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SUBNETWORKS 

P. S. Castro and W. W. Happ 
Microsystems Electronics Department 
Lockheed Missiles and Space Company 

Sunnyvale, California 

Summary 

The logic governing the generation of subnet¬ 
works from multiterminal networks can be estab¬ 
lished by associating with each permissible net¬ 
work operation a suitably defined set of reduc¬ 
tions in rank of the indefinite (or equi-cofactor) 
matrix of the network. Criteria for uniqueness 
and non-redundancy of subnetworks are defined and 
applied to evaluate representative large networks 
in terms of properties associated with generated 
subnetworks . 

Definition and Terminology for Subnetworks 

The methods of network synthesis can be used 
to prescribe the internal interconnections (or 
environment) of a "black box" to achieve a given 
function. An alternative, and sometimes equi¬ 
valent, method is to begin with a number of cir¬ 
cuit elements and prescribe the interconnections 
between the elements to achieve a given circuit 
function (or at least as close to it as one can 
with the given elements). In contrast to network 
synthesis, however, this method commences with a 
given "black box" and prescribes the external en¬ 
vironment of the "black box".. The term "subnet¬ 
works" will be used to define a network derived 
from a given "black box" by specifying a given 
external environment. Of course, it is then 
possible to specify an additional environment of 
the subnetwork and thus generate further subnet¬ 
works. It is important to examine the properties 
of subnetworks in relation to those of the parent 
network. This investigation is concerned primar¬ 
ily with establishing the number of non-redundant 
subnetworks with a given classification and the 
matrix operations required to lead from the parent 
network to the subnetwork. Since the matrix gives 
all the network properties and the mechanics of 
matrix operations is well understood, generation 
of the desired network function by the methods 
outlined here is possible in principle, but diffi¬ 
cult in practice. 

Statement of Problem 

A three-terminal network pennits the deriva¬ 
tion of the following unique subnetworks; three 
unique two-ports and six unique one-ports, as 
shown in Fig. 1 and Fig. 2. To define a unique 
subnetwork, it will be assumed that an interchange 
of terminals as shown in Fig. 3 is not considered 
a novel network configuration, since the method of 
driving a network will not change its characteris¬ 
tics. Similarly, a one-port may be driven in two 
ways, as shown in Fig. U, and is considered only 
as a single configuration since its network char¬ 
acteristics are unchanged. 

In the first row of Fig. 5, one-ports de¬ 
rived from an n-terminal network are listed. To 
derive these and other subnetworks, techniques 
must be developed. For example, a two-port net¬ 
work can be constructed in only two distinct ways, 
either as a three-terminal network or as a four-
terminal (also referred to as bridge) network. 

Generalizing, a p-port subnetwork can be con¬ 
structed in p possible ways, using p+1, p+2, p*3, 
..., 2p terminals. For example, three-ports with 
U and 5 and 6 terminals are listed in Fig. 5. Pro¬ 
perties of unique subnetworks such as those listed 
in Fig. 5 require an understanding of the opera¬ 
tions of generalizing subnetworks. These techni¬ 
ques will be examined by topological methods of 
analysis and results will be applied to give a 
systematic account of subnetworks. 

Permissible Operations to Generate Subnetworks 

Two operations on a given terminal of a net¬ 
work are distinctly permissible: 

1. The operation of floating a terminal 
specifies that current entering the terminal is 
zero. No subsequent operation on this terminal is 
permissible. 

2. The operation of shorting a port speci¬ 
fies that two terminals are connected together. 
If these two terminals are not to be driven by an 
external generator, then this operation must be 
followed by either (2.1) floating the combination 
or by (2.2) shorting the combination to another 
terminal. If (2.1) is selected, no subsequent 
operation on the combination is permissible; if 
(2.2) is selected, operation (2) must follow. 

3. The additional operation of grounding a 
terminal may be added. This operation establishes 
a reference terminal. 

Matrix Reduction to Subnetwork 

Indefinite Matrices 

An n-terminal network can be uniquely defined 
by an admittance matrix of order n-1 if it exists 
at all. It is possible to augment this matrix by 
addition of a row and column to obtain a resultant 
matrix of order n. It follows that the sum of the 
elements of each row and of each column are zero. 
The resultant singular matrix was called by 
Shekel1 an indefinite matrix and applied to the 
analysis of three-terminal networks such as the 
transistors. Zadeh^ and Castro and Happ^ extended 
the use of indefinite matrices to circuit analysis 
and to n-terminal networks. Sharpe and Spain^ 
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showed that all cofactors of an indefinite matrix 
are equal and coined the term equi-cofactor ma¬ 
trices. 

Matrix Operations 

In an n-terminal network, each row of the indefi¬ 
nite admittance matrix corresponds to a terminal 
current and each column corresponds to a terminal 
voltage with resnect to an arbitrary reference 
point. For indefinite admittance matrices, three 
types of operations will be employed which have a 
one-to-one correspondence to operations generating 
subnetworks. 

1. Cross-off one row and the corresponding 
column; this operation is the mathematical counter¬ 
part of grounding that terminal, that is, using a 
terminal as reference. 

2. Invert one row; this operation is defined 
by setting one element of the dependent variable 
equal to zero and eliminating the corresponding 
independent variable, and corresponds in flow 
graph terminology (Nisbet and Happ)^ to oath in¬ 
version and setting the newly generated indepen¬ 
dent variable equal to zero. This operation is 
equivalent to floating a terminal of the network. 

3. Adding two rows and two corresponding 
columns is equivalent to shorting a port which 
consists of the corresponding terminals. 

Successive application of these three operations 
generates all subnetworks from a given network. 
A given subnetwork is independent of the order in 
which the above operations are applied in its de¬ 
rivation, and thus caution must be exerted to in¬ 
sure a systematic, non-redundant enumeration. 

A n-port subnetwork has a matrix of order and 
rank p. To reduce an n-terminal network to a p-
port, (n-p) operations are required. 

A technique for a systematic enumeration of 
non-redundant subnetworks will first be illustra¬ 
ted by an example, then to be followed by an inves¬ 
tigation of the logic underlying the generation of 
subnetworks• 

Illustrative Example: Four-terminal Network 

Consider the one-port and two-port subnet¬ 
works which can be derived from a four-terminal 
network. The terminals of a four-terminal two-
port must be taken two at a time and yield six 
pairs, one pair serving as input and the other 
pair as output, resulting in three unique four-
terminal two-ports listed in Fig. 6. 

Fig. 6 also lists the three-terminal two-ports 
which can be obtained from a four-terminal network 
which are of three distinct types: 

1. one terminal floating 

2. two terminals shorted at input or at 
output 

3. two terminals taken both as reference 
terminals. 

Since all three-terminal two-ports have one 
terminal as a reference, it is always possible to 
cross off one row and one column as indicated by 
operation 1 in Fig. 6, thereby reducing the h by 1* 
matrix to a 3 by 3 matrix. Subsequent reductions 
may be of one of three types as shown in Fig. 6 
resulting in a total of thirty unique two-ports. 

Similarly, seven types of one-ports listed in 
Fig. 7 are obtained by applying matrix operations 
1, 2 and 3 in suitable sequence. Sixty-two one-
ports result, which are redundant by a factor of 
two, since it is immaterial which terminal serves 
as reference and which terminal is driven. 

Topological Techniques of Enumeration 

Scope 

The enumeration techniques used in the pre-
ceeding illustrative example are valid for networks 
of arbitrary complexity but do not provide a suffi¬ 
ciently effective approach to be of practical value 
for networks with more than four terminals. Topo¬ 
logical techniques provide a more rigorous method 
and a more effective technique for large systems. 
So far, a general topological solution to enumer¬ 
ate subnetworks is not available; however, as will 
be shown, the laws of subnetwork generation can be 
expressed in terms of topological theorems. These 
theorems provide an accurate determination of one 
class of subnetwork, as well as several recursion 
formulae reducing the problem to a ooint where an 
order of magnitude estimate of the total number of 
subnetworks is meaningful. 

Applicable Theorems 

Theorem 1 : If T is number of trees in a (t-1) 
terminal network, then the total number of p-ports 
having terminals obtained from a (t+1)-terminal 
network is 

N(t + l,t,p) - (T/2)(t + l)(t + 2) 

Proof : The number of trees T(t) in a t-term-
inal network is equal to the total number of uni¬ 
que (t-l)-ports networks that exist in the t-term-
inal network. If one more terminal is added to 
the t-terminal network and if we are to continue 
to have a (t-l)-port subnetwork, then the added 
terminal must be either (a) left floating or (b) 
connected to an existing terminal. For case (a), 
there will be (t+l)T subnetworks, since there are 
(t+1) choices of terminals to float. For case (b) 
there will be (t/2)(t+l)T subnetworks, since there 
are (t/2)(t+l) choices resulting from taking (t+1) 
terminals two at a time. The sum of (a) and (b) 
give the total stated above. This theorem can be 
generalized in the following: 

Theorem 2 : If K(s,t) is the number of dis-
tinct ways of reducing s terminals to t terminals, 
and N(t,t,p) is the number of p-ports networks of 
a t-terminal network, then K(s,t)N(t,t,p) « 
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N(s,t,p) is the total number of p-port networks 
having t-terminals obtained from an s-terminal 
network. The proof of this theorem is similar to 
that of Theorem 1, but considered beyond the scope 
of this summary. 

Theorem 3: The number of trees in a t-termi-
nal network is given by T(t) - t^"2) as proven by 
Trent"; thus N(t,t,t-1) * t^-2 '. 

Theorem 1*: A 2p-terminal network generates 
N(2p,2p,p) - (2p)l/(2ppl) unique p-ports. 

Proof : In a (2p-2)-terminal network the num¬ 
ber of (p-1)-ports is N(2p-1, 2p-l, p-1). If two 
more terminals are added it is seem that by using 
one of the added terminals in combination with 
each of (2p-l) remaining terminals, we have 

N(2p,2p,p) - (2p-l)N(2p-2, 2p-2, p-1) 

Since the product of all odd numbers up to (2p-l) 
is (2p)l/(2ppl), it is readily verified that 

N(2p,2p,p) - (2p)l/(2ppl) 

Illustrative Example: Five-terminal Network 

The number N(5:l*:3) of four-terminal three-
ports which can be obtained from a five-terminal 
’.etwork is given by theorem 1 as 

N(5:U:3) - (T/2)(t+2)(t+1) - 21*0 

since t • I* and T(l*) - 16 

theorem 3 yields N(5:5sh) - T(t) - 12$ with t - 5. 
Similarly, theorems 1 and 3 yield 

N(5s3:2) - (T/2)(t+2)(t+l) - 1*5, with t-U 

and T(3) - 3, 

the remaining entries in column 5 of Fig. 5 have 
to be computed by the methods developed in Section 
2. Thus 

N(5:2:l) - 160 with the aid of Fig. 8 

N(5:3:2) - 21*0 with the aid of Fig. 9 

While the last entry is readily shown by inspection 
to be N(5:5:3) • 30, however, a formula for 
N(t,t,t-2) appears to require a different approach 
from the above and is indicative of problems await¬ 
ing solution. The total number of subnetworks ob¬ 
tained from a five-terminal network is 81*0, as 
shown in Fig. 10. 

Summary of Results 

Computed values of N(s,t,p) are shown in 
Fig. 5. Additional values are provided by the 
relationships 

N(t,t,t-1) - t(t"2) - T(t) 

N(2p,2p,p) - (2p)l/(2Ppl) - P(p) 

and the recursion formulae 

N(t+l,t,p) - (l/2)(t+l)(t+2)N(t,t,p) 
which is a special case for s ■ t+1 of N(s,t,p) ■ 
K(s,t)N(t,t,p) where 

K(t+l,t) = (l/2)(t+l)(t+2) 

as well as K(l*,2) « 31 and K(5,3) • 80 are known. 

An order-of-magnitude estimate of the number 
of subnetworks is made in Fig. 10 and Fig.11 by 
extrapolating calculated values and trends indica¬ 
ted by the above formulae. The one-ports increase 
roughly as si, while the total number of subnet¬ 
works must exceed ss-2 by a factor of the order of 
s or s2. Hence, for the total number of subnet¬ 
works an order-of-magnitude of s2 appears reason¬ 
able. Fig. 11 is a plot of the number of subnet-
W'orks as a function of p with s as a parameter. 
For constant s, the number of subnetworks 

N(s,p) • N(s,t,p) 

has 
si. 
and 

s ”2 two limiting values, namely s and roughly 
Between these limiting values N(s,p) increases 

when d sV2 reaches a maximum of the order-of-
magnitude 

1/2. s-1 N(s,s ) s 

Calculated and estimated number of subnetworks 
are shown in Fig. 11. The implication of these 
results are significant and fundamental in the de¬ 
velopment of circuit design concepts, such as ex¬ 
ploration of the distributed parameter networks 
developed by Castro and Happ^. Indeed, an entire¬ 
ly revolutionary concept of network synthesis is 
foreshadowed by the results here presented. No 
longer will the circuit designer assemble various 
and sundry components to obtain a desired circuit 
response. Instead, it is likely that the circuit 
designer of the future will shape his own circuit 
function from a multi-terminal element by genera¬ 
ting the subnetwork to fit his specification using 
the logic of effectively generating the required 
subnetwork. 
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FIG. I TWO PORT DERIVED FROM A THREE-TERMINAL 
NETWORK 

FIG. 2 ONE PORT DERIVED FROM A THREE-TERMINAL 
NETWORK 
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FIG.3 NON-UNIQUE TWO-PORT 

FIG. 4 NON-UNIQUE ONE-PORT 

FIG. 5 NUMBER OF SUBNETWORKS 
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12 (1) (3) 

6 (1) (2) 

3 TAKE TERMI-
NALS IN PAIRS 

FIG.6 NON-REDUNDANT TWO-PORTS DERIVED 
FROM A FOUR-TERMINAL NETWORK. 
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FIG. 7 NON-REDUNDANT ONE-PORTS DERIVED 
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FIG. 9 N (5:3:2) = 240 
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REALIZATION OF FUNDAMENTAL CIRCUIT AND CUT-SET MATRICES* 

C. C. Halkias and W. H. Kim 
Department of Electrical Engineering 

Columbia University 
New York 27, New York 

Summary 

A simple procedure for the realization of 
a fundamental circuit matrix Bf or a funda¬ 
mental cut-set matrix Cf is given. This pro¬ 
cedure constitutes a necessary and sufficient 
condition for the realization of the matrices 
Bf or Cf of an oriented, connected graph. It 
is shown that the problem of realizing Bf or 
Cf is reduced to the problem of realizing a 
resistive n-port with exactly n + 1 nodes; theo¬ 
rems and illustrations are provided. 

I. Introduction 

The problem of realizing a fundamental 
circuit matrix or a fundamental cut-set matrix 
had remained unsolved for a long time. The 
first solution was offered by Gould1 in 1957. 
In 1959 two more solutions were proposed, one 
by Guillemin2 and another by Lofgren.5 In the 
same year, Ausländer and Trent* gave an alter¬ 
nate solution and Tutte5 published his work on 
matroids and graphs. In i960 Tutte° developed 
a realization algorithm in an attempt to give 
practical significance to his highly theoretical 
results. Other research workers who offered 
solutions are: MayedaV, Okada and YoungS in 
i960. The reader who is familiar with all the 
above solutions must be aware of their 
complexity and of the labor involved in attempt¬ 
ing to realize any given fundamental cut-set or 
fundamental circuit matrix. In this paper we 
give a realization procedure which is based on 
the theory of resistive n-port networks. This 
procedure is simple and involves no substantial 
effort in testing a given matrix for realiza¬ 
bility. If a given matrix is realizable, the 
procedure discussed in this paper gives all 
possible graphs which satisfy the matrix. If 
the matrix is not realizable, then the procedure 
forms a proof of its unrealizability. 

II. Oriented Graphs 

We are concerned with the problem of de-
dermining the conditions under which a matrix 
Cf is realizable as a fundamental cut-set matrix 

* This research was supported by National 
Science Foundation Grant G-1055^ 

of a connected graph. The matrix Cf is 
assumed to be of order n by e(n < e) and 
rank n, to have as elements ± 1 and 0 and 
that it may be partitioned in a basic form1® 

Cf = [Ui c12] (1) 

where Uj is a unit matrix of order n. 
An interesting necessary condition on the 

sign pattern of the matrix Cf follows from the 
fact that Cf must necessarily be a unimodular** 
matrix. Let the elements of Cf be Cfj. 
Necessary Condition 1 

A necessary condition for the realization 
of a matrix Cf as a fundamental cut-set 
matrix is that for any pair of indices i, J 
(i + J) we must have: 
cipcjp = +1 0, for p = 1,2,..,e (2a) 

or 
cipcJp = -! or 0, for p = 1,2,..,e (2b) 

Proof : Let cihCjh and cikcjk be different 
from zero and let them have opposite signs, 
contrary to the above condition, 

cihCjh = -cikCjk (5) 

Consider the subdeterminant 

= cihcjk-cjhcik W 

multiply both sides of (U) by cjhCjk which is 
different from zero, i.e., 

cJhCjk J Cij I = cjkcjhcih - cjhclkcJk

= 2 cjhcih <2 (5) 

which contradicts the hypothesis that Cf is a 
unimodular matrix. 

One of the implications of the first con¬ 
dition is the requirement that if the signs of 
the first row of Cf are all (+) or 0 then every 
element of every other row (with all columns 
having a zero on the first row crossed out) must 
be either (+) or 0, or (-) or 0; that is, there 
cannot be (+) and (-) signs on the same row. 

** A matrix all of whose elements and subdeter¬ 
minants are 1, -1 or 0 is called a unimodular 
matrix (or E-matrix). (See Reference 9.) 

=ih cik 

cJh cJk 
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Necessary Condition 2 
A necessary condition that a 

matrix Cf be realizable as a fundamental cut¬ 
set matrix of an oriented graph is that Cf 
should not include the following submatrix. 
(See References 1,5, 6, 9, 10, 11, 12) 

(6) 

where the x's stand for non-zero elements. This 
condition follows from the fact that there can¬ 
not exist in a unimodular matrix a submatrix of 
the form K shown in (6). 

Let us now consider a simple approach for 
the realization of Cf. A realizable Cf 
matrix specifies a connected graph with n + 1 
nodes and e edges; moreover, it defines a 
tree with a specific tree-branch orientation. 
If we think of the edges as conductances 
di, d2,..,de and if we excite the network by 
connecting n current generators oriented in 
the same direction as the tree-branches at the 
node-pairs specified by the tree-branches, then 
we obtain the short-circuit admittance matrix 
Y of an n-port resistive network with (n + 1) 
nodes which has a tree-port-structure. 

It is well known that^-® for an n-port 
resistive network with (n + 1) nodes 

Y = Cf D Cf (7) 

where Cf is the fundamental cut-set matrix 
with respect to the tree corresponding to the 
port-structure. Cf is the transpose of Cf 
and D is the diagonal matrix with the positive 
conductances d^dg,..,!^ as main diagonal 
elements. If Cf is realizable with (n + 1) 
nodes and e edges, then Y is realizable; if 
Cf is not realizable, then Y is not realizable 
either. Hence our problem of realizing Cf is 
equivalent to the problem of realizing the n-port 
network with (n + 1) nodes characterized by the 
short-circuit admittance matrix Y given in (7). 

Let us assume that the conductances 
d^jdgj-.jde are all unit-conductances; then the 
expression in (7) is reduced to Y = CfCf^, and 
the product CfCf* is the Grammian of the funda¬ 
mental cut-set matrix. We have now reduced the 
problem of realizing the matrix Cf to the 
problem of realizing the Grammian of Cf as the 
short-circuit admittance matrix of a resistive 
network with (n + 1) nodes and e unit-conduct¬ 
ances. We now state the above discussions in 
the next theorem. 
Theorem 1. 

The matrix Cf = [Uæ C^) with elements 
0, + 1 is realizable as a fundamental cut-set 
matrix of an oriented graph if and only if the 
Grammian Y = CfCf^ is realizable as a short-
circuit admittance matrix of an n-port resistive 
network containing (n + 1) nodes and e unit¬ 
conductances . 

The proof of the above theorem follows 
because the short-circuit admittance matrix of 
an n-port network described on the resistive net¬ 
work with (n + 1) nodes is given by 

Y = Cf D Cf11 (8) 
and from the fact shown by Cederbaum1?, that 
the congruence of Eq. (8) is unique if Cf is 
a non-redundant unimodular matrix* and D is 
a positive diagonal matrix. 

Our problem has now been reduced to the 
problem of realizing a Y-matrix of order n as 
a short-circuit admittance matrix of a resistive 
n-port network with n + 1 nodes. In order to 
make the procedure of realizing Cf simple, we 
shall consider the following theorems and 
corollaries : 
Definition 1 

A linear-tree is a tree whose branches are 
all contained in a single path. (See Fig. la). 
Theorem 2 

If a matrix Cf contains a column with 
all non-zero elements, then the tree on which 
Cf is based is a linear-tree. 

Proof : The edge corresponding to the 
column with all non-zero elements links all tree¬ 
branches; hence all tree-branches are contained 
in a single path and thus the tree is linear. 
The order of the tree branches is, of course, 
not known yet. 
Corollary 1 

The matrix Cf of order n by e and 
with a column of all non-zero elements is 
realizable if and only if the Grammian 
Y = CfCft is realizable as a short-circuit 
admittance matrix of an n-port resistive network 
with (n + 1) nodes, e unit resistors, and a 
linear-tree port-structure. 

Proof : The corollary follows the Theorems 
1 and 2. 
Theorem 5 

If the matrix Cf contains a column with 
non-zero elements in the rows i,j,..,k, then 
the corresponding tree-branches i,j,..,k form a 
linear-tree if all other tree-branches are short-
circuited. 

Proof : The edge corresponding to the 
column with non-zero elements in the rows 
i,j,..,k links tree-branches i,J,..,k. If all 
other tree-branches are short-circuited, then 
tree branches i,j,..,k are contained in a single 
path and thus form a linear-tree. 

* An E-matrix is called non-redundant if it 
has no columns with all zero elements and no 
two columns in which the pattern of zero and 
non-zero elements is identical. An E-matrix 
is also called a unimodular matrix. 
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Corollary 2 

If the matrix Cf contains a column with 
non-zero entries in the rows i,j,..,k, then a 
necessary condition for the realization of Cf 
is that the matrix Yf j ,, x be realizable as 
a short-circuit admit-tance’matrix of a multi¬ 
port resistive network with a linear-tree port¬ 
structure formed by the ports i,J,..,k. (Not 
necessarily in the order i,j,..,k.) 

Proof : The proof follows from Theorems 
1 and J. 

Corollaries 1 and 2 require that we should 
be able to determine whether a given Y-matrix of 
real elements and of order n is realizable with 
(n + 1) nodes and a linear-tree port-structure 
consisting of n ports. Of great importance for 
our purposes is the order of the ports in the 
linear-tree port-structure; this will enable us 
to derive the tree on which Cf is based and 
the complete realization of Cf can follow by 
inspection. In the following theorem we give 
the necessary and sufficient conditions for the 
realization of Y with a linear-tree port¬ 
structure. The proof can be found in references 
(1^, 15). 
Theorem 4 

The necessary and sufficient conditions 
for the realization of the n'th order matrix 
Y = (yfj] as a short-circuit admittance matrix 
of an n-port resistive network with (n + 1) 
nodes and the ordered linear-tree port-structure 
of Fig. lb are: 
(a) YiJ > 0
(b) Yij + yi-i, J+i > yi-i’j + yi>J+1 

for all i and j. 

In Eq. (9) all elements of the n by n 
Y-matrix with an index larger than n or less 
than one are defined to be identically equal to 
zero. A matrix which satisfies the conditions 
of Theorem 4 is called "uniformly tapered"1*,^. 

On the basis of the previous theorems and 
corollaries, we now give a simple procedure for 
the realization of Cf. If Cf is not real¬ 
izable, then the procedure forms a proof of its 
unrealizability. 
Realization Procedure 

Let us first interpret two operations on 
the matrix Y. 
I. Changing signs of all elements of row k and 
column k means that the polarity of the k'th 
port (and the orientation of the k'th tree¬ 
branch) is reversed. 
II. Interchanging rows and columns i and k 
means an interchange in the labeling of ports i 
and k (an interchange in the numbering of tree¬ 
branches i and k). We now give the reali¬ 
zation procedure. 

Case 1: C^ contains a column with all non¬ 
zero elements. 
(a) From Y = CfCf^ 
(b) Place Y in a uniformly tapered form.* 
(If this is not possible, then Cf is not 
realizable). 
(c) From step (b) obtain the order and orienta¬ 
tion of the branches of the linear-tree. 
(d) With the tree known, the realization of Cf 
can proceed by inspection. All possible 2-iso-
morphic graphs10 realizing Cf can also be ob¬ 
tained by inspection. 

Case 2 : Cf does not contain a column with 
all non-zero elements. 
(a) From Y = CfCf1
(b) Examine the column of Cf with the largest 
number of non-zero elements in the rows 
i,j,..,k and obtain the matrix Yf j 
(c) Place Yf j k in a uniformly tàpered 
form and thus derivé the order and orientation of 
tree-branches i,J,..,k.* (if this is impossible, 
the matrix Cf is not realizable). 
(d) Repeat steps (b) and (c) for the columns 
with a smaller number of non-zero elements. By 
combining the various tree parts, obtain the tree 
on which Cf is based, (if this is impossible, 
then Cf is not realizable). The realization 
of Cf can now be completed by inspection. 
The procedure is best illustrated with the 
following example. 

It may be required to multiply some rows and 
columns by -1 or to interchange some rows 
and columns. 
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Example 1. 
Realize the following fundamental cut-set 

matrix. 

cf = 

1 2 3 4 5 6 7 8 9 10 11 12 1? 14 15 16 17 18 19 

1000000011000000010 
01000000001100001 -1 0 
0010000011110000100 
0001000000001111 -1 00 
0000100000001100001 
0000010000000011 -1 0 -1 
00000010 -1 000 -1 000000 
00000001000 -1 000 -1 000 

(10) 

Step (a). 

Y = CfCf* = 

4 -1 2 0 0 0 -1 0 
-1 5 5-1 0-1 0-1 
2 5 6 -1 0 -1 -1 -1 
0 -1 -1 6 2 5 -1 -1 
0 0 0 2 4 -1 -1 0 
0-1-1 5-1 5 0-1 
-1 0 -1 -1 -1 0 5 0 
0 -1 -1 -1 0-1 0 5 

(11) 

Step (b). 
If we consider the 17th column of the 

matrix of (10) (this column has the maximum 
number of non-zero elements) then we have: 

Y2,5,4,6 =

1 
H
 
H
 

V
J
 
V
I
 

' 

1
 
I
 

H
 
H
 

O
\
 
V
J
 

1
 
1
 

V
4
 

C
h
 
H
 
H
 

r
 
!
 

(12) 

A possible order for tree-branches (or ports) 2, 
5, 4, 6 is shown in Fig. 2a. 

Step (c) 

For the remaining columns with three non¬ 
zero elements we have: 

4 2-1 

-1 -1 5 

(a) 

3 -1 
6 -1 

-1 3 

(b) 

(13) 

Y4,5,7 

6 2-1 
2 4-1 
-1 -1 3 

One should note here that Y_ is also uni¬ 
formly tapered; ’ ’ 

Y7A,5 

3 -1 -1 
-16 2 
-12 4 

(d) 

The order for tree-branches 1,3,7 2,5,8 and 
4,5,7 is shown in Figures 2b,c,d,e. 
Step (d) 

Combining the sub-trees of Steps (b) and 
(c), we obtain the tree shown in Fig. 5-
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The graph realizing Cf can now be obtained by 
inspection, which is shown in Fig. 4. 

Let us now assume that we are concerned 
with the problem of determining the conditions 
under which matrix Bf is realizable as a 
fundamental circuit matrix of a connected graph. 
The matrix Bf of a graph is assumed to be of 
order n by e(n < e) and rank n, and to have as 
elements t 1 and 0 and that it may be parti¬ 
tioned into a basic form with respect to a tree 
of the graph. 

Bf = [B^ U2] (14) 

where U2 is a unit matrix of order n. The 
fundamental cut-set matrix based on the same 
tree is then found to be 

Cf = -B^] (15) 

where IK is a unit matrix of order (e - n). 
The matrix Cf can be realized as discussed pre¬ 
viously. Thus we reduce the problem of realizing 
B^ to the problem of realizing the corresponding 
Cf. Since the matrix Bf must be a unimodular 
matrix, it is obvious that necessary conditions 
1, 2 are also valid for fundamental circuit 
matrices. 
Example 2. 

Determine if the following matrix, dis¬ 
cussed by Guillemin-æ in connection with the 
realization of an open-circuit resistance matrix, 
is realizable as a fundamental circuit matrix 
of an oriented graph. 

1 
2 

3 
4 
5 
6 

7 
8 
9 

10 

1 2 3 4 5 

110 0 0 
10 10 0 
10 0 10 
1 0 0 0 1 
0 10-10 
0 0 10-1 
110 0 1 
10 110 
1110 0 
10 0 11 

6 7 8 9 10 

1 0 0 0 0 
0 10 0 0 
0 0 10 0 
0 0 0 1 0 
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

11 12 15 14 15 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 
0 10 0 0 
0 0 10 0 
0 0 0 1 0 
0 0 0 0 1 

(16) 

The cut-set matrix corresponding to the same 
tree is: 

1 
2 

3 
4 

5 

1 2 5 4 5 6 7 8 9 10 11 12 15 14 15 

1 0 0 0 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 
0 1 0 0 0 -1 0 0 0 -1 0 -1 0 -1 0 
001000 -1 000 -1 0 -1 -1 0 
0001000 -1 0100 -1 0 -1 
00001000 -1 01 -1 00 -1 

(17) 
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We may now form the triple product Y = Cf D Cf\ 
where D is a unit matrix of order 15. 

Y = 

9 3 3 3 3 
3 5 1-11 
3151-I 
3-1151 
3 1-115 

(18) 

Applying the methods described in previous 
sections of this paper we can easily realize the 
matrix Cp. Branches 12 and 15 link the 
tree paths 1,2,5 and 1,5A respectively. The 
submatrices of Y corresponding to the ports 
1,2,5 and 1,5,^ are: 

9 3 3 
3 
3 

V = 1,2,5 

3 3 
5 1 
1 5 

(19) 

It is readily recognized that the order of ports 
in these paths is: 2,1,5 and 5,1,^. Thus the 
tree is necessarily of the two types shown in 
Figures 5a, b. The alternative shown in 
Fig. 5a may be excluded because branch 10 
links ports 2 and 4 only. The realization 
of the matrix Cp and hence of the matrix Bp 
is shown in Figure 6. 

III. Non-Oriented Graphs 

The extension of the realization procedure 
to non-oriented graphs is basically straight¬ 
forward. Suppose a fundamental cut-set 
matrix Cf contains a column with all l’s. 
Then this matrix must be based on a linear-tree. 
If Cp is realizable, the orientation of the 
graph elements can be considered to be as shown 
in Fig. 7, and hence all l’s of Cp can be 
taken as +l's. Hence the realization pro¬ 
cedure for oriented graphs is valid also for 
this case. If Cp contains a column with I's 
in the rows i,j,..,k, then upon crossing out all 
other rows of Cp, the resulting matrix is based 
on a linear-tree and its non-zero elements can 
be considered as +l's. In conclusion we see 
that the realization procedure for the matrices 
Cp and Bp of a non-oriented graph is identi¬ 
cal to the previously discussed procedure for 
oriented graphs. 
Example 5 • 

Determine if the following matrix, given 
by Mayeda, is realizable as a fundamental cut¬ 
set matrix of a graph. 

d f h i b a c g e 

0 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 1 1 1 

(20) 0 0 0 0 0 1 1 1 1 
0 0 0 0 0 1 1 1 1 

We have: 
U 2 1 2 

3 2 1 1 
(21) 4 1 1 2 

1 2 2 

1,2,5,U into A transposition of rows and columns 
the sequence 5A,1,2 results in the uniformly 

1,2,5,4 correspond to 

1 1 
2 2 1 

(22) 4 1 2 2 
1 1 2 3 

2 
u 

Y5A,1,2 

Cf 

Yl,2,5,u " CfCf 

tapered matrix. Ports 
tree-branches f,g,h,i 

The realization of this matrix is shown in 
Fig. 8. The graph contains exactly 5 nodes 
and 9 elements. 
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FIG. 5 POSSIBLE TREE 
STRUCTURES - EXAMPLE 2 

K— CUT-SET j. 

FIG. 7 ORIENTATION OF K — CUT-SET 
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CIRCUIT MATRIX OF EXAMPLE 2 
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SOLUTION PROCEDURE FOR SINGLE-ELEMENT-KIND NETWORKS* 

S. D. Bedrosian and R. S. Berkowitz 
Institute for Cooperative Research and The Moore School of Electrical Engineering 
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Philadelphia 4, Pa. 

Summary 

The indefinite admittance matrix provides a 
straightforward means for obtaining admittance 
parameters for describing the external behavior of 
a network in terms of the element values. When 
the element values are considered as the unknowns 
and the expressions representing short circuit 
measurements describing its behavior are taken as 
known constants, the relations obtained become a 
nonlinear system of equations. 

A novel feature in formulating the system of 
equations is the exclusive use of transfer ad¬ 
mittance parameters rather than the use of a 
reference node. Necessary conditions for "solva¬ 
bility" are given in terms of the "compound" 
matrix. A general solution procedure is discussed 
for explicit determination of the element values 
of single-element-kind networks. Examples are in¬ 
cluded. 

Introduction 

We are concerned with formulation of an ade¬ 
quate mathematical theory for network element value 
solvability as distinguished from the empirical 
techniques usually practiced in electronic mainte¬ 
nance. By solvability we mean the ability to de¬ 
termine uniquely the value of all the unknown ele¬ 
ments of a given multiterminal network. This con¬ 
cept of theoretical solvability was introduced by 
Berkowitz.1 

The networks being treated are considered to 
have a known configuration and are such that 
measurements can be made at a limited number of 
terminals. See Fig. 1. Three types of nodes are 
permitted : 

Accessible nodes, A. (the usual external 
terminals) 

Partially accessible nodes, P. (terminals 
restricted to application or measurement 
of voltage) 

Inaccessible nodes, I. (internal or "con¬ 
cealed" nodes). 

Then the total number of nodes N = A + P + I. 

* This paper is based on Chapter IV of a 
dissertation submitted in partial fulfillment of 
the requirements for the Ph.D. degree at the Uni¬ 
versity of Pennsylvania, Philadelphia, Pa. The 
work was supported, in part, by Contract No. DA-
36-034-507-ORD-3347RD with the Frankford Arsenal, 
Army Ordnance Corps. 

Formulation of Equations 

The Compound Matrix 

By suitable labeling of these nodes we can 
write the indefinite admittance matrix as a "com¬ 
pound" matrix (using subscript t for the trans¬ 
pose) . 

This zTZ matrix provides a direct method of ob¬ 
taining a "complete set" of parameters represent¬ 
ing short circuit measurements for describing the 
observable external behavior of the network, due 
to the fact that it facilitates formulation of 
the transfer admittance from any pair of nodes in 
the network to any other pair. The set of linear 
algebraic equations can be represented in matrix 
form as: 

A A A „AP P AI I 
I = Ye +Y E +Y E 

IP = Y^PEA+YPEP+YPIEI (2) 

0 = yAiea+ypiep+yiei. 

Then, solving for the current at the accessible 
nodes, we have 

IA = Va EA+YP'eP (3) 

where 

rA'] A AI, I -1 AI 
[Y J = Y^-Y (Y ) Yt

t P3 ' .AP AI I -1 PI 
[Y J = Y* -Y (Y ) Yt . 

(4) 

(5) 

If there are no partially accessible nodes in 
the given network, Eq. 4 simplifies to Kron's 
reduction formula. Thus, if P 0 we have both 
terms in Eq. 3 and we require the additional 
equation for defining (y) ' . The result given 
above can be considered as a generalization of 
Kron's work. 
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Since extensive use will be made of equations 
4 and 5, we introduce some simplifying notation. 

-1 
(6) Y, Let, 

term 

(7) = Y 

and 

(8) = Y. 

Finally, 

- m 
and 

(10) 

A -
Y -Y 

AI 
Y.Yh

yap. 

Y YPI YcYt 

since this matrix product is common to both 
equations. Then one can write the negative 
in equations 4 and 5 respectively as, 

The matrix representation automatically 
leads to the Q test, i.e. B 4 Q is a necessary 
condition for solvability of a single-element-kind 
network having B branches. 

Q = 
'independent off-diagonal\ + (elements in YAP) 

element of YA y 
(11) 

^A(A+2P-1). 

Conditions, on the Matrix Elements 

At this point a theorem is given which pro¬ 
vides a useful check on setting up the compound 
matrix representation of a network. 

Theorem 1 : A set of necessary conditions for 
solvability in terms of the indefinite admittance 
matrix (Eq. 1) for the network are: 

a. no off-diagonal elements of the matrix 
contain more than a single term. 

b. the diagonal elements of the Y sub¬ 
matrix must contain 3 terms each. 

c. the Yp submatrix must be diagonal, i.e. 
no off-diagonal elements. 

d. any Bf branches of the network, not in¬ 
cident on the inaccessible nodes (I), will appear 
only in the submatrix YA , or YAP and YAP . 

Proof : Parts a, b, and c follow directly from 
the corresponding parts of Theorem C previously 
given by Berkowitz. 

The Key Subgraph 

With respect to part d of Theorem 1 above, 
it is observed that the entries in the YP sub¬ 
matrix, considered from a topological point of 
view, represent a special subgraph of the given 

network. This subgraph consists of the subset B^ 
of all branches incident on all of the inaccessi¬ 
ble nodes. Because of its special importance, we 
define it as the "key subgraph" Gk of the network 
This is shown in Fig. 2, wherein the solid lines 
are the B^ branches and the broken lines are B f 

branches. 

Theorem 2 : The elements of the matrices Y 
and ? defined in equations 7 and 8 respectively 
only contain terms involving branches appearing in 
the key subgraph of the network. 

Proof : From Theorem 1, part d, we know that 
the non-key subgraph branches of the network (Bf) 
will appear only in submatrix YA, or Y^ and 
Y^. The theorem follows directly from the reduc¬ 
tion formulas, equations 4 and 5, and the defini¬ 
tions in equations 7 and 8. 

Numbering Convention 

Let us be more explicit in terms of equations 
9 and 10. In general [ya] ' is an A x A symmetric 
matrix of the form (shown for A = 3; the diagonal 
elements of the matrix represent the short 
circuit self admittances) 

and 

-D| C C2 

[ypJ ' is an A x P matrix of the form (shown for 
A = 3, P = 2) 

C6 

C8 c9

C7 

Observe that the above examples follow a uniform 
numbering scheme. One proceeds by labeling the 
%A(A-1) independent off-diagonal elements of the 
[yA1 matrix and then continues by labeling the AP 
elements of the {yp}' matrix. This labeling im¬ 
plies that the measured admittances are being ex¬ 
pressed as numerical constants. 

Exclusive Use of Transfer Measurements 

Another useful observation has to do with the 
fact that the sum of the transfer admittances, the 
C's, equals the self admittance, the , for each 
row in the (ya} ' and ^p) ' matrices. This permits 
a novel formulation of the system of C equations 
by use of all of the off-diagonal elements of the 
"accessible", i.e. the A and P, portion of the 
matrix rather than the conventional approach of 
selecting an arbitrary reference node with its at¬ 
tendant deletion of row and column. Thus, only the 
short circuit transfer measurements made on the 
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network are utilized so that in general, 

-Yij. i/j- (12) 

Number of Equations 

Some remarks are in order regarding the num¬ 
ber of equations versus the number of variables, 
i.e. the B unknown elements of the network. The 
procedure for formulating equations gives a 
straightforward and compact way of arriving at a 
complete set of equations Ç. These are analytical 
equivalents to transfer admittance measurements 
which can be made on the given single-element-kind 
network to completely describe its observable ex¬ 
ternal behavior. The total number of equations to 
be expected is a direct function of the number of 
accessible and partially accessible nodes. In 
fact, the number of equations C obtained will equal 
Q, ^A(A+2P-1), even though in many cases B will be 
less than Q. 

For potentially solvable networks then the 
number of equations can also be expressed in terms 
of branches in the graph G; 

Bq = Q >B. (13) 

Clearly, Bq = B represents a "maximal" condition. 
Such a network has the maximum number of branches 
in G for the given number of type A and P nodes. 
It must be emphasized that by virtue of our tech¬ 
nique, the inequality implies that when B < Q we 
will obtain redundant equations equal in number to 
Bq - B. When there are more equations than un¬ 
knowns, one cannot say in general that there is a 
solution to the system of equations. The speci¬ 
fied compound matrix method of formulating these 
equations assures us of "consistency" in the sense 
that there exist values of the unknown which satis¬ 
fy all Bq equations. 

General Solution Procedure 

Modified System of Equations 

The equations derived from single-element-
kind networks have some special characteristics. 
For example, the terms are homogeneous multi¬ 
linear algebraic forms; 

(14) 

where 

C . = 1 C, = -Y ,, (15) 

and 
Yrj = admittance measurements 

△ = determinant of the key subgraph 

arj = coefficient (an integer) 

^m(l^(r,j) = functional dependence on number of 
internal nodes 

r = 1, 2, 3, .... m 

✓ = 1,2,3.Q 

k = 1, 2, 3, .... (1+1). 

Each term is linear with respect to each of its 
variables individually. In general no two or more 
terms of an equation are alike. This also applies 
to terms between equations of a set. 

With regard to the general form shown in 
Eq. 14, note also that the number, n, of linear 
variables in the product is related to the number 
of inaccessible nodes in the network. For example, 
with 1=2 each term consists of a product of three 
variables. The relationship implied by /\ T'1(r,j) 
in Eq. 14 is given by: ' 

n = I + 1. (16) 

Thus noting Eq. 15, we state: 

Theorem 3 : The system of nonlinear equations 
17 derived from the compound matrix^ by use of 
the generalized reduction formulas, Eqs. 4 and 5, 
can be represented by a modified system of equa¬ 
tions, Eq. 19, wherein the determinant △ of the 
key subgraph Gk is absorbed as a scale factor. 

Proof : We can rewrite Eq. 14 in the form of 
a functional relationship. 

^’Í Hn(xl’ x?’ ”•) < 17 > 

where 

Hn is homogeneous of order n 
△ is homogeneous of order n-1 

/ = 1, 2, 3, .... Q. 

Similarly we can write 

△ ’ Ai-l (xl’ x2» •••)• (18) 

Now consider the set of equations 

(19) Cu = H(y_,y_. . 
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Then 

V yi’ y2, •••) =i Hn(xi’ x2’ —>• (20)

Suppose that y,, y2> ••• are unique solutions to 
Eq. 19. Also let 

x-^y, <“> 

= 

= △ £, (22) 

Thus equations 17 and 20 are satisfied. Using 
Eq. 21, we can also write, 

n-1 

a ■ ■ (ya) <23 > 

( a >1/n -A-i1’? < 24 > 

a- <25>

Finally then 

^■yj^n-i^- (26)

For convenience, we shall indicate the change of 
variables by means of primes on the variables, i.e. 
the unknown elements of the network, in the equa¬ 
tions. Then the modified system of equations 19 
have the alternate form of representation to Eq. 20 
namely: 

Ç, » Hn(xí» xp> •••)• <27 ) 

Note that Eqs. 24 and 26 define what is, in effect, 
a network element scale factor. To simplify writ¬ 
ing it we use the symbol X . 

Theorem 4 : The solution of the modified sys¬ 
tem of equations, Eq. 27 combined with the equa¬ 
tion for △ , the determinant of the key subgraph, 
provides a complete solution for the primary vari¬ 
ables which are the unknown elements of the given 
network. 

Proof : This follows from Theorem 3. The 
scale factor then is given by, 

(28) 

Topological Implications 

Earlier it was indicated that the entires in 
the matrix, considered from a topological point 
of view, represent a special subgraph of the 
given network. Further implications are given in 
the next theorem followed by an illustrative ex¬ 
ample. 

Theorem 5 : Given a potentially solvable 
single-element-kind network of B branches, there 
exists a subset Ck of the complete set of the sys¬ 
tem of equations C derived by use of the indefinite 
admittance matrix 7^ . Solution of this Ck subset 
of the system of equations implies solution of the 
network . 

Proof : Theorem 1 indicates that branches Bj 
of the network not occuring in the key subgraph 
can only appear in matrices YA , or Y~ and~Y~ . 
From Theorem 2 we know that matrices Y and ? only 
contain branches B^ within the key subgraph of the 
network. Theorem 4 permits absorbing △ as a scale 
factor. Examination of the indefinite admittance 
matrix 'nt and the matrix manipulations leading to 
the matrices [ya] ' and [yPJ' indicates that there 
will always exist a subset Ck of the C system of 
nonlinear equations for a potentially solvable 
network the number of branches Bk in the key 
subgraph and which exclude the Bj "free" branches 
of the network not found in this subgraph G^. On 
the other hand, the subset of equations C* is equal 
in number to the non-key subgraph branches Bf in 
the network. In particular there is one equation 
for each of these branches. Furthermore, these 
equations can always be written so as to emphasize 
the simple relationship of the excluded branch to 
the branches in the key subgraph. Consequently, 
explicit solution of the Ck subset implies solu¬ 
tion of the C system of equations which in turn 
implies explicit solution of the element values 
of the network itself. 

A useful restatement of Theorem 5 is that: 
the set of transfer admittances, £k, remaining in 
the ¡YA]' and (ypJ' matrices,after excluding there¬ 
from elements derived from all of the diagonal 
entries and the nonzero off-diagonal entries of 
the accessible portion of the ̂ 7 matrix, must be 
solvable for the network itself to be solvable. 

Corollary : Solution of the system of equa¬ 
tions for a maximal network does not entail the use 
of redundant equations. 

Proof : A maximal network is defined as one 
in which Bq = B. For this case the subset Ck is 
equal to B^ in number. 

Examples 

Detailed Example 

The following example illustrates the key 
subgraph and related concepts. In particular the 

19 



complete set of equations, derived from the com¬ 
pound matrix and the generalized reduction formu¬ 
las, is divided into two mutually exclusive sub¬ 
sets and . 

Consider the twelve branch network (Bq=B=12, 
Bk=9, Bc=l) of Fig. 3 with all three types of 
nodes. The indefinite admittance matrix^ for 
this network is, with zero entries omitted: 

API 
Nodes 12 345 6. 7 8 

b+x+y -y 

-y g+h+y+z -z 

-z d+z 

-X -b 

-h -g 

-d 

-X a+x 

j+k 

n 

-a 

-k -j 

-n 

-h -d 

-b -g 

-k -n 

-a -j 

d+h+k+n+i -i 

-i a+b+g+j+i 

The key steps in obtaining the equations represent¬ 
ing admittance measurements on this network from 
the};; matrix are as follows: 

_1 a+b+g+j+i i 
(ï1 ) - 1 

△ i d+h+k+n+i 
(29) 

where the determinant for the key subgraph is 

△ - (a+b+g+j)(d+h+k+n)+i(a+b+g+j+d+h+k+n).(30) 

Let A = a+b+g+j+i and D = d+h+k+n+i. 

Then 
bi 

Yc = 1 gi+hA 
A 

dA 

bD 

hi+gD 

di 

Then 

Y 

b2D 

bih+bgD 

bid 

bih+bgD bid 

h2A+2ghi+g2D dgi+dhA 

dgi+dhA d2A 

and 

abD 

Y = A ahi+agD 
△ 

adi 

biK+bjD 

hkA+gik+hij+gjD 

dkA+dij 

bin 

hnA+gin 

dnA J 

Then we finally get 

(31) 

■ A(b+x+y)+b2D yA +bih+bgD bid 

|y^=cA yA+bih+bgD - A(g+h+y+z)+h2A z A+dhA+dgi 
△ +2ghi+g2D 

bid zA+dhA+dgi - A(d+z)+d2A 

and 
(32) 

xA+abD 

[yP] ' = a! ahi+agD 
△ 

aid 

bik+bjD 

hkA+gik+hij+gjD 

dkA+dij 

bin 

hnA+gin 

dnA 

Then the subset of the system of equations for 
this network is: 

¿2 = b ' i ' d ' 

= b 1i'n ' 

-10 = a'i,d ' 

C^2 “ d'n'A' 

Cj = b'i'k '+b ' j'D ' (33) 

= a'h'i'+a'g'D' 

Çg = h 'n 'A'+g'i 'n' 

Ç = d'k 'A'+d' i ' j ' 

Çg = h'k'A'+g' i'k'+h 'i ' j'+g'j 'D' 

where 

A' = a'+b'+g'+j'+i' = bhc+i' 

D' = d'+h'+k'+n'+i" = dy3+i'. 

The çf subset of the system of equations is: 

£1 ’ y'zi+b'i'h'+b'g'D' = y'A'+b'Cy/a' 

£3 = z'△'+d'h'A'+d'g'i ' = z'A'+d'C9/n' (34) 

£4 = x'A' +a'b'D' = x'a'+^-^ó)/^-
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After appropriate manipulation of the system of 
equations for this network 'e find that: 

A _ -2-12^ 3 

d1 = %-10_ ^6 I (35) 

\ / 

where 

° “ ^Ic/^WlO^ 

* = 

“*^12/^6 d' 

Y ' D ' b' 

^10 * 

and 

_ £A1^12 . £1 

£^11^12 

£<& -££9 h’ 

^3- ’d' 

£o£n-£f£i2 
zh ’ ' *' 

-ll^h-lO k' 
V?" c"- ’ ÍV 

Then it follows that, 

b' » d'/Y 

n' = d'^/Cj 

h' - d'») 3 

k1 = n'^ 

a' ■ b'£10/£2 (36) 

j' ■ 

g< = b ,91

i' = Cz/b'n'. 

These nine elements of the key subgraph permit one 
to evaluate the scale factor A for the individual 
elements. Actual admittance measurements used in 
the solution equations yield the primed values. 
The primed values are proportional to the desired 
original element values by the scale factor. The 
equation defining the determinant of the key sub¬ 
graph yields the scale factor A when the primed 
element values are substituted therein. Sub¬ 
sequently, the unprimed element values are used in 
the same equation to yield the value of the de¬ 
terminant itself. With this we can solve for the 
three non-key-subgraph elements x, y, and z. 

X = 

y = £i*b£7/a 

z = £3 “dCg/n . 

(37) 

Numerical Results 

In Fig. 3 let the element values in mhos be: 

a = b = g = j =1 

d=h=k = n = 2 

i = 3, x = 6, y = z = 4. 

/. A = 7, D = 11, Ô = 68. 

Then the computed results are as tabulated below: 

Transfer Measurements 
Notation Measured Value 

Numbering 
Convention 

Short circuit 
Admittance Nominal Assumée 

Assumed 
Error 

C? Y13 .088235 .09265 +5% 

Y^ O.25OOO 0.2625 

CQ Yoc, 0.75000 0.7375 " 
—0 ¿5 
C„ Yoz 0.50000 0.5250 " 
—9 
C,„ Y,. .088235 .09265 " 
—10 3u 

C, Y.z .088235 .08382 -5% 
—6 10 
Ç7 Y^ 0.25000 .23750 

Çu  Y3c, 0.50000 .1:7500 " 
C._ Y,, 0.1:1179 .39120 —12 JO 

Cn Y., U.2^000 h.2^00 none
—1 lu 
C3 Y12 U.^0000 h.ÇOOO 

C, Yoo 6.16176 6.1618 ” 
-u 0 
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The two sets of calculated transfer ad¬ 
mittance measurements given above are used with 
the set of solution formulas, equations 35 through 
37, for the twelve branches of this network given 
in the previous section. The resulting element 
values are listed below. Note that the first 
column of results is based on the ideal condition 
of perfect measurements and calculations. The 
second column is based on introduction of assumed 
measurement errors of +5% for the Ck subset only. 

Calculations 
Network Ideal Meas. Deviation 
Branch Case Error_ in % 
a 1.000 0.959 - 4 
b 1.000 0.959 - 4 
d 2.000 2.064 + 3 
g 1.000 0.895 -11 
h 2.000 2.357 +18 
i 3.000 3.498 +17 
j 1.000 1.271 +27 
k 2.000 1.681 -16 
n 2.000 1.868 - 7 
X 6.000 6.021 + 0 
y 4.000 4.013 + 0 
z 4.000 3.920 - 2 

Observe that the maximum deviation does not occur 
for the concealed branch i as may have been ex¬ 
pected. This is a function of the magnitude of 
the errors in the specific measurements. 

Networks Related by Key Subgraph3 

Further significance of the key subgraph of a 
solvable network can be illustrated. The totality 
of branches in the network is divided into the key 
subgraph and its complement. Hence, the number of 
branches in a given network can be written as the 
sum 

B = Bk + Bf (38) 

If one can solve a sufficiently general case hav¬ 
ing a given key subgraph, one can find many re¬ 
lated networks which can be considered as members 
of this family of networks. The number of net¬ 
works in the family is given by 

(39) 
2Bf

For purposes of illustration, we can use the net¬ 
work shown in Fig. 3. Here we have, B = 12, 
Bk = 9 and Bf = 3. 

Consequently, using Eq. 39 we get, 

Total Number of 
Branches Networks 

Bk + 3 1 

Bk + 2 3 

Bk + 1 3 

The eight resulting networks are shown in Fig. 4. 
It is emphasized that the initial detailed so¬ 
lution of the general case (in this example 
B = 12) readily yields the remaining indicated 
solutions by virtue of the fact that the non-key 
subgraph Bf branches of the network occur as in¬ 
dividual solution equations. In order to be able 
to use this simple deletion procedure no special 
case is required in setting up the indefinite ad¬ 
mittance matrix . 

Conclusions 

A systematic procedure has been described for 
formulating the system of equations representing 
the observable external behavior of a network with 
partially accessible as well as accessible termi¬ 
nals. The concept of the key subgraph was intro¬ 
duced. It was shown that it is possible to select 
a subset of the system of equations which include 
only branches of the key subgraph as variables. 
These are found to be adequate for determining the 
element values of the network. 

Details of the systematic explicit method used 
to solve the system of equations for the example 
presented will be the subject of a future paper. 
In addition to this explicit method of solution, 
attention is invited to a forthcoming paper^ on an 
implicit method using maximum likelihood esti¬ 
mation procedures. Both of these techniques are 
suitable for digital computer use. 

Appendix 

List of Symbols 

B Actual number of elements in the network 
or branches in its graph. 

Bc Number of concealed branches in the key 
subgraph Gk. These join internal nodes. 

Bf Number of non-key subgraph (or "free") 
branches in the network or its graph. These join 
two accessible or an accessible and a partly 
accessible node. 

Bk Number of branches in the key subgraph Gk 
of the network. 

Bq Maximum number of branches permitted by 
the Q test, i.e. Bq = Q. 
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C General transfer admittance measurement. 
Also the complete set of measurements for the ex¬ 
ternal behavior of the network. 

The subset of measurements involving non¬ 
key subgraph as well as key subgraph branches as 
unknowns. There is one such measurement for each 
of the Bf branches. 

C^ The subset of measurements involving only 
branches of the key subgraph as the unknowns. 

The key subgraph for the network or its 
corresponding linear graph. 

Q Number of admittance functions which 
specify a passive linear bilateral network. 

A Determinant of Y1 submatrix of the in¬ 
definite admittance matrix,^ , expressed as a 
compound matrix. 

A Scale factor related to the determinant 
of the key subgraph. 
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Fig. 1. General network. 

Fig. 2. Networks illustrating key subgraph. 
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Fig. 3. Network for detailed example. 

Fig. 4. Family of solvable networks related by a 
common key subgraph. 
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THE IMAGE-PARAMETER DESIGN OF THE GENERAL TWO-SECTION ELLIPTIC-FUNCTION FILTER 

W. N. Tuttle 
General Radio Company 
West Concord, Mass. 

Summary 

Elliptic-function filters, which are 
optimum designs for many practical requirements, 
have found limited use because of the difficulties 
of design. It is shown that electrical symmetry 
requires that two-section filters be matched at 
the internal junction on an image-impedance 
basis. For the range of designs which can be 
realized in the ladder structure, therefore, the 
general fifth-order elliptic-function filter is 
a pure Zobel design with symmetrically modified 
end reactances. This fact provides the basis 
for simplified design formulas for filters with 
any desired ripple level and any separation 
between the pass and stop bands. 

Introduction 

A previous paper showed that a limited 
class of two-section elliptic-function filters 
can be realized as pure Zobel designs by proper 
choice of the m values and the resistance 
termination ratio. This class of filters is 
restricted in that only a single level of pass¬ 
band ripple is available for each width of the 
cutoff region. It is frequently desirable to 
obtain much lower ripple levels when a low 
reflection coefficient is needed, or much 
higher ripple levels when maximum discrimination 
in the stop band is the prime specification. 
When the full range of elliptic-function designs 
is available, two-section filters are versatile 
enough to satisfy a large variety of practical 
requirements. However, no simple design 
procedure has been available to handle the 
general case, and inferior designs are still 
used extensively because of the cost and 
difficulty of obtaining an optimum design. 

The present paper describes an extension 
of the previous results to the general case, 
and is based on the fact, which has not 
previously been reported, that the larger class 
of filters, although not purely Zobelian, must 
nevertheless have their sections matched at 
the internal junction on an image-impedance 
basis. This requirement, which is necessary 
for electrical symmetry, applies to fifth¬ 
order Butterworth and Tchebycheff filters as 
well as to elliptic-function filters. All 
three types of two-section filters, therefore, 
can be realized as pure Zobel or prototype 
filters with the end reactances symmetrically 
modified. The quantity determining the end 
reactance modification constitutes an 
additional design constant which permits these 
more general types of filters to be realized 

by image-parameter methods. The design 
formulas are considerably simpler than those 
of the usual synthesis procedures and lend 
themselves readily to routine filter design 
with a desk calculator, or, using auxiliary 
charts, with a slide-rule. 

It should be emphasized that in the case 
of three or more sections matched junctions 
are not necessary for electrical symmetry. In 
these cases successive mismatches can compensate 
one another so that over-all electrical symmetry 
is possible without matching. The method of the 
present paper, therefore, can not be directly 
extended to three or more sections. 

Proof that the Sections Must be Matched 

The proof will be given for the circuit 
shown in Fig. 1, which is the usual configuration 
for the two-section low-pass filter, but the 
proof is similar for the corresponding case of 
mid-series terminations. It is assumed that 
this filter is electrically symmetrical, as is 
the two-section elliptic-function filter. The 
first step is to split off equal amounts from the 
two end capacitances so that the sum of the 
remainders is equal to the center capacitance. 
Then the center part can be divided into two 
sections each having equal end capacitances. 
The original filter has then been broken down 
as shown in Fig. 2. 

The equal end capacitances g can be 
either positive or negative, so that the 
capacitances and Cg of the component sections 
can be less or greater, respectively, than the 
end capacitances of the original filter. 

In a Zobel filter section, the three 
image parameters Rp wc and m determine the three 
element values, C^, L2 and Cj. The usual 
equations can be inverted and the elements of 
the general symmetrical filter of Fig. 2 can be 
described in terms of the image parameters. For 
the first section the values are 

, Al2 (C2 + 2 ) 
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CA 

(3) 

So far this is a purely formal description 
of the original filter. This was assumed to be 
electrically symmetrical, however, and since the 
capacitances g which have been removed from the 
ends are equal, the remainder in the middle 
must still be symmetrical. The central portion, 
then, is electrically symmetrical and consists of 
two Zobel sections in tandem. It remains to show 
that this is possible only if the sections are 
matched. 

The last point can be proved from the 
general symmetry requirement that the open- and 
short-circuit impedances must be the same from 
both ends. If the branch inpedances of Fig. 1 
are replaced by zi Z2 z3 z4 and Z5, the open-
or short-circuited impedances can readily be 
written down and equated. For either case 
the symmetry requirement can be shown to be, 

z4 ' z2 = (z2Z3 + Z3Z4 + Z2Z4)( Z1 — ) (4) 
ziz5

The reactance values of the arms of the 
Zobel sections can be computed from the usual 
equations and put in the form 

x_ = —t_£l- (g) 
z 2 2 2 

u>\ - (l-mf)w 
cl 1

x3 = -Rl^clWç; (7)

«4 ■ ; W 
“c2 ' 

X5 = 2^2^c2 (9) 

Equation (4) gives 

(x4 - x2)X1x5 - (x2x3 +x3x4 + x2x4)(x1 - x5) (10) 

and the reactance values can be substituted from 
(5) to (9). Since the equation must hold for all 
frequencies, the terms in the various powers of 
w can be equated to determine the conditions on 
the image parameters necessary for electrical 
symmetry. It is found that after cancellation 
there are only^constant terms and terms in œ . 
Equating the m terms and simplifying the resulting 
expression finally yields 

_2 2 
R2Wc2 

„2 2 
Rlwcl (11) 

Equating the constant terms gives 

Hence from (11) 

2 2 u) = <0 
cl c2 

It has thus been shown that the two Zobel 
sections in the central portion of Fig. 2 
must be matched at their junction on an image¬ 
impedance basis. Hence the whole filter, which 
is the general symmetrical two-section filter 
including all the elliptic-function designs 
realizable in the ladder configuration, is either 
a pure Zobel filter or a Zobel filter with 
symmetrically modified end reactances. 

Derivation of the Design Equations 

The insertion loss of an electrically 
symmetrical reactance filter can be expressed 
in terms of the arms of the equivalent lattice 
by the formula 

L = 10 log [1 + (L-t-^) 2 ] (14)
lu L u - V -* 

where the loss is in decibels and u = Xx/R t 

and V = Xy/Rt are the ratios of the lattice-arm 
reactances to the terminating resistances. For 
the pure Zobel filter with the end reactances 
unmodified Saraga4 gives the formulas 

ml + m2 x nu u = -r _ —5-:- (15) 
1 + mint, xz - -i-

¿ 1 + mjm2 

2 1
]_+™1^2 x -i-i. m]m, 

v = "r mj + m2 x (x2- I) (16) 

where r is the ratio of the design resistance to 
the terminating resistance, x the ratio of the 
frequency to the image-parameter cutoff 
frequency, and mi and m2 are the m values of the 
two Zobel sections. 

The additional 
included by taking 

end capacitances g can be 

1 - 1 - gx 
u ' u 

It = 1 " gx 
v V 

(17) 

(18) 

and the value of the characteristic function 
becomes 

2 2 
1 - gx(u + v) + (1+g X )uv 

u - v (19) 
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The reactance values for the two-section 
Zobel filter can be taken from (15) and (16) 
giving 

1 + gx 

E - r

2 1 q 
x - r 

a x + b _2_ 

b X2 * 1 a x(x2 - 1) 
_ b 

t(l+g2x2)_I_ 
x2-l 

b x2 - i _ a x 
a --- b x2 - 1 (20) 

x(x2 - 1) b 

where a and b are abbreviations for mi + m2 
and 1 + m]m2, respectively. 

If the numerator and denominator are 
multiplied by 

abx (x2 - l)(x2 - 1) 
b 

the denominator becomes 

b2(x2 - |)2 - a2x2(x2 - 1) 

which reduces to 

7 7 2 1 2 1 
(1 - m1)(l - m2)(x - ! _ mj)(x - ) 

Finally, collecting the terms of the numerator 
by powers of x, the characteristic function is 
obtained as 

-abx (Ax4 - Bx2 + C)_(21) 

r(l-m2)(l-m2)(x2 --—2)(x2 - —!— ) 
1 - 1 - m^ 

where 
2 2 ab 

A = 1 + r g + rg (b + -) (22 ) 

9 9 

1 + r g . ,a 2 X , 2 B - —- + rg (b + -) + 1 - r (23) 

In (21) the insertion-loss poles appear 
in the denominator as the familiar rejection 
peaks of the m-derived sections, and the 
finite zeros in the numerator as the roots of 
the biquadratic expression. 

Equation (21) gives the characteristic 
function for two matched Zobel m-derived sections 
with the end reactances modified in accordance 
with the new parameter g. To realize the 
elliptic-function response, giving equal pass¬ 
band ripples and equal stop-band valleys of 
insertion loss, the procedure of the earlier 
paper 1 can be followed, and the poles and 
zeros located according to the expression, 

Hy(y2 - a2)(y2 - a2) 

2 2 2 1_ 2 1 
a2a4 (y -

(25) 

where a2 and a¿, are the Cauer parameters and 
the frequency variable y is with respect to 
y f f2 , the geometric mean of fl, the end 
frequency of the pass band, and f2 the 
beginning frequency of the stop band. It will 
be noted that the poles and zeros are 
symmetrically located about the mean frequency 
of the cutoff region, so that their distribution 
is specified by only the two constants, a2 an^ 
a^. These are defined in the usual terminology 
of elliptic functions, as follows: 

a2 = /k sn(^ , kj (26) 

a4 ’ sn<^ . k) (27) 

where k = sin fi/f2 = sin
The Cauer parameters have been tabulated by 
Glowatzki J or can be obtained conveniently from 
tables of elliptic functions 4. A short table 
at 5° intervals of Ö is given as Table I. The 
entire design of the elliptic-function filter, 
can be carried through in terms of image 
parameters and the additional quantity g if the 
constants A, B and C of (22)-(24) can be chosen 
to give the pole and zero locations specified by 
(25), and if the constant H can be given the 
value corresponding to the desired ripple level. 

The frequency variable y in (25) is 
related to the corresponding quantity x in the 
image-parameter expression (21) by 

y = x f (28) co 

where f = fc Z/fp^ . This change of 
variable in (25) gives 

2 2 9 a y 3 
Hx fco(x - 2 )(x - -5- ) 

E a _152_ CO (29) 

2 2 2 1 2 1

a2% <X -7-2 )<x - 7 —,) 
^co a4 ^co a2 

Comparing (29) with (21) it is evident that 

H fco abA_ 

——y = 22 
a2 *U - mL)(l - mp 

2 2 2 2 2 2 
and since 1 - m, = f a^ and 1 - m2 = f a2 

the constant H is given by 

H _ Aab- (30)

rfco 

If the roots of the biquadratic expression 
in the numerator of (21) are equated to the 
values specified in (29), the following conditions 
are obtained on the coefficients A, B and C. 

B = Ac (31) 

C = Ad (32) 
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where c = 

2 
a 
2 -I 

'L and d 

2 2 

*4 

4 
co 

Taking the values of the coefficients from 
(22) (23) and (24) conditions (31) and (32) 
become respectively 

r2g2)(£ - c) + rg 
2 a 
a * c ( b + b J 7 1 - i2 = 0 

and 
(33) 

(1 + r2g2)bd + rg [bd(| + j) - -(1 - r2)= 0 

(34) 

The sum of (33) and (34) gives the quadratic 
in the product rg:-

7 7 1 Cal 
(1 + r2g2)(c - bd - b) - rg |_(b + ã) 

- (c-bd)(| + £)] - 0 (35) 

This can be put in the form, 

r2g2 - 2Frg +1 = 0 (36) 

where 

F 
r + i - (c - bd)Æ + I ) Da Da 

2 (c - bd - r) b 

The solution is 

rg = F(1 - y 1 - ^2 ). 

(37) 

(38) 

For large values of F the solution is 
conveniently obtained from the series 

1 1 1 
rg = + gP + ^75 + •• (39) 

and for F greater than 9 the first two terms give 
the result within about 10' b. When rg has been 
obtained, substitution in (33) gives r and hence 
also g. The product rg can be substituted in 
(22) to yield A, which, with r, gives the 
constant H from (30). The constant H with a 
third elliptic-function parameter, A , determines 
the maximum pass-band ripple o< and the stop¬ 
band valley height from the expressions, 

«K p = 10 l°g 10 (l + H2 A 2) (40) 

= 10 log10 (l + H2/A.2) (41) 

The quantity △ is defined as 

. , 5/2 2 K 2 3K 
△ = k sn (5 , k) sn (~ , k) (42) 

Values of △are included in Glowatzki's tables 
and in Table I. 

In the procedure above outlined it will be 
noted that fj and Í2 determine 0 and hence the 

Cauer parameters a2, az, and A . These quantities 
with fco determine the entire filter design. If 
fco is fixed with respect to fj and ¡2 , then 
only one elliptic function filter with a 
particular ripple level «X p is possible. The 
quantity fco , which is usually thought of as the 
end of the pass band, actually is an additional 
parameter which must be varied in its location 
between fj and f2 to obtain the desired ripple 
level or value of the constant H. It has not 
been found feasible to compute the required 
value of fc0 directly from H or from o< p. But 
by computing for each of a series of values of 
0 a group of filter designs with different 
values of fco a chart can be prepared giving the 
required value of fco for any desired ripple 
level and any separation between the pass and 
stop bands. 

Such a chart is shown in Fig. 3 covering 
ripple levels down to .001 db, corresponding to 
1.52 per cent reflection factor. The dashed 
line at the upper right shows the limit of 
designs realizable in the ladder structure. The 
limit corresponds to one of the end capacitances 
going negative, that is, to the negative 
additional capacitance g being equal to the 
unmodified end capacitance of the section with 
the lower value of m. Designs at the limit can 
be used and require one less element in the 
high- or low-pass case and two less elements in 
the band-pass case. They are not usually of 
interest because the minimum stop band loss is 
less than 20 db. The design with .001 db ripple, 
for example, gives 19.5 db minimum loss in a 
frequency ratio of 1.4 to 1. 

The need for using a chart to determine fco 
at the start of the design does not imply an 
approximation in the computation as will be seen 
in the following section. An error in selecting 
fco will cause the pass-band ripple to depart 
more or less from the desired value but the filter 
will still be a perfect elliptic-function design. 
The chart shows that the variation of fco is 
considerable in going from one ripple level to 
another so that it is easy to meet practical 
specifications on ripple level. 

Design Procedure 

A performance chart for two-section filters 
is generally preferable to formulas for arriving 
at the best design compromise to meet given 
specifications. The chart of Fig. 4 gives the 
frequency ratio as a function of the minimum 
stop-band loss for various constant pass-band 
ripple levels. The chart shows, at the left, 
the limit of ladder realizibility, discussed 
above, and, by the dashed line, the designs 
realizable as pure Zobel filters by the method 
of the previous paper . The ripple level of the 
Zobel design is generally between 0.02 and 0.1 
db, which is in the middle of the useful range. 
When ripple levels of this order are satisfactory, 
advantage can be taken of the simpler design 
procedure, the filters being identical. 
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The general design procedure will be 
illustrated by a numerical example. Assume 
that a low-pass filter is needed to work between 
500-ohm resistances, pass frequencies up to 1 kc 
and provide at least 50 db insertion loss at 1.7 
kc and beyond. A ripple level of about 0.3 db 
is acceptable. Fig. 4 shows that 50 db can be 
obtained in a frequency ratio 1.48 for a ripple 
level of 0.5 db or 1.59 for 0.2 db, so the 
specifications are within the capabilities of 
a two-section filter. Taking 0 = 40° gives a 
frequency ratio of 1.56, between the above limits, 
and permits the use of the Cauer parameters 
directly from Table I. For this angle the fco 
chart, Fig. 3, shows that fco = 0.90 gives a 
ripple level of about 0.3 db, and will be taken 
for the design. 

For 0 = 40° Table I gives 

a2 = .5116709 

a4 = .7713694 

9 9 2 
Then = 1-a^ fco ml ” .7197509 

m2 = l-a2 fco m2 * -8876577 

a = 1.607409 
b = 1.638892 
c = 1.057800 
d = .2374303 

From (37) and (38) 

F = 2.267231 
rg = .232449 

Hence from (33) 

r = .743994 
g = .312434 

The values of r and g are the two final 
quantities required to complete the design of 
the filter, but it is useful as a check to 
compute H and from H the values of o< p and a 

to compare with the specification limits. 

From (30) and Table I 

H = 9.108732 
△ = .02841309 

and these values in (40) and (41) give 

cX = .281567 db 
- 50.1188 db, " a 

which satisfy the specification limits. 

The quantities fco , nip m2, r and g, which 
have been determined, fix the design of the filter 
normalized for an image-parameter cutoff frequency 
of 1 radian per second and for terminating 
resistances of 1 ohm. The element values 

are obtained from the usual Zobel design 
equations modified by the addition of the 
quantity g to the end capacitances. These are 

= — + g = 1.27985 f 
r 

= 2mir = 1.07098 h 

1 - m? 
= -L = 0.45002 f 

2m^r 
Illi + TUn — 

„ 1_£ = 2.16051 f 
r 

» 2m2r - 1.32082 h 
2 

1 " m<i _ 
= _2 = .16055 f 

2m2r 

. ^2. + g = 1.50553 f 

n the final design from the 
normalized design it is necessary to locate the 
end of the pass band with respect to the highest 
frequency to be transmitted, in this case 1 kc. 
If fi is taken as 1.07 kc then f2 = fj esc 0 
= 1.665 kc, which satisfies the specification 

limit of 1.7 kc. It is desirable to place f| 
slightly outside the desired pass band because 
dissipation effects are most pronounced near 
the end oí the band. It must be emphasized 
that the performance figures which have been 
given are for ideal filters with no dissipation 
in the elements. 

o 2 
Since f^/f^f2 = fco and f^/f = sin 0 it 

follows that 

fc ’ * 

The quantity / sin 0 is the ratio of the 
end of the pass band to the mean frequency of 
the cutoff region, and is included in the 
tabulated Cauer parameters as a$. In this case 
the value is obtained from Table I as .8017404. 

