culating the terms we and it is possible to
cause the radar to predict future angular positions
for a target flying a straight-line path at a con-
stant velocity.

The same ODR technique used for range pre-
diction, illustrated for the case of the tactical
tracking radar, can also be used for the instru-
mentation, tracking radar case. Equations (12)
and (13) define the required instrumentation. As
a matter of fact, regenerative range tracking is a
necessity for this situation since eq.(14) and (15),
the regenerative equations for angle tracking,
depend on range and range rate. Should range
track be lost for a small portion of the target's
trajectory, predicted values of range and range
rate, Rc and R¢, would be used in eq.(14) and (15).

Implementation for Tactical Tracking Radar

During the normal angle-tracking mode of
operation, either automatic or manual, the radar
transmits angular traverse and elevation rates
of the line-of-sight axis to ODR. These traverse
and elevation angular rates, ¢ and  , are
transformed to the stabilized horizontal and
vertical angular rates o} and o, by a rotation of
coordinates through w,.. These horizontal and
vertical angular rates are then vectorially sum-
med to yield the total angular rate of the target
line-of-sight in the boresight plane o , where
the angle p = arc tan p/p . Before o and p
can be fed to the function generator for storage,
it is advisable to filter these quantities. A block
diagram illustrating the operation of the system
under these conditions is shown in Fig. 3.

When normal angle tracking ceases, the system
is switched into the ODR mode. The solution to
the equation of constant-velocity motion, eq.(11),
is generated by the system shown in Fig. 4. The
values of ¢ and s, which are stored in ODR when
this mode of operation commences operation, are
the initial conditions required to solve equation
11. The angle 6 is held fixed at the last value
established prior to entering the ODR mode. The
angular rate p, which is computed in the function
generator during this mode, is resolved through
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the angle ¢ into the horizontal and vertical com-
ponents of the angular rateph and p,. These
stable horizontal and vertical angular rates are
transformed into the deck-oriented lateral and
vertical angular rates p¢ and pe by a rotation of
the coordinate system through the angle . These
deck-oriented angular rates are introduced as
rate commands into the corresponding traverse
and elevation stabilization loops. The radar then
moves in accordance with these ordered rates.

The angular rates provided by ODR may be
modified at the discretion of the radar operator
to compensate for changes in target velocity and
direction. Manual controls incorporated into these
circuits could allow the operator to modify p¢ and
P e

During the normal range track mode of opera-
tion, traverse angular rate (v ), elevation angular
rate (v ), target range (R), and target range rate
(R) are received as inputs to the ODR system
from the radar. The angular rates w¢ and we are
added vectorially to obtain the combined angular
rate p. Target speed V is then computed as in-
dicated by eq,(12) from the vector sum of R and
the product of R with p. Target speed and
range are stored for use in the ODR mode. A
block diagram illustrating the operation of the
system under these conditions is shown in Fig. 5.

If range tracking is lost, ODR is used to solve
eq. (13) for the predicted value of target range
rate R¢. Angular rates », and w, continue to be
sent from the radar just as in the normal mode of
operation. In order to continuously predict tar-
get range (Ry + R¢) when normal range tracking
is lost, the integral of the predicted value of the
target range rate is integrated and combined with
the value of target range known at the time range
tracking was interrupted. Figure 6 illustrates the
operation of the system.

Implementation for Instrumentation Tracking Radar

During the normal angle-tracking mode of
operation, either automatic or manual, the radar
transmits range R, range rate R, range angular
rate w,., traverse angular rate »_, and elevation
angular rate w, to the.ODR mystem, which gen-
erates,and stores we and w¢. It is advisable to
filter R, wp, @, and . before feeding it to the
function generator. A block diagram illustrating
the operation of the system under these conditions
is shown in Fig. 7.

When normal angle tracking ceases, the system
is switched into the ODR mode. The solution to
the equations of constant-velocity motion, eq.(14)
and (15), is generated by the system shown in Fig.
8. The deck-oriented angular rates w, and w,
are introduced as rate commands into the corres-
ponding traverse-and elevation-stabilization loops.



The radar then moves in accordance with these
commands.

The angular rates provided by ODR may be
modified at the discretion of the radar operator
in case of changes in target velocity or direction.
Manual controls incorporated in these circuits
could allow the operator to modify w, and s

The same ODR implementation used for range
prediction, illustrated for the case of the tactical
tracking radar, can also be used for the instru-
ment tracking radar case. Figures 5 and 6 il-
lustrate the operation of this system.

Possible Tracking Modes Utilizing ODR

ODR is a very powerful tool for either auto-
matic or manual trdcking., For automatic track-
ing, ODR updating is utilized only during intervals
of desired or inadequate tracking-signal informa-
tion. For the case where the tracking loop is
closed manually via the intelligence of a well-
trained operator, ODR eases the task consider-
ably. For example, all the operator needs to do
when manually tracking a target flying a straight-
line path at a constant velocity is to initially ad-
just his tracking controls until he establishes the
proper tracking rates. Once he has manually
locked onto the target, ODR will predict the future
target position automatically, and the operator
need not have to continually adjust his controls
to track the target. However, it may be neces-
sary to update the ODR information should the
target change its velocity or direction. This
situation easily can be displayed to the operator
for corrective action, via a bipolar video display
(A scope) or an error display (F scope), or both.

Manual tracking offers considerable improve-
ment in the signal-to-noise ratio required for
tracking a target.4 This desirable feature lends
itself readily to the tactical tracking radar case,
where the normal tactical environment is very
noisy. Considerable literature has been written
on the effective human transfer function. 5 6. 7,
8, An operator may be called upon to function in
several different ways, depending upon the de-
sign of the radar. He may function as a simple
lag element, an equivalent differentiator, a single
or double integrator, or a sampled-data system.
If it were possible to know every minute detail of
the operator’s characteristics, the differential
equation for a specific control situation would be
different for different kinds of inputs such as
periodic or random functions. In addition, the
differential equation of the operator would have
variable coefficients, since his characteristics
change according to his learning, motivation,
fatigue, and instructions. Due to the complexity
of the problem, tracking lags and errors have
been unavoidable in a manual-tracking mode of
operation. A simple, manual, rate-aided tracking
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system is shown in Fig. 9, where the operator is
considered to be a nonlinear, sampled-data -
System.

ODR techniques can compensate effectively
for some of the lags and errors in manual track-
ing. Because of ODR prediction capabilities, the
task of the operator is greatly minimized; his
primary role simply is to update the ODR system
according to observed changes in target velocity
or direction. This is not a very critical operation,
and nonperiodic lags and errors can be tolerated.
Therefore, manual tracking in conjunction with
ODR represents a very powerful method for track-
ing in a countermeasures environment with rela-
tively low signal-to-noise ratios and with most of
the tracking%ags and errors compensated to a very
large degree.

2

Evaluation Criteria for ODR

The tracking error, E,(s), as defined in Fig. 1,
can be described as an analytic function of complex
frequency, s, in the simple case of a linear track-
ing loop. In the case of ODR, the tracking error
becomes much more complicated. At best, the
error can be described in terms of statistical
properties of possible target dynamics. For these
properties, an expectation of the error can be
determined and a realistic evaluation or ODR can
proceed. But to proceed with a realistic system
evaluation of ODR, a suitable error criterion
must first be chosen to measure system perform-
ance. Several useful criteria have been suggested
in the literature. One very useful technique for
expressing system error is known as the integral—
square-error criteria, Ejg, dcfined by eq.(16):

Epg = {m[e(t)]z dt (16)

where
e(®) = £(9) ~e(®)
A modified E[g can be defined by using a suitable

weighting function, W(t):

Eig  =J W le(®)? di a7

W(t) is chosen to bring into prominence the
error in that portion of time primarily of interest.
If the error is considered in the static time sense;
then: .

(18)



Thus, in essence, the error before a time T
is not of interest, for only the steady-state value
is of importance. This criteria is valid, with a
small modification, for ODR. If the error be-
comes extremely large, the target may be lost
entirely. The criteria is subsequently modified
such that:

W()=0 , (s 7S

provided that e(t) <A, where A is the critical
break-track point.

In order to determine the characteristics of
the system itself, one can use the method of
Wiener and consider the effect of a target moving

in a Brownian fashion.” Therefore:
T
i 1
lim 5T
T-o f r(t)r(t+7 )de = A§(0) (19)
>

where A is the spectral power density and 8 (0) is
a dirac delta function at t=0. Assuming station-
arity, or at least short-time stationary behavior,
the dynamic characteristics of the system are
completely describable in terms of the coeffici-
ents of a set of orthogonal functions. Wiener
describes the general system in terms of
Laguerre and Hermite spectra. However, any
set of orthogonal functions can be normalized and
used to characterize the system. The expression
for this characterization is as follows:

N

r®)= 3 C, ¢ () (20)

where the ¢ 's represent a set of orthogonal
functions, and the Cp's are their corresponding
coefficients.

In addition, the following constraints are im-
posed to insure orthogonality and the proper
normalization of the spectra in the region defined

by a and b:

b 2
r A
. B () ded 1

(21)

b

& (1) <I>m(t) dt=0 nZm (22)

a

It also can be shown that an optimum match in
the integral-square sence can be achieved in the
region of interest defined by the weighting
function W(t) when:
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b
C,= [ 2 ()W) de (23)

It is now possible to evaluate C,, from the behavior
to the Brownian input, and therefore to evaluate

the response to any individual component of the
spectra. From this it becomes a relatively simple
matter to evaluate the response to the various
components of the input and to thereby obtain a
measurement of system accuracy and performance.
The procedure for evaluating the C's for a set of
orthogonal Laguerre and Hermite p%lynomials is
described in detail by Wiener.8

To proceed with the evaluation of a typical
ODR system, it can be assumed that the system
excitation has a known statistical distribution.
From this input, using a Wiener type of Laguerre
and Hermite spectrum analyzer, the coefficients
of the output spectra may be analyzed readily for
the particular system and parameters in question.
From a direct comparison of the input and output
spectra coefficients, the error may be simply
evaluated. This technique is primarily an analysis,
rather than a synthetic method, and the designer
must have considerable insight into the fundamen-
tals of the problem in order to simplify the deri-
vation of useful results.

Conclusion

A unique approach to the design of a class of
radar tracking loops has been described. ODR
models for tactical and instrumentation tracking
radars have been derived. The characteristics of
ODR have been discussed and their implementation
for the continuous tracking of a target is illustrac-
ed. Considered are cases where the dynamic
characteristics are suitably described in three
coordinates, and where certain information in one
coordinate is missing or inadequate. The minimi-
zation of the error in the predicted tracking data
is considered in the Wiener sense, from a mean-
square point of view, and from a static-time point
of view.

ODR is a very powerful tool that can enhance
the smoath and continuous automaric and manual
tracking capabilities of a tracking radar. The
additional cost and complexity entailed are
relatively small compared to the over-all cost
of a modern, precision, tracking radar. Above
all, the resultant improvement in tracking per-
formance that can be derived from this technique
will easily pay for itself by reducing the number
of times missile tracking or guidance is lost due
to normal target fades and countermeasures.
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AUTOMATIC STEERING TECHNIQUES*

Donald Barric

k**

Antenna lLaboratory
Department of Electrical Engineering
The Ohio State University

Columbus 10,

Summary

This paper examines the feasibility and
characteristics of several automatic steering
systems for automobiles. It compares these
systems on the basis of the following perform-
ance characteristics: (1) stability, (2) lateral
acceleration, (3) error in tracking. The sys-
tems differ in that each has a different type of
actuating signal for the front wheel positioning
servo.

Methods are proposed for the generation
of signals required for the various systems.
The transfer function for each of the systems is
derived and stability requirements are specified.
Both transient and steady state responses of all
systems are then determined so that the char-
acteristics of the systems can be compared.
The systems are compared on the basis of po-
sitional error and lateral accelerations.

I. Problem Statement

In the development of an automatic steer-
ing system for automobiles one is concerned
with two problems, namely, the generation of
error signals which indicate position of the
vehicle relative to the roadway and, secondly,
the synthesis of a system which will provide a
suitable dynamic response. The latter problem
is not as simple as it might appear at first
glance in that one must not only realize the
usual requirements concerned with minimization
of the displacement of the vehicle from the cen-
ter of the roadway but also one must limit the
magnitude of the lateral accelerations which
may be involved. The lateral accelerations can
be quite severe and very uncomfortable if ac-
celeration considerations are neglected.

*The work involved in this paper was sponsored
in part by the Ohio Department of Highways in
cooperation with the Bureau of Public Roads.

*¥Mr. Barrick was formerly with the Antenna
Laboratory, Department of Electrical Engi-
neering, The Ohio State University, and is
now serving in the U.S. Navy.
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II. Input Signals

All systems basically employ as input sig-
nals one or some combination of the following
variables: (a) distance from the center of the
lane, (b) radius of curvature, (c) angle between
automobile axis and line of sight at some point a
given distance ahead on the road. In this paper,
the systems studied will be referred to as the
Type A, Type B, Type C, and Type D systems.
The input signal for the Type A system is simply
the displacement of the automobile from the cen-
ter of the lane. The Type B systemuses the
same input as the Type A system but adds a
second signal proportional to the angle p between
the frame of the vehicle and the centerline of the
lane. The Type C systemn adds to the displace-
ment input of the Type A system an input pro-
portional to the angle Y between the front wheels
of the car and the centerline of the lane. The
Type D system uses as its input signal the angle
between the centerline of the automobile and the
line of sight to a point a given length "' ahead
on the road. This system is similar to radar in
its ability to anticipate future conditions and
changes and is similar in nature to the mode
used by the human driver.

All these inputs, after amplification, are
fed to the wheel positioning servo which controls
the angular position of the front wheels.

Ideally a system should perform as nearly
like a human driver as possible. The human at-
tempts not only to minimize and eliminate error,
but also to reduce lateral acceleration due to
steering as much as possible. From actual
tests made by the author it was found that a
human driver may experience lateral accelera-
tions of up to 1G ' for brief periods, but in gen-
eral the acceleration must be kept below about
G/2 if skidding is to be avoided. The systems
will be analyzed with these requirements in
mind.

+
The terminology "'G'" refers to a unit of accel-

eration normalized with respect to the accel-~
eration of gravity.



III. Detection Methods+

A possible scheme for obtaining the input
signals needed for the Types A,B, and C sys-
tems is briefly described in this section. Con-
sider a cable buried beneath the centerline of
the lane of travel and excited by a low-fre-
quency current. The resultant field will be
circular in form. Let two coils be placed ina
plane parallel to the cable and the centerline
of the lane but equidistant from the center of
the vehicle as shown in Fig. 1. The difference
voltage in the two will be zero but as the two
coils move out from the center, keeping their
same difference spacing relative to each other,
the difference voltage will rise. This differ-
ence voltage can be used as a measure of the
displacement error input called for in the Types
A, B, and C systems.

Now, if a third coil is placed so that the
plane of the coil is perpendicular to the cable
as shown in Fig. 2, the voltage induced in this
coil is zero. The voltage induced in the coil as
it is rotated from the perpendicular position
varies nearly linearly with rotation for
small angles. Thus this coil, if mounted to
the frame of the auto, would give the second
input called for in the Type B system; if the
coil were to rotate with the front wheels it
would generate the second input called for in
the Type C system.

Ideally this input signal proportional to
angle should not vary with the distance from
the center, but with this arrangement it does
to some extent, just as the linearity of the dif-
ference voltage from the first two coils be-
comes distorted as they are moved considerably
from the center. In order to optimize these
signals by proper choice of parameters, it is
necessary to analyze these voltages further.
The Biot-Savart Law for a long uniform wire
and Faraday's Law give the desired relation-
ships.

1 1

-d>2+h" (‘1 +d)2 R
2

(1)

€ =e;-e,=

Kh
W,
G

+The detection techniques involved in the Type
A system is identical to that employed by RCA
and General Motors and used in the automobiles
and test track at Princeton, N.J.
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where
_pr NACw
= T

p = permeability, assumed the same
for air and ground

r; = distance from cable to coil "i’
current = C; sin wt

w = separation of coils (fixed)

¢j = angle between coil "i""and the
centerline

h = depth from coil centerline to cable

d = instantaneous displacement of coils
from the centerline

A = area of coils (small compared to h?)

N = turns in each coil

e = e, - e; = difference voltage between
coils .

See Fig. 3. Typical values of parameters are:

wl2 =2.5 ft, h = 5ft, I=.5amp (RMS),
p=4r x10 7, A=10cnf, w= 500 rad/sec
A plot of e vs. d is shown in Fig. 4.

The voltage induced in the third coil
varies with distance from the cable and is given
below.

Kh . 1
= = W
eg 4 3 e sin B cos

(2)

sin B X B for g << 1.
A plot of eﬁ/ﬁ is shown in Fig. 5.

There are many practical considerations
not mentioned in this detection scheme as de-
scribed above which may seriously affect the
practical performance of such a system, but
basically it can provide the input signals re-
quired.

The Type D system incorporates the
usual complexities and problems of any radar
system, and would have to be ruled out for
reasons of size and economy at the present
time. The system is considered here for the
sake of comparison since it causes a dynamic
response similar to that of a vehicle manually
steered.



IV. System Transfer Functions?

In order to derive transfer functions for
the four systems, certain assumptions will be
made and then the response of the systems will
be related to time. For the sake of analysis, it
will be assumed that the test roads are laid out
along the x axis. Next the automobile velocity
will be assumed constant. Thus if the angle of
the roadway with respect to the x axis is small,
the x axis can be replaced by a time axis, re-
lating the lateral displacement y of the vehicle to
time. The actual lateral deviation of the road-
way from the x axis at time t is given by y,..

The transfer function®* that will be used
- for the wheel positioning servo is given by

2
w

Oy . O (3)
Bq gt 2Lwes twl
Q@ = actual wheel angle with respect
to the auto
']
@4 = input to servo, desired wheel angle
_ wo = undamped natural frequency of
servo = 20 rad/sec
{ = damping factor of servo = .5
s = operator d/dt.

-

Now, given Q, the problem remains to
find y, the lateral position of the automobile.
Referring to Fig. 6, the velocity of the front
wheels may be broken into two components.

V, =V sin(6 +a)X V6 +a)
y
(4)
Vx =Vcos(0+a)n Vo x/t

R for @ and © small

V = speed of auto

0 = angle of auto centerline with respect
to x axis.

*This is a common representation for a servo
system. The damping factor { determines the
transient overshoot and {wy determines the
rate at which the transient dies out. See
Reference 1 or any book dealing with control
systems.
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Here tire slippage is neglected. See Reference2

for more exact representation.

From Fig. 7 it can be seen that Vg is the
component of front wheel velocity which causes
the angle © to increase. Assuming the car
pivots about its rear wheels on a turn, it can
be seen that

a8 _ Ve
dt b’
Vg =Vsin 0 X Va fora<<l,
b = distance between front and rear
wheels ,
E = Q = 860
b dt
where
s &
b dt -

Y = gvy dt %S‘V(Gﬂz)dt .

The relationship between y and @ becomes

Y.v v
Q

L 5)

The block diagram showing this relation-
ship is illustrated in Fig. 8. Now all the rela-
tionships are at hand for analyzing the four
systems.

(5)

In the Type A system, the lateral error of
the automobile d from the center of the lane is
given by d = y, = y. Here y, is the position of
the centerline of the roadway. Thus the block
diagram for the system is shown in Fig. 11 and
the transfer function is given by
P Kqws V(bs + V)

Yr

bs® (& +2Lw, shwl ) +Kqwd V(bstV)
. (6)

In the Type B system, as seen again from
Fig. 9, the second input proportional to the angle
of the car with the centerline of the road is given
by Kﬁ(¢-6). Noting that Kg is a constant and ¢ is
the slope of centerline of lane relative to the
x-y coordinates

o=Dr

and x ~ vt



it follows that

s
vV (M

The block diagram for this system is shown in

Fig. 12. The transfer function is given by
5 s
¥ wo V(Kd + Kp v) (V + bs)
Yr bs?(s +200gs tw )+wg V(Kg+Kgb)s+Kqwd V2,

(8)

From Fig. 9, the second input for the
Type C system proportional to the angle of the
wheels with the centerline of the lane is given
by KY(¢-9—G). The block diagram for this sys-
tem is shown in Fig. 13, and the corresponding
transfer function is given by
2 s
‘. on(Kd+KYv)(V+bS)

Y. 2500 M2 2
Yr be($+2Lwgstub K pobs +w°V(KY+de)s+de°V2.

(9)

The analysis of the input to the Type D
system is somewhat different. See Fig. 10.
This input signal, proportional to the angle be-
tween the centerline of the car and a point on
the road ahead a distance '{' is given by y-9.
The ordinate of the road a distance ahead '{' is
Y,.eT S in operator notation where T is a time
to be determined by stability requirements.
Since ''l'" is never more than a few degrees
from the x axis, it can be approximated by

I =1V
: Y.e™® -Y
sin |y =
L
for p<<1
_Y.eTP-Y
ad—_L—z -0 (10)

The block diagram for this system is shown in
Fig. 14 and the transfer function is given by

2
wo (V + bs)e” °

Yr

Tbs?(s? + 2Lwgstwd)twg [s(r Vb)+V].

(11)
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V. Stability Analysis

Using the transfer functions previously
derived, stabilit}r criteria are found using the
Routh's method.” For the sake of brevity, de-
details have been omitted and the final inequali-
ties which must be satisfied are listed below.

Type A System

(1) 2twg > KgVv

(2) 2Lwg > KgV + 4¢? %’

Type B System

(1) 2twg > (Kd + _}%ﬁ_) v
2

(2) 2twg (Kd+1_;§) > v(Kd+I_:>P_) +40® Ky %’

Type C System
(1) 2Lwo(l1+Ky) >(Kd + -él) v

K Ky \? \'4
1 e
(2) 2Lwel +KY)(Kd +Tl>>V(Kd+_bY_)i4g Kgy -

Type D System
(1) 2gu0>(_1_ " l’)
T b

T

74
X) dt L
1y

v 1
sz +
b)><T b b

Note that in the first three systems, ve-
locity appears only on the right side of the in-
equalities. Therefore if the systems are stable
at higher speeds, they will always be stable at
lower speeds as would be expected. In the
fourth system, decreasing velocity will improve
stability but does not always guarantee it.

(2) 2tw, (1 +

Throughout the analysis an automobile
speed of 100 ft/sec or about 70 mps will be used
since at lower speeds the stability margin is in-
creased and the systems respond in a shorter
distance to errors in position. Also, since
lateral acceleration varies as a = v° /rc where
r. is the radius of curvature of the road, it can
be seen that at lower speeds the lateral acceler-
ation will be reduced considerably.



Assigning typical numerical values to the
parameters gives a more accurate quantitative
description of stability demands upon gain con-
stants. Let V =100 ft/sec, b = 20 ft,
wo = 20 rad/ft, { = 0.5. For the Type A system
the inequality which must be met for stability
is

Kd < .15 rad/ft

A reasonably safe value to assume for Kq is 0.1.

This value will be used for Kq in the second and
third systems so that the merits of the addition
of the second input may be evaluated. For the
Type B system, the following inequality re-
sults:

o<

Thus for stability an additional constraint must
be imposed upon Kg as well as Kq in the Type B
system.

For the Type C system, the inequality is:

)

Note here that the system can never become
unstable for variations in Kyaslongas Ky is
positive.

The inequality for the Type D system
reduces to

[‘r > .087 sec]

Thus the lead time must remain above a mini-
mum safe value.

In order to verify and study more fully
the effect of variation of the gain constants upon
stability and transient response, root position
plots* vs. gain constants were derived and
plotted as shown in Fig. 15. Only the first can
be called a true root locus plot, for in all the
other systems, changing the gain constant
affects not only the locations of the poles but
also of the zeros as may be seen from the trans-
fer functions. These plots verify the stability
criteria derived by the Routh method and show
the effects of variation of gain parameters.
Note the effect of increasing Ky in the Type C
system.
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VI. Steady-State Response
Ead

.

For circular tracts the angle @ of the front
wheels relative to the body is given by sin & b/r.
and sin @ ¥ @ for re >> b. See Fig. 16. In the
steady state, @4 = @. In this analysis a 300 ft
diameter circle was chosen. For the Type A
system, with ag=a = Kdd = b/rc = 20/150, the
displacement d from the center line is given by
d=2/15 - 1/Kgq ft.

For the Type B system, Kgqd + Kgp = @q.
But here, , the angle between the centerline of
the body and the tangent to the centerline of the
lane is given by a. -

d= 2/1.5(1-Kp)ft for Kq = 0.1.

For the Type C system, the angle between
the front wheels and the centerline of the lane
must be zero if the car is following the curve
accurately one has

Kgqd + Ky - 0 = a4 = 20/150.

In this case

d=2/1.5=1.33ft

for Kq = 0.1.

For the Type D system, see Fig. 17, it is
evident that the angle between the centerline of
the vehicle and the line "' is Q. '

¢

dx Lt sina Xaf fora<<l

a = 2/15

and
d=2/150 =2/15+V.

If V is chosen to give 1/3 G lateral acceleration,
d = 5.167 . Plots of the relationships between
gain and distance from the centerline are given
in Fig. 18.

In steady-state analysis of a roadway
varying sinusoidally, care was taken to choose
values for amplitude and frequency such that
(1) lateral peak acceleration was held to 1/3G at
70 mph, (2) the lateral distance travelled was
always small compared to the distance along the
x axis.

’




A sin wt
system transfer function

Y/Y,=G(s), Yp=

G(s)

d= Yp-Y=Y,[1-G(s)] = D sin(wt - )
D = maximum displacement = A|1-G(jw) |

For

Y, = 250 (ft) sin .2t

250(1-G(j.2) ] -

‘. D

Plots of D vs. the various gain constants
of the systems were computed and are shown in
Fig. 19. Note that these plots correspond very
closely to those for the circular plot, indicating
that the steady state response for nearly any
type of curve can be predicted fairly well from
these charts. For the Type A system, error is
reduced by increasing Kg. At Kq = 0.1 steady
state error for the circle was held at 1 1/3 ft,
which is quite tolerable. In the Type B system
with Kq = 0.1, the steady state error can be
eliminated by setting Kg = 1.0. For the Type C
system, nothing is gained over the Type A sys-
tem as far as reduction in steady state error.
In the Type D system, error rapidly becomes
intolerable as T is increased. Notice that in
the first three systems, which "'see'' only pres-
ent error, the response lagsthe input and the
automobile tracks on the outside of the circle.
However, in the Type D system, the response
leads the input and the automobile tracks on the
inside of the circle.

VII. Transient Response

The transient response of a system may be
measured in many ways. In this analysis the
systems were simulated on an analogue com-
puter and a step function was used as the input
signal. This might be visualized in an actual
highway system as being a sharp displacement
in the centerline. The displacement was held
to 0.3 ft so that the results as far as error and
lateral accelerations at 70 mph would be rea-
sonable. The response traces, which were
compared with calculated curves as a check,
are shown for the four systems at various gain
constants in Fig. 20. Simultaneously traces
were made of the lateral acceleration experi-
enced from the discontinuity as measured in
G's.

