TAP SWITCHES
YARIAELE TRANEFORMERES
TANTALUM CAPACTORE
REBLAYS
SEMICONDUGTOR DIODES
R.F. CHOKES

OHMITE Manufacturing Company

January 11, 1971

Mr. Jack Kornbluh, Che. Engr.
Magnetic Design Associates
20 Chapel Hill Rd.
Media, Penn. 19063

Dear Mr. Kornbluh:
In regard to your recent note, we are sending the Ohmite Catalogs and Bulletins you requested to bring your Ohmite Industrial Binder up to date. Catalog 501 and Bulletin 753 are not available at this time but will be mailed to you as soon as possible. Your name is on the mailing list to receive all new publications as they are issued.

In answer to your question, the Ohmite News has not been published since 1968.

I am enclosing a copy of the original card that we received from you along with the list of our current catalogs and bulletins, for your future reference.

If I can be of further service, please let me know.
Very truly yours,
OHMITE MANUFACTURING COMPANY
M er.

Sherrill Sturgill (Mrs.)
Secretary, Advertising Dept.

Enc.: Bul. llB, Cat. 120, Bul. 156D, Cat. 201, Bul 301A Cat. 300B, Cat. 401, Bul. 751, Bul. 752, Bul. 806, Bul. 810D, Form 172

SERIES 99 RESISTORS－＂TORCH THEM＂！ THEY＇LL ASK NO FAVORS

CATALOG 900B FEATURES RADIO FREQUENCY AND POWER LINE CHOKES

Ohmite Rodio Frequency Choles．
＂Radio Frequency Chokes＂are used principally within equipment to block r．f．at critical points such as at the plate supply circuits of r．f．amplifiers．They have long been used by radio amateurs everywhere．Noted for their small size， high＂Q＂and reliable frequency rating， this line of seven chokes encompasses the broad frequency range of 3 to 520 megacycles．

Ohmite＂Power Line Chokes＂are em－ ployed to keep radio frequency waves
from entering a power line．They are in－ terposed between the equipment（trans－ mitters，diathermy machines，etc．）and the power line．Ratings to 20 amps are available．

Catalog 900 B gives complete informa－ tion abotit hotK lines of chokes including derating curves，suggested circuits for power line applications and newly re－ vised current ratings for the RF chokes． Use coupon to request Catalog 900B．

SCR CIRCUITS ALSO CAN USE THYRATRON PLATE RELAYS

Because the output of a silicon con－ trolled rectifier（SCR）is half－wave rec－ tified，just as the output of a thyratron rectifier tube，the specially designed Ohmite thyratron relay can be used in SCR circuits with a 115 VAC supply．

Designed to operate without＂chatter＂， Ohmite GPR thyratron relays eliminate the need to fuss with ordinary relays for this specialized application．They are available as both unenclosed and enclosed types up to 4PDT．Enclosed types are the octal type plug－in base （GPRTP）；enclosed for above－chassis connection（GPRTA）；for below－chassis connection（GPRTT）；and enclosed with standard terminal panel（GPRTS）for plugging into the Ohmite SOGPR socket． Complete listings are in Stock Catalog 30.

send for further information

回．the OHMITE Nem

 PU日LISHED BY DHMITE MANUFACTURING CDMPANY 36 BH HDWARD STREET，SKOKIE，ILLINDIS $6 \square O 76$
UNUSUAL ITEMS

Looks like man is not the only tool－ making animal．Close observation of chimpanzees in the wild has revealed that they make drinking utensils from leaves，strip leaves from twigs to make rods for extracting termites from their mounds，use leaves to wipe sticky fingers after eating and throw stones．They show other human attributes by dividing food with their wives and young ones also．

One authority contends that the time is not far off when submarines will be used for vacation trips．Advantages cited are that travel beneath the surface is calm and would also permit viewing of an entirely different world．

Wildife is prevented from possible death on Dutch highways by an ingen－ ious system of small．metal mirrors mounted along the highway．As cars approach，their headlights shine on the mirrors which reflect a moving light into the forest．The light causes the deer to freeze for a few moments and by that time the car is gone．Pretty clever．

Laser beams are being transmitted through fiber bundles in the hopes of treating internal cancers without surgery． Up to now， 70 percent of the laser light has been lost in passing through a six－ foot fiber bundle．

And some wives claim it all lands in their houses！Scientists calculate（from recent rocket samplings）that 10,000 tons of dust rain down on the earth each day from space．

PCA 1000 CONTROLS GRAIN SPREADER SPEED－PREVENTS GRAIN SPOILAGE

When grains such as corn，wheat，oats， soy beans，milo or rice are stored in tall bins，problems arise which can cause costly grain spoilage．Grain enters the bin through an opening at the center of the top．This can cause a hard，wet center core to form which prevents complete drying and causes spoilage．Formerly， someone had to go into the bin and walk on the grain scattering it with a shovel to level it properly．

Now，a grain spreader made by Brower Manufacturing Company，Quincy，Illinois， is simply hung across the top opening and leveled．The grain is then made to flow from the auger or elevator into the hop－ per of the spreader．The motor driven spreader seen at the botfom of the hop－ per cone then evenly distributes the grain over the entire bin area．An even spread insures fast drying and improves grain quality．

And where does Ohmite enter this pic－ ture？The Dial－O－Matic speed control uses an Ohmite Ohmitrol® PCA 1000 solid state power control to vary the spreader motor speed．Varying the speed makes the spreader adaptable to different size bins and insures an even spread
throughout the bin．The PCA power control is enclosed in a small box with a circuit breaker and a 30^{\prime} extension cord for control from the ground outside the bin．

The Ohmitrol® solid state power con－ trol is available both as a component and as a portable unit in a case．The 120 volt input unit is rated as 1000 watts while the 240 volt unit has a 2000 watt rating．Both controls can be supplied in AC output or DC output types．They can be used to control the speed of many types of motors，magnetic clutches and brakes，heaters，soldering irons，incan－ descent lamps and other resistive loads． For complete information request Bul－ letin 810 ．Use coupon on reverse side．

Ohmitrol
PCA 1000
ICD 1000

MINIATURE MODEL C RHEOSTAT AVAILABLE IN SEVERAL TYPES

Loilting Buthing

High Torque Type

Enclosed typer, Standard Shaft \& Buthing

The exclusive Ohmite Model C rheostat is a rugged power type unit made entirely of ceramic and metal but designed especially for miniaturized equipment. It is offered in two styles - enclosed and unenclosed. The Model C is only $1 / 2^{\prime \prime}$ in diameter and extends $5 / 8^{\prime \prime}$ behind the panel for the enclosed unit; only $15 / 32^{\prime \prime}$ for the unenclosed. Its rating is a full $7-1 / 2$ watts at $40^{\circ} \mathrm{C}$ (mounted on a metal panel). The resistance range is 10 to 5000 ohms with a tolerance of $\pm 10 \%$.

This miniature rheostat is available with three types of shafts (1) slotted standard shaft for possible knob control (2) locking bushing for permanence of adjustment and (3) high torque shaft which holds settings under relatively rough conditions of vibration and shock.
The enclosed version is available from stock with either a standard shaft or the locking type shaft, in 18 resistance values The unenclosed Model C is available made-to-order. For complete information request Bulletin 203D.

MINIATURE "THIN" SPACE SAVER RESISTORS—STOCK OR SPECIAL

20 Watt

Stacked

Where space is at a premium, Ohmite miniature "thin" resistors can solve your problem quickly and economically. The fixed style is available from stock in the 10 and 20 watt sizes while the 15 watt size is made to order. All three sizes can be made to order with the Dividohm ${ }^{\circledR}$ adjustable tap feature for obtaining intermediate resistance values.

These wirewound vitreous enameled units are only $1 / 8^{\prime \prime}$ thick and $3 / 8^{\prime \prime}$ wide. The core length is $3 / 4^{\prime \prime}$ for the 10 watt size; $1^{\prime \prime}$ for 15 watts; $2^{\prime \prime}$ for 20 watts. Their wattage rating is based on their being mounted on a minimum size hori-
zontal steel panel, $10^{\prime \prime}$ square and $.040^{\prime \prime}$ thick, which provides a heat sink. The resistor mounting brackets, made of aluminum, extend completely through the core and carry heat to the panel.

The ends of the brackets are equipped with hollow studs through which bolts can pass to mount one or several resistors.

A wide range of resistance values from 1 to 50,000 ohms is stocked in the 10 and 20 watt size units. In addition, three larger "standard" sizes with wattage ratings of 30,40 and 55 watts are stocked. Request Catalog 30 for stock listings.

Th Hevricuder...

that Ohmite makes metal film resistors with superior characteristics.

Series 66 resistors are made only to the lowest TC $\left(0 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ specified by MIL-R-10509F. They are designed to exceed the requirements of the specification for Styles RN60E, RN65E, RN70E and RN75E. The film used in the Series 66 surpasses other types of films and results in a unit that can be relied on for accuracy, operation in high ambients, and in high frequency or high gain circuits where low reactance and low noise are imperative.

Four wattage ratings are available $1 / 8,1 / 4,1 / 2$ and 1 watt - these ratings being standard at $125^{\circ} \mathrm{C}$. Ratings double at $70^{\circ} \mathrm{C}$. The standard tolerance is $\pm 1 \%$ with tolerances to $\pm 0.1 \%$ available. Temperature coefficient is $0 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (" E " characteristic) over the range of $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$. Units with matched T. C. and tolerance are available.

Use coupon to request Bulletin 110 for complete information.

A new electrostatic gyroscope utilizes a beryllium sphere as a rotor．The spher－ icity tolerance is better than five－million－ ths of an inch．The rotor spins at 60,000 rpm with a clearance of only a few thou－ sandths of an inch all around．When brought up to speed and the spin power is cut off，the rotor＇s inertia will keep it rotating for a period of three years．

A new series of alloys called TRIP steels can be stretched from two to five times more than previous ones，yet have high strength，being ductile up to 300 ，－ 000 pounds per square inch．These new alloys have a built－in self－healing mech－ anism at the atomic level．When a crack starts，an internal reaction takes place that actually makes the metal stronger．

A piece of glass consisting of thou－ sands of glass fibers twisted about like a twisted hank of hair can be used to scramble and unscramble a page of printed words to insure secrecy．When the glass is held over printed words it breaks them up，visually，into a mean－ ingless jumble．A page photographed through the glass can only be read by viewing through a matching reading glass．

Fire，anathema to most electronic parts may，in itself，become an elec－ tronic component．It has been found that a flame from an ordinary welding torch can reproduce sound with high fidelity， can be amplitude－modulated to 100 KC or higher and amplifies in the order of 32 times．By＂seeding＂the flame with an easily ionized salt，volume of sound is instantly doubled．One use for the dis－ covery is to diagnose rocket engine troubles．

NEW MAGNETIC LATCHING RELAYS EXPAND MODEL GPR LINE

factory for other contact forms．
Contact Ratings－Relays with fine－silver contacts，gold flashed are rated 5 amps resistive at 115 VAC or 32 VDC．Relays with silver－cadmium oxide gold flashed movable and silver－cad gold flashed fixed contacts are rated 10 amps ．

The GPRM relay is available in open frame and four enclosed models each with a different mounting style：through－ chassis flange（TT style），above－chassis flange（TA style），socket（TS style，for use with SOGPR－23 socket），and pin－ plug base（TP style．）

As with all GPR relays，all connections terminate on one terminal panel．The multi－use terminals can be used in four ways：as solder lug，quick－connect（push－ on）which accept Amp series 110 female connectors or to plug into standard Oh－ mite SOGPR sockets；the pin plug type is designed for plug base sockets．

Series GPRM relays provide long life because they have no mechanical latch－ ing levers to wear or go out of adjust－ ment．This feature also makes them able to operate in any position and allows them to tolerate moderate shoch and vi－ bration．These relays will not inadvert－ ently unlatch nor can they be locked－in manually．Thus，they guarantee positive action．

For detailed information ask for Bul－ letin 701－1．

RESISTORS

OHMITE

CONTENTS

fesistor construction and design HOW TO SELECT A RESISTOR.............. . 4.9

HOW TO ORDER.............................. . 10
RESISTOR TYPES—Stock and Made-to.Order Power and Precision Tolerances AXIAL LEAD RESISTORS
Series 99 Molded Vitreous Enamel 11.14
($1 \frac{1}{2}$ to 11 Watts - Includes Stock Sizes)
Series 22 Vitreous Enameled (1 to 10 Watts)... 15
Series 88 Molded Silicone-Ceramic. 16-18
(1 to 11 Watts - Includes Stock Sizes)
Type 444, Conformal Silicone-Ceramic .45 (1 to 11 Watts)
Series 11 Tubeohm, Ceramic Jacketed. 19 (5 to 25 Watts)
Series 66 Precision Metal Film ($1 / 8$ to 1 Watt)

LEAD.LUG RESISTORS, TUBULAR
Type 200, "Brown Devils"
(3 to 20 Watts - Includes Stock Sizes)
Type 404, "Ohmicone" Coated. 44, 45 (3 to 20 Watts)

LUG RESISTORS, TUBULAR

Type 270 Fixed, Vitreous Enameled. 24, 25 (12 to 1000 Watts - Includes Stock Sizes)
Type 210 "Dividohm" Rdjustable 26.28 (12 to 1000 Watts - Includes Stock Sizes)
Type 280 Fixed "Corrib," High Current. 34, 35 (36 to 1500 Watts - Includes Stock Sizes)
Type 230 "Dividohm" Adjustable "Corrib". . 34, 35 (36 to 1500 Watts - Includes Stock Sizes)
Type 474 Fixed, "Ohmicone" Coated....... . 44, 45 (6.5 to 1000 Watts)

THIN RESISTORS WITH LUG TERMINALS
Vitreous Enameled
Series 25 Fixed, 26 Adjustable. 41-43
(10 to 95 Watts - Includes Stock Sizes)
Silicone-Ceramic Coated, Type 454 Fixed. . . .44, 45 (10 to 95 Watts)

NON.INDUCTIVE

Tubular, Lug Type 270N
(12 to 175 Watts - Includes Stock Sizes)
Dummy Antennas 32
OTHER RESISTOR STYLES
Ferrule, Clip-Mounted Resistors 33
Edison Screw-Base Resistors. 33
Live-Bracket Mounted Resistors. 54
Heat-Conducting, Stud-Mounted Resistors. 52
Powr-Rib Very High-Current Resistors. 46, 47 (Includes Stock Sizes)
Ballast Resistors . 8
Resistors in Cages . 53, 54
Determohm Resistance Box (Stock) 55
Special Resistors and Coatings.................. 55
Resistors for Military Use. 17
MASTER TABLE OF TUBULAR CORE SIZES . . 36, 37 (3 to 1000 Watts)

TERMINALS FOR TUBULAR CORES 38, 39
HARDWARE \& MISCELLANEOUS. 48.55
Terminals, Adjustable28, 48
Terminal Selection.
Mountings, Clips, Brackets, Through-Bolts 15, 49.54
Ohm's Law Calculator

The name Ohmite has long been synonymous with reliability in resistors because of Ohmite's uncompromising control over the quality of materials, construction and workmanship. Unrelenting inspection follows an Ohmite resistor through every phase of its manufacture from the moment the ceramic cores arrive on the receiving dock to the time the completed resistor leaves from the shipping dock. One of the world's most complete resistance laboratories constantly monitors the mechanical and electrical characteristics of the materials used in Ohmite resistors - the coatings, resistance elements, cores and leads. Improvement of these materials and of the overall resistor design is, and will always be a never-ending project at Ohmite. (All resistors shown below are wirewound except for the metal film type.)

FAMOUS OHMITE CONFORMAL VITREOUS ENAMEL
For over 65 years, vitreous enameled, wire-wound resistors have been the most widely used type of power resistor. Even today, with new coatings or methods of application being developed, the conventional vitreous enamel type of construction is still most widely used. The coating is a conformal one, applied as an aqueous suspension to the wirewound core. The entire resistor is then fired at extremely high temperatures to vitrify the coating into a hard, glassy, tough coat that will not shrink or burn, that is unaffected by moisture and which enables the resistor to withstand amazing overloads for a reasonable time. Familiar types of conformal vitreous enamel resistors are shown in the illustration at right. See pages $15,22,24,26,29,30$, $31,33,34,41$, and 54.

EXCLUSIVE! MOLDED VITREOUS ENAMEL

One of the few important innovations in the history of vitreous enameled resistors - a MOLDED vitreous enamel coating. Exclusive Ohmite technique (patents applied for) results in axial-lead resistors which provide (1) 1000 -volt insulation, (2) a chip-, heat($1500^{\circ} \mathrm{F}$), moisture- and salt-resistant jacket, and (3) consistent form and dimensions adaptable to automated assembly operations or mounting in clips for significant heat-sink benefits. Markings are vitreous too and as impervious as the coating (page 11).

EXPOSED WINDING CONSTRUCTION

A class of low resistance units intended primarily for very high current during intermittent or continuous duty. This construction category includes (1) popular "Corrib" resistors which employ a corrugated ribbon winding partially coated with vitreous enamel, (2) completely uncoated Corribs in which the corrugated ribbon is wound in a grooved or threaded core (3) "Powr-Rib" resistors in which round or ribbon-type wire is wound on grooved segments which are supported on a metal bar (see pages 34, 35, 46, 47).

CONSTRUCTION \& DESIGN

Certain components are produced under a "lot control" procedure to assure unsurpassed quality. Here, identification of individual lots of resistors is maintained through every manufacturing process and recorded for future reference and improvement.

Supplementing this control are such well-known, time-tested Ohmite features as welded terminals, welded connection of resistance wire to terminals and "balanced thermal expansion." This latter feature designates the Ohmite technique of selecting the various materials in a resistor so that their coefficients of thermal expansion are proportioned to prevent crazing or loosening of terminals under wide temperature variations. This attention to detail, this concern with quality is why you can always be right with OHMITE.

MOLDED "OHMICONE" (SILICONE-CERAMIC)

The molded "Ohmicone," silicone-ceramic type is furnished in the axial-lead style. This tough, resilient, moisture-resistant coating meets a 1000 volt insulation test (500 volts for 1 watt size) and makes possible a standard low temperature coefficient of resistance ($0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) over most of the resistance range. Supplied for commercial applications in 3\% tolerances and for close tolerance applications requiring high stability. Meet requirements for insulated axial lead styles of MIL-R-26 (see pages 16-18).

CERAMIC JACKETS

The ceramic jacket or "Tubeohm ${ }^{(8) \text { " type of construc- }}$ tion provides extremely high insulation resistance. In fact, it can withstand breakdown voltages of several thousand volts and, consequently, can be mounted against most live or grounded surfaces with complete assurance. In this type of construction, an "Ohmicone" (silicone-ceramic) coated, axial-lead resistor is sealed in a ceramic tube (see page 19).

PRECISION METAL FILM

Supplied to meet only the most demanding requirements for this type in temperature coefficient of resistance, stability and frequency characteristics. Special non-noble metal is vacuum evaporated onto a special ceramic core of exceptional surface finish. Internal connections to this film are gold-plated for positive permanent contact. The assembly is coated with a special protective resin, then completely jacketed in a tough, molded coating of precise shape and form. Meets MIL-R-10509 (page 20).

RESISTOR FACTS AND FACTORS

A resistor is a device connected into an electrical circuit to introduce a specified resistance. The resistance is measured in ohms. As stated by Ohm's Law, the current through the resistor will be directly proportional to the voltage across it and inversely proportional to the resistance.

The passage of current through the resistance produces heat. The heat produces a rise in temperature of the resistor above the ambient temperature. The physical ability of the resistor to withstand, without de-
terioration, the temperature attained, limits the operating temperature which can be permitted. Resistors are rated to dissipate a given wattage without exceeding a specified standard "hot spot" temperature and the physical size is made large enough to accomplish this.

Deviations from the standard conditions ("Free Air Watt Rating") affect the temperature rise and therefore affect the wattage at which the resistor may be used in a specific application.

SELECTION REQUIRES 3 STEPS

Simple short-cut graphs and charts in this catalog and in the "Manual of Engineering Information" (abbreviated as "Engineering Manual," Bulletin 1100) permit rapid determination of electrical parameters. Calculation of each parameter is also explained in the Engineering Manual.

To select a resistor for a specific application, the following basic steps are recommended:

1
(a) Determine the Resistance.
(b) Determine the Watts to be dissipated by the Resistor.

Determine the proper "Watt Size" (physical size) as controlled by watts, volts, permissible temperatures, mounting conditions and cir-

WATTS cuit conditions.

3 Choose the most suitable kind of unit, including type, terminals and mounting.

STEP 1 DETERMINE RESISTANCE AND WATTS

OHM'S LAW

(a) $\quad R=\frac{E}{I} \quad$ or $\quad I=\frac{E}{R} \quad$ or $\quad E=I R$

Ohm's Law, shown in formula form above, enables determination of the resistance when the required voltage and current are known. When the current and voltage are unknown, or the best values not decided on, at least two of the three terms in Ohm's Law must be measured in a trial circuit (see "Engineering Manual," Bulletin 1100).

$$
\begin{equation*}
W=I^{2} R \quad \text { or } \quad W=E I \quad \text { or } \quad W=\frac{E^{2}}{R} \tag{b}
\end{equation*}
$$

Power, in watts, can be determined from the formulas above, which stem from Ohm's Law. \mathbf{R} is measured in ohms, E in volts, I in amperes and W in watts.

Short-Cut Method

Use an Ohmite Ohm's Law Calculator (convenient slide-chart) or use Ohm's Law Chart on page 3 of the "Engineering Manual." Set known values as explained on the Calculator, or Chart, and read the sought for OHMS and WATTS.

Calculation Method

Using the Ohm's Law formulas given above, and explained in greater detail in the Engineering Manual, calculate the unknown values.

How to conduct tests when a trial must be made of the actual apparatus is explained in the Manual.

Why Watts Must Be Accurately Known

Stated non-technically, any change in current or voltage produces a much larger change in the wattage (heat to be dissipated by the resistor). Therefore, the effect of apparently small increases in current or voltage must be investigated because the increase in wattage may be large enough to be significant.

Mathematically, the wattage varies as the square of the current, or voltage, as stated in the formulas (b). For example, an increase of 20% in current or voltage will increase the wattage 44%. Fig. 1 graphically illustrates the square law relation. Hence, the actual current must be used in figuring the wattage, and the increase in wattage due to apparently small changes, then determined in order to select the proper size resistor. Allowance should be made for maximum possible line voltage.

Fig. 1: Rapid increase of wattage with current or voltage.

STEP

 POWER RATING OR PHYSICAL SIZE OF RESISTORA resistor operated at a constant wattage will attain a steady temperature which is determined largely by the ratio between the size (surface area) and the wattage dissipated. The temperature stabilizes when the sum of the heat loss rates (by radiation, convection and conduction) equals the heat input rate (proportional to wattage). The greater the resistor area per watt to be dissipated, the greater the heat loss rate and therefore the lower the temperature rise. The relation between the losses varies for different resistors.

Free Air Watt Rating

The wattage rating of resistors, as established under specified standard conditions, is defined as the "Free Air Rating" ("Full Rating" or "Maximum Power Rating"). Several standard methods of rating are in use based on different service conditions. The method of both the "National Electrical Manufacturers Association" (NEMA) and the "Underwriters' Laboratories, Inc." (UL) can be described as follows:

The relation of the "Free Air Watt Rating" of tubular type, vitreous enameled resistors to the physical size, is to be set at such a figure that . . . when operated at their rated watts, the temperature rise of the hottest spot shall not exceed $300^{\circ} \mathrm{C}\left(540^{\circ} \mathrm{F}\right)$ as measured by a thermocouple when the temperature of the surrounding air does not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. The temperature is to be measured at the hottest point of a two-terminal resistor suspended in free still air space with at least one foot of clearance to the nearest object, and with unrestricted circulation of air.

A slightly different definition of temperature limit
used as a basis for wattage rating, and which results in a slightly higher attained temperature, was originally established in military specification MIL-R-26 for wire-wound resistors. In the current version of this specification (revision C), Characteristic V and Y resistors are required to dissipate rated wattage in an ambient of $25^{\circ} \mathrm{C}$ without exceeding a maximum operating temperature of $350^{\circ} \mathrm{C}$ at the hottest spot. This corresponds to a temperature rise of $325^{\circ} \mathrm{C}$ in a $25^{\circ} \mathrm{C}$ ambient. Although MIL-R-26C permits a $25^{\circ} \mathrm{C}$ greater temperature rise than NEMA or UL, the reference ambient for the latter two is $15^{\text {c }}$ higher. Consequently, the difference in attained temperature between the two systems is only $10^{\circ} \mathrm{C}$. The curves in Fig. 2 show the relationship between temperature rise and wattage for various specifications. Note the differences in the permissible rise for each specification.

The absolute temperature rise for a specific resistor is roughly related to the area of its radiating surface. It is also dependent upon a number of other factors, however, such as thermal conductivity of the core and coating materials, emissivity factor of the outer surfaces, ratio of length to diameter, heat-sink effect of mountings, and other minor factors.

The maximum permissible operating temperature for a given resistor is basically determined by the temperature limitations imposed by the materials used in its construction. Generally speaking, these limits cannot be sharply defined in terms of temperature alone. Other factors such as resistance stability versus time, deterioration rates of insulation and moistureresistance characteristics, type and size of resistance wire, all enter into consideration of "acceptable service life."

For these reasons, the precise temperature limits corresponding to 100% rated wattage are somewhat arbitrary and serve primarily as design targets. In the last analysis, once a wattage rating has been assigned on the basis of an empirical hot spot limit, the verification of its correctness must be established through long term load-life tests based on performance and stability standards rather than the measurement of hot spot temperature.
in both MIL-R-26, EIA and other specifications.
Despite the above variables, figures may be cited in terms of "watts dissipated per square inch of winding surface" for a given temperature rise. For power type resistors operating at $300^{\circ} \mathrm{C}$ rise above ambient, this figure varies between approximately 6.3 watts per square inch for large resistors (160 watt) to about 9 watts per square inch for smaller resistors (10 watt).

It should also be observed from Fig. 2 that tem-

Fig. 3: Derating for ambient temperature.

Fig. 2: Approximate hot spot temperature rise of a resistor in free air for various specifications.

This concept is reflected in the new proposed revisions of both the EIA standard as well as MIL-R-26, in which the previous requirement for measuring hot spot temperature at rated wattage has been effectively abandoned! Instead, maximum limits are stipulated for parameter changes as a result of various tests, including a 2000 hour load-life test.

Another factor in the abandonment of temperature measurements is that physical dimensions and wattage ratings having been correlated and set, the temperature rise has been effectively set! It is also assumed that the temperature rise at a given wattage is independent of the ambient temperature in which this wattage is being dissipated. Therefore, for high ambient temperatures, the operating wattage should be limited in accordance with the curves of Fig. 3. Although the assumption that temperature rise is independent of ambient is not exactly true, the approximation is sufficiently close for all practical purposes and, therefore, has been adopted for derating purposes
perature rise is not directly proportional to wattage dissipated. Note, for example, that at 50% rated wattage, the temperature rise still remains about 70% of that at full rating.

The wattage ratings used in this catalog, unless otherwise stated for certain types, have been revised and in many instances increased (with respect to previous Catalog 58) on the basis of a nominal operating temperature of $350^{\circ} \mathrm{C}$ at full rating. There are two general categories of power resistors for which the $350^{\circ} \mathrm{C}$ nominal temperature limit does not apply. One is that class of power-precision resistors where high stability is a salient feature, in which case the operating temperature is nominally limited to $275^{\circ} \mathrm{C}$. The other category includes all exposed ribbon wire resistors (see description of CORRIB and POWR-RIB) which are rated for $375^{\circ} \mathrm{C}\left(675^{\circ} \mathrm{F}\right)$ maximum temperature rise when measured on the wire per NEMA standards.

Temperature Distribution on a Resistor

The temperature rise varies (following a curve) along the length of the resistor with the hot spot at the cen-ter-top (of a horizontal tube) and the ends at approximately 60% of the maximum temperature rise. The terminals themselves are still cooler. When the resistor
is vertical, the hot spot shifts upwards a little and the top end is hotter than the bottom. The standard "Free Air Watt Rating," however, is used regardless of position.

APPLICATION WATT RATING

To allow for the differences between the actual service conditions and the "Free Air Watt Rating" it is a general engineering practice to operate resistors at $1 / 2,1 / 3$, $1 / 4$ or other fraction of nominal rating. The details by which such ratings can be estimated are given in the following pages. Most thermal calculations, however, involve so many factors which are usually not accurately known, that at best they are only approximations.

The most accurate method of determining or checking the rating is to measure the temperature rise in a
trial installation. A thermocouple (made of \#30 B \& S gage wire) is recommended for the measuring element. Even measurements made with a thermocouple will vary slightly with different samples and techniques. On small resistors an infra-red optical pyrometer is recommended.

The factors which affect the temperature rise act independently of each other and are summarized as follows:

1. Ambient Temperature

2. Enclosure
3. Grouping
4. Altitude
5. Pulse Operation
6. Cooling Air

7. Limited Temperature Rise

8. Other Considerations

As the maximum permissible operating temperature is a set amount, any increase in the ambient temperature subtracts from the permissible temperature rise and therefore reduces the permissible watt load.
Enclosure limits the removal of heat by convection currents in the air and by radiation. The walls of the enclosure also introduce a thermal barrier between the air contacting the resistor and the outside cooling air. Hence, size, shape, orientation, amount of ventilating openings, wall thickness, material and finish all affect the temperature rise of the enclosed resistor.
When resistors are close to each other they will show an increased hot spot temperature rise for a given wattage because of the heat received by radiation from each other and the increased heat per unit volume of air available for convection cooling.
The amount of heat which air will absorb varies with the density, and therefore with the altitude above sea level. At altitudes above 100,000 feet, the air is so rare that the resistor loses heat practically only by radiation.
This is not an environmental condition but a circuit condition. As a pulse of power, when averaged over the total on and off time, results in less heat per unit time than for continuous duty, the temperature rise is affected. This may permit higher power during the pulses. The conditions must be expertly considered for conservative rating. The open-wound "Powr-Rib" resistor construction is most suitable
Forced circulation of air over a resistor removes more heat per unit time than natural convection does and therefore permits an increased watt dissipation. Liquid cooling and special conduction mountings also can increase the rating.
It is sometimes desirable to operate a resistor at a fraction of the Free Air Watt Rating in order to keep the temperature rise low. This may be to protect adjacent heat sensitive apparatus, to hold the resistance value very precisely both with changing load and over long periods of time and to insure maximum life. Refer to paragraph on Temperature Coefficient of Resistance for additional information.

High Resistance. High resistance units, which require the use of very small diameter wire, generally should operate at reduced temperature for maximum reliability.

High Voltage. A maximum voltage gradient of 750 volts R.M.S. (1058 volts peak) per inch of winding length is recommended under normal conditions. For higher gradients in pulse applications or for other special conditions such as oil immersion, consult factory.

High Frequency. Non-inductively wound resistors are generally required for use at radio and supersonic frequencies.

Military and Other Specifications. The special physical operating and test requirements of the applicable industrial or military specification must be considered. Military specification resistors should be ordered by their MIL numbers.

TEMPERATURE COEFFICIENT OF RESISTANCE

The resistance alloys used for all except the lowest ohmic values show such little change with temperature that in most power circuits the resistance is considered constant. Actually there may be changes at full load of -4% to $+8 \%$ of the initial resistance. The change is attributed in most part to the "temperature coefficient of resistance" (TC) which is the change in resistance expressed as "parts per million per degree centigrade of temperature" ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$) or previously in "ohms per ohm per degree change of temperature" or "\% per ${ }^{\circ}$ C."

For special applications which require very constant resistance, it may be necessary to specify the maximum permissible TC for the range of temperature involved. This would limit the choice of wire to only certain types of resistance alloys. The commonly known low TC alloys in the 800 ohms per circular-mil-foot class consist largely of nickel and chromium alloyed with small amounts of aluminum and either copper or iron. Other low resistivity alloys, 294 ohms per circular-mil-foot, consist primarily of nickel and copper with only traces of other metals.

Both of these wire classes are rated by the wire manufacturers as having a TC of $0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (also designated as 0 ± 0.00002 ohm/ohm/ ${ }^{\circ} \mathrm{C}$ or $0 \pm 0.002 \% /$ ${ }^{\circ} \mathrm{C}$) over designated temperature ranges (ASTM B267$60 \mathrm{~T}:-65^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$ for $800 \mathrm{ohm} / \mathrm{cmf}$ wire; $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for $294 \mathrm{ohm} / \mathrm{cmf}$ wire). The expression " $0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ " implies that, although the nominal value of the TC is zero, the actual value may lie anywhere within the tolerance range of $-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to $+20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

For other resistance wires such as the widely used nickel-chromium-iron, for example, a nominal value of
$+140 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is given. Actually, however, a tolerance of $\pm 30 \mathrm{ppm}$ is applicable so that the TC may range between the limits of +110 to $+170 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Unfortunately, the TC of a completed power resistor is generally somewhat different from that of the original wire. This is because the TC may be affected by such factors as heat treatment during processing, and materials and methods of construction. Without special controls and precautions, the TC over the range of $25^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ rise may increase to as much as $0 \pm$ 80 ppm from the original $0 \pm 20 \mathrm{ppm}$ for certain types of wire on vitreous enameled resistors. Theoretical changes in resistance with temperature are shown in Fig. 4.
The circuit designer should carefully consider the actual needs of the circuit before specifying limits on the TC of a desired resistor. Wherever possible it is best to select a resistor for a critical application so that it operates at a low temperature rise. This will also provide the maximum stability over a long period. For low TC (and other) applications, Ohmite can provide resistors with an "Ohmicone" (silicone-ceramic) coating. "Ohmicone" is processed at much lower temperatures than vitreous enamel and therefore makes control of TC and tolerance easier. Data on the TC and other properties of various alloys is given in the Engineering Manual (Bulletin 1100).

Ballast Resistors: A very high TC is required in resistors used to stabilize a circuit against the effects of varying input voltage. To design such "ballast resistors" the following data must be known: Resistance value at a specified reference temperature, change in resistance for a stated temperature or current change, time factors, current and voltage.

Fig. 4: Calculated change in resistance with nominal TC assumed constant.

PROCEDURES for STEP 2

Calculation Method

Using the graphs given in the Engineering Manual, determine the derating required for each application modification condition. Determine the total derating. Divide the Watts Input by the derating (expressed as a decimal) to obtain the Free Air Watt Size required.

Short-Cut Method

Determine the required Free Air Watt Size by use of the chart on the page opposite. Locate the known application modifications of Free Air conditions, multiply the correction Factors and Watts Input and find Watt Size Required.

step (2) Resistor Selection short-Cut Chart Method

TO FIND REQUIRED SIZE
(As affected by
application conditions)

1. For each Condition locate the relevant value on the scales below and record the corresponding Factor (F_{1} to F_{7}).
Note: The Standard Free Air Condition Factor is always 1.
2. Multiply the Factors together.
3. Multiply the Watts by the product obtained from step 2 above.

See Engineering Manual, Bulletin 1100, far detailed explanation af canditians.

EXAMPLE: Four resistors, each dissipating 115 watts, are to be mounted in a group. Spacing is to be $2^{\prime \prime}$ surface to surface. Ambient to be $50^{\circ} \mathrm{C}$ $\left(122^{\circ} \mathrm{F}\right)$. Enclosure to be total. Other factors standard. Determine Watt Size required.

Operation (1) On Ambient Temperature scale locate $50^{\circ} \mathrm{C}$. Note and record ${ }^{\prime} F_{1}=1.1$ as shown. Locate and record the other factors.
 $1.1 \times 2.0 \times 1.2 \times 1 \times 1 \times 1 \times 1$

Operation (2) Multiply the factors together $=2.64$

Operation (3) 115 watts $\times 2.64=$ 314 Watts Free Air Watt Size Rating required for each resistor.

ASSISTANCE IN SELECTION (See Contents \& Pages 2, 3)

Ohmite sales engineers and sales representatives backed by the resources of Ohmite's laboratory and engineering departments, will be pleased to make recommendations on receipt of users' complete requirements. Samples can be supplied, when warranted, for test or use in prototype equipment.

Radio-electronic distributors across the nation and abroad, stock standard Ohmite parts. This service is
convenient and economical for small quantities, especially where a minimum billing charge is involved on direct factory orders.
"Little Devil" composition resistors and Type AB and AS composition potentiometers are described in the Ohmite "Stock Catalog." They are sold only through Ohmite distributors.

SUGGESTIONS FOR ORDERING RESISTORS

TO ORDER STOCK RESISTORS OF ANY RESISTANCE VALUE

(1) Give catalog number. Also, the information suggested below provides a check against errors.
(a) Style designation; also name, where provided (Style 200-12 "Brown Devil").
(b) Resistance value. Where non-stock value is desired, suffix this value to style designation, e.g., Style 200-12-60.
(c) Core size (e.g., $9 / 16^{\prime \prime} \times 2^{\prime \prime}$)
(2) List mounting brackets or other accessories by catalog number as separate items.
(3) Specify quantity of each item.
(4) Specify "Boxed" if desired in individual or standard package boxes. Manufacturers' orders are normally shipped bulk-packed for ease of handling on assembly lines. A small charge is added for special boxing.

TO ORDER "MADE-TO-ORDER" RESISTORS (See Contents \& Pages 2, 3)

Non-stock resistors may be ordered from the tables of core sizes and ranges provided under some specific types of resistors such as Series 99 or Series 88 . In this catalog, pages dealing with certain tubular core resistors, list only stock items. Non-stock or made-toorder items for units such as these must be ordered from the "master" table on pages 36 and 37. That table lists the more popular tubular core, vitreousenameled types of resistors made by Ohmite and, with the terminals listed on the succeeding two pages, permits the buyer to tailor tubular core resistors exactly to his desires.
To order, whether from made-to-order tables under specific resistor types or from the master table on pages 36 and 37, submit the following:
(1) Give the series or type number and name of the resistor (for example, "Type 200, "Brown Devil") if ordering a specific resistor type from the pages devoted to that type. Give the code number, code word, type or style number for the specific size of resistor within that series. (Note: For tubular core, vitreous enameled resistors ordered from the master table on pages $36-37$, a code can be assembled, as explained on page 37, based on the physical and electrical characteristics desired for the resistor as enumerated below. Such a code also serves as a specification number which makes future reordering easier.)
(2) Give the physical specifications of the resistoroutside diameter and length of core, terminal type number and whether "fixed" or "adjustable."
(3) State wattage or give current (actual amperes) or voltage to be impressed across the resistor. On tapped resistors, do this for each section.
(4) State resistance value for entire resistor and for each section if tapped.
(5) Specify tolerance where a choice of tolerance is provided or if a tolerance other than the standard is desired.
(6) List mounting brackets, or other accessories by catalog number, as separate items.
(7) On reorder, give the Ohmite specification number and resistance. A specification number is assigned to a particular made-to-order item and identifies the item completely. This number is given on Ohmite ackowledgments, invoices, and packing lists and may also appear on the units.
(8) Mention Ohmite quotation number, if any.
(9) If you have a drawing covering the part, specify your part and drawing number and supply a copy with order. Including the Ohmite specification number on your drawing will help assure exact duplication on all future orders.
(10) Specify quantity of each item.
(11) Prices will be quoted on request for specific items and quantities, both stock and made-to-order. The quantity shipped at one time of any item ordered, determines the unit price for manufacturers' orders. Prices of stock parts for small quantities are given in Ohmite's "Stock Catalog," available on request.

DIMENSIONS, TOLERANCES, AND PROCUREMENT DRAWINGS

All dimensions are subject to manufacturing tolerances which vary with the type of resistor. To avoid unnecessary delays in inspection, cost, etc., it is recommended that procurement drawings for stock or catalog items be marked, "Commercial part. Dimensions for reference unless otherwise noted.' Drawings of special components should carry tolerances on critical dimensions only plus a note such as: "All dimensions not otherwise marked, subject to commercial tolerances." Ohmite standard tolerances on dimensions of stock resistors generally can be found on the pages containing details of construction.

SERIES 99 MOLDED VITREOUS ENAMEL RESISTORS

WIREWOUND, AXIAL LEADS

Fig. 5: Uniformly molded thickness guarantees 1000 VAC breakdown ratings, marked resistance to breakage plus uniform shape and dimension.

Series 99 resistors introduce one of the few important innovations in the long history of vitreous enameled resistors a MOLDED vitreous enamel coating. This development is the result of a new manufacturing method (patents applied for) which contrasts to the conventional methods that provide conformal-type coatings. Equally remarkable is the creation of a vitrified coating which endures the red heat of manufacture but retains its molded form and dimensions! Series 99 construction offers highly important advantages as follows:
(1) Consistent insulation thickness guarantees 1000 VAC insulation breakdown ratings (500 V for 1 w size).
(2) A strong, tough jacket which resists breakage and chipping, that withstands $1500^{\circ} \mathrm{F}$ without sacrificing its form or dimensions-that endures conditions of high humidity.
(3) Consistent form and dimensions facilitate use of resistors in automated assembly of circuit boards, etc., or mounting in clips (page 15) with heat-sink benefits up to 100% over the original rating. Resistors may be repeatedly inserted and removed from clips without damage.

With all this, THE ACKNOWLEDGED, TIME PROVEN ADVANTAGES OF VITREOUS ENAMEL INSULATION ARE RETAINED. Vitreous enamel anchors the turns of resistance wire in place, distributes heat to minimize hot spots, will not burn or shrink, is unaffected by moisture and imparts to resistors the ability to withstand amazing overloads for a reasonable duration. Beneath this superb insulation, is a single-layer winding of high grade resistance alloy

Fig. 6: Series 99 Resistors
wire on a ceramic core. Axial-type terminal leads and the resistance wire are both welded to metal end caps which fit snugly over the core ends.
Permanen\# Resistor Markings: Identification markings are vitreous and are applied using an "ink" composed of ceramic compounds. The markings are fired into the molded vitreous enamel coating to become an integral part of the resistor. They resist abrading, standard cleaning solvents, and $1500^{\circ} \mathrm{F}$ temperatures. Extreme overloads that may burn out the resistor winding WILL NOT obliterate the markings.
Ratings: Wattage ratings are based on a maximum hot spot temperature of $350^{\circ} \mathrm{C}$.

A MILESTONE IN RESISTOR TECHNOLOGY

Fig. 7: 1500° F - Red Heat! Series 99 resistors show no deformation: vitreous markings remain legible.

Fig. 8: Resists chipping, breaking. Thick, densely molded jacket will not chip even where leads enter body.

Fig. 9: Markings are integral with coatings - are unaffected by abrasion with glass fiber brush.

Fig. 10: Markings, unaffected by degreasing and flux removal solvents, remain legible even after extreme overloads!

Low Temperature Coefficient of Resistance (T.C.) as follows:

r.C. in ppm/ ${ }^{\circ} \mathrm{C}$

Resist. Range Ohms	Tomp. Range	
	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { to } \\ & \hline \end{aligned}$	$\begin{gathered} -53^{\circ} \mathrm{C} \\ 10+25^{\circ} \mathrm{C} \end{gathered}$
less than 1	Consulf factory	
1 to 10	0 ± 50	0 ± 80
10 and above	0 ± 30	0 ± 60

Leads: Standard leads are solder dip-coated for soldering; furnished bare for welding or gold-plated on special order.
Outstanding Moisture Resistance: Series 99 resistors which meet all the requirements of MIL-R-26 will also withstand the 10 -day MIL-R-26 moisture-resistance test AFTER 2000 hours of cyclic load-life at full wattage.
Non-Inductive versions of Series 99 resistors can be supplied to order. Inquire of factory.

RESISTOR TYPES

TYPE 995 FOR COMMERCIAL POWER APPLICATIONS

Standard tolerance for Type 995 units is $\pm 5 \%$ for values 1 ohm and above; $\pm 10 \%$ for values below 1 ohm. For tolerances to $\pm 0.25 \%$ consult factory.

TYPES 991 AND 991R FOR MILITARY APPLICATIONS

Type 991: This type meets the requirements of MIL-R-26C (as well as proposed MIL-R-26D) Styles

TYPE 995 COMMERCIAL
5\% Tolerance; Closer Tolerances Available

Ohmite Style	$\begin{aligned} & \text { Rated } \\ & \text { WaH3 } \\ & \text { Wat } 25^{\circ} \mathrm{C} \end{aligned}$	Dimenslons (Inches)			Typical Weight (Grams)	Resistance Range (Ohms)	Max. Wkg. Volls RMS
		$\begin{aligned} & \text { Leth. } \\ & \pm .015 \end{aligned}$	$\begin{array}{r} \mathrm{Dia}, \\ +.031 \\ -.000 \\ \hline \end{array}$	Leads 1\%" AWG			
995-1 A	1.5	.422**	.125*	24	0.4	0.1 to 6650	
995-2A	2.25	. 375	. 188	20	0.8	0.1 to 6490	85
995-3A	3.25	. 547	. 203	20	1.3	0.1 to 22,100	190
995-5A	6.5	. 922	. 312	20	3.6	0.1 to 80,600	460
995-5B	5	. 938	. 203	20	2.0	0.1 to 53,600	500
$995-7 \mathrm{~A}$	9	1.218	. 312	20	4.5	0.1 to 118,000	670
995-10A	11	1.781	. 312	20	6.9	0.1 to 187,000	1100

- Tolerance $+.015,-.005$

Fig. 11: Uniform shape and size permits mounting in clips. On a metal surface, clips allow as much as a 100% increase in wattage. See page 15.

RW67V, RW68V, RW69V ($350^{\circ} \mathrm{C}$ max. hot spot). These units meet and exceed the required 1000 VAC V-block dielectric-strength test (500 volts for 1-watt size), the 100 megohm insulation-resistance test, and surpass the stability requirements of $\pm 3 \% \Delta \mathrm{R}$ on the 2000 hour cyclic load-life test. If required, Ohmite can supply these resistors as Styles RW57, RW58 and RW59, Char. G or V. Standard resistance tolerance is $\pm 5 \%$ for values 1 ohm and above; for values below 1 ohm, $\pm 10 \%$; other tolerances can be supplied.
Type 991R: Ohmite can supply Series 99 resistors to meet both the " V " and " R " characteristics $\left(350^{\circ} \mathrm{C}\right.$ hot spot) of proposed MIL-R-26D. The "R" characteristic, which covers resistor Styles RW70R, RW77R, RW78R and RW79R, in addition to meeting the requirements of Characteristic V, also sets more stringent stability requirements ($\pm 2 \%$ on 2000 hour loadlife test), specifies a much lower temperature coefficient of resistance (TC) and offers a choice of either 0.5% or 1.0% resistance tolerance. Type 994 is the commercial equivalent of Type 991R.

For details of these types, see Bulletin 103 or Cata$\log 50$.

TYPE 994 HIGH STABILITY Standard Tolerance 3\%; Tolerances to 0.25\% Available

Type 994 units feature long term stability along with the Series 99 low temperature coefficient of resistance.
Stability: Type 994 resistors, on a 2000 hour, cyclic load-life test ($11 / 2$ hour on, $1 / 2$ hour off) have less than $\pm 2 \%$ change in resistance value.
Standard Tolerance for Type 994 resistors is $\pm 3 \%$. However, tolerances of $\pm 1.0, \pm 0.5$ and $\pm 0.25 \%$ are available on order.

TYPE 994 HI-STABILITY
 3\% Tolerance-Tolerances to 0.25\% Available

Ohmite Style	$\begin{aligned} & \text { Roted } \\ & \text { Watt } \\ & \text { (a) } 25^{\circ} \mathrm{C} \end{aligned}$	Dimansions (Inches)			$\begin{aligned} & \text { Typical } \\ & \text { Weight } \\ & \text { (Grams) } \end{aligned}$	Resistance Range (Ohms)	Max. Wkg. Volts
		$\begin{aligned} & \text { Longth } \\ & \pm .015 \end{aligned}$	$\begin{array}{r} \text { Dia. } \\ +.031 \\ +.000 \end{array}$	Leods 1\% AWG			
994-1 A	1.5	.422**	.125*	24	0.4	0.1 to 6650	
994-2A	2.25	. 375	. 188	20	0.8	0.1 to 6490	85
994-3A	3.25	. 547	. 203	20	1.3	0.1 to 22,100	190
994-5A	6.5	. 922	. 312	20	3.6	0.1 to 80,600	460
994-5B	5	. 938	. 203	20	2.0	0.1 to 53,600	500
994-7A	9	1.218	. 312	20	4.5	0.1 to 118,000	670
994-10A	11	1.781	. 312	20	6.9	0.1 to 187,000	1100

- Tolerance $+.015,-.005$

STOCK SERIES 99 Molded Vitreous Resistors

Fig. 12:

A complete stock of Type 995 molded vitreous enamel, wirewound resistors for commercial power applications, is available in the $11 / 2$, $21 / 4,31 / 4,5$ and 11 watt sizes (Styles 995-1A, -2A, $-3 A,-5 B$ and -10 A respectively). The values shown are based on the progression in military standard MS 90178 for $\pm 5 \%$ values. The stock listings also include popular values not in this progression. The values available are such that any value required by a user, in the range available, is
 WATT Terminal: Na. 54

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	Ohms	Max.	$\begin{aligned} & \text { Stock } \\ & \text { Nock } \end{aligned}$	Ohms	Max. Amps.
4030	1.0	1.24	4087	75	. 141
4031	1.1	1.17	4089	82	. 135
4032	1.2	1.12	4091	91	. 128
4033	1.3	1.08	4092	100	. 123
4034	1.5	1.00	4093	110	. 117
4035	1.6	. 97	4094	120	. 112
4036	1.8	. 91	4095	130	. 108
4037	2.0	. 87	4096	150	. 100
4038	2.2	. 83	4097	160	. 097
4039	2.4	. 79	4098	180	. 091
4041	2.7	. 75	4099	200	. 087
4042	3.0	. 71	4100	220	. 083
4043	3.3	. 67	4101	240	. 079
4044	3.6	. 65	4102	250	. 077
4045	3.9	. 62	4103	270	. 075
4046	4.0	. 61	4104	300	. 071
4047	4.3	. 59	4105	330	. 067
4048	4.7	. 56	4105A	350	. 065
4049	5.0	. 55	4106	360	. 064
4050	5.1	. 54	4107	390	. 062
4051	5.6	. 52	4108	400	. 061
4053	6.2	. 49	4109	430	. 059
4054	6.8	. 47	4109A	450	. 058
4056	7.5	. 45	4110	470	. 056
4058	8.2	. 43	4111	500	. 055
4060	9.1	. 41	4112	510	. 054
4061	10	. 39	4113	560	. 052
4062	11	. 37	4114	600	. 050
4063	12	. 35	4115	620	. 049
4064	13	. 34	4116	680	. 047
4065	15	. 32	4117	700	. 046
4066	16	. 31	4118	750	. 045
4067	18	. 29	4119	800	. 043
4068	20	. 27	4120	820	. 043
4069	22	. 26	4121	900	. 041
4070	24	. 25	4122	910	. 041
4071	25	. 25	4123	1000	. 039
4072	27	. 24	4124	1100	. 037
4073	30	. 22	4125	1200	. 035
4074	33	. 21	4126	1300	. 034
4074A	35	. 207	4126A	1400	. 033
4075	36	. 200	4127	1500	. 032
4076	39	. 196	4128	1600	. 031
4077	40	. 193	4129	1800	. 029
4078	43	. 187	4130	2000	. 027
4079	47	. 179	4131	2200	. 026
4080	50	. 173	4132	2400	. 025
4081	51	. 171	4133	2500	. 025
4082	56	. 164	4134	2700	. 024
4084	62	. 156	4135	3000	. 022
4085	68	. 149			

(Continued on next page)

2 $1 / 4$WATT

Stock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.
3860	1.0	1.50	3916	68	.18
3861	1.1	1.43	3918	75	. 17
3862	1.2	1.37	3920	82	. 16
3863	1.3	1.31	3922	91	. 16
3864	1.5	1.22	3923	100	. 15
3865	1.6	1.18	3924	110	. 14
3866	1.8	1.11	3925	120	. 14
3867	2.0	1.05	3926	130	. 13
3868	2.2	1.01	3927	150	. 12
3869	2.4	. 97	3928	160	.12
3871	2.7	. 91	3929	180	.11
3872	3.0	. 86	3930	200	. 10
3873	3.3	. 82	3931	220	.10
3874	3.6	. 79	3932	240	. 097
3875	3.9	. 76	3933	250	. 094
3876	4.0	. 73	3934	270	. 091
3877	4.3	. 72	3935	300	. 086
3878	4.7	. 69	3936	330	. 082
3879	5.0	. 67	3937	350	. 080
3880	5.1	. 66	3938	360	. 079
3881	5.6	. 63	3939	390	. 076
3883	6.2	. 60	3940	400	. 075
3884	6.8	. 57	3941	430	. 072
3886	7.5	. 55	3942	450	. 071
3888	8.2	. 52	3943	470	. 069
3890	9.1	. 50	3944	500	. 067
3891	10	. 47	3945	510	. 066
3892	11	. 45	3946	560	. 063
3893	12	. 43	3947	600	. 061
3894	13	. 41	3948	620	. 060
3895	15	. 39	3949	680	. 057
3896	16	. 37	3950	700	. 056
3897	18	. 35	3951	750	. 055
3898	20	. 33	3952	800	. 053
3899	22	. 32	3953	820	. 052
3900	24	.31	3954	900	. 050
3901	25	. 30	3955	910	. 050
3902	27	. 29	3956	1000	. 047
3903	30	. 27	3957	1100	. 045
3904	33	. 26	3958	1200	. 043
3905	35	. 25	3959	1300	. 041
3906	36	. 25	3960	1400	. 040
3907	39	. 24	3961	1500	.039
3908	40	. 24	3962	1600	. 037
3909	43	. 23	3963	1800	. 035
3910	47	. 22	3964	2000	. 033
3911	50	.21	3965	2200	. 032
3912	51	. 21	3966	2400	. 031
3913	56	. 20	3967	2500	. 030
3915	62	. 19	3968	2700	. 028
			3969	3000	. 027

STOCK STYLE 995-2A
. $375^{\prime \prime}$ L x . $188^{\prime \prime}$ D Overall
Terminal: Na. 54

Stock No.	Ohms	Max. Amps.	Slock No.	Ohms	Max. Amps.
4330	1.0	1.80	4399	200	. 13
4331	1.1	1.71	4400	220	. 12
4332	1.2	1.65	4401	240	. 11
4333	1.3	1.58	4402	250	. 11
4334	1.5	1.47	4403	270	. 109
4335	1.6	1.42	4404	300	. 100
4336	1.8	1.34	4405	330	. 099
4337	2.0	1.27	4405A	350	. 096
4338	2.2	1.22	4406	360	. 095
4339	2.4	1.16	4407	390	. 091
4341	2.7	1.09	4408	400	. 090
4342	3.0	1.04	4409	430	. 087
4343	3.3	. 99	4409A	450	. 084
4344	3.6	. 95	4410	470	. 083
4345	3.9	. 91	4411	500	. 081
4346	4.0	. 90	4412	510	. 080
4347	4.3	. 87	4413	560	. 076
4348	4.7	. 83	4414	600	. 073
4349	5.0	. 81	4415	620	. 072
4350	5.1	. 80	4416	680	. 069
4351	5.6	. 76	4417	700	. 068
4353	6.2	. 72	4418	750	. 065
4354	6.8	. 69	4419	800	. 064
4356	7.5	. 65	4420	820	. 063
4358	8.2	. 63	4421	900	. 060
4360	9.1	. 60	4422	910	. 060
4361	10	. 56	4423	1000	. 056
4362	11	. 54	4424	1100	. 054
4363	12	. 52	4425	1200	. 052
4364	13	. 50	4426	1300	. 050
4365	15	. 47	4426 A	1400	. 048
4366	16	. 45	4427	1500	. 047
4367	18	. 42	4428	1600	. 045
4368	20	. 40	4429	1800	. 042
4369	22	. 39	4430	2000	. 040
4370	24	. 36	4431	2200	. 039
4371	25	. 36	4432	2400	. 036
4372	27	. 35	4433	2500	. 036
4373	30	. 30	4434	2700	. 035
4374	33	. 31	4435	3000	. 033
4374A	35	. 30	4436	3300	. 031
4375	36	. 30	4436A	3500	. 030
4376	39	. 29	4437	3600	. 030
4377	40	. 28	4438	3900	. 029
4378	43	. 27	4439	4000	. 028
4379	47	. 26	4440	4300	. 027
4380	50	. 25	4440A	4500	. 027
4381	51	. 25	4441	4700	. 026
4382	56	. 24	4442	5000	. 025
4384	62	. 23	4443	5100	. 025
4385	68	. 22	4444	5600	. 024
4387	75	. 21	4445	6000	. 023
4389	82	. 20	4446	6200	. 023
4391	91	. 19	4447	6800	. 022
4392	100	. 18	4448	7000	. 021
4393	110	. 17	4449	7500	. 021
4394	120	. 16	4450	8000	. 020
4395	130	. 16	4451	8200	. 020
4396	150	. 15	4452	9000	. 019
4397	160	. 14	4453	9100	. 019
4398	180	. 13	4454	10000	. 018

Stock Ne.	Ohms	Max. Amps.	Slock No.	Ohms	Max. Amps.
4330	1.0	1.80	4399	200	. 13
4331	1.1	1.71	4400	220	. 12
4332	1.2	1.65	4401	240	. 11
4333	1.3	1.58	4402	250	. 11
4334	1.5	1.47	4403	270	. 109
4335	1.6	1.42	4404	300	. 100
4336	1.8	1.34	4405	330	. 099
4337	2.0	1.27	4405A	350	. 096
4338	2.2	1.22	4406	360	. 095
4339	2.4	1.16	4407	390	. 091
4341	2.7	1.09	4408	400	. 090
4342	3.0	1.04	4409	430	. 087
4343	3.3	. 99	4409A	450	. 084
4344	2.6	. 95	4410	470	. 083
4345	3.9	. 91	4411	500	. 081
4346	4.0	. 90	4412	510	. 080
4347	4.3	. 87	4413	560	. 076
4348	4.7	. 83	4414	600	. 073
4349	5.0	. 81	4415	620	. 072
4350	5.1	. 80	4416	680	. 069
4351	5.6	. 76	4417	700	. 068
4353	6.2	. 72	4418	750	. 065
4354	6.8	. 69	4419	800	. 064
4356	7.5	. 65	4420	820	. 063
4358	8.2	. 63	4421	900	. 060
4360	9.1	. 60	4422	910	. 060
4361	10	. 56	4423	1000	. 056
4362	11	. 54	4424	1100	. 054
4363	12	. 52	4425	1200	. 052
4364	13	. 50	4426	1300	. 050
4365	15	. 47	4426A	1400	. 048
4366	16	. 45	4427	1500	. 047
4367	18	. 42	4428	1600	. 045
4368	20	. 40	4429	1800	. 042
4369	22	. 39	4430	2000	. 040
4370	24	. 36	4431	2200	. 039
4371	25	. 36	4432	2400	. 036
4372	27	. 35	4433	2500	. 036
4373	30	. 30	4434	2700	. 035
4374	33	. 31	4435	3000	. 033
4374A	35	. 30	4436	3300	. 031
4375	36	. 30	4436A	3500	. 030
4376	39	. 29	4437	3600	. 030
4377	40	. 28	4438	3900	. 029
4378	43	. 27	4439	4000	. 028
4379	47	. 26	4440	4300	. 027
4380	50	. 25	4440A	4500	. 027
4381	51	. 25	4441	4700	. 026
4382	56	. 24	4442	5000	. 025
4384	62	. 23	4443	5100	. 025
4385	68	. 22	4444	5600	. 024
4387	75	. 21	4445	6000	. 023
4389	82	. 20	4446	6200	. 023
4391	91	. 19	4447	6800	. 022
4392	100	. 18	4448	7000	. 021
4393	110	. 17	4449	7500	. 021
4394	120	. 16	4450	8000	. 020
4395	130	. 16	4451	8200	. 020
4396	150	. 15	4452	9000	. 019
4397	160	. 14	4453	9100	. 019
4398	180	.13	4454	10000	. 018

4332 4332
4333 4333
4334 4335 4336 4337
4338

43
434
43
4342

43

43
43
43
43

3 $1 / 4$
STOCK STYLE 995-3A
.547" L x . $203^{\prime \prime}$ D Overall
WATT Terminal: No. 54

Avg. Weight . 0018 lb .

STOCK STYLE 995-5B
$.938^{\prime \prime} \mathrm{L} \times .203^{\prime \prime}$ D Overall
Terminal: No. 54

WATT

Stock No.	Ohms	Mox. Amps.	Stock No.	Ohms	Mox. Amps.	Stock No.	Ohms	Mox. Amps.	Stock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.
4530	1.0	2.24	4605	330	. 12	4730	1.0	3.32	4805	330	. 18	4865	27000	. 020	4870	40000	. 016
4531	1.1	2.13	4605A	350	. 12	4731	1.1	3.16	4805A	350	. 18	4866	30000	. 019	4871	43000	. 016
4532	1.2	2.04	4606	360	. 12	4732	1.2	3.03	4806	360	. 17	4867	33000	. 018	4871 A	45000	. 016
4533	1.3	1.96	4607	390	. 11	4733	1.3	2.91	4807	390	. 17	4867 A	35000	. 018	4872	47000	. 015
4534	1.5	1.83	4608	400	. 11	4734	1.5	2.71	4808	400	. 16	4868	36000	. 017	4873	50000	. 015
4535	1.6	1.77	4609	430	. 11	4735	1.6	2.62	4809	430	. 16	4869	39000	. 017	4874	51000	. 015
4536	1.8	1.67	4609A	450	. 1	4736	1.8	2.42	4809A	450	. 16						
4537	2.0	1.58	4610	470	. 10	4737	2.0	2.34	4810	470	. 15			W	015		
4538	2.2	1.51	4611	500	. 10	4738	2.2	2.24	4811	500	. 15						
4539	2.4	1.44	4612	510	. 10	4739	2.4	2.14	4812	510	. 15	(Con	nue	rom	ge		
4541	2.7	1.36	4613	560	. 094	4741	2.7	2.02	4813	560	. 14	ap	xima	ly	,	\%	of a
4542	3.0	1.29	4614	600	. 091	4742	3.0	1.92	4814	600	. 14		Ser	99	sisto	Cor	
4543	3.3	1.23	4615	620	. 090	4743	3.3	1.83	4815	620	. 13		Ser	99	,	Co	ru
4544	3.6	1.18	4616	680	. 086	4744	3.6	1.75	4816	680	. 13	tion	of st	ck u	ts is		e as
4545	3.9	1.13	4617	700	. 084	4745	3.9	1.67	4817	700	. 12	desc	ibed	th	made	or	sec
4546	4.0	1.11	4618	750	. 082	4746	4.0	1.66	4818	750	. 12						
4547	4.3	1.07	4619	800	. 079	4747	4.3	1.60	4819	800	. 12	ton	on pa	es 1	2. L	a	
4548	4.7	1.03	4620	820	. 078	4748	4.7	1.53	4820	820	. 12	long	and	nned	24 A	G	the
4549	5.0	1.00	4621	900	. 074	4749	5.0	1.48	4821	900	. 11	11/2	att s	e; 2	WC	r	21/
4550	5.1	. 99	4622	910	. 074	4750	5.1	1.47	4822	910	. 11		tt	,	W	or	2/4
4551	5.6	. 94	4623	1000	. 071	4751	5.6	1.40	4823	1000	. 11	31	and	1 w	size	Re	an
4553	6.2	. 90	4624	1100	. 067	4753	6.2	1.33	4824	1100	. 10		ce	+			
4554	6.8	. 86	4625	1200	. 065	4754	6.8	1.27	4825	1200	. 096						
4556	7.5	. 82	4626	1300	. 062	4756	7.5	1.21	4826	1300	. 092						
4558	8.2	. 78	4626A	1400	. 059	4758	8.2	1.16	4826 A	1400	. 089						
4560	9.1	. 74	4627	1500	. 058	4760	9.1	1.10	4827	1500	. 086						
4561	10	. 71	4628	1600	. 056	4761	10	1.05	4828	1600	. 083						
4562	11	. 67	4629	1800	. 053	4762	11	1.00	4829	1800	. 078						
4563	12	. 65	4630	2000	. 050	4763	12	. 96	4830	2000	. 074						
4564	13	. 62	4631	2200	. 048	4764	13	. 92	4831	2200	. 071				K		
4565	15	. 58	4632	2400	. 046	4765	15	. 86	4832	2400	. 068						
4566	16	. 56	4633	2500	. 045	4766	16	. 83	4833	2500	. 066						
4567	18	. 53	4634	2700	. 043	4767	18	. 78	4834	2700	. 064						
4568	20	. 50	4635	3000	. 041	4768	20	. 74	4835	3000	. 061	Fig.	: F	an	ever	tt	,
4569	22	. 48	4636	3300	. 039	4769	22	. 71	4836	3300	. 058	F.	.	a	eve	,	,
4570	24	. 46	$4636 A$ 4637	3500	. 038	4770	24	. 68	4836 A	3500	. 056						
4571	25	. 45	4637	3600	. 037	4771	25	. 66	4837	3600	. 055						
4572	27	. 43	4638	3900	. 036	4772	27	. 64	4838	3900	. 053			ALC	LAT		
4573	30	. 41	4639	4000	. 035	4773	30	. 61	4839	4000	. 055				-A1		
4574	33	. 39	4640	4300	. 034	4774	33	. 58	4840	4300	. 050						
4574A	35	. 38	4640A	4500	. 033	4774A	35	. 56	4840A	4500	. 049		$E \equiv$	-	,	.	
4575	36	. 37	4641	4700	. 033	4775	36	. 55	4841	4700	. 048		-				
4576	39	. 36	4642	5000	. 032	4776	39	. 53	4842	5000	. 047						
4577	40	. 35	4643	5100	. 031	4777	40	. 52	4843	5100	. 046		E				
4578	43	. 34	4644	5600	. 030	4778	43	. 50	4844	5600	. 044						
4579	47	. 33	4645	6000	. 029	4779	47	. 48	4845	6000	. 043						
4580	50	. 32	4646	6200	. 028	4780	50	. 47	4846	6200	. 042		Fig. 14	: Ohm	Law Ca	culator	
4581	51	. 31	4647	6800	. 027	4781	51	46	4847	6800	. 040						
4582	56	. 30	4648	7000	. 027	4782	56	. 44	4848	7000	. 040			mite			ULA.
4584	62	. 28	4649	7500	. 026	4784	62	. 42	4849	7500	. 038		ne se	ing	the	e.	
4585	68	. 27	4650	8000	. 025	4785	68	. 40	4850	8000	. 037		et-sized	$\left(9^{\prime \prime}\right.$	$\left.3^{\prime \prime}\right) \text {, it }$	solves	prob-
4587	75	. 26	4651	8200	. 025	4787	75	. 38	4851	8200	. 037	lem	involvi	ing ohm	, volts,	amperes	and
4589	82	. 25	4652	9000	. 024	4789	82	. 37	4852	9000	. 035	watt	where	any	- of	ese fa	ctors
4591	91	. 23	4653	9100	. 023	4791	91	. 35	4853	9100	. 035		nown.	Resista	ce scale	range	from
4592	100	. 22	4654	10000	. 022	4792	100	. 33	4854	10000	. 033	0.1	- 100	mego	s. Curre	t scale	s are
4593	110	. 21	4655	11000	. 021	4793	110	. 31	4855	11000	. 031		ded in	both	peres	and m	iam-
4594	120	. 20	4656	12000	. 020	4794	120	. 30	4856	12000	. 030	per		all		var	
4595	130	. 20	4657	13000	. 020	4795	130	. 29	4857	13000	. 029	tanc	hm's comp	aw; uting	udes les. Als	carri	resiss the
4596	150	. 18	4657A	14000	. 018	4796	150	. 27	$4857 B$	14000	. 028	tanc	ar A.		slide	e scale	for
4597	160	. 18	4658	15000	. 018	4797	160	. 26	4858	15000	. 027	mak	ng sup	pleme	ry calc	lations.	Two
4598	180	. 17	4659	16000	1.018	4798	180	. 24	4859A	16000	. 026	type	are	availa	- hea	varn	ished
4599	200	. 16	4659B	17000	. 017	4799	200	. 23	4859C	17000	. 025	card	oard a	and a d	uxe mod	el of du	urable
4600	220	. 15	4660	18000	. 017	4800	220	. 22	4860	18000	. 024	Viny	te.				
4601	240	. 14	4661	20000	. 016	4801	240	. 21	4861	20000	. 023						
4602	250	. 14	4662	22000	. 015	4802	250	. 21	4862	22000	. 022			Type	Sto	No.	
4603	270	. 14	4663	24000	1.014	4803	270	. 20	4863	24000	. 021			rdboar		180	
4604	300	. 13	4664	25000	. 014	4804	300	. 19	4864	25000	. 021			stic		182	

STOCK STYLE 995-10A
$1.781^{\prime \prime} L \times .312^{\prime \prime}$ D Overall
Terminal: No. 54

WATT

(Continued from page 13)
approximately within $\pm 5 \%$ of a stock Series 99 resistor. Construcof stock units is the same as tion on pages 11,12 . Leads are $11 / 2^{\prime \prime}$ long and tinned-24 AWG for the $1 / 2$ watt size; 20 AWG for the $21 / 4$, $1 / 4,5$ and 11 watt sizes. Resistance olerance is $\pm 5 \%$.

OHM'S LAW CALCULATOR TOR solves Ohm's Law problems with ust one setting of the slide. Handy, pocket-sized $\left(9^{\prime \prime} \times 3^{\prime \prime}\right)$, it solves prob, amperes and are known. Resistance scales range from 0.1 to 100 megohms. Current scales are provided in both amperes and milliamperes. Lists all the formulae variations tance computing scales. Also carries the familar A, B, C. D, slide rule scales for making supplementary carculations. Two are available - heavy varnished cardboard and a deluxe model of durable

Clips for Molded Resistors Series 22 Axial-Lead Resistors

QHMITE

MOUNTING CLIPS for MOLDED AXIAL LEAD RESISTORS

Molded axial lead resistors (Series 88, "Ohmicone" silcone-ceramic and Series 99, vitreous enamel) are distinguished for their consistent form and dimensions. This characteristic facilitates mounting of such resistors in clips. Thus, while these resistors are conventionally lead mounted, clip mounting may be desirable where immunity to severe vibration or mechanical
shock is required. Clip mounting confers another advantage in the form of heat sink benefits. With the clip mounted on a metal surface*, up to a 100% increase in wattage rating is possible. Holes in the base of the clips permit fastening to chassis surface by means of machine screws, eyelets or rivets.
*Equivalent to a minimum of $11 / 2$ sq. inches of $.040^{\prime \prime}$ aluminum per watl dissipated.

STOCK CLIPS

SERIES 22 AXIAL-LEAD WIREWOUND RESISTORS with Conformal Vitreous Enamel Coating

MADE-TO-ORDER

Wirewound axial-lead resistors in which a conformal vitreous enamel coating is employed.

Construction: Resistance wire is wound on a steatite tube and is welded to the metal end caps. Terminal leads are also welded to the caps for stable, noise-free connections. The wirewound core is then coated with exclusive, Ohmite vitreous enamel.

Sizes: Four basic diameters available in a variety of lengths provide a wide range of wattage and resistance values (see table).
Wattage Range: From 1 to 10 watts.

Walts	Overall Dimension	Core Sixe	Max. Ohms \dagger	\ddagger Code
* 1	$9 / 16^{\prime \prime} \times 1 / 3^{\prime \prime}$	$15 / 22^{\prime \prime} \times 1 / 16^{\prime \prime}$	6,000	15/2-V-54-F
* 3	$9 / 16^{\prime \prime} \times 1 / 4{ }^{\prime \prime}$	$7 / 16^{\prime \prime} \times 5 / 12^{\prime \prime}$	10,000	7/6-A-54-F
5	$15 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}$	$3 / 4^{\prime \prime} \times 5 / 2^{\prime \prime}$	15,000	3/4-A-54-F
5	$15 / 16^{\prime \prime} x^{11 / a^{\prime \prime}}$	$3 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$	20,000	3/4-C-54-F
* 5	$11 / 16^{\prime \prime} \times 11 / 2^{\prime \prime}$	$7 / 8^{\prime \prime} \times 1 / 4^{\prime \prime}$	25,000	7/8-C-54-F
7.5	$13 / 16^{\prime \prime} x^{11 / 22^{\prime \prime}}$	$1^{\prime \prime} \times 1 / 4^{\prime \prime}$	30,000	1-D-54-F
7	$15 / 16^{\prime \prime} x^{13 / 22^{\prime \prime}}$	$3 / 4{ }^{\prime \prime} \times 5 / 16^{\prime \prime}$	13,500	3/4-D-54-F
10	$113 / 16^{\prime \prime} x^{13 / 22^{\prime \prime}}$	$15 / 8^{11} \times 5 / 10^{11}$	45,500	$15 / 8-D-54-F$
*10	$115 / 16^{\prime \prime} x^{13 / 22^{\prime \prime}}$	$13 / 4^{\prime \prime} \times 5 / 16^{\prime \prime}$	50,000	13/4-D-54-F

[^0]

Fig. 16: Series 22 conformal vitreous enamel axial-lead resistors.

Tolerance: Standard tolerance is $\pm 5 \%$ for 1 ohm and higher; below 1 ohm tolerance is $\pm 10 \%$. Special tolerances available.

Made-To-Order: Series 22 units are made to order. A new, improved type of vitreous enameled, axiallead resistor, the Series 99 molded resistor, is now carried in stock and supersedes the Series 22. Unless otherwise specified, Ohmite, at its option, will supply the equivalent in a Series 99 resistor (see pages 11-14).

Fig. 17: Series $\mathbf{8 8}$ moided Ohmicone resistors.
"Series 88 " precision resistors are single-layer wound on a ceramic core. Both the axial-type terminal leads and the resistance wire are welded to metal caps fitted over the core ends. A jacket of patented "OHMICONE," a tough, resilient, moisture-resistant, highdielectric silicone-ceramic material, is then molded around the resistor to provide a uniformly thick, dense and smooth covering and a unit of thoroughly consistent shape and dimension. Insulation breakdown rating is 1000 VAC; 500 VAC for 1 watt size. Consistent form and size adapts Series 88 resistors to rapid automated assembly of equipment; it also permits mounting in clips for important heat-sink benefits (page 15).

Series 88 resistors are furnished in three basic cat-egories-Types 881 and 881 P for military specification MIL-R-26 (and proposed revisions); Type 882 for commercial power applications and Type 884 for high stability, precision-power applications. (Type 884 is the commercial equivalent of Type 881 P resistors.) All types feature a low temperature coefficient of resistance (TC) as follows:

TC in ppm $/{ }^{\circ} \mathrm{C}$	Ohms Range
0 ± 20	10 and above
0 ± 50	1 to 10
Consull factory	below 1

Lower TC's are available, consult factory, Standard leads are solderable; for weldable leads and for noninductive versions, consult factory.

TYPES 881 \& 881P

for military applications

 MIL-R-26 and Proposed RevisionType 881: This type meets the requirements of MIL-R-26C and D, Styles RW67, RW68 and RW69 axial-lead resistors in both G ($275^{\circ} \mathrm{C}$ hot spot) and V $\left(350^{\circ} \mathrm{C}\right)$ characteristics. These styles call for $\pm 5 \%$ resistance tolerance but Ohmite supplies $\pm 3 \%$ at no extra cost. If required, Ohmite can also provide these
resistors in Styles RW57, RW58 and RW59, Characteristics G or V .

Type 881P: Both the " V " and " P " characteristics of proposed MIL-R-26D can be supplied. The "P" characteristic which covers resistor Styles RW70, RW77, RW78 and RW79, meets the requirements for Char. V but Char. P also sets more stringent stability, and much closer TC requirements; it also offers a choice of closer resistance tolerances.

Both 881 and 881P types meet the fundamental requirements of MIL-R-26 including the dielectric strength and insulation resistance test. Request Bulletin 101 or Ohmite Military Catalog 50.

TYPE 882 for COMMERCIAL POWER APPLICATIONS

This type is intended for broad commercial use. Standard tolerance is $\pm 3 \%$ (for values 1 ohm and higher) which is supplied at no extra cost over $\pm 5 \%$ tolerance. Closer tolerances are available. These units derate to zero watts at $350^{\circ} \mathrm{C}$ ambient (see Fig. 18); $\mathrm{TC}=0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 10$ ohms and above; insulation tested at 1000 VAC (see introduction preceding).

TYPE 882, RANGES, DIMENSIONS

Ohmito Style		Dimensions			$\begin{aligned} & \text { Typ. } \\ & \text { Wf. } \\ & \text { Groms } \end{aligned}$	Ohms Range 5td. 3% Tol.(3)	Max. Wkg. Volis RMS
		$\begin{aligned} & \text { Lath. } \\ & +.020 \\ & +.010 \end{aligned}$	$\begin{gathered} \text { Dia. } \\ \pm .020 \end{gathered}$	loads $11 / 2$ AWG			
882-1A	1.5	0.417	0.105	24	0.3	0.10-7,500	-
882-1B	1.5	0.542	0.105	24	0.3	0.10-12,400	-
882-2	2.25	0.375	0.188	20	0.6	0.10- 7,500	85
882-3	3.25	0.542	0.230	20	1.3	0.10-24,900	200
882-6.5	6.5	0.917	0.323	18	3.3	0.10-90,900	460
882-8	9	1.218	0.323	18	4.3	0.10-133,000	670
882-11	11	1.823	0.343	18	6.3	0.10-226,000	1100

(1)See derating graph Fig. 18 for ambients above $25^{\circ} \mathrm{C}$.
(2)Ohmite's standard power tolerance is 3% supplied at no extra charge over 5% for values 1 ohm and higher; 10% for values below 1 ohm. Closer tolerances are available.

SERIES 88 Molded Ohmicone Precision Power Resistors

TYPE 884 HIGH STABILITY, PRECISION-POWER TYPE

Type 884 resistors (formerly referred to as "Riteohm 88") are classified as a "precision-power" type. They are aged and conservatively rated for maximum long term stability and offer superior characteristics. Impressive load-life stability is exhibited by Type 884 resistors. For example, miscellaneous test groups totaling 547 units (including 3,5 and 10 watt sizes over a resistance range of 1 to 200,000 ohms) displayed an average change in resistance of 0.45% after 10,000 hours of cyclic load-life testing ($11 / 2$ hours on, $1 / 2$ hour off).

Type 884 units are available in tolerances from 3% to 0.05% and derate to zero watts at $275^{\circ} \mathrm{C}$ ambient (Fig. 18); $\mathrm{TC}=0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 10 ohms and above; insulation tested at 1000 VAC except 500 volts for 1 watt size (see introduction preceding page).

Fig. 18: Derating curves for Types 882 and 884 Resistors.
Ohmite stocks all of the 1% tolerance standard values in the MIL-Bell decade system, up to 200,000 ohms (see table, page 18).

TYPE 884, RANGES, DIMENSIONS

Ohmil Style	xise	Dimensions				Resistance Ranges (3)			Max. Wkg. Volts RMS
		$\begin{array}{r} \text { Lgth. } \\ +.020 \\ +.010 \end{array}$	$\begin{aligned} & \text { Dia. } \\ & \pm .020 \end{aligned}$			Closer Than 0.5%, Tol. (Min. Ohms)	$\begin{aligned} & 0.5 \% \\ & \text { a Greater } \\ & \text { (Min. Ohms) } \end{aligned}$	$\begin{aligned} & \text { Max. } \\ & \text { Ohmis } \\ & \text { All Jols. } \end{aligned}$	
884-1A	1	0.417	0.105	24	0.3	0.499	0.10	7,500	-
884-1 B	1	0.542	0.105	24	0.3	0.499	0.10	12,400	-
884-2	2	0.375	0.188	20	0.6	0.499	0.10	7,500	85
884.3 (3)	3	0.542	0.230	20	1.3	0.499	0.10	24,900	200
884.5 (3)	5	0.917	0.323	18	3.3	0.499	0.10	90,900	460
884-7	7	1.218	0.323	18	4.3	0.499	0.10	133,000	670
884-10 3	10	1.823	0.343	18	6.3	0.499	0.10	226,000	1100

(1)Ser derating groph Fig. 18 for ambients above $25^{\circ} \mathrm{C}$.
(2) Low resistance values \{ 20Ω and less) are measured at a point on each lead $3 / 8^{\prime \prime} \pm 1 / 16$ from body of resistor. Special tolerances to 0.05% can be supplied. For all values 10 ohms and below, it is advisable to use Kelvin bridge technique to eliminate errors due to lead and contact resistance.
(3) Styles 884-3, 884-5 and 884-10 can be supplied for use as MIL-R-26C Styles RW69G, RW67G and RW68G, respectively. These hove better T.C., and stability characteristics than required by MIL-R-26C. The styles supplied under Characteristic P of proposed MIL-R-26D (BuI. 101 or Cot. 50) are furnished under Ohmite Type 881 P which is the militory equivalent of commerciol Type 884.