C1 

l2

C2 

C3

L4 

To obtai 

Hence fc = 1.07 x 0.9 + .8017404 = 
1.20114 kc. 

The conversion fectors are therefore, 

C = 1 = 0.26501 uf 

Rt2* fc

L = Rt = .066252 h 

and the final element values are 

CX = 0.3392 uf 
L2 = 0.07095 h 
C2 = 0.1193 uf 
C3 = 0.5726 uf 
L4 = 0.08754 h 
C4 = 0.04255 uf 
C5 = 0.3990 pf. 
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The computation as above outlined is very 
simple except for the steps of determining the 
coefficients of equations (33) and (35) and 
solving for r and g. These steps can be 
eliminated by using additional charts. Figs. 5 
and 6 give r and g, respectively, as functions of 
0 for the same constant ripple levels used in 
the performance chart, Fig. 4, and the fCo chart. 
Fig. 3. To avoid interpolation error one of 
these ripple levels should be selected if possible. 
With these charts filter designs accurate enough 
for most purposes can be obtained by slide-rule 
computation. The steps are the same as above 
outlined as far as the determination of mj and 
m2. At this point the charts of Figs. 5 and 6 
are entered to obtain r and g and the element 
values then obtained from the modified Zobel 
design equations as before. 

Discussion 

Examination of the fco , r and g charts 
shows how the ripple level is varied in filters 
with the same width of the cutoff region. Fig. 
6 shows that the filters with large ripple are 
those with the end capacitances substantially 
increased over those of the pure Zobel design. 
This decreases the damping effect of the 
terminating resistances, giving stronger reactive 
control and hence increased ripple and increased 
rejection. Also Fig. 5 shows that these filters, 
at least for small 0,have a lower design resistance 
relative to the terminating resistances, further 
reducing the damping. The filters with low 
ripple have the end capacitance reduced below 
the Zobel value, and, as pointed out in the body 

of the paper, cease to be realizable when one 
of the required end capacitances becomes 
negative. 

Fig. 3 shows that in the filters with 
large ripple the image-parameter cutoff frequency 
is close to the end of the pass band but that 
in the flat filters it is far removed. In the 
filter for 0 = 45° and eK p = .001 db, for 
example, the cutoff frequency is 14 per cent 
beyond the middle of the cutoff region. In the 
sharp-cutoff filters, those with large 0, the 
critical frequencies are so close together that 
little variation is possible and fco is always 
beyond the middle point. 
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TABLE I CAUER PARAMETERS 

0 f2/fl a2 a4 a5 △ 

5 11.4737 .1737433 .2808234 .2952215 .0001408278 
10 5.7588 .2461629 .3966041 .4167111 .0008004651 
15 3.8637 .3024182 .4846348 .5087426 .002223661 
20 2.9238 .3507266 .5578199 .5848249 .004617248 
25 2.3662 .3943513 .6210843 .6500910 .008187876 

30 2.0000 .4350349 .6769012 .7071068 .01316095 
35 1.7434 .4738790 .7266982 .7573483 .01979737 
40 1.5557 .5116709 .7713694 .8017404 .02841309 
45 1.4142 .5490344 .8115034 .8408964 .03940573 
50 1.3054 .5865130 .8474973 .8752396 .05329416 

55 1.2208 .6246260 .8796190 .9050702 .07078198 
60 1.1547 .6639159 .9080421 .9306049 .09286628 
65 1.1034 .7050027 .9328646 .9520020 .1210395 
70 1.0642 .7486638 .9541161 .9693774 .1577036 
75 1.0353 .7959824 .9717525 .9828153 .2071458 

80 1.0154 .8486984 .9856278 .9923748 .2783823 
85 1.0038 .9103780 .9954034 .9980955 .3973593 

Fig. 1. Structure of two-section low-pass filter. 

Fig. 2. Breakdown of filter into two symmetrical sections by use of 
supplementary end capacitances. 
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Fig. 3. Chart showing required location of the cutoff frequency for 
different ripple levels and different widths of the cutoff 
region. 
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Fig. 4. Performance chart for two-section filters, giving the 
frequency ratio as a function of the minimum stop-band loss 
for various ripple levels. The limit of ladder realizability 
is indicated at the left and the characteristics of the 
optimum Zobel designs by the dashed line. 
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Fig. 5. Design chart for r, the ratio of the design resistance to the 
terminating resistances. 

34 



Fig. 6. Design chart for g, the supplementary end capacitance. 

35 



SOME PROPERTIES OF MULTITERMINAL RC NETWORKS 

Sidney Darlington 
Bell Telephone Laboratories, Incorporated 

Murray Hill, New Jersey 

Summary 

This paper is concerned with trans¬ 
formerless, multiterminal, grounded RC 
networks, for which the complete admit¬ 
tance matrices are assumed to be speci¬ 
fied. Most of the remarks refer to 3-
termlnal networks, but suggest generali¬ 
zations for n terminals. Certain 
properties of the admittance matrices are 
noted, and from these some canonical con¬ 
figurations are conjectured. 

Specifically, It Is easily shown 
that admittance poles at finite frequen¬ 
cies and the corresponding residues, can 
easily be realized without transformers, 
in any of many ways, but specific real¬ 
izations impose lower bounds on the admit¬ 
tances at zero frequency and on the resi¬ 
dues of poles at infinity. Thus poles at 
finite frequencies may be said to be 
bought at a price in terms of behavior at 
zero and infinity. By means of simple 
circuits. It Is easily shown that the 
price may be paid entirely at zero or at 
infinite frequencies, or It may be divided 
between the two. The conjectured canon¬ 
ical configurations are composed of build¬ 
ing blocks which appear to cost the least 
in terms of behavior at zero and Infinity. 

The conjectured canonical configura¬ 
tions are consistent with the so called 
series-parallel theorem, which was conjec¬ 
tured In 1955 but has not been proved or 
disproved. Furthermore, If the configura¬ 
tions are indeed canonical, they represent 
a substantially stronger theorem. They 
also suggest that direct specifications of 
necessary and sufficient conoitlons on the 
over-all admittance matrices must be ex¬ 
tremely complicated. 

Introduction 

This paper concerns a so-called 
classical network realization problem. 
Each such problem concerns networks of a 
particular class or type, and some partic¬ 
ular external property of those networks. 
The external property is characterized by 
a function of frequency or time, or by a 
combination or set of such functions. The 
network class and the chosen property, in 
combination, determine a class of func¬ 
tions, or of (finite) sets of functions. 

In most of this paper, the network 
class is the class of all three terminal 
networks of positive resistors and capac¬ 
itors, but with no transformers. The 
results may be applied also to networks 
of resistors and Inductors or Inductors 
and capacitors, by means of very well 
known transformations on the frequency 
variable. Many of the results are easily 
generalized to transformerless networks 
with more than three terminals. Through¬ 
out the paper, the function class Is a 
class of sets of functions of the frequen¬ 
cy variable, s = lœ, namely the driving¬ 
point and transfer admittances which com¬ 
pletely characterize the currents In 
external short circuits due to voltage 
excitations. 

One object of a realization problem 
is to determine necessary and sufficient 
conditions which define the function class 
in mathematical terms. Another Is to 
find a method of constructing, or design¬ 
ing a network In the network class when 
given any member of the function class. 
Usually, there are many so called equiv¬ 
alent networks in the network class 
corresponding to any one member of the 
function class. A design method Is 
usually appropriate only for some par¬ 
ticular subclass of the network class. 
When the network subclass is sufficient 
for realizing the entire function class 
It is said to be canonical. 

Many different classical realization 
problems have been attacked, correspond¬ 
ing to different network classes and dif¬ 
ferent function classes. Many have been 
solved, some In various different ways 
using different canonical networks. 
Others have defied solution, thanks to 
mathematical difficulties. Perhaps the 
most Important of these relate to passive 
networks without transformers. A great 
deal of classical network theory achieves 
mathematical simplicity and elegance by 
Including networks with transformers In 
the network class. A familiar example Is 
W. Cauer' s theory, 2 which may be applied 
to three terminal networks of positive 
resistors and capacitors plus transform¬ 
ers. In practical applications, transform¬ 
ers are highly undesirable. While some 
progress has been made toward a compre¬ 
hensive realization theory for transform-
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erless passive networks, severe mathemat¬ 
ical difficulties have kept it very slow. 

This paper reports a small, but per¬ 
haps significant advance in the general 
area. Simple relationships are developed 
which give a much better understanding of 
networks in the network class. They lead 
to a conjectured canonical three-termlnal 
network subclass made up of quite simple 
building blocks. On the other hand, the 
function class is not delimited in terms 
of both necessary and sufficient mathe¬ 
matical conditions, nor is the canonical 
nature of the network subclass established 
rigorously. If the network subclass is in 
fact canonical, the mathematical bound¬ 
aries of the function class must be very 
complicated indeed. 

A three terminal network is commonly 
viewed as a two-port, or two-terminal—pair 
network in which the two ports share a 
common terminal. Fig. 1 is a block dia¬ 
gram. Two driving-point admittance 
functions, Yg2> and one transfer ad¬ 
mittance function, Y^2> completely deter¬ 
mine the external current-voltage rela¬ 
tionships, in accordance with 

(1) 

I2 = Y12E1 + Y22E2 • 

The separate admittances may of course be 
represented collectively as the admittance 
matrix: 

Y11 

V 
*22 

Y12 

We are concerned here with finding a 
network when given a complete set of the 
admittance functions. In a related, but 
somewhat simpler problem, only one or two 
of the functions is given, and at least 
one may be chosen arbitrarily (within the 
general function class) . Solutions to 
this problem are already known,3 but they 
are not easily modified to fit our present 
problem. 

The present problem was brought to 
the author's attention by H. M. Lucal, in 
1955. He proposed a specific synthesis 
technique for networks In our network 
class, using a so called series-parallel 
decomposition. He did not claim that his 
method works more than some of the time. 
However, the author conjectured that 
Lucal's method is, in fact, canonical,-3 

and in the six Intervening years the con¬ 
jecture has been neither proved nor 
disproved . 

The series-parallel decomposition is 
roughly as follows : Figs. 2A and 2B 
illustrate respectively the parallel and 
series connection of subnetworks. When 
the subnetworks are connected in parallel, 
their short circuit admittances may be 
added. When they are connected in series, 
their open circuit impedances may be 
added. For a series-parallel decomposi¬ 
tion, one separates the admittance 
functions or the impedance functions into 
parts appropriate for parallel connected 
or series connected subnetworks. Then 
one decomposes each subnetwork in a simi¬ 
lar way (after transformation between 
admittance and Impedance representations), 
and so on until the subnetworks are single 
branches. 

The present paper supports the series-
parallel conjecture, although it does not 
prove it. It also goes further, and con¬ 
jectures a canonical configuration in 
which more specific subnetworks are con¬ 
nected in parallel. The subnetworks 
themselves have a quite special series-
parallel configuration. It Is shown that 
they can always be used to realize the 
finite poles which can be realized when 
transformers may be included, but general¬ 
ly at a price in terms of restrictions on 
the behavior at s =0 or ». The price 
depends in a complicated way on the resi¬ 
dues at the finite poles. 

Driving-Point and Transfer Admittances 

We shall derive new insight from an 
analysis which Is almost, but not quite 
conventional. To establish the point of 
departure, and Its utility, we must review 
some well known network theory of an 
extremely elementary sort. 

In Fig. 1, the two ports of the net¬ 
work share terminal 3. Given the network 
with three external terminals and no 
further Instructions, one can form two 
other two-ports by using terminal 1 or 2 
as the common terminal. The new admit¬ 
tance functions are quickly established 
as linear transformations on the old. 
Thus, all that can be establsihed about 
the network from its external properties 
can be established, in principle, from 
the properties of any one of the three 
possible two-ports. However, with any 
such representation one Is likely to miss 
Important relationships which stem from 
the Inherent three-way symmetry of the 
network as a three-termlnal device. 

A well known representation which 
retains the three-way symmetry is the so 
called indefinite matrix Ys 
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Y11 -Y12 "Y13 

Y " "Y12 Y22 "Y23 

-Y -Y Y *13 x23 x 33

(3) 

It relates the currents into all three of 
the terminals to appropriate voltages. It 
Is necessarily singular, for Kirchoff's 
current law makes the three currents sum 
to zero. To obtain the matrix Yj, for In¬ 
put and output terminal pairs sharing 
terminal j, simply remove row j and column 
J from Y; 

Corresponding to the general three-
terminal network there is an equivalent tt 
network. It is represented in the usual 
two-port form in Fig. 3A, and rearranged 
in a symmetrical delta In Fig. 3B. It Is 
an Imagined network which has the same 
external properties as the general network. 
It Is useful as an aid to understanding 
the external properties. It is not gen¬ 
erally a physical embodiment of the 
admittance matrix, for the three two-
termlnal branches cannot generally be con¬ 
structed out of positive physical compo¬ 
nents . 

The Indicated relations between the 
admittance of the two-terminal branches 
and the off-diagonal elements in matrix Y 
are easily established. Then It is 
quickly shown that 

Y11 “ Y12 + Y13 

Y22 = Y12 + Y23 

Y = Y + Y Ï33 i13 + i23

Thus Y is not only singular. It is singu¬ 
lar in a particular way. The direct sum 
of the rows or columns is identically zero, 
not just a weighted sum with unspecified 
coefficients . 

From (4), the external behavior of 
the three-termlnal network may be speci¬ 
fied In terms of Y12» Y13> Y23 (as func¬ 
tions of frequency; rather than 
Yu, Y22, y12> The three way symmetry 
achieved In this way we shall find very 
Illuminating. 

Frequency Functions 

Much of classical network theory 
stems from partial fraction expansions of 
frequency functions. For present pur¬ 
poses, the appropriate expansions are 

V i 3
Yu - L * KoU  + M a (5) 

0=1 c

K«,-]! Is the residue of Y^j at a pole at 
s ="». We will also refer to and 
Koij as residues, although in strict fact 
they are residues at poles of Yjlj/s. 
Either or both of K ,, and K .. may be 01J °°1J zero. 

2 
In classical two-port theory , 

Yll» y22» y12 are covered by i,j = 1,2. 
Then necessary and sufficient conditions 
for realization with positive resistors 
and capacitors plus ideal transformers 
are 

s = real and > 0 a 

= real 

Kpll Kpl2 
= nonnegative definite 

-Kpl2 Kp22 

(6) 

The condition on the residue matrix can 
be broken Into: 

KpllKp22 " Kpl2 - 0

p = a, o, » . 

The same set of s^'s Is used In the 
expansions of Y^j, Y22, Y12- 14 13 
understood that Kp^j = 0 may be used to 
remove some of the poles from certain of 
the admittance functions, but the second 
condition in (7) requires a nonzero Kp]_q 
and Kp22 f’or every nonzero Kpl2 . 

To avoid reference to a specific 
choice of common terminal, we may simply 
let 1, j In (5) run over 1,2,3. Then, 
from (4) 

K , . = K,.+K,. pll plj plk (8) 

Using this relationship In (7), and In 
the corresponding condition on K 
gives P -3

38 



Kpl2 + Kpl3 - ° 

Kpl2 + Kp23 - ° 
(9) 

Kpl3 + Kp23 - ° 

Kpl2 Kpl3 + Kpl2 Kp23 + Kpl3 Kp23 - ° 

p = a, o, 0° . 

This Is an alternative set of necessary 
and sufficient conditions for realization 
with positive resistors and capacitors 
plus ideal transformers. (Actually, only 
two of the first three conditions need be 
stated, for then the third is implied by 
the fourth condition. The three are in¬ 
cluded here to retain the three-way 
symmetry. ) 

Behavior at Zero and Infinite Frequencies 

The constants Koij determine the 
admittances at s = 0: 

W 0’ - '«u • (10)

We shall refer to the corresponding matrix, 
Ko, as the behavior of the network at 
s=0. Similarly, if there is a pole at 
s = 00, 

Yij( 3^”) = ^ij s ( n > 

We shall refer to the corresponding resi¬ 
due matrix Kœ as the behavior of the net¬ 
work at s =°°. Changes in Ko and K« do 
not change the finite poles, or the 
corresponding residues, but they do change 
the admittances at all frequencies except 
the poles. 

Well known properties of transformer¬ 
less networks Include the following: When 
a three terminal network of positive 
resistors and capacitors Includes no 
transformers, 

KolJ ° 

Kooij 0

i,j = 1,2,3 

The behavior at s = 0 is the same as for 
the simple resistance network illustrated 
in Fig. 4a. The behavior at s = » (pole 
and residues) Is the same as for the 
simple capacitance network illustrated in 
Fig. 4b. Thus, the behaviors at zero and 
infinity can be realized, by themselves, 
with positive resistors and capacitors, 
whenever the admittances are appropriate 

for any transformerless network of posi¬ 
tive resistors and capacitors. 

We shall assume hence forth that con¬ 
ditions (12) are satisfied by our admit¬ 
tance functions. 

Rank-One Residue Matrices at Finite Poles 

Important concepts will be clearer 
if we Impose, temporarily, the following 
arbitrary restriction: The equal sign is 
to apply to the last condition of (9) for 
all finite poles (p=a), but not necessar¬ 
ily for p = 0 or oo. The corresponding 
residue matrices have rank one. Equations 
(9) become 

Kpl2 + Kpl3 - ° 

Kpl2 + Kp23 ° P = 

Kpl3 + Kp23 - ° 

Kal2 K ct13 + K ct12 K o23 + Kd3 Kc23 = ° 

K o12 K o13 + Ko12 K o23 + Kol3 Ko23 - ° 

K oo12 K oo13 + ̂ »12 Koo23 + Koo13 K oo23 0

We shall remove the restriction later on, 
but only at a cost of some quite subtle 
complications (in conditions for realiza¬ 
bility without transformers). 

Consider the implications of these 
equations regarding the signs of the 
three residues KG12, K CTi3, corres¬ 
ponding to a single pole. Because of the 
first three equations, no more than one 
of the three residues may be negative. 
Because of the fourth equation, either 
two are zero or at least one Is negative. 
Hence 

Theorem (proved): When the 
residue matrix Ko has rank 
one, out of Kal2 , K alo, K^, 
either two are zero and one 
Is positive, or else one Is 
negative and two are positive. 

When a residue matrix need not have rank 
one (for example our Ko and K«) it is 
still true that no more than one of the 
three transfer admittance residues can be 
negative. However, all three can now be 
positive, or one can be zero with the 
other two positive. 

Given a set of admittances we can 
now classify, or characterize the set by 
a pattern of O's, + 's, and -'s character¬ 
izing the residues of the three 
transfer admittances. The pattern may be 
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displayed as a table such as the 
following: 

Pole Number Y12 Y13 Y^ 

1 +00 

2 + - + 

3 + + (14) 
4 0 + + 

5 +00 
6 + - + 

If only the finite poles are represented, 
and are subject to the rank one residue 
condition, each row contains either two 
O's and one + or else one - and two +'s. 

Realization of Single Poles with T Networks 

The partial fraction expansions 
suggest, of course, W. Cauer's celebrated 
canonical network for two-ports made up 
of resistors and capacitors plus Ideal 
transformers.2 in Cauer's network, a 
number of subnetworks are connected in 
parallel. Each admittance, Y^j, of the 
combination Is simply the sum of the cor¬ 
responding admittances of the parallel 
connected parts. There Is a separate sub¬ 
network corresponding to each admittance 
pole. More exactly a single subnetwork 
realizes a set of partial fractions, In 
the various admittance functions but all 
corresponding to a single pole. In Cauer's 
network, most of the subnetworks Include 
Ideal transformers. We now examine alter¬ 
native subnetworks, which avoid the trans¬ 
formers but usually include negative 
resistors or capacitors. When all the sub¬ 
networks are connected together, the nega¬ 
tive components can frequently be 
cancelled by positive components, as we 
shall see. 

Consider the simple T network illus¬ 
trated in Fig. 5> in which two branches 
are resistors and one Is a capacitor. The 
corresponding transfer admittance functions 
may be arranged as follows, in which ga 
and gb are conductances and c is capaci¬ 
tance . 

„ = ga gb s ga gb 

ab " ®a + gb 3 + 3 o ga + gb 

Y = + g ---ac ea s + sQ

Ybc “ + gb s + sQ

_ ga + gb 
so c 

(15) 

The three functions have a common 
finite pole, with a rank one residue 
matrix. This suggests using a separate T 
as a subnetwork for realizing each finite 
pole of a set of admittance functions of 
general degree. The application Is com¬ 
plicated, however, by the added constant 
term In Ya^. 

The constant term disappears if a 
suitable negative resistor is connected 
between the external terminals a and b. 
The combination of the T and associated 
negative resistor Is Illustrated in 
Fig. 6. We may use it as a subnetwork in 
synthesizing a network of positive com¬ 
ponents provided we can Introduce, even¬ 
tually, positive resistors which cancel 
all such negative resistors. Appropriate 
synthesis formulas for the subnetwork are 
as follows: 

OÍJ 

K . 4 S 
gl-J_ 

s + s a 
1,J = a,b,c 

gb Kabc 

(16) 

c 
K X abc K aac 

s a 

-gab ^aab 

K K . oac abc 
K + K . aac abc 

The last equation is a simple rearrange¬ 
ment of our condition for a residue 
matrix of rank one. 

If, out of ^alß1 ̂ o23 one is 
< 0 and two are > 0, terminals a, b, c 
can be identified with 1, 2, 3 In such an 
order that K CTac and K abc are > 0. Then 
(16) defines a corresponding network in 
which g^, g2, c are > 0. The corres¬ 
ponding negative resistor (Fig. 6) Is 
bridged between terminals 12, 13, or 23, 
whichever corresponds to K ., < 0. 

01J 
If, out of KQ|p, Kai3» ^023* bwo are 

zero and one is positive, a, o, c can be 
identified with 1, 2, 3 in such an order 
that K^c > 0 and K CTbC = 0. Then ga and 
c are > 0 while gb = 0 and also gat,. 
Since a zero admittance is an open cir¬ 
cuit, the network of Fig. 6 now degener¬ 
ates into the single branch illustrated 
in Fig. 7. Tne single branch is con¬ 
nected between terminals 12, 13 or 23, 
whichever corresponds to > 0. 

The properties of these networks are 
further Illustrated by a comparison with 
Cauer's canonical subnetworks. Fig. 8 
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Indicates exact equivalences. Note that 
the orientation of our networks depends on 
the voltage ratio cp of Cauer's Ideal 
transformer, but that the various orienta¬ 
tions cover all values of <p. 

From Fig. 8, T networks (and degen¬ 
erate T's) may be used as subnetworks in a 
transformerless counterpart of Cauer' s 
canonical network, provided the negative 
resistors can somehow be absorbed (or else 
may be tolerated as such). However, the 
chance of avoiding negative components Is 
much Improved If one has available also a 
second T configuration. 

Consider the T network illustrated 
in Fig. 9, in which two branches are 
capacitors and one is a resistor. As 
before, all the admittance functions share 
a common finite pole. Now, however, Y^ab 
has also a pole at s = °°, instead of a 
nonzero behavior at s = 0. The pole at 
infinity may be removed by bridging a neg¬ 
ative capacity between terminals a and b, 
as Illustrated in Fig. 10. 

The networks illustrated in Figs. 6 
and 10 are externally equivalent, In the 
usual network sense. Appropriate synthe¬ 
sis formulas for the two capacitor T are 
as follows (corresponding to (16) for the 
two resistor T): 

Koac 
Ca = — 

Kabc 

Cb~ 

® - ^aac 

Kcab 
“cab s a

(17) 

+ ^cbc 

Koac ^obc 

= " ■ 

The components of the two T configurations 
are positive under exactly the same con¬ 
ditions. They degenerate into the same 
single branch Illustrated In Fig. 7, under 
the same conditions. A choice between 
them may depend upon whether a negative 
resistor or capacitor is more easily 
absorbed. 

More generally, two T networks, one 
of each kind, may be connected in parallel, 
to realize a single finite admittance pole. 
Both a negative conductance and a negative 
capacitance are associated with the combi¬ 
nation, but each Is smaller than It would 
be In the absence of the other. The 

configuration is illustrated in Fig. 11. 
While it is more complicated than the 
equivalent single T subnetworks, It Is 
Important for general synthesis techniques 
which we shall consider. Appropriate 
formulas for the components are as follows 
(combining (16) and (17))s 

Y p1J 
(i-q) 

K , . s 
pi J_ 

s + s a 

o ¿ q 1 

K__ 

®a = qKoac ’ Ca = (1-q) ~ 

Sb = qKobc ’ % = d-q)-Ç 

K 4- K 
c = a -PÊS_ 2È2. , g = (i-q)(K +K . ) 
C H s * & \ HA 03 c (JDC 

/ -, \ oa i 
”®ab = q Koab ’ "cab " (1-q) sQ

A well known theorem requires q to 
be the same for all 1J, so long as the 
residue matrix of the combination is to 
have rank one. 

Theorem (known): When two 
parallel connected networks 
of resistors and capacitors 
have a common admittance 
pole, the residue matrix K a 

for the combination has rank 
one if and only if: 

a. The residue matrices for 
the two networks have 
rank one, 

b. K' = qK", where q is a a , a-
scalar. 

The second condition requires, of course, 
= qK^ij , and this requires the 

same sign sequences as the Kaij's io a 
table like (14). 

General Synthesis in Terms of T Networks 

We can now put together a network 
realization of the complete admittance 
functions. Corresponding to each non¬ 
degenerate finite pole (a pole of all the 
admittance functions) one may choose a T 
circuit of either kind, or a parallel 
combination of the two, accompanied by 
the appropriate negative component or 
components (Figs. 6 and 10). Corres¬ 
ponding to each degenerate finite pole, 
there Is a single two-termlnal branch 
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(Fig. 7). Corresponding to the behavior 
at s = 0 and », there are the subnetworks 
of Fig. 4. The complete network Is formed 
by connecting all these subnetworks In 
parallel. 

The negative components which come 
with the T networks are connected between 
external terminal pairs, 12, 13, 23. So 
are the positive components which corres¬ 
pond to Koi i and and represent 
behavior at s = 0 ana ». All the positive 
and negative components of any one kind 
(resistors or capacitors) across any one 
terminal pair may be replaced by a single 
component. Then the complete network 
takes the form Illustrated In Fig. 12 (in 
which single 2-terminal branches (Fig. 7) 
may be Included as degenerate T's). It is 
a complete realization of the admittance 
functions, without transformers. All the 
components are positive If and only If 

KolJ S1J 

K»1J C1J 

1J = 12, 13, 23 

(19) 

where -gij and -c^j are the total negative 
conductance and capacitance across ter¬ 
minals 1J associated with the T networks. 

For the most general choice of the 
T networks 

T| 11

For any one choice of 1J, Index T| takes on 
only those Integer values such that 
kT11J < °- The constants q-p may be chosen 
arbitrarily (and independently) in the 
range 0 ¿ q^ ¿ 1. 

The restrictions on Kojj and , 
are a minimum for choices of the q^'s of 
a special sort. Let the partial fractions 
of the admittance functions be so numbered 
that Sy| Increases with T|. Then make every 
qn = 0 or 1 except for one, In such a way 
that 

S1J = E +

n < ix (2i) 

c = (1_q ) V . 
1J P- S Sp 

T!> n 

Given any other choice, there Is always a 
choice of this sort which reduces both 
g^j and c^j. The reason stems from the 
factor l/s¿ In the second equation, which 
reduces contributions to c^j at larger s^. 

In (21), p. may be any T] from (20), 
and then 0 < q £ 1. The permissible 
choices establish a relation between c^ 
and gij, which Is Illustrated In Fig. 
13. Note Its concave upward, broken 
straight line character. The values of 
Koii, Kooij may be represented by a point 
in the same capacitance-conductance plane. 
Then (19) requires the point to be In the 
positive quadrant and above the c.^-q,. 

There are three such conditions, cor¬ 
responding to 1J = 12, 13, 23. Because 
Kalj < 0 for no more than one 1J, the 
three conditions correspond to nonover¬ 
lapping subsets of the admittance poles. 
Thus p. and q„ may be chosen Independently 
for each. 

When added to the necessary and suf¬ 
ficient conditions on networks which 
include transformers, the new conditions 
complete a necessary and sufficient set 
for passive network synthesis In terms of 
our parallel combination of T subnetworks. 

Residue Matrices of Rank Two 

In the above, we simplified the 
argument by assuming, temporarily, that 
all finite poles have rank one residue 
matrices. Now suppose a pole at s = -s Q 

has a rank two residue matrix. This 
requires 

Kl2Ki3 + K12K23 + K13K23 > 0 . (22) 

All three of the transfer admittance 
residues may now be > 0. Then the cor¬ 
responding partial fractions may be 
realized as a physical ir network, like 
Fig. 4 except that each branch Is like 
Fig. 7. 

On the other hand, one of the trans¬ 
fer residues may still be negative, with 
the other two positive and too large for 
the rank one condition. A portion of one 
of the partial fractions with positive 
residues may now be spilt off and real¬ 
ized as in Fig. 7j — Just enough so that 
the reduced residue matrix has rank one. 

A more subtle alternative uses two 
T subnetworks In parallel. Recall that 
the parallel combination can have a rank 
one residue matrix only if YL. = q Y". ., 
where q is the same for all 1J. By J 

choosing q differently for different 1J, 
one can obtain a parallel T combination 
with a rank 2 matrix. 
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In either case, the conditions on 
Yol1 and Y^^j are determined entirely by 
the negative residue < 0, and in 
exactly the same way as before. Thus our 
previous conclusions are unaffected by 
rank two residue matrices. There may be 
additional branches across external termi¬ 
nals, but condition (19)> equation (21), 
and Fig. 13 remain unchanged. However, 
more sophisticated subnetworks, which we 
must now consider, may be affected in much 
more subtle ways. 

More Complicated Building Blocks 

When combined with the previously 
known condition K0^j, K^^j > 0, our net¬ 
works of parallel T's established the 
following: 

Theorem (Proved): When a 
three-terminal network of 
positive resistors and ca¬ 
pacitors is used to realize 
a given admittance matrix, 
the realizability of the 
finite poles is the same 
whether or not transformers 
are used, but omission of 
transformers must be paid 
for by restrictions on the 
behavior at s = 0 and/or °°. 
Any restriction beyond Kq1 j, 
Kooij > ° may be paid en¬ 
tirely in terms of behavior 
at s = 0, or at s = °°, or 
partly in terms of each. 

The curve in Fig. 13 established an upper 
bound on the price of no transformers, In 
terms of minimum permitted Koij, K«^:. 
However, It is not necessarily a least 
upper bound. It is easy to find circuits 
which pay lower prices under more 
restricted conditions. 

A convenient generalization retains 
the parallel connection of subnetworks, 
but adds new kinds of subnetworks to our 
T's and two-terminal branches. The new 
subnetworks usually include one or more 
negative components between external 
terminals. They are useful when the nega¬ 
tive admittances are smaller than those 
required with equivalent combinations of 
our previous subnetworks. The partial 
fractions corresponding to a single pole 
may be divided Into portions assigned to 
several subnetworks. 

Two subnetworks which come at re¬ 
duced prices are Illustrated in Figs. 14A 
and B. Each has two finite poles, with 
rank one residue matrices, and also Kolj 
and Kooij = °- In terms of restrictions on 
the behavior of the complete network at 
s = 0 and », one costs nothing, and the 
other costs less than the equivalent pair 

of T networks. Thus, when they can be 
used, these subnetworks ease our previous 
restrictions. Unfortunately, they can be 
used only under rather restricted con¬ 
ditions . 

Recall our discussion of the signs of 
residues, Illustrated by the table in (14). 
When a set of admittance functions Is 
given, a pattern of residue signs is es¬ 
tablished. Suppose the residue matrices 
have rank one. Then, In any division of 
partial fractions into separately reali¬ 
zable parts, the parts must retain the 
same sign pattern. The sign pattern for 
any two nondegenerate poles may take 
either of the following two forms 

Pattern Pole K^ KgJk

A 1 + - + 
2 - + + 

B 1 - + + 
2 - + + 

(23) 

On the other hand, our new subnetworks can 
have only the first pattern (A), and 
simply cannot be used even for portions 
of rank one partial fractions which follow 
the second. There are other restrictions 
on their residues, but these are the most 
important . 

There are many other possible sub¬ 
networks with two finite poles. There 
are many more with more than two poles. 
When given residue matrices have rank one, 
only those subnetworks may be used whose 
residues match the sign pattern of the 
corresponding complete partial fractions. 
When residue matrices have rank two, It 
may or may not be necessary to match sign 
patterns, depending on residue magnitudes. 
Then restrictions on synthesis applications 
become complicated in the extreme. 

On the basis of laborious studies of 
specific configurations, which need not 
concern us here, the author has arrived 
at two conjectures. First 

Theorem (Conjectured) : The 
parallel T configuration Is 
a canonical network for the 
subclass of our network class 
such that the residue sign 
pattern (14) contains only 
-'s and O's In one of the 
three columns. 

Second, consider the general ladder illus¬ 
trated in Fig. 15. Each series branch 
may be a resistor or a capacitor or the 
two in series. Each shunt branch may be 

43 



a resistor or a capacitor or the two in 
parallel. It follows that 

ab a +a.s+...a s v 

0 1 v (24) 

0 < À ¿ v+1 , 0 < v n . 

The terminals a b c may be connected to 
the terminals 1 2 3 In any order. 

Theorem (Conjectured); 
Parallel connected subnet¬ 
works of the sort defined 
by Fig. 15 and Eq. (24) con¬ 
stitute a canonical trans¬ 
formerless three terminal 
network of positive resist¬ 
ors and capacitors. 

Networks with More than Three Terminals 

The synthesis of three-termlnal net¬ 
works In terms of parallel T subnetworks 
Is easily generalized for networks with n 
terminals. The short circuit admittances 
may be collected in an Indefinite matrix, 
like (3) except of order n. They may be 
expanded in partial fractions, like (5) 
except that 1 and J now run through 1,..., 
n. The counterpart of the T subnetwork is 
the star configuration Illustrated in 
Fig. 16. 

In the star, each branch may be a 
resistor or a capacitor (but not both) or 
an open circuit. Then the admittance in 
branch 1, to terminal 1, is 

yl = S1 or cl3 or 0 • (25) 

The typical corresponding transfer admit¬ 
tance is 

Y Y Y Y 

hj - - v  1JV • (2« 

¿ Yk ¿ 8k + ¿ Ck3
k=l 

It may be rearranged as follows: 

-1 Yi ~3o YJ^~so 3 , 0

v s + % 
¿ gk 

s o (27) 

The added term depends on the 
components 1 and J, in branches 1 and J. 
If they are both resistors Is a 
constant. If they are both capacitors 

j is proportional to s. If one is a 
resistor and one a capacitor, < = 0. 
When / 0, it may be removed dby assoc¬ 
iating a negative resistor or capacitor 
with the star, connected between external 
terminals 1 and J. When there are more 
than three nonzero Y^, more than one pair 
of external terminals require negative 
components. 

The admittances again have a single 
finite pole, and the residue matrix has 
again rank one. When components 1 and J 
are similar (both resistors or both capac¬ 
itors) K^j Is again negative. When they 
are dissimilar, K^j Is again positive. 
As before, there is a one to one corres¬ 
pondence between negative Kq< and terminal 
pairs which get negative associated com¬ 
ponents . 

Given a set of partial fractions 
corresponding to a single admittance pole 
and with a rank one, nonnegative-definlte 
residue matrix, one can always find a 
corresponding star of positive components 
(plus associated negative components 
across certain of the external terminals). 
There are, in fact, two corresponding 
stars, with capacitors and resistors 
appearing in one where there are resistors 
and capacitors in the other. 

Star networks corresponding to all 
the partial fractions In a given set of 
admittances may be connected in parallel, 
in a transformerless counterpart of 
Cauer' s canonical network for (n-1)-ports.® 
All components are at once positive ex¬ 
cept for possibly negative components 
across external terminal pairs. All com¬ 
ponents will be positive provided the 
behaviors at s = 0 and « meet conditions 
which depend in a complicated way on the 
residues at the finite admittance poles. 

The penalty for no transformers Is 
somewhat flexible, In regard to division 
between restrictions on Kol . and 
but it is not so arbitrary as before. The 
trouble Is, a single star may require an 
associated negative resistor and negative 
capacitor (across different terminal 
pairs). Then the choice is between con¬ 
tributions to restrictions on K . 5 and 
^kl or K«>ij and KOkl' 

Speculation regarding subnetworks 
with a lower penalty than stars, like the 
ladders for three-termlnal networks, Is 
still too vague to Justify further re¬ 
marks here. 
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FIG. 2. PARALLEL (A) AND SERIES (B) CONNECTION 
OF SUBNETWORKS 

FIG. 3. EQUIVALENT T OR A 
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FIG. 6. AT PLUS ASSOCIATED 
NEGATIVE RESISTOR 

FIG. 9. AN ALTERNATIVE T NETWORK 

FIG. 7. A SINGLE-BRANCH DEGENERATE T 
FIG. 10. A T PLUS ASSOCIATED 

NEGATIVE CAPACITOR 
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FIG. 11. A 2 T COMBINATION FIG. I3. THE BOUND ON Koij, KæLj FOR 
PARALLEL T SYNTHESIS 

FIG I2. NETWORK SYNTHESIS IN TERMS OF 
PARALLEL T SUBNETWORKS FIG I4. SOME LADDER TYPE SUBNETWORKS 
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FIG. 15. A GENERAL LADDER SUBNETWORK 

FIG. 16. A STAR NETWORK 
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iterative parameters positive real, equal and 
coincident witn its conjugate matching parameters. 
For this to be possible, the invariant stability 
factor, s, of eac i stage, assumed equal, must be 
greater than (or equal to) unity. 

At the frequency of maximum power gain, fQ , 

the c.iain network consists of m individual two-
port networks with symmetry in self parameters 

'p11 “ P22^ 
ana with or without symmetry in trans¬ 

fer parameters (p12 = p 21 or 

From the definition of transmission para¬ 
meters 

Po1 = Po2 = Po1 = Po2 = % (37)

Pyl =( pyi )B ’ Py2 = M” 

In (37) and (33), upper case letters refer to the 
’chain network' and lower case letters to the 
individual 'stage networks'. 

From ( 38) and Fable 1 

P P 
21 _ y1 
P “ P 
12 y2 kP12/ 

(39) 

where P and P^ 2 are the forward and reverse 

transfer parameters of the chain network. Also 

Py1 Py2 = ( py1 Py/ 

Po1 Po2 ” Po1 Po2 = P11 P22 “ P12P21 = P11 P22~P12^1 

(41) 

where P^ and P22 are the self parameters of the 

chain network. 

From (24), (25) and (40) 

6lc = Slo = Py1 Py2 (42) 

Po2 " PGc’ Po1 ” PLc 

G1O = &1O = py1 py2 = ^1/ = (W) 

Po2 = Po2 = PGo = PGc 

Po1 ” PO1 " PLc “ PLc 
(26) 
and (43) yields S = s (44) 

where s is the stability factor of the individual 
stages and S that of 
(26) 

^max c 
P21 

P12 

the chain network. From 

G S 
max c 

P21 

P12 
(45) 

From (45) ? (39), and (44) it 
G = (g )“ 
max c max c 

follows that 

(46) 

In (45) and (46), g is the MAG of the 
max c 

individual stages and G that of the chain 
, max c network. 

(46) is capable of a physical interpretation. 
Each stage is correctly conjugate matched at its 
ports due to the 'port parameters' of its imme¬ 
diate neighbours, when the source and load ends 
of the chain network are terminated in conjugate 
matching parameters appropriate to the end 
stages (1 st and m 1h) in isolation. As such the 
power gain of each stage equals its LAG in iso¬ 
lation and the power gain of the chain network 
the continued product of the individual MAG's. 

Having grasped this principle, it may be 
used for the case of non-identical stages to 
follow in trie next Section, in order to make the 
MA'r of the chain network t e maximum possible 
without recourse to external feedback. 

If the interstage networks, considered part 
of the stages in Fig. 2 do not provide correct 
matching, but the end terminations are readjus¬ 
ted to retain conjugate matching of the chain 
network, the available power gain is reduced 
below the maximum possible; this reduction is 
accompanied by a corresponding increase in the 
value of toe invariant stability factor of the 
chain network sucn that trie product of the gain 
and stability factor is conserved. This conser¬ 
ved product equals the measure of non-reciprocity 
of the chain network, a factor unaffected by 
port terminations of the individual stages or 
chain network (Refer Appendix). 

V._Synchronously Tuned hon-Iaentical Stages 

Consider a chain of m non-identical stages, 
synchronously tuned to f and coupled to each 
other through lossless reactance two-port net¬ 
works; let this coupling be such that for a 
source parameter of the first stage equal to its 
conjugate matching immittance in isolation, at 
t e input port, and a load parameter of the last 
stage equal to its conjugate matching i iraittance 
in isolation, at the output port, these inter¬ 
stage networks provide conjugate matching in 
between. This is illustrated in Figs. 3 and 4. 
As mentioned in Section 2 the terminations 
d d p , *p, are arbitrary' and are useful in ensuring 
u L 

stability, controlling bandwidth, stabilising 
power gain and reducing turns ratio of transformer 
to a value less than ten. 

The turns ratio of an 'ideal' interstage 
matching transformer between q 1h and (q + 1)th 
stages for h or g matrix environments is given 
by* 

iTq + 1 ” [op g + 1 p ) 
p = h ar g 4c Ge 

♦(47)add (48) are exact only for 'ideal' trans¬ 
formers; here reactances of windings are very 
great compared with load impedances. For practi¬ 
cal near ideal transformers these equations are 
approximate. With non-ideal transformers these 
equations are inapplicable and it is better to 
check or adjust transformational properties ex¬ 
perimentally under operating conditions. 
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for z or y matrix environments it is given 
? 

T 
q q 

pLc 
P z or y 

where 

power gain of each stage in the 

q = m 
(49) o 

where 

of the qth stage in isolation, 

(50) 12 of 0.10 . 
q=1 

common emitter configuration at low frequencies 

(51) S 

q=1 

For unilateralised stage networks 

of a chain network 
of the measures of 

!.AG in 
equals 
MAG's. 

and 
S, > 

This does not 
gain for each 
yield a large 
example being 

whereas S is increased above minimum value; but 
the product is conserved this being equal to 

chain equals its 
the chain network 
the individual 

(50) it follows that 
of the chain network 

equals the continued product 
non-reciprocity of the indivi-

while 
by 

part of the conjugate 
of the (q + 1)th stage 

The requirement of good alignability imposes 
a lower limit on the stability factor of each 
stage (s £10) and hence an upper limit on 

From (26), (49) 
the stability factor, 

5g max 

of the chain network, a factor unaffected by 
port terminations of individual stages or chain 
network. 

qg max c 

the MAG c 

isolation and the MAG oí' 
the continued product of 
Hence 

automatically mean a reduced power 
stage. An amplifier stage may 
power gain with s £-10, a simple 
a graded base transistor in the 

% 

q + 1 
'Go 

g °max c 

Si 

^1 2 

G is max c 

jugate matched load parameter of the ’th stage in 
isolation. Fig. 4 shows the detailed arrangements 
for the qth stage with the device network embedded 
in h and y environments. By the principle of 
duality the corresponding arrangements for g and 
z environments may be obtained; for these cases 
the labelling of turns as primary and secondary 
must be interchanged. 

For such an arrangement as in Fig. 3, the 

max 

As shown in the Appendix, the 'measure of 
non-reciprocity', 

and s are infinite but g is finite.(49) is max C 
still applicable. 

If interstage mismatch exists, but conjugate 
matching is retained at the ends of the chain net¬ 
work, its MAG is lowered below maximum value 

VI Alignability of Cascaded Stages 
For the situation considered so far, there 

were resistances and reactances on both sides of 
eacn stage. If the frequency of MAG, f , is to 
be varied or in the presence of spreads in device 
parameters, the reactances to be used should be 
in part variable; it is then necessary to 
'align' the amplifier, i.e. to tune the individual 
circuits as to obtain the .maximum power gain lor 
the amplifier at the central frequency fQ. If a 
systematic tuning of circuits or stages from one 
end to the other and back to the same end in the 
reverse order renders all the circuits or stages 
'tuned' and the available power gain is practi¬ 
cally the MAG (i.e. within a small fraction of a 
db), the amplifier may be said to possess a 
"good alignability". Good alignability is a 
basic requirement of amplifiers having two or 
more tuning circuits. 

If the stability factor, s, of each stage 
in a chain of any number of stages is £10, each 
stage is slightly affected by the tuning of its 
immediate 'neighbours' (one on either side for 
intermediate stages) but practically unaffected 
by more distant neighbours. This is because the 
interactions due to the 'internal loop gain' of 
two or more stages (i.e. with S >100) is negli¬ 
gibly small as a consequence of the important 
theorem of Section III. 

dual stages. Therefore 
q=m 

equals the continued product of the stability 
factors of the individual stages. 

q=m 

matched source parameter 
in isolation ana the real part of the con-

q = 1 
the MAG of the chain network and 

' a' 
The above requirement for s, makes the 

internal loop gain modulus of each stage less 
than or equal to a tenth. This figure of 0.10 
is a half of that observed by Holmes^, Stanley 
and Ph,’lip-Jones^ 0 to avoid excessive skew in 
gain-frequency response for common emitter trans¬ 
istor amplifier stages with y,^ real and complex 
respectively. 

q+1 . _ p is tne real 
F -c 

P21 

P12 
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VII Bandwidth of Cascaded Stages (55) or (57) as appropriate, reduces to a 
which can be 

solved for bandwidth by Lin's method 
there are only two real roots for this eouation 
bandwidth is unambiguously determined. This is 

port parameters are 

further simplified Bandwidth solution is o o 
(52) 

o 

over tne frequencies of 
frequency of MAG, 

’ p1 
right are approxi-

P2 

cut off frequencies (^and 
Assuming one of these cases 

2 2 

P21 P 21 f 

(55) 

(56) 

the 

the in 
for the 

2 2 

f f, 
(57) - ? 

[1 +

= h or 

(58) o 

so far a wide range of active two-port networks 
including valve and transistor amplifiers that 
are synchronously tuned, 
considered for bandwidth 

tions. 
of the 

fiers with series elements at 
shunt elements at output port 
when the bandwidth is a small 

input port and 
(h-environnent ) 
fraction of 

Assume that the total 
form 

2 
P21 P21 

Only such networks are 
in this paper. 

2 
'21 p2r” 

and 

where p = z or y and x = (f / f - f / f) 
o o 

PP1 Pp1 1 +

polynomial equation in y 5 f/ f 

over the frequencies of interest, an example being 
a cascaded transistor amplifier in the common base 
configuration with imoe lance in series at emitter 
lead and admittance in shunt across collector base 
terminals of each stage. 

1 + j%2 - V 

x2] [1 + ( 1Qp2

Fig. 4 (b) and (52) applicable in the appropriate 
parameter matrix z or y, the Q's of the-tuned 
circuits from left to right of c ain (refer Fig.j) 
are 

f o 

Superscripts indicate the stage number, 
subscript, f , a bandwidth frequency and subscript, 

when the numerator of (55) or (57) as approp¬ 
riate containing ratios of magnitudes of the 
forward transfer parameters at a bandwidth and 
centrad frequencies, is close to unity. For 
vacuum device amplifiers, this is true for a 

where p 

and x = 

have an appropriate Q only if Q g 

wide range of frequencies; for junction tran¬ 
sistor amplifiers such an approximation is 
valid when the unndwidth is narrow or in the 
case of common base and common emitter ampli-

°o2 = pp2 

!pl (or vice versa) 

m-1 m 
P21 P21 1P;

[1 + 2
11 + *p1 

central frequency. 

Similarly where 0 „>>0 . (or vice versa) 
J p2 ‘p1 ‘ 

h or g environment the bandwidth equation 
: chain networks is 

» 0 . (or vice n1 
the Q's of the 

(m’2Q. 

their respective 
fg respectively) 
(55) reduces to 

respectively, wnere the suoerscripts indicate the 
stage number. For the case of Fig. 4 (a), if (52) 
is applicable, the intermediate tuned circuits can 

interest, f being the 
If the stages are coupled as in 

m-1 m 

1 2 m-1 m 
P21 p21”” P21 P21 

The bandwidth equation for t e chain net¬ 
work is given by 

If the individual invariant stability 
factor of each stage is equal to or greater than 
.en, in the computation of half power bandwidth, 
the effect of the 'internal loop-gain' of each 
stage may be taken into account in its 'total 
port parameters' with conjugate matching termina-

m-1 . ,m-l. 
%?’ ( %2 

í * <%2 -V2*2j - ’ < D’V ’ v 

A7 m \2 2, r, m ; 
+ %? x Hi + op2

versa). For the case Qp^ » 

tuned circuits from left to 
mately 

\i> ( 1Qp2 -2Qp1),( V (54) %2 -

V ( 1%2 +

m— 2 n-1 \ zm-1 m x , m z_,. 
%2 + ( %2 * V and %2 (53)

.nere 

% 
2 2. ã 

1 2 m-1 m 
P21 P2l“” P21 P21 

g with Q 

-
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1 + 1 * 
1-2 2 

p1x J 
2 \ 2 2 "I 
%? X ' 

where p = z or y 

Similarly (57) reduces to 

12 2"] T ,1„ 2„ , 2 2 - | 
1 + QP1 X J|j + %2 " QpP x 

where p = h or g and »^+ Qp1

For such situations (59) and (60) simplify out. 
to 

Usually the stages are identical or near 
identical, the variations being due to device 
parameter spreads about the average. Even for 
non-identical stages the input and output port 
Q's can be made Q and Q respectively tnrougn-

1 

P = 

m-1 

z or y 

1 *°p2 

i „ 2 2 11 + Q . x L p1
p = h or g; 

jVwV’IV 
Q 2» Qpi ( or vice versa) 

(61) 

x2 - 2 
J 
(62) 

where the superscripts have been ommitted. 

In order lo design an individual stage and 
state the number of such stages required for a 
chain of near identical stages, given the overall 
specifications like 

(63) G - > » O, , and Pt max o o *Go ^T,o 

it is first necessary to obtain an approximate 
explicit expression for the fractional bandwidth 

and the 

or vice 

approximated 

(64) 

versa) h P 

2 1 

I %2 - VI 

(65) 
where B is 

also 

be closely approximated to give 

(66) 

vice versa) 

B 
n 
o 

pl 
closely 

or %2

If %2 

number of stages, m. 

(62) to be valid 

Therefore it can be 

(FBW), B/ w, in terms of the 

-1/m 
2 

half power angular bandwidth. 

»Qp1 (or vice versa), (6l) can 

p = z or y 

%2 **^1 1

I (or vice 

Q factors Q , Q „ 
Pl p2 

_1 

%2 +

and 
FBYÍ 

FBW = — 
“o 

For ( 

versa). 
by 

I" 
i 1 + 

o o ® 

%2-v - I 

F. zffl-1„ \2 2 1m2 2—
[_1+( W 5 X J[^p2 x J- 2 (60) 

total port parameters reduce to the 
here Q equals and 

total self 
Q p equals 

For the z or y environment use of (66) when 
= Q . gives maximum error; this error P2 p1 

decreases rapidly with the number ol‘ stages, 
m, as hown in Fig. 5. If 0 „> 0 (or vice p2 p1 
versa) the error is even further reduced.(b5) 
and (66) are important. Each of chem (as aprro-
priate) .leads to a simple design procedure for 
the build up of cascaded amplifiers on a stage 
by stage basis with even non-unilateral electron 
devices. For unilateral stage networks the 

parameters: 
02. 

VIII Conclusions 

The MAG of an 'absolutely stable' amplifier 
stage equals the quotient of its 'measure of non-
reoiprocity' and 'invariant stability factor'. 
A stage that is 'potentially unstable' may be 
stabilised by adding extra real parts to its 
self parameters and/or by unilatera Using feed¬ 
back; a well defined MAG may then be realised 
Extra real parts may be required in some cases 
to increase bandwidth and/or to reduce the turns 
ratio of interstage matching transformers when 
sucn stages are cascaded. 

By suitable additions of passive linear 
R, L and C elements at the two-ports of a device, 
the conjugate matching terminations of the 
modified network may be made positive real and 
equal thus coinciding with its 'characteristic 
parameter'. It is then possible to cascade 
any number of such stages; the MAG of a chain of 
of m such identical stages equals the MAG of an 
individual stage raised to power m. So also for 
the measure of non-reciprooity and invariant 
stability factor. With mismatch in between, but 
with conjugate matching terminations at the source 
and load ends of such a chain network the MAG is 
lowered and the stability factor inoreaseu; this 
happens in such a manner as to conserve their 
product which equals the measure of non-recipro-
city of the chain network, a factor unaffected 
by port terminations of individual stages or 
chain. 

Where each lossless interstage network 
matches the conjugate matching load parameter of 
the preceding stage, in isolation, with the 
conjugate matching source parameter of the succee¬ 
ding stage, in isolation, conjugate matching 
terminations at the source and load ports of the 
chain network realises the maximum power gain. 
The MAG of a chain of m such stages (identical or 
non-identical) equals the combined product of 
their individual MAG's; similarly for rhe measure 
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of non-reciprocity and invariant stability factor. 
Here too, the product of MAS and stability factor 
equals the measure of non-reoiprocity of the 
chain network. 

If the stability factor of each stage in a 
chain of stages is equal to or greater than ten. 
that stage is slightly affected by the tuning of 
its immediate 'neighbours' but practically unaffec¬ 
ted by its more distant neighbours. This restric¬ 
tion on stability factor values ensures tnat the 
internal loop gain of each stage be equal to or 
less than one tenth; the 'alignability' of the 
tuning circuits is greatly facilitated and the 
'skew' in power gain frequency response due to 
internal feedback practically disappears. 

When the magnitude of the square of the 
continued product of tne forward transfer para¬ 
meters of the stages is nearly constant, the 
individual invariant stability factors are equal 
to or greater than ten and the 'total port para¬ 
meters' of these stages expressible in terms of 
Q factors 0 . 

Pl 
bandwidth of the chain network (compared of m 

, Q g (identical for stages) the 

stages wnose individual forward transfer para¬ 
meters are equal or unequal) is simply obtained 
with good accuracy in terms of Q , 0 m

For unilateral!sed stages each 'total port para¬ 
meter' reduces to the corresponding 'total self 
parameter' viz Q equals 0^ and equals 

The generality of the theory developed, coup¬ 
led with its simplicity and close accuracy makes 
it useful in the design of synchronously tuned 
multistage cascaded amplifiers. This is treated 
elsewhere.6 
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Appendix 

Measure of Non reciprocity of Chain Network in 
terms of the Leasures of Non Reciprocity of the 
m Constituent Networks. 

The 'A' matrix (associated matrix) of the 
chain network is the continued product of the 
'a' matrices of the constituent networks. Thus 
for a chain of two networks 

1 1 
al1 al2 
1 1 

_ a21 a22 

2 2 
al1 ^2 
2 2 a„. a„„ 

12 12 
ai1 ai1 + ai2 21 

12 12 
a21 ail + a22a21 

12 12' 
11 al2 + a12 a22 

12 12 
a21 a12 * a22 a22 

(67) 
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The determinant of this product matrix as 
obtainable from (67), 

* 1 1 . .2 2 2 2 x 
\ = ( a11 a22 " a12 a21 ( a11 a22 ' a12 a21 )

= Û 
a 2a (68) 

and equals the product of the deterimants of the 
individual factor matrices. 

Therefore, by induction 

A = A. A, .A (69) A 1 2 m 

From matrix interrelations 

A - _ h12 _ Z12 _ yi2 _ ^12 
a’ h21 z21 - y21 = - ?21

Hence from (69) and (70) the ratio of the 
forward to rever® transfer parameters of a chain 
of m different stages equals the continued pro¬ 
duct of the ratios of the same factors of the 
individual networks. 

p i=m

¿i TI 
p -
12 I 

1=1 

(71) 

(50) now follows from (71). 

Fig. 1. Modified two-port network whose iterative 
parameters are positive real and equal. 

58 



stage I stage m 

-{(POI + po2y [' \PnPT2f]} - P02 
po^ p - (jrl Pr2) ]] - Pol 

Pzi-^o,-
f?2 = i( Po,+ Po2)fPT2)7P - (pr, pr2)m]t
t +• sign for z and - sign for y parameters 

Fig. 2. A chain of m identical two-port networks; its four-pole 
parameters are given by above equations. 

Fig. 3. A cascade of m non-identical two-port networks whose 
MAG equals the continued product of the MAGs of the m 
networks. 

Fig. 4. (a) Part of a chain of non-identical stages ar¬ 
ranged to have conjugate match in between for con¬ 
jugate matched terminations at the ends of chain 
network: h case, g case is obtained by the princi¬ 
ple of duality (with interchange of turns of trans¬ 
former). 

Fig. 4. (b) Part of a chain of non-identical stages ar¬ 
ranged to have conjugate match in between for 
conjugate matched terminations at the ends of chain 
network: y case, z case is obtained by the princi¬ 
ple of duality (with interchange of turns of trans¬ 
former). 
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0-4.0 

Fig. 5. (a) Exact and (b) approximate solutions for 
fractional bandwidths of cascaded stages for 

QP1 = QP2 
(maximum error case); p = z or y. 

Tablg. -X 

Interrelations between four-pole immittances and transmission parameters . 

f positive sign for z parameters and negative sign for y parameters 

Transmission 
parameters 

in terns of 
four-pole immittances 

Four-pole 
Immittances 

in terms of 
transmission parameters 

Pol 

r/ \ 2 i À 
PU~ P22 J( PH* P22 - p p y 
-2- \-2-J 12 21J P11 

Pol* Po2 

1 ” PY1PY2 P°2

Po2 P22 

1 - P^lPv2 °1

PY1 
. __P2l_ i 

P21 
V • PvlPJ rlhi^^ ̂ PU*P22 )/2]2 -P12P2^ 

PY2 
'P12 t 

p12 
/ p , ♦ p _ 

V • [PU*P22^2. *\[P11*P22^2]2 "P12P21^ 

Pol- %2 Pll' P22 Pll“ P22 Pol ’ Po2 

PolPo2 P11P22~ P12P21 P11 P22*P12P21 Pol%2 

PY1/PY2 P21/P12 P21 /P 12 Pv/P^ 
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COUPLED MODE THEORY, WITH APPLICATIONS 
TO DISTRIBUTED TRANSFORMERS 

V. R. Saari 
Bell Telephone Laboratories, Incorporated 

Murray Hill, New Jersey 

SUMMARY 

The normal modes of uniformly distributed 
systems with two coupled modes are derived. Sev¬ 
eral sets of boundary conditions which seem of 
practical importance have been applied, resulting 
in network parameters and equivalent circuits. 
(Some considerations of applicability of the re¬ 
sults to ferrite-core distributed transformers 
are made.) The treatment is extended to bal¬ 
anced, nonuniform systems. An interesting new 
family of solutions to the differential equation 
arising in the consideration of nonuniform sys¬ 
tems is discussed, and application Is made to a 
practical example (tapered lines of constant 
characteristic Impedance). 

INTRODUCTION 

The theory of coupled modes In coupled uni¬ 
form transmission lines was developed in consider¬ 
able generality before 19^1 by persons working on 
cross-talk problems In communications systems A 
This present paper concentrates particularly on 
two-mode systems, making the method clearer, it is 
hoped, for those dealing with practical engineer¬ 
ing problems. The handling of a few sets of 
boundary conditions and the derivation of two-port 
network parameters and equivalent circuits con¬ 
stitute new contributions, as well as the discus¬ 
sion of applicability of these results to such 
partly distributed structures as bifilar trans¬ 
former windings on ferrite cores. 

Perhaps more generally Interesting is the 
treatment of (balanced) nonuniform systems with 
the aid of some recently discovered solutions of 
the linear second-order differential equation with 
variable coefficients, (it may be mentioned that 
nonuniform systems can often be handled by a per¬ 
turbation method developed by B. K. Klnariwala7 
for an analogous problem in time-varying net¬ 
works . ) 

GENERAL SOLUTIONS FOR TWO UNIFORMLY 
DISTRIBUTED COUPLED LINES 

2 It has long ago been shown that normal modes 
exist and can be found by straightforward means 
for any set of uniform coupled transmission lines. 
No attempt will be made here to apply boundary 
conditions to systems having more than two prop¬ 
agating modes. 

Two coupled modes existing In a uniformly 
distributed one-dlmensional system (Fig. 1) are 
each characterized by a voltage and a current (or 
their analogs) which are functions of time only. 

z„dx I 

v( O——-Vv\-•—» o 
I Zudx e yl2 dx 

Ziidx > y2l dX 

Va O—7-• O 
i2 ZMdx I 

<(y22~yti)dx 

FIG.I INFINITESIMAL SEGMENT OF TWO-MODE LINE 

The differential relations in the frequency domain 
between these four quantities may be written as 
follows if there are no other significant inter¬ 
acting modes. 

dV2 

Ix' = " yllVl+y12V2 (3) 

dI2 
diT " y21Vl'y22V2 

Taking a linear combination of the variables, we 
write 

£ = 
( Y- Z12+mZ22 \ 
<Z11 mz21A 1 2/ (5) 

dx " Cyil'ny21XVl +
¿2^22 
yll'ny21 V2 (6) 

where it is assumed that m and n do not depend on 
X. 

The new variables Vm = (V^+mVg) and 
In = (l^+nlg), can be separated when m and n 
satisfy the following relations: 

yll'ny21 
(7) 
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and 

^12^^22 
zu-mz2i 

(8) 

Thus each pair of functions Vm and In corresponds 
to a normal mode of the system. There are two 
pair of values which satisfy (7) and (8), namely, 
(mj_,n]_) and (mg,ng); and these can be determined 
very easily.* There is now a new set of four dif¬ 
ferential equations (S)-(6) which is equivalent to 
the set (l)-(4). Wave equations in the normal 
variables are obtained by differentiating (5) and 
(6). These can easily be integrated, and the 
familiar telegrapher's equations in each of the 
four variables are obtained: 

vmi = ^lO^iW cosh

’ 81nh V (9)

T = V10+miV20 Slnh V 
n, z 
1 °i 

+ ^qo+ni^2O^ cosh 7ix 

where 

7= 

= propagation constant (11) 

z _ Aj/V21 
°i ’ J  yirniy2i 

= characteristic Impedance (12) 

and 

1 = 1,2 (13) 

The "arbitrary" constants in Eqs. (9) and (lO) 
have been expressed in terms of the input val¬ 
ues V^q and I^q and the output values Vgo and IgQ 
of the total voltage and total current in the sys¬ 
tem. This facilitates the application of boundary 
conditions. 

SYMMETRICAL, NONUNIFORM SYSTEM - A NEW FAMILY OF 
EXACT SOLUTIONS FOR THE SECOND-ORDER D,E, WITH 

VARIABLE COEFFICIENTS 

It can be shown that the four normal variables 
of a balanced two-mode system whose electrical 
parameters vary with distance satisfy second-order 
nonlinear differential equations of the type** 

2 
d 0 d , x d0 o« z 1 » 
-5 - S (ln U) di - UV6 = ° dx 

where the variables and the corresponding func¬ 
tions u(x) and v(x) are listed in the following 
table : 

k JL \ 
1 V1"V2 zll’z12 yll'y12 “ v3 

2 Vl+V2 Zll+Z12 yll+y12 u2 = V4 

3 I1'I2 yll‘y12 Zll-Z12 U3 = V1 

4 ^1+I2 yil+yi2 Zll+Z12 UU = V2 

The corresponding solutions are sometimes expres¬ 
sible in closed form. For example, when the 
relationship between u and v can be expressed as 

v “ ai(S + aiug2) 

where is a constant and g is a function of x, 
then the general solution for 0 is 

a /ug dx dx
ó = ^e x + C2e ¿ (16) 

This can be shown by substituting (16) Into (14). 

For the case in which g is a constant, we 
have 

g 
v = ß u (17) 

and 

0 = ̂ ß/udx^-ß/udx (18)

This special case is that of a constant-impedance 
tapered line. Boundary conditions are applied 
below to such a coupled system. 

*(lt can be shown that for passive systems, 
mln2 = mgn^ = -1; and for balanced systems, 
ml = nl = -1 and mg = ng = 1.) 

**Thls equation can also be written as 
_d/l d0\ 
dx\u dxy v0, which suggest solutions of the 

form wherein d0/dx contains u as a factor. 
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Another large class of solutions for 6 is 
obtained by solving (I5) for a and thus obtaining 

at = k^- 1 ± yïTk ) (19) 

in which and k are required to be constant with 
respect to x.* The following set of generating 
relations is thus obtained: 

i« 

(21) 

(22) g 

The corresponding general solution 

(23) 

long It turns out that this 
as u and v satisfy the 

solution is valid as 
condition 

s = (mg) 2k^g dx 2k1 dx v

* ^=kug2

2v = yk A Æ (24) v dx y u ' 

When uv is constant, the lines are the 
familiar "exponential lines", in which phase ve¬ 
locity does not depend on the physical dimensions. 

*Thls class of solutions was given in a 
technical memorandum which was circulated by the 
author at the Bell Telephone Laboratories prior to 
the time when the same solutions appeared in an 
article by I. Sugai. The present paper shows 
these solutions and the corresponding relations 
between u and v in relatively simple form. 

**This method can easily be revised to yield 
2 

solutions for + s A + t =0, where s and t 
dx 

are functions of x. These solutions are 

_ 1 + /A dx - /vAdx 

e = C3e + Cue 

under the condition that 

s = 2 In yt k dx v

APPLICATION OF BOUNDARY CONDITIONS - DERIVATION 
OF NETWORK PARAMETERS AND EQUIVALENT CIRCUITS 

1. Uniformly Distributed Systems 

Equations (9)-(10) imply that the normal 
variables at the remote terminus of a line of 
length t are given by 

^l^ = WiV - Yo/Vi^ 

(25) 

N, 
= ■ Z-  ^V10+miV20^ + ^1^10+ni^20^ 

°i 
(26) 

where 

Mi = cosh (27) 

and 

Ni = sinh 7i¿ (28) 

It Is sometimes more convenient to apply the 
boundary conditions to the following equivalent 
set of equations, which express the "initial" 
values in terms of the "final" values of the 
variables: 

(29) 
N 

I10+niI20 = Mi^U^lW + Z-  ̂ l¿+mi^2¿^ 
°i 

(30) V10+miV20 = "o/l^l^l^P +

It Is considered that the "cascade" param¬ 
eters (also known as "ABCD" parameters) are the 
most convenient form into which to render the 
results for each set of boundary conditions. 
(Multiplying a chain of cascade-parameter matrices 
corresponds to connecting the respective four-
terminal networks in tandem to form a new four-
terminal network.) For passive networks, an 
equivalent circuit based on the cascade param¬ 
eters is shown in Fig. 2. The voltage trans¬ 
formation ratio ajj_ = R eJw may be complex, with 
R representing the ratio of magnitudes and 6 
representing phase shift. (For active networks, 
the circuit is the same except in that the cur¬ 
rent transformation ratio A/aii no longer equals 
Vail-) 

The term "delay line", will be used to denote 
a system which Incorporates a transmission line 
in such a way that the input voltage appears be¬ 
tween the two terminals at one end of the line 
and the output voltage appears between the two 
terminals at the remote end (Fig. 4), as opposed 
to the "ordinary transformer" connection in which 
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° 12 

A "all°22 °l2 a2l 

O (=I FOR PASSIVE 
RECIPROCAL NETWORKS) 

OR 

a. Grounded ordinary transformer . Applying 
the boundary conditions from Figs. 3 to Eqs. (25), 
we obtain two expressions relating V^q, Væ, Ijq 
and I2q- Eliminating I10 or Vlo, we obtain rela¬ 
tions in which the coefficients are the aj/s. 
The results are 

‘11 = 3 (m2NlM2Z01-miN2MlZ02)

(IDEAL) (IDEAL) 

FIG. 2 EQUIVALENT CIRCUIT FOR PASSIVE NETWORKS 

. 2(z +zJn z a o — 2: N W 17 «7 11 M 1 01 
12 " A 1 2tn2 ni 0102 M,(Z +ZM ¿ - N Z 1 11 M 1 ( 

the input and output ports are not electrically 
remote from one another (Fig. 3). "Floating 
system", will denote a system wherein there is no 
significant connection to ground at either port 
(Fig. 4) although there may, in general, be dis¬ 
tributed leakage to ground along the line. 

BOUNDARY CONDITIONS: 

V IO V20 

Iio I20 

vu =o v2< = 0 

VIO = ° 11^20 _®I2 ^20 

1 10 = a 2l^20 -022^20 

f-0- (zM - (32)

1 
a21 = Ã UW "VW - Vol 

f—ó z^t (33) 

a22 4 (^WlVoi) (34) 

where 

A = Woa-Woi - - Vol (33) 

LOW-FREQUENCY EQUIVALENT CIRCUIT 
(PASSIVE, BALANCED LINE WITH yM = y^y^K 

4-: I 

The first arrow in each expression denotes the 
value approached when the system becomes balanced 
and when the distributed strajs to ground vanish. 
The resulting equivalent circuit for the passive, 
balanced, low-frequency case* without strays to 
ground is shown in Fig. 3 A similar result for 
a floating delay line is shown In Fig. 4. 

FIG. 3 GROUNDED"ORDINARY TRANSFORMER" 

*This simplification is actually valid 
only if 40. To Justify its use when 
f-0, it is assumed that A and that 
the Q of the circuit is large. 
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BOUNDARY CONDITIONS'. 