Notice from the two sets of traces that for
the Type A system, response becomes more
oscillatory as Ky is increased resulting in
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higher peak acceleration and longer damping
time. For the Type B system, response be-
comes worse due to longer damping time and
higher frequency of oscillation when Kg is in-
creased. This type of a ride would be quite un-
bearable to a passenger in the car. In the Type
C system, oscillations and resultant lateral
accelerations can be nearly eliminated by in-
creasing Ky without impairing stability. The
Type D system certainly gives the smoothest
ride of all as T is increased, and the leading
response can be noted in the trace origins.

By studying the block diagrams for the
various systems one notes that the effect of the
second input in the Type B system is to intro-
duce error-rate feedback. This tends to make
for a closer tracking system at the expense of
a very oscillatory response. The second input
of the Type C system adds to this error-rate
feedback an accelerometer feedback which in
this case gives a much smoother response.

VIII. Conclusions

Of all the systems considered only two of
the systems studied have acceptable dynamic
and static characteristics judging the response
upon the basis of both displacement errors and
lateral accelerations. The two acceptable sys-
tems are the Type C and Type D systems. The
Type D system is not practical and for this
reason it is concluded that the Type ''C' system
is most promising of the automatic steering
systems.
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Summary

The Search and Lock Receiver system developed
at AIL is capable of searching across a broad fre-
quency band and accurately locking on a signal
intercepted within that band. The frequency limits
over which the search mode takes place can be varied
by external digital commands.

To achieve high scanning rates along with
accurate lock-on, a discriminator-controlled, bang-
bang type servo is used.

The logical-image-rejection system is used to
prevent the receiver from attempting to lock-on
when a superheterodyne image frequency is inter-
cepted.

I. Introduction

The rapid and automatic search of wide fre-
quency bands for the location and identification of
radio frequency interference sources is becoming
increasingly important.

Equipment capable of conducting rapid surveil-
lance of the radio frequency environment is required
at air traffic control centers, monitoring stations,
and missile launch and tracking stations.

The receiver described in this paper is
designed to search for and then tune to pulsed RF
signals. 1In addition, this receiver can accommo-
date continuous-wave or high-duty-cycle signals
by local gating modulation that effectively converts
them to pulsed signals in one channel for control
purposes. This technique can be applied within any
RF band. Obviously, it is important to search the
selected frequency band rapidly. However, if the
scanning speed is too fast, the receiver band pass
may pass through the interfering signal frequency
between RF pulses. Based purely on system con-
siderations, therefore, the maximum scan speed must
be determined by the maximum interval between
pulses, by the bandwidth of the receiver, and by
the maximum number of pulses that will be required
to initiate the lock-on command.

When a signal is intercepted, the receiver
switches from the search mode to the lock mode.
The receiver must tune within 0.1 A of the signal
frequency, where A represents the IF bandwidth.
However, it must not lock on an image frequency.
In addition to the above requirements, the receiver
must respond to digital commands that determine scan
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limits, and when commanded to do so, must stop at a
specified frequency.

II. Search Mode

During the search mode, the receiver scans
continuously between two preset frequency limits.
The binary output of an analog to digital encoder,
which is coupled to the tuning shaft of the receiver,
is compared with binary words representing the high
and low limits of the desired frequency sector by
two digital matcher circuits. When the encoder
word matches one of the frequency limit words, a
matching pulse is produced that changes the state
of the direction flip-flop, and thus reverses the
scanning direction of the receiver. These limits
can be reset to permit scanning any sector within
the band.

As previously mentioned, the receiver can be
stopped at any desired frequency. This is done by
first setting the limit at the high frequency end
of the scan sector to correspond to the desired
frequency and then by giving the stop command. The
receiver will scan the band until the match occurs,
and then stop on the preprogrammed word representing
the high frequency limit.

If an RF signal is received as the band is
scanned, the control circuits must either command
lock-on or inhibit it until the receiver scans past
the signal. For the purpose of this paper, the
signal response is obtained when the local-oscillator
frequency is above that of the incoming signal, and
the image response is obtained when the local-
oscillator frequency is below that of the incoming
signal. Later on I will describe the method used
to inhibit lock-on for image frequencies.

III. Lock Mode

When the receiver intercepts a valid signal,
the lock mode is initiated. 1In this mode, tuning
error information is derived from a discriminator
that is fed from a limiting IF amplifier stage. As
seen in Figure 1, the discriminator and detector
outputs go to the lock control. The lock control
performs the logic and timing functions that gen-
erate the direction and speed commands for the
scanning motor. Figure 2 is a logic diagram of the
lock control.

Frequency versus amplitude characteristics of
the discriminator and detector are shown in Fig-



ures 3A and 3B. Superimposed on these character-
istics are the outputs of the 10-microsecond mono-
stable flip-flops (A and B) and the 5-microsecond
monostable flip-flop {(C). Variable thresholds on
the input to each monostable flip-flop are adjusted
to give exactly the characteristics in Figures 3A
and 3B.

If the inhibit flip-flop has been set, then
the discriminator, through monostable flip-flops A
and B, will control the scan direction. An output
from A causes the scan motor to move up in fre-
quency whereas an output from B causes the motor
to move down in frequency. An output from either
A or B will cause the scan motor to remain on,
whereas a pulse from C without a pulse from A or B
will turn the motor off.

It can also be seen from Figure 2 that when
the inhibit flip-flop is set, the scan motor will
revert to slow speed.

The monostable flip-flop D is unlike ordinary
ones because, after each set pulse, it will remain
in the "1" state for 8 milliseconds regardless of
its initial condition. 1Its purpose is to reset the
inhibit flip-flop when no pulse is received within
8 milliseconds.

The resulting control characteristic of these
circuits, as seen in Figure 3C, is typical of a
relay-operated or bang-bang servo. This type of
servo has a fast response time because maximum and
minimum errors produce the same correction rate.l

Most AFC systems that are designed to operate
on pulsed RF signals integrate the output of the
discriminator to produce & DC level proportional
to tuning error. The method that I have just
described produces error information on a pulse-to-
pulse basis, and unlike the integration method it
does not limit response speed.

Phase-plane methods of analysis are applicable
to this type of system since all of the nonlin-
earities are signal-dependent. Figure 4 is a
phase-plane diagram wherein the x coordinate is
scanning position and the y coordinate is scanning
speed. The case of only one initial condition is
shown. This diagram shows the point where the
servo parameters are switched and the results of
changing system parameters such as scan speed,
slow or fast, or servo amplifier gain. You will
note that Figure 4 shows that there are limits
between which commands can be given. This is
caused by variations in time when pulses will be
received. The variations are minimized by over-
shooting the signal once and then approaching the
off zone at slow speed.

With the bang-bang type of servo, there is an
optimum condition where the off command can be
given, and the scan velocity and tuning error will
immediately drop to O. The threshold on the direc-
tion command monostable flip-flops was selected so
that noise would not cause false triggers. Because
these thresholds are determined directly by RF noise
and indirectly by system parameters--such as the
receiver noise figure, IF bandwidth, etc.,--the
frequency where the off command is given must be
fixed. Another parameter easily varied is the scan
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speed. On this receiver, adjusting the slow scan
speed to about 25 percent of the fast scan speed
will give minimum scanning error.

A new type of servo amplifier was designed
for this system that permits very high gain without
any loop stability problems. The measured turn-
around time and stop time for slow-speed scan are
10 milliseconds and 3.5 milliseconds respectively.

IV. Image Rejection

Some method had to be found to prevent the
receiver from trying to lock on image frequencies.
It is well known that the sense of control commands
for AFC is reversed for image frequencies of super-
heterodyne receivers.

For example, if the receiver is scanning up
in frequency and intercepts an image frequency, as
seen from Figure 3A, the first pulse from the
discriminator will be negative. This pulse will
change the state of the direction flip-flop so that
a "down" command will be given. The motor will
scan down in frequency until the low frequency
limit is reached, and then the scan direction will
change to up. This cycle will continue to repeat
itself. Thus, the receiver scan frequency is con-
strained below the incoming image frequency.

To eliminate this problem, several logic
gates and a flip-flop were added to the lock con-
trol. These inhibit the discriminator direction
commands from changing the scan direction until
after certain conditions occur. If the receiver
is scanning up and an'up'command is given by monc-
stable flip-flop A, or if the receiver is scanning
down and a "down'" command is given by monostable
flip-flop B, then the inhibit flip-flop will be
set. The discriminator will control the scan
direction until the inhibit flip-flop is reset.
These conditions are always met when the receiver
frequency approaches the signal frequency; there-
fore, lock-on is initiated upon receiving the
first pulse from the discriminator.

However, in the case of an image frequency,
these conditions are not met until after the
receiver has scanned past the center of the image
frequency. Even then, when the inhibit flip-flop
is set and the discriminator commands control
direction, the receiver continues to scan in the
same direction. Monostable flip-flop D will reset
the inhibit flip-flop after 8 milliseconds.

V. Conclusion

All of the desired design objectives for the
Search and Lock Receiver have been achieved. In
addition to the achievement of system performance
goals, the design of the Search and Lock Receiver
offers the advantages discussed below. Using a
method of logical image-rejection eliminated the
preselector. The use of several logic gates and
a flip-flop eliminated the problems associated
with preselector tracking, its size and weight,
and the extra load on the scanning motor. The
servo loop used for scanning the receiver proved



very effective and reliable over extreme tempera-
ture variations. The digital-type circuits used
throughout the lock control, the modulator, and
the servo amplifier have simplified the electronic
circuitry and have made the servo loop more stable
against variations in temperature and changes in
component values.
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DESIGN OF THE SATURN S-IV STAGE
PROPELIANT UTILIZATION SYSTEM
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Summary

This paper indicates the requirements for
closed-loop propellant utilization control on the
S-IV stage of the Saturn launch vehicle. An
analysis of the system is presented. The design
of the capacitance sensors and the electronics
assembly is described.

Introduction

The S-IV vehicle, which is presently being
designed and manufactured by Douglas Aircraft, is
the second stage of the initial, or C-1, configu-
ration of the Saturn booster. It is powered by
six 15,000 pound Pratt and Whitney rocket engines
which use liquid hydrogen and liquid oxygen as
propellants. The total propellant loed is 100,000
pounds divided in the ratio of 5 pounds of oxygen
to 1 of hydrogen. With this load the nominal
burning time is 467 seconds. The C-1 launch
vehicle is designed to be capable of orbiting a
satellite weighing more than 20,000 pounds.

If this vehicle 1s to reach its maximum
capability it must be able to burn almost all of
the propellant which has been loaded. This es-
sentially means that when one propellant has been
depleted the amount of the other propellant re-
maining, which 18 an unusable residual, must be
small. A typical open-loop engine mixture ratio
history is shown in Figure 6. This curve shows
the ratio of the propellants being burned (1bs.
of oxygen per lb. of hydrogen) as a function of
flight time with the assumption that all the
parameters that influence this ratio are at their
predicted values. Also shown is a band over which
this mixture ratio can vary if these influencing
parameters vary to their limits. It will be
noted that during most of the flight the nominal
mixture ratio is near the engine manufacturers
design value of 5:1. The slow increase in ratio
during flight is due primarily to the gradual
warming up of the hydrogen, thus reducing both
its density and the mass being pumped into the
engine.

Previous propellant utilization practice,
on keroséne fueled ballistic missiles, has been
to attempt to determine this nominal curve by
analysis and monitoring of numerous test flights.
The operational vehicles would then be loaded so
that if this nominal curve were followed,simul-
taneous depletion would result. The possible
open-loop errors were small enough to be accepted.
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There are several reasons why this method
would not be satisfactory on the S-IV wvehicle.
First, because of the cost of the vehicle the
number of test flights will be limited to a number
insufficient to predict an accurate nominal curve.
Second, as a result of the use of hydrogen as a
fuel the open-loop mixture ratio band is signifi-
catly wider. In fact, these engine mixture ratio
errors, combined with a reasonable loading error,
could result in as much as 3,000 1lbs. residual
propellant.

On the S-IV there is a loss of about 1.1
pound of payload for each pound of unexpended
propellant. Therefore, a 3,000 1b. propellant
residual would result in a loss of 3,300 lbs. of
payload. For this reason a requirement for
closed=loop control of propellant utilization was
established. For this purpose a system would be
installed in the vehicle which would continuously
genser the amount of each propellant remaining in
the tanks and regulate the engine mixture ratio
to insure near-simultaneocus depletion of both
propellants.

System Requirements

The requirements and functions of the Pro-
pellant Utilization (PU) system on the Saturn
S-IV vehicle are as follows:

l. To provide sufficient flow control to
deplete both propellants to 500 pounds or less
while maintaining the Engine Mixture Ratio (EMR)
to 5 pounds Lox per pound + 106 ("Lox" and
"I.He" are terms used repeate in this paper for
Liquid Oxygen and Liquid Hydrogen).

2. To control the loading of propellants by
providing the ground support equipment with an
accurate indication of the propellant masses.

3. To provide propellant mass information
during flight for telemetry.

4. To provide signals for propellant de-
pletion logic, and for the fuel tank pressur-
ization system.

tem is

System Operational Outline

The PU system as shown in Figure 1 consists
of capacitance sensors for measuring propellant



masses, a suming device for comparing mass
signals, a shaping network for periodic dis-
turbence attenuation, and six valve assemblies
for changing Lox flow as a function of mass error.
Since the sensor measures fluid mass, it can be
represented by & gain C. (see Figure 2) It is
in one leg of a servo balanced bridge. When un-
balanced by a propellant mass change, it is re-
balanced by the servomotor and feedback potentio-
meter. In rebalancing the bridge, the motor po-
gition also provides mass signals for PU valve
actuation, loading, mass telemetry, and switching.
The generalized bridge assembly closed loop trans-
fer function is:

6. K Ky Gg 8o
S(TMs I K K I+ KK G K,

Its damped frequency is 42 rad. per sec. with a
damping ratio of .7. Velocity feedback was ne-
cessary to prevent potentiometer damage from limit
cycling. TIts effect is shown analytically in
Figure 3. Without velocity feedback,limit cy-
cling occurs at a frequency of 6 cps. With
velocity feedback it does not exist. A bridge of
this type is used with each sensor, and the
difference of their output signals is the mass
error.

The valve positioning loop for each of the
8ix engines is also described in Figure 2. The
closed loop transfer function for this loop is:

6 Ky Ky By 8y

S(Te s+ IUTyS + N+ Kpy KyGyKp

Its damped frequency is 25 rad. per sec. with a
damping ratio of ~.8. A nyquist stability plot
of the valve loop is also shown in Pigure 3. It
can be seen that limit cycling is no problem in
this loop.

The valve lag shown in Figure 2 has a band-
pass of 10 cps. Since the engine mixture ratio

is defined as Lox flow divided by flow,
valve gain can also be expressed in fTerms of per-
cent EMR change per degree of valve. otal valve

travel is mechanically limited to + 60.
EMR change for + 60

Total
valve is 4.5 to 5.5 or +10%.

The shaping network transfer function is also
shown in Figure 2. Although primarily designed to
attenuate slosh, it also is used to provide de-
sired system performance and stability character-
istics. The band pass of this network (.0l
rad/sec) 1s much lower than that of any other
element in the major loop.
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An open loop frequency response plot for the
PU system is given in Figure 4 for normal (.2
‘#/sec per pound Lox error) and initial (.04
/eec/#) system steady state gain. (The gain
change will be explained later in detail.) In
obtaining this frequency response information, it
was found that no measurable change occurred in
the area of interest when the bridge loop, valve
loop, and valve dynamics were replaced with their
respective steady state gain. This conclusion is
substantiated by the relative "Root to Origin"
distances observed on the Root Locus Plot in
Figure 5.

System Flow Equations

As was stated in the previous section, the
bridge output signal which represents
mass times the desired tank mixture ratio is sub-
tracted from the Lox bridge output signal. This
difference is defined as mass error.

Symbolically, mass error e = WL - Rdw.
W

H

< e
8

Wh
where WL = [ox mass

wnslﬂamss

Rd = 5 = desired tank mass ratio

Another method considered for comparing
pPropellant masses is a ratio error signal.

VL WL, - RaWg
Ratio error e. = w—H- -~ Rd = _"H

e
W
w
A W m

The gain of this type of system increases to
infinity as W;~ 0. Primarily because of this
gain change ¢ cteristic, the ratio error
system was not used.

The actual propellant weights W, and W
be divided into a theoretical weight plus a
weight pertubation.

can
H

/- AwL

/YL (acTuaL)

wL (THEORETICAL)

BURNING TIME



Ir wL = wLT +AwL

and WH = Wm, + AWH

then e = wm, +AwL

- Rd (wm, +AWH)
Where W._, and W __ represent the theoreti-
cally correct va}ques of propellant mass.
W. and W represent mass pertubations due
to tolergnces and distrubances.

Since W - Rd WHT =0, e =AW, - RIAW .This
equation can be expanded to inci‘ude thofle dis-
turbances which make up AWL and AWH.

+ AW o sinwt + AW+ f(Awm -Awm) at

e =AWLi s

. 5[“}{1 + OWgg sin wt g, + f(AwHU - ) dt]

AW-. ., and AW. . are flow changes from the pro-
peHant utination flow control valve.

AW 5 and AW, are initial loading errors.
These errors res@it from loading inaccuracies,
boiloff variations during boost phase,

and varlations in the
amount of engine prestart cooldown propellants
used. Since the same capacltance sensors are
used for loading and propellant utilization, the
loading errors as seen by the PU system will
probably be less than the actual loading errors.
This difference would be in the sensor inaccuracye.
A maximum loading error equivalent to 750# Lox
was used to study system performance.

AV_ . and AW represent uncontrolled flow
rate errors. These errors are caused principally
by propellant temperature and tank ullage pressure
variations. The total effect of these variations
on engine mixture ratio is shown in Figure 6.

AW_ . and AWy, are sloshing disturbances.

The sensor will give erroneous propellant mass
information if the fluid surface is not perpen-
dicular to the vehicle centerline. Sloshing is
a fluid surface ti1lt which is periodic and can
be attenuated in the system electronics. The
equations used in this analysis describing slosh
are AWIS = 400 sin 2.5t

AwHS

Thus e (slosh only)

450 sin 2.0t

400 sin 2.5t -~ 5«

450 sin 2t

2650 maximum

These sloshing errors, being primarily from very
low damped are expected to exist to some
extent for the total burning period. The shaping
network shown in Figure 2 is designed primarily

to reduce this disturbance by 53 db at the LH
slogh frequency. Thus valve movement is reduced to
4+ 3 or+ .025 EMR.
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AW and AW represent non-periodic errors
from flllx‘ed surface tilt. Any time the resultant
total thrust vector is not parallel to the vehicle
centerline, a fluid surface tilt condition
results. If, for example, the vehicle C.G.
through which the thrust vector must act were not
on the vehicle centerline, a surface tilt con-
dition would occur.

Gain Change Requirement

For total system response analysis, the open
loop transfer function can be stated:

KL(T23+1)

Ly ST,8+D (T, 5+ 1)

Where KL + Total Loop Gain

From this, the velocity constant CV can be
obtained.

1

c

, = Lim S(KGH)

S— o
=KL= 2

The theoretical residual from uncontrolled rate
errors (Aww) then is:

Aww AWUJ
.2

or

The maximum EMR variation in Figure 6 can be
apprgximated with a value of 5 + .3. In units
of AW,;..» +.3 EMR = 10.8#/sec. Therefore,

AWy, #710.2 = 51.6 pounds theoretical residual.

o3 b
The total residual will include the effects of
sensor errors and system hardware errors.

The engine manufacturer has stated that the
EMR remain within 4.5 to 5.5 during burning. If
valve flow pertubations (AW..) are added to the
uncontrolled deviations (Awm) the EMR can be 5.8.
This condition can occur ifughe polarity of AW
is opposite that of AW.... A condition of this
type was used as one parameter in eveluating
system transient performance. To keep the engine
mixture ratio within the prescribed limit, it was
necessary to use reduced system gain until a
definite relationship between AW., and AW_ . was
established. To satisfy this excursion limit
requirement as well as keep residuals from uncon-
trolled rate errors to & minimum, the following
gain change program was developed.

SYSTEM GAIN VS BURNING TIME

ud
SYSTEM

GAIN
.04

|
]

125 SEC
BURNING TIME




System Performance

System response data has been obtained for
various system disturbances. Because of the gain
change characteristic, the anslog computer was
primarily used. The disturbances and associated
response curves shown in Figure 7 are representa-
tive of the studies made. It was assumed in ob-
taining these curves that AW, = O, and all dis-
turbances were introduced as lox disturbances.
The relatively high banipass of the servo

balanced bridges make this a valid simplification.

Lox rate errors are introduced as shown in Figure
7. It is assumed that these errors are not
erratic and will generally be of one sign. The
system 1s not expected to correct for the sudden
rise in EMR late in flight. It has been es-
tablished however that a positive EMR deviation
indicates excess Lox flow, and the resulting mass
at burnout will be . This mass is not ex-
pected to exceed 75 1

The sensor will be biased to read empty
with a remalning mass of in the tank. The

effect of this bias can best be explained with an
example.

Assume
Lox sensor accuracy = .2% of total mass
= .002 (83,333)= 16T#
LE, sensor accuracy = .002 (16,667) = 33#

Condition A:
and the

error woul g

If the Lox sensor read low,
sensor high, residusls from sensor
be W o+ W (5)

167 + 33 (5) = 334

Condition B: TIf the Lox sensor read high
and the I.Hg sensor logf resid.u.s.ls from sensor
error would be 33 + -

If the sensor were biased to read 45 #
low; Condition“(A) above would result in
332 - 5 (45) = 107 # residuals, and Condition (B)
above would result in 66 + 45 = 111 # residuals.
Thus residual propellants at burnout due to
sensing errors can be reduced by this 1.52 bilas.

d

Capacitance Sensors

Sensor Requirements

The selection of a sensing system is proba-
bly the most important decision to be made in the
design of a Propellant Utilization System. Ulti-
mately, the success of the system will turn on
this decision since the controller can be no more
accurate than the information supplied to it by
the sensors. Accordingly, an extensive investi-
gation of liquid gaging methods was undertaken,
culminating in the choice of capacitance sensing
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for this system. Although the capacitance gage
has found extensive use in industrial and alrcraft
fuel gaging applications this is the first time it
has been applied to a propellant utilization
system, and it has been found necessary to make
several "state-of-the-art" improvements in its
design.

The prime requirement of sensing system is,
of course, accuracy. This requirement can be
conveniently subdivided:

1. Zero stability: The sensor shall indi-
cate zero propellant at the exact time the tank
is emptied. This indication must not be degraded
over the expected range of vehicle envirommental
conditions.

2, Linearity: When there is liquid in the
tank the sensor shall accurately indicate its
mass.

The reason for the first requirement is clear,
for a sensor zero shift will cause an error which
will directly add to propellant residual. The
requirement that the measured parameter be pro-
pellant mass is not as obvious. There are several
reasons: first, the engines are most efficient
when they are run at their calibrated mass mix-
ture ratio; and second, mass measurements are
required both on the ground, for propellant load-
ing,and in flight for vehicle performance
evaluation.

One way of determining the mass of pro-
pellant in a vehicle tank would be to determine
the position of the liquid-gas interface and from
this compute the liquid volume. The propellant
mass could then be obtained by use of a calcu-
lated density or one which had been obtained by
use of a measuring device located near the bottom
of the tank. With cryogenic propellants there
are a number of objections to a technique of this
type. First, the interface may be fairly unde-~
fined and perturbed by boiling or sloshing; and
second, there is apt to be considerable density
stratification throughout the length of the tank
80 that a density sample taken at one place in
the tank would not be representative.

These disadvantages would be overcome by a
gaging system which measured mass by integrating
& fluid property related to density over the
length of the tank. The capacitance sensor is
such a system. In this system a long capacitor
is placed in the tank, parallel or nearly
parallel to the tank axis. When the tank is
empty the capacitance of the unit will be pro-
portional to the dielectric constant of the gas
between the plates, which we will call E..
the tank 1s filled and the liquid allowed to
flow between the plates, the observed capacitance
will increase because some of the gas has been
replaced by a liquid with a higher dielectric
constant. If the capecitor is of uniform cross-




section, its capacitance increase will be pro-
portional to both the immersed length and the
liquid dielectric constant minus the gas die-
lectric constant (E; - Es)' Since the dielectric
constant of all gases 1is very nearly one, this
last proportionality constant can be regarded as
(B; - 1).

If we know E_, we now have a system which
will tell us the Ievel of liquid in the tank.
Since the capacitance of the unit is inversely
proportional to the distance between its e-
lectrodes, we can build a sensor which will give
a direct volume readout in a non-uniform cross-
section tank by making the spacing between the
electrodes at any point a function of the tank
cross-section at that point. If (E. - 1) of the
liquid being gaged is proportional %o density,
as it very nearly is for our propellants, we will
have a system which will give a direct mass
readout.

The dielectric constant of liquid hydrogen

and oxygen is quite closely described by the
Clausius-Mosotti equation.

—— = KP

5
o
2]
1]
=
|

= dielectric constant

be)
1]

density

-~
n

congtant dependent on the
polarizability of the material
involved.

It can be seen that if E is near 1 that E - 1 is
almost a direct function of P. Since the die-
lectric constant of liquid hydrogen is about 1.22
and that of liquid oxygen about 1.48 this con-
dition is fulfilled.

Sensor Design

The sensors used in Saturn S8-IV are cy-
lindrical with an outer diameter of two inches.
Correction for tank geometry is made by varying
the diameter of the inner electrode. The mount-
ing method is shown in Figure 1. It can be seen
that because of shape of the tank it has been
necessary to tilt the hydrogen sensor 18" from
the vehicle axis. This sensor is 260 inches long
and is, as far as the author knows, the longest
capacitance sensor which has been built to date.

Several second order error sources exist in
a practical capacitance gaging system. One of
these arises from making the electrodes of ma-
terials which expand with temperature. In any
system in which the sensors operate in a varying
temperature environment the resulting expansion
will cause a capacitance change which must be
taken into account. The capacitance of a cy-
lindrical capacitor is given by the formula:
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C = KE L
Ro
Log B
i
Where L = length of the capacitor

Ro = radius of outer electrode

Rl = radius of inner electrode

E = dielectric of media between
electrodes

K = constant

For a capacitor with both electrodes of the
same material Log R /R, will not change as the
capacitor expands and contracts, so the capaci-
tance change will be proportional to the change
in L. By meking the electrodes out of materials
with different expansivities, it is possible to
make Log RO/R vary proportionally to L and there-
by make a uni% whose capacitance is very nearly
constant over a wide temperature range. This is
illustrated in Figure 8.

The sensor zero capacitance, or its capaci-
tance when all the propellant in the tank has
been expended is influenced by the temperature
and pressure of the residual gas. Of course,
this effect will be predicted and allowed for in
calibra<ing the system. However, any error in
this prediction will be seen by the system as a
zero shift. In the liquid oxygen tank, where
the pressurent is helium, which has a very low
dielectric constant, this effect 1s negligible.
In the hydrogen tank the residual is hydrogen gas
under several atmospheres pressure and its effect
can be quite appreciable. Even if we are able to
make a reasonably accurate prediction of this
effect, the resulting zero shift can be as much
as .3% to .4% of full scale. Fortunately it is
possible to compensate for the major portion of
this error, the part that is due to the un-
certainty in the temperature of the residual gas.
This 1s done by designing the sensor so that its
change in capacitance with temperature, due to
thermal expansivity, balances out the change in
ullage gas dielectric with temperature. An
example is showm in Figure 9.