RESISTORS for MIITARY APPLICATIONS

A complete line of resistors for MIL-R-26, MIL-R-19365 and MIL-R-10509 is described in Ohmite's unique Military Catalog 50 . While designated a "catalog," it is, more accurately, a valuable manual of U.S. military specifications on a variety of components made by Ohmite. It simplifies the formidable maze of military specifications and expedites the ordering of components. Write to factory for a copy of Catalog 50. Shock-resistant resistors for MIL-R-15109 are described in Bulletin 104.

$\pm 1 \%$ TOLERANCE, TYPE 884 PRECISION RESISTORS (Styles 884-3, -5, -10)
(Values Based on MIL-Bell System of Standard Values For 1% Tolerance-Also See Footnote)

3 Watt		3 Worl		3 Watt		3 Woft		3 Watt		3 Wott		3 Watt		5 Wolt	
Ohms	Max. Volis	Ohms	Max. Volis	Ohms	Max. Volis	Ohms	Max. Volis	Ohms	Max. Volis	Ohms	Max. Vols	Ohms	Max. Volis	Ohms	Max. Volts
. 100	. 547	3.48	3.23	17.8	7.30	90.9	16.5	464	37.3	2370	84.3	12.1 K	190	59K	460
.121	. 602	3.57	3.27	18.2	7.39	93.1	16.7	475	37.7	2430	85.4	12.4 K	193	60.4 K	460
. 150	. 670	3.65	3.31	18.7	7.49	95.3	16.9	487	38.2	2490	86.4	12.7 K	195	61.9 K	460
. 182	. 739	3.74	3.35	19.1	7.57	97.6	17.1	499	38.7	2550	87.4	13 K	197	63.4 K	460
. 200	. 774	3.83	3.39	19.6	7.66	100	17.3	511	39.1	2610	88.4	13.3 K	200	64.9K	460
. 221	. 814	3.92	3.43	20.0	7.74	102	17.5	523	39.6	2670	89.5	13.7 K	200	66.5 K	460
. 249	. 864	4.02	3.47	20.5	7.84	105	17.7	536	40.1	2740	90.6	14 K	200	68.1 K	460
. 274	. 906	4.12	3.51	21.0	7.94	107	17.9	549	40.6	2800	91.6	14.3K	200	69.8 K	460
. 332	. 998	4.22	3.56	21.5	8.03	110	18.2	562	41.0	2870	92.8	14.7 K	200	71.5K	460
. 392	1.08	4.32	3.60	22.1	8.14	113	18.4	576	41.6	2940	93.9	15 K	200	73.2K	460
. 475	1.19	4.42	3.64	22.6	8.23	115	18.6	590	42.0	3010	95.0	15.4 K	200	75K	460
. 499	1.22	4.53	3.69	23.2	8.34	118	18.8	604	42.5	3090	96.2	15.8 K	200	76.8K	460
. 562	1.30	4.64	3.73	23.7	8.43	121	19.1	619	43.1	3160	97.4	16.2 K	200	78.7K	460
. 681	1.43	4.75	3.77	24.3	8.54	124	19.3	634	43.6	3240	98.6	16.5 K	200	80.6K	460
. 750	1.50	4.87	3.82	24.9	8.64	127	19.5	649	44.1	3320	99.8	16.9 K	200		
. 825	1.57	4.99	3.87	25.5	8.74	130	19.7	665	44.6	3400	101	17.4 K	200	10	ATT
1.00	1.73	5.11	3.91	26.1	8.84	133	20.0	681	45.2	3480	102	17.8K	200	82.5K	908
1.02	1.75	5.23	3.96	26.7	8.95	137	20.3	698	45.7	3570	103	18.2K	200	84.5K	919
1.05	1.77	5.36	4.01	27.4	9.06	140	20.5	715	46.3	3650	105	18.7K	200	86.6 K	930
1.07	1.79	5.49	4.06	28.0	9.16	143	20.7	732	46.8	3740	106	19.1 K	200	88.7K	942
1.10	1.82	5.62	4.10	28.7	9.28	147	21.0	750	47.4	3830	107	19.6 K	200	90.9 K	952
1.13	1.84	5.76	4.16	29.4	9.39	150	21.2	768	48.0	3920	108	20K	200	93.1 K	965
1.15	1.86	5.90	4.20	30.1	9.50	154	21.5	787	48.6	4020	110	20.5K	200	95.3 K	976
1.18	1.88	6.04	4.25	30.9	9.62	158	21.8	806	49.2	4120	111	21 K	200	97.6K	988
1.21	1.91	6.19	4.31	31.6	9.74	162	22.0	825	49.7	4220	112	21.5 K	200	100K	1000
1.24	1.93	6.34	4.36	32.4	9.86	165	22.2	845	50.4	4320	114	22.1K	200	102K	1010
1.27	1.95	6.49	4.41	33.2	9.98	169	22.5	866	51.0	4420	115			105K	1020
1.30	1.97	6.65	4.46	34.0	10.1	174	22.8	887	51.6	4530	117	5 W	TT	107K	1030
1.33	2.00	6.81	4.52	34.8	10.2	178	23.1	909	52.2	4640	118	22.6 K	337	110K	1050
1.37	2.03	6.98	4.57	35.7	10.3	182	23.4	931	52.8	4750	119	23.2K	341	113K	1060
1.40	2.05	7.15	4.63	36.5	10.5	187	23.7	953	53.4	4870	121	23.7K	344	115K	1070
1.43	2.07	7.32	4.68	37.4	10.6	191	23.9	976	54.1	4990	122	24.3K	347	118 K	1090
1.47	2.10	7.50	4.74	38.3	10.7	196	24.2	1000	54.7	5110	124	24.9K	353	121 K	1100
1.50	2.12	7.68	4.80	39.2	10.8	200	24.5	1020	55.3	5230	125	25.5K	357	124 K	1100
1.54	2.15	7.87	4.86	40.2	11.0	205	24.8	1050	56.1	5360	127	26.1K	361	127K	1100
1.58	2.18	8.06	4.92	41.2	11.1	210	25.1	1070	56.6	5490	128	26.7K	365	130K	1100
1.62	2.20	8.25	4.97	42.2	11.2	215	25.4	1100	57.4	5620	130	27.4K	370	133 K	1100
1.65	2.22	8.45	5.04	43.2	11.4	221	25.7	1130	58.2	5760	131	28K	374	137K	1100
1.69	2.25	8.66	5.10	44.2	11.5	226	26.0	1150	58.7	5900	133	28.7K	379	140K	1100
1.74	2.28	8.87	5.16	45.3	11.7	232	26.4	1180	59.5	6040	134	29.4 K	383	143 K	1100
1.78	2.31	9.09	5.22	46.4	11.8	237	26.7	1210	60.2	6190	136	30.1 K	388	147K	1100
1.82	2.34	9.31	5.28	47.5	11.9	243	27.0	1240	61.0	6340	138	30.9 K	393	150K	1100
1.87	2.37	9.53	5.34	48.7	12.1	249	27.3	1270	61.7	6490	140	31.6 K	397	154 K	1100
1.91	2.39	9.76	5.41	49.9	12.2	255	27.7	1300	62.4	6650	141	32.4 K	402	158K	1100
1.96	2.42	10.0	5.47	51.1	12.4	261	28.0	1330	63.2	6810	143	33.2 K	407	162K	1100
2.00	2.45	10.2	5.53	52.3	12.5	267	28.3	1370	64.1	6980	145	34 K	412	165K	1100
2.05	2.48	10.5	5.61	53.6	12.7	274	28.7	1400	64.8	7150	146	34.8 K	417	169 K	1100
2.10	2.51	10.7	5.66	54.9	12.8	280	29.0	1430	65.5	7320	148	35.7K	422	174K	1100
2.15	2.54	11.0	5.74	56.2	13.0	287	29.3	1470	66.4	7500	150	36.5 K	427	178K	1100
2.21	2.57	11.3	5.82	57.6	13.1	294	29.7	1500	67.0	7680	152	37.4 K	432	182K	1100
2.26	2.60	11.5	5.87	59.0	13.3	301	30.0	1540	68.0	7870	154	38.3K	437	187K	1100
2.32	2.64	11.8	5.95	60.4	13.4	309	30.4	1580	68.8	8060	155	39.2 K	442	191K	1100
2.37	2.67	12.1	6.02	61.9	13.6	316	30.8	1620	69.7	8250	157	40.2 K	448	196K	1100
2.43	2.70	12.4	6.10	63.4	13.8	324	31.2	1650	70.3	8450	159	41.2 K	454	200K	1100
2.49	2.73	12.7	6.17	64.9	13.9	332	31.6	1690	71.2	8660	161	42.2K	460		
2.55	2.77	13.0	6.24	66.5	14.1	340	31.9	1740	72.2	8870	163	43.2 K	460		
2.61	2.80	13.3	6.32	68.1	14.3	348	32.3	1780	73.0	9090	165	44.2 K	460		
2.67	2.83	13.7	6.41	69.8	14.5	357	32.7	1820	73.9	9310	167	45.3 K	460		
2.74	2.87	14.0	6.48	71.5	14.6	365	33.1	1870	74.9	9530	169	46.4K	460		
2.80	2.90	14.3	6.55	73.2	14.8	374	33.5	1910	75.7	9760	171	47.5 K	460		
2.87	2.93	14.7	6.64	75.0	15.0	383	33.9	1960	76.6	10K	173	48.7K	460		
2.94	2.97	15.0	6.70	76.8	15.2	392	34.3	2000	77.4	10.2 K	175	49.9 K	460		
3.01	3.00	15.4	6.80	78.7	15.4	402	34.7	2050	78.4	10.5K	178	51.1K	460		
3.09	3.04	15.8	6.88	80.6	15.5	412	35.1	2100	79.4	10.7K	179	52.3 K	460		
3.16	3.08	16.2	6.97	82.5	15.7	422	35.6	2150	80.3	11K	182	53.6K	460		
3.24	3.12	16.5	7.03	84.5	15.9	432	36.1	2210	81.4	11.3 K	184	54.9 K	460		
3.32	3.16	16.9	7.12	86.6	16.1	442	36.4	2260	82.3	11.5 K	186	56.2 K	460		
3.40	3.19	17.4	7.22	88.7	16.3	453	36.9	2320	83.4	11.8 K	188	57.6K	460		

[^1]

Fig. 19: Typical Tubeohm resistors.

When a resistor with an insulating shell is needed, so that the resistor may be mounted directly against a metal panel, the Ohmite Tubeohm type of resistor provides the answer. It is produced in four basic sizes, rated $5,10,20$ and 25 watts for commercial purposes and also in two military versions, RW55 and RW56, per specification MIL-R-26 (see page 17).

A unit consists of a wirewound, Series 88 , Molded Ohmicone Resistor (Page 16) which is in turn sealed in an outer ceramic shell. Special high temperature cements secure the resistor to the core and plug the ends. The usual terminals are axial, tinned wire leads, which are approximately centered on the ends.

Tubeohms with insulated flexible wire leads can be provided for use where a completely insulated resistor, with no exposed terminals is wanted. Applications occur in such equipment as motion picture apparatus, air conditioning and other equipment. When the equipment is to be approved by the Underwriters' Laboratories, it is necessary that complete details on such requirements be furnished to enable us to recommend the proper unit.

Terminals: Bare wire leads, lugs and insulated wire leads are available. The insulated wire is generally stranded and may have glass braid over plastic insulation, silastic, "Neoprene" or other synthetic "rubber" insulation. Terminals can be brought out at one end. Resistors may have 1 or 2 taps.

Mounting Brackets

Tubeohms are usually mounted by their leads, but they

Wats	Overall Dimen.		Max. Ohms
	1	0	
5	13	$1 / 2$	5,000
10	2	$19 / 2$	10,000
10	$11 / 2$	$19 / 2$	6,000
20	$21 / 2$	$23 / 22$	12,000
25	$23 / 4$	25,000	

can be mounted by a metal strap which can be supplied fastened around the tube, as illustrated. The vertical type bracket is designed for through-the-chassis mounting, with most of the resistor above the chassis and generally both of the terminals below. Brackets are supplied only when specified on the order.
Bracket, Horizontal type, for $1 / 2^{\prime \prime}$ dia. . . . Cat. No. 15
Bracket, Horizontal type, for $23 / 32^{\prime \prime}$ dia. . . . Cat. No. 23
Bracket, Vertical type, for $19 / 32^{\prime \prime}$ dia. Cat. No. 19

Fig. 20: Tubeohm dimensions.

Fig. 21: Metal Film resistors.

Series 66 resistors culminate an intensive program dedicated to the development of the highest quality metal film resistors available to industry! As a result, Series 66 resistors are made only with the lowest specified (per MIL-R-10509E) TC, $0 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, as well as stability and low noise level comparable to precision wirewounds! These units may be confidently relied upon for accuracy, for operation in very high ambients and in high-frequency or high-gain circuits where low reactance and low noise level are manda-

TABLE I, TYPE 661 METAL FILM RESISTORS

Ohmilte Style	$\begin{aligned} & \text { MIL } \\ & \text { Styie } \end{aligned}$	$\begin{gathered} \text { Wafts } \\ 129^{\circ} \mathrm{Ct} \end{gathered}$	$\begin{aligned} & \text { Volls } \\ & \text { (mox) } \end{aligned}$	Dimunsions		Leads $11 / 2^{\prime \prime}$ AWG*	Min. Ohms	Max. Ohms
				$\begin{aligned} & \text { Leth. } \\ & \pm .015 \end{aligned}$	$\begin{aligned} & \text { Dia. } \\ & \pm .010 \end{aligned}$			
661E-1/8	RN60E	1/8	250	. 406	. 130	22	309	499K
$661 E-1 / 4$	RN65E	1/4	300	. 594	. 203	22	402	1 MEG
661E-1/2	RN70E	$1 / 2$	350	. 719	. 261	20	402	IMEG
$661 E-1$	RN75E	1	500	1.105	. 395	20	365	2MEG
* 22 AWG ($.025 \pm .002$)		20 AWG (.032 $\pm .002$			2) †D	le	e	at 70°

tory. They are designed to exceed the requirements of MIL-R-10509E.
Construction: The resistance element is a film of special, non-noble metal alloy vacuum-evaporated onto a special ceramic core. Contact to the film is achieved with gold terminal bands fired onto the core ends. Gold-plated end-caps are pressed over the core ends and leads are butt-welded to the caps. The assembly is covered with a special protective resin and completed with a molded coating. Film, core, caps and coating are matched to provide a stable, moisture-resistant component.
Tolerance: Standard tolerance is $\pm 1.0 \%$; tolerances to $\pm 0.1 \%$ are available.
Leads: Standard leads are nickel, solder-dip coated for soldering; also furnished bare for welding or goldplated on special order.
Temperature Coefficient of Resistance (TC) : Available only in $0 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ("E" characteristic) over the range of $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$.
tABLE II, TYPICAL TEST DATA FOR SERIES 66 RESISTORS*......

TESTS		Ohmite Style/MIL Style Watt Rating © $125^{\circ} \mathrm{C}$ Amb.		$\begin{gathered} \hline 661 E-1 / 8 / \text { RN6OE } \\ \hline 1 / 8 \\ \hline \end{gathered}$				661E-1/4/RN65E 1/4						
		Resistance		309Ω		499K Ω		402』		348K Ω		1 MEG Ω		
		MIL Requirements	Avg. of All Tests	Avg.t	Range	Avg.t	Range	Avg. \dagger	Range	Avg.t	Range	Avg. \dagger	Range	
\square	$55^{\circ} \mathrm{C}$	25	7.93	9.1	$\begin{aligned} & -8.0 \text { to } \\ & -10.7 \\ & \hline \end{aligned}$	8.8	$\begin{gathered} -5.1 \text { to } \\ -12.5 \end{gathered}$	5.6	$\begin{array}{r} -.5 \text { to } \\ -12.0 \\ \hline \end{array}$	2.3	$\begin{aligned} & +.3 \text { to } \\ & +5.8 \\ & \hline \end{aligned}$	4.4	$\begin{aligned} & -.1 \text { to } \\ & -8.7 \\ & \hline \end{aligned}$	
	$75^{\circ} \mathrm{C}$	25	17.79	15.9	$\begin{gathered} +14.8 \text { to } \\ +18.2 \\ \hline \end{gathered}$	19.5	$\begin{gathered} +10.5 \text { to } \\ +23.7 \end{gathered}$	23.3	$\begin{gathered} +21.1 \text { to } \\ +24.9 \end{gathered}$	20.8	$\begin{aligned} & +13.0 \text { to } \\ & +25.0 \end{aligned}$	18.6	$\begin{gathered} +15.110 \\ +24.0 \end{gathered}$	
$125^{\circ} \mathrm{C}$ Load Life @ 1000 Mrs.	\% $\Delta \mathrm{R}$	$\pm .5$. 107	. 097	$\begin{gathered} -.017 \text { to } \\ +.250 \end{gathered}$	080	$\begin{aligned} & -.002 \text { to } \\ & +.407 \end{aligned}$. 145	$\begin{gathered} +.014 \text { to } \\ +.404 \end{gathered}$. 088	$\begin{gathered} +.051 \text { to } \\ +.149 \end{gathered}$. 062	$\begin{aligned} & +.049 \text { to } \\ & +.069 \end{aligned}$	
Temp. Cycling	\% $\Delta \mathrm{R}$	$\pm .25$. 043	. 018	$\begin{array}{r} 0 \text { to } \\ +.032 \end{array}$. 049	$\begin{gathered} +.040 \text { to } \\ +.072 \end{gathered}$. 029	$\begin{aligned} & \hline-.003 \text { to } \\ & +.054 \end{aligned}$. 041	$\begin{gathered} +.022 \text { to } \\ +.060 \end{gathered}$. 042	$\begin{aligned} & +.024 \text { to } \\ & +.097 \end{aligned}$	
Low Temp. Operation	\% ΔR	$\pm .25$. 028	. 053	$\begin{gathered} +.012 \text { to } \\ +.135 \end{gathered}$. 008	$\begin{array}{r} 010 \\ +.014 \end{array}$. 001	$\begin{array}{r} 0 \text { to } \\ +.004 \end{array}$. 002	$\begin{gathered} 0 \text { to } \\ -.006 \end{gathered}$. 009	$\begin{array}{r} 0 \text { to } \\ -.013 \end{array}$	
Short Time Overload	\% $\Delta \mathrm{R}$	$\pm .25$. 019	. 031	$\begin{array}{r} 010 \\ -.104 \end{array}$. 009	$\begin{array}{r} 0 \text { to } \\ -.043 \end{array}$. 001	$\begin{array}{r} 010 \\ -\quad .005 \end{array}$. 001	$\begin{gathered} 0 \text { to } \\ -.003 \end{gathered}$. 006	$\begin{array}{\|c} -.003 \text { to } \\ +.010 \end{array}$	
Terminal Strength	\% ΔR	$\pm .25$. 003	. 003	$\begin{array}{r} 0 \text { to } \\ -.007 \\ \hline \end{array}$. 001	$\begin{gathered} 0 \text { to } \\ +.002 \end{gathered}$. 002	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 002	$\begin{gathered} 0 \text { to } \\ +.005 \end{gathered}$. 005	$\begin{array}{r} 010 \\ +.010 \end{array}$	
Dielectric Withstand Volts	\% $\Delta \mathrm{R}$	$\pm .25$. 005	. 002	$\begin{array}{r} 0 \text { to } \\ -.012 \end{array}$	0	0	. 004	$\begin{array}{\|c\|} \hline-.003 \text { to } \\ -.005 \end{array}$. 002	$\begin{array}{r} 0 \text { to } \\ +.008 \\ \hline \end{array}$. 012	$\begin{gathered} +.002 \text { to } \\ +.039 \end{gathered}$	
Effect of Soldering	\% $\Delta \mathrm{R}$	$\pm .25$. 013	. 018	$\begin{array}{c\|} \hline+.003 \text { to } \\ +.035 \\ \hline \end{array}$. 008	$\begin{gathered} 0 \text { to } \\ +.022 \end{gathered}$. 002	$\begin{gathered} 010 \\ +.002 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.015 \end{gathered}$. 003	$\begin{array}{r} 0 \text { to } \\ -.006 \end{array}$	
Moisture Resistance	\% ΔR	$\pm .50$. 058	. 199	$\begin{gathered} +.035 \text { to } \\ +.432 \end{gathered}$	118	$\begin{gathered} +.03910 \\ +.222 \\ \hline \end{gathered}$	029	$\begin{gathered} +.024 \text { to } \\ +.034 \end{gathered}$. 016	$\begin{gathered} +.011 \mathrm{to} \\ +.017 \end{gathered}$. 022	$\begin{gathered} +.009 \text { to } \\ +.039 \end{gathered}$	
Shock	\% ΔR	$\pm .25$. 006	. 008	$\begin{array}{\|c\|} -.004 \text { to } \\ -.010 \\ \hline \end{array}$. 002	$\begin{gathered} 0 \text { to } \\ -.007 \end{gathered}$.010	$\begin{gathered} +.007 \text { to } \\ +.014 \end{gathered}$. 003	$\begin{array}{r} 0 \text { to } \\ +.011 \end{array}$. 002	$\begin{array}{r} 0 \text { to } \\ -.005 \end{array}$	
Hi-Freq. Vibration	\% $\Delta \mathrm{R}$	$\pm .25$. 007	. 003	$\begin{gathered} 0 \text { to } \\ +.009 \end{gathered}$. 006	$\begin{array}{r} 0 \text { to } \\ +.018 \end{array}$. 011	$\begin{array}{\|c\|} \hline-.005 \text { to } \\ -.015 \end{array}$. 005	$\begin{gathered} 010 \\ -.015 \end{gathered}$. 014	$\begin{gathered} +.002 \text { to } \\ -.060 \end{gathered}$	

[^2]

Fig. 22: Typical frequency characteristics.
. . (compared to requirements of MIL-R-10509E)

Wattage Rating: Standard rating at $125^{\circ} \mathrm{C}$. Derates linearly to " 0 " watts at $175^{\circ} \mathrm{C}$. Ratings double at $70^{\circ} \mathrm{C}$ ambient!
Frequency, Load-Life and Noise Characteristics: See graphs and tables. The $\% \Delta \mathbf{R}$ values given here, while indicative of the general performance of this line, should not be used as THE design or performance limits for specification purposes. See Bulletin 110 for noise characteristics.

TABLE III, CYCLIC LOAD LIFE TEST \dagger SUMMARY for SERIES 66 RESISTORS - ALL STYLES

(Groups Started at Different Times)

Ohmite Style	MIL Shyle	Total No. of Units	Total Unit-Hours	Failures
$661 \mathrm{E}-1 / 8$	RN60	300	$3,000,000$	0
$661 \mathrm{E}-1 / 4$	RN65	327	$3,270,000$	0
$661 \mathrm{E}-1 / 2$	RN70	363	$3,630,000$	1^{*}
$661 \mathrm{E}-1$	RN75	874	$8,740,000 \ddagger$	$3^{* *}$
	Totol	1864	$18,640,000$	4

\dagger Full wattage at $125^{\circ} \mathrm{C}$. $-11 / 2 \mathrm{hr}$. on- $1 / 2 \mathrm{hr}$. off.
*1 unit opened at 5000 hr .

* 1 unit showed $4.5 \% \Delta R$ at 1000 hr .1 opened at 6000 hr . 1 opened at 8000 hr . \ddagger For delailed breakdown of this group, see Table IV.

661E-1/2/RN70E						661E-1/RN75E					
1/2						1					
402\%		237K0		1 MEG Ω		3650		237K0		2 MEG 1	
Avg. $\dagger 1$	Range	Avg.	Range								
4.4	$\begin{aligned} & +.3 \text { to } \\ & +10.6 \end{aligned}$	4.9	$\begin{aligned} & +1.6 \text { to } \\ & -10.5 \end{aligned}$	11.5	$\begin{gathered} \hline-7.9 \text { to } \\ -13.6 \end{gathered}$	15.7	$\begin{aligned} & -7.0 \text { to } \\ & -25.0 \end{aligned}$	9.9	$\begin{gathered} -1.0 \text { to } \\ -19.0 \end{gathered}$	10.6	$\begin{aligned} & -.610 \\ & -20.0 \end{aligned}$
20.1	$\begin{array}{\|c\|} \hline+18.2 \text { to } \\ +23.0 \end{array}$	19.0	$\left\lvert\, \begin{gathered} +14.0+0 \\ +24.0 \end{gathered}\right.$	14.0	$\begin{aligned} & +6.6 \text { to } \\ & +24.5 \end{aligned}$	12.5	$\begin{aligned} & +7.0 \text { to } \\ & +15.0 \end{aligned}$	12.5	$\begin{aligned} & +6.0 \text { to } \\ & +21.0 \end{aligned}$	19.5	$\begin{gathered} +15.310 \\ +24.3 \end{gathered}$
.159	$\begin{gathered} +.009 \text { to } \\ +.360 \end{gathered}$. 278	$\begin{gathered} +.147 \mathrm{to} \\ +.387 \end{gathered}$. 049	$\begin{gathered} 0 \text { to } \\ +.129 \end{gathered}$. 085	$\begin{gathered} +.057 \text { to } \\ +.117 \end{gathered}$. 093	$\begin{gathered} +.025 \text { to } \\ +.172 \end{gathered}$. 038	$\begin{gathered} +.004 \text { to } \\ +.115 \end{gathered}$
. 055	$\begin{gathered} +.002 \text { to } \\ +.126 \end{gathered}$. 049	$\begin{aligned} & +.004 \text { to } \\ & +.113 \end{aligned}$. 029	$\begin{gathered} +.009 \text { to } \\ +.049 \end{gathered}$. 037	$\begin{gathered} +.005+0 \\ -.189 \end{gathered}$. 010	$\begin{gathered} +.004 \text { to } \\ +.021 \end{gathered}$. 114	$\begin{gathered} +.064 \text { to } \\ +.194 \end{gathered}$
. 034	$\begin{array}{\|c\|} \hline+.01910 \\ +.054 \end{array}$. 018	$\begin{array}{\|c\|} \hline-.009 \text { to } \\ -.026 \end{array}$. 021	$\begin{gathered} +.009 \text { to } \\ -.060 \end{gathered}$. 129	$\begin{gathered} +.079 \text { to } \\ +.186 \end{gathered}$. 021	$\begin{gathered} 0 \text { to } \\ -.089 \end{gathered}$. 010	$\begin{gathered} -.00510 \\ -.015 \\ \hline \end{gathered}$
. 015	$\begin{gathered} +.004 \text { to } \\ +.069 \\ \hline \end{gathered}$. 011	$\begin{gathered} 0 \text { to } \\ -.077 \end{gathered}$. 004	$\begin{array}{r} 0 \text { to } \\ -.010 \end{array}$. 122	$\left\lvert\, \begin{gathered} -.088 \text { to } \\ -.151 \end{gathered}\right.$. 006	$\begin{gathered} 0 \text { to } \\ -.009 \end{gathered}$. 004	$\begin{array}{r} 010 \\ +.009 \\ \hline \end{array}$
. 004	$\begin{array}{r} 010 \\ -.015 \end{array}$. 001	$\begin{array}{r} 0 \text { to } \\ +.008 \end{array}$. 003	$\begin{gathered} 0 \text { to } \\ -.010 \end{gathered}$. 004	$\begin{array}{r} 010 \\ +.011 \end{array}$. 005	$\begin{gathered} 0 \text { to } \\ -.009 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.010 \end{gathered}$
. 002	$\begin{array}{r} 010 \\ -.016 \end{array}$. 003	$\begin{gathered} 0 \text { to } \\ -.002 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ -.002 \end{gathered}$. 012	$\begin{gathered} 0 \text { to } \\ +.038 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 013	$\begin{gathered} +.004 \text { to } \\ +.024 \end{gathered}$
. 031	$\begin{array}{\|c\|} \hline+.024 \text { to } \\ +.034 \end{array}$. 011	$\begin{array}{\|c\|} \hline-.009 \text { to } \\ -.022 \\ \hline \end{array}$. 023	$\begin{gathered} +.01910 \\ +.029 \end{gathered}$. 012	$\begin{gathered} 0 \text { to } \\ +.057 \end{gathered}$. 031	$\begin{gathered} +.016 \text { to } \\ +.050 \end{gathered}$. 005	$\begin{gathered} 0 \text { to } \\ -.020 \end{gathered}$
. 058	$\begin{array}{\|c\|} \hline-.030+0 \\ -.065 \end{array}$. 019	$\begin{gathered} +.00810 \\ +.029 \end{gathered}$. 015	$\begin{gathered} 0 \text { to } \\ -.050 \end{gathered}$. 024	$\begin{gathered} +.021 \text { to } \\ +.032 \end{gathered}$. 068	$\begin{gathered} +.01210 \\ +.337 \end{gathered}$. 066	$\begin{gathered} +.039 \text { to } \\ +.084 \\ \hline \end{gathered}$
. 004	$\begin{array}{r} 0 \text { to } \\ -.005 \end{array}$	0	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 016	$\begin{array}{r} 0 \text { to } \\ -.040 \end{array}$. 004	$\begin{gathered} 0 \text { to } \\ +.010 \end{gathered}$. 004	$\begin{gathered} 0 \text { to } \\ -.009 \end{gathered}$. 019	$\begin{gathered} +.005 \text { to } \\ -.040 \end{gathered}$
. 001	$\begin{array}{r} 0 \text { to } \\ -.005 \end{array}$. 002	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.010 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.006 \end{gathered}$. 005	$\begin{gathered} 0 \text { to } \\ -.009 \end{gathered}$. 022	$\begin{gathered} +.005 \text { to } \\ +.045 \end{gathered}$

TABLE IV, ANALYSIS of CYCLIC TEST TIME ON STYLE 661E-1 (RN75) RESISTORS*

(Total Units $\mathbf{8 7 4} \dagger$-Total Unit-Hours $\mathbf{8 , 7 4 0 , 0 0 0)}$

Elapsed Hours as of 7-16-65	Total No. of Units	Total Unit-Hours	Avg. $\% \Delta R$	Max. $\% \Delta R$
1,000	874	874,000	0.11	$0.58^{* *}$
2,000	874	$1,748,000$	0.14	$0.53 \dagger \dagger$
5,000	874	$4,370,000$	0.22	0.61
10,000	874	$8,740,000$	0.31	1.94

- Various groups of units in the total of 874 went under test at different times.
\ddagger See Table III for failures and analysis thereof.
* 1 unit exceeded 0.5%.
$\dagger \dagger 2$ units exceeded 0.5%.

TABLE V, DISTRIBUTION OF UNITS IN LOAD-LIFE TEST SUMMARY
(For Style 661E-1 (RN75) 1-Watt Resistor)

Resistance Value in Ohms	No. of Units	Resistance Value in Ohms	No. of Units
70	8	3,010	10
200	12	10,000	22
365	82	13,000	16
410	20	20,000	25
552	229	152,000	11
825	13	202,000	17
832	20	$* 237,000$	267
1,000	10	$1,000,000$	10
2,770	10	$2,000,000$	82
2,910	10	Total Units	874

-Critical Resistance
"BROWN DEVIL" (Type 200) convenient, vitreous enameled, wirewound resistors, have been, over many years, an industry byword for small rugged power resistors. Compact, capable of substantial wattages and exhibiting surprising overload capability, these handy units find application in electronic and electrical servicing everywhere as well as in original equipment.

Five sizes (3, 51/4, 8, 12 and 20 watts) are now stocked. These include new, physically smaller sizes to accommodate the trend towards miniaturization. A broad selection of values is carried in these five sizes. Unlisted values can be made to order (see pages 36-39).

Fig. 23:
Brown Devils are wound with high grade resistance wire on ceramic cores. The terminals are narrow, welded bands of special alloy to which $11 / 2^{\prime \prime}$ long, tinned, wire leads are attached (see Fig. 23). Normally they are mounted by these leads, although the 8,12 and 20 -watt units can be mounted with through-bolts or with metal brack-ets-No. 5 brackets for the 8 and 12 -watt units; No. 7 brackets for the 20 -watt unit (see page 49).

The winding is covered with famous Ohmite vitreous enamel, the coating which cannot burn or shrink, which anchors the turns in place and provides a smooth, hard coat to distribute heat and minimize hotspots.

Resistance Tolerances: $\pm 5 \%$ standard for values 1 ohm or higher; $\pm 10 \%$ below 1 ohm . Closer tolerances available on order.
Leads: Solderable. 3 and $51 / 4$ watt sizes, 20 gage; 8,12 and 20 watt sizes, 18 gage (see Fig. 23).

Fig. 24a:

WATT

STOCK STYLE 200-3
Core: $7 / 16^{\prime \prime} \mathrm{Lx} .200^{\prime \prime} \mathrm{D}$
Terminal: No. 48

Stock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.
2712	1.0	1.73	2760	100	. 17
2713	1.1	1.65	2761	110	. 16
2714	1.2	1.58	2762	120	. 16
2715	1.3	1.52	2763	130	. 15
2716	1.5	1.41	2764	150	. 14
2717	1.6	1.37	2765	160	. 14
2718	1.8	1.29	2766	180	. 13
2719	2.0	1.22	2767	200	. 12
2720	2.2	1.17	2768	220	. 12
2721	2.4	1.12	2769	240	. 11
2722	2.7	1.05	2770	270	. 11
2723	3.0	1.00	2771	300	. 10
2724	3.3	. 95	2772	330	. 095
2725	3.6	. 91	2773	360	. 091
2726	3.9	. 88	2774	390	. 088
2727	4.3	. 83	2775	430	. 083
2728	4.7	. 80	2776	470	. 080
2729	5.1	. 77	2777	510	. 077
2730	5.6	. 73	2778	560	. 073
2731	6.2	. 69	2779	620	. 070
2732	6.8	. 66	2780	680	. 067
2733	7.5	. 63	2781	750	. 063
2734	8.2	. 60	2782	820	. 060
2735	9.1	. 57	2783	910	. 057
2736	10	. 55	2784	1,000	. 055
2737	11	. 52	2785	1,100	. 052
2738	12	. 50	2786	1,200	. 050
2739	13	. 48	2787	1,300	. 048
2740	15	. 45	2788	1,500	. 045
2741	16	. 43	2789	1,600	. 043
2742	18	. 42	2790	1,800	. 042
2743	20	. 39	2791	2,000	. 039
2744	22	. 37	2792	2,200	. 037
2745	24	. 35	2793	2,400	. 035
2746	27	. 33	2794	2,700	. 033
2747	30	. 32	2795	3,000	. 032
2748	33	. 30	2796	3,300	. 030
2749	36	. 29	2797	3,600	. 029
2750	39	. 28	2798	3,900	. 028
2751	43	. 26	2799	4,300	. 026
2752	47	. 25	2800	4,700	. 025
2753	51	. 24	2801	5,100	. 024
2754	56	. 23	2802	5,600	. 023
2755	62	. 22	2803	6,200	. 022
2756	68	. 21	2804	6,800	. 021
2757	75	. 20	2805	7,500	. 020
2758	82	. 19	2806	8,200	. 019
2759	91	. 18	2807	9,100	. 018
			2808	10,000	. 017

WATT

STOCK STYLE 200-5 $1 / 4$
Core: $5 / /^{\prime \prime} L \times 1 / 4^{\prime \prime} \mathrm{D}$
Terminal: No. 48
Code: 5/8-CA-48-F

Stock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.
2822	1.0	2.29	2874	150	. 19
2823	1.1	2.19	2875	160	. 18
2824	1.2	2.09	2876	180	. 17
2825	1.3	2.01	2877	200	. 16
2826	1.5	1.87	2878	220	. 16
2827	1.6	1.81	2879	240	. 15
2828	1.8	1.71	2880	270	. 14
2829	2.0	1.62	2881	300	. 13
2830	2.2	1.54	2882	330	. 12
2831	2.4	1.48	2883	360	. 12
2832	2.7	1.39	2884	390	. 12
2833	3.0	1.32	2885	430	. 11
2834	3.3	1.24	2886	470	. 11
2835	3.6	1.21	2887	510	. 10
2836	3.9	1.16	2888	560	. 097
2837	4.3	1.10	2889	620	. 092
2838	4.7	1.06	2890	680	. 088
2839	5.1	1.01	2891	750	. 084
2840	5.6	. 97	2892	820	. 080
2841	6.2	. 92	2893	910	. 076
2842	6.8	. 88	2894	1,000	. 072
2843	7.5	. 84	2895	1,100	. 069
2844	8.2	. 80	2896	1,200	. 066
2845	9.1	. 76	2897	1,300	. 064
2846	10	. 72	2898	1,500	. 059
2847	11	. 69	2899	1,600	. 057
2848	12	. 66	2900	1,800	. 054
2849	13	. 64	2901	2,000	. 051
2850	15	. 59	2902	2,200	. 049
2851	16	. 57	2903	2,400	. 047
2852	18	. 54	2904	2,700	. 044
2853	20	. 51	2905	3,000	. 042
2854	22	. 49	2906	3,300	. 040
2855	24	. 47	2907	3,600	. 038
2856	27	. 44	2908	3,900	. 037
2857	30	. 42	2909	4,300	. 035
2858	33	. 40	2910	4,700	. 033
2859	36	. 38	2911	5,100	. 032
2860	39	. 37	2912	5,600	. 031
2861	43	. 35	2913	6,200	. 029
2862	47	. 33	2914	6,800	. 028
2863	51	. 32	2915	7,500	. 027
2864	56	. 31	2916	8,200	. 025
2865	62	. 29	2917	9,100	. 024
2866	68	. 28	2918	10,000	. 023
2867	75	. 27	2919	11,000	. 022
2868	82	. 25	2920	12,000	. 021
2869	91	. 24	2921	13,000	. 020
2870	100	. 23	2922	15,000	. 019
2871	110	. 22	2923	16,000	. 018
2872	120	. 21	2924	18,000	. 017
2873	130	. 20	2925	20,000	. 016

Avg. Weight . 005 lb .

	STOCK STYLE 200-8 Core: 1" L x 5/16" D Terminal: No. 48 Code: I-D.48-F					STOCK STYLE 200-12 Core: $13 / 4 " L \times 5 / 16^{\prime \prime} D$ Terminal: No. 48 WATT Code: 13/4-D.48-F							STOCK STYLE Core: $2^{\prime \prime} \mathrm{L} \times 7 / 16^{\prime \prime} \mathrm{D}$ Terminal: No. 48 Code: 2-H-48-F				
Slock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.	Slock No.	Ohms	Max. Amps:	Stock No.	Ohms	$\underset{\text { Max. }}{\substack{\text { Mmps. } \\ \hline}}$	Slock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.
1500	1.0	2.83	1528	700	. 11	17004	0.5	4.90	1737	1,100	. 10	1800A	0.5	6.32	1831	2,750	. 085
15008	1.5	2.30	1529	750	. 10	1701	1.0	3.46	1738	1,200	. 10	1802A	1.0	4.47	1832	3,000	. 081
1501	2.0	2.00	1530	800	. 10	1704	1.5	2.82	1739	1,250	. 097	$1802 B$	2.0	3.16	1833	3,500	. 075
1502	3.0	1.63	1531	900	. 094	1705	2.0	2.45	1740	1,500	. 089	1802C	3.0	2.58	1834	4,000	. 070
1503	4.0	1.41	1532	1,000	. 089	1706	3.0	2.00	1741	1,750	. 082	1802D	4.0	2.24	1835	4,500	. 066
1504	5.0	1.26	1533	1,100	. 085	1707	4.0	1.73	1742	2,000	. 077	1803	5.0	2.00	1836	5,000	. 063
1505	7.5	1.00	1534	1,200	. 081	1708	5.0	1.54	1743	2,250	. 073	1804	10	1.41	1837	6,000	. 057
1506	10	. 89	1535	1,250	. 080	1709	7.5	1.26	1744	2,500	. 069	1805	25	. 89	1838	7,000	. 053
1507	12	. 81	1536	1,500	. 073	1710	10	1.09	1745	3,000	. 063	1806	50	. 63	1839	7,500	. 051
1508	15	. 73	1537	1,750	. 067	1711	12	1.00	1746	3,500	. 058	1807	75	. 52	1840	8,000	. 050
1509	20	. 63	1538	2,000	. 063	1712	15	. 89	1747	4,000	. 054	1808	100	. 45	1840A	9,000	. 047
1510	25	. 56	1539	2,250	. 059	1713	20	. 77	1748	4,500	. 051	1809	150	. 36	1841	10,000	. 043
1511	30	. 51	1540	2,500	. 056	1714	25	. 69	1749	5,000	. 049	1810	200	. 32	1842	12,500	. 035
1512	35	47	1541	3,000	. 051	1715	30	. 63	1750	6,000	. 044	1811	250	. 28	1843	15,000	. 032
1513	40	. 44	1542	3,500	. 047	1716	35	. 58	1751	7,000	. 041	1812	300	. 26	1844	20,000	. 027
1514	50	. 40	1543	4,000	. 044	1717	40	. 54	1752	7,500	. 040	1813	350	. 24	1845	25,000	. 024
1515	75	. 32	1544	4,500	. 042	1718	50	. 49	1753	8,000	. 038	1814	400	22	1846	30,000	. 022
1516	100	. 28	1545	5,000	. 040	1719	75	. 40	1754	8,500	. 037	1815	500	. 20	1847	35,000	. 021
1517	125	25	1546	6,000	. 036	1720	100	. 34	1754A	9,000	. 036	1816	650	. 18	1848	40,000	. 019
1518	150	. 23	1547	7,000	. 033	1721	125	. 31	1755	10,000	. 035	1817	700	. 17	1849	45,000	. 018
1519	200	. 20	1548	7,500	. 032	1722	150	28	1756	11,000	. 033	1818	750	. 16	1850	50,000	. 017
1520	225	. 18	1549	8,000	. 031	1723	200	. 24	1757	12,000	. 031	1819	800	. 15	1851	55,000	. 016
1521	250	. 17	1550	9,000	. 029	1724	225	. 23	1758	12,500	. 031	18204	900	. 15	1852	60,000	. 016
1522	300	. 16	1551	10,000	. 028	1725	250	. 22	1759	13,500	. 029	1821	1,000	. 14	1853	65,000	. 015
1523	350	. 15	1552	12,500	. 025	1726	300	. 20	1761	15,000	. 028	1822	1,200	.13	1854	70,000	. 014
1524	400	. 14	1553	15,000	. 023	1727	350	. 18	1762	16,000	. 027	1823	1,250	. 12	1855	75,000	. 013
1525	450	. 13	1554	17,500	. 021	1728	400	. 17	1763	17,500	. 026	1824	1,500	. 12	1856	80,000	. 012
1526	500	. 12	1555	20,000	. 020	1729	450	. 16	1764	18,000	. 025	1825	1,750	. 11	1857	85,000	. 012
1527	600	.11	1556	22,500	. 018	1730	500	. 15	1765	20,000	. 024	1827	2,000	. 10	1858	90,000	. 011
			1557	25,000	. 017	1731	600	. 14	1766	22,500	. 023	$\begin{array}{r} 1828 \\ 1830 \end{array}$	$\begin{aligned} & 2,250 \\ & 2,500 \end{aligned}$	$\begin{array}{r} .094 \\ .089 \end{array}$	1859 1860	$\begin{array}{r} 95,000 \\ 100,000 \end{array}$	$\begin{aligned} & .010 \\ & .010 \end{aligned}$
						1732	700	. 13	1767	25,000	. 022						
						1733	750	. 12	1768	30,000	. 020						
						1734	800	. 12	1769	35,000	. 018						
						1735	900	. 11	1770	40,000	. 017						
						1736	1,000	. 11	1771	45,000	. 016						
									1772	50,000	. 015						

Avg. Weight . 01 Lb .
Avg. Weight .015 Lb .
Avg. Weight .03 Lb .

Fig. 25: Brown Devil resistors are normally mounted by means of their terminal wires. Brackets or through-boits also can be used to mount the 8,12 , and 20 -watt resistors as illustrated here.

Application: Lug (or tab) terminal type resistors are most widely used for higher power applications.
Description: Wire-wound and vit-reous-enameled on tubular ceramic core as described on pages 2 and 3 . The best alloy and largest practicable size wire is used for each resistance. The use of such sizes is
made feasible by Ohmite's exclusive vitreous enamel which retains the turns, uniformly spaced, just as they were wound and hence permits close spacing.
Stock Range: Six stock sizes, 12 to 225 watts. Widest resistance range, greatest number of stock values available anywhere!

Made-to-Order-Range: Intermediate or higher resistances and ratings up to 1000 watts can be made to order. (See pages 36,37 . Also see page 35 for low resistance, high current lug-type "Corrib" resistors.) Intermediate resistance values may also be obtained with Ohmite "Dividohm" adjustable

WATT	STOCK STYLE 270-12 Rating: 12 watts in free air for all resistance values Core: $13 / 4^{\prime \prime} \mathrm{L} \times 5 / 16^{\prime \prime} \mathrm{D} \quad$ Lug: No. 57 Code: 13/4-D-57-F		
Stock No.	Ohms	Maximum	
		Amperes	Volts
3723	. 51	4.86	2.48
3730	1.0	3.46	3.46
3734	1.5	2.83	4.24
3738	2.2	2.34	5.14
3742	3.3	1.91	6.30
3746	4.7	1.60	7.50
3750	6.8	1.33	9.04
3754	10	1.10	11.0
3756	12	1.00	12.0
3758	15	. 89	13.4
3760	18	82	14.8
3762	22	. 74	16.3
3764	27	. 67	18.0
3766	33	. 60	19.9
3768	39	. 55	21.6
3770	47	53	24.8
3772	56	46	26.0
3774	68	. 42	28.6
3776	82	. 38	31.4
3778	100	. 35	34.7
3780	120	. 32	38.0
3782	150	. 28	42.5
3784	180	. 26	46.5
3786	220	. 23	51.3
3788	270	. 21	57.1
3790	330	. 19	63.0
3792	390	. 18	68.5
3794	470	. 16	75.1
3796	560	. 15	82.0
3798	680	. 13	90.4
3800	820	. 12	99.3
3802	1,000	. 11	110
3804	1,200	. 10	120
3806	1,500	. 089	134
3808	1,800	. 082	147
3810	2,200	. 074	163
3812	2,700	. 087	180
3814	3,300	. 060	199
3816	3,900	. 055	216
3818	4,700	. 053	248
3820	5,600	. 046	259
3822	6,800	. 042	286
3824	8,200	. 038	314
3826	10,000	. 035	346
3828	12,000	. 032	380
3830	15,000	. 028	424
3832	18,000	. 026	464
3834	22,000	. 023	514
3836	27,000	. 021	570
3838	33,000	. 019	630
3840	39,000	. 018	685
3842	47,000	. 016	751
3843	51,000	. 015	784
Standard Mounting Bracket No. 5 Mounting Centers 23/16" Avg. Weight .02 tb .			

	$\begin{array}{r} -\begin{array}{r} 1 \frac{3}{4} \\ 9-104 \\ -2 \frac{3}{10} \end{array} \\ -2 \end{array}$	$\begin{array}{r} -\frac{7}{164} \frac{5}{16} \\ =1440 \end{array}$					
45 WATT	STOCK STYLE 270-25 Rating: 25 watts in free air for resistances through 10,000 ohms Core: 2 " Lxy ${ }^{\prime \prime}$ D Lug: No. 40 Code: 2-K-40-F			STOCK STYLE 270-50 Rating: 50 watts in free air for resistances through 25,000 ohms Core: $4^{\prime \prime} \mathrm{L} \times 9 / 16^{\prime \prime} \mathrm{D}$ lug: No. 40 Code: 4-K-40-F			
Stock No.	Ohms	Maximum		Stock No.	Ohms	Maximum	
		Amperes	Volls			Amperes	Volts
0200J	1	5.00	5.00	0400 J	1	7.07	7.07
0200K	2	3.54	7.07	0400K	2	5.00	10.0
0200l	3	2.88	8.65	0400L	3	4.07	12.3
0200N	4	2.50	10.0	0400N	4	3.53	14.1
0200A	5	2.24	11.1	0400A	5	3.16	15.8
0200B	10	1.58	15.8	0400B	10	2.23	22.4
0200R	15	1.29	19.4	0400C	25	1.41	35.4
0200C	25	1.00	25.0	0400D	50	1.00	50.0
0200D	50	. 71	35.3	0400E	75	. 82	61.2
0200E	75	. 58	43.2	0400F	100	. 71	70.7
0200F	100	. 50	50.0	0400G	150	. 58	86.6
0200G	150	. 41	61.4	0400H	200	. 50	100
0200H	200	. 35	70.7	0401	250	. 45	112
0201	250	. 32	79	0402	500	. 32	158
0202	500	. 22	116	0403	750	. 26	193
0203	750	. 18	137				
0204	800	. 17	141	0404 0405	800 1,000	. 25	224
0205	1,000	. 16	158	0405	1,000 1,500	. 22	$\begin{aligned} & 224 \\ & 274 \end{aligned}$
0206	1,500	. 13	193	0406	1,500 2,000	. 18	274 316
0207	2,000	. 12	223	0407 0408	2,000 2,500	.16 .14	316 354
0208	2,500	. 10	250	0408	2,500	. 14	354
0209	3,000	. 091	274	0409	3,000	. 13	387
0210	3,500	. 084	296	0410	4,000	. 11	447
0211	4,000	. 079	316	0411	5,000	. 10	500
0212	5,000	. 070	353	0412	7,500	. 081	612
0213	6,000	. 064	387	0413	8,000	. 079	632
0214	7,500	. 057	433	0414	10,000	. 071	707
0215	10,000	. 050	500	0415	12,000	. 064	774
0216	12,000	. 042	505	0416	15,000	. 057	866
0217	15,000	. 036	540	0417	20,000	. 050	1000
0218	20,000	. 031	620	0418	25,000	. 045	1100
0219	25,000	. 028	700	0419	35,000	. 032	1120
0220	30,000	. 026	780	0420	50,000	. 026	1300
0221	35,000	. 024	840	0421	75,000	. 021	1580
0222	40,000	. 022	880	0422	100,000	. 018	1800
0224	50,000	. 020	990	0423	125,000	. 016	1980
0225	60,000	. 016	990	0424	150,000	. 013	1980
0226	70,000	. 014	990	0425	175,000	. 011	1980
0227	80,000	. 012	990	0426	200,000	. 010	1980
0229	100,000	. 010	990	0428	250,000	. 008	1980
Standard Mounting Bracket No. 9 Mounting Centers $23 / 4$ " Avg. Weight .05 Lb .				Standard Mounting Bracket No. 9 Mounting Centers $43 / 4{ }^{\prime \prime}$ Avg. Weight .09 lb .			

lug-type resistors (page 26).
Tolerance: Standard is $\pm 5 \%$. Also available in tolerances down to $\pm 1 \%$ at increased cost.
Ratings: "Free Air Wattage and Derating" are explained on pages 4 to 9 . Current and voltage ratings at reduced wattages can be obtained by multiplying the figures in the tables by the factors below, or by direct application of Ohm's Law (up to maximum ohms at Free Air Watts).

Laad:	75%	66%	50%	33%	25%
Factor:	.86	.81	.71	.57	.50

Example: Rating of a No. 0402, 500 ohm resistor at 75% of full rating:

$$
\begin{aligned}
& .86 \times .32=.275 \text { amps } . \\
& .86 \times 158=136 \text { volts } .
\end{aligned}
$$

STOCK STYLE 270-225
Rafing: 225 watts in free air for all stock resistances
Core: $10 \frac{1}{2} " 1 \times 1 \frac{1}{8 \prime} \mathrm{D}$ Lug: No. 46
Code: $101 / 2$-P.46.F

WATT Core: $61 / 2^{\prime \prime} L \times 3 / /^{\prime \prime} D$ Lug: No. 40

STOCK STYLE 270-175
Rating: 175 walts in free air for
all stack resistances

Stock No.	Ohms	Moximum	
		Volls	
	1	13.2	13.2

Volts
10.0
0700C
13.2
9.3

Stock No.	Ohms	Moxim	
	Amperes		
0900 C			

0900 C 0900D 0900E 0900A 0900B 0901 0902 0903 0904 0905 0906 0908
0605 0607

0609
0610
611
612
0613
0614
$0615 \quad 7,500$
7,500
10,000
$0617 \quad 15,000$
0618
0619

0620
0620
$0621 \quad 40,000$
0622 50,000

0623	60,000	.041	2400
0624	75,000	.032	2400
0625	100,000	.028	2800

Standard Mounting Bracket Na. 12 Mounting Centers $73 / 8^{\prime \prime}$ Avg. Weight .20 Lb .
$+$

TYPE 210 DIVIDOHM ${ }^{\oplus}$ Vitreous Adjustable Resistors

Application: Type 210, "DIVIDOHM" resistors are employed where periodic or semi-permanent adjustment of resistance is required. They are also used to obtain odd or non-standard resistances or to make multi-tap resistors or voltage dividers. "Dividohms" provide the flexibility for experimental and design work and for apparatus which must be adjusted to meet different line voltages.

Description: These units are of vitreous enameled construction similar to Ohmite Type 270, Fixed, Lug-Type Resistors (pages 24 and 25) except for a narrow strip along one side left bare of enamel so that the wire is exposed. The strip of exposed turns of wire (every turn securely held against shifting) provides a surface for a contact projection on the adjustable lug. Resistance tolerance is $\pm 10 \%$ measured without the adjustable lug. Adjustable resistors can be made to order on practically any size core (see pages $36-37$). The wattage ratings given are for operation in free air as discussed on pages 4 to 9 . See page 49 for mounting brackets. (Note: Stock units supplied through distributors, include brackets.)

Moving the Adjustable Lugs: Before an adjustable lug is moved, it should be loosened to the point where it will not scrape across the wire. Lugs should not be moved while the circuit is "live," in order to protect the exposed wire from electrical injury and to protect the operator from dangerous voltages. The lugs should be firmly re-tightened but with due regard for the wire size involved. Ohmite adjustable lugs have a superior feature in the flat contact which distributes contact pressure and safeguards the wire much better than conventional, rounded contact points.

Adjustable lugs supplied with stock resistors have a contact embossed out of the band material, but lugs with a separate silver-alloy contact button are available as listed. Adjustable lugs with separate adjustments for fastening and contact pressure are also listed for some sizes.

Watt Rating: When "Dividohm" resistors are used, it must be remembered that the given wattage rating applies only when the entire resistance is in the circuit. When the adjustable lug is set at an intermediate point, the wattage rating is reduced in approximately the same proportion, i.e., if the lug is set at half the resistance, the wattage rating is reduced by one half. A safe rule to follow is simply to make sure that the maximum rated current is not exceeded. This should be carefully checked when several adjustable lugs are used to produce a voltage divider circuit (refer to Catalog 1100, "Engineering Manual").

Fig. 28a

STOCK STYLE 210-12
Core: $13 / 4^{\prime \prime} L \times 5 / 16^{\prime \prime}$ D
Lug: No. 57
WATT Code: $13 / 4$-D-57-D

Stock No.	Ohms	Max. Amps.
1001	1	3.46
1002	2	2.45
1003	3	2.00
1004	5	1.54
1005	7.5	1.26
1006	10	1.09
1007	15	. 89
1008	20	. 77
1009	25	. 69
1010	50	. 49
1011	75	. 40
1012	100	. 34
1013	150	. 28
1014	200	. 24
1015	250	. 22
1016	300	. 20
1017	350	. 18
1018	400	. 17
1019	500	. 15
1020	600	. 14
1021	750	. 13
1022	800	. 12
1023	1,000	. 11
1024	1,250	. 098
1025	1,500	. 089
1026	2,000	. 077
1027	2,250	. 073
1028	2,500	. 069
1029	3,000	. 063
1030	3,500	. 058
1031	4,000	. 055
1032	4,500	. 052
1033	5,000	. 049
1034	6,000	. 045
1035	7,000	. 042
1036	7,500	. 040
1037	8,000	. 039
1038	8,500	. 037
1039	9,000	. 036
1040	10,000	. 035

One Adjustoble Lug No. 1058 Supplied Mounting Brocket No. 5 on $23 / 16^{\prime \prime}$ Centers Avg. Weight $=.02 \mathrm{lb}$.

TYPE 210 DIVIDOHM

STOCK STYLE 210-25 Core: $2^{\prime \prime} \mathrm{L} \times \% / 16^{\prime \prime} \mathrm{D}$ Lug: No. 40 WATT Code: 2-K-40-D			STOCK STYLE 210-50 Core: $4^{\prime \prime} \mathrm{L} \times \mathrm{F} / 16^{\prime \prime} \mathrm{D}$ lug: No. 40 WATT Code: 4-K-40-D			STOCK STYLE 210-75 Core: $6^{\prime \prime} L \times \%^{\prime \prime} D$ Lug: No. 40 WATT Code: 6-K-40-D		
Stock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.	Stock No.	Ohms	Max. Amps.
0360	1	5.00	0560A	1	7.07	0769A	1	8.66
0360B	2	3.54	05608	2	5.00	0769B	2	6.12
0361	3	2.88	0560C	3	4.07	0769C	3	5.00
0362	5	2.24	0560D	4	3.53	0769 D	4	4.33
0362B	7.5	1.82	0560	5	3.16	0769	5	3.87
0363	10	1.58	0561	10	2.23	0770	10	2.74
0364	15	1.29	0562	25	1.41	0771	15	2.24
0364B	20	1.12	0563	50	1.00	0772	25	1.73
0365	25	1.00	0564	75	. 82	0773	50	1.22
0366	50	. 71	0565	100	. 71	0774	100	. 86
0367	75	. 58	0566	150	. 58	07748	200	. 61
0368	100	. 50	0567	200	. 50	0775	250	. 55
0369	150	. 41	0568	250	. 45	0775 B	300	. 50
0370	200	.35	0568B	300	. 41	0775C	400	. 43
0371	250	. 32	0568C	400	. 35	0776	500	. 39
03718	300	. 29	0569	500	. 32	0777	750	. 32
0371 C	400	. 25	0570	750	. 26	0777B	800	. 30
0372	500	. 22	0571	800	. 25	0778	1,000 1,250	$.27$
0373	750	. 18	0572	1,000	. 22	07788 0779	1,250 1,500	$\begin{aligned} & .24 \\ & .22 \end{aligned}$
0374	800	. 17	0572B	1,250	. 20	0779	1,500	. 22
0375	1,000	. 16	0573	1,500	. 18	0780 07808	2,000 2,250	.19 .18
03758	1,250	. 14	0574	2,000	. 16	07808 0781	2,250	. 17
0376	1,500	. 13	0574B	2,250	. 15	07818	3,000	. 16
0377	2,000	. 12	0575	2,500	. 14	0782	3,500	. 15
0377B	2,250	. 11	0576	3,000	. 13	0782B	4,000	. 14
0378	2,500	. 10	0576B	3,500	. 12	0782C	4,000	. 13
0379	3,000	. 091	0577	4,000	. 11	0783	5,000	. 12
0380	3,500	. 084	0577B	4,500	. 10	0783B	6,000	. 11
0381	4,000	. 079	0578	5,000	. 10	0783C	7,000	. 10
0381 B	4,500	. 074	0578B	6,000	. 091	0784	7,500	. 10
0382	5,000	. 070	0578C	7,000	. 084	0784 B	8,000	. 096
0383	6,000	. 064	0579	7,500	. 081	0784 C	9,000	. 091
0383B	7,000	. 060	0580	8,000	. 079	0785	10,000	. 086
0384	7,500	. 057	05808	9,000	. 074	0785B	12,000	. 079
0384B	8,000	. 055	0581	10,000	. 071	0786	15,000	. 070
0384 C	9,000	. 052	0582	12,000	. 064	0787	20,000	. 061
0385	10,000	. 050	0583	15,000	. 057	0788	25,000	$.054$
0385	12,000	. 042	0584	20,000	. 050	0789 0790	30,000 35,000	.050 .046
0387	15,000	. 036	0585	25,000	. 045	0790	35,000	. 046
0388	20,000	. 031	0586	30,000	. 036	0791	40,000	. 043
0389	25,000	. 028				0792	45,000 50,000	.035 .033
0389	25,000	. 028	0588	50,000	. 026	0793	50,000 60,000	. 033
			0589	60,000	. 024	0794	60,000	. 030
			0590	80,000	. 021	0795	80,000	. 026
			0591	100,000	. 018	0796	100,000	. 023
One Adjustable lug No. 0358 Supplied Mounting Bracket No. 9 an $23 / 4^{" ~ C e n t e r s ~}$ Avg. Weight $=.05 \mathrm{lb}$.			One Adjustable lug No. 0358 Supplied Mounting Brocket No. 9 an $43 / 4^{\prime \prime}$ Centers Avg. Weight $=.09 \mathrm{lbs}$.			One Adjustable lug Na. 0358 Supplied Mounting Bracket Na. 9 on $63 / 4^{\prime \prime}$ Centers Avg. Weight $=.15 \mathrm{lb}$.		

Vitreous Adjustable Resistors

Fig. 29

ADJUSTABLE LUGS

Fig. 30: Screw driver (left) and bakelite knob types.

Fig. 31: Double thumb screw type

One adjustable lug (screw type) is provided with each "Dividohm." Standard lugs have a contact embossed on the side for making connection with the resistance wire winding.

Core Dia.	Screw Driver Type Cal. No.		Bokelite Knob Type Col. No.	
	Standard	Silver Contact	Standard	Silver Contact
5/16 ${ }^{11}$	1058	2161	-	-
9/16	0358	2164	0359	2165
$3 / 4{ }^{\prime \prime}$	1958	2166	1959	2167
11/8"	2158	2170	2159	2171

See Page 48 for dimensions
DOUBLE THUMB SCREW ADJUSTABLE LUGS
These adjustable lugs feature two advantages-ease of adjustment and less chance of damaging the resistance wire while moving lugs.
For $1^{\prime \prime}$ dia. cores . Cat. No. 2157
For $11 / 8{ }^{\prime \prime}$ dia. cores . Cat. No. 2160

TYPE $270 N$ Non-Inductive Vitreous Enameled Resistors

Application: These resistors are suitable for radio frequencies extending into the megacycle range depending on resistance and permissible deviation; see graphs on page 31. Non-inductive resistors are used as dummy antennas for radio transmitters, as load resistors in high frequency circuits and as terminating resistors for radio antennas. They are also used in various circuits subject to steep wave-front surges or pulses.
Description: Two resistance windings, opposite in direction and connected in parallel (Ayrton-Perry type) are wound on a tubular ceramic core. Stock sizes have flatted sides; made-to-order units in special sizes, may have a circular cross-section. The wire is covered and protected by Ohmite vitreous enamel. The inductances of the resistors average less than 1% of the inductances of regular resistors of the same size. High resistance units measure capacitive rather than inductive as noted in the tables and explained on page 30 . Resistance tolerance is $\pm 5 \%$

Stock-Style 270N-12
Core: $13 / 414 \times 5 / 16 \mathrm{D}$
Terminal: No. 57
WATT Code: $13 / 4$-DN-57-N

Stock No.	Ohms	Max. Milli. amps.	Approx.* Induc. (ts) Copec. (Cp)	Stock No.	Ohms	Max. Milliamps.	Approx.* Induc. (ls) Copac. (Cp)
2050	5	1,540	. $1 \mu \mathrm{~h}$	2066	600	140	2 pf
2051	10	1,090	. $1 \mu \mathrm{~h}$	2067	700	130	. 5 pf
2052	15	890	. $1 \mu \mathrm{~h}$	2068	800	120	. pf
2053	20	770	. $1 \mu \mathrm{~h}$	2069	900	110	. 75 pf
2054	25	690	. $1 \mu \mathrm{~h}$	2070	1,000	110	. 75 pf
2055	30	630	. $1 \mu \mathrm{~h}$	2071	1,500	89	. 75 pf
2056	40	550	. $1 \mu \mathrm{~h}$	2072	2,000	77	. 75 pf
2057	50	490	. $15 \mu \mathrm{~h}$	2073	2,500	69	. 75 pf
2058	75	400	. $15 \mu \mathrm{~h}$	2074	3,000	63	1.2 pf
2059	100	340	. $15 \mu \mathrm{~h}$	2075	4,000	54	1.2 pf
2060	150	280	$2 \mu \mathrm{~h}$	2076	5,000	49	1.2 pf
2061	200	240	. $2 \mu \mathrm{~h}$	2077	6,000	44	1.2 pf
2062	250	220	. $2 \mu \mathrm{~h}$	2078	7,500	40	1.2 pf
2063	300	200	. $1 \mu \mathrm{~h}$	2079	8,000	38	1.2 pf
2064	400	170	. $1 \mu \mathrm{~h}$	2080	9,000	36	1.2 pf
2065	500	150	. 2 pf	2081	10,000	35	1.2 pf

Mounting Brackets No. 5B Mounting Centers 23/18"
Avg. Weight .02 lb .

Special Resistors: Non-inductive windings can be provided on practically any type of Ohmite fixed resistor. Inductances different from the stock values can be furnished. "Dividohm" adjustable resistors can be made as noninductive versions in certain ranges.
Mounting: Non-magnetic mounting brackets are used with these resistors and are ordered separately when desired (see page 49). Through-bolts of steel should not be used.
Limited-Inductance Resistors: Conventional, single-winding resistors may be furnished with inductances lower than usual. This is accomplished by winding the resistors with finer wire and consequently, requiring fewer turns to achieve the equivalent resistance. Consult factory.

Fig. 32: Stock Non-Inductive sizes.

50	```Stock-Style \(270 N-50\) Core: \(4^{\prime \prime}\) Lx \(\% / 1^{\prime \prime}\) D Terminal: No. 40 Code: 4-KN-40-N```			Stock-Style 270N-100 Core: $61 / 2^{\prime \prime} L \times 3 / 2^{\prime \prime} D$ Terminal: No. 40 Code: $61 / 2-M N-40-\mathrm{N}$				```Stock-Style 270N-175 Core: 81/2"'L\times 11/8" D Terminal: No. }4 Code: 81/2-PN-46-N```			
$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	Ohms	Max. Milliamps.	Approx.* $\begin{aligned} & \text { Induc. (ls) } \\ & \text { or } \end{aligned}$ Capac. (Cp)	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	Ohms	$\begin{aligned} & \text { Max. } \\ & \text { Maill. } \\ & \text { Mmps. } \end{aligned}$	Approx.* or Capar. (Cp)	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	Ohms	Max. Mili- amps.	$\begin{gathered} \text { Approx.* } \\ \text { Induc. (Ls) } \\ \text { or (Cp) } \\ \text { Capac. (Cp } \end{gathered}$
2001	5	3,160	. $2 \mu \mathrm{~h}$	2201	5	4,470	$4 \mu \mathrm{~h}$	2401	5	5,920	. $65 \mu \mathrm{~h}$
2002	10	2,230	. $2 \mu \mathrm{~h}$	2202	10	3,160	. 4 h	2402	10	4,180	$65 \mu \mathrm{~h}$
2003	25	1,410	. $35 \mu \mathrm{~h}$	2203	25	2,000	. $6 \mu \mathrm{~h}$	2403	25	2,640	9 9 h
2004	50	1,000	. $35 \mu \mathrm{~h}$	2204	50	1,410	. $6 \mu \mathrm{~h}$	2404	50	1,870	$1.4 \mu \mathrm{~h}$
2005	100	710	. $55 \mu \mathrm{~h}$	2205	100	1,000	. $9 \mu \mathrm{~h}$	2405	100	1,320	$1.4 \mu \mathrm{~h}$
2006	150	580	. $55 \mu \mathrm{~h}$	2206	150	816	. $9 \mu \mathrm{~h}$	2406	150	1,090	$1.4 \mu \mathrm{~h}$
2007	200	500	. $55 \mu \mathrm{~h}$	2207	200	707	. $9 \mu \mathrm{~h}$	2407	200	935	$1.4 \mu \mathrm{~h}$
2008	250	450	. $55 \mu \mathrm{~h}$	2208	250	630	. $9 \mu \mathrm{~h}$	2408	250	840	$1.4 \mu \mathrm{~h}$
2009	500	320	. $05 \mu \mathrm{~h}$	2209	500	450	. $7 \mu \mathrm{~h}$	2409	500	590	. $75 \mu \mathrm{~h}$
2010	750	260	1 pf	2210	750	365	. $15 \mu \mathrm{~h}$	2410	750	480	. $15 \mu \mathrm{~h}$
2011	1,000	220	. 75 pf	2211	1,000	320	. 8 pf	2411	1,000	420	2.2 pf
2012	1,500	180	. 75 pf	2212	1,500	260	1.7 pf	2412	1,500	340	3.3 pf
2013	2,000	160	. 75 pf	2213	2,000	220	1.7 pf	2413	2,000	290	3.3 pf
2014	2,500	140	. 75 pf	2214	2,500	200	1.7 pf	2414	2,500	260	3.3 pf
2015	3,000	130	1.2 pf	2215	3,000	180	1.7 pf	2415	3,000	240	3.7 pf
2016	3,500	120	1.2 pf	2216	3,500	170	2.3 pf	2416	3,500	222	3.7 pf
2017	4,000	110	1.2 pf	2217	4,000	160	2.3 pf	2417	4,000	208	3.7 pf
2018	5,000	100	1.2 pf	2218	5,000	140	2.3 pf	2418	5,000	190	3.7 pf
Mounting Brockets No. 9B Mounting Centers $43 / 4^{\prime \prime}$ Avg. Weight .09 lb .				Mounting Brockets No. 12BN Mounting Centers $73 / \mathbf{s}^{\prime \prime}$ Avg. Weight .20 lb .				Mounting Brackets No. 18 B Mounting Centers $93 / \mathrm{B}^{\prime \prime}$ Avg. Weight. 50 lb .			

[^3]
CHARACTERISTICS of RESISTORS at HIGH FREQUENCIES

For most practical purposes, standard Ohmite resistors show no change in impedance or resistance at audio and supersonic frequencies (0 to 25,000 cycles, approximately). For radio-frequency purposes, resistors with non-inductive windings are generally required as explained below.
How Frequency Affects Impedance: Although a resistor is ordinarily represented in a diagram by the symbol for resistance alone, the more detailed analysis required when considering high frequencies, results in the theoretical circuit shown in Fig. 33, that is, any resistor inherently has some inductance and some distributed capacity. As frequency is increased, the reactance due to inductance is proportionately increased:

$$
\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi \mathrm{fL}
$$

and the reactance due to capacitance is proportionately decreased:

$$
\mathrm{X}_{\mathrm{C}}=-\frac{1}{\omega \mathrm{C}}=-\frac{1}{2 \pi \mathrm{fC}}
$$

In general, these reactance effects are not large enough to be of importance until frequencies beyond the audio range are reached. At low frequencies or when the inductance and capacitance are small, the impedance is substantially equal to the DC resistance. Since the reactance is added vectorially at 90° to the resistance, it must therefore approach an amount which is a considerable percentage of the resistance before the impedance is appreciably affected.

Fig. 33: Theoretical circuit of a resistor.

EFFECTIVE SERIES PARAMETERS AT FREQUENCY $;$
Fig. 34a: Series equivalent circuit.
(Applicable when R_{p} is less than 500 to 1000 ohms.)

R.

EFFECTIVE PARALLEL PARAMETERS AT FREQUENCY f
Fig. 34b: Parallel equivalent circuit. (Applicable when $\mathbf{R}_{\text {IL }}$ is above 500 to 1000 ohms.)

It should be noted that the circuit shown in Fig. 33 represents the impedance network of a resistor at frequencies sufficiently low such that the assumption of lumped parameters is valid. At any specific frequency the impedance of a given resistor may be represented by either a series or parallel equivalent circuit (see Fig. 34).

For low resistances: The reactance due to distributed shunt capacitance is negligible in comparison to the resistance. Therefore, the predominating effect is in ductive reactance, comparable in magnitude to the resistance, and due to residual inductance despite the Ayrton-Perry winding.

For high resistances: The reactance due to distributed shunt capacitance is comparable in magnitude to the resistance. Therefore the predominating effect is capacitive reactance, which dwarfs the relatively small amount of inductive reactance in an Ayrton-Perry winding.

Fig. 35: Normalized resistance, reactance and impedance versus frequency for standard resistors.

In Ohmite non-inductive resistors, residual inductance and distributed capacitance have been kept to a minimum by means of an Ayrton-Perry type of winding (two windings in opposite directions, connected in parallel) thereby making the natural resonant frequency as high as possible. Skin effect is negligible because of the use of small diameter wire of high specific resistance. Consequently, these resistors may be considered appropriately as "Non-Reactive Resistors."

Frequency Characteristics: The effect of frequency on the characteristics of any resistor is a complex function of not only inductance and capacitance, but also resistance. The equivalent values at any specified frequency are influenced by the ratio of the applied frequency to the natural resonant frequency of the resistor. To compare the frequency response characteristics of various resistor types or sizes but having the same resistance value, it is desirable to plot the normalized parameters as given in the graphs of Figs. 35 through 43. Normalized values of Z and R_{AC} are expressed as the ratio of these quantities to the DC resistance.

Fig. 35 offers a comparison between the frequency characteristics of conventional resistors, non-inductive resistors, and Ohmite dummy antenna resistors of comparable resistance. Figs. 36 through 43 show normalized resistance and impedance characteristics for many stock non-inductive resistor sizes and resistance values. For those values not shown, the reader may interpolate on the graphs.

A study of Figs. 36 through 43 indicates that regardless of the physical size of a resistor, there is an optimum resistance range-generally in the order of 500 to 1000 ohms-the frequency response characteristics of which tend to remain essentially flat out to at least 20 mc .

For values of resistance less than $500-1000$ ohms, depending on size, the residual reactance is generally inductive. Thus, stock resistance values (page 29) below this range are generally shown to be slightly inductive. For resistance values above this range, the residual reactance is generally capacitive and stock values are listed as slightly capacitive.

Fig. 36: Normalized resistance vs frequency (12W non-inductive resistor).

Fig. 38: Normalized resistance vs frequency (50W non-inductive resistor).

Fig. 39: Normalized impedance vs frequency (50W non-inductive resistor).

Fig. 42: Normalized resistance vs frequency (175W non-inductive resistor).

Fig. 43: Normalized impedance vs frequency (175W non-inductive resistor).

Fig. 44: Dummy antennas with coax and terminal strip connections.

The Dummy Antenna Resistors feature practically constant R.F. resistance (within their recommended frequency range), low reactance, high wattage dissipation, and compactness.
Application: These resistors provide a simple, accurate and direct means of loading a radio-transmitter, diathermy machine or other source of radio-frequency for "tuning-up," i.e., adjusting for best performance, or for the purpose of measuring R.F. power (using an R.F. ammeter). They are suitable for the use of the manufacturer, laboratory technician and amateur, and for the operators of aviation, police, communications and broadcast stations. The power (at any frequency) is simply calculated as $I^{2} R$.
Description: The Dummy Antennas consist of a number of special non-inductive vitreous enameled resistors connected in parallel in a cylindrical arrangement and mounted inside a perforated metal cage.

In the design of the component resistors which make up the Dummy Antennas, two important design considerations are responsible for the excellent frequency
characteristics obtained. First, the residual inductance and distributed capacitance have been kept to a minimum, thereby making the natural resonant frequency as high as possible. Second, the D.C. resistance, inductance, and distributed capacitance have been proportioned in such a manner as to give the best possible response characteristics. As a result, a resistor has been obtained which has a minimum amount of effective series reactance and an essentially constant effective series resistance up to frequencies shown in the table. This resistor may be considered practically a "NonReactive Resistor."

The table below lists the recommended upper limit of frequency at which the various Dummy Antennas may be used and gives other characteristics. These limits allow a $\pm 10 \%$ impedance change (of the scalar value). The actual D.C. resistance tolerance is $\pm 5 \%$. For more data and graphs write for D7831.

STOCK DUMMY ANTENNAS

* Employs coox connectors

Fig. 45: Stock dummy antennas-dimensions and ratings.

FREQUENCY CHARACTERISTICS OF OHMITE DUMMY ANTENNAS
Rdc $=\mathrm{D}$. C. Resistance; $\mathrm{R}_{5}=$ Effective Series Resistance; $\mathrm{Z}=$ Scalar Value of Impedance

Model	Model D-101-100 Watts				Model D-251-250 Watts			
Resistance	52 Ohms	73 Ohms	300 Ohms	600 Ohms	52 Ohms	73 Ohms	300 Ohms	600 Ohms
Max. Freq. for $R_{s}=R_{d c} \pm 10 \%$ R_{5} at this frequency Z of this frequency	$\begin{aligned} & 22 \mathrm{mc} \\ & 1.10 \mathrm{R}_{\mathrm{dc}} \\ & 1.18 \mathrm{R}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & 38 \mathrm{mc} \\ & 1.10 \mathrm{R}_{\mathrm{dc}} \\ & 1.14 \mathrm{R}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & 22 \mathrm{mc} \\ & 1.10 \mathrm{R}_{\mathrm{dc}} \\ & 1.10 \mathrm{Rde} \end{aligned}$	$\begin{aligned} & 31 \mathrm{mc} \\ & .90 \mathrm{R}_{\mathrm{dc}} \\ & .99 \mathrm{Rdc} \end{aligned}$	$\begin{aligned} & 19 \mathrm{mc} \\ & 1.10 \mathrm{Rdc} \\ & 1.25 \mathrm{Rde} \end{aligned}$	$\begin{aligned} & 21 \mathrm{mc} \\ & 1.10 \mathrm{Rdc}_{\mathrm{dc}} \\ & 1.13 \mathrm{Rdc} \end{aligned}$	$\begin{aligned} & 15 \mathrm{mc} \\ & 1.10 \mathrm{Rdc} \\ & 1.15 \mathrm{Rdc}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & 19 \mathrm{mc} \\ & .90 \mathrm{R}_{\mathrm{dc}} \\ & 1.00 \mathrm{Rdc} \end{aligned}$
Max. Freq. for $Z=\operatorname{de} \pm 10 \%$ R_{s} af this frequency Z at this frequency	$\begin{aligned} & 18 \mathrm{mc} \\ & 1.06 \mathrm{R}_{\mathrm{dc}} \\ & 1.10 \mathrm{R}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & 32 \mathrm{mc} \\ & 1.07 \mathrm{R}_{\mathrm{dc}} \\ & 1.10 \mathrm{R}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & 22 \mathrm{mc} \\ & 1.10 \mathrm{R}_{\mathrm{dc}} \\ & 1.10 \mathrm{Rc} \end{aligned}$	60 mc . $60 R_{\mathrm{dc}}$. 90 Rde	$\begin{aligned} & 13 \mathrm{mc} \\ & 1.03 \mathrm{Rdc}_{\mathrm{dc}} \\ & 1.10 \mathrm{Rdc} \end{aligned}$	$\begin{aligned} & 19 \mathrm{mc} \\ & 1.07 \mathrm{R}_{\mathrm{dc}} \\ & 1.10 \mathrm{R}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & 13 \mathrm{mc} \\ & 1.08 \mathrm{Rdc} \\ & 1.10 \mathrm{Rdc} \end{aligned}$	30 mc . $64 \mathrm{R}_{\mathrm{de}}$ $.90 \mathrm{R}_{\mathrm{dc}}$
Avg. Weight	. 60 LB.		. 65 LB.		1.25 LB.		1.50 LB.	

FERRULE, SCREW BASE and SINGLE-ENDED RESISTORS

FERRULE RESISTORS, CLIP-MOUNTED

Ferrule type resistors use the ferrules as the mechanical means of mounting as well as electrical terminals. They are made in four general styles, in sizes from less than 5 watts to 200 watts. Three types mount in fuse clips, or other special clips, while the cap style may mount by a special through-bolt arrangement.

Cup Style Ferrules, Type 140, of all diameters, can be provided on a wide range of resistor tube sizes. The cup shaped ferrules are fastened by plugs cemented into the ends of the cores. Sleeve Style 141, Cartridge Style 145, and Cap Style 147 are available only on certain tube sizes, as the ferrule diameter is related to the core diameter. See page 39 for details.

Sleeve style ferrules consist of brass tubing pressed over the ends of the core. Cartridge style ferrules are tapered alloy metal cups pressed over the ends. Cap style ferrules are pressed on the core and cover the annular ends so contact can be made in the axial direction.

Fig. 46: Ferrule resistors with Type 141, 140 and 145 terminals.

EDISON SCREW-BASE RESISTORS

The Edison Screw Base Resistor is simultaneously mounted and electrically connected with the same ease as an electric light bulb. It is frequently used in battery charging equipment, laboratories, etc. Medium and intermediate (also candelabra and miniature)

Fig. 47: Typical Edison Base resistors.