Iio !ii 
vio-— Vlt

V 2O vt| 

l2O*-4o 

vio -v2O* oiiivH"v2<' +o i2IiZ 

I|O’°2l<V|t’V2i> + a22IH 

EQUIVALENT CIRCUIT (FOR PASSIVE BALANCED LINE with y„’y^y^i: 

NlzOI 

Mi 

FIG. 4 FLOATING DELAY LINE 

and Væ. Combining this with Eqs. (29), we ob¬ 
tain equations involving only V1Q , V2Q , Ilo and 
Io; and I^q can be eliminated from these to yield 
an equation of the form Vlo = aiiVgo^is1̂  • The 
network parameters a^n and a12 are thus obtained 
directly from this. (The expressions must be 
simplified using the trignometric identity 
cosh2x - sinh2x = 1 before reducing to the forms 
shown below.) If, instead of eliminating I]_q, we 
eliminate Vj_q, we obtain the form 
110 
be 

all 

a12 

a21 

°22 

= a21V20+a22l3‘ results can be shown to 

(mlAl-m2A2-Bl+B2) (36) 

(37) 

(38) 

1 (M2Ei-MiE2) (39) 

«iWi (D2+D1-F1-F2) 

(e N Z -E N Z ) 
k 1 2 02 2 1 01' 

' 2 Z01 2 Z02-—— 2 Z 01-

nin2 
n2-ni 

A2-Al 

N1N2 
n2-nl 

a2-ai 

b. Two-wlre autotransformer Applying the 
boundary conditions from Fig. 5 to Eqs. (26), we 
obtain a relationship between I„, I_, V, I,_ 

20 3 10 10 

BOUNDARY CONDITIONS: 

Is*I|t~l20 
VIO ’allV20+ai2IS 
Iio^^iVeo + oaa^s 

EQUIVALENT CIRCUIT (PASSIVE, BALANCED 

N| 
M,+ l 

line with y^y^y,^: 

FIG.5 TWO-WIRE AUTOTRANSFORMER 

where 

A1 = A2 H (UO) 

B1 E B2 5 (M2V 1)N1ZO1 

= M2(M1+m2) D2 = ^(M^) (42) 

F1 E Mlm2+1 F2 E M2mi+1 (^3) 

ElSnlNlZ01 E2Sn2N2Z02 W 

If the system is passive and contains no dis¬ 
tributed leakage to ground, it can be shown 
(m = m2) that 

*u ■ Z [’1ZO1(-1)2 * a^VoA*1’] ~ 2 <‘5) 

N„Za “ 
2(M -1) + mN -|-22 

„ _ _ 3 m _ o _ _1 01 

01 
(VW02 

65 



r h NZ +MNZ_ 

•a ■ i LJ ~ 
(W) 

where 

△ = - miAg-^) = mN^^+l) - NJ^m-l) 

- N2Z02(Ml+1) (U9)

The arrows indicate the results when the system 
also becomes balanced (m —>1). The elements of 
the equivalent circuit (Fig. 5) for this case are 

ai2 Vol (50) 

and 

all ^N2ZQ2 + = +

(51) 

A similar equivalent circuit for a three-wlre auto¬ 
transformer is shown in Fig. 6. 

line segment: 

EQUIVALENT CIRCUIT ( PASSIVE, BALANCED LINE WITHOUT DISTRIBUTED 
ADMITTANCE TO GROUND) : 

FIG.6 THREE-WIRE AUTOTRANSFORMER 

2. A Nonuniformly Distributed System 

The normal variables on a nonlinear two-mode 
line such as has been discussed above may be 
expressed as functions of distance x as follows: 

ekS Ckle
«kiLvk^ W w* 
i ° + Ck2e 0 (52) 

where 

k = 1,2,33 (53) 

and 

61 = Vl-V2 E ’3 

e2 = v1+v2 s 
(5M 

e3 " I1'I2 = $1 

eU = Tl+I2 5 ^2 

The arbitrary constants may be written in 
terms of the terminal values of the variables (the 
added subscript t always denoting the particular 
value occurring at the end of the line): 

°k20kt + g^ '•’kt 
Ckl= -^(0^2-^) 

akl6kt + g. . 'Pkt 

where 

(55) 

(56) 

pt 
“kJ „”Äta 

"kJ 5 ' (57) 

In the special case of Eqs. (17)-(18), where 
and are proportional for all k, we have 

2 
vk = pkA (58) 

It can now be shown that 
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(61) 

(62) 

(63) 

-ß21 ß22 

^z^gjdx 

Vl+V2 

-Z12 )dx

+ C12e

vrv
X 
(z^-z^dx 

ß21J 
° C2ie

yil+yi2 -;- = constant 
Zll+Z12 

1 
ß41 

1 
ßU2 

(64) 

(65) 

(66) 

The constants 
Eqs. (55) and 

l21J 

" C31eI1"I2 

ß, 

1+I2 ° C4ie

’M n̂ zll+Z12^ dx
+ C22e 

0(zil-Z12 )dx

X 
0(zll+z12 )dx

■ßuj\ (zirzi2 )dx
+ U32 

■^21/ ^Zll+Z12^ dX
+ Ch2e

C^j can be obtained easily from 
(5&); for example, 

0 _ XX ±<C ( 67 ) 

PuJ^ii- 2̂  
2ßlie

c _ + ̂ ik’i2¿^ ¡(M12 —————£ ( DO ) 

2|v 
Let us calculate the network parameters for the 
case of a floating delay line (boundary conditions 
of Fig. 4). From Eq. (63), we obtain 

(69) 

(70) 

Hence, for any passive balanced nonlinear two¬ 
mode line on which the distributed z^j's and yij's 
are proportional to one another, we have, for 
delay-line type external connection, 

all = 2 (m^ + ^1) = a22 

2 

(72)

It remains, now, to consider a particular func¬ 
tional form for u^(x) in order that we may cal¬ 
culate a typical M]_j_. Let us consider that the 
taper is sinusoidal, with a minimum | ui | at x = 0 
and a maximum at x = t; that is, 

Y -Y 11 12 

4 

= JuQ(l + a sin bx) = -i- vx = Z^-Z^ 
ßll 

(73) 

From (57), 
P«/2b 

ßllJ + a sln bx d̂x

Mp! = e ° (74) 

^1 = e (75) 

Thus, given Uq, a, b, and the network 
parameters are easily obtained. 

PRACTICAL CONSIDERATIONS - SEMI-DISTRIBUTED 
TRANSFORMERS 

1. Self-Capacitance of Windings and Core Response 

Transformers consisting of a parallel or 
twisted pairs of wires wound on ferrite cores5 
have recently become popular for use in high-
frequency applications such as Interstages in 
transistor IF amplifiers. Such a transformer is 
shown in Fig. 7 with a toroidal core. The fre¬ 
quency range over which the equivalent circuits 
given earlier are applicable can be extended up¬ 
ward by Introducing the following consideration. 
There is a time delay (in the realization of full 
self and mutual inductance) which is associated 
with the time required for a wave to propagate 
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FIG.7 BIFILAR WINDINGS ON MAGNETIC CORE 

around the core. This should suggest the inclu¬ 
sion of capacitance in shunt with the winding 
inductances. The capacitance should resonate with 
the corresponding inductance at a frequency for 
which the core length is a multiple of one wave¬ 
length. Actually, part of this capacitance is 
distributed along with the Inductance; while the 
other part can be represented by a transmission 
line of length x/2 at the first resonance* ter¬ 
minated in a capacitance. The interconnections 
are shown in Fig. 7• 

The analysis of the circuit which consists of 
the windings and the portion of the core under 
them proceeds as has been shown above. The imped¬ 
ance parameters Z^j of the line must, of course, 
contain the effect of the distributed self capaci¬ 
tance. It can be shown that the effect of this 
capacitance (or of a more general shunt self-
impedance element) is simply to multiply each 
element of the impedance matrix by a current-
splitting factor q (Fig. 8). This factor is 
uniform only when Just one of the two normal modes 
is excited in the system. The magnitude of the 
characteristic value of q for the difference 
(transverse) mode is less than unity; whereas the 
magnitude for the sum (longitudinal) mode is 
treater than unity. It may be shown that for a 
balanced system, these two characteristic values 
are, respectively, 

»Velocity of propagation in the core varies 
as 1/ y/p-E; electrical length varies as ^/pe; 
impedance varies as ^/p,/e. 

(i-q2)i2

<(yH-yi2)dx 

* o 

yl2dx 
y2,dx 

—T ° 
<(y22 -y2i)dx 

FIG.8 SYSTEM SEGMENT INCLUDING SHUNT SELF IMPEDANCE 

Z Z 
qd = Z +Z7-Z and % = Z +ZY+Z x y M X y M 

Normally, the relation 

is satisfied, so the values of q for an unbalanced 
system become 

/Z nZ 
— (78) 

< W - \ 

yi yg- (79)
5 " p 

ST ’ "M xl J

Equations (11)-(12) for the difference mode 
become 

>i = ^ = (8o)

and 

(The values of m and n are not changed by the fac¬ 
tors q.) A similar set of relations hold for the 
sum mode. 

2. Multiple-Loop Cores and Effective Turns Ratios 

In order to achieve minimum leakage induct¬ 
ance and maximum uniformity of parameter distribu¬ 
tion in a transformer it is desirable to use a 
toroidal, core. However, it is simpler, from a 
manufacturing standpoint, to wind the coils on a 
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bobbin and slip the bobbin on one leg of a rec¬ 
tangular core. A multiple-loop core is often 
chosen. It should be remembered that the manner 
in which the windings are connected to the exter¬ 
nal terminals will significantly affect the 
characteristics of the transformer even at low 
frequencies if the number of turns in the windings 
is small. For example, a two-wire autotransformer 
on a two-loop core will not have precisely a 2:1 
ratio if each wire does not thread both loops as 
many times as the other. This is true be¬ 
cause each of the several legs branching away from 
the one which holds the bobbin carries only part 
of the total magnetic flux. 

CONCLUSION 

The normal modes of uniformly distributed 
systems with two coupled modes wire derived. Sev¬ 
eral sets of boundary conditions which seem of 
practical importance have been applied, resulting 
in network parameters and equivalent circuits. 
(Some considerations of applicability of the 
results to ferrite-core distributed transformers 
œre made.) The treatment was extended to balanced, 
nonuniform systems. An interesting new family of 
solutions to the differential equation arising in 
the consideration of nonuniform systems vas dis¬ 
cussed, and application was made to a practical 
example (tapered lines of constant characteristic 
impedance). 
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TRANSIENT ANALYSIS OF A PARAMETRIC OSCILLATOR* 

Edwin D. Banta 
General Atronics Corporation 

West Conshohocken, Pa. 

Summary 

The parametric oscillator is investi¬ 
gated for use as a phase-synchronized 
oscillator} for such use the buildup 
rate, the phase errors occuring during 
buildup, and the final amplitude are all 
of interest. The paper begins with the 
general circuit equations of a three tank 
parametric device and shows a derivation 
of three first order, nonlinear differ¬ 
ential equations specifying its perfor¬ 
mance. The only restriction is in the 
form assumed for the nonlinear capacity 
(this restriction could be removed, in 
principle, at the cost of more elaborate 
mathematics). By use of "coupled mode" 
theory these three equations are simpli¬ 
fied into three nonlinear, first order 
differential equations which do not in¬ 
volve time explicitly. 

These equations are applied first to 
the small signal case to study the effects 
of loading and detuning upon the signal 
buildup. A general expression is obtained 
for the buildup rate, a, and several spe¬ 
cial cases receive detailed discussion. 
The principal result is that a is propor¬ 
tional to the square root of the idler 
frequency and inversely proportional to 
the geometric mean circuit capacity. 

These small signal equations are next 
used in an analysis of the signal phase 
error accrued during buildup. Phage error 
is defined as the unpredictable portion of 
the oscillator phase relative to the phase 
of a synchronizing signal. It is found 
that by virtue of its extra degree of 
freedom, the idler tank, the phase error 
is less than occurs in a conventional 
oscillator operating under the same con¬ 
ditions . 

The report continues with a considera¬ 
tion of the steady state configuration of 
the parametric device. This is possible 
since the differential equations are not 
limited to the small signal approximation. 
Explicit formulae for the steady state 
voltages in each tank are obtained re¬ 
sulting in the Manley-Rowe equations. 
These equations show that the idler fre¬ 
quency should be small to obtain maximum 
output at the signal frequency. It was 
stated previously that the idler frequency 
must be large to maximize the buildup rate 

♦This work was sponsored by Rome Air De¬ 
velopment Center under Contract AF 30-
(602)-2283. 

and to reduce phase errors. Thus a de¬ 
sign compromise is necessary. 

In conclusion, an approximate buildup 
analysis showing saturation is presented. 
Interestingly, the form of buildup is the 
same as that for the Van Der Pol oscil¬ 
lator. 

Introduction 

The analysis of parametric devices se¬ 
parates into two classes: in the first 
and more extensive class it is assumed 
that the parametric agent is a time vary¬ 
ing element; this follows from the small 
signal approximation; i.e., the pump 
voltage dominates a nonlinear element 
which, in turn, exhibits a time varying 
characteristic determined by the pump 
voltage. In the second class the cou¬ 
pled, nonlinear circuit equations are 
kept; however, most of the analysis in 
this class concerns power relationships, 
not transient behavior. 

The present paper analyzes the tran¬ 
sient parametric oscillator by means of 
the "coupled mode" approach. This me¬ 
thod has the advantage of retaining, in 
its first approximation, the nonlinear 
dependence needed for a meaningful dis¬ 
cussion of saturation effects. Finally, 
while only the three tank parametric 
oscillator is described in detail, the 
method is applicable to parametric de¬ 
vices with any number of tuned circuits. 

General Circuit Equations 

The simplest nondegenerate parametric 
device contains three separate tuned cir¬ 
cuits, called the signal, idler, and pump. 
A typical circuit using a semiconducting 
diode as a nonlinear reactance is shown 
in Figure 1. At time t=0 the switch is 
closed and the signal source is discon¬ 
nected from the signal tank, which is 
left with stored energy in its elements. 
A principal part of this analysis is de¬ 
voted to relating these initial conditions 
in the signal tank, as well as any initial 
conditions in the idler tank, to the final 
state of the oscillator. 

For mathematical convenience the diode 
resistance Rd is assumed to be absorbed 
into the individual tank loadings; simi¬ 
larly, the fixed diode capacity is trans¬ 
ferred into the Cr's, leaving only the 
variable capacity for Cd(V). Further, 
since the primary effort is to be a non¬ 
linear analysis, it seems justifiable to 
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choose the simplest Cd(V) which gives pa¬ 
rametric action. This form is 

C„ 
CD(V) - V (1) 

Mode Equations . With the circuit of Fi¬ 
gure 1 and the assumptions made above the 
circuit equations are 

Vk1 + Rk( TK1-Ik) = Vp$K3 ( 2a ) 

<2b > 
VK = "VkI + %^K3 

a cn • 
1 = EVC (V) ] = 2 VV (2d) 

F o 

where K ranges over 1-3 and ôK5=l for 
K=3 and zero otherwise. These equations 
can be combined to eliminate I and Ijq 
with the result 

. . V V Ô 

<3a)

• Cn • 
VK = - 2 W (3b) K bK Lk

in which G„ = 1/R„. A A 
These two real, first order differen¬ 

tial equations can be combined into one 
complex, first order differential equa¬ 
tion as follows;! multiply Eq. (3b) by 
Xg and add it to Eq. (3a). 

Gk\= " that CK 

XKLK 
Now choose X^ such 

VP^K3 
LK 

r i o * 
Äl- - 2-2-^W + 
°K AK LK bK 

(3c) 

i.e. 

= im- {jl- 2 + 77-} = i(J)¿ (4) 
CK K 4Q 2 2«kJ K 

A 

in which and Q~ have their usual mean¬ 
ings. Finally, 1er 

= IK+(GK+Xk)VK = IK “ T” 

whence Eq. (3c) becomes the mode equation 

®K - 0 /L^ 
(6) 

In tenus of this variable 

4Qk

aKGK 

and 

(7a) 

(7b) 

(8) 

"Coupled Mode" Method . To begin a solu¬ 
tion of Eq. (6) let 

iœ-, t 

aK = AKe

where is the actual radian carrier 
frequency of oscillation in the K'*''1 tank; 
thus Eq. (6) becomes 

V^Kl-®]^ =

[-i(U '7t“ °0 d72 Vp^K3 
/L^ 

(10) 

The "coupled mode" method argues that if 
AK varies slowly, the only significant 
terms on the right hand side of Eq. (10) 
are the slowly varying ones. Thus, by 
virtue of the term 

g-iæKi1

the only significant terms in the bracket 
expression are those with a factor 

^Kl^ 

In order to decide what terms these 
are, a relationship between the three 
frequencies oh , («2 and is needed. It 
turns out that for parametric oscillation 
to occur it is necessary that 

^l + ®2 = ““3 + û

where A is small compared to any mg and 
it represents the error in circuit ad¬ 
justment. 

By use of the "coupled mode" method, 
Eq. (11) and an assumed pump voltage of 

71 



the form 

V_ = cos (out + d) P po 5 P (12) 

it is found that the appropriate equations 
for the Ag's are 

A1 + [“1 “ = ^1 ” ̂ ^^^2 ( 15a) 

A2 + La2 - ^]A2 = (œ2 - ^t^A^A^ (13b) 

A3 + [03^3 = -(m^tljAjAg + P° — (13c) 
2/L^ 

aK 5
where = T](l + i-^) 

' " /- 2v >/ o 
(Certain small terms involving AK have 
been deleted from the right hand side of 
these equations.) In addition, it has 
been assumed that A is due entirely to 
errors in the signal and idler frequencies, 
not in the pump frequency; this condition 
usually applies in practice. 

Small Signal Theory 

Small signal theory implies that A3 is 
a constant independent of A]_ and A2- Thus 

i/ 
a3 = Qj V e (14 ) 

While Eqs. (13a) and (13b) can be com¬ 
bined and written in operational form as 

■[(D+a^- ^) (D+a2+ ^) -

^)(1- ^) |a5I2}a1=o (15) 

This equation is solved by assuming a so¬ 
lution of the form Ke0"'' whence it is 
found that 

ai+a2

2 

where _ 
Q_V C Ad, u) o 

a = ̂ 3 PQ o / 12 
2V0

(16) 

(17) 

is the buildup constant for the ideal case 
of no loading and no detuning. 

Ideal Case . When there is no detuning 
and no loading the buildup rate is given 
by Co, which shows the functional depen¬ 
dence of buildup upon the circuit para¬ 
meters. It is important to note that 
for rapid buildup the signal and idler 
capacities should be as small as possi¬ 
ble , and if all other parameters are 
fixed, the idler frequency should be as 
high as possible. A conflicting reason 
for limiting (»2 will be discovered in 
the discussion of power distribution be¬ 
tween the signal and idler. 

Detuning - No Losses . In this cage a,= 
a2=0 ana Eq. (16) becomes 1

This quantity is clearly quadratic in A 
so that with sufficiently large detuning 
a becomes imaginary and the parametric 
oscillator degenerates into a frequency 
converter. Furthermore a achieves its 
maximum value for a detuning 

2 
a0 (m1+U)2) 

A = -?

u’lu>2 - a0

However since A„ is assumed to vary slow¬ 
ly compared witn tug, 

2 a0 « <uia>2

and the amount of desirable detuning 
given by Eq. (19) is negligible. Thus, 
as a general rule, detuning is detri¬ 
mental to the buildup rate. 

Losses - No Detuning . In this important 
case A=0 and Eq. (lb) yields 

a-^+ag 
= -

(20) 

while in most practical cases 
2 2 

% >5> ( ai+a2) 

so that Bq. (20) is 

+$9 4. r i -, 

(21)

This shows the buildup rate to be de¬ 
creased by the mean damping of the two 
tanks. In addition, a frequency bifur¬ 
cation occurs; its significance will be 
discussed in connection with its effect 
on phase uncertainty. 
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Initial Conditions 

To discuss phase characteristics during 
buildup it is necessary to define the con¬ 
stants in the solution equations 

&1 = e1^1” ^^[A^e'^+A^e-'1̂ ] (22a) 

a2 = e^“2" 7)t [A21eat+A22e-at ] (22b) 

However, by the coupling conditions A21 
and A22 are linearly dependent upon Aqq 
and Aq2- This is proper since An and 
A^2 are complex, thus requiring four con¬ 
stants: the two initial voltages and the 
two initial currents. 

Ideal Case . In this case Eq. (13b) becomes 
simply 

A2 — uu2t)A^A^ 

and by equating coefficients of and 
e~ct 

(23) 

Substitution of these quantities into 
Eqs. (7) gives, after some arithmetic 

2*11 ’ * 

. (24a) 

2A12 - +

ST 
+ <24b) 

At this point it is convenient to as¬ 
sume that sinusoidal currents are applied 
to the signal and idler tanks for t^O. To 
avoid confusion with 1^ the coefficients 
will be denoted by Jg; thus at t=0 

I1=J1cos©1

I2=J2cos©2

^1 V, = —sin©, 1 œ^C^ 1 

J 2 
Vo= —=— sin©0
2 uooög 2 

(25a) 

(25b) 

where ©^ is the appropriate phase at t=0. 
Clearly then: 

= /ÿi i©! Æ e-iY (26a) 
2 e + 2 J («2 

/ Ln J -I 10-1 J Q fe-t J v

*12 -“H« <26b > 
tan©2 

tan ï = t^ 

Loading-Mo Detuning-juiescent Idler. In 
the case of finite loading but no detuning 
the algebra becomes more complex; however 
in the case of a quiescent idler (J2=0) 
the results are still simple. In analogy 
with Eq. (26a) it is found that (approxi¬ 
mately) 

J, /lT sin2Ô, 

ai = -V 1+ • 

a-> +a? 
iy+iœ t-J—t 

• e ° 1 

. + (27)

where 
ß = ¿(— -- = i(i- Í-) and 
H «i2 4 Q-j_ Q2

/-- sin©, 
tany = /1-- -r-

V 4Q-L cos©1 + sin©^ 

Phase Error During Buildup 

From Equs. (23) and (16) it is seen 
that as the time from start increases 

/ L, J, /L2 J2 /m — iy—i©q 

i-* + — e

c^t+im^t+i©! 
(28) 

Since the second term in the bracket 
may be complex, a-i is not necessarily in 
phase with the initial excitation. Clear¬ 
ly the worst case occurs when the pump 
signal and idler phase are such as to 
make the second term pure imaginary; 
then the additional phase shift 

J2 
(29) 

This quantity is the amount of unpredic¬ 
table phase shift, unpredictable since the 
phase relationship between the pump, sig¬ 
nal and idler cannot be assumed known in 
general. 

In principle it can be made to vanish 
by adequate damping of the idler tank 
prior to buildup, since 0e=O if J2=0, 
although in practice, this is not usually 
possible. 
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In addition to the phase uncertainty 
due to initial conditions in the idler 
tank, Eq. (27) shows that even if J2=0 a 
phase uncertainty can exist; in this case 
it is on the order of By way of 
comparison a conventional oscillator in¬ 
troduces an unpredictable phase error of 
a0/<»i. The improved performance of the 
parametric oscillator is due to its extra 
degree of freedom, represented by the 
idler tank. 

Eq. (27) also shows that a^ is initially 
essentially a modulated carrier, due to 
the exponential factors + ißt, but that as 
t increases one sideband decays exponen¬ 
tially while the other builds up. The re¬ 
sult is a net change in frequency of ß, due 
to the finite Q's of the two tanks; it is 
not, however, a phase error since it is 
perfectly predictable. This change in fre¬ 
quency is the significance of the complex 
a referred to previously. 

Large Signal Analysis 

In general as the signal and idler vol¬ 
tages build up the pump voltage begins to 
be influenced as shown by Equation (IJc). 
The following section outlines the large 
signal theory for the ideal case, but the 
results will be qualitatively correct for 
most practical circuits. 

Steady State Conditions . In the steady 
state ak=0 so that in“the ideal case Eqs. 
(13) become 

u^nAjAg* = uigTiA^* = 0 (30) 

V e p

^3 = -;U3T,3A1A2 +

Clearly in the nontrivial case Ai/O. Eq. 
(30) requires Aj=O so that Eq. (31) yields 

(The term is retained since the pump 
must have a finite Q for Eq. (14) to be 
finite.) This equation gives the limit 
curve which relates |a, | and | A~ | at sa¬ 
turation. x ¿

A second relationship is found from 
Eqs. (13a) and (13b). By forming their 
ratio: 

“1 A2 
A-l* 

from which it follows that 

“l 
m2 i^i2 +_n. 

(33) 

(34) 

where JI is a constant. This equation 
holds for all time, and in particular, it 
is also valid at saturation. Thus Eqs. 
(32) and (34) allow computation of the 
saturated values of |A^| and |A2|, as 
shown graphically in Figure 2. 

Manley-Rowe Equation . By its definition 
|A$p is the total energy in the cir¬ 
cuit so that the power 

PK = TF 'ak' 
but from Eq. (34) this gives 

(35) 

which is the familiar Manley-Rowe equa¬ 
tion. It shows that if the available 
power is to go primarily to the signal 
tank, mi » m2, but this is the converse 
of the condition necessary for fast build¬ 
up and low phase uncertainty due to resi¬ 
dual idler current. This is roughly equi¬ 
valent to the usual gain-bandwidth product 
conservation, i.e., fast buildup (wide 
bandwidth) results in low gain; the phase 
uncertainty forms an additional side con¬ 
straint. 

Approximate Nonlinear Buildup . It is pos¬ 
sible to construct an approximate analysis 
of the buildup with the aid of a few rea¬ 
sonable approximations: first, if |Aj| 
varies slowly, |Aj|«sO and 

V 
ajPj — u^hPiPg (36) 

2/L^ 

where Pv = |Av|. Second, from Eq. (34) 
it is clear that by the time p^_ becomes 
several times its initial value the con¬ 
stant -A becomes negligible, so that 

“>1 
Pl " P2 (37) 

is valid for almost all time. 

By use of the approximations contained 
in Eqs. (36) and (37) and the assumption 
that the idler is initially quiescent, 
Eq. (13a) becomes 

V 
Pl « œ1T1p2yÇ - ^hP^l “ 

= + c0[p1-Xp13] (38) 
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with 
X = 2a¡2QjV2/a0

Co / “,2 

The solution of this equation is 

(39) 

which shows the amplitude is limited as 
time becomes infinite to the saturated 
level given in Eq. (32). 

It is of some interest that Eq. (39) 
is identical in form with that found by 
Van Der Pol as an approximate solution to 
his famous equation for the behavior of a 
triode oscillator. 
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MAXIMUM SAMPLING RATE FOR SUPERREGENERATIVE AMPLIFIERS* 
Don N. Thomson 

General Atronics Corporation 
West Conshohocken, Penna. 

Summary 
This paper presents the results of a 

study to determine the maximum sampling 
rates permissible for a superregenera-
tive amplifier. Quantitative results, 
theoretical and empirical, are reported. 
For a VHF superregenerative amplifier a 
sampling rate of several megacycles can 
be achieved. 

Introduction 
The superregenerative amplifier (SR) 

is very useful for some applications be¬ 
cause of the extremely high gain that 
can be achieved in a single stage. Vol¬ 
tage gain-bandwidth products of 10^0 cps 
are readily achieved. Because the SR 
samples the input signal the maximum 
bandwidth is determined by the permis¬ 
sible sampling rate. 

One particularly useful application 
of the SR is as the amplifier in a re¬ 
circulating loop data processor. It is 
convenient to operate with phase infor¬ 
mation, the SR being operated in a sa¬ 
turated mode. For this mode of use, two 
important parameters of the SR are phase 
distortion and dynamic range. 

In subsequent sections the theory of 
the SR is reviewed and general relations 
are developed between sampling rate, 
dynamic range, and phase distortion. 
Then an equation is developed relating 
dynamic range to the sampling rate. Fi¬ 
nally some experimental results are 
given for vacuum tube, transistor, and 
parametric SR's. 
Description of the Superregenerative 

Amplifier 
The fundamental signal behavior of 

the SR was described in some detail by 
Bradley! in the late 1940's, but Brad¬ 
ley's work did not include the phase 
relations in the amplifier, nor the 
noise problem. A paper by George and 
Urkowitz2 derived the noise relations 
for certain cases. Finally, under a con¬ 
tract with the Signal Corps, General 
Atronics extended the SR theory to in¬ 
clude the general noise problem as well 
as the problem of phase distortion.3,4 

♦This work was sponsored by Rome Air 
Development Center under Contract 
AF 30(602)-2283. 

a) Qualitative Theory . Basically, 
the SR design makes useof the extremely 
high regenerative gains which exist when 
an oscillator is building up. The SR 
consists of a parallel tank shunted by 
a conductance that can be varied from 
positive to negative as shown in ideal¬ 
ized form in Figure 1(a). When the 
switch is in the Go position the tank is 
heavily loaded and very little voltage 
exists across it. If the switch is then 
changed to the G=Gq_ position and if Gj_ 
is small, the signal is being driven in¬ 
to a tank of very high Q. When Gq=O the 
tank acts as a perfect integrator and the 
envelope of the voltage across the tank 
increases linearly with time. The con¬ 
ductance versus time is shown in Figure 
1(b) and the voltage versus time is shown 
in Figure 1(c). The time interval during 
which the signal is integrated in the 
tank is called the "listening" time, t^. 
At the end of the listening time the con¬ 
ductance is made negative. The envelope 
of the tank voltage then increases expo¬ 
nentially from the value it had at the 
end of the listening period. If the 
switch is returned to the positive con¬ 
ductance after a buildup time t2, the 
energy in the tank is rapidly damped. If 
t2 is sufficiently short, the active ele¬ 
ment that produces the negative conduc¬ 
tance does not saturate. Such a mode of 
operation is termed the "linear" mode 
because the value of the envelope at the 
end of the buildup period is directly 
proportional to the drive current. If, 
on the other hand, the active element is 
allowed to saturate, the g(t) and e(t) 
are shown as in Figures 1(d) and 1(e). 
In this case e(t) reaches a peak value 
which is limited by saturation effects; 
at the same time, g(t) must become zero 
because G=0 is the only condition which 
will permit a steady envelope, e(t). 
The solid curve of Figure 1(d) shows the 
g(t) curve if saturation had not occurred; 
the dashed line shows the effect of sa¬ 
turation. The saturated mode is known 
as the logarithmic mode because the area 
of the envelope of e(t) is proportional 
to the logarithm of the drive current. 

Certain qualitative features of 
the SR performance can be deduced from 
the above description: 

1) There should be as much decay 
in the t0 period as there is gain in the 
ti and t2 intervals if the buildup in 

77 



each cycle is to be independent of past 
history. 

2) If a noise source is present it 
is desirous that Gi be small and that t^ 
be as long as possible, compatible with 
the signal duration. This is because the 
tank becomes a perfect integrator when 
Gq=O and the signal voltage builds up 
coherently and linearly during t^, where¬ 
as the noise voltage only increases as 
the square root of t^. 

3) If the signal is pulsed and 
Gq-O, the best performance is obtained 
when the pulse is coincident with the 
listening interval. 

4) If noise exists during both the 
listening and buildup periods, but is 
larger during buildup, it is desired that 
buildup occur as rapidly as possible. 

5) The bandwidth can also be deduced 
in a qualitative manner. If Gq is approx¬ 
imately zero and |G2| is much greater than 
Gq, then the final value of the envelope 
in the linear mode is determined almost 
entirely by the signal which enters dur¬ 
ing the listening interval, tq. Then the 
SR can be represented by a linear ampli¬ 
fier preceded by a tank and preceded by 
a switch which connects the source to the 
tank for a time equal to tq. And the 
bandwidth is determined by the bandwidth 
of a gated high-Q circuit. 

An important factor which is not obvi¬ 
ous from the above description is the 
fact that the SR is "phase transparent". 
By this is meant that the high level SR 
signal out of the SR has a phase which 
is determined by the phase of the low 
level signal fed into the SR. 

b) Basic Equations . The following 
equations give the value of the signal 
envelope and of the noise envelope at a 
time t=tq+t2, measured from the start of 
the listening period. The assumed g(t) 
function is that of Figure 1(b). The 
equations ignore the quench period on 
the assumption that perfect quenching 
exists. Furthermore the equations assume 
that aq«<«0, |a2l <<u)o> and that the sig¬ nal is at center frequency, œ0. 

The peak envelope as determined by 
a pulsed signal which is properly aligned 
with the listening period is 
~ Zs, -“1*1 I“?!1? E = ^(1-e 1 Z )e 2 2 (1) 

^1 
where I = peak signal current 

Gi,G2 = conductance during listening 
and buildup periods 

aq,a2 = Gq/2C > G^20
tq,tg = duration of listening and 

buildup periods 

The mean square noise envelope is 

^(l-e’2“111 ).2'“2"2 (2) 

where I„, = mean square noise current per 
radian bandwidth during the 
listening period. 

It is assumed for the above equation that 
the circuit parameters are sufficiently 
ideal that the noise contributed during 
the buildup period is negligible. One 
other equation of interest is that which 
gives the value of the RF envelope at the 
end of the buildup period due to a cur¬ 
rent transient at the beginning of the 
listening period. For the simple case of 
a ramp of current having a rate of rise 
of I/o the relation is 
~ 21 "^1^1 la2^2 

Et- e 1 ie (3) 
T

(If the transient occurs at the end of the 
listening period the 

factor becomes unity.) 
The equations for the signal and 

noise envelopes are derived in detail in 
Reference 3. The equation for the tran¬ 
sient is a simple extension of the de¬ 
tailed theory given in Reference 3« 

One additional comment must be made 
regarding the conductance-time waveform, 
g(t). The ideal waveform of Figure 1 
does provide the best attainable S/N 
ratio for the SR, in theory, but it is 
highly impractical. The switches which 
produce the rapid changes in conductance 
would create intolerably high transient 
energy. In Reference 3, however, it is 
shown that a much softer g(t) waveform 
can be used with very little loss in S/N 
performance. In Figure 2 is shown a 
specific form of g(t) which causes ne¬ 
gligible loss. The conductance is varied 
linearly during the listening period from 
the positive value Go to the negative 
value G2• 

Limitations on SR Performance 
For the saturated phase-sensitive SR 

two performance factors must be consi¬ 
dered: dynamic range and phase distor¬ 
tion. 

The dynamic range of the SR is defined 
as the ratio of the power output to the 
equivalent noise input. The input noise 
consists of thermal noise plus transient 
energy introduced by the switching action. 

Phase distortion is an inherent pro¬ 
perty of the SR. By phase distortion is 
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meant differences between output phase and 
input phase which are not invariant. 

Phase distortion in the SR arises from 
two sources (in addition to noise). The 
first source is the result of a short 
listening time. At the end of tq there 
is both a steady state and a transient 
voltage term and the net phase is not 
identically the phase of the signal. The 
second source is caused by the rapid 
changes in the conductance, especially 
during the turn-on period. 

The phase error of the first source is 
dependent upon the shape of the applied 
signal pulse. For a half-sinusoid 

a, $ 
A0, = A- ; (4a) 

“o 
for a rectangular pulse, 

(4b) 

With typical numbers the sinusoidal pulse 
would cause little error, but the rectan¬ 
gular pulse could result in appreciable 
errors at high sampling rates. 

The error due to the turn-on is a func¬ 
tion of the way in which g(t) changes. If 
a(t) rises from zero to a? in a time At, 

Ia? I = -1— ; (5a) 
¿ 2(d„ At o 

for a quadratic rise 

â02 = _l^ 
2 2«>0̂ (At)2

(5b) 

The quadratic rise will cause negligible 
error but the linear rise can cause a 
significant error for very high sampling 
rates. 

Using the equations presented above, 
the general relations can be developed 
between phase distortion and dynamic 
range versus sampling rate and center 
frequency. It is assumed that a^t^«!. 

a) Sampling Rate . As the sampling rate, 
f , is increased tq must decrease. The 
voltage envelope due to thermal noise 
level is proportional to /Tq, whereas the 
envelope due to signal is proportional to 
tq. The transient is little affected if 
the switching times are fixed in duration. 
Then both the signal-to-noise ratio and 
the signal-to-transient ratio decrease as 
fs increases. The phase distortion either 
increases or remains constant, depending 
on the shape of the input pulse; usually 
some increase will be expected though not 
as much as indicated by Equation (4a). 

The saturated output power is constant. 
The net result is that as fg is in¬ 

creased the dynamic range must decrease 
and usually the phase distortion will 
increase. 

b) Center Frequency . Phase distortion 
and transient energy both decrease as w0 
is increased. Thus it is desired that æ0 
be as high as possible. However, many 
active devices suffer a loss in gain and 
an increase in noise figure at high fre¬ 
quencies, so that a compromise must be 
sought. The investigation reported herein 
was for VHF. 

Dynamic Range versus Sampling Rate 
The previous section presented the 

pertinent factors and some qualitative 
relations. In this section will be de¬ 
veloped a quantitative relation between 
sampling rate and dynamic range. 

Consider the ideal conductance func¬ 
tion of Figure 3a (and the corresponding 
RF envelope of Figure 3b). The buildup 
time t2 is divided into t^, the time for 
buildup, and t4, the duration of the 
saturated pulse. Since t4 and tq must be 
about equal (for a recirculating loop 
processor), 

= 2ti + % + b (6)

To simplify the analysis consider som® 
specific numbers. Let the required gain 
be 70 db and let the decay during t0 be 
120 db. (These are desirable values for 
a sweep integrator.) The gain occurs 
mostly during t^, so 

tj “ 8.5^2 I ( from Equation (1). 
The limitation on t^ and tQ must now 

be considered. 
a) Buildup Speed, tj is minimized by 

maximizing ug. It can be shown5 that for 
vacuum tube circuits, under the best con¬ 
ditions 

|a I ~ (7) 

where cq and c0 are the input and output 
capacitances. It is interesting to note 
that |a„| is proportional to the voltage 
gain-bandwidth product of the active de¬ 
vice used. For the 6688 pentode the cal¬ 
culated value was approximately 5x10. 
The measured value was 7x10'. Using the 
measured value, tj=120 nanoseconds; if 
the calculated value could be achieved, 
tj=18 nanoseconds. For the 2N769 tran¬ 
sistor no calculation was made but the 
measured value of ag was 6x10'. 
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b) Quenching. The conductance curve 
of the SR is generated by turning the ac¬ 
tive device on and off and by applying a 
quenching switch across the tank'during 
the listening period. The best switch 
discovered was the 2N240 transistor. With 
optimum series resistance the desired 
120 db of quenching could be achieved, in 
theory, in 30 nanoseconds. In practice 
it was found that close to 100 nanoseconds 
was required to provide the quenching. 
Some of this loss was due to limited rise 
times of the applied switching waveforms. 
Using Equation (6) and the calculated 
conditions of t, and t , 3 o ’ 

t_ - 5xl0"8
h = -S—2- (8a) 

If the measured values of t, and t are 
used, 0

t_ - 2x10"' 
tl = - (8b) 

Finally the dynamic range can be 
expressed as a function of t, . At high 
sampling rates the sensitivity is limited 
by the transient energy which is indepen¬ 
dent of t]_. The signal energy integrated 
during the listening period is propor¬ 
tional to t^. The dynamic range is de¬ 
fined as the ratio of the peak envelope 
(with input sufficient to provide satura¬ 
tion) to the signal power that produces 
a unity signal-to-interference ratio. 
Then DR = Pq/^s» where Pa is the signal 
power required for unity signal-to-tran-
sient. Since the transient power is es¬ 
sentially independent of ti but Pa a 1/^2, 

P t DR = 1 ( 9)

The saturated output power, P is con¬ 
stant. Then by use of Eq.(8), 

DR(db) = 20 log ^(tg-kg) (10) 
where k2 = tp+tj. k2 has a value of 
5xl0_° sec theoretical or 2xl0-' sec mea¬ 
sured. The value of kn is obtained em¬ 
pirically. It is noted that Equation (10) 
is valid only above about 1 me where tran¬ 
sient interference predominates; below 
1 me DR varies with the first power of t,. 
With a good vacuum tube circuit DR=117db1 
at 1 me. Using this measured value in 
conjunction with Equation (10) the curves 
of Figure 4 can be derived. 

The important fact regarding Equa¬ 
tion (10) and Figure 4 is that there is 
a definite upper limit to the sampling 
rate: when the listening time becomes 
zero the dynamic range must be zero. The 
sampling rate which produces this condi¬ 
tion is found to have a maximum theoreti¬ 

cal value of 20 megacycles, and a proba¬ 
ble practical value of about 5 megacycles. 

Experimental Results 
Before describing the experimental re¬ 

sults it is desirable to comment on two 
factors. The first is that the SR was 
being investigated for use with low impe¬ 
dance delay lines. For such use it is 
convenient to provide an input buffer am¬ 
plifier and an output buffer amplifier. 
The input buffer amplifier provides gain 
and it does not increase quenching prob¬ 
lems because it feeds directly into the 
SR tank. The output buffer is a wideband 
unity gain pentode "cable driver" and usu¬ 
ally does not require quenching. Both 
buffers are properly considered as part 
of the SR. For the experiments the input 
buffer was employed for convenience. The 
output buffer was not included, however, 
because it is not usually a limiting fac¬ 
tor and its use would not have simplified 
the measurements. With the use of an out¬ 
put buffer the source and load resistances 
are approximately equal and voltage-
squared ratios can be used in place of 
power ratios. 

The other factor to be noted is that 
the experiments could not be conducted 
in exactly the way implied by Equation 
(8). It is very important to insure that 
the quenching is adequate and this can on 
only be done by having the SR reach full 
saturated output in the absence of input 
signal. This has the effect of forcing 
the use of a larger value of tp. The 
effect becomes appreciable as the limit¬ 
ing sampling rate is approached. 

a) Vacuum Tube SR . The best vacuum 
tube circuit was found to be a balanced 
configuration as shown in Figure 5. The 
SR tubes are 6688. A 7721 is used as a 
buffer and the buffer is considered to 
be part of the SR. The balanced confi¬ 
guration provides a first order cancel¬ 
lation of the transient caused by turn-on 
of the tubes and by turn-on of the swit¬ 
ches. The switches are 2N240 transistors. 
It was found necessary to quench both the 
plate and grid circuits. 

Considerable care was needed to opti¬ 
mize the switching waveforms applied to 
the SR grids and to the bases of the 
switches. The limiting transient energy 
appeared to be that induced by the 
switches. The approximate modulation 
waveforms are shown in Figure 6. 

The buildup speed, U2, was found to 
be about 7x10' as opposed to the calcu¬ 
lated value of 5xio8. Adequate quench¬ 
ing proved difficult and it was found 
necessary to provide about 0.1 ps for 
this action. The operating frequency was 
90 me. 
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The resulting dynamic range as a 
function of sampling frequency is shown 
in Figure 7. It is seen that the re¬ 
sults follow the expected trend, but the 
dynamic range falls more rapidly than 
predicted. This can be explained in part 
by the measurement technique, as discussed 
at the beginning of this section. 

b) Transistor SR . The transistor cir¬ 
cuit also employed a balanced configura¬ 
tion as shown in Figure 8. A 3N25 tetrode 
was used as a buffer and 2N769 transis¬ 
tors were used for the SR. The switches 
were 2N240's. The carrier was 75 me. 

The measured u.„ was 6x10 . The re¬ 
quired switching time was about 0.1 us. 
The curve of dynamic range versus sampling 
rate is shown in Figure 7. It is observed 
that the curve closely parallels that of 
the vacuum tube SR. The difference in 
the absolute values is probably due pri¬ 
marily to the lower output voltage at¬ 
tained with the transistor. However, it 
also appeared that the transient balance 
was not as perfect. 

Parametric SR 
The parametric SR was investigated be¬ 

cause it was originally believed that a 
form of switching might be implemented 
which produces less transient energy. 

The paramp SR was investigated theo¬ 
retically for buildup speed and phase 
distortion. Only the lower sideband up 
converter is useful. It was found that 
the paramp SR causes less buildup phase 
distortion than the conventional SR; the 
listening time phase distortion is of 
course the same. The buildup rate of the 
parametric SR is^ 

k2
Ac y 

4/c1c2
(11) 

where Ac = peak change in capacity at 
the pump frequency 

= slgnnl- an(l idler frequencies 
cl’c2 = e(luivalen ‘*: total capaci¬ tances of signal and idler 

tanks. 
The calculated buildup rate of a VHF para¬ 
metric SR was found to be about equal to 
that of the pentode (4xl08) if a good mi¬ 
crowave diode was used with an optimum 
pumping frequency. 

For the measurements a VHF diode„was 
employed. The computed 02 was 4x10' and 
the measured value was about 2x10'. 

A measure of dynamic range versus sam¬ 
pling rate was not obtained for the paramp 
SR for two reasons. First, the design of 
the SR which produces the best value of U2 
causes large values of idler and pump 

voltage to exist across the signal ter¬ 
minals. Since all these frequencies were 
at VHF it was not possible to separate 
them because the required narrowband fil¬ 
ters would ruin the buildup performance. 
(This problem would be alleviated for a 
microwave paramp.) A second and more 
fundamental reason for terminating the 
parametric SR effort was that it had 
nothing to offer in the way of buildup 
speed and the problem of providing a ba¬ 
lanced switching action is more complex. 

It is concluded that for VHF operation 
the parametric SR is not as useful as a 
vacuum tube SR. For microwave frequencies 
the paramp SR may be practical. 

Conclusions 
This paper has presented the outlines 

of a quantitative theory for the maximum 
sampling rate of SR's. It is shown that 
as the sampling rate is increased phase 
distortion must increase and dynamic 
range must decrease. Experimental results 
showed buildup times and quenching times 
longer than predicted. When the measured 
buildup and switching time were employed 
in the theory, the theoretical and mea¬ 
sured curves of dynamic range versus sam¬ 
pling rate agreed in trend. The lack of 
detailed agreement is apparently due to 
the measurement technique. 

The results of the investigation are: 
1. If the theoretical buildup rate 

and quenching rates could be obtained the 
dynamic range would be usable at a samp¬ 
ling rate of almost 20 me. 

2. With practical (i.e., measured) 
values of buildup rate and quenching 
speed, the maximum theoretical sampling 
rate is 5 me. 

J. Measurement with a vacuum tube SR 
shows usable dynamic range at 4 me. 

4. The transistor SR follows the same 
trend as the vacuum tube SR but has a 
dynamic range poorer by 10 to 15 db. 

5. At VHF the paramp SR offers no 
advantage in buildup rate and poses more 
complex switching problems. 

The very high gain-bandwidth product of 
the SR makes it very useful for certain 
applications. But the limiting sampling 
rate restricts the information bandwidth 
that it can handle. 
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FIGURE 6 - MODIFIED TIMING WAVEFORMS FOR SR 
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FIGURE 8 - TRANSISTOR PUSH-PULL SR 
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OPTIMUM NONLINEAR FILTERS FOR RANDOM SIGNALS 
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Introduction 

Following the classical work of ''lener on 
optimum linear filters for random signals, there 
has been a lot of interest in optimization with 
the more general case of nonlinear filters. It 
has been shown that the Wiener filter is truly 
optimum for Gaussian probability distributions 
only, and in all other cases nonlinear filters 
may be found that will give much lower mean-square 
error between the desired output and the actual 
output. Important contributions have been made by 
Singleton,- Bose,? Rosenbrock^ and Zadeh.« 
Singleton has shown that for optimizing a non¬ 
linear filter one must determine higher order 
auto-correlation functions of the input along with 
higher order cross-correlation functions between 
the input and the desired output. However, un¬ 
less the system is very simple, it is impracti¬ 
cable to calculate these correlation functions, 
even with the aid of computers. Rosenbrock' s 
approach again involves a knowledge of higher 
order joint probability distributions, which are 
almost impracticable to calculate, as already 
pointed out. The classification procedure, as 
introduced by Zadeh, is indeed quite elegant, but 
one again encounters the problem of computing 
higher order probability distribution functions. 
In his work, Zadeh has restricted his attention 
mainly to canonically realizable forms which in¬ 
volve a knowledge of only the second order proba¬ 
bility distributions for optimization in the mean-
square sense. Thus, the practical utility of his 
work is, evidently, very limited for designing 
nonlinear filters. Bose's theory, for the experi¬ 
mental determination of optimum time invariant 
nonlinear systems, is quite simple mathematically, 
but its utility is limited due to the large number 
of gate circuits, averaging devices, etc., which 
are required for a reasonable accuracy. 

In other words, it may be stated that the 
problem of optimization of nonlinear filters is 
mathematically intractable for continuous random 
inputs. A great headway can be made, however, by 
sampling the random signals. An important contri¬ 
bution is the development of "staircase techniques” 
by Prasad.1' Prasad has defined "nonlinear corre¬ 
lation functions" which can be computed with the 
aid of a moderate size digital computer, and can 
be used for the optimization of nonlinear filters 
for a given random signal. 

In this paper, staircase techniques have been 
used for the calculation of nonlinear correlation 
functions for a given non-Gaussian signal super¬ 
imposed with Gaussian noise. These have been used 
for optimizing different kinds of nonlinear fil¬ 
ters, and the mean-square error between the desired 
output and the actual output has been calculated 
in each case. These have been compared with the 

value of the mean-square error for the optimum 
linear filter, and it has been shown that a non¬ 
linear filter with memory gives a considerably 
smaller error. 

Theory of Staircase Systems 

In his work, Prasad has presented a compre¬ 
hensive theory of the analysis and optimization of 
nonlinear systems subjected to random signals 
sampled by staircase functions. The theory will 
be discussed briefly, before going into the appli¬ 
cation. 

The "staircase function" j-x(t) is defined as 
below; 

oO 

j-x(t) - ^x(nT) P(t-nT) (2.01) 

where x(t) is a given function of time, 
T is the sampling interval, selected 
in compliance with Shannon's Sampling 
Theorem, 
P(t-nT) is a rectangular pulse of 
duration T and unit height, applied 
at t = nT, 

and n is an integer. 

Consider a linear system having the weighting 
function w(t). its response to the pulse p(t) 
is given by 

oO 

u(t) - / H(t)P(t-t)dl (2.02) 

The "staircase p-response" of the linear 
system is now defined by 

•o 

-Tu(t) = 51^ P(t-nT) (2.03) 
n=o 

where un = u(nT) 

The continuous output of the system to a 
staircase input -Tx(t) is given by (Fig. 1). 

OO 

y(t) - £x(nT) u(t-nT) (2.OU) 
n=-oo 

and the staircase output is given by 
00 k 

j-y(t) = S / urxk_r p(t-kT) 
k=o r=o 

(2.05) 

The output of a zero-memory (or instantaneous) 
nonlinearity f[]to the staircase input Tx(t) is 

oo 

f[j-x(ti)- £.f{xn3 p(t-nT) (2.06) 
n»-« 
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A storage nonlinear system of "first order" 
is shown schematically in Fig. 2. In this case, 
the staircase output is given by 

k 
J~y(t) = Zupf Cxk-rl p(t-kT) (2.07) 

k r*o 

It may be pointed out that the simple re¬ 
lationships given in equations (2.06) and (2.07) 
result from the fact that the operators p(t-nT) 
form an orthonormal set in the time-domain. 

Equations (2.06) and (2.07) may be used for 
developing optimizing equations for filters sub¬ 
ject to random inputs. Consider the linear sys¬ 
tem of Fig. 1. In this case, one has to design 
the linear filter in such a manner that the mean¬ 
square error between the desired output z(t), 
which is the noise-free signal, and the actual 
output y(t) is reduced to a minimum. It can be 
shown that the mean square error for a random 
input in which the noise and signals are uncorre¬ 
lated, is given by 

i (0) - 2 0 (0) + 0 (O)(2.O8) 
jzjz Si Si XV XS 

where 0 (mT) » staircase auto-correlation 
_rz .rz 

function of the desired output z(t) 
N+l-m 

- -i- 2 z(nT) z(n+m T) 
2N+l-m n=-N 

/ (mT) = staircase cross-correlation function 
jzxz between the actual output and the 

desired output. 
N+l-m 

■ —1- z(nT) y(n+m T) 
2 N+l-m n—N 

and / (mT) • staircase auto-correlation 
-iyjy function of the actual output 

y(t). 

Prasad has shown in his work that the linear 
filter may be optimized by finding ur, its P-re-
sponse ordinates, by solving the following set of 
simultaneous equations: 

N 
2. Ur r-s T) = (st) 

for s = 0, 1, 2, .  N. (2.09) 

"ith the aid of a digital computer these can 
be solved conveniently, and the mean-square error 
may be computed by using the following relation¬ 
ships for the linear filters: 

N N 

6 (0) = Z. Z_ UyUp 0 (r-s T) (2.10) 
xyjy r=o s=o -Fxjx 

N 

and (0) = Ä ur (-rT) 
jW r=o Jxjz (2.11) 

A comparison of these equations with the 
'■lener filter was made by Prasad in some numerical 
examples, and the resulting mean-square errors 
were about the same. However, the computational 
advantages of the staircase techniques are obvious. 

In the case of an instantaneous power series 
filter, for which 

y(t) 

the optimum a^'s may be calculated from the 
following set of simultaneous equations: 

M 
51 a^O) - 0rz(O) (2.12) 

for r - 1, 2, ..., M, 

where and 0rz are nonlinear correlation 
functions defined as below 

N Z 
4u_r(kT) ’ 2N+1 ^xn) (xn+k^ (2.13) 
z n=-N 

N 

and 4z(kT) = zn+k 
¿N+1 n=-N 

The mean square error in this case is given 
by 

M 

"ië? = ¿ (0) -2^.3 ¿ (0) 
mn JüJí ^=0 Z rz 

M M 

y«=o r=o / z

In the general case of a no-memory multipith 
nonlinear filter shown in Fig. 3, the optimizing 
equations are 

M 

> ^-Tf, (0) ’ (0) (2.16) 

where the nonlinear correlation functions are de¬ 
fined as 

^Tf Jfr (kT)
N 

' tr^ <2,1” n=-N ' 
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and 
N 

^j-fr-TZ^) * lim 2N+1 *r^xn^ zn+k C-«1®) 
K n»-N 

The mean-square error is given by 

_ M 

(°) "2 aM ^rf rz 

M M 
+ (2.19) 
S*-o r=o z r 

Finally, for the storage nonlinear filter 
shown in Fig. 2, the optimizing equations are 
given by 

N 

Uy ^jYdr-s] T) - 0fz (sT) 

for s = 0, 1, 2, .. N, (2.20) 

wh01,0 N—s 

^^dr-sjl) - fIX3f&P+s_r] 
p-o 

for r<.s 
i N-r 

n-r+1 f&p] f(Fp+r-s^ 
p-o 

for r^ s 

■ I fM 'CO 
for r-s (2.21) 

Comparison of Different Types of 
Filters for a given Random Input 

Starting with 1000 samples of a given non¬ 
Gaussian signal, the random input x(t) was ob¬ 
tained by superimposing 1000 samples of a random 
Gaussian noise. The various linear and nonlinear 
correlation functions, defined in the previous 
section, were then calculated. These were used to 
calculate the following 

(a) the optimum linear filter 

(b) The optimum instantaneous power-series 
filter with the first five terms only. 

(c) the optimum instantaneous power-series 
filter with the first ten terms. 

(d) optimum nonlinear storage filter derived 
from the one in (b) followed by a 
suitable linear filter. 

and (e) optimum nonlinear storage filter derived 
from the one in (c) followed by a suit¬ 
able linear filter. 

The mean-square was calculated for each of 
these optimum filters, and the values, normalized 
with respect to that for the optimum linear filter 
are shown below-

Serial Type of filter Mean-square 
lumber error, normalized 

with respect to 
that for the 
linear filter 

1. Linear 1.00 

2. Instantaneous nonlinear 
power series with the 
first five terms. 1.65 

3. Instantaneous nonlinear, 
power series with the 
first ten terms. 1.12 

h. Storage nonlinear filter 
(#2 followed by a 
suitable linear filter) 0.85 

5. Storage nonlinear filter 
(#3 followed by a 
suitable linear filter) 0.68 

Conclusions 

It will be seen from the comparisons made in 
the previous section that, for the given random 
signal, the optimum nonlinear filters with storage 
give a considerably smaller mean-square error. It 
may be emphasized that only the simplest kinds of 
nonlinear filters have been considered. The 
staircase techniques may be applied to more com¬ 
plicated nonlinear filters, with the possibility 
of a smaller mean-square error. An interesting 
possibility is the use of the multipath nonlinear 
filter with storage, the calculations for which 
require a fairly large computer. 
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Abstract 

The errors caused by noise and dynam¬ 
ics of an input variable are formulated 
for linear servo systems In terms of the 
servo noise bandwidth relative to the 
input channel bandwidth, the input signal-
to-nolse ratio, and the error constants of 
the servo. The input variable dynamics 
are assumed to be defined by a finite time-
power series. The order of the servo is 
then chosen to make the steady-state 
dynamic error finite. The optimum servo 
bandwidth is formulated for minimum com¬ 
bined error, which is given in terms of 
the signal-to-noise ratio and the appro¬ 
priate derivative of the input variable. 

These results have particular appli¬ 
cation to radar tracking, AFC, phase-
locked loops, etc., where the dynamic 
range of the error is bounded. This 
dynamic range, the signal-to-nolse ratio, 
and the accelerations of the input are 
then mutually constrained and Impose broad 
performance limitations on linear time-
invarlant servo systems. 

Introduction 

In many communication and radar sys¬ 
tem applications, the servo input variable 
is remote from the servo and is conveyed 
by its modulation of a parameter of an 
electromagnetic wave. Demodulation 
reproduces the input variable with the 
thermal noise of the system causing 
apparent noisiness of the input variable. 

Since the modulation bandwidth Is 
usually much greater than the actual 
spectrum of the Input variable, the servo 
is capable of reducing the apparent noise 
by averaging in time. As the servo band¬ 
width is reduced to affect this smoothing, 
the response to the input variable is 
impaired. Thus, conflicting requirements 
on the servo bandwidth exist. It is 
evident that the combined error due to 
motion of the Input variable and to the 
thermal noise cannot be made arbitrarily 

small, and that some minimum combined 
error exists. 

Most error detectors In such systems 
have limited dynamic range In the sense 
that they are linear and of proper slope 
only for small errors. For the servo to 
properly follow the Input variable, the 
combined error must be less than the error 
dynamic range. Thus the need frequently 
arises in preliminary system considerations 
for a simple technique to evaluate the min¬ 
imum combined error. The work presented 
here Is intended to meet this need with 
relatively general and appropriate restric¬ 
tions on the Input variable and the shape 
of the servo transfer function. 

Steady-State Analysis 

The systems under consideration have 
the form shown in Figure 1. They comprise 
an input variable, a carrier that is modu¬ 
lated by it, a communication link, an 
error detector, demodulator, and a servo 
forward path G(s) (Figure 2). By restrain¬ 
ing the generality of these elements to a 
few parameters, a relatively simple method 
of evaluating combined noise and dynamic 
errors can be developed. 

For the steady-state analysis, it is 
assumed that the input variable is in the 
form of a finite time power series (equa¬ 
tions 1 and 2). 

R

x(s) - r (2) 
r=0 s 

where the a 's are the maximum expected. 
The servo model has the simplest 

transfer function that will result In a 
finite steady-state error In response to 
the Input variable. The transfer functions 
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I = \R 
H<s) “ 1 - mr O) ' o / 

Is descriptive of an Rth order servo. 

The lag error is found from equa¬ 
tions 2 and 3 by means of the final value 
theorem: 

elag ■ s^O sX(s)[1 - H(s)] W 

As would be expected, the lag error 
is proportional to the highest order 
acceleration and inversely proportional 
to the Rbh power of the servo bandwidth . 

The rms fluctuation of the output 
variable is formulated by first relating 
the error demodulator output thermal noise 
voltage to an apparent noise on the input 
variable. Then, the output noise is 
formed from the spectral character of the 
apparent input noise and the power 
frequency-response of the closed loop 
transfer function. 

The error demodulator in Figure 1 
usually produces a voltage in the form: 

vdem “ ^slg^ - y) + vnoise ( 6 > 

where 

n has the units of volts per 
unit error per volt of signal, 

(x - y) = error, 

vnoise = system noise voltage at the 
demodulator output, 

V = signal voltage, sig 

The use of some form of AGC permits the 
extraction of a voltage proportional to 
the error. The apparent error detected 
by the servo is 

(X - ^apparent ’ (7) 
S 1g 

= (X - y) + ^oise (8)

1 sig 

communication link. The rms value of this 
apparent noise is then 

P Vsig 

rms vnoise 
(10) 

where p is the signal-to-noise voltage 
ratio. 

The parameter p depends on the error 
detector design. It usually cannot be 
adjusted without causing the signal-to-
noise ratio to also change, and there 
usually exists an optimum design which 
maximizes iqp. This design procedure can, 
for example, take the form of selecting 
the width and shape of the "early" and 
"late" gates in the time discriminator of 
a radar range tracking servo or of pre¬ 
scribing the "squint" angle and radiation 
pattern of a monopulse radar angle track¬ 
ing antenna. 

The rms output noise is found from 

F(uu) H(Jcu) H*(Juu) dw (11) 

where 
a = rms output noise, 

F(ai) = power spectral density of 

vnolse‘ 

Assuming that the noise spectrum is 
white out to a band limit frequency B,, 
which is very much greater than the 
servo bandwidth u)0, equation 11 can be 
approximated by 

’y-à/í <“> 
where p = S/N, the signal-to-noise voltage 
ratio, and 

Bp = J” H(Jœ) H*(Juj) df (13) 

For the transfer function given by equa¬ 
tion 3, the servo noise bandwidth. Bp, 
is proportional to o)Q . 

The last term in equation 8 is interpreted 
as the apparent noise added to the input 
variable due to the thermal noise of the 
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“o 
•n/2 j. 

■n/2 2n
- 2 slnRx cos R^ - x) 

sln2R X 
p 

sec X dx 

(15) 

K . œ R o 
(16)* 

where KR is the integral in equation 15. 
The rms output noise is then 

(17) 

Since the servo bandwidth is very 
small compared with the input bandwidth. 
Bi, the probability distribution for the 
output noise is very nearly gaussian, with 
the mean value given by the lag error, and 
with the standard deviation given by equa¬ 
tion 17. 

The probability that the magnitude of 
the Instantaneous error will, in the steady 
state, exceed a limit L is then 

(18) 

Minimizing this probability that the error 
will exceed a preset limit, by means of 
adjusting the bandwidth w0, is approxi¬ 
mately effected by minimizing the sum of 
the standard deviation and the lag error 
which is called the combined error, eæ, 

K1 2’ K2 K3 32’ 

(19) 

Setting the derivative of eT with respect 
to uu0 equal to zero yields the optimum 
bandwidth under these conditions as 

I 4R2B1r12p2a| ^2^1 

“opt “ ÎÇ- I (20) 

for R - 1, 

“opt1 ’ l^nVa2)173 (21) 

for R - 2, 

u) opt2
2 2 2 

-B^Vag (22) 

The minimum combined error is then 

/ 1 \ R 
/ K aR \ 2R+1 

e = (2R + 1)1 g p a J (23) 
1mln VR^n p / 

for R » 1, 

\ 1/3 
(24) 

for R = 2, 

eT2 . mln 
(25) 

These results for the minimum com¬ 
bined error are plotted in Figure 3 for 
the cases of constant velocity input to 
a first order servo, and of a constant 
acceleration input to a second order 
servo. If the displacement dimension of 
the acceleration term is normalized to 
units of the error demodulator dynamic 
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range, then the minimum combined error Is 
automatically compared with the dynamic 
range. 

For example, consider a type one 
radar angle tracking servo with a target 
having a constant velocity of one beam¬ 
width per second, with a signal-to-noise 
ratio of 10 db, with p equal to one volt 
per beamwidth per volt of signal, and with 
a PRF of 200 pulses per second making B, 
equal to 100 cps. Then the abscissa In 
Figure 3 is 0.001 and the minimum combined 
error is 0.15 beamwidth. If the signal-
to-noise ratio were 30 db lower—that is, 
were it minus 20 db—the minimum combined 
error would be 1.5 beamwidths for which 
tracking would not be possible. The 
tradeoffs in transmitter power, antenna 
gain, noise figure, etc. are facilitated 
by use of these results. For instance, in 
the example above, it can quickly be seen 
that the minimum combined error in beam¬ 
widths varies inversely as the sixth root 
of the antenna gain and Inversely as the 
cube root of the transmitter peak power, 
assuming a pencil beam. 

These results assume that the lag 
error and the signal-to-noise ratio are 
stationary, or vary only very slowly com¬ 
pared with the servo time constant. In 
the latter case, it may be desirable to 
automatically tune the servo bandwidth to 
optimum in accordance with predictions or 
measurements of the accelerations and/or 
the signal-to-nolse ratio. 

In some Instances, the initial values 
of the derivatives of the input variable 
are predictable to some accuracy. Then, a 
noise-free prediction signal 

y(t) 
ar(l " pr^r

(26) 

(where pr is the error in the prediction 
of ar) can be made available and sub¬ 
tracted, leaving as the net input variable 

R patr

*P(t) = r w h r=o 

Substituting pRaR Instead of aR into the 
preceding results extends them to include 
this use of prediction. 

Transient Case 

By making the order of the servo one 
unit higher than the highest order non¬ 
zero derivative of the input variable, the 

steady-state lag error is reduced to zero . 
The Instantaneous dynamic error is 

Assuming that ar = 0 for r / R - 1 results 
in the error given by equation 29 

e(t) 
"“^R-l 

(29) 

which has a maximum given by equation 30. 

aR-l / R - 1 1 R-1 
max ( R - 1 ) '. euuo / 

Thus, when the input variable is a pure 
(R - l)th power parabola, the peak tran¬ 
sient error of the assumed R^h order servo 
varies Inversely as the (R - l)th power of 
the servo bandwidth w . o 

Taking the combined error as the sum 
of the peak error and the standard devia¬ 
tion of the output noise permits the 
determination of an optimum bandwidth with 
respect to the acquisition error. Thus, 
with 

(31) 

then 

and 

(33) 

2R-2 

R-l 
2R7T 

eT ■min 

4(R - 1/« B1T12p2 

(2R - 1)(R - i/"1 x 

(R -1)1 eR-1
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and the residual steady-state rms noise 
output Is 

o 
y 

- 1)R “S'1
1 

2R-1 

e -\r - 1)1 Bi (np) 2R . 
(34) 

These results are useful in evalu¬ 
ating the assumed type 2 servo in 
acquiring a constant velocity Input with 
zero initial position error. The results 
for R = 2 are 

I V/3

(35) 

(36) 

(37) 

The errors are plotted In Figure 4. 

In some applications, it would be 
undesirable to have a steady-state noise 
error of about half the dynamic range, as 
Indicated by the ratio of (37) to (36). 
Reduction of the servo bandwidth at a 
rate and to an amount consistent with 
stability and practical considerations 
is therefore indicated after acquisition. 

Conclusions 

Although these results lack gen¬ 
erality, they have the advantage of 
simplicity and rapid preliminary estima¬ 
tion of system requirements and perform¬ 
ance capabilities. 

The extension of the method of min¬ 
imizing the sum of the dynamic and rms 
noise errors to other transfer functions 
and other classes of input variables 
could follow the same procedure used 
above. The considerations given here 
might also be useful as criteria for 
adaptive servo design. 

It has been tacitly assumed that the 
principal sources of error in the system 
were thermal noise and dynamic errors. If 
other sources of error exist, or if it is 
desirable to smooth actual noise on the 
input variable such as the presence of 
glint in radar angle tracking, somewhat 
different considerations apply (ref¬ 
erence 1). 
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Fig. 1. Servo system model. Fig. 2. Possible configuration for G(S) to obtain the 
desired transfer function. 

Fig. 4. Minimum combined peak error, e^ and 
residual output-noise, a . 
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USING DISCRETE DESCRIBING FUNCTION 
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Summary 

The discrete describing function and 
its use in the analysis and design of nonlinear 
sampled-data systems are presented in this 
paper. For a nonlinear sampled-data system, 
the input and output signals of the nonlinear 
element may be in the form of pulse trains. 
Therefore, it is natural to define a "discrete 
describing function" N(z) which is equal to the 
ratio of the z-transform of the output to the 
z-transform of the sinusoidal pulse-modulated 
input of the nonlinear element. In this paper, 
the discrete describing function for a relay 
with dead zone is derived; although, using the 
same method, other types of amplitude-depen¬ 
dent nonlinearities can be treated in similar 
fashions. The discrete describing function 
N(z) is used to derive the critical regions of 
-1/N(z) which correspond to the critical point 
(-l,jo) for linear continuous-data systems. 
Stability study of the nonlinear sampled-data 
system is made by investigating the relative 
positions of the critical regions and the linear 
transfer locus Gßz) of the system. The 
effects of varying the gain and the sampling 
period on system stability is readily observed. 
Reshaping the linear transfer loci by digital 
or continuous-data controllers may be done in 
the usual manner using z-transforms. 

The discrete describing function has at 
least the following advantages; 

1. The discrete describing function is 
natural for sampled-data systems; it is analo¬ 
gous to the use of the conventional describing 
function for continuous-data systems. 

2. The method can be applied to 
sampled systems with or without hold devices. 

3. Systems with more than one sampler 
can be studied. 

4. The actual output of the nonlinear 
element, rather than the fundamental compo¬ 
nent of the Fourier series representation, is 
used. 

5. Compensation with digital controllers 
as well as with continuous-data networks can 

be designed in a straight forward manner. 

Introduction 

The study of relay-type sampled-data 
systems by means of describing function 
technique has been made previously by Chow 
and Russell^. In these early investigations, 
the nonlinear element, for which the describing 
function is derived, is considered to include 
the sampling switch, the zero-order hold and 
the relay. For a sinusoidal input whose 
period is an integral multiple of the sampling 
period T. the output of the nonlinear element 
is a periodic rectangular wave. Thus, the 
conventional describing function technique 
ordinarily used for continuous-data systems 
can be applied directly, and the nonlinear 
sampled-data system is essentially treated as 
a nonlinear continuous-data system. These 
early studies are subjected to the limitations 
that a zero-order hold device must be present 
and there is only one error-sampling switch 
in the system. 

The nonlinear linear system under 
investigation is shown in Fig. 1. The sampler 
is assumed to be ideal, which means that the 
output of the sampler, e*(t), is an impulse 
train. The operational characteristic of the 
relay is shown in Fig. 2. 

If the error signal e(t) is sinusoidal 
with period Tc = nT, where n = 2, 3, .. 
and T is the sampling time in seconds, e*(t) 
must also be a periodic function; although it 
may not have the same frequency as e(t). 
Since e*(t) can have values only at the samp¬ 
ling instants, the period of e*(t) must also 
equal nT. Thus, based on the characteristics 
of the zero-order hold H, the relay R, and 
G(s), the time functions h(t), m(t), c(t) must 
have the same period as e*(t). This is a very 
important feature of this nonlinear system. 
Under the condition of self-sustained oscillation 
r(t)=o; hence 

e(t) = r(t) - c(t) = -c(t) (1) 

which means that e(t) must also have the same 
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period as c(t). 

Modification of System Configuration 

The z-transform of the output of the 
system shown in Fig. 1 is written as: 

C(z) = E(z) lNG(z)j (2) 

where NG(z) denotes the z-transform of N(s) 
G(s). The overall transfer function of the 
system is: 

C(z) _ NG(z) (3) 
R(z) l+NG(z) 

It is clear that the describing function 
technique is not very useful here since NG(z) 
cannot be separated into two functions of N 
and G. A modified block diagram of the 
system is suggested in Fig. 3, in which, the 
zero-order hold and the relay are transposed. 
From the analytical point of view, the system 
behavior is not altered by this modification. 
In this case, the nonlinear element N is con¬ 
sidered to include only the relay R whose out¬ 
put v*(t) is a train of impulses having con¬ 
stant amplitudes. The input to G(s) is not 
affected by the change. In terms of the 
z-transform, the analytic description of the 
modified system in Fig. 3 takes the following 
form: 

C(z ) = N(z)Gj(z) (4) 
R(z) l+NtzJGjtz) 

where N(z) is defined as the discrete describ¬ 
ing function of the relay, and Gj(z) is the 
pulse transfer function of the zero-order hold 
and the linear system G connected in cascade. 
Now, the study of the stability of the nonlinear 
sampled-data system involves the investigation 
of the equation 

l+NtzJG^z) = O (5) 

G l< z) = ' N^ < 6)

The Discrete Describing Function 

and the Critical Regions ’ 

The derivation of the discrete describ¬ 
ing function N(z) is based on the assumption 
that the input signal to the sampler is a 
sinusoid. Consequently, the input to the re¬ 
lay in Fig. 3 is a sinusoidally modulated 
impulse train. N(z) is defined as the ratio 
of the z-transform of the output v*(t) to the 
z-transform of the sinusoidally modulated 

input of the relay, e*(t); that is 

n/ i YW P) 
N<z> = WT 

Suppose that the input to the sampler is given 
by 

e(t)=E cos(at+0 )=E(cos0 cos at 
-sin at COS0 ) 

The z-transform of e(t) is 

E(z)= —-— x 
z - 4 z cos aT+1 (9) 

^(z-cos aT)cos0 -sin aT sin^J 

Since the period of the self-sustained 
oscillation is an integral multiple of T, only 
these periods are considered in deriving N(z). 
This N(z), when applied to Eq. (6), will de¬ 
fine the conditions for self-sustained oscilla¬ 
tions to occur in the system. 

Referring to the block diagram of Fig. 
3, the output of the zero-order hold, m(t), is 
either constant or zero between any two suc¬ 
cessive sampling instants. For a given period 
Tc of c(t), m(t) may have many possible 
forms. Figure 4 illustrates some possible 
forms of n(t) for Tc=4T. However, since the 
error signal e(t) is assumed to be sinusoidal 
having period Tc=4T, only a few of the wave¬ 
forms of n(t) illustrated in Fig. 4 may occur 
in the system. In fact, when the ghase shift 

of e(t) is varied from O° to 360 and Tc 
=4T, m(t) can have only the waveforms of 
Figs. 4(a), (b) and those of (a) and (b) shifted 
by nT (n= 1. 2. . . . )• It is important to 
note that the function of Fig. 4(b) has one 
positive and one negative relay correction dur¬ 
ing each period Tc; the waveform of Fig. 4(c) 
has two successive positive and two negative 
relay corrections during each period. These 
have to be considered separately, even though 
they have the same period Tc. Similarly, it 
can be shown that for all Tc=nT, n=even 
integers ,the number of positive relay correc¬ 
tion signals is equal to that of the negative 
relay corrections during one period Tc. This 
number of correction is designated as A . For 
Tc=2T, it is apparent that A can only be unity. 
In general, for Tc=nT, n=even integers, the 
values of △ can be 1, 2, 3, ... (n- 1 ). 

For a given period of Tc=nT, n=even 
integers, the loci of -1/N(z) form regions in 
the decibel versus phase shift plot, each for 
one possible value of △ . These regions are 
defined as the critical regions for the specific 
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Tc and A . The symbols 

N(z) I max N(z) min 

are used to indicate the boundaries of the 
regions. It can be shown that all the periodic 
functions generated by shifting the waveform 
of Fig. 4(a) have the same critical region. 
This means that the study of the conditions of 
self-sustained oscillation is independent of the 
phase shift of m(t) once Tc and △ are given. 

However, for Tc = nT, n = odd inte¬ 
gers, the number of positive and negative 
relay corrections may be different. In this 
case, the designation of the type of oscillation 
by A = 1, 2, 3, . . . , is inadequate. It is 
necessary to designate this type of oscillation 
by A ij, where i is the number of positive 
relay corrections and j is the number of nega¬ 
tive relay corrections during each period. 

The typical procedure for the deriva¬ 
tion of -1/N(z), - 1/N(z)| max, and 1/N(z)| 
min is given in Appendix I for Tc = 4T. The 
expressions for -1/N(z), -1/N(z)| max, and 
-1/N(z)| min for the relay type nonlinearity 
are derived for Tc = 2T, 3T, ... 6T, and 
are tabulated in Table I. 