Jt can now be seen that the design of these
sensors was a complex process. Since the prime
requirement was zero stabllity this was attacked
first. A computer program was written which
would design a sensor which had a capacitance vs.
liquid level height function which matched the
tank volume vs. height function. For simplicity,
it was assumed that the gas above the liquid was
at a fixed nominal temperature and that the
sensor electrodes were at the temperature of the
fluid medium in which they were immersed. This
program was then used to design a number of
sensors with various electrode material
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combinations and different ratios of the inner
and outer electrode diameters. The response of
each of these designs when immersed in gas at
various temperatures and pressures was determined
with the ald of the computer. Based on this
information, the material combination and di-
ameter ratio which gave the smallest capacitance
change over the range of gas temperature and
pressures expected in the tank at the end of
flight was selected for the final sensor design.
The optimm material combination was an aluminum
outer electrode and a stainless steel inner
electrode for both the hydrogen and oxygen
sensors. However, the diameter ratios were
different.

Having determined these parameters, a more
refined computer program was developed for de-
signing the actual vehicle sensors. This program
wvas similar to the first one, with provision for
a variable temperature distribution in the gas
and in each of the electrodes. In additiomn, the
computer was enabled, by means of an iterative
process, to vary the shape of the inner electrode
in order to bring the sensor capacitance vs.
liquid level curve, considered under the pre-
dicted vehicle enviromment, into correspondence
with the tank mass vs. liquid level curve.
Further, the program was arranged so the final
print out of a capacitance vs. sensor length
function would assume room temperature electrodes
and dielectrics to simplify fabrication and
calibration.

Electronics Assembly

* The electronics assembly incorporates the
circuitry which supplies propellant mass signals
to the ground loading computer and the vehicle
telemetry systems. It also creates and shapes
the system error signal and generates the electri-
cal commands for positioning the engine mixture
ratio valves.

Since this assembly had to be located at
some distance from the sensors, a three-wire
bridge was chosen for sensor readout. Further,
to obtain the necessary accuracy and stability,

a balanced bridge incorporating a servo re-
balance loop was used. This circuit is shown

in Figure 10 and is typical for both the hydrogen
and oxygen sensors. .

In this circuit the sensor forms one leg
of a bridge, the opposite leg is a fixed refer-
ence capacitor. The other two legs of the bridge
are voltage sources supplied by the secondary
of the reference transformer. The output of the
bridge is the input to a servo amplifier. If the
bridge is initially in belance and the sensor
capacitance is increased or decreased by adding
or withdrawing propellant, the bridge will be
unbalanced and an input supplied to the amplifier.
The amplifier in turn will drive a servamotor
wvhich repositions the rebalance potentiometer to
return the bridge to null. The rebalance
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A

potentiometer voltage, or shaft position, change
is proportional to sensor capacitance change.
This shaft position is the output of the bridge.

It will be noted that the capacitance to
ground associated with cable connecting the
sensor to the electronics assembly does not add
to the stray capacitance of the sensor. This is &
particular advantage of this form of bridge since
this capacitance can easily be larger than the
gensor capacitance. However, it is important to
avoid capacitor coupling between the two sensor
leads since this cannot be distinguished from
sensor capacitance. This requirement is met by
using shielded cable and coaxial connectors for
the high impedance lead.

The rebalance pot is one gang of a four-
gang ten-turn potentiometer. The other three
gangs are used for loading and course telemetry,
fine telemetry, and forming the system error
signal. The loading potentiometer 1is excited
with 28 volts DC and the voltage ratio output
taken to a digital ratiometer in the ground loed-
ing computer. The ratiometer is calibrated to
give a readout of the pounds of propellant in
the tank and to provide signals for operating
the loading valves.

The fine telemetry potentiocmeter has been
incorporated to enable an accurate inflight
determination of propellant mass. The accuracy
of this measurement would normally be limited by
inherent telemetry inaccuracies amounting to
about 2% of full scale. To overcome this, the
potentiometer is divided into 20 equal segments
by tapping; alternate taps are excited by 5 volts
DC, with the remainder grounded. This effective-
ly provides a 20 times expanded scale and reduces
the telemetry errors to .1%.

Figure 11 shows the method of forming the
error signal. The two bridge output potentio-
meters are excited in parallel from a 100 volt
DC source. The bridges have been calibrated so
that any time the propellant masses in the tank
are at the desired 5:1 ratio the potentiometer
wiper positions and therefore wiper voltages are
equal. Accordingly, in operation the voltage
difference between the wipers is the system error
signal. In order to have this signal referred to
ground the potentiometer excitation supply is
floating and the wiper of the hydrogen output
potentiometer is grounded.

The error voltage is first taken to a !
switched voltage divider which mechanizes the
gain change. The gain change switch is driven
by the oxygen bridge servo. A RC network is used
to shape the error signal. The high attenuation
desired in this filter to reject disturbances
from propellant slosh and the need to keep the
filter capacitors to reasonable size has resulted
in the filter presenting a high source impedance
to the amplifier which follows it. Efforts to
design a sufficiently stable DC amplifier to work

-




from this source were unsuccessful, so a modulator-
AC amplifier-demodulator combination was used.

The demodulator output is the command input
to six parallel position servos which are used to
control the engine mixture ratio valves. DC is
used for the command and feedback signals to

SATURN S-1V PROPELLANT UTILIZATION SYSTEM

Hy SERVO |- LOADING & TELEMETRY

BALANCED
BRIDGE

5(UH, MASS)
LOX MASS
LOX SERVO
BALANCED GAIN
SAIDSE |~ LOADING & TELEMETRY | CHANGE
€ _| ‘%’:‘ T‘;gll“ 1 SHAPING
b NETWORK

TYPICAL 6 ENGINES

Fig. 1.

PROPELLANT UTILIZATION SYSTEM BLOCK DIAGRAM

AW SIN (1 + AW
"s Ha ERVOMOTOR

Km |94 Ga|®H
|

1
J 1 [swn

-
(-

TELEMETRY & LOADING

i
|
b ]
Awy BIAS —o@-_———]
Wi
ERVOMOTOR | S
L4} GAIN
L %{EI" ¥ cHANGE
S

Km 6L
4,
| |
1 1
¢ -
| bt
| reemerRy  EUSOME
! & LOADING ARM

LH 4 BRIDGE
'Awu SINW+ AW o

. swapinG [ Ks(Tas+1
= NETWORK | (T38+1) Tys+1)
1 ,.@.---E}. . SERVOMOTOR SUMMING COIl
1AW ! nfv KMy __ |, i —®
G Awy @ Tys+1 [ Tavs +1 | Tcs+1 S
He= o ]
)

S
| ——-
: VALVE iy

AWhHU (TYP 6 ENGINES) VALVE DRIVE /

(TYP 6 ENGINES)

Fig. 2.

DECIBLES

191

avoid quadrature problems which would arise from
sunming two slightly out-of-phase signals. The
command and feedback signals for each loop are
summed at the input of a magnetic modulator.
This modulator is followed by an AC amplifier
which drives a servomotor located on the englne.
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VAPOR JET CONTROL OF SPACE VEHICLES

James E. Vaeth
Martin Marietta Corporation
Baltimore 3, Maryland

Summary

This paper describes a reaction jet attitude
control technique which affords significant ad-
vantages in terms of accuracy, reliability, fuel
economy and operational flexibility. These ad-
vantages are realized by the use, in combination,
of low-thrust vapor jets and time-dependent on-
off switching circuits. An accuracy potential
comparable to inertia wheel control is thus pro-
vided, while the proverbial wheel problems of
speed saturation, bearing life, threshold non-
linearities, gyroscopic coupling and vibration
excitation are avoided.

Very low thrust magnitudes are attained by
simply opening a small orifice to allow fuel to
vaporize into the surrounding vacuum. Fuel
storage, pressurization, circulation and mixing
requirements are thus minimized. By augment-
ing conventional on-off valve switching circuitry
with electronic networks that generate thrust
pulses of small but constant time duration, ve-
hicle angular rate can be controlled to a very low
threshold. This minimizes fuel consumption
and valve cycling frequency.

The capabilities and limitations of this design
approach were substantiated by an analog com-
puter program incorporating breadboard switch-
ing circuits, and by vacuum chamber testing of
critical components. These technique and com-
ponent developments are applicable to such space
missions as astronomical observation, earth
reconnaissance and stellar navigation. Design
guides are presented for synthesizing a reaction
jet system to meet any particular set of per-
formance specifications.

Introduction

The analytic studies, system design approach
and test programs to be described were initiated
during the design competition for the NASA
Orbiting Astronomical Observatory (0AO)1,

The very stringent criteria for vehicle attltude
control, in terms of pointing accuracy, relia-

bility and operational flexibility, dictated sig-

nificant improvements over existing techniques
and equipments.

Preliminary studies verified that the required
accuracy of 0.1 arc seconds could be attained
by means of proportional inertia wheel control3,
However, the questionable reliability associated
with wheel bearings operating continuously for a
year?, plus the definite need for preventing wheel
rate saturation (such as by firing auxiliary jets
once each orbit) were the major factors leading
to an extensive investigation of the capabilities
and limitations of reaction jets for fine pointing
control.
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Although on-off reaction jets had been suc-
cessfully employed in prior missile and space
programs, their applicability for precision at-
titude control of the OAO vehicle called for much
lower angular momentum impulses than had ever
been utilized. The low thrust vapor jets, on-off
switching techniques and system design approach
developed to meet these specific requirements,
together with pertinent test results and growth
potential, are presented in the pages that follow.

System Design Requirements

The significant design r‘equirements1 for fine
pointing control of the OAO vehicle may be sum-
marized as follows:

Continuous control of vehicle orientation to
within the sensing accuracy of the primary
optical telescope, which was specified to be 0.1
arc seconds, or better, about twoaxes;

Capability of reducing an initial pointing error
of 120 to less than 0.1 arc seconds withina 3
minute time duration;

Operational compatibility with auxiliary star
trackers, possessing resolution limitations of
10 arc seconds or worse, during periods when
the primary telescope is occulted by the earth
or moon;

Ability to cope with external disturbing tor-
ques exceeding 100 dyne centimeters;

Sufficient flexibility to cope with optical or
instrument noise associated with the stellar
trackers, and with saturation of the stellar
detector signal*;

Operational flexibility to perform all required
functions with a minimum of mode changing; and

Operating duration of at least one year.

Another implicit design consideration was to
limit system size and weight, including fuel, to
a few pounds per axis. The reliability concern
stemming from the one-year operating life em-
phasized the need to minimize moving parts.
Accuracy considerations also dictated mini-
mizing internal motions and associated vibration
excitations. An important design criteria,
therefore, was to keep the jet valve cycling rate
as low as possible--consistent with the per-
formance requirements.

In attempting to meet the combined design
requirements of precision performance, relia-

*This would ease sensor design requirements.



bility and early availability, the obvious approach
was to utilize proven techniques and components,
wherever applicable, and to substantiate the per-
formance capabilities of any novel or critical
items by system analysis and component testing.

The major problem areas were the required
low thrust jet units and the electronic switching
circuits needed to minimize thrust on-time.
Although this paper is primarily concerned with
the switching techniques, some discussion of
vapor jet thrust generation is warranted because
the two are closely interdependent.

Vapor Jet Thrust Generation

The jet control moment should ideally be no
greater than that needed to satisfactorily ac-
complish the initial damping function (120 arc
seconds within 3 minutes). For the OAO vehi-
cle, the desired control torque about each axis
is subsequently shown to be between 1, 000 and
20, 000 dyne centimeters, or less than 0.00015
foot-pound.

The desired low thrust levels made the use
of vapor jets very attractive. Accordingly, a
vacuum chamber test program was undertaken
to determine the thrust and specific impulse of
various vapor fuels as functions of orifice size
and shape, pressure and temperature differ-
ential, etc. Detailed test procedures and results
are presented in Ref. 2. Pertinent conclusions
are as follows:

A specific impulse of 50 to 100 seconds was
measured for such fuels as water and methyl
alcohol;

The desired low thrust levels were attainable
by using the proper orifice diameter,

Because of the small orifice size (0. 02-inch
diameter), a single-level on-off system appeared
necessary, as opposed to proportional control of
thrust; and

Thrust variations with internal temperature
were such that system operation should be com-
patible with a 20% uncertainty in absolute thrust
level.

On-Off Switching Technique

The electronic circuits required for each
axis of control must position a solenoid valve in
accordance with the optical error signal, The
three valve positions are closed, open-left and
open-right.

Analytic studies to determine the required
switching circuitry began with an evaluation of
the conventional and proven 'cechnique5 for ac-
complishing all the functions outlined under
"'System Design Requirements.' This technique
keeps the jet valve open whenever the sum of the
measured attitude displacement and rate signals
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exceeds a preset voltage (equivalent to an error
voltage of 0.1 arc second).

Analysis procedures were initiated making
use of phase plane technique55 and culminated
in an analog computer simulation to investigate
the effects of disturbing torques, optical noise
and switching hysteresis inherent in the bread-
board circuits. In the analog program, addition-
al breadboard circuits were provided for gener-
ating a small but constant thrust impulse, in
case such a refinement proved necessary.

Figure 1 is a functional block diagram of the
analog computer simulation (see List of Sym-
bols). The jet valve opens for a fixed time
duration (T ) when the applied switching signal

(GS) reaches a preset value (ed equivalent to 0.1
arc seconds) and keeps the valve open whenever
the error exceeds twice the pulsing level (2 Gd).
4’
and opens in identical fashion--but in the opposite
direction--for Os signals of reverse polarity.
When T

The valve closes when Bs reduces below 2 6

p is set at zero and the second switching

level is reduced to 0.1 arc seconds, aperation
of a conventional-type system is simulated.

As noted in Fig. 1, a derivative or lead cir-
cuit (o TL) is employed to generate attitude rate

signals., Rate gyros were avoided for reasons
of reliability and the required threshold level.
The filter is incorporated to attenuate optical

noise.

The capabilities and limitations of the sys-
tem shown in Fig. 1, with Tp finite and zero,

are presented in subsequent pages for the limit
cycle phase of operation and for the initial
damping phase. Both phases strongly influence
overall system design.

Initial Damping Phase

The initial damping requirement of 120 arc
seconds within 3 minutes can be met by various
combinations of control acceleration (60) and

L in Fig. 1).
A critical factor inselecting bc and aTL is the

linear range of the optical error detector. If
the linear range is £ 60 arc seconds or greater,
the recommended scheme is to use the minimum
ec which satisfies the following two criteria:

rate-to-displacement gain ratio (o T

'e'c is sufficient to rotate the vehicle 120
arc seconds (emi? .m 3 minutes (tm) by
applying positive GC for 1.5 minutes
and negative 'e'c for 1.5 minutes,or

46

2
mi/t

m

(1)



'B.C is an order of magnitude greater than any

disturbing moment.

Having thus chosen éc’ aTy is selected so that

1/2

aT, = (9m1/46c) 2)

L N
The above technique for selecting 'éc and aTy

minimizes thrust magnitude, assures compliance
with the tm damping requirement for any initial

attitude error less than Bmi--and requires no

circuit complication.

e
When Gi < emi' decreased fuel consumption

can be realized by computing an optimum switch-
ing function from measured rate, displacement
and an assumed value of Gc. Thrust polarity

would be switched when

9 = - éz/zé'c (3)

However, this scheme was impractical because
of Oc uncertainty.

Fuel usgge, which is proportional to the
product of Gc and jet on-time, may be reduced

by means of rate limiting (ém), but again, at the

expense of circuit complication. Using rate
limiting (such as 1 arc sec/sec) the criterion
for selecting aTy becomes

aT = 9m/29c (4)

For the practical case, with error detector
saturation (em), angular rate measurement by

a derivative circuit is limited to within the de-
tector linear range. Thus the use of rate limiting
would require a low threshold rate gyro, with
associated reliability degradation. A more at-
tractive solution would increase ec and decrease

a Ty such that

~ . 1 /2

aTy = (emlz ec) (5)
However, 'G'C must now be chosen sufficiently

large to attenuate emi within the specified tm.

This is illustrated in the phase plane plot of
Fig. 2 for 8 | of 20 arc sec, emi of 120 arc sec,

'9;: of 0.227 arc sec/sec2 and aTy = 6.7. The

required time duration is approximately 3.0
minutes. It is noteworthy that, for the saturation
case, the necessary ec is primarily dependent

upon em, whereas the use of Eq (5) in selecting
ary contributes much less toward minimizing

9;: than does Eq (2) without detector saturation.
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Should the detector saturation levgl be less
than %5 arc sec, the required large Bc signif-

icantly increases fuel usage and causes a severe
limit cycle complication, as will be shown.
Alternative solutions are as follows:

Incorporation of low threshold rate gyros,
together with rate limiting and the use of
Eq (4).

Use of time-counting circuits to switch
the jets on and off during the initial damping
phase.

The first has already been discussed and is
the more desirable in terms of fuel consumption,
circuit simplicity and low éc. The second cir-

cumvents the need for extremely reliable and
precise rate gyros, by incorporating time count-
ing circuits whose function is illustrated in

Fig. 3. Note that an essentially steady -state
limit cycle (denoted by trace ABCD) will result
with the switching levels set at £0. 1 arc sec and
without the lead circuit.

The counting circuit simply measures jet on-
time ( to) for one half cycle (point A to B) and

then during the next half cycle reverses thrust
after 85.35% of t . This occurs at point E of

Fig. 3, after which the reversed thrust is main-
tained for 35.35% of to' At this time, angular

rate and displacement reach zero simultaneously
(point F), and the normal jet switching circuits
(including lead) are reactivated to maintain pre-
cise accuracy.

This technique does not require knowledge of
vehicle attitude, attitude rate or jet thrust magni-
tude. It requires only that the positive and nega-

tive éc be equal to within about 2%. To alleviate
this contingency, ec could be increased so that
the thrust reversal periods of 85.35% of to and
35. 35% of t, would not be initiated at point C
(Fig. 3), but delayed one half cycle until point A
is again reached.

Although detector saturation was not defined 1,
it appeared judicious to use a .éc magnitude
sufficiently high to be compatible with any of the

above damping schemes, including em = 20 arc

seconds. A value of 0.226 arc sec /sec2 appeared
to be a good compromise, with a7y, ranging from

2.5 to 12,
Limit Cycle Operation

Continuous tracking to within the specified
accuracy of 0. 1 arc sec can be accomplished as
illustrated in the phase plane plot of Fig. 4. The
vehicle ideally rotates at a constant angular rate




through the :bed dead band (point F to A) until the
switching signal (OS in Fig. 1) exceeds a preset

level. This occurs at point B with the increment
from A to B resulting from the combined system
lag ('rT =Tg*+ 7y, * 7, inFig. 1, assuming

To << 7T ¥ 'rL). Control torque is applied at
point B and--if T were zero--thrust would cease

at point C. However, Tr delays thrust termi-
nation until point D.

The obvious criterion for fuel economy is to
minimize angular rate (GL) through the dead

band. For the more practical case, it will be
shown that GL should be no less than % 0,01 arc

sec [sec because of expected disturbing moments.
Attainment of such a low limit cycle rate with a
conventional system is possible, but only if
switching hysteresis (H) and Tp are very small.

Because of lead circuit limitations and the possi-
ble need to smooth optical noise, compatibility
with a minimum Tr of 0.5 sec seemed very

desirable.

The simplified equations derived in Ref. 5
for defining the pull-in and drop-out lines by
phase plane techniques imply that the minimum
jet on-time (Ton’ from point B to D in Fig. 4)

is approximately equal to 7 This is an ex~

T
cellent approximation if the hysteresis delay (H)
is predominant. However, when the required
ton is less than T the exponential transient

cannot be neglected.

For the case in which a near constant éL is

maintained for a time interval equivalent to 3-rT,
thrust on-time can be determined as follows.
From Fig. 4, the required incremental rate

(A 6) that must be sensed in order to signal drop-
out (point B to C) is

AéR‘—.‘ 1

aTy
The measured A 6 after thrust initiation at point
B is

(H+8& 7))

LT (6)

400 e )
ab, Y8 ton/(l 7.7S)

Thrust termination requires that

(7)

)

> .
b e e

(8)

1
Substituting the Laplace transform gz— for

t f in Eq (7) and writing the inverse transform,

e -t
. on/'rT)
ol e ton = Ty \1-¢

(9)
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Note that if ton >> T the thrust will cease
when A é, from point C toward point D, equals

G'C 7r- This approximation is quite incorrect

<
for ton =T

The usefulness of Eq (8) as a design guide
is augmented by combining the limit cycle
relationship

2 eL =6 ton (10)
with Eqs (6) and (9), which gives
-t
T on/T
Yiwg D (1 P T)
on
> H
= 5 T + —.—) (11)
ZaTy (T eL
This minimum on-time criterion for a con-
ventional system is plotted in Fig. 5. As an

example, the desired BL of 0.01 arc sec/sec
and Gc of about 0.2 arc sec/sec2 give a desired
value fort of 0.1 sec. Usingt =0.1 sec
on on
and Tr © 0.5 sec, Fig. 5 indicates that the right-

hand side of Eq (11) must not exceed 0. 095.
This, in turn, is realized if ary is set at 5 and

H does not exceed .0045 arc sec. The obvious
method of decreasing ton is to increase aty s

however, this accentuates the importance of the
initial assumption, in the derivation of Eq (11),
that GL had been nearly constant for a short

time prior to thrust initiation.

Eauation (11) is not applicable if the pull-in
line in Fig. 4 (point A) is crossed while torque is
being applied. This situation does exist during
the latter part of the initial damping maneuver.
Until the system damps to within the two pull-in
lines, a good approximation for minimum jet
on-time is simply T Thus a second criterion

for satisfactory limit cycle operation is

< 29d/a'r (12)

ec o L

Consequently, with Oc = 0.2 arc sec /secz, Tr

= 0.5 sec and ed = 0.1 arc sec, it follows that
aty, must be less than 2.0. Since this low value
of ary would preclude satisfying Eq (11), T

must be significantly decreased.

To avoid the squeeze imposed by Eqs (11)
and (12), to significantly improve the ability to
smooth optical noise and to make system non-
linearities and uncertainties (such a switching
hysteresis) much less critical, breadboard cir-
cuits for generating the timed pulse ('rp in Fig. 1)



were designed, tested and incorporated into the
analog program.

The performance improvements attributable
to the timed pulse were determined by analog
computation. Response plots of a conventional
system (7_ =0Q), shown in Fig. 6, substantiate

the criterion of Eq (12) in that QL never settles

within the two pull-in lines. Note that thrust on-
time is very high. Significant parameters were:

ec = 0,226 arc sec/sec”, ed =+0.1 arc sec,
T 0.67 sec. By adding the

Tp pulse of 0.1 sec when SS reaches %0.05 sec,

aTy = 2.5 secand 7

the system not only damps to within the two
switching lines, but settles onto a limit cycle
with an accuracy better than 0.05 arc sec and a
jet on -time to off-time ratio of only 1/60 (Fig. 7).

An excellent demonstration of the significance
of Tr and aty is obtained by comparing Figs.

7 and 8. Doubling aty and T (Fig. 8) results
in a longer settling time and the higher ary,

causes greater fuel consumption during limit
cycle. The minimum thrust on-times (Bc traces)

achieved during initial damping, excluding the
constant 0. 1-sec pulses, agree quite well with

<
the criterion of Eq (11) and Fig. 5in thatt =0.3

sec is realized, provided thrust has been off for
a time interval of at least T prior to thrust

initiation. Note the pulse at t = 40 in Fig. 8.
This also indicates that the hysteresis in the
breadboard switching circuits amounted to less
than 0. 005 arc sec.

Further increase of et

values of 5.0 and 1,12, Fig. 8) prevented the
system from settling within the two pull-in lines,
despite the s pulse. As suggested by Eq (12),

and T {above the

this situation was alleviated by doubling the sys-
tem dead zone~~which also halved fuel consump-
tion, while maintaining the specified accuracy.

Based on analog simulation results, the sys-
tem parameters recommended to comply with
the requirements outlined in "System Design
Requirements" were a7, =5 sec, 7, = 0.5 sec,

ol 0.5 sec,-rp = 0.1 sec when ee =0.1arc
sec, T, £ 0.03 sec and é'c = 0.226 arc sec/sec2
(by using an M, of 12,000 dyne-cm with I =
800 slug -ft2).

A phase plane response plot of the recom -
mended configuration with a constant ME of 100
dyne-cm is presented in Fig. 9. The jet on-time
to off-time ratio is 1/120 or ME/MC. This

ratio was verified for ME values from 50 to 300
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dyne-cm. For ME = 0, the on-time to off-time

ratio was less than 1/100. Note that if a con-

stant ME of 300 dyne-cm or greater should be

specified as always being present, it would be
desirable to increase T _to 0.3 second. This

would minimize valve cycling and wear, but
assure the minimum attainable (1/40) on-time
to off-time ratio.

Analogtraces verified that, for ME > 22 dyne-

cm, the limit cycle will become symmetrical about
the 0 axis (Fig. 8) when T _ is zero or finite. With

such values of ME' Sd can be increased to [ed

+ GL aT However, with lower M

LTl E
values, the limit cycle will not be symmetrical--

so that Bd cannot be decreased.

The principal effect of optical noise is to
increase valve cycling and fuel consumption, If
the filter networks can sufficiently attenuate the
noise level, the OS signals will not excessively

energize the valve. For the recommended sys-
tem parameters, response to optical noise

is shown in Fig. 10. Note the additional jet
pulses in the 0 trace. Analog studies demon-
strated that valve response to any noise spectrum
(magnitude and frequency range) can be predicted
as a function of the system parameters--in

particular, Tpr @7, and ed.

When control is switched to an auxiliary
star tracker, functional operation remains the
same, except that the voltage level of the de-
tector error signal (8!. in Fig. 1) is made

compatible with the desired switching levels.

To summarize briefly, the Tp pulsing
technique significantly improves system design
flexibility. For example, should éc have to be

increased by a factor of 5 to comply with initial
damping requirements or with limitations on
minimum thrust level, the desired limit cycle

(éL = +0.01 arc sec/sec) could still be attained
by reducing TP to 0.02 sec.

Fuel Considerations

Required fuel weight per axis is simply
W, = FtT/Isp (13)

where total jet on-time (tT) includes both initial

damping maneuvers and limit cycle operation.
Is was measured as 50 sec minimum, and the

jet thrust (F) required to produce 12, 000 dyne-

cm is less than 3 x 10-5 pound.



For a one-year operating life, a conservative

estimate of 10,000 initial damping maneuvers,

each of 160-seconds duration, results in a Wf of

less than one pound.
For a limit cycle on-time to off-time ratio
of 1/120 (assuming ME = 100 dyne-cm), con-

tinuous operation for one year would require a
Wf of 0. 16 pound. Required fuel weight would

increase directly with ME‘

Component Design and Testing

The feasibility of the vapor jet design ap-
proach was substantiated by engineering design,
fabrication and testing of critical components.
Detailed design and test data are beyond the

scope of this paper, but a brief description seems

pertinent.