RESISTORS WITH LUGS AT ONE END ONLY

Vitreous enameled resistors with both terminals at one end can be produced, as shown in the illustration. This requires a specially grooved core and ceramic insulating tubes for the lead which returns from one end of the winding. These units are made only to order, to meet the customer's needs.
bases can be supplied. The "medium" size fits the conventional 115 V lamp bulb socket. Resistors with ceramic jackets can be supplied. Resistors with protective enclosures are shown on page 54. The resistor sizes listed in the table are standard.

Base Sixet	Free Wir Watts	Maximum Resistance	Overall Length	Core Diam- oter	Core Length	Code Word
Med.	215	185,000	$121 / 4^{\prime \prime}$	$11 / 8^{\prime \prime}$	$111 / 4^{\prime \prime}$	EARLE
Med.	" 160	135,000	$91 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$	$81 / 2^{\prime \prime}$	EBART
Med.	120	100,000	$71 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$	$61 / 2^{\prime \prime}$	ECOVE
Med.	110	90,000	$7^{\prime \prime}$	$11 / 8^{\prime \prime}$	$6^{\prime \prime}$	EDUSA
Med.	$* 60$	50,000	$5^{\prime \prime}$	$3 / 4^{\prime \prime}$	Spec.	EFRID
Inter.	50	85,000	$51 / 4^{\prime \prime}$	$9 / 6^{\prime \prime}$	$47 / 8^{\prime \prime}$	EGANT
Inter.	40	65,000	$41 / 4^{\prime \prime}$	$9 / 6^{\prime \prime}$	$37 / 8^{\prime \prime}$	EILER
Inter.	20	44,000	$31 / 4^{\prime \prime}$	$9 / 6^{\prime \prime}$	$21 / 8^{\prime \prime}$	ELAIN

\dagger Med. $=$ Medium (same os 115 volt lamp base) Type $146-\mathrm{M}, 1 / 2^{\prime \prime}$ dia. $\times 1$ " long. Inter. $=$ Intermediate Type 146-1, $21 / 2^{\prime \prime \prime}$ dia. $\times 11 / 16^{\prime \prime}$ long.
*Most used sizes recommended for standardization.

Fig. 48: Resistor with terminals at one end.

The starting and speed control circuits for large DC motors such as those used on hoists, cranes, elevators, machine tools, printing presses and other equipment generally require resistance load banks of low ohmic value and high current capacity. The load is most often intermittent. This set of conditions has called for types of construction different from that of the standard round, wire-wound, vitreous enameled resistor, and as a result, many special forms of resistors have evolved. Such resistors are characterized by (1) a resistance element that is either bare or only partly covered (2) a design arrangement which permits ready connection in series and parallel banks and (3) the facility for easy tapping or adjustment of resistance value.

Ohmite covers this field of application with three types of resistors to afford greater flexibility in equipment design:
(1) Conventional "CORRIB" resistor-the resistance element is corrugated ribbon, edgewound on a ceramic tube and partly covered with enamel. Popular ratings are stocked.
(2) "BARE CORRIB" resistor where the corrugated ribbon element is wound in a threaded or grooved tube. Not stocked.
(3) POWR-RIB bare types where round wire or ribbon is wound on ceramic segments carried on a metal bar. Popular ratings are stocked (pages 46, 47).

RATINGS FOR GROUP MOUNTING AND FORCED VENTILATION

Grouping of resistors requires a reduction of wattage rating (derating) or an increase in size or number of resistors. Data for such calculation is given on page 9 and in the "Engineering Manual," Bulletin 1100.

Forced ventilation becomes desirable and economically feasible when the wattage is large enough for savings in resistor size to compensate for the cost of blower operation. It may also be economical when an
air blast is being provided for the benefit of adjacent apparatus. See Bulletin 1100 for details.

RATING FOR INTERMITTENT DUTY

When resistors are operated intermittently, they can carry (with normal temperature rise) greater pulse wattage than their continuous duty ratings, provided the duration of the heating and cooling periods falls within certain limits. Wattage ratings for intermittent duty per NEMA classifications, single pulses and multiple pulses, are shown graphically and described in the "Engineering Manual," Bulletin 1100. The graphs enable an estimate to be made of the pulse rating of various sizes and types of resistors for any combination of on-time and off-time within the range of the graphs.

Fig. 49: Approximate temperature rise of Corrib and Powr-Rib resistors on continuous duty.

CORRIB ${ }^{\text {® }}$ VITREOUS ENAMELED CORRUGATED RIBBON RESISTORS

Fig. 50: Typical Corrib resistors including bare threaded-tube type.

Description: A corrugated ribbon of resistance alloy is spacewound edgewise around a ceramic tube. The ribbon is generally $1 / 8^{\prime \prime}$ wide and is terminated on "Heavy Lugs" (Type 45) ; Type 46 lugs are used on resistors with $\%$ " diameter core. Vitreous enamel embeds the inner edge of the ribbon, holding it firmly in place. Taps can be provided. The resistors can also be provided in "Dividohm" style with adjustable lugs. Corribs are made to order and also stocked in certain ratings. Standard resistance tolerance is $\pm 10 \%$. See pages 49 to 51 for mounting brackets.
Application: While used to a large extent in the high wattage circuits described above, Corrib construction also facilitates the manufacture of resistors from a
fraction of an ohm to several ohms, on cores as small as $9111 i^{\prime \prime}$ diameter by $2^{\prime \prime}$ long -in fact, in the same range of tube sizes (except for the lowest wattage sizes) as used for the regular vitreous enameled resistors (see pages 36-37).

Because these resistors are classified as "bare," (the ribbon is partly exposed) they are permitted a $375^{\circ} \mathrm{C}$ rise (measured on the ribbon) by the NEMA (National Electrical Manufacturers Association) method of rating as shown in Fig. 49. This temperature rise, plus the effect of the increase in diameter over the tube size due to the height of the ribbon, and the cooling-fin action of the ribbon, allows the Corrib resistor to be rated at a higher wattage for a given core size than the standard roundwire enameled resistor.
Limits on Resistance and Temperature Coefficient: Minimum resistances specified are for resistors wound with $180 \mathrm{ohm} / \mathrm{cmf}$ copper-nickel alloy ribbon (\#180 alloy) of good nominal temperature coefficient $(+180$ $\mathrm{ppm} /{ }^{\circ} \mathbf{C}$). Lower resistances than shown can be supplied but generally require other alloys of higher temperature coefficient two or three times as large).

Maximum resistance can be increased in some cases by use of closely crimped wire. Maximums shown use $1 / 46^{\prime \prime}$ wide ribbon in some cases and may slightly exceed $375^{\circ} \mathrm{C}$ rise at full load.

When the lowest available temperature coefficient alloy is required (copper-nickel $55 \%-45 \%$, with nominal $0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TC) the minimum resistance possible will be approximately 1.64 times the figures shown. The resistor TC may be somewhat greater than the nominal wire TC.

BARE CORRIB, THREADEDTUBE CORRUGATED RIBBON RESISTORS

When it is desired to operate "CORRIB" resistors continuously or intermittently at higher than the normal 375° rise, the uncoated threaded-tube type of "CORRIB" resistor is particularly suited. A typical unit is illustrated in Fig. 50. The corrugated ribbon resistance wire is wound on a ceramic tube which has square threads to keep the turns separated. The ribbon is welded to special Type 44 lugs. Available in $11 \frac{1}{4} 4^{\prime \prime}$ and $81 / 2^{\prime \prime}$ long cores, $11 / 4^{\prime \prime}$ diameter; other sizes can be supplied if quantity warrants.

CORRIB RESISTOR SIZES

4	Core Size			Resistance Range		$\begin{gathered} \text { Now } \\ \text { Code } \\ \text { (See page 37) } \end{gathered}$
	3	+	Length	Min. Ohme	Max. Ohms	
1500	21/2"	$13 / 4 \prime \prime$	20"	1.00	110.0	20-S.45.C
1000	21/2"	$13 / 4 \prime$	$15^{\prime \prime}$	0.72	79.0	15-S-45-C
750	$21 / 2^{\prime \prime}$	$13 / 4 \prime$	12"	0.55	61.0	12-S-45-C
375	21/2"	$13 / 4 \prime$	$6^{\prime \prime}$	0.27	30.0	6-S-45-C
550	$15 /{ }^{\prime \prime}$	11/8"	$11^{3 / 4}$	0.37	41.0	113/4-R-45-C
500	$15 /{ }^{\prime \prime}$	$11 /{ }^{\prime \prime}$	1012"	0.32	36.0	101/2-R-45-C
400	$15 /{ }^{\prime \prime}$	$11 /{ }^{\prime \prime}$	81/2"	0.27	28.0	81/2-R-45-C
270	$11 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$	5"	0.13	13.0	5-Q-45-C
400	11/8"	$3 / 4{ }^{\prime \prime}$	$111 /{ }^{\prime \prime}$	0.24	26.0	111/4-P-45-C
375	$11 /{ }^{\prime \prime}$	$3 / 4$ "	101/2"	0.22	25.0	101/2-P-45-C
300	$11 /{ }^{\prime \prime}$	3/4"	81/2"	0.17	20.0	81/2-P-45-C
220	$11 /{ }^{\prime \prime}$	$3 / 4^{\prime \prime}$	$6^{\prime \prime}$	0.11	12.5	6-P-45-C
185	$11 /{ }^{\prime \prime}$	$3 / 4$ "	5"	0.09	10.5	5-P-45-C
315	1 '	$5 / 8^{\prime \prime}$	$10^{\prime \prime}$	0.20	21.0	10-N-45-C
215	1 "	$5 / 81$	7 '	0.12	13.5	7-N-45-C
190	1 '	5/8"	6 "	0.10	11.5	6-N-45-C
150	$1^{\prime \prime}$	5/8"	5"	0.08	8.5	5-N-45-C
125	$1 "$	5/8"	$4^{\prime \prime}$	0.06	6.0	4-N.45-C
180	3/4"	1/2"	$61 / 2^{\prime \prime}$	0.08	9.0	61/2-M-45-C
160	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	$6^{\prime \prime}$	0.07	8.3	6-M-45-C
135	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	5"	0.06	6.5	5-M-45-C
105	$3 / 4{ }^{\prime \prime}$	1/2"	$4^{\prime \prime}$	0.04	4.6	4-M-45-C
100	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	$31 / 2^{\prime \prime}$	0.03	3.7	$31 / 2-M-45-C$
135	\%16 ${ }^{11}$	5/16"	$6^{\prime \prime}$	0.06	6.5	6-K-46.C
105	\%/16	5/16	5"	0.05	5.2	5-K.46-C
90	\%16"	5/16"	$4^{\prime \prime}$	0.04	3.8	4-K-46-C
36	\%/6"	5/6"	$2^{\prime \prime}$	0.02	1.8	2-K-40-C*

- Standord for 0.11 ohm or less is 2-K-46-C.

STOCK CORRIBS—300 WATT SIZE

Styles 280-300 Fixed; 230-300 Adjustable
Core: $81 / 2 \times 11 / 8^{\prime \prime}$ Fixed or Adjustable (DIVIDOHM)
Code: (Fixed) $81 / 2-$ P-45-C; (Dividohm) $81 / 2-P-45-E$
Avg. Weight (Fixed) .61 lb .; (Dividohm) .64 lb .

Ohms	Amps.	Fixed Sik. No.	Divid. Sik. No.	Ohms	Amps.	Fixed Sik. No.	Divid. SHk. No. *
.10	54.7	$\mathbf{2 5 0 1}$	$\mathbf{2 6 0 1}$	1.6	13.7	$\mathbf{2 5 1 3}$	$\mathbf{2 6 1 3}$
.12	50.0	$\mathbf{2 5 0 2}$	$\mathbf{2 6 0 2}$	2.0	12.2	$\mathbf{2 5 1 4}$	$\mathbf{2 6 1 4}$
.16	43.3	$\mathbf{2 5 0 3}$	$\mathbf{2 6 0 3}$	2.5	10.9	$\mathbf{2 5 1 5}$	$\mathbf{2 6 1 5}$
.20	38.7	$\mathbf{2 5 0 4}$	$\mathbf{2 6 0 4}$	3.1	9.8	$\mathbf{2 5 1 6}$	$\mathbf{2 6 1 6}$
.25	34.6	$\mathbf{2 5 0 5}$	$\mathbf{2 6 0 5}$	4.0	8.6	$\mathbf{2 5 1 7}$	$\mathbf{2 6 1 7}$
.31	31.1	$\mathbf{2 5 0 6}$	$\mathbf{2 6 0 6}$	5.0	7.7	$\mathbf{2 5 1 8}$	$\mathbf{2 6 1 8}$
.40	27.4	$\mathbf{2 5 0 7}$	$\mathbf{2 6 0 7}$	6.3	6.9	$\mathbf{2 5 1 9}$	$\mathbf{2 6 1 9}$
.50	24.5	$\mathbf{2 5 0 8}$	$\mathbf{2 6 0 8}$	8.0	6.1	$\mathbf{2 5 2 0}$	$\mathbf{2 6 2 0}$
.63	21.8	$\mathbf{2 5 0 9}$	$\mathbf{2 6 0 9}$	10.0	5.5	$\mathbf{2 5 2 1}$	$\mathbf{2 6 2 1}$
.80	19.3	$\mathbf{2 5 1 0}$	$\mathbf{2 6 1 0}$	12.0	5.0	$\mathbf{2 5 2 2}$	$\mathbf{2 6 2 2}$
1.0	17.3	$\mathbf{2 5 1 1}$	$\mathbf{2 6 1 1}$	16.0	4.3	$\mathbf{2 5 2 3}$	$\mathbf{2 6 2 3}$
1.2	15.8	$\mathbf{2 5 1 2}$	$\mathbf{2 6 1 2}$	20.0	3.8	$\mathbf{2 5 2 4}$	$\mathbf{2 6 2 4}$

*Adjustable Lug Stk. No. 1974 supplied with Dividohm.

Three-hundred watt units are stocked in both fixed (Type 280) and adjustable (Dividohm Type 230) styles. A smooth, adjustable band makes contact almost completely around the entire periphery
of the resistor in the Dividohm type. Core size for both types is $81 / 2^{\prime \prime}$ long by $11 / 8^{\prime \prime}$ diameter. Through-bolt bracket hardware is stocked for mounting 1 to 4 units. See bellow.

Fig. 51: Stock Corribs.

THRU-BOLT MTG. BRACKETS
Incl. bolt, 2 brkts., ctrg. mica \& lock wshrs.

No. of Resist.	Stk. No.	No. of Resist.	Stk. No.
1	$6126 \mathrm{P8} 1 / 2$	3	$6128 \mathrm{P} 81 / 2$
2	$6127 \mathrm{P8} 1 / 2$	4	$6129 \mathrm{P} 81 / 2$

NOTES for TABLE:

1. Free Air Watt Rating: Refer to poge 4 (ond following) for limitations due to operofing conditions.
2. Tolerance on Nominal Core Dimensions

Length	Tolerance	Length	Tolerance
$7 / 6^{\prime \prime}$ to $4^{\prime \prime}$	$\pm 1 / 2^{\prime \prime}$	Over $61 / 2^{\prime \prime}$ to $1114^{\prime \prime}$	$+1 / 4^{\prime \prime}-3 / 2^{\prime \prime}$
Over $4^{\prime \prime}$ to $61 / 2^{\prime \prime}$	$\pm 3 / 4^{\prime \prime}$	Over $111 / 4^{\prime \prime}$ to $20^{\prime \prime}$	$\pm 1 / 8^{\prime \prime}$

Tolerances do not include effect of longitudinal comber.

I.D.	Tolerance
To $1 / 2^{\prime \prime}$	$\pm 1 / 4^{\prime \prime}$
Over $1 / 2^{\prime \prime}$ to $11 / 8^{\prime \prime}$	$\pm 1 / 2^{\prime \prime}$
Over $11 / 8^{\prime \prime}$ to $13 / 4^{\prime \prime}$	$\pm 1 / 16^{\prime \prime}$

2a. Maximum Diameter Over Coating; Lug Dimensions: The overoll diometer of a finished resistor includes the build-up due to wire diometer, coating ond terminal material. This results in a passible maximum increase in diameter of $3 / 16^{\prime \prime}$ for low resistance, $11 / 8$ O.D. core resistors and larger; $5 / 32^{\prime \prime}$ for resistors with smaller diameter cores. On all high resistance units the increase is generally less than $1 / 8^{\prime \prime}$.
(0) ©
. . . Terminals (See pages 38 and 39 for others)

The hot dip tinning on terminals may affect width, thickness or hole size and such dimensional variations are included in the tolerances given on pages 38 and 39 except for occasional irregularities due to finning.
3. Other Core Sizes: Cores used only for Axial-Lead Resistors, Edison Base Resistors, and special sizes required for Military Specification and EIA Specification resistors, are not listed in the table but are carried in stock. In addition, many other specials are available from stock or on short notire including cores with special inside diameter listed below. All cores listed in previous catalogs can be supplied.

CORES WITH		NON-STANDARD I.D. (OR O.D.)			
O.D.	1.D.	Code	O.D.	I.D.	Code
3/16"	1/82"	DA	$3 / 4{ }^{\prime \prime}$	35/4"	MA
7/6' ${ }^{\prime \prime}$	5/6"	HA	15/6"	96	UA
916	25/4"	KA	$11 /{ }^{\prime \prime}$	7/3"	PA
$5 / 8$	2964"	LA			

4. Minimum Resistance: Even lower resistances can be provided where TC is not important. Lower resistance can be reached also by using "CORRIB" open construction (see page 34). When ordering low resistances, specify resistance tolerance (generally $\pm 10 \%$ or $\pm 15 \%$) and allowable change in resistance with load. Minimums for DIVIDOHM adiustable units are sametimes higher than the values shown for fixed resistors.
5. Maximum Resistance af Free Air Wafts: Units having a resistance higher than this value should be operated af less than free Air Watts. See page 7.
6. Practical Resistance Limits for Vitreous Enamel: Higher resistances than thase shown in the column can be provided in vitreaus enamel in many cases (consult factory). Still higher limits are passible with Ohmicone silicone-ceramic coatings. See page 44.

Maximum resistance for DIVIDOHM adjustable resistors should be generally limited to the maximums shown for Stock Dividohms or proportional values for the other sizes.
7. Code for Core Diameter: The code letter is used in the "Coded Specification" as explained below.
8. Quick-Connect, Ferrule, Edison Base and Bracket Terminals: The proper suffix indicating size (details on pages 33 and 38) must be added to the terminal number. In some cases, special I.D. tubes must be used.
9. Other Terminals: The terminals listed in the table and additional terminals are described on pages 38 and 39 . Special terminals to meet customers requirements can be made when quantity warrants.

Terminal Screws: if desired with terminal screws add suffix A to type number (see page 38-39).
10. Other Features: Most of these resistors can be ordered in DIVID. OHM adjustable style or with non-inductive winding (pages 29-32) or with positive non-turn notch feature "NOTCA" as described on page 49.
11. Axial-lead resistors with vitreous enamel coating are furnished only in certain core sizes not listed for the most part in this table (see pages 11 through 15). In the Series 99 sizes shown on pages 11-14, non-stock resistance values are ordered by specifying the style number followed by the resistance value.

HOW TO ORDER:

Give Code as below for single section resistors:

This is an $81 / 2^{\prime \prime} \lg \times 11 / 8^{\prime \prime}$ O.D. $\times 3 / 4^{\prime \prime}$ I.D. core; with No. 46 lugs equipped with terminal bolts; fixed, round wire construction; with NOTCA 1 non-furn feature; with 1375 ohms resistance.

WINDING CODE

Code	Type	Code	Type
F	Fixed, Round Wire	E	Dividohm, Corrib
D	Dividohm, Round Wire	N	Fixed, Non-Inductive
C	Fixed Corrib		(Stock sizes have flatted sides-page 29)
	ADDITIONAL FEATURE CODE		
Letter	Type		
K	NOTCA 1 (Notched Core-All Sizes)		
L	NOTCA 2 (Fluted I.D. Core-Available where Wall Thickness Permits)		
OM	Ohmicone (Silicone-Ceramic) Coating		
See page 10 for other information on ordering.			

NARROW LUG

Standard: On 10 Waft Dividohm For Cores: $1 / 4$ " to $3 / 4$ " O.D.

GENERAL PURPOSE LUG

Standard: Type 40 on $5 / 16^{\prime \prime}$ to $1^{\prime \prime}$ O.D. For Cores: $5 / 16^{" 1} 1011 / 8^{\prime \prime}$ O.D. Screw Terminal: Type 40A, with No. $6.32 \times 1 / 2^{\prime \prime}$ Fillister Head Screw, 2 Nuts and Washers.

MEDIUM LUG

Standard: Type 46 on $1 / 1 / 8^{\prime \prime}$ O.D. For Cores: $9 / 16^{\prime \prime}$ to $15 / \mathrm{m}^{\prime \prime}$ O.D.
Screw Terminal: Type 46A, with
No. $8-32 \times 5 / 8^{\prime \prime}$ Fillister Head Screw, 2 Nuts and Washers.

HEAVY LUGS

TPPE 44, 44A and 45, 45A, 45B

For Cores: $3 / 4^{\prime \prime}$ to $21 / 2^{\prime \prime}$ O.D.
Holes: Type 44-.265D; Type 45-.196D
Screw Terminals: Filstr. Hd. (2 nuts, wshrs). $44 \mathrm{~A}-1 / 4-20 \times 5 / 8 ; 45 \mathrm{~A}-8-32 \times 5 / 8$; 45B-10-32×5/8"

WELDABLE LUG

For Cores: $5 / 16^{\prime \prime}$ to $\% / 16^{\prime \prime}$ O.D.
An untinned, narrow lug intended for welded connection into a circuit. Height (H) as specified

SHORT LUG

For Cores: $5 / 16^{\prime \prime}$ to $11 / 8^{\prime \prime}$ O.D.
A soldering type lug for use where space limits lug height.

WIRE LEAD

For Cores: 20 to $11 / 8^{\prime \prime}$ O.D.
Type 47: $2^{\prime \prime}$ leads, 20 AWG, all bands
Type 48: $11 / 2$ " leads, Std. on "Brown Devils" 18 AWG for $1 / 8^{\prime \prime}$ band
20 AWG for $1 / 16^{\prime \prime}$ band

For Cores: $5 / 16^{\prime \prime}$ to $11 / 8^{\prime \prime}$ O.D.

Leads: 18 AWG Stranded, Specify Length. Type 126, 126R: Phosphor-Bronze, Bare Type 128, 128R: Copper, Asbestos-Insulated Type 128F, 128FR: Nickel-tron, Insulated

AXIAL LEAD

Special For Core Sizes: $1 / 16^{\prime \prime}, 5 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$, $1 / 4^{\prime \prime}, 5 / 16^{\prime \prime}, 7 / 16^{\prime \prime}$ O.D.
Description: Solid wire welded to a cap (tinned wire 20 AWG except 24 AWG on $1 / 16^{\prime \prime}$ O.D. core)

EDGE DISTANCE ("E')

Terminals	CORE O.D.										
	. 20	$1 / 4$	5/16	7/4	\%6	$3 / 4$	1	11/3	11/2	15/8	$21 / 2$
$\begin{aligned} & 40,40 A, 47,48, \\ & 49,50,53,57, \\ & 68,69,126,128 \end{aligned}$	$3 / 32$	$3 / 20$	$3 / 32$	$3 / 32$	3/32	1/8	5/32	7/32	-	-	-
$\begin{aligned} & 44,44 A, 45,45 A, \\ & 45 B, 46,46 A \end{aligned}$	-	-	-	-	1/4*	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 2$

Dimension "E" can be varied and is often reduced for cores $2^{\prime \prime}$ or less in length or sometimes increased for greater leakage distance to ground. Tolerance on " E " is $\pm 1 / 32$ " up to $1 / 8$ " and $\pm 1 / 16^{\prime \prime}$ above.

" "Three-Way" terminol-Normolly supplied on core sizes $5 / 16^{\prime \prime}$ thru $21 / 2$ " when quick-connect terminal is required.
†Normally supplied on standord "Thin" resistors when quick-connect terminal is required.
\ddagger Normally can be used with female receptacles intended for .110 wide $\times .020$ thick tats.
$\begin{array}{cc} & \\ & T \\ & \text { E } \\ O & R \\ T & M \\ H & 1 \\ E & N \\ R & A \\ & L \\ & S \\ & \end{array}$

Type No.

DESCRIPTION

42 Lug $3 / s^{\prime \prime}$ wide $\times 5 / 8^{\prime \prime}$ high, 169 dia. hole
$43 \operatorname{lug} 5 / 11^{\prime \prime}$ wide $\times 13 / 16^{\prime \prime}$ high, 169 dia, hole
51 Lug $1 / 8 "$ wide \times height as required, 063 dia. hole
52 Lug for "Wire-W'rap" (Keller, Gardner-Denver T.M.) connection.
125,127 Lead, 18 AWG stranded, untinned
Type 125.2"; Type 127-51/2"
145 Ferrules, cap style, for $5 / 16^{\prime \prime}$ and $7 / 16^{\prime \prime}$ dia. cores
147 Ferrules, cap style, for $1 / 4^{\prime \prime}, 3 / 4^{\prime \prime}$ and $11 / 8^{\prime \prime}$ dia. cores (See page 33) Further data supplied on request.

General. The most frequently used form of resistor terminal is the lug type, which is well adapted to circuit connection by means of soldering. The heavier lugs are also used with terminal bolts. Special shaped lugs are used for receiving push-on connectors or ma-chine-wrapped wire connections. Other special shaped lugs, wire leads of bare, solid or stranded construction, insulated wire leads, ferrules, Edison screw bases and "live" brackets are used as suggested by the requirements of the equipment.

Lugs should be used preferably in accordance with the standards on pages 36 to 39 . The bigger lugs are ordinarily used on the larger cores or when the resistance is quite low, as the winding is then made of large size wire or ribbon.

Lug Height. Most of the lugs can be made with the projecting length shorter or longer than standard. Other hole sizes can be supplied also.

Terminal Placement. Terminal lugs can be mounted at any specified distance from the end of the core, but the standard edge distances (see page 38) meet most requirements. Center-line to center-line distances between lugs should not be specified unless essential. Wattage ratings may be reduced when lugs are mounted far in from the ends, or sleeve ferrules are used, particularly on short resistors.
Formal requirements, as well as needs, on electrical leakage distances from resistor terminals to grounded mounting surfaces vary greatly between electronic, industrial and other applications. In addition, the requirements of the Underwriters' Laboratories, Inc., for example, vary with the exact type of equipment, making it desirable for equipment designers to ascertain the pertinent specification. How leakage distances vary with the method of mounting are shown in Fig. 52. Ceramic bushings (listed on page 51) are sometimes used instead of mica and centering washers.

Ohmite stock resistors, or other Ohmite resistors with standard lug spacing, will meet U.L. "Industrial Control Standards" for leakage and air distances for voltages as shown in the table Fig. 53. The U.L. spacings in inches are given in table Fig. 54. The U.L. method of test requires the application of twice the voltage ratings, shown in Fig. 53, plus 1000 volts for the duration of one minute.

Hi-Pot Test—Voltage Breakdown to Ground: All Ohmite resistors with an edge distance of at least $1 / 10^{\prime \prime}$ will withstand testing at 1000 VAC between the terminals and mounting.

Use Mounting Brackets. Lug type resistors should not be mounted by the lugs. Resistors should be mounted by the inexpensive brackets or other means as described on pages 49 to 52 . Undue strains set up when mounting by means of lugs which were not designed for the purpose, may cause damage to the resistor.

Ferrule Resistor Mounting

Ferrule resistors can be mounted by fuse clips as shown in the table. Fuse clips are available from electrical parts distributors.

Ferrule Dia.	Fuse Clip Size Recommended
$9 / 6^{\prime \prime}, 5 / /^{\prime \prime}, 11 / s_{6}^{\prime \prime}$	$0-30$ Amp., 250 Volt
$13 / s_{6}^{\prime \prime}$	$31-60$ Amp., 250 Volt
$11 / s^{\prime \prime}, 11 s^{\prime \prime}, 13 s^{\prime \prime}$	$31-60$ Amp., 600 Volt

Type 48 Terminal Used as "Lead and Lug"

When circuit wires are to be connected to a resistor, with Type 48 wire leads, the wires must be soldered to the tinned leads rather than the lug.

Fig. 52: How surface leakage distance from lug to ground varies with method of mounting.

Stock Woft Sizes or Equivalen!		With Spring Grip Brackets	With Through-bolt Brackets and Mica Washers
O.D.	Watts	Vollage Rating	
\%/6"	25,50,75	-	$\left\{\begin{array}{l} 150 \mathrm{~V} . \operatorname{Std} . \\ 300 \mathrm{~V}_{.}^{*} \end{array}\right.$
$3 / 4{ }^{\prime \prime}$	100	150 V .	300 V .
$11 /{ }^{\prime \prime}$	160,200	300 V .	600 V .

*300 V. with 1" dia. mica washers Cat. No. 6026.
Fig. 53: Voltage rating to ground per UL "Industrial Control Standards."

Circult Voltage	Insulation Distance (Min.)	
	Over Surface	Through Air
$51-150$	$1 / 4^{\prime \prime}$	$1 / 8^{\prime \prime}$
$151-300$	$\# 3 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$
$301-600$	$1 / 2^{\prime \prime}$	$3 / 8^{\prime \prime}$

* $1 / 4$ " permitied for devices less than 1600 V.A.

Fig. 54: Minimum spacings per UL "Industrial Control Standards."

Fig. 55: Typical miniature, intermediate and standard size "Thin" resistors.

Vitreous enameled "Thin" resistors (also. known as "Strip," "Flat," or "Oval Core" type) of approximately oval cross-section and mounted by flat brackets of aluminum, are most frequently used where space is limited. Their over-all height above the mounting surface is low and they can be compactly stacked.

Ohmite makes three series of Thin resistors-the "miniature" in 10,15 , and 20 watt sizes; the "intermediate" in 20 and 30 watt sizes and the "standard" in $30,40,55,70$ and 95 watt sizes. Mounting brackets, an integral part of these units, extend through the resistor core (two pieces for "unit" type brackets) to equalize heat distribution and to conduct heat directly to the mounting surface. Wattage ratings, therefore, are based on the use of a steel mounting surface of $10^{\prime \prime}$ square $\times .040^{\prime \prime}$ thick or equivalent.

Fixed resistors Series 25 in the 10, 20, 30, 40 and 55 watt sizes are available from stock as listed on page 43. These and other sizes can be made to order in the fixed, Dividohm adjustable Series 26 or tapped styles. Resistance tolerance for 1 ohm and greater is $\pm 5 \%$; tolerance on lower resistances and all Dividohms is $\pm 10 \%$.

Mountings: "Standard size" (1 " x $1 / 4$ " cross-section) cores can be supplied with either "Stacking" type or "Unit" type mounting brackets assembled, as illustrated. Stacking Type Brackets are available in two heights, "Standard Bracket" (S) of $7 / 16$ " height and "High Bracket" (SH) of $17 / 3: 2$ " height. The "High Bracket" is recommended when Dividohm style (Series 26) resistors are to be stacked as it assures clearance for the adjustable lugs to pass each other.

A spacer washer, Cat. No. 6027, $7 / 32^{\prime \prime}$ O.D. $\times 1 / 8^{\prime \prime}$ I.D. x ${ }_{3} 32$ " thick, can be supplied for use with Miniature

Thin Dividohms for clearance, as explained above, or for increased wattage (see Derating Table, page 42).

THIN DIVIDOHMS

Standard Thin Dividohms have a strip of winding exposed on either the lug edge (L) or the opposite or back (B) edge. On Miniature resistors, the exposed strip may be on either edge or on the top (T). The $1^{\prime \prime}$ long core is the shortest practicable for Dividohm use. Appropriate lugs to suit the location of the exposed area are shown below.

Ordering Code: See page 42.

ADJUSTABLE LUGS

(For Standard \& Miniature Sizes)

With "screw at 90°," the screw is perpendicular to the resistor mounting surface. With the screw "parallel" to the mounting surface, it may be adjusted more easily where several Dividohms are stacked.

Fig. 56: Adjustable lugs for Thin Dividohms.

For Resist. Size	For Contact Area	Scrow Loca- tion	Cat.
No.			

DERATING FOR STACKED MOUNTING

Stacked resistors should be derated to prevent excessive temperatures due to proximity. Approximate ratings are given in the table.

No. of Resistors	Percent of Single Unit Rating		
	Std. or Inler.	Minioture	Mini. with 3/2" Sp.
	70	70	75
4	60	60	69
	50	50	60

TYPE 250 THIN RESISTORS, MADE-TO-ORDER

Miniature

10	$3 / 4$	$3 / 8$	$1 / 8$	1	15,000	TA	57	1	$3 / 8$	51
15	1	$3 / 8$	$1 / 8$	1	25,000	TA	57	$11 / 4$	$3 / 8$	51
20	2	$3 / 8$	$1 / 8$	1	50,000	TA	57	$25 / 16$	$3 / 8$	51
12	$11 / 16$	$19 / 2$	$15 / 64$	1	20,000	TB	\cdots	-	-	51

Intermediate

21	1	$13 / 16$	$1 / 4$	1	8,000	TD	58	$13 / 6$	$19 / 22$	51
25	$11 / 2$	$13 / 16$	$1 / 4$	1	15,000	TD	58	$113 / 16$	$19 / 22$	51

Standard

30	$11 / 4$	1	$1 / 4$	1	10,000	TE	59 60	$13 / 4$ 2	$15 / 16$	57
40	2	1	$1 / 4$	1	25,000	TE	59 60	$21 / 2$ $21 / 4$	$15 / 16$	57
55	$31 / 2$	1	$1 / 4$	1	30,000	TE	59 60	4 $41 / 4$	$15 / 16$	57
$70 \ddagger$	$43 / 4$	1	$1 / 4$	1	$120,000 \ddagger$	TE	59 60	$51 / 4$ $51 / 2$	$15 / 16$	57
$95 \ddagger$	6	1	$1 / 4$	1	$150,000 \ddagger$	TE	59 60	$61 / 2$ $63 / 4$	$15 / 16$	57

"Based on mounting on steal panel $10^{\prime \prime \prime} \times 10^{\prime \prime} \times .040^{\prime \prime}$.
 for TE.
\ddagger These sizes are Ohmicone (silicone-ceramic) coated. -Type 450

- User supplies brackets.

Ordering Code: A coded specification number car be written as shown by the example below:

Fig. 57: Miniature Thin resistor.

Fig. 58: Intermediate Thin resistor.

Fig. 60: Standard resistor with stacking-type mounting bracket.

TME -250 -

Thin resistors, of approximately oval cross-section and mounted by means of flat, stud-equipped brackets fastened to the core, are convenient where space is limited. They can be readily stacked. The resistors, except for shape, are constructed similarly to the tubular resistors and feature all-welded construction and Ohmite

STOCK MINIATURE THIN

WATT Code: $3 / 4$-TA-5I-F-S
Terminol: No. 51

Cot. No.	Ohms	Max. Amps	Cot. No.	Ohms	Max. Amps	Style 250-30 Code: $11 / 4$-TE-57-F-S WATT Terminol: No. 57 Core: $11 / 4^{\prime \prime} \mathrm{L} \times \mathrm{l}^{\prime \prime} \mathrm{W} \times 1 / \mathrm{c}^{\prime \prime} \mathrm{Th}$			TANDARD THIN Style 250-40 Code: 2-TE-57-F-S WATT Terminal: No. 57 Core: $\mathbf{2}^{\prime \prime} \mathrm{L} \times \mathrm{l}^{\prime \prime} \mathrm{W} \times 1 / \mathrm{c}^{\prime \prime}$ Th			RESISTORS *55 Style 250-55 Code: 31/2-TE-57.F-S WATT Terminal: No. 57 Core: $3 \frac{1}{2} 2^{\prime \prime} L \times 1^{\prime \prime} W \times 1 / 4^{\prime \prime}$ Th		
$\begin{aligned} & \text { F101 } \\ & \text { F102 } \\ & \text { F103 } \end{aligned}$	1 2 5	3.16 2.24 1.41	F201 F202 F203	2	4.47 3.16 2.00									
F104 F105	$10^{7.5}$	1.15 1.00	F204	10 15	1.41 1.16	$\begin{aligned} & \text { Cof. } \\ & \text { No. } \end{aligned}$	Ohms	Max. Amps	Cot. No.	Ohms	Max. Amps	Cot. No.	Ohms	Max. Amps
F106	15	0.82	F206	25	0.89	F301	1	5.47	F401	1	6.32	F501	1	7.42
F107	20	0.71	F207	40	0.71	F302	1.5	4.47	F402	1.5	5.16	F502	1.5	6.05
F108	25	0.63	F208	50	0.63	F303	2	3.88	F403	2	4.47	F503	2	5.24
F109	30	0.58	F209	75	0.52	F304	3	3.17	F404	3	3.65	F504	3	4.28
F110	40	0.50	F210	100	0.45	F305	5	2.46	F405	4	3.16	F505	4	3.70
Flll	50	0.45	F211	150	0.36	F306	10	1.73	F406	5	2.83	F506	5	3.32
F112	75	0.36	F212	200	0.32	F307	15	1.42	F407	7.5	2.31	F507	7.5	2.72
F113	100	0.32	F213	250	0.28	F308	25	1.10	F408	10	2.00	F508	10	2.34
F114	125	0.28	F214	300	0.26	F309	40	0.87	F409	25	1.26	F509	25	1.48
F115	150	0.26	F215	400	0.22	F310	50	0.77	F410	40	1.00	F510	40	1.17
F116	200	0.22	F216	500	0.20	F311	75	0.63	F411	50	0.89	F511	50	1.05
F117	250	0.20	F217	800	0.16	F312	100	0.55	F412	75	0.73	F512	75	0.86
F118	300	0.18	F218	1,000	0.14	F313	150	0.45	F413	100	0.63	F513	100	0.74
F119	400	0.16	F219	1,250	0.12	F314	200	0.39	F414	150	0.52	F514	150	0.61
F1 20	500	0.14	F220	1,500	0.12	F315	250	0.35	F415	200	0.45	F515	200	0.52
F121	600	0.13	F221	2,000	0.10	F316	400	0.28	F416	250	0.40	F516	250	0.47
F122	750	0.12	F222	2,500	0.089	F317	500	0.25	F417	400	0.32	F517	400	0.37
F123	1,000	0.10	F223	3,000	0.081	F318	750	0.20	F418	500	0.28	F518	500	0.33
F124	1,250	0.089	F224	3,500	0.075	F319	1,000	0.17	F419	750	0.23	F519	750	0.27
F125	1,500	0.081	F225	4,000	0.070	F320	1,500	0.14	F420	1,000	0.20	F520	1,000	0.23
F126	1,750	0.075	F226	5,000	0.063	F321	2,000	0.12	F421	1,500	0.16		1,500	
F127	2,000	0.071	F227	6,000	0.058	F322	2,500	0.11	F422	2,000	0.14	F522	2,000	0.17
F128	2,500	0.063	F228	7,500	0.052	F323	3,000	0.10	F423	2,500	0.13	F523	2,500	0.15
F129	3,000	0.057	F229	10,000	0.045	F324	4,000	0.087	F424	3,000	0.12	F524	3,000	0.14
F130	4,000	0.050	F230	12,500	0.040	F325	5,000	0.076	F425	4,000	0.10	F525	4,000	0.12
F131	5,000	0.045	F231	15,000	0.036	F326	7,500	0.057	F426	5,000	0.089	F526	5,000	0.10
			F232	20,000	0.032	F327	10,000	0.049	F427	7,500	0.073	F527	7,500	0.086
			F233	25,000	0.028				F428	10,000	0.063	F528	10,000	0.074
			F234	30,000	0.026				F429	15,000	0.045	F529	15,000	0.061
									F430	20,000	0.039	F530	20,000	0.052
			$\begin{aligned} & \text { F236 } \\ & \text { F237 } \end{aligned}$	$\begin{aligned} & 40,000 \\ & 50,000 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.020 \end{aligned}$				F431	25,000	0.035	$\begin{aligned} & \text { F531 } \\ & \text { F532 } \end{aligned}$	$\begin{aligned} & 25,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & 0.047 \\ & 0.040 \end{aligned}$
Mig. Centers $1^{\prime \prime}$ Hole Size . $125^{\prime \prime}$ Avg. Weight .007 lb .			Mig. Centers $25 / 16^{\prime \prime}$ Hole Size $125^{\prime \prime}$ Avg. Weight. 015 lb .			Mig. Centers $2^{\prime \prime}$ Hole Size . 196" Avg. Weight. 037 lb .			Mtg. Centers $23 / /^{\prime \prime}$ Hole Size $196^{\prime \prime}$ Avg. Weight .052 lb.			Mig. Centers $41 / 4^{\prime \prime}$ Hole Size 196" Avg. Weight .095 lb .		

*Rotings ore bosed on mounting on o steel plate $10^{\prime \prime} \times 10^{\prime \prime} \times .040^{\prime \prime}$. Rotings should be reduced for non-metollic mounting surfoce.

with "Ohmicone" Coating-Low TC Excellent Stability=Standard Tolerance $\mathbf{3 \%}$

Types 404, 444, 454, and 474 fixed resistors are Ohmicone-coated wirewound types which feature a low temperature coefficient of resistance, a tolerance that is closer (3%) than the normal standard of 5% for power resistors, plus excellent stability characteristics. "OHMICONE" is a patented (U.S. $2,647,192$) silicone-ceramic compound.
Type 404 resistors are the familiar tubular type with narrow lugs which have tinned leads attached.
Type 444 is the universally popular axial-lead style.
Type 454 resistors are the oval core or "Thin" type with lug terminals and integral brackets which permit stacking.
Type 474 is the popular tubularcore variety with lug terminals. (Terminals other than shown here are available; consult factory.) The

Fig. 63

Lug Terminals for Type 474 Resistors

Style	W	D
40	$1 / 4^{\prime \prime}$.166
45	$1 / 2^{\prime \prime}$.196
57	$3 / 6^{\prime \prime}$.104

TYPE 474 TUBULAR CORE, LUG TYPE RESISTORS

Ohmite Style	Nominal Watts	Core Dimensions			Terminals*	Min. Ohms	Max. Ohms .00175 Wire	Max. Ohms \dagger .001 Wire	Max 11 Volts
		1	OD	ID					
474.6.5	6.5	1	$1 / 4$	$1 / 8$	57	0.1	2200	12K	330
$\begin{aligned} & 474-8 \\ & 474-12 \end{aligned}$	$\begin{array}{r} 8 \\ 12 \end{array}$	$\begin{aligned} & 13 / 4 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & 1 / 16 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2700 \\ & 7500 \end{aligned}$	$\begin{aligned} & 16 \mathrm{~K} \\ & 43 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 330 \\ & 890 \end{aligned}$
$\begin{aligned} & 474-11 \\ & 474-15 \\ & 474-20 \\ & 474-26 \end{aligned}$	$\begin{aligned} & 11 \\ & 15 \\ & 20 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 11 / 2 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 / 16 \\ & 7 / 16 \\ & 7 / 16 \\ & 7 / 16 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \\ & 57 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 3900 \\ 8200 \\ 13 \mathrm{~K} \\ 22 \mathrm{~K} \\ \hline \end{array}$	$\begin{array}{r} 22 K \\ 51 K \\ 75 K \\ 130 \mathrm{~K} \end{array}$	$\begin{array}{r} 330 \\ 700 \\ 1000 \\ 1800 \end{array}$
$\begin{aligned} & 474-25 \\ & 474-35 \\ & 474-50 \\ & 474-60 \\ & 474.75 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 50 \\ & 60 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	9/6 $9 / 16$ $9 / 16$ 9/16 $9 / 16$	5/16 5/16 5/16 5/16 5/16	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 16 \mathrm{~K} \\ & 27 \mathrm{~K} \\ & 39 \mathrm{~K} \\ & 51 \mathrm{~K} \\ & 62 \mathrm{~K} \end{aligned}$	100K 160K 240K 300K 360K	$\begin{aligned} & 1000 \\ & 1800 \\ & 2600 \\ & 3300 \\ & 4100 \end{aligned}$
474.45 474-51 474.61 474.65 474.76 474.90 474.100	$\begin{array}{r} 45 \\ 51 \\ 61 \\ 65 \\ 76 \\ 90 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 31 / 2 \\ & 4 \\ & 41 / 2 \\ & 5 \\ & 6 \\ & 61 / 2 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 1 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 33 \mathrm{~K} \\ & 43 \mathrm{~K} \\ & 51 \mathrm{~K} \\ & 56 \mathrm{~K} \\ & 62 \mathrm{~K} \\ & 82 \mathrm{~K} \\ & 91 \mathrm{~K} \end{aligned}$	200 K 270 K 300 K 330 K 390 K 470 K 510 K	$\begin{aligned} & 1700 \\ & 2100 \\ & 2400 \\ & 2800 \\ & 3200 \\ & 3900 \\ & 4300 \end{aligned}$
474.70 474.85 474.105 474-140 474-176	$\begin{array}{r} 70 \\ 85 \\ 105 \\ 140 \\ 176 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ 5 \\ 6 \\ 8 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 5 / 8 \\ & 5 / 8 \\ & 5 / 8 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 62 \mathrm{~K} \\ 82 \mathrm{~K} \\ 91 \mathrm{~K} \\ 150 \mathrm{~K} \\ 200 \mathrm{~K} \\ \hline \end{array}$	390 K 510 K 620 K 910 K 1.1 MEG	$\begin{aligned} & 2400 \\ & 3100 \\ & 3900 \\ & 5400 \\ & 6900 \end{aligned}$
474.80 474.120 474.130 474.160 474.175 474-225 474-235 474-251	$\begin{array}{r} 80 \\ 120 \\ 130 \\ 160 \\ 175 \\ 225 \\ 235 \\ 251 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 6 \\ & 61 / 2 \\ & 8 \\ & 81 / 2 \\ & 101 / 2 \\ & 111 / 4 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 / 8 \\ & 11 / 8 \\ & 11 / 8 \\ & 11 / 8 \\ & 11 / 8 \\ & 11 / 8 \\ & 11 / 8 \\ & 11 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	75K 120K 130K 160K 180K 220K 240K 270K	430 K 670 K 750 K 1 MEG 1.1 MEG 1.3 MEG 1.5 MEG 1.6 MEG	$\begin{aligned} & 2300 \\ & 3800 \\ & 4200 \\ & 5300 \\ & 5700 \\ & 7200 \\ & 7800 \\ & 8300 \end{aligned}$
474.150	150	51/2	$11 / 2$	$11 / 8$	45	0.25	130K	300K+	3000
474.250 474.500 474.750 474.1000	$\begin{array}{r} 250 \\ 500 \\ 750 \\ 1000 \end{array}$	$\begin{array}{r} 6 \\ 12 \\ 15 \\ 20 \end{array}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \\ & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 13 / 4 \\ & 13 / 4 \\ & 13 / 4 \\ & 13 / 4 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5.1 \mathrm{~K}_{+}^{+} \\ 13 \mathrm{~K}_{+}^{+} \\ 16 \mathrm{~K}_{+}^{+} \\ 24 \mathrm{~K}_{+}^{+} \end{gathered}$	Not Applicable	- - -

\dagger Where patential to ground exceeds 500 V , supplementory insulation should be used
tables list the various standard sizes for each type. Other core sizes can be supplied. All resistors are made to order.

The types described here feature Ohmite's all-welded constructionlugs (where used) are welded around the high quality ceramic cores and the resistance wire is welded to the lug or end-cap for permanent, no-noise connections.
Resistance Tolerance: $\pm 3 \%$ for values 1 ohm and above; $\pm 10 \%$ for values below 1 ohm. Tolerances to $.05 \%$ can be supplied depending upon size and resistance value.
Temperature Coefficient of Resistance: For axial-lead Type 444:

TC in ppm $/{ }^{\circ} \mathbf{C}$	Ohms
0 ± 20	20 and above 0 ± 50
1 to less than 20 below 1	
Consult factory	bey

Fig. 64: Dimensions of Type 444 resistor.

For all other types, $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 10 ohms and above, $0 \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ below 10 ohms.
Stability: For all types ("V" rating, derating linearly to 0 watts at $\left.350^{\circ} \mathrm{C}\right) \pm 3 \% \Delta \mathrm{R}$ after 2000 hours of cyclic load-life at rated wattage; improved stability of $\pm 1 \% \Delta \mathrm{R}$ obtainable from axial lead Type 444 at wattages corresponding to " P " rating (derates linearly to 0 watts at $275^{\circ} \mathrm{C}$). See Type 444 table.
Insulation: Meets 1000 volt test except for 1 or 1.5 watt sizes, 500 volts.
Military Specifications: Meets the applicable environmental, mechanical and electrical requirements of MIL-R-26.
Mounting: Type 454 resistors incorporate integral mounting brack-
ets. Type 444 mount by their axial leads. Type 404 mount by their leads but the $5 / 10^{\prime \prime}$ and $7 / 10^{\prime \prime}$ OD cores of this type also can be mounted with brackets (see page 49). Mounting brackets are available for Type 474 tubular, lug-type resistors. These are slipped inside the resistor core and remain in place by friction. The standard bracket is cadmium-plated steel (see page 49).

TO ORDER:

(1) Specify style number under desired type.
(2) Specify resistance value-note ranges in table.
(3) Specify quantity of resistors.
(4) Specify brackets, if desired, by stock number (see page 49).

TYPE 444 FIXED RESISTORS WITH AXIAL LEADS

Ohmite Style	$\begin{gathered} \text { Watts } \\ P \\ \text { Rating } \end{gathered}$	$\begin{gathered} \text { Wofts } \\ \text { Y } \\ \text { Roting } \end{gathered}$	Resistor Dimensions			$\begin{aligned} & \text { Loods } \\ & 11 / 2^{\prime \prime} \\ & \text { AWG } \end{aligned}$	Ohms Range	A여. Volls
			$\begin{aligned} & L_{1} \\ & \pm .063 \end{aligned}$	$\begin{aligned} & \mathbf{L}_{2} \\ & \text { max.ti } \end{aligned}$	$\begin{aligned} & D \\ & \pm .031 \end{aligned}$			
444.1A	1	1.5	*. 406	. 437	. 093	24	0.1-7.5K	-
444-3	3	3.25	. 500	. 563	. 218	20	0.1-39.2K	200
444.6.5	5	6.5	. 875	1.094	. 312	18	0.1-133K	510
444.11	10	11	1.781	1.938	. 375	18	0.1-442K	1000

$* \pm .031 \quad \dagger P=$ deroles to 0 wotts ot $275^{\circ} \mathrm{C} ; V=$ derotes to 0 wotts of $350^{\circ} \mathrm{C}$
\dagger tEnd of resistor is point of which diometer reduces to $.060^{\prime \prime}$ for styles 444-3, -6.5 ond -11 ; $.050^{\prime \prime}$ for 444-1A.
TYPE 404 TUBULAR CORE,
LUG-LEAD FIXED RESISTORS

TYPE 454 "THIN," LUG-TERMINAL, FIXED RESISTORS

Fig. 66b: Thin Resistor Dimensions

Ohmile Sivile	Nom:	Core Dim.		RE, OVERALL AND MOUNTING DIMENSIONS								Min. Ohme	Max. Ohms Wire	$\begin{aligned} & \text { Sid. } \\ & \text { Max. } \\ & \text { Ohm } \mathrm{t} \end{aligned}$	Mat. Volle
		A	\cdots	B	c	0	E	H	1	M	5				
MINIATURE TYPES															
454.10+	10	3/4	3/8	1/4	3/1	1/6	1/8	7/16	17/20	1	. 125	0.1	2400	15K	330
454-20 ${ }_{+}$	20	2	\%	$1 / 4$	$3 / 8$	1/16	1/8	7/6	217/3s	25/6	. 125	0.1	IOK	51K	1300
STANDARD TYPES															
454-30	30	$11 / 4$	1	7/16	1	. 104	3/16	21/22	21/2	2	. 196	0.1	9100	18K	470
454.40	40	2	1	7/16	1	. 104	3/16	21/2	$31 / 4$	$23 / 4$. 196	0.15	20K	39K	1000
454.55	55	$31 / 2$	1	7/6	1	. 104	3/6	21/32	$43 / 4$	41/4	. 196	0.3	43K	82K	2200
454.70	70	$43 / 4$	1	7/16	1	. 104	3/16	21/20	6	$51 / 2$. 196	0.4	62K	. 12 MEG	3100
454.95	95	6	1	7/16	1	. 104	3/18	21/82	71/4	63/4	. 196	0.5	82K	. 15 MEG	4000

*Wottoge rotings ore bosed on resistor being horizontolly mountes
on a $10^{\prime \prime} \times 10^{\prime \prime} \times .040^{\prime \prime}$ plote.
t For values in excess of those shown here, consult foctory.

Ohmite "POWR-RIB" Resistors are uncoated resistors, designed especially for high-current duty in both intermittent and continuous duty applications. They are supplied in two types, the edge-wound ribbon type for the lower resistances and the round-wire type for the higher resistances. Both offer high heat dissipation, resistance to oxidation and ruggedness to withstand shock and vibration.
"POWR-RIBS" are suitable for original equipment or for replacement in existing installations. They are particularly applicable in electric trucks, battery chargers, motor controllers, load banks, plating and welding equipment, as well as motor starting, plugging, field discharge, and dynamic braking in dc controllers.

The edge-wound resistors have a coil made of a heavy ribbon of resistance alloy mounted on ceramic insulators which are supported by a metal bar. Metal parts except for the resistance element, are heavily plated to prevent oxidation at high operating temperatures, to provide good electrical contact and to prevent corrosion.
"POWR-RIB" resistors are rated at $375^{\circ} \mathrm{C}\left(675^{\circ} \mathrm{F}\right)$ temperature rise, measured on the resistance element (NEMA standard). They are made in seven standard lengths, which are $2,3,4,5,6,7$ or 8 insulator segments long.

ROUND-WIRE "POWR-RIB" RESISTORS

Round-wire wound POWR-RIBS" provide higher resistances than possible with the edge-wound units. As the method of mounting and mounting centers are the same as the edge-wound type, both kinds can be assembled interchangeably in load banks.

The units consist of ceramic insulators assembled on a metal bar and wound with resistance alloy wire. The wire is terminated on clamp type lugs, provided with screw connections.

Due to the reduced radiating surface, the wattage of round-wire "POWR-RIBS" is less than that of the same length edge-wound types. The approximate wattages are $220,380,540,700,860,1020$ and 1180. Wattages for both round-wire and edge-wound ribbon "POWR-RIB" resistors vary more than $\pm 10 \%$ for the same length units in different resistances because of the different heat radiating and conducting properties of the various sizes and types of wire or ribbon necessarily used.

Terminals

Adjustable Terminal (In line mtg.). . .Cat. No. 2175 Adjustable Terminal ($90^{\circ} \mathrm{mfg}$). . . . Cat. No. 2176

Fig. 67: Typical Round-Wire POWR-RIBS (suffix at end of style no. indicates number of segments)

Fig. 68: Dimensions of Round-Wire POWR-RIB

ROUND-WIRE "POWR-RIB" RESISTORS*

Slie** (Number of Insulator Segments Long)								
2	3	4		ock	6	7	8	
$\begin{aligned} & 8 \% " \\ & " A " \end{aligned}$	$\begin{gathered} 11 \% " \\ " A \text { " } \end{gathered}$	$\begin{gathered} 14 \% " \\ " A \text { " } " \end{gathered}$			$\begin{gathered} \hline 20 \% \text { " } \\ \hline \text { " } " \end{gathered}$	$\begin{gathered} 237 k^{"} \\ " A " \end{gathered}$	$\begin{gathered} 26 \% h^{\prime \prime} \\ " A \text { " } \end{gathered}$	
$\begin{gathered} 71 / \mathrm{a}^{\prime \prime} \\ " \mathrm{~B} " \end{gathered}$	$\begin{gathered} 101 / 4 " \\ " B " \end{gathered}$	$\begin{gathered} 131 / 4 \text { " } \\ " \mathrm{~B} \text { " } \end{gathered}$			$\begin{gathered} 191 / 4 \text { " } \\ \text { " } \mathrm{B} \text { " } \end{gathered}$	$\begin{array}{\|c\|} \hline 221 / 4 " \\ " B " \end{array}$	$\begin{gathered} 25 \frac{1 / 4 "}{} \text { "B" } \end{gathered}$	
Ohms	Ohms	Ohms	Ohms	Stock No.*	Ohms	Ohms	Ohms	Max. Amps.
3.4	5.9	8.5	11.0	2338	13.5	16.0	18.5	8.3
4.1	7.1	10.0	13.0	2339	15.9	18.8	21.7	7.6
5.3	9.2	13.0	17.0	2340	20.8	24.6	28.4	6.6
6.3	10.9	15.4	20.0	2341	24.5	29.0	33.5	5.9
7.9	13.6	19.3	25.0	2342	30.7	36.4	42.1	5.1

*5-section units are stocked and are ordered by stock number.
Order other sizes, or variations, by length and ohms. Two terminals No. 2175 supplied as standard unless otherwise specified.

POWR-RIB ${ }^{\circledR}$ RESISTORS Edge-Mound Types 080 Fixed; 030 Adiustable

Fig. 69: Typical Edge-Wound POWR-RIBS (suffix at end of style no. indicates number of segments)

Edge-wound Powr-Rib resistors have a coil of heavy resistance alloy ribbon mounted on ceramic insulators which are supported by a metal mounting bar. Higher resistance units, wound with round wire, are described on the preceding page.

Wattage ratings are approximately $400,600,800$, $1000,1200,1400$ and 1600 watts respectively for resistances up to 2 ohms, and somewhat less for higher resistances. Available resistance values and current ratings are shown in the table. Intermediate resistance values can be obtained by relocating the terminal clamps. Terminals can be clamped in line with the mounting or at 90° to it. Any combination of clamps can be ordered.

EDGE-WOUND "POWR-RIB" RESISTORS*

Size* (Number of Insulator-Segments Long)

2	3	4	$\stackrel{5}{\text { In Stock }}$		6	7	8	$\begin{aligned} & \text { Max. } \\ & \text { Amps. } \end{aligned}$
$\begin{aligned} & 8 y k^{\prime \prime} \\ & " A^{\prime \prime} \end{aligned}$	$\begin{gathered} 111 / e^{\prime \prime} \\ " A A^{\prime \prime} \end{gathered}$	$\begin{gathered} 147 / 0^{\prime \prime} \\ " A A^{\prime} \end{gathered}$	$\begin{gathered} 177 / \mathrm{s}^{\prime \prime} \\ " \mathrm{~A}^{\prime \prime} \end{gathered}$		$\begin{gathered} 20 \%{ }^{\prime \prime} \\ " A " \text { " } \end{gathered}$	$\begin{array}{\|c\|} \hline 237 / 0^{\prime \prime} \\ " A " \end{array}$	$\begin{gathered} 26 \% / 0^{\prime \prime} \\ " A \text { " } \end{gathered}$	
$\begin{gathered} 71 / 4^{\prime \prime} \\ " B^{\prime \prime} \end{gathered}$	$\begin{gathered} 101 / 4^{\prime \prime} \\ \text { "B" } \end{gathered}$	$\begin{gathered} 131 / 4^{\prime \prime} \\ " \mathrm{~B} \text { " } \end{gathered}$	$\begin{gathered} 161 / 4 " \\ " B \text { " } \end{gathered}$		$\begin{gathered} 191 / 4^{\prime \prime} \\ " B " \end{gathered}$	$\begin{array}{\|c\|} \hline 221 / 4^{\prime \prime} \\ " B " \end{array}$	$\left\lvert\, \begin{gathered} 251 / 4^{\prime \prime} \\ " B " \end{gathered}\right.$	
Ohms	Ohms	Ohms	Ohms	*Stock No.	Ohms	Ohms	Ohms	
. 033	. 057	. 08	. 10	2301	. 12	. 14	. 16	100
. 040	. 070	. 10	. 12	2302	. 14	. 16	. 18	91
. 046	. 078	. 11	. 14	2303A	. 17	. 20	. 23	89
. 052	. 088	. 12	. 16	2304A	. 19	. 22	. 25	78
. 06	. 10	. 14	. 18	2305A	. 21	. 25	. 30	75
. 07	. 12	. 18	. 22	2306A	. 26	. 30	. 34	68
. 08	. 13	. 19	. 25	2306	. 30	. 35	. 40	63
. 10	. 16	. 23	. 30	2308A	. 36	. 42	. 48	57
. 11	. 18	. 25	. 33	2308	. 40	. 47	. 54	54
. 12	. 20	. 28	. 37	2309A	. 45	. 53	. 61	50
. 17	. 28	. 38	. 50	2310	. 60	. 70	. 80	47
. 21	. 33	. 46	. 60	2317	. 72	. 85	. 98	43
. 23	. 36	. 51	. 67	2318	. 80	. 93	1.06	41
. 26	. 42	. 58	. 75	2311	. 90	1.05	1.2	39
. 35	. 56	. 77	1.00	2312	1.20	1.40	1.6	33
. 45	. 73	1.00	1.30	2319	1.50	1.75	2.0	29
. 56	. 90	1.20	1.60	2313	1.90	2.2	2.5	26
. 69	1.20	1.70	2.20	2331A	2.70	3.1	3.5	18.4
. 88	1.50	2.20	2.80	2332A	3.40	4.0	4.6	16.3
1.10	1.90	2.70	3.50	2333A	4.30	5.1	5.9	14.6
1.40	2.40	3.50	4.50	2334A	5.50	6.5	7.5	12.7
1.70	2.90	4.20	5.40	2335A	6.60	7.8	9.0	11.8
2.10	3.70	5.30	6.80	2336A	8.30	9.8	11.3	10.3
2.70	4.60	6.50	8.50	2337A	10.40	12.3	14.2	9.4

[^4]An optional slotted sleeve, Cat. No. 2174 (3/4" O.D. x $1 / 2^{\prime \prime}$ I.D. $\times 3 / 8^{\prime \prime} \lg$.) is available, which permits the mounting bar to expand with complete freedom and without buckling, when the resistor operates at very high temperatures.
Adjustable Terminal \qquad Cat. No. 2172-B (For 30 amps. or more)
Adjustable Terminal \qquad .Cat. No. 2172-G
(For 29 amps. or less)
Adjustable Terminal Cat. No. 2172-F (For parallel wound units)
Welded Terminal with $1 / 4^{\prime \prime}$ dia. hole. Type 39 (Cannot be supplied unmounted. Must be specified on resistor order)
Clamp, with screw, nut and lockwasher. Cat. No. 2173 (For use on welded terminal Type 39)
Welded or brazed terminal Type 39 can be supplied only for edge-wound resistors of 26 ampere rating or greater.

Resistors of 52 amp . rating or greater can be provided with parallel wound coils of lower TC ribbon, when desired.

[^5]Fig. 70: Dimensions-Edge-Wound POWR-RIB Resistors

Adjustable lugs are clamp terminals used on resistors which have been provided with a bared side or track of exposed wire so the terminal can be located at any desired point and make contact with the wire. The standard lugs are made of cadmium-plated steel. A small embossing provides the contact area. A unique Ohmite feature is the flat contact area of the embossing, as contrasted with the conventional ball shape. The flat distributes the pressure and prevents damage to the wire so effectively that special spring mountings are unnecessary. A silver contact can be provided instead of the embossing. Lugs fasten by means of a screw and nut.

Fig. 71: Typical adjustable lugs.

Core Dia.	Dimensions			Screw Driver Type Cat. No.		Bakelite Knob Type Cat. No.	
	$\underset{\text { Width }}{\text { W }}$	$\begin{gathered} \mathrm{B} \\ \text { Proj. } \end{gathered}$	Hole D.	Standard	Silver Contact	Standard	Silver Contact
5/6"	$3 / 66^{\prime \prime}$	$13 / 2^{\prime \prime}$. 125	1058	2161		
7/16 ${ }^{\prime \prime}$	$1 / 4^{\prime \prime}$	$11 / 2^{\prime \prime}$. 152	0356	2162	0357	2163
9/6"	$1 / 4^{\prime \prime}$	19/2"	. 170	0358	2164	0359	2165
$3 / 4{ }^{\prime \prime}$	$1 / 4^{\prime \prime}$	$5 / 8{ }^{\prime \prime}$. 170	1958	2166	1959	2167
$1^{\prime \prime}$	5/16"	11/16"	. 173	1956	2168	1957	2169
$11 /{ }^{\prime \prime}$	5/6"	$11 / 16^{\prime \prime}$. 173	2158	2170	2159	2171
$11 / 2^{\prime \prime}$	5/6"	11/16"	. 169	2180	2182	2181	2183
$18 /{ }^{\prime \prime}$	$3{ }^{\prime \prime \prime}$	11/16"	. 169	2184	2186	2185	2187
21/2"	$1 / 2^{\prime \prime}$	$31 / 22^{\prime \prime}$. 193	2188	2190	2189	2191

Fig. 72: Dimensions of adjustable lugs.

TAPPED HOLE ADJUSTABLE LUGS

Lugs having a tapped hole, or with a nut welded to the lug, can be provided for added convenience. Dimensions are similar to standard.

Tapped Adjustable Lugs

Core Dia.	Serew Driver Type Car. No.	
	Standard	Silver Contoct
甲/6"	2192	2193
$3 / 4^{\prime \prime}$	2194	2195
$11 / 8^{\prime \prime}$	2196	2197

ADJUSTABLE LUGS FOR "Corribs"

Adjustable lugs for use on the corrugated ribbon exposed winding "Corrib" resistors are similar to the regular adjustable lugs except for the omission of the embossing.

Corrib Adjustable Lugs

Core Dia.	*Cat. No.	Dimensions		
		Width w	Proi. B	Hole D.
9/16"	1971	3/16"	"1/16"	. 175
$3 / 4{ }^{\prime \prime}$	1972	$5 / 16^{\prime \prime}$	11/6"	. 175
$1^{\prime \prime}$	1973	\%"	11/6"	. 175
11/0"	1974	3/8"	$11 / 16{ }^{\prime \prime}$. 175
$11 / 2^{\prime \prime}$	1975	$3 / 1{ }^{\prime \prime}$	11/6"	. 175
$15 /{ }^{\prime \prime}$	1976	3/1"	11/6"	. 175
$21 / 2^{\prime \prime}$	1977	$1 / 2^{\prime \prime}$	29/8"	. 188

"When ordering Adiustoble Lugs separotely for "Corrib" resistors, odd suffix A to Cot. No. for resistors using Kı" ribbon; odd B to Cot. No. for resistors using $1 / 0^{\prime \prime}$ ribben. (Consult foctory if in doubt.)

DOUBLE THUMB SCREW ADJUSTABLE LUGS

This type of lug has one thumb-nut for fastening the connecting wire and a thumb-screw which presses a phosphor-bronze contact spring against the winding. As the thumb-screw must be loosened before the lug can be moved, this automatically protects the wire against possible damage.

These lugs are available only in the two sizes listed for $1^{\prime \prime}$ O.D. and $11 /{ }^{\prime \prime}$ O.D. cores.

Double Thumb Screw Adjustable Lugs

Conelia.	Callo.
$1^{\prime \prime}$	2157
$11 / \%^{\prime \prime}$	2160

Fig. 73: Double thumb-screw adjustable lug.

Fig. 74: Spring.grip mounting brackets.

SPRING-GRIP TYPE MOUNTING BRACKETS

These are the standard type of brackets for mounting stock resistors. They will be supplied on bulk shipments to manufacturers only when specifically ordered. They are automatically included with unit boxed stock resistors sold through distributors. The standard brackets are made of cadmium-plated steel. Spring-steel brackets, of greater holding power, can be ordered for increased resistance to vibration and shock. Nonmagnetic (brass) brackets should be ordered for use with non-inductive resistors and R. F. Chokes.

Fig. 76: Notched Core for Notea 1 Feature.

NON-TURN FEATURES FOR BRACKETS

When a positive means (not dependent on friction) for preventing the resistor from turning on the bracket is required, resistors can be ordered with special cores which engage the bracket as shown in Fig. 76 and 78.

The code word "NOTCA 1" feature has a notch at one end of the core in line with the terminal and requires the terminal to be set in farther than standard from the end of the core. Special angles can be specified. Code word "NOTCA 2" feature has a novel fluted inside diameter core (patent applied for). The mounting bracket engages the flutes. The resistor may

Cat. No.			For Core		Dimensions				$\begin{aligned} & \text { Size } \\ & \text { of } \\ & \text { Hole } \end{aligned}$	Max. Screw Size
Std.	Spring Steel	Brass	O.D.	I.D.	A	B	c	D		
5	55	5B	5/16"	$3 / 16^{\prime \prime}$	"/8"	$3 / 66^{\prime \prime}$	$3 / 8$	$1 / 4{ }^{\prime \prime}$. 144	\#6
7	75	78	761	$1 / 4 "$	$3 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	7/66 ${ }^{\prime \prime}$	$1 / 4^{\prime \prime}$. 147	\#6
9	95	9 B	961	5/16"	$11 / 16^{\prime \prime}$	5/16"	$15 / 2^{\prime \prime}$	$1 / 4 \prime$. 161	\#6
12	125	128*	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	$13 / 16^{\prime \prime}$	3/8"	$3 / 4 /$	3/8"*	. 196	\#10
16	165	168	$1^{\prime \prime}$	$5 / 8$	$13 / 16^{\prime \prime}$	3/1'	$3 / 4 /$	$1 / 2^{\prime \prime}$. 196	\#10
18	185	188	$11 /{ }^{\prime \prime}$	$34^{\prime \prime}$	13/6"	3/8'	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$. 196	\#10

*Cat. No. $12 \mathrm{BN}\left(\mathrm{D}=5 / 16^{\prime \prime}\right)$ required for flat-sided non-inductive resistors (page 29).

Fig. 77: Resistors with Non-Turn features.

Fig. 75: Mounting bracket dimensions.
be positioned with the terminals in line with the brackets, at 90°, or at an intermediate angle. "NOTCA 2 " is available in certain sizes only, where tube wall thickness permits. When ordering add the complete code word to the resistor designation.

Fig. 78: Fluted I.D. core Notca 2 feature.

THROUGH-BOLT TYPE "DEAD" MOUNTING BRACKETS - SLOTTED

These sturdy, cadmium-plated steel brackets for one, two or three resistors can be supplied mounted on the resistors, by means of through-bolts and centering washers. They are used in pairs, consisting of one "end-slot" and one "side-slot" bracket. The brackets

Through-bolt Type Mounting Brackets-Slotted

$\begin{aligned} & \text { Cat. No. } \\ & \text { Pair of } \\ & \text { Brackents } \\ & \text { Only } \end{aligned}$	Cat. No. Brackets Bolts	$\begin{array}{\|c\|} \hline \text { No. } \\ \text { Rotis- } \\ \text { Rosis- } \\ \text { tor } \end{array}$	Resistor Core O.D.	Dimensions		Standard Core Lengths
$\begin{aligned} & 6101 \\ & 6102 \\ & 6103 \end{aligned}$		1	\%/6"	A: $2 \% y_{2}{ }^{\prime \prime}$ C: $3 / 4^{\prime \prime}$ E. $7 / h^{\prime \prime}$	$\begin{array}{ll} B_{i} & 15 / 6^{\prime \prime} \\ D_{:} & 1 / n^{\prime \prime *} \\ F_{i} & 1 / 4^{\prime \prime} \end{array}$	$2^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$
$\begin{aligned} & 6104 \\ & 6105 \\ & 6106 \\ & \hline \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	3/4'	 E_{i} \%/ ${ }^{\prime \prime}$	$\begin{array}{ll} \mathrm{B}_{2} & 11 / \mathbf{s}^{\prime \prime \prime} \\ \mathrm{D}_{5} & 1 / n^{\prime \prime \prime} \\ \mathrm{F}_{i} & 1 / 4^{\prime \prime} \end{array}$	$2^{\prime \prime}, 4^{\prime \prime}, 81 / 2^{\prime \prime}$
$\begin{aligned} & 6110 A \\ & 6111 \\ & 6112 A \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$1^{\prime \prime}$	A: $1^{\prime \prime}$ C: $11 / \%^{\prime \prime}$ E: $13 / 6_{6}^{\prime \prime}$	$\begin{array}{ll} B_{B} & 13 / /^{\prime \prime \prime} \\ D_{5} & 1 / 6_{1 \prime \prime}^{\prime \prime \prime} \\ F_{5} & 3 / 6^{\prime \prime} \end{array}$	$4^{\prime \prime}, 6^{\prime \prime}$
$\begin{aligned} & 6110 \\ & 6111 \\ & 6112 \end{aligned}$		2	$11 /{ }^{\prime \prime}$	A: $1^{\prime \prime}$ C: $11 /^{\prime \prime}$ E: $13 / 6^{\prime \prime}$	$\begin{array}{ll} \hline \mathrm{B}_{1} & 13 /{ }^{\prime \prime \prime} \\ \mathrm{D}_{5} & 1 / 6_{1 \prime \prime}^{\prime \prime \prime} \\ \mathrm{F}_{5} & 3 / 6^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & 2^{\prime \prime}, 6^{\prime \prime \prime}, 61 / 1^{\prime \prime \prime}, \\ & 81_{2}^{\prime \prime}, 111^{\prime \prime} \end{aligned}$
$\begin{aligned} & 6113 \\ & 6113 \mathrm{~A} \\ & 6113 \mathrm{~B} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 11 / 2^{\prime \prime \prime} \\ & 11 / 2^{\prime \prime \prime} \\ & 15 / 8^{\prime \prime} \end{aligned}$	A: $1 \%{ }^{\prime \prime}$ C: $1 / /^{\prime \prime}$ $\mathrm{E}_{\mathrm{i}} 7 / \mathrm{hb}^{\prime \prime}$	$\begin{array}{ll} \mathrm{B}_{1} & \cdots \\ \mathrm{D}_{:} & y_{10 \prime}^{\prime \prime} \\ \mathrm{F}_{5} & \%^{\prime \prime} \end{array}$	$\begin{aligned} & 2^{\prime \prime \prime}, 6^{\prime \prime \prime}, 61 / 2^{\prime \prime \prime} \\ & 81_{2}{ }^{\prime \prime}, 1012^{\prime \prime} \end{aligned}$
$\dagger 6114$		1	$21 / 2^{\prime \prime}$	A: $2^{3 / 4}{ }^{\prime \prime}$ C: $21 / 2$ E: ${ }^{\prime \prime}$		$\begin{aligned} & 8^{\prime \prime}, 12^{\prime \prime}, 15^{\prime \prime}, \\ & 20^{\prime \prime} \end{aligned}$

" $\mathrm{D}=$ \# $_{4}{ }^{\text {" }}$ on brockets for 2 or 3 resistors.
\dagger Both brackets have end slots and integral centering device, consisting of 3 proiections.
can be ordered unmounted, but if bolts are also wanted, the order must state the length and diameter of resistor. Mica insulating washers are supplied with the brackets, as standard, unless otherwise ordered. Order should state either "assembled" or "unmounted."

Fig. 79: Slotted brackets

THROUGH-BOLT MOUNTING BRACKETS FOR HIGH SHOCK

Special brackets and centering washers which enenable resistors to meet the Hi-Shock test of MIL-S. 901 are available. Refer to Bulletin 104 for details of these resistors and mountings intended for military specification MIL-R-15109.

THROUGH-BOLT TYPE MOUNTING

Brackets with elongated holes, instead of open-end slots (at right angles to each other), are available in sizes as listed below. The brackets are made of plated
steel. Orders should state "assembled" or "unmounted." Mountings per military standard MS75009 for MIL-R-26 resistors are described in Catalog 50.

Fig. 80: Elongated-hole brackets

Through-bolt Type Mounting Brackets_Elongated Holes

Cat. No. Pair of Brackets Only	Cat. No. Brackets and Bolts		$\begin{gathered} \text { Resistor } \\ \text { Core } \\ \text { O.D. \& } \\ \text { Suffix Code } \end{gathered}$	Dime	ions	Standard Core Lengths
$\begin{aligned} & 6120 \\ & 6121 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 / 66^{\prime \prime}, 7 /{ }_{6}{ }^{\prime \prime}, 0 / 6^{\prime \prime \prime} \\ & \mathrm{D}, \end{aligned}$	$\begin{array}{ll} \mathrm{A}_{:} & 1^{\prime \prime} \\ \mathrm{C}_{2} & 1 / 2^{\prime \prime} \\ \mathrm{E}_{2} & 2 / /_{4}^{\prime \prime} \\ \mathrm{G}_{:} & 7 / 6^{\prime \prime} \\ \hline \end{array}$		$\begin{aligned} & 13 / 4^{\prime \prime}, 2^{\prime \prime}, 4^{\prime \prime}, \\ & 6^{\prime \prime} \end{aligned}$
$\begin{aligned} & 6122 \\ & 6123 \\ & 6124 \\ & 6125 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 / 4^{\prime \prime} \cdot 1^{\prime \prime} \\ & \mathrm{M}_{1} \mathrm{~N} \end{aligned}$	A: $11 / 4^{\prime \prime}$ C: $3 / 4^{\prime \prime}$ E: $\quad 27 \mathrm{~m}^{\prime \prime}$ G: $7 / 6^{\prime \prime}$	B: $15 /{ }^{\prime \prime}$ $\mathrm{D}_{1} 1 / 2^{\prime \prime}$ F: $7 / z^{\prime \prime}$ H: $3 / 4^{\prime \prime}$	$2^{\prime \prime} \cdot 4^{\prime \prime}, 61 / 2^{\prime \prime}$
$\begin{aligned} & 6126 \\ & 6127 \\ & 6128 \\ & 6129 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	${ }^{11 / e^{\prime \prime}}$	A: $11 / 2^{\prime \prime}$ C: $11 / 4^{\prime \prime}$ E: $\quad 7 / 16^{\prime \prime}$ G: 9/1"	$\mathrm{B}_{2} 2^{\prime \prime}$ D: $1 / 6^{\prime \prime}$ F: "/ra $^{\prime \prime}$ H: $1 / 8^{\prime \prime}$	$\begin{aligned} & 2^{\prime \prime}, 6^{\prime \prime}, 61 / 2^{\prime \prime} \\ & 8^{\prime \prime} 2^{\prime \prime}, 101 / 2^{\prime \prime} \end{aligned}$

Fig. 81: Centering washers, mica washers and porcelain bushings.

CENTERING WASHERS

When resistors are to be mounted by through-bolts, "centering washers" are used with all resistors having an inside diameter larger than $1 / 4^{\prime \prime}$, so as to keep the resistor centered on the bolt. The standard washers are made of steel, cadmium plated to resist corrosion.

Cat. No.	$\begin{aligned} & \text { O.D. } \\ & \text { of Core } \end{aligned}$	$\begin{aligned} & \text { 1.D. } \\ & \text { of } \\ & \text { Core } \end{aligned}$		Dia. of Hole	For Max, Screw Size
6007	7/16 ${ }^{\prime \prime}$	$1 / 4^{\prime \prime}$	$7 / 16{ }^{\prime \prime}$. 173	\#8
6000	9/16"	5/16"	9/16"	. 190	\#10
6006	5/8"	7/6"	$5 / 3^{\prime \prime}$. 190	\#10
6001	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	1/4"	. 190	\#10
6002	$1^{\prime \prime}$	5/8"	$1^{\prime \prime}{ }^{\prime \prime}$. 250	1/4"
6003	$11 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$11 / \mathrm{s}^{\prime \prime}$. 250	$1 / 4^{\prime \prime}$
6004	$11 / 2^{\prime \prime}$ or $13 / \%^{\prime \prime}$	$11{ }^{\prime \prime}{ }^{\prime \prime}$	$15 /{ }^{\prime \prime \prime}$. 250	$1 / 4^{\prime \prime}$
6005	$21 / 2^{\prime \prime}$	$13 / 4^{\prime \prime}$	$21 / 2^{\prime \prime}$. 250	$1 / 4^{\prime \prime}$

MICA WASHERS

Mica washers are used on through-bolt mounted resistors when a larger insulation leakage distance to ground is wanted than that provided by the normal lug edge distance alone. The mica washer fits between the core and the centering washer and the mica washer then requires the same I.D. as the resistor tube. The mica washers are made of "built-up mica" nominally $1 / 32^{\prime \prime}$ thick. As there is often some tendency for the laminations to separate during shipping and handling, it is the usual practice to use one or more laminations together, to obtain $1 / 32^{\prime \prime}$ minimum, when assembling.

Flexibility of mica washers allows No. 10 and $1 / 4^{\prime \prime}$ diameter bolts to pass through nominal $3 / 16^{\prime \prime}$ diameter holes.