The corresponding critical regions are 
plotted in decibels versus phase shift in Fig. 5 
through Fig. 9. By use of the same principle 
and procedure, the critical regions of -1/N(z) 
for Tc = 7T, 8T, ... can be obtained if neces¬ 
sary. 

Examination of the expression derived 
for -1/N(z) and the conditions on e(t) to give 
each value of A , leads to the following con¬ 
clusions : 

1. The discrete describing function 
N(z) of the relay under consideration is a 
function of the frequency a, amplitude E, and 
phase shift 0 , of the input sinusoid e(t), and 

a function of the relay dead zone D. 

2. The regions bounded by the loci of 
-1/N(z) I max and -1/N(z)| min in the amplitude 
(decibel) versus phase shift plot for Tc =nT 
(n = 2, 3, ...) are symmetrical about the 
-180° axis. The maximum widths for the 
critical regions are (2Jl/Tc )T for Tc = 4T, 6T, 
8T,... nT, n = even integers, and (2JT/TC ) 
(T/2) for Tc = nT, n = odd integers. When n 
is very large, the critical regions become very 
narrow, and finally approaching a straight line 
along the -180° axis as n approaches infinity. 

3. For certain values of E and A , 
-1/N(z) is infinite, and the critical regions ex¬ 
tend to infinity (open region). The asymptote 
of the -1/N(z)| max boundaries is always the 
-180 deg. axis, while the asymptotes of the 
-1/N(z)| min boundaries are -IT + (2H/TC )(T/2|tc 
=nT for n-even integer >2, and -II i(2 /Tc )* 
(T/4)j T =nT for n=even integers greater than 1. 

Stability Study and Limit Cycles 
Using Ga in-Phas e Plot 

and Discrete Describing Function 

The condition of self-sustained oscilla¬ 
tion in the System of Fig. 3 is defined as wh® 

G^z) = - 1/N(z) (10) 

Since the left-hand side of Eq. (10) is the z-
transfer function of the linear plant, and the 
right-hand side consists of the negative in¬ 
verse of the discrete describing function of the 
nonlinear element, the stability analysis of the 
nonlinear system with sampled-data follows the 
well-known procedure of the describing function 
and gain-phase plane studies of a nonlinear 
system with continuous-data. In terms of the 
gain-phase plot of Gj(z), the graphical stability 
study of the sampled-data system consists of 
the following steps: 

1. Plot G^(z) on gain-phase coordi¬ 
nates for Tc = 2T, 3T, 4T, .... using T as a 
parameter on the loci. 

2. Superpose on the gain-phase coordi¬ 
nates the family of critical regions of -1/N(z) 
for Tc = 2T, 3T, 4T, .... 

The following conclusions can be 
reached from the inspection of the relative 
position of the G^(z) loci and the critical 
regions : 

1. If a portion of the Gj(z) locus for 
some Tc falls within the critical region of this 
Tç for a certain relay dead zone D, (when D 
varies, the critical regions of -1/N(z) simply 
shift up or down along the = -180 degree axis) 
then there exists a set of E, 0 , A and Tc , 
such that 

Gj(z) = -1/N(z) 

Consequently, for any sampling period T, the 
portion of the Gj(z) locus that lies in the cor¬ 
responding critical region will produce a self¬ 
sustained oscillation at Tc , and E, charac¬ 
terized by A • and the system is unstable. 
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2. If the same (z) locus for more 
than one value of Tc falls within their respec¬ 
tive critical regions, for the same value of D, 
the system can have more than one mode of 
oscillation. 

3. The T's along the portion of Gj (z) 
locus outside the corresponding critical region 
provide a stable system. 

One special condition is when the relay 
dead zone D becomes Zero, and the relay is 
considered to be ideal. From the physical 
viewpoint, the relay will provide a corrective 
output whenever there is a signal at its input, 
no matter how small this signal may be. 
Under this condition, some types of oscillation 
disappear in the nonlinear system, and some 
can only appear for several discrete values of 
A. For instance, when D=0, the sustained 
oscillation of the type, Tc =4T and A = 1 can 
only occur in the system when the phase angle 
0 of e(t) is a multiple of + TI/Z. This is 
observed by referring to Fig. 12-39 in which 
the critical regions forA=l and 2 are shifted 
to -oo along the -180 deg. axis when D 
becomes zero. Evidently, the critical region 
for A =2 degenerates into a region which is 
bounded by two vertical straight lines with the 
left and the right hand boundaries located at 
-225 deg. and -135 deg., respectively. The 
critical region for A=1 is degenerated into a 
single vertical line along the -180 deg. axis. 

For Tc =6T and D = 0, self-sustained 
oscillation of the type, A =1 can no longer 
exist. This isdue to the period of 6T of the 
sinusoidal e(t). This e(t) will produce more 
than two relay corrective signals in either 
direction during one period, while A =1 speci¬ 
fies that there can be only one positive and 
one negative relay corrections during each 
period Tc . Referring to Fig. 12-41, the criti¬ 
cal region for A=1 is a closed region; when 
this closed region is shifted to -oo along the 
-180 deg. axis, it is no longer expected to 
enclose any portion of the Gj(z) locus for T =6T. 
Similarly, the critical region for A =3 becomes 
a vertical strip centered along the -180 deg. 
axis, with its left and right hand boundaries 
located at the -210 deg. and -150 deg. lines, 
respectively. The critical region for A =2 is 
narrowed down to a vertical line along the 
-180 deg. axis. For TC=8T, the sustained 
oscillations are characterized only by A =3 and 
A =4, and those of A =1 and 2 are eliminated. 

The following numerical example illus¬ 
trates the application of the critical regions 
in the sinusoidal study of a nonlinear sampled-

data control system. 

Illustrative Example 

Consider that the open-loop transfer 
function of the relay type sampled-data system 
of Fig. 3 is given by 

G(s)=—(11) s(s + 1) 
The sampling period is one second, and the 
relay has a dead zone of 0.1. With reference 
to the system configuration of Fig. 3, we have 

i i "Ts 1 x 1 - e 
= s(s +1) s (12) 

The z-transform of Gj(s) is given by 

z(T - 1 4 e~T) 4 1 - e^T 41) 
G l(z> = (z - 1 )(z - e'T ) 

(13) 
The loci of Gj(z) with T as a variable para¬ 
meter are plotted in Fig. 10 for Tc = 2T, 3T, 
4T, ... 8T. For the relay dead zone speci¬ 
fied (D=0.1), the normalized critical regions of 
Figs. 5 through 9 are shifted down by 20 db. 
Then, superposition of these shifted critical 
regions on the Gj (z) loci of Fig. 10 shows that 
four modes of oscillations are possible in this 
system when T=1 sec: The results are tabula¬ 
ted in Table II. 

These results are obtained by observing 
that when D=0.1, the T=1 sec. points on the 
G¡(z) loci fall inside their respective critical 
regions only forthe four above listed modes of 
oscillations. When D= 1, the critical regions 
of Figs. 5 through 9 are not shifted; it is seen 
that all the T=1 sec. points on the Gj(z) loci 
fall outside their respective critical regions, 
and the system is always stable (without sus¬ 
tained oscillation). 

The amplitude of oscillation of c(t) can 
be computed directly from the G¡(z) loci. For 
r(t)=0, the amplitude of c(t) is equal to the 
amplitude of the error e(t). Therefore, 

E = |e(t)| =|c(t)| (14) 

Also, self-sustained oscillations occur when 

G^z) = -1/N(z) (15) 

For certain Tc and T, z is a point on the unit 
circle in the z-plane, say, zj, we can write 

iGßz)! = |-1/N(Z1)| (16) 

The values of |-1/N(z)| tabulated in Table I 
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suggest a simple method of predicting the 
amplitude of oscillation of c(t) from the values 
of G}(zj). From Table I, it is observed that 
|-1/N(z)| =kE, where k is a constant for any 
Tc. From Eqs. (14) and (16) we have 

1 
E = k G l(zl> U7 ) 

Equation (17) implies that whenever the Gj(z) 
locus for a certain T is given, the locus of 
the amplitude of oscillation of c(t) is related 
to the Gj(z) locus by only a constant factor k. 
However, it should be kept in mind that Eq. 
(17) is valid only for the portion of Gj(z) 
which lies inside the critical regions for the 
same Tc . For example, for TC =4T, andA=l, 
from Table I, 

|-1/N(z)| = E (18) 

Therefore, Eq. (17) gives 

E = I Gßz)^ =4t (19) 

which means that when the system has a self¬ 
sustained oscillation which is characterized by 
Tc =4T andA = l, every point on the Gj(z) locus 
inside the critical region in the gain-phase 
plot represents the amplitude of c(t) for the 
corresponding sampling period T. In the 
present example, for T=1 sec., the following 
value of E is obtained from the Gi(z) locus 
in Fig. 7: 

E = iG^zJl T sec = 0.31 (-10 db) 

(20) 
Similarly, for T =4T and A =2, Table I gives 

|-1/N(z)| = 0.707E =|G 1(z)| t =4T 

(21) 
Therefore, for T=1 sec., E=0.31/0.707=0.438 

It is interesting to compare the results 
which are obtained in this example by use of 
the sinusoidal analysis with describing func¬ 
tion to those of the same system which are 
computed by the difference equation method 5. 
While the difference equation approach gives 
only the solution to a particular set of initial 
conditions, it is extremely difficult to deter¬ 
mine what are the possible modes of oscilla¬ 
tions under various initial conditions. However 
the describing function method introduced in 
this paper does point out that for the system 
under study, with T=1 sec. and D=0.1, only 
the four modes of oscillations listed in Table 
II are possible under any initial condition. 
The results in Table II show that the ampli¬ 
tudes of self-sustained oscillation which are 

predicted by the two different methods are 
quite close, except for mode 2 when T =4 sec. 
and A=2. It should be pointed out that %oth 
the difference equation and the discrete des¬ 
cribing function methods deal with the system 
response at the sampling instants only. 
Furthermore, the describing function method 
assumes that the input to the sampler is 
Sinusoidal and only the fundamental component 
of the relay output is considered to be signifi¬ 
cant. 

In reality, the oscillations in a non¬ 
linear system are seldom sinusoidal. There¬ 
fore, the accuracy of the sinusoidal analysis 
depends entirely on how much the output c(t) 
differs from a sine wave. In fact, the ampli¬ 
tudes of oscillation listed in Table II which 
are determined by the discrete describing 
function are extremely close to the results 
obtained by Chow using the conventional 
describing function method. 

Nonlinear Systems with More 
Than One Synchronized Sampler 

One distinct advantage of the discrete 
describing function method is that it can be 
applied to nonlinear system with more than 
one synchronized sampler. Figure 11 shows 
the block diagram of a nonlinear sampled-data 
system with two samplers which are synchron¬ 
ized to open and close at the same time. The 
closed-loop transfer frunction of this multi¬ 
sampler system is 

C(z) _ N(z)Gj(z) (22) 
R(z) 1 + G^(z)H(z)N(z) 

The stability study of the system now involves the 
investigation of the following condition: 

G^zJHtz) = -1/N(z) (23) 

For the relay-type nonlinearity with dead zone, 
all the critical regions shown in Figs. 5 to 9 are 
still valid for this system. 

Nonlinear Systems Without Zero-Order Hold --
Finite Pulse Width Considerations 

The nonlinear system studied in the pre¬ 
ceding sections is considered to have a zero¬ 
order hold following the sampler. If the zero¬ 
order hold is absent, and the sampling duration 
of the sampler can be assumed to be infinitesi¬ 
mal, the describing function technique presented 
here can still be applied. Instead of plotting 
Gi(z), which includes the transfer function of the 
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hold, it is only necessary to plot the locus of G(z) 
in the gain-phase plot and the same critical regions 
are used. 

However, in some cases, with the ab¬ 
sence of a hold device, a finite pulse width has to 
be considered. In this case, an approximation can 
be made if the narrow pulses with width p are 
approximated by flat-topped pulses. The sampler 
can then be represented by an ideal sampler follow¬ 
ed by a fictitious hold device which holds the samp¬ 
led signal for p second only, and then drops to 
zero instantaneously until the next impulse comes 
along. The transfer function of Gj(s) is written 

1 - epS
G (s ) = s G(s ) 

1 
(24) 

The z-transform of G^(s) is 

Gj(z) = (1 - z P^T) ^[^^](p« T) (25) 

Conclusion 

A discrete describing function utilizing 
the z-transformation has been introduced for a 
relay-type nonlinearity for sampled-data systems. 
The critical regions which are defined by the 
describing function are used to study the con¬ 
dition of self-sustained oscillations by investi¬ 
gating the relative position of the Gßz) loci and 
the critical regions. The effect of varying the 
sampling time T on the system stability is shown 
clearly on the G^(z) loci. It is shown that the 
method can be applied to multisampler system as 
well as systems without hold devices. It might be 
pointed out that the discrete describing function 
method can also be applied to other types of 
amplitude dependent nonlinearities , such as 
saturation with dead zone. 

Appendix I 

Derivation of the Z-Transform-
Describing Function N(z) 

Case (I) Tc = 4T. â = 1: 

If the output of the zero-order hold is 
assumed to be of the form whown in Fig. 4 (b), 
the Laplace transform of the relay output v*(t) 
can be written as 

V*(s) = 1 - e" 2Ts +e”^TS +... 

= ;—~T2Ts (26)1 + e 

The z-transform of which is 

VU)^W = 
Thus £(z) 

' TTfz) = ' V<z) 
_ -Ezfz cos g - sin «Í) z2 4 1 

z2 + 1 z2

E( z cos g - sin g) 
” z 

When Tc = 4T, z = 1/90° = j, Eq. (28) becomes 

1 = E(sin 9 - j cos g) 
ÑCz) J 

= E /-1800 + g (29) 

Referring to Fig. 4(b), the limitations on the 
magnitude of e(t) are: 

E cos g > D and E | sin g| < D for 

-45° < g <45° 

or 
E = D/cos0 and E = D/ |sin0l m in max 

Hence 
- À I = E ! -18Q° * g N m ax m ax-

= 7-^7 / -180° + g (30) I sin g I -
and i 

- ft j min = Emin / -180° + 9 

= — - n / -180° + g (31) cos g -

Let 
E' = E /D and E' . = E . /D, m ax m ax m in m in 

then 

. 1 I ' - 11 E = E' 
N I max Nl max 

= T-1 ■. (32) |stn g I 

nI min N I E = E' min

’ -¿TO 2l180° 4 g (33) 

(27) 

(28) 

The critical region for the condition of 
self-sustained oscillation characterized by 
Tc = 4T and A = 1 is the region enclosed by the 
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loci of 

-if 
N I max 

and 
m in 

given above, and is shown in Fig. 7. 

Case ÇI) Tc = 4T, △ = 2: 

It is shown in Fig. 4(c) that when a 
system has a sustained oscillation of period 
T c = 4T, the output of the hold circuit can also 
have the form of A = 2. The Laplace transform 
of v(t) corresponding to the waveform shown in 
Fig. 4(c) is 

V*(s) = 1 + e" 8^ -e"2sT + e 
1 X »-ST 

-4sT -5sT t ‘lL’T (ul +e + e . .. = 1 + e_¿s 1 (34) 

Thus, 2 + z
V(z)= Wr 

z T x

(35) 

Thus - -L_ = - E(zços^_sinJl (36) 
N(z) z + 1 

and for z = j, - = 0.707 E / -135°+0 (37) 

The range of 0 as indicated in Fig. 4(c) is 
between 0° and -90°. The limitations on E are: 

E = oo E . = , D ■ for -45°4 04O° 
max min |sin 0 ( 

E = oo E . = & fl for -90°< 0<-45 ° 
max mm cos v

J. I ' = oo for 0°> 0 >-90° (38) 
- NI max 

2 | ' = ■ 1 -LT /135° + 0 
’ N Imin |sin0| 

for - 45° < 0 < 0° (39) 

-^|min= ccTsT 

for -90°< 0 <-45° (40) 

The critical region of Tc = 4T and △ = 2 is 
plotted in Fig. 7. 
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Table I 

-1/N(z) for various modes of oscillation 
(relay with dead zone) 

T c △ -1/N(z)l Im ax 
-1/N(z] 

min Arg.(-1/N) Range of d 

2T 1 E cos <t oo D -180° -90° < d < 90° 

3T 1. 

△ 
12 

0.866E 

0.75E 

0.866D 0.866D -150°+ d 

-150°+ d 

-180°+ d 

-30°¿ d <0° 

-60°< d <-30° 

-30° < d c 0° 

cos(60u- Id 1 ] 

0. 866D 

cos(60°-Id I) 

0.866D 
COS 0 

OO 

cos(120u- |d| ) 

0.75D 
sin(30u- |d| ) 

4T 

1 

2 

E 

0.707E 

D D -18CP+ d 

-135°+ d 

-135° - d 

-60° ¿ d < 0° 

-45°< d < 0° 

-90°< < -45° 

cos(9CP-U|) 

oo 

oo 

COS d 

0.707D 
cos(90u- |d|) 

D 
cos d 

5T 

1 

à 
12 

2 

à 
23 

1.31E 

0.954E 

0.81E 

0.772E 

1. 31D 1. 31D -126°+ d 

o 
-180 + d 

-126°+ d 

-180°+ d 

-72°< d < -36° 

-18 °< d < 0 ° 

-72°< d < -36° 

-18°< d 2 0° 

cos d 

0. 954D 

cos(72P - 1 d 1 ) 

0.954D 
sin(18°+ |d 1 ) 

0.81D 
sin(54° - 1 d 1 ) 

0.81D 
cos(36°+|d|) 

oo 

cos d 

0.772D 
sin(18u- |d| ) 

6T 

1 

2 

3 

1.5E 

0.866E 

0.75E 

1. 5D 1.5D -180°+ d 

-90° + d 

-90° + d 

-120°+ d 

-30°< d < 30° 

-90°< d <-60° 

-120°<d < -90° 

-90°< d < -60° 

cos(60°-|d1) 

0.866D 

cos d 

0.866D 
COS d 

0.866D 

cos(120u+ d ) 

0.866D 
COS 

oo 

cos(6(f + d ) 

0.75D 
COS d 
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Table II 

Mode of 
Oscillât ion 

Tc(sec) 
△ 

Amplitude of Oscillation 
Describing 
Function 

Difference 
Equation 

1 

2 

3 

4 

4 

4 

5 

6 

1 

2 

2 

3 

0. 31 

0.438 

0. 572 

0.838 

0. 30 

0. 352 

0.525 

0.80 

Fig. 1. Relay type sampled-data control system. 

Output 
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r(t) /< 

Fig. 3. Modified system. 

(b) Output of hold circuit, △ = !. 

m(t) 
0 T ár ¿t ~<T dr 

(c) Output of hold circuit, û = 2. 

t 

T 

(d) Output of hold circuit. 

m(t) 

0 3T—TT 5TT ' 6T- f

m (t) 
0 T| 2Ï 3TT 

(e) Output of hold circuit. 

t 

m (t) 

0 

(f) Output of hold circuit. 

t 

Fig. 4. Possible configurations of m(t) for Tc = 4T. 
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18 

Fig. 5. Critical region for relay-type nonlinearity, T - 2T, and 

G1 (Z) plot, G(S) 

Fig. 6. Critical region for relay-type nonlinearity, - 3^,, and 

G^z) Plot, 0(8)=!^ 
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Fig. 7. Critical regions for relay-type nonlinearity, T = 4T, and 
1 c

G1(z)pl0t, 0(8)=^ 

Fig. 8. Critical regions for relay-type nonlinearity, T = 5T, and 

G1(z) plot, G(s)=^ 
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Fig. 11. Relay-type sampled-data control system with two 
synchronized sampling switches. 

Fig. 10. Frequency loci of G,(z) in gain-phase plane, G(s) = ^—■— 
1 s(s+l). 

Fig. 9. Critical regions for relay-type nonlinearity, Tß = 6 T> and 

G1(z) plot, G(s)=i^ 
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AN ALGORITHM FOR STOCHASTIC CONTROL THROUGH 
DYNAMIC PROGRAMMING TECHNIQUES 

Paul P. Chen 
The Boeing Company 
Renton, Washington 

Summa ry 

An algorithm based on the concept of state and 
dynamic programming is derived for designing an 
optimum controller for a linear plant subject to 
noise. The controller is optimal in the sense 
that the behavior of the plant satisfies the ex¬ 
pected mean quadratic performance index (EMQPI) 
defined in the paper. 

The optimal control problem is formulated as a 
problem of multi-stage decision processes in dy¬ 
namic programming. By solving a functional equa¬ 
tion obtained by applying Bellman's principle of 
optimality to the control process in question, the 
algorithm is formulated. The algorithm generates 
the sequence of control signals which minimize the 
EMQPI. In addition, it gives the minimum of the 
EMQPI for the specified sequence of control 
signals. 

The control signal is found to consist of two 
components: (1) a linear combination of the sys¬ 
tem state variables, and (2) a noise-balance com¬ 
ponent which minimizes the noise-induced deviation 
of the actual plant output from the desired output. 
An example is given to illustrate the iterative 
procedure and the asymptotic behavior of the 
algorithm. 

The design is optimal for a class of system 
inputs, and is applicable to both sampling and 
continuous systems. The design procedure is dev¬ 
eloped to make full use of a digital computer. 

Int roduct ion 

Scientists and engineers in the control field 
search constantly for novel techniques and new 
theories for automatic control. The inauguration 
of the theory of dynamic programming has led to 
new ways for the mathematical formulation, ana¬ 
lytical treatment and computational solution of 
control problems. The modernization of digital 
computers has facilitated and accelerated the re¬ 
search in this direction. 

Recently a number of papers applying the tech¬ 
niques of dynamic programming to the treatment of 
control problems have appeared in the literature! -̂  
Kalman and Koepcke' have achieved essential re¬ 
sults in both the mathematical and the engineering 
aspects of the optimal control problem where a 
linear, stationary plant to be controlled satis¬ 
fies the generalized quadratic performance index. 
Their investigation is restricted to the determin¬ 
istic case. However, in reality most physical 
systems are subject to random disturbances. This 
paper describes an investigation of the optimal 
control problem similar to that originally dis¬ 
cussed by Kalman and Koepcke, but in the stochas¬ 

tic case, that is, when the plant is subject to 
random noise with a known probability distribution. 
The performance criterion used for the stochastic 
case is the expected mean quadratic performance 
index as defined in the next section of this paper. 
The algorithm obtained due to dynamic programming 
is ideally suited to digital computation. 

Problem Formulation 

A schematic diagram of the system considered 
is shown in Figure I. It is assumed that the 
linear plant is preceeded by a sampl e-and-hold ele¬ 
ment so that the input to the plant will be a 
piecewise constant function of time. In this way, 
the problem can be formulated as a descrete time 
model which is not only a more realistic descrip¬ 
tion of many physical systems, but also readily 
accepted by a digital computer. The noise input 
can be added to the control signal or applied at 
any state variable location of the plant. Roughly 
speaking, the problem is to find the control sig¬ 
nal, m(t), to the linear plant which is subject to 
noise, such that the output of the plant, c(t), 
will, at all times, follow as closely as possible 
some predetermined behavior. For example, the 
desired behavior for the plant output may be the 
system input, r(t). 

To make the paper reasonably self-contained, 
the description of the plant, the system input, 
and the performance index in the deterministic 
case' will be briefly stated below. 

The Plant 

The linear plant, X, with a single input and a 
single output is assumed to be described by an n^ 
order differential equation with constant coeffi¬ 
cients. It can be decomposed into n first order 
differential equations by selecting n state var¬ 
iables, X], x2, ... xn. The vector-matrix diff¬ 
erential equation describing the plant can be 
written as: 

X = AX + hm (1) 

where: 

A 
m 
h 

an n-d¡mensiona1 vector 

= n X n constant matrix 
= control signal 
= n-d¡mensiona1 constant vector represent 

the effect of m on X 
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X = the derivative of X with respect to time 

The variable xj can always be selected as the plant 
output, c, that is; 

x,(t)=c(t). (2) 

The solution of (1) can be written as?: 

X(t) = í>x (t) X (0) + [ ®(t-x)h m(r)dx (3) 
J0 

where 0>x(t) is the solution of the matrix differ¬ 
ential equation: 

$x = A$x with $X(0) = I (unit matrix) (4) 

and is called the transition matrix of the plant. 
Since the control signal, m, is piecewise con¬ 
stant, it can be shown that°>9; 

X (kT+x) = ®X(x) X (kT) + m(kT)HX(x) (5) 

where T is the sampl ing period, 0 S x S T, k = 0, 
1, 2, ..., and: 

HX(x) = A ®X(x)hdx . (6) 

The Input 

Let ^r(t)^ be a class of system inputs for 
which the system is designed to be optimized. An 
element, r(t), of this class is defined as: 

r (t) = yj (t) for t È 0 

=0 <0 (7) 

where yj(t) is the first component of the input 
state vector: 

Y(t) = ®y(t)Y(0) . (8) 

The matrix, ®Y(t), is the transition matrix of an 
/th order ordinary linear differential equation 
with constant coefficients, and Y(0) is an arbit¬ 
rary constant vector. Thus, ®y(t) and Y(0) det¬ 
ermine, respectively, the specific class of system 
inputs and the particular member of that class. 
For example, the class of all step and ramp func¬ 
tions ^r(t)J> can be described by the differential 
equation: 

^=0 . 
dt 

lr\ Select the input state variable as I I = 

the vector differential equation describing the 
input can be written as: 

and the transition matrix as: 

I 'T\ 
\01 I ’ 

Thus, the input, r(t), is described by the transi¬ 
tion equation as given by equation (8): 

where r(t) is satisfied by r(t) = at + b for all 
Constantsa and b through arbitrary selection of 
r(0) and r(0) . 

If the actual system input does not belong to 
the class of signals for which the system is opti¬ 
mized, then the input may be approximated over one 
sampl ing period by a member of that class so that 
the system can be nearly optimized. This approxi¬ 
mation has been discussed by Lees'^, and Kalman 
and Koepcke.l 

The Performance Index 

The input state vector, Y(t), and the plant state 
vector, X (t), can be combined to form the system 
(input-plant) state vector, Z(t), as: 

Z (t) -
(} _ W(t) I • 

By defining 

(9) 

*(t) 

H(t) 

®x(t)¡ 0 

o '^(t) 

fetA 
\Hy (t)/ ’ 

(10) 

(11) 

the system transition equation can be written as: 

Z(kT+x) = ®(x)Z(kT) + m(kT)H(x) . (12) 

With the above definition, the quadratic perfor¬ 
mance index over the interval 0 S t S NT can be 
defined as: 

JN IjtWQZit) + Xm2 (t)] a>(t) dt (13) 

where Q is a positive-definite (rH-/) square matrix 
characterizing the kinds of errors specified for 
performance measurement, X is a positive constant 
which indicates the weight of control cost with 
respect to the minimizing errors, and æ(t) is a 
weighting function of time. The symbol, Zt, de¬ 
notes the transpose of the vector, Z. If errors 
are considered only at sampling instants, equa¬ 
tion (13) will be reduced to: 

jJ = Jt[zt(kT)QZ(kT) + XT m2(k-l)T|œ(k). (14) 
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The term, Zt(O)QZ(O), is omitted here in view of 
its fixed value from the given initial conditions 
of the input and the plant. 

The following example is given to illustrate 
the nature of Q. In a unit feedback system a 
plant, whose Laplace transfer function is 

s , is subject to a ramp input, r(t) = t, 

whose transfer function is R(S) = The system 

can be decomposed as shown in Figure 2. If the 
system error squared, e^ = (r-c)‘, and the error 
rate squared, è2 = (r-c) 2, are considered as error 
terms, 

/1 0-1 o\ 

Q = ° ' ° ’M 
u 1-1 0 1 0 I 

\ 0 -1 0 1 / 

2 .2 and e +e = Z tQZ. Observe that Q is generally 
symmetric. 

Noise Consideration 

In general there are three ways by which ran¬ 
dom variables are introduced into control systems. 
(1) The control signal, m, can be contaminated by 
some random noise, f, in which case the plant in¬ 
put is some function of the control signal and 
noise. Usually the plant input is the control 
signal plus noise irH-f. (2) Noise disturbances due 
to system environment occur at places other than 
the plant input location. This may be the case 
where a plant consists of several component parts 
and noise occurs at the connection locations of 
the component parts. In most cases the noise 
location can be selected as a state variable. (3) 
Some of the elements of a control system contain 
parameters which exhibit randomness, that is, 
there are noisy components in a control system. 
Only the first two cases are discussed in this 
paper. 

The vector differential equation describing 
the plant, when noise is considered, can be 
written as: 

X = AX + hm + gf (15) 

where g = n-d¡mensional constant vector represent 
the effect of noise on X. 

Let the probability distribution of the noise 
be P(f) . Assuming noise occurs only at sampling 
instants, that is, impulsive noise only, the ex¬ 
pected state of the plant denoted by E[X] can be 
expressed by the probabilistic transition equa¬ 
tion: 

E[x(kT+Tj] = ®x(t)X (kT) + HX (t)m(kT) 
+ / Gx(T)f(kT)P(f)df (16) 

where Gx(t) is the response of the plant t seconds 
after a unit impulse is applied at the noise 
location, when the plant is initially in state 

X = 0. When the plant input through the hold is 
the control signal plus noise, then Gx = Hx. The 
probabilistic system transition equation becomes: 

E[z(kT+Tn = O(T)Z(kT) + H(T)m(kT) 

Jc(T)f(kT)P(f)df (17) 

where: 

Let J and J., be defined as: N N 

and be called, respectively, the mean quadratic 
performance index (MQPI) and the sampled mean 
quadratic performance index (MQPI*). The expected 
values of MQPI and MQPI* for stochastic processes 
are given by: 

+ Xm2(t)}œ(t)dt, (20) 

and 

EPnJ= N /pt(kT)QZ(kT)]p(f)df 

+ XT m2 (k-l)T^æ(k) (21) 

and are represented by EMQPI and EMQPI*, respect¬ 
ively. 

Statement of the Problem 

The problem discussed in this paper can now be 
precisely stated below: 

Given: 1. A linear plant X described by equation 
(15) 

2. A random noise f of known probability 
distribution P(f) 

3- A class of inputs Y described by equa-
t ion (8) . 

Find a sequence of control signals m(o), m(l), 
m(2), ... m(N-l), such that the EMQPI is minimized 
for any initial conditions of the plant, X(0), and 
input, Y (0), as N approaches infinity. Let I N 

denote the minimum of the EMQPI for this optimum 
sequence of N control signals, that is: 

iN = Min eRO . (22) 
N m(o),m(l),...m(N-l) L NJ

As N approaches infinity, I is denoted by I, that 
is, N

î = Lim ï . (23) 
N*oo 
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The problem, then, is to specify m(o), m(l),... 
to give I for given X, f, Y and Z(0) . 

Principle of Optimality 

The basic principle by which the optimum con¬ 
trol signal is obtained was developed by Bel 1 — 
manlb'2 This principle, the "principle of opti¬ 
mality", states: "an optimal policy has the pro¬ 
perty that, whatever the initial state and the 
initial decision are, the remaining decisions must 
constitute an optimal policy with regard to the 
state resulting from the first decision." The 
problem of deciding m(0), m(l), ..., m(N-l) for N 
sampling periods can be viewed as an N-stage 
multidecision process in dynamic programming. 
When applied to the problem of this paper, the 
principle of optimality can be stated as: an 
optimal sequence of control signals, m(0), m(l), 
... m(N-l), has the property that, whatever the 
initial state, Z(0), and the initial control sig¬ 
nal, m(0), the remaining sequence, m(l), m(2),... 
m(N-l), must constitute an optimal sequence with 
regard to the state, Z(l), resulting from the 
first choice m(0). Note that 1^ is a function of 
Z(0) and N. The effect of any initial choice of 
m(0) for the time interval 0 to 1 will be to con¬ 
vert Z(0) into a new state Z(l) . It follows then 
that at time, t = 1, the problem of determining 
m(l) will be the same as that of determining m(0) 
at t = 0, except that the initial state, Z(l), 
will be used instead of Z(0), and the remaining 
length of time, N-l, will be used instead of N. 
This argument is the application of the principle 
of optimality and makes it possible to write the 
principle mathematically as: 

V Z<°» = ¿ Min^E^i0))] 

+ £^(1)7]}. (24) 

Starting with N = 1, equation (24) gives: 

ï|(Z(0)) = I M jn^ E [J, (Z(0) ;m(0)2] • (25) 

Equation (24) is the functional equation produced 
by a mathematical trans i terat ion of this princi¬ 
ple. 

The Functional Equation 

In this section, the formulation of functional 
equations by the mathematical transiteration of 
the principle of optimality will be demonstrated 
for stochastic control processes. An analytic 
solution of the functional equations will be given 
in the next section. The expected system state at 
the (k+l)th sampling instant for T = 1 can be ex¬ 
pressed by (17) as: 

E[z(k+D] = 0(l)Z(k) + H(l)m(k) 

+ / G(l)fP(f)df . (26) 

The first two terms on the right side of equation 
(26) represent the system state at time k+1 for a 
noise-free condition, and will be denoted by 
Z^(k+1). Let the expected (mean) value and the 
second moment of the noise be denoted respectively 
by f and f, that is, 

f = /fP(f)df (27) 

f = /f2P(f)df ; (28) 

equation (26) is reduced to 

E[z(k+1)] = Zd(k+I) + G(l)f . (29) 

If system errors are interesting only at the 
sampling instants and are weighted equally at all 
sampling instants, that is, a>(k) = 1 for k = 1, 2, 
...,N, the EMQPI* by virtue of equations (21) and 
(27) to (29) becomes: 

= ¿ k=i^ zt(k)$zd k̂) 

+ 2fG tQZd(k) + fG tQG + Xm2(k-I)}. (30) 

The principle of optimality yields the functional 
equat ion, 

í*(Z(0)) = ¿ Min 
N N m(0) 

+ E^.^Zd)/]} (31) 

where: 

e[j*(Z(0))] = zJ(l)QZd(l) + 2fGtQZd(l) 

= 2 
+ fG tQG + km (0) . (32) 

Note that Z(l) is the state resulting from a 
transition depending upon noise. The last term in 
equation (31), which represents the expected min¬ 
imum of the expected quadratic performance index 
from the random initial state, Z(l), for an N-l 
stage process, has the meaning as below: 

eHn-i(zOÏ] ° J [Wz o 
+ Gf)]p(f)df . (33) 

Equations (31) to (33) are the fundamental equa¬ 
tions from which the following analytic results 
are obtained. 

{e[j*(z (0))] 

Solution of the Functional Equation 

Analytic results are obtained by proceeding 
inductively with equation (31). For a single-
stage process, N = 1, thus I* .= 0, and equation 
(31) is reduced to: 

ï*(z(o)) = Min 
m(0) 

e[j*(z(0)F| (34) 

Observe that Ep*(Z(O))J is a function of m(0) by 
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virtue of equation (32); its minimum can be obtain¬ 
ed by making its derivative with respect to m(0) 
equal to zero, that is, 

= H tQ[«>Z(0) + Hm(0)]+ fG tQH 
dE^! (Z( 

dm(0) 

+ Xm(0) = 0 . (35) 

The optimal control signal starting from the ini¬ 
tial state for a single-stage process is the sol¬ 
ution of m(0) in equation (35) and will be denoted 
by mj (0), thus, 

mJO) = at(l)Z(0) + fß(l) (36) 

where: 

a(l) _ Ml ) 
- X+d(l) 

ß(D _ bÇQ 
X+d ( 1 ) 

a(l) = -i>tQH 

b(l) = -HtQG 

d(l) = HtQH . 

Since the performance criterion is quadratic, 
the extremum will necessarily be a minimum.’3 Sub¬ 
stituting (36) into (34) and combining terms which 
are quadratic in Z (0), linear in Z(0), and con¬ 
stants, it follows that the minimum of the EMQPI* 
from the initial state over one sampling period is: 

* Ví “ 

I, (Z(0)) = Zt(0)M(l)Z(0) + 2fKt (l)Z(O) 

-2 
+ f U(l) + fV(l) (37) 

where: 

M(l) = ♦t(l)Q*(l) + Xa(l)at(l) 

Kt(l)= 5 t(l)Q*(l) + Xß(l)at(l) 

U(l) = ß2(l) (HtQH + X) + 2ß(l)G tQ.H 

V(l) = GtQG 

*(1) = 0 + Hat(l) 

5(1) = ß(l)H + G . 

The matrix, M(l), is a symmetric, positive, defin-
i te mat r ix. '4 

Theorem 

If a system is subject to random noise, f, with 
probability distribution, P(f), mean, f, and sec¬ 
ond moment, f, and is described in discrete version 
by the s tate-trans i t ion equation, Z(k+1) = $Z (k) 
+ Hm(k) + Gf(k), at the initial state, Z(0), the 
first control signal which minimizes the EMQPI* 
over the interval 0 S t á N is: 

-^(O) = at(N)Z(0) + fß(N) (38) 

where: 

a(N) = (an ^+n vector) 

= xTdW (a constant ) 

a(N+l) = -$ [m(N) + qJh (an f+n vector) 
b(N+l) = -H t[M(N) + q] G - Kt(N)H (a constant) 
d (N+1 ) = H t[M(N) + q] H (a constant). 

The minimum of the EMQPI* when the performance 
measure is weighted equally at all sampling in¬ 
stants, is: 

Í*(Z(0)) =¿ÍZ (0)M(N)Z(0) + 2fK (N)Z(O) N NL I t 

+ f2U(N) + ?V(N)] (39) 

where: 

M(N+1) = *t(N+l)[M(N) + Q]*(N+1) 

+ Xa(N+l)at(N+l) (an ¿+n square matrix) 

Kt(N+l) = 5t(N+l)[M(N) + Q}t(N+l) 

+ Xß(N+l)at(N+l) + Kt(N)*(N+l) 

(an £+n vector) 

U(N+1) = ß2 (N+l)[Ht[M(N) + QjH + xj 

+ 2ß(N+l) [Õt[M(N) + q]h + 
+ U(N) + 2Kt(N)G (a constant) 

V(N+1) = G t[M(N) + q]g + V (N) (a constant) 
*(N+1) = « + HajN+l) 

5 (N+l) = ß(N+l)H + G 

for N = 0, 1,2, ..., X > 0, with M(0) = K (0) 
= U (0) = V (0) = 0. 1

Equations (38) and (39) give the algorithm 
from which the optimal control signal and the 
minimum of the EMQPI* are generated. As can be 
seen from (38) the optimal control signal consists 
of two components: (1) a linear combination of 
the system state variables, which is a component 
to guide the plant to follow its desired output, 
and (2) a component proportional to the mean value 
of the noise to minimize the noise-induced devia¬ 
tion of the actual plant output from the desired 
output. The EMQPI*, when the optimal sequence of 
control signals is used, results in (39) which 
consists of quadratic and linear terms in Z(0), 
and constant terms proportional to the squared 
mean value of the noise and to the second moment 
of the noise. 

Proof: The theorem is verified by mathemati¬ 
cal induction. The theorem is true for N = 1, as 
it can be seen that equations (36) and (37) result 
from direct substitution of 1 for N in equations 
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(38) and (39)- Let the induction hypothesis be 
equations (38) and (39) • The principle of opti¬ 
mality and equations (39) and (33) yield: 

m(0) 

+ E [lJ(Z(l))J} (40) 

2 
zt (l)QZ(l) P(f) df + Xm (0) 

+ y[z t(l)M(N)Z(l) + 2fKt(N)Z(l) + f2U(N) 

+ fV(N)Jp(f)dfJ (41) 

By virtue of equations (27) to (29), equation (41) 
becomes : 

= A Min|fz^(l)[M(N)+Q]zd(l) 
N+l m(0)< Ü

+ 2f{Gt[M(N)+Q] + Kt(N)}zd(l) 

+ f{Gt[M(N)+Q]G + V (N)}+ f2[u(N) 

+ 2Kt(N)G] + Xm2(oÀ (42) 

Notice that Zd(l) is a function of m(0) . It is a 
straight forward process to obtain the minimum of 
the express ion,O in equation (42). Make 

dm (o')" = ° and so've f° r ' The solution of 
m(0), thus obtained, will be m^+|(0), and equals 

equation (38) if N is 
mN+ j(0) into equation 

that î*+| (Z(0)) is 

N is replaced by N+l. 
true for N = N+l, and 
positive integers N. 

replaced by N+l. Substitute 
(42); it is easy to show 

the same as equation (39) if 

Thus, the hypothesis is 
the theorem is true for all 

The theorem gives the first optimal control 
signal. For successive optimal control signals, 
the principle of optimality reveals that the 
optimal control signal at the (k+l) 1̂  stage for an 
N-stage control process, m (k), is the same as the 
optimal control signal at the first stage for an 
N-k stage process, m^_^(0) • Thus, 

Corollary 1: 

^(k) = mN_k(°) for k = 0, 1, 2,...N-1 

where m (k) and m^ . (0) are linear functions of 
Z(k) and Z(0) respectively. 

For a deterministic case, f = f = f = 0, equa¬ 
tions (38) and (39) reduce to 

Corol lary 2: 

m^O) = at(N)Z(0) (43) 

I*(Z(0)) = Z (0)M(N)Z(0) . (44) 
IN L 

This is essentially the same result as derived by 
Kalman and Koepcke for the deterministic case? 

The theorem formulates the algorithm to gener¬ 
ate the necessary constants of the optimal control¬ 
ler described in the next section. Starting with 
M(0) = K (0) = U(0) = V(0) = 0, for N = 0, a(l), 
b(l), d(T) are obtained from (38), then M(l) , 
K (1), U(l) and V(l) are obtained from (39) • The 
terms a(2), b(2) , d (2) result by substituting M(l) 
and Kt(l) into (38) for N = 1, and the cycle re¬ 
peats as desired for any N. Thus, the optimal 
control signal at the instant when there are N 
sampling periods left until the end of the process, 
m (0), for any N is readily calculated by (38) for 
the given knowledge Z(0) which can usually be 
measured or predicted for physical systems. 

An Alternative Derivation of the 
Optimum Control Signal 

If (1), the expected state instead of the ex¬ 
pected error is used to formulate the EMQPI*, that 
is, 

= J t(E [Z t(k)jQE[z(k)]+ Xm2(k-l)} (45) 

and (2), the expected state is used to formulate 
the minimum of the expected quadratic performance 
index, instead of the random state used to formu¬ 
late the expected minimum of the expected quad¬ 
ratic performance index, that is, the last term in 
equation (31) be replaced by, 

I„_ 1 (e[z(1)] ) , (46) 

then the functional equation can be formulated with 
equations (45) and (46) by the principle of opti¬ 
mality and proceed inductively as before. The 
derivation of the optimal control signal is a 
straight forward process; it results the same as 
equation (38). The minimum of the EMQ.PI* thus ob¬ 
tained is the same as equation (39) except that: 

U(N+1) = £t(N+l) [m(N)+q]UN+1) + 2Kt(N)e(N+l) 
2 

+ Xß (N+l) + U(N) 

V(N) =0 . 

Optimum Synthesis 

It can be shown that the iterative process of 
the algorithm converges!^ The terms, a(N) and ß(N), 
converge to a constant vector, a, and a constant, 
ß, as N approaches infinity. If a(N), ß(N) con¬ 
verge to a, ß at the N_ th iteration, then, for 
N è Nt

a(N) = a 

ß(N) = ß /. (47) 

From equation (38), it is clear that for all 
N è N^., the optimal control signal at the initial 
stage for an N-stage process is the same as that 
for an N^-stage process. That is, 
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æN (0) = mN ‘ 

If a system operates for a reasonable length of 
time such that N can be considered as infinity, 
the optimal control signal at any sampling instan^ 
k, can be represented by: 

m(k) = atZ(k) + fß (48) 

where atZ(k) is a linear combination of the state 
variables and the term fß is a constant, called 
the noise-balance component, W. The additional 
error in J introduced by using equation (48) in¬ 
stead of equation (38) for m, is negligibly small 
when N is reasonably larger than N^.. 

The optimal controller can be designed accord¬ 
ing to the schematic diagram shown in Figure 3-
The feedback coefficients O|, ay, ...a^p are 
components of the vector, a, defined in equation 
(47) . The additional constant signal, W, to the 
controller is the noise-balance component defined 
in equation (48). When the sampling period is re¬ 
duced to be reasonably small, the system becomes 
nearly continuous, and the controller thus result¬ 
ed will minimize the EMQPI* as well as the EMQPI. 

Exampl e 

To illustrate the foregoing development of the 
algorithm, the noise-balance component, the feed¬ 
back coefficients, and the minimum of the EMQPI* 
are calculated for the system in Figure 4 by using 
an IBM 709 digital computer. The noise considered 
is unit impulse noise (f=l) with Bernoulli distri¬ 
bution, that is, P(f=l) = p and P(f=O) = 1-p where 
p = 1/4. The noise is added to the control sig¬ 
nal (type 1 noise) and to the integrator (type 2 
noise) at sampl ing instants only. The class of 
inputs for which the system is to be optimized is 
the class of all ramps and steps. There are two 
performance indexes. The first is the sum of the 
squared error and squared error rate, e2 + è^; 
the second is the squared error, e^, only. The 
control cost is weighted equally for both indexes, 
that is X. = 1 for both. According to the above 
specification the problem is calculated in three 
cases defined in Table 1. For example case 3 is 
to design the controller for the system which is 
subject to the impulse noise at the integrator so 
that the sum of the squared error and the squared 
control signal is minimized for the class of all 
ramp and step inputs. Let: 

0 -1 o\ 
1 0-11 
0 10 
-10 1/ 

0-1 o\ 
0 0 0 1 
0 1 0 I 
0 0 0 / 

where T = 1 . 
algorithm for 

The input data used to formulate the 
the three cases are listed in Table 

2. The noise-balance component, W, and the feed¬ 
back coefficient, a, of the optimum controller are 
calculated with the algorithm. With this control¬ 
ler, the minimum of the EMQPI* is calculated by 
using equation (39)- In this example f = f = p, 
the constant terms_in equation (39) can be com¬ 
bined as f2U (N) + fV(N) = pL (N), where L = pU+V. 
The results are tabulated in Table 3. 

The asymptotic behavior of t^e convergence of 
the terms a, ß, M, K, L, and IN is discussed 
below. The terms, a, ß, K and L converge with 
accuracy to the 5th decimal place at the 14th, 
16th and 16th iteration for cases 1, 2, and 3 re¬ 
spectively. The terms, a and ß, converge mono¬ 
tonically to constants. Their rate of convergence 
for case 3 is shown in Figures 5 and 6 and appears 
to be close to exponential. The same terms for 
cases 1 and 2 have similar behavior and the cor¬ 
responding figures are omitted!” The constant, L, 
the last element of the matrix, M, m44, and the 
last element of the vector, K, k4, are asymptotic 
to straight lines of non-zero slopes. The rate of 
approach of L, 0144 and k4 is shown in Figures 7, 8 
and 9. The remaining elements of M and K converge 
to constants faster than do m44 and k4. The fact 
that L increases with the number of stages or time 
is expected; it can be seen in equation (39) that 
L associates with the noise and the control cost, 
both of which contribute to JN as N increases. 

The asymptotic behavior of IN is shown in 
Figure 10. In this example the limit of 1^ as 
N -► ao is pAL where: 

AL = Llm rL(N+)) - L(N)J 
N-roo 

This is verified by the fact that Z MZ and pK Z in 
(39) are constants at large N and that L increases 
by AL at each stage as N * 00. 

Conclus ions 

A method for designing an optimum controller 
for a linear plant subject to random noise is 
introduced. The controller is optimum in the 
sense that the system will satisfy the expected 
mean quadratic performance criteria. This invest¬ 
igation serves as another example of the appli¬ 
cation of dynamic programming techniques to stoch¬ 
astic control problems. Iterative formulas for 
performance indexes such as the squared system 
error which is weighted unequally at all times can 
be derived with the principle of stochastic con¬ 
trol developed in this paper. This approach must 
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be extended in the engineering aspect to formulate 
the algorithms for designing an adaptive control¬ 
ler, that is, a controller for a plant which is 
subject to random noise of unknown probability 
distribution, or for a plant which has parameters 
that vary according to environment. 
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Plant and its 
State Variables 

Fig. 1. System schematic diagram. 
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Fig. 2. System decomposition. 

Fig. 3. Schematic diagram of the optimum controller. 

Type I Noise 

f - I 

Type 2 Noise 

f - 1 

Fig. 4. The system in example. 
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2 

(where N is also the number of remaining control stages) 

Fig. 5. Feedback coefficients c/s for case 3. 

Number of Iterations N 

Fig. 6. ßfor case 3. 
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35 

Fig. 8. m44 For cases 1, 2, and 3. 
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o 

Fig. 9. k4 For cases 1, 2, and 3. 

Fig. 10. The minimum of the EMQPI* for cases 1, 2, and 3. 
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Cases 

S pec ¡ f i ca t i on 
1 2 3 

Noise Type 1 Type 1 Type 2 

Performance Index 2 .2 e + e 2 e 2 e 

Inputs ramps 
steps 

ramps 
steps 

ramps 
steps 

TABLE 1. Case Classification in Example 

Cases 

Input Data 1 2 3 

4> *1 *1 *1 

H 
H 1 

G 
H l G 1 

Q °1 Q2 Q2 

X 1 1 1 

Z(0) 
zo Z0 zo 

TABLE 2. Input Data for the Algorithm in Example 

Symbols 

Cases 
a l a2 a 3 a4 W 

-* 
I 

1 -0.62780 -0.61504 0.62780 1.61504 -0.06250 0.35073 

2 -O.7OO7O -0.58915 O.7OO7O 1.58915 -0.06250 0.25689 

3 -O.7OO7O -0.58915 O.7OO7O 1.58915 -0.09932 0.48774 

TABLE 3. Results of the Example. 
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DOUBLE MEASUREMENT ’-.'ITH BOTH SAMPLED 
AND CONTINUOUS INPUTS 

J. C. Hung 
The University of Tennessee 

Knoxville, Tennessee 

Introduction 

A vital problem in the field of control and 
communication systems is multiple measurement. 
The problem is raised from the fact that in the 
modern control systems the instruments used for 
signal measurement are in general far from ideal 
due to the unavoidable instrument noise. As a re¬ 
sult, the exact value of the measured signal can 
hardly be obtained. Scientists have been striving 
to explore the methods of obtaining the best esti¬ 
mate of the true signal from the noise-contami¬ 
nated signal. It is very often that the required 
signal appears in several different forms. For 
instance, a practical problem occurring in guid¬ 
ance and control systems involves the separately 
obtained measurements of a position signal and its 
first derivative. It is obvious that the best 
estimate will be obtained if all the possible 
measurements are employed and their results are 
weighted and combined in an optimum way. Measure¬ 
ment of this kind will be referred to as multiple 
measurement. In the case of single measurement, 
the fundamental problem of extracting and predict¬ 
ing a signal from a mixture of signal and noise by 
means of an optimum physically realizable filter 
was first proposed by Wiener^ who solved the prob¬ 
lem on the basis of three assumptions, namely: 
(1) the time series representing the true signal 
and the noise are stationary and their auto-and 
cross-correlation functions are known; (2) the 
performance criterion of the filter is to minimize 
the mean square-error between the estimated value 
and the true value of the desired signal; and, (3) 
the operation used is assumed to be linear. Sub¬ 
sequently, further developments were made by Zadeh 
and Ragazzini,? Franklin,3 and Leesh to include 
the cases of continuous-data finite memory filter, 
sampled-data infinite memory filter, and sampled-
data finite memory filter respectively. 

In the general case of multiple measurement, 
the measurable signals may appear in discrete 
forms as well as continuous forms. Therefore the 
measuring system may have continuous inputs and 
sampled inputs of various sampling rates. Theory 
on the general optimum multiple measurement, 
giving the best estimate of the desired signal, 
has not been developed. Recently, Hsieh and 
Leondes^, 6 ancj gendat? have treated a few special 
cases of multiple measurements. Their cases are 
special in the sense that the inputs of a measur¬ 
ing system are either all continuous, or all 
samnled with same sampling rate. 

It is important to note that the theory of 
the general optimum multiple measurement cannot be 
obtained by a simple extension of the theories for 
the special oases mentioned in the last paragraph. 
The fundamental difference between the general 
cases and the special cases mentioned lies on the 

following fact. For multiple measuring system 
having either only continuous inputs or only 
sampled inputs of the same sampling rate, the op¬ 
timum system is time-invariant if the input sig¬ 
nals are stationary. But, the optimum multiple 
measuring system having continuous inputs and 
sampled inputs of different sampling rates is time¬ 
varying even though the inputs are stationary. 
Therefore the transfer function of an optimum 
multiple measuring system is, in general, a func¬ 
tion of several variables, where the number of 
variables depends on the number of different input 
sampling rates. In this paper a procedure of op¬ 
timum double measurement, having one sampled input 
and one continuous input as shown in Fig. 1, will 
be developed. 

This system has important applications in the 
field of linear filtering and prediction, and in 
reduction of the load on a digital computer in a 
trajectory tracking system. For example, in guid¬ 
ance control, the available signals guiding the 
control of the vehicle frequently appear in both 
sampled and continuous forms. The measuring in¬ 
strument used for continuous measurement is usually 
much more noisy than that for discrete measurement. 
Using the theory developed in this chapter one can 
weight and combine these two signals in an op¬ 
timum way to obtain the best information. The 
second application originated from a missile tra¬ 
jectory tracking problem, where the trajectory of 
the missile is determined from the available input 
data. Accurate determination of the discrete 
points on the trajectory can be made using a digit¬ 
al computer. However, when a large number of 
points on the trajectory are required, very close 
to each other, a computer with a very large ca¬ 
pacity is needed. To reduce the load capacity and 
to fill the information between the discrete de¬ 
termination of digital computer, an analog com¬ 
puter can be used in parallel with the former, as 
shown in Fig. 2. It is known that the analog com¬ 
puter introduces more computation error than the 
digital computer does. The final results pro¬ 
duced by the two computers can be combined in an 
optimum fashion to give the best continuous de¬ 
termination of trajectory, using the theory de¬ 
veloped in this chapter. 

In the following, the method of solution for 
the optimum system under a general input condition 
and the error analysis of the obtained optimum 
system are developed. An example is given to 
illustrate the method. It is quite often that the 
noise in a sampled-data channel is negligible and 
the channel may be considered noise-free. Under 
this condition, a simplified method may be used 
for solution. Another example is given to 
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illustrate this simplified method. It is also 
shown in the example how the qualities of the 
estimated signals obtained by double measurement 
and single measurements compare. 

Main Assumptions 

There are four main assumptions upon which 
this research is based, namely. 

(1) The actual signals measured by the 
measuring instruments are assumed to be 
linearly related to the desired signal. 
The relationships may be represented by 
the linear time-invariant transfer func¬ 
tions Mi and M2, (Fig. 1). 

(2) The time series representing the signals 
and random noise are assumed ergodic 
stationary, and have rational spectral 
density functions. 

(3) The criterion of performance used is to 
minimize the statistical mean square-
error between the estimate and the de¬ 
sired signal. 

(Il) The operation of the optimum filters is 
assumed linear. 

Mhile these four assumptions are not chosen arbi¬ 
trarily, they can be justified for many practical 
considerations. 

System Description 

Fig. 1 is a general schematic representation 
of the system. In the figure, r is the desired 
stationary random signal to be estimated by the 
measuring system. The measuring system contains 
two parts, the measuring instruments which are 
fixed, and the optimum filters which are to be 
synthesized. The desired signal is measured by 
two different noisy measuring instruments whose 
operations are assumed linear and time-invariant 
having linear stationary transfer functions My and 
Mg. In practice, the measuring instruments seldom 
have exactly linear operations. However, the small 
nonlinearities, which are usually undesirable, may 
be considered as equivalent instrument noise. The 
noise appearing at the output of each measuring 
instrument is denoted by ni and n2 which repre¬ 
sents the resultant of the internal noise, the ex¬ 
ternal noise, and noise equivalent of the nonline¬ 
arity of that particular instrument. Quantities 
ry and r2, are the hypothetical continuous outputs 
of the measuring instruments, which are the mix¬ 
tures of the clean signals ryc, T2c, and the noise 
nl, n2, respectively. One actual output of the 
measuring instruments appears in sampled form 
while the other appears in continuous form. These 
outputs are also the inputs to the optimum filters. 
The function of the optimum filter Hy and H2 is to 
weight the output of the measuring instrument My 
and M2 in such a way that the outputs of two fil¬ 
ters, when added, give the best continuous esti¬ 
mate, re, of the desired signal in the least¬ 
square sense. The hypothetical error generating 

scheme is shown on the figure by dashed lines. 
Before putting the system performance into the 
analytic expressions, a preliminary thought will 
be given about the nature of the optimum filters. 
The thought will lead one to an important obser¬ 
vation which governs the number of variables con¬ 
tained in each optimum filter transfer function. 

Time Varying Characteristic of the Optimum 
Filters -- An Observation^ 

For single-rate multiple measurement, the op¬ 
timum filters are stationary if their inputs are 
stationary. But the optimum filters of multiple 
measurement are time-varying even though their in¬ 
puts are stationary. This important characteris¬ 
tic must be included in the system analytic ex¬ 
pression. 

In Fig. 1, filter Hi receives input r( at all 
instants, while filter receives input rj inter¬ 
mittently. Since the output of Ho relies on its 
input only at sampling instants, the output be¬ 
tween the sampling instants is produced entirely 
by a prediction operation based on the previous 
sampled input. The farther the time is away from 
the previous sampling instant (referring to Fig.3) 
the more unreliable the prediction is. Therefore, 
when the input rj is less noisy than the input rf, 
one would expect that the filter H| weights its 
input heavier in between the sampling instants than 
near the sampling instants, and the filter Hæ 
weights its input heavier at and near the sampling 
instants than in between the sampling instants. 
As a consequence, the impulse response of the op¬ 
timum H| , which is h|(t,7'), must be a function of 
two independent variables t and T , where t is the 
time distance between the application time of in¬ 
put impulse and the observation time, and 7" is 
the time interval between the last sampling in¬ 
stant and the observation time. In the same 
manner, the impulse response of the optimum Hg, 
which is h¿( f ,7"), is also a function of two in¬ 
dependent variables f and "7" . 'T has the same 
meaning as in h( and f is the number of sampling 
instants between the application instant of the 
input impulse and the last sampling instant. In 
other words, H| is periodically time-varying fil¬ 
ters whose period is the same as the sampling 
period of the discrete input rj. 

Analytic Formulation of System 
Input-Output Relation 

Having considered the nature of the optimum 
filters, one is in a position to formulate the 
system analytic expressions. In Fig. 3, T is 
sampling period, t is the time of observation, 
t - yT -T is the instant when an impulse be 
applied to filter Hi. The functional notation of 
the two impulse responses of these filters are 
hl(t,T) and l^y,?-). These notations assume 
the following physical meaning. h^(t,7-) is the 
outout of filter Hi at time t in response to an 
input impulse applied t seconds before observation 
time. hj( y,7") is the output of filter H2 at 
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time t in response to an input impulse applied 
fT + y seconds before the observation time. The 
observation time is T seconds behind the last 
sampling instant of the sampled channel. 

The estimate, which is the output of the 
measuring system, is the algebraic sum of the out¬ 
puts of three filters, and is given by 

re(t) - / r1(t-t1)h1(t1,r) dtx

* r2(t-fT)h2(f, T) (1) 

where t is a dummy variable and P is a dummy num¬ 
ber. It should be noted that the response of any 
physical filter cannot depend on its future input, 
so the condition of physical realizability re¬ 
quires that the integration and the summations in 
Eq. 1 be taken over all the past inputs only. 

Mean Square-Error 

The error of the estimate is 
e(t) - r(t) - re(t) (2) 

and its squared value is 
e2(t) = r2(t)-2r(t)re(t) + re2(t) (3) 

By substituting Eqs. 2, and 3 into 1, one obtains 

e2(t) » r2(t) 
•/ ri(t-ti)hi(tj,7^dtijT r^(t-t2)h^(t2,T)dt2 

* 2y>?or2^”T~ ^2^^”^^ ~ tj.)hiiti/Ddtj^ 

r-o r2(t-T-fT)h2 (;,T) f or2(t-T- r T)h2 ( r, T) 

- 2 r(t) f* r1(t-t1)h1(t1,T)dt1

- 2 r(t) £ r° ^(t-T-fT^/yr) (U) 

where <r is a dummy number and t2 is a dumny 
variable. Averaging both sides of Eq. U over the 
ensemble of all possible combination of inputs and 
denoting this mean square-error by I, gives 

e2(t) 
r^(t) - 2/“ rí^rjít-ty) h^tp/id^ 

The wavy symbol, 
quantity under the 

')r2(t-T- o-T)h2 (^,r)h2( <r ,7) (J) 

T in Eq. 5 means that the 
symbol is ensemble averaged. 

- 2,^ 
+ ¿i (t-t^)r^(t-t^hi(tp T )h2(t2, T)dt( dt2

* 2 

In the theory of random processes, the corre¬ 
lation function of two time functions x(t) and 
y(t) is defined as 

^(tp (6) 
which is a function of two variables ti and t2. It 
is called auto-correlation function if y(t) = x(t), 

and cross-correlation function if y(t) / x(t). 

When the random processes are ergodic, the 
correlation function depends only on the time dis¬ 
tance between t^ and t2 rather than on both t^ and 
tp themselves. Denote this time distance by^ , 
then Eq. 6 becomes 

1 ) - x(t) y (t+ 1 ) 

Furthermore, under this condition, the ensemble 
moan, averaged over all possible x(t) y (t+ 7 ) is 
equal to the time-average of any x(t) y (t+ 7 ) 
over all t. That is 

ï ) = x(t) y (U 7) 
Ta 

• lim 1 ( x(t) y (t*7 ) dt (8) 
Ta— Ta * 

where Ta is an arbitrary long time interval over 
which the time-average is taken. Therefore Eq. 5 
can be expressed in terms of the correlation func¬ 
tions of the desired and the actual signals. In 
practice, the exact time functions of the random 
signals are never known. The information given 
for the synthesis of the optimum filters are 
either the correlation functions of the signals, 
or their transforms which are also called the 
spectral density functions. Writing Eq. 5 in 
term of the correlation functions helps one to 
obtain the solution of optimum filters as func¬ 
tions of these known quantities. 

I - 4e<°) 
- 4^.(0) - 2/ /rir (t1)h1(t1 r)dtj 

- 2 f ¿r2r(7+ fT)h2(f ,T) 

* „ (t1-t2)h1(t1,T)h1(t2,T) dt dt 

+ 2 dtj 

♦ 2Z «Sr?r2(fT-fT)h2(f,T)h2(<r ,7) (9) 

Eq. 9 is the general form of the mean square-error 
which is to be minimized in the following section. 

Minimization 

In this section the necessary and sufficient 
condition, that the optimum filters, h^, h- must 
satisfy to ensure a minimum mean square-error, is 
obtained by the method of calculus of variations. 

From now on the impulse responses hi(ti,T) 
and h2(/’,y) will be represented by hj(ti) and 
hg(f), respectively, to simplify the mathematical 
expressions. It is understood that these two 
functions are also functions of 'T. 

Let g! and gj be any differentiable function 
satisfying the condition 

gl(ti) = û tj-tO (10) 
g2(f ) - 0 
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where g' s are also functions ofT. Thon, if h's 
in Eq. 9 are replaced by (h + eg) 's, where e is a 
small real number, the effect will be to increase 
I by an amount of which is called the vari¬ 
ation of I. The variation △ I is obtained from 
Eq. 9 as 

+ ) +Ê2 gl(f) gjCö-)] 

+ / / [e61 ^1^1 ^2^ 

+ &g1(t2)h1(t1> +e?gi(t1)g1(t2)J dt^tj 

“ 2 J ) 

- ^(h) égi(ti) dtx

* 2f 

+ 6g1(t1)h2(;) » é2g2(pg1(t1)j dtx (11) 

Assume that for any physical realizable g's, I has 
continuous derivatives with respect to €. This 
implies unique derivative at each point, and 
assures the differentiability of I with respect to 
é. his for which I • I is minimum must satisfy 
the condition 

[4t<i+ai)] -° <i2 > L JésO L é “O 

for all physically realizable g’s. Different!-
ating Eq. 11 with respect to e and then settinge 
equal to zero, gives 

’ H ^2r2<<rT-fT)[g2(/’'h2((r) * g2«r)n2(r )J 

♦/ ./ 0r r̂^(t^-ti)^g^(t j)h^(t2)+g^(t2)hj_(t]_)|dtjdt2

- 2f ¿r/rr^W) - ¿r/h^b^i 

+2j/°’ ^r^ti-fY-T^^hjCt^+g^tph^)] dt^O 

(13) 

By changing f to <T and <r to f in the first term 
and noting that ^r2r2 even functloni the 
first term becomes 

2 ^2r2(<rT-f,T)g2(f) h2<0~)- W 

Similarly, the second term may be written as 

2 /*/“ ^r^-h^l^i)*!^) dtxdt2. (15) 

Combining Eqs. 13, 11», 15 and rearranging the 
terms 

2/ gi (ty) (^2”^1^1^2^^2 

+ jSr2(tr/T‘T)h2(f 5 " ^r^l^l 

+ 2 J 41r2<ti-fr-T)h1(t1)dt1 + z 

(<TT- freier) - 0r /fT-T)] - o (16) 

Since Eq. 16 must hold for any physically realiz¬ 
able g's, it requires that the expressions inside 
the brackets must equal to zero individually. That 
is, 

/" ^r1r1(t2“ti)h1(t2)dt2 ♦ £ ra (t1-/>T-T)h2(y) 

" ^r^ ‘ 0 t -° (i7 > 

- ¿ (fT-^ = 0 (18) 

The above derivation has shown that Eqs. 17 
and 18 impose the necessary condition that the 
optimum filter h's must satisfy. The condition is 
also sufficient. For 

2 
1/2 )J ’ 

* ¿ / ^r1r1̂ t2”^1^1^1^1^2^ dtldt2 

+ 2 pf = 0 (19)
which shows that at the extreme point the variation 
function concaves upward and the point is a mini¬ 
mum. The 5 sign, in Eq. 19, holds, since the 
equation has the form of 
2 2 2 
A + 2AB * B = (A + B) (20) 

which is always nonnegative for real A and B. 

Eqs. 17 and 18 are two integral equations 
representing the basic relations in the design of 
optimum linear filters shown in Fig. 1 on a mean 
square-error basis. Solution of these equations 
yields the optimum filters. It is observed that 
Eqs. 17 and 18 resemble the convolution inte¬ 
grals21 and summations. This suggests that their 
solution may be obtained by transforming the 
equations to and solving the equations in the 
frequency domain. Since the integral equations 
hold only for certain ranges of the time variables 
and since the correlation functions have non¬ 
vanishing values outside these ranges, some modi¬ 
fications have to be made in taking the transforms. 
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Solution of Integral Equations 

Let 
f| ^1^ " ^r3r3̂ 2-tl^ dt2 

+ 2 4,r. (fT^T-t!)^/ ) - 4 r(ti) 
= 0 t • 7 I 

f2(f) ’ Z'^rfrgitj- f T-T) h( (4) d^ 

(21) 

* ^rJ^T-fT) h2(<r) - 4 (^T+T) (22) 
C=0 ¿ ¿ 2 

Then, Eqs. 17 and 18 are equivalent to 

f| (4) - o ^50 

4^) = o r< ° 

(23) 

(2b) 

Taking the two-sided Laplace transforms of Eqs. 17 
and 18 with respect to ti and P, respectively, one 
obtains 

$r1r^s)H| (s) + «^(s^We"07"-^ r(s) = Fj/s) 

(25) 

[^r/8) H1(s)eS7']* + Sr2r? (z) H2(z) 

" [ar2ris1eSTJ* ’ F2<z> (26 ) 

where [ ] denotes that the term inside the 

brackets is Z-transformed, 

4 r (z1 
r2r2 = the power-spectral density 

functions of r^ and rÄ 
respectively, and 

Sr2(s)’ Ws)> M s)
= the cross-spectral density 

functions of the signals r^, 
r2 and the desired signal r. 

"ote that If]_(s) is a function of s and T , and 
II2(z) is a function of z and T . The transfer 
function Fj_(s) and F2(z) should be analytic on the 
left-half of the s-plane and inside unit-circle 
of the z-plane, respectively, since fq(t) and f2(/") 
vanish over the range (0,co) as expressed in Eqs. 
23 and 2h. In other words, F-^(s) may have poles 
only in the right-half s-plane, while F2(z) may 
have poles only outside the unit-circle of z-plane. 
Furtier, from Eq. 2b, 4(7“) = 0 for /èO, there¬ 
fore F2(z) can be expressed as an ascending poly¬ 
nomial in the positive power of z without the 
constant term. 

F2(z) = z I 
=0 

where all the poles of G(z) are outside the unit¬ 
circle of z-plane. 

C.z' = zG?(z) 

In the following, Laplace transforms are 
represented by upper case letters, and their com¬ 
plex conjugates are represented by barred upper 
case letters. For example, 

R - R(s) -JÇ[r(t)], R = R(s) 
Also, Z-transforms are represented by starred 
upper case letters, and their complex conjugates 
by starred upper case letters topped with bars. 
For example. 

R* ° R(z) - R*(s) =«Z[r*(t)] , 

K* = R(z“l) “ R*(s3 

Using the simplified notation defined Eos. 
25 and 26 become 

$44 H1 + $rlr2 0 T" ^i1" + F1 ( 

+ z"lar2r2H2 ’ (28 > 

which are to be solved for H, and H*. Because of 
the mixing of the Laplace transforms and the Z-
transforms, Eqs. 27 and 28 cannot be solved 
directly by the method of matrices. A method of 
elimination and substitution will be used instead. 

& 
Multiply Eq. 27 by r2rl gives 

*44 

2 1 esT 
ar^r$r. 

ir r 11 

+ ^44 F,esr . 
ar r 
rlrl 

Z-transform Eq. 29 and then multiply it by z"1. 

1'1 

$44 Fq^ (30) 

rí-, V» ö-~ v« -, 

By subtracting one from the other, the terms con¬ 
taining Hj in Eqs. 28 and 30 can be eliminated as 

(31) 

or simply 
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5 
rlrl 

The factor 5 
r2r2 

* 
JV2JZ1 

(32) 

in the left¬ 

hand side of Eq. 32 is a rational function in z, 
and is symmetrical with respect to z and z_J- . It 
can be written as the product of two factors 

(33) 

where Y*has all its poles and zeros inside the 
unit-circle, while Ÿ* has all its outside. Sub¬ 
stituting Eq. 33 into Eq. 32 and dividing both 
sides by Y* give 

-1 5_ _ 
2 r2rl sr <3W 

In general, a rational algebraic function 
Q(z) in z can be written as a partial fraction 
expansion in terms of the roots of the denominator 
and a polynomial P(z) in z. 

Q(Z) - + * P(Z) 
10(^1 ^1 lßjl>l Z- ßj 

= (q(z)I * Q(z) (35) 
I ' i ( ) o 

where n

il Y Ai Y Az"1

(36)

is analytic outside the unit-circle, and 

(«4 . X -ij- • <”> 
I J o IßjIM rj 

is analytic inside the unit-circle. Note that the 
constant term of the polynomial P(z) should be 
grouped into Q0(z). The reason for doing so will 
become apparent later. 

In Eq. 3U, the term on the left-hand side is 
analytic outside the unit-circle, since Hj is 
implemented to be a stable function and Y* is 
analytic outside the unit-circle by definition. 
The first term on the right-hand side of Eo. 3h, 
which is completely known, may have poles both 
inside and outside the unit-circle. Using the 
method characterized by Eqs. 35, 36, and 37, this 
term may be written as the sum of two terms, one 
is analytic outside the unit-circle and the other 
is analytic inside the unit-circle. The second 
right side term of Eq. 3U is known to be analytic 
inside the unit-circle from the definition of 
Gj and Y*. The last term 

r 5
1 r2rl F esT 
Y» - 1

(38) 

on the right-hand side of Eq. 3U again may have 
poles both inside and outside the unit-circle. 
This term is not completely known, therefore the 
partial fraction technique of Eq. V-20 cannot be 
applied. Examining Eq. (38) closely, one sees that 
all its inside poles are known, since they are the 
inside poles of the known quantity 

5 r2ri 

Denote these poles by o( ^'s, then the part of Eq. 
(38) which is analytic outside the unit-circle 
may be expressed as 

5 1

L riri 

Z Aiz ... 
i 1- ^i® 

(39) 

where 1, and A^'s 
mined. Then Eq. 3h can 

Y* «2 -

2^4 1 l-^z 

are constants to be deter-
be written as 

the left-hand side of which is analytic outside 
the unit-circle while the right-hand side of it 
is analytic inside the unit-circle. In order to 
satisfy Eq. Uo both sides must equal to a con¬ 
stant K^. 
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A.z-1

1- 0(1 Z-' 

Dividing by z" ï* and rearranging the terms, one 

z 
(hl) 

Examining Eq. 1*1 one sees that the term H2 does not 
have a z terra, and the factors 

and 

do not have a constant terra. Consequently, 
must be zero. The optimum H* is 

(1*2) 

The unknown constants Aj 's are remained to be de¬ 
termined. Remembering that in separating the 
function Q(z) into {Q(z)ji and{o(z)}0 , as shown 
in Eq. 35, the constant term of the polynomial 
P(z) was grouped into {q(z)|q. This should be so 
because if ^(z)}^ contained a constant then the 
expression for H^, Eq. 1*2 would have a prediction 
term z which is not physically realizable. 