Jet Switching Circuit with Timed Pulse

This circuit functions as shown in Fig. 11.
The detector d-c error signal, after compen-

sation, is modulated and fed to both an amplitude -

sensing and a phase-sensing channel. The
latter closes either transistor switch A or B,
permitting the proper jet to be energized when
the error amplitude reaches one of the switch-
ing levels.

In the amplitude channel, the error signal

drives two separate level sensors (diode clamps).

When either of the switching levels is exceeded,
the associated Schmitt trigger changes state
and drives a C-R circuit so that a pulse is
generated. The level 1 monostable flip-flop
applies a pulse of fixed duration to the tran-
sistor switch, whereas the level 2 bistable flip-
flop keeps the switch continuously energized
whenever level 2 is exceeded.

A breadboard was designed, tested and
operated for 100 hours (with no failures) during
the analog simulation program. A development
model, weighing approximately 1 pound (shown
in Fig. 12), was fabricated and successfully
cycled 5 million times during vacuum chamber
testing of the system.

Digital Damping Circuit

The initial damping technique of reversing
thrust at 85. 35 and 35. 35% of measured time
(to) was mechanized digitally, using appro-

priate counting registers and logic. The pro-
cedure is as follows: a number of pulses pro-
portional to to are registered during the first

half cycle, with subsequent switching when 6 /7
of the t0 pulses (85.71%) are counted and again

when 6 /17 (35.29%) are counted. A develop-
mental model weighing 2.5 pounds was fabri-
cated and successfully tested.
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Vapor Jet Propulsion System

The vapor jet test apparatus used for ex-
perimental determination of vacuum thrust and
Isp is shown in Fig. 13. An experimental pro-

pulsion system consisting of a jet valve and
actuator, a nozzle assembly and a fuel system
was used in conjunction with the switching
electronics to conduct vacuum tests of thrust

buildup time, valve leakage and component
life.

By photographing electrode arcing response
with a high speed camera, thrust risetime of
0.034 sec was measured--and most of this time
was attributable to the relay lag in generating
the timing light. The system was successfully
cycled 3.5 million times, simulating in-orbit
operation of more than one year. Subsequent
leakage tests and careful inspection substantiated
system feasibility.

Potential Applications

The switching techniques and component
developments described above can be applied
to many space missions that require precision
control of vehicle orientation.

In synthesizing a reaction jet system to
meet a specified set of performance require-
ments, the system evolution and design guides
outlined in Eqs (1) through (13) should prove
very useful. In particular, the need for intro-
ducing a timed pulse circuit can be effectively
evaluated from Eqs (11) and (12).

An attractive sophistication of the tp pulsing

technique provides an effective range of linear
control between two switching levels--one being
the dead band level desired for limit cycle
operation and the other, perhaps, as large as
the detector saturation level.

Between these levels, thrust impulse is
made proportional to the input error signal by
combining pulse frequency and pulse width

modulatione. This affords the capability for
simultaneous control (using common thrust
units) of vehicle translation and orientation as
required for space rendezvous. This technique
can provide limit cycle operation equivalent to
the Tp pulse system, but it possesses the

potential disadvantage of increased valve cycling
(and wear) during initial damping maneuvers
and because of noise inputs.
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List of Symbols

0, é, <] Vehicle angular displacement, rate and

acceleration

6€ Attitude sensor error signal

ed Attitude displacement dead band

OS Signal applied to jet switching circuitry

3] Maximum initial error

mi
0 { Initial condition error
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Attitude sensor saturation level
Jet control acceleration
Attitude rate during limit cycle

Measured incremental rate after thrust
initiation

Incremental rate required to signal
thrust drop-out

Rate limiting level

Jet control moment

External disturbing moment

Attitude rate to displacement gain ratio
Lead circuit time constant (denominator)
Noise filter time constant

Thrust build-up or decay time constant

Total time constant or lag
(TT= TL+T0+Tc)

Time duration of constant jet pulse

Jet on-time increments with conven-
tional switching

Jet on-time measured by digital count-
ing circuit

Time duration allowed for initial
damping

Total (accumulated) jet on-time
Equivalent switching hysteresis
Vehicle moment of inertia

Fuel specific impulse

Required fuel weight per axis
Jet thrust magnitude

LaPlace operator

NOTE: 7 and T are equivalent symbols.
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Fig. 12. Engineering model, jet switching circuitry.

Fig 13. Vapor jet test apparatus.
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CIRCUIT REVOLUTION: A TUTORIAL INTRODUCTION TO
THE SYMPOSIUM ON THE DESIGN OF NETWORKS WITH
A DIGITAL COMPUTER

Philip R. Geffe, Axel Electronics,
Inc., Jamaica, N. Y.

Abstract

Computers are revolutionizing circuit theory because any
well -defined calculative procedure isnowa practical procedure
with a digital computer: i.e., computation costs are reduced by
several orders of magnitude. Network applications yield theo-
retical studies as well as designs for hardware production. The
first part of this paper surveys these usages to date.

In the second part of the paper, the computer art from a be-
ginner’s point of view is discussed. Programming is discussed
in terms of object language, interpretive language, and problem-
oriented symbolic coding systems. Some practical advice is
offered for novices.
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EXPERIENCE WITH A
STEEPEST DESCENT COMPUTER PROGRAM
FOR DESIGNING DELAY NETWORKS

C. L. Semmelman
Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

Summary

A computer program has been written for the
purpose of designing networks by a successive
approximation technique. The program performs
two operations alternately: calculating the
improvement made possible by & small change in
each network design parameter and making larger
changes in all parameters to reduce the error in
performance. The program is written in Fortran-II
for IBM-TO4 or 7090 computers with 16 or 32 K
storage. It has been used mainly to design delay
networks; however by rewriting one subroutine it
may be used to design other types of networks or
solve sets of equations.

Operating Features

The steepest descent computer program was
written in order to provide a general purpose
tool for designing a wide variety of large and
very precise networks and solving complicated
sets of equations. It makes possible the rapid
design of networks for which analysis methods are
available but synthesis techniques are not. It
allows the engineer to impose practical design
objectives, such as nonuniform dissipation and
the range of avallable element values. Further,
1t makes possible unusual design obJjectives, such
as simultaneous loss and phase or combined
frequency- and time-domain requirements. It does
not restrict the designer to equal-ripple approx-
imations or infinite-Q elements.

The program is written in Fortran-II lan-
guage for the IBM-7O4 and 7090 computers and
requires 16 K registers of core storage. In
order to use the program an engineer must mske a
first estimate of the value of each design param-
eter, determine the maximum and minimum values
permitted for each, and prescribe the number and
location of the requirement points, e.g., R; and
fj in Eq. (3). The program allows 128 matc
points and 64 parameters. It improves the orig-
inal estimates by a successive approximation pro-
cedure so that the actual network behavior
approximates the requirement in a least squares
manner subject to the imposed constrzints.

Mathematical Formulation

Whereas a human designer could look at the
shape of an error curve and decide whether or not
a change in some parameter had made an improve-
ment, a computer finds this a very difficult task

- akin to pattern recognition. To ease this
burden, the steepest descent program examines the
value of one variable, y, which 1s defined for
delay networks in the following manner. Let the
delay requirement for the network be given by the
J values R; at the frequency points f, and the
actual delay of some n-section network be Tj, at
those same points.
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where £,y 1s the frequency at which the phase
shift of the 1th section is 180° and by 1s its
stiffness parameter. These delay section param-
eters are defined in Fig. 1.
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Fig. 1 - Definition of Delay Section Parameters

Equation (1) states that the delay provided by the
network is a function of the frequency and the
network parameters, or

TJ = T(xi,fj) (2)

where xy includes fy and by and 1 { 1 < 2n. The
match value, y, may then be defined as:
J
N 2
y = Z (R, - D(x;,£,))° = y(x,) (3)
J=1

The problem, then is to minimuze y by adjusting
the values x, subject to their constraints, where
the expressidn y(xi) 1s an extremely messy func-
tion of, possible, several dozen variables.

Description of the Program

Direction of Changes

The method of attack on this problem comes
from the fact that the direction in x-space in
which y 1s increasing most rapidly 1s the direc-
tion defined by the gradient.
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Consequently the increments for the x; required
to decrease y as rapidly as possible are given
by:

& - Jy Ay
4.xi——C$iz-CE‘€ (5)

where C is a constant. This is shown graphiecally
in Fig. 2, where x has been restricted to two
dimensions and constant values of y are shown by
contours. As the computer program must be able

Fig. 2 - Illustrating Gradient and Direction
of Steepest Descent

to evaluate the match value, y, it was declded to
use the first difference ratio in place of the
partial derivative. This was entirely a matter
of convenlence, as an additional evaluation of y
was faster than a calculation of the derivative.
The Ax used in the first difference ratio is
0.0001 x.

Magnitude of Changes

Having established the direction in which to
change the x's, 1.e., the signs and relative
sizes of their increments, it is now necessary to
determine their actual sizes. In the vicinity of
a minimum it may be expected that contours will
be ellipsoids in many dimensions and y will be
approximately parabolic. If the value of y 1s
calculated at three points the location and value
at the parasbola minimum may be determined. The
points xy, x;+1Fbox; and x4 +2Fbxy are used for
this purpose and values y,, L and Yo respectively
are found. F is initially an arbitrary constant
but 1s adjusted as the calculation progresses.
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Fig. 3 - Parabola Along Negative Gradient

The location of the parabola minimum is given by

= xi+MF6xi (6)
where
- 3y~ 4, 1)
i ay -
2_{0 Eyl+2y2

The parabola minimum will in general not be the
ultimate goal, as the negative gradlent will not
usually point toward the absolute minimum. This
is shown in Fig. 2, where the descent direction
does not pass through the origin. The parabola
minimum will, however, be the point at which the
steepest descent direction 1s tangent to a con-
tour. Having reached the parabola minimum, a
repetition of the above calculations will bring
further improvement. Successive gradients, as
shown in Fig. 2, will be perpendicular; however,
in more than two dimensions the direction of the
next path cannot be predicted by this means.

Safety Features

Although the basic operating features of
steepest descent approximation are covered in the
preceding paragraphs, many devices to protect
against unforeseen occurrences have been incor-
porated in the program.

It is conceivable that the points Yo» Y1»
and y, could determine a parabola which was con-
cave downward or could lle on a straight line.
The former would cause the program to locate a
maximum and the latter would result in a division
by zero. To avoid such occurrences, zero or
negative curvature causes the middle point y; to
be dropped and a new one, Yy, calculated at
Xy +4Fox;. The points yg, ¥y, and y) are then
checked for curvature and the process is repeated
using yg, Yy and yg; Yo, ¥ and Y165 etc., until
positive curvature is found.

The curvature, although positive,may be so
small that the location calculated for the mini-
mun is unreliable because of rounding error. The
process described above is used in this case also,
to obtain more reliable information.



When this procedure of doubling the spread
of the parabola has been executed too many times,
the program increases the numerical value of the
constant F, so that with the next gradient, fewer
calculations will be required.

It is also possible that Fbx; will be too
large, so that y; > yg, i-.e., on the other side
of the minimum. In this case F is reduced by a
factor of ten and a new value is found for y).

After the location of the parabola minimum
has been found, it is possible that the match
value at that point may be larger than one or
more of the values yg, y; or ypo. The program
selects the lowest as a point from which to con-
tinue and thereby assures that the approximation
never becomes worse.

In case the adjustment of parameters by add-
ing KFOxy results in one or more of them assuming
values outside their constraint range, the
corresponding limiting value is immediately sub-
stituted. Although this results in a departure
from the steepest descent direction, it will
produce results in keeping with the designer's
wishes.

Time-Saving Features

Two features have been incorporated in the
program solely in the interest of speed. One of
these 1s made possible by the fact that each term
in the summation of Eq. (1) is a function of only
two of the totality of network parameters. For
this reason, only that one term needs to be
recomputed when the first difference ratios are
being evaluated. The second feature is the accel-
eration step su§gested by A. I. and
G. E. Forsythe. The operation of this mechanism
is shown in Fig. k.

X3

Fig. 4 - Acceleration Step

Frequently, successive changes in a set of param-
eters will appear as shown by 0xg,0xy,,0xq,, etc.
When this happens, time can be saved by forming
the vector sum of two successive changes, say Oxg
and Oxyp, and using this in place of Fbxj in

Fig. 3. The corresponding values yg and y) have
already been evaluated and stored so that only
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one new evaluation, yp, is needed to prepare for
a major stride forward. By comparison, the
equivalent of at least four evaluations would be
needed to prepare for an additional step of the
bx. type.

Other Features

Because the evaluation of delay from Eq. (1)
forms a very large part of the computer program,
the time required may be estimated on this basis.
The IBM-T7090 requires about 0.7 millisecond to
evaluate each term of this summstion.

As the designer will not, in general, know
the optimum amount of flat delay to include in his
requirement, the program selects this for him.
This feature may be suspended when necessary.

The program stops when either of two condi-
tions is met: either the number of trials pre-
scribed for the machine run has been completed or
the program has failed to make improvements total-
ing one per cent in the last three trials.

Results

Since the steepest descent program was
written it has been tried on a wide variety of
types of networks. In adjusting three to six
element values in constant-R bridged-T loss equal-
izers it has achieved uniformly excellent results.
It has also been used to adjust element values in
a five-branch finite-Q filter to meet a loss
requirement while maintaining as low phase shift
as possible at a given frequency. In this case
one degree phase was weighted as heavily as 1 db
loss, and good results were obtained. The program
has also worked well in adjusting the f. values
of four phase sections whose b values were fixed
at 2.0, in order to produce a constant phase dif-
ference across a given band.

Delay Networks

When applied to the design of delay networks,
however, the results have been only partly satis-
factory. Figure 5 shows typical error curves at
the beginning and end of a run in which a parabola
minimum was found six times. This network con-
tained 20 sections and the requirement was
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specified at 61 frequencies. For most uses this
design would be entirely satisfactory; however,
the ripple is not as small as is theoretically
possible with 20 sections.

A good measure of the performance of the
program mey be obtained by comparing the number of
crossings of the calculated delay characteristic
with the required curve. Optimum results would be
obtained when this number equals the number of
delay section parameters plus one. The added
crossing comes about because the program is
allowed to select its own flat delay level, making
an additional variable. Table 1 shows the best
results that have been obtained for networks of
various sizes.

Table 1 - Results of Steepest Descent in
Designing Delay Networks

Final
Total Number Number of
of Parameters Crossings
7 b4
21 17
33 14
41 17

Several conjectures have been advanced to
account for the final numbers of crossings being
less than the theoretical values. One possible
explanation is that the program becomes trapped
in a local minimum and cannot get out of 1t to
find a better match elsewhere. On an intuitive
basis, 1t is difficult to believe this. There is
certainly some combination of parameter values
which produces 2n+l crossings. It seems incon-
ceivable that the match can be made worse instead
of better when changes are made which are each a
very small fraction of the changes required to
reach the optimum. We have been unable to demon-
strate rigorously that local minima either can or
cannot exist. A second explanation is that the
27 bit fractions carried in the computer do not
have sufficient numerical accuracy to carry
through to the final solution. This explanation
appears to be much more reasonable, as the
T-parameter case has been run until the computer
began to repeat the calculations with identical
numbers. It achieved only the four crossings
shown in Table 1. The use of a first difference
ratio instead of the true partial derivatives has
also been suggested to be the cause of the dif-
ficulties.

One characteristic which is common to all
the delay section computations is that very small
changes are made in the b parameters. In a
3-section delay equalizer for a filter pass band
the initial and final values and the per cent
changes in the parameters are listed in Table 2.
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Table 2 - Results Using Steepest Descent

Direction
Av.
Initial Final | Change | Change
£ 2.60 2.5897h  .394%
f o 2.65 2.6k627 .01k .272%
£ 2nT 2.71103  .409
b, 19.0 19.00089  .000473%
b, 20.0 19.99471  .002650 .00112
b, 21.0 20.99952  .000225
y .237 .080 66.3%
Crossings 2 L +2

If it is considered that only the f.'s were
adjustable, the results in Table 1 appear to be
quite near the theoretical limits.

Scale Factor Effect

It is believed that this avoidance of b
changes 1is attributable to the scale factor
effect. Because of it, the gradient direction is
not invariant to a change in the units in which
the parameters are expressed. This may be demon-
strated readily by consideration of the equation
and elliptic contours shown in Fig. 2. The opti-
mum direction in which to change the parameters
is toward the origin; however, only the gradients
at points on the semimajor and semiminor axes will
result in such a change. If the transformation

xl = 2w (8)
is made, the eguation becomes
23 I 42
y = b (9)
which plots as concentric circles. Now the
negative gradient at every point will point
directly to the minimum at the origin. 1In such a

situation the program might, for example, con-
verge quickly if freguencies were expressed in
megacycles per second but not if the designer
preferred kilocycles.

Least Squares Direction

In order to test this hypothesis, the method
of determining the improvement direction was
modified by calculating the change in each param-
eter needed to meke a least squares match to the
requirement curve. This is the Taylor Series
method described by M. R. Aaron.2 These coeffi-
cients determined the direction of change and the
distance was determined by putting a parabola
through three equally spaced points, as before.
The results of this modification are shown in
Teble 3 and are plotted in Fig. 6.
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Fig. 6 - Comparison of Steepest Descent
and lLeast Squares Results

Table 3 - Results Using Least Squares

Direction
Av.

Initial Final Lghange | Change
A 2.6 2.59601 .15%
£.0 2.65 2.64531 .18% 0.19%
fc3 ] 2, T0664 .25%
b, 19.0 25.23380 32.8%
v, 20.0 12.92902 35.3% 31.4%
b3 21.0 26.52252 26.3%
y .2370 .00546  97.7%

Crossings 2 8 +6

These results show that large changes in b
values are needed and are not being made with
the negative gradient program. To obtain more
positive evidence, the final parameter values
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from the steepest descent run (Table 2) were used
as initial values for a least squares run. The
results do not differ to any practical extent
from the final results in Table 3. This shows
that sufficient numerical accuracy was available
and that a local minimum did not stop the
improvement.

Although it worked very well in this
example, the least squares procedure does not
appear to be the ultimate answer. Cases have
been found where two parameters produce rather
similar changes in delay. The simultaneous equa-
tions which result will then be ill-conditioned
and may require more precision than is available.
Further, the least squares procedure may then
require an exhorbitant positive change in one
parameter and an equally undesirable negative
change in the other. When these changes are
tried, the nonlinearity of the functions prevents
the expected improvements.

Conclusion

The steepest descent procedure appears to be
adequate for a wide range of engineering applica-
tions. In cases where results near the theoreti-
cal limits are required. a better process for
determining the direction of change would be
desirable. Several ideas are being investigated
but none has yet proven itself capable of consist-
ently producing the optimum theoretical results.
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FILTER SYNTHESTIS USING A DIGITAL COMPUTER

G.C. Temes
Northern Klectric Research and Develonment Laboratories
vUttawva, Canada

Summary

The design of filters generally involves several
successive steps: the derivation of a realizable
approximation to the specified transfer character-
istics; the caiculation of the immittance para-
meters; and finally, the establishment of the
circuit diagram and the element values. Tke
synthesis is usually followed by an analysis of
(and, if necessary, compensation for) the effects
of parasitic phenomena and element variations. By
combining analytical, numerical and graphical pro-
cedures, a great variety of specifications can be
satistied by networks realizable in nractical
configurations and with feasible element values.
This paper classifies and gives a brief description
of the digital computer programs that were found
to be most useful in these calculations, OSeveral
representative examples are included,.

I. Introduction

Tne purpose of this paper is to give a classi-
fication and brief description of the digital
computer programs that have been - or are expected
to be - useful in the synthesis of filters and
related networks at the Communication Networks
Laboratory of Northern Electric R 8 D Labs. This
laboratory carries out research and development to
design filters and other networks used in telephone
and radio transmission systems, All computational
design work is done on a digital computer. The
computer currently being used is an IBM 1620,

The programs referred to in this paper are
subject to the following restrictions:

a, The design methods are based on the inser-
tion loss theory.

b, The filters are resistively terminated
lumped LC 1adder networks without mutual induct-
ances,

¢, The networks are sharply frequency-selective,
with clearly distinguished pass and stop bands.

d, A1l specifications are in a frequency-
domain.

The synthesis of such networks is carried out
in the following steps:

1, On the basis of the specifications, a
rational function satisfying the realizability
conditions, and meeting the specifications is
derived. This procedure is called approximation.
The derived function is usually the insertion
voltage ratioA or the insertion characteristic
function of the desired filter,2

2, |JA|' and |§f*are related through energy con-
siderations, and one can be obtained from the
other. The immittance parameters or driving-point
immittances of the ladder are then obtained from
both A and ¢ .

3, The filter element values can be found
using one or more of these immittances, If
necessary, network equivalences and transformations

n

can be utilized to modify the configuration or
element values, Steps 2 and 3 embrace the

synthesis portion of the network design.

4, In addition to the general realizability
conditions on passive, 1um?ed-e1ement, resistance-
terminated I.C - fourpoles, =3 the requirements for
ladder realizability® must be satisfied. For some
special attenuation characteristics a check can be
made after Step 1; for others, after Step 2.

5, The performance of the synthesized network
is usually examined immediately after the design
has been completed. The attenuation, phase,
driving-point immittance etc., can be checked.

6, The effects of narasitic phenomena (dissi-
pation, aging, tolerances etc.) are analyzed.

Some preliminary estimate can sometimes be obtain-
ad after Step 1, but usually the full investiga-
tion can be performed only after the network has
been obtained, Steps 4, - 6, are concernred with
the analysis of the filter and its parameters,.

7, Depending on the results of Step 6, it may
be necessary to repeat the synthesis procedure
including a precorrection for the effects of para-
sitic elements., Alternatively, the filter may be
cascaded with correcting networks (equalizers) to
improve its performance.

A schematic illustration of the complete design
procedure is shown in Fig. 1.

Although it is theoretically possible to con-
struct programs that carry out all necessary calcu-
lations in one run, it was found that the computer
storage capacity does not permit this for major
design problems. For this reason, and also for
flexibility in application, the more involved syn-
thesis vrorrams are built up from several (2 - 4)
sub-programs, from vhich a laree number of com-
binations can be obtained. Corresponding to the
design steps described above, these sub-programs
can be divided into the following groups:

A, Approximation programs;

B, Synthesis programs;

C, Analysis programs;

D, Procrams used in the estimation and pre-
correction tor parasitic effects.

These subprograms will now be briefly described.

II. Computer Programs Used in

the Approximation Procedure

The purpose is usually to derive the function
$. Q is generally chosen because:

a, The realizability restrictions on d) are
not as severe as those on A .

b, In the pass band approximates zero rather
than a constant as does A,

¢, Generally the zeros as well as the poles of
® 1ie on the real frequency axis.

A11 of these factors tend to make it easier to
solve the approximation problem in terms of



rather than in terms of A.

A, Approximation of the Ideal Low-rass

Attenuation Characteristics -

In practice, the most common filter specifica-
tion is one requirine a low-pass attenuation
characteristic., The following programs dealing
with this approximation problem have been used.

1, Butterworth polynomial approximation, The
attenuation response approaches zero in the pass
band and infinity in the stop band in a maximally
flat manner, The degree of the polynomial, the
parameters of the characteristic function and the
element values of the filter can be obtained di-
rectly from formulae” expressing them in terms of
the maximum pass band attenuation,A,, the minimum
stop band loss Ag, the band limits w, and w,, and
the terminations Ry and Ra.

2, Chebyshev polynomial approximations., Ex-
plicit formulae are also available® for the case of
a Chebyshev pass band, maximally flat stop band
response, The complementary case (flat pass band,
Chebyshev stop band) can be treated by replacing
'@I by% and w by%o 5

3, Darlington-Cauer (elliptic) approximation.
Both the pass band and the stop band loss are
approximated in a Chebyshev manner, The design
tables for one to four section symmetrical filters,
given by Grossman®, were programmed. These tables
yield ¢ , A and the element values, For other net-
works the roots and poles of @ (the so-called Cauer
parameters% are obtained using a AJ-series approx-
imation.6-

Although other approximations of the low-pass
characteristics exist, the frequency of applica-
tions did not warrant their progr ing.

Using reactance transformations®, these results
can be applied to the design of high-pass, fre-
quency-symme trical band-pass, band-stop and multi-
band filters (cf., rara, III, D.1.)

B, Chebyshev Yass Band, Arbitrary
Stop-Band Approximation

Filters approximating zero loss in the Cheby-
shev sense in their pass bands and satisfying
arbitrary frequency-dependent specifications in the
stop bands are frequently used, Usually the design
procedure begins with the location of the atten-
uation poles to satisfy the stop band requirements,
This can be done by a graphical procedure employ-
ing special templates and calibrated graph-paper8-9,
The process can also be programmed on a computer,
Different templates or programs are used for low-
pass (high-pass, frequency symmetrical banrd-pass
and band-stop) filters and for frequency unsymmet-
rical band-pass networks. The following programs
are available for the design of such networks:

1, Chebyshev pass band low-pass approximation.
Af'ter the attenuation poles have been established,
a step-by-step design schemelV, based upon Darling-
ton's reference filter methodl, is followed to
synthesize networks with up to four sections,

2, Chebyshev stop band, arbitrary pass band
approximation can be obtained in some cases by
combining the Chebyshev pass hand synthesis proce-
dure with the |<1>|..I/'QI‘Q_,}/Q transformation.
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3, For unsymmetrical band-pass networks the
design procedure described by Saal and Ulbrich® was
programmed, ‘The network thus obtained could be
transformed into a band-stop filter with different
ripples in the two pass bands.

4, Recurrence relations yielding ¢ for
Chebyshev pass band filters are given by Fettweissll,

C, Filters with Arbitrary Pass Band

and Stop Band Characteristics

Several design methods are also available for
filters satisfying frequency-dependent specifica-
tions in both their pass and stop bands. Some of
these were programmed on the computer,

1, Chebyshev pass band filters cascaded with
cons tant-resistance equaiizers. The programs of
Para, Il, B, are used to achieve the required stop
band characteristics and constant resistance ladders!Z
or bridged-T equalizers are designed® +to bring the
pass band response within specifications.

2, Approximation methods such as least-squares
polynomial approximation'®, curve matching at select-
ed points3, and the steepest descent methodl4 are
used,

3, The design method of LinkelS has been pro-
grammed, This approximation procedure makes use of
a group of curves shawing the effects of the individ-
ual complex natural frequencies and imaginary atten-
uation poles, The use of these curves is demonstrat-
ed in Fig. 2. The critical frequencies thus obtain-
ed are fed into the machine one by one and the
resulling error typed out for further approximation,
After a close approximation has been obtained, the
computer improves upon the results to give the least-
squares error, ,

4, Darlin%ton's Chebyshev polynomial series
approximationl® has been used for the synthesis of
filters with preassigned attenuation poles and
prescribed pass band characteristics.

5, The iterative method described by Shenitzerl?
can be used to obtain equiripple approximation of a
prescribed pass band response and specified atten-
uation poles.