	Core		Washer	
Cat. No.	O.D.	I.D.	O.D.	1.D.
*6029	7/16"	$1 / 4{ }^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 4{ }^{\prime \prime}$
6010	9/16"	3/16"	$3 / 4{ }^{\prime \prime}$	3/6"
*6011	$9 / 16^{\prime \prime}$	5/16"	$3 / 4^{\prime \prime}$	$56_{6}{ }^{\prime \prime}$
*6026	$9 / 16^{\prime \prime}$	5/16"	$1^{\prime \prime}$	3/16"
6012	3/4"	$1 / 2^{\prime \prime}$	$1{ }^{\prime \prime}$	$3 / 16^{\prime \prime}$
*6013	$314^{\prime \prime}$	$1 / 2^{\prime \prime}$	$1^{\prime \prime}$	$1 / 2^{\prime \prime}$
6014	$1 "$	$5 /{ }^{\prime \prime}$	$11 / 4^{\prime \prime}$	3/66 ${ }^{\prime \prime}$
*6015	1 "	$5 / 8{ }^{\prime \prime}$	$11 /{ }^{\prime \prime}$	$5 / 81$ "
6016	11/0"	$3 / 4{ }^{\prime \prime}$	$11 / 2^{\prime \prime}$	3/16"
* 6017	11/8"	3/4"	$11 / 2^{\prime \prime}$	1/4"
*6019		$11 / 8^{\prime \prime}$	$2^{\prime \prime}$	$11 /{ }^{\prime \prime \prime}$
*6018	$21 / 2^{\prime \prime}$	$13 / 4^{\prime \prime}$	$3^{\prime \prime}$	$13 / 4^{\prime \prime}$

*To be used with centering washers.

PORCELAIN BUSHINGS FOR THROUGH-BOLT MOUNTING

Porcelain bushings, which act as centering washers and additional end insulation, are available, as listed in the table, for resistors which are to be mounted by through-bolts. The bushings are a convenient means for increasing the leakage distance from the lugs to ground without the necessity of mounting the lugs farther in on the core. The bushings can be furnished cemented into the resistors, when so ordered.

Cat. No.	For Core Size	Recess For Nut Size
6020	$11 / 8^{\prime \prime}$ O.D. $\times 3 / 4^{\prime \prime}$ I.D.	-
6022	${ }^{\prime \prime} 1^{\prime \prime}$	O.D. $\times 5 /^{\prime \prime}$ I.D.

*Also used with $11 / /^{\prime \prime}$ O.D. core and special brackets.

Fig. 82: Porcelain bushings

PERPENDICULAR THROUGH-BOLTS

Fig. 83: Through-bolt mountings
Through-bolts, with centering washers, nuts and washers, or with additional mica washers or ceramic bushings can be ordered to mount resistors of various diameters and lengths. Unless otherwise specified, the bolts are long enough to mount the resistor on a $1 / 4^{\prime \prime}$ thick panel, maximum. The length of the resistor to be used must be given on the order. Dimensions of the washers, etc., can be taken from the descriptions of those items on page 51.

Through-bolts For Made-to-order Size Resistors

Resistor Core Size	Bolt Slze	With Comioring Washers	With Contoring Washers Mica Washers	
O.D.		Cot. No.	Cot. No.	Cot. No.
5/18"	No. 8	*6150	$\ddagger 6160$	-
7/16"	No. 8	* 6151	$\ddagger 6161$	-
\%/6"	No. 10	6152	6162	§6172
$3 / 4{ }^{\prime \prime}$	No. 10	6153	6163	6173
$1 "$	No. 10\#	6154	6164	6174
$11 /{ }^{\prime \prime}$	$1 / 4$ "	6155	6165	6175
$11 / 2^{\prime \prime}$	$1 / 4 \prime$	6156	6166	-
$15 /{ }^{\prime \prime}$	$1 / 4 "$	6157	6167	-
$21 / 2^{\prime \prime}$	$1 / 4 \prime$	6158	6168	-

*Flot woshers used.
\ddagger Flot woshers ore used and mico woshers Cot. No. 6010 .
\#No. 10 used for 7 " long mox. resistors; $1 / 4$ " for longer sizes.
\$No. 8 bolt size used.

Through-bolts for Stock Resistors

Wats:	Size	$\begin{aligned} & \text { Bolt } \\ & \text { Size } \end{aligned}$	Cat. No. with Mica and Centering Washers
5	5/16 $\times 3 / 16^{\prime \prime} \times 11$	No. $8 \times 13 / 4{ }^{\prime \prime}$	7PA5
12	$3 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times 13 / 4{ }^{\prime \prime}$	No. $8 \times 21 / 2^{\prime \prime}$	7PAIO
20	$7 / 16^{\prime \prime} \times 1 / 4^{\prime \prime} \times 2^{\prime \prime}$	No. $8 \times 23 / 4^{\prime \prime}$	7PA 20
25	9/16" $\times 5 / 66^{\prime \prime} \times 2$ "	No. $10 \times 23 / 4^{\prime \prime}$	7PA 25
50	$9 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 4^{\prime \prime}$	No. $10 \times 43 / 4^{\prime \prime}$	7PA50
75	$9 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 6^{\prime \prime}$	No. $10 \times 63 / 4^{\prime \prime}$	7PA75
100	$3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$	No. $10 \times 75 / 16^{\prime \prime}$	7PA100
175	$11 / 3^{\prime \prime} \times 3 / 4^{\prime \prime} \times 81 / 2^{\prime \prime}$	$1 / 4^{\prime \prime} \times 912^{\prime \prime}$	7PA 160
225	$11 / 3^{\prime \prime} \times 3 / 4^{\prime \prime} \times 101 / 2^{\prime \prime}$	$1 / 4^{\prime \prime} \times 111 / 2^{\prime \prime}$	7PA 200

HEAT-CONDUCTING STUD MOUNTINGS

Fig. 84: Typical stud-mounted resistor

For Increased Wattage Ratings Convenient Mounting-Minimum Space

A substantial part of the heat generated in small tubular type resistors can be conveyed to a metal mounting surface under certain conditions, by means of an aluminum stud fitted snugly into the core. This transfer of heat tends to lower the temperature of the resistor. The size and nature of the mounting panel or chassis, and the permissible panel temperature rise therefore sets limits to the wattage that can be dissipated.

If the temperature rise of the resistor is maintained at the Free Air Watt Rating, the wattage can be more than doubled for small resistors mounted on a chassis of at least 100 square inches area. Ohmite provides special aluminum studs which are supplied riveted into special keyed cores of 8 or 12 watt size (free air rating-see core sizes in table below).

Terminals suitable for these cores can be selected from pages 38,39 . The resistors mount conveniently by means of the 10-32 threaded stud extension and a nut. The integral, thick flange assists heat transfer and spaces the lower resistor terminal away from the mounting surface.

To order, specify desired core and stud from table above, terminals (see pages 38, 39), resistance value and whether Dividohm adjustable feature is desired.

Fig. 85: Wattage dissipation versus temperature rise for stud-mounted resistor.

(C) Type RC4

INDIVIDUAL TERMINAL TYPE CAGES

These are sturdy perforated metal cages with gray wrinkle enamel finish and porcelain "feed-through" type terminals for each resistor. Mounting slots are
$5 / 11^{\prime \prime}$ wide. Specify cage type number, number of units, resistance, current and resistor size. Cages with a removable panel for adjustable resistors can be supplied.

Number of Restators	$\begin{gathered} \text { Registor } \\ \text { Sixe } \end{gathered}$	Ovarall Dimensions			Mounting Conters	Fig. No.	\% Nom. Watts Each Res.	Cage Type No.
		thength	Holght	Width				
1	$\begin{aligned} & 1^{\prime \prime} \times 65 / 8^{\prime \prime} \\ & 11 / 8^{\prime \prime} \times 81 / 2^{\prime \prime} \\ & \text { As Specified } \end{aligned}$	$\begin{gathered} 99 / 16^{\prime \prime} \\ 117 / 6^{\prime \prime} \end{gathered}$	$\begin{aligned} & 27 / 8^{\prime \prime} \\ & 27 / 8^{\prime \prime} \\ & 27 / 6^{\prime \prime} \end{aligned}$	$\begin{aligned} & 21 / 4^{\prime \prime} \\ & 21 / 4^{\prime \prime} \\ & 21 / 4^{\prime \prime} \end{aligned}$	$\begin{gathered} 83 / 0^{\prime \prime} \\ 101 / 4^{\prime \prime} \\ \ddagger \end{gathered}$	$\begin{aligned} & 86 A \\ & 86 A \\ & 86 A \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	RCI RCIA RCXI
2	$\begin{aligned} & 1^{\prime \prime} \times 6^{5 / 8^{\prime \prime}} \\ & 11 / 8^{\prime \prime} \times 8^{1 / 2^{\prime \prime}} \\ & \text { As Specified } \end{aligned}$	$\begin{gathered} 99 / 16^{\prime \prime} \\ 117 / 16^{\prime \prime} \end{gathered}$	$\begin{aligned} & 27 / 8^{\prime \prime \prime} \\ & 278^{\prime \prime} \\ & 27 / 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3314^{\prime \prime} \\ & 33 / 4^{\prime \prime} \\ & 33 / 4^{\prime \prime} \end{aligned}$	$\begin{gathered} 838^{\prime \prime} \\ 101 / 4^{\prime \prime} \\ \ddagger \end{gathered}$	$\begin{aligned} & 86 B \\ & 86 B \\ & 86 B \end{aligned}$	66 66 66	RC2 RC2A RCX2
4	$\begin{aligned} & 1^{\prime \prime} \times 65 / 8^{\prime \prime} \\ & 11 / 8^{\prime \prime} \times 812^{\prime \prime} \\ & \text { As Specified } \end{aligned}$	$\begin{aligned} & 99 / 16^{\prime \prime} \\ & 11 / 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & 41 / 4^{\prime \prime} \\ & 41 / 4^{\prime \prime} \\ & 41 / 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & 35 / 8^{\prime \prime} \\ & 35 / 8^{\prime \prime} \\ & 35 / 8^{\prime \prime} \end{aligned}$	$\begin{gathered} 83 / 0^{\prime \prime} \\ 101 / 4^{\prime \prime} \end{gathered}$	$\begin{aligned} & 86 \mathrm{C} \\ & 86 \mathrm{C} \\ & 86 \mathrm{C} \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 52 \end{aligned}$	RC4 RC4A RCX4

\dagger length includes terminal.
"Dimension is resister length plus $\mathbf{2 1 \% / 6 "}$.
\ddagger Dimension is resistor length plus $13 / 4$ ".

Fig. 87: Typical group terminal cage

Fig. 88: Group terminal cage dimensions

GROUP TERMINAL TYPE CAGES

These cages can be made for any required number of resistors which are to be connected together inside the cage with one (or more) pairs of terminals brought out. The ends are of heavy transite and the sides of gray wrinkle enameled perforated sheet metal. Terminal bolts are supplied as standard, but binding posts, conduit connection, or other type of terminal can be supplied. Cages for resistors of other length than those listed below are $13 / 8^{\prime \prime}$ longer than the resistor length; mounting bracket centers are $27 / 8^{\prime \prime}$ less than the cage length.

Type No.	$\begin{aligned} & \text { Resistors } \\ & 11^{6} \times 88^{\prime} \end{aligned}$	Overall Dimensions Length Lis $9 / /^{\circ}$		B MIg. Hole Centers	Watts Each Unilt
		Helght H	Width W		
RCM-1	1	$4^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	160
RCM-2	2	$4^{\prime \prime}$	$51 / 2^{\prime \prime}$	$61 / 2^{\prime \prime}$	125
RCM-3	3	$4^{\prime \prime}$	$8^{\prime \prime}$	$9{ }^{\prime \prime}$	110
RCM-4	4	$61 / 2^{\prime \prime}$	$51 / 2^{\prime \prime}$	$6^{1 / 2} 2^{\prime \prime}$	105
RCM-6	6	$61 / 2^{\prime \prime}$	$8^{\prime \prime}$	9"	100
RCM-8	8	$61 / 2^{\prime \prime}$	$101 / 2^{\prime \prime}$	$1112^{\prime \prime}$	96
RCM-9	9	$61 / 2^{\prime \prime}$	$13^{\prime \prime}$	$14^{\prime \prime}$	95
RCM-10	10	$61 / 2^{\prime \prime}$	$13^{\prime \prime}$	$14^{\prime \prime}$	94
RCM-12	12	$61 / 2^{\prime \prime}$	$151 / 2^{\prime \prime}$	$16^{1 / 2}{ }^{\prime \prime}$	92

$\dagger \dagger$ For continuous duty.

Fig. 89: (A) Code; CUBEN (B) Code; CUBIT (C) Code; CULAC (D) Cat. No. 6050 Plug with Cord

LINE VOLTAGE REDUCER CAGES-ADAPTERS

Three different types: equipped with prongs and receptacle for plug cap; or with Edison screw base and socket; or with line cord and Edison screw receptacle. Generally, the first and second styles are used for the shorter units, and the third style for the longer units.

Cages are perforated metal, gray wrinkle finished. A "Series Plug" Cat. No. 6050, for connecting the resistor in series with the 115 V . line and load can be supplied. Series Plug and 6 - ft . heater type cord is identified as Type 607.

Resistor Max. Size	$\underline{\square}$	Dosotiplion of Terminois		1 E	6
$1^{\prime \prime} \times \ddagger$		Two-prong Plug and Two-prong Receptacle.		46A	CUBEN
$1^{\prime \prime} \times 51 / 4^{\prime \prime}$	85	Edison Screw Plug and Two-prong Receptade	$\text { * } 81 /{ }^{\prime \prime}$		CUBAU
$1^{\prime \prime}{ }^{\prime \prime} \times 51 / 4^{\prime \prime}$	85	Edison Screw Plug and Socket.	* $81 /{ }^{\prime \prime}$	46 B	CUBIT
$11 /{ }^{\prime \prime} \times 81 / 2^{\prime \prime}$ $11{ }^{\prime \prime}$	160	Heater Type Cord Set, 6 ft. long, with Series Plug $\delta \ldots .$.	$103 / 4^{\prime \prime}$		CULED
$11 / 8^{\prime \prime} \times 81 / 2^{\prime \prime}$	160	Heater Type Cord Set, 6 ft . long, Plug and Edison Screw Socket δ.	$113 / 4{ }^{\prime \prime}$	46C	CULAC

\ddagger length os specified.
†Length is resistar length plus $15 / \mathbf{s}^{\prime \prime}$

Length is resistor length plus $27 / \mathrm{a}^{\prime \prime}$
SBlock rubber covered card can be supplied. Specify 607 R.

SPECIAL CAGES

Ventilated or dustproof enclosures to house any combination of resistors and made according to the cus-
tomer's specifications can be supplied on order. A sketch or blue print should be submitted.

LIVE BRACKET MOUNTED RESISTORS

Live Bracket Resistors use the brackets as the electrical terminals as well as a means of mounting. They are popular for railway signal work and locomotive circuits. The resistors are made with wire leads which are connected to the plated brass brackets after the brackets are fastened to the core. One type has the brackets cemented to the core per Fig. 90. The other type is assembled by a through-bolt, which is insulated from the brackets by porcelain plugs, as shown in Fig. 91. See page 50 for "Dead" brackets.

Type 63 Live Brackets (Cemented in Place)

Cot. No.	Fer Core Diameiers	Dimensions			
		A	8	c	3
63-12	9/16, $3 / 4$ "	$23 / 8{ }^{\prime \prime}$	$7 / 16{ }^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$	$1 / 4 / 1$
63-18	$\mathrm{l}^{\prime \prime}, 11 /{ }^{\prime \prime}$	7/8'	13/18"	$11 /{ }^{\prime \prime}$	5/16"

Through-bolt Type Live Brackets

Cat. No.	For Core Dlameters	Dimensions			
		A	B	C	D
$63 A-18$	$1 \prime, 11 / 8^{\prime \prime}$	$7 / 8^{\prime \prime}$	$11 / 16^{\prime \prime}$	$11 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$

Fig. 90: Type 63, live brackets cemented in place

Fig. 91: Type 63A, live brackets bolted in place

SPECIAL RESISTORS \& COATINGS DETERMOHM RESISTANCE BOX

SPECIAL RESISTORS

Fig. 92: Special cores and resistors
Ohmite is equipped to make many kinds of special resistors in accordance with the customer's specifications. Flat or special shape resistors can be wound on porcelain, fiber, mica, plastic, or transite. Porcelain cores can be vitreous enameled, and most types may be insulated alternatively with "Ohmicone" coating, cement, lacquer, baking varnish or other materials, or left bare.

Quotations will be sent upon receipt of drawing and complete details of the physical and electrical properties and the number of units involved.

DETERMOHM ${ }^{\circledR}$

Application: The Determohm is a resistance box for the use of engineers, technicians, radio servicemen and others in laboratories, factories and schools. It may also be used as a voltmeter multiplier, or with auxiliary apparatus in an ohmmeter, or for other applications.
Description: The resistance elements are made up of wirewound resistors (except as noted) which are connected to tap switches. The third and fourth decades (0.1 meg . and 1.0 meg . steps) of Stock No. 3404 use 1 watt "Little Devil" composition resistors. One watt can be dissipated for each switch tap connected in the circuit. Maximum amperes for each decade are stamped on each dial. Binding posts accept banana plugs. Resistance tolerance is $\pm 5 \%$ max.

Dimensions: $63 / 19^{\prime \prime} \times 81 / 8^{\prime \prime} \times 31 / 4^{\prime \prime}$. Gray wrinkle finish. Weight 3.3 lbs.

Stock DETERMOHM Resistance Boxes

Resistance	Stock No.
1000 to $9,999,000$ Ohms	3404
100 to 999,900 Ohms	3401
10 to 99,990 Ohms	3402
1 to 9,999 Ohms	3403

EIA SPECIFICATION POWER RESISTORS

Ohmite can provide resistors to meet the requirements of the Electronic Industries Association "Standard RS-155, Fixed Wirewound Resistors." The proposed revision (1964-65) includes power-type resistors, 1% and 5% tolerance, in tubular, strip and axial-lead styes.

The proposed revision includes major changes. The new standard identifies the resistors by a coded system as shown by the following example:

Resistors to meet this standard exactly, should be ordered by EIA coded designation. It should be noted that the standard provides for several different characteristics based on a different ambient and maximum ambient temperature than the NEMA industrial standard. A partial comparison is shown on page 6.

RESISTANCE BOX

Fig. 93: Determohm resistance box

HIGH QUALITY, BETTER SERVICE, AT A COMPARABLE PRICE
high stability • low noise extra long life

Saule Rebel'm carbon film resistors

High stability, very low noise level, and exceptionally long life make these resistors ideal for applications requiring a steady low power drop. Their accuracy and consistency are relatively unaffected by adverse environmental conditions.

Resistors of 10Ω to $1 \mathrm{M} \Omega$ have a homogenous film of pure carbon deposited on a high grade ceramic body by cracking a hydrocarbon gas. Resistors having values lower than 10Ω have a nickel film instead of cracked carbon.

Contact caps of special alloy are pressed onto the ends of the resistor body to which the tin coated electrolytic copper connecting wires are welded. Finally the resistors are coated with three or more layers of a special lacquer for electrical, mechanical and environmental protection. This special lacquer will withstand regular industrial cleaning solutions used for cleansing printed circuit boards.

Tally Tape ${ }^{\circledR}$ is Ohmite's exclusive convenient packaging of $1 / 4$ and $1 / 2$ watt Little Rebel resistors that prevents spilling or tangling, simplifies counting, decodes ohmic value for quick identification, and guarantees original, fastory-fresh stock. Each perforated segment holds 5 resistors; 10 segments packaged in poly bag 50 pack.

Saule Rebel'

[^6]
SPECIFICATIONS for SauleRebel

carbon film resistors:

Ratings
Power rating $\mathrm{P}_{\text {nom }}$ $\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$
Maximum voltage $A C$ or DC
Voltage (RMS) that may be applied for 1 sec . across insulated coat
Insulation resistance
Ambient temperature
Temperature coefficient
Noise voltage
Voltage Breakdown
$2 x$ limiting voltage for 1 min . between terminals of resistor and metal foil
no breakdown or flashover
Short Term Overload (Room Temperature) loaded 5 sec . at $6.25 \mathrm{P}_{\text {max }}$ at $25^{\circ} \mathrm{C}$ (not to exceed $2 \times$ maximum voltage) 10 cycles: 5 sec on 10 sec off
$\Delta R_{\text {max }}$
Shelf Test

at $25^{\circ} \mathrm{C}_{\text {nom }}$ for 12 months	
$\triangle R_{\text {max }}$ for R	$1 \mathrm{M} \Omega$
R	$>1 \mathrm{M} \Omega$

Temperature Cycling
5 cycles: 3 hours $-55^{\circ} \mathrm{C}$

$$
3 \text { hours }+155^{\circ} \mathrm{C}
$$

$\triangle R_{\text {max }}$
0.5% or 0.5Ω

Humidity Specifications

After long-term exposure to damp
heat at $40^{\circ} \mathrm{C}, 5$ VDC
RH $=90.95 \%$ for 56 days with no drying 5 VDC

$$
\begin{align*}
& \Delta R_{\text {max }} \text { for } R_{\text {mom }}=10 \Omega 2 \text { to } 100 \mathrm{k} \Omega \\
& R_{\text {rom }}=100 \mathrm{k} \Omega \text { to } 1 \mathrm{M} \Omega \\
& R_{\text {nom }}=1 M \Omega \text { or higher }
\end{align*}
$$

Solder Test (thermal shock)
Terminations immersed for 3 sec. up to .24 inches from end cap in solder bath at $350^{\circ} \mathrm{C}$

$\triangle R_{\text {max }}$

0.5% or 0.5Ω

Lead Test

a. Tensile
diameter . 024 - 032 inches; load $2.20 \mathrm{lbs} ; 10 \mathrm{sec}$. diameter > . 032 inches; load 4.41 lbs ; 10 sec .
no damage
b. Bending
diameter . 024 - 032 inches; load $1.10 \mathrm{lbs} ; 4 \times 90^{\circ}$ diameter $>.032$ inches; load 2.20 lbs; $4 \times 90^{\circ}$
no damage
c. Torsion
$2 \times 360^{\circ}$ in opposite directions
no damage
$\Delta \mathrm{R}_{\max }$ (for all tests)
0.5% or 0.5Ω

Shock Test

3×1500 shocks in three directions: 50 G ;
$\triangle R_{\text {max }}$
0.5% or 0.5Ω

Vibration

Frequency: 10.500 Hz
Displacement 0.06 in . or acceleration 10G; three directions; total 9 hrs.
$\triangle R_{\text {max }}$
Voltage Coefficient
0.5% or $0.5 s$
5PPM/Volt ($0.0005 \% /$ Volt $)$

Figure 1. Noise as a function of the resistance value, applicable to all resistor wattages. (as per IEC specifications 195; Method of measurement of current noise generated in fixed resistors).

Figure 2. Temperature coefficient as a function of the resistance value, applicable to all resistor wattages.

Type	A max.	B	C	a	d	$d \prime$
OJ $1 / 8 \mathrm{~W}$	$.161^{\prime \prime} \pm .012^{\prime \prime}$	$.059^{\prime \prime} \pm .004^{\prime \prime}$	$1-1 / 8^{\prime \prime}$	$\max .020^{\prime \prime}$	$.015^{\prime \prime} \pm .002^{\prime \prime}$	$.040^{\prime \prime}$
OK $1 / 4 \mathrm{~W}$	$.250^{\prime \prime} \pm .015^{\prime \prime \prime}$	$.090^{\prime \prime} \pm .008^{\prime \prime}$	$1-1 / 8^{\prime \prime}$	$\max .020^{\prime \prime}$	$.024^{\prime \prime} \pm .002^{\prime \prime}$	$.040^{\prime \prime}$
OL $1 / 2 \mathrm{~W}$	$.365^{\prime \prime} \pm .030^{\prime \prime}$	$.142^{\prime \prime} \pm .006^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	$\max .020^{\prime \prime}$	$.028^{\prime \prime} \pm .002^{\prime \prime}$	$.040^{\prime \prime}$

LESS THAN ONE OHM RESISTANCES, MOLDED SILICONE-CERAMIC BODY, ECONOMICALLY PRICED

Ohmite's new Lo.Ohm ${ }^{\text {T.M. }}$. wire-wound resistors are specifically intended for circuits requiring less than one ohm with commercial tolerances and rated at 1 or 3 watts. Molded in a silicone-ceramic material, LoOhm resistors are moisture resistant, are consistent in shape to facilitate automated insertion for circuit board operations, and have a dielectric strength of 1000 VAC.

Ohmic values range from 0.01 to 1.0 ohms, plus or minus 10 percent. For tighter tolerances, contact the factory. Axial leads are welded to the resistance coil and then supported by the tough resilient molded body.

Characteristics

Resistance Range: 0.01 ohms to 1.0 ohms.
Tolerance: Plus or minus 10 percent. Tighter tolerances are available, contact the factory.
Temperature Coefficient: Less than $100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ between 0.1 and 1.0 ohms. Less than $500 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ between 0.01 and 0.1 ohms.
Stability: When subjected to a cyclic load test at rated wattage for 2000 hours, maximum change in resistance shall be less than 3%.
Ambient Temperature: $275^{\circ} \mathrm{C}$ maximum.
Wattage Derating: Use standard MIL-R-26 derating curve for high ambient temperature.

Configuration:

- Body - Cylindrical molded encasement.
- Leads - 20 gauge 27 NC axially welded to coil.

$\left.$| Rated
 Watts
 $@ 25$ | Body Dimension
 Length
 $\pm .015$ | | Dia.
 +.031
 -.000 | AWG 20 |
| :---: | :---: | :---: | :---: | :---: | | Resistance |
| :---: |
| Range |
| (Ohms) | \right\rvert\,

ORDERING: Specify name Lo-Ohm, wattage size, and Ohmic value required. Example: "Lo-Ohm, 1 watt, . 01 ohm "

other OHMITE answers

in products for today's \mathcal{E} tomorrow's circuitry

Series 99 RESISTORS molded wire-wound - Commercial and hi-stability types - Sizes from 1.5 to 15 watts - Coating and markings withstand $1500^{\circ} \mathrm{F}$ - Consistent shape for automatic insertion equipment Pat. No. 3,229.237	Series SSA SOLID STATE RELAYS - Universal coil accepts AC or DC input - 10 amp capacity - 6 milliwatt sensitivity - Versatile - a few models serve all needs	Ohmitran VT* VARIABLE TRANSFORMERS low power series - Now you can select the exact power rating you need - Multiple use 3-way terminals - Instantly replaceable brush contacts - Adjustable shaft - Six ratings from 1.0 to 3.0 amp
Model C WORLDS SMALLEST CERAMIC POWER RHEOSTAT - The only $71 / 2$ watt metal/ceramic rheostat - Withstands hot spot temperatures to $340^{\circ} \mathrm{C}$ - Only $1 / 2$ inch in diameter	OHMITROLT.M. power control SOLID STATE CONTROLS - Provides infinitely smooth control of power over the full voltage range - Smallest 1 and 2 KW controls - Integral trimmer adjusts control range - Component and portable models	Model 711 MINIATURE TAP SWITCHES Breaks: 7 amps @ 125 VAC Carries: 15 amps Smaller: than many low current instrument switches

for first hand answers contact your nearest OHMTIE office

ARIZONA

Shefler-Kahn Co.
P. O. Box 1587

Phoenix 85001
Phone: (602) ALpine 8-7893
TWX: 910-951-0659
CALIFORNIA (Northern)
Ohmite Manufacturing Co.
201 Town \& Country Village
Palo Alto 94301
Phone: (415) DAvenport 1-6953

CALIFORNIA (Southern)

Ohmite Manufacturing Co.
6115 Selma Ave. Rm. 211
Hollywood 90028
Phone: (213) 466-3434

COLORADO

McLoud \& Raymond Co.
P. O. Box 22044

Denver 80222
Phone: (303) SKyline 6-1589
TWX: 303-292-2931

FLORIDA

Stanley K. Wallace Associates, Inc
P. O. Box 67

Lutz (Suburb of Tampa) 33549
Phone: (813) 949-1817

ILLINOIS

Ohmite Manufacturing Co. 3601 Howard Street Skokie 60076 Phone: (312) 675-2600 TWX: 910-223-0805
TELEX 72-4433
WUX
INOIANA
Val-Skol Sales, Inc. 510 Ft. Wayne Bank Bldg.
Fort Wayne 46802
Phone: (219) 742-9122
MASSACHUSETTS
Ohmite Manufacturing Co . 99 Cambridge Street Rm. 102
Burlington 01803
Phone: (617) 272-6060
TELEX: 094-6595

MICHIGAN

Ohmite Manufacturing Co. 725 S. Adams Street Rm. 243
Birmingham 48011
Phone: (313) 642-6040
minnesota
Fred B. Hill Co. 6110 Excelsior Blvd. Minneapolis 55416 Phone: (612) 929-6727 TWX: 910-576-2924 TELEX: 29.5247

MISSOURI

H. A. Roes and Co.

2601 Cherry Street
Kansas City 64108
Phone: (816) BAltimore 1-0866

MISSOURI

Russ D. Sebright \& Co.
7120 West Florissant Avenue
St. Louis 63136
Phone: (314) 261-0055

NEW JERSEY and Metropolitan New York City - CONN.
Ohmite Manufacturing Co.
P. O. Box 148

Palisades Park, N.J: 07650
Phone: (201) 947-1777 (N.J.) (212) $563-7371$ (N.Y.)

TELEX: 13.5426

NEW YORK

Ohmite Manufacturing Co.
3700 East Avenue
Rochester 14618
Phone: (716) 381-1890
TWX: 510-254-2877

OHIO

Ohmite Manufacturing Co.
P. O. Box 3084

Cleveland 44117
Phone: (216) 261-6000

PENNSYLVANIA
Samuel K. Macdonald, Inc.
1531 Spruce Street
Philadelphia 19102
Phone: KIngsley 5-1205, FAX: HHK
tennessee
Cartwright and Bean
P. O. Box 4760

Crosstown Station
Memphis 38104
Phone: (901) 276-4442

TEXAS

J. Earl Smith Co.

1353 Chemical Street
Dallas 75207
Phone: (214) MEIrose 1-1727

WASHINGTON

R. K. Squibb, Inc.

655 N. E. Northlake Place
Seattle 98105
Phone: (206) MEIrose 2-2450
FAX: FCH

western canada

C. M. Robinson Agencies (1963) Ltd.

1550 Erin Street
Winnipeg 3, Manitoba
Phone: (204) 776-1855 \& 6

EASTERN CANADA

A. C. Simmonds \& Sons, Ltd.

285 Yorkland Blvd.
Agincourt, Ontario
Phone: (416) 445-9111
TELEX: 02-21343

MOLDED OHMICONE PRECISION, POWER TYPE, WIREWOUND RESISTORS

LOW T.C. $-0 \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is NEW STANDARD!
3% TOLERANCE instead of 5\% At no extra cost
INSULATED to meet 1000 VAC test
UNIFORM for AUTOMATED ASSEMBLY
MOUNTS IN CLIPS FOR HEAT-SINK ADVANTAGE
HIGH STABILITY tYpes to 0.05\% tolerance
MEETS MIL-R-26D

SERIES 88 MOLDED OHMICONE PRECISION, POWER TYPE RESISTORS

"Series 88 " precision, power-type, wirewound resistors utilize a single-layer winding of high grade resistance alloy wire on a ceramic core. Axial-type terminal leads and the resistance wire are both welded to metal endcaps which fit snugly over the core ends. A jacket of patented "OHMICONE," a tough, resilient, moistureresistant, high-dielectric* silicone-ceramic material, is then molded around the resistor. The molding technique provides a uniformly thick, dense and smooth covering. Consistent form and size adapts Series 88 resistors to rapid automated assembly of equipment; it also permits mounting in clips for important heat-sink benefits (page 5).

Series 88 resistors are furnished in three basic categories - Type 881U for military (MIL-R-26D) pre-cision-power applications, Type 882 for commercial power applications and Type 884 for high stability, precision-power applications. (Type 884 is functionally the commercial equivalent of Type 881 U military units.)

- 1000 VAC V-block test (500 volts for 1 watt). For tests on the 1 watt size only, the V-block does not extend beyond the ends of the resistor body due to the impracticality of maintaining the leads straight and concentric.

All types feature low temperature coefficients of resistance equal to or better than that of MIL-R-26D for the applicable resistance ranges.

Resistance (Ohms)	T.C. in $\mathbf{~ p p m} /{ }^{\circ} \mathrm{C}$
Values equal to or greater than tabulated below	0 ± 10
Values less than tobulated below thru 10	0 ± 20
9.99 thru 1.0	0 ± 50
Below 1.0	0 ± 90

Type	Ohms	Type	Ohms
$\begin{aligned} & 881 \mathrm{U}-1 \mathrm{~A} \\ & 882.1 \mathrm{~A} \\ & 884-1 \mathrm{~A} \end{aligned}$	31	881U-5 882-5 884.5	353
$\begin{aligned} & 882-1 B \\ & 884-18 \\ & \hline \end{aligned}$	49	$\begin{aligned} & 882.7 \\ & 884.7 \\ & \hline \end{aligned}$	515
$\begin{aligned} & 882-2 \\ & 884-2 \end{aligned}$	30	$\begin{aligned} & 881 \mathrm{U}-10 \mathrm{~A} \\ & 882-10 \end{aligned}$	874
$\begin{aligned} & \text { 881U-3A } \\ & 882-3 \\ & 884-3 \end{aligned}$	105	884-10	

Lower T.C.'s are available; consult factory. Standard leads are solderable; for weldable leads consult factory.

TYPE BE1U FOR MILITARY APPLICATIONS (MIL-R-2GD)

Type 881 U resistors (Table I) meet the requirements of MIL-R-26D, Characteristic U, Styles RW70, RW74, RW78 and RW79 (wirewound, axial-lead insulated, $275^{\circ} \mathrm{C}$ hot spot). See Table VII for standard resistance values for $1 \%, 0.5 \%$ and 0.1% tolerances. (Styles RW67, RW68, and RW69 can also be supplied in Series 88 resistors, although Series 99 types are normally furnished.)

For Characteristic U, MIL-R-26D (Table I) now specifies a $\pm 0.5 \% \triangle \mathrm{R}$ on 2000 hour cyclic load-life test, and a temperature coefficient of $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (for resistances 10 ohms and above). Ohmite, however, supplies considerably closer T.C.'s at no extra cost - see above.

MIL-R-26D specifies resistance tolerances of $\pm 1.0 \%$ (MIL symbol F) and $\pm 0.5 \%$ (MIL symbol D) for resistance values from 0.1 ohm and up; also specified is 0.1% tolerance (MIL symbol B) for resistance values of 0.499 ohms and up. The choice of tolerances necessitates inclusion of the above appropriate tolerance symbol in the type designation which is added after the resistance code as in "RW74U4991F."

Type 881 U , of course, meets the stringent test requirements of MIL-R-26D which include the 1000 volt V-block dielectric-strength test (500 volts for 1 -watt Style RW70) and the 100 megohm insulation-resistance test. For derating, see Graph I, page 3.

TABLE I-TYPE 881U
RESISTORS for MIL-R-26D (CHARACTERISTIC U)

Ohmite Style	$\underset{\text { Style }}{\text { MIL }}$	Watts ${ }^{1}$ Char. U	Dimensions			Weight Grams	Ohms Range		MIL Max. Wkg. Volts
			Length 1.020 +.010	$\begin{aligned} & \text { Dia. } \\ & \pm .020 \end{aligned}$	Leads $11 / 2^{\prime \prime}$ AWG		$\begin{aligned} & .0008^{2,4} \\ & \text { Wire } \end{aligned}$	$\begin{aligned} & .0011,4 \\ & \text { Wire } \end{aligned}$	
881U-1A	RW70	1	0.417	0.105	24	0.3	0.1-3,160	0.1-1.210	52
881U-3A	RW79	3	0.600	0.195	20	1.3	0.1-10,500	0.1-3,570	135
881 U 5	RW74	5	0.917	0.323	18	3.3	0.1-38,300	0.1-12,100	300
881U.10A	RW78	10	1.822	0.364	18	6.3	0.1-90,900	0.1-40,200	720

[^7][^8]STANDARD RESISTANCE VALUES per MS90178 (. 10 to 10,000 Decades*) for Tolerances Greater than 1\%

онмs	онмs	OHMs	онмs	онмs
. $10 \dagger$	1.0	10	100	1000
	1.1	11	110	1100
.12†	1.2	12	120	1200
	1.3	13	${ }^{130}$	1300
.15t	1.5	15	150	1500
	1.6	16	160	1600
.18†	1.8	18	180	1800
22†	2.0	20 20	200 200	${ }_{2200} 200$
	2.4	24	240	2400
. $27 \dagger$	2.7	27	270	2700
	3.0	30	300	3000
.33 \dagger	3.3	33	330	3300
	3.6	36	${ }^{360}$	3600
. $39 \dagger$	3.9	39	390	3900
$47 \dagger$	4.3	43	430	4300
.47¢	5.1	${ }_{51}$	${ }_{510}$	4100
. $56 \dagger$	5.6	56	560	5600
	6.2	62	620	6200
. $68 \dagger$	6.8	68	680	6800
	7.5	75	750	7500
. $82 \dagger$	8.2	82	820	8200

TABLE VII - MIL-BELL SYSTEM OF STANDARD RESISTANCE VALUES (10 to 100 DECADE*) or $1.0 \%, 0.5 \%, 0.25 \%$ and 0.1% Tolerances (applicable to MIL-R-26D, Styles RW70, 74 78, \& 79 - Ohmite 881 U

онms	онмs	онмs	онмs	онms	онмs
10.0	14.7	21.5	31.6	46.4	68.1
10.2	15.0	22.1	32.4	47.5	69.8
10.5	15.4	22.6	33.2	48.7	71.5
10.7	15.8	23.2	34.0	49.9	73.2
11.0	16.2	23.7	34.8	51.1	75.0
11.3	16.5	24.3	35.7	52.3	76.8
11.5	16.9	24.9	36.5	53.6	78.7
11.8	17.4	25.5	37.4	54.9	80.6
12.1	17.8	26.1	38.3	56.2	82.5
12.4	18.2	26.7	39.2	57.6	84.5
12.7	18.7	27.4	40.2	59.0	86.6
13.0	19.1	28.0	41.2	60.4	88.7
13.3	19.6	28.7	42.2	61.9	90.9
13.7	20.0	29.4	43.2	63.4	93.1
14.0	20.5	30.1	44.2	64.9	95.3
14.3	21.0	30.9	45.3	66.5	97.6

MOUNTING GLIFS

niform shape and consistent dimensions of Series 88 resistors permits them to be conveniently mounted 88 resistors permits them to be conveniently mounted
in clips. If the clip is on a metal surface (equivalent to $0.040^{\prime \prime}$ aluminum, 1.5 sq . in. per watt) the wattare capability of the resistor can increase by as much as $00^{\circ} \%$. Holes in clip base permit fastening to chassis by means of machine screws, eyelets or rivets. Clip, hole and mounting center dimensions are given in Table VII at right.

Ohms 3	$\begin{aligned} & \text { volits } \\ & \text { vox } \end{aligned}$ TT	ohms 3 WAT	$\begin{gathered} \text { Maxx } \\ \text { (Cont. } \\ \text { (Cont.) } \end{gathered}$	${ }_{3}^{\text {Ohms }}$ WATT (Conts.)		O hms 3 WAI	$\begin{gathered} \text { Max } \\ \text { (Colis } \\ \text { (Cont.) } \end{gathered}$	$\begin{array}{cc} \text { Ohms Max. } \\ \text { M VAlts } \\ 3 \text { WATT (Cont.) } \end{array}$		$\begin{aligned} & \text { Ohms } \begin{array}{c} \text { Matx } \\ 3 \text { WATT (Cont.) } \end{array} \end{aligned}$		$\begin{aligned} & \text { Ohms Max. } \\ & 5 \text { VATT (Cont.) } \end{aligned}$	
. 100	547	4.22	3.56	26.1	8.84	162	22.0	1000	54.7	${ }^{6} .190$	136	36,500	
. 121	602 670	4.32 4.42	3.60 3.64	26.7 27.4	8.95 9.06	165	22.2 22.5	1020 1050	55.3 56.1	6,340 6,490	138 140	37,400 38,300	432 437
. 182	739	4.53	3.69	28.0	9.16	174	22.8	1070	56.6	6,650	141	39,200	442
. 200	. 774	4.64	3.73	28.7 28.7	9.28	178	23.1	1100	57.4	6,810	143	40,200	448
. 221	. 8184	4.75 4.87	3.77 3.82	29.4 30.1	9.39 9.50	182	23.4 23.7	1130 1150 1	58.2 58.7	${ }^{6,980} 7150$	145	41.200	454
. 274	. 906	4.99	3.87	30.9	9.62	191	23.9	1180	59.5	7,320	148	43,200	460
. 332	. 1.088	5.11 5 5	3.91 3.96	31.6 32.4	9.74	196	24.2	1210	60.2	7.500	150	44,200	460
475	1.19	5.36	4.01	33.2	9.86			1240	61.0	7.680	152	45,300	460
499	1.22	5.49	4.06	34.0	10.1	210	25.	1300	${ }_{624}^{61.7}$	7,870	154	46,400	460
. 562	1.30	5.62	4.10	34.8	10.2	215	25.4	1330	63.2	${ }_{8,250}$	157	48,700	460
. 681	1.43	5.76	4.16	35.7	10.3	221	25.7	1370	64.1	8,450	159	49,900	460
. 850	1.50	5.90 6604	4.20	36.5	10.5	226	26.0	1400	64.8	8,660	161	51,100	460
1.825	1.73	6.04 6.19	4.25 4.31	37.4 38.3	10.6 10.7	232 237	26.4 26.7	1430 1470	65.5 66.4	8,870	163	52,300	460
1.02	1.75	6.34	4.36	39.2	10.8	243	27.0	1500	67.0	9,310	167	54,900	460
1.07	1.77	6.49	4.41	40.2	11.0	249	27.3	1540	68.0	9,530	169	56,200	460
1.07	1.79	6.65	4.46	41.2	11.1	255	27.7	1580	68.8	9,760	171	57,600	460
1.10 1.13	1.82 1.84 1	6.81 6.98	4.52 4.57	42.2	11.2	261 267	28.0 28.3	1620 1650	69.7 70.3	10,000	173	59,000	460
1.15	1.86	7.15	4.63	44.2	11.5	274	28.7	1690	71.2	10,500	178	61,900	460
1.18	1.88	7.32	4.68	45.3	11.7	280	29.0	1740	72.2	10,700	179	63,400	460
	1.91	7.50	4.74	46.4	11.8	287	29.3	1780	73.0	11,000	182	64,900	460
1.24	1.93	7.87	${ }_{4} 4.86$	48.5	11.9	294	320	1820	73.9	11,300	184	66.500	460
1.30	1.97	8.06	4.92	49.9	12.2	309	30.4	1910	75.7	11,800	186 188 188	-68,100	460 460
$\begin{array}{r}1.33 \\ 1.37 \\ \hline\end{array}$	2.00 2.03	8.25 8.45	4.97	51.1	12.4	316	30.8	1960	76.6	12,100	190	71,500	460
1.37	2.03	8.45	5.04	52.3	12.5	324	31.2	2000	77.4	12,400	193	73,200	460
1.43	2.07	8.87	5.16	54.9	12.8	340	31.9	2100	79.4	13,000	197	76,800	460
1.47	2.10	9.09	5.22	56.2	13.0	348	32.3	2150	80.3	13,300	200	78,700	460
	2.12	9.31	5.28	57.6	13.1	357	32.7	2210	81.4	13,700	200	80,600	460
1.58	2.18	9.76	5.34	59.8	13.3	374	33.1	2260	82.3	14,000	200	10 w	
1.62	2.20	10.0	5.47	61.9	13.6	383	33.9	2370	84.3	14,700	200	82,500	908
1.65	2.22	10.2	5.53	63.4	13.8	392	34.3	2430	85.4	15,000	200	84,500	919
1.74	2.28	10.7	5.61 5.65	64.9 66.5	13.9 14.1	402	34.7 35.1	2590	86.4 87.4	15,400 1500	200 200	86,600 88,700	930 942
1.78	2.31	11.0	5.74	68.1	14.3	422	35.6	2610	88.4	16,200	200	90,900	952
	2.34	11.3	5.82	69.8	14.5	432	36.1	2670	89.5	16,500	200	93,100	965
1.91	2.39	11.8	5.87 5.95	71.2	14.8	4	36.4 36.9	2800	91.6	167,400	200	97,600	976
1.96	2.42	12.1	6.02	75.0	15.0	464	37.3	2870	92.8	17.800	200	100,000	1000
2.00	2.45	12.4	6.10	76.8	15.2	475	37.7	2940	93.9	18,200	200	102,000	1010
${ }_{2} 2.05$	${ }_{2}^{2.48}$	12.7	${ }_{6}^{6.17}$	78.7	15.4 15.5 15	487	38.2 38.7	3010	95.0	18,700	200	105,000	1020
2.15	2.54	13.3	6.24 6.32	82.5	15.7	511	39.1 39.1	3160	97.4	19,600	2000	110,000	11050
2.21	2.57	13.7	6.41	84.5	15.9	523	39.6	3240	98.6	20,000	200	113,000	1060
2.26	2.60	14.0	${ }^{6.48}$	86.6	16.1	536	40.1	3320	99.8	20,500	200	115,000	1070
2.32	2.64	14.3	${ }_{6}^{6.55}$	88.7	16.3	549	40.6	3400	101	21.000	200	118,000	1090
2.43	2.70	15.0	6.70	93.1	16.7	576	41.6	3570	103	22,100	200	124,000	1100
2.49	2.73	15.4	6.80	95.3	16.9	590	42.0	3650	105	5		127,000	1100
2.55	2.77	15.8	6.88	19.6	17.1	604	42.5	3740	106	5		130,000	1100
2.61 2.67	2.80 2.83	16.2 16.5	7.03	102	17.5	619 634	43.1 43.6	3830 3920	108	22,600 23,200	337 341	133,000 137,000	1100 1100
2.74	2.87	16.9	7.12	105	17.7	649	44.1	4020	110	23,700	344	140,000	1100
2.80	2.90	17.4	7.22	107	17.9	665	44.6	4120	111	24,300	347	143,000	1100
2.87	2.93	17.8	7.30	110	18.2	681	45.2	4220	112	24,900	353	147,000	1100
2.94	2.97	18.2	7.39	113	18.4	698	45.7	4320	114	25,500	357	150,000	1100
3.09	3.04	19.1	7.57	118	18.8	732	46.8	4530	117	26,700	365	158,000	1100
3.16	3.08	19.6	7.66	121	19.1	750	47.4	4640	118	27,400	370	162,000	1100
3.24	3.12	20.0	7.74	124	19.3	768	48.0	4750	119	28,000	374 379	165,000	1100
3.40	3.19	21.0	7.94	130	19.7	8806	49.2	4990	122	-28,400	383	174,000	1100
3.48	3.23 3.27	21.5	8.03	133	20.0	825	49.7	5110	124	30,100	388	178.000	1100
3.57	3.27	22.1	8.14	137	20.3	845	50.4	5230	125	30,900	393	182,000	110
3.65	3.31 3	22.6	8.23	140	20.5	866	51.0	5360	127	31,600 33	397	187.000	11100
3.83	3.39	23.7	8.43 8	147	21.0	909	52.6	5620	130	33,200	407	196,000	1100
3.92	3.43	24.3	8.54	150	21.2 21.5	931	52.8	5760	131 133	34,000	412	200,000	1100
4.12	3.51	25.5	88.74	158	21.8	976	54.1	6040	134	35,700	422		

[^9]For T. C. Less than $0 \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and Non-Inductive Versions, Consult Factory.

TYPE 882 for COMMLERGIAL POMER APPLICATMONS

Onmite	$\begin{aligned} & \text { Nom } \\ & \text { Nom } \\ & \text { Wht } \end{aligned}$	Dimensions			$\begin{aligned} & \text { Typp } \\ & \text { Grome } \end{aligned}$	Ohms RangeStd. 3% Tol. ${ }^{2}$	$\begin{aligned} & \text { Max. } \\ & \text { Wex. } \\ & \text { NMMs } \\ & \text { RMs. } \end{aligned}$
			${ }_{ \pm}^{\text {Dio }}$				
882.1A	1.5	0.417	0.105	24	0.3	0.10-10,000	-
882.18	1.5	0.542	0.105	24	0.3	0.10-16,500	-
882-2	2.25	0.375	0.188	20	0.6	0.10-10,000	85
882.3	3.25	0.542	0.230	20	1.3	0.10-34,000	200
882.5	6.5	0.917	0.323	18	3.3	0.10.124,000	460
882.7	9	1.218	0.323	18	4.3	0.10.178,000	670
$882-10$	11	1.822	0.343	18	6.3	0.10-301,000	1100

This type (Table II) is intended for commercial power applications. Standard tolerance is $\pm 3 \%$ (for values 1.0 ohm and higher) supplied at no extra cost over $\pm 5 \%$ tolerances. Closer tolerances are available. These units derate to zero watts at $350^{\circ} \mathrm{C}$ ambien 1000 VAC, . 500 volts for 1 witt size (tion and footnote p 2) Faster delivery is offered o Type 882 values selected from Table VI "Standard MS90178 Resistance Values for Tolerances Greate Than 1%," on page 5 .
Subiect to limitations on page 2.

TYPE 884 MIGH STABILITY, PREGISION-POMER TYPE

Type 884 resistors (Riteohm 88) are classified as high stability, precision-power types (Table III). They are aged and conservatively rated for maximum long term stability and exhibit superior characteristics despite relatively high operating temperature at rated
wattage. Impressive stability is displayed in the loadlife characteristics tabulated and discussed on the following page (see "Life-Test Proven"). lowing page (see "Life-Test Proven")
0.05% and derate \dagger to zero watts at $275^{\circ} \mathrm{C}$ ambient Graph I); T.C. $=0 \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; $;^{*}$ insulation tested a 1000 VAC except 500 volts for 1 watt size (see introduction and footnote, p. 2). Ohmite stocks all of the 1% tolerance standard values in the MIL-Bell decade system, up to 200,000 ohms (see Table IX, page 6).
tFor applications where maximum stability is of primary importance as may
be the case with close tolerance resistors, a derating of 50% is rocommended.

"LOT CONTROL" ASSURES QUALITY

Series 88 resistors are manufactured in accordance cedures, quality control checks and testing, can always with a "lot control" technique by which the manu- be associated with a "lot number" which actually facturing "history" of the resistor is always on record. appears on the resistor. Thus, the performance of a
Identification of individual lots of resistors is main- resistor can be related to the peculiarities of its manutaind thour and the materials to achieve a result, the details of the materials used, process pro- program of continuous product improvement!

Look for the

LOT CONTROL

TABLE IV - CYCLIC LOAD-LIFE TEST SUMMARY ON TYPE 884 RESISTORS \ddagger

$\begin{gathered} \text { Ohmito } \\ \text { Stylo } \end{gathered}$	$\begin{gathered} \text { Total } \\ \substack{\text { Number of } \\ \text { Unitst }} \end{gathered}$	Total Unit-Hours"On-Time" as of $3-1-67$	$1500 \text { Alls. Grouns "On-Time" }$		Attained "On-Time" of Different Subgroups			
			No. of Units	Av. \% $\%$,	3750 Hfs .		7500 Hrs .	
					No. of Units	Av. \% \% Δ R	No. of Units	Av. \% \triangle R
8841A	245	1,837,500	245	0.022	245	0.031	245	0.028
88418	185	1,387,500	185	0.088	185	0.142	185	0.174
884.3	1140	7,780,500	1140	0.268	1068	0.451	978	0.634
884.5	824	4,731,000	824	0.077	645	0.112	545	0.158
88410	302	2,227,500	302	0.241	302	0.374	292	0.505
All	2696	17,964,000*	2696	0.172	2445	0.287	2245	0.398

$*$ Evacal to $23,952,000$ otoal unit-hours of test (cyclic $11 / 2$ hours on, $1 / 2$ hour off).

+ See Table v for breakdown of test groups by resistance range.
tAt full Rated Wattagel See "tife-Test Proven" belur

Life-Test Proven: $23,952,000$ unit-hours of testing Type 884 resistors, emphasizes the excellent stability of this Series 88 line. Tables IV and V summarize data accumulated from tests which either have been terminated at 7500 hours of "on-time" or are continuing on test as of Mar. 1,1967 . Testing is being conducted on from production lots shipped to users. This test data will be amended from time to time to include additional results from continuing tests on existing test units as wesull as new units from users' production orders, samples of which are regularly placed under test. The data is characteristic and serves as an excellent guide but should not be used to set design or performance limits. The setting of such limits should be discussed with the factory.

TABLE V-DISTRIBUTION BY RESISTANCE RANGE OF TOTAL NUMBER OF TEST RESISTORS IN EACH STYLE

Rosistance Rong in ohm	884-1A	884-18	884-3	884-5	884-10
1 to 100	71		157	120	25
101 to 1,000	20	30	535	139	49
1,001 to 5,000	93	39	310	155	30
5,001 to 10,000	61	69	100	103	20
10,001 to 50,000		47	38	278	43
50,001 to 200,000				29	135

MOLDED!!

 Vitreous Enameled

 Vitreous Enameled Wirewound Resistor

 Wirewound Resistor}

OHMITE

Resistschipping, breaking! Thick, densely molded jacket will not chip even where leads enter resistor body.

Vou can't . . . tough, vitreous amel coating and markings reit the solvents normally used for degreasing and flux removal.

Glass fiber eraser leaves Series 99 VITRIFIED markings unaf. fected. Conventional markings would vanish in a few rubs.

In the long history of vitreous enameled resistors, Ohmite claims the distinction of introducing the first important innovation-a MOLDED vitreous enamel insulating coating. This development, the result of a new manufacturing technique (patent No. 3,229,237) permits the vitreous enamel to be applied by a molding process in contrast to the conventional dip enameling methods. Equally remarkable is the creation of a vitrified coating which endures the red heat of manufacture but retains its molded form and dimensions! The new Series 99 construction offers highly important advantages as follows:
(1) Consistent insulation thickness that guarantees 1000 VAC insulation breakdown ratings. (500 volts for Style $1 \mathrm{~A}, 1 \frac{1}{2}$ watt size)*
(2) A strong, tough jacket that resists breakage and chipping-will not chip where leads enter the resistor body-that resists $1500^{\circ} \mathrm{F}$ without losing its form or dimensions-that withstands conditions of high humidity and immersion in salt solution with unparalleled success.

- For tests on the Style 1A, $11 / 2$ watt size only, the V-block does not extend beyond the ends of the resistor body.

TABLE I-TYPE 995 COMMERCIAL TYPE
$\mathbf{5 \%}$ Tolerance; Closer Tolerances Avallable

Ohmite Style	Raled Wotls (a) $25^{\circ} \mathrm{C}$	Dimensions (inches)			Typical Weight (Grams)	Resistance Range† (Ohms)	Max. Wkg. Volis RMS		
		$\begin{aligned} & \text { Lath. } \\ & =.015 \end{aligned}$	$\begin{array}{r} \text { Dia. } \\ \text { +.03i } \\ -.000 \end{array}$	Leads 11/2" AWO					
995.1A	1.5	.422*	.125*	24	0.4	0.1 to 6650			
995-2A	2.25	. 375	. 188	20	0.8	0.1 to 6490	85		
995.3A	3.25	. 547	. 203	20	1.3	0.1 to 22,100	190		7
995-5A	6.5	. 922	. 312	20	3.6	0.1 to 80,600	460		T
995-5B	5	. 938	. 203	20	2.0	0.1 to 53,600	500	- DIA.	LEAD
995.7 A	9	1.218	. 312	20	4.5	0.1 to 118,000	670		
$995-10 \mathrm{~A}$	11	1.781	. 312	20	6.9	0.1 to 187,000	1100		

[^10](3) Consistent form and dimensions facilitate use of resistors in automated assembly of circuit boards, etc., or mounting in fuse-type clips (page 6) with significant heat-sink benefits which allow a 100% wattage increase when clip is mounted on metal surface. Resistors may be repeatedly inserted and removed from clips without damage.

With all this, THE ACKNOWLEDGED, TIMEPROVEN ADVANTAGES OF VITREOUS ENAMEL INSULATION ARE RETAINED. It anchors the turns of resistance wire in place and provides a hard, glossy material that distributes heat to minimize hotspots, that will not burn or shrink, that is unaffected by moisture and imparts to resistors the ability to withstand amazing overloads for a reasonable duration.

Beneath this superb insulation of Series 99 resistors, is a single layer winding of high grade resistance

© New! is watis size

MOLDED VITREOUS ENAMEL AXIAL LEAD RESISTOR . . . SERIES 99

Ohmite's new 15 watt Series 99 axial lead resistor, expands the range of sizes available to industry. (Table I). Now you can utilize these tough resistors in even more applications.

For its rating, the 15 watt size is small - $2^{\prime \prime}$ long and only $0.394^{\prime \prime}$ in diameter. It is expected to find use in many applications where lug type or lug-lead type resistors are presently used.

This new size incorporates the advantages of the Series 99 line - molded vitreous enamel jacket (Patent No. 3,229,237) over the wirewound ceramic core to provide 1000 volt insulation; superior resistance to intense heat, abrasion, solvents and abuse. And, of course, the other wellknown advantages of vitreous enamel are provided - its ability to withstand moisture and its unsurpassed overload capability. Molding provides the size uniformity so conducive to the mechanized feeds of automated circuit board operations.

The 15 watt size is provided in the commercial power type (995) and high-stability type (994). It also complies with all requirements for Style RW56 (14 watts) of military specification MIL-$\mathrm{R}-26$ but has a higher wattage rating.

Request Bulletin 103 for complete details of the resistors that have established a milestone in resistor technology - the Series 99.

TABLE I - COMMERCIAL TYPE 995
5\% Tolerance; Closer Tolerances Available

Ohmite Style	$\begin{aligned} & \text { Rated } \\ & \text { Wafts } \\ & \text { e } 25^{\circ} \mathrm{C} \end{aligned}$	Dimensions (inches)			Typical Weight (Grams)	Resistance Range \dagger (Ohms)	Max. Whg. Volts RMS
		$\begin{aligned} & \text { Lgth. } \\ & \pm .015 \end{aligned}$	$\begin{gathered} \hline \text { Dia. } \\ +.031 \\ -.000 \end{gathered}$	Leads 1-1/2' AWG \ddagger			
995-1A	1.5	.422*	.125*	24	0.4	0.1 to 6650	
995-2A	2.25	. 375	. 188	20	0.8	0.1 to 6490	85
995-3A	3.25	. 547	. 203	20	1.3	0.1 to 22,100	190
995-5A	6.5	. 922	. 312	20	3.6	0.1 to 80,600	460
995-5B	5	. 938	. 203	20	2.0	0.1 to 53,600	500
995-7A	9	1.218	. 312	20	4.5	0.1 to 118,000	670
995-10A	11	1.781	. 312	20	6.9	0.1 to 187,000	1100
995-15A	15	2.00	. 394	20	13	0.1 to 243,000	1100

*Tolerance $+.015,-.005$
†For closer tolerances than 1%, minimum value is 1 ohm
ҒAWG 20=.032" AWG $24=.020^{\prime \prime}$

STYLES RW55, 56 OF MIL-R-26: With the introduction of the 15 watt resistor, two Series 99 resistors are now available for those applications utilizing Styles RW55 and RW 56 of MIL-R-26 as follows:

TABLE II - TYPE 991 for STYLES RW55, 56 of MIL-R-26

"V" Char.				Dimensions			Typical Weight (grams)
Ohmite Style	MIL* Style	Rated Watts © $25^{\circ} \mathrm{C}$	Ohms Range	Length $\pm .015$	$\begin{gathered} \text { Dia. } \\ +.031 \\ -.000 \end{gathered}$	$\begin{aligned} & \text { Leads } \\ & \text { 1-1/2" } \\ & \text { AWG } \dagger \end{aligned}$	
991-15A	RW56V	14	0.1-9.1K	2.00	. 394	20	13
991.7A	\ddagger RW55V	7	0.1-5.1K	1.218%	$.312 \pm$	20	4.5

\ddagger Despite the fact that these dimensions are smaller than the minimum limits of the MIL specification, it complies with all functional requirements.
*Other Series 99 sizes meet MIL Styles RW67V, RW68V, RW69V. See Bulletin 103. †AWG 20 $=.032^{\prime \prime}$

HI-STABILITY, CLOSE TOLERANCE TYPE 994: The 15 watt Series 99 resistor is also available in the high stability, closer tolerance variety as shown below. See Bulletin 103 for definition of stability, T.C., etc.

TABLE III - TYPE 994, 3\% STD. TOLERANCE
Tolerances to 0.25% Available

Ohmite Style	Rated Watts $@ 25^{\circ} \mathrm{C}$	Dimensions (inches)			Typical Waight (Grams)	Resistance Range \dagger (Ohms)	Max. Wkg. Volts RMS
		$\begin{aligned} & \text { Length } \\ & \pm .015 \end{aligned}$	$\begin{array}{r} \text { Dia. } \\ +. .031 \\ -.000 \end{array}$	Leads 1-1/2" AWG \ddagger			
994-15A	14	2.00	. 394	20	13	0.1-243K	1100

\dagger For closer tolerances than 1%, minimum value is 1 ohm.
\ddagger AWG 20=.032"

TABLE VI-STANDARD RESISTANCE VALUES for 3\% and 5\% Tolerances See Catalog 100 or 30 for listing of stock values in $1 \frac{1}{2}, 2 \frac{1}{4}, 31 / 4,5$ and 11 watt sizes. Values below are available in accordance with the ranges bet forth in the Type 995 (commercial) ond Type 991 (MIL-R-26) "Range" tables. Values are standard resist unces from military standard MS.90178 except those indicated with an asterisk (*) which are additional commercial standards. Special resistances can be wound to order.

OHMS						
. 10	1.3	18	200	${ }^{1300}$	*9000	${ }^{68 \mathrm{~K}}$
. 11	1.5	20	220	*1400	9100	75K
. 12	1.6	22	240	1500	10k	82K
. 13	1.8	24	*250	1600	11 K	91 K
. 15	2.0	*25	270	1800	12 K	100k
. 16	2.2	27	300	2000	13k	110k
. 18	2.4	30	330	2200	*14K	120 K
. 20	2.7	33	*350	2400	15 K	130 K
. 22	3.0	*35	360	*2500	16 K	150k
. 24	3.3	36	390	2700	*17K	160K
. 27	3.6	39	*400	3000	18 K	180K
. 30	3.9	* 40	430	3300	20k	
. 33	*4.0	43	*450	*3500	22 K	
. 36	4.3	47	470	3600	24 K	
. 39	4.7	*50	*500	3900	*25k	
. 40	*5.0	51	510	*4000	27 K	
. 43	5.1	56	560	4300	30k	
. 47	5.6	62	* 600	*4500	33k	
. 50	6.2	${ }^{68}$	620	${ }_{*} 4700$	*35k	
. 51	6.8	75	680	*5000	36 K	
. 56	7.5	82	${ }^{7} 700$	5100	39 K	
. 62	8.2	91	750	5600	* 40 k	
. 68	9.1	100	*800	*6000	43 K	
. 75	10	110	820	6200	${ }^{4} 4{ }^{4} \mathrm{KK}$	
. 82	11	120	*900	6800	47K	
. 91	12	130	910	${ }^{*} 7000$	*50k	
1.0	13	150	1000	7500	51 K	
1.1	15	160	1100	${ }^{8} 8000$	56 K	
1.2	16	180	1200	8200	62K	

table vili

STANDARD RESISTANCE VALUES
FOR THE 10 TO 100 DECADE*
for $1.0 \%, 0.5 \%, 0.25 \%$ Tolerances

10.0	14.7	21.5	31.6	46.4	68.1
10.2	15.0	22.1	32.4	47.5	69.8
10.5	15.4	22.6	33.2	48.7	71.5
10.7	15.8	23.2	34.0	49.9	73.2
11.0	16.2	23.7	34.8	51.1	75.0
11.3	16.5	24.3	35.7	52.3	76.8
11.5	16.9	24.9	36.5	53.6	78.7
11.8	17.4	25.5	37.4	54.9	80.6
12.1	17.8	26.1	38.3	56.2	82.5
12.4	18.2	26.7	39.2	57.6	84.5
12.7	18.7	27.4	40.2	59.0	86.6
13.0	19.1	28.0	41.2	60.4	88.7
13.3	19.6	28.7	42.2	61.9	90.9
13.7	20.0	29.4	43.2	63.4	93.1
14.0	20.5	30.1	44.2	64.9	95.3
14.3	21.0	30.9	45.3	86.5	97.6

MOUNTING CLIPS

TABLE IX-STOCK CLIPS FOR SERIES 99 RESISTORS

Uniform shape and consistent dimension of Series 99 resistors, permits hem to be conveniently mounted in lips. If the clip is on a metal surface quare inches per watt) the wattage square inches per watt) the wattage capability of the resistor can increase
by as much as 100%. Holes in the clip base permit fastening to chassis by means of machine screws, eyelets or rivets. Clip, hole and mounting center dimensions are given in Table IX at right.

OHMTE MAMUFAGTURIG GOMPANY • डGM MOWARD ST. © SKOKIE, ILAMOIS GQOTE RESISTDRS • RHEQSTATS • TAP SWITCHES • RELAYS • VARIABLE TRANSFORMERS TANTALUM CAPACITORS • SOLID STATE CONTROLS • R.F. chokes

TABLE II-CYCLIC LOAD-LIFE TEST SUMMARY ON TYPE 995 RESISTORS AT ORIGINALLY RATED WATTAGE \ddagger

Ohmite stylo	Originally Roted Wotts of $25^{\circ} \mathrm{C}$	Total Number of Unitst	Total Unit Hours "On-Time"	"On-Time" All Groups	
				$\begin{aligned} & 2000 \mathrm{Hrs}, \\ & \text { Av. \% } \triangle \mathrm{R} \end{aligned}$	
995.1A	1	507	3,802,500	0.603	0.786
995.3A	3	871	6,532,500	0.875	1.317
995.5A	5	407	3,052,500	0.655	0.766
995-58	5	586	4,395,000	1.744	2.607
995-10A	10	491	3,682,500	0.782	1.048
All		2862	21,465,000*	0.958	1.363

alloy on a ceramic core. Axial type terminal leads and the resistance wire are both welded to metal end caps which fit snugly over the core ends.
Permanent Resistor Markings: Identification markings are vitreous and are applied using an "ink" composed of ceramic compounds. The markings are fired into the molded vitreous enamel coating and become a permanent and integral part of the resistor. They resist abrading, standard cleaning solvents, $1500^{\circ} \mathrm{F}$ temperatures (see cover). Extreme overloads that may burn out the resistor winding WILL NOT obliterate the markings which can be conveniently read for reordering
Ratings: Wattage ratings are based on a maximum hot spot temperature of $350^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ ambient.
Leads: Standard leads are solder-dip coated for soldering; furnished bare for welding, or gold plated on special order.
Low Resistance Measurements: For values of 20 ohms and less, resistance measurements are made at a point on each lead $8 / 8 \pm 1 / 16$ from body of resistor. For all values of resistance 10 ohms and below, it is advisable to use Kelvin Bridge technique to eliminate errors due to lead and contact resistance.
NON-INDUCTIVE versions of Series 99 resistors can be supplied to order. Inquire of factory.
LIFE-TEST PROVEN: $\mathbf{2 8 , 6 2 0 , 0 0 0}$ unit-hours of testing have established the merit of Series 99 construction. Table II summarizes these tests which are still proceeding. Table III provides a breakdown of the resistance values used in each of the test groups listed in Table II. These test results have been obtained from many experimental lots of resistors representing different constructional materials and manufacturing processes. These resistors were produced, tested and evaluated for developmental purduction practices. Hence, while the $\% \triangle R$ values given should not be specified as design or performance
table ili-PERCENTAGE DISTRIBUTION BY resistance value of total number of test resistors in each style

$\begin{aligned} & \text { Resistance } \\ & \text { Values in } \\ & \text { Ohms } \end{aligned}$	995.14	995.3A	995.5A	995.58	995.10A
1	25.2		9.8	24.6	
$1 \& 2.5$		22.3			
18				7.6	
1\&25					27.7
25	8.9		11.1		
100 \& 195	16.8				
340		8.2			
390	17.8				
400 \& 560		11.3			
610	8.7				
500 \& 880				16.5	
800 \& 1085		20.9			
1540		4.0			
$935 \& 1800$			23.1		
1870				16.7	
2375	15.2				
$2500 \& 4600$					20.2
3600 \& 3700			22.3		
2900				7.4	
4000	7.5		10.6		
7000		21.1			
9000					19.8
10,000 \& 11,100		12.3			
11,100				15.6	
12,400					10.0
19,000				4.5	
23,000			18.4		
25,000				6.9	
38,000			4.7		
58,000					16.3
92,000					6.1

limits, they do serve as an excellent guide. More typical $\Delta \mathrm{R}$ data is presently being collected as part of another test program in which samples ar being taken from standard production lots. Data will be available after sufficient time has elapsed. Based on the information in these tables all Series 99 resistors will show less than 5% change in resistance over 2,000 hours of cyclic testing ($11 / 2$ hours "on",

1/2 hour "off"). Type 991, however, will display less than $3 \% \Delta R$ and Type 994 , less than $2 \% \Delta R$.
utstanding Moisture Resistance: Series 99 resistors which meet the requirements of MIL-R-26 wil withstand the 10 -day MIL-R- 26 moisture-resistance test AFTER 2000 hours of cyclic load-life at full rated wattage.

"LOT CONTROL" ASSURES QUALITY

Series 99 resistors are manufactured in accordance with a "lot control" technique by which the manufacturing "history" of the resistor is always on record. Identification of individual lots of resistors is maintained throughout all the manufacturing used, process procedures, quality control checks
and testing, can always be associated with a "lot number" which actually appears on the resistor. Thus, the performance of a resistor can be related to the peculiarities of its manufacture and its tinuous product improvement!

RESISTOR TYPES

TYPE 995, COMMERCIAL POWER APPLICATIONS, (TABLE I)

Ratings on this commercial type were increased over hose shown in previous bulletins when the impressive capability of the Series 99 line was realized. Table II (page 3) shows the previous ratings which were used to btain the load-life data in this table and table III.
Standard tolerance for Type 995 units is $\pm 5 \%$ for values 1 ohm and above; $\pm 10 \%$ for values below 1 ohm . For tolerances to $\pm 0.25 \%$, consult factory.

TYPE 991 FOR MILITARY APPLICATIONS This type meets the requirements of MIL-R-26D, Styles RW67V, RW68V and RW69V ($350^{\circ} \mathrm{C}$ max. hot Styles RW67V, RW68V and RW69V (he required 1000
spot.) These units meet and exceed the spot.) These units meet and exceed the required 1000
VAC V-block dielectric-strength test, the 100 megohm insulation-resistance test, and surpass the stability requirements of $\pm 3 \% \Delta \mathrm{R}$ on the 2000 hour cyclic loadlife test. The low TC of Series 99 units far surpasses the requirements of MIL-R-26D (refer to table V on page 5.) Standard resistance tolerance is $\pm 5 \%$ for values 1 ohm and above; for values below $1 \mathrm{ohm}, \pm 10 \%$ other tolerances can be supplied. Ohmite can supply these resistors in the now obsolete Char. G $\left(275^{\circ} \mathrm{C}\right.$ hot spot); also obsolete styles RW57, RW58 and RW59 Char. G or V can be supplied.

"v" Chor.				Dimensions			$\begin{gathered} \text { Typioal } \\ \hline \text { Horom } \\ \text { (oroms) } \end{gathered}$
$\begin{gathered} \text { Ohmite } \\ \text { stryle } \end{gathered}$	$\xrightarrow[\substack{\text { MIL. } \\ \text { Strie }}]{\text { R }}$	$\begin{aligned} & \text { Roted } \\ & \text { Roted } \\ & \text { ©os25 } 25^{\circ} \end{aligned}$	$\underset{\text { Rangot }}{\substack{\text { Ohms }}}$	$\underset{\substack{\text { Length } \\ \pm .015}}{\text { chen }}$	$\begin{gathered} \text { Dio. } \\ +: .000 \\ \hline-.000 \end{gathered}$	$\begin{aligned} & \text { Loods } \\ & \text { AWost } \\ & \text { AWGO } \end{aligned}$	
991-3A	RW69V	3	0.1 .910	. 547	. 203	20	1.3
991. 5 A	RW67V	6.5	0.1-3600	. 922	. 312	20	3.6
991-10A	RW68V	11	0.1-8200	1.781	. 312	20	6.9
hhores styers ar not litod in D D rovision.				†See "Standard Resistance Values," Table VI for "V" Char., 5% tolerance.t†AWG $20=.032 "$.			

SERIES

METAL F川LM PRECISION RESISTORS

Available ONLY in Lowest MIL Specified T.C.

 $0 \pm 25 p p \mathrm{~m} /{ }^{\circ} \mathrm{C} \ldots$ Over Operating Range of $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

* Long Term Load-Life Stability
* Superior High Frequency Characteristics
* Negligible Noise Level
* Molded Protective Coating
* Standard Rating at $125^{\circ} \mathrm{C}$
-Double Wattage at $70^{\circ} \mathrm{C}$
* Exceeds Characteristic E of MIL-R-10509E
* Precision Tolerances to $\mathbf{0 . 1 \%}$
* Matched TC's and Tolerances

Ohmite's new line of metal film resistors-SERIES 66 RESISTORS-culminate an intensive program dedicated to the development of the highest quality metal film resistors available to industry! Research on these units has concentrated on goals of a standard low temperature coefficient of resistance, superior load-life stability and outstanding high-frequency characteristics. As a result, Series 66 resistors have only the lowest specified (per MIL-R-10509E) T.C. $-0 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$-as well as stability and low noise level comparable to precision wirewounds!
In Series 66 resistors, quality and performance are offered which far surpass that of resistors made with other types of film elements. They provide industry with units that may be confidently relied upon for accuracy, for operation in very high ambients and in high-frequency or high-gain circuits where low reactance and low noise level are mandatory. They are designed to exceed the requirements of MIL-R-10509E, Styles RN60E, RN65E, RN70E and RN75E.

TABLE I, TYPE 661 METAL FILM RESISTORS

Ohmite Siyle	$\begin{gathered} \text { MIL } \\ \text { Style } \end{gathered}$	$\begin{aligned} & \text { Watts } \\ & \text { (}{ }^{\circ} \mathrm{C} \dagger \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & \text { (max) } \end{aligned}$	Dimensions		Leads $11 / 2^{\prime \prime}$ AWG*	Min. Ohms	Max. Ohms
				$\begin{gathered} \text { Lgth. } \\ \pm .015 \end{gathered}$	$\begin{gathered} \text { Dia. } \\ \pm .010 \end{gathered}$			
$661 \mathrm{E}-1 / 8$	RN60E	1/8	250	. 406	. 130	22	309	499K
$661 \mathrm{E}-1 / 4$	RN65E	$1 / 4$	300	. 594	. 203	22	402	1MEG
661 E-1/2	RN70E	1/2	350	. 719	. 261	20	402	1MEG
661 E-1	RN75E	1	500	1.105	. 395	20	365	2MEG

Construction: The resistance element is a film of special non-noble metal alloy vacuum-evaporated onto a ceramic core of special composition and exceptional surface finish. Contact to the film is achieved with gold terminal bands fired onto the core ends. Goldplated end-caps are pressed over the core ends and leads are butt-welded to the caps. The assembly is covered with a special protective resin and completed with a molded coating. Film, core, caps and coating are matched to provide a stable, moisture-resistant component.
Tolerance: Standard tolerance is $\pm 1.0 \%$; tolerances to $\pm 0.1 \%$ are available. Consult factory for special requirements.

Leads: Standard leads are nickel, solder-dip coated for soldering; furnished bare for welding or goldplated on special order.

Temperafure Coefficient of Resistance (T.C.): Available only in $0 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (" E " characteristic) over the range of $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$.
Wattage Rating: Standard rating at $125^{\circ} \mathrm{C}$. Derates linearly to " 0 " watts at $175^{\circ} \mathrm{C}$. Ratings double at $70^{\circ} \mathrm{C}$ ambient!

Frequency Characteristics, Load Life and Noise Characteristics: See graphs and tables. Note: Load life test results have been obtained from many experi-

TABLE II, TYPICAL TEST DATA FOR SERIES 66 RESISTORS*

TESTS		Ohmite Style/MIL Style		661 E-1/4/RN6OE				661 E-1/4/RN65E						
		Wonl Reting (a) $125^{\circ} \mathrm{C}$ Amb.		1/8				1/4						
			Resistance	3098		499K Ω		402Ω		348k 2		1 megr		
		MLL Roquiremenfs	Avg. of All Tesis	Avg. 1	Range	Avg. +	Range	Avg. \dagger	Range	Avg. 1	Range	Avg. \dagger	Ronga	
$\text { T.C. in ppm } /{ }^{\circ} \mathrm{C}\left\{\begin{array}{l} @-55^{\circ} \mathrm{C} \\ @+175^{\circ} \mathrm{C} \end{array}\right.$		25	7.93	9.1	$\begin{gathered} -8.0 \text { to } \\ -10.7 \end{gathered}$	8.8	$\begin{array}{\|c\|} \hline-5.1 \text { to } \\ -12.5 \\ \hline \end{array}$	5.6	$\begin{aligned} & -.5 \text { to } \\ & -12.0 \\ & \hline \end{aligned}$	2.3	$\begin{aligned} & +310 \\ & +5.8 \\ & \hline \end{aligned}$	4.4	$\begin{gathered} -.1 \text { to } \\ -8.7 \\ \hline \end{gathered}$	
		25	17.79	15.9	$\begin{gathered} +14.8 \text { to } \\ +18.2 \end{gathered}$	19.5	$\left\|\begin{array}{c} +10.5 \text { to } \\ +23.7 \end{array}\right\|$	23.3	$\begin{gathered} +21.1 \text { to } \\ +24.9 \end{gathered}$	20.8	$\begin{gathered} +13.0 \text { to } \\ +25.0 \end{gathered}$	18.6	$\begin{gathered} +15.1 \text { to } \\ +24.0 \\ \hline \end{gathered}$	
$125^{\circ} \mathrm{C}$ Load Life @ 1000 Hrs .	$\% \pm R$	$\pm .5$. 107	. 097	$\begin{gathered} -.017 \text { to } \\ +.250 \end{gathered}$. 080	$\left\|\begin{array}{c} -.002 \text { to } \\ +.407 \end{array}\right\|$. 145	$\begin{gathered} \hline+.014 \text { to } \\ +.404 \end{gathered}$. 088	$\begin{gathered} +.051 \text { to } \\ -.149 \end{gathered}$. 062	$\begin{gathered} +.049 \text { to } \\ +.069 \\ \hline \end{gathered}$	
Temp. Cycling	$\% \Delta R$	$\pm .25$. 043	. 018	$\begin{array}{r} 0 \text { to } \\ +\quad .032 \\ \hline \end{array}$. 049	$\begin{gathered} +.040 \text { to } \\ +.072 \\ \hline \end{gathered}$. 029	$\begin{gathered} -.003 \text { to } \\ +.054 \end{gathered}$. 041	$\begin{gathered} +.022 \text { to } \\ +.060 \\ \hline \end{gathered}$. 042	$\begin{gathered} +.02410 \\ +.097 \end{gathered}$	
Low Temp. Operation	$\% \triangle R$	$\pm .25$. 028	. 053	$\begin{array}{\|c} +.012 \text { to } \\ +. \end{array}$. 008	$\begin{gathered} 0 \text { to } \\ +.014 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ +.004 \end{gathered}$. 002	$\begin{gathered} 010 \\ -.006 \end{gathered}$. 009	$\begin{gathered} 0 \text { to } \\ -.013 \end{gathered}$	
Short Time Overload	$\% \Delta R$	$\pm .25$. 019	. 031	$\begin{gathered} 0 \text { to } \\ -.104 \end{gathered}$. 009	$\begin{gathered} 0 \text { to } \\ -.043 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ -.003 \end{gathered}$. 006	$\begin{gathered} -.003 \text { to } \\ +.010 \end{gathered}$	
Terminal Strength	$\% \Delta R$	$\pm .25$. 003	. 003	$\begin{gathered} 0 \text { to } \\ -.007 \end{gathered}$. 001	$\begin{aligned} & 0 \text { to } \\ & +.002 \end{aligned}$. 002	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 002	$\begin{gathered} 0 \text { to } \\ +.005 \end{gathered}$. 005	$\begin{gathered} 0 \text { to } \\ +.010 \\ \hline \end{gathered}$	
Dielectric Withstand Volts	$\% \Delta R$	$\pm .25$. 005	. 002	$\begin{gathered} 0 \text { to } \\ -.012 \end{gathered}$	0	0	. 004	$\begin{gathered} -.003 \text { to } \\ -.005 \end{gathered}$. 002	$\begin{gathered} 0 \text { to } \\ +.008 \end{gathered}$. 012	$\begin{gathered} +.00210 \\ +.039 \end{gathered}$	
Effect of Soldering	\% ΔR	$\pm .25$. 013	. 018	$\begin{gathered} +.003 \text { to } \\ +.035 \end{gathered}$. 008	$\begin{gathered} 0 \text { to } \\ +.022 \end{gathered}$. 002	$\begin{gathered} 0 \text { to } \\ +.002 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.015 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.006 \end{gathered}$	
Moisture Resistance	$\% \Delta R$	$\pm .50$. 058	. 199	$\begin{gathered} +.03510 \\ +.432 \end{gathered}$. 118	$\begin{gathered} +.039 \text { to } \\ +.222 \end{gathered}$. 029	$\begin{gathered} +.024 \text { to } \\ +.034 \end{gathered}$. 016	$\begin{gathered} +.011 \text { to } \\ +.017 \end{gathered}$. 022	$\begin{gathered} +.00910 \\ +.039 \end{gathered}$	
Shock	$\% \Delta R$	$\pm .25$. 006	. 008	$\begin{gathered} -.004 \text { to } \\ -.010 \end{gathered}$. 002	$\begin{gathered} 0 \text { to } \\ -.007 \end{gathered}$. 010	$\begin{gathered} +.007 \mathrm{to} \\ +.014 \end{gathered}$. 003	$\begin{array}{r} 0 \text { to } \\ +.011 \end{array}$. 002	$\begin{gathered} 0 \text { to } \\ -.005 \\ \hline \end{gathered}$	
Hi-Freq. Vibration	\% \triangle R	$\pm .25$. 007	. 003	$\begin{array}{r} 0 \text { to } \\ +.009 \\ \hline \end{array}$. 006	$\begin{array}{r} 0 \text { to } \\ +.018 \\ \hline \end{array}$. 011	$\begin{array}{\|c\|} \hline-.005 \text { to } \\ -.015 \\ \hline \end{array}$. 005	$\begin{gathered} 0 \text { to } \\ -.015 \end{gathered}$. 014	$\begin{aligned} & +.002 \text { to } \\ & -.060 \end{aligned}$	m

[^11]TYPICAL FREQUENCY CHARACTERISTICS

frequency in megacycles
mental lots of resistors representing different construction materials and manufacturing processes. These resistors were produced, tested and evaluated for development purposes which ultimately determined present production practices. Thus, the $\% \Delta R$ values given here, while indicative of the general performance of this line, should not be specified as $T H E$ design or performance limits. However, it is evident that they are well within the limits specified by MIL-R-10509E.