The transfer function can be obtained by 
substituting Eq. 1*2 into 27 and proceeding as foll¬ 
ows; In Eq. 27 the power spectral density 5r^r̂ , 
which is a rational and even function in s, may be 
written as the product of two functions 

XX» (1*3) 

where X has all its poles and zeros on the LHP 
while X has all its poles on the RHP. Substitut¬ 
ing Eq. 1*3 into 27, dividing both sides by X, and 
rearranging the terms. 

Function H^ is then to be obtained using a method 
similar to that for obtaining H^ . 

Let U(s) be a closed function in s, which 
may have essential singularities on either LHP 
or RHP but not on both. Further, U(S) vanishes, 
being at leas t of the order of 1 as <0 approaches 
°o . Then U(s) may be written as^ 

U(S) = + U(sÜ (1*5) 
I Jl I > R 

where |TJ(s)J has all its poles on the LHP while 

[u(s)}r has all its poles on the RHP, and both 
these two functions are closed. 

In Eq. 1*0, the left-hand side term has only 
LHP poles, since H^ is implemented to be a stable 
function and X has only LHP poles by definition. 
The second term on the right-hand side has only 
RHP poles from the definitions of F^ and X. The 
first term on the right-hand side may have poles 
on both sides of the s-plane. This term can be 
separated into two parts using the method 
characterized by Eq. 1*5. Therefore Eq. 1*1* may be 
expressed as 

in which the left-hand side is analytic on the 
RHP while the right-hand side is analytic on the 
LHP. In order to satisfy this equation both 
sides must be equal to a constant Kg. Since the 
output of a physical system must vanish as co 
approaches co , so Kj» o. Thus 

Dividing this expression by X and rearranging 
the terms, the optimum H. is given by 

(1*6) 

It remains to determine the constant A.'s 
contained in Eq. 1*2. This can be done by sub¬ 
stituting both Eqs. 1*2 and 1*6 into Eq. 28 and 
comparing the coefficients of the terms having 
like poles, it should be remembered that both 
optimum filters Ho and Hp are functions of two 
variables. 
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It is interesting to note that if the sampled 
branch does not exist, then H? = o. Eq. h6 becomes 

( 5 Z \ 
1 I rl 

H1 ’ — ÿ (1*7) 
I L 

which is the well known wiener filter as it 
should be. On the other hand, if the continuous 
branch does not exist, then = o and all the 
correlation functions relating to the input r^ 
do not come into the calculation. Eq. h2 becomes 

(U8) 

which is similar to the result obtained by 
Franklin9. 

Error Analysis 

When h-^ and h2 are the optimum functions, the 
necessary and sufficient condition expressed by 
Eqs. 17 and 18 must be satisfied. Substituting 
these two equations into Eq. 9, the mean square¬ 
error of the optimum system is given by 

^ee^0) * $rr(°) “ ^r-jr (tl)hl(ti,TI)dt^ 

- Z ^r2r(/:>T+T)h2(/,r) (1*9) 

Eq. U9 gives the mean square-error of the optimum 
system in terms of filter impulse responses and the 
correlation functions. The mean square-error can 
also be expressed in terms of frequency domain 
quantities as” 

•’=o 

Eq. h9 may be used to find the mean square-error 
when the correlation functions and filter impulse 
responses are known. On the other hand, when 
spectral density functions and filter transfer 
functions are known, one should use Ea. $0. 

Example I 

To illustrate the method presented in 
previous section, consider a simple case where the 
sampled-input is noise-free and the noise in the 
continuous input is uncorrelated with the signal. 
The spectral density functions of the signals and 
noise, shown in yig. 1, are 

$rr * õ 
r2r2 

_h 
h-s7" 

5 r r 11 
8-s 
h- ' 

5 
n2n2 

" 1 (white noise) 

The sampling period T«l. Since signals and noise 
are uncorrelated Eq. 33 reduces to 

= ärr 

* 
£ rr nin-

(51) 

Using the given data, this equation gives 

J*-s^_ 
8-s2

0.705 
(l-0.QÍ9z) (1-0.059z“l) 

Thus, 

Y* = °«839 
1-0.059Z-1

Ÿ* = _ °»"9
1-0.059Z J

The factor 

ri 

5 
lnl 

heS~ 

= O.O839(b+az) 
(1-0.059Z) (1-0.059Z-1 ) 

where 
a = sinh J8 

b = sinh (1-7') J8 

To find the poles of the last term of Eq. h2, 
which are inside the unit-circle, one sees that 
the quantity 
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- _4_ 
Sri ' 8"s?

has a IHP pole at s = -J8. Therefore 

* » 
Vl 

rlrl 

has an inside-pole at 
ÍR 

2 - c<- e J = 0.059 (55) 

Substituting Eqs. 53, 5U, and 55 into Eq-4-Z 
results in 

H* . (l-O.O59z"l)z 
2 0.839 

( -1 (1-O.O59Z )_ O.O839(b+az)__1 
I 0.839 (l-O.O59z) (1-O.O59Z-1 ) ( 
1 ) i 

+ l-° «059z"1 A 
0.839 l-O.O59z-±

I r -1 s . (1-O.O59Z )z I O.lz (b+az) 1 + A 

0.839 [ l-O.O59z-l J °’ 839

Thus, the optimum H* is given by 

H* - -2il£8i£i2ã9iLt_â = K (56) 
¿ 0.839 

where K is a constant with respect to z, but a 
function of 7^. To find the optimum H^, Eq. 1*3 is 
first used to give 

ï 
rlrl 

Therefore 

X - J8 + s 
2 + s 

X - JLi-S 
2 - s 

(57) 

Mote that 

(58) 

Substituting Eqs. 56, 57, and 58 into U6 

"x-^4 
s - 2 r i» _ h 
s - Í8 , h - s2 h - s2

s + 2 I_U_ t _ 
s + Ï8 (J8 - s)(2 + s)J 

1 L 

s + 2Í Ue~sr K 
s + /8 ( 8-s)(2+s) 

Therefore the optimum H^ is 

„ _ 0.828 he“37^ 0.828 e'^ (s+2) K 
Hi —— + “7—:-?—;— 

It should be pointed out that the term inside the 
second braces of Eq. V-61 does not converge for 
Re [s^ = , Therefore the residue of the IHP 
term cannot be found. However, the residue of the 
RHP terms can readily be evaluated. So the part, 
which is analytic in the RHP, is obtained by 
taking the difference between the original term and 
the RHP term, consequently the residue of Hj at 
the RHP pole s = /s' vanishes resulting in a stable 
filter. 

The constant A, or K, or Eq. 56 is obtained 
by substituting both H| and H-^ into Eq. 28 and 
equating all the terms having like poles which 
are inside the unit-circle, one obtains the 
equation 

- 0.828 e~^ + 0.705 K + 0.121 K e -2^- 0. 

Solving this equation the value of K is found 

„ -ftr 
K - 1-175 8_ 

1 + 0.175 e“2 ^8 r
(60) 

This completes the solution of this problem. 
solution is rewritten in the following. 

Hj - K 
1.175 e 

~/8T 

1 + 0.175 e-2

„ 0.828 he"srK 
H1 - -+ — --

s + 8 s - 8 

0.828 e ^rK(s^2 ) 

The 

(61) 

(62) 

It is interesting to note that when T= 0 

H| - K - 1 
(63) 

- 0 

as they should be, since the sampled-input is 
noise-free and should have complete transmission 
at sampling instants. 

The impusle responses of hjiy®) and h^ (t) 
are given by 

7 1 + 0.175 e 7

liiere Sj>,o is the Kronecker delta, and 

hj (t) - 0.828 e + l.hlh K sinh (t-?j U(t-7) 
- J&T -fâT 

- 0.585 e K sinh /8t - 0.828 e k cosh /8t 
(65) 
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Tables 1 and 2 show the calculated values of hpQf) 
and h^(t) as functions ofy, T, and tjTj respec¬ 
tively. The impulse response curves are shown in 
Figs, ü and 5. 

Exact realization of the filters expressed by 
Eqs. 61 and 62 requires the use of amplifiers 
having exponentially time-varyjng gain. A proposed 
schematic diagram for filter H2 is given in Fig. 6. 
However, since the impulse response of is one 
dimensional as shown in Fig. -4 > this filter can 
be approximated by lumped constant networks using 
curve-fitting technique. Filter H^, as expressed 
in Eq. 62, can be realized by first plotting the 
impulse response surface of thi s filter and then 
approximate the response surface by means of 
passive network elements and varying gain amplifier. 

The mean souare-error can be calculated using 
Eq. 50 as8

¿ee (o) * °« 828 - °*828

The value of K is given by Eq. 60. Thus, 

- 0.828 O.°?5 

* 0.175 
(66) 

This equation gives the mean square-error averaged 
over the entire ensemble, and is a function of T , 
the time distance between the last sampling instant 
and the observation time. Table 3 lists the values 
of $ee (o) for various values ofT , and the result 
is plotted in Fig. 7. The mean value of iee (o) 
averaged «ver all 'T'is found to be 

(o) dT = 0.571*5 (67) 

It is worth while finding out what reduction 
of the mean square-error has been made with this 
optimum filtering system compared to the mean 
square-error of the Wiener’s and Franklin’s filters, 
'•/hen only the continuous input is used, the optimum 
filter is derived by Wiener8- as 

where X and X are defined in Eq. 1*3. Using the 
given spectral density function, one obtains the 
optimum filter. 

The mean square-error is given by 

®ee (°) - -1. / Jrr _ ds

1 /J* r ** 8 - s2 (0.828 )?1 
° 2ÍT -i» L - s2 " U - s2 g _ g2 J 

- 1 - 0.172 = 0.828 (70) 

Comparing the mean square-error of the double 
measurement to that of Wiener filter 

0.571*5 - 0.828 _ _ O.2535 _ 

O.57h5 0.571*5 

shows that the former system reduces the mean 
square-error by 1*1*.2 per cent. 

When only the sampled input is used the 
optimum filter is found by Franklin8 as 

H2(s) (72) 

where W* = b* , rr 
and has all its poles and zeros inside the 
unit-circle while W* has all its outside. Using 
the given spectral density function, 

0.9817 1 

1 - 0.135 z"1 1 - 0.135 Z 

0.9817 W « -— , 
1 - 0.135 Z"1

and W* = -i- . 
1 - 0.135 Z 

Hence, 

H . 1 - 0.135 Z“1h2 = -

s + 2 
(73) 

The mean square-error is 

$ee(°) = -i— T srr ” SrrH2Ñ2] ds 
2Tj 

= 1 /7 h + °- 9817
2TTJ * (s+2)(s-2) 

> 1 - 0.21*5 - 0.755 (71*) 

Comparing the results of Eqs. V-78 and V-89 shows 
that the double measurement reduces the mean 
square-error by 

0.571*5 - 0.755 
0.571*5 

= 31.1* % (75) 
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Simplified Method of Solution 
for a Special Case 

A general method has been presented for 
solving the set of simultaneous integral equations 
of a general double measurement having one sampled 
and one continuous input. The procedure is quite 
involved as can be seen from example I. Com¬ 
plication is encountered especially in determining 
the unknown coefficient A^ in Eqs. 2*2 and U6 when 
substituting both equations into Eq. 28 and com¬ 
paring the coefficients of the partial fraction 
terms having like poles. However, a shortcut can 
be used to determine these coefficients for an 
important special case which occurs quite often 
in guidance control. 

frequently, the noise in the sampled input is 
so small that the input may be regarded as white¬ 
noise. Furthermore, the functions and M^, 
representing the characteristics of the measuring 
instruments, are often minimum-phase. Under such 
condition 

®r2r2 ’ ®rr M2 $2 

®r r ’ ®rr rl *1 * ®n n 
11 11 

j = P 5 =o 
V1 n2n2 

r r? "rr • 1 "2 ®r2r1 Srr 1

$r̂ r “ ®rr -' I ^r^r “ $rr 2 

then Eqs. 27 and 28 become 

®r H1 * ®rr ?1 M2 K2e"^’ »rr (?6)

[«rr «2 M1 H1 ^3* * L®rr «2 ”2]* «2 

’ l*rr «2 * zG2 

The solution of H2 and HT may readily be 
from Eqs. Ul and u6 as 

H* , _z_ [V *rr ?2 esM 
Y* Ÿ* Ji 

ly Ai 
+ y* . 1 -

H, --LÍ * d -*2 
X I X 

(77) 

obtained 

(78) 

(79) 

where 

Y* Y*= 
5 M„ "rr 2 2 

and 0(^'3 are the poles of W‘2 «1 

which are inside the unit circle. 

Instead of substituting Eqs. 78 and 79 back 
into 77 to determine the unknown constants A^'s^a 
more convenient method will be explored to find 
these constants. Multiplying Eq. 76 by ^2 es7" 

Ml 
and Z-transforming 
r 
5riri 

srr m 2 

the whole expression. gives 

(80) 

Subtracting Eq. 77 from 80 

or, after a simple calculation. 

In general may be written as 

(81) 

(82) 

where is a finite polynomial in s, D2 is a 
finite polynomial in z, and M is a mixed poly¬ 
nomial of both s and z. Substituting Eq. 82 
into 81, and multiplying both sides by D* 

r — -1* r n* 

y — e Fi DJ - zG2 O2 J L M1 J 
Since M^ and M2 are minimum phase, the right-hand 
side of this equation has all its poles outside 
the unit-circle while the left-hand side has poles 
both inside and outside the unit-circle. Sepa¬ 
rating the left-hand side term into two parts, 
one has only inside poles and the other has only 
outside poles, this equation becomes 
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Since the left-hand side of this equation is 
analytic outside the unit-circle both must be 
equal to a constant Kq. Thus, 

(83) 

In Eq. 83, the quantity Mg does not have LHP 

pole, while the quantity N_ has only LHP poles 

which are the roots of Dq. Therefore the poles of 

are all due to the poles of Hp 

To satisfy Eq. 83, it is necessary that 

has zero residue at its various poles on the 
z-plane. An equivalent statement describing this 
condition on the s-plane is the following. 

(1) The residue of M at each real pole or 
»1 

(2) 

each complex pole whose imaginary com-
imaginary component is not equal to ÏJT 
must vanish. æ 

The sum of the residues of "¿

- *1 

e^JL 
D1 

at the complex roots of Dq whose imagi¬ 
nary components are equal to n ~rr 

T 
must vanish. 

Since 1 is in general not zero at the roots of 
D* 

the above statement can be put into a more 
convenient form as follows. 

(1) Residue [ H^ Q 
real pole of Hq, or 
complex pole of Hq whose 
imaginary part n it 

T 
(8b) 

(2) ^Residues F ^2 e^Hi] =- 0 
L M1 J

complex poles of H^ 
whose imaginary part 
- n 

T 

Eq. 8b offers very helpful information in 
determining the unknown constants Aq's of Eqs. 78 
and 79. This is done by finding the residues of 

H1 or JL e3̂  
LM1 

at various poles of Hq and 

setting them equal to zero, as expressed in Eq. 8b. 
Since these residues are function of the unknown 
constants they can be solved for the constants. In 
the next section an example is given to illustrate 
this method. 

Example II 

Consider a measuring system shown in iig. 8 
where the sampled channel measures the desired 
signal directly while the continuous channel 
measures the rate of change of desired signal. So 
Mg = 1 and Mq = s. Let the various spectral density 
functions be 

b 
$rr ° 71 ~\ = $r2r2 = $ror = 5rr2 (b-s£)(-s¿) ‘ £ ¿ ¿

8-s?
^i ’ T77" 

(85) 

b 
1 ~2rl (b-s2)(-s) 

The sampling period T is assumed unity. Eqs. 78 
and 79 are used to get the solution of the optimum 
filter transfer functions H* and Hq. First, 
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* 

" O.5di(l+d2z) 
-h 

s2(8-s2) 
0.0101*3 (b+az) 

(l-O.O59z)(1-0.059z) 

(86) 
Let 

(90) 

Then The quantity 
(91) 

Now 
X X = 8, 

so 
is at 

(92) 

(87) z - «X- 0.059 into 79, 5. 

(-S) 79 the quantity In Eq. 
s-j8 s2(h-s2) 

>• 

L 

which, after evaluating the LHP braces 

0.0101*3 (b+az) 
(88) s(s + Jo) 

where 

d2
(89) 

a 
(9U) 

b 

0.558(1+0.189z) 
(l-z)(l-O.O59z) 

-¿sr e 

dl 

H1 -TV-
(l-O.O59z)(l-O.O59z ) 

1.27(1-0. 59z"1) - K(l-z~X) 

_ (1-z)(1-z-1 ) 

■ -1» es r

_s (h-s ) 

s2 -8 

®rr «2 ^2 
®r r 
rlrl 

1 + 0.189z“1

The last step is to 
is done by applying 
expressed in Eq. 81* 

Residue ■ 
s=0 

K - 0.0315 (b+O.O59a) + -
0.558 

M2 es

Therefore, 
V* = 0.558(1+0. 189z"1) 

(1-z 1)(1-0.O59z-1 ) 

has an LHP pole at s = -J8, so the corresponding 
inside-pole of 

0.293s + 1.1*11* (s+2)(O.276k - 0.325) 

»rr *2 M1 

®rlrl 

he“5̂  ’ 

s(s2-8) _ 

f^-s 1.27(1-0.059z~1)-K(l-z~1) ) 
L“ \ 1 + 0.189z"1 -

8-3? 
l*-s? 

determine the constant K. This 
to Eq. 93 the residue condition 
Residue of Hj at s » 0 is 

(1-z)(l-O.O59z)z~1 

0.558(1=).189z) 

h; 
-i* 

s(8-s2) 

H1 = 

Srr ^2 M1 
r 

rri 

Substituting Eqa. 85 through 88 into 78 
* z(l-z-1)(l-O.O59z-1 ) 
h2 ——-—;- X 

O.558(1+O.189z-1 ) 

X = ■ 8-.— 

A 
1-0.059z“1

s-2 -1* 

(1-z"1) K - 1.27 (1 - 0.059z"1) 
1 + 0.189z"1

= 0.311(1+0. 189z) (1+0. 189z"1)_ 

(1-z)(1-z"1)(1-O.059z)(1-0.059z“1) 

lA1̂  - 0.5 = o 
8 

0.5 d1(l+d2z) 

(l-z)d-z"1) 

1.27(1-0.059z"1) [0.0176(b+0.059a)-A] (1-z“1

0.558(1+0.189z"1) 0.558(1+0. 189z”1) 

X - 8 - s 
2 - s 

Substituting Eqs. 91, 92 and 
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and the residue of H^ at s = -/8" - -2.828 is 

Residue ThJ = -0.207 - O.Oh77e"^T 
s«- 8 

+ (O.9U9e^r+ O.OhOÇe"^^) K (95) 

Letting Eq. 95 equal to zero, the constant K is 
found as _ 

, -fir 
K __O.Oli77e_+ 0.207 _ 

O.9l*9e^=+ 0.0h05e“^7" 

The final solution of the optimum filters is there¬ 
fore given by Eqs. 91, 93, and 96. Mote that when 
T-O 

H* - 1 

Hx - 0 ■ 

Tables h, 5, and 6 give the calculated values of K, 
H^, and as functions of their variables. The 
impulse responses of hj(n) and h.(t) are shown in 
Figs. 9 and 10. 

Conclus ions 

In general a multiple measurement may consist 
of sampled-inputs of various sampling rates as 
well as continuous innuts. A system of this type 
is referred to as roultirate multiple measuring 
system, jt is explored in this paper that a multi¬ 
rate multiple measuring system is time-varying even 
though its input are stationary. 

A double measurement with one continuous-input 
and one sampled-input has been treated in detail. 
It is proposed that the set of simultaneous inte¬ 
gral equations, which impose the necessary and 
sufficient condition of the optimum filter, be 
solved in the frequency domain using the method of 
undetermined coefficients. The solutions are the 
transfer functions of the optimum filters. Very 
often the sampled-input of this double measure¬ 
ment may be considered noise-free. A residue con¬ 
dition is developed to simplify the determination 
of the unknown coefficients under this situation. 

Methods of evaluating mean square-error of the 
optimum system in frequency domain as well as in 
time domain are given. Two examples are worked out 
to illustrate the methods. It is found, in a typi¬ 
cal double measurement, the mean square-error is 
UU.2Ï lower than that of Wiener's filter and 31.lit 
lower than that of Franklin's filter. 
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?" 
/”° 

f *0 

0 
0.2 
o.U 
0.6 
0.8 
1.0 

1.000 
0.633 
0.372 
0.2111 
0.122 
0.069 

0 
0 
0 
0 
0 
0 

U / X 1.175 r 
’ 1 . 0.1T5 

Table 1. Calculated Values of h2(jo,7-)> 
Example I 

-t 
second 

hi(t,T) 

T-0 7" -0.2 T-0.li T-0.6 T-0.8 /-l.O _ 
0.00 
0.02 
O.Oh 
0.06 
0.08 
0.10 
0.15 
0.20 
0.30 
0.110 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.531 
0.1179 
0.112 
0.363 
0.311 
0.256 
0.127 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0.733 
0.683 
0.638 
0.591 
0.5119 
0.507 
0.1108 
0.311 
0.151 

0 
0 
0 
0 
0 
0 
0 

0.796 
9.753 
0.71 
0.663 
0.623 
0.586 
0.1198 
0.1113 
0.285 
0.180 
0.090 

0 
0 
0 
0 
0 

0.818 
0.776 
0.729 
0.68? 
0.650 
0.612 
0.527 
0.Ui7 
0.330 
0.230 
0.170 
0.100 
0.050 

0 
0 
0 

0.825 
0.7811 
0.7118 
0.695 
0.657 
0.621 
0.538 
0.1159 
0.3116 
0.250 
0.190 
O.lliO 
0.100 
0.050 
0.030 

0 

Table 2. Calculated Values of hj(t,T ), Example I 

7" ®ee(Q) mean 

0.0 
0.2 
O.li 
0.6 
0.8 
1.0 

0.000 
0.531 
0.729 
0.795 
0.818 
0.825 

0.57115 

0.925 
®ee(0) = °* 828 - 2̂ r

0.175 
Table 3. Calculated Values of Mean Square Error 

0ee (O) vs.T j Example I 

0.01177 0.207 

e"2̂  K 

0.0 
0.2 
O.li 
0.6 
0.8 
1.0 

1.000 
0.568 
0.323 
0.183 
0.10Í1 
0.059 

1.000 
0.323 
0.1011 
0.0333 
0.0107 
0.0035 

0.265 
0.139 
0.7511 
0.01115 
0.0229 
0.0131 

O.9h9 eVS?" + 0.01405"^r
Table li. Calculated Values of K as Function of 

Example II 

Table 6. Calculated Values of h^t^T), Example II 

t 
T - 0.0 t-- =0.5 T- 1.0 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.2065 
0.1531 
-0.03167 
-0.0290 
0.0003 
0.00015 
0.0000— 

0.271113 
0.373 
0.178 
-0.0375 
-0.03653 
0.01319 
0.00395 

?" H (z,T) 

0.0 1 

0.2 1,126+0.0611z"1 . 1.126-0.Ui9z-1+ O.O283z"?-O.OO533Z"3+ 0.00Hlz -li- . . . 
1+0.189z"1

0.11 l.ig+O.QQOliz"1 . 1>19 _ o.221i6z-1+ O.O1i25z"? -O.OO8O3z"3+O.OO15z-Í4 - . . . 
1+O.189Z-1 

0.6 1.2211-0. 0235z"1 _ _ o.255z-1+ 0.01182z"2 -0.009z“3 + O.OO172z -li - . . . 
1+0. 189z"1 ____ 

0.8 1.2112-0.052z"1 „ 1.2112 - 0.32z"1 + O.O6O5z"'” - O.Ollhz”3 + 0.00216z ^ - . . . 
1+0.189z"1 ________ 

Table 5. Calculated Values of H2(z,T), Example II 
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Fig. 1. Double Measurement with Sampled and Continuous Inputs 

Dato 

Input 

Dato 

Optimum Fitter 

Fig. 3. Definition of Time Variables for System Shown in Fig. 1 

Fig. 2. Parallel Computation Using both Digital and Analog Computers Fig. 4. Impulse Response of Example I 

Fig. 5. Impulse Response of Hj(s,t), Example I 
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Urs e 
i • 0.175e 

Fig. 6. Schematic Diagram for H2(z,t), Example I 

Fig- 7- 1^0) vs - T for Example 1 

Fig. 8. System of Example II 
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Fig. 9. Impulse Response of H2(z,t), Example II 
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MINIMAL TIME CONTROL WITH MULTIPLE 
SATURATION LIMITS 

S. S. L. Chang 
New York University-
New York 55> New York 

Summary 

General rules are proved for minimal time 
control of a linear system with the constraints 
that both the manipulated variable m(t) and its 
derivative m(t) are amplitude limited: (1) m(t) 
is always at its extreme value unless m(t) is at 
its extreme value, (2) the minimal time path is 
unique and consequently optimum switching bound¬ 
aries can be defined, and (5) the choice of m(t) 
maximizes a Hamiltonian with a modified adjoint 
function. 

The above rules are applied to third order 
control systems with decidedly favorable results. 

Introduction 

The paper is aimed at removing one essential 
but impractical condition in the present optimum 
control theory. In both Pontryagin's maximum 
principle and the better known "bang-bang" con¬ 
trol, the manipulated variable or rudder is as¬ 
sumed to be inertialess.1"6 Its position can be 
changed instantly from -a to a. Yet this is 
never true in actual ships and planes. 

The problem can be considered as a special 
case of a more general problem, that of optimal 
control in bounded phase space. For instance, in 
controlling an airplane, the elevator and ailer¬ 
ons are limited in both speed and displacement. 
One way to remove the multiple limits on the 
movements of the controls is to consider the ve¬ 
locities of the elevator and ailerons as controls 
only, and to regard the displacements as phase 
coordinates together with the other dynamical 
variables of the airplane. Then the phase coor¬ 
dinates representing the displacements are 
bounded. 

The general problem of optimal control in 
bounded phase space has been investigated by the 
writer among others.s-8 A necessary condition 
for optimal control was obtained and was also 
shown to be sufficient under certain conditions. 
While the result is simple enough, its rigorous 
proof is quite lengthy and involved.9

Using considerably simpler mathematics, the 
present paper gives an independent proof of a 
necessary and sufficient condition for minimal 
time control with multiple saturation limits. 
The condition is then shown to be identical with 
the writer's more general result. 

In practical terms, the condition means that 
the minimal time control for a system with multi¬ 
ple saturation limits is a pang-bang system. At 
all times either the velocity or the displacement 
of each control is at its maximum value. For the 

autonomous case optimum switching boundaries are 
shown to exist and examples are given to illus¬ 
trate its construction. 

Analytical Preliminaries 

The Problem 

The control problem is defined by 

x = Fx + Bm + c (1) 

ai < m < as bi < m 5 bg (2) 

where x and ¿ are column vectors of ni dimensions, 
m,ai,a2,bi and bs are column vectors of n2 dimen-
sions7 and F^ and B_are matrices. The vector rela¬ 
tion (2) means that the inequalities hold for each 
component. The elements of F,B,ai,a2,bi,b2 and c, 
are bounded and continuous functions of time. The 
vector x is the state vector representing the dy-
namical-state of the system. The vector m is the 
control vector which can be varied at will within 
the limitations of (2). It is further assumed that 

bi < ai < b2 
MA M* 

b1 < a 2  < b£ (5) 

The inequalities (5) assure that the full range 
of m can be utilized. 

The initial condition is represented by x(0) 
and m(0) at t = 0. The terminal condition is 
given in terms of a vector function sib) of ni 
dimensions in two different ways: 

The Rendezvous Problem. The function |_(t) 
is required to be a possible trajectory which can 
be traced without using extreme values of m(t) 
and m(t) 

+ = (M
ai < I] < aa, bi < J. < b2 

The problem is to find a m(t) such that 

x(T) =£(T) (5) 

m(T) = TKT) (6) 

for minimum T. Once (5) and (6) are satisfied 
for some T, it is then possible to make x(t) = 
g^t) for t > T by choosing m(t) = T[(t) for t > T. 
The rendezvous of two vehicles is Illustrated in 
Fig. la. 

The Interception Problem. Let [x] denote a 
vector made up by ni or less components of 
The problem is to find a m(t) such that 
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[x] (T) = [g] (T) (7) 

for minimum T. In general [x] (t) = (t) can¬ 
not be maintained for t > T.” The interception of 
one vehicle by another is illustrated in Fig. lb. 
* 
Reduction of the Problem 

For the rendezvous problem, let x(t) denote 
x(t) - JXt), and m(t) denote m(t) - T|(t). Then 

x = ,Fx + Bm (8) 

and 

51 < 3 < 52 (9) 

bi < 3 < Í2 (10) 

where ax = aj. - 1), aa = a2 - T), bi = bi - T| and 

bg = bg - T|. The problem becomes that of finding 
m(t) sb that 

x(T) =0 

m(T) = 0 

with minimum T. 

For the interception problem, a T|( t) satis¬ 
fying (4) may not exist and m(t) cannot be de¬ 
fined. Therefore 

X = + Jin + c 

where 

£ = £ - X + JS 

and the problem is that of finding m(t) so that 
[x] (T) = 0 with minimum T. 

In the subsequent development, the underlin¬ 
ing of the variables will be omitted. It suffices 
to say that both the rendezvous problem and the 
interception problem can be reduced to the form 
of (1) and (2), the inequalities (J) remain valid, 
and the terminal condition is either 

x(T) = 0 and m(T) = 0 (11) 

or 

[x] (T) =0. (12) 

Solution of the Differential Equation by Linear 
Transform 

Consider the homogeneous equation 

(13) 

Let tg > ti. Due to the linearity of (1J), 
x(tg) is related to x(ti) by a linear transform 
A(tg,tx) • 

x(tg) = A(tg,tx) ^(ti) (14) 

The Dependence of the Function A(tg,tx) on 
ti can be Exhibited by Two Conditions ; The first 
condition is obtained by letting ti = tg 

A(tg,tg) =1 (15) 

The second condition is obtained by differentiat¬ 
ing (14) with respect to ti: 

SA(tg,ti) . dx(ti) 
°= —sti— -(tl) + —It;— 

= L ^dtf^ £^1) 

Since the above equation must be satisfied by 
arbitrary x(ti), it follows that 

+ A(tg,ti) F(ti) =0 (16) 

The Impulse Response Function of (1) is 
readily obtainable from A(tg,tx): Consider a 
system initially at rest and an impulse m(t) is 
applied at ti- : 

m(t) = a 6(t - ti-) 

where a is a constant vector, and tj- is less 
than ti by an infinitesimal quantity, then (1) 
gives 

xßx) = B(ti) a (17) 

and (13) holds for t > tx. From (14) and (I7) 
one obtains: 

x(tg) = A(tg,ti) B(tx) a (18) 

Therefore A(tg,ti) B.(ti) is the response of the 
system at tg due to an unit impulse at ti. 

The General Solution of (1) is obtained by 
Superposition: Let x(0) represent the initial 
condition of the system at t =0, and m(t) repre¬ 
sent the subsequent input. Then x(T) at some 
later instant T can be obtained by adding all the 
contributions : 

T 
r 

x(T) = A(T,0) x(0) + I A(T,t) B(t) m(t) dt j - ~ 

0 
T 

+ i A(T,t) c(t) dt (19) 

0 

The Accessible Region in Enlarged State Space 

Let z be a vector of nx + ng components : 

zi = Xi i = 1, 2 ... nx 
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zni+k - mk k = 1, 2 ... ng 

The vector ¿ is the enlarged state vector, and 
the m + ng - dimensional ¿-space is the enlarged 
state space. 

Starting from any given point ¿( 0), the set 
of all possible points z_(T) which can be reached 
at t = T with (1) and (2) satisfied is denoted as 
R(T). R(T) is the accessible region of the sys¬ 
tem at t = T. 

The following Lemmas can be readily proved 
by treating m as the control vector and z as the 
state vectors 

Lemma 1. R(T) is convex. 

Lemma 2. If a point Ç in ¿-space can be 
reached at T but not at any time prior to T, then 
Ç is a boundary point of R( T). 

The Rendezvous Problem 

For the rendezvous problem, ç = 0, and the 
terminal point is the origin 0. The necessary 
^nd sufficient conditions for a control vector 
m(t) and its resulting path x(t) to be the mini¬ 
mal time control and path pair will be studied: 

Necessary Condition for the Optimal Path 

Let z(t) represent a minimal time control 
which reaches 0 at t = T. As R(T) is convex, and 
0 is a boundary point of R(T), there is a support 
plane which passes 0, such that none of the points 
of R(T) is on the other side of the support plana 
Let h' denote a row vector which is normal to the 
support plane and points away fran R(T). As 0 is 
on the support plane 

h'[z(T) - z(T)] > 0 (20) 

for any point z(T) belonging to R(T). 

Let hi represent the first ni components of 
h', and hg represent the remaining ng components 
of h'. Inequality (20) can be written as 
A A 

h[[x(T) - x(T)] + há[m(T) - m(T)] > 0 (21) 

Let the row vector f'(t) be defined by 

*'(t) = h; A(T, t) (22) 

Using (19) and (22), (21) can be written as 

T 

1 V(t)B(t)[m(t)-jn(t)] dt + hg[m( T) -m( T) ] > 0 

Ò (2?) 

where m(t) is any other allowed control function. 

Let (+'B)i represent the i-th component of 
the row vector t'B. Written explicitly, (25) be¬ 
comes "" 

(f'Bjj/t) [rni(t) - m^t)] dt 

+ hgi [mi(T) - mi(T)]l > 0 

Since the components m^(t) can be independently 
selected, the above inequality must be satisfied 
for each component: 

T 
r 
! U’B^ (t) [m^t) - m^t)] dt 

0 

+ haiEmi(T) - mi(T)] > 0 

i = 1, 2 ... ng (24) 

Inequalities (24) can be used to test the 
optimality of a given mi(t). The given mi(t)can¬ 
not be optimal if (24) is not true with some al¬ 
lowed mi(t). Thus by choosing different functions 
for mi(t), a set of necessary conditions on mp(t) 
in conjunction with (VB)i(t) and hgi can be ob¬ 
tained: 

Condition 1: (|'B)i > 0 in any finite in-
terval in which is at its upper limit; and 
( V B) j < 0 in any finite interval in which mi is 
at its lower limit. 

Proof: Suppose mi = agi(t) in an interval T. 
Let it be assumed that (|’B)i < 0 at ti in T. Be¬ 
cause ((r'B)i is a continuous function of t, there 
is a finite interval t' about ti in which (f'B)i 
< 0. 

Because of (5) it is possible to choose a 
ôp(t) satisfying 

ôi(t) - mi(t) >0 in T ' 

= 0 elsewhere. 

The choice of mi(t) is illustrated in Fig. 2a. 
As (24) is contradicted by this particular choice 
of mi(t), the assumption that (i/ 'B)i < 0 at ti is 
not valid. 

Condition 2: Let ti < t < tg be an interval 
in which mi(t) is not at an extreme value, tg / T, 
and mi(tg)is at an extreme value of m j. A function 
cpj(t) is defined as 

tg 

cpi(t) = U'B)i (t') dt' (25) 
V 
t 

Then 
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^i(t) = bai(t) if cpiit) > o 

6j(t) = bj^t) if cp^(t) < o 

Proof: If 9i(t) > 0 but ¿i(t) = bai(t) - e 

then possible to show a contradiction. Let 
m (t) = bai(t) for an infinitesimal interval 6t, 
and compensate for the change at ta as illustrated 
in Fig. 2b. Inequalities (3) insure that the 
compensation at ta can always be made. Thus, 

®i(t') - mi(t') = - e 6t t < t' < t2

= 0 t' < t, or t' > ta. 

As âi(T) = mi(T), only the integral in (24) needs 
to be evaluated: 

T 
r a ! (fBjj [mi - mi] dt = - e ôt 

ta 

(♦'B)i dt' 

t 

= - e ôt cpi(t) < 0 

Condition 3: If âi(ti) is at an extreme 
value of m, then cpi(ti) = 0. 

Proofs If âi(ti) is an extreme value, ô (ti) 
is not. It is then possible to choose a mi(t) 
which differs from mi(t) by T e for an interval 
ot near ti, and by ± e for an interval ôt near 
ta as illustrated in Fig. 2c. Then 

&i(t) - mi(t) = ± e Ôt ti < t < ta 

= 0 t < ti, t > ta 

T ■» 

(rB)i tói - mi] dt = ± e ôt • cpi(ti) 

0 

The only possible way of satisfying (24) is 

Vi(ti) =0 (27) 

In general, cpi(O) / 0. 

A Condition 4: In the final interval in which 
m(t) is not at an extreme value, ta = T, and 
Ti(t) can be redefined as 

T 

Cpi(t) = (I 'B) i dt + hai 
J 
t 

Then (26) and (27) remain valid. 

proofs Consider any change in m for an in¬ 
finitesimal interval t - 6t to t 

m(t) = m(t) + e 

Then m(t') - m(t') = - e 6t for all f > t as is 
illustrated in Fig. 2d. “ 

T 

(l'B)i (mi - mi) dt + hai [m^T) - mi (T)] 

= - e cpi(t) ôt 

The remaining part of the proof is the same as 
before (conditions 2 and 3). 

The a^ove conditions are valid for every com' 
ponent of m(t). Since ¿i is limited, is a con¬ 
tinuous function of t. The interval 0 to T can 
be divided for each component i into bang inter-
^als in which ini is at an extreme value and pang 
intervals in which m¿ is not. As a result of con¬ 
ditions 2 and 4, mi is then at an extreme value. 
In the bang intervals hp(t) maximizes (fB). m<. 
In the pang intervals, m¿ maximizes cp^m-j. How¬ 
ever as cpj = 0 in the bang intervals, can be 
said to maximize cp^mi at all times. The ine¬ 
quality 

Ti ^i > cpi mi 

is true for all values of t. 

The vector (r ' satisfies the matrix differen¬ 
tial equation ~ 

di ' 
dt + f £ = 0 (28) 

Eq. (28) follows from (16) since ¿'(t) = h'A(T,t) 
by definition. The function cpi(t; is continuous 
in t and satisfies the following conditions: 

Tiit) = 0 in a bang interval 
(29) 

Ti + G 'B)i =0 in a pang interval 

Let ç' be the row vector whose components are cp<. 
In any given problem, the vectors 4' and 0 1 are 
unknown as h' is usually unknown. The result of 
the present section can be summarized as follows: 

A necessary condition for m(t) to be a mini¬ 
mal time control function is that there exist 
continuous vector functions »’(t) andcp'(t) s_atis-
fying (28) and (29) such that -

(VB)i m¿ > (i|r'B)i mi in bang intervals 

cpi mp > cpi m^ for all t (50a) 

i = 1, 2 ... n2 (30b) 

Uniqueness of the Solution 

A system is called "normal" if none of the 
components of ¿'g can be zero over a finite in¬ 
terval unless ¿'(t) = 0 for all t. As ÿ' is re¬ 
quired to satisfy (28), the condition o? normality 
is a condition on the matrices F and B. For 
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example, if (1) describes two independent systems, 
then some components of i|i'B can be zero while 
others are not. A more ïetailed discussion of 
this condition is given in Lasalle's paper? 

For a normal system, if a control vector 
causes the enlarged state vector z to move 

from its initial value to the origin in time T, 
and V and exist such that (28), (29), and 
(50)~are satisfied by the set m, and co', then 
it is not possible for any control vector to move 
z to the origin in time less than T, and m is the 
only one which does the job in T. 

To prove the above assertion, assume that 
there is a control vector m(t) which moves the 
enlarged state vector z to the origin in time T', 
T* < T. Let m = 0 for””the duration T' < t < T. 
Then m = 0 and x = 0 for the same duration. 

Let x_ and x denote the path resulting from 
m and m respectively. Then 

»'(x - x)] 

= - V F(x - x) + f F(x - x) + +' B(in - m) 

= t ' B(ô - m) 

Since x(0) = x(0), and x(T) = x(T) = 0 the inte¬ 
gral of the left hand side of the above equation 
vanishes and 

0 = 

T ■» 
V B( m - m) dt 

0 

T 

(♦ 'B)i (mt - mi) dt 

(♦'B)i (mi - mi) 

+ £ (t'B)i (ini - mi) dt 
k J' 
Tik 

(3D 

where represents the bang 
represents the pang intervals 
intervals 

intervals, and T ik 
of mj . In the pang 

dt = - <Pi (ôi - mi) dt 

Tik 

cpi(mi - mi) dt 

Tik 

Tik 

= - <pi(mi - mi)] 
Tik 

An interval ends either as mi reaches an ex¬ 
treme value, in which case cp^ =0, or at t = 0, 
and t = T, in which case mi - mi = 0. Therefore 

cpi(mi - mJ] , =0 
Tik 

and (5) becomes 

(32) 

Referring to (50) the only possibility for p2) 
to hold is mi = mi in Tij, and mi = mi in 
Thus there is only one way of reaching (m,x) = 0 
in T or sooner and the assertion is proved. 

The Interception Problem 

For the interception problem, the terminal 
state is not a single point = 0 in the enlarged 
state space, but is a hyperplane defined by [x] = 
0. At some T, R(T) touches the hyperplane, and 
the tangent point represents the terminal state 
of minimal time control. Following the same steps 
as before, the same necessary conditions can be 
proved with additional boundary conditions on f 
and cp ' î 

ty^(T) = 0 for all components i with 
xi not in [x] 

(33) 

cp'(T) = 0 

These conditions replace the boundary conditions 
on x and m, as xjT) and m(T) are now unknown. 

But given a set of functions m, cp' satis¬ 
fying all the necessary conditions (28), (29), 
(JO), and (55), it cannot be proved that no other 
m(t) causes the system to reach a point on [x] = 
0 at some earlier time. The only uniqueness con¬ 
dition one can prove is that no other t) causes 
the system to reach the same x(T) at T. 

The Hamiltonian Formulation 

Let the m + m - dimensional square matrix 
G be defined by 

/ F B \ 
G = *~ ~ (3M 

\ 0 0 / 

by 
Let the K be defined 

(35) 
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where 0 is ni x ns dimensional, and 1 is na x na 
dimensional. Then (1) can be written" as 

i = G z + K ¿ 

The inequalities (2) become bounds on the 
variables znl+i, zni+a-•• zne and control 
m and define allowed regions Z and U in z and m 
spaces. Let the ni + na dimensional adjoint 
function be denoted x', then x' is a row vector; 

X' = (♦', J') (57) 

From the general theory^ x' satisfies 

V + V g = c(t) it (58) 

where TV is a row vector of ni + na dimensions 
perpendicular to a support plane at pointing 
outward if £ is a boundary point of Z, and T] ' = 0 
if Z, is an interior point of Z; and Ç(t) > 0. 

(56) 

state 
vector 

À A necessary and sufficient condition for 
m(t) to be optimal is that a function satisfy¬ 
ing (58) can be found such that the choice of if 
maximizes the Hamiltonian "" 

H = x'(Gz+Km) = x' G z + cp ' ¿ 

Since G ¿is independent of m. maximizing H is 
equivalent to (50b). 

Because zi, za ... zni are unbounded, the 
first ni components of 7]’are always zero. Eq. 
(58) gives 

I' + f £ = 0 (59) 

2* +r £ = W 
Eq. (59) is identical with (28). Since T]ni+i = 0 
in a pang interval of mj, (29) is satisfied in a 
pang interval. Since C(t) > 0, cpi(t) = 0 is a 
solution of (40) in a bang interval if and only 
if (50a) is true. Thus the equivalence between 
the general solution and the present special so¬ 
lution is established. 

Examples 

A system with multiple saturation limits is 
illustrated in Fig. J. The integrator and two 
nonlinear blocks represent that both m and m are 
amplitude limited! |m| < a, |m| < b. The plant 
is assumed to be linear and time-invariant 
(autonomous). 

As there is a unique minimal time trajectory 
from each point in the enlarged state space, the 
optimum value of & is defined at each point. 
Furthermore, the optimum m can only be ± b in the 
interior of the state space, and 0, ± b at the 
boundaries where Im! = ± a. The state space can 
be divided into regions according to the sign of 
m. The dividing boundaries are the optimum 
switching surfaces and curves. 

Example 1. 

G(s) = J— 
s 

This example has been worked out by Doll and 
Stout.10 Their result is in complete agreement 
with the present theory. 

Example 2. 

G(s) 0.25 
s(s + .5) 

a = b = 1 

In terms of normalized coordinates xi, x3, 
and xa, the controlled system as specified above 
can be written as 

X1 = X3 

X2 = - 0.5 X2 + 0.5 m(t) 

x3 = m(t) 

e(t) = c(t) - r(t) = 0.5 xi + 2xa - x3

|x3(-t) I < 1 

|m(t)I < 1 

The optimum boundaries are obtained by trac¬ 
ing back in time from the origin. Fig. 4 shows 
the projections of the optimum boundaries on the 
Xi - X2 plane. The heavy curves ABC and DEF are 
the upper and lower edges of the optimum boundary 
on the two planes Xs = + 1 and - 1 respectively. 
BO and EO give the final switching boundaries 
which are also extremal paths leading to the ori¬ 
gin. The boundary surface below EB is formed by 
extremal paths m = 1 originating from points on 
FE and ending on AB or BO. The boundary surface 
above EB is formed by extremal paths (m = -1) 
originating from points on CB and ending on DE or 
EO. 

Fig- 5 gives the responses c(t), m(t), and 
m(t) of the optimum nonlinear system to a unit 
step input at t = 0. In contrast, the response 
c(t) of the same controlled system with a linear 
controller is shown in a broken curve. The lin¬ 
ear controller is specified by 

M(s) (s + .05)(s i- ■$) 
(s + l)(s + 1.5) [R(s) - C(s)] 

It is to be noted that the comparison is made at 
an input amplitude most favorable to the linear 
system as it is just about saturating. At a low¬ 
er input amplitude, the responce of the linear 
system does not change in shape, but the response 
of the optimum system becomes even faster. At a 
higher input amplitude, the linear system satur¬ 
ates and its response deteriorates rapidly. The 
response of the optimum system becomes slower but 
does not change in character. 
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Fig. 3. Block diagram of an autonomous system with 
multiple saturation limits. 
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Fig. 4. Projections of the optimum switching boundaries along the x3- axis. 
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Fig. 5. Unit step responses of two types of control 
systems. 

solid curve: optimum controller 
broken curve: linear controller 
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Introduction 

The increasing complexity of modern warfare 
has resulted in the need for highly sophisticated 
techniques for tracking targets in a counter¬ 
measures environment. This paper describes 
the application of a technique known as Operation¬ 
al Dynamic Regeneration (ODR) that aids the 
tracking phase of a tracking radar by predicting 
future target position. The degree of improve¬ 
ment it effects in enabling the smooth and ac¬ 
curate tracking of a target is illustrated. 

There are three major sequential phases of 
operation of a tactical tracking radar. These 
are designation, acquisition, and tracking. In 
the designate phase of operation, the radar is 
programed to the general location of the target 
within a certain accuracy that depends upon the 
available information. In the acquisition phase, 
the radar beam is scanned around the area in a 
preprogramed scan pattern. When the beam 
crosses a target, the radar stops moving in the 
preprogramed pattern and commences tracking. 
This transition may be either manual or auto¬ 
matic. 

In a realistic environment, tactical tracking 
radars, have difficulty in continuously tracking 
targets, because of fades caused by natural 
phenomenonor man-made jamming interferences. 
However, with tracking radars used for instru¬ 
mentation, fades caused by natural phenomenon 
and high target dynamics are the primary con¬ 
cern. 1 There is a need for techniques that 
will accurately predict future position for 
reasonable intervals of time, so that redesig¬ 
nation and reacquisition by the radar will be 
unnecessary. The ODR system described ac¬ 
complishes this by means of regenerative 
techniques that continuously generate angular 
and range tracking signals for the radar from 
prior knowledge of target position, velocity, and 
acceleration. 

Before deriving a mathematical model for 
any aided-tracking scheme, however, it is 
necessary to decide what conditions are most 
likely to exist in the anticipated environment. 
In addition, the equipment should operate in a 
set of coordinates that require the least amount 
of equipment for practical implementation. 

It is questionable whether continuous range 
tracking can take place in an actual counter¬ 
measures environment. Therefore, for a 
tactical system, a realistic design to aid angle 
tracking should not depend on range tracking. 
In addition, it is assumed that the target is flying 
a straight-line path and is maintaining a con¬ 
stant velocity. The last two assumptions are 
necessary in order to minimize the complexity 
of the equipment. If the target were to deviate 
from a straight-line path, or change its velocity, 
it would be necessary for the operator to introduce 
new information into the aided tracking equipment. 
However, should range tracking be possible over 
positions of the target's flight path, future range 
position could also be predicted by means of ODR. 

Discontinuities in the predicted target paths 
are inherent in many regenerative tracking 
systems for certain target positions and 
maneuvers; it is desirable to eliminate these. In 
addition it is desirable for an aided-tracking 
scheme to produce information that is fairly 
straightforward and easily obtainable. ODR, a 
regenerative system that meets these require¬ 
ments, has two main functions. Its first function 
is to perform aided angle tracking for a target 
flying a straight-line path with a constant velocity. 
This portion of the system assumes that range 
tracking has never taken place. Should range 
tracking be possible over a portion of the target's 
path, the second function of ODR is to predict 
future range position by solving the target-traject¬ 
ory equation for a constant-velocity target. 

To develop an aided-tracking system for an 
instrumentation tracking radar, a different 
environment exists. In all probability, range and 
range rate will be known accurately for most of 
the target's path. Therefore, an aided-tracking 
system, in angle, could depend on range tracking. 
A system that could aid tracking for such a situ¬ 
ation also will be illustrated in this paper. The 
ODR system will be able to predict future target 
position by assuming that the target is flying a 
straight-line path and maintaining a constant 
velocity. Range, range-rate, and angular-velocity 
information will be utilized in the regenerative 
device. As will be illustrated later, the instru¬ 
mentation required to predict future angular posi¬ 
tion is considerably reduced when range and 
range-rate information are available. 
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Precision-Tracking Considerations 

The ODR system is applicable to precision, 
tracking radars used for instrumentation and 
tactical missions with both land-based and ship¬ 
board installations. This paper analyzes ODR 
in a set of coordinates used by shipboard radars, 
since this is generally a more difficult and 
interesting case. In addition, both a tactical and 
an instrumentation tracking radar will be consid¬ 
ered for the shipboard case. 

One of the most critical problems associated 
with the design of a naval tracking radar is stab¬ 
ilization against ship-motion dynamics with a 
load that exhibits severe resonance effects in an 
environment of external torque loading due to 
winds. In order to achieve acceptable perform¬ 
ance, a stable line-of-sight independent of such 
factors as ship motion, structural resonances, 
and external torque loading must be established. 
The magnitude of this problem is increased 
greatly because of the frequency characteristics 
of ship-motion dynamics and nonlinear character¬ 
istics of mechanical resonances. 2

Ship-motion frequencies are usually in the 
same portion of the frequency spectrum as target 
dynamics. However, an optimum tracking loop 
requires that the target dynamics be separated 
from the ship-motion dynamics. A simple method 
of achieving this, without introducing additional 
errors, is to place a minor gyro feedback loop 
around the external input. Then, the tracking 
loop need compensate only for target dynamics, 
while the minor gyro feedback loop compensates 
for ship-motion dynamics and external torques. 
A general configuration illustrating this con¬ 
struction is shown in Fig. 1. The minor and 
major feedback loops are called the stabilization 
loop and track loop, respectively. 

ODR Model for a Tactical Tracking Radar. 

To derive a model for regenerative tracking, 
it is necessary first to consider the properties of 
a constant-velocity target flying in a straight-
line path as viewed from the radar-antenna co¬ 
ordinates. In addition, it is necessary to con¬ 
sider that the radar, which is stabilized about 
the line-of-sight, tracks a target in two stabilized 
planes: elevation and traverse. Figure 2 il¬ 
lustrates the system coordinates. 

The position of the target relative to the ship 
is defined by the vector R = Rr where R is the 
magnitude of the range from the ship to the tar¬ 
get, and r is a unit vector directed along the line-
of-sight to the target. The rate of change of R 
in space, dR/dt, is given by eq. (1): 

(1) 
dK dfrR') - dR . „ dr 
dT = dT = r~ +

The target's acceleration is given by eq. (2): 

+ 2^ 
dr2 dt2 dt dt dt2

The total angular rate of rotation of the target 
about the line-of-sight is defined by eq (3): 

(3) 

where 

t = unit vector in a plane perpendicular to r 
and is directed along the traverse axis 

e = unit vector perpendicular to both r and t 
and is directed along the elevation axis 

o) t = traverse angular rate 

co r = range angular rate 

co e = elevation angular rate 

By means of eq (2) and (3), it can be shown that 
the total acceleration of rR in space may also be 
written as shown in eq (4): 

+ t -Ra - 2R a) + Ra co e e r t 

+ e Rw + 2Rcu + R<d a, 
t t re 

(4) 

Since the target is assumed to move at a uniform 
velocity, the acceleration of rR is zero. The 
components of d2(rR)/dt2 projected onto a set of 
mutually orthogonal axes must also be zero and 
are defined by eq (5), (6), and (7): 

■■ = -Rw - 2Ro) +Ru co =0 (6) , 2 e ert ' ' 

. ■ ■ . R) = Ra + 2Ra> + Ra) u =0 (7) 
t t r e K J
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The ratio of range-rate to range, R/R, may be 
written as shown in eq (8) from the relations 
given in eq. (6) and (7): 

R = _ 

R 2 p 
w 

The angular rate of rotation of the target in a 
plane perpendicular to the line-of-sight Ip) is 
defined by eq. (9): 

2 2 2 
p = a) > a) 

e t 

The ratio of range-rate to range also may be 
shown to be equivalent to that given by eq.(10). 
This is obtained from eq. (5) and (8): 

R_ (2^M 

R 3 p 
(10) 

If eq. (8) and (10) are combined to eliminate the 
dependency of the tactical tracking radar upon 
ranged and range rate, the following results: 

• t 
1 P _ (2p +p) 

'2P " 3P 

If this expression is solved for P,eq.(ll) results: 

, -2 
p = _l_ _ 2p 3 (ii) 

2 P 

Equation (11) describes the angular motion of 
a constant-velocity target flying a straight-path 
course. By solving this equation, the ODR system 
may generate angle-tracking signals for a tactical 
radar, independent of range and range rate. 

The angular rate p, as defined previously, is 
greater than zero except in the unusual case where 
both we and are simultaneously zero. There¬ 
fore, the inverse of p ordinarily will be finite, a 
very desirable feature in generating eq.(ll). If 
the orthogonal components of p were generated 
separately, a singularity of this kind would be 
more likely to occur. In addition, the instrumen¬ 
tation required to generate separately the com¬ 
ponents of p would be considerably more complex 
than that required to generate p from eq.(ll). 

A method for ODR in range is to assume a 
constant-speed target; specifically, the value of 
target speed prior to a target fade or jamming. 
Before the loss of range track, the speed will be 
computed by means of (12) and its value would be 
held fixed. From kinematics, the motion of a 
particle in space is given by eq.(12): 

V =J (R)2 + (pR)2 (12) 

where 

R = target range rate 

P = angular rate of rotation of the target in a 
plane perpendicular to the line-of-sight 

R = target range 

With this implementation, regardless of any tar¬ 
get maneuvers (as long as it maintained a con¬ 
stant velocity), the solution would generate the 
true range of the target. 

Should the radar be usable to normally track 
in range, the predicted value of range rate, R , 
could be computed by means of eq, (13). 

(13) 

where 

Vq = value of target speed when normal range 
track is lost 

Rc = R o + Rc dt = predicted value of 
target range 

R = value of target range when normal range 
tracking is lost 

to = time when normal range tracking is lost 

It is important to note that there is an ambigu¬ 
ity with these computations when the target 
maneuvers to a 90-degree crossing. Beyond these 
points it is impossible to determine by this 
technique whether the target has maneuvered in¬ 
ward or outward (whether Rc goes negative or 
positive from zero). To eliminate this problem 
without the need for performing any additional 
computations, it probably could be assumed that 
the target range rate always reverses direction 
after crossing at 90 degrees to the target line-of-
sight. 

ODR for an Instrumentation Tracking Radar 

When deriving a model of regenerative track¬ 
ing radar, it is reasonable to assume that range 
tracking is possible over most of the target path. 
Therefore, it can be assumed that ODR will have 
range and range-rate information available. The 
instrumentation required to predict the future 
position of a target flying a straight path at a 
constant velocity is greatly simplified when this 
information is available in addition to angular 
velocity. 
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A regenerative tracking model can be derived 
for this case starting with eq. (6) and (7). Solu¬ 
tions for and wt are obtained from (6) and (7), 
respectively. The results are illustrated in (14) 
and (15): 

' R w = _ 2-rr v +" (14) 
e R e r t v ' 

co = _ 2770) - a> ai (15) 
t R t r e s J

It is the instrumentation of these simple equations 
that makes ODR possible for this case. By cal¬ 
culating the terms w e and w it is possible to 
cause the radar to predict future angular positions 
for a target flying a straight-line path at a con¬ 
stant velocity. 

The same ODR technique used for range pre¬ 
diction, illustrated for the case of the tactical 
tracking radar, can also be used for the instru¬ 
mentation, tracking radar case. Equations (12) 
and (13) define the required instrumentation. As 
a matter of fact, regenerative range tracking is a 
necessity for this situation since eq.(14) and (15), 
the regenerative equations for angle tracking, 
depend on range and range rate. Should range 
track be lost for a small portion of the target s 
trajectory, predicted values of range and range 
rate, Rc and Rc, would be used in eq.(14) and (15). 

Implementation for Tactical Tracking Radar 

During the normal angle-tracking mode of 
operation, either automatic or manual, the radar 
transmits angular traverse and elevation rates 
of the line-of-sight axis to ODR. These traverse 
and elevation angular rates, and w e are 
transformed to the stabilized horizontal and 
vertical angular rates P^ and Py by a rotation of 
coordinates through wr. These horizontal and 
vertical angular rates are then vectorially sum¬ 
med to yield the total angular rate of the target 
line-of-sight in the boresight plane p , where 
the angle p = arc tan P\¿ PN- Before p and p 
can be fed to the function generator for storage, 
it is advisable to filter these quantities. A block 
diagram illustrating the operation of the system 
under these conditions is shown in Fig. 3. 

When normal angle tracking ceases, the system 
is switched into the ODR mode. The solution to 
the equation of constant-velocity motion, eq.(ll), 
is generated by the system shown in Fig. 4. The 
values of p and p, which are stored in ODR when 
this mode of operation commences operation, are 
the initial conditions required to solve equation 
11. The angle 6 is held fixed at the last value 
established prior to entering the ODR mode. The 
angular rate p, which is computed in the function 
generator during this mode, is resolved through 

the angle 6 into the horizontal and vertical com¬ 
ponents of the angular rate ph and Py These 
stable horizontal and vertical angular rates are 
transformed into the deck-oriented lateral and 
vertical angular rates p^ and pe by a rotation of 
the coordinate system through the angle wr. These 
deck-oriented angular rates are introduced as 
rate commands into the corresponding traverse 
and elevation stabilization loops. The radar then 
moves in accordance with these ordered rates. 

The angular rates provided by ODR may be 
modified at the discretion of the radar operator 
to compensate for changes in target velocity and 
direction. Manual controls incorporated into these 
circuits could allow the operator to modify p^ and 

P e* 
During the normal range track mode of opera¬ 

tion, traverse angular rate (w t), elevation angular 
rate (w e), target range (R), and target range rate 
(R) are received as inputs to the ODR system 
from the radar. The angular rates o>t and &> e are 
added vectorially to obtain the combined angular 
rate p. Target speed V is then computed as in¬ 
dicated by eq.(12) from the vector sum of R and 
the product of R with p. Target speed and 
range are stored for use in the ODR mode. A 
block diagram illustrating the operation of the 
system under these conditions is shown in Fig. 5. 

If range tracking is lost, ODR is used to solve 
eq. (13) for the predicted value of target range 
rate Rc. Angular rates and <ue continue to be 
sent from the radar just as in the normal mode of 
operation. In order to continuously predict tar¬ 
get range (Ro + Rc) when normal range tracking 
is lost, the integral of the predicted value of the 
target range rate is integrated and combined with 
the value of target range known at the time range 
tracking was interrupted. Figure 6 illustrates the 
operation of the system. 

Implementation for Instrumentation Tracking Radar 

During the normal angle-tracking mode of 
operation, either automatic or manual, the radar 
transmits range R, range rateR, range angular 
rate a> r, traverse angular rate o>t, and elevation 
angular rate “ e to the.ODR system, which gen¬ 
erates., and stores a¡ e and . It is advisable to 
filter R, o>r, ^ r, and before feeding it to the 
function generator. A block diagram illustrating 
the operation of the system under these conditions 
is shown in Fig. 7. 

When normal angle tracking ceases, the system 
is switched into the ODR mode. The solution to 
the equations of constant-velocity motion, eq.(14) 
and (15), is generated by the system shown in Fig. 
8. The deck-oriented angular rates o>t and o>e 
are introduced as rate commands into the corres¬ 
ponding traverse-and elevation-stabilization loops. 
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The radar then moves in accordance with these 
commands. 

The angular rates provided by ODR may be 
modified at the discretion of the radar operator 
in case of changes in target velocity or direction. 
Manual controls incorporated in these circuits 
could allow the operator to modify and œ/e . 

The same ODR implementation used for range 
prediction, illustrated for the case of the tactical 
tracking radar, can also be used for the instru¬ 
ment tracking radar case. Figures 5 and 6 il¬ 
lustrate the operation of this system. 

Possible Tracking Modes Utilizing ODR 

ODR is a very powerful tool for either auto¬ 
matic or manual tracking. For automatic track¬ 
ing, ODR updating is utilized only during intervals 
of desired or inadequate tracking-signal informa¬ 
tion. For the case where the tracking loop is 
closed manually via the intelligence of a well-
trained operator, ODR eases the task consider¬ 
ably. For example, all the operator needs to do 
when manually tracking a target flying a straight-
line path at a constant velocity is to initially ad¬ 
just his tracking controls until he establishes the 
proper tracking rates. Once he has manually 
locked onto the target, ODR will predict the future 
target position automatically, and the operator 
need not have to continually adjust his controls 
to track the target. However, it may be neces¬ 
sary to update the ODR information should the 
target change its velocity or direction. This 
situation easily can be displayed to the operator 
for corrective action, via a bipolar video display 
(A scope) or an error display (F scope), or both. 

Manual tracking offers considerable improve¬ 
ment in the signal-to-noise ratio required for 
tracking a target.This desirable feature lends 
itself readily to the tactical tracking radar case, 
where the normal tactical environment is very 
noisy. Considerable literature has been written 
on the effective human transfer function. 5> 6, 7, 
8. An operator may be called upon to function in 
several different ways, depending upon the de¬ 
sign of the radar. He may function as a simple 
lag element, an equivalent differentiator, a single 
or double integrator, or a sampled-data system. 
If it were possible to know every minute detail of 
the operator’s characteristics, the differential 
equation for a specific control situation would be 
different for different kinds of inputs such as 
periodic or random functions. In addition, the 
differential equation of the operator would have 
variable coefficients, since his characteristics 
change according to his learning, motivation, 
fatigue, and instructions. Due to the complexity 
of the problem, tracking lags and errors have 
been unavoidable in a manual-tracking mode of 
operation. A simple, manual, rate-aided tracking 

system is shown in Fig. 9, where the operator is 
considered to be a nonlinear, sampled-data 
system. 

ODR techniques can compensate effectively 
for some of the lags and errors in manual track¬ 
ing. Because of ODR prediction capabilities, the 
task of the operator is greatly minimized; his 
primary role simply is to update the ODR system 
according to observed changes in target velocity 
or direction. This is not a very critical operation, 
and nonperiodic lags and errors can be tolerated. 
Therefore, manual tracking in conjunction with 
ODR represents a very powerful method for track¬ 
ing in a countermeasures environment with rela¬ 
tively low signal-to-noise ratios and with most of 
the tracking lags and errors compensated to a very 
large degree. 

Evaluation Criteria for ODR 

The tracking error, Ej(s), as defined in Fig. 1, 
can be described as an analytic function of complex 
frequency, s, in the simple case of a linear track¬ 
ing loop. In the case of ODR, the tracking error 
becomes much more complicated. At best, the 
error can be described in terms of statistical 
properties of possible target dynamics. For these 
properties, an expectation of the error can be 
determined and a realistic evaluation or ODR can 
proceed. But to proceed with a realistic system 
evaluation of ODR, a suitable error criterion 
must first be chosen to measure system perform¬ 
ance. Several useful criteria have been suggested 
in the literature. One very useful technique for 
expressing system error is known as the integral-
square-error criteria, Ejg, defined by eq,(16): 

“ 2 
EIS = J[e(t)l dt (16) 

where 

<0 = 

A modified Ejg can be defined by using a suitable 
weighting function, W(t): 

EIS = J W(t) [e(t)J 2 dt (17) 
°m o 

W(t) is chosen to bring into prominence the 
error in that portion of time primarily of interest. 
If the error is considered in the static time sense; 
then: 

W(t) = 0 , 0< t <T (18) 
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Thus, in essence, the error before a time T 
is not of interest, for only the steady-state value 
is of importance. This criteria is valid, with a 
small modification, for ODR. If the error be¬ 
comes extremely large, the target may be lost 
entirely. The criteria is subsequently modified 
such that: 

W(t) = 0 0 <t5T 

provided that e(t) < A, where A is the critical 
break-track point. 

In order to determine the characteristics of 
the system itself, one can use the method of 
Wiener and consider the effect of a target moving 
in a Brownian fashion.$ Therefore: 

1 T
lim Ty r 

T - œ J r(t) r(t + r ) dt = A 8 (0) (19) 

-T 

where A is the spectral power density and 8 (0) is 
a dirac delta function at t=0. Assuming station¬ 
arity, or at least short-time stationary behavior, 
the dynamic characteristics of the system are 
completely describable in terms of the coeffici¬ 
ents of a set of orthogonal functions. Wiener 
describes the general system in terms of 
Laguerre and Hermite spectra. However, any 
set of orthogonal functions can be normalized and 
used to characterize the system. The expression 
for this characterization is as follows: 

r(t) = 
N 
s , c $ (t) n=l n n ' ' (20) 

where the $ 's represent a set of orthogonal 
functions, an3 the Cn' s are their corresponding 
coefficients. 

In addition, the following constraints are im¬ 
posed to insure orthogonality and the proper 
normalization of the spectra in the region defined 
by a and b: 

J $n2(t)dtô 1 
a 

b 
f $ (t) $ (t) dt = 0 n/ m n K ' m z
a 

(21) 

(22) 

It also can be shown that an optimum match in 
the integral-square sence can be achieved in the 
region of interest defined by the weighting 
function W(t) when: 

b 

Cn = f *mW rW WW dt (23) 
a 

It is now possible to evaluate Cn from the behavior 
to the Brownian input, and therefore to evaluate 
the response to any individual component of the 
spectra. From this it becomes a relatively simple 
matter to evaluate the response to the various 
components of the input and to thereby obtain a 
measurement of system accuracy and performance. 
The procedure for evaluating the C 's for a set of 
orthogonal Laguerre and Hermite polynomials is 
described in detail by Wiener.8 

To proceed with the evaluation of a typical 
ODR system, it can be assumed that the system 
excitation has a known statistical distribution. 
From this input, using a Wiener type of Laguerre 
and Hermite spectrum analyzer, the coefficients 
of the output spectra may be analyzed readily for 
the particular system and parameters in question. 
From a direct comparison of the input and output 
spectra coefficients, the error may be simply 
evaluated. This technique is primarily an analysis, 
rather than a synthetic method, and the designer 
must have considerable insight into the fundamen¬ 
tals of the problem in order to simplify the deri¬ 
vation of useful results. 

Conclusion 

A unique approach to the design of a class of 
radar tracking loops has been described. ODR 
models for tactical and instrumentation tracking 
radars have been derived. The characteristics of 
ODR have been discussed and their implementation 
for the continuous tracking of a target is illustrat¬ 
ed. Considered are cases where the dynamic 
characteristics are suitably described in three 
coordinates, and where certain information in one 
coordinate is missing or inadequate. The minimi¬ 
zation of the error in the predicted tracking data 
is considered in the Wiener sense, from a mean¬ 
square point of view, and from a static-time point 
of view. 

ODR is a very powerful tool that can enhance 
the smooth and continuous automatic and manual 
tracking capabilities of a tracking radar. The 
additional cost and complexity entailed are 
relatively small compared to the over-all cost 
of a modern, precision, tracking radar. Above 
all, the resultant improvement in tracking per¬ 
formance that can be derived from this technique 
will easily pay for itself by reducing the number 
of times missile tracking or guidance is lost due 
to normal target fades and countermeasures. 
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I RESULTANT ERRORS DUE TO SHIP-MOTION DYNAMICS 

(o) IN THE STABILIZATION LOOP 

E. F0R

(b) IN THE TRACK LOOP : 

2.RESULTANT ERRORS OUE TO TARGET DYNAMICS | 

ASSUME THAT G2<S)H(S) »i: 

FIG. I CONFIGURATION FOR SEPARATING TARGET DYNAMICS 
FROM SHIP-MOTION DYNAMICS 
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wr = RANGE ANGULAR 
RATE 

Bd'« RELATIVE TARGET 
BEARING 

B » TARGET DECK 
BEARING 

E ■ TARGET ELEVATION 
Ed*« TARGET DECK 

ELEVATION 
wT= TRAVERSE ANGULAR 

RATE 
wE = ELEVAT ION ANGULAR 

RATE 
wM-HORIZONTAL ANGULAR 

RATE 
wv» VERTICAL ANGULAR. 

RATE 
R - TARGET RANGE 

FIG. 3 NORMAL ANGLE -TRACKING OPERATION 
OF ATACTICAL TRACKING RADAR 
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ANGLE OPERATIONAL DYNAMIC REGENERATION 
FOR A TACTICAL TRACKING RADAR 

FIG. 4 
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F IG 5 OPERATION OF ODR DURING NORMAL RANGE TRACKING 
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Rc= Ro+/ 

FIG. 6 RANGE ODR 
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FIG. 7 NORMAL ANGLE-TRACKING OPERATION 
OF AN INSTRUMENT TRACKING RADAR 
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FIG.8 ANGLE ODR FOR AN INSTRUMENTATION TRACKING RADAR 



FIG. 9 MANUAL RATE-AIDED TRACKING SYSTEM 
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AUTOMATIC STEERING TECHNIQUES* 

Donald Barrick** 

Antenna Laboratory 
Department of Electrical Engineering 

The Ohio State University 
Columbus 10, Ohio 

Summary 

This paper examines the feasibility and 
characteristics of several automatic steering 
systems for automobiles. It compares these 
systems on the basis of the following perform¬ 
ance characteristics: (1) stability, (2) lateral 
acceleration, (3) error in tracking. The sys¬ 
tems differ in that each has a different type of 
actuating signal for the front wheel positioning 
servo. 

Methods are proposed for the generation 
of signals required for the various systems. 
The transfer function for each of the systems is 
derived and stability requirements are specified. 
Both transient and steady state responses of all 
systems are then determined so that the char¬ 
acteristics of the systems can be compared. 
The systems are compared on the basis of po¬ 
sitional error and lateral accelerations. 

I. Problem Statement 

In the development of an automatic steer¬ 
ing system for automobiles one is concerned 
with two problems, namely, the generation of 
error signals which indicate position of the 
vehicle relative to the roadway and, secondly, 
the synthesis of a system which will provide a 
suitable dynamic response. The latter problem 
is not as simple as it might appear at first 
glance in that one must not only realize the 
usual requirements concerned with minimization 
of the displacement of the vehicle from the cen¬ 
ter of the roadway but also one must limit the 
magnitude of the lateral accelerations which 
may be involved. The lateral accelerations can 
be quite severe and very uncomfortable if ac¬ 
celeration considerations are neglected. 

*The work involved in this paper was sponsored 
in part by the Ohio Department of Highways in 
cooperation with the Bureau of Public Roads. 

**Mr. Barrick was formerly with the Antenna 
Laboratory, Department of Electrical Engi¬ 
neering, The Ohio State University, and is 
now serving in the U.S. Navy. 