Filters with Prescribed Attenuation
and Phase Response

DJ

The following approximating programs are useful
in the design of filters satisfying both attenuation
and phase requirements:

1, Swvnthesis of a filter exhibiting the required
attenuation response, cascaded with an additional
all-pass phase corrector. The latter can be designed
by Darlington's methodl6, 18-2U or by trial and
error??,

2, Filters with Chebyshev pass band and prescrib-
ed phase characteristics can be designed using
Bennett's methodzl. This involves, esentially, the
cors truction of a numerator for A , which gives the
proper phase response, and then the selection of a
cons tant-phase denominator which secures the
Chebyshev pass band behaviour,

3, A somewhat similar apgroach has been suggest-
ed by Skwirzynski and Zdunek 3, The attenuation
associated with the minimum phase network required
to satisfy the phase characteristic is computed

#Several programs and graphical aids were created
for the design of these equalizers, These are,how-
ever, beyond the scope of this paper.




using Bode's re]ationshipzs. This loss response is
anoroximated by a Chebyshev polynomial series and
equal ized by including a prpger cons tant-phase denom-
inator, with jow -axis roots24, ) )

4, Darlington's Chebychev npolynomial series
approximation procedure has been used successtully

5, Low-pass response combined with maximally
flat group delay characteristics can be obtained by
using Bessel-polynomials to construct j& e

6, Beletskiy describes a method“’ suitable for
the desien of filters with maximally fiat pass band
delay and Chebyshev stop band attenuation char-
acteristics,

IIT, Filter Synthesis Programs

The approximation nrocedure yields one oi the
functions §,{@[' A or |[A|. The network element yalues
can then be computed using Darlington's method”.

A, Calculation of § and A

In general the network immittances are functigns
of  and A . The calculation of ¢ and A consti-
tutes the most laborious part of the design. The
usefulness of the digital computer, at this stage,
cannot be overemphasized,

1, Computation of A from |[/A[*. The denomina-
tor of a ladder-realizable A has only conjugate
jw -axis roots, while its numerator is a Hurwitz-
polynomial. Hence, a straight-forward root-solving
routine is used to find the left half-plane root
factors of the numerator of bk|zand then to multiply
them together to obtain the numerator of N . The
denominator of A is simply obtained from the square-
root of the denominator of | Al%.

The computation of the roots of the numerator
polynomial of | A} can be performed by any one of
several published methods =30, 4 program, using
18-digit precision subroutines and the Newton-
Bairstow method9Y, has yielded roots correct to an
accuracy which has been found adequate for all
practical networks,

Also available is a direct method for the
Hurwitz-factorization of polynomials without solving
for the zeros3l, X

2, The computation of (i) from l(ﬂ can be
carried out in a similar way. The denominator of
also has jw -axis roots only; however, the numerator
need not be Hurwitz. Normally, a Hurwitz-type
numerator for @ is derived first, and then the
formulael giving the reflection coefficients of the
network in terms of and A are utilized to
find the signs of the even and odd parts of the
final numerator, corresponding to the required ter-
mination ratio and conficuration-s4. .

3, The calculation of |*from |Al* is done
using Eq. (17) of Darlington's paperl. For single-
loaded networks these two functions are equal.

4, |®2 can be obtained from , or [A]? from
N using the equality of[f&p)lz and f(p) f(-p) on
the jw -axis.

5, The synthesis of Butterworth or Chebyshev
polynomigl filters can be effected by using simplg
formulae” expressing the element values directly in
terms of the attenuation requirements and the ratio
of the terminations.

B 1
. . 5
to satisfy simultaneous loss and phase specifications*

6, For elliptic filters, approximating formulae
are used to find the critical frequencies® and also
the element values of symmetrical fi1ters with 1 - 4
sections®,

The Derivation of the Filter Element Values

The element values can be obtained by devel-
oping a suitable driving-point immittance function,
For large retworks it is advisable to develop the
circuit from both an input and output immittance,
to increase the accuracy of the realization, and to
provide a check,

1, The design immittances gan be found from
Darlington's Eqs, (14) and (18)'. In order to
extend the validity of these formulae to -\ and 3
with odd denominators, however, the subsitution of
A-A,, B A, As &, pB— $, (suffixes e and o
denoting the even and o parts, respectively) must
be made, Equation (14) can also be used, after
these substitutions are made, to check that the
signs of QL and @, conform to the desired config-
uration and terminations,

2, For constant-k type conficurations the
realization can be_performed through the continued
fraction exnansion® of the design immittances or
equivalently, by the removal of poles at zero and
infinity from this irmittance.

3, For general mid-series or mid-shunt low-pass
filters_the design process described in Darlington's
Table I' was programmed. For svmmetrical low-pass
filters Darlington's Table 11l gives the element
values of networks with up to three sections. The
formulae for four-section networks can be found in
Grossman's article®,

4, For more general ladder networks the nole-
removing immittance expansion method due to Baderd?
wag programmed, It can be used to expand a driving-
point, as well as an open or short circuit immit-
tance. The desier formnulae were tabulated by Saal
and Ulbrich®. When this process is used, the order
of removal of finite poles must be promerly chosen
to satisfy the ladder realizability conditions?:8,
Also, it is exnedient to check the accuracy by ladder
development from each end of the network , Since the
number of significant figures in the element values
decrease rapidly with increasing netivork complexity.,
C, Programs for the Synthesis of Band
Senarating Fil ters

The synthesis of filter groups performing the
separation or combiration of frequency bands is
somewhat different from the design of other filters.
Since these networks are either parallel or series
connected at one end, constraints are placed upon
their driving point immittances. As a consequence,
the voltage or current transfer ratio N or M and the
voltage or current characteristic furc tion @N or
is the most useful design parameter. The programs
used in the design of these networks are based on the
following design approaches:

1, The exact design of band separating filter
groups is carried out by approximating the specified
responses with the (I)N. or d)n, of the individual net-
works33. In addition, the ¢, (§,) have to satisfy a
constraint originating from a required constant
driving-point immittance at the parallel (series)
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connected terminals.

2, A much more economical synthesis procedure
can be used if only an approximately constant,
driving point immittance is rermissible8,34,

3, Auxiliary networks can be used to absorb
nover if the pass bands do not overlap®®,

4, For filters with stringent ston-band require-
«ments, it is expedient to cascade a banu s.cparating
filter group designed for low stop-band loss with
individual filters yielding the required stop-band

attenuation®,

5, The design of a harmonic separating filter
set, i.e. of filters than can be used to suppress
or select the harmonic content of signals within a
prescribed frequency range, involves the calcula-
tions of the optimal selectivity of the set35,
This calculation can be prograrmed for various
approximations and filter tymes.

I, Network Transformations

Sometimes it is advantageous to synthesize a
simplified model of the required ne tworks and then
to convert this "prototype" into its final form
using network transformations. Transformations are
also used to achieve desirable configurations and
element values, The following transformations were
programmed:

1, Reactance transformations3 used to convert
a normalized low-pass prototype network into
denormalized low-pass, high-pass, band-pass, band-
stop, or multi-band filters,

2, The approximating procedures described by
A1:iya36 and Cohn37 transforming constant-k type low-
pass prototypes into band-pass filters built up
from capacitively coupled tuned circuits, The
latter is a most useful configuration for high-
frequency, narrow band filters.

3, The "zig-zag" transformation converting low-
pass prototypes into band-pass filters having a
minimum number of coils has also been programmed,
using Figure 12 of Saal and Ulbrich®. gscently,
recurrence formulae were also published“",

4, Another transformation” converts a single
section low-pass prototype into a band-pass circuit
in which all nodes are capacitively loaded.

S5, The impedance level in some parts of the
circuit can be changed using transformations due
to Norton“,

6, The configuration can be changed using the
familiar T-T tranformation and other specialized
equivalences®,

i

IV. Analysis Programs 0

An important part of the design nrocess is the
analysis of the feasibility of the requirements
and of the performance of the resulting network,

A, Realizability Analysis

The criteria necessary for ladder realization
without mutual inductance can be programmed into
various parts of the synthesis routire, However,
for simple networks it is normally just as easy
to carry out the design and check for negative
elements, Also, realizability nomographs and

curves can be developed for convenient use, The
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,
following is a summary of the routines used to test
the realizability of networks?.

1, For symmetrical filters without finite atten-
uation poles (Butterworth, Chebyshev pass band
filters) there are no restrictions on the ladder

realizability. For Chebyshev stop band filters the
stop band 1loss must be larger than a minimum value
which is a function of the degree.

2, Symmetrically terminated antimetric filters
with Butterworth stop band characteristics are
always realizable; for Chebyshev stop band filters
there is a lower limit on the stop band loss,

3, For elliptic filters with 2 or more sections,
the stop hand loss, the pass band ripple and the
selectivity all have lower limits that is a func-
tion of the other parameters and the degree.

4, For more general mid-series and mid-shunt
networks, the criteria of Meinguet® apply.

B, Network Analysis Yrograms

The following programs are normally used imme-
diately after realization to test the response of
the network:

1, The transfer and driving-point characteristics
are plotted as functions of frequency 9. The 1loss
and phase, the delay, the voltage and ¢:rrent ratios
and the driving-point immittances can be calculated
with or without parasitic elements,

2, The transfer and driving point immittances,
as well as the soldering iron and plier type
immittances of ladders can be computed from the
schematics as rational functions of the frequency4°.

3, The transient response of the network, for a
step and various pulse inputs or modulated sine-
wave excitation can 2@ computed from the schematic
or transfer function®l,

C, Mathematical Analysis Programs

Some general purnpose analysis nrograms that are
used in various applications are:

1, Calculation of attenuation and phase from
the zeros and poles of transmission or reflection.

2, The calculation of the reflection factor,
the driving-point immittance, A or from each !
other,

3, The calculation of the real and imaginary
components of a minimum phase network function
from each other using Bode's formula.ezs.

4, Evaluation of a rational function to find
its real and imaginary parts, phase, and absolute
value. Also, finding the jw-axis minimum of the
absolute value or the real part,

5, Conversion among rational, continued and
partial fractions.

6, Calculations of various driving-point and
transfer quantities from the immittance or chain
matrix. Conversion of various parameter matrices
into each other,

V. Programs for the Estimation of and
Precorrection for Parasific Effects

Even for moderately difficult specifications, the
effects of parasitic elements, temperature, tolerances,
aging etc. become significant, Some of these (dis-
sipation, stray élements) can be taken into account




in the synthesis procedure®; others (aging, toler-
ances) can be limited only by specifying high
quality components. In any case, the anticipated
effects must be estimated,

A The Estimation of Parasitic Effects

bJ

The following programs are used:

1, The estimation of parasitic effects on the
synthesized network can be carried out utilizing the
analysis program of Para. IV, B.1. Using a first-
order perturbation method, the distortion can also
be calculated as a mathematical [unction of the mnar-
asitics and the frequency™“.

2, The effects of uniform dissination on the
attenuation (phase) response can be estimated in
advance by pertorming a shift on the frequency-
variable! in /L or frog the derivative of the nhase
(attenuation) function 5. If the Q's are high and
the frequency origin is not contained in the pass-
band, the response thus derived will also give a
good approximation for semiuniform loss distribution

3, For gereral networks with semiuniform losses
a straightforward procedure was developed®“, which
can be used to estimate the distortion before the
network is realized.

B, Precorrection for the Effects of Dissipation

If the estimation process indicates that a
compensation for the incidental losses is needed,
the following programs can be utilized for this
purpose,

1, The precorrection for uniform dissipation
is carried out by a simple frequency-shiftl in the
independent variable of A . The termination ratio
is normally also modified to preserve the re-
alizability of A .

2, For semiuniform loss distr{butions,
Darlington's procedure can be used”, Although this
procedure is straightforward for single-loaded four-
poles4°, it is quiie complicated for double-loaded
ne tworks and a simple process based on a perturba-
tion approach may be preferable®<,

3, For special network configurations the
methods described by Geffe44 and Disha14® are ap-
plicable. Geffe gives explicit formulae for the
predistorted voltage ratio of a single-loaded con-
stant-k type low-pass filter with uniform or semi-
uniform losses, while Dishal describes a design
method for band-pass filters with Butterworth or
Chebyshev passband response,

4, For networks with arbitrary loss distribu-
tions and without finite attenuation poles the pre-
distortion method of Desocer’> can be used. For the
precorrection of arbitrary ladder networks, a more
general and easily applicable precorrection method
was found to be effectived?, A recently publis hed
correction technique4? based upon steepest descent
type distortion minimization seems to demand an
unduly high cost in terms of stop band discrimina-
tion.

5, The design of a predistorted double-loaded

# A first-order precorrection for temperature
effects can be obtained by choosing the temoerature
coefficients according to the relation én zsl-—ék,
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filter is laborious; furthermore, it always in-
troduces some flat loss and thus decreases the
return loss. Also, the sensitivity to element
variations is increased. For these reasons, it is
some times more convenient to use constant-resistance
equalizers —usually bridged-T networks, with one
resis tor and a few tuned circuits in each bridge
arm—to correct for the effects of dissipation,

VI. Accuracy Considerations

A very important aspect of the programs is the
number of significant ficures used in the input and
output operations, and in the internal comnutations.
A11 programs were written either in FORTRAN or in
the Symbolic Programming System (SPS). Since
FORTRAN nroerams require more storage, are less
flexible and are limited to 8-digit precision™,
such programs were only used when hicher accuracy
was not required. In SPS the limiting factor on
the number of significant digits used was mainly
the storage capacity of the memory in use. It is
most convenient to be able to store the program
and all partial results simultaneously without
intermediate input-output operations, but this was
not possible for major programs using more than 12-
digit precision in comnutation,

Experience showed that by establishing the
number of significant figures according to the
following lists, satisfactory (4 - 5 digit) ac-
curacy results both in the element values and the
transfer and driving-point parameters of filters
with up to 6 sections:

a, Approximation programs: 8 digit. Excep-
tions: Shenitzer's method and the Chebyshev pass-
band, arbitrary stop band approximation (12 digits).

b, Synthesis and precorrection orograms: 12
digits. However, the programs computing the roots
of A and ¢ use 18-digit subroutines in order to
give sufficiently accurate values for the roots.
Although the ladder-expansion program (using
Bader's method®4) uses only 12 digits, this preci-
sion has proven to be barely adequate, so that the
more complex networks had to be developed from
both ends.

c, Network transformations: 8 digits.

d, Programs used for analysis and for the
estimation of parasitic effects: 6 dieits for in-
put and output operations, 12 digits for internal
comput ations.

Numerical checks were incorrorated in all pro-
grams wherever possible. Also, test cases were
worked out and attached to the program descrip-
tion to test the reliability of the program and the
computer,

Although these precautions seem to be exag-
gerated, predistortion calculations showed that a
correction in the third or fourth digit of the
coefficients of A may cause changes in the order
of 0.5 db in the pass band of sharply selective
filters., Similarly, bitter experience showed that
an error in the eighth digit of a coefficient of
Z, may make it unrealizable., Even if 12 signif-
icant figures are used, care must be taken to
detect round-off errors in singular cases,

# An improved version, FORTRAN II, which will soon
be available, will not have the latter limitation,



The 6-digit type-out of results in the network
analysis programs nroved adequate for all practical
purposes, A larger number of figures would have
unduly slowed down the output operation. With 6-
digit output , the time required for the calculations
at one frequency varies between 5 and 25 seconds,
denending on the number of transfer quantities and
immittances listed, and on the network complexity.

Finally, the reliability of this method of
filter synthesis must be emphasized. It was found
to be practically impossible to design a filter with
3 or more sections on a desk calculator using the
insertion loss method, due to unavoidable human
errors and fatigue, With the numerical checks used
in the computer programs, no undetected error has
ever been discovered in the realized networks during
several years of oneration, in spite of the fact
that the computer has been run on the "open-shop"
basis, by a number of desien engineers and techni-
cians.

VII. Examples

The uses of the computer programs 1isted above
will now be illustrated by describing some prac-
tical network designs.

A, An Elliptic Low-Pass Filter Corrected for the
Effects of Dissipation

A low-pass filter was designed to satisfy the
following requirements™:

Pass band 1limit: 85,68 kc,
Stop band 1limit: 94,54 kc,
Pass band ripple: 0.1 db.

Stop band discrimination: 4u db

Generator and 1oad impedances: 600 ohms,

Since these requirements are fairly typical,
the design onrocedure will be described in some
detail,

1, The order of the network was found from a
design chart to be 7. This corresponds to a 3-
section network.

2, The normalized characteristic function was
obtained using &} -functions (rara, II, A,3):

o’ + 1.9151163R4p5 + 1,1341150241p°
@ + U.197196423351p
U.USURER5542p® + U, Z292669982919p %
+ 0.4942153728U80% + U, 25806022913
3, Using the programs of rara. III, A.3 and
ITI. A.1., A was obtained
p? + 1.57974755008p¢ + 3.16162272252p5
+ 3,1967976697p" + 3.0U5261U299p?
+1,87144Y75298¢% + U.B6LH85522302up
A= + U, 258060229130
U, USURES542p® + 0.292669982919p"

+ 0.494215372808Un* + 0,258U6U22913

4, With the aid of filter tables, it was
predicted that all inductance values would fall
between U,5 mH and 2 mH., Coils in this inductance
and frequency range can be designed to have Q's in
excess of 3uu, The estimation nrocedure of Para,
V. A.3. was used, to determine whether or not
precorrection would be necessary. The estimated
response is shown in Fig, 3, It is apparent that

# Some sat'ety margin is already incorporated in
these specifications,

216

predis tor tion was necessary to satisfy the specifica-
tions.

5, The nrogram reterred to in Para. V. B.4 was
used to derive a nrecorrected A . To achieve good
selectivity, the Q of the coil rnroducing the lowest
attenuation nole was chosen to be 40U, the other
Q's to be 250. Then

1.56924755006p° 4 3.14503537333p%
.17338738793p" + 2,9826745090up?
.858706V1248p% + U.859U783259V1p
. 25718301634y
UT155TU9771p% + U.2Z91675122725ph
492555408239p? + 0.257183016349

7, The performance of the network was obtained
using the analysis programs of Para. IV. B.,1, The
lossy response is shown in Fig. 3, the locus of the
driving-point impedance in Fig. 5. The deviation
of the response from the specifications is less
than 0,002 db in the pass band,less than 0,2
db in the stop band.

8, The tolerances were established with the aid
of the programs discussed in V. A.1., by plotting
the distortion introduced by a small change in each
element value and Q in turn and then using statis-
ticel considerations or counting on the most unfor-
tunate distribution of element variations. These
calculations will not be reproduced here,

9, The measured response of the filter built
with the element values shown in Fig. 4 agreed,
within the accuracy of measurement, with the
characteristics shown in Fig. 3. A photo of the
pass band response, as displayed on a visual an-
alyzer, is shown in Fig. 6.

The c amputer time to realize the network and
obtain its response was approximately one hour.

n +
+ 3
+ 1
+ 0
Ar-d [VNVE
v,

B, FEqualized Minimum-Induc tance Band-Pass Filter

A band-pass filter was to be built to satisty
the following specifications:

rass band: 80 - 88 kc

Stop bands: U - 76 kc. and 92 kc -

Pass band ripple: ¢,1 db

Stop band discrimination: 7u db

Generator and load impedance: 135 ohms

To allow for anticipated parasitic effects, the
synthesis was based on an 11 kc pass band width,
and a ripple of U.U5 db,

The design was carried out in the following
steps:

1, The order of the circuit had to be even to
allow the use of a "zig-zag" transformation. An
eighth-degree prototype network satisfied the
specifications,

2, The characteristic function resulted from a
o) -function approximation (II. A.3)., A and Yu
vere obtained using programs described in ITI. A.3.,
ITI. A.1. and TII. B.1.

3, The low-pass nrototype was found by expanding
Yy into a mid-shunt ladder (III. B.4),

4, The band-pass network was derived by a
minimum-inductance transformation (III. D.3). To
obtain more convenient element values, two Norton-
transformations were performed in the first section,
and the first coil was tapped. The final network
is shown in Fig. 7.

5, The resulting lossy network did not meet the
pass band specifications and some correction was



necessary. Because of the high selectivity, hovw-
ever, a predistortion would have greatly increased
the sensitivity to parameter variations, and hence
was not attempted. The correction was achieved by
cascading a constant-resistance equalizer. The
desion of this equalizer was carried out using a
computer proeram that matches the equalizer loss to
the required resnonse at nre-assigned points. The
resulting circuit is shown in Fie. 7, the corrected
response in Fig., 8,

Computer time needed to complete this design
was about YU minutes.

C, Chebyshev Pass Band Filters

The desien nrocess for filters with Chebyshev
pass band and arbitrary stop band response is
similar to that followed in the previous examples,
but is preceded by:

1, the location of the attenuation poles, using
special programs or templates (IT. R.);

2, the derivation of A from the attenuation
poles and the pass band specifications (TIT. B.1-2).

The specifications, the circuits and the
responses of a low-pass and a band pass filter are
illustrated in Figs. 9-1U. It took approximately
one hour of computer time to carry out the design.

D

, DBand Separating Filter rair

The approximating synthesis of a front-parallel
connected low-pass/high-pass filter pair will now
be briefly described. The design stages are as
follows:

1, The pass and ston band loss requirements
are recalculated in terms of voltage ratio, assuming
a constant driving-point impedance (III. C.2).

2, The voltage characteristic functions are
calculated usingn) functions (IT. A.3).

3, The voltage ratios and Yg2's of the filters
are calculated,

4, The networks are obtained by ladder expan-
sions (ITI. R.4). The frequency denormalization of
the two circuits is carried out in such a way as to
ensure an approximately constant driving-point imped-
ance throughout the transition region.

The circuit, the measured response and the
driving-point impedance of a filter-group designed
by this procedure is shown in Figs. 11 - 13. The
network used coils with a Q of 13u.

Tvio hours machine time was required for this
design.

E, Filter with Special Pass and Stop Band Response

The design of filters with prescribed pass
band behaviour will be illustrated through a net-
work designed to equalize in its pass band the loss
due to 20 miles of open wire and to suppress sig-
nalling tones in the stop band. The design was
carried out using Shenitzer's method (II. C.5).
Tbe specified and actual responses are compared in
Fig. 14, The error in the pass band was less than
0.15 db. The circuit is shown in Fig. 15,

The design (including response plotting)
required two hours of computer time,
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Fig. 2. The use of Linke’s curves.
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DESIGN OF TRANSISTOR FEEDBACK AMPLIFIERS AND AUTOMATIC
CONTROL CIRCUITS WITH THE AID OF A DIGITAL COMPUTER

Omer P. Clark

Bell Telephone Laboratories,
North Andover,

1. Introduction

A method of designing transistor
feedback transmission amplifiers with the
aid of a recently developed nodal analysis
digital computer program 1s described. A
procedure for using this nodal analysis
program during the design of automatic
control systems is also included. This
computer program will be referred to as
NAPANS for "Nodal Analysis of Passive and
Active Networks" in the following discus-
sion.

This paper consists of three main
parts: The first part explains the func-
tional requirements for transmission
amplifiers, the basic terminology used in
feedback circult design, and the general
circult configuration used for transmis-
sion amplifiers under development in the
60-kc to 4-mec frequency band. The second
part of this paper describes the nodal
analysis computer program used to compute
open- and closed-loop amplifier frequency
response and input and output impedance.
The major problem encountered during the
development of thils program was obtalning
transistor and transformer characteristics
in a form suitable for a nodal analysis
program. The method of doing thils with
the aid of small computer programs 1s
explained. The third and final part of
this paper explains how the circuit engi-
neer prepares the circult information for
the computer programmer. The outstanding
feature of the nodal analysis program is
shown to be the small amount of effort
required by the engineer to prepare the
circult for analysis. The results
obtained with the NAPANS program are com-
pared with laboratory measurements for
a 2-stage transistor feedback amplifier
and a phase-locked osclllator control
cireudt.

2. Transmission Amplifier and Feedback
Circulit Terminology

A conventional method of indicating
an amplifier with assoclated coupling
circults to its ffedback beta circuilt is
shown in Fig. la. Thils arrangement 1s
particularly useful 1n the design of
transformer-coupled amplifiers discussed
in this paper. The amplifier has a for-
ward galn characteristlic indicated by,
A fraction of the output signal is fed
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back to the input through a network
indicated by B . The over-all feedback
amplifier gain is given by the equation
w/l-up as shown in Fig. 1b.

Another form of writing the feedback
amplifier eguation, commonly used for
automatic control systems, 1s indicated
in Fig. lc. Note that a positive sign is
normally used in the denominator. The
forward galn of the circult is given as
G(Jjw ) for fregquency response and is
indicated by G(s) for Laplace transforms
when analgzing the circuit for transient
response.

When the design reaquirements for a
feedback amplifier are specified, a gen-
eral design graph 1s drawn as shown in
Fig. 1b to indicate the open- and closed-
loop galn requirements. Past experience
has indicated that over 30 db of loop
feedback is required to reduce modulation
products of the amplifier. A polar plot
of a typlcal uB gain [also called GH(s)
gain] versus phase is given in Fig. lec.
The dashed line indicates network shaping
to obtaln more feedback gain while pre-
serving phase margin.

A very useful procedure to follow
while making manual calculations of a
transistor circuit is given in Fig. 2.9
The first step 1s to obtain transistor
and transformer data at their approximate
center values for the eguations 1 to 6
Note that these are general eguations
that must be modified for local shunt or
series feedback as given in reference 3.
The resulting calculations using these
equations will give response curves very
close to the desired values of the type
shown in Fig. 2. That is, the initilal
shaping of the up curves and phase char-
acteristic curves should be done manually.
The method of calculating break-point
frequencies and obtalning asymptotic
approximation Eo Bode cutoff is given in
another paper.

A typlcal general purpose 2-stage
transistor transmission amplifier for
the 60-kc¢ to 4-me frequency band 1s shown
in Fig. 3. This amplifier provides an
output of 300 milliwatts with 20-db
closed-loop gain and more than 30 db of
loop feedback. The B galn curve for a
practical amplifier design must have a



slope not greater than an average of 10 db
per octave for a phase margin of 30 de-
grees. This means that with 30 db of loop
gain the uB and phase response curves
must be controlled to a frequency greater
than 32 mc.

A circult description of the ampli-
shown 1n Fig. 3 is as follows: The
bias circuit for Q1 and Q2 1s provided by
the voltage drop across CR1. This ailds
in controlling the amplifier bias point
for large variations of supply voltage.

fier

T1 ?nd T2 provide high-side bridge
feedback+ in the amplifier. This type of
feedback 1s used to control the input and
output impedances of the amplifier for
large variations of transistor parameters.
C3 and C5 are used for final adjustment
on input and output return loss, and are
used 1in conjunction with C7 to shape the
wp gain and phase frequency response
curves. The transformer turns ratios of
Tl and T2 are selected to give 1/8 for
final amplifier gain and to match the
transistor impedance to the transmission
line. These impedance ratios are also
selected to provide an optimum noise fig-
ure at the amplifier input and to give
optimum amplifier power output.