TO ORDER, SPECIFY:

1. Ohmite style or MIL style (see Table I) for which you can compose type designation (see "Military Type Designations" following).
2. Temperature coefficient of resistance.
3. Resistance value in ohms (for military use, a value which conforms to the standard progression of military values-Table III-is preferred.
4. Resistance tolerance.
. . (compared to requirements of MLL-R-10509E)

661 E-1/2/RNTOE						661E-1/RN75E					
1/2						1					
402Ω		237K!		1 MEG Ω		365Ω		237K Ω		$2 \mathrm{MEG} \Omega$	
Avg. \dagger	Range	Avg. \dagger	Range	Avg. \dagger	Range	Avg. 1	Range	Avg. \dagger	Range	Avg. \dagger	Range
4.4	$\begin{aligned} & +3 \text { to } \\ & +10.6 \end{aligned}$	4.9	$\begin{gathered} +1.6 \text { to } \\ -10.5 \end{gathered}$	11.5	$\begin{gathered} -7.9 \text { to } \\ -13.6 \end{gathered}$	15.7	$\begin{gathered} -7.0 \text { to } \\ -25.0 \end{gathered}$	9.9	$\begin{gathered} -1.0 \text { to } \\ -19.0 \end{gathered}$	10.6	$\begin{aligned} & -.6 \text { to } \\ & -20.0 \end{aligned}$
20.1	$\begin{gathered} +18.2 \text { to } \\ +23.0 \end{gathered}$	19.0	$\begin{array}{\|c} +14.0 \text { to } \\ +24.0 \end{array}$	14.0	$\begin{aligned} & +6.6 \text { to } \\ & +24.5 \end{aligned}$	12.5	$\begin{aligned} & +7.0 \text { to } \\ & +15.0 \end{aligned}$	12.5	$\begin{aligned} & +6.0 \text { to } \\ & +21.0 \end{aligned}$	19.5	$\begin{aligned} & +15.3 \text { to } \\ & +24.3 \end{aligned}$
. 159	$\left\lvert\, \begin{gathered} +.009 \text { to } \\ +.360 \end{gathered}\right.$. 278	$\begin{gathered} +.147 \text { to } \\ +.387 \end{gathered}$. 049	$\begin{gathered} 0 \text { to } \\ +.129 \end{gathered}$. 085	$\left\|\begin{array}{c} +.057 \text { to } \\ +.117 \end{array}\right\|$. 093	$\begin{gathered} +.025 \text { to } \\ +.172 \end{gathered}$. 038	$\begin{gathered} +.004 \text { to } \\ +.115 \end{gathered}$
. 055	$\begin{array}{\|c\|} \hline+.002 \text { to } \\ +.126 \end{array}$. 049	$\left\lvert\, \begin{gathered} +.004 \text { to } \\ +.113 \end{gathered}\right.$. 029	$\begin{gathered} +.009 \text { to } \\ +.049 \end{gathered}$. 037	$\begin{array}{\|c} +.005 \text { to } \\ -.189 \end{array}$. 010	$\begin{gathered} +.004 \text { to } \\ +.021 \end{gathered}$. 114	$\begin{gathered} +.064 \text { to } \\ +.194 \end{gathered}$
. 034	$\begin{gathered} +.019 \text { to } \\ +.054 \end{gathered}$. 018	$\left\lvert\, \begin{gathered} -.009 \text { to } \\ -.026 \end{gathered}\right.$. 021	$\left\|\begin{array}{c} +.009 \text { to } \\ -.060 \end{array}\right\|$. 129	$\begin{array}{\|c\|} +.079 \text { to } \\ +.186 \end{array}$. 021	$\begin{gathered} 0 \text { to } \\ -.089 \end{gathered}$. 010	$\begin{gathered} -.005 \text { to } \\ -.015 \end{gathered}$
. 015	$\begin{gathered} +.004 \text { to } \\ +.069 \end{gathered}$. 011	$\begin{gathered} 0 \text { to } \\ -.077 \end{gathered}$. 004	$\begin{gathered} 0 \text { to } \\ -.010 \end{gathered}$. 122	$\begin{array}{\|c\|} \hline-.088 \text { to } \\ -.151 \end{array}$. 006	$\begin{gathered} 0 \text { to } \\ -.009 \end{gathered}$. 004	$\begin{gathered} 0 \text { to } \\ +. .009 \end{gathered}$
. 004	$\begin{gathered} 0 \text { to } \\ -.015 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ +.008 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.010 \end{gathered}$. 004	$\begin{gathered} 0 \text { to } \\ +.011 \end{gathered}$. 005	$\begin{gathered} 0 \text { to } \\ -.009 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.010 \end{gathered}$
. 002	$\begin{gathered} 0 \text { to } \\ -.016 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.002 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ -.002 \end{gathered}$. 012	$\begin{gathered} 0 \text { to } \\ +.038 \end{gathered}$. 001	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 013	$\begin{gathered} +.004 \text { to } \\ +.024 \end{gathered}$
. 031	$\begin{array}{\|c} +.024 \text { to } \\ +.034 \end{array}$. 011	$\left\lvert\, \begin{gathered} -.009 \text { to } \\ -.022 \end{gathered}\right.$. 023	$\left\|\begin{array}{c} +.019 \text { to } \\ +.029 \end{array}\right\|$. 012	$\begin{gathered} 0 \text { to } \\ +.057 \end{gathered}$. 031	$\begin{gathered} +.016 \text { to } \\ +.050 \end{gathered}$. 005	$\begin{gathered} 0 \text { to } \\ -.020 \end{gathered}$
. 058	$\begin{array}{\|c\|} \hline-.030 \text { to } \\ -.065 \end{array}$. 019	$\begin{gathered} +.008 \text { to } \\ +.029 \end{gathered}$. 015	$\begin{gathered} 0 \text { to } \\ -.050 \end{gathered}$. 024	$\begin{gathered} +.021 \text { to } \\ +.032 \end{gathered}$. 068	$\begin{gathered} +.012 \text { to } \\ +.337 \end{gathered}$. 066	$\begin{gathered} +.03910 \\ +.084 \end{gathered}$
. 004	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$	0	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 016	$\begin{gathered} 0 \text { to } \\ -.040 \end{gathered}$. 004	$\begin{gathered} 0 \text { to } \\ +.010 \end{gathered}$. 004	$\begin{gathered} 010 \\ -.009 \end{gathered}$. 019	$\begin{gathered} +.00510 \\ -.040 \end{gathered}$
. 001	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 002	$\begin{gathered} 0 \text { to } \\ -.005 \end{gathered}$. 003	$\begin{gathered} 0 \text { to } \\ -.010 \end{gathered}$. 003	$\begin{aligned} & 0 \text { to } \\ & -.006 \end{aligned}$. 005	$\begin{gathered} 0 \text { to } \\ -.009 \end{gathered}$. 022	$\begin{gathered} +.005 \text { to } \\ +.045 \end{gathered}$

TABLE III. STANDARD MIL RESISTANCE VALUES FOR THE 10 TO 100 DECADE \dagger for 1.0% (F), $0.5 \%(\mathrm{D}), 0.25 \%(\mathrm{C}), 0.1 \%(\mathrm{~B}) \dagger$ Toleronces

$* 10.0$	$* 14.0$	$* 19.6$	$* 27.4$	$* 38.3$	$* 53.6$	$* 75.0$
10.1	14.2	19.8	27.7	38.8	54.2	75.9
$* 10.2$	$* 14.3$	$* 20.0$	$* 28.0$	$* 39.2$	$* 54.9$	$* 76.8$
10.4	14.5	20.3	28.4	39.7	55.6	77.7
$* 10.5$	$* 14.7$	$* 20.5$	$* 28.7$	$* 40.2$	$* 56.2$	$* 78.7$
10.6	14.9	20.8	29.1	40.7	56.9	79.6
$* 10.7$	$* 15.0$	$* 21.0$	$* 29.4$	$* 41.2$	$* 57.6$	$* 80.6$
10.9	15.2	21.3	29.8	41.7	58.3	81.6
$* 11.0$	$* 15.4$	$* 21.5$	$* 30.1$	$* 42.2$	$* 59.0$	$* 82.5$
11.1	15.6	21.8	30.5	42.7	59.7	83.5
$* 11.3$	$* 15.8$	$* 22.1$	$* 30.9$	$* 43.2$	$* 60.4$	$* 84.5$
11.4	16.0	22.3	31.2	43.7	61.2	85.6
$* 11.5$	$* 16.2$	$* 22.6$	$* 31.6$	$* 44.2$	$* 61.9$	$* 86.6$
11.7	16.4	22.9	32.0	44.8	62.6	87.6
$* 1.8$	$* 16.5$	$* 23.2$	$* 32.4$	$* 45.3$	$* 63.4$	$* 88.7$
1.0	16.7	23.4	32.8	45.9	64.2	89.8
$* 12.1$	$* 16.9$	$* 23.7$	$* 33.2$	$* 46.4$	$* 64.9$	$* 90.9$
1.3	17.2	24.0	33.6	47.0	65.7	92.0
$* 12.4$	$* 17.4$	$* 24.3$	$* 34.0$	$* 47.5$	$* 66.5$	$* 93.1$
1.6	17.6	24.6	34.4	48.1	67.3	94.2
$* 12.7$	$* 17.8$	$* 24.9$	$* 34.8$	$* 48.7$	$* 68.1$	$* 95.3$
12.9	18.0	25.2	35.2	49.3	69.0	96.5
$* 13.0$	$* 18.2$	$* 25.5$	$* 35.7$	$* 49.9$	$* 69.8$	$* 97.6$
13.2	18.4	25.8	36.1	50.5	70.6	98.8
$* 13.3$	$* 18.7$	$* 26.1$	$* 36.5$	$* 51.1$	$* 71.5$	
13.5	18.9	26.4	37.0	51.7	72.3	
$* 13.7$	$* 19.1$	$* 26.7$	$* 37.4$	$* 52.3$	$* 73.2$	
13.8	19.3	27.1	37.9	53.0	74.1	

tThe rable lists values only from 10.0 to 98.8 ohms. However, the same progressian of numbers continues through successive or resistance volues. The resistances for 0.1% rolerance may be ony value, but values conforming to the progression above, ore preferred.
*These listings are 1.0% values. AtL listings are $0.5 \%, 0.25 \%$ and 0.1% values.
 SERIES $66 \begin{gathered}\text { METAL FILM } \\ \text { RESSISTORS }\end{gathered}$

MILITARY TYPE DESIGNATIONS

Metal film precision resistors supplied under MIL-R10509E carry military type designations such as

The "STYLE" designation "RN60", is obtained from Table I which lists the range of items supplied by Ohmite under MIL-R-10509E. It indicates "high stability, fixed, film resistors" of a specific physical size.

TABLE IV, CYCLIC LOAD LIFE TEST \dagger SUMMARY for SERIES 66 RESISTORS—ALL STYLES
(Groups Started af Different Times)

$\begin{gathered} \text { Ohmite } \\ \text { Style } \end{gathered}$	$\begin{gathered} \text { MIL } \\ \text { Style } \end{gathered}$	Total No. of Units	$\begin{gathered} \text { Total } \\ \text { Unit-Hours } \end{gathered}$	$\begin{gathered} \text { Fallures } \\ \text { (aver } \pm 2 \%) \end{gathered}$
661E.1/8	RN60	300	3,000,000	0
661E.1/4	RN65	327	3,270,000	0
661 E -1/2	RN70	363	3,630,000	1*
$661 \mathrm{E}-1$	RN75	874	8,740,000 \ddagger	3**
	Total	1864	18,640,000	4

tFull wattage at $125^{\circ} \mathrm{C}$. $-11 / 2 \mathrm{hr}$. on- $1 / 2 \mathrm{hr}$. aff.

- 1 unit opened at 5000 hr .
** unit showed $4.5 \% \Delta R$ af 1000 hr . 1 opened af 6000 hr .1 opened at 8000 hr . $\$$ For defciled breakdown of this group, see Toble V.

TABLE V, ANALYSIS OF CYCLIC TEST TIME ON STYLE 66IE-1 (RN75) RESISTORS*
 (Total Units $874 \dagger$-Total Unit-Hours $8,740,000$)

$\begin{gathered} \text { Elapsed Hours as of } \\ 7-16-65 \\ \hline \end{gathered}$	Total No. of Units	$\begin{gathered} \text { Total } \\ \text { Unit-Hours } \end{gathered}$	$\begin{aligned} & A^{\mathrm{Avg}} \\ & \% \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { Mox. } \\ & \% \triangle R \end{aligned}$
1,000	874	874,000	0.11	$0.5{ }^{\text {*** }}$
2,000	874	1,748,000	0.14	$0.53+\dagger$
5,000	874	4,370,000	0.22	0.61
10,000	874	8,740,000	0.31	1.94

*Tests commenced at different times for various groups of units in the total of 874. tSee Table IV for failures and analysis thereof.
${ }^{* * 1}$ unit exceeded 0.5%.
$\dagger \dagger 2$ units exceeded 0.5%.
TABLE VI, DISTRIBUTION OF UNITS
IN LOAD-LIFE TEST SUMMARY
For Style 661E-1 (RN75) 1-Watt Resistor

Resistance Value in Ohms	No. of Units in Groups Having Elapsed Time of			
	1000 Hrs .	2000 Hrs .	5000 Hrs .	10,000 Hrs.
70	8	8	8	8
200	12	12	12	12
365	82	82	82	82
410	20	20	20	20
552	229	229	229	229
825	13	13	13	13
832	20	20	20	20
1,000	10	10	10	10
2,770	10	10	10	10
2,910	10	10	10	10
3,010	10	10	10	10
10,000	22	22	22	22
13,000	16	16	16	16
20,000	25	25	25	25
152,000	11	11	11	11
202,000	17	17	17	17
*237,000	267	267	267	267
1,000,000	10	10	10	10
2,000,000	82	82	82	82
Total Units	874	874	874	874

The CHARACTERISTIC "E", specifies the temperature coefficient of resistance and other parameters such as maximum ambient temperature and maximum changes in resistance allowed with temperature cycling, moisture, overload, shock, vibration and other tests (see Table II).
The RESISTANCE in ohms is indicated by a four-digit symbol-the first three digits represent significant figures -the last specifies the number of zeros to follow. In the example, " 2431 " equals 2430 ohms. The letter " R " is used to represent a decimal point in which case the figures following the " R " become significant as for example 29.8 ohms is designated by "29R8." The military prefers that values be chosen from a series which follow the general progression of numbers in the table of "Standard Resistance Values" of military specification, MIL-R-10509E shown on page 3. Of course, Ohmite can produce any resistance value within the permissible range of each resistor (see Table I).
The resistance TOLERANCE is a single letter in accordance with the following code:

Symbol	Talerance	Symbol	Talerance
B	0.10%	D	0.5%
C	0.25%	F	1.0%

Far special tolerances, cansult factory.

COMPARISON OF NOISE CHARACTERISTICS OF VARIOUS TYPES OF RESISTORS

OHMITE

For Printed Circuit Boards
CLASS PC-58

JAN 16197

Radial Lead Wirewound Resistors for Printed Circuit Boards

CLASS PC-58

3 WATT

Increases productivity 28.1\% Saves circuit board space.

If you are manually inserting axial lead resistors in printed circuit boards, it will pay you to examine the new Ohmite PC-58 Radial Lead wirewound resistor.

ADVANTAGES:

LABOR SAVING: Radial Leads eliminate cutting, bending, and forming of leads. Productivity is increased 28.1%. You achieve a 21.9% savings in labor cost. (Time Study Publication No. 163 available on request.) SPACE SAVING: Radial leads reduce total length dimension required compared to axial lead types, increases packaging density possibilities.
POSITIVE POSITIONING: Built in stand-off automatically provides correct spacing between resistor and P.C. board.

COST SAVING: PC-58 resistors are priced lower than comparable axial lead types. This is in addition to savings in labor as explained above.

STANDARD SIZE: PC-58 Radial Leads fit standard . 1 inch matrix boards with standard .046 inch diameter holes.
MARKINGS ALWAYS VISIBLE: Value and Ohmite code markings are always visible from the top of the PC-58. Eliminates time consuming orientation normally required of axial lead types.
CHOICE OF COATINGS: PC-58 resistors are available in $\pm 5 \%$ tolerance with Vitreous Enamel (Type 270) for resistance values to 3300 ohms for 3 -watt and to 6800 ohms for $5 \frac{1 / 4}{}$ watt or Ohmicone ${ }^{\text {® }}$ silicone-ceramic (Type 470) for values over 3300 ohms and 6800 ohms for 3 and $51 / 4$-watt sizes, respectively. For tolerances of $\pm 3 \%$ and closer or for low T.C., specify Ohmicone ${ }^{(8)}$ Type 474.
AVAILABILITY: Now standard PC-58 resistors are in stock at your local Ohmite authorized stocking distributor.

$\begin{aligned} & \text { RATED } \\ & \text { WATIS } \\ & \text { @ } 25^{\circ} \mathrm{C} . \end{aligned}$	OHMITE TYPE (Coating)	ORDERING CODE ${ }^{1}$	RESISTANCERANGE(Ohms)	TOLERANCE (Standard Tolerance)	TEMPERATURE COEFFICIENT $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.	DIMENSIONS (Inches)				
						$A \pm .010$	$B \pm 1 / 4$	C max.	$E_{\text {Min. }}$	$\mathbf{L} \pm .006$
3	270 Nitreous Enamel)	270-3AA-58-(Res. Value)	. 14 to 3300	$\begin{aligned} & \pm 5 \%, 1 \Omega \& \text { above. } \\ & \pm 10 \%, \text { below } 1 \Omega . \end{aligned}$	less than 260.	. 300	. 335	2/32	3/4	1/6
	$\begin{aligned} & 470 \\ & \text { (Ohmicone『) } \end{aligned}$	470-3AA-58-(Res. Value)	. 14 to 18 K							
	$\begin{aligned} & 474 \\ & \text { (Ohmicone®) } \end{aligned}$	474-3AA-58-(Res. Value)	. 16 to 18 K	$\begin{aligned} & \pm 3 \%, 1 \Omega \& \text { above. }{ }^{2} \\ & \pm 10 \%, \text { below } 1 \Omega . \end{aligned}$	$\begin{aligned} & 0 \pm 20,20 \Omega \& \text { above. } \\ & 0 \pm 50,1 \Omega \text { up to } 20 \Omega . \\ & 0 \pm \pm 0, \text { below } 1 \Omega \text {. } \end{aligned}$					
51/4	270 (Vitreous Enamel)	270-51/4 CA-58-(Res. Value)	. 20 to 6800	$\pm 5 \%, 1 \Omega \&$ above. $\pm 10 \%$, below 1Ω.	less than 260.	. 500	. 375	5/6	1/32	5/8
	$\begin{aligned} & 470 \\ & \text { (Ohmicone®) } \end{aligned}$	470-51/4/ CA-58-(Res. Value)	. 20 to 36 K							
	$\begin{aligned} & 474 \\ & \text { (Ohmicone®) } \end{aligned}$	474-51/4/4 CA-58-(Res. Value)	. 23 to 36 K	$\pm 3 \%, 1 \Omega \&$ above. ${ }^{2}$ $\pm 10 \%$, below 1Ω.	$\begin{aligned} & 0 \pm 20,20 \Omega \& \text { above. } \\ & 0 \pm 50,1 \Omega \text { up to } 20 \Omega . \\ & 0 \pm 100, \text { below } 1 \Omega . \end{aligned}$					

1. When ordering, add resistance value as a suftix to Ördering Code.
2. Tolerances to $\pm .05 \%$ are available on special order.

SPECIFICATIONS

MECHANICAL

Coating: Vitreous Enamel or Ohmicone ${ }^{\star}$ (silicone-ceramic), depending on Type.
Terminals: Radial, solder-dipped.
Markings: Ohmite Code and Resistance (Ohms) Value.
Weight: 3-Watt: . 002 lbs ; $51 / 4$ Watt: . 003 lbs .

ELECTRICAL

Tolerance: Types 270 and 470 : $\pm 5 \%$ for 1 ohm and above; $\pm 10 \%$ below 1 ohm.
Type 474: $\pm 3 \%$ for 1 ohin and above. $\pm 10 \%$, below 1 ohm.
Tolerances to $\pm .05 \%$ available.
Wattage: 3-Watt, derated to 0 at $350^{\circ} \mathrm{C}$
$51 / 4$-Watt, derated to 0 at $350^{\circ} \mathrm{C}$
Resistance: 3-Watt: .14 to 18 K ohms; $51 / 4$-Watt: .20 to 36 K ohms, depending on Type.
Types 270 and 470 available in 5% decade values; Type 474 in 1% decades.
Temperature Coefficient: Types 270,470 : less than $260 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Type 474: $0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$., 20Ω and above
$0 \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$., 1Ω up to 20Ω
$0 \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$., below 1Ω

STANDARD VALUES IN DISTRIBUTORS' STOCK
 $\pm 5 \%$ Tolerance. Type 270 (Vitreous Enamel) and Type 470 (Ohmicone)

 Order using Catalog Number shown in tables below.
3-WATT

Free air rating thru 10 K ohms.

Ohms	$\begin{gathered} \text { Catalog } \\ \mathrm{No.} \text {. } \end{gathered}$	$\begin{aligned} & \text { Max. } \\ & \text { Amps } \\ & \hline \end{aligned}$	Ohms	$\begin{aligned} & \text { Catalog } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l\|l\|} \operatorname{maxx}_{\text {Amps }} \end{array}$	Ohms		$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { Amps } \end{array}$
1.0	5800	1.73	120	5817	. 158	1200	5834	. 0500
1.5	5801	1.41	150	5818	. 141	1500	5835	. 0447
2.0	5802	1.22	200	5819	. 122	1800	5836	. 0408
2.4	5803	1.12	250	5820	. 110	2000	5837	. 0387
3.0	5804	1.00	270	5821	. 105	2500	5838	. 0346
4.0	5805	. 866	300	5822	. 100	2700	5839	. 0333
5.0	5806	. 774	330	5823	. 0953	3000	5840	. 0316
7.5	5807	. 632	400	5824	. 0866	4000	5841^{*}	. 0274
10.0	5808	. 548	450	5825	. 0816	4700	5842*	. 0253
15	5809	447	500	5826	. 0775	5000	5843*	. 0245
20	5810	. 387	560	5827	. 0732	5600	5844*	. 0231
30	5811	. 316	600	5828	. 0707	6200	5845*	. 0220
50	5812	. 245	620	5829	. 0696	7000	5846*	. 2209
56	5813	. 231	750	5830	. 0632	7500	5847*	. 200
68	5814	. 210	800	5831	. 0612	9000	5848*	. 0182
82	5815	. 191	900	5832	. 0577	10000	5849*	. 0173
100	58.16	. 173	1000	5833	. 0548			

"NOIE. These resistors are Ohmicone Coated, Type 470.

PRICES 3-WATT

Catalog No.	$1 / 9$	$10 / 24$	$25 / 99$	$100 / 249$	$250 / 499$	$500 / 999$
5800 thru 5833	$\$.54$	$\$.46$	$\$.38$	$\$.32$	$\$.27$	$\$.25$
5834 thru 5842	.58	.49	.41	.35	.29	.27
5844 thru 5849	61	.52	.43	.37	.31	.29

Free air rating thru 15 K ohms.

Ohms	Catalog No.	Max. Amps	Ohms	Catalog No.	Max. Amps	Ohms	Catalog $\mathrm{Ho} .$	Max. Amps
1.0	5850	2.29	100	5864	. 229	1800	5882	. 0540
1.5	5850A	1.87	120	5865	. 209	2000	5883	. 0512
2.0	5851	1.62	150	5866	. 187	2200	5883A	. 0488
3.0	5851A	1.32	160	5867	. 181	2500	5884	. 0458
4.0	5851B	1.15	200	5868	. 162	3000	5885	. 0418
5.0	5852	1.02	220	5869	. 154	3300	5885A	. 0399
5.6	5852A	. 968	250	5870	. 145	3900	5885B	. 0367
10.0	5853	. 725	270	5870A	. 139	4000	5886	. 0362
15	5854	. 592	300	5871	. 132	4500	5887	. 0341
18	5855	. 540	330	5872	. 126	5000	5888	. 0324
20	5856	. 512	350	5873	. 122	5600	5889	. 0306
22	5856A	. 489	400	5874	. 115	6000	5890	. 0296
25	5857	. 458	500	5875	. 102	7500	5891*	. 0265
30	5858	. 418	510	5875A	. 101	8200	5892*	. 0253
40	5859	362	560	5875B	. 0968	9000	5893*	. 0241
50	5860	. 324	600	5876	. 0935	9100	5893A*	. 0240
51	5860A	. 321	750	5877	. 0837	10000	5894*	. 0229
56	5860B	. 306	800	5878	. 0810	12000	5895*	. 0209
68	5861	. 278	1000	5879	. 0725	15000	5896*	. 0187
75	5862	. 265	1200	5880	. 0661	20000	5897*	. 0152
82	5863	. 253	1300	5881	. 0635			

'NoTE: These resistors are Ohmicone" Coated, Type 470.

PRICES $5 \frac{1}{4}$-WATT

Catalog No.	$\mathbf{1 / 9}$	$\mathbf{1 0 / 2 4}$	$\mathbf{2 5 / 9 9}$	$\mathbf{1 0 0 / 2 4 9}$	$\mathbf{2 5 0} / 499$	$500 / 999$
5850 thru 5879	$\$.58$	$\$.49$	$\$.41$	$\$.35$	$\$.29$	$\$.27$
5880 thru 5888	.61	.52	.43	.37	.31	.29
5889 thru 5894	54	.54	.45	.38	.32	.30
5895 thru 5897	.71	.60	.50	.43	.36	.33

mHRODUGiNG STYLE GMU WHH 7/8" SHAF

INGLUDES MIL-R-94 STYLES RV4N, RY4L, RY6L

SOLD ONY THROUGH OHMLE DISTAIBUTORS

Exceptional reliability along with compactness are provided in Ohmite's molded composition potentiometers. They are available in a number of styles and find universal application as rheostats or potentiometers in high quality industrial or military devices. Type AB controls are nominally rated 2 watts at $70^{\circ} \mathrm{C}$ and are $1-5 / 32^{\prime \prime}$ in diameter. Type AS is a miniature potentiometer only $1 / 2^{\prime \prime}$ in diameter; it is rated $1 / 2$ watt at $70^{\circ} \mathrm{C}$.

In contrast to controls featuring thin, sprayed or painted films for the resistance element, the relatively thick, molded elements in Ohmite potentiometers provide smooth operation, long life and a very large safety factor permitting overloads of short duration to be safely absorbed. Noisefree, smoother operation is also enhanced with a molded composition contact. Positive trouble-free connections are assured with terminals that are molded directly into the control elements. For these reasons, Ohmite Type AB potentiometers will give excellent performance in excess of 100,000 cycles of operation and Type AS in excess of 50,000 cycles. Noise level is exceedingly low, actually decreasing with use of the unit.

In manufacture, the various elements are molded together at onc time into a single, integral structure with no cracks or crevices to admit moisture. A metal cover sealed to the element, protects and electrically
shields the internal parts. The sealing agent is a synthetic resin containing a non-mercurial fungicide helping to assure a dust-tight, splash-proof, fungus-resistant unit. The Type AS unit, in addition, incorporates a watertight O-ring seal between the shaft and bushing.

The molding method makes it possible to predetermine the resistancerotation characteristic of the resistance element to such a fine degree that the ideal curves are followed quite closely. Modified logarithmic tapers furnished in Type $A B$ units, consequently are not obtained with two or three linear sections, but with a single element embodying a smoothly graduated resistance change.

Terminals of Type AB units are hot solder coated for easy soldering. Because of its smaller size and lower heat dissipation ability, the Type AS Miniature Potentiometer has specially plated terminals to assure easy soldering even after the unit has been in stock for some time.

SPECIFICATIONS

TYPES, SHAFTS AND STYLES - Type AB controls, 1-5/32" dia., nominally rated 2 watts, are furnished in these styles: (1) Single control with $7 / 8^{\prime \prime}$ slotted shaft, linear taper, Style CMU, MIL Style RV4N; (2) Single control with $2^{\prime \prime}$ unslotted shaft, linear taper, Style CU; clockwise modified \log taper, Style CA; counter-clockwise
modified \log taper, Style CB; (3) single control with locking-type shaft, linear taper, Style CLU, MIL Style RV4L; (4) dual control with $2^{\prime \prime}$ shaft, linear taper, Style CCU.

Type AS miniature uniis, MIL Style RV6L, are furnished only in linear taper with locking-type shaft. Lock-ing-type shafts are slotted for screw driver and employ a collet bushing and conical nut. See dimension diagrams reverse-side.

Wattage ratings - Watt determinations are made at $+70^{\circ} \mathrm{C}$ with units mounted on metal panel. Ratings Single Type AB control, linear taper, full resistance in circưit- 2.25 watts; 50% resistance -2.00 watts; 25% re-sistance-- 1.3 watts. Type AS Miniature Potentiometer- 0.5 watts with full resistance in circuit.

VOLTAGE RATINGS AND INSULATION

-Maximum continuous voltage across the resistance element or between current carrying parts and metal parts, under normal atmospheric conditions for Type AB unit- 500 volts 60 cycle RMS; for Type AS Miniature unit- 350 volts. High potential test for Type AB unit-1000v RMS for 1 second; for Type AS miniature unit750v RMS for 1 second.

OPERATING TEMPERATURE RANGEFrom $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.

TEMPERATURE DERATING - Derate linearly from full rating at $+70^{\circ} \mathrm{C}$ to " 0 " at $+120^{\circ} \mathrm{C}$ for linear taper. For

TYPE "AS" $1 / 2$ WATT POTENTIOMETER

STOCK "POTS" - MIL UNITS ARE STAMPED WITH MIL \& COMMERCIAL DESIGNATIONS

Switch CS-1 (Unmounted) for CMU, CU, CA, CB, CLU
other tapers, multiply ratings obtained for linear taper by 0.5 .

RESISTANCE RANGE - Stock values and styles shown in table. Maximum resistance at minimum resistance settings: for Type AB, 4 ohms or less; for Type AS, 15 ohms or less.

CONNECTIONS AND TAPERS - See "Types, Shafts and Styles" for available tapers. Resistance-rotation characteristics for linear and modified \log tapers are shown in the graph. Terminal connections that provide these characteristics are shown for each curve. Note that the taper can be inverted (dotted lines) with respect to the direction of rotation simply by changing the connections.

HUMIDITY AND CORROSION - Temporary changes of resistance are less than 5% after exposure for 100 hours at $40^{\circ} \mathrm{C}$ to 95% relative humidity.

Meets the 200 hour salt spray corrosion tests of Military Specification QQ-M-151.
SWITCH - A SPST switch rated 2 amps at 125 volts or 10 amps at 10 volts can be supplied for attachment to the back of Type AB controls except Style CCU. The switch is "off" at the extreme c.c.w. shaft position.
ROTATION - Type AB: Without onoff switch $312^{\circ} \pm 3^{\circ}$; with switch, 333° $\pm 3^{\circ}$. Effective rotation in either case is $312^{\circ} \pm 3^{\circ}$. Type AS: $295^{\circ} \pm 5^{\circ}$.

economy axial lead resistors for commercial applications

New automated methods have enabled Ohmite engineers to design a quality axial lead resistor for a very economical price. Intended for broad commercial use, the Type 442 resistor is conformal coated with the famous Ohmicone ${ }^{\circledR}$ silicone-ceramic formula. Features famous Ohmicone ${ }^{\circledR}$ silicone-ceramic formula. Features
such as welded construction, solder-coated copperweld leads and precision spaced windings make the Type 442
a true quality resistor at a price to fit commercial leads and precision spaced windings make the Type 442
a true quality resistor at a price to fit commercial applications.

Type 442 resistors are available made-to-order with short lead times required.

TYPE 442 wirewound axial lead resistors

 factory

- Excellent T.C.
- Ohmicone ${ }^{\circledR}$ silicone-ceramic coated.
- Welded construction for noiseless operation.
- Copperweld solder-tinned leads.
- Economy price.

SPECIFICATIONS

Construction: Resistance wire is wound on a steatite rod and is welded to the metal end caps for stable, noise-free connections. The wirewound unit is then coated with Ohmite's patented Ohmicone ${ }^{\circledR}$ silicone-ceramic coating.

Wattage Sizes: Standard sizes are rated 2, 3, 5 and 7 watts, at $25^{\circ} \mathrm{C}$, derated linearly to 0 watts at $275^{\circ} \mathrm{C}$. Wattage sizes of 1 and 10 are also available. Consult your local Ohmite office.

Tolerance: Standard tolerance is $\pm 5 \%$ for one ohm and above, $\pm 10 \%$ below one ohm. Tolerances to $\pm 3 \%$ and $\pm 1 \%$ are available. Contact your local Ohmite sales office.

Temperature Coefficient: $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 10 ohms and above; $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ below 10 ohms. T.C.'s to ± 20 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are available on special order.

Ordering: Specify type number, resistance value and tolerance.

STANDARD TYPE 442 AXIAL LEAD RESISTORS
Standard tolerance is $\pm 5 \%, 1$ ohm and above; $\pm 10 \%$ below 1 ohm.

Wattage sizes of 1 and 10 available on special order.
\star Resistance to $21.1 \mathrm{~K} \Omega$ available (. 218 dia . core) on special order.

OHMITE DUMMY ANTENNA RESISTORS

MODELS D-101 AND D-251

DESCRIPTION

GENERAL -- The Ohmite Model D-101 and D-251 Dummy Antenna Resistors have been designed to replace the D-100 and D-250 glass-enclosed type. The new units consist of a number of special vitreous enameled resistors connected in parallel in a concentric arrangement and mounted inside a perforated metal cage. The dummy antenna resistors feature constant R. F. resistance (within their recommended frequency range). low reactance, high wattage dissipation, and compactness. The actual d.c. resistance tolerance is $\pm 5 \%$. A simple, accurate. and direct means of measuring R. F. power is thus made available to the radio amateur. experimenter and manufacturer and to operators of aviation. police and broadcast stations.

Although the outward appear ance of the new Type $D-101$ and D-251 Dummy Antennas is radically different from that of the former glass-enclosed units, their frequency characteristics are substantially the same or, in some cases. considerably better than those of the D-100 and D-250 Dummy Antennas. In addition to this, the new D-101 and D-251 Dummy Antennas have the advantage of being composed of wire-wound vitreous enameled resistors which gives them ruggedness and durability and permits the high wattage rating innerent in a vitreous enameled resistor.

The new Type D-101 and D-251 Dummy Antennas represent the results of an extensive investigation and a wide variety of measurements involving all types of resistors to be used at high frequencies. They incorporate certain new design principles which hitherto have not been applied to power type resistors for operation at high frequencies.

PRINCIPLES OF DESIGN .- To have an understanding of the factors which determine the upper limit of frequency at which a wire-wound re-
sistor may be used, it must be kept in mind that such a resistor, because of its physical construction has. in addition to its desired resistance, also a certain amount of undesired residual inductance and undesired distributed capacitance. These three quantities are shown below in the general equivalent circuit of an actual wire-wound resistor.

It should be noted that this circuit represents the actual impedance network of a resistor at any frequency. At a particular frequency the impedance of the resistor will. of course, consist of an effective series resistance and an effective series reactance as shown below.

It is quite apparent that the effective series reactance may be either inductive or capacitive depending upon whether the residual inductance or the distributed capacitance of the resistor is the predominating factor.

In the design of the component resistors whicn make up the new Type D-101 and D-251 Dummy Anterinas, two important design considerations are responsible for the excellent frequency characteristics obtained. First, the residual inductance and istributed capacitance have been kept toaminimum, thereby making the natural resonant frequency as high as possible. Secondly, the D.C. resistance, residual inductance, and distributed capacitance have been proportioned in such a manner as to give the best possible response characteristics. As a result, a resistor has been obtained which has a minimum amount of effective series reactance
and an essentially constant effective series resistance up to frequencies shown in the graphs. This resistor may be considered practically a "Noд-Reactive Res istor".

FREQUENCY CHARACTERISTICS -- Graphs No. 1 and 2 show the normalized effective series resistance. the normalized effective series reactance and the normalized impedance as functions of frequency.

In evaluating the frequency characteristics shown in those graphs. it should be kept in mind that the effective series reactance is added vectorially to the effective series resistance in order to obtain the impedance. Consequently, a relatively large value of effective series reactance may be tolerated without resulting in an impedance which is greatly different from the D.C. resistance of the resistor.

In addition to the two graphs. Table No.I conveniently lists the upper limit of frequency at wich the various Dummy Anteanas may be used and gives other characteristics. These limits are based on the arbitrary assumption that $\alpha \pm 10 \%$ impedance change (of its scalar value) is permissible.

MEASUREMENT OF R.F. POWER -- At frequencies lower than those indicated by a " \dagger " in Table I both the effective series resistance and the impedance of the Dummy Anteana are within \pm 10% of its D.C. resistance. Consequently, the current indicated by an R.F. ammeter in series with the Dummy Antenna is correct within $\pm 10 \%$ of its in-phase component and can, therefore. be used for the purpose of computing the power dissipated by the Dummy Antenna to a corresponding degree of accuracy. This power is then given by the relation $P=I^{2} X R$. where I is the current indicated by the R.F. ammeter and
*These three normalized quantities signify those quantities in terms of the D.C. resistance of the resistor.
R is the $D . C$. resistance of the Dummy Antenna.
The Dummy Antennas can also be used for power measurements at higher frequencies, but certain corrections become necessary then. These corrections are also required in the frequency range mentioned above if a greater degree of precision is desired. The procedure for computing power is then as follows:
A. If it is desired to compute the power dissipated by the Dummy Antenna. this power can be obtained by the relation I 2 XR where I is the current indicated by the R.F. ammeter and R is the effective series resistance at the operating frequency. The effective series resistance of the Dummy Antenna is obtained by multiplying the normalized effective series resistance at the operating frequency times the actual D.C. resistance of the Dummy Antenna.
B. If it is desired to dissipate a given amount of power in the Dummy Antenna, the current which snould be indicated by the R. F. ammeter is obtained from the same relationsnip outlined in "A"

The handy Ohmite Ohm's Law Calculator can be used to find the power being dissipated simply and easily without any mathematical computation. The resistance of the Dummy Antenna is set above the OHMS arrow on the calculator by moving the slide to the proper value. The power in watts is then read directly on the WATTS scale on the calculator, above the R.F. ammeter current as found on the AMPERES scale. The calculator may be obtained by mailing 25 q in coin or stamps.

TERMINALS -- Early models of the D-101 and D-251 were equipped with two types of terminations depending upon whether the unit was intended tobe used in conjunction with a coaxial cable or with a parallel transmission line.

TABLE NO. I - FREQUENCY CHARACTERISTICS OF OHMITE DUMMY ANTENNAS

$\mathrm{R}_{\mathrm{dc}} \ldots-\ldots$ D. C. Resistance of Dummy Antenna
R_{s}
Z
Z

TYPE	D-101				D-251			
RESISTANCE	52 ohms	73 ohms	300 ohms	600 ohms	52 ohms	73 ohms	300 ohms	600 ohms
Maximum Frequency at which $R_{s}=R_{d c} \pm 10 \%$	22 mc	38 mc	22 mc	$\dagger 31 \mathrm{mc}$	19 mc	21 mc	15 mc	$\dagger 19 \mathrm{mc}$
R_{s} at this frequency	1.10 Prcc	$1.10 \mathrm{R}_{\mathrm{dc}}$	$1.10 \mathrm{R}_{\mathrm{dc}}$. 90 R dc	$1.10 \mathrm{R}_{\mathrm{dc}}$	$1.10 \mathrm{Rdc}^{\text {d }}$	$1.10 \mathrm{R}_{\mathrm{dc}}$. $90 \mathrm{R}_{\mathrm{dc}}$
Z at this frequency	1.18 Rdc	$1.14 \mathrm{R}_{\mathrm{dc}}$	1.10 R ${ }_{\text {c }}$. 99 Rdc	$1.25 \mathrm{R}_{\mathrm{dc}}$	$1.13 \mathrm{Rdc}_{\text {c }}$	$1.15 \mathrm{R}_{\mathrm{dc}}$	$1.00 \mathrm{Rdc}^{\text {d }}$
Max imum Frequency at which $\mathrm{Z}=\mathrm{R}_{\mathrm{dc}} \pm 10 \%$	$\dagger 18 \mathrm{mc}$	$\dagger 32 \mathrm{mc}$	$\dagger 22 \mathrm{mc}$	60 mc	$\dagger 13 \mathrm{mc}$	$\dagger 19 \mathrm{mc}$	$\dagger 13 \mathrm{mc}$	30 mc
R_{8} at this frequency	1.06 Rdc	1.07 R dc	1.10 Rdc	. 60 R dc	1.03 Rdc	1.07 Rdc	$1.08 \mathrm{Rrcc}^{\text {d }}$. 64 R dc
Z at this frequency	$1.10 \mathrm{R}_{\mathrm{dc}}$	$1.10 \mathrm{R}_{\mathrm{dc}}$	$1.10 \mathrm{Rdc}_{\text {d }}$. 90 R dc	$1.10 \mathrm{R}_{\mathrm{dc}}$	1.10 Rdc	$1.10 \mathrm{R}_{\mathrm{dc}}$. $90 \mathrm{R}_{\mathrm{dc}}$

$\frac{x_{5}}{R_{x C}}$	$f^{\text {INDUCTIVE }}$	NORMALIZED REACTANCE AS FUNCTION OF FREQUENCY						$D-101-52 \Omega$				
						-20			$\begin{gathered} 1 \\ 2-101-7 \end{gathered}$			
	Icapacitive								$\begin{aligned} & D-101-300 \Omega \\ & D-101-600 \Omega \end{aligned}$			

GRAPH NO. 2
FREQUENCY IN MEGACYCLES

For use with a coaxial cable the unit was provided with an Amphenol Type 80 CT coaxial female chassis connector. The coaxial cable may be connected by means of the corresponding male cable connector. If. for some reason. the male is connector is not used, a soldering lug is provided. to which the coaxial cable shield may be connected. The center conductor of the cable may be terminated with a phone tip which can be inserted in the female cable connector. For use with a parallel transmission line the unit was provided with stand-off terminals on opposite ends of the cage.

Present models of the dummy antennas are equipped with a two-screw terminal strip made from high grade bakelite suitable for operation at nigh frequencies. On 600 ohm dummy antennas the cage is left floating. On dummy antennas of all other resistance values, the cage is connected to the left screw terminal. The use of a plain terminal strip was found desirable since a great variety of coaxial and other connectors are in use and it is impossible to have any other type of termination suitable for direct connections to all the various kinds and types of connectors.

DUMMY ANTENNAS FOR HIGHER WATTAGE APPLICATIONS (500 WATTS TO 5000 WATTS)

Ohmite Manufacturing Company is prepared to make specific recommendations for the construction of Dummy Antennas, in sizes ranging from 500 to 5000 watts. by means of parallel combinations of Non-Reactive Resistors to give the desired resistance in combination with the desired wattage rating. These recommendations, unless otherwise specified, are intended for use at Medium Frequencies (up to 3 Mc). It should be kept in mind that the selection of component resistors for such special Dummy Antennas is not merely a matter of calculating the combined resistance and combined wattage rating but involves consideration of the frequency characteristics of the component resistors as well.

In Table No. II a number of such recommended constructions are listed for special Dummy Antennas having various resistance values and possessing wattage ratings from 500 watts
to 5000 watts. This table, of course, is intended to present only a few typical examples of a wide variety of such special Dummy Antennas. Upon receipt of the necessary technical information, recommendations will be made for the construction of a Dummy Antenna of the above type which will have the most favorable frequency characteristics. in combination with the specified resistance and power requirements.

STOCK NUMBER	DIMENSIONS (INCHES)				
	A	B	C	D	L
D-101-52. D-101-73	$1-1 / 2$	$3-1 / 2$	$2-3 / 8$	$3-5 / 32$	$2-23 / 32$
D-101-300. D-101-600	$2-3 / 4$	$3-1 / 2$	$2-3 / 8$	$3-5 / 32$	$4-7 / 32$
D-251-52. D-251-73	$3-1 / 8$	$3-7 / 8$	$2-1 / 2$	$3-23 / 32$	$4-19 / 32$
D-251-300 D-251-600	$5-1 / 8$	$3-7 / 8$	$2-1 / 2$	$3-23 / 32$	$6-13 / 15$

STOCK NO.	WATTS	OHMS (土 5\%)	NET PRICE
D-101-52	100	52	$\$ 12.00$
D-101-73	100	73	12.00
D-101-300	100	300	8.00
D-101-600	100	600	8.00
D-251-52	250	52	16.00
D-251-73	250	73	16.00
D-251-300	250	300	16.00
D-251-600	250	600	16.00

Prices subiact to change without notice.

TABLE NO. TI

DUMMY ANTENNAS FOR MEDIUM FREQUENCIES

This table shows the quantity, the resistance, and the wattage rating of the component NonReactive Resistors which, whenconnected in parallel, will provide a dummy antenna of the desired resistance and wattage rating.

WATTAGE OF DUMMY ANTENNA	RESISTANCE OF DUMMY ANTENNA											
	50 OHMS				75 OHMS				100 OHMS			
500	10	$500 \sim$	50	W	10	$750 \sim$	50	W	10	$1000 \sim$	50	W
1000	10	$500 \sim$	100	W	10	$750 \sim$	100	W	10	$1000 \sim$	100	W
1500	10	$500 \sim$		W	10	$750 \sim$	160	W	10	$1000 \sim$	160	W
3000	20	$1000 \sim$		W		$1500 \sim$	160	W	20	$2000 \sim$	160	W
5000	32	$1600 \sim$	160	W	32	2400 -	160	W	32	$3200 \sim$	160	W

RHEOSTATS

CATALOG SEQUENGE 200

OHMITE

Mb

Mr RTVAOSTAOS POTENTIOMETERS

CATALOG 201
NOVEMBER, 1970
Supersedes Catalog 200,
JAN 161971
Bulletins 201, 202, 203D, 204 \& 205

OHMITE

RHEOSTATS

ALL CERAMIC CLOSE CONTROL SMOOTH ACTION

When you turn the knob of an Ohmite Rheostat you experience an unmatched smoothness of action. This smooth action means much more than just good operating characteristics. It means smooth electrical control, the kind of control associated only with special laboratory type rheostats until the original Ohmite design was produced in 1930.

It means, too, that your Ohmite Rheostat is engineered for long life. This has been time-proved in performance in the products and laboratories of leading electrical manufacturers.

Ohmite rheostats have been in use in all parts of the world, in locations from lunar explorations to the depths of the oceans, testifying to their basic sound design. The all-porcelain vitreous-enameled construction originated by Ohmite has set the standard for such rheostats.

Ohmite rheostats are widely used for motor speed control - generator field control -arc-welding generator control - electronic tube control - lamp dimming - heater and oven control - variation of current and voltage - potentiometer applications - test apparatus - communications equipment actually hundreds of different uses.

Ohmite manufactures the most widely used and extensive series of close control power rheostats available. There are twelve sizes ranging from 7.5 watts to 1000 watts, in fourteen models, in a wide range of resistances to provide the exact, most economical unit for every control need.

OHMITE
 INDEX

Page

Construction Features	2, 3
Rheostat Guide	4,5
How to Select	6, 7, 8
How to Order	8
Standard and High	
Resistance Rheostat Models	9-13

Resistance Rheostat Models9-13

Tapered Wound Rheostats 14, 15 Bushing and Shaft Assemblies, Models C to L 16, 17
Shafts for Models P to U 18
Tandem Assemblies 19, 20
Tandem Coupling Kits 21
Sequence-Coupled Rheostats 22
Toggle \& Sensitive Switches 23
Additional Features-Off-Positions,
Auxiliary Switches, Bridged Gap,
Special Winding or Rotation Angles, Low Torque, Flexible Shunts, Quick-Connect Terminals24, 25
Knobs, Dials, Brackets, Washers 26
Cages and Enclosures 27-29
Heat Control Rheostats 28
L and T Pad Attenuators 28
Laboratory Stands 29
Motor Speed Control 30, 31
Motor Driven Rheostats 32
Concentric Control Assemblies 32
Lamp Dimming Rheostats 33
Military Specification Rheostats 34
Field Control and General Purpose Tapered Rheostats 35-38
Index for Tapered Rheostat Cat. No. 39

FEATURES

1. Vitreous enamel bonds the core and base together into one integral unit.
2. The wire is wound over a solid porcelain core and each turn is locked against shifting by vitreous enamel. Uniform or tapered winding.
3. Close graduation of control. Each turn of wire is a separate resistance step.
4. Large, flat surface upon which the contact brush rides.
5. Metal-graphite contact brush (varied to fit current and resistance) insures good contact with negligible wear on the wire.
6. Shunt pigtail of ample size carries the current directly to the slip-ring.
7. Large slip-ring of high current carrying ability minimizes mechanical wear and provides connection from the moving contact to the terminal.
8. Potentiometer Use. The rheostats are provided with three terminals so they can be used as potentiometers or voltage dividers.
9. High strength ceramic hub insulates the shaft and bushing from all live parts. Rheostats from 25 to 150 watts in size, have the live parts insulated to ground to meet the Underwriters' Laboratories 300 volt rating; 225 to 1000 watts to meet the 600 volt rating. These sizes will stand a 3000 volt AC breakdown test to ground. Breakdown test for $121 / 2$ watt model, 1000 volts AC; for $71 / 2$ watt model, 500 volts.
10. The contact arm is a long tempered steel spring which assures uniform contact pressure at all times. Cadmium plated for corrosion resistance.
11. Rounded pivot holds contact brush in flush-floating contact with wire.
12. Models E, H, J, G, K and L. Stops which are fastened to the shaft and keyed to the base, limit the rotation. Thus, no torsional strain is imposed on the contact arm on stopping.
13. Models P, N, R, T and U. Stop on shaft and stop nib on steel mounting plate limit the rotation. No torsional strain on contact arm on stopping.
14. Compression spring maintains uniform pressure and electrical contact between the slip-ring and centerlead at all times. Pressure here is independent of that at the contact brush.
15. Models H, J, G, K and L. Phosphor-bronze retaining ring takes end-thrust; $1 / 4$ " diameter steel shaft in brass bushing provides a wear-resistant, wobble-free bearing. Rheostats mount by $3 / 8^{\prime \prime}-32$ threaded bushing and nut. Standard shaft has a flat (opposite to the contact) for set screw of knob.
Models C and E have $1 / 8^{\prime \prime}$ diameter shaft and $1 / 4^{\prime \prime}-32$ mounting bushing.
16. Models P, N, R, T and U. "Large" rheostats have $3 / 8$ " diameter steel shafts, standard with flat for set screw of knob. Stop washer takes end thrust. Rheostats mount by means of two screws and tapped holes in mounting plate.
17. Center lead is securely fastened to the base.
18. Ohmite Rheostats have a ceramic core, base and driving hub. There is only ceramic and metal in the construction of Ohmite rheostats except for the Model C which includes a Teflon liner and Ohmicone coating.
19. Models, C, E, H, J, G, K and L. Non-turn washer has a projecting lug which fits into a hole in the panel and prevents the rheostat from turning out of position.
20. Ohmite Rheostat Models H, J, G, K, L, P and N, with uniform or tapered winding, when made without other additional features, are listed under the Underwriters' Laboratories Reexamination Service and are marked "Series A." Write for further information when special applications are involved.
21. Ohmite rheostats meet requirements of NEMA and EIA.
22. Complete series of military rheostats supplied per MIL-R-22, aircraft power rheostats per MIL-R-6749 and rheostats per other military specifications.
23. Rheostat temperature rise $300^{\circ} \mathrm{C}\left(540^{\circ} \mathrm{F}\right)$ maximum, above $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ ambient for all U.L. listed rheostats.

0OHMITE

 GUIDE TO

 GUIDE TO CLOSE CONTROL CLOSE CONTROL RHEOSTATS

 RHEOSTATS}

STANDARD - Popular values of all standard models are carried in stock as indicated on pages 9 through 13.

MADE-TO-ORDER - Intermediate, higher and lower resistance values than are listed as "standard" and assemblies with any number of additional features are available made-to-order. Contact your local Ohmite sales office for assistance.

Model	Watts	Diameter	Depth behind Panel	Standard Rheostats			Special Resistance Range		Page
				Max. Panel Thick- ness	Min. Tatal Ohms	Max. Tatal Ohms	Min. Tatal Ohms	Max. Tatal Ohms	
C	7.5	. $515^{\prime \prime}$	7/8"	1/8"	10.0	5,000	10.0	5,000	9
E	12.5	7/8"	"1/6"	1/8"	1.0	15,000	0.25	15,000	9
H	25	19/16"	$13 /{ }^{\prime \prime}$	1/4"	1.0	25,000	0.21	25,000	10
J	50	23/16"	$13 / 2$	1/4"	0.5	50,000	0.10	50,000	10
G	75	$23 /{ }^{\prime \prime}$	$13 /{ }^{\prime \prime}$	1/4"	0.5	10,000	0.15	50,000	10
K	100	$31 /{ }^{\prime \prime}$	$13 / 4$	$1 / 4 "$	0.5	10,000	0.16	50,000	10
L	150	$4^{\prime \prime}$	$2^{\prime \prime}$	$1 / 4 \prime$	0.5	10,000	0.25	50,000	10
P	225	$5 \prime \prime$	$21 /{ }^{\prime \prime}$	$11 /{ }^{\prime \prime}$	1.0	2,500	0.10	30,000	12
N	300	6 '	$23 /{ }^{\prime \prime}$	$11 /{ }^{\prime \prime}$	1.0	2,500	0.15	50,000	12
R	500	$8^{\prime \prime}$	$21 / 8 "$	11/4"	1.0	2,500	0.20	20,000	12
T	750	10"	3 "	11/4"	1.0	2,500	0.25	15,000	12
U	1000	12"	$3^{\prime \prime}$	$11 / 4 \prime$	1.0	2,500	0.32	20,000	12

WINDINCS

Tapered
Pages 14, 15, 35 to 39

Bridged Gap
Page 24

SRECIAL BUSHINES OR MOUNTINGS

PLUS --
Less Than Standard Angle Page 25
With Taps Page 25
With Switching Lugs
Page 24
360° Endless Winding Page 24

PLUS --

Toggle Switch with Dwell Operation Page 23
Multiple Switches
As Required

OFF-POSTIIONS

Dead-Section Page 24

Snap-Action
Page 24

Special Panel Thickness Page 16

Locking Type
Pages 16 to 18

Heavy Duty Stop
and 2 Hole Mounting
Page 17

PLUS - -
 PLUS - -

Oil or Water Tight As Required 'Olite" Bearings As Required

Snap Action with Detent Page 24

Toggle Switch Page 23

Toggle Switch and Extra Lug Page 23

Sensitive Switch Page 2323

AUXILYARY SWITCH

SPECIAL SHAFTS

Round or Flatted Pages 16 to 18

Screw Driver Slotted Pages 16 to 18

Rear Extension
Pages 17 and 18

TANDEMS

Standard
Pages 19 and 20

Back-to-Back Page 21

Concentric Control Page 32

MoUntines

Standard Cages Page 27

Light Weight Dust-Tight Cages
Page 29

Mounting Brackets
Page 26

PLUS -- -

Special Designs As Required
$1 / 2^{\prime \prime}$ Dia. on Large Tandems
Page 19

PLUS - -

Tandem Kits Page 21
U-Shaped Frames Page 21
Special Frames As Required
Sequence Coupled Page 22

PLUS - -

Special Cages As Required Explosion-Proof Page 29
Weather-Proof As Required

OTHER REATURES

Motor Drive Page 32

Tandem with
Tap Switches
As Required

PLUS -- -

Adjustable Tap As Required
With Two Independent Contacts As Required
Special Stops, Fixed or Adjustable Page 25
Low Torque
Page 25
Flexible Shunt Page 25
Push-On Terminals Page 25
Screw Terminals Page 25
Special Contacts As Required
Military Specifications Page 34

STEP
 DETERMINE RESISTANCE AND WATTS

OHM'S LAW

(a)
$\mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}}$ or $\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}}$ or $\mathrm{E}=\mathrm{RI}$
Ohm's Law, shown in formula form above, enables determination of the resistance when the required voltage and current are known. When the current and voltage are unknown, or the best values not decided on, at least two of the three terms in Ohm's Law must be measured in a trial circuit (see Engineering Manual Bulletin 1100).

Note that the maximum current to be determined is the current of the load before the rheostat resistance is inserted. On the other hand, the maximum resistance occurs with the minimum current.
(b)

$$
\mathrm{W}=\mathrm{I}^{2} \mathrm{R} \text { or } \mathrm{W}=\mathrm{EI} \text { or } \mathrm{W}=\frac{\mathrm{E}^{2}}{\overline{\mathrm{R}}}
$$

Power, in watts, can be determined from the formulas above, which stem from Ohm's Law.

Note that the rated wattage of a uniform wound rheostat is calculated using the maximum current and the total rheostat resistance. The Summation Watts are calculated instead for a taper wound rheostat as explained under "Tapered Rheostats", page 14.

SHORT-CUT METHOD

Use an Ohmite Ohm's Law Calculator (convenient slide-chart) or use Ohm's Law Chart in the Engineering Manual, Bulletin 1100. Set known values as explained on the Calculator, or Chart, and read the sought for OHMS, WATTS (or other terms).

CALCULATION METHOD

Using the Ohm's Law formulas given above, and explained in greater detail in the Fngineering Manual, calculate the unknown values. How to conduct tests when a trial must be made of the actual apparatus is explained in the Manual.

STEP
 POWER RATING OR
 PHYSICAL SIZE OF RHEOSTAT

General: Rheostat watt ratings are based on the condition that the moving contact is set so that all of the winding is in the circuit. This makes the condition the same as that of a fixed resistor (assuming a uniform rheostat winding) and we may then say that a rheostat operated at a constant wattage will attain a steady temperature which is determined largely by the ratio
between the size (surface area) and the wattage dissipated. The temperature stabilizes when the sum of the heat loss rates (by radiation, convection and conduction) equals the heat input rate (proportional to wattage). The greater the rheostat area per watt to be dissipated, the greater the heat loss rate and therefore the lower the temperature rise.

FREE AIR WATT RATING

In general, for commercial rheostats, the relation of the "Free Air Watt Rating" of vitreous enameled rheostats to the physical size has been set at such a figure that: "When operated at their rated watts the temperature rise of the hottest spot shall not exceed $300^{\circ} \mathrm{C}\left(540^{\circ} \mathrm{F}\right)$ as measured by a thermo-couple, when the temperature of the surrounding air does not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. The temperature is to be measured at the hottest point on the embedding material of a rheostat mounted on a vertical metal panel in free, still air space with at least one foot of clearance to the nearest object, and with unrestricted circulation of air". This is in accordance with standards of the "National Electrical Manufacturers Association" (NEMA) and the "Underwriters' Laboratories".

Electronic Industries Association (formerly RETMA) standards provide for a maximum attained hot spot temperature of $340^{\circ} \mathrm{C}$ for rheostats of 100 watts or less and $390^{\circ} \mathrm{C}$ for rheostats of greater wattage. The reference ambient is $25^{\circ} \mathrm{C}$.

Military Rheostat Specification MIL-R-22 provides for a maximum hot spot temperature attained (on the exposed winding) of $340^{\circ} \mathrm{C}$ for rheostats of 100 watts or less and $390^{\circ} \mathrm{C}$ for larger rheostats. The reference ambient is $25^{\circ} \mathrm{C}$.

The temperature rise, with all resistance in the circuit, is not directly proportional to the wattage but follows the curves as shown in lig. 1 and Fig. 2.

Fig. 1: Hot spot temperature rise of a rheostat for various specifications.

The temperature rise on a tapered rheostat does not exceed the rated maximum, but the location of the hot spot, for each position of the contact, depends on the taper design.

In the usual rheostat application, the current is reduced as the resistance is inserted in the circuit and so the operating temperature is much less than the maximum rated temperature. If the maximum current is actually carried as a constant value, the hot spot temperature builds up as the resistance is added and levels off at the maximum rated temperature starting at approximately 30% rotation.

CURRENT RATING

When selecting a rheostat for a particular application, it is the current rating, rather than the wattage rating, which directly indicates the usability. For any given wattage size and resistance, the maximum current to be carried through any part of a uniform winding is determined from Ohm's Law, $I=\sqrt{ } W / R$. The current values for all stock rheostat resistances are given in the stock tables.
The minimum current (occurring at maximum resistance) is a factor influencing the rheostat watt size required, as explained under "Tapered Rheostats".
When a rheostat is connected as a potentiometer, i.e., bridged across the line with the load connected between one end and the moving contact, the minimum current is the "bleeder" current (through the entire winding). The maximum potentiometer current is the sum of the bleeder current and the maximum load current.

TAPERED WINDINGS

A "tapered winding" consists of two or more smoothly joined sections wound with larger wire for the higher current sections. Characteristics of tapered windings are explained fully starting on page 14.

APPLICATION MODIFICATIONS

OF POWER RATINGS
To allow for the differences between the actual service conditions and the "Free Air Watt Rating" it is sound engineering practice to operate the rheostats at modifications of nominal rating. The details by which such ratings can be estimated are given hereafter. Most thermal calculations, however, involve so many factors which are usually not accurately known, that at best they are only approximations.

Fig. 2: Hot spot temperature rise of a typical rheostat versus percentage of winding in circuit.

The factors which affect the temperature rise aet nearly independently of each other and are summarized as follows:

1. Ambient Temperature: As the maximum permissible operating temperature is a set amount, any increase in the ambient temperature subtracts from the permissible temperature rise and therefore reduces the permissible watt load.
2. Enclosure: Enclosure limits the removal of heat by convection currents in the air and by radiation. The walls of the enclosure also introduce a thermal barrier between the air contacting the rheostat and the outside cooling air. Hence, size, shape, orientation, amount of ventilating openings, wall thickness, material and finish, all affect the temperature rise of the enclosed rheostat. Reduction of rating is generally necessary only if the housing is only slightly larger than the rheostat, totally enclosed and where the ratio of $I_{\text {max }}$. to $I_{\text {min. }}$ is less than two.
3. Grouping: Rheostats mounted in standard tandem frames do not require derating. Other conditions should be studied for possible effects.
4. Altitude: The amount of heat which air will absorb varies with the density, and therefore with the altitude above sea level. At altitudes above 100,000 feet, the air is so rare that the rheostat loses heat practically only by radiation (and conduction).
5. Pulse or Rotating Operation: This is not an environmental condition but a circuit condition. As a pulse of power (or the varying power in the rheostat as the contact is rotated) when averaged over the total on and off time results in less heat per unit time than for continuous duty, the temperature rise is affected. This may permit higher pulse power. The conditions must be expertly considered for conservative rating.

Fig. 3: Rheostat derating for ambient temperature for various specifications.

6. Cooling Air: Forced circulation of air over a rheostat removes more heat per unit time than natural convection does and therefore permits an increased watt dissipation. Liquid cooling also can increase the rating.
7. Limifed Temperafure Rise: It is sometimes desirable to operate a rheostat at a fraction of the Free Air Watt Rating in order to keep the temperature rise low. This may be to protect adjacent heat sensitive apparatus; to hold the resistance value very precisely both with changing load and over long periods of time and to insure maximum life.

8. Other Considerations: HIGH RESISTANCE.

High resistance units, which require the use of very small diameter wire, generally should operate at reduced temperature and voltage for maximum reliability.
HIGH VOLTAGE. The total volts must be limited to a reasonable ratio with respect to the insulation breakdown values, etc.

OHMITE

HIGH FREQUENCY. Special, non-inductively wound rheostats are required for use at radio and super-sonic frequencies.
MILITARY AND OTHER SPECIFICATIONS. The special physical operating and test requirements of the applicable industrial or military specification must be considered. Military specification rheostats should be ordered by their MIL numbers.

TEMPERATURE COEFFICIENT OF RESISTANCE

The resistance alloys used for all except the lowest ohmic values show such little change with temperature that in most power circuits the resistance is considered constant with load.

For special applications which require very constant resistance, it may be desirable to specify the maximum permissible TC (temperature coefficient of resistance), and the range of temperature, and consequently to use only certain types of resistance alloys.

For low TC (and other) applications, Ohmite can provide rheostats with an "Ohmicone"'(silicone-ceramic) coating. "Ohmicone" is processed at much lower temperatures than vitreous enamel and therefore makes control of TC and tolerance easier.

Data on the TC of various alloys is given in the Engincering Manual.

DETERMINING THE POWER RATING

Short-Cut Method: Appropriate scales on the "Step 2 Short Cut Chart" in the Resistor Catalog can also be used for rheostats. Locate the known application modifications of Free Air Conditions, multiply the correction factors for ambient, altitude, etc., together with the rheostat Watts (I^{2} max. $\times \mathrm{R}_{\text {Rheo. }}$) to obtain the minimum Watt Size Required.

Calculation Method: Obtain derating factors from graphs in this catalog and the Engineering Manual and calculate necessary allowances.

step 3 selecting the rheostat
 MODEL AND MECHANICAL FEATURES

A uniformly wound rheostat can be chosen quite easily from the many models and resistances listed on pages 9 to 13 . It is only necessary to select one with the desired resistance which has a current value not less than the maximum current of the circuit.

When the desired resistance falls between the standard values listed, use coded specification number to order.

Taper wound rheostats of the required resistance and with both maximum and minimum current ratings not less than those of your application may be selected from listings on pages 35 through 38 .

Ohmite will be pleased to design a tapered rheostat for your application based on the required resistance, maximum and minimum current and nature of the load.

The minimum size model for a three-section taper can be determined with fair accuracy by the method given on page 15.
Additional Features - Mechanical and Electrical: The Rheostat Guide, pages 4 and 5 , indicates the more commonly used additional features and the pages on which detailed information will be found. Mechanical features include such typical items as special mounting bushings and shafts, tandem mountings, and auxiliary switches. Electrical features include special winding angles, and tapers.

Special attention may be required for extra long rotation life, unusual vibration, resolution, linearity, etc. The possible combinations of additional features are great. In addition, special designs to meet customer requests can be created.

SUGGESTIONS FOR ORDERING

FOR STANDARD RHEOSTATS

1. Quantity.
2. Resistance.
3. Catalog Number.
4. Model and Watt Rating.
5. Itemize knobs and all other accessories separately.

FOR MADE-TO-ORDER RHEOSTATS

1. Quantity.
2. Resistance.
3. (a) Coded Specification Number and Resistance. (For Uniform Wound Rheostats where applicable.)
(b) Ohmite Specification Number and Resistance. On reorders of special rheestats, the use of this number will assure exact duplication.
(c) Catalog Number of standard Tapered Rheostats.
4. Model, Watt Rating and whether Tapered Winding is desired.
5. Maximum current.
6. Minimum current (for Tapered Winding).
7. Resistance Tolerance if other than standard $\pm 10 \%$.
8. Give Catalog Number, Type Number or Code Word for all Additional Features plus description of special shafts, etc.
9. Itemize knobs and all other accessories soparately.
10. MIL Rheostats should be ordered by MIL number.

CODED SPECIFICATION NUMBER

Rheostats with following features may be specified using code formula described above:

- Standard or Special resistances Off position or auxiliary switches
- Standard, round, screwdriver and locking shafts - Standard cages
- Catalogued special panel length bushing or shaft - Tandem assemblies

Rheostats with following features may not be coded but are assigned a serial specification number at the factory:

- Tapered or special winding
- Combination of more than 2 "additional features"
- Customer designed special shafts and features

STANDARD
 VITREOUS ENAMELED RHEOSTATS

OHMITE

Fig. 4: Model C with standard bushing (left), locking bushing (right).

Fig. 5: Model C

MODEL C RHEOSTATS

Ohms	Amps	Standard Shaft Cat. No. *	Locking Shaft Cat. No. *	Ohms	Amps	Standard Shaft Cat. No. *	Locking Shaft Cat. No. *
10	.86	4908	4948	250	.17	4917	4957
15	.71	4909	4949	350	.15	4918	4958
25	.55	4910	4950	500	.12	4919	4959
35	.46	4911	4951	750	.10	4920	4960
50	.39	4912	4952	1000	.086	4921	4961
75	.32	4913	4953	1500	.071	4922	4962
100	.27	4914	4954	2500	.055	4923	4963
150	.22	4915	4955	3500	.046	4924	4964
200	.19	4916	4956	5000	.039	4925	4965

*Some items are classified "non-stock standard" due to limited usage and therefore are not stocked. Consult latest issue of catalog 300 series for availability.

MODEL C 7.5 Watts ${ }^{\wedge}$

Diameter: . $515^{\prime \prime}$ max.
Shaft: $1 / 8^{\prime \prime}$ dia.
Resistance Tolerance: $\pm 10 \%$
Torque: 0.25 to 3 oz.-inch Weight: 0.27 oz .
Standard Mounting: For panels up to $1 / 8^{\prime \prime}$
by $1 / 4-32$ bushing with non-turn projection.
Rotation: $300^{\circ} \pm 5^{\circ}$.
Standard Knob: No. 5151. Specify separately on order when desired.

Made-fo-Order Code:

(For non-standard values)
Standard Shaft: $\mathrm{C}-\overline{\text { Ohms }}-\mathrm{S}-1$
Locking Shaft: $\mathrm{C}-\overline{\text { Ohms }}$ LO-1
Rating on metal panel-Unit is silicone-ceramic coated

MODEL E RHEOSTATS									
Total Ohns	Max. Amps	$\begin{aligned} & \text { Steps } \\ & \text { Appr. } \\ & \hline \end{aligned}$	Unenclosed Cat. No. *	Enclosed Cat. No. *	Total Ohms	$\begin{aligned} & \text { Max. } \\ & \text { Amps } \end{aligned}$	Steps Appr.	Unenclosed Cat. No. *	Enclosed Cat. No.
1	3.53	28	0101	W0101	175	27	155	0114	W0114
2	2.50	29	0102	W0102	200	25	135	0114A	W0114A
2.5	2.24	29	0102A	W0102A	250	22	170	0115	W0115
3	2.04	38	0103	W0103	350	19	190	0116	W0116
5	1.58	51	0103A	W0103A	500	16	210	0117	W0117
6	1.44	35	0104	W0104	750	13	200	0118	W0118
8	1.25	53	0105	W0105	1,000	11	260	0119	W0119
10	1.12	50	0106	W0106	1,500	. 091	209	0120	W0120
15	. 91	70	0107	W0107	2,500	. 071	323	0121	W0121
25	. 71	72	0108	W0108	3,500	. 060	400	$0122 \dagger$	W0122 \dagger
35	. 60	82	0109	W0109	5,000	. 050	340	$0123 \dagger$	W0123 \dagger
50	50	92	0110	W0110	7,500	.041 ${ }^{+}$	420	$4190 \dagger$	W4190t
75	. 41	105	0111	wolll	10,000	. $035+$	560	$4191{ }^{+}$	W4191t
100	.35	102	0112	W0112	12,500	.031 ${ }^{\text {+ }}$	480	$4192 \dagger$	W4192†
125	. 32	110	0113	W0113	15,000	.029+	490	$4193 \dagger$	W4193t
150	29	130	0113A	W0113A					

†Silicone-- ceramic coating. :Max. volts for $7500 \Omega=305 \mathrm{~V} ; 10 \mathrm{~K}, 12.5 \mathrm{~K} \& 15 \mathrm{~K} \Omega=350 \mathrm{~V}$.

- Some items are classified "non-stock standard" due to limited usage and therefore are
not stocked. Consult latest issue of catalog 300 series for availability.

Fig. 7: Model E

MODEL E
 12.5 Watts ${ }^{4}$

OHMITE

Diameter: 7/8" Unenclosed.
$13 / 4^{\prime \prime}$ in aluminum enclosure (See p. 29)
Shaft: $1 / 8^{\prime \prime}$ Diameter.
Resisfance Tolerance: $\pm 10 \%$.
Torque: 1 to 6 oz .-inch
Weight: 0.6 oz .; enclosed 0.85 oz .
Standard Mounting: For panels up to $1 / 8^{\prime \prime}$
by $1 / 4^{\prime \prime}-32$ bushing, with non-turn projection.
Rotation: $300^{\circ} \pm 5^{\circ}$. Standard Knob: No. 5151.
Specify separately on order when desired.
Made-to-Order Code:
(For non-standard values)
Unenclosed: E- $\overline{\text { Ohms }}$ R-1
Enclosed: EW- ——R-1
Ohms

- Rating on metal panel.

Fig. 8

OHMITE

Fig. 10

OHMITE

75 Watts

Fig. 12

OHMITE

100 Watts

OHMITE

$$
\mathrm{L}-\frac{}{(\mathrm{Ohms}}-\mathrm{F}-2
$$

Fig.

Fig. 13
model g

STANDARD RESISTANCES								HIGH RESISTANCES		
Cat. No.	Total Ohms	Mox.	Steps Apprax.	Cat. No. *	$\begin{aligned} & 7 \mathrm{ma} \\ & \text { ilins } \end{aligned}$	Max. Amps.	Steps Approx.	(Made is outhir		
								Cat No.	Ohms	Amps
0440	0.5	14.100	33	0452	200	. 707	213			
0441	1	10.000	33	0453	300	. 575	259	4230		
0442	2	7.070	33	0454	400	. 500	270	4231	20,000	. 070
0443	3	5.750	30	0455	500	447	269	4232	25,000	. 063
0444	5	4.470	57	0456	750	. 365	319	4233	30,000	. 058
0445	7.5	3.650	60	0457	1,000	. 316	330	4234	40,000	. 050
0446	10	3160	57	0458	1.500	258	402	4235	50,000	. 045
0447	16	2.500	124	0459	2,000	. 224	417	(All sili	e.ceram	coated)
0448	25	2.000	107	0460	2,500	. 200	515			
0449	50	1.410	135	0461	5,000	. 141	560		YOLTS	
0450	75	1.150	158	0462	7,500	. 115	495			
0451	100	1.000	158	0463	10,000	. 100	673			

"Some items are classified "non-stock standard" due to limited usage. Consult 300 series catalog for availability.

STAMDARD RESISTANCES								LISH RESISTANCES		
Cat. No. ${ }^{*}$	$\begin{aligned} & \hline \text { Total } \\ & \text { Ohms } \end{aligned}$	Max. Amps.	Steps Approx.	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Total Ohms	Max. Amps	Steps Approx	Made to Orrder)		
								Cat. No.	Ohms	Amps
0524	0.5	17.300	28	0537	150	1.000	215			
0525		12.300	44	0538	200	. 865	229			
0526	2	8.650	43	0539	250	. 775	285	4240	15,000	. 100
0527	3	7.070	74	0540	350	. 655	315	4241	20,000	. 087
0528	5	5.480	78	0541	500	. 548	366	4242	25,000	. 077
0529	7.5	4.470	81	0542	750	. 447	335	4243	30,000	. 071
0530	10	3.880	77	0543	1,250	. 346	453	4245	50,000	. 055
0531	15	3.163	130	0544	1,800	. 288	497	245	5,000	. 055
0532	25	2.450	114	0545	2,250	. 259	511	(All silico	ceramic	ated)
0533	35	2.070	125	0546	3,000	. 224	526			
0534	50	1.735	142	0547	4,500	. 182	630		VOLTS	
0535	75	1.415	170	0548	7,500	. 141	894			
0536	100	1.225	177	0549	10,000	. 122	929			

* Some items are classified "non-stock standard" due to limited usage.

OHMITE

Fig. 18

OHMITE

300 Watts

Fig. 20

Fig. 22

Fig. 24

Diameter: $12^{\prime \prime}$

Shaft: $3 / 8^{\prime \prime}$ diameter. Resistance Tolerance: $\pm 10 \%$
Torque: 3.5 to 7.0 pound-inches. Weight: 10 lb .
Standard Mounting: For panels up to $11 / 4^{\prime \prime}$ thick. L'se two $1 / 4^{\prime \prime}-20 \times 11 / 2^{\prime \prime}$ flat head screws.
Rotation: $335^{\circ} \pm 3^{\circ}$. Standard Knob: No. 5105. Specify separately on order when desired.

STANDARD RESISTANCES

Fig. 19 model P

Fig. 21
HOLES FOR NO. 8 SCREWS MTG. SCREWS
MODEL N

Fig. 23

Fig. 25 model T
Holes for no. a screws

STANDARD RESISTANCES								HIEH RESISTANCES		
$\begin{aligned} & \text { Cot. } \\ & \mathrm{No.} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Total } \\ \text { Ohmm } \end{array}$	$\begin{aligned} & \text { mix } \\ & \operatorname{mints}^{2} . \end{aligned}$	$\begin{aligned} & \text { leps } \\ & \text { upprox. } \end{aligned}$	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline \text { Tot } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \text { Maxps. } \end{array}$	$\begin{aligned} & \text { Steps } \\ & \text { Approx. } \end{aligned}$	(Made to Order)		
								Cat Ho	Ohms	Amps
${ }^{1250}$	1.0	15.000	42	1262	150	1.220	256	4250		
${ }_{1}^{1251}$	2.0		42	1263	200	1.060	${ }^{337}$	4251	7,500	. 2172
1252	3.0	8.650	43	1264	300	. 866	323	425	10,000	.150
1253	4.0	7.500	57	1265	400	. 750	343	4253	15,000	. 122
${ }_{1254}^{1254}$	5.0	6.710	57 61	1265	700	. 567	484	4254	20,000	. 106
1255	7.5	5.490	61	1267	900	. 500	493	4255	25,000	. 089
1255	10.0	4.740	103						30,000	
1257 1258	${ }_{25}^{15.0}$	3.870	109	${ }_{1268}^{1268}$	$1 \begin{aligned} & 1,200 \\ & 1.500\end{aligned}$. 4337	520 647	(All silit	cera	coated)
1259	50.			1270	1,750	. 358	603			
${ }_{1250}^{1289}$	75.0	1.730	192	12704	2,000		650	max.	alts	
1261	100	1.500	268	1271	2,500	. 300	652	Except No.	$4250=1$	0 volts.