II. Input Signals 

All systems basically employ as input sig¬ 
nals one or some combination of the following 
variables: (a) distance from the center of the 
lane, (b) radius of curvature, (c) angle between 
automobile axis and line of sight at some point a 
given distance ahead on the road. In this paper, 
the systems studied will be referred to as the 
Type A, Type B, Type C, and Type D systems. 
The input signal for the Type A system is simply 
the displacement of the automobile from the cen¬ 
ter of the lane. The Type B system uses the 
same input as the Type A system but adds a 
second signal proportional to the angle ß between 
the frame of the vehicle and the centerline of the 
lane. The Type C system adds to the displace¬ 
ment input of the Type A system an input pro¬ 
portional to the angle Y between the front wheels 
of the car and the centerline of the lane. The 
Type D system uses as its input signal the angle 
between the centerline of the automobile and the 
line of sight to a point a given length "t " ahead 
on the road. This system is similar to radar in 
its ability to anticipate future conditions and 
changes and is similar in nature to the mode 
used by the human driver. 

All these inputs, after amplification, are 
fed to the wheel positioning servo which controls 
the angular position of the front wheels. 

Ideally a system should perform as nearly 
like a human driver as possible. The human at¬ 
tempts not only to minimize and eliminate error, 
but also to reduce lateral acceleration due to 
steering as much as possible. From actual 
tests made by the author it was found that a 
human driver may experience lateral accelera¬ 
tions of up to 1G for brief periods, but in gen¬ 
eral the acceleration must be kept below about 
G/2 if skidding is to be avoided. The systems 
will be analyzed with these requirements in 
mind. 

+ 
The terminology "G" refers to a unit of accel¬ 
eration normalized with respect to the accel¬ 
eration of gravity. 
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III. Detection Methods* 

A possible scheme for obtaining the input 
signals needed for the Types A,B, and C sys¬ 
tems is briefly described in this section. Con¬ 
sider a cable buried beneath the centerline of 
the lane of travel and excited by a low-fre¬ 
quency current. The resultant field will be 
circular in form. Let two coils be placed in a 
plane parallel to the cable and the centerline 
of the lane but equidistant from the center of 
the vehicle as shown in Fig. 1. The difference 
voltage in the two will be zero but as the two 
coils move out from the center, keeping their 
same difference spacing relative to each other, 
the difference voltage will rise. This differ¬ 
ence voltage can be used as a measure of the 
displacement error input called for in the Types 
A, B, and C systems. 

Now, if a third coil is placed so that the 
plane of the coil is perpendicular to the cable 
as shown in Fig. 2, the voltage induced in this 
coil is zero. The voltage induced in the coil as 
it is rotated from the perpendicular position 
varies nearly linearly with rotation for 
small angles. Thus this coil, if mounted to 
the frame of the auto, would give the second 
input called for in the Type B system; if the 
coil were to rotate with the front wheels it 
would generate the second input called for in 
the Type C system . 

Ideally this input signal proportional to 
angle should not vary with the distance from 
the center, but with this arrangement it does 
to some extent, just as the linearity of the dif¬ 
ference voltage from the first two coils be¬ 
comes distorted as they are moved considerably 
from the center. In order to optimize these 
signals by proper choice of parameters, it is 
necessary to analyze these voltages further. 
The Biot-Savart Law for a long uniform wire 
and Faraday's Law give the desired relation¬ 
ships . 

The detection techniques involved in the Type 
A system is identical to that employed by RCA 
and General Motors and used in the automobiles 
and test track at Princeton, N.J. 

where 

p NA Cj w 

p = permeability, assumed the same 
for air and ground 

rj = distance from cable to coil "i" 

i = current = Ci sin œt 

w = separation of coils (fixed) 

4>i = angle between coil "i"and the 
centerline 

h = depth from coil centerline to cable 

d = instantaneous displacement of coils 
from the centerline 

A = area of coils (small compared to hz ) 

N = turns in each coil 

e = e2 - ej = difference voltage between 
coils 

See Fig. 3. Typical values of parameters are: 
w/2 -2.5 ft, h = 5 ft, I = .5 amp (RMS) , 
p = 4n X 10 7 , A = 10 err? , w = 500 rad/sec 
A plot of e vs . d is shown in Fig. 4. 

The voltage induced in the third coil 
varies with distance from the cable and is given 
below. 

Kh 
eft =—;-r- sin ß cos “t 
p d + h 

(2) 

sin ß ~ ß for ß « 1 . 

A plot of ep/ß is shown in Fig. 5. 

There are many practical considerations 
not mentioned in this detection scheme as de¬ 
scribed above which may seriously affect the 
practical performance of such a system, but 
basically it can provide the input signals re¬ 
quired . 

The Type D system incorporates the 
usual complexities and problems of any radar 
system, and would have to be ruled out for 
reasons of size and economy at the present 
time. The system is considered here for the 
sake of comparison since it causes a dynamic 
response similar to that of a vehicle manually 
steered. 
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IV. System Transfer Functions2 Here tire slippage is neglected. See Reference 2 
for more exact representation. 

In order to derive transfer functions for 
the four systems, certain assumptions will be 
made and then the response of the systems will 
be related to time. For the sake of analysis, it 
will be assumed that the test roads are laid out 
along the x axis . Next the automobile velocity 
will be assumed constant. Thus if the angle of 
the roadway with respect to the x axis is small, 
the x axis can be replaced by a time axis, re¬ 
lating the lateral displacement y of the vehicle to 
time. The actual lateral deviation of the road¬ 
way from the x axis at time t is given by yr-

The transfer function* that will be used 
for the wheel positioning servo is given by 

2 
a_uo_ 

a d SJ+ 2^wos + 

a = actual wheel angle with respect 
to the auto 

Qj = input to servo, desired wheel angle 

wo - undamped natural frequency of 
servo = 20 rad/ sec 

t, = damping factor of servo = .5 

s = operator d/dt. 

Now, given d, the problem remains to 
find y, the lateral position of the automobile. 
Referring to Fig. 6, the velocity of the front 
wheels may be broken into two components. 

Vy = V sin(6 +a)~ vje + a) 
(4) 

Vx = V cos(9+ ot) Væ x / t 

for a and 0 small 

V = speed of auto 

9 = angle of auto centerline with respect 
to x axis ■ 

*This is a common representation for a servo 
system. The damping factor £ determines the 
transient overshoot and determines the 
rate at which the transient dies out. See 
Reference 1 or any book dealing with control 
systems . 

From Fig. 7 it can be seen that Vq is the 
component of front wheel velocity which causes 
the angle 0 to increase. Assuming the car 
pivots about its rear wheels on a turn, it can 
be seen that 

d0 _ Ve 
dt b ’ 

Ve = V sin a J; Va for a « 1 , 

b = distance between front and rear 
wheels , 

ï-a = d0 = se 
b dt 

where 

s = A 
dt 

Y = Jvy dt %yv(0+a)dt . 

The relationship between y and a becomes 

y = ï A + y_\ 
a s sb / . '°' 

The block diagram showing this relation¬ 
ship is illustrated in Fig. 8. Now all the rela¬ 
tionships are at hand for analyzing the four 
systems . 

In the Type A system, the lateral error of 
the automobile d from the center of the lane is 
given by d = yr = y. Here yr is the position of 
the centerline of the roadway. Thus the block 
diagram for the system is shown in Fig. 11 and 
the transfer function is given by 

y _ Kd^o V(bs + V)_ 

Yr bs2 ( s2+2^o V(bs+V) • 

(6) 

In the Type B system, as seen again from 
Fig. 9, the second input proportional to the angle 
of the car with the centerline of the road is given 
by Kp(4>-0). Noting that Kp is a constant and <t> is 
the slope of centerline of lane relative to the 
x-y coordinates 

dy _ -
4> --- and x ~ vt 

dx 
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it follows that V. Stability Analysis 

* = 1 = 
9 v dt 

s 
V yr (7) 

The block diagram for this system is shown in 
Fig. 12. The transfer function is given by 

y %v(Kd + Kß ^) (V + bs)_ 

Ÿr bs^+Z^+w* ) + <4v(Kp+Kdb)s+Kd^ V2. 

(8) 

From Fig. 9, the second input for the 
Type C system proportional to the angle of the 
wheels with the centerline of the lane is given 
by K.y(<|>-9-Ci) • The block diagram for this sys¬ 
tem is shown in Fig. 13, and the corresponding 
transfer function is given by 

y _ _ 

Yr b¿(32+2^oS+U>/obŜ MK^ 

(9) 

The analysis of the input to the Type D 
system is somewhat different. See Fig. 10. 
This input signal, proportional to the angle be¬ 
tween the centerline of the car and a point on 
the road ahead a distance "t " is given by ip-9 . 
The ordinate of the road a distance ahead "t " is 
YreT s in operator notation where t is a time 
to be determined by stability requirements . 
Since "t " is never more than a few degrees 
from the x axis, it can be approximated by 

(10) 

The block diagram for this system is shown in 
Fig. 14 and the transfer function is given by 

z T « 

Y “o (V + bs)e 

Ÿr " Tbs2(s2 + Z^os+w2)+w2 [s(TV+b)+v]. 

(ID 

Using the transfer functions previously 
derived, stability criteria are found using the 
Routh's method. For the sake of brevity, de¬ 
details have been omitted and the final inequali¬ 
ties which must be satisfied are listed below. 

Type A System 

(1) 2£wo > KdV 

(2) 2^o > KdV + 4^2 ï 
b 

Type B System 

2^o > 

Type C System 

(1) 2^o(1 + KJ >(Kd + V 
* \ b / 

Type D System 

(1) 2^o >(- + 
\t b, 

Note that in the first three systems, ve¬ 
locity appears only on the right side of the in¬ 
equalities. Therefore if the systems are stable 
at higher speeds, they will always be stable at 
lower speeds as would be expected. In the 
fourth system, decreasing velocity will improve 
stability but does not always guarantee it. 

Throughout the analysis an automobile 
speed of 100 ft/sec or about 70 mps will be used 
since at lower speeds the stability margin is in¬ 
creased and the systems respond in a shorter 
distance to errors in position. Also, since 
lateral acceleration varies as a = v2 /rc where 
rc is the radius of curvature of the road, it can 
be seen that at lower speeds the lateral acceler¬ 
ation will be reduced considerably. 
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Assigning typical numerical values to the 
parameters gives a more accurate quantitative 
description of stability demands upon gain con¬ 
stants . Let V = 100 ft/sec, b = 20 ft, 
<*>o = 20 rad/ft, Ç = 0.5. For the Type A system 
the inequality which must be met for stability 
is 

Kd < -15 rad/ft 

A reasonably safe value to assume for Kd is 0.1. 
This value will be used for Kd in the second and 
third systems so that the merits of the addition 
of the second input may be evaluated. For the 
Type B system, the following inequality re¬ 
sults: 

Kp < 2 J . 

Thus for stability an additional constraint must 
be imposed upon Kp as well as Kd in the Type B 
system. 

For the Type C system, the inequality is: 

Ky > - .67 J . 

Note here that the system can never become 
unstable for variations in Kyas longas Ky is 
positive . 

The inequality for the Type D system 
reduces to 

T > .087 sec • 

Thus the lead time must remain above a mini¬ 
mum safe value. 

In order to verify and study more fully 
the effect of variation of the gain constants upon 
stability and transient response, root position 
plots4 vs. gain constants were derived and 
plotted as shown in Fig. 15. Only the first can 
be called a true root locus plot, for in all the 
other systems, changing the gain constant 
affects not only the locations of the poles but 
also of the zeros as may be seen from the trans¬ 
fer functions. These plots verify the stability 
criteria derived by the Routh method and show 
the effects of variation of gain parameters. 
Note the effect of increasing Ky in the Type C 
system . 

VI. Steady-State Response 

For circular tracts the angle a of the front 
wheels relative to the body is given by sin a b/r c 
and sin a æ a for rc » b. See Fig. 16 . In the 
steady state, ^d - a • In this analysis a 300 ft 
diameter circle was chosen. For the Type A 
system, with Od = a = Kdd = b/rc = 20/150, the 
displacement d from the center line is given by 
d = 2/15 • 1/Kd ft. 

For the Type B system, Kdd + Kp ß = Qd' 
But here, ß , the angle between the centerline of 
the body and the tangent to the centerline of the 
lane is given by a . 

d = 2/1.5 (1-Kp )ft for Kd = 0.1. 

For the Type C system, the angle between 
the front wheels and the centerline of the lane 
must be zero if the car is following the curve 
accurately one has 

Kdd + Ky • 0 = a d = 20/150. 

In this case 

d = 2/1.5 = 1.33 ft 

for Kd = 0.1. 

For the Type D system, see Fig. 17, it is 
evident that the angle between the centerline of 
the vehicle and the line "Í "is a . 

d % t sin a ~ af for a « 1 

a = 2/15 

and 

d = 2/15/ = 2/15tV. 

If V is chosen to give 1/3 G lateral acceleration, 
d = 5.16t . Plots of the relationships between 
gain and distance from the centerline are given 
in Fig. 18 . 

In steady-state analysis of a roadway 
varying sinusoidally, care was taken to choose 
values for amplitude and frequency such that 
(1) lateral peak acceleration was held to 1/3G at 
70 mph, (2) the lateral distance travelled was 
always small compared to the distance along the 
X axis. 
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Y/Yr =G(s), Yr = A sin wt 
G(s)= system transfer function 

d = Yr-Y=Yr [l-G(s) ] = D sin(wt - £2) 

D = maximum displacement = A | l-G(jw) | . 

For Yr = 250 (ft) sin .2t 

D = 250 1 1-G(j .2) I . 

Plots of D vs . the various gain constants 
of the systems were computed and are shown in 
Fig. 19- Note that these plots correspond very 
closely to those for the circular plot, indicating 
that the steady state response for nearly any 
type of curve can be predicted fairly well from 
these charts. For the Type A system, error is 
reduced by increasing K¿. At Kj =0.1 steady 
state error for the circle was held at 1 1/3 ft, 
which is quite tolerable. In the Type B system 
with Kj = 0.1, the steady state error can be 
eliminated by setting Kp =1.0. For the Type C 
system, nothing is gained over the Type A sys¬ 
tem as far as reduction in steady state error. 
In the Type D system, error rapidly becomes 
intolerable as t is increased. Notice that in 
the first three systems, which "see" only pres¬ 
ent error, the response lags the input and the 
automobile tracks on the outside of the circle. 
However, in the Type D system, the response 
leads the input and the automobile tracks on the 
inside of the circle. 

VII. Transient Response 

The transient response of a system may be 
measured in many ways • In this analysis the 
systems were simulated on an analogue com¬ 
puter and a step function was used as the input 
signal. This might be visualized in an actual 
highway system as being a sharp displacement 
in the centerline. The displacement was held 
to 0.3 ft so that the results as far as error and 
lateral accelerations at 70 mph would be rea¬ 
sonable. The response traces, which were 
compared with calculated curves as a check, 
are shown for the four systems at various gain 
constants in Fig. 20. Simultaneously traces 
were made of the lateral acceleration experi¬ 
enced from the discontinuity as measured in 
G's. 

Notice from the two sets of traces that for 
the Type A system, response becomes more 
oscillatory as Kj is increased resulting in 

higher peak acceleration and longer damping 
time. For the Type B system, response be¬ 
comes worse due to longer damping time and 

higher frequency of oscillation when Kß is in¬ 
creased. This type of a ride would be quite un¬ 
bearable to a passenger in the car. In the Type 
C system, oscillations and resultant lateral 
accelerations can be nearly eliminated by in¬ 
creasing Ky without impairing stability. The 
Type D system certainly gives the smoothest 
ride of all as t is increased, and the leading 
response can be noted in the trace origins. 

By studying the block diagrams for the 
various systems one notes that the effect of the 
second input in the Type B system is to intro¬ 
duce error-rate feedback. This tends to make 
for a closer tracking system at the expense of 
a very oscillatory response. The second input 
of the Type C system adds to this error-rate 
feedback an accelerometer feedback which in 
this case gives a much smoother response. 

VIII. Conclusions 

Of all the systems considered only two of 
the systems studied have acceptable dynamic 
and static characteristics judging the response 
upon the basis of both displacement errors and 
lateral accelerations. The two acceptable sys¬ 
tems are the Type C and Type D systems. The 
Type D system is not practical and for this 
reason it is concluded that the Type "C" system 
is most promising of the automatic steering 
systems . 
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Fig. 1. Detection coils for displacement error. 

Fig. 2. Detection coil for angular error. 

Fig. 3. End view of displacement coils with symbols. 

Fig. 4. Displacement error voltage vs displacement. 

Fig. 5. Angular error voltage vs displacement from 
center. 

Fig. 6. Velocity of front wheels. 
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Fig. 7. Rate of change of angle of frame “0”. Fig. 9. “Y’ vs “t* coordinates showing displacement 
and front wheel angle errors. 

Fig. 8. Block diagram for front wheel angle-auto 
position system. 

Fig. 10. “Y” vs “t” coordinates showing future angle 
error. 

Fig. 11. Block diagram for Type A system. 

Fig. 12. Block diagram for Type B system. 

Fig. 13. Block diagram for Type C system. 
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Fig. 14. Block diagram for Type D system. 

Fig. 15. Root positions vs gain constants. 
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Fig. 16. Relationship between angle of front wheels 
and radius of path. 

Fig. 17. Displacement from circular track for Type 
D system. 

Fig. 18. Displacement vs gain constants for 
circular track. 
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Fig. 19. Maximum displacement vs gain constants 
for sinusoidal track. 
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Fig. 20. Step input and output response. 
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Type C System 
Kd'O.l 

Type D System 

Fig. 21. Step input and resulting lateral acceleration. 

Fig. 22. Random road section used as input. 

178 



SEARCH AND LOCK RECEIVER 

by 

F. 0. Gray 

Airborne Instruments Laboratory 
A Division of Cutler-Hammer, Inc 
Deer Park, Long Island, New York 

Summary 

The Search and Lock Receiver system developed 
at AIL is capable of searching across a broad fre¬ 
quency band and accurately locking on a signal 
intercepted within that band. The frequency limits 
over which the search mode takes place can be varied 
by external digital commands. 

To achieve high scanning rates along with 
accurate lock-on, a discriminator-controlled, bang¬ 
bang type servo is used. 

The logical-image-rejection system is used to 
prevent the receiver from attempting to lock-on 
when a superheterodyne image frequency is inter¬ 
cepted. 

I. Introduction 

The rapid and automatic search of wide fre¬ 
quency bands for the location and identification of 
radio frequency interference sources is becoming 
increasingly important. 

Equipment capable of conducting rapid surveil¬ 
lance of the radio frequency environment is required 
at air traffic control centers, monitoring stations, 
and missile launch and tracking stations. 

The receiver described in this paper is 
designed to search for and then tune to pulsed RF 
signals. In addition, this receiver can accommo¬ 
date continuous-wave or high-duty-cycle signals 
by local gating modulation that effectively converts 
them to pulsed signals in one channel for control 
purposes. This technique can be applied within any 
RF band. Obviously, it is important to search the 
selected frequency band rapidly. However, if the 
scanning speed is too fast, the receiver band pass 
may pass through the interfering signal frequency 
between RF pulses. Based purely on system con¬ 
siderations, therefore, the maximum scan speed must 
be determined by the maximum interval between 
pulses, by the bandwidth of the receiver, and by 
the maximum number of pulses that will be required 
to initiate the lock-on command. 

When a signal is intercepted, the receiver 
switches from the search mode to the lock mode. 
The receiver must tune within 0.1 A of the signal 
frequency, where A represents the IF bandwidth. 
However, it must not lock on an image frequency. 
In addition to the above requirements, the receiver 
must respond to digital commands that determine scan 

limits, and when commanded to do so, must stop at a 
specified frequency. 

II. Search Mode 

During the search mode, the receiver scans 
continuously between two preset frequency limits. 
The binary output of an analog to digital encoder, 
which is coupled to the tuning shaft of the receiver, 
is compared with binary words representing the high 
and low limits of the desired frequency sector by 
two digital matcher circuits. When the encoder 
word matches one of the frequency limit words, a 
matching pulse is produced that changes the state 
of the direction flip-flop, and thus reverses the 
scanning direction of the receiver. These limits 
can be reset to permit scanning any sector within 
the band. 

As previously mentioned, the receiver can be 
stopped at any desired frequency. This is done by 
first setting the limit at the high frequency end 
of the scan sector to correspond to the desired 
frequency and then by giving the stop command. The 
receiver will scan the band until the match occurs, 
and then stop on the preprogrammed word representing 
the high frequency limit. 

If an RF signal is received as the band is 
scanned, the control circuits must either command 
lock-on or inhibit it until the receiver scans past 
the signal. For the purpose of this paper, the 
signal response is obtained when the local-oscillator 
frequency is above that of the incoming signal, and 
the image response is obtained when the local¬ 
oscillator frequency is below that of the incoming 
signal. Later on I will describe the method used 
to inhibit lock-on for image frequencies. 

III. Lock Mode 

When the receiver intercepts a valid signal, 
the lock mode is initiated. In this mode, tuning 
error information is derived from a discriminator 
that is fed from a limiting IF amplifier stage. As 
seen in Figure 1, the discriminator and detector 
outputs go to the lock control. The lock control 
performs the logic and timing functions that gen¬ 
erate the direction and speed commands for the 
scanning motor. Figure 2 is a logic diagram of the 
lock control. 

Frequency versus amplitude characteristics of 
the discriminator and detector are shown in Fig-
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ures 3A and 3B. Superimposed on these character¬ 
istics are the outputs of the 10-microsecond mono¬ 
stable flip-flops (A and B) and the 5-microsecond 
monostable flip-flop (C). Variable thresholds on 
the input to each monostable flip-flop are adjusted 
to give exactly the characteristics in Figures 3A 
and 3B. 

If the inhibit flip-flop has been set, then 
the discriminator, through monostable flip-flops A 
and B, will control the scan direction. An output 
from A causes the scan motor to move up in fre¬ 
quency whereas an output from B causes the motor 
to move down in frequency. An output from either 
A or B will cause the scan motor to remain on, 
whereas a pulse from C without a pulse from A or B 
will turn the motor off. 

It can also be seen from Figure 2 that when 
the inhibit flip-flop is set, the scan motor will 
revert to slow speed. 

The monostable flip-flop D is unlike ordinary 
ones because, after each set pulse, it will remain 
in the "1" state for 8 milliseconds regardless of 
its initial condition. Its purpose is to reset the 
inhibit flip-flop when no pulse is received within 
8 milliseconds. 

The resulting control characteristic of these 
circuits, as seen in Figure 3C, is typical of a 
relay-operated or bang-bang servo. This type of 
servo has a fast response time because maximum and 
minimum errors produce the same correction rate.1

Most AFC systems that are designed to operate 
on pulsed RF signals integrate the output of the 
discriminator to produce a DC level proportional 
to tuning error. The method that I have just 
described produces error information on a pulse-to-
pulse basis, and unlike the integration method it 
does not limit response speed. 

Phase-plane methods of analysis are applicable 
to this type of system since all of the nonlin¬ 
earities are signal-dependentFigure k is a 
phase-plane diagram wherein the x coordinate is 
scanning position and the y coordinate is scanning 
speed. The case of only one initial condition is 
shown. This diagram shows the point where the 
servo parameters are switched and the results of 
changing system parameters such as scan speed, 
slow or fast, or servo amplifier gain. You will 
note that Figure U shows that there are limits 
between which commands can be given. This is 
caused by variations in time when pulses will be 
received. The variations are minimized by over¬ 
shooting the signal once and then approaching the 
off zone at slow speed. 

With the bang-bang type of servo, there is an 
optimum condition where the off command can be 
given, and the scan velocity and tuning error will 
immediately drop to 0. The threshold on the direc¬ 
tion command monostable flip-flops was selected so 
that noise would not cause false triggers. Because 
these thresholds are determined directly by RF noise 
and indirectly by system parameters--such as the 
receiver noise figure, IF bandwidth, etc.,—the 
frequency where the off command is given must be 
fixed. Another parameter easily varied is the scan 

speed. On this receiver, adjusting the slow scan 
speed to about 25 percent of the fast scan speed 
will give minimum scanning error. 

A new type of servo amplifier was designed 
for this system that permits very high gain without 
any loop stability problems. The measured turn¬ 
around time and stop time for slow-speed scan are 
10 milliseconds and 3-5 milliseconds respectively. 

IV. Image Rejection 

Some method had to be found to prevent the 
receiver from trying to lock on image frequencies. 
It is well known that the sense of control commands 
for AFC is reversed for image frequencies of super¬ 
heterodyne receivers.3 

For example, if the receiver is scanning up 
in frequency and intercepts an image frequency, as 
seen from Figure 3A, the first pulse from the 
discriminator will be negative. This pulse will 
change the state of the direction flip-flop so that 
a "down" command will be given. The motor will 
scan down in frequency until the low frequency 
limit is reached, and then the scan direction will 
change to up. This cycle will continue to repeat 
itself. Thus, the receiver scan frequency is con¬ 
strained below the incoming image frequency. 

To eliminate this problem, several logic 
gates and a flip-flop were added to the lock con¬ 
trol. These inhibit the discriminator direction 
commands from changing the scan direction until 
after certain conditions occur. If the receiver 
is scanning up and an"up" command is given by mono¬ 
stable flip-flop A, or if the receiver is scanning 
down and a "down" command is given by monostable 
flip-flop B, then the inhibit flip-flop will be 
set. The discriminator will control the scan 
direction until the inhibit flip-flop is reset. 
These conditions are always met when the receiver 
frequency approaches the signal frequency; there¬ 
fore, lock-on is initiated upon receiving the 
first pulse from the discriminator. 

However, in the case of an image frequency, 
these conditions are not met until after the 
receiver has scanned past the center of the image 
frequency. Even then, when the inhibit flip-flop 
is set and the discriminator commands control 
direction, the receiver continues to scan in the 
same direction. Monostable flip-flop D will reset 
the inhibit flip-flop after 8 milliseconds. 

V. Conclusion 

All of the desired design objectives for the 
Search and Lock Receiver have been achieved. In 
addition to the achievement of system performance 
goals, the design of the Search and Lock Receiver 
offers the advantages discussed below. Using a 
method of logical image-rejection eliminated the 
preselector. The use of several logic gates and 
a flip-flop eliminated the problems associated 
with preselector tracking, its size and weight, 
and the extra load on the scanning motor. The 
servo loop used for scanning the receiver proved 
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very effective and reliable over extreme tempera¬ 
ture variations. The digital-type circuits used 
throughout the lock control, the modulator, and 
the servo amplifier have simplified the electronic 
circuitry and have made the servo loop more stable 
against variations in temperature and changes in 
component values. 
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Fig. 1. Block diagram of search and lock receiver. 
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Fig. 2. Logic diagram of lock control, 
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Fig. 3. Lock control characteristics. 
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Fig. 4. Phase plane diagram—scanning speed vs scanning position. 
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DESIGN OF THE SATURN S-IV STAGE 
PROPELLANT UTILIZATION SYSTEM 

D. J. Allen 
and 

L. G. Bekemeyer 
Douglas Aircraft Company, Inc. 

Santa Monica, California 

Summary 

Introduction 

Previous propellant utilization practice, 
on kerosene fueled ballistic missiles, has been 
to attempt to determine this nominal curve by 
analysis and monitoring of numerous test flights. 
The operational vehicles would then be loaded so 
that if this nominal curve were followed,simul¬ 
taneous depletion would result. The possible 
open-loop errors were small enough to be accepted 

The S-IV vehicle, which is presently being 
designed and manufactured by Douglas Aircraft, is 
the second stage of the initial, or C-l, configu¬ 
ration of the Saturn booster. It is powered by 
six 15,000 pound Pratt and Whitney rocket engines 
which use liquid hydrogen and liquid oxygen as 
propellants. The total propellant load is 100,000 
pounds divided in the ratio of 5 pounds of oxygen 
to 1 of hydrogen. With this load the nominal 
burning time is U67 seconds. The C-l launch 
vehicle is designed to be capable of orbiting a 
satellite weighing more than 20,000 pounds. 

If this vehicle is to reach its maximum 
capability it must be able to burn almost all of 
the propellant which has been loaded. This es¬ 
sentially means that when one propellant has been 
depleted the amount of the other propellant re¬ 
maining, which is an unusable residual, must be 
small. A typical open-loop engine mixture ratio 
history is shown in Figure 6. This curve shows 
the ratio of the propellants being burned (lbs. 
of oxygen per lb. of hydrogen) as a function of 
flight time with the assumption that all the 
parameters that influence this ratio are at their 
predicted values. Also shown is a band over which 
this mixture ratio can vary if these influencing 
parameters vary to their limits. It will be 
noted that during most of the flight the nominal 
mixture ratio is near the engine manufacturers 
design value of 5:1» The slow increase in ratio 
during flight is due primarily to the gradual 
warming up of the hydrogen, thus reducing both 
its density and the mass being pumped into the 
engine. 

This paper indicates the requirements for 
closed-loop propellant utilization control on the 
S-IV stage of the Saturn launch vehicle. An 
analysis of the system is presented. The design 
of the capacitance sensors and the electronics 
assembly is described. 

There are several reasons why this method 
would not be satisfactory on the S-TV vehicle. 
First, because of the cost of the vehicle the 
number of test flights will be limited to a number 
insufficient to predict an accurate nominal curve. 
Second, as a result of the use of hydrogen as a 
fuel the open-loop mixture ratio band is signifi-
catly wider. In fact, these engine mixture ratio 
errors, combined with a reasonable loading error, 
could result in as much as 3,000 lbs. residual 
propellant. 

On the S-IV there is a loss of about 1.1 
pound of payload for each pound of unexpended 
propellant. Therefore, a 3,000 lb. propellant 
residual would result in a loss of 3,300 lbs. of 
payload. For this reason a requirement for 
closed-loop control of propellant utilization was 
established. For this purpose a system would be 
installed in the vehicle which would continuously 
senser the amount of each propellant remaining in 
the tanks and regulate the engine mixture ratio 
to insure near-simultaneous depletion of both 
propellants. 

System Requirements 

The requirements and functions of the Pro¬ 
pellant Utilization (PU) system on the Saturn 
S-IV vehicle are as follows : 

1. To provide sufficient flow control to 
deplete both propellants to 500 pounds or less 
while maintaining the Engine Mixture Ratio (EMR) 
to 5 pounds Lox per pound LHp + 10# ("Lox" and 
"LHg" are terms used repeatedly in this paper for 
Liquid Oxygen and Liquid Hydrogen). 

2. To control the loading of propellants by 
providing the ground support equipment with an 
accurate indication of the propellant masses. 

3. To provide propellant mass information 
during flight for telemetry. 

4. To provide signals for propellant de¬ 
pletion logic, and for the fuel tank pressur¬ 
ization system. 

System Analysis 

System Operational Outline 

The PU system as shown in Figure 1 consists 
of capacitance sensors for measuring propel Tant 
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masses, a summing device for comparing mass 
signals, a shaping network for periodic dis¬ 
turbance attenuation, and six valve assemblies 
for changing Lox flow as a function of mass error. 
Since the sensor measures fluid mass, it can be 
represented by a gain C. (see Figure 2) It is 
in one leg of a servo balanced bridge. When un¬ 
balanced by a propellant mass change, it is re¬ 
balanced by the servomotor and feedback potentio¬ 
meter. In rebalancing the bridge, the motor po¬ 
sition also provides mass signals for FU valve 
actuation, loading, mass telemetry, and switching. 
The generalized bridge assembly closed loop trans¬ 
fer function is : 

Its damped frequency is 42 rad. per sec. with a 
damping ratio of .7. Velocity feedback was ne¬ 
cessary to prevent potentiometer damage from limit 
cycling. Its effect is shown analytically in 
Figure 3. Without velocity feedback, limit cy¬ 
cling occurs at a frequency of 6 cps. With 
velocity feedback it does not exist. A bridge of 
this type is used with each sensor, and the 
difference of their output signals is the mass 
error. 

_ K Mb_ 
S(Tms + i + kmkv)+k kmg8kp

the 
The 
is : 

The valve positioning loop for each of 
six engines is also described in Figure 2. 
closed loop transfer function for this loop 

Sc kmv kvgv ÖV 

S(Tc $ + I H S + I ) 4- K MV Ky Gy K p 

Its damped frequency is 25 rad. per sec. with a 
damping ratio of ».8. A nyquist stability plot 
of the valve loop is also shown in Figure 3. It 
can be seen that limit cycling is no problem in 
this loop. 

The valve lag shown in Figure 2 has a band¬ 
pass of 10 cps. Since the engine mixture ratio 
is defined as Lox flew divided by LHq flow, 
valve gain can also be expressed in terms of per¬ 
cent EMR change per degree of valve. Total valve 
travel is mechanically limited to + 60°. Total 
EMR change for + 6o° valve is 4.5 to 5.5 or +10^. 

The shaping network transfer function is also 
shown in Figure 2. Although primarily designed to 
attenuate slosh, it also is used to provide de¬ 
sired system performance and, stability character¬ 
istics . The band pass of this network (.01 
rad/sec) is much lower than that of any other 
element in the major loop. 

An open loop frequency response plot for the 
PU system is given in Figure 4 for normal (.2 
#/sec per pound Lox error) and initial (.04 
#/sec/#) system steady state gain. (The gain 
change will be explained later in detail.) In 
obtaining this frequency response information, it 
was found that no measurable change occurred in 
the area of interest when the bridge loop, valve 
loop, and valve dynamics were replaced with their 
respective steady state gain. This conclusion is 
substantiated by the relative "Root to Origin" 
distances observed on the Root Locus Plot in 
Figure 5. 

System Flow Equations 

As was stated in the previous section, the 
LHg bridge output signal which represents LH„ 
mass times the desired tank mixture ratio is sub¬ 
tracted from the Lox bridge output signal. This 
difference is defined as mass error. 

Symbolically, mass error e = WT - RdW„ Li n 

Rd 
T 
Wh 

where WT = Lox mass Li 
W„ = LH- mass 11 d 

Rd = 5 = desired tank mass ratio 

Another method considered for comparing 
propellant masses is a ratio error signal. 

d WL WL - MWh Ratio error e = n-Rd = -n-— r WH Wg 

The gain of this type of system increases to 
infinity as W„—0. Primarily because of this 
gain change characteristic, the ratio error 
system was not used. 

The actual propellant weights W- and W can 
be divided into a theoretical weight plus a 
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if wL - w^ + awl

and WH = Wm  + AWh

then e = W^, + AWL - Rd (w^ + AWH) 

Where and W— represent the theoreti¬ 
cally correct values of propellant mass. 
WT and W represent mass pertubations due 
to tolerances and distrubances. 

Since W^ - Rd W^, =0, e 
equation can be expanded to 

= AWl - RdAW -This 
include those dis¬ 

turbances which make up AW- and AW„. Li n 
e =AWU +ÜWIß sinut + AW^ + - AW^) dt 

" 5 [ AWHi + AWHS sin <*’t +AWHA + /^HU " A”hC ) d1

AW-- and AW are flow changes from the pro¬ 
pellant utilization flow control valve. 

AW-. and are initial loading errors. 
These errors result from loading inaccuracies, 
boiloff variations during boost phase, 

and variations in the 
amount of engine prestart cooldown propellants 
used. Since the same capacitance sensors are 
used for loading and propellant utilization, the 
loading errors as seen by the PU system will 
probably be less than the actual loading errors. 
This difference would be in the sensor inaccuracy. 
A maximum loading error equivalent to 750# Iz>x 
was used to study system performance. 

AW^j and AW^ represent uncontrolled flow 
rate errors. These errors are caused principally 
by propellant temperature and tank ullage pressure 
variations. The total effect of these variations 
on engine mixture ratio is shown in Figure 6. 

AW andAWjjg are sloshing disturbances. 
The sensor will give erroneous propellant mass 
information if the fluid surface is not perpen¬ 
dicular to the vehicle centerline. Sloshing is 
a fluid surface tilt which is periodic and can 
be attenuated in the system electronics. The 
equations used in this analysis describing slosh 
are AW-- = 400 sin 2.5t Lo 

AW„O = 450 sin 2.0t no 
Thus e (slosh only) = 400 sin 2.5t - 5» 

450 sin 2t 

= 2650 maximum 

These sloshing errors, being primarily from very 
low damped LH- are expected to exist to some 
extent for the total burning period. The shaping 
network shown in Figure 2 is designed primarily 
to reduce this disturbance by 53 db at the LH^ 
slosh frequency. Thus valve movement is reduced to 
+ 3° or + .025 EMR. 

AW-. and AW represent non-periodic errors 
from fluid surface tilt. Any time the resultant 
total thrust vector is not parallel to the vehicle 
centerline, a fluid surface tilt condition 
results. If, for example, the vehicle C.G. 
through which the thrust vector must act were not 
on the vehicle centerline, a surface tilt con¬ 
dition would occur. 

Gain Change Requirement 

For total system response analysis, the open 
loop transfer function can be stated: 

Kj. (T 2 S + 1) 
KGH ’ S(T 3 3 + 1) (Tt S + 1) 

Where + Total Loop Gain 

From this, the velocity constant Cv can be 
obtained. 

C = Lim S(KGH) 
V S— o 

The theoretical residual from uncontrolled rate 
errors (AW^) then is: 

△ Wj^ 
“C~ Or ~ 

V 

The maximum EMR variation in Figure 6 can be 
approximated with a value of 5 + ’3- In units 
of AW^, +.3 EMR = 10.8#/sec. Therefore, 
AW^y = 10.2 = 51«6 pounds theoretical residual. 
T" 
The total residual will include the effects of 
sensor errors and system hardware errors. 

The engine manufacturer has stated that the 
EMR remain within 4.5 to 5-5 during burning. If 
valve flow pertubations (AW--) are added to the 
uncontrolled deviations (AW^.) the EMR can be 5.8. 
This condition can occur ifrhe polarity of AW^ 
is opposite that of AWyj. A condition of this 
type was used as one parameter in evaluating 
system transient performance. To keep the engine 
mixture ratio within the prescribed limit, it was 
necessary to use reduced system gain until a 
definite relationship between AW-. andAW^ was 
established. To satisfy this EMRexcursion limit 
requirement as well as keep residuals from uncon¬ 
trolled rate errors to a minimum, the following 
gain change program was developed. 

SYSTEM GAIN VS BURNING TIME 

.2 
SYSTEM 
GAIN 

.04 

125 SEC 

BURNING TIME 

187 



System Performance 

System response data has been obtained for 
various system disturbances. Because of the gain 
change characteristic, the analog computer was 
primarily used. The disturbances and associated 
response curves shown in Figure 7 are representa¬ 
tive of the studies made. It was assumed in ob¬ 
taining these curves that ÛW„ = 0, and all dis¬ 
turbances were introduced as lox disturbances. 
The relatively high bandpass of the servo 
balanced bridges make this a valid simplification. 
Lox rate errors are introduced as shown in Figure 
7• It is assumed that the se errors are not 
erratic and will generally be of one sign. The 
system is not expected to correct for the sudden 
rise in EMR late in flight. It has been es¬ 
tablished however that a positive EMR deviation 
indicates excess Lox flow, and the resulting mass 
at burnout will be LH„. This mass is not ex¬ 
pected to exceed 75 lbs. 

The LH„ sensor will be biased to read empty 
with a remaining mass of LH_ in the tank. The 
effect of this bias can best be explained with an 
example. 

Assume 

Lox sensor accuracy = .2^ of total mass 

= .002 (83,333)= 167# 

LIL, sensor accuracy = .002 (16,667) = 33# 

Condition A: If the Lox sensor read low, 
and the LHo sensor high, residuals from sensor 
error would be W + W„ (5) 

Ju n 

= 167 + 33 ( 5) = 332# 

Condition B: If the Lox sensor read high 
and the LHg sensor low, residuals fron sensor 
error would be 33 + 1^1 = 66#. 

If the LHg sensor were biased to read 4-5 # 
low; Condition (a) above would result in 
332 - 5 (45) = IO7 # residuals, and Condition (b) 
above would result in 66 + 45 = UI # residuals. 
Thus residual propellants at burnout due to 
sensing errors can be reduced by this LH^ bias. 

Capacitance Sensors 

Sensor Requirements 

The selection of a sensing system is proba¬ 
bly the most important decision to be made in the 
design of a Propellant Utilization System. Ulti¬ 
mately, the success of the system will turn on 
this decision since the controller can be no more 
accurate than the information supplied to it by 
the sensors. Accordingly, an extensive investi¬ 
gation of liquid gaging methods was undertaken, 
culminating in the choice of capacitance sensing 

for this system. Although the capacitance gage 
has found extensive use in industrial and aircraft 
fuel gaging applications this is the first time it 
has been applied to a propellant utilization 
system, and it has been found necessary to make 
several "state-of-the-art" improvements in its 
design. 

The prime requirement of sensing system is, 
of course, accuracy. This requirement can be 
conveniently subdivided: 

1. Zero stability: The sensor shall indi¬ 
cate zero propellant at the exact time the tank 
is emptied. This indication must not be degraded 
over the expected range of vehicle environmental 
conditions. 

2. Linearity: When there is liquid in the 
tank the sensor shall accurately indicate its 
mass. 

The reason for the first requirement is clear, 
for a sensor zero shift will cause an error which 
will directly add to propellant residual. The 
requirement that the measured parameter be pro¬ 
pellant mass is not as obvious. There are several 
reasons: first, the engines are most efficient 
when they are run at their calibrated mass mix¬ 
ture ratio; and second, mass measurements are 
required both on the ground, for propellant load¬ 
ing, and in flight for vehicle performance 
evaluation. 

One way of determining the mass of pro¬ 
pellant in a vehicle tank would be to determine 
the position of the liquid-gas interface and from 
this compute the liquid volume. The propellant 
mass could then be obtained by use of a calcu¬ 
lated density or one which had been obtained by 
use of a measuring device located near the bottom 
of the tank. With cryogenic propellants there 
are a number of objections to a technique of this 
type. First, the interface may be fairly unde¬ 
fined and perturbed by boiling or sloshing; and 
second, there is apt to be considerable density 
stratification throughout the length of the tank 
so that a density sample taken at one place in 
the tank would not be representative. 

These disadvantages would be overcome by a 
gaging system which measured mass by integrating 
a fluid property related to density over the 
length of the tank. The capacitance sensor is 
such a system. In this system a long capacitor 
is placed in the tank, parallel or nearly 
parallel to the tank axis. When the tank is 
empty the capacitance of the unit will be pro¬ 
portional to the dielectric constant of the gas 
between the plates, which we will call E_. If 
the tank is filled and the liquid allowea to 
flow between the plates, the observed capacitance 
will increase because some of the gas has been 
replaced by a liquid with a higher dielectric 
constant. If the capacitor is of uniform cross -
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section, its capacitance increase will be pro¬ 
portional to both the immersed, length and. the 
liquid, dielectric constant minus the gas die¬ 
lectric constant (Ej_ - E ). Since the dielectric 
constant of all gases is very nearly one, this 
last proportionality constant can be regarded as 
(el - 1). 

If we know ET, we now have a system which 
will tell us the level of liquid in the tank. 
Since the capacitance of the unit is inversely 
proportional to the distance between its e-
lectrodes, we can build a sensor which will give 
a direct volume readout in a non-uniform cross-
section tank by making the spacing between the 
electrodes at any point a function of the tank 
cross-section at that point. If (E- - 1) of the 
liquid being gaged is proportional to density, 
as it very nearly is for our propellants, we will 
have a system which will give a direct mass 
readout. 

The dielectric constant of liquid hydrogen 
and oxygen is quite closely described by the 
Clausius-Mosotti equation. 

Where E = dielectric constant 

P = density 

K = conAant dependent on the 
polarizability of the material 
involved. 

It can be seen that if E is near 1 that E - 1 is 
almost a direct function of P. Since the die¬ 
lectric constant of liquid hydrogen is about 1.22 
and that of liquid oxygen about 1.48 this con¬ 
dition is fulfilled. 

Sensor Design 

The sensors used in Saturn S-IV are cy¬ 
lindrical with an outer diameter of two inches. 
Correction for tank geometry is made by varying 
the diameter of the inner electrode. The mount¬ 
ing method is shown in Figure 1. It can be seen 
that because of shape of the tank it hasobeen 
necessary to tilt the hydrogen sensor 18 from 
the vehicle axis. This sensor is 260 inches long 
and is, as far as the author knows, the longest 
capacitance sensor which has been built to date. 

Several second order error sources exist in 
a practical capacitance gaging system. One of 
these arises from making the electrodes of ma¬ 
terials which expand with temperature. In any 
system in which the sensors operate in a varying 
temperature environment the resulting expansion 
will cause a capacitance change which must be 
taken into account. The capacitance of a cy¬ 
lindrical capacitor is given by the formula: 

C 

R[ 

Where L = length of the capacitor 

R = radius of outer electrode o 
R^ = radius of inner electrode 

E = dielectric of media between 
electrodes 

K = constant 

For a capacitor with both electrodes of the 
same material Log R^R^ will not change as the 
capacitor expands and contracts, so the capaci¬ 
tance change will be proportional to the change 
in L. Ry making the electrodes out of materials 
with different expansivities, it is possible to 
make Log Rvary proportionally to L and there¬ 
by make a unit whose capacitance is very nearly 
constant over a wide temperature range. This is 
illustrated in Figure 8. 

The sensor zero capacitance, or its capaci¬ 
tance when all the propellant in the tank has 
been expended is influenced by the temperature 
and pressure of the residual gas. Of course, 
this effect will be predicted and allowed for in 
calibrating the system. However, any error in 
this prediction will be seen by the system as a 
zero shift. In the liquid oxygen tank, where 
the pressurent is helium, which has a very low 
dielectric constant, this effect is negligible. 
In the hydrogen tank the residual is hydrogen gas 
under several atmospheres pressure and its effect 
can be quite appreciable. Even if we are able to 
make a reasonably accurate prediction of this 
effect, the resulting zero shift can be as much 
as .3Í to .4^ of full scale. Fortunately it is 
possible to canpensate for the major portion of 
this error, the part that is due to the un¬ 
certainty in the temperature of the residual gas. 
This is done by designing the sensor so that its 
change in capacitance with temperature, due to 
thermal expansivity, balances out the change in 
ullage gas dielectric with temperature. An 
example is shown in Figure 9-

It can now be seen that the design of these 
sensors was a complex process. Since the prime 
requirement was zero stability this was attacked 
first. A computer program was written which 
would design a sensor which had a capacitance vs. 
liquid level height function which matched the 
tank volume vs. height function. For simplicity, 
it was assumed that the gas above the liquid was 
at a fixed nominal temperature and that the 
sensor electrodes were at the temperature of the 
fluid medium in which they were immersed. This 
program was then used to design a number of 
sensors with various electrode material 
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combinations and different ratios of the inner 
and outer electrode diameters. The response of 
each of these designs when immersed in gas at 
various temperatures and pressures was determined 
with the aid of the computer. Based on this 
information, the material combination and di¬ 
ameter ratio which gave the smallest capacitance 
change over the range of gas temperature and 
pressures expected in the tank at the end of 
flight was selected for the final sensor design. 
The optimum material combination was an aluminum 
outer electrode and a stainless steel inner 
electrode for both the hydrogen and oxygen 
sensors. However, the diameter ratios were 
different. 

Having determined these parameters, a more 
refined computer program was developed for de¬ 
signing the actual vehicle sensors. This program 
was similar to the first one, with provision for 
a variable temperature distribution in the gas 
and in each of the electrodes. In addition, the 
computer was enabled, by means of an iterative 
process, to vary the shape of the inner electrode 
in order to bring the sensor capacitance vs. 
liquid level curve, considered under the pre¬ 
dicted vehicle environment, into correspondence 
with the tank mass vs. liquid level curve. 
Further, the program was arranged so the final 
print out of a capacitance vs. sensor length 
function would assume room temperature electrodes 
and dielectrics to simplify fabrication and 
calibration. 

Electronics Assembly 

The electronics assembly incorporates the 
circuitry which supplies propellant mass signals 
to the ground loading computer and the vehicle 
telemetry systems. It also creates and shapes 
the system error signal and generates the electri¬ 
cal commands for positioning the engine mixture 
ratio valves. 

Since this assembly had to be located at 
some distance from the sensors, a three-wire 
bridge was chosen for sensor readout. Further, 
to obtain the necessary accuracy and stability, 
a balanced bridge incorporating a servo re¬ 
balance loop was used. This circuit is shown 
in Figure 10 and is typical for both the hydrogen 
and oxygen sensors. 

In this circuit the sensor forms one leg 
of a bridge, the opposite leg is a fixed refer¬ 
ence capacitor. The other two legs of the bridge 
are voltage sources supplied by the secondary 
of the reference transformer. The output of the 
bridge is the input to a servo amplifier. If the 
bridge is initially in balance and the sensor 
capacitance is increased or decreased by adding 
or withdrawing propellant, the bridge will be 
unbalanced and an input supplied to the amplifier. 
The amplifier in turn will drive a servomotor 
which repositions the rebalance potentiometer to 
return the bridge to null. The rebalance 

potentiometer voltage, or shaft position, change 
is proportional to sensor capacitance change. 
This shaft position is the output of the bridge. 

It will be noted that the capacitance to 
ground associated with cable connecting the 
sensor to the electronics assembly does not add 
to the stray capacitance of the sensor. This is a 
particular advantage of this form of bridge since 
this capacitance can easily be larger than the 
sensor capacitance. However, it is important to 
avoid capacitor coupling between the two sensor 
leads since this cannot be distinguished from 
sensor capacitance. This requirement is met by 
using shielded cable and coaxial connectors for 
the high impedance lead. 

The rebalance pot is one gang of a four-
gang ten-turn potentiometer. The other three 
gangs are used for loading and course telemetry, 
fine telemetry, and forming the system error 
signal. The loading potentiometer is excited 
with 28 volts DC and the voltage ratio output 
taken to a digital ratiometer in the ground load¬ 
ing computer. The ratiometer is calibrated to 
give a readout of the pounds of propellant in 
the tank and to provide signals for operating 
the loading valves. 

The fine telemetry potentiometer has been 
incorporated to enable an accurate inflight 
determination of propellant mass. The accuracy 
of this measurement would normally be limited by 
inherent telemetry inaccuracies amounting to 
about 256 of full scale. To overcome this, the 
potentiometer is divided into 20 equal segments 
by tapping; alternate taps are excited by 5 volts 
DC, with the remainder grounded. This effective¬ 
ly provides a 20 times expanded scale and reduces 
the telemetry errors to .1^. 

Figure 11 shows the method of forming the 
error signal. The two bridge output potentio¬ 
meters are excited in parallel from a 100 volt 
DC source. The bridges have been calibrated so 
that any time the propellant masses in the tank 
are at the desired 5:1 ratio the potentiometer 
wiper positions and therefore wiper voltages are 
equal. Accordingly, in operation the voltage 
difference between the wipers is the system error 
signal. In order to have this signal referred to 
ground the potentiometer excitation supply is 
floating and the wiper of the hydrogen output 
potentiometer is grounded. 

The error voltage is first taken to a 
switched voltage divider which mechanizes the 
gain change. The gain change switch is driven 
by the oxygen bridge servo. A RC network is used 
to shape the error signal. The high attenuation 
desired in this filter to reject disturbances 
from propellant slosh and the need to keep the 
filter capacitors to reasonable size has resulted 
in the filter presenting a high source impedance 
to the amplifier which follows it. Efforts to 
design a sufficiently stable DC amplifier to work 
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from this source were unsuccessful, so a modulator-
AC amplifier-demodulator combination was used. 

The demodulator output is the command input 
to six parallel position servos which are used to 
control the engine mixture ratio valves. DC is 
used for the command and feedback signals to 

avoid quadrature problems which would arise from 
summing two slightly out-of-phase signals. The 
command and feedback signals for each loop are 
summed at the input of a magnetic modulator. 
This modulator is followed by an AC amplifier 
which drives a servomotor located on the engine. 

SATURN S-IV PROPELLANT UTILIZATION SYSTEM 

Fig. 1. 

BRIDGE & VALVE DRIVE OPEN LOOP FREQUENCY RESPONSE 

PROPELLANT UTILIZATION SYSTEM BLOCK DIAGRAM 

Fig. 2. 

Fig. 4. 
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PROPELLANT UTILIZATION SYSTEM ROOT LOCUS 
(ROOTS SHOWN FOR .2 SYSTEM GAIN) 

X = SYSTEM ROOTS 
X = SYSTEM POLES 
O = SYSTEM ZEROS 

Fig. 5. 

SYSTEM RESPONSE CURVES 

INITIAL CONDITIONS 

CURVE «1 aWu = 750# 

#2 iWL = 10 + 008t -/SEC 

-3 dWu = -750 
jW l = 3 + 0081 /SEC 

#4 dWu = 750-

jWl = 10 + .0081 #/SEC 

,WLA= 18 -/SEC 

Fig. 7. 

OPEN LOOP ENGINE MIXTURE RATIO HISTORY 

Fig. 6. 

CAPACITANCE CHANGE - BIMETALIC SENSOR 
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TEMPERATURE STABILIZED SENSOR 

Fig. 9. 

SERVO-BALANCED CAPACITANCE BRIDGE 

Fig. 10. 

PROPELLANT UTILIZATION SYSTEM 

Fig. 11. 
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VAPOR JET CONTROL OF SPACE VEHICLES 

James E. Vaeth 
Martin Marietta Corporation 

Baltimore 3, Maryland 

Summary 

This paper describes a reaction jet attitude 
control technique which affords significant ad¬ 
vantages in terms of accuracy, reliability, fuel 
economy and operational flexibility. These ad¬ 
vantages are realized by the use, in combination, 
of low-thrust vapor jets and time-dependent on-
off switching circuits. An accuracy potential 
comparable to inertia wheel control is thus pro¬ 
vided, while the proverbial wheel problems of 
speed saturation, bearing life, threshold non¬ 
linearities, gyroscopic coupling and vibration 
excitation are avoided. 

Very low thrust magnitudes are attained by 
simply opening a small orifice to allow fuel to 
vaporize into the surrounding vacuum. Fuel 
storage, pressurization, circulation and mixing 
requirements are thus minimized. By augment¬ 
ing conventional on-off valve switching circuitry 
with electronic networks that generate thrust 
pulses of small but constant time duration, ve¬ 
hicle angular rate can be controlled to a very low 
threshold. This minimizes fuel consumption 
and valve cycling frequency. 

The capabilities and limitations of this design 
approach were substantiated by an analog com¬ 
puter program incorporating breadboard switch¬ 
ing circuits, and by vacuum chamber testing of 
critical components. These technique and com¬ 
ponent developments are applicable to such space 
missions as astronomical observation, earth 
reconnaissance and stellar navigation. Design 
guides are presented for synthesizing a reaction 
jet system to meet any particular set of per¬ 
formance specifications. 

Introduction 

The analytic studies, system design approach 
and test programs to be described were initiated 
during the design competition for the NASA 
Orbiting Astronomical Observatory (OAO) 1»2 . 
The very stringent criteria for vehicle attitude 
control, in terms of pointing accuracy, relia¬ 
bility and operational flexibility, dictated sig¬ 
nificant improvements over existing techniques 
and equipments. 

Preliminary studies verified that the required 
accuracy of 0. 1 arc seconds could be attained 
by means of proportional inertia wheel control2. 
However, the questionable reliability associated 
with wheel bearings operating continuously for a 
year4, plus the definite need for preventing wheel 
rate saturation (such as by firing auxiliary jets 
once each orbit) were the major factors leading 
to an extensive investigation of the capabilities 
and limitations of reaction jets for fine pointing 
control. 

Although on-off reaction jets had been suc¬ 
cessfully employed in prior missile and space 
programs, their applicability for precision at¬ 
titude control of the OAO vehicle called for much 
lower angular momentum impulses than had ever 
been utilized. The low thrust vapor jets, on-off 
switching techniques and system design approach 
developed to meet these specific requirements, 
together with pertinent test results and growth 
potential, are presented in the pages that follow. 

System Design Requirements 

The significant design requirements 1 for fine 
pointing control of the OAO vehicle may be sum¬ 
marized as follows: 

Continuous control of vehicle orientation to 
within the sensing accuracy of the primary 
optical telescope, which was specified to be 0. 1 
arc seconds, or better, about two axes; 

Capability of reducing an initial pointing error 
of 120 to less than 0. 1 arc seconds within a 3 
minute time duration; 

Operational compatibility with auxiliary star 
trackers, possessing resolution limitations of 
10 arc seconds or worse, during periods when 
the primary telescope is occulted by the earth 
or moon; 

Ability to cope with external disturbing tor¬ 
ques exceeding 100 dyne centimeters; 

Sufficient flexibility to cope with optical or 
instrument noise associated with the stellar 
trackers, and with saturation of the stellar 
detector signal*; 

Operational flexibility to perform all required 
functions with a minimum of mode changing; and 

Operating duration of at least one year. 

Another implicit design consideration was to 
limit system size and weight, including fuel, to 
a few pounds per axis. The reliability concern 
stemming from the one-year operating life em¬ 
phasized the need to minimize moving parts. 
Accuracy considerations also dictated mini¬ 
mizing internal motions and associated vibration 
excitations. An important design criteria, 
therefore, was to keep the jet valve cycling rate 
as low as possible--consistent with the per¬ 
formance requirements. 

In attempting to meet the combined design 
requirements of precision performance, relia-

*This would ease sensor design requirements. 
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bility and early availability, the obvious approach 
was to utilize proven techniques and components, 
wherever applicable, and to substantiate the per¬ 
formance capabilities of any novel or critical 
items by system analysis and component testing. 

The major problem areas were the required 
low thrust jet units and the electronic switching 
circuits needed to minimize thrust on-time. 
Although this paper is primarily concerned with 
the switching techniques, some discussion of 
vapor jet thrust generation is warranted because 
the two are closely interdependent. 

Vapor Jet Thrust Generation 

The jet control moment should ideally be no 
greater than that needed to satisfactorily ac¬ 
complish the initial damping function (120 arc 
seconds within 3 minutes). For the OAO vehi¬ 
cle, the desired control torque about each axis 
is subsequently shown to be between 1,000 and 
20, 000 dyne centimeters, or less than 0. 00015 
foot-pound. 

The desired low thrust levels made the use 
of vapor jets very attractive. Accordingly, a 
vacuum chamber test program was undertaken 
to determine the thrust and specific impulse of 
various vapor fuels as functions of orifice size 
and shape, pressure and temperature differ¬ 
ential, etc. Detailed test procedures and results 
are presented in Ref. 2. Pertinent conclusions 
are as follows: 

A specific impulse of 50 to 100 seconds was 
measured for such fuels as water and methyl 
alcohol; 

The desired low thrust levels were attainable 
by using the proper orifice diameter; 

Because of the small orifice size (0. 02-inch 
diameter), a single-level on-off system appeared 
necessary, as opposed to proportional control of 
thrust; and 

Thrust variations with internal temperature 
were such that system operation should be com¬ 
patible with a 20% uncertainty in absolute thrust 
level. 

On-Off Switching Technique 

The electronic circuits required for each 
axis of control must position a solenoid valve in 
accordance with the optical error signal. The 
three valve positions are closed, open-left and 
open-right. 

Analytic studies to determine the required 
switching circuitry began with an evaluation of 
the conventional and proven technique^ for ac¬ 
complishing all the functions outlined under 
"System Design Requirements. " This technique 
keeps the jet valve open whenever the sum of the 
measured attitude displacement and rate signals 

exceeds a preset voltage (equivalent to an error 
voltage of 0. 1 arc second). 

Analysis procedures were initiated making 
use of phase plane techniques^ and culminated 
in an analog computer simulation to investigate 
the effects of disturbing torques, optical noise 
and switching hysteresis inherent in the bread¬ 
board circuits. In the analog program, addition¬ 
al breadboard circuits were provided for gener¬ 
ating a small but constant thrust impulse, in 
case such a refinement proved necessary. 

Figure 1 is a functional block diagram of the 
analog computer simulation (see List of Sym¬ 
bols). The jet valve opens for a fixed time 
duration (T ) when the applied switching signal 

(6g) reaches a preset value (6d equivalent to 0. 1 

arc seconds) and keeps the valve open whenever 
the error exceeds twice the pulsing level (2 6^). 

The valve closes when 0 reduces below 2 0,, s d 
and opens in identical fashion—but in the opposite 
direction—for 0g signals of reverse polarity. 

When Tp is set at zero and the second switching 

level is reduced to 0. 1 arc seconds, operation 
of a conventional-type system is simulated. 

As noted in Fig. 1, a derivative or lead cir¬ 
cuit (a T^) is employed to generate attitude rate 

signals. Rate gyros were avoided for reasons 
of reliability and the required threshold level. 
The filter is incorporated to attenuate optical 
noise. 

The capabilities and limitations of the sys¬ 
tem shown in Fig. 1, with Tp finite and zero, 

are presented in subsequent pages for the limit 
cycle phase of operation and for the initial 
damping phase. Both phases strongly influence 
overall system design. 

Initial Damping Phase 

The initial damping requirement of 120 arc 
seconds within 3 minutes can be met by various 
combinations of control acceleration (0 ) and 

c 
rate-to-displacement gain ratio (a T. in Fig. 1). 

• • 1-1 
A critical factor in selecting 0 and aT. is the C lu 
linear range of the optical error detector. If 
the linear range is i 60 arc seconds or greater, 
the recommended scheme is to use the minimum 

which satisfies the following two criteria: 

0c is sufficient to rotate the vehicle 120 

arc seconds (0 .) in 3 minutes (t ) by mi m J
applying positive ©c for 1.5 minutes 

and negative for 1. 5 minutes,or 

0 >4 0 ./t 2 (1) c * mi m ' ' 
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e’ is an order of magnitude greater than any 
c 

disturbing moment. 

Having thus chosen 0^, a is selected so that 

OT, = (e ,/40 ) 1/2 (2) L mi c' 

The above technique for selecting 0c and a?L 

minimizes thrust magnitude, assures compliance 
with the t damping requirement for any initial 

attitude error less than 0m ---and requires no 

circuit complication. 

When 0. < em p decreased fuel consumption 

can be realized by computing an optimum switch¬ 
ing function from measured rate, displacement 
and an assumed value of 0c> Thrust polarity 

would be switched when 

0 = - 02/20c (3) 

However, this scheme was impractical because 
of ©c uncertainty. 

Fuel us^ge, which is proportional to the 
product of ©c and jet on-time, may be reduced 

by means of rate limiting (0 ), but again, at the v III 
expense of circuit complication. Using rate 
limiting (such as 1 arc sec/sec) the criterion 
for selecting becomes 

a rr =0 /2 0’ (4) T, m e 

For the practical case, with error detector 
saturation (0 ), angular rate measurement by 

a derivative circuit is limited to within the de¬ 
tector linear range. Thus the use of rate limiting 
would require a low threshold rate gyro, with 
associated reliability degradation. A more at¬ 
tractive solution would increase 0c and decrease 

ar., suchthat 
lu 

«’L • V6'./'2 (5>

However, 0 must now be chosen sufficiently 
c 

large to attenuate ©mi within the specified tm> 

This is illustrated in the phase plane plot of 
Fie 2 for 0 of 20 arc sec, 0 . of 120 arc sec, 

m 2 mi 
0 of 0.227 arc sec/sec andar. =6.7. The 
c F 

required time duration is approximately 3. 0 
minutes. It is noteworthy that, for the saturation 
case, the necessary 0 is primarily dependent 

upon 0 , whereas the use of Eq (5) in selecting 
r m 

arr contributes much less toward minimizing 
. . lu 
0 than does Eq (2) without detector saturation. 

Should the detector saturation levçl be less 
than ±5 arc sec, the required large ©c signif¬ 

icantly increases fuel usage and causes a severe 
limit cycle complication, as will be shown. 
Alternative solutions are as follows: 

Incorporation of low threshold rate gyros, 
together with rate limiting and the use of 
Eq (4). 

Use of time-counting circuits to switch 
the jets on and off during the initial damping 
phase. 

The first has already been discussed and is 
the more desirable in terms of fuel consumption, 

circuit simplicity and low ë . The second cir¬ 

cumvents the need for extremely reliable and 
precise rate gyros, by incorporating time count¬ 
ing circuits whose function is illustrated in 
Fig. 3. Note that an essentially steady-state 
limit cycle (denoted by trace ABCD) will result 
with the switching levels set at ±0. 1 arc sec and 
without the lead circuit. 

The counting circuit simply measures jet on-
time ( t ) for one half cycle (point A to B) and 

then during the next half cycle reverses thrust 
after 85. 35% of t . This occurs at point E of 

Fig. 3, after which the reversed thrust is main¬ 
tained for 35. 35% of t At this time, angular 

rate and displacement reach zero simultaneously 
(point F), and the normal jet switching circuits 
(including lead) are reactivated to maintain pre¬ 
cise accuracy. 

This technique does not require knowledge of 
vehicle attitude, attitude rate or jet thrust magni¬ 
tude. It requires only that the positive and nega¬ 

tive 0 be equal to within about 2%. To alleviate 

this contingency, 0, could be increased so that 

the thrust reversal periods of 85.35% of tQ and 

35. 35% of t would not be initiated at point C 

(Fig. 3), but delayed one half cycle until point A 
is again reached. 

Although detector saturation was not defined 1, 

it appeared judicious to use a ë magnitude 

sufficiently high to be compatible with any of the 
above damping schemes, including ©m  = 20 arc 

seconds. A value of 0. 226 arc sec/sec appeared 
to be a good compromise, with ranging from 

2. 5 to 12. 

Limit Cycle Operation 

Continuous tracking to within the specified 
accuracy of ±0. 1 arc sec can be accomplished as 
illustrated in the phase plane plot of Fig. 4. The 
vehicle ideally rotates at a constant angular rate 
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through the ±0d dead band (point F to A) until the 

switching signal (0 in Fig. 1) exceeds a preset 

level. This occurs at point B with the increment 
from A to B resulting from the combined system 
lag ( = Te + tl + Tc in Fig. 1, assuming 

Tc << Te + tl)- Control torque is applied at 
point B and—if were zero—thrust would cease 

at point C. However, delays thrust termi¬ 

nation until point D. 

The obvious criterion for fuel economy is to 
minimize angular rate (6 ) through the dead 

1-4 
band. For the more practical case, it will be 
shown that should be no less than ± 0. 01 arc 

sec/sec because of expected disturbing moments. 
Attainment of such a low limit cycle rate with a 
conventional system is possible, but only if 
switching hysteresis (H) and rT are very small. 

Because of lead circuit limitations and the possi¬ 
ble need to smooth optical noise, compatibility 
with a minimum r^, of 0.5 sec seemed very 

desirable. 

The simplified equations derived in Ref. 5 
for defining the pull-in and drop-out lines by 
phase plane techniques imply that the minimum 
jet on-time ( TQn, from point B to D in Fig. 4) 

is approximately equal to t^,. This is an ex¬ 

cellent approximation if the hysteresis delay (H) 
is predominant. However, when the required 
tQn is less than rT , the exponential transient 

cannot be neglected. 

For the case in which a near constant 0. is 
L-4 

maintained for a time interval equivalent to 3r^,, 

thrust on-time can be determined as follows. 
From Fig. 4, the required incremental rate 

(△ 0) that must be sensed in order to signal drop¬ 
out (point B to C) is 

(H + 0T t„) (6) 

The measured △ 0 after thrust initiation at point 
B is 

A *M= 8C ‘on/'^V <7> 

Thrust termination requires that 

Substituting the Laplace transform —n— for 
S 

t in Eq (7) and writing the inverse transform, 
/ -t / / on /r_\ 

t - t 1 - e J on 1 \ / 
(9) 

△ 0™ = ë M c 

Note that if t » r„, the thrust will cease . on 1 
when △ 0, from point C toward point D, equals 

This approximation is quite incorrect 

T" 

ÖC V 
for t on 

The usefulness of Eq (8) as a design guide 
is augmented by combining the limit cycle 
relationship 

with Eqs (6) and (9), which gives 

(10) 

(11) 

This minimum on-time criterion for a con¬ 
ventional system is plotted in Fig. 5. As an 
example, the desired^ of 0.01 arc sec/sec 

and of about 0. 2 arc sec/sec^ give a desired 

value for t of 0. 1 sec. Using t = 0. 1 sec on ° on 
and trp = 0. 5 sec, Fig. 5 indicates that the right¬ 

hand side of Eq (11) must not exceed 0. 095. 
This, in turn, is realized if ar. is set at 5 and 

J—4 
H does not exceed .0 045 arc sec. The obvious 
method of decreasing tQn is to increase ar^l 

however, this accentuates the importance of the 
initial assumption, in the derivation of Eq (11), 
that 0^ had been nearly constant for a short 

time prior to thrust initiation. 

Equation (11) is not applicable if the null-in 
line in Fig. 4 (point A) is crossed while torque is 
being applied. This situation does exist during 
the latter part of the initial damping maneuver. 
Until the system damps to within the two pull-in 
lines, a good approximation for minimum jet 
on-time is simply tt< Thus a second criterion 

for satisfactory limit cycle operation is 

% tT < 2 $d /otL < 12)

•• 2 
Consequently, with 0 =0.2 arc sec/sec , r 

C 1 
= 0.5 sec and 0^ = 0. 1 arc sec, it follows that 

ar^ must be less than 2.0. Since this low value 

of would preclude satisfying Eq (11), tt 

must be significantly decreased. 

To avoid the squeeze imposed by Eqs (11) 
and (12), to significantly improve the ability to 
smooth optical noise and to make system non¬ 
linearities and uncertainties (such a switching 
hysteresis) much less critical, breadboard cir¬ 
cuits for generating the timed pulse (r in Fig. 1) 
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were designed, tested and incorporated into the 
analog program. 

The performance improvements attributable 
to the timed pulse were determined by analog 
computation. Response plots of a conventional 
system (rp = Û), shown in Fig. 6, substantiate 

the criterion of Eq (12) in that 0^ never settles 

within the two pull-in lines. Note that thrust on-
time is very high. Significant parameters were: 
•• >2 e = 0. 226 arc sec/sec , 0 , = ± 0.1 arc sec, c d 
ar. = 2. 5 sec and t_ = 0.6 7 sec. By adding the 
Li 1 

Tp pulse of 0. 1 sec when 0g reaches ±0. 05 sec, 

the system not only damps to within the two 
switching lines, but settles onto a limit cycle 
with an accuracy better than 0. 05 arc sec and a 
jet on-time to off-time ratio of only 1/60 (Fig. 7). 

An excellent demonstration of the significance 
of t„ and ar. is obtained by comparing Figs. 
1 Li 

7 and 8. Doubling ar. and t_, (Fig. 8) results L 1 
in a longer settling time and the higher ar. 

Lj 
causes greater fuel consumption during limit 
cycle. The minimum thrust on-times ( &c traces) 

achieved during initial damping, excluding the 
constant 0. 1-sec pulses, agree quite well with 

the criterion of Eq (11) and Fig. 5 in that tQn = 0. 3 

sec is realized, provided thrust has been off for 
a time interval of at least prior to thrust 

initiation. Note the pulse at t = 40 in Fig. 8. 
This also indicates that the hysteresis in the 
breadboard switching circuits amounted to less 
than 0. 005 arc sec. 

Further increase of ar. and t„ (above the Lu 1 
values of 5. 0 and 1. 12, Fig. 8) prevented the 
system from settling within the two pull-in lines, 
despite the pulse. As suggested by Eq (12), 

this situation was alleviated by doubling the sys¬ 
tem dead zone--which also halved fuel consump¬ 
tion, while maintaining the specified accuracy. 

Based on analog simulation results, the sys¬ 
tem parameters recommended to comply with 
the requirements outlined in "System Design 
Requirements" were ar^ = 5 sec, = 0. 5 sec» 

tq = 0. 5 sec, t = 0. 1 sec when 0 = 0. 1 arc 
° < P •• e » 2 

sec, t = 0. 03 sec and 0 = 0. 226 arc sec/sec c c 
(by using an Mc of 12, 000 dyne-cm with = 

800 slug -ft2). 

A phase plane response plot of the recom -
mended configuration with a constant ME of 100 

dyne-cm is presented in Fig. 9. The jet on-time 
to off-time ratio is 1/120 or M„/M„. This h» V' 

ratio was verified for M„ values from 50 to 300 

dyne-cm. For ME = 0, the on-time to off-time 

ratio was less than 1/100. Note that if a con¬ 
stant M„ of 300 dyne-cm or greater should be 

is 
specified 
desirable 

as always being present, it would be 
to increase T to 0. 3 second. This 

P 
would minimize valve cycling and wear, but 
assure the minimum attainable (1/40) on-time 
to off-time ratio. 

Analog traces verified that, for Mj, > 22 dyne-

cm, the limit cycle will become symmetrical about 
the 0 axis (Fig. 8) when T is zero or finite. With 

P r 
such values of ME , ©d can be increased to [_9d 

+ ê a t - 0 r l. However, with lower 
L Li Li 1J LL 

values, the limit cycle will not be symmetrical--
so that 0 , cannot be decreased, 

d 

The principal effect of optical noise is to 
increase valve cycling and fuel consumption. If 
the filter networks can sufficiently attenuate the 
noise level, the 0g signals will not excessively 

energize the valve. For the recommended sys¬ 
tem parameters, response to optical noise 
is shown in Fig. 10. Note the additional jet 
pulses in the 0 trace. Analog studies demon¬ 
strated that valve response to any noise spectrum 
(magnitude and frequency range) can be predicted 
as a function of the system parameters--in 
particular, T—, and ©d . 