The 2-stage transistor amplifier in
Fig. 3 is particularly useful for high-
level output power. The phase reversal
for feedback is obtained from the emitter
of Q2, which serves as a low impedance in
series with R7 to give the proper termina-
tion to the feedback winding of T2. A
different method of obtalning the reversed
phase for negative feedback in a 3-stage
amplifier is used as shown 1n Fig. 8.
This 3-stage amplifier is useful as a
low-noise, low input level amplifier, and
can serve as a good preamplifier for the
2-stage amplifier shown in Fig. 3.

3. Description of the Nodal Analysis
Digital Computer Program

The nodal analysis program will
reduce any general network, through
24 nodes, to from two to ten ports and
compute the following outputs:
(a) Short-circulted admittance param-
eters.

(b)
(c)

Open-circulted impedance parameters.

Current and voltage scattering
parameters.

(d)

Transistor Y-parameters from hybrid
parameters.

(e)

ABCD parameters for two ports.

-

~
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(f) Y-parameters from ABCD parameters.
(g) 21Ny and Y1y at each port.
The required input data for the

nodal analysis program is as follows:
(a) Number of ports.
(b) Number of nodes.
(¢) Number of frequencies.
(d) Configuration of each branch.
(e) Node connections.
(f) Element values.
(g) Input matrices, if any.
(h) Output parameters.

The restrictions on the program are:

Maximum number of nodes 1s 24
(including the reference node).

Network must have a nonsingular
admittance matrix.
Maximum number of ports 1s ten.

(c)
(d)

A speclal matrix is required for
transformers.

(e)

(1) Reference or ground O

For numbering nodes:

(2) Inputs and outputs 1, 2, ....,p

(3) Remaining nodes p+l,.....
(f) If scattering parameters are to be
computed, a termination must be

glven for each port.

The above tabulations summarize the
capabilities and limitations of the nodal
analysis program. Many of the required
network calculations can be made using
simple mesh computer programs. However,
to obtaln over-all closed-loop gain and
input-output impedances, it 1s convenient
to use a nodal analysis program.

The method used by NAPANS to reduce
a network for analysis is shown 1in Fig. 4.
First, the node points are assigned and
the computer organizes the network into
an admittance matrix as indicated in
Fig. 4. This matrix may consist of as
many as 23 rows and 23 columns. The
computer reduces the matrix a row and
a column at a time until two of each
remain. These represent the network in

Ay



terms of an input port and an output port.

The transformer characteristics are
measured as indicated in Fig. 5a. A spe-
clal computer program is used to convert
the test data into the form shown in
Fig. 5b. The resistance and capacitance
elements of the transformer are handled
as circult elements and the inductances
of the transformer are arranged into a
matrix, Flg. 5c¢, that handles the signal
polarities and turns ratios. NAPANS uses
this matrix directly, and signal polar-
itles are obtained by the sequence of num-
bering the matrix as indicated in Fig. 5b.

Special measurements are required to
obtaln accurate transistor parameters at
high frequencies. The method of measuring
the transistor and calculating its h
parameters 1s shown in Fig. 6. Trans-
mission line measuring techniques® are
used to measure special characteristics
of the transistor. These measurements
provide ZiN with the output terminated in
g (50 ohms), Y, (output admittanceg with
the input terminated in r (50 ohms).

These measurements also provide Spoj1 (the
forward voltage gain) and S1p (the reverse
voltage transfer ratio). A speclal com-
puter program is used to solve for the
transistor h parameters from these four
measurements by the equatlions glven in
Fig.

After the proper transformer, tran-
sistor, and circult element parameters
have been provided for the program and
the program has reduced the network to an
input and output port, a scattering
matrilx calculation is made on the network
by the computer program. For feedback
amplifiers, this network is reduced to the
form shown in Fig. 7. The results of the
scattering current and voltage calcula-
tions provide data to calculate the net-
work open- and closed-loop gain, pp curves
and phase angle, and 1lnput and output
impedances. The gain is given in declbels
and degrees, and the input and output
impedances are given in complex numbers.
4, Application of NAPANS to Amplifier
Design

One of the main features of the
nodal analysis computer program is the
ease 1in which the circult engineer can
use 1t. Node polnts may be assigned to
the complete circuit including the power
supply, if the number of nodes 1s less
than 23, or the circuit may be simplified
to 1nclude only the ac circults as shown
in Fig. 8 for a 3-stage transistor ampli-
fier. This circuit arrangement shows the
transformers in their proper form, and
requires the present maximum of 23 nodes
for analysis. In many cases, node points
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can be saved by rearranging the circuit
by the use of equlvalent networks.

After the engineer has drawn the cir-
cult to be analyzed, assigned node points,
provided element valuss and transformer
and transistor data, a digital computer
programmer writes instructions for punch-
ing approximately 100 cards for the com-
puter. Thls quantity varles according to
the number of nodes and the frequencies
computed. The NAPANS program is written
for the IBM 7090 computer, and requires
32,000 words of core storage. The approxi-
mate computing time for 25 frequency
points, and 24 nodes 1is 1 minute on the
IBM 7090 computer.

The circuit shown in Flg. 8 is
modified for s galn and phase measure-
ments by terminating the input and output
and applying signal input at terminal 23,
terminated by a resistance. The output
1s obtalned at node 22. Fig. 9 shows
the computed data compared with the
measured data for amplifier open- and
closed-loop gain versus frequency
response. The small variation in results
1s due to the problem of obtaining exact
transistor and transformer data. The
computed and measured g galn and phase
results are shown in ﬁig. 10. After the
engineer recelves the calculated results
from the computer, he selects networks
to lmprove the shape of the up gain and
phase curves and repeats the computer
calculations. The networks also affect
the closed-loop gain flatness of the
amplifier; therefore, considerable experi-
ence 1s required in the design of feed-
back amplifiers to select networks that
wlll glve the desired gain flatness while
still preserving the proper upB gain and
phase stabllity margins.

At the present time, the NAPANS
program will tell the engineer precisely
and qulckly how wise hls choice was in
specifying a compensating network. Pro-
gramming work 1s continuing to have this
network selection performed automatically.
5. Application of NAPANS to Automatic
Control System Design

The NAPANS program is ideally suited
for use in the frequency analysis of
automatic control systems. First, each
functional part of the automatic control
clircuit is analyzed by the nodal analysis
program method to check laboratory
measurements with its ac equivalent cir-
cult. Then, the complete ac equivalent
circuit for the automatic control circuit
is comblned into one final circuit and
analyzed in the manner outlined for the
3-stage transistor feedback amplifier,
Big A block diagram of a frequency



phase-locked oscillator system6 is shown
in Fig. 11. The transient response char-
acteristics of the automatic control sys-
tem are obtained from the frequency
response data in the conventlonal manner.
The ac equivalent circult used by NAPANS
to analyze the phase-locked osclllator is
given in Fig. 1l2.

6. Conclusion

A nodal analysis digital computer
program that 1s capable of analyzing
closed-loop active networks, with less
than 24 nodes, has been developed. This
program 1s Intended to serve as an ald to
the engineer while deslgning feedback
circults. The program calculates precise
frequency response data on complete
closed-loop feedback circults. Informa-
tion regarding transient response and
stability is obtalned from this frequency
response data by conventlional methods.

This computer program has been given
the title NAPANS for "Nodal Analysis of
Passlve and Active Networks." It is a
general-type program that can be used on
any type of actlve or passive circuit,
provided the transformer and transistor
data 1is arranged in the proper form as
outlined in this paper.

The results from NAPANS, for fre-
quencles less than 20 megacycles, check
within 0.1 db and 10 degrees in phase
wlth laboratory measurements for ampli-
fier open- and closed-loop frequency
response and puf gain and phase. The
method of analyzing feedback amplifier
clrcuits 1s also applied in a similar
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manner to the design of automatic control
clrcults.
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D-C AND TRANSIENT ANALYSIS OF NETWORKS
USING A DIGITAL COMPUTER

Franklin H., Branin, Jr.

Development Laboratory,

Data Systems Division

International Business Machines Corporation

Poughkeepsie, New York

ST e

An experimental program is described for
computing the d-c and transient response of tran-
sistor switching circuits of arbitrary configura-
tion and size (up to 20 transistors) using the IBM
704 computer. One important feature of the pro-
gram which is discussed is its ability to compile
all the necessary equations automatically from
input data describing the circuit parameters and
configuration. Another is the solution of the tran-
sient problem by numerical integration of the dif-
ferential equations for the linear part of the cir-
cuit separately from those describing the trans-
istors, the output from each set of equations being
used periodically as input for the other set. Con-
siderable increase in speed of integration is ob-
tained in this manner.

The method of d-c analysis is based on a
topological-matrix formulation of the linear part
of the problem, and its solution by Kron's method,
followed by an iterative procedure for satisfying
certain nonlinear side conditions imposed by the
transistors. Although the transientanalysis also
uses a matrix formulation of the required differ-
ential equations, it is not based on a topological
approach. However, a generalized topological-
matrix formulation of the transient problem is
given in an appendix,

The nature of a serious theoretical limit on
the rate of integration of the network equations,
is discussed since it constitutes the principal
computational barrier to a rapid solution of the
transient problem. An outline of the more im-
portant programming procedures involved in the
topological-matrix formulation is also given,

Certain shortcomings of the program, and
pitfalls to be avoided are pointed out., In partic-
ular, the importance of being able to modify or
replace the transistor equivalent circuit (network
model) is emphasized.

Finally, the computed responses of a four-
transistor switching circuit are displayed and
shown to agree well with the observed responses.
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Introduction

This paper is based on the experience gained
in writing an experiental program for analyzing
transistor switching circuits using the IBM 704
computer. This program, called TAP for 'tran-
sistor analysis program',l,2 was developed to
provide circuit-design engineers with the ability
to carry out ''computational experiments'' to aid
in understanding, as well as designing, switching
circuits,

Although this objective was reached, the pro-
gram has become obsolete because it was restric-
ted to the analysis of circuits containing a certain
type of diffused base transistor which is of limit-
ed interest. Consequently, the program is not
being maintained nor is it being made available for
outside distribution. Nevertheless, the lessons
learned from writing TAP are felt to be worth
sharing for the benefit of those who may be inter-
ested in writing a similar program. In addition to
describing the principal features of TAP, this
paper will point out the major difficulties and pit-
falls encountered; it will also suggest some im-
provements in technique which may prove helpful.
Finally, some actual and potential applications of
a digital computer program of this type will be des-
cribed.

TAP is capable of performing the entire d-c
and transient analysis of a multi-transistor switch-
ing circuit of arbitrary configuration and size upto
20 transistors. Its most valuable feature, from
the user's point of view, is its ability to compile
automatically all the necessary circuit equations
using a simple input card format which specifies
only the parameters and connections of the circuit
components. By compiling these equations for
him, TAP relieves the user (ostensibly an engi-
neer rather than a programmer) of the tedious and
error-prone chore of writing all the circuit equa-
tions himself and then setting up a program to
solve them. At the same time, TAP makes it
convenient to modify parameters or connections
in the circuit simply by changing the appropriate
input cards.



It is interesting to note that the ability to com-
pile the circuit equations from simple input data
has also been included in the DYANA program
recently developed by the General Motors Research
Laboratories for mechanical and electrical net-
work analysis. ” Since this feature is particularly
helpful to the user, it is strongly recommended
that any general purpose network analysis programs
developed in future also include this compiling
facility.

The d-c analysis portion of TAP, which pro-
vides the initial values of voltage and current need-
ed in the transient problem, takes account of the
nonlinearities due to the transistors, Fortunately,
it has been found possible to view this d-c problem
as one of solving a linear network problem subject
to an appropriate set of nonlinear side conditions.
The linear network is treated by Kron's method of
"interconnecting solutions'4» 3, © while the nonlin-
ear side conditions are satisfied by using an itera-
tive method of successive approximations.

After the initial conditions of voltage and
current are obtained, the transient response of the
network, excited by a ramp-function input pulse of
arbitrary amplitude and duration, is calculated by
numerical integration of the differential equations
describing the system. This part of the computa-
tion is the most time-consuming and represents
the biggest bottleneck in the entire analysis. In
the attempt to speed up the numerical integration
process in TAP, the linear and nonlinear sets of
differential equations are integrated separately,
over short intervals of time, and only periodically
rejoined so as to provide a meaningful solution,
The reasons for and advantages of doing this will
be described below.

One extremely important aspect of the anal-
sis of networks containing nonlinear devices is
that of developing suitable network models for
such devices. A network model must, of course,
represent the device in question to an acceptable
degree of approximation., It should also be made
as simple as possible to minimize the computa-
tional burden. Both of these desiderata are
fairly well satisfied by the transistor model used
in TAP. However, an addition consideration
should be pointed out whose importance was not
recognized until after TAP had been written:
namely, the ability to change the network repre-
sentation of the transistor, either in part or in
toto, without extensively altering the program.

Since TAP was intended for analyzing only
circuits containing a certain type of transistor for
which an adequate model existed, 7 the ability to
alter this model was not considered important,
Although provision was made to vary each para-

237

meter of the model, its basic configuration and

the character of its nonlinearities were fixed and
were made an integral part of the program.
Accordingly, once TAP had been tested and proved
practical for its intended purpose, attempts to
extend it to the analysis of circuits containing other
nonlinear devices were frustrated by the amount of
reprogramming required to alter or replace the
transistor model. This shortcoming, unfortunately,
forced the program into premature obsolescence.

Although a network analysis program neces-
sitates the invention of network models for non-
linear devices, by its very nature it also provides
the means for validating these models. This is
another reason for setting up the program in such
a way as to facilitate changing these models easily.
No recommendations can be made as to how this
may be accomplished, but the importance of doing
so needs to be recognized.

In order to conserve space in this paper, only
the essence of the mathematical and programming
techniques used in TAP will be given. Reference
to published material will be made for any math-
ematical details omitted; but programming details
that should be apparent to those skilled in the art
will be omitted entirely. Although TAP was pro-
grammed for the IBM 704 computer, the techniques
used are amenable to any binary computer and,
with suitable modification, to decimal machines
as well.

The three main sections of the paper describe
the compilation process, d-c analysis, and tran-
sient analysis. A generalized formulation of the
linear transient network problem is described in
Appendix I, This formulation is recommended
in place of that actually used in TAP, Other
appendices are included which describe certain
procedures used in determining and using the
topological matrices.

Compilation of Input Data

The scheme used in TAP for compiling the
differential equations for the transient analysis
of the linear part of the network is based on a
matrix formulationd in which the coefficient
matrices are determined by inspection of the net-
work connections rather than by means of topo-
logical matrices. This formulation, using a com-
bination of node voltages and mesh currents as
variables, establishes a simultaneous system of
first order differential equations, similar in
form to that described by Bashkow?. The d-c
analysis, which was incorporated into the program
at a later date, makes use of a topological matrix
formulation, 21 %5



A disadvantage arises from formulating the
transient problem in terms of differential equa-
tions only since every node voltage or mesh
current must be computed in terms of a corres-
ponding differential equation, even though an al-
gebraic equation might have been more appropriate.
This presents no problem as far as mesh currents
are concerned for these are introduced only when
inductors are actually present. But since each
node voltage requires a differential equation to
describe it, there must be a capacitive path from
each node to ground in order to define this dif-
ferential equation. Hence, additional (‘'stray'’)
capacitances must be inserted wherever the
required capacitive path is absent in the original
circuit.

Admittedly, these stray capacitances do exist
in actual circuits and this is why they were inclu-
ded in the original formulation, However, their
effect may be negligible in many cases and yet by
their very presence, these capacitances may slow
down the numerical integration process apprecia-
bly. Therefore, it is important to formulate the
transient problem with sufficient generality to
admit algebraic equations, when required, as well
as differential equations.

A formulation, using a topological-matrix
approach, is given in Appendix I. This formula-
tion, which extends the recent work of Bashkow,
suffices for the d-c analysis as well and gives
directly all the initial values required by the tran-
sient problem.

The input scheme developed for TAP permits
arbitrary connections and parameters to be speci-
fied both for the linear part of the network and for
the transistors. Only the transistor model is
fixed in its configuration and nonlinear character-
istics. © The input information required, ‘there-
fore is the following: (1) type of circuit component,
such as transistor, resistor, capacitor, or induc-
tor; (2) serial number of each component (actually
required only for transistors); (3) parameter (or
parameters) pertinent to each component; (4)
component connections as designated by node
numbers; (5) voltage and/or current sources; (6)
input pulse characteristics.

This information, punched into cards, is read
into the computer and compiled either in matrices
or in tables, some of which are later converted to
matrix form. Since the cards specifying the linear
part of the circuit are read in first, with R, L, and
C cards intermixed, the compilation of the tables
required for the d-c analysis goes on simultaneously
withthat of the coefficient matrices for the transient
problem.

The information from the cards specifying the
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transistor parameters and connections is read in,
and tabulated. Since the resistors in the transis-
tor model are linear, these data are included in
the tables for the d-c analysis. The transistors
are simulated by current sources driving a linear
circuit in both the d-c and transient analysis.

D-C Analysis

The tables required by the matrix formulation
used in the d-c analysisS, 6 are the following: (1)

branch resistances (RDATA); (2) branch connec-
tions (RCON) showing initial and final node num-

bers for each branch; (3) voltage sources (EDATA)
and (4) current sources (IDATA) in each branch.
(In TAP, the IDATA table is omitted since the only
current sources encountered are due to transis-
tors. In a more general program, however, the
IDATA table should be included. )

These tables are not converted into a matrix
form of the network equations, but rather intothe
appropriate ''solution matrices' in terms of
which the solution may be computed directly.
Actually, the voltages are computed from the
nodal solution matrix (inverse of the nodal admit-
tance matrix) while the currents are computed
from the mesh solution matrix (inverse of the
mesh impedance matrix). To be sure, either
solution matrix would suffice for computing all
the voltages and currents but it was felt that
round-off errors would be reduced by the method
adopted.

To handle networks of arbitrary configuration,
this program requires an unambiguous procedure
for identifying and specifying just the right num-
ber of meshes., Such a procedure has been dev-
eloped with the aid of the well-known topological
concepts of tree, link, and basic mesh.

A tree is defined as any network structure
devoid of closed paths. The network tree is a
tree which includes all nodes of the network and a
link is any branch of the tree-complement, When
a single link is connected to the tree, it forms
a unique closed path called a basic mesh; each
basic mesh contains but one link. Hence, if all
the network branches are classified as either tree-
branches or links, the basic meshes may be unam-
biguously identified and they are just sufficient in
number, 2

In computing the nodal solution matrix, a
modification of Kron's method called the link-at-
a-time (or LAT) algorithm is used. This algo-
rithm, which is explained in reference 5, is a con-
structive method for obtaining the nodal solution
matrix for the complete network by adding a link
at a time to the network tree and modifying the
corresponding nodal solution matrix at each suc-



" cessive step. Since the nodal solution matrix for
the tree is obtained without matrix inversion and
since the general formula for modification of this
matrix at each step is the same, the algorithm is
easy to use. ' -

To minimize round-off errors at each suc-
cessive step of this algorithm, it is desirable to
chose the network tree of minimum total resis-
tance. 2 Accordingly, the first step in the d-c
analysis is to sort the RDATA table in order of
increasing resistance. The RCON, EDATA and
IDATA tables are then rearranged to conform to
this new sequence of the network branches.

Next, starting with the branch of smallest
resistance, the RCON table is examined to deter-
mine if each suceeding branch does or does not
form a closed path with the then-defined tree. If
a closed path is formed, the branch is classed as
a link; if not, it is classed as a tree branch and
added to the tree. When all the branches have
been examined in this manner, the tree of mini-
mum resistance is defined. Appendix Il is a des-
cription of the tree-link sorting procedure.

The RDATA, RCON, EDATA and IDATA
tables are rearranged to conform to this new
classification with tree-branches in one groupand
links in another. The next step is to convert the
RCON table into the appropriate topological
matrices.

Topological Matrices

Three topological matrices are required in
the d-c analysis and all of them consist of the
elements +1, -1, and/or 0 only. Using a binary
computer such as the IBM 704, it is convenientto
represent each such matrix element as a pair of
binary digits (bits) in order to conserve storage --
and also to speed up certain parts of the computa-
tion. In TAP, the storage format used is 16-bit-
pairs per word for each 16 elements of a column

(or, sometimes, row) of a topological matrix. An
alternative format, which has certain advantages,

is to store the magnitude bits in one word and
corresponding sign bits in an adjacent word.

By definition, 5,6 the elements of the branch-
node matrix are:

ajj = (+1, -1, 0) if the i-th branch is
(positively, negatively, not) inci-
dent on the j-th node.

Now the i-th entry (word) of the RCON table
corresponds to the i-th row of the branch-node
matrix since both specify the initial (+) and final
(-) node of the i-th branch. The RCON table is
stored with the initial node number in the address
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field and the final node number in the decrement
field of a single word. The task of convertingthis
table to the bit-pair matrix format (stored column-
wise) is therefore a straight-forward programming
task that need not be elaborated.

Initially, the branch-node matrix includes the
column corresponding to the datum or reference
(ground) node, but later this column is deleted
since it contains redundant information.>:® The
matrix remaining after this deletion is then desig-
nated as the A matrix. The tree portion of this
matrix, AT, is a square matrix whose inverse
may be obtained topologically rather than com-
putationally., The inverse of A may be shown>: ©
to be identical with the transpose of a matrix,

BT, called the node-to-datum-path matrix of the
tree. The elements of this matrix are defined as
follows:

bij = (+1, -1, 0) if the i-th branch is
(positively, negatively, not) included
in the j-th node-to-datum path,

’

This BT matrix is used in computing both the
nodal solution matrix of the tree and the branch-
mesh matrix described below., The procedure for
determining the BT matrix, by means of an
exhaustive search of the network tree from the
datum node outward, is explained in Appendix III.

The third topological matrix required in the
d-c analysis is the branch-mesh matrix, desig-
nated C, whose elements are defined thus:
cij = (+1, -1, 0) if the i-th branch is

(positively, negatively, not) included

in the j-th basic mesh,

By adopting the convention that both the orienta-
tion and ordering of the basic meshes agree with
those of the corresponding links, the link portion
of the branch-mesh matrix, Cy,, turns ‘out to be a
unit matrix and does not even need to be written.
The tree portion CT then, contains all the essen-
tial information about the branch mesh matrix.

Fortunately, Cris readily computed from B
and the transpose of Ay ,, the link portion of the
branch-node matrix, by means of the equation~’

t
Ct = -BTAL, (1)

This computation amounts to taking the difference
of two columns of B to get each column of Cr.
Accordingly, it is easier to use the link portion

of the RCON table than the Ap matrix for this pur-
pose since the address and decrement of each
RCON word tell directly which columns of By are
to be added or subtracted. Thus, all the necessary




topological matrices may be obtained directly or
indirectly from the RCON table.

Nodal Solution Matrix

The primitive impedance matrix, Z, and its
inverse, the primitive admittance matrix, Y, char-
acterize the branches of a network independently
of their interconnections.>© In the d-c problem,
the RDATA table corresponds to a real diagonal
Z matrix and its reciprocal to a real diagonal Y
matrix, The nodal solution matrix, which is the
inverse of the nodal admittance matrix A'YA, is
obtained by means of the LAT algorithm starting
with the inverse of the nodal admittance matrix
for the tree, AtT YT AT. Using the relation
A'T1 = B‘,:r mentioned above, it is easily shown that

Bt Zz_ B

t S
(ATYTAT) = By Zp By

(2)
Hence, the nodal solution matrix for the tree may
be calculated without any matrix inversion.
Appendix IV describes how the triple matrix
product Btr Z B is computed, taking advantage
of the diagonal nature of Z¢ and using the compact
storage format of Br.

The LAT algorithm makes use of a recursion
formula which modifies a given nodal solution
matrix to take account of the addition of a single
link. Assuming that the impedance of the j-th
link is zJ_ and that this link is connected between
the p-th and q-th nodes of the network, the modi-
fied nodal solution matrix, ZJ is given by the
equa,tion5

-1 - zj-1)(zi-! - zj-1
(zird - zi-dyzist - zZjgh)

(3)

zi-l 4 zi-1
aq

- zi-1_ Zi-1.,j
PP pa L

qp

where Z‘].-l and ZJ'-1 are the p-th column and p-th
row of the previous nodal solution matrix, ZJ-1,

0_-pt
Clearly Z BTZTBT'

Since all the Z’ are symmetric, only the dia-
gonal and subdiagonal elements are computed and
stored, thereby conserving both computation time
and memory space., Furthermore, since the tree
is chosen for minimum total resistance, the link
resistances will be as large as possible, thereby
minimizing the denominator of the correctionterm
in Eq. (3) and reducing round-off errors.

Mesh Solution Matrix

Computation of the mesh-solution matrix is
based on a recursion formula similar to Eq. (3).
The corresponding algorithm adds one tree-
branch at a time to the set of all links and modifies
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the mesh-solution matrix accordingly at each suc-
cessive step. The starting point of this algorithm,
of course, is the mesh solution matrix of the links
which, fortunately, is diagonal. A discussion of
this algorithm is given in reference 5.

Computation of the mesh and nodal solution
matrices could, of course, have been done by the
usual methods of matrix inversion and with less
programming effort. However, since it was desired
to evaluate the potentialities of Kron's method of
interconnecting solutions, advantage was taken of
the experimental nature of TAP to program and
test the link-at-a-time and tree-branch-at-a-time
algorithms in an actual situation. (The computa-
tional efficiency and applications of these algo-
rithms are discussed in reference 5.)

Solution of the Nonlinear Problem

As previously stated, the nonlinearities
introduced by the presence of transistors in the
network are handled by imposing a set of nonlin-
ear side conditions on the solution of the linear
network problem. This is accomplished by rep-
resenting the effect of the transistors on the linear
network by means of current sources at the appro-
priate nodes and adjusting these current sources so
that certain of the voltage responses satisfy the
nonlinear side conditions.

The d-c portion of the equivalent circuit used
in TAP to represent a nonsaturating, diffused base
PNP transistor is shown in Fig. 1. The base and
collector resistances, Rbb' and Rcc',as well as
the leakage resistance R, are assumed to be con-
stant and so are included as part of the linear net-
work. The only nonlinearities, then, are due to
the current sources ®I and (l-a)l;, where &, the
current gain factor, is assumed to be a nonlinear
function of I. (See reference 1 for details.)

The current source I, (hole current) is
exponentially related to the emitter-base voltage
Veb by the diode equation

1
Iy, = Igg (e Veb' -1) (4)
where Io5 is the reverse saturation current and
A= q/kT =1/.026 volts at room temperature.

As far as the linear network is concerned, Ih
can be chosen arbitrarily since this choice merely
specifies the current sources aly and (1-0¢) -
The resulting voltage responses of the linear
network may then be calculated by the matrix
equation?:

e' = (At YA) ! At (1-YE) (5)



where e' is the node-to-datum voltage vector and
I and E are the current source and voltage source
vectors (corresponding to the IDATA and EDATA
tables. )

Since the only current sources considered in
TAP are those due to transistor action, one may
write the matrix relation

All = Elh (6)

to define the equivalent nodal current sources
depicted in Fig. 2. In Eq. (6), Ij, represents the
vector of Ih values for all transistors while &
represents a matrix whose only nonzero elements
are -1, a, and (1-0) placed so as to assign current
sources -Iy, aly and (1-a) Iy, to the appropriate
nodes of each transistor model.