* Some items are classified "non-stock standard" due to limited usage. Consult 300 series catalog for availability.

STANDARD RESISTANCES								FITAH Tirsistances		
$\begin{aligned} & \mathrm{catr}_{\mathrm{No}} . \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Total } \\ \text { Ohms } \end{array}$	$\begin{aligned} & \text { Max. } \\ & \text { Amps. } \end{aligned}$	Steps Approx	$\frac{\mathrm{mo}}{\mathrm{No}} .$	$\begin{aligned} & \text { Total } \\ & \text { Ohms } \end{aligned}$	$\begin{aligned} & \text { Max. } \\ & \text { Amps. } \end{aligned}$	$\begin{aligned} & \text { Steps } \\ & \text { approx. } \end{aligned}$	(Mathe is Drter)		
								Cat. No.	Ohms	Amps
0650	.	17.320	50	0662	150	1.410	342	4260	5,000	
0651	2.0	12.240	52	0663	200	1.220	363	4261	7,500	200
0652	3.0	10.000	52	0664	300	1.000	424	4262	10,000	173
0553	4.0	8.660	78					4263	15,000	. 141
0554	5.0	7.750	78	${ }_{0}^{06656}$	700	. 655	554	4264	20,000	. 122
0655	7.5	6.320	72	${ }_{0667} 066$	900	. 578	528	4265	${ }^{25,000}$. 110
	10.0	5.480	78					4257	30,000	. 1.800
0657 0558	25.0	4.470 3.450	144 135	0669	1,500	. 447	678	4258	50,000	. 077
0558	25.0	3.460	135	0670	1,750	414	626	(All sil	e.cerami	coated)
	50.0	2.450	218					max	vots	
$\begin{aligned} & 0660 \\ & 0651 \end{aligned}$	75.0 100	2.730	285 285	0671	2,500	346	708	Except	$4260=$	5 volts

* Some items are classified "non-stock standard" due to limited usage. Consult 300 series catalog for availability.

STANDARD RESISTANCES								HILIM RESISTANCES		
$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \\ \text { Ohm } \end{array}$	$\begin{array}{\|l\|} \hline \text { Max. } \\ \text { Amps. } \end{array}$	Steps Approx.	$\begin{aligned} & \mathrm{Cat} \text { (at. } \\ & \mathrm{Not} \end{aligned}$	$\begin{array}{\|c\|c\|c\|} \hline \text { Total } \\ \text { Ohm } \end{array}$	$\mathrm{maxp}_{\mathrm{amps}}$	$\begin{array}{\|l\|} \hline \text { Steps } \\ \text { Approx. } \end{array}$	mate to OTuler		
								Cat Ho.	Ohms	Linps
${ }^{0849}$	1.0	22.300	69	${ }_{0}^{0872}$		3.160			5,000	315
0850	2.5	$\begin{aligned} & 18.200 \\ & 15.800 \end{aligned}$	79 75	$\begin{aligned} & 0861 \\ & 0862 \end{aligned}$	$\begin{aligned} & 80 \\ & 125 \end{aligned}$	${ }^{2.520}$	$\begin{aligned} & 327 \\ & 327 \end{aligned}$	4271	7,050 10,500 1	260 225
0852	2.5	14.100	76	0863	175	1.690	423	4273	15,000	185
0853	3.0	12.900	78	0864	250	1.410	488	4274	20,000	150
0854	4.0	11.200	73	0865	325	1.240	500			
0855	5.0	10.000	103	0866	500	1.000	609			
0856	8.0	7.900	103	0867	750	. 817	727	(All silico	ceramic	coated)
0857	12.5	6.300	103	0868	1,000	. 707	771	(All silico	ceramic	corted)
0858	16.0	5.600	188	0869		. 577				
0859	25.0	4.470	204	0870	2,000	. 500	980		OLTS 1	
0860	40.0	3.540	206	0871	2,500	. 447	968			

*Some items are classitied "non-stock standard" due to limited usage. Consult 300 series catalog for availability.

Standard resistances								HISH RESISTANCES		
Cat.No.	$\begin{aligned} & \text { Total } \\ & \text { Ohms } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { Amps. } \end{array}$	Steps Approx.	$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Ohms } \end{array}$	$\begin{array}{\|l\|} \hline \text { Max. } \\ \text { Amps. } \end{array}$	Steps Approx.	(Made to Drler)		
								Cat Ho.	Vsis	枟院
1300	1.0	27.400	71	1312	50	3.870	248			
1301	1.5	22.300	91	1313	80	3.060	250	4281	7,500	${ }^{3} .35$
1302	2.0	19.400	133	1314	100	2.740	248	4288	10,000	. 273
1303	2.5	17.300	99	1315	150	2.170	446	4283	15,000	. 225
1304	3.0	15.800	94	1316	200	1.940	442			
1305	4.0	13.600	91	1317	300	1.580	540			
1306	5.0			1318	400	1.370	583			
13007	8.0	9.650	${ }^{98}$	1319 1320	600 750	1.177	684 685	(All silicon	ceramic	coated)
1308	10.0	8.650	138	1321	1200	${ }^{1.000}$	880	(Alt silicon	ceramic	costor
1309	12.5	7.750	138	1322	1,800	. 646	1,042		volts	
1310	16.0	5.820	140	1322A	2,000	. 610	900		vots	
1311	25.0	5.470	138	1323	2,500	. 547	1,170			

* Some items are classified "non-stock standard" due to limited usage. Consult 300 series catalog for availability.

STAMDARD RESISTANCES								HIGH RESISTANCES		
$\begin{aligned} & \text { Cat. } \\ & \mathrm{Ho} . \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Ohmas } \end{array}$	$\begin{aligned} & \text { Max. } \\ & \text { Amps. } \end{aligned}$	$\begin{aligned} & 3 \operatorname{stys} \\ & \text { apman. } \end{aligned}$	Cat.	$\begin{aligned} & \text { Total } \\ & \text { Ohms } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Max. } \\ \text { Amps. } \end{array}$	$\begin{aligned} & \text { Steps } \\ & \text { Apprex. } \end{aligned}$	ade 10 Oritur)		
								Catill	Ohms	Amps
1450	1.0	31.600					${ }_{321}^{321}$	4290	O0	450
1451 1452	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	${ }_{22.400}^{25.800}$	$\begin{aligned} & 89 \\ & 115 \end{aligned}$	$\begin{aligned} & 1463 \\ & 1454 \end{aligned}$	75 100	$\begin{aligned} & 3.650 \\ & 3.160 \end{aligned}$	301 321	4291	7,500	. 365
1453	2.5	20.000	122	1465	175	2.390	520	4293	15,000	. 3.36
1454	3.0	18.300	125	1456	225	2.110	608	4294	20,000	. 224
1455	4.0	15.800	118	1457	300	1.830	640			
1456	5.0	14.100	122	1458	400	1.580	685			
14458	8.0 10.0	11.000	${ }_{114}^{116}$	1470	750	${ }_{1.150}^{1.410}$	${ }_{806}^{687}$	(All silico	ceramic	coated)
1450	16.0	7.900	164	1472	1,500	1.816	1,026		volts	
1451	25.0	6.330	181	1473	2.500	. 633	1,097			

Fig. 27

TAPER WOUND RHEOSTATS

OHMITE

Fig. 28: Size comparison of uniform and tapered rheostats for a specific application.

Rheostat windings are sometimes tapered, i.e., wound in two to five (or more) sections of diminishing wire or ribbon sizes. These sections are so smoothly joined that only the change in wire size tells where the sections connect (see Fig. 28).

For a given application, the taper may accomplish one or more of the following:

1. Make possible the use of a smaller rheostat.
2. Provide more uniform control (i.e., more nearly linear control) at all positions of the contact arm.
3. Make possible special curves of resistance (or of the controlled effect) versus rotation.
4. Make possible the winding of higher resistance on a given size rheostat, for a given maximum amperes.

Because tapered windings involve extra manufacturing operations, tapered rheostats when ordered singly or in small quantities generally cost more than uniformly wound rheostats of the next larger size. Tapers are generally not suitable unless the ratio of maximum to minimum current is 1.5 or greater. When large quantities are involved (the necessary quantity depending upon the rheostat model and number of sections) the tapered unit generally becomes the more economical one. For convenience and economy in making preliminary tests to determine the resistance and current rating, a stock (linear) rheostat is frequently used.

HOW SIZE IS REDUCED

When the moving contact of a rheostat is on the first turn of wire or ribbon, this turn must carry the maximum current. But as the resistance is put into the circuit,
the succeeding turns never have to carry more than a certain fraction of the maximum current, because the current tapers off from the maximum to some minimum value.

Hence, in a uniform, or linear winding, the latter portions of the winding operate at lower wattages ($\left.I^{2} R\right)$ per square inch than the rated values. The tapered winding, using smaller size wire for each section, proportioned for the current to be carried, increases the ohms per inch of winding in successive sections. This makes the watts dissipated per square inch of winding section more nearly approach the rated wattage value. As the core area required for a given wattage dissipation is less when operated at higher watts per square inch than for lower watts per square inch, the total core size is reduced.

Ohmite taper designs use the largest wire practicable for each section so that great durability is maintained.

HOW BETTER CONTROL IS PRODUCED

Fig. 29 shows how the current varies (in a typical case) with the per cent rotation of the rheostat contact. Because a uniformly wound rheostat adds a constant number of ohms per degree of rotation to a constantly increasing number of ohms, the current changes ever more slowly as the resistance is increased (curve "A" Fig. 29). A tapered winding (curves " B " and " C ") by increasing the number of ohms per degree of rotation as the total ohms in circuit increases, makes the current curve more nearly linear.

TAPER WOUND RHEOSTATS

Fig. 29: Typical curves of load variation with shaft rotation for uniform and taper-wound rheostats.

SELECTING A TAPERED RHEOSTAT

Tapers depend, among other factors, on the ratio of the maximum to the minimum current and upon the way in which the current varies between these end points. Tapers, therefore, are designed for specific circuits.

For any given set of rheostat conditions (resistance, maximum and minimum current) it is generally possible to design more than one size of tapered rheostat. That is, any of the various Ohmite rheostats can be used the wattage rating of which is sufficiently greater than the required Summation Watts ($\Sigma W=I_{\text {max }} . \times I_{\text {min }} \times R_{\text {rheo. }}$) -the smaller rheostat generally having more sections than the larger. The choice between the models will depend upon the space requirements, mounting conditions, and upon the quantity ordered. In small quantities the larger rheostat of fewer sections sometimes costs less than the smaller rheostat of greater number of sections.

APPROXIMATE SIZE OF TAPERED RHEOSTAT

Method I. The approximate size of a tapered rheostat, for specified conditions, having an average number of sections (3) can be determined as follows:

1. Determine Summation Watts-
$\Sigma W=I_{\text {max }} . \times I_{\text {min. }} \times R$
2. Determine $K=\frac{I_{\max } .}{I_{\min .}} \quad$ Round off the figure to the next highest number in Col. K, Fig. 30.
3. Select Factor F from Table Fig. 30.
(Note: For greater accuracy, the exact value of K can be used and F found by interpolation in the Table.)
4. Determine Rheostat Model (Watt Size). Multiply ΣW by F and choose smallest rheostat having a watt rating equal to or greater than this product.

Example:

$$
\text { Rheostat Ohms }=20 \quad I_{\text {max. }}=12.6 \mathrm{amps} .
$$

1. $\Sigma W=12.6 \times 1.27 \times 20=321$ watts

$$
I_{\text {min. }}=1.27 \mathrm{amps}
$$

2. $K=\frac{12.6}{1.27}=9.9 \quad$ Round off to 10 .
3. $\quad F=2.13$ (from table Fig. 30)
4. $\Sigma W \times F=321 \times 2.13=684 \quad$ Model $T=750$ which is greater than product 684 and therefore 3 section Model T can be used.

K	F	K	F
1.5	1.15	5	1.70
2	1.26	7.5	1.93
3	1.45	10	2.13
4	1.60		

Fig. 30: Table of factor F for tapered rheostat selection (three sections)
The Ohmite Engineering Department will be glad to recommend the most economical unit and to design the taper upon receipt of full information (see page 8 "How To Order").

Standard Taper Rheostats The rheostats listed on pages 35 to 39 include taper-wound units which can be used for field control or other purposes, such as the control of heating elements or other loads of constant resistance.

Method II. An alternate design method sometimes can be used which results in a rheostat of smaller size and/or fewer number of taper sections than that provided by the Method I design. Method II specifies a rheostat, the wattage size of which is equal to (or sometimes less than) the calculated Summation Watts. Such designs operate at higher hot spot temperatures than the Method I designs.

Direction of Taper To indicate the direction of taper, a sketch, similar to Fig. 31 or a statement, should be included when ordering. The direction of tapershownis standard and will be supplied unless otherwise ordered. It is described as "counterclockwise increase in resistance when viewed from the knob side."

Fig. 31: Standard direction of taper

0 BUSHINGS AND SHAFTS FOR SMALL RHEOSTATS (Models C, E, H, J, G, K, L)

(1) Add $1 / \mathrm{han}^{\prime \prime}$ to obtain projection from front of bushing to end of shaft.
(2) For PFMS (projection from mounting surface) for panels other than $1 / 2$ an $^{\prime \prime}$ add difference between the chaseq bushing projection anid $1 / 4^{-\prime}$ to projection shown.
(3) Flat length $9 z^{\prime \prime}$
(4) Model C limited at present to 577A, 578C, 5798, and 579C. No. 577A is standard on Mode! C and used instead of \$1

"Prefix "S" for "screwdriver" and code for type of locknut must be added as in SLOI, SLAI or SLE1 tPrefix sonsisting of code for type of locknut must be added as in LE5798 (LA is not applicable)
\ddagger Standard

Fig. 34: Slotted (Screwdriver) shaft for $1 / 2^{\prime \prime}$ and $1 / 4^{\prime \prime}$ diameter

Standard shafts for Models C and E rheostats are round with a $1 / 4$ " -32 bushing for mounting on pancls to $1 / 8^{\prime \prime}$ thick; for Models H, J, G, K and L rheostats, standard shafts have a flat and a $3 / 8^{\prime \prime}-32$ threaded bushing long enough for mounting on panels u_{1}, to $1 / 4^{\prime \prime}$ thick. Shafts without a flat, with a screwdriver slot, or with screwdriver slot and slotted bushing for a locking device are also available with bushings to accommodate various panel thicknesses. They can be obtained with different projections beyond the retaining ring to accommodate special knobs, or auxiliary devices, etc.

Where appearance requires that the knob be close to the panel or space is limited, and the panel is thin, the $1 / 8^{n}$ panel bushing is used. Bushings for $1 / 16^{\prime \prime}$ panel can be made also.

SHAFTS WITH FLAT

The standard flat is always located so that a perpendicular to the flat is in line with the rheostat contact and on the opposite side of the shaft. This agrees with the normal location of a set screw on a knob and results in the arrow-head or pointer, if any, pointing to the location of the contact. Symbol " F " describes this type of shaft in the rheostat coded designation (for standard front projection only).

SHAFTS WITHOUT FLAT (ROUND)

A plain round end is sometimes preferred when it is desired to be able to line up the knob with certain panel calibration marks, to fit a coupling gear, etc. Rheostat code symbol is " R " (for standard front projection only).

[^12]
SHAFTS WITH SCREW-DRIVER SLOT

This type of shaft is used to permit operation by a serew-driver instead of a knob when the rheostat is to be adjusted infrequently or when possibility of tampering with the setting must be minimized. Symbol " S " is used in the code (for standard front projection only).

LOCKING TYPE SCREW DRIVER SHAFTS

A slotted bushing for use with special nuts as described below can be supplied. Rheostat code shaft and bushing symbols are "LO," "LA," or "LL" depending on the type of locking nut.

SPECIAL SHAFTS

Commercial shafts for Models E, I, J, G, K and L are ordinarily of cadmium-plated steel. Stainless steel is standard on Model C. Bushings are unplated brass, but can be supplied cadmium or nickel-plated at extra cost. All shafts listed in military specification MIL-R-22 are available also.
For special shafts made to order, supply drawing or complete dimensions. Specify dimension "A", which is the projection of the bushing beyond the rheostat assembly nut. The retaining ring is not included in this dimension. Dimension " A " is (nominally) the sum of the given maximum panel thickness plus the thickness of the mounting nut and an allowance for manufacturing tolerance. The bushing should be another $1 / 16^{\prime \prime}$ longer if a lock-washer (see page 26) is to be used. See page 26 for "Shoulder Nuts" which are used with screwdriver shafts ($3 / 8^{\prime \prime}-32$ bushing) when it is desired to keep the end of the shaft protected in a recess. Use shoulder nut No. 6057 for bushing lengths over $1 / 4^{\prime \prime}$.

HEAVY DUTY STOP AND $3 / 8{ }^{\prime \prime}$ DIA. SHAFT
Rheostat Models H, J, C, K and L can be provided with a $3 / 8^{\prime \prime}$ diameter shaft sleeve with a special heavy duty stop for use on industrial applications, especially where large diameter knobs are used. The stop can safely withstand stopping torques of 80 pound-inches. As the stationary stop is a part of the special mounting bracket and the moving stop is a part of the $3 / 8^{\prime \prime}$ diameter sleeve, the stopping torque is not transmitted into the rheostat.

Shaft projection, special drilling, etc., can be varied.

Fig. 35: Heavy duty stop for small rheostats.

SHAFTS WITH REAR EXTENSION

Special shafts with an extension on the rheostat wire side can be provided, so that other apparatus can be coupled to enable operation by the rheostat knob. Valves and switches are examples of items frequently coupled.

Code Word

Shaft Extended on Wire Side, $1 / 4$ " Dia....... SHEFE
Distance from mounting surface to end of shaft must be given. Provide a sketch for special drilling, etc.

Fig. 36: Shaft with rear extension.
SHAFT LOCKING DEVICES
for Models C, E, H, J, G, K, L

Shaft Dia.	Max. Panel	A	B	Slot	F	G	H	J
1/8	$\begin{aligned} & \text { See } \\ & \text { p. } 16 \end{aligned}$	$\begin{gathered} \text { See } \\ \text { p. } 16 \end{gathered}$	$\begin{aligned} & 5 / 604 \\ & 7 / 64 \end{aligned}$	$\begin{aligned} & 1 / 2 \mathrm{~W} \\ & 3 / 4 \mathrm{D} \end{aligned}$	1/8	\% 18	5/8	5/20
1/4	$\begin{aligned} & \text { See } \\ & \text { p. } 16 \end{aligned}$	$\begin{aligned} & \text { See } \\ & \text { p. } 16 \end{aligned}$	1/6	$\begin{aligned} & \text { 3/6W } \\ & 1 / 16 \mathrm{D} \end{aligned}$	3/6	11/2	1	$1 / 4$

Fig. 37: Shaft locking devices.
Shaft clamping or "locking" devices which discourage or prevent tampering with a rheostat setting, consist of a special nut on a split and tapered bushing (Fig. 37). The lock nut has a matching internal taper which forces the segments of the bushing against the shaft. Several types of nuts are available as shown. The knurled edge disc type is for tightening with the fingers and is sometimes employed with a knob-type shaft. The standard shaft end is normally slotted for screwdriver unless otherwise ordered. To order the shaft-lock feature, state panel thickness and proper code word shown below and/or specify bushing and shaft assembly when possible by the type numbers shown on page 16 .

Cap Nut Locking Device . SHALA
Knurled Round Nut Locking Device . SHALE

* "LO, LA or LE" are used in coded specification.

SHAFTS FOR LARGE RHEOSTATS (Models P, N, R, T, U)
OHMITE

Fig. 38: Flatted shaft.

Fig. 39: Round shaft.

Fig. 40: Slotted (screwdriver) shaft.

SPECIAL SHAFTS

Standard rheostat shaft assemblies, as illustrated on stock units, have a shaft with a flat for the set screw of a knob, and are long enough for mounting on panels up to $11 / 4 /$ thick (when used with knol) Cat. No. 5104 or 5105). Shafts without a flat, or with a serew-driver slot are also available. While the standard shaft is generally used on thin panels as well as on panels up to the maximum, shorter shafts are available and are frequently used when it is desired to have the knob and pointer close to the dial, or panel. Standard shafts are cadmium plated steel. Stainless steel, Type 416 or 303 , is available at extra cost.
Shafts in all lengths per MIL-R-22 are also available. Special length shafts or shafts with special drilling, etc., can be supplied. Please submit drawing.

PANEL THICKNESS	FLATTED			ROUND		$\begin{aligned} & \text { SCREW-DRIVER } \\ & \text { SLOT } \end{aligned}$	
	A Proj. from Mig. Surfoce	8 Lgth. of Flot	Code Symbol	Proj. from Mig. Surfoce	Code Symbol	Proj. from Mig. Surfoce	Code Symbol
$1 / 6^{\prime \prime}$ to $3 / 3^{\prime \prime *}$	115/2"	1"	F3	$115 / 2^{\prime \prime}$	R3	3/4"	S6
$1 / 2^{\prime \prime}$ to $11 / 4^{\prime \prime}$	$2^{\prime \prime}$	1\% $/ 1{ }^{\prime \prime}$	F10 STD.	2"	R10	$11 / 4{ }^{\prime \prime}$	\$10
$11 / 2^{\prime \prime}$ to $21 / 4^{\prime \prime}$ *	$3^{\prime \prime}$	1\%/6"	F18	3"	R18	$2^{\prime \prime}$	\$16

Fig. 41: Shaft locking device.

SHAFTS WITH REAR EXTENSION

Special shafts with an extension on the rheostat wireside can be provided. Rheostats can also be made with the normal front end cut off and the rear extended for operation from the wire side only.

Code Word Shaft Extended on Wire Side, $11 / 32^{\prime \prime}$ Dia. SHOFO

Distance from mounting surface to end of shaft must be given. Provide a sketch if any special drilling, etc., is required.

Fig. 42: Shaft with rear extension.

SCREW CLAMP LOCKS

The locking device for large rheostats takes the form of a split arm fastened to the mounting panel as shown in Fig. 41. When the hex socket cap screw is tightened, the split arm is clamped to the shaft, preventing rotation. The shaft is slotted for screw-driver operation.

Screw Clamp Locking Device. \qquad Code Word: SHALL

Specify shaft selected from following table or give projection from mounting surface for other panels.

Panel Thickness	Shaft Projection From Mounting Surface	Shaft Type No.
$1 / s^{\prime \prime}$ to $2 / /^{" \text { incl. }}$	$3 / "^{\prime \prime}$	S6
$1 / 2^{"}$ to $15 / /^{\prime \prime}$ incl.	$11 / 4^{\prime \prime}$	S 10

Fig. 43:
Standard assembly of two Model J rheostats

STANDARD TANDEM ASSEMBLIES

Ohmite rheostats can be supplied mounted two, three, or more in tandem for simultaneous control of several circuits, or phases of a circuit, by means of a single knob, as shown in Figs. 43 to 50 . The rheostats are spaced to permit their operation at the same ratings as when individually mounted. Tandem rheostats are frequently connected in series (and sometimes in parallel) to obtain increased wattage dissipation over that of a single rheostat for a given panel space, or because the wattage required exeeeds that of a single rheostat.

Frames consist of plated steel strip, as illustrated, with mounting holes for panel or shelf mounting. Two, 3 , or 4 rheostats are generally connected by Ohmitemade universal joints which provide smooth action with a minimum of backlash. Cireater numbers of rheostats are connected by a single through-shaft, which may be supplied also for 2 to 4 rheostats at the option of Ohmite or the customer. As many as ten rheostats can be arranged in tandem on special frames; details supplied on request.

Mixed Models: Tandem assemblies of different model rheostats can be ordered, but such rheostats are specially made to make the angle of rotation of all of the rheostats the same as that of the smallest rheostat. The largest rheostat is mounted next to the panel and mounting dimensions for that size apply to the mixed assembly.

Ordering Information: Give Tandem Mounting Catalog Number and specify rheostats completely. When the rheostats are not identical, their location with respect to the panel should be given. Shaft lengths are as indicated in Figs. 44 to 46. Specify panel thickness or shaft length if other than standard is desired.

Shaft Diameter P, N, R, T \& U: Model P, N, R, T, and U tandem assemblies can be supplied with $1 / 2^{\prime \prime}$ diameter through-shafts instead of $3 / 8^{\prime \prime}$ diameter. All large tandems of more than 4 rheostats in tandem are supplied with $1 / 2^{\prime \prime}$ diameter shafts as standard.
Location of Flat on Tandem Shafts: The standard location of the flat on a tandem shaft has been selected so that when the tandem frame is mounted on a panel with the frame vertical, the pointer on a knob will rotate symmetrically about the vertical center-line. Note that both the rheostat and the flat have been rotated 90° from the normal mounting position with the center-lead vertical and down. If the user intends to mount the rheostats per this latter method, the tandem assembly can be ordered with the flat on the shaft the same as on an individual rheostat, i.e., the perpendicular to the flat is 180° from the contact. Specify on order: "Flat on shaft to be 180° from contact."

Model E-T3 Tandem

Rhea- stat	Wafts Model Each	-in-tandem Cat. No.	Weight (Ibs.)	-in-tandem Cat.
Na.	Weight (Ibs.)			
E	$121 / 2$	6640	.080	6641

FACTORY ASSEMBLED TANDEM RHEOSTAT ASSEMBLIES

Models H, J, G, K, L

Fig. 45: Dimensions for Model H, J, G, K or L tandem assemblies.

RHEOSTAT		TANDEM ASSEMBLY CATALOG NUMBER				DIMENSIONS									
Model	Watts Each	FOR 2 RHEO.		FOR 3 RHEO.		A	B	C	D	E	F	\checkmark	W	Y	Z
		Cat. No.	Weight Incl. Rheo. Lbs.	Cat. No.	Weight Incl. Rheo. Lbs.										
H	25	6600	. 53	6610	. 72	$31 / 2^{\prime \prime}$	51/2"	23/9	1 "	25/8"	15/60"	11/8"	$1 \% /{ }^{\prime \prime}$	2"	11/6"
J	50	6601	. 82	6611	1.2	$31 / 2^{\prime \prime}$	51/2"	3"	$1 "$	$15 / a^{\prime \prime}$	$1 \%{ }^{\prime \prime}$	"1/6"	21/2"	2"	1116"
G	75	6602	1.5	6612	2.0	43/8"	6\%/'	$41 / 4 "$	$11 / 4 *$	$13 / 8{ }^{\prime \prime}$	125/8"	11/8"	35/"	21/2"	1116"
K	100	6603	1.7	6613	2.4	$43 /{ }^{\prime \prime}$	67/3"	$41 / 4^{\prime \prime}$	$11 / 4 \prime$	$1 \%{ }^{\prime \prime}$	129/8"	11/6"	35/8"	$21 / 2^{\prime \prime}$	1116"
L	150	6604	2.7	6614	3.8	43/4"	$71 /{ }^{\prime \prime}$	5"	$11 / 4 "$	2"	2\%"	"1/6"	$41 / 4 "$	21/2"	115/6"

NOTE: Catalog Numbers for 4 rheostats in Tandem are: $H=6620, J=6621, G=6622, K=6623, L=6624$

Models P, N, R, T, U

Fig. 46: Dimensions for Model P, N, R, T or U tandem assemblies

RHEOSTAT		TANDEM ASSEMBLY CATALOG NUMBER				DIMENSIONS									
Model	Wotts Each	FOR 2 RHEO.		FOR 3 RHEO.		A	B	C	D	E	F	V	W	Y	z
		Cot. No.	Weight Incl. Rheo. Lbs.	Cat. No.	Weight Incl. Rheo. Lbs.										
P	225	6605	5.6	6615	7.6	513/6"	95/6"	7"	$11 / 2 \prime$	21/2"	$231 / 2^{\prime \prime}$	7\%"	$13 / 4{ }^{\prime \prime}$	31/2"	21/2"
N	300	6606	6.8	6616	9.4	61/16"	99\% ${ }^{\prime \prime}$	$7{ }^{\prime \prime}$	$11 / 2^{\prime \prime}$	3"	37/6"	1/8'	23/3"	$31 / 2^{\prime \prime}$	21/2"
R	500	6607	9.8	6617	13.8	513/6"	95\%6"	83/4"	$11 / 2^{\prime \prime}$	4"	$4 \%_{6}{ }^{\prime \prime}$	\%"	3"	$31 / 2^{\prime \prime}$	21/2"
T	750	6608	17.9	6618	25.5	73/6"	113/8"	$13^{\prime \prime}$	$11 / 2^{\prime \prime}$	5"	5\%\%	7\%"	$33 / 4$ "	4 "	3"
U	1000	6609	22.7	6619	32.7	73/6"	$113 / 6{ }^{\circ \prime}$	$13^{\prime \prime}$	$11 / 2^{\prime \prime}$	6"	63/8"	\%"	6 "	$4 "$	3"

NOTE: Catalog Numbers for 4 rheostats in Tandem are: $P=6625, N=6626, R=6627, T=6628, U=6629$

TANDEM COUPLING KITS

Fig. 47:
Typical assembly and tandem kit

Tandem coupling kit consists of steel "U"' frame, coupling with set serews, mica washer, hex key and instructions. The kit is intended for field assembly, coupling two standard rheostats. The coupling fastens to the shaft of the back unit-projections on the coupling engage the recesses in the driving hub of the front unit.

ORDERING INFORMATION

Coupling Kit for two Model E Rheostats . .Stock No. 6591
Coupling Kit for Model H or J. Cat. No. 6532
Coupling Kit for Model G, K or LCat. No. 6533

Cat. No.	Rheo. Model	A	B	C	D
6532	H	$25 / 82$ J	$13 / 3$	$25 / 20$	$15 / 16$
	G	$13 / 8$	$13 / 4$	$29 / 16$	196
6533	K	$19 / 16$	$13 / 4$	$29 / 6$	$129 / 20$
	L	2	2	$29 / 16$	$2 \% / 2$

Fig. 48: Dimensions, Model E tandem kit

Fig. 49: Dimensions, tandem kit for Models H, J, G, K, L

BACK-TO-BACK TANDEM ASSEMBLIES

OHMITE

Fig. 50: Back-1oback assembly of Model J rheostats

When the depth behind a panel is too limited for a standard type tandem assembly, a "Back-to-Back" Tandem Assembly may fit as it is somewhat shorter. As illustrated, the rear rheostat is mounted inside the
frame, back-to-back with the first rheostat. "Back-toback" tandem frame dimensions are the same as the standard frames, except for the depth. When mounting Models H, J, G, K, or L on these frames, a hole $34_{4}^{\prime \prime \prime}$ in diameter is required in the panel to clear the assembly nut.

Two in Tandem

Model	Depth Behind Panel	B-to-B Tandem Frame Cat. No.	Model		B-to-B Tandem Frame Cat. No.
H	215/16"	6630	P	53/6"	6635
J	215/6"	6631	N	511/6"	6636
G	$35 /{ }^{\prime \prime}$	6632	R	$53 / 6{ }^{\prime \prime}$	6637
K	$35 /{ }^{\prime \prime}$	6633	T	61/2"	6638
L	$41 / 4^{\prime \prime}$	6634	U	61/2"	6639

Fig. 51: Sequence-coupled rheostats
"Sequence Coupling" is a method (Pat. No. 3,127,582) of coupling two rheostats in tandem so that they can be rotated by a single knob, in succession (or "sequence") rather than together as in conventional ganged devices. Either the "front" or "back" rheostat can be arranged to rotate first. Sequence coupling is obtained by means of a special hub which links the two rheostats.

Advantages of this feature are:
(1) The physical size of tandem rheostat assemblies used for motor speed control can be reduced considerably. Where conventional tandem rheostats are used in combined motor-armature, motor-field or combined motor-field, generator-field control, opposite halves of the two rheostats must be "zero" resistance to permit full current to be maintained in one circuit while the current is varied in the other circuit (Fig. 52). With sequence-coupled rheostats, however, each rheostat controls its circuit in turn while the other remains fixed at the maximum current position. Hence, the zero resistance halves are not required (Fig 53) and rheostat size may be approximately halved.
(2) Resolution of adjustment is significantly increased because control is possible over approximately 650 degrees of rotation.
(3) Sequence-coupled rheostats can be wound to provide, in combination, a taper, which permits a higher ratio of maximum to minimum current combined with high total resistance, than is otherwise feasible.

Fig. 52: Conventional tandem rheostat in field and armature circuit of motor.

Fig. 53: Sequence-coupled rheostat in field and armature circuit of motor.

Rheostat Sizes: Sequence-coupled rheostats can be supplied in the following sizes:
Front Position (Adjacent to Knob End)-Models P, N, R, T, U (respectively 225, $300,500,750,1000$ watts). Back Position - Models J, G, K, L, P, N, R, 'T, U ($50,75,100,150,225,300,500,750$ and 1000 watts). Note: The "front" or "back" rheostat actually can
consist of more than one rheostat, conventionally ganged, so that one group of rheostats is, in effect, sequencecoupled to another group.
Sequence: One of the following sequences of operation should be specified:
Sequence "A" Operation (Code Word: Secoa): When the knob is turned clockwise from the extreme counterclockwise position, the "front" rheostat (closest to the knob) turns through its full rotation before the "back" one does. When the knob is turned in a CCW direction from the extreme CW position, then the back rheostat turns first.
Sequence "B' Operation (Code Word: Secob): When the knob is rotated clockwise from the extreme CCW position, the back rheostat turns first.
Panel Thickness: Standard assembly accommodates up to $11 / 16^{\prime \prime}$ panel; specify greater thicknesses.
Mounting Considerations: Tandem frame is normally arranged to mount on a panel in horizontal position. If the Sequence Coupling Dial is desired, and the frame must be mounted vertically on the panel, then the rheostat mounting screws must be countersunk in the panel.

Dimensions of sequence-coupled tandem assemblies are approximately the same as shown on page 20. ${ }^{*}$ However, the frames are tapped for $1 / 4-20$ mounting screws only, even where there are three or more rheostats in tandem. An end support may therefore be required.
Motor Drives can be supplied. Submit requirements.
*The "W" dimension for Model U rheostat changes to $33 / 4$ " and the "A" dimension to $79 / 16$ " in a sequence coupling arrangement.

COUPLING DIAIS

Fig. 54

Pointer knob
Cover Plate. Calibrated plate
A "sequence-coupling" dial and knob are available which provide a specific reading for every setting of the knob throughout its double (approximately 650 degree) rotation. Between the points where one rheostat stops and the other begins its rotation, the movable (calibrated) plate is tripped by a pin on the knob pointer. This plate shifts to expose one of two sets of numbers ($0-100$, or $100-200$) through holes in the cover plate.

The sequence coupling dial assembly is held on the panel by four-self-tapping screws. A choice of dials is available to accommodate the screws used in mounting the rheostat.

SEQUENCE COUPLING DIAL and KNOB KITS

Front Rheostat	Rheostat Mounting Screws	Dial-Knob Kit Cat. No.	Requires Rheostat tFrame
P to U	Flat Hd.	5020	Hor. or Vert.
P	Round	5021	5022
N	Head	5023	Horiz.
R U	5024	Only	
T or U			

*Next to panal. †See "Mounting Considerations" above.

Fig. 56:
Model J with toggle switch and extra lug

ARM ROTATES PAST this \& before tog gleSWITCH IS ACTUATED.

SWITCH IS IN OPEN POSITION WHEN CONTACT ARM IS ON THIS
Fig. 55: Model J LuG.
with toggle switch

Extra Lug: Enables switching of rheostat and an independent circuit. Also used on Models H, J, G, K and L when the operation of the switch must occur outside the limits of resistance change. For all models.

Dwell Operation: Switch is operated at either end of rotation and remains in same state when direction of shaft rotation is reversed, until the other end of the rotation, where the switch is re-set. Aetion accomplished by double-pronged operating lever which pushes, but cannot pull, the toggle-switch lever at both ends of rotation. Used to extend range of rheostat by alternately adding or removing a series resistor; also for motor reversal. Available on any model rheostat.

Toggle Switch Rating 125V. AC or DC	Type Numbers					
	With Std, Lugs		With Extra Lug		Dwell Oper.	
	*C.C. End	*C. End	*C.C. End	*. End	*C.C. End	*. End
SPST-N.0., ${ }^{\text {6A }}$	355	455	357	457	355 D	3750
SPST-N.C.t 6A	375	475	377	477	3750	3550
DPDT, 6A	360	460	363	463	3600	3600
SPDT, 3A	346	446	348	448	3460	346 D
SPDT, 12A	346A	446A	348A	448A	346 AD	346AD
DPDT, 15A, AC	360A	460A	363A	463A	360AD	360AD

*Rotation observed from knob end of shaft, clockwise or counter-clockwise. \ddagger Switch position when rheostat arm is on lug.

SENSITIVE SWITCHES

$\underbrace{\square}_{\text {OHMITE }}$

shaft or contact arm. Available on any model. As listed in the table, the mechanism can be arranged to operate the switch at either end of rotation, or at any intermediate point. When ordering the latter type, the point of operation (and tolerance on location) must be specified in degrees, as well as the type of switch.
Switch Rating Notes: For tungsten filament lamp loads the size B switch rating is 30 A . inrush and normal 3 A . A size BA switch is also available rated at 20 A . and lamp load of 75 A . inrush, 10A. normal; ordered by adding A to the Type No. Special SPDT switches for 125 V . D(' with rating of 10 A ., non-inductive circuit, can be specified by adding MT to Type No. 381 or 481.

Size	Dimensions	Terminals	Trade Name or Equiv.
B	$115 / 16^{\prime \prime} \times 27 / 2^{\prime \prime} \times 11 / 16^{\prime \prime}$	Solder lugs, sid.	Micro Switch Basic
V	$13 / 2^{\prime \prime} \times 5 / 6^{\prime \prime} \times 13 / 2^{\prime \prime}$	Screws, std.	Micro Switch V-3
DT	$115 / 16^{\prime \prime} \times 11 / 4^{\prime \prime} \times 11 / 16^{\prime \prime}$	Screws, std.	Micro Switch DT-2R
D	$11 / 4^{\prime \prime} \times 7 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$	Solder lugs, sid.	Licon 22-104
SM	$25 / 2^{\prime \prime} \times 23 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$	Solder lugs, sid.	Micro Switch 1 SMI

RHEOSTAT ADDITIONAL FEATURES

Fig. 61:
Model L
with
OFF-POSITION Switching Lugs

DEAD-LUG OFF-POSITION

Application: To open the rheostat circuit at the high resistance position. For light-duty and medium resistance values.

Description: The resistance winding is disconnected at one lug so that the circuit is opened as the contact passes onto the lug. This is the simplest construction. For fine wire rheostats, or units for heavy current or frequent adjustment, Type 353 (this page) is recommended.
Clockwise End Position (as illustrated) Type No. 351
Counterclockwise End Position..
Type No. 451

SNAP-ACTION OFF-POSITION

Application: The most popular form for general service. Opens the rheostat circuit at either the high or low resistance end.

Description: 'The circuit is opened as the contact brush snaps into an insulated notch next to the lug. Provides definite indexing action.

Additional Detent: The lug at the off-position end of the winding can be provided with an embossed ridge which provides a detent effect on the rotation to signal the operator (by sense of feel) the approach to the offposition.
Cut-Off Lug: The projecting part of the lug at the off-position can be omitted on any style off-position when specified on order. Add "COL" suffix to Type Number.

Location (From Wire Side View)	Std. Type No.	With Detent
Clockwise End	352	352 A
Counter-clockwise End	452	452 A

DEAD-SECTION OFF-POSITION

Application: To open the rheostat circuit at either the high or low resistance position. Used mostly for medium duty apparatus type applications where no indicated off-position is desired.

Description: The circuit is opened as the contact brush passes off the lug onto an insulated section at the same level-otherwise similar to Fig. 60.
Position at Right (Standard). Type No. 353
Position at Left (Opposite). Type No. 453

OFF-POSITION RATINGS

Toggle switches should be used generally for line voltage applications and direct current use above 20 volts. The exact current and voltage rating of an off-position depends on the specific circuit in which it is used. The use of a condenser for spark suppression is generally helpful on direct current.

SWITCHING LUGS

Application: The addition of switching lugs to a rheostat is not for the purpose of an off-position but rather to add a tap switch action at the end of the rheostat winding so as to achieve the effect of a special tapered winding of a type not otherwise possible.
Description: As shown in Fig. 61, several insulated lugs, to the number desired, are located near the end of the rheostat rotation. They are to be connected to external resistances which are switched into the circuit by the rheostat contact brush.
Switching Lugs......................... Code Word: ZAPIN

> BRIDGED GAP AND 360° WINDINGS FOR UNLIMITED ROTATION

Fig. 62:
Model N with bridge for unlimited rotation

Rheostats can be constructed without stops and with a track between the ends of the winding to provide for unlimited rotation. Rheostats can also be made with 360° cores and continuous winding, with taps as required.
Bridged Gap FeatureCode Word: BRIGA
360° Winding Feature Code Word: CIRWI

Fig. 63:
Rheostat with less than standard winding angle

IRheostats can be supplied with winding space and angle of rotation less than standard. The wattage rating of such rheostats is reduced approximately in proportion. For example, a Model J rheostat, 50 watts rating, when provided with a winding of 180° from center of lug to center of lug, would be reduced to $180 / 300 \times 50$, or 30 watts rating. The rotation specified is from stop to stop, which is approximately 15° more (varying with the model) than the degrees occupied by the winding alone. because of the width of the terminal lugs.

```
Less than Standard Rotation
    and Winding Feature.
Code Word:
and Winding Feature.
``` \(\qquad\)

\section*{SPECIAL STOPS}

Rheostats can be supplied with a fixed or an adjustable stop limiting the angle of rotation to any desired part of the total possible rotation. (Xenerally, such rheostats are used where it is desired to leave a certain amount of resistance in the circuit at all times. However, a standard rheostat and separate resistor are often to be recommended. An adjustable stop increases the projection behind the panel by approximately \(1 / 2^{\prime \prime}\).

Code Word:
Fixed Minimum Stop Feature, All Models. SPECO
Adjustable Stop Feature, Code Word:
Back of Panel-All Models. SPACA
Adjustable Stop Feature, Code Word:
Front of Panel—Models P to U only SPICE

\section*{TAPPED WINDINGS}

Rheostats can be supplied with taps at any point or points on the winding. The tap is usually a lug of the same dimensions as the regular terminals. An adjustable tap can be provided, also.

\section*{LOW TORQUE}

Rheostats with lower than normal torque are sometimes wanted when they are to be remotely controlled and operated by very small motors. Low torque is aceomplished by eliminating friction at the center-lead by omitting the compression spring and using a flexible shunt connection to the contact (see Flexible Shunt). The torque for any given rheostat model will be somewhat greater on low resistance units than on high resistance units.
Low Torque Feature.
Code Word: LOTOR
REDUCED TORQUE RHEOSTATS
\begin{tabular}{|c|c|c|c|}
\hline Rheostat Model & Approx. Torque & Rheostat Model & \begin{tabular}{l}
Approx. \\
Torque
\end{tabular} \\
\hline H & 1.5-3 oz. in. & P & \(1.25-2.5 \mathrm{lb}\). in. \\
\hline J & \(2-3.5 \mathrm{oz}\). in. & N & \(1.25-2.5 \mathrm{lb}\). in. \\
\hline G & 2-4 oz, in. & R & \(1.25-2.5 \mathrm{lb}\). in. \\
\hline K & 3-5 oz. in. & T & \(1.25-2.5 \mathrm{lb}\). in. \\
\hline L & 3-6 oz. in. & U & \(1.25-2.5 \mathrm{lb}\). in. \\
\hline
\end{tabular}

Fig. 64: Rheostat with flexible shunt and low torque

Rheostats can be equipped with a flexible shunt directly connecting the moving contact and the center-lead. This is sometimes called for when the circuit requires that even minute variations in slip-ring to center-lead resistance be eliminated.

Flexible Shunt (5 Amps. Max.) For H, J, G, K, L...... 204
Flexible Shunt (Over 5 Amps.) J, G, K, L, P, N, R, T, U 203

\section*{QUICK-CONNECT}

TERMINALS
Terminals to receive standard female "quick-connectors" or "push-on" connectors can be provided on most rheostats. In addition to single terminations, a double or twin terminal

Fig. 65: Typical rheostat with terminals for push-on connection permitting two connections at one terminus is also available.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{Terminal \(\dagger\)} & \multirow[t]{2}{*}{For Rheostats} \\
\hline Width & Number & \\
\hline 3/16" & 53.188 & H \\
\hline \(1 / 4 "\) & 53-25D* & H, J, G, K, L, P, N, R, T, U \\
\hline \(1 / 4^{\prime \prime}\) (Twin) & 53-25DT & H, J, G, K, L, P, N, R, T, U \\
\hline
\end{tabular}
*53-25B and 53-25BT also ayailable. Three-way type - accepts standard \(1 / 4{ }^{\prime \prime}\) female quick connector, 6-32 screw and nut or soldering.
\(\dagger\) Provided at all three rheostat connections unless otherwise specified.

\section*{OTHER TERMINALS}

Model H rheostats can be provided with special size terminals with \(.156^{\prime \prime}\) diameter holes to receive No. 6 screws, maximum.
Terminals for No. 6 Screw on Model H.
. Type 56

\section*{Welded Nuts on Terminals}

Rheostats can be provided with nuts welded to the terminals to permit screwdriver fastening of connections. Screws are not provided unless specified. Positions are specified from wire-side view. Nuts are No. 6-32 on Model H and No. 8-32 on larger models.
\begin{tabular}{|c|c|}
\hline Clockwise lug and center lead & pre 55A \\
\hline Counter-clockwise lug and center lead & Type 55B \\
\hline All three terminals. & Type 55C \\
\hline
\end{tabular}

Terminal Bolts
\begin{tabular}{|c|c|}
\hline Description & Cat. No. \\
\hline For Model \(\mathrm{H}-3\) sets each consisting of: 1 No. \(2-56 \times 1 / 2^{\prime \prime}\) screw, 2 hex. nuts and 1 lockwasher & 5075 \\
\hline For Models J, G, K or L-3 sets each consisting of: 1 No. \(8-32 \times 1 / 2^{\prime \prime}\) screw, 2 hex. nuts, 1 each flat, cup and lock washers. & 5077 \\
\hline For Models P, N, R, T, U-3 sets each consisting of: 1 No. \(8-32 \times 5 / 8^{\prime \prime}\) screw, 2 hex nuts, 1 each flat, cup and lock washers. & 5079 \\
\hline
\end{tabular}

RHEOSTAT KNOBS, DIALS, BRACKETS

RHEOSTAT KNOBS

5105.5107

5111

Knobs are made of black bakelite and fasten by means of two screwdriver slotted set screws (except No. 5102, 5103,5150 and 5151 which have one serew). Knobs can be ordered with hexagon socket set screws by adding suffix -A to catalog number. Indicating lines are white filled; pointers are bright plated. Any knob can be used with any model of rheostat having the corresponding shaft diameter. Kinob No. 5116 is recommended for general use where a small bar type knob is wanted. Kinobs must be specified on order, when desired.
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Knob Dia. & Hole Dia. & Pointer Radius & Cat. No. \\
\hline Bar Knob, 21/4" long & - & \(1 / 4{ }^{\prime \prime}\) & 11/8" & 5102 \\
\hline Bar Knob, \(11 / 4\) " long & - & \(1 / 4{ }^{* \prime}\) & 5/8" & 5103 \\
\hline Handwheel with Pointer & \(31 / 4 "\) & \(3{ }^{\prime \prime}\) & \(2 \% 2^{\prime \prime}\) & 5104 \\
\hline Handwheel without Pointer & \(31 / 4{ }^{\prime \prime}\) & 1/8" & - & 5105 \\
\hline Handwheel with Pointer & \(31 / 4{ }^{\prime \prime}\) & \(1 / 4 "\) & \(2 \% / 2^{\prime \prime}\) & 5106 \\
\hline Handwheel without Pointer & \(31 / 4^{\prime \prime}\) & \(1 / 4{ }^{\prime \prime}\) & - & 5107 \\
\hline Finger-Grip with Pointer & 1\%" & \(1 / 4{ }^{\prime \prime}\) & \(13 / 2{ }^{\prime \prime}\) & 5109 \\
\hline Finger-Grip without Pointer & 1\%" & \(1 / 4 "\) & - & 5110 \\
\hline Finger-Grip with Pointer & \(23 /{ }^{\prime \prime}\) & \(1 / 4 *\) & \(117 / 2^{\prime \prime}\) & 5111 \\
\hline Finger-Grip without Pointer & \(2 \%\) " & \(1 / 4{ }^{\text {" }}\) & - & 5112 \\
\hline Bar Knob, \(43 / 4^{\prime \prime}\) long-Requires cross-pin and tapped hole in shaft & - & \(3 / 8{ }^{\prime \prime}\) & \(15 / 16^{\prime \prime}\) & 5115 \\
\hline Bar Knob, 11/2" long & - & \(1 / 4{ }^{\prime \prime}\) & \(3 / 4{ }^{\prime \prime}\) & 5116 \\
\hline Finger-Grip without Pointer & \(2 \%{ }^{\prime \prime}\) & \(3 / 80\) & - & 5124 \\
\hline Finger-Grip with Pointer & \(27 /{ }^{\prime \prime}\) & \(3 / 8{ }^{\prime \prime}\) & \(1^{17 / 217}\) & 5130 \\
\hline Bar Knob, \(11 / 2^{-1}\) long, AN-3220-3 Military Sty le - Dull Finish & - & *1/4" & \(3 / 4{ }^{\prime \prime}\) & 5136 \\
\hline Finger-Grip & \(11 / 2^{\prime \prime}\) & \(1 / 4\) " & - & 5150 \\
\hline Finger-Grip & 1/4" & \(1 / 8{ }^{\prime \prime}\) & - & 5151 \\
\hline
\end{tabular}
"D"Shaped hole to fit \(1 / 2\) " deep flat.
RHEOSTAT DIALS
\begin{tabular}{l|c|c|c}
\begin{tabular}{l}
Standard Dials \\
For Rheostat
\end{tabular} & \begin{tabular}{c}
Dial \\
Diam.
\end{tabular} & \begin{tabular}{c}
Catalog \\
No.
\end{tabular} \\
\hline H, J, G, K, L & \(\mathbf{2}^{33 / 16^{\prime \prime}}\) & 5000 \\
P, N, R, T, U & \(\mathbf{5}^{1 / 2^{\prime \prime}}\) & 5001 \\
C, E, & \(\mathbf{1} 1 / 4^{\prime \prime}\) & 5007 \\
\hline
\end{tabular}
Fig. 67: Typical rheostat dial

Dials are made of aluminum with the figures and lines natural aluminum on an etched black background. Dials are calibrated to indicate the approximate percentage of resistance in the cireuit (clockwise increase). Dials No. 5000 and 5007 are secured by the rheostat mounting nut. Dial No. 5001 is separately fastened by means of No. 6 screws, or it can be held by the rheostat mounting screws.

\section*{MOUNTING NUTS}

Standard Nut: \(3 / 2^{\prime \prime}-32\) thread hexagonal \(9 / 6^{\prime \prime}\) across flats by \(3 / 2^{\prime \prime}\) thick,

RHEOSTAT MOUNTING BRACKETS
 brackets and insulating washer No. 6028
Mounting brackets are made of cadmium-plated steel. They furnish a convenient mounting for units located and controlled on the rear of a panel, in an enclosure or for "breadlooard" construction.

\section*{HORIZONTAL TYPE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{For Models} & \multirow[b]{2}{*}{Mtg . Hole Centers} & \multicolumn{2}{|r|}{Mtg. Hole} & \multirow[b]{2}{*}{Width} & \multirow[b]{2}{*}{Height} & \multirow[b]{2}{*}{Cat. No.} \\
\hline & & Dia. & For Max, Screw & & & \\
\hline H, J & 3 " & 3/16" & No. 8 & 27/6" & 111/6" & 6520 \\
\hline G, K, L & \(5{ }^{\prime \prime}\) & 3/16" & No. 8 & 43/6" & 2\%" & 6521 \\
\hline
\end{tabular}

VERTICAL TYPE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ For Models } & \begin{tabular}{c}
Mtg. \\
Hole \\
Centers
\end{tabular} & \multicolumn{2}{|c|}{ MTG. HOLE } & \multirow{2}{*|}{\begin{tabular}{c}
Height \\
to
\end{tabular}} & \begin{tabular}{c}
For \\
Hole \\
Shaft \\
Screw \\
Shat \\
Center
\end{tabular} & Cat. No. \\
\hline H, J, G & \(13 / 2^{\prime \prime}\) & \(5 / 2^{\prime \prime}\) & No. 6 & \(15 / 8^{\prime \prime}\) & \(1 / 2^{\prime \prime}\) & \(6522^{*}\) \\
H, J, G & \(15 / 2^{\prime \prime}\) & \(5 / 2^{\prime \prime}\) & No. 6 & \(15 / 8^{\prime \prime}\) & \(3 / 8^{\prime \prime}+\) & 6523 \\
\hline
\end{tabular}
*Supplied with insuloting fibre bushing, Cat. No. 6028, as illustrated, for \(\%\) " dia. bushing of rheostats, to provide odditional insulation to ground.
tincludes \(3 / \%^{\prime \prime}\) dio. hole at \(1 / 2\) center for standord non-furn wosher.

\section*{SHOULDER TYPE
MOUNTING NUTS}

Shoulder nuts are used when it is desired to have the end of a screw-driver slotted shaft below the top of the mounting nut. The nuts are tapped \(3 / 8^{\prime \prime}-32\) and require a \(7 / 66^{\prime \prime}\) diameter hole in the pancl. Refer to page 17 for more information on use.
Shoulder Nut, "C" = \({ }^{1 / 32}\) ". Cat. No. 6056
Shoulder Nut, "C" = \(15 /\) 2 \(_{2}\) ".
Cat. No. 6057
NON-TURN WASHERS

Fig. 70: How non-turn washer is used.

To prevent rheostats which are mounted by a single bushing, such as the Models H, J, G, K, (and sometimes L) from turning on the panel, they are provided with a washer which has a projecting lug to fit into an additional hole in the panel. The lug can be ordered located at any \(90^{\circ}\) position, and it can be bent down if not wanted. supplied in " 6 o'clock" position unless otherwise specified.
Standard Non-Turn Washer-"B" = 5/32" . . . Cat. No. 5050
Long Tip Non-Turn Washer-"B" = 1/4". . . . Cat. No. 5051
Narrow Tip Non-Turn Washer-
" \(B^{\prime \prime}=5 / 32^{\prime \prime} \times 1 / 8 "\) \(\qquad\) Cat. No. 5052

Fig. 71: Table-mounted cage for Model J with Series Plug Terminal No. 607

Fig. 72: Table mounted cage for Model R with Terminal No. 604

Application: A ventilated enclosure should be used when a rheostat is to be mounted where there is possibility of mechanical injury or likelihood of human contact with electrically "live" parts. Cages also provide a convenient means of table top mounting and are a necessity for portable applications. (lassifications of rages per NBMA definitions are given under that heading. Dustproof cages are frequently used where there are unusual amounts of dust or particles in the air.

Cage Wattage Ratings: Rheostats in ventilated enclosures can be used at full wattage, but rheostats in dustproof enelosures most generally be operated at redued wattage to avoid overheating caused by the absence of ventilation. Rheostats in cireuits where the ratio of maximum to minimum current exceeds 2 can be operated at full rating, but rheostats where the current ratio is less, should be operated at not over \(50 \%\) of the free air wattage.

Cage Types: A varicty of cages are available to meet different requirements. Standard cages are the (ieneral Purpose Ventilated Type (iPV' or Dustproof Type (iPI).

Fig. 73: Typical cages for back-ofpanel mounting.

Lightweight Sealed Type LWI), Explosion-proof ENP, Weather-proof or Watertight Type WP, Drip-proof Type DP. (iastight Type (iT, 'Hermetically'scaled ((ias or Air Filled) Type HS(i and Fluid Filled HSF are also available in some sizos.

\section*{STANDARD GENERAL PURPOSE CAGES}

Description: Ventilated cages have perforated metal sides and are gray wrinkle finished. Dustproof cages are similar but without ventilating holes.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{TERMINAL TYPES} \\
\hline Terminal & Available On & \begin{tabular}{l}
Type \\
No.
\end{tabular} \\
\hline Binding Posts -2 Terminals & L, P, N, R,T, U & 601 \\
\hline Binding Posts -3 Terminals & L, P, N, R,T, U & 602 \\
\hline Wire Leads-2 Asbestos Insulated Wires, 6 inches long & All & 603 \\
\hline Wire Leads-3 Asbestos Insulated Wires, 6 inches long & All & 622 \\
\hline BX Cable-2 Conductor, 6 inches long & P, N, R, T, U & 604 \\
\hline BX Clamp and \(6^{\prime \prime}\) Wire Leads & P, N, R, T, U & 605 \\
\hline Pipe Flange for \(1 / 2^{-}\)Conduit, with 2 Wire Leads, 6 inches long & L, P, N,R,T, U & 606 \\
\hline Line Cord- 6 ft ., Heater (Type HPD) with Series Plug & All & \(607^{*}\) \\
\hline Line Cord -6 ft ., Heater Type with Rubber Covered Cord (Type HSJ and Series Plug) & All & 607R* \\
\hline Line Cord- 6 ft ., Heavy Duty Rubber Covered with Heavy Duty Plug & All & 628 \\
\hline Line Cord- 6 ft ., Heavy Duty Rubber Covered with Grounding Terminal Plug & All & 623 \\
\hline \(90^{\circ}\) Elbow "Condulet" fitting with 3 -wire leads & P, N, R, T, U & 624 \\
\hline Outlet Box \(4^{\prime \prime} \times 4^{\prime \prime}\) with 3 Terminal Strip & P, N, R,T,U & 625 \\
\hline Outlet Box \(4^{\prime \prime} \times 4^{\prime \prime}\) with 6 Terminal Strip & P, N, R,T,U & 626 \\
\hline Screw and Nut Terminals-3, with Coverplate and \(27 / 2^{\prime \prime}\) dia. hole for BX fitting, etc. & P, N, R, \(T, U\) & 627 \\
\hline
\end{tabular}
*Specify No. 607G or 60\%GR if grounding plug is required.

STANDARD VENTILATED AND DUSTPROOF RHEOSTAT CAGES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline For Rheostat Model \(\dagger\) & H & J & G & K & L & P & N & R & T & U \\
\hline Cage Diameter & 21/8" & \(31 / 8^{\prime \prime}\) & \(31 / 4^{\prime \prime}\) & \(33 / 4{ }^{\prime \prime}\) & 41/2" & \(71 / 2^{\prime \prime}\) & \(71 / 2^{\prime \prime}\) & \(91 / 2^{\prime \prime}\) & \(13 \% 6^{\prime \prime}\) & \(13 \% / 16^{\prime \prime}\) \\
\hline Height or Depth Behind Panel & \(2^{\prime \prime}\) & \(2^{\prime \prime}\) & 23/8" & 23/8" & \(25 /{ }^{\prime \prime}\) & \(31 / 4{ }^{\prime \prime}\) & \(31 / 4^{\prime \prime}\) & \(41 / 4{ }^{\prime \prime}\) & \(413 / 6{ }^{\prime \prime}\) & \(413 / 6{ }^{\circ}\) \\
\hline Mounting Bolt Radius. & 1\%/8" & 113/16" & 21/4" & \(21 / 4 "\) & 25/8" & \(41 / 4^{\prime \prime}\) & 41/4" & 511/2" & \(73 /{ }^{\prime \prime}\) & \(73 / 6^{-}\) \\
\hline Mounting Bolt Slots (\(120^{\circ}\) Apart) for Screw Size. . & No. 10 & \(1 / 4^{\prime \prime}\) & \(1 / 4\) " \\
\hline Approximate Weight, Pounds (without rheostat). . & 0.18 & 0.26 & 0.41 & 0.41 & 0.53 & 1.25 & 1.25 & 2.0 & 6.8 & 6.8 \\
\hline Table Mounted Ventilated Cage Cat. No. & 6550 & 6551 & 6552 & 6553 & 6554 & 6555 & 6556 & 6557 & 6558 & 6559 \\
\hline Table Mounted Dustproof Cage Cat. No. & 6570 & 6571 & 6572 & 6573 & 6574 & 6575 & 6576 & 6577 & 6578 & 6579 \\
\hline Equipment. & A & A & A & A & A & C & C & C & C & C \\
\hline - Back-of-Panel Ventilated Cage Cat. No. & 6560 & 6561 & 6562 & 6563 & 6564 & 6565 & 6566 & 6567 & 6568 & 6569 \\
\hline - Back-of-Panel Dustproof Cage Cat. No. & 6540 & 6541 & 6542 & 6543 & 6544 & 6545 & 6546 & 6547 & 6548 & 6549 \\
\hline Equipment..... & B & B & B & B & B & C & C & C & C & C \\
\hline
\end{tabular}
*Models H, J, G, K, L mount by means of rheostot bushing on ponels up to \(3 / 16^{\prime \prime}\) thick. Models \(P, N, R, T, U\) mount by means of 3 screws on panels up to \(1 / 2^{\prime \prime}\) thick except \(1^{\prime \prime}\) on Models \(P\) and \(N\). †For Model \(E\) rheostat cages, see pages 9 and 29.

\footnotetext{
Equipment A: Terminol No. 603, Knob No. 5116, Dial No. 5000.
Equipment B: Terminal No. 603, Knob No. 5150.
Equipment C: Terminal No. 604, Knob No. 5105.
}

RHEOSTAT CAGES

\section*{NEMA-NEC ENCLOSURE CLASSIFICATIONS}

The "National Electrical Manufacturers Association" (NEMA) Industrial Standards IC-2-128 provides for a variety of enclosures to meet different ambient condi-
tions. Listed below are the principal types, the corresponding National Electrical ('ode designations (from Article 500) and the equivalent Ohmite type designations.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{NEMA (National Electrical Mfg. Association)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
NEC \\
(National Electrical Code)
\end{tabular}} & DESCRIPTION PER STANDARDS & & OHMITE TYPE DESIGNATIONS \\
\hline TYPE & CLASS & CLASS & GROUP & & TYPE & DESCRIPTION \\
\hline 1 & & & & General Purpose Ventilated or Closed (Dustproof) & \[
\begin{gathered}
\text { GPV } \\
\text { (or GPD) }
\end{gathered}
\] & Sheet Metal Enclosure with Perforated Metal Sides \\
\hline IA & & & & Semi Dust-Tight & GPD & Sheet Metal Enclosure \\
\hline V & & III \& IV & & Dust-Tight & & Heavy Walled Cast Enclosure with Threaded \\
\hline VII & 1 & 1 & C, D & Hazardous Locations (Gas) & EXP & Cover Fastening (or Ground Joints) \\
\hline IX & II, F\&G & II & E, F\&G & Hazardous Locations (Dust) & & "Explosion-Proof" \\
\hline III & & & & Weather-Resistant & & Cast Enclosure with Gasketed Cover and \\
\hline IV & & & & Watertight & W & ft \\
\hline XII & & & & Industrial Enclosure-Dirt and Oilproof & & Same as Type GPD \\
\hline
\end{tabular}

Note: As size, weight, delivery time, ond cast vory greotly with the type of enclosure, the exoct type required should be corefully considered before moking o selection.

Fig. 74: Series Plug No. 6050 for Terminals No. 607 and No. 607R
Application: For connecting a rheostat (or resistor) in series with a load and the line by simply plugging the load attachment plug into the soties plug which itself is plugged into the power reeeptacle. Also available with grounding terminal.
Description: 'The series plug consists of a bakelite body
with a receptacle in the top and prongs on the bottom. The series plug is connected to the rheostat by means of a line cord.
Scries Plug only
Cat.No. 6050
Series Plug with Grounding Pin.... Cat. No. 6050G sories Plug with 6 ft . Heater Cord.... . . Type No. 607. Series Plug with 6 ft . Rubber ('orl. . . Type No. 607 l *
*Specify No. 607G or 607GR if grounding plug is required.

\section*{HEAT OR OTHER CONTROL RHEOSTATS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Wattage of Device To Be Controlled} & \multirow[t]{2}{*}{Rheostat Control Cat. No.} & \multirow[t]{2}{*}{\[
\frac{\text { Cage }}{\text { Dia. }}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { Dimensions }}{\text { Height }}
\]} & \multirow[t]{2}{*}{Net
Weight
lbs.} \\
\hline Watts & Volts & & & & \\
\hline 40-65 & 115 & SRC65 & 31/8" & 2 " & 58 \\
\hline 85-100 & 115 & SRC100 & 31/8" & \(2^{\prime \prime}\) & . 58 \\
\hline 120-150 & 115 & SRC150 & 33/4" & 23/8" & . 93 \\
\hline 175-220 & 115 & SRC220 & \(33 / 4{ }^{\prime \prime}\) & \(23 / 8\) " & 1.05 \\
\hline 300-350 & 115 & SRC350 & \(41 / 2^{\prime \prime}\) & \(23 /{ }^{\prime \prime}\) & 1.63 \\
\hline 430-500 & 115 & SRC500 & \(71 / 2^{\prime \prime}\) & \(31 / 4^{\prime \prime}\) & 2.25 \\
\hline
\end{tabular}

Application: To control the temperature involved in heat-sealing, wax and solder pots, soldering irons, furnaces and for other uses within the specified current range.
Description: The rheostats listed are mounted in perforated, gray wrinkle finished metal cages with knob and dial, Series Plug and six-foot heater type cord as described above. Designed to reduce power in load by approximately \(50 \%\) maximum, for 115 V , use.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{T.PAD ATTENUATORS} & \multicolumn{2}{|l|}{L-PAD ATTENUATORS} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 25 \text { WATT } \\
& \text { Avg. Wt. } 1.44 \mathrm{lbs} \text {. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
25 WATT \\
Avg. Wt. 1 lb .
\end{tabular}} \\
\hline Catalog No. & \[
\begin{array}{|c|}
\hline \text { Line } \\
\text { Impedance } \\
\text { In Ohms }
\end{array}
\] & Catalog No. & \[
\begin{array}{|c|}
\hline \text { Line } \\
\text { Impedance } \\
\text { In Ohms }
\end{array}
\] \\
\hline \[
\begin{aligned}
& 3001 \\
& 3002 \\
& 3003 \\
& 3004 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
50 \\
200 \\
500 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3201 \\
& 3202 \\
& 3203 \\
& 3204 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
50 \\
200 \\
500 \\
\hline
\end{array}
\] \\
\hline \[
\begin{array}{r}
50 \mathrm{n} \\
\text { Avg. Wt. }
\end{array}
\] & \[
\begin{aligned}
& \text { NATT } \\
& 1.88 \mathrm{lbs} .
\end{aligned}
\] & \[
\begin{array}{r}
50 \mathrm{~W} \\
\text { Avg. Wt. }
\end{array}
\] & \[
\begin{aligned}
& \text { NATT } \\
& 1.25 \mathrm{lbs} .
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3101 \\
& 3102 \\
& 3103 \\
& 3104
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
50 \\
200 \\
500
\end{array}
\] & \[
\begin{aligned}
& 3301 \\
& 3302 \\
& 3303 \\
& 3304 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
50 \\
200 \\
500
\end{array}
\] \\
\hline
\end{tabular}

\section*{AUDIO T AND L PAD ATTENUATORS}

Application: Smooth, stepless control of loud-speaker

Fig. 75: Attentuator volume in high-power public address systens. Varies volume without changing the impedance of the total load connected to the amplifier, thus avoiding distortion and power changes. No insertion loss in full volume position.

Standard or Special: 15, 50, 200 and 500 ohm pads of 25 and 50 watt rating are available from stock. l'ads for special line impedance, wattages, or with other circuits are made to order.

Fig. 76: A special explosion-proof rheostat enclosure

\section*{EXPLOSION-PROOF ENCLOSURES}

Ohmite explosion-proof enclosures are primarily for use in hazardous locations where the atmosphere may carry explosive gases or dust.

These enclosures meet the requirements of NEMA Type VII, Class I, Hazardous Locations (gas), (NEC Class 1, Group C and D) ; and NEMA Type IX, Class II, Groups F and G, Hazardous Locations (dust), (NEC Class II, Groups E, F and G). They also meet the requirements of NEMA Type V, Dust-tight, (NEC Class III and IV). The enclosures are made of thickwalled castings with accurately machined, tight fitting covers and tight fitting shaft. If explosive mixtures penetrate the enclosure and are ignited by a spark or heat, the flame will be extinguished by cooling as the products of combustion go through the small clearance openings, thus preventing ignition of the explosive mixture on the outside of the enclosure. Enclosures for surface mounting or back of panel, can be supplied for Models \(H\) to \(U\) single or two in tandem. Further information will be supplied for specific requests.

\section*{'HERMETICALLY' SEALED RHEOSTATS}

To completely isolate rheostats from the ambient atmosphere, rheostats can be supplied in 'hermetically' sealed enclosures. Terminals are brought out through glass seals. The shaft is sealed by a sperial ()-ring. The enclosures may be filled with dry gases or various liquids. Recommendations will be made for specific eases.

Fig. 77
Compact enclosures, made from lightweight drawn cups, and equipped with two or three screw terminals (or 3 solder lugs), as required, are available for the Model E, H, J, G, and K rheostats. They are dust-tight, but not hermetically sealed. The enclosures are permanently closed by a rolled double seam. The Model E, H and J enclosures correspond to the sizes called for in Military Specifications MIL-R-22 and Models H and J as included in MIL-R-6749. When units are desired to meet the MIL specifications, they should be ordered by the code designation of the pertinent specification. Commercial types are listed in the table.
*Model C normally enclosed; Model E stocked enclosed and unenclosed - see page 9.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Model} & \multicolumn{3}{|c|}{Description} & Avg. Wt. With Rheo. & Cat. No. \\
\hline & Terminals & Dia. & Length & Pounds & \\
\hline E & 2 & 1364" & 17\%" & . 06 & 6584A \\
\hline E & 3 & 1364" & 1783" & . 06 & 6584B \\
\hline H & 2 & 13/4" & \(13 / 4{ }^{\prime \prime}\) & . 30 & 6580A \\
\hline H & 3 & 13/4* & \(13 / 4\) " & . 30 & 6580B \\
\hline J & 2 & 21/2* & \(13 / 4\) " & . 45 & 6581 A \\
\hline J & 3 & \(21 / 2^{\prime \prime}\) & \(13 / 4\) " & . 45 & 6581 B \\
\hline G & 2 & 37/6" & \(21 / 4^{\prime \prime}\) & . 75 & 6582A \\
\hline G & 3 & 37/6" & 21/4" & . 75 & 6582B \\
\hline K & 2 & 37/6" & \(21 / 4^{\prime \prime}\) & . 90 & 6583A \\
\hline K & 3 & 37/6" & 21/4" & . 90 & 6583B \\
\hline
\end{tabular}

Note: Bushings for \(1 / 4^{\prime \prime}\) thick panel, max., (\(1 / 8^{\prime \prime}\) for Model E) supplied as standard. Two terminals will be connected for counter-clockwise increase of resistance, as viewed from knob, unless otherwise ordered. When soldering lugs are wanted, they must be specified; add suffix L to Cat. No. Rheostat ohms, current, etc., must be specified.

\section*{LABORATORY TYPE} STANDS

Specify rheostat separately; rheostat is shipped not assembled to stand, unless ordered assembled.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Model} & \multirow[t]{2}{*}{\begin{tabular}{l}
Approx. \\
Weight \\
Pounds
\end{tabular}} & \multicolumn{3}{|c|}{Dimensions} & \multirow{2}{*}{Cat. No.} \\
\hline & & Width & Depth & Height & \\
\hline P & 3 & 61/4" & 7 & \(63 / 4^{\prime \prime}\) & 6534 \\
\hline N & 3 & \(61 / 4^{\prime \prime}\) & \(7{ }^{\prime \prime}\) & 63/4" & 6525 \\
\hline R & 4.5 & \(81 / 4^{\prime \prime}\) & 81/2" & 73/4" & 6526 \\
\hline T & 10 & \(1112^{\prime \prime}\) & 9\%" & \(10^{1 / 22^{\prime \prime}}\) & 6529 \\
\hline U & 12 & \(131 / 2^{\prime \prime}\) & \(117{ }^{\prime \prime}\) & \(12^{\prime \prime}\) & 6530 \\
\hline
\end{tabular}

Application: lheostat control of the speed of fractional and integral horsepower motors is the most widely applicable method, is generally the simplest and is easily added to existing installations. Ohmite rheostats provide close, smooth, compact, convenient motorspeed control in countless industrial and appliance uses, such as:

\author{
Arc Lamps \\ Blue-Printers \\ Film Printers Motion Picture Projectors Fans \\ Blowers \\ Pumps
}

Unit Heaters
Advantages of Ohmite Rheostats: Smooth, close, continuously variable control, permanently good performance, freedom from deterioration, and compactness make Ohmite rheostats ideal for this service.

All Motors Not Speed Controllable: While all types of direct current motors can be speed-controlled, only a few kinds of alternating current motors are controllable, hence it is essential to obtain the correct type of A.C. motor when speed control is required. Speed controllable motors are listed in the table on page 31.
The following alternating current motors are not speed controllable: Split Phase, Repulsion StartInduction Run, Repulsion-Induction, Capacitor Start and Run (except for special fan duty motors), Capacitor Start-Induction Run, Synchronous, and Squirrel Cage. No type of speed control is generally available for standard models of these motors because of the use of centrifugal starting switches, inherent constant speed or other design details.

Choice of Motor Depends on the Load: Only the universal motor (a form of series-wound motor) is available for service on both alternating and direct current. It is a high-speed type of motor (3000 to 15,000 R.P.M.) with strong starting torque. The speed varies widely with changes in the load. Generally, the rheostat setting for a given speed will be slightly different on A.C. than D.C. because the characteristics of a series motor change with the type of current. Resistors are often connected in the circuit on D.C. to make the characteristics more nearly identical with the A.C. characteristics. The shunt wound direct current motor has a very slight change of speed with load.

Motor manufacturers find it necessary to change the inherent characteristics such as starting torque, running torque, etc., to suit different applications of the same motor and therefore rheostats, too, must be de-
signed to suit each particular application. In general, motors of similar rating made by different manufacturers require somewhat different rheostats for best control.

Fig. 79: An application of a rheostat in a special cage for motor speed control

Speed Control Laws for D. C. Motors:
Speed is proportional to the voltage across the armature and inversely proportional to the field flux. Torque (furning moment expressed in pound-feet or ounce-inches) is proportional to the product of the armature current and the field strength.
These laws apply to all forms of direct current motor speed control and help explain the principles underlying the different control circuits.

Different Types of Control: Several different types of control are shown in the table on page 31. A study of this table will help to show that the choice of control depends on:
1. Whether A.C. or D.C. or universal operation is required.
2. The type of motor.
3. The type and amount of load.
4. The exactness of speed control desired.
5. The speed range to be covered.

Another circuit, not shown, uses two rheostats connected in tandem, one in series with the armature and one in parallel with it. This circuit is used to produce very slow speed control of shunt wound motors.

In addition to the circuits shown, Ohmite rheostats are utilized on the motor-generator systems of speed control which are used on I.C. motors of integra! horsepower size. There are also multi-speed variations of the circuits shown which utilize Ohmite Power Tap Switches and Ohmite lixed Resistors; also governorcontrolled motors which uilize (Ohmite Fised Resistors. Ohmite VT Tariable Transformers can also be used on \(A C^{\prime}\) applications, or on \(D C^{\prime}\) in conjunction with a rectifier.

Rheostats with Reversing Switch: Rheostats with two separate windings and a toggle switch can be supplied for single knob speed control and reversing of D. (. motors. One winding controls forward speed, the other reverse.

Fig. 80: A reversing-type, speed control rheostat

\section*{Rheostats Individually Designed:}

Loads have been classified for general calculation as (a) Machine Duty, where the current is assumed \(80 \%\) at \(50 \%\) speed, and (b) Fan Duty, where the load current is assumed as recluced to \(40 \%\) of maximum at \(50 \%\) of full load speed.

While loads have been grouped arbitrarily in the above two classifications, each application varies from these theoretical values to such an extent that for the best control, the rheostats must be designed for the particular application. This means that the actual currents and resistances under load must be obtained to permit proper design; the nameplate data from the motor is generally insufficient.
\begin{tabular}{|c|c|c|c|}
\hline Type of Control & Type of Motor & General Characteristics of Control & Circuit Diagram \\
\hline \begin{tabular}{l}
I. \\
SERIES RHEOSTAT
\end{tabular} & \begin{tabular}{l}
D.C. Series or Shunt \\
D.C. Permanent Magnet \\
Universal. \\
A.C Series \\
A.C. Repulsion \\
A.C. Shaded Pole
\end{tabular} & \begin{tabular}{l}
Most used for fractional H.P. oppliances, A.C. or Universal, where the load is constant or variations in speed with load are unimportant. \\
Speed will vary widely with the load. \\
\(50 \%\) reduction of full load speed is maximum used on larger motorsmore on smaller motors-depends on type of load.
\end{tabular} & \\
\hline \begin{tabular}{l}
II. \\
ARMATURE SHUNT RHEOSTAT
\end{tabular} & \begin{tabular}{l}
D.C. Series \\
A.C. Series Universal
\end{tabular} & \begin{tabular}{l}
Reduces speed but maintains torque. \\
Speed will vary less widely with the lood than with Series Control. \(50 \%\) reduction of full load speed is maximum used on larger motorsmore on smaller motors-depends on type of load.
\end{tabular} & \\
\hline \begin{tabular}{l}
III. \\
COMBINED \\
ARMATURE SHUNT AND SERIES RHEOSTATS
\end{tabular} & \begin{tabular}{l}
D.C. Series \\
A.C. Series Universal
\end{tabular} & \begin{tabular}{l}
Widest speed range-maintains torque-useful where load varies. \\
Speed will remain fairly constant regardless of load. \\
Range of 5 to 1 or more is possible depending on type of load.
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { IV. } \\
& \text { ROTOR } \\
& \text { SERIES } \\
& \text { RHEOSTATS }
\end{aligned}
\] & A.C. Polyphase Wound Rotor & \begin{tabular}{l}
Standard method for wound rotor motors-also used on single-phase type. \\
Speed will vary with the load. \\
\(50 \%\) reduction in speed is the maximum generally used. Greater reduction is possible.
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { V. } \\
& \text { FIELD } \\
& \text { RHEOSTAT }
\end{aligned}
\] & \begin{tabular}{l}
D.C. \\
Shunt
\end{tabular} & \begin{tabular}{l}
Most used type for integral H.P. industrial applications. \\
Speed remains fairly constant at any load. \\
Speed increases with added resistance. Range depends on motor design. Field must never be opened.
\end{tabular} & \\
\hline \begin{tabular}{l}
VI. \\
ARMATURE SERIES RHEOSTAT
\end{tabular} & \begin{tabular}{l}
D.C. \\
Shunt
\end{tabular} & \begin{tabular}{l}
Used to lower speed. \\
Speed will vary with load. \\
Speed decreases as resistance is added. \(50 \%\) maximum on larger motors.
\end{tabular} & \\
\hline \begin{tabular}{l}
VII. \\
COMBINED \\
FIELD AND \\
ARMATURE \\
SERIES \\
RHEOSTATS
\end{tabular} & \begin{tabular}{l}
D.C. \\
Shunt
\end{tabular} & \begin{tabular}{l}
Used for widest speed range. \\
Speed variation with load depending on position of control. Speed range depends on motor design.
\end{tabular} & RHEO. SHAFTS MECH. CONN. \\
\hline \begin{tabular}{l}
VIII. \\
AUTO. \\
TRANSFORMER WITH TAP SWITCH
\end{tabular} & \begin{tabular}{l}
Special A.C. \\
Capacitor Motor
\end{tabular} & \begin{tabular}{l}
Used for fan type duty or other low starting torque, constant type of loads. \\
will vary with load. \\
Speed range depends on motor design.
\end{tabular} & \\
\hline
\end{tabular}

Fig. 81: Typical Ohmite motor-driven rheostat assembly

Ohmite rheostats, either single or in tandem, can be motor operated under remote control. While customers can adapt drives of their own to the rheostats, Ohmite offers standard reversible motor drives assembled to the rheostat of your choice. These standard drives encompass a selection of traverse speeds designed to meet the most frequent requirements and faster delivery can be provided on these. The standard drives are available with 115 -volt DC or AC motors in traverse speeds as follows:
\begin{tabular}{l|c}
\multicolumn{2}{c}{ TRAVERSE SPEED } \\
\hline DC Motor & \\
(Seconds) & AC Motor \\
\hline 3.4 & (Seconds) \\
\hline 10.12 & 8 \\
\(40-50\) & 8 \\
\(100-120\) & 30 \\
& 45 \\
\hline
\end{tabular}

The standard arrangement includes the necessary limit switches and cams to stop traverse at the end of the rotational arc. Reversal is accomplished by moving a 3-position control switch to the "reverse" position. Users may also specify additional switches for programming associated equipment during the traverse of the rheostat. Request Bulletin 206 for complete ordering data on standard motor driven rheostats.