When control is switched to an auxiliary 
star tracker, functional operation remains the 
same, except that the voltage level of the de¬ 
tector error signal (0g in Fig. 1) is made 

compatible with the desired switching levels. 

To summarize briefly, the Tp pulsing 

technique significantly improves system design 

flexibility. For example, should 6^ have to be 

increased by a factor of 5 to comply with initial 
damping requirements or with limitations on 
minimum thrust level, the desired limit cycle 

(èL = ±0. 01 arc sec/sec) could still be attained 

by reducing Tp to 0. 02 sec. 

Fuel Considerations 

Required fuel weight per axis is simply 

Wf = FtT /Isp (13) 

where total jet on-time (t^,) includes both initial 

damping maneuvers and limit cycle operation. 
I was measured as 50 sec minimum, and the 
sp 
jet thrust (F) required to produce 12, 000 dyne-

cm is less than 3 x 10 pound. 
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For a one-year operating life, a conservative 
estimate of 10,000 initial damping maneuvers, 
each of 160-seconds duration, results in a W^. of 

less than one pound. 

For a limit cycle on-time to off-time ratio 
of 1/120 (assuming = 100 dyne-cm), con¬ 

tinuous operation for one year would require a 
Wf of 0. 16 pound. Required fuel weight would 

increase directly with M^. 

Component Design and Testing 

The feasibility of the vapor jet design ap¬ 
proach was substantiated by engineering design, 
fabrication and testing of critical components. 
Detailed design and test data are beyond the 
scope of this paper, but a brief description seems 
pertinent. 

Jet Switching Circuit with Timed Pulse 

This circuit functions as shown in Fig. 11. 
The detector d-c error signal, after compen¬ 
sation, is modulated and fed to both an amplitude -
sensing and a phase-sensing channel. The 
latter closes either transistor switch A or B, 
permitting the proper jet to be energized when 
the error amplitude reaches one of the switch¬ 
ing levels. 

In the amplitude channel, the error signal 
drives two separate level sensors (diode clamps)i 
When either of the switching levels is exceeded, 
the associated Schmitt trigger changes state 
and drives a C-R circuit so that a pulse is 
generated. The level 1 monostable flip-flop 
applies a pulse of fixed duration to the tran¬ 
sistor switch, whereas the level 2 bistable flip¬ 
flop keeps the switch continuously energized 
whenever level 2 is exceeded. 

A breadboard was designed, tested and 
operated for 100 hours (with no failures) during 
the analog simulation program. A development 
model, weighing approximately 1 pound (shown 
in Fig. 12), was fabricated and successfully 
cycled 5 million times during vacuum chamber 
testing of the system. 

Digital Damping Circuit 

The initial damping technique of reversing 
thrust at 85. 35 and 35. 35% of measured time 
(tQ) was mechanized digitally, using appro¬ 

priate counting registers and logic. The pro¬ 
cedure is as follows: a number of pulses pro¬ 
portional to tQ are registered during the first 

half cycle, with subsequent switching when 6/7 
of the tQ pulses (85. 71%) are counted and again 

when 6/17 (35.29%) are counted. A develop¬ 
mental model weighing 2. 5 pounds was fabri¬ 
cated and successfully tested. 

Vapor Jet Propulsion System 

The vapor jet test apparatus used for ex¬ 
perimental determination of vacuum thrust and 
Igp is shown in Fig. 13. An experimental pro¬ 

pulsion system consisting of a jet valve and 
actuator, a nozzle assembly and a fuel system 
was used in conjunction with the switching 
electronics to conduct vacuum tests of thrust 
buildup time, valve leakage and component 
life. 

By photographing electrode arcing response 
with a high speed camera, thrust risetime of 
0. 034 sec was measured—and most of this time 
was attributable to the relay lag in generating 
the timing light. The system was successfully 
cycled 3.5 million times, simulating in-orbit 
operation of more than one year. Subsequent 
leakage tests and careful inspection substantiated 
system feasibility. 

Potential Applications 

The switching techniques and component 
developments described above can be applied 
to many space missions that require precision 
control of vehicle orientation. 

In synthesizing a reaction jet system to 
meet a specified set of performance require¬ 
ments, the system evolution and design guides 
outlined in Eqs (1) through (13) should prove 
very useful. In particular, the need for intro¬ 
ducing a timed pulse circuit can be effectively 
evaluated from Eqs (11) and (12). 

An attractive sophistication of the t pulsing 

technique provides an effective range of linear 
control between two switching levels--one being 
the dead band level desired for limit cycle 
operation and the other, perhaps, as large as 
the detector saturation level. 

Between these levels, thrust impulse is 
made proportional to the input error signal by 
combining pulse frequency and pulse width 

g 
modulation . This affords the capability for 
simultaneous control (using common thrust 
units) of vehicle translation and orientation as 
required for space rendezvous. This technique 
can provide limit cycle operation equivalent to 
the T 

P 
pulse system, but it possesses the 

potential disadvantage of increased valve cycling 
(and wear) during initial damping maneuvers 
and because of noise inputs. 
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List of Symbols 

6, ê, 0 Vehicle angular displacement, rate and 
acceleration 

0 Attitude sensor error signal 
e 

6 Attitude displacement dead band 

6g Signal applied to jet switching circuitry 

6 , Maximum initial error 
mi 

6* Initial condition error 

6 Attitude sensor saturation level m 

ë Jet control acceleration c 

ê Attitude rate during limit cycle 
Lj 

△ ë Measured incremental rate after thrust 
initiation 

△è Incremental rate required to signal 
K thrust drop-out 

6 Rate limiting level 

M^ Jet control moment 

M„ External disturbing moment 

aTT Attitude rate to displacement gain ratio 
JL 

Tt Lead circuit time constant (denominator) 

T„ Noise filter time constant O 

Tc Thrust build-up or decay time constant 

T_ Total time constant or lag 
T (Tt-Tl + TW 

T Time duration of constant jet pulse 
P 

t Jet on-time increments with conven-
on tional switching 

to Jet on-time measured by digital count¬ 
ing circuit 

t Time duration allowed for initial 
m  damping 

t^ Total (accumulated) jet on-time 

H Equivalent switching hysteresis 

1^ Vehicle moment of inertia 

Igp Fuel specific impulse 

Required fuel weight per axis 

F Jet thrust magnitude 

S LaPlace operator 

NOTE: t and T are equivalent symbols. 
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Fig. 1. Functional block diagram, jet control loop. 

Fig. 2. Initial damping with detector saturation. 

Fig. 4. Limit cycle operation. 

Fig. 5. Minimum pulse on-time criterion. 

Fig. 3. Initial damping using time measurement. Fig. 6. System response with T = 0. 
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Fig. 7. System response with T = 0.1 sec. 

Fig. 8. System response with = 0.1 and increased Twanda 
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Fig. 9. System response with = 100 Dyne-cm. 

Fig. 10. System response with noise input. 

Fig. 11. Functional block diagram of jet switching circuitry. 
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Fig. 12. Engineering model, jet switching circuitry. 

Fig 13. Vapor jet test apparatus. 
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CIRCUIT REVOLUTION: A TUTORIAL INTRODUCTION TO 
THE SYMPOSIUM ON THE DESIGN OF NETWORKS WITH 

A DIGITAL COMPUTER 

Philip R. Geffe, Axel Electronics, 
Inc., Jamaica, N. Y. 

Abstract 

Computers are revolutionizing circuit theory because any 
well-defined calculativo procedure is now a practical procedure 
with a digital computer: i.e., computation costs are reduced by 
several orders of magnitude. Network applications yield theo¬ 
retical studies as well as designs for hardware production. The 
first part of this paper surveys these usages to date. 

In the second part of the paper, the computer art from a be¬ 
ginner’s point of view is discussed. Programming is discussed 
in terms of object language, interpretive language, and problem-
oriented symbolic coding systems. Some practical advice is 
offered for novices. 
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EXPERIENCE WITH A 
STEEPEST DESCENT COMPUTER PROGRAM 
FOR DESIGNING DELAY NETWORKS 

C. L. Semmelman 
Bell Telephone Laboratories, Incorporated 

Murray Hill, New Jersey 
Summary 

A computer program has been written for the 
purpose of designing networks by a successive 
approximation technique. The program performs 
two operations alternately: calculating the 
improvement made possible by a small change in 
each network design parameter and making larger 
changes in all parameters to reduce the error in 
performance. The program is written in Fortran-II 
for IBM-704 or 7090 computers with 16 or 32 K 
storage. It has been used mainly to design delay 
networks; however by rewriting one subroutine it 
may be used to design other types of networks or 
solve sets of equations. 

Operating Features 
The steepest descent computer program was 

written in order to provide a general purpose 
tool for designing a wide variety of large and 
very precise networks and solving complicated 
sets of equations. It makes possible the rapid 
design of networks for which analysis methods are 
available but synthesis techniques are not. It 
allows the engineer to Impose practical design 
objectives, such as nonuniform dissipation and 
the range of available element values. Further, 
It makes possible unusual design objectives, such 
as simultaneous loss and phase or combined 
frequency- and time-domain requirements. It does 
not restrict the designer to equal-ripple approx¬ 
imations or lnfinite-Q elements. 

The program is written in Fortran-II lan¬ 
guage for the IBM-704 and 7090 computers and 
requires 16 K registers of core storage. In 
order to use the program an engineer must make a 
first estimate of the value of each design param¬ 
eter, determine the maximum and minimum values 
permitted for each, and prescribe the number and 
location of the requirement points, e.g., R< and 
fj In Eq. (3). The program allows 128 match 
points and 64 parameters. It Improves the orig¬ 
inal estimates by a successive approximation pro¬ 
cedure so that the actual network behavior 
approximates the requirement in a least squares 
manner subject to the Imposed constraints. 

Mathematical Formulation 
Whereas a human designer could look at the 

shape of an error curve and decide whether or not 
a change in some parameter had made an improve¬ 
ment, a computer finds this a very difficult task 
- akin to pattern recognition. To ease this 

burden, the steepest descent program examines the 
value of one variable, y, which is defined for 
delay networks in the following manner. Let the 
delay requirement for the network be given by the 
J values Rj at the frequency points fj, and the 
actual delay of some n-section network be Tj, at 
those same points. 

where fcj is the frequency at which the phase 
shift of the ith section is 180° and b^ is its 
stiffness parameter . These delay section param¬ 
eters are defined in Fig. 1. 

Fig. 1 - Definition of Delay Section Parameters 
Equation (1) states that the delay provided by the 
network is a function of the frequency and the 
network parameters, or 

Tj = T(x1,fJ) (2) 

where xi includes fcl and b.^ and 1 £ i < 2n. The 
match value, y, may then be defined as: 

J 

y - (SJ - - M«,) (3) 
J=1 

The problem, then is to minlmuze y by adjusting 
the values x subject to their constraints, where 
the expression y(x^) is an extremely messy func¬ 
tion of, possible, several dozen variables. 

Description of the Program 

Direction of Changes 

The method of attack on this problem comes 
from the fact that the direction in x-space in 
which y is increasing most rapidly is the direc¬ 
tion defined by the gradient. 
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. dy . dy 
grad y = 5^ \ + 3^ ^2 +

Consequently the increments 
to decrease y as rapidly as 
by: 

for the required 
possible are given 

6x, 
1 Axi 

(5) 

where C is a constant. This is shown graphically 
in Fig. 2, where x has been restricted to two 
dimensions and constant values of y are shown by 
contours. As the computer program must be able 

Fig. 2 - Illustrating Gradient and Direction 
of Steepest Descent 

to evaluate the match value, y, it was decided to 
use the first difference ratio in place of the 
partial derivative. This was entirely a matter 
of convenience, as an additional evaluation of y 
was faster than a calculation of the derivative. 
The Ax used in the first difference ratio is 
0.0001 x. 

Magnitude of Changes 

Having established the direction In which to 
change the x's, i.e., the signs and relative 
sizes of their increments, it is now necessary to 
determine their actual sizes. In the vicinity of 
a minimum it may be expected that contours will 
be ellipsoids in many dimensions and y will be 
approximately parabolic. If the value of y is 
calculated at three points the location and value 
at the parabola minimum may be determined. The 
points Xj, Xi+lFSx^ and x^+2F6x1 are used for 
this purpose and values yQ, y^ and yg respectively 
are found. F is initially an arbitrary constant 
but is adjusted as the calculation progresses. 

Fig. 3 - Parabola Along Negative Gradient 

The location of the parabola minimum is given by 

where 
Xlm = Xl+MFBxl 

- 2y0-4y1+2y2

(6) 

(7) 

The parabola minimum will in general not be the 
ultimate goal, as the negative gradient will not 
usually point toward the absolute minimum. This 
is shown in Fig. 2, where the descent direction 
does not pass through the origin. The parabola 
minimum will, however, be the point at which the 
steepest descent direction is tangent to a con¬ 
tour. Having reached the parabola minimum, a 
repetition of the above calculations will bring 
further Improvement. Successive gradients, as 
shown in Fig. 2, will be perpendicular; however, 
in more than two dimensions the direction of the 
next path cannot be predicted by this means. 
Safety Features 

Although the basic operating features of 
steepest descent approximation are covered in the 
preceding paragraphs, many devices to protect 
against unforeseen occurrences have been incor¬ 
porated in the program. 

It is conceivable that the points yg, y^, 
and y9 could determine a parabola which was con¬ 
cave downward or could lie on a straight line. 
The former would cause the program to locate a 
maximum and the latter would result in a division 
by zero. To avoid such occurrences, zero or 
negative curvature causes the middle point yj_ to 
be dropped and a new one, y^, calculated at 
x1+4fbx1. The points y0, y^ and y^ are then 
checked for curvature and the process is repeated 
using y0, y^ and yg; y0, yg and Yi6> etc *» un^11 
positive curvature is found. 

The curvature, although positive, may be so 
small that the location calculated for the mini¬ 
mum is unreliable because of rounding error. The 
process described above is used in this case also 
to obtain more reliable information. 
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When this procedure of doubling the spread 
of the parabola has been executed too many times, 
the program increases the numerical value of the 
constant F, so that with the next gradient, fewer 
calculations will be required. 

It is also possible that F6xj will be too 
large, so that yj_ > Yq, iæ«, on the other side 
of the minimum. In this case F is reduced by a 
factor of ten and a new value is found for yp. 

After the location of the parabola minimum 
has been found, it is possible that the match 
value at that point may be larger than one or 
more of the values yg, yp or yg. The program 
selects the lowest as a point from which to con¬ 
tinue and thereby assures that the approximation 
never becomes worse. 

In case the adjustment of parameters by add¬ 
ing KF6xp results in one or more of them assuming 
values outside their constraint range, the 
corresponding limiting value is immediately sub¬ 
stituted. Although this results in a departure 
from the steepest descent direction, it will 
produce results in keeping with the designer's 
wishes. 

Time-Saving Features 

Two features have been incorporated in the 
program solely in the interest of speed. One of 
these is made possible by the fact that each term 
in the summation of Eq. (1) is a function of only 
two of the totality of network parameters. For 
this reason, only that one term needs to be 
recomputed when the first difference ratios are 
being evaluated. The second feature is the accel¬ 
eration step suggested by A. I. and 
G. E. Forsythe.1 The operation of this mechanism 
is shown in Fig. U. 

Fig. 4 - Acceleration Step 

Frequently, successive changes in a set of param¬ 
eters will appear as shown by 6xa,6xp,,5xc, etc. 
When this happens, time can be saved by forming 
the vector sum of two successive changes, say 6xa 
and 5xp, and using this in place of F6xp in 
Fig. 3- The corresponding values yg and yp have 
already been evaluated and stored so that only 

one new evaluation, yg, is needed to prepare for 
a major stride forward. By comparison, the 
equivalent of at least four evaluations would be 
needed to prepare for an additional step of the 
õxc type. 

Other Features 

Because the evaluation of delay from Eq. (1) 
forms a very large part of the computer program, 
the time required may be estimated on this basis. 
The IBM-7090 requires about 0.7 millisecond to 
evaluate each term of this summation. 

As the designer will not, in general, know 
the optimum amount of flat delay to include in his 
requirement, the program selects this for him. 
This feature may be suspended when necessary. 

The program stops when either of two condi¬ 
tions is met: either the number of trials pre¬ 
scribed for the machine run has been completed or 
the program has failed to make improvements total¬ 
ing one per cent in the last three trials. 

Results 

Since the steepest descent program was 
written it has been tried on a wide variety of 
types of networks. In adjusting three to six 
element values in constant-R bridged-T loss equal¬ 
izers it has achieved uniformly excellent results. 
It has also been used to adjust element values in 
a five-branch finite-Q filter to meet a loss 
requirement while maintaining as low phase shift 
as possible at a given frequency. In this case 
one degree phase was weighted as heavily as 1 db 
loss, and good results were obtained. The program 
has also worked well in adjusting the fc values 
of four phase sections whose b values were fixed 
at 2.0, in order to produce a constant phase dif¬ 
ference across a given band. 

Delay Networks 

When applied to the design of delay networks, 
however, the results have been only partly satis¬ 
factory. Figure 5 shows typical error curves at 
the beginning and end of a run in which a parabola 
minimum was found six times. This network con¬ 
tained 20 sections and the requirement was 

Fig. 5 - Typical Improvement 
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specified at 61 frequencies. For most uses this 
design would be entirely satisfactory; however, 
the ripple is not as small as is theoretically 
possible with 20 sections. 

A good measure of the performance of the 
program may be obtained by comparing the number of 
crossings of the calculated delay characteristic 
with the required curve. Optimum results would be 
obtained when this number equals the number of 
delay section parameters plus one. The added 
crossing comes about because the program is 
allowed to select its own flat delay level, making 
an additional variable. Table 1 shows the best 
results that have been obtained for networks of 
various sizes. 

Table 1 - Results of Steepest Descent in 
Designing Delay Networks 

Final 
Total Number Number of 
of Parameters Crossings 

7 U 

21 17 

33 1U 

Ul 17 

Several conjectures have been advanced to 
account for the final numbers of crossings being 
less than the theoretical values. One possible 
explanation is that the program becomes trapped 
in a local minimum and cannot get out of it to 
find a better match elsewhere. On an intuitive 
basis, it is difficult to believe this. There is 
certainly some combination of parameter values 
which produces 2n+l crossings. It seems incon¬ 
ceivable that the match can be made worse instead 
of better when changes are made which are each a 
very small fraction of the changes required to 
reach the optimum. We have been unable to demon¬ 
strate rigorously that local minima either can or 
cannot exist. A second explanation is that the 
27 bit fractions carried in the computer do not 
have sufficient numerical accuracy to carry 
through to the final solution. This explanation 
appears to be much more reasonable, as the 
7-parameter case has been run until the computer 
began to repeat the calculations with identical 
numbers. It achieved only the four crossings 
shown in Table 1. The use of a first difference 
ratio instead of the true partial derivatives has 
also been suggested to be the cause of the dif¬ 
ficulties . 

One characteristic which is common to all 
the delay section computations is that very small 
changes are made in the b parameters. In a 
3-section delay equalizer for a filter pass band 
the initial and final values and the per cent 
changes in the parameters are listed in Table 2. 

Table 2 - Results Using Steepest Descent 
Direction 

Av. 
Initial Final | Change | Change 

fcl 2.60 2.5897^ .39^ A 

f 2.65 2.6U627 .01U • .272$ 

f 2.7 2.71103 .U09 

b 19.O 19.OOO89 .000^73^’ 

bg 20.0 19.99^71 .OO265O - .00112 

b3 21.0 20.99952 .000225_ 

y .237 .080 66.3$ 

Crossings 2 U +2 

If it is considered that only the fc's were 
adjustable, the results in Table 1 appear to be 
quite near the theoretical limits. 

Scale Factor Effect 

It is believed that this avoidance of b 
changes is attributable to the scale factor 
effect. Because of it, the gradient direction is 
not invariant to a change in the units in which 
the parameters are expressed. This may be demon¬ 
strated readily by consideration of the equation 
and elliptic contours shown in Fig. 2. The opti¬ 
mum direction in which to change the parameters 
is toward the origin; however, only the gradients 
at points on the semimajor and semiminor axes will 
result in such a change. If the transformation 

= 2w (8) 

is made, the equation becomes 
p p 

y = Uw¿+4xg , (9) 

which plots as concentric circles. Now the 
negative gradient at every point will point 
directly to the minimum at the origin. In such a 
situation the program might, for example, con¬ 
verge quickly if frequencies were expressed in 
megacycles per second but not if the designer 
preferred kilocycles. 
Least Squares Direction 

In order to test this hypothesis, the method 
of determining the improvement direction was 
modified by calculating the change in each param¬ 
eter needed to make a least squares match to the 
requirement curve. This is the Taylor Series 
method described by M. R. Aaron.2 These coeffi¬ 
cients determined the direction of change and the 
distance was determined by putting a parabola 
through three equally spaced points, as before. 
The results of this modification are shown in 
Table 3 and are plotted in Fig. 6. 
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Fig. 6 - Comparison of Steepest Descent 
and Least Squares Results 

Table 3 - Results Using Least Squares 
Direction 

Initial Final | Change 
Av. 

Change 

f 2.6 2.596OI .155t' 

fc2 2.65 2.6U531 .18$ 

fc3 2.7 2.70664 .25$, 

bx 19.0 25.23380 32.8$ " 

b2 20.0 12.92902 35.3$ 

b3 21.0 26.52252 26.3$. 

y .2370 .00546 97-7$ 

Crossings 28+6 

- 0.19$ 

31.4$ 

These results show that large changes in b 
values are needed and are not being made with 
the negative gradient program. To obtain more 
positive evidence, the final parameter values 

from the steepest descent run (Table 2) were used 
as initial values for a least squares run. The 
results do not differ to any practical extent 
from the final results in Table 3- This shows 
that sufficient numerical accuracy was available 
and that a local minimum did not stop the 
improvement. 

Although it worked very well in this 
example, the least squares procedure does not 
appear to be the ultimate answer. Cases have 
been found where two parameters produce rather 
similar changes in delay. The simultaneous equa¬ 
tions which result will then be ill-conditioned 
and may require more precision than is available. 
Further, the least squares procedure may then 
require an exhorbitant positive change in one 
parameter and an equally undesirable negative 
change in the other. When these changes are 
tried, the nonlinearity of the functions prevents 
the expected improvements. 

Conclusion 

The steepest descent procedure appears to be 
adequate for a wide range of engineering applica¬ 
tions. In cases where results near the theoreti¬ 
cal limits are required, a better process for 
determining the direction of change would be 
desirable. Several ideas are being investigated 
but none has yet proven itself capable of consist¬ 
ently producing the optimum theoretical results. 
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FILTER SYNT'IESIS USING A DIGITAL COMPUTER 

G.C. Temes 
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Ottawa, Canada 

Summary 

The design of filters generally involves several 
successive steps: the derivation of a realizable 
approximation to the specified transfer character¬ 
istics; the calculation of the immittance para¬ 
meters; and finally, the establishment of the 
circuit diagram and the element values. The 
synthesis is usually followed by an analysis of 
(and, if necessary, compensation for) the effects 
of parasitic phenomena and element variations. By 
combining analytical, numerical and graphical pro¬ 
cedures, a great variety of specifications can be 
satisfied by networks realizable in practical 
configurations and with feasible element values. 
This paper classifies and gives a brief description 
of the digital computer programs that were found 
to be most useful in these calculations. Several 
representative examples are included. 

I. Introduction 

The purpose of this paper is to give a classi¬ 
fication and brief description of the digital 
computer programs that have been - or are expected 
to be - useful in the synthesis of filters and 
related networks at the Communication Networks 
Laboratory of Northern Electric R & D Labs. This 
laboratory carries out research and development to 
design filters and other networks used in telephone 
and radio transmission systems. All computational 
design work is done on a digital computer. The 
computer currently being used is an IBM 1620. 

The programs referred to in this paper are 
subject to the following restrictions : 

a, The design methods are based on the inser¬ 
tion loss theory.1

b, The filters are resistively terminated 
lumped LC ladder networks without mutual induct¬ 
ances . 

c, The networks are sharply frequency-selective, 
with clearly distinguished pass and stop bands. 

d, All specifications are in a frequency¬ 
domain. 

The synthesis of such networks is carried out 
in the following steps: 

1, On the basis of the specifications, a 
rational function satisfying the realizability 
conditions, and meeting the specifications is 
derived. This procedure is called approximation . 
The derived function is usually the insertion 
voltage ratioA or the insertion characteristic 
function $ of the desired filter. 3

2, |A|‘ and |$pare related through energy con¬ 
siderations , and one can be obtained from the 
other. The immittance parameters or driving-point 
immittances of the ladder are then obtained from 
both A and $ . 

3, The filter element values can be found 
using one or more of these immittances. If 
necessary, network equivalences and transformations 

can be utilized to modify the configuration or 
element values. Steps 2 and 3 embrace the 
synthesis portion of the network design. 

4, In addition to the general realizability 
conditions on passive, lumped-element, resistance-
terminated LC - fourpoles ,1-3 the requirements for 
ladder realizability^ must be satisfied. For some 
special attenuation characteristics a check can be 
made after Step 1; for others, after Step 2. 

5, The performance of the synthesized network 
is usually examined immediately after the design 
has been completed. The attenuation, phase, 
driving-point immittance etc., can be checked. 

6, The effects of parasitic phenomena (dissi¬ 
pation, aging, tolerances etc.) are analyzed. 
Some preliminary estimate can sometimes be obtain¬ 
ed after Step 1, but usually the full investiga¬ 
tion can be performed only after the network has 
been obtained. Steps 4,-6, are concerned with 
the analysis of the filter and its parameters. 

7, Depending on the results of Step 6, it may 
be necessary to repeat the synthesis procedure 
including a precorrection for the effects of para¬ 
sitic elements. Alternatively, the filter may be 
cascaded with correcting networks (equalizers) to 
improve its performance. 

A schematic illustration of the complete design 
procedure is shewn in Fig. 1. 

Although it is theoretically possible to con¬ 
struct programs that carry out all necessary calcu¬ 
lations in one run, it was found that the computer 
storage capacity does not permit this for major 
design problems, For this reason, and also for 
flexibility in application, the more involved syn¬ 
thesis programs are built up from several (2 - 4) 
sub-programs, from which a large number of com¬ 
binations can be obtained. Corresponding to the 
design steps described above, these sub-programs 
can be divided into the following groups: 

A , Approximation programs ; 
B, Synthesis programs; 
C, Analysis programs; 
D, ’’rograms used in the estimation and pre¬ 

correction for parasitic effects. 
These subprograms will now be briefly described. 

II. Computer Programs Used in 
_ the Approximation Procedure 

The purpose is usually to derive the function 
$ . $ is generally chosen because: 

a, The realizability restrictions on -p are 
not as severe as those on A . 

b, In the pass band $ approximates zero rather 
than a constant as does A . 

c, Generally the zeros as well as the poles of 
$ lie on the real frequency axis. 

All of these factors tend to make it easier to 
solve the approximation problem in terms of ç 
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rather than in terms of A . 

A, Approximation of the Ideal Low-Fass 
Attenuation Characteristics 

In practice, the most common filter specifica¬ 
tion is one requiring a low-pass attenuation 
characteristic. The following programs dealing 
with this approximation problem have been used. 

1, Butterworth polynomial approximation. The 
attenuation response approaches zero in the pass 
band and infinity in the stop band in a maximally 
flat manner. The degree of the polynomial , the 
parameters of the characteristic function and the 
element values of the filter can be obtained di¬ 
rectly from formulae^ expressing them in terms of 
the maximum pass band attenuation AP> the minimum 
stop band loss As, the band limits lûp and u)s, and 
the terminations R| and Rg. 

2, Chebyshev polynomial approximations. Ex¬ 
plicit formulae are also available 8 for the case of 
a Chebyshev pass band, maximally flat stop band 
response. The complementary case (flat pass band, 
Chebyshev stop band) can be treated by replacing 
|9| by '/$ and w by . 

3, Darlington-Cauer (elliptic) approximation. 
Both the pass band and the stop band loss are 
approximated in a Chebyshev manner. The design 
tables for one to four section symmetrical filters, 
given by Grossman8 , were programmed. These tables 
yield $ , A and the element values. For other net¬ 
works the roots and poles of (the so-called Cauer 
parameters) are obtained using a rj-series approx¬ 
imation. 8- ' 

Although other approximations of the low-pass 
characteristics exist, the frequency of applica¬ 
tions did not warrant their programming. 

Using reactance transformations 3, these results 
can be apnlied to the design of high-pass, fre¬ 
quency-symmetrical band-pass, band-stop and multi¬ 
band filters (cf. Fara. III. D.l.) 

B, Chebyshev Fass Band, Arbitrary 
_ Stop-Band Approximation_ 

Filters approximating zero loss in the Cheby¬ 
shev sense in their pass bands and satisfying 
arbitrary frequency-dependent specifications in the 
stop bands are frequently used. Usually the design 
procedure begins with the location of the atten¬ 
uation poles to satisfy the stop band requirements. 
This can be done by a graphical procedure employ¬ 
ing special templates and calibrated graph-paper8-9 . 
The process can also be programmed on a computer. 
Different templates or programs are used for low-
pass (high-pass, frequency symmetrical band-pass 
and band-stop) filters and for frequency unsymmet-
rical band-pass networks. The following programs 
are available for the design of such networks: 

1, Chebyshev pass band low-pass approximation. 
After the attenuation poles have been established, 
a step-by-step design scheme10 , based upon Darling¬ 
ton's reference filter method1, is followed to 
synthesize networks with up to four sections. 

2, Chebyshev stop band, arbitrary pass band 
approximation can be obtained in some cases by 
combining the Chebyshev pass band synthesis proce¬ 
dure with the J $ I j/| $ i q transformation. 
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3, For unsymmetrical band-pass networks the 
design procedure described by Saal and Ulbrich8 was 
programmed. The network thus obtained could be 
transformed into a band-stop filter with different 
ripples in the two pass bands. 

4, Recurrence relations yielding $ for 
Chebyshev pass band filters are given by Fettweiss11 . 

C, Filters with Arbitrary Fass Band 
and Stop Band Characteristics 

Several design methods are also available for 
filters satisfying frequency-dependent specifica¬ 
tions in both their pass and stop bands. Some of 
these were programmed on the computer. 

1, Chebyshev pass band filters cascaded with 
constant-resistance equalizers. The programs of 
Fara. II. B. are used to achieve the required stop 
band characteristics and constant resistance ladders 18 
or bridged-T equalizers are designed* to bring the 
pass band response within specifications. 

2, Approximation methods such as least-squares 
polynomial approximation13 , curve matching at select¬ 
ed points 8, and the steepest descent method1'* are 
used. 

3, The design method of Linke18 has been pro¬ 
grammed. This approximation procedure makes use of 
a group of curves shewing the effects of the individ¬ 
ual complex natural frequencies and imaginary atten¬ 
uation poles. The use of these curves is demonstrat¬ 
ed in Fig. 2. The critical frequencies thus obtain¬ 
ed are fed into the machine one by one and the 
resulting error typed out for further approximation. 
After a close approximation has been obtained, tlie 
computer improves upon the results to give the least¬ 
squares error. 

4, Darlington's Chebyshev polynomial series 
approximation18 has been used for the synthesis of 
filters with preassigned attenuation poles and 
prescribed pass band characteristics. 

5, The iterative method described by Shenitzer11, 

can be used to obtain equiripple approximation of a 
prescribed pass band response and specified atten¬ 
uation poles. 

D, Filters with Frescribed Attenuation 
and Phase Response 

The following approximating programs are useful 
in the design of filters satisfying both attenuation 
and phase requirements: 

1, Synthesis of a filter exhibiting the required 
attenuation response, cascaded with an additional 
all-pass phase corrector. The latter can be designed 
by Darlington's method18 ! 18-8u Or by trial and 
error88 . 

2, Filters with Chebyshev pass band and prescrib¬ 
ed phase characteristics can be designed using 
Bennett's method21 . This involves, esentially, the 
cons truction of a numerator for J\_ , which gives the 
proper phase response, and then the selection of a 
constant-phase denominator which secures the 
Chebyshev pass band behaviour. 

3, A somewhat similar approach has been suggest¬ 
ed by Skwirzynski and Zdunek 83 . The attenuation 
associated with the minimum phase network required 
to satisfy the phase characteris tic is computed 
«•Several programs and graphical aids were created 
for the design of these equalizers. These are,how¬ 
ever, beyond the scope of this paper. 



using Bode's relationship2®. This loss response is 
approximated by a Chebyshev polynomial series and 
equalized by including a proper constant-phase denom¬ 
inator, with j<o -axis roots 24 . 

4, Darlington's Chebychev polynomial series 
approximation procedure4® has been used successfully 
to satisfy simultaneous loss and phase specifications® 

5, Low-pass response combined with maximally 
flat group delay characteristics can be obtained by 
using Bessel-polynomials 2® to construct A • 

6, Beletskiy describes a method2' suitable for 
the design of filters with maximally flat pass band 
delay and Chebyshev stop band attenuation char¬ 
acteristics . 

III. Filter Synthesis Programs 

The approximation procedure yields one of the 
functions $(|$[*A or |A|2. The network element values 
can then be computed using Darlington's method1. 

A, Calculation of <5 and A 

In general the network immittances are functions 
of § and A . The calculation of $ and A consti¬ 
tutes the most laborious part of the design. The 
usefulness of the digital computer, at this stage, 
cannot be overemphasized. 

1, Computation of A. from The denomina¬ 
tor of a ladder-realizable A has only conjugate 
ja> -axis roots, while its numerator is a Hurwitz-
polynomial. Hence, a straight-forward root-solving 
routine is used to find the left half-plane root 
factors of the numerator of |A|2 and then to multiply 
them together to obtain the numerator of A. . The 
denominator of A is simply obtained from the square¬ 
root of the denominator of IA.]1. 

The computation of the roots of the numerator 
polynomial of |AI* can be performed by any one of 
several published methods28-®®. a program, using 
18-digit precision subroutines and the Newton-
Bairstow method®0 , has yielded roots correct to an 
accuracy which has been found adequate for all 
practical networks. 

Also available is a direct method for the 
Hurwitz-factorization of polynomials without solving 
for the zeros 31. 

2, The computation of Ç from |q| can be 
carried out in a similar way. The denominator of Ó 
also has jo)-axis roots only; however, the numerator 
need not be Hurwitz. Normally, a Hurwitz-type 
numerator for $ is derived first, and then the 
formulae4 giving the reflection coefficients of the 
network in terms of $ and A are utilized to 
find the signs of the even and odd parts of the 
final numerator, corresponding to the required ter¬ 
mination ratio and configuration4»2 . 

3, The calculation of|<J)|2from |A|2 is done 
using Eq. (17) of Darlington's paper4. For single¬ 
loaded networks these two functions are equal. 

4, can be obtained from $ , or |A|* from 
A using the equality of |f.(p)| 2 and f(p) f(-p) on 
the -axis. 

5, The synthesis of Butterworth or Chebyshev 
polynomial filters can be effected by using simple 
formulae0 expressing the element values directly in 
terms of the attenuation requirements and the ratio 
of the terminations. 

6, For elliptic filters, approximating formulae 
are used to find the critical frequencies® and also 
the element values of symmetrical filters with 1-4 
sections®. 

B, The Derivation of the Filter Element Values 

The element values can be obtained by devel¬ 
oping a suitable driving-point immittance function. 
For large networks it is advisable to develop the 
circuit from both an input and output immittance, 
to increase the accuracy of the realization, and to 
provide a check. 

1, The design immittances can be found from 
Darlington's Eqs. (14) and (18)1. In order to 
extend the validity of these formulae to A and J 
with odd denominators, however, the subsitution of 
A "»Ag, pB-»A., A — ¿e > 4o (suffixes e and o 
denoting the even and odd parts, respectively) must 
be made. Equation (14) can also be used, after 
these substitutions are made, to check that the 
signs of and Ço conform to the desired config¬ 
uration and terminations. 

2, For constant-k type configurations the 
realization can be performed through the continued 
fraction expansion of the design immittances or 
equivalently, by the removal of poles at zero and 
infinity from this immittance. 

3, For general mid-series or mid-shunt low-pass 
filters^ the design process described in Darlington's 
Table I1 was programmed. For symmetrical low-pass 
filters Darlington's Table II1 gives the element 
values of networks with up to three sections. The 
formulae for four-section networks can be found in 
Grossman's article®. 

4, For more general ladder networks the nole-
removing immittance expansion method due to Bader®2 
waj programmed. It can be'used to expand a drivine-
point, as well as an open or short circuit immit¬ 
tance. The design formulae were tabulated by Saal 
and Ulbrich®. When this process is used, the order 
of removal of finite poles must be properly chosen 
to satisfy the ladder realizability conditions4!8. 
Also, it is expedient to check the accuracy by ladder 
development from each end of the network®, since the 
number of significant figures in th» element values 
decrease rapidly with increasing network complexity. 

C, Programs for the Synthesis of Band 
Separating Filters 

The synthesis of filter groups performing the 
separation or combination of frequency bands is 
somewhat different from the design of other filters. 
Since these networks are either parallel or series 
connected at one end, constraints are placed upon 
their driving point immittances. As a consequence, 
the voltage or current transfer ratio N or K and the 
voltage or current characteristic function or $ 
is the most useful design parameter. The programs” 
used in the design of these networks are based on the 
following design approaches: 

1, The exact design of band separating filter 
groups is carried out by approximating the specified 
responses with the or of the individual net¬ 
works®®. In addition, the have to satisfy a 
constraint originating from a required constant 
driving-point immittance at the parallel (series) 
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connected terminals. 
2, A much more economical synthesis procedure 

can be used if only an approximately constant, 
driving point immittance is permissible®»®4. 

3, Auxiliary networks can be used to absorb 
power if the pass bands do not overlap®3. 

4 , For filters with stringent ston-band require¬ 
ments , it is expedient to cascade a oanu separating 
filter group designed for low stop-band loss with 
individual filters yielding the required stop-band 
atténua ti on®. 

5, The design of a harmonic separating fitter 
set, i.e. of filters than can be used to suppress 
or select the harmonic content of signals within a 
prescribed frequency range, involves the calcula¬ 
tions of the optimal selectivity of the set®®. 
This calculation can be programmed for various 
approximations and filter types. 

following is a summary of the routines used to test 
the realizability of networks4 . 

1, For symmetrical filters without finite atten¬ 
uation túfales (Butterworth, Chebyshev pass band 
filters) there are no restrictions on the ladder 
realizability. For Chebyshev stop band filters the 
stop band loss must be larger than a minimum value 
which is a function of the degree. 

2, Symmetrically terminated antimetric filters 
with Butterworth ston band characteristics are 
always realizable; for Chebyshev stop band filters 
there is a lower limit on the stop band loss. 

3, For elliptic filters with 2 or more sections, 
the stop band loss, the nass band ripple and the 
selectivity ail have lower limits that is a func¬ 
tion of the other parameters and the degree. 

4, For more general mid-series and mid-shunt 
networks, the criteria of Meinguet* apply. 

T, Network Transformations 

Sometimes it is advantageous to synthesize a 
simplified model of the required networks and then 
to convert this "prototype" into its final form 
using network transformations. Transformations are 
also used to achieve desirable configurations and 
element values. The following transformations were 
programmed : 

1, Reactance transformations® used to convert 
a normalized low-pass prototype network into 
denormalized low-pass, high-pass, band-pass, band¬ 
stop, or multi-band filters. 

2, 
Atiya®® 

The approximating procedures described by 
and Cohn®7 transforming constant-k type low-

pass prototypes into band-pass filters built up 
from capacitively coupled tuned circuits. The 
latter is a most useful configuration for high-
frequency, narrow band filters. 

3, The "zig-zag" transformation converting low-
pass prototypes into band-pass filters having a 
minimum number of coils has also been programmed, 
using Figure 12 of Saal and Ulbrich®. Recently, 
recurrence formulae were also published . 

4, Another transformation® converts a single 
section low-pass prototype into a band-pass circuit 
in which all nodes are capacitively loaded. 

5, The impedance level in some parts of the 
circuit can be changed using transformations due 
to Norton®. 

6, The configuration can be changed using the 
familiar T-TF tranformation and other specialized 
equ ivalences®. 

IV. Analysis Programs 

An important part of the design process is the 
analysis of the feasibility of the requirements 
and of the performance of the resulting network. 

A, Realizability Analysis 

B, Network Analysis Programs 

The following programs are normally used imme¬ 
diately after realization to test the response of 
the network: 

1, The transfer and driving-point characteristics 
are plotted as functions of frequency39. The loss 
and phase, the delay, the voltage and errent ratios 
and the driving-point immittances can be calculated 
with or without parasitic elements. 

2, The transfer and driving point immittances, 
as well as the soldering iron and plier type 
immittances of ladders can be computed from the 
schematics as rational functions of the frequency4^. 

3, The transient response of the network, for a 
step and various pulse inputs or modulated sine¬ 
wave excitation can be computed from the schematic 
or transfer function44 . 

C, Mathematical Analysis Programs 

Some general purpose analysis programs that are 
used in various applications are: 

1, Calculation of attenuation and phase from 
the zeros and poles of transmission or reflection. 

2, The calculation of the reflection factor, 
the driving-point immittance, A or 4> from each 
other. 

3, The calculation of the real and imaginary 
components of a minimum phase network function 
from each other using Bode's formulae®®. 

4, Evaluation of a rational function to find 
its real and imaginary parts, phase, and absolute 
value. Also, finding the ju>-axis minimum of the 
absolute value or the real part. 

5, Conversion among rational, continued and 
partial fractions. 

6, Calculations of various driving-point and 
transfer quantities from the immittance or chain 
matrix. Conversion of various parameter matrices 
into each other. 

The criteria necessary for ladder realization 
without mutual inductance can be programmed into 
various parts of the synthesis routine. However, 
for simple networks it is normally just as easy 
to carry out the design and check for negative 
elements. Also, realizability nomographs and 
curves can be developed for convenient use. The 

V. Programs for the Estimation of and 
Precorrection for Parasitic Effects 

Even for moderately difficult specifications, the 
effects of parasitic elements, temperature, tolerances, 
aging etc. become significant. Some of these (dis¬ 
sipation, stray elements) can be taken into account 

214 



in the synthesis procedure*; others (aging, toler¬ 
ances) can be limited only by specifying high 
quality components. In any case, the anticipated 
effects must be estimated. 

A, The Estimation of Parasitic Effects 

The following programs are used: 
1, The estimation of parasitic effects on the 

synthesized network can be carried out utilizing the 
analysis program of Para. IV, B.l. Using a first-
order perturbation method, the distortion can also 
be calculated as a mathematical function of the par-
asitics and the frequency4 . 

2, The effects of uniform dissipation on the 
attenuation (phase) response can be estimated in 
advance by performing a shift on the frequency-
variable* in ./V or from the derivative of the phase 
(attenuation) function40 . If the Q's are high and 
the frequency origin is not contained in the pass¬ 
band, the response thus derived will also give a 
good approximation for semiuniform loss distribution^. 

3, For general networks with semiuniform losses 
a straightforward procedure was developed^, which 
can be used to estimate the distortion before the 
network is realized. 

B, Precorrection for the Effects of Dissipation 

If the estimation process indicates that a 
compensation for the incidental losses is needed, 
the following programs can be utilized for this 
purpose. 

1, The nrecorrection for uniform dissipation 
is carried out by a simple frequency-shift4 in the 
independent variable of A • The termination ratio 
is normally also modified to preserve the re¬ 
alizability of A . 

2, For semiuniform loss distributions, 
Darlington's procedure can be used1. Although this 
procedure is straightforward for single-loaded four-
poles40 , it is quite complicated for double-loaded 
networks and a simple process based on a perturba¬ 
tion approach may be preferable4^. 

3, For special network configurations the 
methods described by Geffe44 and Dishai4t> are ap¬ 
plicable. Geffe gives explicit formulae for the 
predistorted voltage ratio of a single-loaded con¬ 
stant -k type low-pass filter with uniform or semi¬ 
uniform losses, while Dishal describes a design 
method for band-pass filters with Butterworth or 
Chebyshev passband response. 

4, For networks with arbitrary loss distribu¬ 
tions and without finite attenuation poles the pre¬ 
distortion method of Desoer^® can be used. For the 
precorrection of arbitrary ladder networks, a more 
general and easily applicable precorrection method 
was found to be effective4^. A recently published 
correction technique4? based upon steepest descent 
type distortion minimization seems to demand an 
unduly high cost in terms of stop band discrimina¬ 
tion. 

5, The design of a predistorted double-loaded 

« A first-order precorrection for temperature 
effects can be obtained by choosing the temoerature 
coefficients according to the relation <5 »i , “I c 

filter is laborious; furthermore, it always in¬ 
troduces some flat loss and thus decreases the 
return loss. Also, the sensitivity to element 
variations is increased. For these reasons , it is 
sometimes more convenient to use constant-resistance 
equalizers—usually bridged-T networks, with one 
resistor and a few tuned circuits in each bridge 
arm—to correct for the effects of dissipation. 

VI. Accuracy Considerations 

A very important aspect of the programs is the 
number of significant figures used in the input and 
output operations, and in the internal computations. 
All programs were written either in FORTRAN or in 
the Symbolic Programming System (S”S). Since 
FORTRAN programs require more storage, are less 
flexible and are limited to 8-digit precision*, 
such programs were only used when higher accuracy 
was not required. In SPS the limiting factor on 
the number of significant digits used was mainly 
the storage capacity of the memory in use. It is 
most convenient to be able to store the program 
and all partial results simultaneously without 
intermediate input-output operations, but this was 
not possible for major programs using more than 12-
digit precision in computation. 

Experience showed that by establishing the 
number of significant figures according to the 
following lists, satisfactory (4-5 digit) ac¬ 
curacy results both in the element values and the 
transfer and driving-point parameters of filters 
with up to 6 sections: 

a, Approximation programs: 8 digit. Excep¬ 
tions: Shenitzer's method and the Chebyshev pass¬ 
band, arbitrary stop band approximation (12 digits). 

b, Synthesis and nrecorrection programs: 12 
digits. However, the programs computing the roots 
of A and <$ use 18-digit subroutines in order to 
give sufficiently accurate values for the roots. 
Although the ladder-expansion program (using 
Bader's method^) uses only 12 digits, this preci¬ 
sion has proven to be barely adequate, so that the 
more complex networks had to be developed from 
both ends. 

c, Network transformations: 8 digits. 
d, Programs used for analysis and for the 

estimation of parasitic effects: 6 digits for in¬ 
put and output operations , 12 digits for interna! 
comput ations. 

Numerical checks were incorporated in all pro¬ 
grams wherever possible. Also, test cases were 
worked out and attached to the program descrip¬ 
tion to test the reliability of the program and the 
computer. 

Although these precautions seem to be exag¬ 
gerated, predistortion calculations showed that a 
correction in the third or fourth digit of the 
coefficients of A may cause changes in the order 
of 0.5 db in the pass band of sharply selective 
filters. Similarly, bitter experience showed that 
an error in the eighth digit of a coefficient of 
Zamay make it unrealizable. Even if 12 signif¬ 
icant figures are used, care must be taken to 
detect round-off errors in singular cases. 

« An improved version, FORTRAN II, which will soon 
be available , will not have the latter limitation. 
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The 6-digit type-out of results in the network 
analysis programs proved adequate for all practical 
purposes. A larger number of figures would have 
unduly slowed down the output operation. With 6-
digit output , the tine required for the calculations 
at one frequency varies between 5 and 25 seconds, 
denending on the number of transfer quantities and 
immittances listed, and on the network complexity. 

Finally, the reliability of this method of 
filter synthesis must be emphasized. It was found 
to be practically impossible to design a filter with 
3 or more sections on a desk calculator using the 
insertion loss method, due to unavoidable human 
errors and fatigue. With the numerical checks used 
in the computer programs , no undetected error has 
ever been discovered in the realized networks during 
several years of operation, in spite of the fact 
that the computer has been run on the "open-shop" 
basis, by a number of design engineers and techni¬ 
cians . 

VII. Examples 

The uses of the computer programs listed above 
will now be illustrated by describing some prac¬ 
tical network designs. 

A, An Elliptic Low-Pass Filter Corrected for the 
_ Effects of Dissipation 

A low-pass filter was designed to satisfy the 
following requirements4 : 

Pass band limit: 85.68 kc, 
Stop band limit: 94.54 kc, 
Pass band ripple: U.l db. 
Stop band discrimination: 4u db 
Generator and load impedances: 6uO ohms. 
Since these requirements are fairly typical, 

the design nrocedure will be described in some 
detail. 

1, The order of the network was found from a 
design chart to be 7. This corresponds to a 3-
section network. 

2, The normalized characteristic function was 
obtained using nJ -functions (para. II. A.3): 

n7 + 1 .915116384p® + 1. 1341150241p’ 
X + 0.197196423351p 
T * O. 0508885542p* + 0.292669982919p» 

+ 0.494215372808p’ + 0.258o6o22913 
3, Using the programs of Para. III. A.3 and 

III. A.l. , A was obtained 
p7 + 1. 57974755008p c + 3. 16162272252p5

+ 3.1967976697p11 + 3.uu5261u299p® 
+ 1 .87144975298p1 + o.86b8bb223o2op 

A + O.258O6O22913O 
0. 050885542p« + 0.29266998291 9p« 

+ 0.4942153728080nl + 0.258o6o22913 
4, With the aid of filter tables, it was 

predicted that all inductance values would fall 
between 0.5 mH and 2 mH. Coils in this inductance 
and frequency range can be designed to have Q's in 
excess of 300. The estimation nrocedure of Para. 
V. A.3. was used, to determine whether or not 
precorrection would be necessary'. The estimated 
response is shown in Fig. 3. It is apparent that 

« home safety margin is already incorporated in 
these specifications. 

predistortion was necessary to satisfy the specifica¬ 
tions . 

5, The nrogram referred to in Para. V. B.4 was 
used to derive a precorrected A . To achieve good 
selectivity, the Q of the coil producing the lowest 
attenuation pole was chosen to be 40U, the other 
Q's to be 25u. Then 
p7 + 1.56924755uu6ps 3.145u3537333p s

+ 3.17338738793p« + 2.9826745U90Up* 
+ 1.8587O6U1248p’ + <).859u783259ulp 

i + U.257183016349 
r’ U. 0507155709771p« + 0.291675122725p« 

0. 4 925554 08239p* + O.257183O1634 9 
7, The performance of the network was obtained 

using the analysis programs of Para. IV. B.l. The 
lossy response is shown in Fig. 3, the locus of the 
driving-point impedance in Fig. 5. The deviation 
of the response from the specifications is less 
than 0.002 db in the pass band,less than 0.2 
db in the stop band. 

8, The tolerances were established with the aid 
of the programs discussed in V. A.l., by plotting 
the distortion introduced by a small change in each 
element value and Q in turn and then using statis¬ 
tical considerations or counting on the most unfor¬ 
tunate distribution of element variations. These 
calculations will not be reproduced here. 

9, The measured response of the filter built 
with the element values shown in Fig. 4 agreed, 
within the accuracy of measurement, with the 
characteristics shown in Fig. 3. A photo of the 
pass band response, as displayed on a visual an¬ 
alyzer, is shown in Fig. 6. 

The computer time to realize the network and 
obtain its response was approximately one hour. 

B, Equalized Minimum-Inductance Band-Pass Filter 

A band-pass filter was to be built to satisfy 
the following specifications: 

Pass band: 80 - 88 kc 
Stop bands: 0 - 76 kc. and 92 kc — 
Pass band ripple: o.i db 
Stop band discrimination: 7u db 
Generator and load impedance: 135 ohms 
To allow for anticipated parasitic effects, the 

synthesis was based on an 11 kc pass band width, 
and a ripple of 0.U5 db. 

The design was carried out in the following 
steps : 

1, The order of the circuit had to be even to 
allow the use of a "zig-zag" transformation. An 
eighth-degree prototype network satisfied the 
specifications. 

2, The characteristic function resulted from a 
-function approximation (II. A.3). A and Yg 

v:ere obtained using programs described in III. A.3., 
III. A.l. and III. B.l. 

3, The low-pass prototype was found by expanding 
Yu into a mid-shunt ladder (III. B.4J. 

4, The band-nass network was derived by a 
minimum-inductance transformation (III. D.3). To 
obtain more convenient element values, two Norton¬ 
transformations were performed in the first section, 
and the first coil was tapped. The final network 
is shown in Fig. 7. 

5, The resulting lossy network did not meet the 
pass band specifications and some correction was 
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necessary. Because of the high selectivity, how¬ 
ever, a predistortion would have greatly increased 
the sensitivity to parameter variations, and hence 
was not attempted. The correction was achieved by 
cascading a constant-resistance equalizer. The 
design of this equalizer was carried out using a 
computer program that matches the equalizer loss to 
the required response at nre-assigned points. The 
resulting circuit is shown in Fig. 7, the corrected 
response in Fig. 8. 

Computer time needed to complete this design 
was about 9u minutes. 

C, Chebyshev Pass Band Filters 

The design process for fitters with Chebyshev 
pass band and arbitrary stop band response is 
similar to that followed in the previous examples, 
but is preceded by: 

1, the location of the attenuation poles, using 
special programs or templates (II. B.); 

2, the derivation ofA from the attenuation 
poles and the pass band specifications (III. B.l-2). 

The specifications, the circuits and the 
responses of a low-pass and a band pass filter are 
illustrated in Figs. 9-10. It took approximately 
one hour of computer time to carry out the design. 

D, Band Separating Filter Pair 

The approximating synthesis of a front-parallel 
connected low-pass/high-pass filter pair will now 
be briefly described. The design stages are as 
fol lows : 

1, The pass and stop band loss requirements 
are recalculated in terms of voltage ratio, assuming 
a constant driving-point impedance (III. C.2;. 

2, The voltage characteristic functions are 
calculated using a) functions (II. A.3). 

3, The voltage ratios and Yü2' s of the filters 
are calculated. 

4 , The networks are obtained by ladder expan¬ 
sions (III. B.4). The frequency denormalization of 
the two circuits is carried out in such a way as to 
ensure an approximately constant driving-point imped¬ 
ance throughout the transition region. 

The circuit, the measured response and the 
driving-point impedance of a fi!ter-group designed 
by this procedure is shown in Figs. 11 - 13. The 
network used coils with a Q of 130. 

Two hours machine time was required ror this 
design. 

E, Filter with Special Pass and Stop Band Response 

The design of filters with prescribed pass 
band behaviour will be illustrated through a net¬ 
work designed to equalize in its pass band the loss 
due to 20 miles of open wire and to suppress sig¬ 
nalling tones in the stop band. The design was 
carried out using Shenitzer's method (II. C.5). 
The specified and actual responses are compared in 
Fig. 14. The error in the pass band was less than 
0.15 db. The circuit is shown in Fig. 15. 

The design (including response plotting) 
required two hours of computer time. 
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Fig. 1. The flow chart of a general filter synthesis program. 



Fig. 3. Comparison of the ideal, lossy and 
precorrected lossy responses. 

Fig. 4. Precorrected low-pass filter. 
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Fig. 6. The measured pass band response, (one 
division is about 0.1 db) 
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Fig. 7. A minimum-inductance band-pass filter with constant-resistance equalizer. 
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Fig. 8. The response of the band-pass filter and equalizer. 
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Fig. 9. Chebyshev pass band low-pass filter: a, circuit, 
b, measured response. 
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Fig. 10. Chebyshev pass band band-pass filter: a, circuit, b, measured response. 

Fig. 11. A band separating filter pair. 
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Fig. 14. Specified and actual response of a filter with 
arbitrary pass band attenuation and prescribed 
poles. 

Fig. 15. The circuit of the filter. 
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DESIGN OF TRANSISTOR FEEDBACK AMPLIFIERS AND AUTOMATIC 
CONTROL CIRCUITS WITH THE AID OF A DIGITAL COMPUTER 

Omer P. Clark 
Bell Telephone Laboratories, Incorporated 

North Andover, Massachusetts 

1. Introduction 

A method of designing transistor 
feedback transmission amplifiers with the 
aid of a recently developed nodal analysis 
digital computer program is described. A 
procedure for using this nodal analysis 
program during the design of automatic 
control systems is also included. This 
computer program will be referred to as 
NAPANS for "Nodal Analysis of Passive and 
Active Networks" in the following discus¬ 
sion. 

This paper consists of three main 
parts: The first part explains the func¬ 
tional requirements for transmission 
amplifiers, the basic terminology used in 
feedback circuit design, and the general 
circuit configuration used for transmis¬ 
sion amplifiers under development in the 
60-kc to 4-mc frequency band. The second 
part of this paper describes the nodal 
analysis computer program used to compute 
open- and closed-loop amplifier frequency 
response and Input and output Impedance. 
The major problem encountered during the 
development of this program was obtaining 
transistor and transformer characteristics 
in a form suitable for a nodal analysis 
program. The method of doing this with 
the aid of small computer programs is 
explained. The third and final part of 
this paper explains how the circuit engi¬ 
neer prepares the circuit information for 
the computer programmer. The outstanding 
feature of the nodal analysis program Is 
shown to be the small amount of effort 
required by the engineer to prepare the 
circuit for analysis. The results 
obtained with the NAPANS program are com¬ 
pared with laboratory measurements for 
a 2-stage transistor feedback amplifier 
and a phase-locked oscillator control 
circuit. 

2. Transmission Amplifier and Feedback 
Circuit Terminology 

A conventional method of indicating 
an amplifier with associated coupling 
circuits to its feedback beta circuit is 
shown in Fig. la. This arrangement is 
particularly useful in the design of 
transformer-coupled amplifiers discussed 
in this paper. The amplifier has a for¬ 
ward gain characteristic indicated byp.. 
A fraction of the output signal Is fed 

back to the input through a network 
indicated by ß . The over-all feedback 
amplifier gain is given by the equation 
p./1-p.ß as shown in Fig. lb. 

Another form of writing the feedback 
amplifier equation, commonly used for 
automatic control systems, is indicated 
in Fig. 1c. Note that a positive sign is 
normally used in the denominator. The 
forward gain of the circuit is given as 
G(Jœ ) for frequency response and is 
indicated by G(s) for Laplace transforms 
when analyzing the circuit for transient 
response.2 

When the design requirements for a 
feedback amplifier are specified, a gen¬ 
eral design graph is drawn as shown in 
Fig. lb to Indicate the open- and closed-
loop gain requirements. Past experience 
has indicated that over 30 db of loop 
feedback is required to reduce modulation 
products of the amplifier. A polar plot 
of a typical P-Ö gain [also called GH(s) 
gain] versus phase is given in Fig. 1c. 
The dashed line Indicates network shaping 
to obtain more feedback gain while pre¬ 
serving phase margin. 

A very useful procedure to follow 
while making manual calculations of a 
transistor circuit is given in Fig. 2.3 
The first step is to obtain transistor 
and transformer data at their approximate 
center values for the equations 1 to 6. 
Note that these are general equations 
that must be modified for local shunt or 
series feedback as given in reference 3-
The resulting calculations using these 
equations will give response curves very 
close to the desired values of the type 
shown in Fig. 2. That is, the initial 
shaping of the pß curves and phase char¬ 
acteristic curves should be done manually. 
The method of calculating break-point 
frequencies and obtaining asymptotic 
approximation to Bode cutoff is given in 
another paper. 

A typical general purpose 2-stage 
transistor transmission amplifier for 
the 60-kc to 4-mc frequency band is shown 
in Fig. 3- This amplifier provides an 
output of 3OO milliwatts with 20-db 
closed-loop gain and more than 30 db of 
loop feedback. The Uß gain curve for a 
practical amplifier design must have a 
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slope not greater than an average of 10 db 
per octave for a phase margin of 30 de¬ 
grees. This means that with 30 db of loop 
gain the pß and phase response curves 
must be controlled to a frequency greater 
than 32 me. 

A circuit description of the ampli¬ 
fier shown in Fig. 3 is as follows: The 
bias circuit for QI and Q2 is provided by 
the voltage drop across CR1. This aids 
in controlling the amplifier bias point 
for large variations of supply voltage. 

T1 and T2 provide high-side bridge 
feedback! in the amplifier. This type of 
feedback is used to control the input and 
output Impedances of the amplifier for 
large variations of transistor parameters. 
C3 and C5 are used for final adjustment 
on input and output return loss, and are 
used in conjunction with C7 to shape the 
uß gain and phase frequency response 
curves. The transformer turns ratios of 
T1 and T2 are selected to give 1/ß for 
final amplifier gain and to match the 
transistor impedance to the transmission 
line. These impedance ratios are also 
selected to provide an optimum noise fig¬ 
ure at the amplifier input and to give 
optimum amplifier power output. 

The 2-stage transistor amplifier in 
Fig. 3 is particularly useful for high-
level output power. The phase reversal 
for feedback is obtained from the emitter 
of Q2, which serves as a low impedance in 
series with R7 to give the proper termina¬ 
tion to the feedback winding of T2. A 
different method of obtaining the reversed 
phase for negative feedback in a 3-stage 
amplifier is used as shown in Fig. 8. 
This 3-stage amplifier is useful as a 
low-noise, low input level amplifier, and 
can serve as a good preamplifier for the 
2-stage amplifier shown in Fig. 3-

3. Description of the Nodal Analysis 
Digital Computer Program 

The nodal analysis program will 
reduce any general network, through 
24 nodes, to from two to ten ports and 
compute the following outputs: 

(a) Short-circuited admittance param¬ 
eters. 

(b) Open-circuited impedance parameters. 

(c) Current and voltage scattering 
parameters. 

(d) Transistor Y-parameters from hybrid 
parameters. 

(e) ABCD parameters for two ports. 

(f) Y-parameters from ABCD parameters. 

(g) Zjn and Yj^ at each port. 

The required input data for the 
nodal analysis program Is as follows: 

(a) Number of ports. 

(b) Number of nodes. 

(c) Number of frequencies. 

(d) Configuration of each branch. 

(e) Node connections. 

(f) Element values. 

(g) Input matrices, if any. 

(h) Output parameters. 

The restrictions on the program are: 

(a) Maximum number of nodes Is 24 
(Including the reference node). 

(b) Network must have a nonsingular 
admittance matrix. 

(c) Maximum number of ports is ten. 

(d) A special matrix is required for 
transformers. 

(e) For numbering nodes: 

(1) Reference or ground 0 

(2) Inputs and outputs 1, 2, . ...,p 

(3) Remaining nodes p+1,.,n 

(f) If scattering parameters are to be 
computed, a termination must be 

given for each port. 

The above tabulations summarize the 
capabilities and limitations of the nodal 
analysis program. Many of the required 
network calculations can be made using 
simple mesh computer programs. However, 
to obtain over-all closed-loop gain and 
input-output impedances, it is convenient 
to use a nodal analysis program. 

The method used by NAPANS to reduce 
a network for analysis is shown in Fig. 4. 
First, the node points are assigned and 
the computer organizes the network into 
an admittance matrix as indicated in 
Fig. 4. This matrix may consist of as 
many as 23 rows and 23 columns. The 
computer reduces the matrix a row and 
a column at a time until two of each 
remain. These represent the network in 

229 



terms of an input port and an output port. 

The transformer characteristics are 
measured as indicated in Fig. 5a. A spe¬ 
cial computer program is used to convert 
the test data into the form shown in 
Fig. 5b- The resistance and capacitance 
elements of the transformer are handled 
as circuit elements and the inductances 
of the transformer are arranged into a 
matrix. Fig. 5c, that handles the signal 
polarities and turns ratios. NAPANS uses 
this matrix directly, and signal polar¬ 
ities are obtained by the sequence of num¬ 
bering the matrix as indicated in Fig. 5b. 

Special measurements are required to 
obtain accurate transistor parameters at 
high frequencies. The method of measuring 
the transistor and calculating Its h 
parameters is shown in Fig. 6. Trans¬ 
mission line measuring techniques5 are 
used to measure special characteristics 
of the transistor. These measurements 
provide Zjn with the output terminated in 
g (50 ohms), Yo (output admittance) with 
the input terminated in r (50 ohms). 
These measurements also provide Sgi (the 
forward voltage gain) and S^2 (the reverse 
voltage transfer ratio). A special com¬ 
puter program is used to solve for the 
transistor h parameters from these four 
measurements by the equations given in 
Fig. 6. 

After the proper transformer, tran¬ 
sistor, and circuit element parameters 
have been provided for the program and 
the program has reduced the network to an 
input and output port, a scattering 
matrix calculation is made on the network 
by the computer program. For feedback 
amplifiers, this network is reduced to the 
form shown in Fig. 7. The results of the 
scattering current and voltage calcula¬ 
tions provide data to calculate the net¬ 
work open- and closed-loop gain, ^ß curves 
and phase angle, and input and output 
Impedances. The gain is given in decibels 
and degrees, and the input and output 
impedances are given in complex numbers. 

4. Application of NAPANS to Amplifier 
Design 

One of the main features of the 
nodal analysis computer program is the 
ease in which the circuit engineer can 
use it. Node points may be assigned to 
the complete circuit including the power 
supply, If the number of nodes Is less 
than 23, or the circuit may be simplified 
to Include only the ac circuits as shown 
In Fig. 8 for a 3-stage transistor ampli¬ 
fier. This circuit arrangement shows the 
transformers in their proper form, and 
requires the present maximum of 23 nodes 
for analysis. In many cases, node points 

can be saved by rearranging the circuit 
by the use of equivalent networks. 

After the engineer has drawn the cir¬ 
cuit to be analyzed, assigned node points, 
provided element valúas and transformer 
and transistor data, a digital computer 
programmer writes instructions for punch¬ 
ing approximately 100 cards for the com¬ 
puter. This quantity varies according to 
the number of nodes and the frequencies 
computed. The NAPANS program is written 
for the IBM 7090 computer, and requires 
32,000 words of core storage. The approxi¬ 
mate computing time for 25 frequency 
points, and 24 nodes is 1 minute on the 
IBM 7090 computer. 

The circuit shown in Fig. 8 is 
modified for |xß gain and phase measure¬ 
ments by terminating the Input and output 
and applying signal input at terminal 23, 
terminated by a resistance. The output 
Is obtained at node 22. Fig. 9 shows 
the computed data compared with the 
measured data for amplifier open- and 
closed-loop gain versus frequency 
response. The small variation in results 
is due to the problem of obtaining exact 
transistor and transformer data. The 
computed and measured „ß gain and phase 
results are shown in Fig. 10. After the 
engineer receives the calculated results 
from the computer, he selects networks 
to improve the shape of the pß gain and 
phase curves and repeats the computer 
calculations. The networks also affect 
the closed-loop gain flatness of the 
amplifier; therefore, considerable experi¬ 
ence is required in the design of feed¬ 
back amplifiers to select networks that 
will give the desired gain flatness while 
still preserving the proper pß gain and 
phase stability margins. 

At the present time, the NAPANS 
program will tell the engineer precisely 
and quickly how wise his choice was in 
specifying a compensating network. Pro¬ 
gramming work is continuing to have this 
network selection performed automatically. 

5. Application of NAPANS to Automatic 
Control System Desigri' 

The NAPANS program is Ideally suited 
for use in the frequency analysis of 
automatic control systems. First, each 
functional part of the automatic control 
circuit Is analyzed by the nodal analysis 
program method to check laboratory 
measurements with its ac equivalent cir¬ 
cuit. Then, the complete ac equivalent 
circuit for the automatic control circuit 
is combined Into one final circuit and 
analyzed in the manner outlined for the 
3-stage transistor feedback amplifier, 
Fig. 8. A block diagram of a frequency 
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phase-locked oscillator system6 is shown 
in Fig. 11. The transient response char¬ 
acteristics of the automatic control sys¬ 
tem are obtained from the frequency 
response data in the conventional manner. 
The ac equivalent circuit used by NAPANS 
to analyze the phase-locked oscillator is 
given in Fig. 12. 

6. Conclusion 

A nodal analysis digital computer 
program that is capable of analyzing 
closed-loop active networks, with less 
than 24 nodes, has been developed. This 
program is intended to serve as an aid to 
the engineer while designing feedback 
circuits. The program calculates precise 
frequency response data on complete 
closed-loop feedback circuits. Informa¬ 
tion regarding transient response and 
stability is obtained from this frequency 
response data by conventional methods. 

This computer program has been given 
the title NAPANS for "Nodal Analysis of 
Passive and Active Networks." It is a 
general-type program that can be used on 
any type of active or passive circuit, 
provided the transformer and transistor 
data is arranged in the proper form as 
outlined in this paper. 

The results from NAPANS, for fre¬ 
quencies less than 20 megacycles, check 
within 0.1 db and 10 degrees in phase 
with laboratory measurements for ampli¬ 
fier open- and closed-loop frequency 
response and pß gain and phase. The 
method of analyzing feedback amplifier 
circuits Is also applied In a similar 

manner to the design of automatic control 
circuits. 
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NETWORK TO BE COMPUTED BY NOOAL ANALYSIS PROGRAM 
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THE VOLTAGE SCATTERING MATRIX FOR THIS NETWORK IS 
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Summary 

An experimental program is described for 
computing the d-c and transient response of tran¬ 
sistor switching circuits of arbitrary configura¬ 
tion and size (up to 20 transistors) using the IBM 
704 computer. One important feature of the pro¬ 
gram which is discussed is its ability to compile 
all the necessary equations automatically from 
input data describing the circuit parameters and 
configuration. Another is the solution of the tran¬ 
sient problem by numerical integration of the dif¬ 
ferential equations for the linear part of the cir¬ 
cuit separately from those describing the trans¬ 
istors, the output from each set of equations being 
used periodically as input for the other set. Con¬ 
siderable increase in speed of integration is ob¬ 
tained in this manner. 

The method of d-c analysis is based on a 
topological-matrix formulation of the linear part 
of the problem, and its solution by Kron's method, 
followed by an iterative procedure for satisfying 
certain nonlinear side conditions imposed by the 
transistors. Although the transient analysis also 
uses a matrix formulation of the required differ¬ 
ential equations, it is not based on a topological 
approach. However, a generalized topological-
matrix formulation of the transient problem is 
given in an appendix. 

The nature of a serious theoretical limit on 
the rate of integration of the network equations, 
is discussed since it constitutes the principal 
computational barrier to a rapid solution of the 
transient problem. An outline of the more im¬ 
portant programming procedures involved in the 
topological-matrix formulation is also given. 

Certain shortcomings of the program, and 
pitfalls to be avoided are pointed out. In partic¬ 
ular, the importance of being able to modify or 
replace the transistor equivalent circuit (network 
model) is emphasized. 

Finally, the computed responses of a four-
transistor switching circuit are displayed and 
shown to agree well with the observed responses. 
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Introduction 

This paper is based on the experience gained 
in writing an experiental program for analyzing 
transistor switching circuits using the IBM 704 
computer. This program, called TAP for "tran¬ 
sistor analysis program", 1» 2 was developed to 
provide circuit-design engineers with the ability 
to carry out "computational experiments" to aid 
in understanding, as well as designing, switching 
circuits. 

Although this objective was reached, the pro¬ 
gram has become obsolete because it was restric¬ 
ted to the analysis of circuits containing a certain 
type of diffused base transistor which is of limit¬ 
ed interest. Consequently, the program is not 
being maintained nor is it being made available for 
outside distribution. Nevertheless, the lessons 
learned from writing TAP are felt to be worth 
sharing for the benefit of those who may be inter¬ 
ested in writing a similar program. In addition to 
describing the principal features of TAP, this 
paper will point out the major difficulties and pit¬ 
falls encountered; it will also suggest some im¬ 
provements in technique which may prove helpful. 
Finally, some actual and potential applications of 
a digital computer program of this type will be des¬ 
cribed. 

TAP is capable of performing the entire d-c 
and transient analysis of a multi-transistor switch¬ 
ing circuit of arbitrary configuration and size upto 
20 transistors. Its most valuable feature, from 
the user's point of view, is its ability to compile 
automatically all the necessary circuit equations 
using a simple input card format which specifies 
only the parameters and connections of the circuit 
components. By compiling these equations for 
him, TAP relieves the user (ostensibly an engi¬ 
neer rather than a programmer) of the tedious and 
error-prone chore of writing all the circuit equa¬ 
tions himself and then setting up a program to 
solve them. At the same time, TAP makes it 
convenient to modify parameters or connections 
in the circuit simply by changing the appropriate 
input cards. 



It is interesting to note that the ability to com¬ 
pile the circuit equations from simple input data 
has also been included in the DY ANA program 
recently developed by the General Motors Research 
Laboratories for mechanical and electrical net¬ 
work analysis. $ Since this feature is particularly 
helpful to the user, it is strongly recommended 
that any general purpose network analysis programs 
developed in future also include this compiling 
facility. 