The voltages V' for each transistor may be
computed from the node voltage relation eg - el')' 5
In matrix form, this may be written as

Veb' = He' (7)
where H is a matrix whose only nonzero elements
are +1 and -1 placed so as to perform the appro-
priate linear combination of the elements of e'.

H(Atya) lg-D_ 1
Ag(p-l

B S G
Combining Eqs. (5), (6} and (7), we may
write
(. t -l t -1 At 8
Vep' = |HIAYA) "d|l, - H(A'YA)™" AYE (8)
which expresses the vector V' directly as a

function of Ih. The trick now is to choose Iy, so
that both Eq. (8) and Eq. (5) are satisfied.

The nature of this problem is shown graph-
ically in Fig. 3 where the diode curve represents

Eq. (4) and where the load line represents the
almost linear relation between V' and Iy, in
Eq. (8) -- ignoring the slight dependency of & on
I;. The two situations of major interest shown
in Fig. 3 correspond to load lines for ''on' and
""off" transistors.

The iterative method of solving this problem
may be explained as follows: For each transistor,
an initial estimate Ih(°) is made. The diode curve
is then approximated by a tangent line at the point
(1h° 5 V(e%)t and its intersection with the load
l'zne determined. This results in a new estimate
Iho as shown in Fig. 4, The process is then
repeated until convergence is obtained.
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The tangent-line approximation to the diode
curve is given by the point-slope formula:

1 1o} (9)
Afo)41.q)

- 1

Vep = L1 + V(O .
A +1.0)

This relation may be considered as a matrix
equation describing the tangent lines for all trans-
istors if the quantity [l/A(I;_‘o + Ies)] is regarded
as a diagonal matrix.

Now for transistors operating in the "off"
region, close to the asymptotic limit of -Igg, the
computation of Iy, + I may involve serious round-
off error. As a result, the larger 1/A (Ih+1es)
becomes, the more inaccurate it is. This error
can be avoided, however, by making the change of
variable,

J=Ip+1g (10)

and not calculating Iy, explicitly.

Eliminating V' from Egs. (8) and (9) and
introducing the variable J, we obtain the following
equation for the iteration procedure:

o +E—I(AtYA)'IH(“'IE| I+ HAYYA) - IAYYE (1))

where a(n-l)= C-!'(Ih(n'l) is assumed to be con-
stant. In this expression, whatever accuracy is
inherent in J(n-1) ig retained in 1/AJ{n-1)

One difficulty which arises in applying Eq. (11)
is that an '"out-of-bounds' intersection of the tan-
gent-line and load line for an "off'" transistor may
occur, as depicted in Fig. 5. This problem is
handled by testing each element of the J(0) vector
for proper boundedness and replacing the out-of-
bounds elements by the arbitrary value of
Ieg x 1076,

A second difficulty is that Eq. (11) yields in-
accurate J values for the "off' transistors. These
values may be improved by the method of suc-
cessive substitutions depicted in Fig. 6. After
each iteration, the elements of the J vector.
corresponding to each "off" transistor, are tested
for boundedness, replaced by I.4 x 10-6 if nec-
essary, and then substituted into the equation

I_H(AtYA)'la]J - &-{(AtYA)'lE}IeS
]

veb’ =

- H(atvya) ! AtvE (12)



The J values are then recomputed using the
expression

AV 1!
J=1__ (e eb)

€s

(13)

This process of successive substitutions
converges if the slope of the load line is greater
than that of the diode curve at their intersection
point and if the starting point of the process is
close enough to this intersection; otherwise, the
process diverges. In order to guard against
incipient divergence, the values of AVeb' are
monitored and if a value in excess of 4.0 is detec-
ted, the process of successive substitutions is ter-
minated. Otherwise, three iterations are made.

The entire procedure of successive approxi-
mations is repeated until the fractional change in
the length of the J vector is 107, with a maximum
of thirty iterations being allowed. Although no
attempt has been made to establish theoretically
the conditions under which convergence will be
assured, it is believed that only those circuits
which involve large positive feedback would be
likely to cause trouble. In such cases, it may
be necessary to resort to the transient analysis
procedure, using whatever initial conditions are
obtained from the d-canalysis, and allow the inte-
gration to proceed with no input pulse until a
steady state is reached.

In the normal case, after convergence has
been attained, all the voltages and currents of
the network are computed, completing the d-c
analysis. Not all of these data are required as
initial conditions for the transient analysis, how-
ever, and so only the desired voltages and cur-
rents are selected.

Transient Analysis

After the initial conditions have been obteined
from the d-c analysis, they are verified by run-
ning the numerical integration for a short time
without any input pulse. When a satisfactory
steady state has been reached, the input pulse is
initiated, The transient computation may thenbe
continued as long as desired., At suitable inter-
vals during this computation, the entire set of
voltages and currents in the network is printed
out, It would be preferrable to display certain
portions of this information graphically, either
on a printer or cathode ray tube, but this feature
was not included in TAP.

The solution of the transient problem, as
mentioned above, is based on integrating the lin-
ear differential equations of the network sep-
arately from the nonlinear differential equations
describing the transistors. To explain the prac-
tical importance of this modus operandi, a brief
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outline of the basic theory of the numericalintegra-
tion is needed first,

The numerical integration of the single dif-
ferential equation
dx
== =1 (x,t
I (x,¢)
may be effected by means of the generalized
expression

(14)

N M-1
Xp = Z ajxn_j +h Z bJ(dx/dt)n-J (15)
j=1 j=0

where x, = x (t; + nh) and h = At is the integra-
tion interval. If b = 0, the integration formula
is called a "predictor'; if by # 0, it is called a
""corrector.' Usually, a combined predictor-
corrector scheme is employed with the coefficient
aj and bj selected to give the accuracy desired.

In the special case of a constant coefficient,
linear differential equation, where f(x,t) = gx,
Eq. (15) becomes

(1 - hgb) x; = (a) + hgby) x,_; (16)

+ (a‘2 + hgbz) Xp.p teeot (ar+hgbr)xn_r

where at least one of the coefficients a, or by is
nonzero. This finite difference equation, of order
r, may be shown!? to have the general solution

& n
n = 21 -
J:

where the coefficients ¢. are determined by the
initial values of Xgs X]s +ee«Xp_] and where P)»
P2»+++Pyr are their roots of the characteristic
equation

(17)

(1-hgb )p” - (a) - hgb)) p*~!-(a,-hgb,)pT~2

veee-(ay - hgby) = 0 (18)

obtained by substituting the particular solution
X, = pnxo into Eq. (16).

One of these roots, say P}, will generate
the principal solution to the difference equation.
The other r-1 roots will generate parasitic solu-
tions which arise because the order of the finite
difference equation is (r-1) greater than that of
the differential equation being approximated.
Accordingly, if any one of the parasitic roots is
greater in magnitude than unity, then the corres-
ponding term cjpjn in Eq. (17) increases without
bound as n increases, thereby vitiating thedesired
solution. 10 This situation, called numerical



where e' is the node-to-datum voltage vector and
I and E are the current source and voltage source
vectors (corresponding to the IDATA and EDATA
tables.)

Since the only current sources considered in
TAP are those due to transistor action, one may
write the matrix relation

Atl=TdI, (6)

to define the equivalent nodal current sources
depicted in Fig. 2. In Eq. (6), I} represents the
vector of I, values for all transistors while «
represents a matrix whose only nonzero elements
are -1, a, and (1-0t) placed so as to assign current
sources -Ij, ol and (1-@) I}, to the appropriate
nodes of each transistor model.

The voltages V' for each transistor may be
computed from the node voltage relation e, - el')' .
In matrix form, this may be written as

Veb' = He' (7)
where H is a matrix whose only nonzero elements

are +1 and -] placed so as to perform the appro-
priate linear combination of the elements of e'.

H(atya)-lgn-D. 1 J(n)=v(|';-) i I S

(n-1) e

AJ AJ (n-

Combining Eqs. (5), (6) and (7), we may
write

Vep' = [H(AtYA)'lE I, - H(AlYA)"! AtYE (8)

which expresses the vector Vg},' directly as a
function of Iy, The trick now is to choose I}, so
that both Eq. (8) and Eq. (5) are satisfied.

The nature of this problem is shown grap.h-
ically in Fig. 3 where the diode curve represents

Eq. (4) and where the load line represents the
almost linear relation between Vgp' and Iy, in

Eq. (8) -- ignoring the slight dependency of & on
I}, The two situations of major interest shown
in Fig. 3 correspond to load lines for ""on'" and
""off'"" transistors.

The iterative method of solving this problem
may be explained as follows: For each transistor,
an initial estimate Ih(°) is made. The diode curve
is then approximated by a tangent line at the point
(Iho ; Vgo)- and its intersection with the load
line determined. This results in a new estimate
Iho as shown in Fig. 4. The process is then
repeated until convergence is obtained.
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The tangent-line approximation to the diode
curve is given by the point-slope formula:

vep s e v L 09
A + 1) AP+ g)

This relation may be considered as a matrix
equation describing the tangent lines_for all trans-
istors if the quantity l/A(Iho + Ies)] is regarded
as a diagonal matrix.

Now for transistors operating in the "off"
region, close to the asymptotic limit of -Iegg, the
computation of I, + I¢4 may involve serious round-
off error. As a result, the larger 1/A (Ih+1es)
becomes, the more inaccurate it is. This error
can be avoided, however, by making the change of
variable,

T=In+1 g (10)
and not calculating I}, explicitly.

Eliminating Vep' from Egs. (8) and (9) and
introducing the variable J, we obtain the following
equation for the iteration procedure:

o +[H(AtYA)‘lu(n'1ﬂ I, + H(A'YA) 1A'YE (11)

—(n-1 .
where a( is assumed to be con-

stant. In this expression, whatever accuracy is
inherent in J(7-1) is retained in 1/AJ(n-1)

) E(Ih(“‘”

One difficulty which arises in applying Eq. (11)
is that an '""out-of-bounds' intersection of the tan-
gent-line and load line for an "off' transistor may
occur, as depicted in Fig. 5, This problem is
handled by testing each element of the J\™/ vector
for proper boundedness and replacing the out-of-
bounds elements by the arbitrary value of
Ieg x 1070,

A second difficulty is that Eq. (11) yields in-
accurate J values for the "off' transistors. These
values may be improved by the method of suc-
cessive substitutions depicted in Fig. 6. After
each iteration, the elements of the J vector.
corresponding to each "off'' transistor, aretested
for boundedness, replaced by Io4 x 10'6 if nec-
essary, and then substituted into the equation

V' = I-H(AtYA)'IE:IJ - E—I(AtYA)'l&]Ies

- H(atya) ! atye (12)



The J values are then recomputed using the
expression

AV

'
J=1 DY

L (13)
This process of successive substitutions
converges if the slope of the load line is greater
than that of the diode curve at their intersection
point and if the starting point of the process is
close enough to this intersection; otherwise, the
process diverges. In order to guard against
incipient divergence, the values of AVeb' are
monitored and if a value in excess of 4.0 is detec-
ted, the process of successive substitutions is ter-
minated. Otherwise, three iterations are made.

The entire procedure of successive approxi-
mations is repeated until the fractional change in
the length of the J vector is 10~ 7,with a maximum
of thirty iterations being allowed. Although no
attempt has been made to establish theoretically
the conditions under which convergence will be
assured, it is believed that only those circuits
which involve large positive feedback would be
likely to cause trouble. In such cases, it may
be necessary to resort to the transient analysis
procedure, using whatever initial conditions are
obtained from thed-canalysis, and allow the inte-
gration to proceed with no input pulse until a
steady state is reached.

In the normal case, after convergence has
been attained, all the voltages and currents of
the network are computed, completing the d-c
analysis. Not all of these data are required as
initial conditions for the transient analysis, how-
ever, and so only the desired voltages and cur-
rents are selected.

Transient Analysis

After the initial conditions have been obteined
from the d-c analysis, they are verified by run-
ning the numerical integration for a short time
without any input pulse. When a satisfactory
steady state has been reached, the input pulse is
initiated. The transient computation may thenbe
continued as long as desired. At suitable inter-
vals during this computation, the entire set of
voltages and currents in the network is printed
out. It would be preferrable to display certain
portions of this information graphically, either
on a printer or cathode ray tube, but this feature
was not included in TAP.

The solution of the transient problem, as
mentioned above, is based on integrating the lin-
ear differential equations of the network sep-
arately from the nonlinear differential equations
describing the transistors. To explain the prac-
tical importance of this modus operandi, a brief
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outline of the basictheory of the numericalintegra-
tion is needed first.

The numerical integration of the single dif-
ferential equation
dx _

-— =1{ (x,t)

dt (14)

may be effected by means of the generalized
expression

N M-1
Xp = Z ajx, ; +h Z bj(dx/dt)n_j (15)
)= j=0

where X, =X (to + nh) and h = 4t is the integra-
tion interval. If bo = 0, the integration formula
is called a '"predictor'; if by # 0, it is called a
""corrector.' Usually, a combined predictor-
corrector scheme is employed with the coefficient
aj and bj selected to give the accuracy desired.

In the special case of a constant coefficient,
linear differential equation, where f(x,t) = gx,

Eq. (15) becomes

(1 - hgby) x, = (a + hgb)) x_ ) (16)

+ (a‘Z + hgbz) Xsvap Hoem T (ar+hgbr)>&1_r
where at least one of the coefficients a, or by is

nonzero. This finite difference equation, of order
r, may be shown!9 to have the general solution

Ir

n

e 3
Ji=h

where the coefficients c; are determined by the

(17)

initial values of Xor Xys e eXp_] and where P>
P2, -..Pr are their roots of the characteristic
equation

(1-hgb )p™ - (a) - hgb}) p*"!-(a,-hgb,)p* 2

aoes Slag & hghd) =0 (18)

obtained by substituting the particular solution
n .
X, = P Xg into Eq. (16).

One of these roots, say Py, will generate
the principal solution to the difference equation.
The other r-1 roots will generate parasitic solu-
tions which arise because the order of the finite
difference equation is (r-1) greater than that of
the differential equation being approximated.
Accordingly, if any one of the parasitic roots is
greater in magnitude than unity, then the corres-
ponding term cjpjn in Eq. (17) increases without
bound as n increases, thereby vitiating thedesired
solution. 10 This situation, called numerical



instability, arises if the integration interval is
made too large,

Similar considerations apply to the numeri-
cal integration of a system of differential equa-
tions. For example, the system of equations
describing a linear, constant parameter RLC
network (see Appendix I) are of the form

L
PX+QX-=F(t) (19)

L]

where P and Q are matrices, X =dX/dt, X is a
vector of voltages and currents, and F(t) is a vec-
tor of voltage and/or current sources, some of
which may be time-dependent. By inverting the
matrix P, we may write,
L)
X=-Plax+pPlFt) =s X +acw (20)
The vector counterpart of Eq. (15) for num-

erical integration of Eq, (20), in predictor-
corrector form, is:

N M,
predictor: X, = z 3 Xn_.+hzbj X . (21)
3= S S

T w-1 A
corrector: X = Z X, +h Z d.i X,.; (22)
=1 =0
Here, in' the corrected solution vector, is

obtained by using the predicted derivative vec-
tor, X, = SXn + G(tn).

To avoid numerical instability in the use of
Eqs. (21) and (22), the integration interval h must
be made less in magnitude than the reciprocal of
the largest eigenvalue Amax of the matrix S in
Eq. (20). This eigenvalue corresponds to the
largest natural frequency, and its reciprocal to

the smallest natural time constant I of the

network, Ironically, this eigenvalue, through its
exponential function, e~ )‘ma.xt, contributes least
to the (analytical) solution of Eq. (20) and yet it
forces the numerical integration to proceed at a
rate determined by the condition,

h<0.257
min

(23)

The permissible maximum value of his in this
range but depends somewhat on the actual choice

of coefficients a;, b., c; and d. in Eqs. (21) and
(22) 11,12 J J J J e (21)

Eqgs. (21) and (22) may also be used to approx-
imate the solution of the differential equations des-
cribing nonlinear or time-varying networks, since
the use of numerical integration implies that the
network is linear and time-invariant at every par-
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ticular time step, t,» even though its parameters
change from one time step to the next. Accord-
ingly, the matrices P and Q will, in general, need
to be recomputed and Eq. (19) either solved for
X, or converted to the form of Eq. (20 by inver-
ting P at each time step. This will change the
matrix S and its eigenvalues. Hence, the integra-
tion interval, h, may need to be adjusted from
time to time in order to prevent instability, when
T decreases, or to permit faster integration

minT X
when min increases,

i

In the circuits handled by TAP, the smallest
time constant is due primarily to the parameters
in the transistor model. This time constant, at
best, is about 1/10 that of the linear part of the
network considered by itself. Therefore, by
integrating the equations for the linear network
separately from those pertaining to the transistors,
a significant increase in speed of integration is
obtained. This increase is due not only to the
larger integration interval permitted but also to
the fact that the P matrix for the linear system
need be inverted but once.

The integration scheme used for the linear
network in TAP is based on a modified Euler
predictor - corrector formula:

predictor: X, =X , +hy X (24)
— = hy, o U
corrector: X =X ., + > Xp+ X ) (25)

withX = SXp +G(t_) and withh; held constant. The
vector G(tn), which is updated at each time step,
contains current source terms that describe the
effect of each transistor. The values of these
current sources are obtained from the solution
of the nonlinear differential equations describing
each transistor's behavior.

These equations, two for each transistor, are
based on the equivalent circuit shown in Fig., 7
where Rbb', Rc', Rcc' and the current sources o1y,
and Ih(1-0)l} are identical to their counterparts
in Fig. 1. The collector-base capacitance Cic
is assumed constant but the emitter-base capaci-
tance C. is assumed to be the sum of the two non-
linear capacitance

Ay + 1gg)

Coe = =07 (26)
aco
and
K
Cie = — (27)
(Vo - Veb)
where f is the common-base cutoff frequency,

K is a proportionality constant computed by the



program, V is the contact potential, and n is a
constant dependent on the grading of the junction,
All the basic parameters of this model, except K,
are specified on the input cards for each transis-
tor and tabulated during the compilation process.
It should be pointed out that Ce is defined as a
differential or small-signal, capacitance dQ/dV
and not as a static capacitance Q/V. This defin-
ition is preferable from the standpoint of measur-
ing C, but care must be exercised in using small-
signal capacitances, as discussed in Appendix I.

The nonlinear differential equations for each

transistor are integrated separately using a mod-
ified Adam's predictor-corrector formula:

predictor: X, =X _)+(hnN/24)(55X | -59X,_,

+ 37X 3 - 99X, _y4) (28)
corrector: X, =X+ (hy/24)(9X_+ 19X,
L) ®
-5X, _,t X .3) (29)

The integrationinterval hy is continuously mon-
itored by comparing the difference between pre-
dicted and corrected values of the solution. When
this difference increases beyond a certain limit,
the integration interval is halved; when this dif-
ference decreases sufficiently, the interval is
doubled. In this way, since each transistor is
treated independently of the others, the integra-
tion proceeds at close to the maximum safe rate
for each transistor instead of at the rate of the
slowest,

The transistor equations require as input
data the response voltages at each of the nodes of
the linear network to which a transistor terminal
is connected. These voltages are computed at
each integration interval hf, of the linear system
of equations and they are supplied to the nonlinear
equations as driving forces. These driving forces
are assumed constant over the next integration
interval hy while the nonlinear equations are
integrated using the variable interval hy. The
integration process for each transistor is carried
along, with hy being adjusted enroute, until a
period exactly equal to hy, has been covered. The
terminal currents (emitter, base, and collector)
computed at the end of this period are then supplied
to the G(t,) vector for the linear system for its
next integration step. In this way, the integration
of the linear and nonlinear equations is carried out
alternately with both systems being joined at each
interval hy .
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Results and Applications

As an indication of the adequacy of TAP in
predicting the transient behavior of a transistor
switching circuit, the results of the analysis of
the circuit shown in Fig. 8 are displayed in Figs.
9-16 together with the observed responses.

These results were obtained in about 10 minutes of
computing time on the IBM 704. The close agree-
ment between the computed and observed results
is really a testimony to the faithfulness of the
transistor model since the analytical and compu-

tational techniques are in themselves quite depend-
able,

The potential value of a network analysis
pProgram as an experimental tool is indicated by
Figs. 17-22 which show the different responses
resulting from the variation of a single parameter
in the network of Fig., 8, Admittedly, some of
these variations can be explored with the actual
hardware. But the variation of transistor para-
meters, such as f,., and Vo’ cannot be achieved
on demand in any practical sense. Evidently then,
a network analysis program such as TAP offers
the design engineer a direct means of studyingthe
behavior of circuits and/or devices in intimate
detail either for the purpose of increasing his
understanding or for helping him to optimize cir-
cuit performance.

Beyond the obvious electrical applications of
a network analysis program, there are many pos-
sible applications to nonelectrical problems. The
DYANA program previously mentioned is already
taking advantage of this fact by solving mechanical
as well as electrical problems. But this is barely
scratching the surface of a vast and fertile field.
Actually, a significant portion of theoretical
physics is amenable to a network approach, 5,13
Indeed, network models exist for so many different
physical systems as to force the conclusion that a
general purpose network analysis program is cap-
able of converting a digital computer into a
versatile and powerful analog machine.

Conclusions and Remarks

An experimental program has been written
which is capable of automatically formulating and
solving both the d-c and transient analysis prob-
lems relating to transistor switching circuits of
arbitrary configuration. The program yields
computed results which are in reasonable agree-
ment with observations, a fact which proves the
adequacy of the transistor model as well as that
of the program itself.



The principal features of this program are:
(1) its ability to formulate the network problem
automatically on the basis of simple input data
specifying the network parameters and configura-
tion; (2) its use of topological-matrix methods for
handling part of the formulation and analysis; (3)
its faster solution of the transient problem by
separately integrating the linear and nonlinear
sets of differential equations.

The main failing of the program is the dif-
ficulty of altering or replacing the transistor
equivalent circuit. Another disadvantage is the
printing, rather than plotting, of the computed
responses., Both of these disadvantages have been
eliminated from a more recent program for cir-
cuit analysis of nonlinear systems (PE CANS)
developed for the IBM 7090 computer by Beaudette
and Honkanen. !4 This program compiles the
equations for a network including arbitrary non-
linear elements., Hence, it can handle equivalent
circuits for a variety of nonlinear devices.

A. F. Malmberg, at Los Alamos Scientific
Laboratory, has also written a network analysis
program for the MANIAC II computer, 15 This
program is based on the topological-matrix for-
mulation described in Appendix I and uses a net-
work model capable of describing saturating trans-
istors.,

It has been amply demonstrated, therefore,
that it is quite feasible to program a digital com-
puter to both formulate and solve the algebraic
and/or differential equations of an arbitrary net-
work -- including at least certain types of non-
linear device., It now remains to refine the tech-
niques described here and to develop new ones
so that the full potentialities of a general purpose
network analysis program can be realized.
Clearly, the practical utility of such a program
will depend almost as much on its input/output
facilities as on its speed. Accordingly, due
attention must be given to such user-oriented fea-
tures as input format (including original network
specifications and modifications thereto) and out-
put display.

The central difficulty, however, is still that
of solving the transient problem. Much can be
gained by refining the techniques of programming
predictor-corrector formulas. But what is really
needed is a genuine analytical breakthrough which
will lead to an orders-of-magnitude increase in
speed. Such a breakthrough, it would appear,
cannot possibly come unless some way over,
around, or through the minimum time-constant
barrier can be found. This is a frontier which
offers the greatest challenge and most promising
rewards.
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Appendix I

Formulation of the Transient Network Problem

The foliowing topological-matrix formulation
of the linear transient network problem leads to a
simultaneous system of algebraic and first order
differential equations similar to that previously
described by Bashkow.? The present formulation,
however, avoids the introduction of the extrangous
capacitors and inductors which Bashkow's deriva-
tion requires. Moreover, it is in a form which is
suitable for programming on a digital computer by
an extension of the techniques described elsewhere
in this paper. The terminology and notation to be
used are essentially the same as in previous work
of the author, 3,6

Instead of employing either the mesh method
or the node method of analysis, the present for-
mulation of the transient problem makes use of a
combination of these two methods, Actually, the
tree method, ~’" rather than the node method, is
combined with the mesh method. This combina-
tion, which is also implicit in Bashkow's formula-
tion, is made necessary by the requirement to
establish first order differential equations rather
than integro-differential equations to characterize
the reactive elements of the network., A formal
description of this combined method of analysis
will be given first. The necessary extension to
the transient problem then follows easily,

It is assumed that the network branches are
first divided into two categories: admittances,
designated by the subscript y, and impedances,
designated by the subscript z. It is also assumed
that there is no coupling between any admittance
branch and any impedance branch although bran-
ches within the same category may be coupled.
arbitrarily with one another., Ohm's law, instead
of being written either in the admittance form
J = YV or in the impedance form V = ZJ, is now
written in the mixed form
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where Y, and Z, are the primitive admittance

and primitive impedance matrices, and where J
and V are the coil current and coil voltage vec-
tors. 26 Using the relations J =1 +iand V=E+e,
where I and E are the current and voltage source
vectors while i and e are the branch current and
branch voltage (response) vectors, Eq. (30) may
also be written as follows:

I +1i Y 0 E +e
y y y

V] = v (31)
E +e, oz I +i

Disregarding the question of ordering the
branches, it is now assumed that the admittance
branches are classified as either tree-branches
or links, using the procedure outlined in Appendix
II. Then, with the resulting admittance tree as a
starting point, the impedance branches are sim-
ilarly classified. The network tree obtained in
this fashion will, of course, contain both admit-
tance and impedance branches, However, since
all the admittances will have been subjected first
to the tree-link sorting procedure, all the basic
meshes defined by admittance links will necessar-
ily include only admittance tree-branches.

On the other hand, the basic meshes defined
by the impedance links may include both admit-
tance and impedance tree-branches. As a con-
sequence, the CT matrix contains one null sub-
matrix. For if the matrices B and A are part-
itioned into submatrices thus.

B
T
Br=| (32)
BTy
and
A
L
Ap = Y (33)
AL
it follows from Eq. (1) that
At B At
Cryy Cryz BTy Ly "PTy 'Lz
Cp = = . (34)
0 Crszz 0 -Br,Ap,

t .
since Csz = ‘BTzALy = 0, as explained above.

In accord with the tree method of analysis,
the branch voltages e for the entire network are
expressed as a linear combination of the tree
branch voltages ey using the relation e = DeT,
where D is the basic cut-set matrix for the entire
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network. s © At the same time, in keeping with
the mesh method, the branch currents i are
expressed as a linear combination of the link
currents iL (which, by convention, are identical
with the mesh currents, ) using the relation i=CiL.

These relations, together with the four-way
classification of branches described above, lead
to the expressions

—~ - —

*Ty| | Yty © °Ty

eT, ) 0 Ur, eT, (35)‘

e -Ct 0

Ly Tyy
t t

| ®Lz| _'CTyz 'Cng
and

— -

Ty Cryy Cryz| [iLy

ITZ - 0 CTzz iLZ (36)
_le_j _0 ULz_J

where use has been mad;, of the fact that for the

basic cut-set matrix, DT = UT (a unit matrix) and
-t 5,6

Dy, =-C.