Non-Standard Drives: Ohmite can adapt motor drives to meet applications where the requirements are so special that the standard motor driven assemblies are not suitable. Such requirements could include special speeds, 360 degree rotation using "bridged-gap" rheostats (page 24), self-reversing rotation, special auxiliary programming switches, slip clutches, combinations of rheostats and other controls such as transformers or composition potentiometers and other variations. Complete specifications in such cases must be submitted to Ohmite for engineering evaluation and quote.

\section*{CONCENTRIC CONTROL RHEOSTAT ASSEMBLIES}

OHMITE

Fig. 82: Tandem assembly with rheostats independently controlled

Two rheostats can be separately controlled by means of concentrically located knobs. This may be done for convenience in operation, to conserve panel space, or where it may be desired to use one rheostat as a vernier for another.

The two rheostats are mounted on a tandem assembly frame with the shaft of the rear unit extending through the hollow shaft of the first. A hand-wheel, or knob, controls the rheostat closest to the mounting panel and a sinaller knob) controls the other rheostat.

Any combination of models of rheostats can be mounted for concentric control, with the larger rheostat preferably next to the panel. When the largest rheostat is no larger than a Model \(\mathbb{L}\), the hollow shaft is \(\frac{1}{4} 4^{\prime \prime}\) diameter and the through-shaft is \(3 / 16^{\prime \prime}\) diameter. When the larger rheostat is a Model P, N, R, T, or U, the standard hollow shaft is \(3 / 8^{\prime \prime}\) diameter and the through shaft is \(1,4^{\prime \prime}\) diameter. A hollow shaft of \(1 / 2^{\prime \prime}\) diameter and through-shaft of \(3 / 8^{\prime \prime}\) diameter can be supplied also. The tandem assembly can consist of more than two rheostats with the additional rheostats turning with either shaft. Mounting dimensions are similar to an equivalent standard tandem assembly. Write for further information for specific applications. Panel thickness must be given.
Combinations with Other Controls: Tap switches, low power wafer-type switches, composition potentiometers or variable transformers can be combined with rheostats in concentric control assemblies, with the auxiliary device operated by the through-shaft.
Concentric Control Tandem Mig. Code Word: CONCO

\section*{RHEOSTATS FOR LAMP DIMMING}

Fig. 83: Average curves for tungsten filament lamps

An Ohmite Rheostat, when connected in series with an incandescent lamp, provides ideally smooth, gradual control of light output from full intensity to any desired degree of dimming. Such control is utilized in photography (lighting of subjects, projection and contact printers, and safe lights); in medicine and dentistry (examination lights); in aviation (instrument lights); in advertising displays, theater stage lighting, and in other applications.

The size and resistance of the rheostat is determined by the lamp to be controlled and the amount of dimming desired. Because a larger rheostat or a tapered winding of more sections is needed for blackout than for \(1 \%\) light, important economies can often be made if it is permissible to open the circuit before blackout. It is strongly recommended that the minimum amount of light desired be determined by a substitution trial or by measurement with a photo-electric light meter, as visual estimates generally are not sufficiently accurate.

The curves in Fig. 83 show the per cent lamp current, voltage, and resistance, and the per cent required rheostat ohms for any percentage of dimming. The curves apply to 115 volt standard tungsten filament lamps and, in general, to any other lower voltage tungsten filament lamp. Rheostats listed in the table cover the most common applications. They are unmounted units, taper wound as required. The second letter of the Catalog Number corresponds to the model, details of which will be found on pages 9 to 13. A knob, as listed on page 26 , should be ordered if one is desired.

Our Engineering Department will be glad to recommend the proper rheostat for any special application on receipt of the following information:

Lamp type, volts and rated current, minimum light (in per cent of maximum), and off-position if wanted. For uncommon types of lamps, supply a sample for test or a curve of light and current versus volts.

LAMP DIMMING RHEOSTATS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Lamp Watts} & \multicolumn{4}{|c|}{Minimum Brilliance of Light as Percentage of Full Intensity} \\
\hline & 10\% & 1\% & \(\ddagger 1 / 8 \%\) \& Off & Blackout. \\
\hline 25 & LHA25 & LJB25 & LJC25 & LJD25 \\
\hline 40 & lhato & LJB40 & lgC40 & LKD40 \\
\hline 50 & luaso & LGB50 & LKC50 & LKD50 \\
\hline 60 & LJa60 & LK860 & LKC60 & LKD60 \\
\hline 75 & LJa75 & LKB75 & LKC75 & LLD75 \\
\hline 100 & LKA100 & LKB100 & LKC100 & LPDI00 \\
\hline 120 & LKA120 & LLB120 & LPC120 & LNDI20 \\
\hline 150 & LKA150 & LLB150 & LNC150 & LNDI50 \\
\hline 180 & LKA180 & LNB180 & INC180 & LND180 \\
\hline 200 & LLA200 & LNB200 & INC200 & LND200 \\
\hline \$No. 1 & * Lgal & [NB1 & LRCI & LRDI \\
\hline \$No. 2 & *Lla2 & LRB2 & LTC2 & LUD2 \\
\hline §No. 4 & *INA4 & LUB4 & tittes & tIUUD4 \\
\hline
\end{tabular}
* \(50 \%\) light instead of \(10 \%\). \(\dagger\) Two rheostats in tandem.
\(\ddagger\) light is reduced to \(1 / 6 \%\) and then the circuit is opened by a No. 352 Off-Position.
§Numbers 1, 2 and 4 are photoflood lamps which operate at 250, 500 and 1000 watts respectively.

\section*{MOTOR DRIVEN LAMP DIMMERS}

Ohmite rheostats arranged for motor drive are often used as faders in advertising displays. Such rheostats are of the bridged gap type (page 24) for continuous rotation. Fig. 84 (A) shows a method of using one rheostat to fade between two lamp banks (both going out as the arm passes the center lead). Figure 84 (B) shows a method for gradually bringing a lamp from out to full on and back to out once every revolution.

Fig. 84: Fader circuits arranged for continuous rotation

\section*{OHMITE}

Ohmite power theostats have seen service in military applications for many years. They have established their noted dependability in widely dispersed areas subject to the extremes of enviromment from the tropies to the arctic. Ohmite's inert, all ceramic and metal construction is the reason for the durability and ruggedness required to meet the exhaustive tests of the military specifications.

All of the styles (sizes) required by the fundamental rheostat specification, MHJ-R-22 (Resistors. Variable, Wirewound, Power Type) from the tiny 5 watt Style RP05 (Model C) to the 1000 -wat RP55 (Model C') are

Fig. 86: Typical locking-type rheostats supplied under MIL-R-22

Fig. 87: Aircraft Power Rheostats for MIL-R-6749
supplied by Ohmite with the various options required by the military-options such as enclosures, locking shafts with slots or flats, off-positions, etc.

Ohmite also supplies rheostats to meet military specification MIL-R-6749 for Aircraft Rheostats. This specification covers 25 and 50 -watt enclosed rheostats used in aircraft, primarily for light dimming purposes. The physical sizes correspond to Styles RP11 and RP16 of MIL-R-22 with a few differences. The entire specified range of winding tapers is provided under this specification.
TO Order: When a QPI」 item is required atways order hy Military Designation, not hy Ohmite Type number.

MIL-R-22 RHEOSTATS, WIREWOUND
\begin{tabular}{|c|c|c|c|c|c|}
\hline Military Designation & Watt Size & Ohmite Type & Military Designation & Watt Size & Ohmite Type \\
\hline RP05.1 & 5 & Madel C, enclosed & RP16 & 25 & Model J, enclosed \\
\hline RPO6 & 12.5 & Model E & RP20 & 75 & Model G \\
\hline RP07 & 6.25 & Mozel E, & RP25 & 100 & Model K \\
\hline & & enclosed & RP30 & 150 & Model L \\
\hline RP10 & 25.0 & Model H & RP351 \({ }^{2}\) & 225 & Model P \\
\hline RP11 & 12.5 & Model H, & RP401 \({ }^{2}\) & 300 & Model N \\
\hline & & enclosed & RP451 \({ }^{2}\) & 500 & Model R \\
\hline RP15 & 50 & Model J & RP501 \({ }^{2}\) & 750 & Model T \\
\hline & & & RP551 \({ }^{2}\) & 1000 & Model U \\
\hline
\end{tabular}

MIL-R-6749 RHEOSTATS: \({ }^{\text {® }}\) AN (Enclosed)
AN3155 25 and 50 Watt
MIL-R-15109 RHEOSTATS: HI-SHOCK Madels \(E^{3}, H^{3}, J, G, K\)
Notes: (1) 1,000 ohms, max.
(2 Not applicable to CAMESA (Canadian equiv. to DESC-E) (3) Also enclosed

Application: Ohmite Vitreous Enameled Rheostats provide smooth, close, gradual control of generator voltage. The permanence of their characteristics, smoothness of operation, exactness of control, and compactness have made them first choice among generator and switchboard designers. By providing practically continuous variation of resistance in even the smallest sizes, they have made possible great savings in control-panel space. This makes them particularly useful on portable equipment, such as welding generators and power supplies.

Range of Sizes: With a series of ten wattage sizes, there is an (ohmite rheostat, or tandem rheostat assembly, suitable for every size generator in the range from the smallest to units of several hundred kilowatts.

Individually Designed: Ohmite field rheostats will be individually designed by our Engineering Department to fit each generator field condition upon receipt of the following information: State whether self or separately excited, give field resistance (hot), maximum field current (state at what volts for self-excited machines), minimum field current, rheostat resistance (if known). For self-excited machines it is desirable to supply a field magnetization curve.

Standard Designs: The rheostats listed on the following pages are tapered or uniformly wound, as required, designed to provide control for separately or self-excited generators. A number of models with differently tapered windings are listed for each resistance value. Current values depend on both the maximum voltage and the field resistance. Maximum design volts used were 32, \(40,64,80,100,125,160,200,250,320\) and 400 . Ratios of rheostat resistance to field resistance were set at equal, 1.6 times, 2.5 times or 4 times.

Fig. 88: Design curve for field rheostat

Fig. 89: Typical field control rheostal, wire side view.

\section*{DESIGN OF FIELD RHEOSTAT FOR SELF-EXCITED GENERATOR}

A magnetization curve (such as Fig. 88) for the particular machine should be obtained from the generator manufacturer. The no load curve is used for machines which may be operated without load or with a light load; a full load curve may be used for a generator which is permanently connected to a load.

The first step is to locate the "ceiling volts"-the highest voltage up to which the generated voltage will build when there is no resistance in series with the field. At this point \(E_{G}=R_{\text {field }} \times I_{\text {field }}\). A straight line drawn through zero and "ceiling volts" represents the voltage necessary to produce the field current at any intervening point. The vertical distance between this line and the curve of generated voltage represents the voltage drop which must be taken up by the field rheostat.

The second step is to draw the curve of field rheostat ohms versus field current. This is obtained by Ohms' Law:
Rheostat Ohms \(=\) Volts Drop in Rheostat \(\div\) Field Amps. The total resistance required will depend upon how low it is desired to bring the terminal voltage.

Knowing the maximum voltage, the resistance and maximum and minimum currents, a rheostat may be selected from the tables or Ohmite engineers will design a special unit for the job.

OHMITE

\title{
GENERATOR FIELD CONTROL AND GENERAL PURPOSE TAPERED RHEOSTATS
}

The rheostats in the following table are arranged in the following way: First, by increasing order of resistance, from low to high; second, for any specific resistance by decreasing maximum current; and third, by decreasing order of minimum current. The specific resistance values listed are those which have been used for many years for field control of generators where the voltage may range from approximately 24 volts to 400 and the resistance of the rheostat may vary from equal to the field resistance to four times as much.
All the rheostats have tapered
windings except those marked with a dagger sign. In addition to their use for field control, they may be used to control any load of stable resistance, where the maximum and minimum currents are not exceeded; for example, heater loads. The uniform wound rheostats can, of course, be used for any type of load within their maximum current rating.
The rheostats are the same in construction as the stock units listed on pages 10 to 13 , inclusive, except that they are taper-wound where indicated. When a field control unit is made up of several rheostats (in-
dicated thus: 2-T, \(3-\mathrm{U}\), etc.), the rheostats are supplied assembled in tandem as described on page 19 and are wired in series by Ohmite Mfg. Co. Standard taper-windings provide a decrease in resistance (increase in generated voltage) with clock wise rotation of the knob. Ohmite rheostats, Models H, J, G, \(K, L, P\), and \(N\) are listed under the heading, "Industrial Control Equipment - Miscellaneous Apparatus" in the "List of Inspected Electrical Equipment" published by the Underwriters' Laboratories,
Inc.

\title{
GENERATOR FIELD CONTROL AND GENERAL PURPOSE TAPERED RHEOSTATS
}
\begin{tabular}{|c|}
\hline Total & \multicolumn{2}{|l|}{Current} & \multirow[t]{2}{*}{Model and Dia.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cot. \\
No. \\
SE-
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Total \\
Rheo. \\
Ohms
\end{tabular}} & \multicolumn{2}{|l|}{Current} & \multirow[t]{2}{*}{Model and Dio.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cat. \\
No. \\
SE-
\end{tabular}} & \multirow[t]{2}{*}{Total Rheo. Ohms} & \multicolumn{2}{|l|}{Current} & \multirow[t]{2}{*}{Model and Dia.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cot. \\
No. \\
SE-
\end{tabular}} & \multirow[t]{2}{*}{Total Rheo. Ohms} & \multicolumn{2}{|l|}{Current} & \multirow[t]{2}{*}{Model and Dia.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cat. \\
No. \\
SE-
\end{tabular}} \\
\hline \begin{tabular}{l}
Rheo. \\
Ohms
\end{tabular} & Max.
Amps & \[
\begin{aligned}
& \text { Min. } \\
& \text { Amps }
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps }
\end{aligned}
\] & \[
\begin{array}{c|}
\text { Min } \\
\text { Amps }
\end{array}
\] & & & & \[
\begin{array}{|l|}
\hline \text { Max. } \\
\text { Amps } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Min. } \\
\text { Amps }
\end{gathered}
\] & & & & \[
\begin{aligned}
& \text { Max, } \\
& \text { Amps }
\end{aligned}
\] & \[
\begin{gathered}
\text { Min. } \\
\text { Amps }
\end{gathered}
\] & & \\
\hline 20 & 2 & 1 & 6,2\%" & 15209 & 32 & 2.5 & 1.25 & L,4* & 15509 & 50 & 5 & 1.95 & +,10 & 16258 & 64 & 1.6 & 0.45 & k,3\% \({ }^{\text {\% }}\) & -15306 \\
\hline 20 & 2 & 1 & k,3\%- & - +15210 & 32 & 2 & 1 & k,31/4* & 15408 & so & 5 & 1.43 & +,10 & 15909 & 64 & 1.6 & 0.5 & & -15302 \\
\hline 20 & 1.6 & 0.8 & J,2\% \(210^{\circ}\) & +15007 & 32 & 2 & 0.77 & 6, \(23 / 4=\) & 15257 & so & 4 & 1.15 & R, \(8^{-}\) & 15709 & 64
64 & 1 & 0.5 & & +15402 \\
\hline 25 & 20 & 5.7 & 4-U,12 \({ }^{\text {d }}\) & 16511 & 32 & 2 & 0.77 & k,31/\% \({ }^{\text {c }}\) & -15258 & so & 4 & 1.15 & R, \(8^{-}\) & 16420 & 64
64 & ! & 0.5
0.39 & & \[
\left\lvert\, \begin{array}{r}
+* 15403 \\
15251
\end{array}\right.
\] \\
\hline 25 & 16 & 4.57 & 3.U.12- & 16310 & 32 & 1.6 & 0.62 & , 21 \% \(0^{\circ}\) & 15056 & So & 3.9 & 1.52 & R, \(8^{-}\) & 16059 & 64 & 0.8 & 0.31 & H, \(1 \% \%^{\circ}\) & 15052 \\
\hline 25 & 15.6 & 6.1 & 3-6,12* & 16061 & 32 & 1.6 & 0.62 & 6,23/4 & 5057 & 50 & 3.2 & 1.6 & N, \(\mathbf{6}^{+}\) & 16220 & 64 & 0.8 & 0.31 & J,23/40 & +*15053 \\
\hline 25 & 12.8 & 0.4 & 3-u.12 \({ }^{-}\) & 16818 & 32 & 1.6 & 0.62 & k,31\%" & +*15058 & 50 & 3.2 & 0.92 & P. \(5^{-}\) & 15508 & 80 & 12.5 & 2.5 & 4-U,12" & 18761 \\
\hline 25 & 12.5 & 4.87 & 2-U,12" & 16462 & 32 & 1.25 & 0.63 & J,2\% \(\mathrm{m}^{\circ}\) & 15204 & 50 & 3.2 & 0.92 & N, \({ }^{-}\) & -15309 & 80 & 10 & 2.80 & 3-U,12* & 16905 \\
\hline 25 & 12.5 & 3.57 & 2-U.12" & 16112 & 32 & 1.25 & 0.63 & 6,2\% m & +*15205 & 50 & 3.12 & 1.22 & \(\mathrm{N}, \mathrm{c}^{-}\) & 15857 & 80 & 10 & 2 & 3.v,12- & 16562 \\
\hline 25 & 10 & 5 & 2-T, \(10^{-}\) & 16622 & 32 & 1 & 0.5 & H, \(1 \%{ }^{\circ}\) & 15003 & 50 & 2.5 & 1.25 & \(\mathrm{N}, \mathrm{C}^{-}\) & 10008 & 80 & 8 & 1.6 & 2-U,12 \({ }^{-1}\) & 16363 \\
\hline 25 & 10 & 3.9 & 2-T, \(10^{-}\) & 16261 & 32 & 1 & 0.5 & J.2\%" & +•15004 & 50 & 2.5 & 0.98 & P, \(5^{-}\) & 15659 & 80 & 7.8 & 2.23 & 2.0.12" & 16706 \\
\hline 25 & 10 & 2.86 & U,12* & 15912 & 40 & 16 & 3.2 & 3-4,12* & 16308 & 50 & 2 & 1 & L,4* & 15804 & 80 & 6.4 & 2.46 & 2-U,12- & 16850 \\
\hline 25 & 8 & 4 & U,12* & 16423 & 40 & 12.8 & 4.93 & 4-U, 112* & 16859 & 50 & 2 & 0.78 & K,31\%. & 15458 & 80 & 0.25 & 1.79 & 2-T, \(10^{-}\) & 16500 \\
\hline 25 & 8 & 2.28 & T, \(10^{\circ}\) & 15712 & 40 & 12.5 & 3.57 & 3.U.12- & 16509 & so & 2 & 0.78 & 1,4* & -15459 & 80 & 5 & 2.5 & 2.r.10 & 17014 \\
\hline 25 & 7.8 & 3.1 & U.12* & 18062 & 40 & 10 & 5 & 3-U,12" & 17017 & 50 & 2 & 0.57 & K,31/0 & 15307 & 80 & 5 & 1.92 & U,12* & 16858 \\
\hline 25 & 6.25 & 2.44 & T, \(10^{*}\) & 15860 & 40 & 10 & 3.85 & 2-U, \(12^{-}\) & 16659 & 50 & 1.6 & 0.8 & k,31/4" & 15600 & 80 & 5 & 1.42 & \%,10 & 16305 \\
\hline 25 & 6.4 & 3.2 & T, \(10^{-}\) & 16223 & 40 & 10 & 2.80 & 2-U,12" & 16308 & so & 1.6 & 0.46 & 1,2\%" & 15108 & 80 & 4 & 1 & U,12- & 16813 \\
\hline 25 & 6.4 & 1.83 & R, \(8^{-}\) & 15512 & 40 & 8 & 4 & 2-u,12" & 16816 & 50 & 1.6 & 0.46 & 6,2\% \({ }^{\text {\% }}\) & -15109 & Bo & 4 & 1.54 & 1.10 & 16457 \\
\hline 25 & 5 & 2.5 & \(\mathrm{R}, \mathrm{B}^{-}\) & 16011 & 40 & 8 & 3.08 & 2-T,10" & 16400 & so & 1.28 & 0.84 & 1,2\% \(2 \times\) & 15404 & 80 & 3.9 & 1.1 & T, \(10^{-}\) & 16107 \\
\hline 25 & 5 & 1.95 & R, \(8^{-}\) & 13663 & 40 & 7.0 & 2.24 & U,12* & 16110 & 50 & 1.28 & 0.04 & 6,2\%** & 15405 & 80 & 3.2 & 1.23 & \(\mathrm{R}, \mathrm{B}^{-}\) & 16256 \\
\hline 25 & 4 & 1.56 & P, \(5^{-}\) & 15462 & 40 & 6.4 & 2.46 & U,12* & 16259 & 50 & 1.28 & 0.64 & K,3\%* & +*15406 & 80 & 3.13 & 1.56 & R,8 \({ }^{-}\) & 16617 \\
\hline 25 & 4 & 1.56 & N, \(0^{\circ}\) & -15463 & 40 & 6.25 & 3.13 & U, 12- & 16620 & 50 & 1.25 & 0.49 & 1, \(2 \%\) \% \({ }^{\text {c }}\) & 15252 & 80 & 3.1 & 0.89 & R, \(8^{-}\) & 15907 \\
\hline 25 & 4 & 1.14 & P.5* & 15310 & 40 & 6.25 & 1.79 & r, \(10^{-}\) & 15910 & 50 & 1.25 & 0.49 & 6, \(2 \%\) - & 15253 & 80 & 2.5 & 1.25 & N, \({ }^{-}\) & 16418 \\
\hline 25 & 4 & 2 & \(\mathrm{N}, \mathrm{o}^{*}\) & 15809 & 40 & 5 & 2.5 & r, \(10^{-}\) & 18421 & 50 & 1.25 & 0.49 & k,3\%** & +•15254 & 80 & 2.5 & 0.96 & N, \({ }^{-}\) & 18057 \\
\hline 25 & 3.2 & 1.6 & P, \(\mathbf{S}^{-}\) & 15810 & 40 & 3 & 1.92 & T, \(10^{-}\) & 16060 & so & 1 & 0.39 & , \(2 \mathrm{~L} / \%^{*}\) & +15054 & 80 & 2.5 & 0.71 & P, \(5^{-}\) & 15706 \\
\hline 25 & 3.2 & 1.6 & N, \(\mathbf{C}^{\circ}\) & - +15611 & 40 & 5 & 1.43 & R,8 \({ }^{-}\) & 15710 & 50 & 0.8 & 0.4 & H, 1960 & 15200 & 80 & 2.5 & 0.71 & N, \({ }^{-}\) & -15707 \\
\hline 25 & 3.2 & 0.92 & 1,4* & 15113 & 40 & 4 & 2 & R, \(8^{-}\) & 16221 & 50 & 0.8 & 0.4 & J, \(2^{3} 104\) & +-15201 & 80 & 2 & 1 & P, \(5^{-}\) & 16218 \\
\hline 25 & 2.56 & 1.28 & k,31/2* & 15409 & 40 & 4 & 1.54 & R, \(8^{-}\) & 15858 & 50 & 0.64 & 0.32 & H, \(1 \% \%^{-}\) & +15000 & 80 & 2 & 0.77 & P. \(5^{\prime}\) & 15854 \\
\hline 25 & 2.56 & 1.28 & L,4* & -15410 & 40 & 4 & 1.14 & \(\mathrm{N}, \mathrm{C}^{-}\) & 15510 & 64 & 12.8 & 3.6 & 4-U,12 \({ }^{-}\) & 16906 & 80 & 2 & 0.57 & L,4* & 15508 \\
\hline 25 & 2.5 & 0.98 & K,31/4 \({ }^{-1}\) & 15259 & 40 & 3.13 & 1.56 & \(\mathrm{N}, \mathrm{C}^{-}\) & 16009 & 64 & 12.5 & 2.5 & 3.v,12- & 16583 & 80 & 1.6 & 0.62 & k, \({ }^{1 / 4}{ }^{\prime \prime}\) & 15656 \\
\hline 25 & 2 & 0.77 & J,2\% \({ }^{\circ} 0^{\circ}\) & 15039 & 40 & 3.2 & 1.23 & P, \(5^{-}\) & 15600 & 64 & 10 & 2.81 & 3.U.12 \({ }^{-}\) & 16707 & 80 & 1.6 & 0.62 & L,4" & -15657 \\
\hline 25 & 2 & 0.77 & 6,2\% \({ }^{\text {\% }}\) & -15060 & 40 & 3.2 & 1.23 & \(\mathrm{N}, \mathrm{O}^{*}\) & -15601 & 64 & 10 & 2 & 2-U,12- & 16364 & 80 & 1.56 & 0.78 & 1,4* & 18005 \\
\hline 25 & 1.6 & 0.8 & 1,2\% \({ }^{\circ}\) & 15208 & 40 & 2.56 & 0.99 & 1,4 \({ }^{-}\) & 15460 & 64 & - & 3.08 & 2-U,12 \({ }^{\prime \prime}\) & 18857 & 80 & 1.28 & 0.49 & 6, \(2 \%\) \% & 15455 \\
\hline 25 & 1.6 & 0.8 & 6,2\% \({ }^{\text {\% }}\) & +•15207 & 40 & 2.5 & 1.25 & P, \(5^{-}\) & 15803 & 64 & 8 & 2.25 & 2-U,12* & 18507 & 80 & 1.28 & 0.49 & K,31/\% & -15456 \\
\hline 25 & 1.28 & 0.84 & H,1\% & 15005 & 40 & 2.5 & 1.25 & \(\mathrm{N}, \mathrm{C}^{-}\) & +15806 & 64 & 6.4 & 1.8 & U,12* & 16306 & 80 & 1.25 & 0.63 & K,31/\% \({ }^{\text {k }}\) & 13801 \\
\hline 25 & 1.28 & 0.64 & J,2\%00 & +*15008 & 40 & 2.5 & 0.72 & L,4* & 15308 & 64 & & 3.13 & 2-T, \(10^{-1}\) & 17015 & 80 & 1.25 & 0.36 & J,2\%** & 15303 \\
\hline 32 & 20 & 4 & 4. \(4,12^{-}\) & 16367 & 40 & 2 & 1 & K, 31/\% \({ }^{\text {c }}\) & 15607 & 64 & 6.25 & 2.4 & 2-T, \(10^{-1}\) & 18657 & 80 & 1.25 & 0.36 & 6, \(2 \%\) \% & \({ }_{-15304}\) \\
\hline 32 & 16 & 8.15 & - \(4,12^{-}\) & 18860 & 40 & 2 & 1 & 1,4*- & -15008 & 64 & , & 2.5 & U,12* & 18814 & 80 & 1 & 0.5 & ,, \(2 \%\) \% \({ }^{\circ}\) & 15602 \\
\hline 32 & 16 & 4.5 & 4-U,12* & 16510 & 40 & 2 & 0.57 & 6,2\% \({ }^{\text {\% }}\) & 15110 & 64 & & 1.92 & U.12" & 18458 & 80 & 1 & 0.5 & 6,2\% \({ }^{\text {c, }}\) & 15603 \\
\hline 32 & 12.8 & 3.6 & 3-T, \(10^{*}\) & 16309 & 40 & 2 & 0.57 & k,3\%" & -15111 & 64 & 5 & 1.4 & 1,10" & 16108 & 80 & 1 & 0.5 & k,31\% \({ }^{\text {c }}\) & +*15604 \\
\hline 32 & 12.5 & 4.8 & 3-U,12- & 18660 & 40 & 1.6 & 0.62 & J,2\%6* & 15255 & 64 & 4 & 15 & r, \(10^{-}\) & 16257 & 80 & 1 & 0.29 & J,2 \(\%_{6}{ }^{*}\) & 15105 \\
\hline 32 & 10 & 5 & 2-U,12- & 16817 & 40 & 1.6 & 0.62 & 6,23\%" & -15256 & 84 & 4 & 1.12 & R, \(8^{-}\) & 15908 & 80 & 0.8 & 0.4 & J,2\% \({ }^{\text {\% }}\) = & 15400 \\
\hline 32 & 10 & 385 & 2-U,12 & 16461 & 40 & 1.28 & 0.49 & 3,2\% \({ }^{\circ}\) & 15055 & 64 & 3.9 & 1.95 & r, \(10^{-}\) & 10818 & 80 & 08 & 0.4 & 6,2\% \({ }^{\text {c }}\) & +*15401 \\
\hline 32 & 10 & 2.8 & 2.T, \(10^{-}\) & 16111 & 40 & 1.6 & 0.8 & 6,23\% \({ }^{\text {c }}\) & 15407 & 64 & 3.2 & 0.9 & N, \(\mathrm{O}^{-}\) & 15708 & 80 & 0.8 & 0.31 & J,2\% \({ }^{1} 6^{\circ}\) & 15250 \\
\hline 32 & 8 & 3.1 & U,12- & 18280 & 40 & 1 & 0.5 & H, \(1 \%{ }^{\circ} \mathrm{m}\) & 15202 & 64 & 3.13 & 1.2 & R, \(8^{-}\) & 10058 & 80 & 0.64 & 0.25 & H, \(1 \%\) \% & 15050 \\
\hline 32 & 8 & 2.25 & U,12" & 13911 & 40 & 1 & 0.5 & J,2\%m" & +*15203 & 64 & 3.12 & 1.56 & R, \(8^{-}\) & 16419 & 80 & 0.64 & 0.25 & J,2\%40 & +*15051 \\
\hline 32 & 7.8 & 3.9 & 2-T, \(10^{-1}\) & 16621 & 40 & 0.8 & 0.4 & H, 190 & 13001 & 64 & 2.56 & 0.72 & P, \(5^{-}\) & 15507 & 100 & 10 & 2 & 3.4,12- & 18760 \\
\hline 32 & 6.25 & 3.13 & +,10* & 16422 & 40 & 0.8 & 0.4 & J,2\%40 & +*15002 & 64 & 2.5 & 125 & \(\mathrm{N}, \mathrm{C}^{-}\) & 16219 & 100 & 8 & 2.28 & 3.4,12 \({ }^{-}\) & 18004 \\
\hline 32 & 0.25 & 2.4 & T,10 \(0^{\circ}\) & 18061 & 50 & 18 & 3.2 & 4.0.12 \({ }^{\text {² }}\) & 16564 & 64 & 2.5 & 0.96 & P, \(\mathrm{S}^{-}\) & 15855 & 100 & 8 & 1.6 & 2.4.12* & 10561 \\
\hline 32 & 6.4 & 1.8 & T, \(10^{-}\) & 15711 & 50 & 12.8 & 2.56 & 3.U,12 \({ }^{-}\) & 16365 & 64 & 2.5 & 0.96 & N, \(6^{-}\) & -15856 & 100 & 6.4 & 128 & 2-T, \(10^{*}\) & 16362 \\
\hline 32 & 5.11 & 1.44 & R,8* & 15511 & 50 & 12.5 & 3.57 & 4-U,12* & 16708 & 64 & 2 & 0.77 & 1,4 \(4^{-}\) & 13658 & 100 & 6.25 & 1.78 & 2-U,12" & 16705 \\
\hline 32 & 5 & 2.5 & \(\mathrm{R}, \mathrm{s}^{*}\) & 16222 & 50 & 10 & 3.9 & 3-U,12" & 16858 & 64 & 1.96 & 0.976 & P, \(5^{-}\) & 18006 & 100 & 5 & 1.95 & 2.r.10" & 18855 \\
\hline 32 & 5 & 1.92 & R, \(\mathbf{8}^{-}\) & 13859 & 50 & 10 & 286 & 2-U,12* & 10508 & 64 & 1.96 & 0.976 & \(\mathrm{N}, \mathrm{C}^{\prime \prime}\) & +•18007 & 100 & 5 & 1.43 & U,12* & 16505 \\
\hline 32 & 4 & 1.54 & N, \({ }^{+}\) & 13662 & 50 & \({ }_{8}\) & 4 & 2-U,12" & 17016 & 64 & 1.56 & 0.78 & k, 31\% & 15802 & 100 & 4 & 1.14 & T,10- & 16304 \\
\hline 32 & 3.9 & T.95 & \(\mathrm{R}, \mathrm{B}^{-}\) & +18010 & so & 8 & 2.29 & 2.T, \(10^{-1}\) & 18307 & 64 & 1.56 & 0.78 & L,4" & -15803 & 100 & 4 & 2 & U,12* & 17013 \\
\hline 32 & 3.2 & 1.23 & P, \(5^{*}\) & 15461 & So & 7.8 & 3.05 & 2.U,12" & 18658 & 64 & 1.28 & 0.36 & , \(21 / 4{ }^{4}\) & 15106 & 100 & 3.9 & 1.52 & U,12* & 16655 \\
\hline 32 & 3.2 & 0.9 & L.4* & 15309 & so & 6.4 & 3.2 & 2-r, \(10^{\circ}\) & 18815 & 64 & 1.28 & 0.36 & 6,2\% \({ }^{\text {c }}\) & -15107 & 100 & 3.2 & 1.6 & r, \(10^{-}\) & 16812 \\
\hline 32 & 3.12 & 1.56 & P, \(5^{*}\) & 15807 & 50 & 0.25 & 2.44 & U,12" & 16459 & 64 & 1.25 & 0.63 & 6,2\%" & 15805 & 100 & 3.13 & 0.9 & R,8 \(\mathbf{8}^{-}\) & 16106 \\
\hline 32 & 3.12 & 1.56 & N, \(0^{*}\) & -15808 & 50 & 0.25 & 1.79 & U, \(12^{-}\) & 16109 & 64 & 1.6 & 0.62 & k,3\%\% & 15457 & 100 & 3.12 & 1.22 & T, \(10^{-}\) & 16456 \\
\hline 32 & 2.56 & 0.72 & k, \(31 /{ }^{\text {- }}\) & 15112 & So & 5 & 2.5 & r,10 & 16019 & 64 & 1. 6 & 0.45 & 6, \(2 \% \%^{-}\) & 15305 & 100 & 2.5 & 1.25 & R, \(\mathrm{A}^{-}\) & 16016 \\
\hline
\end{tabular}

\footnotetext{
*Where several rheostats are listed for a given resistance and rating and when the quantity to be purchased is only one, the unit indicated by the asterisk costs the least of the two or three sizes given. The
}
smaller rheostal (taper-wound with more sections) is generally
cheaper in large quantities. Further information on request. cheaper in large quantities. Further information on request.

\title{
GENERATOR FIELD CONTROL AND GENERAL PURPOSE TAPERED RHEOSTATS
}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Total \\
Rheo. \\
Ohms
\end{tabular}} & \multicolumn{2}{|l|}{Cureent} & \multirow[t]{2}{*}{Model and Dio.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cat. \\
No. \\
SE-
\end{tabular}} & \multirow[t]{2}{*}{Total Rheo. Ohms} & \multicolumn{2}{|l|}{Current} & \multirow[t]{2}{*}{Model and Dia.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cat. \\
No. \\
SE-
\end{tabular}} & \multirow[t]{2}{*}{Total Rheo. Ohms} & \multicolumn{2}{|l|}{Current} & \multirow[t]{2}{*}{Model and Dio.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cat. \\
No. \\
SE-
\end{tabular}} & \multirow[t]{2}{*}{Total Rheo. Ohms} & \multicolumn{2}{|l|}{Current} & \multirow[t]{2}{*}{Model and Dic.} & \multirow[t]{2}{*}{Cat. No. SE} \\
\hline & Max. Amps & \[
\begin{array}{c|}
\hline \text { Min. } \\
\text { Amps }
\end{array}
\] & & & & \begin{tabular}{l}
Max. \\
Amps
\end{tabular} & Min. Amps & & & & Max. Amps & Min. Amps & & & & Max. Amps & Min. Amps & & \\
\hline 100 & 2.5 & 0.98 & R, \(8^{-}\) & 16255 & 160 & 6.25 & 1.25 & 2-U,12* & 16758 & 250 & 2.5 & 0.715 & 1,10- & 16701 & 640 & 1.25 & 0.25 & 1, \(\mathbf{8}^{-}\) & 16553 \\
\hline 100 & 2.5 & 071 & N, \({ }^{-}\) & 15906 & 160 & 5 & 1.43 & 2-U,12" & 16902 & 250 & 2.5 & 0.51 & R,8" & 18358 & 840 & 1 & 0.2 & P, \(5^{*}\) & 16353 \\
\hline 100 & 2 & 1 & N, \(\mathbf{C}^{-}\) & 16417 & 160 & 5 & 1 & 2-T,10- & 16559 & 250 & 2 & 0.78 & R,8 \({ }^{\text {n }}\) & -16850 & 640
640 & 0.625 & 0.2
0.313 & N, \({ }^{-}\) & -16354 \\
\hline 100 & 2 & 0.57 & P, \(5^{-}\) & 15705 & 160 & 4 & 0.8 & U,12* & 16360 & 250 & 2 & 0.78 & T. \(10^{-}\) & 16851 & 640
640 & 0.625
0.625 & 0.313
0.313 & P.5 \({ }^{\text {N, }}\) & \[
\begin{aligned}
& 17004 \\
& \cdot 17005
\end{aligned}
\] \\
\hline 100 & 1.95 & 0.76 & P, \(5^{-}\) & 16055 & 160 & 3.9 & 1.12 & U,12* & 16703 & 250 & 2 & 0.57 & \(0,8^{-}\) & 16501 & 640 & 0.5 & 0.25 & K,31\% \({ }^{\text {N }}\) & 16802 \\
\hline 100 & 1.95 & 0.76 & N, \({ }^{-}\) & -16056 & 160 & 3.2 & 1.23 & U,12- & 16853 & 250 & 1.6 & 0.8 & R, \(8^{-}\) & 17009 & 640 & 0.5 & 0.25 & 1,4* & -16803 \\
\hline 100 & 1.6 & 0.8 & P. \(5^{-}\) & 16216 & 160 & 3.12 & 0.89 & T, \(10^{-}\) & 16503 & 250 & 1.6 & 0.46 & N, \(\mathbf{C}^{-}\) & 16300 & 640 & 0.39 & 0.195 & 6, \(2 \%\) \% & 16604 \\
\hline 100 & 1.6 & 0.8 & N, \(6^{-}\) & +*16217 & 160 & 2.5 & 1.25 & T, \(10^{-}\) & 17011 & 250 & 1.56 & 0.61 & N, \({ }^{-}\) & 16851 & 640
640 & 0.312
0.25 & 0.156
0.125 & & \[
\begin{aligned}
& 16403 \\
& 16202
\end{aligned}
\] \\
\hline 100 & 1.6 & 0.46 & L, \(4^{-}\) & 15505 & 160 & 2.5 & . 96 & T, \(10^{-}\) & 16653 & 250 & 1.28 & 0.64 & N, \(\mathbf{C}^{*}\) & 16808 & 640 & 0.25
0.25 & 0.125 & J, 2 \%/4* & \[
\begin{array}{r}
16202 \\
+=16203
\end{array}
\] \\
\hline 100 & 1.56 & 0.61 & L,4" & 15853 & 160 & 2.5 & 71 & \(\mathrm{R}, \mathrm{s}^{-}\) & 16302 & 250 & 1.25 & 0.49 & P. \(5^{-}\) & 16451 & & & & T, \(10^{\circ}\) & \[
16951
\] \\
\hline 100 & 1.25 & 0.625 & K,31/0 & 16003 & 160 & 2 & 1 & R, \(\mathbf{B}^{-}\) & 16810 & 250 & 1.25 & 0.49 & N, \(\mathbf{6}^{-}\) & '16452 & 800 & 1.25 & 0.25 & R,8* & \\
\hline 100 & 1.25 & 0.625 & 1,4" & -18004 & 160 & 2 & 0.77 & R, \(\mathbf{E}^{-}\) & 16454 & 250 & 1.25 & 0.36 & N, \({ }^{+}\) & 16102 & 800 & 1 & 0.2 & N, \(0^{\circ}\) & 16552 \\
\hline 100 & 1.25 & 0.49 & 6.2 \(\%^{\prime \prime}\) & 15654 & 160 & 1.95 & 0.56 & N, \(\mathrm{O}^{-}\) & 16104 & 250 & 1 & 0.5 & P, \(5^{-}\) & 16610 & 800 & 0.8 & 0.16 & \(\mathrm{P}, 5^{+}\) & 16351 \\
\hline 100 & 1.25 & 0.49 & K,31/0- & -15655 & 160 & 1.6 & 0.62 & P, \(\mathbf{S}^{-}\) & 16252 & 250 & 1 & 0.5 & N, \({ }^{-}\) & \({ }^{*} 16611\) & 800
800 & 0.8
0.5 & 0.16
0.25 & \[
\begin{aligned}
& \mathbf{N}, \mathbf{6}^{*} \\
& \mathbf{L}, \mathbf{4}^{-}
\end{aligned}
\] & 16352
17003 \\
\hline 100 & 1 & 0.5 & 6,2\% \({ }^{-1}\) & 15800 & 160 & 1.6 & 0.62 & N, \(\mathbf{6}^{*}\) & -16253 & 250 & 1 & 0.39 & N,4 & 16250 & 800 & 0.5
0.4 & 0.25 & \[
\mathrm{k}, 3 \%{ }^{\prime}
\] & \[
18801
\] \\
\hline 100 & 1 & 0.39 & J, \(23 / 4{ }^{4}\) & 15453 & 160 & 1.56 & 0.78 & N, \(0^{*}\) & 16614 & 250 & 1 & 0.28 & 1,4" & 15900 & 800 & 0.312 & 0.156 & J,2540" & 16001 \\
\hline 100 & 1 & 0.39 & 6. \(2 \% 4^{\prime \prime}\) & -15454 & 160 & 1.56 & 0.45 & P, \(5^{*}\) & 15903 & 250 & 0.8 & 0.4 & K,3\% \({ }^{\text {\% }}\) & 16411 & 800 & 0.312 & 0.156 & 6,2\%" & 16602 \\
\hline 100 & 1 & 0.29 & 1,2\%" & 15301 & 160 & 1.25 & 0.625 & P. \(5^{-}\) & 16414 & 250 & 0.8 & 0.4 & 1,4* & -16412 & 800
800 & 0.312
0.25 & 0.156
0.125 & K,31/4. & 116603
+16402 \\
\hline 100 & 1 & 0.29 & 6, \(2 \%{ }^{\circ}\) & -15302 & 160 & 1.25 & 0.625 & N, \(\mathrm{C}^{-1}\) & +*16415 & 250 & 0.8 & 0.23 & 6, \(2 \%\) " & 15700 & 800 & 0.25
0.2 & 0.125
0.1 & J,24\% & 16603
+16200 \\
\hline 100 & 0.8 & 0.4 & 1,2\% \({ }^{\text {cos }}\) & 15600 & 160 & 1.25 & 0.48 & L,4* & 16053 & 250 & 0.8 & 0.23 & K, \(31 \%^{\prime \prime}\) & -15701 & 800 & 0.2 & 0.1 & 1, \(\mathbf{2 H \%}^{\text {\% }}\) & +*16201 \\
\hline 100 & 0.8 & 0.4 & G, \(2 \% 4^{\prime \prime}\) & +*15601 & 160 & 1.25 & 0.36 & 1,4* & 15703 & 250 & 0.78 & 0.3 & K,31\%" & 16050 & 1000 & 1.28 & & & 16950 \\
\hline 100 & 0.8 & 0.23 & 1,2\%" & 15103 & 160 & 1 & 0.5 & K, 31\%" & 16213 & 250 & 0.64 & 0.32 & 6, \(2 \times{ }^{\text {- }}\) & 16210 & 1000 & 1
0.8
0.8 & 0.2 & R,8 \(8^{\circ}\) & 16750
16550 \\
\hline 100 & 0.8 & 0.23 & 6,2\%" & +115104 & 160 & 1 & 0.5 & L, \(\mathbf{4}^{\text {º }}\) & -16214 & 320 & 0.64 & 0.8 & 2-U,12* & 16955 & 1000
1000 & 0.8
0.8 & 0.16
0.16 & P.5* & 16550
.16551 \\
\hline 125 & 10 & 2.04 & 4-U,12* & 16959 & 160 & 1 & 0.39 & K,3\%" & 15850 & 320 & 3.1 & 0.63 & U,12 \({ }^{\text {- }}\) & 16755 & 1000 & 0.8
0.64 & 0.16
0.128 & N, \({ }_{\text {L }}\) & 16355
1650 \\
\hline 125 & 7.8 & 1.59 & 3-U,12* & 16759 & 160 & 1 & 0.29 & 6, 23 / \({ }^{\prime \prime}\) & 15502 & 320 & 2.5 & 0.5 & T,10 & 16556 & 1000 & 0.4 & 0.2 & K, 31\%" & 17001 \\
\hline 125 & 6.4 & 1.83 & 3.1.10* & 16903 & 160 & 1 & 0.29 & K, \(31 \%{ }^{\prime}\) & -15503 & 320 & 2 & 0.56 & 1,10 & 16700 & 1000 & 0.4 & 0.2 & 1,4" & -17002 \\
\hline 125 & 6.25 & 1.28 & 2-U,12* & 16560 & 160 & 0.8 & 0.31 & J,2\% \(\mathrm{ma}^{\prime \prime}\) & 15650 & 320 & 2 & 0.4 & R, \(8^{\circ}\) & 16357 & 1000 & 0.32 & 0.16 & 6,2\%" & 16800 \\
\hline 125 & 5 & 1.43 & 2-1,10 & 16704 & 160 & 0.8 & 0.31 & G. \(2 \%\) " & -15851 & 320
320 & 1.6 & 0.45 & R.8 \(8^{-}\) & 16500 & 1000 & 0.25 & 0.125 & J,21/4** & 16800 \\
\hline 125 & 5 & 1 & U,12- & 16361 & 160 & 0.78 & 0.39 & 6. \(2 \%\) - & 16000 & 320
320 & 1.25
1.25 & 0.625 & N, \(\mathbf{O}^{-}\) & 17008 & 1000
1000 & 0.2
0.2 & 0.1
0.1 & H, 16 & 16400
+16401 \\
\hline 125 & 4 & 1.56 & U,12- & 16854 & 200 & 6.4 & 1.28 & 3-U,12* & 16957 & 320
320 & 1.25 & 0.48
0.5 & N, \({ }^{\text {P }}\) & 16850
16807 & 1250 & 0.2
0.32 & 0.1
0.16 & J,2\%" & +16401
17000 \\
\hline 125 & 4 & 1.14 & U.12 & 16504 & 200 & 5 & 1 & 2-7,10" & 16757 & 320 & 1 & 0.385 & P, \(5^{-}\) & 16450 & & & & & \\
\hline 125 & 32 & 1.6 & 1,10 & 17012 & 200 & 4 & 1.14 & 2.1,10 \({ }^{-1}\) & 16901 & 320 & 1 & 0.28 & L, \(4^{\text {T }}\) & 16101 & & & & & \\
\hline 125 & 3.2 & . 91 & T, \(10^{-}\) & 16303 & 200 & 4 & 0.8 & U,12 \({ }^{\circ}\) & 16558 & 320
320 & 0.78 & 0.39
0.313 & \[
4,4^{\circ}
\] & 16609 & & & & & \\
\hline 125 & 3.12 & 1.22 & T, \(10^{-}\) & 16654 & 200 & 3.2 & 0.84 & T,10* & 16359 & 320
320 & 0.625
0.625 & 0.313
0.313 & \[
\begin{aligned}
& \mathbf{G}, \mathbf{2} \mathbf{M a}^{-} \\
& \mathbf{K}, 3 \mathbf{o n}^{-}
\end{aligned}
\] & 16408
16409 & & & & & \\
\hline 125 & 2.56 & 1.28 & R, \(8^{-}\) & 16811 & 200 & 3.12 & 0.89 & U,12* & 16702 & 320 & 0.625 & 0.313 & L, \(\mathbf{4}^{+}\) & +*16410 & & & & & \\
\hline 125 & 2.5 & 0.98 & R, \(8^{-}\) & 16455 & 200 & 2.56 & 0.99 & T, \(10^{-}\) & 16852 & 320 & 0.5 & 0.25 & 1,2\% & 16207 & & & & & \\
\hline 125 & 2.5 & 0.71 & R, \(\mathbf{B}^{-}\) & 16105 & 200 & 2.5 & 0.72 & T,10- & 16502 & 320 & 0.5 & 0.25 & 6,2\%" & 16208 & & & & & \\
\hline 125 & 2 & 1 & N, \(\mathrm{O}^{-}\) & 16615 & 200 & 2 & 1 & \(\mathrm{R}, \mathrm{B}^{\prime}\) & 17010 & 320
400 & 0.5
3.2 & 0.25
0.64 & K.1, \({ }_{\text {K, }}\) & \[
\dagger^{*} 16209
\] & & & & & \\
\hline 125 & 2 & 0.78 & N, \(6^{-}\) & 16254 & 200 & 2 & 0.77 & R,8* & 16652 & 400 & 2.5 & 0.64
0.5 & 1.1
\(\mathbf{1}, 10^{-}\) & 16954
16754 & & & & & \\
\hline 125 & 2 & 0.57 & P. \(5^{-}\) & 15904 & 200 & 2 & 0.57 & \(\mathrm{R}, 8^{-}\) & 16301 & 400 & 2 & 0.4 & R, \(\mathrm{B}^{\prime}\) & 16555 & & & & & \\
\hline 125 & 2 & 0.57 & N, \(\mathbf{C}^{-}\) & -15905 & 200 & 1.6 & . 8 & N, \({ }^{+}\) & 16809 & 400 & 1.6 & 0.32 & R,8* & 16356 & & & & & \\
\hline 125 & 1.6 & 0.8 & P, \(5^{-}\) & 16416 & 200 & 1.6 & 0.615 & \(\mathrm{N}, \mathrm{C}^{+}\) & 16453 & 400 & 1 & 0.5 & N, \(0^{*}\) & 17007 & & & & & \\
\hline 125 & 1.6 & 0.45 & L, \(\mathbf{4}^{-1}\) & 15704 & 200 & 1.56 & 0.45 & P, \(5^{\text { }}\) & 16103 & 400
400 & 0.8
0.8 & 0.4 & \[
\begin{aligned}
& \mathbf{P , 5} \\
& \mathrm{N}, \mathbf{6}^{+}
\end{aligned}
\] & \[
\begin{array}{r}
16805 \\
t * 16806
\end{array}
\] & & & & & \\
\hline 125 & 1.56 & 0.61 & P, \(5^{\text {n }}\) & 16054 & 200 & 1.28 & 0.49 & P.5 \({ }^{\text {P }}\) & 16251 & 400 & 0.8 & 0.4
0.22 & \[
\begin{aligned}
& N, 6^{-} \\
& \mathbf{L}, 4^{-}
\end{aligned}
\] & \[
\begin{array}{r}
+\circ 16806 \\
16100
\end{array}
\] & & & & & \\
\hline 125 & 1.28 & 0.64 & L, \(4^{\text { }}\) & 16215 & 200 & 1.25 & 0.625 & P, \(5^{-}\) & 16612 & 400 & 0.625 & 0.313 & K, \(311{ }^{1} \times\) & 16607 & & & & & \\
\hline 125 & 1.28 & 0.37 & K, 31/0 & 15504 & 200 & 1.25 & 0.625 & N, \(\mathbf{6}^{-}\) & -16813 & 400 & 0.625 & 0.313 & L,4* & -16608 & & & & & \\
\hline 125 & 1.25 & 0.49 & K, \(31 /{ }^{\prime \prime}\) & 15851 & 200 & 1.25 & 0.36 & L,4* & 15901 & 400 & \[
0.5
\] & 0.25 & G,236" & 16407 & & & & & \\
\hline 125 & 1.25 & 0.49 & 1,4" & -15852 & 200 & 1.25 & 0.36 & P, \(5^{-}\) & -15902 & 400
400 & \[
0.4
\] & \[
0.2
\] & J,2\%"
G. \(2 \%\) \% & \[
\begin{array}{r}
16205 \\
+=16208
\end{array}
\] & & & & & \\
\hline 125 & 1 & 0.5 & 6.2\% \({ }^{-}\) & 16001 & 200 & 1 & 0.5 & L,4* & 16413 & 500 & 2.56 & 0.51 & U.120 & \(\begin{array}{r}16205 \\ 16953 \\ \hline\end{array}\) & & & & & \\
\hline 125 & 1 & 0.5 & K, \(31 / 4^{-}\) & -18002 & 200 & 1 & 0.39 & K, 3\% \({ }^{\text {\% }}\) & 16051 & 500 & 2 & 0.4 & 1,10 & 16753 & & & & & \\
\hline 125 & 0.8 & 0.31 & J,2 \(2 \times 4\) & 15450 & 200 & 1 & 0.39 & L, \(4^{\text { }}\) & -16052 & 500 & 1.6 & 0.32 & 1, \(8^{*}\) & 16554 & & & & & \\
\hline 125 & 0.8 & 0.31 & 6, 2 \% \({ }^{\text {" }}\) & 15451 & 200 & 1 & 0.28 & K, 3\%" & 15702 & 500 & 1.28 & 0.26 & N, \(\mathbf{6}^{-}\) & 16355 & & & & & \\
\hline 125 & 0.8 & 0.31 & K,3\%* & +15452 & 200 & 0.8 & 0.4 & K,31/0* & 16211 & 500
500 & \[
0.8
\] & \[
\begin{aligned}
& 0.4 \\
& 0.32
\end{aligned}
\] & P.5* & 17006
16804 & & & & & \\
\hline 125 & 0.8 & 0.23 & 1,2\%" & 15300 & 200 & 0.8 & 0.4 & 1,4* & +*16212 & 500 & 0.04
0.5 & 0.25 & G, \(23 / 4\). & 16805 & & & & & \\
\hline 125 & 0.84 & 0.18 & H,1\% & 15100 & 200 & 0.8 & 0.23 & 1,2\%" & 15500 & 500 & 0.5 & 0.25 & K, \(31 \%^{*}\) & -16606 & & & & & \\
\hline 125 & 0.64 & 0.18 & 1,2\% \({ }^{\text {c }}\) & 15101 & 200 & 0.8 & 0.23 & 6,2\% \({ }^{\circ}\) & \({ }^{-15501}\) & 500 & 0.4 & 0.2 & 1,216** & 16404 & & & & & \\
\hline 125 & 0.64 & 0.18 & 6,236" & +*15102 & 250 & 5 & 1 & 2-U,12 & 16956 & 500
500 & \[
0.4
\] & \[
0.2
\] & 6,23/ \({ }^{\text {c }}\) & \[
16405
\] & & & & & \\
\hline 128 & 1 & 0.38 & 6, \(2 \mathrm{k} \mathrm{m}^{\prime \prime}\) & 15652 & 250 & 3.9 & 0.8 & 2-T,10* & 16756 & 500
500 & \[
\begin{aligned}
& 0.4 \\
& 0.32
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 1,311^{\prime \prime} \\
& 1,24^{4}
\end{aligned}
\] & \[
\begin{array}{r}
1 \times 16406 \\
16204
\end{array}
\] & & & & & \\
\hline 128 & 1 & 0.38 & K,31\%" & - 15653 & 250 & 3.2 & 0.91 & U,12* & 16900 & 500
840 & \({ }_{2}^{0.32}\) & 0.16
0.4 & 1.2\% \({ }^{\circ}\) & \[
\begin{aligned}
& 16204 \\
& 16952
\end{aligned}
\] & & & & & \\
\hline 160 & 8 & 1.6 & 3-4.12" & 16958 & 250 & 3.12 & 0.64 & U,12* & 16557 & 640 & 1.56 & 0.31 & R, \(\mathbf{8}^{+}\) & 16752 & & & & & \\
\hline
\end{tabular}
*I here several rheostats are listed for a given resistance and rating and when the quantity to be purchased is only one, the unit indicated by the asterisk costs the least of the two or three sizes given. The
smaller rheostat (taper-wound with more sections) is generally cheaper in large quantities. Further information on request. \(\dagger\) These rheostats have a uniform winding (i.e., not tapered).

\title{
INDEX OF TAPERED RHEOSTATS BY CATALOG NUMBER
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Cot. \\
Na . \\
SE-
\end{tabular} & Tatal Rhea. Ohms & \begin{tabular}{l}
Cot. \\
No. \\
SE-
\end{tabular} & Tatal Rhea. Ohms & \begin{tabular}{l}
Cot. \\
Na . \\
SE-
\end{tabular} & Total Rheo. Ohms & \begin{tabular}{l}
Cot. \\
No. \\
SE-
\end{tabular} & Total Rheo, Ohms & \begin{tabular}{l}
Cot. \\
No. \\
SE
\end{tabular} & Total Rhea. Ohms & \begin{tabular}{l}
Cot. \\
Na . \\
SE-
\end{tabular} & Total Rheo. Ohms & \begin{tabular}{l}
Cot. \\
No. \\
SE-
\end{tabular} & Total Qheo. Ohms & \begin{tabular}{l}
Car. \\
No. \\
SE-
\end{tabular} & Total Rheo. Ohms \\
\hline 15000 & 50 & 15211 & 16 & 15450 & 80 & 15706 & 80 & 16051 & 200 & 16302 & 160 & 16510 & 32 & 16806 & 400 \\
\hline 15001 & 40 & 15212 & 12.5 & 15457 & 64 & 15707 & 80 & 16052 & 200 & 16303 & 125 & 16511 & 25 & 16807 & 320 \\
\hline 15002 & 40 & 15213 & 10 & 15458 & 50 & 15708 & 64 & 16053 & 160 & 16304 & 100 & 16550 & 1000 & 16808 & 250 \\
\hline 15003 & 32 & 15214 & 10 & 15459 & 50 & 15709 & 50 & 16054 & 125 & 16305 & 80 & 16551 & 1000 & 16809 & 200 \\
\hline 15004 & 32 & 15215 & 8 & 15460 & 40 & 15710 & 40 & 16055 & 100 & 16306 & 64 & 16552 & 800 & 16810 & 160 \\
\hline 15005 & 25 & 15216 & 6.4 & 15461 & 32 & 15711 & 32 & 16056 & 100 & 16307 & 50 & 16553 & 640 & 16811 & 125 \\
\hline 15006 & 25 & 15217 & 6.4 & 15462 & 25 & 15712 & 25 & 16057 & \({ }^{80}\) & 16308 & 40 & 16554 & 500 & 16812 & 100 \\
\hline 15007 & 20 & 15218 & s & 15463 & 25 & 15713 & 20 & 16058 & 64 & 16309 & 32 & 16555 & 400 & 16813 & 80 \\
\hline 15008 & 16 & 15219 & & 15464 & 20 & 15714 & 16 & 16059 & 50 & \[
16310
\] & 25 & 16556 & 320 & & 64 \\
\hline 15009 & 16 & 15220 & 3.2 & & & 15715 & 12.5 & & & \[
10311
\] & 25
20 & \[
\begin{aligned}
& 16556 \\
& 16557
\end{aligned}
\] & 320
250 & \[
\begin{aligned}
& 16814 \\
& 16815
\end{aligned}
\] & 60 \\
\hline 15010 & 12.5 & & 2.5 & & 16 & & & 16060 & 40 & 16350 & 1000 & 16558 & 200 & 16816 & 40 \\
\hline 15011 & 12.5 & 15222 & 2 & 15466 & 12.5 & 15717 & 8 & 18061 & 32 & 16351 & 800 & 10558 & 160 & 16817 & 32 \\
\hline 15012 & 12.5 & 15223 & 1.6 & 15467 & 10 & 15800 & 100 & 16062 & 25 & 16352 & 800 & 16560 & 125 & 16818 & 25 \\
\hline 15013 & 10 & 15250 & 80 & 15468 & 8 & 15801 & 80 & & 20 & 16353 & 640 & 16561 & 100 & 16819 & 20 \\
\hline 15014 & 8 & 15251 & 64 & 15469 & 6.4 & 15802 & 64 & & & 16354 & 640 & 16562 & 80 & & \\
\hline 15015 & 6.4 & 15252 & 50 & 15470 & 5 & 15803 & & 16064 & 16 & 16355 & 500 & 16563 & 64 & 16820 & 16 \\
\hline 15016 & 6.4 & 15253 & 50 & 15471 & 4 & 15804 & 50 & 10065 & 12.5 & 16356 & 400 & 16564 & so & 16850 & 250 \\
\hline 15017 & 5 & 15254 & 50 & 15500 & 200 & 15805 & 40 & 16066 & 10 & 16357 & 320 & 16000 & 1000 & 16851 & 250 \\
\hline 15018 & 4 & 15255 & 10 & 15501 & 200 & 15806 & 40 & 16067 & 8 & 16358 & 250 & 16801 & 800 & 16852 & 200 \\
\hline 15019 & 4 & 15256 & 40 & 15502 & 160 & 15807 & 32 & & & 18359 & 200 & 16602 & 100 & 16853 & 160 \\
\hline 15020 & 3.2 & 15257 & 32 & 15503 & 160 & 15808 & 32 & 16100 & 400 & 16360 & 160 & 16003 & 800 & 16854 & 125 \\
\hline 15021 & 2.5 & 15258 & 32 & 15504 & 125 & 15808 & 25 & 16101 & 320 & 16361 & 125 & 16604 & 640 & 16855 & 100 \\
\hline 15022 & 2 & 15259 & 25 & 15505 & 100 & 15810 & 20 & 16102 & 250 & 16362 & 100 & 16605 & 500 & 16856 & 80 \\
\hline \({ }^{15023}\) & 1.6 & 15260
15201 & 20 & 15506 & 80 & 15811 & 16 & 16103 & 200 & 16363 & 80 & 16006 & 500 & 16857 & 64 \\
\hline 15024 & 1.25 & 15261 & 20 & 15507 & 64 & 15812 & 12.5 & 16104 & 160 & 16364 & 64 & 16607 & 400 & 16858 & 50 \\
\hline 15050 & 80 & 15262 & 16 & 15508 & so & 15813 & 10 & 16105 & 125 & 16365 & 50 & 18008 & 400 & 16858 & 40 \\
\hline 15051 & 80 & 15263 & 12.5 & 15508 & 50 & 15814 & 8 & 16108 & 100 & 16366 & 40 & 16609 & 320 & 16860 & 32 \\
\hline 15052 & \({ }^{64}\) & 15264 & 10 & 15510 & 40 & 15815 & 6.4 & 16107 & 80 & 16367 & 32 & 16610 & 250 & 16900 & 250 \\
\hline \(\begin{array}{r}15053 \\ 15054 \\ \hline\end{array}\) & 64
50 & 15265
15266 & 10 & 15511 & 32 & 15816 & 5 & 16108 & 64 & 16400 & 1000 & 16611 & 250 & 16901 & 200 \\
\hline 15054 & 50 & 15266 & 8 & 13512 & 25 & 15817 & 4 & 16109 & so & 16401 & 1000 & 16612 & 200 & 16902 & 160 \\
\hline 15055 & 40 & 15267 & 6.4 & 15513 & 20 & 15850 & & 16110 & 40 & 16402 & 800 & 16613 & 200 & 16903 & 125 \\
\hline 15056 & 32 & 15268 & 5 & 15514 & 16 & 15851 & 125 & 16111 & 32 & 16403 & 640 & 16614 & 160 & 16904 & 100 \\
\hline 15057 & 32 & 15269 & 4 & 15515 & 12.5 & 13852 & 125 & 16112 & 25 & 16404 & 500 & 16615 & 125 & 16905 & 80 \\
\hline 15058 & 32 & 15270 & 3.2 & 15516 & 10 & 15853 & 100 & 16113 & 20 & 16405 & 500 & 16616 & 100 & 18906 & 64 \\
\hline 15059 & 25 & & & 15517 & 8 & 15854 & 80 & 16114 & 16 & & & 16617 & 80 & 16950 & 1000 \\
\hline 15060 & 25 & 15271 & 2.56 & 15518 & 6.4 & 15855 & 64 & 16115 & 12.5 & 16406 & 500 & 16618 & 64 & 10951 & 800 \\
\hline 15061 & 20 & 15300 & \(125^{2.56}\) & 15600 & 10.4 & 15856 & 64 & 16200 & 800 & 16407 & 400 & 16619 & 50 & 16952 & 640 \\
\hline 15062 & 20 & 15301 & 100 & 13601 & 100 & 15857 & 50 & 16201 & 800 & 16408 & 320 & 16620 & 40 & 16953 & 500 \\
\hline 15063 & 16 & 15302 & 100 & 15602 & 80 & 15858 & 40 & 16202 & 640 & 10409 & 320 & 16621 & 32 & 16954 & 400 \\
\hline 15064 & 12.5 & 15303 & 80 & 15603 & 80 & 15859 & 32 & 16203 & 640 & 16410 & 320 & 16622 & 25 & 16955 & 320 \\
\hline & 12.5 & 15304 & 80 & & & & & 16204 & 500 & 16411 & 250 & 16623 & 20 & 16956 & 250 \\
\hline 15066 & 10 & 15305 & 84 & 15605 & 64 & 15861 & 20 & 16205 & 400 & 16412 & 250 & 16624 & 16 & 16957 & 200 \\
\hline 15067 & d & 15306 & 64 & 13606 & 50 & 15862 & 16 & 16206 & 100 & 16413 & 200 & 16625 & 12.5 & 16958 & 160 \\
\hline 15068 & 0.4 & 15307 & 50 & 15607 & 40 & 15863 & 12.5 & 16207 & 320 & 16414 & 160 & 16626 & 10 & 16959 & 125 \\
\hline 15069 & 5 & 15308 & 4 & 15608 & 40 & & & 16208 & 320 & 16415 & 160 & 16050 & 320 & 17000 & 1250 \\
\hline & & 15309 & 32 & & 32 & & & 16209 & 320 & 16416 & 125 & 16651 & 250 & 17001 & 1000 \\
\hline 15071 & 3.2 & 15310 & 25 & 15610 & 25 & 15865 & 8 & 16210 & 250 & 16417 & 100 & 16652 & 200 & 17002 & 1000 \\
\hline 15072 & 2.56 & 15311 & 20 & 15011 & 25 & 15866 & 0.4 & 16211 & 200 & 16418 & 80 & 16653 & 160 & 17003 & -00 \\
\hline 15073 & ? & 15312 & 20 & 15612 & 20 & 15900 & 250 & 16212 & 200 & 16419 & 64 & 16654 & 125 & 17004 & 640 \\
\hline 15100 & 125 & 15313 & 16 & 156:3 & 16 & 15901 & 200 & 16213 & 160 & 16420 & 50 & 16654 & 125 & 17005 & 640 \\
\hline 15101 & 125 & 15314 & 12.5 & 15614 & 12.5 & 15902 & 200 & 16214 & 160 & 16421 & 40 & 16859 & 100 & 17006 & 500 \\
\hline 15102 & 125 & 15315 & 10 & 15615 & 10 & 15903 & 160 & 16215 & 125 & 16422 & 32 & 16656 & 80 & 17007 & 400 \\
\hline 15103
15104
15105 & 100 & 15316
15317 & 8 & 15616
15617 & 8 & 15904 & 125 & 16216 & 100 & 16423 & 25 & 16057 & 64 & 17008 & 320 \\
\hline 15104 & 100 & 15317 & 0.4 & 15617 & 0.4 & 15905 & 125 & 16217 & 100 & 16424 & 20 & 16058 & 50 & 17009 & 250 \\
\hline 15105 & 80 & 15318 & 5 & 15618 & 5 & 15906 & 100 & 16218 & 80 & 16425 & 16 & 16059 & 40 & 17010 & 200 \\
\hline & & 15319 & & 15619 & & & & 16219 & 64 & 16426 & 12.5 & 16060 & 32 & 17011 & 160 \\
\hline 15107 & 64 & 15400 & 80 & 15620 & 3.2 & 15909 & 64 & 16220 & 50 & 16427 & 10 & 16061 & 25 & 17012 & 125 \\
\hline \({ }_{1} 5108\) & 50 & 15401 & 80 & 15560 & 160 & 15909 & 50 & 16221 & 40 & 16428 & 8 & 16662 & 20 & 17013 & 100 \\
\hline 15109 & 50 & \(\begin{array}{r}15402 \\ \hline\end{array}\) & 64 & \({ }^{15651}\) & 160 & 15910 & 40 & 16222 & 32 & 16450 & 320 & 16700 & 320 & 17014 & 80 \\
\hline & & 15403 & 64 & 15652 & 128 & 15911 & 32 & 16223 & 25 & 16451 & 250 & 16701 & 250 & 17015 & 64 \\
\hline 15110 & 40 & 15404 & 50 & & & & & 16224 & 20 & 16452 & 250 & 16702 & 200 & 17016 & 50 \\
\hline 15111 & 40 & 15405 & 50 & 15654 & 100 & 15913 & 20 & 16225 & 16 & 16453 & 200 & 16703 & 160 & 17017 & 40 \\
\hline 15112 & 32 & 15406 & 50 & 15655 & 100 & 15914 & 16 & 16226 & 12.5 & 16454 & 160 & 16704 & 125 & & \\
\hline 15113 & 25 & 15407 & 40 & 15656 & 80 & 15915 & 12.5 & 16227 & 10 & 16455 & 125 & 16705 & 100 & & \\
\hline 15114 & 20 & 15408 & 32 & 15657 & во & 15916 & 10 & 16228 & 1 & 16456 & 100 & 16706 & 80 & & \\
\hline & 16 & 15409 & 25 & 15658 & & & 180 & 16229 & 6.4 & 16457 & 80 & 16707 & 64 & & \\
\hline 15115 & 12.5 & 15410 & 29 & 15659 & 50 & 16061 & 125 & & & 16458 & 64 & 16708 & 50 & & \\
\hline 15117 & 12.5 & 15411 & 20 & 15660 & 40 & 16002 & 125 & & 250 & 16459 & so & 16750 & 1000 & & \\
\hline 15118 & 10 & 15412 & 16 & 15661 & 40 & 16003 & 100 & 16251 & 100 & 16460 & 40 & 16751 & 800 & & \\
\hline 15119 & 8 & 15413 & 16 & & & 16004 & 100 & 16252 & 160 & 16461 & 32 & 16752 & 640 & & \\
\hline 15120 & 6.4 & 15.14 & 12.5 & 15662 & 32 & 16005 & 80 & 16253 & 160 & 16462 & 25 & 16753 & 500 & & \\
\hline 15121 & 5 & 15.15 & 12.5 & 15863 & 25 & 16606 & 84 & 16254 & 125 & 16463 & 20 & 16754 & 400 & & \\
\hline 15122 & 4 & 15416 & 10 & 19864 & 20 & 16007 & 64 & 16255 & 100 & 16464 & 16 & 16755 & 320 & & \\
\hline 15123 & 3.2 & 15417 & 8 & 15865 & 16 & 16008 & 50 & 16256 & 80 & 16465 & 12.5 & 16756 & 250 & & \\
\hline 15200 & 50 & 15418 & 6.4 & 15606 & 12.5 & 16009 & 40 & 16257 & 64 & 16500 & 320 & 16757 & 200 & & \\
\hline & & 15419 & 5 & & & 16010 & 32 & 16258 & 50 & 16501 & 250 & 16758 & 160 & & \\
\hline 15202 & 40 & 15420 & 4 & 15668 & 8 & 16011 & 25 & 16259 & 40 & 16502 & 200 & 16759 & 125 & & \\
\hline 15203 & 40 & 15421 & 3.2 & 15869 & 6.4 & 16012 & 20 & 16260 & 32 & 16503 & 160 & 16760 & 100 & & \\
\hline \({ }_{1} 5204\) & 32 & 15422
15450 & 2.5 & 15870 & 5 & 16013 & \({ }_{16}^{16}\) & 16261 & 25 & 16504 & 125 & 16761 & во & & \\
\hline 15205 & 32 & 15450 & 125 & 15700 & 250 & 16014 & 12.5 & 16262 & 20 & 16505 & 100 & 16800 & 1000 & & \\
\hline 15206 & 25 & & 125 & & & & & 16263 & 16 & 16506 & 80 & 16801 & 800 & & \\
\hline 15207 & 25 & 15452 & 125 & is702 & 200 & 16016 & \({ }_{8}\) & 16264 & 12.5 & 16507 & 64 & 16802 & 640 & & \\
\hline 15208 & 20 & 15453 & 100 & 19503 & 160 & 16017 & 6.4 & 16265 & 10 & 16508 & 50 & 16803 & 640 & & \\
\hline 15208 & 20 & 15454 & 100 & 15704 & 125 & 16018 & 2.5 & 16300 & 250 & 16509 & 40 & 16804 & 500 & & \\
\hline 15210 & 20 & 15455 & 80 & 15703 & 100 & 16050 & 250 & 16301 & 200 & & & 16805 & 400 & & \\
\hline
\end{tabular}

Ohmite Manufacturing Company, a North American Philips Company

\section*{OHMITRIM \\ wirewound rectilinear multiturn resistance trimmer}

\section*{FEATURES}

Ohmitrim \({ }^{\text {TM }}\) trimmers offer four features, especially important in view of their economical price:
1. Gold plated leads for excellent solderability.
2. Gold plated contact for excellent oxidation-free long life service.
3. Resistance wire is welded to leads for noiseless connection.
4. Choice of thumbwheel or slider for easy adjustment without tools.

CHARACTERISTICS
Temperature Rating

Power Rating
Resistance Tolerance Temperature co-efficient
Dielectric Strength Insulation Resistance Torque
End Resistance
No. of Turns
Leads
Contacts
For \(\triangle \mathrm{A}= \pm 10 \%\) :
Thermal shock
Rotational life
Electrical life
\(40^{\circ} \mathrm{C}\) max. ambient. (for full wattage rating)
1 watt.
\(\pm 10 \%\).
\(0 \pm .010 \%\) per degree \(\mathbf{C}\).
500 Volts A.C.
100 megohms.
0.1 to 8.0 oz. \(\cdot\) inches.

2\% maximum.
35, approximately. Gold Plated, 0.1 grid spacing. Gold Plated
-55 to \(\pm 85^{\circ} \mathrm{C}\).
200 cycles.
1000 hours. "sealed." A number of openings in the enclosure permit cleaning solvents to enter and readily leave. Thorough testing has assured that when the cleaning process is properly performed in a vapor degreaser, there is no danger of contamination of either the winding or the contact.
Both models meet the requirements outlined in EIA Standard RS-345 "Resistors, Variable, Wirewound" for characteristic "A." They both have the exact lead spacing of style CRT 11 of the EIA Standard. While they deviate slightly in dimensions, both models conform closest in this respect to style CRT 13.

ORDERING
\begin{tabular}{|c|c|c|}
\hline STD. RES. & CATALDG NUMBER \\
VALUES & WHEELTYPE & SLIDE TYPE \\
\hline \(10 \Omega\) & TPW-100 & TPS-100 \\
\(20 \Omega\) & TPW-200 & TPS-200 \\
\(50 \Omega\) & TPW-500 & TPS-500 \\
\(100 \Omega\) & TPW-101 & TPS-101 \\
\(200 \Omega\) & TPW-201 & TPS-201 \\
\(500 \Omega\) & TPW-501 & TPS-501 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \multirow{3}{|c|}{} & \multicolumn{2}{|c|}{ CATALOG NUMBER } \\
\cline { 2 - 4 } STD. RES & THUMB- & THES \\
WHEELTYPE & SLIDE TYPE \\
\hline \(1,000 \Omega\) & TPW-102 & TPS-102 \\
\(2,000 \Omega\) & TPW-202 & TPS-202 \\
\(5,000 \Omega\) & TPW-502 & TPS-502 \\
\(10 K \Omega\) & TPW-103 & TPS-103 \\
\(20 K \Omega\) & TPW-203 & TPS-203 \\
& & \\
\hline
\end{tabular}

\section*{\(-1 W\)}

\section*{TRIMMERS}

OHMITE
- has another.
new answer】

Ohmite type ANP Hot-Molded Trimmers are continuously adjustable 25 -turn variable resistors intended primarily for trimmer applications. Designed for use on printed circuit boards, these dependable three-terminal devices can be applied as either rheostats or potentiometers with equally satisfactory results. Stepless and relatively non-inductive regardless of resistance value. Unexcelled stability of setting in normal environmental conditions.

The type ANP Trimmer is produced by a hotmolding process using a high insulation material together with a hot molded resistance track, low resistance collector track and terminal pins - all combined into a single, solid, integral structure. The type ANP is splash-proof, dust-tight and can be mounted by its own rugged terminals.

\section*{CHARACTERISTICS}

Power Rating: \(1 / 3\) watt @ \(50^{\circ} \mathrm{C}\) ambient temperature. Derate power linearly to zero at \(100^{\circ} \mathrm{C}\).

Resistance Range: 100 ohms to 0.1 megohms. Resistance change is nominally linear with shaft rotation.

Tolerance: Standard resistance tolerance is \(\pm 20 \%\).
Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\).
Working Voltage: 350 volts RMS, maximum at sea level.

Dielectric Strength: 700 volts RMS, at sea level. Insulation Resistance: 1000 megohms minimum.

Adjustment: \(25 \pm 3\) turns for continuous resistance change. Mechanical release at end positions. Turning torque is 0.10 to 8 inch-ounces. Slotted for screwdriver adjustment.

Leads: Pin type terminals, spaced in accordance with \(0.1^{\prime \prime}\) printed wiring board grid system.

Stock OHMITE Type ANP Trimmers
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Ohms } \\
& \pm 20 \%
\end{aligned}
\] & Stock Number & \[
\begin{aligned}
& \text { Ohms } \\
& \pm 20 \%
\end{aligned}
\] & Stock Number \\
\hline 100 & ANP-101M & 5,000 & ANP-502M \\
\hline 250 & ANP-251M & 10,000 & ANP-103M \\
\hline 500 & ANP-501M & 25,000 & ANP-253M \\
\hline 1,000 & ANP-102M & 50,000 & ANP-503M \\
\hline 2,500 & ANP-252M & . 1 meg & ANP-104M \\
\hline
\end{tabular}

Net Price 1-9 pcs.: \$3.30

\title{
HOT MOLDED SINGLE-TURN TRIMMERS
}

\section*{Type AFR}

OHMITE type AFR Trimmers are single-turn controls built to withstand severe environmental conditions. Their unique design includes a hot-molded resistor track bridged by a single moving molded contact brush. Resistance material, collector track material, insulation material and metal terminals are all molded together at one time into a single, solid, integral structure. There are no cracks or crevices to admit moisture.

Enclosure of the Ohmite type AFR is non-magnetic, corrosion resistant, and splash-proof. Type AFR Trimmers are designed for screwdriver adjustment. Fixed stops withstand a maximum shaft torque of 2 inch-pounds.

In excess of 50,000 operational cycles with low "noise" level initially - decreasing with use - can be expected in conventional applications.

\section*{CHARACTERISTICS}

Power Rating: \(1 / 4\) watt \(@+70^{\circ} \mathrm{C}\) ambient temperature. Derate power linearly to zero at \(+120^{\circ} \mathrm{C}\) ambient for resistance values to 0.5 megohms. Additional derating required for resistance values over 0.1 megohms at ambients higher than \(70^{\circ} \mathrm{C}\).
Resistance Range: 100 ohms to 5.0 megohms. Resistance change is nominally linear with shaft rotation.
Tolerance: \(\pm 20 \%\) standard.
Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+120^{\circ} \mathrm{C}\).
Working Voltage: 350 volts, RMS, maximum.
Dielectric Strength: 750 VAC, RMS, at sea level.
Adjustment: Single turn, \(295 \pm 5\) degrees.
Torque: 0.25 to 3.0 inch-ounces.
Leads: Designed for mounting directly on printed wiring boards using the terminal leads which are spaced to fit the \(0.1^{\prime \prime}\) printed wiring board standard spacing.