The d-c analysis portion of TAP, which pro¬ 
vides the initial values of voltage and current need¬ 
ed in the transient problem, takes account of the 
nonlinearities due to the transistors. Fortunately, 
it has been found possible to view this d-c problem 
as one of solving a linear network problem subject 
to an appropriate set of nonlinear side conditions. 
The linear network is treated by Kron's method of 
"interconnecting solutions"^’®’® while the nonlin¬ 
ear side conditions are satisfied by using an itera¬ 
tive method of successive approximations. ¿ 

After the initial conditions of voltage and 
current are obtained, the transient response of the 
network, excited by a ramp-function input pulse of 
arbitrary amplitude and duration, is calculated by 
numerical integration of the differential equations 
describing the system. This part of the computa¬ 
tion is the most time-consuming and represents 
the biggest bottleneck in the entire analysis. In 
the attempt to speed up the numerical integration 
process in TAP, the linear and nonlinear sets of 
differential equations are integrated separately, 
over short intervals of time, and only periodically 
rejoined so as to provide a meaningful solution. 
The reasons for and advantages of doing this will 
be described below. 

One extremely important aspect of the anal-
sis of networks containing nonlinear devices is 
that of developing suitable network models for 
such devices. A network model must, of course, 
represent the device in question to an acceptable 
degree of approximation. It should also be made 
as simple as possible to minimize the computa¬ 
tional burden. Both of these desiderata are 
fairly well satisfied by the transistor model used 
in TAP. However, an addition consideration 
should be pointed out whose importance was not 
recognized until after TAP had been written: 
namely, the ability to change the network repre¬ 
sentation of the transistor, either in part or in 
toto, without extensively altering the program. 

Since TAP was intended for analyzing only 
circuits containing a certain type of transistor for 
which an adequate model existed, ? the ability to 
alter this model was not considered important. 
Although provision was made to vary each para¬ 

meter of the model, its basic configuration and 
the character of its nonlinearities were fixed and 
were made an integral part of the program. 
Accordingly, once TAP had been tested and proved 
practical for its intended purpose, attempts to 
extend it to the analysis of circuits containing other 
nonlinear devices were frustrated by the amount of 
reprogramming required to alter or replace the 
transistor model. This shortcoming, unfortunately, 
forced the program into premature obsolescence. 

Although a network analysis program neces¬ 
sitates the invention of network models for non¬ 
linear devices, by its very nature it also provides 
the means for validating these models. This is 
another reason for setting up the program in such 
a way as to facilitate changing these models easily. 
No recommendations can be made as to how this 
may be accomplished, but the importance of doing 
so needs to be recognized. 

In order to conserve space in this paper, only 
the essence of the mathematical and programming 
techniques used in TAP will be given. Reference 
to published material will be made for any math¬ 
ematical details omitted; but programming details 
that should be apparent to those skilled in the art 
will be omitted entirely. Although TAP was pro¬ 
grammed for the IBM 704 computer, the techniques 
used are amenable to any binary computer and, 
with suitable modification, to decimal machines 
as well. 

The three main sections of the paper describe 
the compilation process, d-c analysis, and tran¬ 
sient analysis. A generalized formulation of the 
linear transient network problem is described in 
Appendix I. This formulation is recommended 
in place of that actually used in TAP. Other 
appendices are included which describe certain 
procedures used in determining and using the 
topological matrices. 

Compilation of Input Data 

The scheme used in TAP for compiling the 
differential equations for the transient analysis 
of the linear part of the network is based on a 
matrix formulation® in which the coefficient 
matrices are determined by inspection of the net¬ 
work connections rather than by means of topo¬ 
logical matrices. This formulation, using a com¬ 
bination of node voltages and mesh currents as 
variables, establishes a simultaneous system of 
first order differential equations, similar in 
form to that described by Bashkow^. The d-c 
analysis, which was incorporated into the program 
at a later date, makes use of a topological matrix 
formulation. ® 
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A disadvantage arises from formulating the 
transient problem in terms of differential equa¬ 
tions only since every node voltage or mesh 
current must be computed in terms of a corres¬ 
ponding differential equation, even though an al¬ 
gebraic equation might have been more appropriate. 
This presents no problem as far as mesh currents 
are concerned for these are introduced only when 
inductors are actually present. But since each 
node voltage requires a differential equation to 
describe it, there must be a capacitive path from 
each node to ground in order to define this dif¬ 
ferential equation. Hence, additional ("stray") 
capacitances must be inserted wherever the 
required capacitive path is absent in the original 
circuit. 

Admittedly, these stray capacitances do exist 

in actual circuits and this is why they were inclu¬ 
ded in the original formulation. However, their 
effect may be negligible in many cases and yet by 
their very presence, these capacitances may slow 
down the numerical integration process apprecia¬ 
bly. Therefore, it is important to formulate the 
transient problem with sufficient generality to 
admit algebraic equations, when required, as well 
as differential equations. 

A formulation, using a topological-matrix 
approach, is given in Appendix I. This formula¬ 
tion, which extends the recent work of Bashkow,^ 
suffices for the d-c analysis as well and gives 
directly all the initial values required by the tran¬ 
sient problem. 

The input scheme developed for TAP permits 
arbitrary connections and parameters to be speci¬ 
fied both for the linear part of the network and for 
the transistors. Only the transistor model is 
fixed in its configuration and nonlinear character¬ 
istics. 1 The input information required, there¬ 
fore is the following: (1) type of circuit componen^ 
such as transistor, resistor, capacitor, or induc¬ 
tor; (2) serial number of each component (actually 
required only for transistors); (3) parameter (or 
parameters) pertinent to each component; (4) 
component connections as designated by node 
numbers; (5) voltage and/or current sources; (6) 
input pulse characteristics. 

This information, punched into cards, is read 
into the computer and compiled either in matrices 
or in tables, some of which are later converted to 
matrix form. Since the cards specifying the linear 
part of the circuit are read in first, with R, L, and 
C cards intermixed, the compilation of the tables 
required for the d-c analysis ¿Ties on simultaneously 
with that of the coefficient matricesfor the transient 
problem. 

The information from the cards specifying the 

transistor parameters and connections is read in, 
and tabulated. Since the resistors in the transis¬ 
tor model are linear, these data are included in 
the tables for the d-c analysis. The transistors 
are simulated by current sources driving a linear 
circuit in both the d-c and transient analysis. 

D-C Analysis 

The tables required by the matrix formulation 
used in the d-c analysis^, 6 are the following: (1) 
branch resistances (RDATA); (2) branch connec¬ 
tions (RCON) showing initial and final node num¬ 
bers for each branch; (3) voltage sources (EDATA) 
and (4) current sources (IDATA) in each branch. 
(In TAP, the IDATA table is omitted since the only 
current sources encountered are due to transis¬ 
tors. In a more general program, however, the 
IDATA table should be included. ) 

These tables are not converted into a matrix 
form of the network equations, but rather into the 
appropriate "solution matrices" in terms of 
which the solution may be computed directly. 
Actually, the voltages are computed from the 
nodal solution matrix (inverse of the nodal admit¬ 
tance matrix) while the currents are computed 
from the mesh solution matrix (inverse of the 
mesh impedance matrix). To be sure, either 
solution matrix would suffice for computing all 
the voltages and currents but it was felt that 
round-off errors would be reduced by the method 
adopted. 

To handle networks of arbitrary configuration, 
this program requires an unambiguous procedure 
for identifying and specifying just the right num¬ 
ber of meshes. Such a procedure has been dev¬ 
eloped with the aid of the well-known topological 
concepts of tree, link, and basic mesh. 

A tree is defined as any network structure 
devoid of closed paths. The network tree is a 
tree which includes all nodes of the network and a 
link is any branch of the tree-complement. When 
a single link is connected to the tree, it forms 
a unique closed path called a basic mesh; each 
basic mesh contains but one link. Hence, if all 
the network branches are classified as either tree¬ 
branches or links, the basic meshes may be unam¬ 
biguously identified and they are just sufficient in 
number. 

In computing the nodal solution matrix, a 
modification of Kron's method called the link-at-
a-time (or LAT) algorithm is used. This algo¬ 
rithm, which is explained in reference 5, is a con¬ 
structive method for obtaining the nodal solution 
matrix for the complete network by adding a link 
at a time to the network tree and modifying the 
corresponding nodal solution matrix at each suc-
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cessive step. Since the nodal solution matrix for 
the tree is obtained without matrix inversion and 
since the general formula for modification of this 
matrix at each step is the same, the algorithm is 
easy to use. 

To minimize round-off errors at each suc¬ 
cessive step of this algorithm, it is desirable to 
chose the network tree of minimum total resis¬ 
tance. 5 Accordingly, the first step in the d-c 
analysis is to sort the RDATA table in order of 
increasing resistance. The RCON, EDATA and 
IDATA tables are then rearranged to conform to 
this new sequence of the network branches. 

Next, starting with the branch of smallest 
resistance, the RCON table is examined to deter¬ 
mine if each suceeding branch does or does not 
form a closed path with the then-defined tree. If 
a closed path is formed, the branch is classed as 
a link; if not, it is classed as a tree branch and 
added to the tree. When all the branches have 
been examined in this manner, the tree of mini¬ 
mum resistance is defined. Appendix II is a des¬ 
cription of the tree-link sorting procedure. 

The RDATA, RCON, EDATA and IDATA 
tables are rearranged to conform to this new 
classification with tree-branches in one group and 
links in another. The next step is to convert the 
RCON table into the appropriate topological 
matrices. 

Topological Matrices 

Three topological matrices are required in 
the d-c analysis and all of them consist of the 
elements +1, -1, and/or 0 only. Using a binary 
computer such as the IBM 704, it is convenient to 
represent each such matrix element as a pair of 
binary digits (bits) in order to conserve storage --
and also to speed up certain parts of the computa¬ 
tion. In TAP, the storage format used is 16-bit-
pairs per word for each 16 elements of a column 
(or, sometimes, row) of a topological matrix. An 
alternative format, which has certain advantages, 
is to store the magnitude bits in one word and 
corresponding sign bits in an adjacent word. 

By definition, ®’ ® the elements of the branch¬ 
node matrix are: 

a- = (+1, -1, 0) if the i-th branch is 
(positively, negatively, not) inci¬ 
dent on the j-th node. 

Now the i-th entry (word) of the RCON table 
corresponds to the i-th row of the branch-node 
matrix since both specify the initial ( + ) and final 
(-) node of the i-th branch. The RCON table is 
stored with the initial node number in the address 

field and the final node number in the decrement 
field of a single word. The task of converting this 
table to the bit-pair matrix format (stored column¬ 
wise) is therefore a straight-forward programming 
task that need not be elaborated. 

Initially, the branch-node matrix includes the 
column corresponding to the datum or reference 
(ground) node, but later this column is deleted 
since it contains redundant information.®»® The 
matrix remaining after this deletion is then desig¬ 
nated as the A matrix. The tree portion of this 
matrix, At, is a square matrix whose inverse 
may be obtained topologically rather than com¬ 
putationally. The inverse of Ay may be shown®' ® 
to be identical with the transpose of a matrix, 
Bp called the node-to-datum-path matrix of the 
tree. The elements of this matrix are defined as 
follows: 

bpj = (+1, -1, 0) if the i-th branch is 
(positively, negatively, not) included 
in the j-th node-to-datum path. 

This Bt matrix is used in computing both the 
nodal solution matrix of the tree and the branch¬ 
mesh matrix described below. The procedure for 
determining the Bt matrix, by means of an 
exhaustive search of the network tree from the 
datum node outward, is explained in Appendix III. 

The third topological matrix required in the 
d-c analysis is the branch-mesh matrix, desig¬ 
nated C, whose elements are defined thus: 

cij = (+1, -1, 0) if the i-th branch is 
(positively, negatively, not) included 
in the j-th basic mesh. 

By adopting the convention that both the orienta¬ 
tion and ordering of the basic meshes agree with 
those of the corresponding links, the link portion 
of the branch-mesh matrix, Cl> turns out to be a 
unit matrix and does not even need to be written. 
The tree portion Ct then, contains all the essen¬ 
tial information about the branch mesh matrix. 

Fortunately, Ct is readily computed from By 
and the transpose of Al,, the link portion of the 
branch-node matrix, by means of the equation®’ ® 

Ct = -Bt^L 

This computation amounts to taking the difference 
of two columns of BT to get each column of Cy. 
Accordingly, it is easier to use the link portion 
of the RCON table than the AL matrix for this pur¬ 
pose since the address and decrement of each 
RCON word tell directly which columns of By are 
to be added or subtracted. Thus, all the necessary 
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topological matrices may be obtained directly or 
indirectly from the RCON table. 

Nodal Solution Matrix 

The primitive impedance matrix, Z, and its 
inverse, the primitive admittance matrix, Y, char¬ 
acterize the branches of a network independently 
of their interconnections. In the d-c problem, 
the RDATA table corresponds to a real diagonal 
Z matrix and its reciprocal to a real diagonal Y 
matrix. The nodal solution matrix, which is the 
inverse of the nodal admittance matrix A^YA, is 
obtained by means of the LAT algorithm starting 
with the inverse of the nodal admittance matrix 
for the tree, A^ Yj1 A^.. Using the relation 
At^ = B^, mentioned above, it is easily shown that 

(a‘t Yt At)-1 = ZT Bt (2) 

Hence, the nodal solution matrix for the tree may 
be calculated without any matrix inversion. 
Appendix IV describes how the triple matrix 
product Blj. Zy By is computed, taking advantage 
of the diagonal nature of Zf’ and using the compact 
storage format of B-p. 

The LAT algorithm makes use of a recursion 
formula which modifies a given nodal solution 
matrix to take account of the addition of a single 
link. Assuming that the impedance of the j-th 
link is zJL and that this link is connected between 
the p-th and q-th nodes of the network, the modi¬ 
fied nodal solution matrix, ZJ is given by the 
equation^ 

Zi = zJ-i - (3) 

zj' 1 + zj’ 1 - zJ* 1- Z^’ 1-^. 
pp qq pq qp L 

where Z^ p and Z^^ are the p-th column and p-th 
row of the previous nodal solution matrix, ZJ*\ 
Clearly Z° = ßt Z B m . 

Since all the Z^ are symmetric, only the dia¬ 
gonal and subdiagonal elements are computed and 
stored, thereby conserving both computation time 
and memory space. Furthermore, since the tree 
is chosen for minimum total resistance, the link 
resistances will be as large as possible, thereby 
minimizing the denominator of the correctionterm 
in Eq. (3) and reducing round-off errors. 

Mesh Solution Matrix 

Computation of the mesh-solution matrix is 
based on a recursion formula similar to Eq. (3). 
The corresponding algorithm adds one tree¬ 
branch at a time to the set of all links and modifies 

the mesh-solution matrix accordingly at each suc¬ 
cessive step. The starting point of this algorithm, 
of course, is the mesh solution matrix of the links 
which, fortunately, is diagonal. A discussion of 
this algorithm is given in reference 5. 

Computation of the mesh and nodal solution 
matrices could, of course, have been done by the 
usual methods of matrix inversion and with less 
programming effort. However, since it was desired 
to evaluate the potentialities of Kron's method of 
interconnecting solutions, advantage was taken of 
the experimental nature of TAP to program and 
test the link-at-a-time and tree-branch-at-a-time 
algorithms in an actual situation. (The computa¬ 
tional efficiency and applications of these algo¬ 
rithms are discussed in reference 5.) 

Solution of the Nonlinear Problem 

As previously stated, the nonlinearities 
introduced by the presence of transistors in the 
network are handled by imposing a set of nonlin¬ 
ear side conditions on the solution of the linear 
network problem. This is accomplished by rep¬ 
resenting the effect of the transistors on the linear 
network by means of current sources at the appro¬ 
priate nodes and adjusting these current sources so 
that certain of the voltage responses satisfy the 
nonlinear side conditions. 

The d-c portion of the equivalent circuit used 
in TAP to represent a nonsaturating, diffused base 
PNP transistor is shown in Fig. 1. The base and 
collector resistances, R. k ' and R '.as well as bb cc 
the leakage resistance Rc, are assumed to be con¬ 
stant and so are included as part of the linear net¬ 
work. The only nonlinearities, then, are due to 
the current sources a and ( 1 -0)1^ where a , the 
current gain factor, is assumed to be a nonlinear 
function of Ifo. (See reference 1 for details. ) 

The current source 1^ (hole current) is 
exponentially related to the emitter-base voltage 
Veb by the diode equation 

= ïes <e AVeb''D (4) 

where Ies is the reverse saturation current and 
A= q/kT = 1/. 026 volts at room temperature. 

As far as the linear network is concerned, 1^ 
can be chosen arbitrarily since this choice merely 
specifies the current sources Otlh and (1 -a) 1^. 
The resulting voltage responses of the linear 
network may then be calculated by the matrix 
equation^» 6 

e' = (A1 YA) A‘ (I-YE) / 5)
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where e' is the node-to-datum voltage vector and 
I and E are the current source and voltage source 
vectors (corresponding to the IDATA and EDATA 
tables.) 

Since the only current sources considered in 
TAP are those due to transistor action, one may 
write the matrix relation 

AlI=ãih (6) 

to define the equivalent nodal current sources 
depicted in Fig. 2. In Eq. (6), 1^ represents the 
vector of 1^ values for all transistors while Oí 
represents a matrix whose only nonzero elements 
are -1, 0Í, and ( 1 - Ot) placed so as to assign current 
sources -1^, Oil^ and (1 -01) 1^ to the appropriate 
nodes of each transistor model. 

The voltages Vg^' for each transistor may be 
computed from the node voltage relation e^ - e^' . 
In matrix form, this may be written as 

Veb' = He' (7) 

where H is a matrix whose only nonzero elements 
are +1 and -1 placed so as to perform the appro¬ 
priate linear combination of the elements of e'. 

The tangent-line approximation to the diode 
curve is given by the point-slope formula: 

V eb = 
1 

L + V<°>< -n eb 
1 4°) (9) 

Ad^) + Ies ) .M^es) 

This relation may be considered as a matrix 
equation describing the tangent lines for all trans¬ 
istors if the quantity il/A(l{°^ + I )"| is regarded l— h co j 
as a diagonal matrix. 

Now for transistors operating in the "off" 
region, close to the asymptotic limit of -Ies> the 
computation of 1^ + I es may involve serious round¬ 
off error. As a result, the larger 1/A U^ + Ies ) 
becomes, the more inaccurate it is. This error 
can be avoided, however, by making the change of 
variable. 

J = Jh + IeS (10) 

and not calculating 1^ explicitly. 

Eliminating Veb' from Eqs. (8) and (9) and 
introducing the variable J, we obtain the following 
equation for the iteration procedure: 

HiA^A)’ 1«^* 1)-1- j(n) = v (ni> 
AJ (n-D eb 

+ H(AtYA)’13< n’1) 1 

AJ (n-
!es + H(AtYA)- 1AtYE (11) 

Combining Eqs. (5), (6) and (7), we may 
write 

v eb' = [h^YA)' 1̂  - H(AtYA)" 1 AlYE (8) 

which expresses the vector Veb' directly as a 
function of 1^. The trick now is to choose 1^ so 
that both Eq. (8) and Eq. (5) are satisfied. 

The nature of this problem is shown graph¬ 
ically in Fig. 3 where the diode curve represents 
Eq. (4) and where the load line represents the 
almost linear relation between Veb' and 1^ in 
Eq. (8) -- ignoring the slight dependency of a on 
1^. The two situations of major interest shown 
in Fig. 3 correspond to load lines for "on" and 
"off" transistors. 

The iterative method of solving this problem 
may be explained as follows: For each transistor, 
an initial estimate 1^°) is made. The diode curve 
is then approximated by a tangent line at the point 
(lJ°\ V(?)i and its intersection with the load 
' n eb 
line determined. This results in a new estimate 
I^^as shown in Fig. 4. The process is then 
repeated until convergence is obtained. 

where o/ n = a(Ij^n is assumed to be con¬ 
stant. In this expression, whatever accuracy is 

inherent in j(n- I) is retained in l/AJ<n-!> . 

One difficulty which arises in applying Eq. (11) 
is that an "out-of-bounds" intersection of the tan¬ 
gent-line and load line for an "off" transistor may 
occur, as depicted in Fig. 5. This problem is 
handled by testing each element of the j(n) vector 
for proper boundedness and replacing the out-of-
bounds elements by the arbitrary value of 

Ies X IO' 6. 

A second difficulty is that Eq. (11) yields in¬ 
accurate J values for the "off" transistors. These 
values may be improved by the method of suc¬ 
cessive substitutions depicted in Fig. 6. After 
each iteration, the elements of the J vector, 
corresponding to each "off" transistor, are tested 
for boundedness, replaced by Ies x 10"^ if nec¬ 
essary, and then substituted into the equation 

^h^ya)' 1« J -

- H(AtYA)” 1

h(a‘y a) - 1aji es

AlYE (12) 
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The J values are then recomputed using the 
expression 

J = Ies (e (13) 

This process of successive substitutions 
converges if the slope of the load line is greater 
than that of the diode curve at their intersection 
point and if the starting point of the process is 
close enough to this intersection; otherwise, the 
process diverges. In order to guard against 
incipient divergence, the values of AVeb ' are 
monitored and if a value in excess of 4. 0 is detec¬ 
ted, the process of successive substitutions is ter¬ 
minated. Otherwise, three iterations are made. 

The entire procedure of successive approxi¬ 
mations is repeated until the fractional change in 
the length of the J vector is 10"^,with a maximum 
of thirty iterations being allowed. Although no 
attempt has been made to establish theoretically 
the conditions under which convergence will be 
assured, it is believed that only those circuits 
which involve large positive feedback would be 
likely to cause trouble. In such cases, it may 
be necessary to resort to the transient analysis 
procedure, using whatever initial conditions are 
obtained from the d-c analysis, and allow the inte¬ 
gration to proceed with no input pulse until a 
steady state is reached. 

In the normal case, after convergence has 
been attained, all the voltages and currents of 
the network are computed, completing the d-c 
analysis. Not all of these data are required as 
initial conditions for the transient analysis, how¬ 
ever, and so only the desired voltages and cur¬ 
rents are selected. 

Transient Analysis 

After the initial conditions have been obtained 
from the d-c analysis, they are verified by run¬ 
ning the numerical integration for a short time 
without any input pulse. When a satisfactory 
steady state has been reached, the input pulse is 
initiated. The transient computation may then be 
continued as long as desired. At suitable inter¬ 
vals during this computation, the entire set of 
voltages and currents in the network is printed 
out. It would be preferrable to display certain 
portions of this information graphically, either 
on a printer or cathode ray tube, but this feature 
was not included in TAP. 

The solution of the transient problem, as 
mentioned above, is based on integrating the lin¬ 
ear differential equations of the network sep¬ 
arately from the nonlinear differential equations 
describing the transistors. To explain the prac¬ 
tical importance of this modus operandi, a brief 

outline of the basic theory of the numerical integra¬ 
tion is needed first. 

The numerical integration of the single dif¬ 
ferential equation 

^=f(x,t) (14)

may be effected by means of the generalized 
expression 

N M-l 

xn= £ ajXn-j +h £ bj(dx/dt)n-j ( 15 ) 

j=l j=0 

where xn = x (to + nh) and h = 4t is the integra¬ 
tion interval. If bQ = 0, the integration formula 
is called a "predictor"; if bo / 0, it is called a 
"corrector. " Usually, a combined predictor¬ 
corrector scheme is employed with the coefficient 
aj and bj selected to give the accuracy desired. 

In the special case of a constant coefficient, 
linear differential equation, where f(x, t) = gx, 
Eq. (15) becomes 

(1 - hgbo) xn = (aj + hgbj xn_1 (16) 

+ (a2 + hgb 2) x^ +. . . + (ar + hgbr)xn_r 

where at least one of the coefficients ar or br is 
nonzero. This finite difference equation, of order 
r, may be shown*® to have the general solution 

j = l 

where the coefficients Cj are determined by the 
initial values of xo, xj, . ,.xr_j and where pp 
P2»***Pr are their roots of the characteristic 
equation 

(l-hgbQ)pr - (aj -hgbj) pr"1-(a2-hgb¿)pr'2

. . .. -(ar - hgbr) = 0 (18) 

obtained by substituting the particular solution 

Xn = p“xo into Etl- (18). 

One of these roots, say pp will generate 
the principal solution to the difference equation. 
The other r-1 roots will generate parasitic solu¬ 
tions which arise because the order of the finite 
difference equation is (r-1) greater than that of 
the differential equation* being approximated. 
Accordingly, if any one of the parasitic roots is 
greater in magnitude than unity, then the corres¬ 
ponding term CjPj 11 in Eq. (17) increases without 
bound as n increases, thereby vitiating the desired 
solution. 10 This situation, called numerical 
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where e' is the node-to-datum voltage vector and 
I and E are the current source and voltage source 
vectors (corresponding to the IDATA and EDATA 
tables.) 

Since the only current sources considered in 
TAP are those due to transistor action, one may 
write the matrix relation 

A^ãlb (6)

to define the equivalent nodal current sources 
depicted in Fig. Z. In Eq. (6), Ib represents the 
vector of 1^ values for all transistors while Oí 
represents a matrix whose only nonzero elements 
are -1, Ot, and ( 1 - Ct) placed so as to assign current 
sources -1^, Oilb and (1-0Í) Ib to the appropriate 
nodes of each transistor model. 

The voltages Veb ' for each transistor may be 
computed from the node voltage relation e^ - el' . 
In matrix form, this may be written as 

Veb' = He' (7) 

where H is a matrix whose only nonzero elements 
are +1 and -1 placed so as to perform the appro¬ 
priate linear combination of the elements of e'. 

The tangent-line approximation to the diode 
curve is given by the point-slope formula: 

V eb = 
1 I. + vty -n eb 

1 
I^ (9) 

_Adko) + M .A (lk°)+Ies) 

This relation may be considered as a matrix 
equation describing the tangent lines for all trans¬ 
istors if the quantity ß /A(lß°' + IeS )J is regarded 
as a diagonal matrix. 

Now for transistors operating in the "off" 
region, close to the asymptotic limit of -Ies> the 
computation of Ib + I es may involve serious round¬ 
off error. As a result, the larger 1/A (Ijj + Ies ) 
becomes, the more inaccurate it is. This error 
can be avoided, however, by making the change of 
variable. 

J = Ih + I eS (10) 

and not calculating Ib explicitly. 

Eliminating Veb ' from Eqs. (8) and (9) and 
introducing the variable J, we obtain the following 
equation for the iteration procedure: 

HIA^A)" 1«1“' 1*--- j(n) = y(n|) 
Aj(n-l) «b 

1 

A J (n-1) 
+ HIA^A)’1̂ “'1) !es + H(AtYA)- 1AtYE (11) 

Combining Eqs. (5), (6) and (7), we may 
write 

Veb ' = [h^YA)’ 1̂  - H(AlYA)-I AtYE (8) 

which expresses the vector Veb ' directly as a 
function of 1^. The trick now is to choose Ib so 
that both Eq. (8) and Eq. (5) are satisfied. 

The nature of this problem is shown graph¬ 
ically in Fig. 3 where the diode curve represents 
Eq. (4) and where the load line represents the 
almost linear relation between Veb ' and Ib in 
Eq. (8) -- ignoring the slight dependency of a on 
1^. The two situations of major interest shown 
in Fig. 3 correspond to load lines for "on" and 
"off" transistors. 

The iterative method of solving this problem 
may be explained as follows: For each transistor, 
an initial estimate 1^°^ is made. The diode curve 
is then approximated by a tangent line at the point 
(I^°\ V^)i and its intersection with the load 
line determined. This results in a new estimate 
ij^as shown in Fig. 4. The process is then 
repeated until convergence is obtained. 

where = a(Ib n̂ is assumed to be con¬ 
stant. In this expression, whatever accuracy is 

inherent in j(n*l) is retained in 1/Aj(n- I) . 

One difficulty which arises in applying Eq. (11) 
is that an "out-of-bounds" intersection of the tan¬ 
gent-line and load line for an "off" transistor may 
occur, as depicted in Fig. 5. This problem is 
handled by testing each element of the j(n> vector 
for proper boundedness and replacing the out-of-
bounds elements by the arbitrary value of 
Ies X IO’ 6 . 

A second difficulty is that Eq. (11) yields in¬ 
accurate J values for the "off" transistors. These 
values may be improved by the method of suc¬ 
cessive substitutions depicted in Fig. 6. After 
each iteration, the elements of the J vector, 
corresponding to each "off" transistor, are tested 
for boundedness, replaced by Ies x 10"^ if nec¬ 
essary, and then substituted into the equation 

|_H(AtYA)" 1ã J -

- H(AtYA)” 1

H(AtYA)’ 1aJles

A1 Y E (12) 
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The J values are then recomputed using the 
expression 

J = 03) 

This process of successive substitutions 
converges if the slope of the load line is greater 
than that of the diode curve at their intersection 
point and if the starting point of the process is 
close enough to this intersection; otherwise, the 
process diverges. In order to guard against 
incipient divergence, the values of AVeb' are 
monitored and if a value in excess of 4. 0 is detec¬ 
ted, the process of successive substitutions is ter¬ 
minated. Otherwise, three iterations are made. 

The entire procedure of successive approxi¬ 
mations is repeated until the fractional change in 
the length of the J vector is 10"^,with a maximum 
of thirty iterations being allowed. Although no 
attempt has been made to establish theoretically 
the conditions under which convergence will be 
assured, it is believed that only those circuits 
which involve large positive feedback would be 
likely to cause trouble. In such cases, it may 
be necessary to resort to the transient analysis 
procedure, using whatever initial conditions are 
obtained from the d-c analysis, and allow the inte¬ 

gration to proceed with no input pulse until a 
steady state is reached. 

In the normal case, after convergence has 
been attained, all the voltages and currents of 
the network are computed, completing the d-c 
analysis. Not all of these data are required as 
initial conditions for the transient analysis, how¬ 
ever, and so only the desired voltages and cur¬ 
rents are selected. 

Transient Analysis 

After the initial conditions have been obtained 
from the d-c analysis, they are verified by run¬ 
ning the numerical integration for a short time 
without any input pulse. When a satisfactory 
steady state has been reached, the input pulse is 
initiated. The transient computation may thenbe 
continued as long as desired. At suitable inter¬ 
vals during this computation, the entire set of 
voltages and currents in the network is printed 
out. It would be preferrable to display certain 
portions of this information graphically, either 
on a printer or cathode ray tube, but this feature 
was not included in TAP. 

The solution of the transient problem, as 
mentioned above, is based on integrating the lin¬ 
ear differential equations of the network sep¬ 
arately from the nonlinear differential equations 
describing the transistors. To explain the prac¬ 
tical importance of this modus operandi, a brief 

outline of the basic theory of the numerical integra¬ 
tion is needed first. 

The numerical integration of the single dif¬ 
ferential equation 

g=f(x,t) (I4) 

may be effected by means of the generalized 
expression 

N M-l 

xn = 22 ajxn-j + h 22 bj(dx/dt)n-j (15) 

j=l j=0 

where xn = x (to + nh) and h = 4t is the integra¬ 
tion interval. If bQ = 0, the integration formula 
is called a "predictor"; if bo / 0, it is called a 
"corrector." Usually, a combined predictor -
corrector scheme is employed with the coefficient 
aj and bj selected to give the accuracy desired. 

In the special case of a constant coefficient, 
linear differential equation, where f(x, t) = gx, 
Eq. (15) becomes 

(1 - hgbo) xn = (aj + hgbj) x^j (16) 

+ (a2 + hgb 2) xn_2 +. . . + (ar + ligh^x^ r

where at least one of the coefficients ar or br is 
nonzero. This finite difference equation, of order 
r, may be shown^ to have the general solution 

A 
xn = > , cj Pj (17) 

j = l 

where the coefficients Cj are determined by the 
initial values of xQ, Xp ... xr_j and where pp 

P2> • • • Pr are their roots of the characteristic 
equation 

U-hgbJp 1- - (aj -hgbp pr’1-(a2-hgb2)pr’2

.... -(ar - hgb r) = 0 (18) 

obtained by substituting the particular solution 
Xn = pnxo into Eq. (16). 

One of these roots, say pp will generate 
the principal solution to the difference equation. 
The other r-1 roots will generate parasitic solu¬ 
tions which arise because the order of the finite 
difference equation is (r-1) greater than that of 
the differential equation-being approximated. 
Accordingly, if any one of the parasitic roots is 
greater in magnitude than unity, then the corres¬ 
ponding term CjPj n in Eq. (17) increases without 
bound as n increases, thereby vitiating the desired 
solution. 10 This situation, called numerical 
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instability, arises if the integration interval is 
made too large. 

Similar considerations apply to the numeri¬ 
cal integration of a system of differential equa¬ 
tions. For example, the system of equations 
describing a linear, constant parameter RLC 
network (see Appendix I) are of the form 

P X + Q X = F(t) (19) 

where P and Q are matrices, X = dX/dt, X is a 
vector of voltages and currents, and F(t) is a vec¬ 
tor of voltage and/or current sources, some of 
which may be time-dependent. By inverting the 
matrix P, we may write, 

X = -P -1 QX + P^Fft) = S X + G(t) (20) 

The vector counterpart of Eq. (15) for num¬ 
erical integration of Eq. (20), in predictor¬ 
corrector form, is: 

N _ M , 
predictor: Xn = ' a. X . + h S 'b . X (21) 

n J n‘J J n-j 

T W-l . 

corrector: Xn = E Cj^n-j + h S d i X n-j 
j=l j=0 J

Here, Xn , the corrected solution vector, is 
obtained by using the predicted derivative vec¬ 
tor, Xn = SXn + G(tn). 

To avoid numerical instability in the use of 
Eqs. (21) and (22), the integration interval h must 
be made less in magnitude than the reciprocal of 
the largest eigenvalue Àmax of the matrix S in 
Eq. (20). This eigenvalue corresponds to the 
largest natural frequency, and its reciprocal to 
the smallest natural time constant T ; of the mm 
network. Ironically, this eigenvalue, through its 
exponential function, e" ^max*, contributes least 
to the (analytical) solution of Eq. (20) and yet it 
forces the numerical integration to proceed at a 
rate determined by the condition, 

h < 0. 25 T 
min 

(23) 

The permissible maximum value of h is in this 
range but depends 
of coefficients a;, 
(22). J

somewhat on the actual choice 
b-, c- and d in Eqs. (21) and 
J J J 

Eqs. (21) and (22) may also be used to approx¬ 
imate the solution of the differential equations des¬ 
cribing nonlinear or time-varying networks, since 
the use of numerical integration implies that the 
network is linear and time-invariant at every par¬ 

ticular time step, tn, even though its parameters 
change from one time step to the next. Accord¬ 
ingly, the matrices P and Q will, in general, need 
to be recomputed and Eq. (19) either solved for 
Xn or converted to the form of Eq. (20 by inver¬ 
ting P at each time step. This will change the 
matrix S and its eigenvalues. Hence, the integra¬ 
tion interval, h, may need to be adjusted from 
time to time in order to prevent instability, when 
Tm in decreases, or to permit faster integration 
when increases. 

In the circuits handled by TAP, the smallest 
time constant is due primarily to the parameters 
in the transistor model. This time constant, at 
best, is about 1/10 that of the linear part of the 
network considered by itself. Therefore, by 
integrating the equations for the linear network 
separately from those pertaining to the transistors 
a significant increase in speed of integration is 
obtained. This increase is due not only to the 
larger integration interval permitted but also to 
the fact that the P matrix for the linear system 
need be inverted but once. 

The integration scheme used for the linear 
network in TAP is based on a modified Euler 
predictor - corrector formula: 

predictor: Xn = Xn_ j + hL Xn J (24) 

— — hL • » 
corrector: Xq zX^ + — (Xn + X^) (25) 

withXn = SXn + G(tn) and with h^ held constant. The 
vector G(tn), which is updated at each time step, 
contains current source terms that describe the 
effect of each transistor. The values of these 
current sources are obtained from the solution 
of the nonlinear differential equations describing 
each transistor's behavior. 

These equations, two for each transistor, are 
based on the equivalent circuit shown in Fig. 7 
where Rbb ', Rc', Rcc ' and the current sources Oilb 
and Ih (l-Ct)Ih are identical to their counterparts 
in Fig. 1. The collector-base capacitance Ctc 
is assumed constant but the emitter-base capaci¬ 
tance Ce is assumed to be the sum of the two non¬ 
linear capacitance 

and 

K 
Cte = - (27) 

(Vo - V eb')n

where is the common-base cutoff frequency, 
K is a proportionality constant computed by the 
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program, Vo is the contact potential, and n is a 
constant dependent on the grading of the junction. 
All the basic parameters of this model, except K, 
are specified on the input cards for each transis¬ 
tor and tabulated during the compilation process. 
It should be pointed out that Cg is defined as a 
differential or small-signal, capacitance dQ/dV 
and not as a static capacitance Q/V. This defin¬ 
ition is preferable from the standpoint of measur¬ 
ing Ce but care must be exercised in using small¬ 
signal capacitances, as discussed in Appendix I. 

The nonlinear differential equations for each 
transistor are integrated separately using a mod¬ 
ified Adam's predictor-corrector formula: 

predictor: Xn = Xn _ j+ (hN /24)(55Xn_ j-59Xn _ 2

+ 37Xn_3 - 9Ín_4) (28) 

corrector: Xn = Xnl + (hN /24)(9Xn + 19Xn]

-5^n-2 + Xn.3) (29) 

The integration interval hj^ is continuously mon¬ 
itored by comparing the difference between pre¬ 
dicted and corrected values of the solution. When 
this difference increases beyond a certain limit, 
the integration interval is halved; when this dif¬ 
ference decreases sufficiently, the interval is 
doubled. In this way, since each transistor is 
treated independently of the others, the integra¬ 
tion proceeds at close to the maximum safe rate 
for each transistor instead of at the rate of the 
slowest. 

The transistor equations require as input 
data the response voltages at each of the nodes of 
the linear network to which a transistor terminal 
is connected. These voltages are computed at 
each integration interval h^ of the linear system 
of equations and they are supplied to the nonlinear 
equations as driving forces. These driving forces 
are assumed constant over the next integration 
interval h^ while the nonlinear equations are 
integrated using the variable interval hp^. The 
integration process for each transistor is carried 
along, with hjq being adjusted enroute, until a 
period exactly equal to hj^ has been covered. The 
terminal currents (emitter, base, and collector) 
computed at the end of this period are then supplied 
to the G(tn) vector for the linear system for its 
next integration step. In this way, the integration 
of the linear and nonlinear equations is carried out 
alternately with both systems being joined at each 
interval hj^. 

Results and Applications 

As an indication of the adequacy of TAP in 

predicting the transient behavior of a transistor 
switching circuit, the results of the analysis of 

the circuit shown in Fig. 8 are displayed in Figs. 
9-16 together with the observed responses. 1 

These results were obtained in about 10 minutes of 
computing time on the IBM 704. The close agree¬ 
ment between the computed and observed results 
is really a testimony to the faithfulness of the 
transistor model since the analytical and compu¬ 
tational techniques are in themselves quite depend¬ 
able. 

The potential value of a network analysis 
program as an experimental tool is indicated by 
Figs. 17-22 which show the different responses 
resulting from the variation of a single parameter 
in the network of Fig. 8. Admittedly, some of 
these variations can be explored with the actual 
hardware. But the variation of transistor para¬ 
meters, such as faco and Vo, cannot be achieved 
on demand in any practical sense. Evidently then, 
a network analysis program such as TAP offers 
the design engineer a direct means of studying the 
behavior of circuits and/or devices in intimate 
detail either for the purpose of increasing his 
understanding or for helping him to optimize cir¬ 
cuit performance. 

Beyond the obvious electrical applications of 
a network analysis program, there are many pos¬ 
sible applications to nonelectrical problems. The 
DY ANA program previously mentioned is already 
taking advantage of this fact by solving mechanical 
as well as electrical problems. But this is barely 
scratching the surface of a vast and fertile field. 
Actually, a significant portion of theoretical 
physics is amenable to a network approach. $>13 
Indeed, network models exist for so many different 
physical systems as to force the conclusion that a 
general purpose network analysis program is cap¬ 
able of converting a digital computer into a 
versatile and powerful analog machine. 

Conclusions and Remarks 

An experimental program has been written 
which is capable of automatically formulating and 
solving both the d-c and transient analysis prob¬ 
lems relating to transistor switching circuits of 
arbitrary configuration. The program yields 
computed results which are in reasonable agree¬ 
ment with observations, a fact which proves the 
adequacy of the transistor model as well as that 
of the program itself. 
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The principal features of this program are: 
(1) its ability to formulate the network problem 
automatically on the basis of simple input data 
specifying the network parameters and configura¬ 
tion; (2) its use of topological-matrix methods for 
handling part of the formulation and analysis; (3) 
its faster solution of the transient problem by 
separately integrating the linear and nonlinear 
sets of differential equations. 

The main failing of the program is the dif¬ 
ficulty of altering or replacing the transistor 
equivalent circuit. Another disadvantage is the 
printing, rather than plotting, of the computed 
responses. Both of these disadvantages have been 
eliminated from a more recent program for cir¬ 
cuit analysis of nonlinear systems (PE CANS) 
developed for the IBM 7090 computer by Beaudette 
and Honkanen. 14 This program compiles the 
equations for a network including arbitrary non¬ 
linear elements. Hence, it can handle equivalent 
circuits for a variety of nonlinear devices. 

A. F. Malmberg, at Los Alamos Scientific 
Laboratory, has also written a network analysis 
program for the MANIAC II computer. 15 This 
program is based on the topological-matrix for¬ 
mulation described in Appendix I and uses a net¬ 
work model capable of describing saturating trans¬ 
istors. 

It has been amply demonstrated, therefore, 
that it is quite feasible to program a digital com¬ 
puter to both formulate and solve the algebraic 
and/or differential equations of an arbitrary net¬ 
work -- including at least certain types of non¬ 
linear device. It now remains to refine the tech¬ 
niques described here and to develop new ones 
so that the full potentialities of a general purpose 
network analysis program can be realized. 
Clearly, the practical utility of such a program 
will depend almost as much on its input/output 
facilities as on its speed. Accordingly, due 
attention must be given to such user-oriented fea¬ 
tures as input format (including original network 
specifications and modifications thereto) and out¬ 
put display. 

The central difficulty, however, is still that 
of solving the transient problem. Much can be 
gained by refining the techniques of programming 
predictor-corrector formulas. But what is really 
needed isa genuine analytical breakthrough which 
will lead to an orders-of-magnitude increase in 
speed. Such a breakthrough, it would appear, 
cannot possibly come unless some way over, 
around, or through the minimum time-constant 
barrier can be found. This is a frontier which 
offers the greatest challenge and most promising 
rewards. 
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Appendix I 

Formulation of the Transient Network Problem 

The following topological-matrix formulation 
of the linear transient network problem leads to a 
simultaneous system of algebraic and first order 
differential equations similar to that previously 
described by Bashkow. 9 The present formulation, 
however, avoids the introduction of the extraneous 
capacitors and inductors which Bashkow 's deriva¬ 
tion requires. Moreover, it is in a form which is 
suitable for programming on a digital computer by 
an extension of the techniques described elsewhere 
in this paper. The terminology and notation to be 
used are essentially the same as in previous work 
of the author.5> 6 

Instead of employing either the mesh method 
or the node method of analysis, the present for¬ 
mulation of the transient problem makes use of a 
combination of these two methods. Actually, the 
tree method, rather than the node method, is 
combined with the mesh method. This combina¬ 
tion, which is also implicit in Bashkow 's formula¬ 
tion, is made necessary by the requirement to 
establish first order differential equations rather 
than integro-differential equations to characterize 
the reactive elements of the network. A formal 
description of this combined method of analysis 
will be given first. The necessary extension to 
the transient problem then follows easily. 

It is assumed that the network branches are 
first divided into two categories: admittances, 
designated by the subscript y, and impedances, 
designated by the subscript z. It is also assumed 
that there is no coupling between any admittance 
branch and any impedance branch although bran¬ 
ches within the same category may be coupled, 
arbitrarily with one another. Ohm's law, instead 
of being written either in the admittance form 
J = YV or in the impedance form V = ZJ, is now 
written in the mixed form 
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where Yy and Z z are the primitive admittance 
and primitive impedance matrices, and where J 
and V are the coil current and coil voltage vec¬ 
tors. 5’6 Using the relations J = I + i and V = E + e, 
where I and E are the current and voltage source 
vectors while i and e are the branch current and 
branch voltage (response) vectors, Eq. (30) may 
also be written as follows: 

branches, it is now assumed that the admittance 
branches are classified as either tree-branches 
or links, using the procedure outlined in Appendix 
II. Then, with the resulting admittance tree as a 
starting point, the impedance branches are sim¬ 
ilarly classified. The network tree obtained in 
this fashion will, of course, contain both admit¬ 
tance and impedance branches. However, since 
all the admittances will have been subjected first 
to the tree-link sorting procedure, all the basic 
meshes defined by admittance links will necessar¬ 
ily include only admittance tree-branches. 

On the other hand, the basic meshes defined 
by the impedance links may include both admit¬ 
tance and impedance tree-branches. As a con¬ 
sequence, theCymatrix contains one null sub¬ 
matrix. For if the matrices and Ay are part¬ 
itioned into submatrices thus. 

(32) B^ 

and 

(33) 

(34) 

since 

B Ty 

B Ty. 

’B TyA Lz 

’b Tz AU 

Cy Zy = -BTz A Ly = °’ as explained above. 

In accord with the tree method of analysis, 
the branch voltages e for the entire network are 
expressed as a linear combination of the tree 
branch voltages erp using the relation e = Dey, 
where D is the basic cut-set matrix for the entire 

network. 5» 6 At the same time, in keeping with 
the mesh method, the branch currents i are 
expressed as a linear combination of the link 
currents ij^ (which, by convention, are identical 
with the mesh currents,) using the relation í=CÍl. 

These relations, together with the four-way 
classification of branches described above, lead 
to the expressions 

and 

(35) 

(36) 

where use has been made of the fact that for the 
basic cut-set matrix, Dy z Uy (a unit matrix) and 
DL =-Cy. 5 > 6

where ey includes both subvectors eyy and eLy, 
iz includes both iyz and ílz, etc. It now becomes 
necessary to introduce the admittance cut-set 
matrix, 

UT y 

Dy = c‘ 
. Tyy. 

and the impedance mesh matrix, 

Cy zz

UL z 

to extract from Eq. (35) the expression 
ey = Dy eyy, or 

(38) 

(39) 

(40) 
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attention must be given to such user-oriented fea¬ 
tures as input format (including original network 
specifications and modifications thereto) and out¬ 
put display. 

The central difficulty, however, is still that 
of solving the transient problem. Much can be 
gained by refining the techniques of programming 
predictor-corrector formulas. But what is really 
needed is a genuine analytical breakthrough which 
will lead to an orders-of-magnitude increase in 
speed. Such a breakthrough, it would appear, 
cannot possibly come unless some way over, 
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barrier can be found. This is a frontier which 
offers the greatest challenge and most promising 
rewards. 

Acknowledgements 

The TAP program represents the combined 
efforts of several people whose contributions 
deserve to be recognized. The originator and 
director of the project was R. J. Domenico. The 
transient analysis program, developed primarily 
by Mrs. Nancy G. Brooks with the assistance of 
H. von Horn and E. J. Skiko, was based on the 
earlier work of G. L. Lasher and J. C. Morgan. 
The numerical integration program, used in the 
nonlinear transient analysis, was written by 
M. K. Haynes. The d-c analysis was developed 
by the present author and implemented by him with 
the assistance of H. S. Long and J. T. Urbain. 

Appendix I 

Formulation of the Transient Network Problem 

The following topological-matrix formulation 
of the linear transient network problem leads to a 
simultaneous system of algebraic and first order 
differential equations similar to that previously 
described by Bashkow. $ The present formulation, 
however, avoids the introduction of the extraneous 
capacitors and inductors which Bashkow's deriva¬ 
tion requires. Moreover, it is in a form which is 
suitable for programming on a digital computer by 
an extension of the techniques described elsewhere 
in this paper. The terminology and notation to be 
used are essentially the same as in previous work 
of the author.6 

Instead of employing either the mesh method 
or the node method of analysis, the present for¬ 
mulation of the transient problem makes use of a 
combination of these two methods. Actually, the 
tree method, rather than the node method, is 
combined with the mesh method. This combina¬ 
tion, which is also implicit in Bashkow's formula¬ 
tion, is made necessary by the requirement to 
establish first order differential equations rather 
than integro-differential equations to characterize 
the reactive elements of the network. A formal 
description of this combined method of analysis 
will be given first. The necessary extension to 
the transient problem then follows easily. 

It is assumed that the network branches are 
first divided into two categories: admittances, 
designated by the subscript y, and impedances, 
designated by the subscript z. It is also assumed 
that there is no coupling between any admittance 
branch and any impedance branch although bran¬ 
ches within the same category may be coupled, 
arbitrarily with one another. Ohm's law, instead 
of being written either in the admittance form 
J = YV or in the impedance form V = ZJ, is now 
written in the mixed form 
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where Yy and Zz are the primitive admittance 
and primitive impedance matrices, and where J 
and V are the coil current and coil voltage vec¬ 
tors. 5» 6 using the relations J = I + i and V = E + e, 
where I and E are the current and voltage source 
vectors while i and e are the branch current and 
branch voltage (response) vectors, Eq. (30) may 
also be written as follows: 

Disregarding the question of ordering the 
branches, it is now assumed that the admittance 
branches are classified as either tree-branches 
or links, using the procedure outlined in Appendix 
II. Then, with the resulting admittance tree as a 
starting point, the impedance branches are sim¬ 
ilarly classified. The network tree obtained in 
this fashion will, of course, contain both admit¬ 
tance and impedance branches. However, since 
all the admittances will have been subjected first 
to the tree-link sorting procedure, all the basic 
meshes defined by admittance links will necessar¬ 
ily include only admittance tree-branches. 

On the other hand, the basic meshes defined 
by the impedance links may include both admit¬ 
tance and impedance tree-branches. As a con¬ 
sequence, the Crp matrix contains one null sub¬ 
matrix. For if the matrices and Aq are part¬ 
itioned into submatrices thus. 

and 

(33) 

(34) 
"B TyA Lz 

"bTz aLz. 

since Cq zy = -Bq^Aßy = 0, as explained above. 

In accord with the tree method of analysis, 
the branch voltages e for the entire network are 
expressed as a linear combination of the tree 
branch voltages eq using the relation e = Deq, 
where D is the basic cut-set matrix for the entire 

network. 6 At the same time, in keeping with 
the mesh method, the branch currents i are 
expressed as a linear combination of the link 
currents iß (which, by convention, are identical 
with the mesh currents, ) using the relation i=Ciß. 

These relations, together with the four-way 
classification of branches described above, lead 
to the expressions 

and 

(35) 

(36) 

where use has been made of the fact that for the 
basic cut-set matrix, Dq : Uq (a unit matrix) and 
DL =-Cq. 5' 6

where ey includes both subvectors eqy and eßy, 
iz includes both iqz and ißz , etc. It now becomes 
necessary to introduce the admittance cut-set 
matrix, 

UTy 

-CTyy 
(38) 

and the impedance mesh matrix, 

Cq zz

ULz 

to extract from Eq. (35) the expression 
ey = Dy eqy, or 

(39) 

(40) 
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and from Eq. (36) the expression iz=Czi£,z, or 

Then, considering only the first column of D in 
Eq. (35) and using the fundamental relation 

i = 0, it is easily shown that 

D y xy " UTy -C Tyy ^Tyz ^Lz (42) 

Similarly, from the second column of C in Eq. (36) 
and the equation Ct e = 0, it follows that 

c/e z z ’C TyzeTy 
(43) 

Finally, premultiplication of the first row of 
Eq. (37) by D* and of the second row by C4 , fol¬ 
lowed by substitution of Dyeqy in place of ey and 

C^Lz fn place of iz, yields the result, 

Now in order to guarantee that only first 
order differential (as well as algebraic) equations 
will result from the application of Eq. (45) to the 
transient problem, all capacitors must be classi¬ 
fied as admittances and all inductors as imped¬ 
ances. Resistors, however, may be put into 
either category. The matrices Yy and Zz, then, 
contain both algebraic and differential operators 
and may be written thus: 

and 

Zz = R + A L 
2 Z dt 

(46) 

(47) 

where the symbols G, K, R and L denote conduc¬ 
tance, capacitance, resistance and inductance 
matrices. (K is used for capacitance because C 
has already been used to designate a topological 
matrix. ) Hence, for the most general case of 
time-varying capacitances and inductances. Eq. (30) 
becomes 

(48) 

which, together with Eqs. (42) and (43) may be 
condensed to the desired expression, 

D^I -YE) 
y y y y 

cf (E -Z I ) 
_ z Z z z _ 

Thus, Eq. 
the admittance branches alone followed by a mesh 
analysis of the impedance branches alone, the 
resulting two sets of equations being coupled to¬ 
gether by the submatrix CTyz . But this sub¬ 
matrix denotes those admittance tree branches 
which belong to basic meshes defined by impedance 
links. Hence it follows that the corresponding ad¬ 
mittance-tree-branch voltages and impedance-link 
currents will exhibit a reciprocal interaction. 

(45) 

(45) amounts to a tree sis of 

D1 Y D 
y y y 
t 

C_ 
Tyz 

All admittances having zero capacitance and 
all impedances having zero inductance will, of 
course, give rise to zero entries in the K andLz 
matrices; they will also generate algebraic rather 
than differential equations. Therefore, to gather 
these zeros into null matrices and group the 
algebraic equations together, it is convenient 
to classify the network branches as follows: 

(1) admittances with nonzero capacitance, 
(2) admittances with conductance only, 
(3) impedances with nonzero inductance, 
(4) impedances with resistance only. 

These four classes will be denoted by the sub¬ 
scripts k, g, 1, and r respectively and it will be 

assumed that these classes are always in the order 
shown above. Accordingly, Eq. (48) becomes 

(49) 
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where the variables with the subscripts yg and zr 
are involved in purely algebraic equations. It 
should be noted that all capacitative branches may 
have nonzero conductance and that all inductive 
branches may have nonzero resistance. Hence, 
these particular conductive and/or resistive ele¬ 
ments need not be treated as separate branches. 
This does not preclude their being treated as 
separate branches, however, if there is some 
reason for doing so. 

If the network branches, ordered by class as 
shown above (but arbitrarily ordered within each 
class), are subjected to a tree-link sort, then a 
sequence of expressions similar to Eqs. (32) to 
(45), but with twice as many branch categories 
will result. In particular, it follows that 

BTk 

(50) 

(51) 

cT - -Bta[ -
CTkk CTkg cTkl cTkr 

0 CTgg cTgl CTgr

o o cT11 c Tlr

_° 0 0 CTrr 

(52) 

where the submatrices of Cj are defined in the 
obvious way. Eqs. (38) and (39) now become 

Dy = 

UTk o 

0 UTg 

"CTkk 0

ft ft [•CTkg -CTgg 

(53) 

and 

CT11 CTlr

0 _ Trr 
cz -

Uli o 
0 uLr

(54) 

while the submatrix CTyz of Eqs. (42), (43) and 
(45) becomes 

CTyz " 
CTkl 

CTgl 

CTkr 

CTgr 

(55) 

Next, the vectors e and i are written in 
partitioned form (as row vectors) as: 

(56) eLl eLr> 

(ÍTk (57) lLk iLg Tg XT1 LI 

while the matrices are partitioned thus: 

0 0 0 

0 0 0 GTg
'(58) y 

o o o 

o o o 

and 

0 0 

0 R, 0 0 
(59) 

0 

0 0 0 R 

where the matrices L and L allow for 
between tree-branches 

Z 
z 

inductive coupling (if any) 
and links. 

eTg eTl eTr eLk eLg 

Finally, with all these relations substituted 
into Eq. (45), it can be shown that 

and Zz

GLg 

— L 
dt TL1 

cTk + ar KTk 

0 RL1 +-^LL1 

R + d I 
ÄTldfTl 

e = (eTk

GLk+-^KLk 

d 
dt 
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pq 

*Tg 

E L1 

= 

K^kk ° 0 0 

0 0 0 0 

1 f 
0 0 LL11 L Llr 

_° 0 LLrl L Lrr 

eTk 

?Tg 

‘LI 

+ 

- 1 • f 1 ” 
G kk+Kkk Gkg " CTkl *c Tkr 

G gk Ggg - CTgl - C Tgr 

C Tkl C Tgl R  11+LH R lr+^lr 

c? c4 r'.+lLi r' +l' 
Tkr Tgr rl rl rr 

eTk 

eTg 

xLr 

(60) 

where the following relations apply: 

xTk 

i 
I-T 
LT eJ 

= 
uTk 0 -C Tkk -CTkg

UTg ° ^TggJ. 

XTk 

ZTg 

JLk 

._lRg_ 

(61) 

(R T1 +RT1^T1 

^¿Tr 
(62) 

K  Tkk " K Tk + c Tkk KLk CTkk < 63)

L L11 = lli +CT11 lti ctii +ctii ltli 

+ llt1 ct11 ( 64 > 

L Llr = C T11 L T1 C Tlr + LLT1 C Tlr 

L Lrl = C Tlr L T1 C T11 + C Tlr L TL1 

L Lrr = C Tlr L T1 C Tlr 

G kk = G Tk+CTkk G Lk C Tkk + C Tkg G LgC Tkg (68)

G kg " C Tkg G Lg C Tgg (69)

G gk = C Tgg G Lg C Tkg (70)

G gg = °Tg + CTgg G Lg GTgg < 71 > 

R 11 = R L1 + CT11 R T1 C T11 

R lr = C T11 R T1 CTlr < 73 ) 

R rl = CTlr R T1 CT11 (74) 

R 11 = C Tlr R T1 C Tlr (75)

From Eqs. (60), (65), (66) and (67), it is 
apparent that unless C^ir = 0, a set of differential 
equations will arise from those purely resistive 
network branches which are classed as impedances. 
In other words, if any of the link currents ij^ rpass 
through inductive impedances belonging to the net¬ 
work tree (and this is what the matrix C-nr spec¬ 
ifies) these link currents must be determined as 
the solution of differential rather than algebraic 
equations. Therefore, unless some specific 
reason exists for not doing so, all purely resis¬ 
tive branches of a network should be treated as con¬ 
ductances. This will not only reduce the number of 
differential equations to be solved but will also 
result in considerable simplification of Eqs. (49) 
et seq. 

If this is done it can be shown that the remain¬ 
ing algebraic equations in Eq. (60) have the solu¬ 
tion 

, .i r- i 
eTg ’ (Ggg> JTg ’ G gkeTk + C Tgl ^i + C Tgr ïr 

(76) 

Hence, if this expression is substituted in Eq. (60), 
a set of differential equations identical in form to 
Eq. (19) is obtained. The total number of differ -
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ential equations derived in this way corresponds 
to the degree of complexity of the network. 

However, if some of the purely resistive 
branches.are treated as impedances, then more 
than this number of differential equations may be 
obtained, as explained above. But this larger 
number cannot also be equal to the degree of 
complexity of the network. Accordingly, the true 
degree of complexity of any capacitive and/or induc¬ 
tive network must be equal to the sum of the num¬ 
ber of capacitive tree-branches plus the number of 
inductive links identified by the foregoing tree¬ 
link sorting procedure. 

One precaution in using Eq. (60) should be 
pointed out. This equation is based on the defini¬ 
tions of static capacitance as charge/voltage and 
static inductance as flux/current. These defini¬ 
tions, in turn, are responsible for the terms 
KyVy + KyVy and LZJZ + LZJZ in Eq. (48). But 
when differential (small-signal) capacitances and/ 
or inductances are involved, as in the case of C £ 

defined by Eqs. (26) and (27), the quantities 
KyVy and LZJZ must be deleted from Eq. (48). 
This follows from the definitions of differential 
capacitance K and differential inductance L accord¬ 
ing to the relations 

J = Q = — V = K V (77) 
dV 

and 

V = i Î = LJ (78) 

Accordingly, all terms involving K or L, with 
whatever subscripts, must be eliminated from 
Eqs. (60), (61) and (62) when differential capaci¬ 
tances and/or inductances are involved. 

Appendix II 

Tree-Link Sorting Procedure 

The object of this sorting procedure is to 
classify each branch of the network as either a 
tree-branch or a link and then to rearrange the 
tables RCON, RDATA, EDATA, and IDATA 
accordingly. It is assumed that these tables are 
already in some desired sequence, such as in 
order of increasing resistance, and that a set of 
tree branches is to be selected from as near the 
beginning of this sequence as possible. (Thiswill 
result in choosing the tree of minimum total 
resistance if the original ordering is that of 
increasing resistance.) 

Starting with the first branch of the sequence, 
the network tree is constructed stepwise by adding 
only those branches which do not form a closed 

path with the partial tree already constructed. 
This partial tree, as well as the complete network 
tree, may consist of several disjoint subtrees. 
Hence, a branch will be classed as a link if both of 
its nodes are already connected by the branches of 
one of these subtrees - or if its initial and final 
nodes are identical, a trivial case which must 
nevertheless be handled. 

Each branch is examined by comparing its 
initial node number (+N) and its final node number 
(-N), obtained from the RCON table, against a 
master list (MLIST) of nodes contained in the 
partial tree and also against the individual node 
list (TLIST) for each subtree. Each such node 
list consists of a string of bits indicating the 
presence (1) or absence (0) of the node corres¬ 
ponding to a given bit position in the string. 

The following criteria form the logical basis 
of the tree-link sorting procedure: 

(1) If +N = -N, the branch is a link. 

(2) If either +N or -N or both are absent from the 
MLIST, the branch is a tree branch. 

(3) If both +N and -N are present in MLIST, 

(a) The branch is a link if both +N and -N 
are also in the same TLIST. 

(b) The branch is a tree-branch (joining two 
previously disjoint subtrees) if +N and -N 
are in different TLISTS. 

As each branch is examined, the appropriate 
node lists are updated. When the classification as 
tree-branch or link has been made for the I-th 
branch, its index (I) is stored in the next avail¬ 
able location of TREE or LINK, as appropriate. 
The two resulting sequences of index numbers are 
then used for rearranging the tables RCON, 
RDATA, EDATA, and IDATA after the tree-link 
sort has been completed. 

In the following description of the tree-link 
sorting procedure, the symbols I,J,K, L and M 
are indices, hence +N(I) and -N(I) represent the 
initial and final node numbers of the I-th branch 
and are obtained from the address and decrement 
of the I-th word of the RCON table. IMAX is the 
total number of branches in the network. 

1. Set I = J = K = 1, clear MLIST and all TLISTS. 
2. If +N(I) = -N(I), go to 16. 
3. If +N(I) is absent from MLIST, go to 11. 
4. If -N(I) is absent from MLIST, go to 15. 
5. Find L for which +N(I) is present in TLIST(L) 

and save L. 
6. If -N(I) is present in TLIST(L), go to 16. 
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7. Find M for which -N(I) is present in 

TLIST(M) and save M. 
8. If M<L, go to 10. 
9. Add TLIST(M) to TLIST(L), clear TLIST(M), 

and go to 19. 
10. Add TLIST(L) to TLIST(M), clear TLIST(L), 

and go to 19. 
11. Add +N(I) to MLIST. 
12. If -N(I) is absent from MLIST, go to 14. 
13. Find L for which -N(I) is present in TLIST(L), 

add +N(I) to TLIST(L), and go to 19. 
14. Add -N(I) to MLIST, find lowest L for which 

TLIST(L) is clear, add + N(I) and -N(I) to 
TLIST(L), and go to 19. 

15. Add -N(I) to MLIST, find L for which +N(I) is 
present in TLIST(L), add -N(I) to TLIST(L), 
and go to 19. 

16. Set LINK(J) = I. 
17. If I = IMAX, go to 22. 
18. Set 1 = 1+1, J = J + 1, and go to 2. 
19. Set TREE(K) = I. 
20. If I = IMAX, go to 22. 
21. Set 1=1+1, K = K + 1, and go to 2. 
22. Rearrange RCON, RDATA, EDATA and 

IDATA according to the index numbers in 
TREE and LINK. 

Appendix III 

Determination of the Matrix 

The node-to-datum-path matrix, Bq-, is 

determined by an exhaustive search of the network 
tree. Starting at the datum node, and proceeding 
always along the branch of lowest serial number 

connected to each node encountered en route, a 
path is traced out until it terminates at some par¬ 
ticular node of the tree. As the path is traced, a 
path record (PR) is kept in +1, -1, 0 format 
showing the branches traversed and their orienta¬ 
tions relative to this path in the sense of a node-to-
datum traversal. 

When the path terminates at some node J, the 
path record is stored in the J-th column of the B^, 
matrix. The branch leading to node J is then 
retraced, its entry in PR deleted, and this branch 
removed from the tree. Next, the outward path 
is continued, if possible, again taking the branch 
of lowest serial number at each successive node 
until the path terminates once more at, say, node 
K. The PR is stored in the K-th column of Brp 
the branch leading to node K retraced, its entry 
in PR deleted, and the branch removed from the 
tree. By repeating this procedure until all 
branches of the tree have been exhausted, the 
entire By matrix may be determined. 

In actual practice, both the RCON table and 
the branch-node matrix are used alternately in 

tracing out these datum-to-node paths. Since the 
branch-node matrix is stored columnwise, it pro¬ 
vides the simplest means of determining the 
branch of lowest serial number connected to a 
particular node. The RCON table, however, is 
more convenient for finding the number of the node 
at the far end of a given branch, wherever this is 
required. 

During the search procedure described below, 
the branch-node matrix, which must include the 
datum column, is destroyed. Since each entry of 
this matrix, designated A(I,J), consists of a bit¬ 
pair, there are four possible values of each bit¬ 
pair of which only three are required for the quan¬ 
tities + 1, -1, 0. The fourth value, designated -0, 
is required to designate the "access" branch 
leading to each successive node of the path being 
traced. It is this access branch which must be 
identified whenever it is necessary to retrace and 
delete a branch from the tree. Deletion of a 
branch, after retracing it, is accomplished simply 
by substituting 0 in place of the +1 or -1 value of 
the appropriate A(I,J). 

In the following description of the procedure 
for determining the Bt matrix, the symbols I and 
J represent the row (branch) and column (node) 
indices. (J = 0 designates the datum node. ) As in 
Appendix II, the symbols +N(I) and -N(I) represent 
the initial and final node numbers of the I-th 
branch and are obtained from the I-th word of 
the RCON table. IMAX is the total number of 
branches in the tree. 

1. Set I = 1, J = 0. 
2. If A(I, J) = ±1, go to 5. 
3. If I = IMAX, go to 7. 
4. Set 1=1+1 and go to 2. 
5. If A(I, J) = +1, set J = -N(I), PR(I) = -1, 

A(I, J) = -0, 1=1, and go to 2. 
6. Set J = + N(I), PR(I) = +1, A(I, J) = -0, I = 1, 

and go to 2. 
7. Transfer PR to column J of matrix and 

set 1=1. 
8. If A(I, J) = -0, go to 11. 
9. If I = IMAX, go to 15. 
10. Set 1=1+1 and go to 8. 
11. If PR(I) = +1, go to 13. 
12. Set J = +N(I) and go to 14. 
13. Set J = -N(I). 
14. Set PR(I) = 0, A(I, J) = 0, 1=1 + 1, and go to 

2. 
15. If J = 0, stop. Otherwise, an error has 

occurred. 
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Appendix IV 

Computation of B^, Zrp By 

By taking advantage of the diagonal nature of 
the matrix Zy and the compact storage format of 
the matrix By, a very efficient program can be 
developed for computing the triple matrix product 
B^y Zy By. Since Zy is diagonal, it follows that 
the ij-th term of this product is given by the 
expression 

t P 
= £ (bki bkj ) zkk (79) 

k=l 

where p is the number of tree-branches, bk^ and/ 
or bkj are elements of By, and zkk are the diago¬ 
nal elements of Zy. Since this product is 
symmetric, only the diagonal (i=j) and subdiago¬ 
nal (i>j) terms need be computed. 

Let the i-th and j-th columns of By be 
designated by B ¡ and B ; and let the product 
(bki bkj) for all values of k be represented by the 
expression 

B(i,j) = B.i « B j (80) 

where the special operator ® signifies multiplica¬ 
tion of the corresponding elements of B #i and 
B j and where the elements of the p-vector B(i,j) 
are +1, -1, or 0. Next define a vector Z(T) com¬ 
prised of the diagonal elements of Zy. Then, the 
result defined by Eq. (79) is identical with the 
scalar product of the two vector B(i,j) and Z(T). 

The advantage of using this peculiar method 
for evaluating Eq. (79) is the fact that the com¬ 
pact storage format of B ¡ and B. j allows the 
vector B(i,j) to be computed many elements at a 
time. Moreover, this computation may be 
effected by means of logical operations (rather 
than arithmetic operations) on the bit-pair equiva¬ 
lents of the elements +1, -1 and 0 in B | and B j, 
the result being the bit-pair representation of 
B(i,j). Thus, the calculation of B(i,j) may be 
carried out very rapidly. 

The subsequent computation of the scalar 
product of B(i,j) and Z(T) involves searching 
B(i,j) for its nonzero elements and then adding or 
subtracting the corresponding elements of Z(T). 
The programming details of this task, however, 
need not be discussed. 

The code actually developed for calculating 
B(i,j) on the IBM 704 computer will not be des¬ 
cribed. Instead, an equivalent and much simpler 
scheme will be outlined to illustrate the principles 

of the computation. It is assumed that p = 6 and 
that the machine word length is 6 bits since only 
6 different combinations of the elements +1, -1, 
0 are encountered. To show this, let B • and 
B.j» written as row vectors, be 

(BJ = (1 1 1 0 0 -1) (81) 

(Bj) = (1 0-1 0-1 -1) (82) 

Hence B(i,j), also written as a row vector, is 

B(i,j) = (1 0 -1 0 0 1) (83) 

These three vectors may be represented in 
machine code by using the bits of one word to indi¬ 
cate the magnitudes (M) and bits of another word 
to indicate the signs (S) of successive elements: 

(B .) = 1110 0 1 M(I) 
0 0 0 0 0 1 S(I) 

(84) 

(B.j) 10 10 11 M(J) 
00 10 11 S(J) 

(85) 

B(i,j) = 10 10 0 1 M(I, J) 
0 0 1 0 0 0 S(I, J) 

(86) 

The logical "AND" operation, then, suffices to 
convert M(I) and M(J) into M(I, J): 

1110 0 1 M(I) 
"AND" 10 10 11 M(J) 

10 100 1 M(I,J) 

or. 

M(I,J) = M(I) "AND" M(J). (87) 

Two steps are needed, however, for the calcula¬ 
tion of S(I, J). First, S(I) and S(J) are combined 
using the "exclusive or" operation: 

0 0 0 0 0 1 S(I) 

"EXOR" 0 0 10 11 S(J) 
001010 RESULT 

Then, this result is combined with M(I, J) using 
the "AND" operation: 

001010 RESULT 
"AND" 0 0 1 0 0 1 M(I,J) 

00 1 000 S(I,J) 

Hence, it follows that 

S(I,J) = [s(I) "EXOR" S(J)] "AND" M(I,J) (88) 

Since this procedure treats the magnitude bits 
separately from the sign bits, it is much more ef¬ 
ficient than the procedure actually used in TAP. 
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Fig. 1. Nonsaturating PNP Transistor Equivalent 
Circuit (D-C). 

(l-a)Ih aR 

o—Wv- > -WV-♦ W» o 
b Rbb1 b Rc c Rcc' c 

Fig. 2. Nonsaturating PNP Transistor Equivalent 
Circuit with Nodal Equivalent Current 
Sources. 
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Fig. 7. Nonsaturating PNP Transistor Equiva- Fig. 10. Collector Voltage for Transistor 2, 
lent Circuit (Transient). Negative Input Pulse. 
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Fig. 11. Collector Voltage for Transistor 3, 
Negative Input Pulse. 

musics 

Fig. 14. Collector Voltage for Transistor 2, 
Positive Input Pulse. 

Fig. 12. Collector Voltage for Transistor 4, 
Negative Input Pulse. 

Fig. 15. Collector Voltage for Transistor 3, 
Positive Input Pulse. 

Fig. 13. Collector Voltage for Transistor 1, 
Positive Input Pulse. 

Fig. 16. Collector Voltage for Transistor 4, 
Positive Input Pulse. 
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Fig. 17. Collector Voltage for Transistor 2, 
Positive Input Pulse (Showing Effect of 

Fig. 18. Collector Voltage for Transistor 3, 
Negative Input Pulse (Showing Effect of 
Series Inductance). 

Fig. 19. Collector Voltage for Transistor 3, 
Negative Input Pulse (Showing Effect of 
Base Resistance). 

Fig. 20. Collector Voltage for Transistor 3, 
Negative Input Pulse (Showing Effect of 

Fig. 21. Collector Voltage for Transistor 3, 
Negative Input Pulse (Showing Effect of 

Fig. 22. Collector Voltage for Transistor 3, 
Negative Input Pulse (Showing Effect of 
Temperature). 
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