Next, Eq. (31) is rearranged to give
(Iy - Yy Ey) Yy
= - (37)
(Ez- Z,1,) 0 2z, |ip e,

where e,, includes both subvectors eTy and €Ly
ig incluXes both iT, and ij,,, etc. It now becomes
necessary to introduce the admittance cut-set
matrix,

FUTy

Dy = t (38)
-CTyy
-

and the impedance mesh matrix,
[-CTzz

C, = (39)
Upz

to extract from Eq. (35) the expression

ey = DyeTy: or
€Ty Ury |eTy

ey = = ¢ (40)
€Ly -Cry



The principal features of this program are:
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equations for a network including arbitrary non-
linear elements. Hence, it can handle equivalent
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A. F, Malmberg, at Los Alamos Scientific
Laboratory, has also written a network analysis
program for the MANIAC II computer, 15 This
program is based on the topological-matrix for-
mulation described in Appendix I and uses a net-
work model capable of describing saturating trans-
istors,

It has been amply demonstrated, therefore,
that it is quite feasible to program a digital com-
puter to both formulate and solve the algebraic
and/or differential equations of an arbitrary net-
work -- including at least certain types of non-
linear device. It now remains to refine the tech-
niques described here and to develop new ones
so that the full potentialities of a general purpose
network analysis program can be realized.
Clearly, the practical utility of such a program
will depend almost as much on its input/output
facilities as on its speed. Accordingly, due
attention must be given to such user-oriented fea-
tures as input format (including original network
specifications and modifications thereto) and out-
put display.

The central difficulty, however, is still that
of solving the transient problem. Much can be
gained by refining the techniques of programming
predictor-corrector formulas. But what is really
needed is a genuine analytical breakthrough which
will lead to an orders-of-magnitude increase in
speed. Such a breakthrough, it would appear,
cannot possibly come unless some way over,
around, or through the minimum time-constant
barrier can be found. This is a frontier which
offers the greatest challenge and most promising
rewards,
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Appendix I

Formulation of the Transient Network Problem

The following topological-matrix formulation
of the linear transient network problem leads to a
simultaneous system of algebraic and first order
differential equations similar to that previously
described by Bashkow.? The present formulation,
however, avoids the introduction of the extrangous
capacitors and inductors which Bashkow's deriva-
tion requires. Moreover, it is in a form which is
suitable for programming on a digital computer by
an extension of the techniques described elsewhere
in this paper. The terminology and notation to be
used are essentially the same as in previous work
of the author, s

Instead of employing either the mesh method
or the node method of analysis, the present for-
mulation of the transient problem makes use of a
combination of these two methods. Actually, the
tree method, “*" rather than the node method, is
combined with the mesh method, This combina-
tion, which is also implicit in Bashkow's formula-
tion, is made necessary by the requirement to
establish first order differential equations rather
than integro-differential equations to characterize
the reactive elements of the network. A formal
description of this combined method of analysis
will be given first. The necessary extension to
the transient problem then follows easily.

It is assumed that the network branches are
first divided into two categories: admittances,
designated by the subscript y, and impedances,
designated by the subscript z. It is also assumed
that there is no coupling between any admittance
branch and any impedance branch although bran-
ches within the same category ma.); be coupled.
arbitrarily with one another, Ohm's law, instead
of being written either in the admittance form
J = YV or in the impedance form V = ZJ, is now
written in the mixed form
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where Y, and Z, are the primitive admittance

and primitive impedance matrices, and where J
and V are the coil current and coil voltage vec-
tors, 26 Using the relations J =1 +iand V=E+e,
where | and E are the current and voltage source
vectors while i and e are the branch current and
branch voltage (response) vectors, Eq. (30) may
also be written as follows:
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= (31)
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z z

Disregarding the question of ordering the
branches, it is now assumed that the admittance
branches are classified as either tree-branches
or links, using the procedure outlined in Appendix
II. Then, with the resulting admittance tree as a
starting point, the impedance branches are sim-
ilarly classified. The network tree obtained in
this fashion will, of course, contain both admit-
tance and impedance branches. However, since
all the admittances will have been subjected first
to the tree-link sorting procedure, all the basic
meshes defined by admittance links will necessar-
ily include only admittance tree-branches.

On the other hand, the basic meshes defined
by the impedance links may include both admit-
tance and impedance tree-branches. As a con-
sequence, the Cr matrix contains one null sub-
matrix. For if the matrices By and AT are part-
itioned into submatrices thus.

B
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A
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A
it follows from Eq. (1) that
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since Crzy = -Bpz ALy = 0, as explained above.

In accord with the tree method of analysis,
the branch voltages e for the entire network are
expressed as a linear combination of the tree
branch voltages eq using the relation e = Der,
where D is the basic cut-set matrix for the entire
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network. 2> © At the same time, in keeping with
the mesh method, the branch currents i are
expressed as a linear combination of the link
currents iL (which, by convention, are identical
with the mesh currents,) using the relation i=Ciy .

These relations, together with the four-way
classification of branches described above, lead

to the expressions
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Next, Eq. (31) is rearranged to give

-Y, E

y - Yy Ey)l |Yy O] e

y
= - (37)

(Ez- Z,1,) 0 z,l|i, e

(1

where e, includes both subvectors eTy and €Ly
ig inclug’es both iT, and ij ,, etc. It now becomes
necessary to introduce the admittance cut-set

matrix,

r
UTy

Dy = ¢ (38)
-CTyy ’

and the impedance mesh matrix,
szz

C, - (39)
LULz

to extract from Eq. (35) the expression

ey = DyeTy, or
ETy UTy |eTy

ey = = ¢ (40)
eLy -CTy



and from Eq. (36) the expression i,=C,ir,,, or

ity Crazz| iLz

i1,

i (41)

Uiz

Then, considering only the first column of D in
Eq. (35) and using the fundamental relation
D'i = 0, it is easily shown that

t . _ . _ .
Dy iy = [UTY ‘CTysZI iry| = -Crypip, (42

Similarly, from the second column of C in Eq. (36)
and the equation Cle = 0, it follows that

cle = [c‘ ¢
z

-cTyzeTy (43)

z Tzz ULz] €rz| ©

€Lz

Finally, {)remultiplication of the first row of
Eq. (37) by D, and of the second row by Ctz, fol-
lowed by substitution of DyeTy in place of e, and
of cziLz in place of i,, yields the result,

t At t,
Dy(Iy - Y Ey) ) DYY,Dy 0 ery| |Dyiy "
t t . t
CL(Ez-Z,1,) 0 CuZiChllir,| [Ches

which, together with Eqs. (42) and (43) may be
condensed to the desired expression,

t t
D - D'Y.D -C
y(Iy YyEy) . v yPy Tyz ety )
- t
t t .
Ct(E,-2 1) Cryz  CLZ,C,||iLs

Thus, Eq. (45) amounts to a tree analysis of
the admittance branches alone followed by a mesh
analysis of the impedance branches alone, the
resulting two sets of equations being coupled to-
gether by the submatrix CTyz. But this sub-
-matrix denotes those admittance tree branches
which belong to basic meshes defined by impedance
links. Hence it follows that the corresponding ad-
mittance-tree-branch voltages and impedance-link
currents will exhibit a reciprocal interaction.

Now in order to guarantee that only first
order differential (as well as algebraic) equations
will result from the application of Eq. (45) to the
transient problem, all capacitors must be classi-
fied as admittances and all inductors as imped-
ances. Resistors, however, may be put into
either category. The matrices Y, and Z,, then,
contain both algebraic and differential operators
and may be written thus:

d
Y. =G, + & K

y St Ky (46)
and

z,=R,+4 1, (47)

dt

where the symbols G, K, R and L denote conduc-
tance, capacitance, resistance and inductance
matrices. (K is used for capacitance because C
has already been used to designate a topological
matrix,) Hence, for the most general case of
time-varying capacitances and inductances, Eq. (30)
becomes

L)
K
y i y0 Vy X GY+Ky 0 Vy

vo| {0 L,l]|J, 0

) (48)
R,+L, J,

All admittances having zero capacitance and
all impedances having zero inductance will, of
course, give rise to zero entries in the K and L,
matrices; they will also generate algebraic rather
than differential equations. Therefore, to gather
these zeros into null matrices and group the
algebraic equations together, it is convenient
to classify the network branches as follows:

(1) admittances with nonzero capacitance,
(2) admittances with conductance only,

(3) impedances with nonzero inductance,
(4) impedances with resistance only.

These four classes will be denoted by the sub-
scripts k, g, 1, and r respectively and it will be
assumed that these classes are always in the order
shown above. Accordingly, Eq. (48) becomes

== ETGaT
o] | ] o o] ol
L[]
o o
g | [0 0 0 o vy . 0 Gy Vg
Val 10 0 Ly o [Tn 0 0 Ry+Ly O [T, (49)
Var| [0 0 0 0] i 0 0 0 Ry erj




where the variables with the subscripts yg and zr
are involved in purely algebraic equations. It
should be noted that all capacitative branches may
have nonzero conductance and that all inductive
branches may have nonzero resistance. Hence,
these particular conductive and/or resistive ele-
ments need not be treated as separate branches,
This does not preclude their being treated as
separate branches, however, if there is some
reason for doing so.

1f the network branches, ordered by class as
shown above (but arbitrarily ordered within each
class), are subjected to a tree-link sort, then a
sequence of expressions similar to Eqgs. (32) to
(45), but with twice as many branch categories
will result. In particular, it follows that

and

[-CTll

Upi

-

-

CTir

CTrr
0

ULrJ

(54)

while the submatrix CTyz of Eqgs. (42), (43) and *

(45) becomes

-

BTk
Brg
Bm

| BTy

— -

A1k

ALg
Apy

ALr

and

CT = -BTAL =

0

0

0

CTgg Crgl Crgr

0

0

E:Tkk CTkg CTkl CTkr

Cr11 Cpyr

0

CTrﬂ

(50)

(51)

(52)

where the submatrices of C

obvious way.

are defined in the
Eqgs. (38) and (39) now become

i -
0 Urg

Dy = Sh 0 (53)
;cﬁ:kg -c?rg
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Cri CTkr
Cryz = (55)
CTgl c:Tgr
Next, the vectors e and i are written in
partitioned form (as row vectors) as:
¢= (eTk eTg eT) ey ek eLg e} eLy)  (56)
L= Otk irg ipy ipr ipk dp, ipy i) 67
while the Yy and Z, matrices are partitioned thus:
d 0 0]
Gri* gr Ktk ©
0 (@ 0 0
Y, - s . (58)
i 0 0 0 GL&
and
FR +iL 0 L 0 i
T1 dt ~Tl dt “TLI1
0 RTr 0 0
z = 4 B (59)
LTt 9 Rpjtglp ©

where the matrices Ly | and Ly 1) allow for
inductive coupling (if any) between tree-branches
and links,

Finally, with all these relations substituted
into Eq, (45), it can be shown that



|

2 B _ T
| KT © 0 0 tri| [GuactKik Gig S Crir| |eTk
' ] 1
Irg 0 0 0 0 f1g Gk Cgg “CTg “CTer) |°Tg (60)
= + ' ° ' .4
' ' ' . t t A
EpLi| |0 0 Lry Lo {in Crki S1q1 Buttn Rirthyg| Ly
' ! 1 ] t t ] (R 1 +o ' i
LELr 0 0 Liprl Lper L’Lr Corkr Tgr Rotbr1 R er_ 1LrJ
where the following relations apply:
1 ( 7 r 4 T ™ e ]
Ik Utk 0 “Crikk -CTkg ’FITk (GTtKTK ETK KrkETK
| =
ITg 0 UTg 0 -Cng ITg C’Tg ETg 0
1 - . - ) (61)
Itk (GLktKLKELK KpkEpk
U_ILg_‘ —GLg ELg = ..0 _J
a] e (on]  [omsinin]  [entmotmin]
vl  |Cmu ©° U © Er) (Ry L)) Lol
1 - t t
Err CTir CTrr 0 Upr { Err Rrflrs 0
e | . - . I )
L1 (R y+LpMp) Ledutlomin
[Eeel  LRed. | Lo )
R i e =
1 t s A
K = Kmp + C K;., C (63) From Egs. (60), (65), (66) and (67), it is
lTkk Tk L8238 S S apparent that unless CT], = 0, a set of differential
t . . . . e
L = L +C L + L equations will arise from those purely resistive
L Ll T11 T1 "Tll T11 TLI1 network branches which are classed as impedances,
+ LTl CTll (64) In other words, if any of the link currents iy ,.pass
. through inductive impedances belonging to the net-
t 65) kt d this is what th trix C -
L =C L c + L © ( work tree (an s is what the matrix Cp,. spec
Lir Til1 7Tl “Tir LTI "Tir ifies) these link currents must be determined as
! _ et t 66) th lution of differential rather than algebrai
L =C L..C +C L ( e solution o g €
Lrl Tlr =Tl “T1l T1 TL1 equations, Therefore, unless some specific
! -t 67 reason exists for not doing so, all purely resis-
Lprr = CTir L1 Crir L g S

' t t
Gkk = GTk+CTkk GLk CTkk + chg GLgchg

t
Gyg = CTkg OLg CTgg
]
t
Ggk = Crgg GLg CTke
1 t
- o
Ggg = CTg * Crgg ULg CTgg

)
t
Ryp = Ry + Ctp Ry Cn
!
Rjy = Ctnn R71 CT11r
-t
Rl = Chir Ry C11

] 1
Ry; = C11r RT1 CTIr

(68)

(69)
(70)
(71)
(72)
(73)
(74)

(75)
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tive branches of a network should be treated as con-
ductances. This will not only reduce the number of
differential equations to be solved but will also
result in considerable simplification of Eqs. (49)

et seq.

If this is done it can be shown that the remain-
ing algebraic equations in Eq. (60) have the solu-
tion

B (R T P ! . :
eTg = (Ggg) I}Tg - ngeTk + CTgl i, + CTgr lLl]

(76)

Hence, if this expression is substituted in Eq. (60),
a set of differential equations identical in form to
Eq. (19) is obtained. The total number of differ-



ential equations derived in this way corresponds
to the degree of complexity of the network,

However, if some of the purely resistive
branches.are treated as impedances, then more
than this number of differential equations may be
obtained, as explained above. But this larger
number cannot also be equal to the degree of
complexity of the network. Accordingly, the true
degree of complexity of any capacitive and/or induc-
tive network must be equal to the sum of the num-
ber of capacitive tree-branches plus the number of
inductive links identified by the foregoing tree-
link sorting procedure.

One precaution in using Eq. (60) should be
pointed out, This equation is based on the defini-
tions of static capacitance as charge/voltage and
static inductance as flux/current. These defini-
t.ions, in turn, are responsil.)le for the terms
KyVy + Kyvy and L,J, + L,J, in Eq. (48). But
when differential (small-signal) capacitances and/
or inductances are involved, as in the case of Ce
defined by Egs. (26) and (27), the quantities

V., and L,J, must be deleted from Eq. (48).
This follows from the definitions of differential
capacitance K and differential inductance L accord-
ing to the relations

3 8 (77)
and
v=;=“_§3=‘i5 (78)

Accordingly, all terms involving K or L, with
whatever subscripts, must be eliminated from
Egs. (60), (61) and (62) when differential capaci-
tances and/or inductances are involved.

Appendix II

Tree-Link Sorting Procedure

The object of this sorting procedure is to
classify each branch of the network as either a
tree-branch or a link and then to rearrange the
tables RCON, RDATA, EDATA, and IDATA
accordingly. It is assumed that these tables are
already in some desired sequence, such as in
order of increasing resistance, and that a set of
tree branches is to be selected from as near the
beginning of this sequence as possible. (Thiswill
result in choosing the tree of minimum total
resistance if the original ordering is that of
increasing resistance.)

Starting with the first branch of the sequence,
the network tree is constructed stepwise by adding
only those branches which do not form a closed
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path with the partial tree already constructed.
This partial tree, as well as the complete network
tree, may consist of several disjoint subtrees.
Hence, a branch will be classed as a link if both of
its nodes are already connected by the branches of
one of these subtrees - or if its initial and final
nodes are identical, a trivial case which must
nevertheless be handled.

Each branch is examined by comparing its
initial node number (+N) and its final node number
(-N), obtained from the RCON table, against a
master list (MLIST) of nodes contained in the
partial tree and also against the individual node
list (TLIST) for each subtree. Each such node
list consists of a string of bits indicating the
presence (1) or absence (0) of the node corres-
ponding to a given bit position in the string.

The following criteria form the logical basis
of the tree-link sorting procedure:

(1) If +N = -N, the branch is a link.

(2) If either +N or -N or both are absent from the
MLIST, the branch is a tree branch.

(3) If both +N and -N are present in MLIST,

(2a) The branch is a link if both +N and -N
are also in the same TLIST.

The branch is a tree-branch (joining two
previously disjoint subtrees) if +N and -N
are in different TLISTS.

(b)

As each branch is examined, the appropriate
node lists are updated. When the classification as
tree-branch or link has been made for the I-th
branch, its index (I} is stored in the next avail-
able location of TREE or LINK, as appropriate.
The two resulting sequences of index numbers are
then used for rearranging the tables RCON,
RDATA, EDATA, and IDATA after the tree-link
sort has been completed.

In the following description of the tree-link
sorting procedure, the symbols I,J,K,L and M
are indices, hence +N(I) and -N(I) represent the
initial and final node numbers of the I-th branch
and are obtained from the address and decrement
of the I-th word of the RCON table. IMAX is the
total number of branches in the network.

. Seti=J=K=1, clear MLIST and all TLISTS.
. If +N(I) = -N(I), go to 16.

. If +N(I) is absent from MLIST, go to 11.

. If -N(I) is absent from MLIST, go to 15.

. Find L for which +N(I) is present in TLIST(L)
and save L.

If -N(I) is present in TLIST(L), go to 16.

1
2
3
4
5

6.



7. Find M for which -N(I) is present in

TLIST(M) and save M.

If M<L, go to 10,

9. Add TLIST(M) to TLIST(L), clear TLIST(M),
and go to 19.

o]

10, Add TLIST(L) to TLIST(M), clear TLIST(L),
and go to 19.

11. Add +N(I) to MLIST.

12, If -N(I) is absent from MLIST, go to 14.

13. Find L for which -N{(I) is present in TLIST(L),
add +N(I) to TLIST(L), and go to 19.

14, Add -N{(I) to MLIST, find lowest L for which

TLIST(L) is clear, add +N{(I) and -N(I) to
TLIST(L), and go to 19.

15. Add -N(I) to MLIST, find L for which +N(I) is
present in TLIST(L), add -N(I) to TLIST(L),
and go to 19.

16. Set LINK(J) = 1.

17, If 1 = IMAX, go to 22.

18, Setl=1+1,J=J+1, and go to 2,

19. Set TREE(K) =1.

20. 1fI = IMAX, go to 22. '

2l. SetI=1+1, K=K+ 1, and go to 2.

22, Rearrange RCON, RDATA, EDATA and
IDATA according to the index numbers in
TREE and LINK,

Appendix III

Determination of the B Matrix

The node-to-datum-path matrix, BT, is
determined by an exhaustive search of the network
tree. Starting at the datum node, and proceeding
always along the branch of lowest serial number

connected to each node encountered en route, a
path is traced out until it terminates at some par-
ticular node of the tree. As the pathis traced, a
path record (PR) is kept in +1, -1, O format
showing the branches traversed and their orienta-
tions relative to this path in the sense of a node-to-
datum traversal.

When the path terminates at some node J, the
path record is stored in the J-th column of the B
matrix. The branch leading to node J is then
retraced, its entry in PR deleted, and this branch
removed from the tree. Next, the outward path
is continued, if possible, again taking the branch
of lowest serial number at each successive node
until the path terminates once more at, say, node
K. The PR is stored in the K-th column of B,
the branch leading to node K retraced, its entry
in PR deleted, and the branch removed from the
tree. By repeating this procedure until all
branches of the tree have been exhausted, the
entire BT matrix may be determined.

In actual practice, both the RCON table and
the branch-node matrix are used alternately in
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tracing out these datum-to-node paths. Sincethe
branch-node matrix is stored columnwise, it pro-
vides the simplest means of determining the
branch of lowest serial number connected to a
particular node. The RCON table, however, is
more convenient for finding the number of the node
at the far end of a given branch, wherever this is

required,

During the search procedure described below,
the branch-node matrix, which must include the
datum column, is destroyed, Since each entry of
this matrix, designated A(I,J), consists of a bit-
pair, there are four possible values of each bit-
pair of which only three are required for the quan-
tities +1, -1, 0. The fourth value, designated -0,
is required to designate the '"access' branch
leading to each successive node of the path being
traced. It is this access branch which must be
identified whenever it is necessary to retrace and
delete a branch from the tree. Deletion of a
branch, after retracing it, is accomplished simply
by substituting 0 in place of the +]1 or -1 value of
the aﬁpropriate AL, J).

In the following description of the procedure
for determining the BT matrix, the symbols I and
J represent the row (branch) and column (node)
indices.(J = 0 designates the datum node.) As in
Appendix II, the symbols +N(I) and -N(I) represent
the initial and final node numbers of the I-th
branch and are obtained from the I-th word of
the RCON table. IMAX is the total number of

branches in the tree. s

1. Setl=1,J =0,

2, If A(I,J) = t1, go to 5.

3, IfI = IMAX, goto 7.

4, Setl =1+1 and go to 2.

5. If A(I,J) = +1, setJ = -N(I), PR(I) = -1,
A(I,J) = -0,1=1, and go to 2. -

6. SetJ =+ N(I), PR(I) = +1, A(I,J)=-0,1=1,
and go to 2.

7. Transfer PR to column J of B matrix and
setl =1,

8. If A(I,J) = -0, goto 11,
9. IfI = IMAX, go to 15.

10, SetI =1+ 1 and go to 8.

11. If PR(I) = +1, go to 13,

12, Set J = +N(I) and go to 14,

13, SetJ = -N(I).

14, Set PR(I) =0, A(I1,J)=0,1=1I+1, and go to
2%

15, 1f{J = 0, stop. Otherwise, an error has
occurred.



Appendix IV

. t
Computation of BT ZT B

By taking advantage of the diagonal nature of
the matrix Z and the compact storage format of
the matrix B, a very efficient program can be
developed for computing the triple matrix product
BY Z1 Bp. Since ZT is diagonal, it follows that
the ij-th term of this product is given by the
expression

p
t _
(BpZrBply; = X (b by) 24
k=1

(79)

where p is the number of tree-branches, bki and/
or by are elements of BT, and zy) are the diago-
nal elements of Zp. Since this product is
symmetric, only the diagonal (i=j) and subdiago-
nal (i>j) terms need be computed.

Let the i-th and j-th columns of By be
designated by B ; and B_; and let the product
(byi bkj) for all values oka be represented by the
expression
B(i,j) =B,; @ B.j (80)
where the special operator & signifies multiplica-
tion of the corresponding elements of B_j and
B . and where the elements of the p-vector B(i, j)
are +1, -1, or 0. Next define a vector Z(T) com-
prised of the diagonal elements of Z. Then, the
result defined by Eq. (79) is identical with the
scalar product of the two vector B(i,j) and Z(T).

The advantage of using this peculiar method
for evaluating Eq. (79) is the fact that the com-
pact storage format of B ; and B.j allows the
vector B(i, j) to be computed many elements at a
time. Moreover, this computation may be
effected by means of logical operations (rather
than arithmetic operations) on the bit-pair equiva-
lents of the elements +1, -1 and 0 in B ; and B.j'
the result being the bit-pair representation of
B(i,j). Thus, the calculation of B(i, j) may be
carried out very rapidly.

The subsequent computation of the scalar
product of B(i, j) and Z(T) involves searching
B(i, j) for its nonzero elements and then adding or
subtracting the corresponding elements of Z(T).
The programming details of this task, however,
need not be discussed.

The code actually developed for calculating
B(i, j) on the IBM 704 computer will not be des-
cribed, Instead, an equivalent and much simpler
scheme will be outlined to illustrate the principles
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of the computation. It is assumed that p = 6 and
that the machine word length is 6 bits since only
6 different combinations of the elements +1, -1,
0 are encountered. To show this, let B . and
B.j, written as row vectors, be o

(B;)=( 1 1 0 0-1) (81)
(B.j) = (1 0-1 0-1-1) (82)
Hence B(i,j), also written as a row vector, is

B(i,j)=(1 0-1 0 0 1) (83)

These three vectors may be represented in
machine code by using the bits of one word to indi-
cate the magnitudes (M) and bits of another word
to indicate the signs (S) of successive elements:

(B,;) = 111001 M(I) (84)
000001 S(I)
(B,.) = 101011 M(J) (85)
J 001011 S(J)
B(i, j) 101001 ML J) (86)
001000 S(LJ)
The logical "AND'" operation, then, suffices to
convert M(I) and M(J) into M(], J):
111001 M(I)
"AND" 101011 M(J)
101001 M(,J)
or,
M(I,J) = M(I) "AND" M(J). (87)

Two steps are needed, however, for the calcula-
tion of S(I,J). First, S(I) and S(J) are combined
using the '"exclusive or' operation:

000001 S{I)
001011 S(J)
001010 RESULT

"EXOR"

Then, this result is combined with M(I, J) using
the "AND'" operation:

001010 RESULT
001001 M(,J)
001000 S(I,J)

IIANDII

Hence, it follows that

S(,7) = [S(1) "EXOR" §(J)] "AND" M(1,J) (88)
Since this procedure treats the magnitude bits

separately from the sign bits, it is much more ef-

ficient than the procedure actually used in TAP,
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Fig. 9. Collector Voltage for Transistor 1,
Negative Input Pulse.
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Fig. 10. Collector Voltage for Transistor 2,
Negative Input Pulse.
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Fig. 11. Collector Voltage for Transistor 3, Fig. 14, Collector Voltage for Transistor 2,
Negative Input Pulse. Positive Input Pulse.
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Fig. 12. Collector Voltage for Transistor 4, Fig. 15. Collector Voltage for Transistor 3,
Negative Input Pulse. Positive Input Pulse,
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Fig. 13. Collector Voltage for Transistor 1, Fig. 16. Collector Voltage for Transistor 4,

Positive Input Pulse.
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Fig. 17. Collector Voltage for Transistor 2, Fig. 20. Collector Voltage for Transistor 3,
Positive Input Pulse (Showing Effect of Negative Input Pulse (Showing Effect of
Added Capacitance). Cutoff Frequency)
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Fig. 18, Collector Voltage for Transistor 3, Fig. 21. Collector Voltage for Transistor 3,

Negative Input Pulse (Showing Effect of

Negative Input Pulse (Showing Effect of
Series Inductance).

Contact Potential).
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Fig. 19. Collector Voltage for Transistor 3, Fig. 22. Collector Voltage for Transistor 3,
Negative Input Pulse (Showing Effect of Negative Input Pulse (Showing Effect of
Base Resistance). Temperature).
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