Stock OHMITE Type AFR Trimmers
\begin{tabular}{r|c|c|c|}
\hline \multicolumn{1}{|c}{\begin{tabular}{c}
Ohms \\
\(\pm 20 \%\)
\end{tabular}} & \begin{tabular}{c}
Stock \\
Number
\end{tabular} & \begin{tabular}{c}
Ohms \\
\(\pm 20 \%\)
\end{tabular} & \begin{tabular}{c}
Stock \\
Number
\end{tabular} \\
\hline 100 & AFR 101M & 25,000 & AFR 253M \\
250 & AFR 251M & 50,000 & AFR 503M \\
500 & AFR 501M & .1 meg & AFR 104M \\
1000 & AFR 102M & .25 meg & AFR 254M \\
2500 & AFR 252M & .5 meg & AFR 504M \\
5000 & AFR 502M & 1.0 meg & AFR 105M \\
10,000 & AFR 103M & 2.5 meg & AFR 255M \\
& & & 5.0 meg \\
& & AFR 505M \\
\hline
\end{tabular}

Net Price 1.9 pcs.: \(\$ 3.00\)

\title{
other OHMITE answers
} in products for today's \(\mathcal{E}\) tomorrow's circuitry

Series 99
RESISTORS
molded wire-wound
- Commercial and hi-stability types
- Sizes from 1.5 to 15 watts
- Coating and markings withstand \(1500^{\circ} \mathrm{F}\)
- Consistent shape for automatic insertion equipment
Pat. No. 3,229.237
 CERAMIC POWER RHEOSTAT
- The only \(71 / 2\) watt metal/ceramic rheostat
- Withstands hot spot temperatures to \(340^{\circ} \mathrm{C}\)
- Only \(1 / 2\) inch in diameter

Series SSA
SOLID STATE RELAYS
- Universal coil accepts AC or DC input
- 10 amp capacity
- 6 milliwatt sensitivity
- Versatile - a few models serve all needs

OHMITROLT.M. power control SOLID STATE CONTROLS
- Provides infinitely smooth control of power over the full voltage range
- Smallest 1 and 2 KW controls
- Integral trimmer adjusts control range
- Component and portable models
 TRANSFORMERS low power series
- Now you can select the exact power rating you need
- Multiple use 3-way terminals
- Instantly replaceable brush contacts
- Adjustable shaft
- Six ratings from 1.0 to 3.0 amp

Model 711
MINIATURE TAP SWITCHES
Breaks: 7 amps @ 125 VAC
Carries: 15 amps
Smaller: than many low current instrument switches

ALABAMA, Montgomery 36106 S. K. Wallace Assocs. Inc. 1871 Grove Hill Lane Phone: (205) 262-2011
ARIZONA, Phoenix 85001 Shefler-Kahn Co. Phone: (602) 258-7893

CALIFORNIA, (Northern) Ohmite Manufacturing Co. 201 Town \& Country Village Palo Alto 94301 Phone: (415) \(321-6953\)

CALIFORNIA, (Southern) Ohmite Manufacturing Co . 6115 Selma Ave., Room 211 Hallywood 90028
Phone: (213) 466-3434
COLORADO, Denver 80222
McLoud \& Raymond Co.
P.O. Box 22044

Phone: (303) 756-1589
CONNECTICUT, (See New York City)
DISTRICT OF COLUMBIA, (Washington)
Samuel K. Macdonald Inc Riggs Bank Bldg., 217 Riggs Bank Bidg., 217
\(3308-14\) th Street, N.W Washington, D.C. 20010 Phone: (202) 265-3938

FLORIDA, Lutz (Sub. of Tampa) 33549 Stanley K. Wallace Assocs. Inc. P.O. Box 67 Phone: (813) 949-1817

GEORGIA, Atlanta 30311 Stanley K. Wallace Assocs. Inc 715 Flamingo Drive Phone: (404) \(753-8463\)

\section*{SALES OFFICES - OHMITE MFG. CO.}

ILLINOIS, Skokie 60076 Ohmite Manufacturing Co 3601 Howard Street Phone: (312) 675-2600

INDIANA, Ft. Wayne 46802 Val-Skal Sales Inc. 510 Ft. Wayne Bank Bldg Phone: (219) 742-9122

LOUISIANA, Metairie 70003 Cartwright \& Bean
7010 Magnolia Court
Phone: (504) 887-5225
MARYLAND, Baltimore 21214 Samuel K. Macdonald Inc. 5500 Harford Road
Phone: (301) 254-3380-1
MASSACHUSETTS, Burlington 01803 Ohmite Manufacturing Co. 99 Cambridge Street Phone: (617) 272-6060

MICHIGAN, Birmingham 48011 Ohmite Manufacturing Co. 725 S. Adams Street, Room L-8 Phone: (313) 642-6040

MINNESOTA, Minneapolis 55416 Fred B. Hill Co.
6110 Excelsior Blvd.
Phone: (612) 929-6727
MISSOURI, Kansas City 64108
H. A. Roes \& Co.

2601 Cherry Street
Phone: (816) 221-0866
MISSOURI, St. Louis 63136
Russ D. Sebright \& Co.
7120 W. Florissant Avenue
Phone: (314) 261-0055

NEW JERSEY, (Northern) Ohmite Manufacturing Co
.O. Box 148
Palisades Park 07650 Phone: (201) 947-1777

NEW JERSEY, (Southern) Samuel K. Macdonald 1531 Spruce Street Phtadelphia 19102
Phone: (215) 545-1205

NEW MEXICO, Albuquerque 87108 Shefler-Kahn Co.
phone: (505) 565-7077

NEW YORK, (Metro. N.Y. City) Ohmite Manufacturing Co. P.O. Box 148 Palisades Park, N.J. 07650 Phone: (212) \(563-7371\)

NEW YORK (Except Metro. N.Y. City) Ohmite Manufacturing Co.
3700 East Avenue
Rochester 14618
Phone: (716) 381-1890
NORTH CAROLINA, Charlotte 28205 Cartwright \& Bean 25 Harwyn Drive Phone: (704) 537-7965
OHIO, (Northern)
Ohmite Manufacturing Co.
Cl. Box 3084

Phone: (216) 261-6000
OHIO, (Southern)--see Indiana
PENNSYLVANIA, Philadelphia 19102 Samuel K. Macdonald, Inc.
1531 Spruce Street
Phone: (215) 545-1205

Samuel K. Macdonald, Inc Kniveton Bldg Room 205 7805 McKnight Road Pittsburgh 15237 Phone: (412) 366-2643

SOUTH CAROLINA
Cartwright \& Bean
3223 Cain's Hill Place, N.W Atlanta, Geargia 30305 Phone: (404) 237-2273

TENNESSEE, Memphis 38104 Cartwright \& Bean
560 S. Cooper Stree
Phone: (901) 276-4442
TEXAS, Dallas 75207
J. Earl Smith Co.

1353 Chemical Street
Phone: (214) 631-1727
J. Earl Smith Co.

9623 Winsome Lan
Houston 77042
Phone: (713) 782-5720
WASHINGTON, Seattle 98105 R. K. Squibb, Inc

655 N . E. Nortnlake Plac
Phone: (206) 632-2450
CANADA, Winnipeg 3, Manitoba
C. M. Robinson Agencies

1550 Erin Street
Phone: (204) 776-1855 \& 6
C. M. Robinson Agencies

1206 Hamilton Street
Vancouver B C
Phone: (604) 681-0743
CANADA, Willowdale, Ontario
A. C. Simmonds \& Sons Ltd

285 Yorkland Blvd
Phone: (416) 445-9111
in products for today's \(\mathcal{G}\) tomorrow's circuitry

\section*{OHMITE}

\section*{WORLD'S SMALLEST CERAMIC POWER RHEOSTAT}

Locking Bushing

High Torque Type

Wincing Side

Resistance Tolerance: \(\pm 10 \%\).
Torque: 0.25 to 3 oz . inch;
for high torque unit - 6 to 15 oz . inch.
Standard Mounting: For panels to \(1 / 8^{\prime \prime}\) thick by means of \(1 / 4\) "-32 flatted threaded bushing.
Shafts and Bushings: \(1 / 8^{\prime \prime}\) diameter, round with screwdriver slot for standard or locking bushing. High torque type also available for secure setting under conditions of vibration and shock. Standard shaft accommodates knob.
Weight: 0.176 oz . (5 grams).
Rotation: \(300^{\circ} \pm 5^{\circ}\).
Recommended Knob: No. 5151 for standard shaft.

\section*{SPECIFICATIONS - MODEL C - UNENCLOSED}

Power Rating: 7.5 watts on steel panel (\(4^{\prime \prime} \times 4^{\prime \prime} \times .040^{\prime \prime}\)) at \(40^{\circ} \mathrm{C}\) ambient. Non-metallic panel rating - 5 watts.
Resistance Range: 10 to 5000 ohms.

STANDARD VALUES (STANDARD SHAFT)
\begin{tabular}{cc|c|cc|c}
& & Cat. & & & Chms \\
Ohms & Amps & No. & Amps & No. \\
\hline 10 & .86 & 4982 & 250 & .17 & 4991 \\
15 & .71 & 4983 & 350 & .15 & 4992 \\
25 & .55 & 4984 & 500 & .12 & 4993 \\
35 & .46 & 4985 & 750 & .10 & 4994 \\
50 & .39 & 4986 & 1000 & .086 & 4995 \\
75 & .32 & 4987 & 1500 & .071 & 4996 \\
100 & .27 & 4988 & 2500 & .055 & 4997 \\
150 & .22 & 4989 & 3500 & .046 & 4998 \\
200 & .19 & 4990 & 5000 & .039 & 4999
\end{tabular}

LOCKING BUSHING and HIGH TORQUE SHAFT Code Word
Locking Bushing ...
High Torque Shaft...HITOR

\section*{ENCLOSED Model C}

\section*{Miniature Rheostats}

With Standard Bushing

With Locking Bushing
Enclosed or "cased" Model C rheostats employ the same tiny ceramic and metal rheostat described on the reverse side. The case is stainless steel and increases the body size very little so that these units remain in the "miniature" category. (Body size is .515 " diameter, max. x \(9 / 16^{\prime \prime}\) long exclusive of terminals.) Enclosed Model C rheostats retain the same wattage ratings since dissipation is based primarily on conduction through the shaft to the metal panel. Versatile terminals fit popular transistor sockets and also accept soldering. The enclosed Model Cunit, is stocked in both standard and locking-type bushings. A high torque shaft which holds settings under relatively rough conditions of vibration and shock is available on special order (code word HITOR).

\section*{SPECIFICATIONS, MODEL C ENCLOSED}

Power Rating: 7.5 watts on steel panel \(4^{\prime \prime} \times 4^{\prime \prime} \times .040^{\prime \prime}\) thick at \(40^{\circ} \mathrm{C}\) ambient. Non-metallic panel rating or in transistor socket or printed circuit board-5 watts.
Resistance Range: 10 to 5000 ohms.
Resistance Tolerance: \(\pm 10 \%\).
Torque: 0.25 to 3 oz . inch:
for high torque unit - 6 to 15 oz . inch.
Standard Mountings: For panels up to \(1 / \mathrm{s}^{\prime \prime}\) thick by means of \(1 / 4-32\) flatted threaded bushing.
Shafts and Bushings: \(1 / 8^{\prime \prime}\) diameter, round with screwdriver slot for standard or locking bushing. High torque type also available for secure setting under conditions of vibration and shock. Standard shaft accommodates knob.
Weight: 0.27 ounce (\(\mathbf{7 . 5}\) grams).
Rotation: \(300^{\circ} \pm 5^{\circ}\).
Recommended Knob: No. 5151.
Terminals: Rheostat terminals accept 22 ga. solid or 24 ga . stranded wire for soldering; will also fit an EIA Type TS-E3R100 transistor socket or similar hole configuration in printed circuit boards. Taper pin terminals to receive special quick-connect (pushon) connectors or spade type solder lugs can be furnished to order.

STOCK MODEL C ENCLOSED RHEOSTATS*
\begin{tabular}{cc|cc}
Ohms & Amps. & \begin{tabular}{c}
Standard Shaft \\
Stack \\
Na.
\end{tabular} & \begin{tabular}{c}
Locking Shaft \\
Stack \\
No.
\end{tabular} \\
\hline 10 & .86 & 4908 & 4948 \\
15 & .71 & 4909 & 4949 \\
25 & .55 & 4910 & 4950 \\
35 & .46 & 4911 & 4951 \\
50 & .39 & 4912 & 4952 \\
75 & .32 & 4913 & 4953 \\
100 & .27 & 4914 & 4954 \\
150 & .22 & 4915 & 4955 \\
200 & .19 & 4916 & 4956 \\
250 & .17 & 4917 & 4957 \\
350 & .15 & 4918 & 4958 \\
500 & .12 & 4919 & 4959 \\
750 & .1 & 4920 & 4960 \\
1000 & .086 & 4921 & 4961 \\
1500 & .071 & 4922 & 4962 \\
2500 & .055 & 4923 & 4963 \\
3500 & .046 & 4924 & 4964 \\
5000 & .039 & 4925 & 4965 \\
\hline
\end{tabular}
*Lower or special resistance values can be supplied -submit specificatians

\section*{Fits \\ Transistor Sockets}

\section*{(4)}
rheostats

\section*{4 m程}
solid
state controls

\section*{}
switches

PRODUCT LOCATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Page & Description & Catalog No. Pa & Page & Description \\
\hline AFR101M-AFR505M & 25 & Single Turn Trimmer-1/4 W. & 1058 & & Adj. Lug-Type 210 \\
\hline AFR101M-AFR503M & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & 25-Turn Trimmer- \(1 / 3 \mathrm{~W}\). & \(1100 \cdot 1123\) & & Model 111 Tap Switch \\
\hline AS3601-AS3684 & 24 & Type AS Locking Pot. & & & Type 210 Resistor, 175 W. \\
\hline ASM6661-ASM6676 & 24 & Type AS \(7 / /^{\prime \prime}\) Shaft Pot. & 1156-1271 & & Model "P" Rheostat \\
\hline CA1041-CA5041 & 24 & Type AB Potentiomerer & \(1300-1323\) & 21. & Model "T"' Rheostat \\
\hline CB1031-CB5031 & \[
\begin{aligned}
& 24 \\
& 18
\end{aligned}
\] & Liftle Devil \({ }^{\text {assortments }}\) & 1356-1373 & & Type 210 Resistor, 22 \\
\hline CAB5F-CAB44F & 15 & Little Rebel \({ }^{\text {TM }}\) Assortments & 1450-1473 & & Type 200 \\
\hline CAB91-CAB99 & 5 & Type 995 Assortments & 1500-1557 & & Type 200 Resistor, 12 W. \\
\hline CCU1031-CCU5041 & 24 & Type AB Pot. Locking & 1800-1860 & & Type 200 Resistor, 20 W . \\
\hline CMU1011-CMU7542 & 24 & Type AB Pot. Locking & 1958.1959 & \({ }^{9}\) & Adiustable Lugs \\
\hline CU1011-CU7542 & 24 & Type AB Pot. Locking & |2001-2018 & 11 & pe \(270 \mathrm{~N}, 50 \mathrm{~W}\). \\
\hline Doxxxxx & 30 & Relays & 2050-2081 & 11 & pe \(270 \mathrm{~N}, 12 \mathrm{~W}\). \\
\hline 0101-52 to 0251-600 & 13 & Dummy Antenna & 212-3 to 212-12-13 & 26 & Model 212 Tap Switch \\
\hline F101-F532 & 10
28.29 & Type 250 Resistor
GPR Relays & 2115-2171 & & Adjustable Lugs \\
\hline GPRXXXX & 28-29 & Model E Rheo, Lock'g Shaft & 2172-2176 & & Extra Term. Powr-Rib (8) \\
\hline L0101-L0123
L0140-L0162 & 21 & Model H Rheo, Lock'g Shaft & 2201-2218 & & Type 0805 5-Powr-Rib®) \\
\hline [4190-L4193 & 20 & Model E Rheo, Lock'g Shaft & 2401-2418 & 11 & Type 270N, 175 W. \\
\hline [4200-14204 & 21 & Model H Rheo, Lock'g Shaft & 2501-2524 & & Type 280 Corrib(8) \\
\hline OMC-7111 & & Nieter Saver Resistors, \(1 / 8 \mathrm{~W}\) W. & 2601-2624 & & Type 230 Corrib(e) \\
\hline OB1001-089175 & \[
\begin{aligned}
& 16 \cdot 17 \\
& 16-17
\end{aligned}
\] & Little Devile Resistors, \(4 / 4 \mathrm{~W}\). & 2712-2808 & 7 & Type 200 Resistor, 3 \\
\hline OE1001.0E9175 & 16.17 & Little Deviler Resistors, \(1 / 2 \mathrm{~W}\) W. & 2822-2925 & & \\
\hline OG1001.0G9175 & 16.17 & Little Devil(\({ }^{\text {a }}\) Resistors, 1 W. & \(3001-3004\)
3101.3104 & & " Pad Attenuators \\
\hline OH1001-0H9175 & 16-17 & Little Devil Resistors, 2 W. & 312-3 to 312-12-T3 & & del 312 Tap Switch \\
\hline 011005.019135 & & little Rebel Carb. Film, & 3201-3204 & & " Pad Attenuators \\
\hline & & Little Rebel Carb. Film, \(1 / 2\) W. & 3301-3304 & & Pad Attenuator \\
\hline PCA1000-PCA1021 & 23 & Ohmitrol(P Power Controls & 3405.3410 & 13 & Type 270, 12 W \\
\hline PCD1000-PCD1021 & 23 & Ohmitrol(8) Power Controls & 3723-3843 & & Style 995-2A, 21,4 \\
\hline P. 300 & 19 & Parasitic Suppressor & & 4 & Style 995-1A, 11/2 W. \\
\hline SOGPR & & Relay Sockel & 412-3 to 412-12-T3 & 27 & Model 412 Tap Switch \\
\hline SRC65-SRC500 & & Solid State Relay & \(4120-4135\) & 4 & Style 995 \\
\hline SSA- & 35 & Solid State Relay & 4190.4193 & 21 & odel " H " Rheostat \\
\hline SSC- & 35 & Solid State Relay & +4200-4204 & & Model " \(]\) " Rheostat \\
\hline SSH- & 35 & Hybrid Relay Solid State Switch & \(4330-4454\) & & e 995-3A, \(31,4 \mathrm{~W}\). \\
\hline \begin{tabular}{l}
SSS- \\
TPS-100 to TPS-502
\end{tabular} & 25 & Onmitrim@ Wirewound & 4530-4664 & & e 995-5B, 5 \\
\hline & & Trimmer, Slide Operated & & & odel "C" Std. Shaft \\
\hline TPW-100 to TPW-502 & 225 & Ohmitrim e Wirewound Trim. & 4948.4965 & & Model "C' Lock. Shaft \\
\hline & & & 5000-5001 & & Rheostat Dials \\
\hline T503-T10012-S & & onmitran® V.T. & 5002-5004 & & Tap Switch D \\
\hline W0101-W0123 & & Model ' \(E\) " Rheostat, Enc!. & 5005-5006 & & Rheostat 0 \\
\hline W4190-W4193 & 20 & Model "E" Rheostat, Encl. & & & V.T. Dials \\
\hline 27 to 2460 & & Chokes & 5011-5019 & & V.T. Dials \\
\hline 5 to 18S & 11 & Mounting , Brac & 5102-515 & & Bakelite Knobs \\
\hline \(0101-0123\) & & Model " H " Rheostats & 5155-5158 & & V.T. Knobs \\
\hline 0200-0229 & & 8 Type 270 Resistors, 25 W . & 5180-5182 & & 5 Ohm's Law Cal cular \\
\hline 0308-0332 & 21 & Model "J" Rheostats & & & C-58 Radial Lead Resi \\
\hline 0358-0359 & & 9 Adj. Lug-Type 210 & \(5800-5909\) & & Clips for Types \\
\hline 0360-0389 & & 9 Dividonm-25 Watt 50 W . & 608-3 to 608-8- & & Model 608 Tap Switch \\
\hline 0400-0428 & & & 6101-2 to 6120-K-4 & & 1 Thru-Bolt Type Brackets \\
\hline 0440.0463 & & 1 Model "L" Rheostat & \(6126 \mathrm{P} 81 / 2\) to 6129 P 1/2 & & Thru-Bolt Type Brackets \\
\hline 0524-0549 & & 9 Dividonm- 50 Watt & \(6507-6519\) & & \begin{tabular}{l}
3 V.T. Brush Contact Ass \\

\end{tabular} \\
\hline \[
\begin{aligned}
& 0560-0591 \\
& 0600-0625
\end{aligned}
\] & & 8 Type 270 Resistor, 100 W. & \(6532-6533\)
6536.6538 & & 3 V.T. Adjustable Stop \\
\hline 0650.0671 & & 1 Model ' N " Rheostat & & & 2 Rheostat Tandem Kit \\
\hline 0700-0725 & & 8 Type 270 Resistor, 175 W. & 6594, 6596 & & 3 V.T. Brush Contact As \\
\hline 0769-0796 & & 9. Dividohm-75 Watt & 7PA5-7PA200 & & 1 Thru-Bolts \\
\hline 0849-0872 & & 1 Model "R" Rheostat & 7070-7074 & & 2 Rheostat Repair kits \\
\hline 0900.0925 & & Type 270 Resistor, 225 W. & \(7090-7091\)
\(711-3\) to 711.11 & & 26 Model 711 Tap Switch \\
\hline 0956-0973 & & Type 210 Resistor, 100 W. & 711-3 \(80013-85260\) & & 6 Type 884 Riteohm(8) Resistor \\
\hline 1001-1040 & & Type 210 Resistor, & & & \\
\hline
\end{tabular}

ORDERINGINFORMATION

For your convenience, we recommend that you place your orders with your local authorized OHMITE stocking distributor for standard OHMITE components listed in this catalog. Authorized OHMITE distributors stock fac-tory-fresh OHMITE components in-depth and therefore are able to offer same-day or overnight service.
QUICK-DELIVERY COMPONENTS (Bold Print Cat. No.) You are assured of immediate delivery of those items listed in this catalog that appear in bold print. Bold listings indicate that these items have, over the years, become the most popular components on a national basis. Items appearing in light face type are available from authorized OHMITE dis!ributors but normally are not stocked in-depth because they are not as popular as bold print items.
Items appearing in parentheses are non-stock standard items and are subject to a minimum handling charge per item.

STANDARD PACKAGES
Most products are packaged in multiple packs. Orders for less-than-standard quantities will be automatically increased to the next standard package. Consult price schedule for standard package information.

FACTORY TERMS
Standard payment terms for components ordered from the factory by firms with established cred \(t\) is \(1 \%, 10\) th and 25 th, net 30 days. F.O.B. Skokie, Illinois.

WARRANTY
Specific written permission to return goods must be obtained from your local OHMITE sales office. No warrants expressed or implied other than those published in Ohmite Policies.

Copyright 1972. OHMITE Mfg. Co., A North American Philips Co., 3601 Howard St., Skokie, Illinois 60076.

\section*{© HMITE \({ }_{\text {® radial lead resistors for P.C. boards }}\)}

\section*{CLASS PC-58}

Increases productivity \(28.1 \%\) - Saves circuit board space
If you are manually inserting axial lead resistors in printed circuit boards, it will pay you to examine the new Ohmite PC. 58 resistor.

\section*{ADVANTAGES:}

LABOR SAVING: Radial Leads eliminate cutting, bending, and forming of leads. Productivity is increased \(28.1 \%\). You achieve a \(21.9 \%\) savings in labor cost. (Time Study Publication No. 163 available on request.)

SPACE SAVING: Radial leads reduce total length dimension required compared to axial lead types, increases packaging density possibilities.
PJSITIVE POSITIONING: Built in stand-off automatically provides correct spacing between resistor and P.C. board.
COST SAVENG: PC. 58 resistors are priced lower than comparable axial lead types. This is in addition to savings in labor as explained above.

STANDARD SIZE: PC-58 Radial Leads fit standard .1 inch matrix boards with standard .046 inch diameter holes.

MARKINGS ALWAYS VISIBLE: Value and Ohmite code markings are always visible from the top of the PC-58. Eliminates time consuming orientation normally required of axial lead types.
CHOICE OF COATINGS: PC-58 resistors are available in \(\pm 5 \%\) tolerance with Vitreous Enamel (Type 270) for resistance values to 3020 ohms for 3 -watt and to 6800 ohms for \(51 / 4\)-watt or Ohmicone \({ }^{\circledR}\) silicone-ceramic (Type 470) for values over 3020 ohms and 6800 ohms for 3 and \(5 \frac{1}{4}\)-watt sizes, respectively. For tolerances of \(\pm 3 \%\) and closer or for low T.C., specify Ohmicone \({ }^{\circledR}\) Type 474.

AVAILABILITY: Now standard PC-58 resistors are in stock at your local Ohmite authorized stocking distributor.

3-WATT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8 ma & \[
5 \mathrm{Fe}
\] & \[
\frac{V \pi x}{2 x}
\] & int & & \[
\begin{array}{|l|}
\hline \mathrm{Max}_{2} \\
48 \\
\hline
\end{array}
\] & 日eve & \begin{tabular}{l}
Cuthes \\

\end{tabular} & \\
\hline 1.0 & 5800 & 1.73 & 120 & 5817 & . 158 & 1200 & 5834 & . 0500 \\
\hline 1.5 & 5801 & 1.41 & 150 & 5818 & . 141 & 1500 & 5835 & . 0447 \\
\hline 2.0 & 5802 & 1.22 & 200 & 5819 & . 122 & 1800 & 5836 & . 0408 \\
\hline 2.4 & 5803 & 1.12 & 250 & 5820 & . 110 & 2000 & 5837 & . 0387 \\
\hline 3.0 & 5804 & 1.00 & 270 & 5821 & . 105 & 2500 & 5838 & . 0346 \\
\hline 4.0 & 5805 & . 866 & 300 & 5822 & . 100 & 2700 & 5839 & . 0333 \\
\hline 5.0 & 5806 & . 774 & 330 & 5823 & . 0953 & 3000 & 5840 & . 0316 \\
\hline 7.5 & 5807 & . 632 & 400 & 5824 & . 0866 & 4000 & 5841* & . 0274 \\
\hline 10.0 & 5808 & . 548 & 450 & 5825 & . 0816 & 4700 & 5842* & . 0253 \\
\hline 15 & 5809 & . 447 & 500 & 5826 & . 0775 & 5000 & 5843* & . 0245 \\
\hline 20 & 5810 & . 387 & 560 & 5827 & . 0732 & 5600 & 5844* & . 0231 \\
\hline 30 & 5811 & . 316 & 600 & 5828 & . 0707 & 6200 & 5845* & . 0220 \\
\hline 50 & 5812 & . 245 & 620 & 5829 & . 0696 & 7000 & 5846* & . 0209 \\
\hline 56 & 5813 & . 231 & 750 & 5830 & . 0632 & 7500 & 5847* & . 0200 \\
\hline 68 & 5814 & . 210 & 800 & 5831 & . 0612 & 9000 & 5848* & . 0182 \\
\hline 82 & 5815 & . 191 & 900 & 5832 & . 0577 & 10000 & 5849* & . 0173 \\
\hline 100 & 5816 & . 173 & 1000 & 5833 & . 0548 & & & \\
\hline
\end{tabular}

\footnotetext{
*NOTE: These resistors are Ohmicone ® Coated, Type 470.
}

\section*{SPECIFICATIONS:}

\section*{MECHANICAL}

Coating: Vitreous Enamel or Ohmicone \({ }^{\circledR}\) (silicone-ceramic), depending on Type.
Terminals: Radial, solder-dipped.
Markings: Ohmite Code and Resistance (Ohms) Value.
Weight: 3-Watt: . 002 lbs ; \(51 / 2\) Watt: .003 lbs .

\section*{ELECTRICAL}

Tolerance: \(\pm 5 \%\) for 1 ohm and above; \(\pm 10 \%\) below 1 ohm .
Wattage: 3 -Watt, derated to 0 at \(350^{\circ} \mathrm{C}-5 \frac{1}{4}\)-Watt, derated to 0 at \(350^{\circ} \mathrm{C}\)
Temperature Coefficient: Less than \(260 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

51⁄4.WATT
Free air rating thru 15K ohms.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Dex & Etalius & \[
\begin{aligned}
& \mathrm{Hat} \\
& \mathrm{k} \text { 年 }
\end{aligned}
\] & dera & Extalyt
He & \[
\begin{aligned}
& \mathrm{fan} \\
& \mathrm{ifn} \\
& \hline
\end{aligned}
\] & [1]ist & \[
\begin{gathered}
\text { Catailut } \\
\text { Na: }
\end{gathered}
\] & \\
\hline 1.0 & 5850 & 2.29 & 100 & 5864 & . 229 & 1800 & 5882 & . 0540 \\
\hline 1.5 & 5850A & 1.87 & 120 & 5865 & . 209 & 2000 & 5883 & . 0512 \\
\hline 2.0 & 5851 & 1.62 & 150 & 5866 & . 187 & 2200 & 5883A & . 0488 \\
\hline 3.0 & 5851A & 1.32 & 160 & 5867 & . 181 & 2500 & 5884 & . 0458 \\
\hline 4.0 & 58518 & 1.15 & 200 & 5868 & . 162 & 3000 & 5885 & . 0418 \\
\hline 5.0 & 5852 & 1.02 & 220 & 5869 & . 154 & 3300 & 5885A & . 0399 \\
\hline 5.6 & 5852A & . 968 & 250 & 5870 & . 145 & 3900 & 5885B & . 0367 \\
\hline 10.0 & 5853 & . 725 & 270 & 5870A & . 139 & 4000 & 5886 & . 0362 \\
\hline 15 & 5854 & . 592 & 300 & 5871 & . 132 & 4500 & 5887 & . 0341 \\
\hline 18 & 5855 & . 540 & 330 & 5872 & . 126 & 5000 & 5888 & . 0324 \\
\hline 20 & 5856 & . 512 & 350 & 5873 & . 122 & 5600 & 5889 & . 0306 \\
\hline 22 & 5856A & . 489 & 400 & 5874 & . 115 & 6000 & 5890 & . 0296 \\
\hline 25 & 5857 & . 458 & 500 & 5875 & . 102 & 7500 & \(5891 *\) & . 0265 \\
\hline 30 & 5858 & . 418 & 510 & 5875A & . 101 & 8200 & 5892* & . 0253 \\
\hline 40 & 5859 & . 362 & 560 & 58758 & . 0968 & 9000 & 5893* & . 0241 \\
\hline 50 & 5860 & . 324 & 600 & 5876 & . 0935 & 9100 & 5893A* & . 0240 \\
\hline 51 & 5860A & . 321 & 750 & 5877 & . 0837 & 10000 & 5894* & . 0229 \\
\hline 56 & 58608 & . 306 & 800 & 5878 & . 0810 & 12000 & 5895* & . 0209 \\
\hline 68 & 5861 & . 278 & 1000 & 5879 & . 0725 & 15000 & 5896* & . 0187 \\
\hline 75 & 5862 & . 265 & 1200 & 5880 & . 0661 & 20000 & 5897* & . 0152 \\
\hline 82 & 5863 & . 253 & 1300 & 5881 & . 0635 & & & \\
\hline
\end{tabular}
*NOTE: These resistors are Ohmicone \({ }^{\circledR}\) Coated, Type 470.

\footnotetext{
' All standard values shown above are popular values and are stocked by authorized oHmITE stocking distributors.
}

\title{
:- HMITE \({ }_{\text {© type }} 995\) MGLDED axial lead vitreous enameled resistors
}

\author{
FIRST MOLDED WIREWOUND, VITREOUS ENAMEL RESISTOR \\ - insulated! meets 1000 vac test WITHSTANDS \(1500^{\circ} \mathrm{F}\) TEMPERATURES WITHOUT DISTORTION
}

An exclusive technique (U. S. Patent No.'s \(3,229,237\) and \(3,489,828\)) permits application of the vitreous enamel coating by molding instead of the conventional "dip" process. The dimensionally consistent and thicker coating that results, guarantees a 1000 VAC insulation rating plus unparalleled capability for withstanding very high temperatures, high humidity and immersion in salt solution.
- resists chipping, breaking
- UNIFORM SIZE PERMITS CLIP-MOUNTING WITH SIGNificant heat sink benefits

\author{
- HIGH OVERLOAD CAPABILITY
}

These resistors are normally mounted by their axial leads. However, their consistent form also permits mounting in clips with heat sink benefits up to \(100 \%\). (See "Mounting Clips" on page 5.) Resistance tolerance is \(\pm 5 \%\). Series 99 resistors meet the requirements of MIL-R-26 for "insulated" resistors.

\footnotetext{
Popular items appear in BOLO print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking
} distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item.

\section*{앙 HMTE}

MIL-R-26 AXIAL LEAD RESISTORS
Ohmite maintains stocks of molded vitreous enameled resistors to MIL-R-26 specifications. These Type 991 units meet or exceed required 1000 VAC V.block dielectric, 100 megohm insulation and \(\pm 3 \% \Delta R\) on 2000 hr . cyclic load-life test.

\section*{MIL-R-26 RESISTORS IN STOCK}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { MiI } \\
& \text { Type } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Char } \overline{\text { P }} \\
& \text { Watts } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Char } 6 \\
& \text { Watts } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Resistance } \\
\text { Range }^{+} \\
\hline
\end{gathered}
\] \\
\hline RW67 & 6.5 & 5.0 & 0.10.3600 \\
\hline RW68 & 11.0 & 8.0 & 0.10-8200n \\
\hline RW69 & 3.0 & 2.5 & 0.10-20009 \\
\hline
\end{tabular}

To order, specify using this formula:
\begin{tabular}{|c|c|c|}
\hline RW67 & \(v\) & R10 \\
\hline Mil Type & Charact & Ohmic Symbol \\
\hline \multicolumn{3}{|l|}{Example: RW67VR10 \(=6.5 \mathrm{~W}, 0.10 \Omega\)} \\
\hline \multicolumn{3}{|l|}{STANDARD VALUES* IN STOCK} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & 吕 \\
\hline \multirow[t]{2}{*}{10} & R10 & 1.0 & 1R0 & 10 & 100 & 100 & 101 & 1000 & 102 \\
\hline & & 1.1 & 1R1 & 11 & 110 & 110 & 111 & 1100 & 112 \\
\hline \multirow[t]{2}{*}{. 12} & R12 & 1.2 & 1 R2 & 12 & 120 & 120 & 121 & 1200 & 122 \\
\hline & & 1.3 & 1 R 3 & 13 & 130 & 130 & 131 & 1300 & 132 \\
\hline \multirow[t]{2}{*}{. 15} & R15 & 1.5 & 1 R5 & 15 & 150 & 150 & 151 & 1500 & 15 \\
\hline & & 1.6 & 1 1R6 & 16 & 160 & 160 & 161 & 1600 & 162 \\
\hline \multirow[t]{2}{*}{. 18} & R18 & 1.8 & \(1 \mathrm{R8}\) & 18 & 180 & 180 & 181 & 1800 & 182 \\
\hline & & 2.0 & 2RO & 20 & 200 & 200 & 201 & 2000 & 202 \\
\hline \multirow[t]{2}{*}{22} & R22 & 2.2 & 2R2 & 22 & 220 & 220 & 221 & 2200 & 222 \\
\hline & & 2.4 & 2R4 & 24 & 240 & 240 & 241 & 2400 & 242 \\
\hline \multirow[t]{2}{*}{27} & R27 & 2.7 & 2R7 & 27 & 270 & 270 & 271 & 2700 & 2 \\
\hline & & 3.0 & 3R0 & 30 & 300 & 300 & 301 & 3000 & 302 \\
\hline \multirow[t]{2}{*}{. 33} & R33 & 3.3 & 3R3 & 33 & 330 & 330 & 331 & 3300 & 332 \\
\hline & & 3.6 & 3R6 & 36 & 360 & 360 & 361 & 3600 & 362 \\
\hline \multirow[t]{2}{*}{. 39} & R39 & 3.9 & 3R9 & 39 & 390 & 390 & 391 & 3900 & 392 \\
\hline & & 4.3 & 4R3 & 43 & 430 & 430 & 431 & 4300 & 432 \\
\hline \multirow[t]{2}{*}{. 47} & R47 & 4.7 & 4R7 & 47 & 470 & 470 & 471 & 4700 & 47 \\
\hline & & 5.1 & 5R1 & 51 & 510 & 510 & 511 & 5100 & 512 \\
\hline \multirow[t]{2}{*}{. 56} & R56 & 5.6 & 5R6 & 56 & 560 & 560 & 561 & 5600 & 562 \\
\hline & & 6.2 & 6R2 & 62 & 620 & 620 & 621 & 6200 & 622 \\
\hline \multirow[t]{2}{*}{. 68} & R68 & 6.8 & 6R8 & 68 & 680 & 680 & 681 & 6800 & 68 \\
\hline & & 7.5 & 7 R 5 & 75 & 750 & 750 & 751 & 7500 & 752 \\
\hline \multirow[t]{2}{*}{. 82} & R82 & 8.2 & 8R2 & 82 & 820 & 820 & 821 & 9200 & 822 \\
\hline & & 9.1 & 9R1 & 91 & 910 & 910 & 911 & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{* \(\pm 5 \% 1\) ohm and above; \(\pm 10 \%\) below 1 ohm.}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{ll}
\hline \text { 1A: } & .422 \\
\text { 2A: } & .375 \\
\hline
\end{array}
\]} & & & \multicolumn{3}{|c|}{1-1/2"} & \[
\int \begin{aligned}
& 1 A: \\
& 2 A:
\end{aligned}
\] & .125
.188 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
2 A: .547 \\
58: .938 \\
10 A: 1.781
\end{gathered}
\]}} & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{WIRELEAD}} & & . 203 \\
\hline & & & & & & & & & . 203 \\
\hline \multicolumn{3}{|l|}{} & & & & & & & \\
\hline
\end{tabular}

\title{
type 991 mil-approved and type 995 resistor assortment
}

\author{
WIRE-WOUND/AXIAL LEAD MOLDDD VITREOUS ENAMEL
}
- Perfect for R \& D and Prototype Labs.
- All popular values included.

Select the wire-wound resistor you need right on the job. All the popular resistance values, as determined by national usage, are contained in these handy, compact assortments.

The attractive plastic cabinet is furnished at no extra cost with each assortment. Cabinets are factory packed in accordance with the table (shown at right) which states the quantities of each resistance value per assortment. Each drawer segment is individually labeled. Dovetail tops and bottoms of cabinets facilitate stacking. Dimensions for single cabinets are \(9^{\prime \prime}\) long \(\times 43 / 4^{\prime \prime}\) high x \(51 / 4^{\prime \prime}\) deep; double cabinets are \(10^{\prime \prime}\) high, including wall hanging brackets.
SPECIFICATIONS
\begin{tabular}{|c|c|c|c|}
\hline Nominal Wattage Size & Cataiog Number & No. of Res. Value & \[
\begin{aligned}
& \text { Quantit: } \\
& \text { of } \\
& \text { Resistors }
\end{aligned}
\] \\
\hline 11/2 W. & CAB-91 & 40 & 167 \\
\hline 31/2 W. & CAB-93 & 71 & 325 \\
\hline 5 W . & CAB-95 & 75 & 355 \\
\hline 11 W. & CAB-99 & 40 & 185 \\
\hline
\end{tabular}

MOUNTING CLIPS

- Resistors and handy cabinet for the price of the resistors alone.
- 4 Wattage sizes to choose from.
- Contents clearly marked on front of each drawer segment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Quantities and Resstance for Each Assortment} & & \multicolumn{4}{|l|}{Quantlies and Pesistance for Each Aszertment} \\
\hline & & & & & & & & & \\
\hline 1.0 & 10 & 7 & 7 & 5 & 470 & 5 & 7 & 4 & 4 \\
\hline 1.2 & - & - & 4 & - & 500 & 5 & 7 & 7 & 5 \\
\hline 1.5 & 5 & 4 & 4 & - & 510 & 5 & - & 4 & \\
\hline 2.0 & 5 & 4 & 4 & 5 & 560 & - & 4 & 4 & \\
\hline 2.2 & 5 & - & - & 5 & 600 & 5 & 7 & 4 & \\
\hline 2.7 & - & 4 & - & - & 620 & - & 4 & - & - \\
\hline 3.0 & 5 & 4 & 4 & 5 & 680 & 2 & 7 & - & - \\
\hline 4.0 & 3 & 4 & 4 & 5 & 700 & - & 4 & - & - \\
\hline 5.0 & 5 & 7 & 7 & 5 & 750 & 2 & 7 & 7 & 5 \\
\hline 5.6 & 5 & 1 & 4 & - & 800 & 2 & 4 & 4 & \\
\hline 6.8 & - & 4 & - & - & 820 & - & - & 4 & - \\
\hline 7.5 & 3 & 4 & 1 & 5 & 900 & - & 4 & 7 & \\
\hline 10.0 & 10 & 4 & 7 & 5 & 1000 & 5 & 7 & 7 & 5 \\
\hline 12 & 1 & 1 & 4 & - & 1200 & 2 & 4 & 4 & \\
\hline 15 & 5 & 7 & 7 & 5 & 1300 & 2 & 7 & 7 & - \\
\hline 18 & - & 1 & 4 & - & 1500 & 5 & 7 & 4 & 4 \\
\hline 20 & 3 & 4 & 7 & 5 & 1800 & 2 & 4 & 4 & \\
\hline 22 & 2 & 7 & 4 & 5 & 2000 & 5 & 7 & 7 & 4 \\
\hline 25 & 3 & 4 & 7 & 5 & 2200 & 2 & 4 & 4 & \\
\hline 30 & 3 & 4 & 4 & 5 & 2500 & 2 & 4 & 4 & 4 \\
\hline 33 & - & 4 & - & - & 2700 & 5 & 4 & 1 & \\
\hline 39 & - & 4 & 4 & 5 & 3000 & 5 & 4 & 7 & 4 \\
\hline 40 & 3 & 4 & 4 & 5 & 3300 & 5 & 4 & 4 & - \\
\hline 47 & - & 4 & 4 & & 3900 & - & 1 & 1 & \\
\hline 50 & 5 & 7 & 7 & 5 & 4000 & - & 4 & 4 & 4 \\
\hline 51 & - & - & 7 & - & 4300 & - & - & 4 & - \\
\hline 56 & 2 & 4 & 4 & 5 & 4500 & - & - & & - \\
\hline 68 & 2 & 4 & 4 & 5 & 4700 & - & 4 & 4 & , \\
\hline 75 & 2 & 7 & 4 & 4 & 5000 & - & 4 & 7 & 4 \\
\hline 82 & - & 4 & 4 & 5 & 5600 & - & 1 & 4 & \\
\hline 91 & 5 & \(\square\) & - & \(\bigcirc\) & 6000 & - & 1 & 4 & - \\
\hline 100 & 5 & 7 & 7 & 5 & 6800 & - & 1 & 5 & 4 \\
\hline 110 & 5 & 7 & 4 & - & 7000 & - & 4 & & - \\
\hline 120 & - & 7 & 4 & & 7500 & - & 3 & & - \\
\hline 150 & - & 4 & 4 & 5 & 8000 & & & 4 & \\
\hline 160 & - & 1 & 4 & & 8200 & - & 4 & 4 & - \\
\hline 200 & 5 & 7 & 7 & 5 & 9000 & - & - & 4 & - \\
\hline 220 & 5 & 7 & 7 & 5 & 9100 & - & & & 4 \\
\hline 250 & - & 4 & 7 & 5 & 10,000 & - & 7 & 7 & 4 \\
\hline 270 & - & 4 & 4 & & 12,000 & - & & 4 & \\
\hline 300 & 5 & 7 & 7 & 5 & 15,000 & - & - & 4 & 4 \\
\hline 330 & 5 & 4 & 4 & & 20,000 & - & - & 4 & - \\
\hline 350 & - & \(\square\) & 4 & 4 & 22,000 & - & - & 4 & 4 \\
\hline 390 & - & 4 & 4 & - & 25,000 & - & - & 4 & 4 \\
\hline 400 & - & 4 & 4 & - & 40,000 & - & - & - & 4 \\
\hline 450 & - & 4 & - & - & 50,000 & & & - & 4 \\
\hline
\end{tabular}
much as \(100 \%\). Holes in clip base permit fastening to chassis by means of machine screws, eyelets or rivets.
CLIPS FOR TYPE 995 AND 884* RESISTORS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Resistor } & Clip \\
Watts & Serles & 5900 \\
\cline { 1 - 2 } \(11 / 2\) & 99 & 5902 \\
\(21 / 4\) & 99 & 5904 \\
3 & 88 & 5904 \\
\(31 / 4\) & 99 & 5905 \\
5 & 88 & 5906 \\
5 & 99 & 5909 \\
10 & 88 & 5908 \\
\hline 11 & 99 & \\
\hline
\end{tabular}
*See page 6 for Type 884 resistors.

OHM'S LAW CALCULATOR

Solve Ohm's Law/Parallel Resistance problems with Ohmite's pocketsized calculator. Also convenient \(A, B, C\), and \(D\) slide rule scales for supplementary calculations. Resistance scales from 0.01 ohm to 100 megohms. Varnished cardboard or deluxe plastic model.
\begin{tabular}{l|c|}
\hline Type & Stock No \\
\hline Cardboard & 5180 \\
Plastic & 5182 \\
\hline
\end{tabular}

\footnotetext{
' Popular items appear in BOLD print and are usualiy in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking distributors but are not noriially stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item.
}

\section*{(0)HMITE type 884 Riteohm \({ }^{\circ}\) Resistors- \(1 \%\) tolerance}

molded
for uniform shape and size

- OHMICONE® silicone-ceramic - Iow T.C. - insulated for 1000 volts - aged for stability

Type 884 Riteohm \({ }^{\circledR 8}\) Resistors are stocked in power ratings of 3,5 and 10 watts. Single layer wound on ceramic cores, Riteohm resistors feature a pressure-molded coating of tough, resilient Ohmicone® silicone-ceramic material which meets the MIL-R-26, 1000 VAC insulation test. Riteohms are aged for long term stability and exhibit negligible inductance at audio frequencies. Temperature coefficient of resistance is \(0 \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}^{\prime}\) for most values. Values shown are available from stock. For nonstandard values. closer tolerances. etc. contact vour local Ohmite office.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{array}{r}
84 \\
3.1 \\
\hline 2
\end{array}
\]} & \multirow[b]{2}{*}{Ner} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multirow[b]{2}{*}{Ansit bentr} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|r|}{} \\
\hline & & & & & & 11 & & \[
\begin{gathered}
68 \\
\hline 18
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{K} 5 \\
& \mathrm{~A}=4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 851 \\
& 120 \\
& \hline
\end{aligned}
\] & Mat & 5 & \[
\begin{gathered}
\text { Mis } \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { dus } \\
& \text { sen }
\end{aligned}
\] & & \[
E
\] & El & \[
\mathrm{Nac}
\] \\
\hline \[
\begin{aligned}
& .100 \\
& .121
\end{aligned}
\] & 80013
80023 & 5.48 & 80015 & 7.07 & 80010 & 10.0 & 56.2 & (81853) & . 231 & 81855 & . 298 & 81850 & . 422 & 2000 & 83343 & & & & & \\
\hline . 121 & 80023 & 4.98 & 80025 & 6.43 & 80020 & 9.09 & 59.0 & 81873 & . 225 & 81875 & . 291 & 81870 & . 412 & 2150 & 83343
83373 & . 0387 & 83345 & . 0500 & 83340 & \[
.0707
\] \\
\hline 200 & 80053 & 3.87 & 80055 & 5.00 & 80050 & 8.16
7.07 & 60.4 & 81883
81893 & . 223 & 81885 & . 288 & 81880 & . 407 & 2210 & 83383 & . 0368 & 83385 & . 0476 & 83380 & . 0673 \\
\hline . 221 & 80063 & 3.68 & 80065 & 4.76 & 80060 & 6.73 & 68.1 & 81893 & . 220 & 81895 & . 284 & 8189 & 402 & 2260 & 83393 & . 0364 & 83395 & . 0470 & 83390 & . 0665 \\
\hline . 249 & 80073 & 3.47 & 80075 & 4.48 & 80070 & 6.34 & 68.1
75.0 & 81933 & . 210 & 81935 & . 271 & 81930 & 383 & 2430 & 83423 & . 0351 & 83425 & . 0454 & 83420 & . 0641 \\
\hline . 274 & 80083 & 3.31 & 80085 & 4.27 & 80080 & 6.04 & 82.5 & 82013 & . 191 & 82015 & . 258 & 81970 & . 365 & 2490 & 83433 & . 0347 & 83435 & . 0448 & 83430 & . 0634 \\
\hline . 392 & 80103 & 2.77 & 80105 & 3.57 & 80100 & 5.05 & 88.7 & 82043 & . 184 & 82015 & . 236 & 82010 & . 348 & 2740 & 83473 & . 0331 & 83475 & 0427 & 83470 & . 0604 \\
\hline 475 & 80113 & 2.51 & 80115 & 3.24 & 80110 & 4.59 & 90.9 & 82053 & . 188 & 82045 & \(\frac{237}{235}\) & 82040 & . 336 & 2940 & 83503 & . 0319 & 83505 & 0412 & 83500 & . 0583 \\
\hline 499 & 80123 & 2.45 & 80125 & 3.17 & 80120 & 4.48 & 100 & 82093 & . 173 & 82055
82095 & 235 & 82050
82090 & . 332 & 3010 & 83513 & . 0316 & 83515 & . 0408 & 83510 & . 0576 \\
\hline . 681 & 80143 & 2.10 & 80145 & 2.71 & 80140 & 3.83 & 115 & 82153 & . 162 & 82095 & 224 & 82090 & . 216 & 3090 & 83523. & . 0312 & 83525 & 0402 & 83520 & . 0569 \\
\hline 750 & 80153 & 2.00 & 80155 & 2.58 & 80150 & 3.65 & 121 & 82173 & . 157 & 82175 & . 209 & 82150
82170 & . 285 & 3160 & 83533 & . 0308 & 83535 & 0398 & 83530 & . 0563 \\
\hline . 825 & 80163 & 1.91 & 80165 & 2.46 & 80160 & 3.48 & 130 & 82203 & . 152 & 82205 & . 196 & 82170 & . 287 & 3240 & 83543 & . 0304 & 83545 & . 0393 & 83540 & . 0556 \\
\hline 1.00 & 80173 & 1.73 & 80175 & 2.24 & 80170 & 3.16 & 150 & 82263 & 141 & 82265 & . 183 & 82200 & . 277 & 3320 & 83553 & . 0301 & 83555 & . 0388 & 83550 & . 0549 \\
\hline 1.10 & 80213 & 1.65 & 80215 & 2.13 & 80210 & 3.02 & 162 & 82293 & . 136 & 82295 & . 176 & 82260 & 258 & 3480 & 83573 & . 0294 & 83575 & . 0379 & 83570 & . 0536 \\
\hline 1.21 & (80253) & 1.57 & 80255 & 2.03 & 80250 & 2.87 & 169 & 82313 & . 133 & 82315 & . 176 & 82290
82310 & 248 & 3920 & 83623 & . 0277 & 83625 & . 0357 & 83620 & . 0505 \\
\hline 1.43 & 80323 & 1.45 & 80325 & 1.87 & 80320 & 2.64 & 174 & 82323 & . 131 & 82315 & . 172 & 82310 & 243 & 4020 & 83633 & . 0273 & 83635 & . 0353 & 83630 & . 0499 \\
\hline 1.50 & (80343) & 1.41 & 80345 & 1.83 & 80340 & 2.58 & 178 & 82333 & . 130 & 82335 & . 170 & 82320
82330 & . 240 & 4750 & 883703 & . 0251 & 83705 & . 0324 & 83700 & . 0459 \\
\hline 1.58 & (80363) & 1.38 & 80365 & 1.78 & 80360 & 2.52 & 182 & 82343 & . 128 & 82345 & 168 & 82330 & 237 & 4870 & 83713 & . 0248 & 83715 & . 0320 & 83710 & . 0453 \\
\hline 1.82 & 80423 & 1.28 & 80425 & 1.66 & 80420 & 2.34 & 200 & 82383 & . 128 & 82345 & . 166 & 82340
82380 & 234 & 4990 & 83723 & . 0245 & 83725 & . 0317 & 83720 & 0448 \\
\hline 2.00 & 80463 & 1.22 & 80465 & 1.58 & 80460 & 2.24 & 205 & 82393 & . 121 & 82395 & . 156 & 82380 & 4 & 5110 & 83733 & . 0242 & 83735 & . 0313 & 83730 & . 0442 \\
\hline 2.21 & (80503) & 1.17 & 80505 & 1.50 & 80500 & 2.13 & 215 & 82413 & . 118 & 82415 & . 152 & 82390 & . 221 & 5490 & 83763 & . 0234 & 83765 & . 0302 & 83760 & . 0427 \\
\hline 2.49 & 80553 & 1.10 & 80555 & 1.42 & 80550 & 2.00 & 221 & 82423 & . 117 & 82425 & 150 & 82410 & . 216 & 5620 & 83773 & . 0231 & 83775 & . 0298 & 83770 & . 0422 \\
\hline 2.74 & (80593) & 1.05 & 80595 & 1.35 & 80590 & 1.91 & 249 & 82473 & . 110 & 82425 & 142 & 82420
82470 & . 213 & 6040 & 83803 & . 0223 & 83805 & . 0288 & 83800 & . 0407 \\
\hline 3.01 & (80633) & . 998 & 80635 & 1.29 & 80630 & 1.82 & 255 & 82483 & . 108 & 82485 & 142 & 82470 & . 200 & 6190 & 83813 & . 0220 & 83815 & . 0284 & 83810 & . 0402 \\
\hline 3.32 & (80673) & . 951 & 80675 & 1.23 & 80670 & 1.74 & 274 & 82513 & . 105 & 82515 & 145 & 82480
82510 & . 198 & 6650 & 83843 & . 0212 & 83845 & . 0274 & 83840 & . 0388 \\
\hline 4.02 & (80753) & . 864 & 80755 & 1.12 & 80750 & 1.58 & 301 & 82553 & . 0998 & 82555 & . 129 & 82510 & . 181 & 6810 & 83853 & . 0210 & 83855 & . 0271 & 83850 & . 0383 \\
\hline 4.42 & 80793 & 824 & 80795 & 1.06 & 80790 & 1.50 & 332 & 82593 & . 0951 & 82595 & . 123 & 82550 & . 182 & 6980 & 83863 & . 0207 & 83865 & . 0268 & 83860 & . 0379 \\
\hline 4.53 & 80803 & . 814 & 80805 & 1.05 & 80800 & 1.49 & 340 & 82603 & . 0939 & 82605 & . 121 & & 174 & 7500 & 83893 & . 0200 & 83895 & 0258 & 83890 & . 0365 \\
\hline 4.99 & 80843 & . 775 & 80845 & 1.00 & 80840 & 1.42 & 365 & (82633) & . 0907 & 82635 & . 117 & 82600 & . 171 & 8060 & 83923 & . 0193 & 83925 & . 0249 & 83920 & . 0352 \\
\hline 5.11 & (80853) & . 766 & 80855 & . 989 & 80850 & 1.40 & 374 & 82643 & . 0896 & 82645 & . 1116 & 82630 & . 166 & 8250 & 83933 & . 0191 & 83935 & . 0246 & 83930 & . 0348 \\
\hline 6.19 & (80933) & . 696 & 80935 & . 899 & 80930 & 1.27 & 383 & 82653 & . 0885 & 82655 & . 1114 & 82640
82650 & 164 & 8870 & 83963 & . 0184 & 83965 & . 0237 & 83960 & . 0336 \\
\hline 6.81 & (80973) & . 664 & 80975 & . 857 & 80970 & 1.21 & 392 & & . 0875 & 82665 & 114 & 82650 & 162 & 10,000 & 84013 & . 0173 & 84015 & . 0224 & 84010 & . 0316 \\
\hline 7.50 & 81013 & . 632 & 81015 & . 816 & 81010 & 1.15 & 402 & 82673 & . 0864 & 82665 & . 113 & 82660
82670 & . 160 & 15,000 & 84183 & .0133** & 84185 & . 0183 & 84180 & . 0258 \\
\hline 8.06 & 81043 & . 610 & 81045 & . 788 & 81040 & 1.11 & 432 & (82703) & . 08643 & 82675 & 112 & 82670 & . 158 & 20,000 & 84303 & .0100* & 84305 & . 0158 & 84300 & . 0224 \\
\hline 9.09 & 81093 & . 574 & 81095 & . 742 & 81090 & 1.05 & 453 & 82723 & . 0814 & 82725 & 108 & 82700 & . 152 & 20,500 & 84313 & .00976* & 84315 & . 0156 & 84310 & . 0221 \\
\hline 10.0 & 81133 & . 548 & 81135 & 707 & 81130 & 1.00 & 475 & 82743 & & 82745 & . 103 & 82720 & 149 & 22,100 & 84343 & .00905* & 84345 & . 0150 & 84340 & . 0213 \\
\hline 11.0 & 81173 & . 522 & 81175 & . 674 & 81170 & . 953 & 499 & 82743 & . 0775 & 82745
82765 & . 103 & 82740
82760 & . 145 & 23,700 & & & 84375 & . 0145 & 84370 & . 0205 \\
\hline 12.1 & 81213 & . 498 & 81215 & . 643 & 81210 & . 909 & 511 & 82773 & . 0766 & 82775 & . 1008 & 82760 & . 142 & 24,900 & & & 84395 & . 0142 & 84390 & . 0200 \\
\hline 13.0 & 81243 & . 480 & 81245 & . 620 & 81240 & . 877 & 562 & 82813 & . 0731 & 82775 & . 09843 & 82770
82810 & . 140 & 25,500 & & & 84405 & . 0140 & 84400 & . 0198 \\
\hline 14.0 & 81273 & 463 & 81275 & . 598 & 81270 & . 845 & 604 & 82843 & . 0705 & 82845 & . 09810 & 82810 & . 133 & 27,400 & & & 84435 & . 0135 & 84430 & . 0191 \\
\hline 15.0 & 81303 & 447 & 81305 & . 577 & 81300 & . 816 & 619 & 82853 & . 0696 & 82855 & . 0899 & 82840
82850 & . 127 & 30,100 & & & 84475 & . 0129 & 84470 & . 0182 \\
\hline 18.2 & (81383) & 406 & 81385 & . 524 & 81380 & . 741 & 681 & 82893 & . 06664 & 82895 & . 08989 & 82850 & . 127 & 34,000 & & & 84525 & . 0121 & 84520 & . 0171 \\
\hline 20.0 & 81423 & . 387 & 81425 & . 500 & 81420 & . 707 & 715 & 82913 & . 0648 & 82915 & . 0836 & 82890 & . 121 & 36,500 & & & 84555 & . 0117 & 84550 & . 0166 \\
\hline 22.1 & 81463 & . 368 & 81465 & . 476 & 81460 & . 673 & 750 & 82933 & . 0632 & 82935 & . 0816 & 82910 & 118 & 40,200 & & & 84595 & . 0112 & 84590 & . 0158 \\
\hline 24.3 & 81503 & . 351 & 81505 & . 454 & 81500 & . 642 & 806 & 82963 & . 0610 & 82965 & . 0788 & 82930 & 115 & 43,200 & & & 84625 & .0106* & 84620 & . 0152 \\
\hline 24.9 & 81513 & . 347 & 81515 & . 448 & 81510 & . 634 & 825 & 82973 & . 0603 & 82975 & . 0778 & 82960 & . 111 & 45,300 & & & 84645 & .0102* & 84640 & . 0149 \\
\hline 27.4 & 81553 & . 331 & 81555 & . 427 & 81550 & . 604 & 909 & 83013 & . 0574 & 83015 & . 0742 & 82970
83010 & . 1105 & 47,500 & & & 84665 & 00968* & 84660 & . 0145 \\
\hline 30.1 & 81593 & . 316 & 81595 & . 408 & 81590 & . 576 & 953 & 83033 & . 0561 & 83035 & . 0724 & 83030 & . 105 & 49,900 & & & 84685 & 0922* & 84680 & . 0142 \\
\hline 33.2 & 81633 & . 301 & 81635 & 388 & 81630 & . 549 & 1000 & 83053 & . 0548 & 883055 & . 0707 & 83030
83050 & . 102 & \[
51,100
\]
\[
80,600
\] & & & 84695. & 00900* & 84690 & . 0140 \\
\hline 34.8 & (81653) . & . 294 & 81655 & . 379 & 81650 & . 536 & 1100 & 83093 & . 0522 & 83095 & . 0674 & 833090 & . 1095 & \[
80,600
\] & & & 84885 & 00571* & 84880 & 0111 \\
\hline 38.3 & 81693 & . 280 & 81695 & . 361 & 81690 & . 511 & 1180 & 83123 & . 0504 & 83125 & . 0651 & 83120 & . 0953 & 82,500 & & & & & 84890 & . 0110 \\
\hline 39.2 & 81703 & . 277 & 81705. & . 357 & 81700 & . 505 & 1300 & 83163 & . 0480 & 83165 & . 0620 & 83160 & . 0821 & 90,900 & & & & & 84930 & . 0105 \\
\hline 40.2 & 81713 & . 273 & 81715 & . 353 & 81710 & . 499 & 1470 & 83213 & . 0452 & 83215 & . 0583 & 83210 & 0825 & 100,000 & & & & & 84970 & . 0100 \\
\hline 43.2 & 81743 & 264 & 81745.3 & . 340 & 81740 & 481 & 1500 & 83223 & . 0447 & 83225 & . 0577 & 83220 & 0816 & 150,000 & & & & & 85140 & 00733 \({ }^{\circ}\) \\
\hline 47.5 & 81783 & 251 & 81785. & . 324 & 81780 & 459 & 1620 & 83253 & . 0430 & 83255 & . 0556 & 83250 & . 08186 & 174,000 & & & & & 85200 & 00632* \\
\hline 49.9 & 81803 & 245 & 81805. & . 317 & 81800 & . 448 & 1780 & 83293 & . 0411 & 83295 & . 0530 & 83290 & . 0780 & 200,000 & & & & & 85260 & .00550 \\
\hline 51.1 & 81813 & . 242 & 81815. & . 313 & 81810 & . 442 & 1820 & 83303 & . 0406 & 83305 & . 0524 & 83300 & \[
\mid .0750
\] & & & & & & & \\
\hline
\end{tabular}
*These values correspond to limiting maximum voltages of 200,460 and 1100 for the 3,5 and 10 W sizes respectively.

\footnotetext{
\({ }^{1}\) T.C. of values in 3 Watt size under 97.6 ohms is as follows: From 97.6 thru 10 ohms, \(0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\); from 9.76 thru 1.0 ohms, \(0 \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\); below \(1 \mathrm{ohm}, 0 \pm 90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). Popular items appear in BOLD print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are avalable from stocking
distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item.
}

\section*{- \({ }^{0}\) HMITE \({ }_{\text {® type }} 200\) brown devil fixed resistors}

BROWN DEVIL. (Type 200) resistors, are vitreous enameled. wirewound units long famous for ruggedness and durability in small power resistors. With the emphasis towards miniaturization and the current industry trend towards higher operating temperatures, Ohmite has been able to increase the ratings on two Brown Devil sizes. The 5 watt size is now rated 8 watts and the 10 watt size is now rated 12 watts. The 20 watt unit retains the same rating. The higher ratings may be confidently applied to any 5 or 10 watt unit now in the possession of users or distributors. At this time also, to meet the demand for lower wattage units, Ohmite introduces two, new, small stock sizes -3 and \(51 / 4\) watts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{3. WATT} & \multicolumn{2}{|l|}{51/4 WAIT} & \multicolumn{2}{|l|}{8 WATT} & \multicolumn{2}{|l|}{12 WATT} & \multicolumn{2}{|l|}{20 WATT} \\
\hline \[
0.5
\] & 2712 & 1.73 & 2822 & 2.29 & 1500 & 2.83 & \[
\begin{aligned}
& \text { 1700A } \\
& 1701
\end{aligned}
\] & \[
\begin{aligned}
& 4.90 \\
& 3.46
\end{aligned}
\] & \[
\begin{aligned}
& 1800 \mathrm{~A} \\
& 1802 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 6.32 \\
& 4.47 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 1.1 \\
& 1.2
\end{aligned}
\] & \[
\left.\begin{array}{c}
(2713) \\
(2714)
\end{array}\right)
\] & \[
\begin{aligned}
& 1.65 \\
& 1.58 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline(2823) \\
(2824) \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.19 \\
2.09 \\
\hline
\end{array}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 1.3 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& (2715 \\
& (2716)
\end{aligned}
\] & \[
\begin{aligned}
& 1.52 \\
& 1.41
\end{aligned}
\] & \[
\begin{gathered}
(2825) \\
2826
\end{gathered}
\] & \[
\begin{aligned}
& 2.01 \\
& 1.87
\end{aligned}
\] & 15008 & 2.30 & 1704 & 2.82 & & \\
\hline 1.6 & \[
\begin{gathered}
2717 \\
2718
\end{gathered}
\] & \[
\begin{aligned}
& 1.37 \\
& 1.29
\end{aligned}
\] & \[
\begin{aligned}
& (2827 \\
& (2828) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.81 \\
& 1.71 \\
& \hline
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 2.0 \\
& 2.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r|}
2719 \\
(2720) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.22 \\
& 1.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2829 \\
& (2830)
\end{aligned}
\] & \[
\begin{aligned}
& 1.62 \\
& 1.54 \\
& \hline
\end{aligned}
\] & 1501 & 2.00 & 1705 & 2.45 & 18028 & 3.16 \\
\hline \[
\begin{aligned}
& 2.4 \\
& 2.7
\end{aligned}
\] & \[
\begin{gathered}
(2721) \\
2722 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.12 \\
& 1.05
\end{aligned}
\] & \[
\begin{aligned}
& 2831 \\
& 2832
\end{aligned}
\] & \[
\begin{aligned}
& 1.48 \\
& 1.39
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 3.0 \\
& 3.3
\end{aligned}
\] & \[
\begin{aligned}
& 2723 \\
& 2724
\end{aligned}
\] & \[
\begin{array}{r}
1.00 \\
.95
\end{array}
\] & \[
\begin{array}{r}
2833 \\
2834
\end{array}
\] & \[
\begin{aligned}
& 1.32 \\
& 1.24
\end{aligned}
\] & 1502 & 1.63 & 1706 & 2.00 & 1802C & 2.58 \\
\hline \[
\begin{aligned}
& 3.6 \\
& 3.9
\end{aligned}
\] & \[
\begin{aligned}
& 2725 \\
& (2726) \\
& \hline
\end{aligned}
\] & \[
.91
\] & \[
\begin{array}{r}
2835 \\
2836 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.21 \\
& 1.16
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 4.0 \\
& 4.3
\end{aligned}
\] & 2727 & . 83 & 2837 & 1.10 & 1503 & 1.41 & 1707 & 1.73 & 18020 & 2.24 \\
\hline \[
\begin{aligned}
& 4.7 \\
& 5.0
\end{aligned}
\] & (2728) & . 80 & 2838 & 1.06 & 1504 & 1.26 & 1708 & 1.54 & 1803 & 2.00 \\
\hline \[
\begin{aligned}
& 5.1 \\
& 5.6
\end{aligned}
\] & \[
\begin{aligned}
& 2729 \\
& (2730)
\end{aligned}
\] & \[
.77
\] & \[
\begin{aligned}
& 2839 \\
& 2840 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.01 \\
\hline .97
\end{array}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 6.2 \\
& 6.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2731 \\
& (2732)
\end{aligned}
\] & \[
\begin{array}{r}
.69 \\
.66 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2841 \\
& (2842)
\end{aligned}
\] & \[
.92
\] & & & & & & \\
\hline \[
\begin{aligned}
& 7.5 \\
& 8.2
\end{aligned}
\] & \[
\begin{aligned}
& 2733 \\
& 2734
\end{aligned}
\] & \[
\begin{aligned}
& .63 \\
& .60
\end{aligned}
\] & \[
\begin{aligned}
& 2843 \\
& 2844
\end{aligned}
\] & \[
\begin{aligned}
& .84 \\
& .80
\end{aligned}
\] & 1505 & 1.00 & 1709 & 1.26 & & \\
\hline \[
10^{9.1}
\] & \[
\begin{gathered}
(2735) \\
2736 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.57 \\
.55
\end{array}
\] & \[
\begin{gathered}
(2845) \\
2846
\end{gathered}
\] & \[
\begin{aligned}
& .76 \\
& .72 \\
& \hline
\end{aligned}
\] & 1506 & . 89 & 1710 & 1.09 & 1804 & 1.41 \\
\hline \[
\begin{aligned}
& 11 \\
& 12
\end{aligned}
\] & \[
\left.\begin{array}{l}
(2737 \\
(2738
\end{array}\right)
\] & \[
\begin{aligned}
& .52 \\
& .50
\end{aligned}
\] & \[
\begin{gathered}
(2847) \\
2848
\end{gathered}
\] & \[
\begin{aligned}
& .69 \\
& .66
\end{aligned}
\] & 1507 & 81 & 1711 & 1.00 & & \\
\hline \[
\begin{aligned}
& 13 \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
(2739) \\
2740 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.48 \\
.45
\end{array}
\] & \[
\begin{gathered}
(2849) \\
2850 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.64 \\
.59 \\
\hline
\end{array}
\] & 1508 & . 73 & 1712 & . 89 & & \\
\hline \[
\begin{aligned}
& 16 \\
& 18 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
(2741) \\
2742
\end{gathered}
\] & \[
\begin{array}{r}
.43 \\
.42 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2851 \\
& (2852)
\end{aligned}
\] & \[
\begin{array}{r}
.57 \\
.54
\end{array}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 20 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2743 \\
& 2744 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.39 \\
.37 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2853 \\
& 2854
\end{aligned}
\] & \[
\begin{array}{r}
.51 \\
.49 \\
\hline
\end{array}
\] & 1509 & 63 & 1713 & . 77 & & \\
\hline \[
\begin{aligned}
& 24 \\
& 25
\end{aligned}
\] & 2745 & . 35 & 2855 & . 47 & 1510 & . 56 & 1714 & . 69 & 1805 & 89 \\
\hline \[
\begin{aligned}
& 27 \\
& 30
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline(2746) \\
2747 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.33 \\
.32
\end{array}
\] & \[
\begin{array}{r}
2856 \\
2857 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.44 \\
.42 \\
\hline
\end{array}
\] & 1511 & . 51 & 1715 & 63 & & \\
\hline \[
\begin{aligned}
& 33 \\
& 35 \\
& \hline
\end{aligned}
\] & (2748) & . 30 & 2858 & . 40 & 1512 & 47 & 1716 & . 58 & & \\
\hline \[
\begin{aligned}
& 36 \\
& 39
\end{aligned}
\] & \[
\begin{gathered}
(2749 \\
2750
\end{gathered}
\] & \[
\begin{aligned}
& .29 \\
& .28
\end{aligned}
\] & \[
\begin{aligned}
& 2859 \\
& 2860
\end{aligned}
\] & \[
\begin{aligned}
& .38 \\
& .37
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 40 \\
& 43
\end{aligned}
\] & (2751) & . 26 & 2861 & . 35 & 1513 & . 44 & 1717 & . 54 & & \\
\hline \[
\begin{aligned}
& 47 \\
& 50 \\
& \hline
\end{aligned}
\] & 2752 & . 25 & 2862 & . 33 & 1514 & . 40 & 1718 & 49 & 1806 & 63 \\
\hline \[
\begin{aligned}
& 51 \\
& 56
\end{aligned}
\] & \[
\begin{aligned}
& 2753 \\
& 2754
\end{aligned}
\] & \[
\begin{aligned}
& .24 \\
& .23
\end{aligned}
\] & \[
\begin{aligned}
& 2863 \\
& 2864 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .32 \\
& .31
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 62 \\
& 68
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 2755 \\
2756 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .22 \\
& .21 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2865 \\
& 2866 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.29 \\
.28 \\
\hline
\end{array}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 75 \\
& 82 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2757 \\
& (2758)
\end{aligned}
\] & \[
\begin{array}{r}
.20 \\
.19
\end{array}
\] & \[
\begin{aligned}
& 2867 \\
& 2868
\end{aligned}
\] & \[
\begin{aligned}
& .27 \\
& .25
\end{aligned}
\] & 1515 & . 32 & 1719 & . 40 & 1807 & 52 \\
\hline \[
\begin{array}{r}
91 \\
\hline 100
\end{array}
\] & \[
\begin{gathered}
(2759) \\
2760 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& .18 \\
& .17
\end{aligned}
\] & \[
\begin{aligned}
& 2869 \\
& 2870
\end{aligned}
\] & \[
\begin{array}{r}
.24 \\
.23 \\
\hline
\end{array}
\] & 1516 & . 28 & 1720 & . 34 & 1808 & 45 \\
\hline \[
\begin{aligned}
& 110 \\
& 120 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
(2761) \\
2762
\end{gathered}
\] & \[
\begin{aligned}
& 16 \\
& .16
\end{aligned}
\] & \[
\begin{aligned}
& 2871 \\
& 2872 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .22 \\
& .21
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 125 \\
& 130 \\
& \hline
\end{aligned}
\] & (2763) & . 15 & (2873) & . 20 & 1517 & . 25 & 1721 & 31 & & \\
\hline \[
\begin{aligned}
& 150 \\
& 160
\end{aligned}
\] & \[
\begin{gathered}
2764 \\
(2765) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 14 \\
& .14
\end{aligned}
\] & \[
\begin{aligned}
& 2874 \\
& 2875 \\
& \hline
\end{aligned}
\] & \[
18
\] & 1518 & . 23 & 1722 & . 28 & 1809 & 36 \\
\hline \[
\begin{array}{r}
180 \\
200 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2766 \\
& 2767
\end{aligned}
\] & \[
\begin{array}{r}
13 \\
.12 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2876 \\
& 2877
\end{aligned}
\] & \[
\begin{aligned}
& .17 \\
& .16 \\
& \hline
\end{aligned}
\] & 1519 & . 20 & 1723 & . 24 & 1810 & 32 \\
\hline \[
\begin{aligned}
& 220 \\
& 225 \\
& \hline
\end{aligned}
\] & 2768 & . 12 & 2878 & 16 & 1520 & 18 & 1724 & 23 & & \\
\hline \[
\begin{aligned}
& 240 \\
& 250 \\
& \hline
\end{aligned}
\] & 2769 & . 11 & 2879 & . 15 & 1521 & . 17 & 1725 & . 22 & 1811 & 28 \\
\hline \[
\begin{aligned}
& 270 \\
& 300 \\
& 3
\end{aligned}
\] & \[
\begin{array}{|l}
2770 \\
2771 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11 \\
.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2880 \\
2881 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14 \\
.13
\end{array}
\] & 1522 & 16 & 1726 & 20 & 1812 & 26 \\
\hline \[
\begin{aligned}
& 330 \\
& 350
\end{aligned}
\] & 2772 & . 095 & 2882 & . 12 & 1523 & . 15 & 1727 & 18 & 1813 & 24 \\
\hline \[
\begin{aligned}
& 360 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& 2773 \\
& (2774) \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.091 \\
.088 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2883 \\
2884 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 12 \\
& .12
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 400 \\
& 430
\end{aligned}
\] & (2775) & . 083 & 2885 & .11 & 1524 & 14 & 1728 & .17 & 1814 & 22 \\
\hline \[
\begin{array}{r}
450 \\
470 \\
\hline
\end{array}
\] & 2776 & . 080 & 2886 & 11 & 1525 & . 13 & 1729 & . 16 & & \\
\hline
\end{tabular}

Standard resistance tolerance is \(\pm 5 \%\) for values 1 ohm or higher; \(\pm 10 \%\) for values below 1 ohm. Tinned leads \(11 / 2^{\cdots}\) long: 3 and \(51 / 4\) watt, 20 AWG; 8,12 and 20 watt, 18 AWG.

DIMENSIONS \& WEIGHTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rating & \(3{ }^{1}\) & +1. & \% \({ }^{\text {\% }}\) & [7W & W \\
\hline Core Dimen. Weight (Ibs.) & \[
\begin{gathered}
\text { Y/16. } 210 \\
003 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
5 / 4 \times 1 / 4 \mathrm{D} \\
005
\end{gathered}
\] & \[
\begin{gathered}
1 \times K_{0} \mathrm{D} \\
01
\end{gathered}
\] & \[
\begin{gathered}
13 / 4 \times \$ 0 \mathrm{D} \\
015
\end{gathered}
\] & \[
\begin{gathered}
2 \times 7 / 0 \mathrm{D} \\
03 \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 3 \text { WATT } \\
& \text { Cat. } \\
& \text { No. Amps }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 51 / 4 \text { WATT } \\
& \text { Cat, } \\
& \text { Net. Amps. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 8 \text { WATT } \\
& \text { Cat. } \\
& \text { No Amps }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 12 \text { WATT } \\
& \text { Cat; } \\
& \text { fint Amps }
\end{aligned}
\]} & \multicolumn{2}{|l|}{} \\
\hline \[
\begin{gathered}
500 \\
510
\end{gathered}
\] & 2777 & . 077 & 2887 & . 10 & 1526 & .12 & 1730 & . 15 & 1815 & . 20 \\
\hline \[
\begin{aligned}
& 560 \\
& 600
\end{aligned}
\] & 2778 & . 073 & 2888 & . 097 & 1527 & . 11 & 1731 & . 14 & & \\
\hline \[
\begin{aligned}
& 620 \\
& 650
\end{aligned}
\] & (2779) & . 070 & 2889 & . 092 & & & & & 1816 & . 18 \\
\hline \[
\begin{aligned}
& 680 \\
& 700
\end{aligned}
\] & 2780 & . 067 & 2890 & . 088 & 1528 & . 11 & 1732 & .13 & 1817 & .17 \\
\hline \[
\begin{array}{r}
750 \\
800
\end{array}
\] & 2781 & . 063 & 2891 & . 084 & \[
\begin{aligned}
& 1529 \\
& 1530 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
10 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1733 \\
& 1734 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .12 \\
& .12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1818 \\
& 1819 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& .15
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
820 \\
900 \\
\hline
\end{array}
\] & 2782 & . 060 & 2892 & . 080 & 1531 & . 094 & 1735 & . 11 & 1820A & . 15 \\
\hline \[
\begin{array}{r}
910 \\
1000 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2783 \\
& 2784
\end{aligned}
\] & \[
\begin{array}{r}
.057 \\
.055
\end{array}
\] & \[
\begin{array}{|l}
2893 \\
2894 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.075 \\
.072 \\
\hline
\end{array}
\] & 1532 & . 089 & 1736 & . 11 & 1821 & . 14 \\
\hline \[
\begin{aligned}
& 1100 \\
& 1200
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline(2785) \\
2786
\end{array}
\] & \[
\begin{aligned}
& .052 \\
& .050 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2895 \\
& 2896 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .069 \\
& .066 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1533 \\
& 1534
\end{aligned}
\] & \[
\begin{array}{r}
.085 \\
.081 \\
\hline
\end{array}
\] & \[
\begin{gathered}
(1737) \\
1738 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 10 \\
& .10 \\
& \hline
\end{aligned}
\] & 1822 & . 13 \\
\hline \[
\begin{aligned}
& 1250 \\
& 1300
\end{aligned}
\] & (2787) & . 048 & 2897 & . 063 & 1535 & . 080 & 1739 & . 097 & 1823 & . 12 \\
\hline \[
\begin{aligned}
& 1500 \\
& 1600
\end{aligned}
\] & \[
\begin{gathered}
2788 \\
(2789)
\end{gathered}
\] & \[
\begin{array}{r}
.045 \\
.043 \\
\hline
\end{array}
\] & \[
\begin{gathered}
2898 \\
(2899) \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.059 \\
.057 \\
\hline
\end{array}
\] & 1536 & . 073 & 1740 & . 089 & 1824 & . 12 \\
\hline \[
\begin{aligned}
& 1750 \\
& 1800
\end{aligned}
\] & (2790) & . 042 & 2900 & . 050 & 1537 & . 067 & 1741 & . 082 & 1825 & . 11 \\
\hline \[
\begin{aligned}
& 2000 \\
& 2200
\end{aligned}
\] & \[
\begin{aligned}
& 2791 \\
& 2792
\end{aligned}
\] & \[
\begin{array}{r}
.039 \\
.037
\end{array}
\] & \[
\begin{aligned}
& 2901 \\
& 2902
\end{aligned}
\] & \[
\begin{aligned}
& .047 \\
& .045
\end{aligned}
\] & 1538 & . 063 & 1742 & . 077 & 1827 & . 10 \\
\hline \[
\begin{array}{r}
2250 \\
2400 \\
\hline
\end{array}
\] & (2793) & . 035 & 2903 & . 043 & 1539 & . 059 & 1743 & . 073 & 1828 & . 094 \\
\hline \[
\begin{aligned}
& 2500 \\
& 2700
\end{aligned}
\] & 2794 & . 033 & 2904 & . 041 & 1540 & . 056 & 1744 & . 069 & 1830 & . 089 \\
\hline \[
\begin{aligned}
& 2750 \\
& 3000
\end{aligned}
\] & 2795 & . 032 & 2905 & . 039 & 1541 & . 046 & 1745 & . 063 & \[
\begin{aligned}
& 1831 \\
& 1832 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.085 \\
.081 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 3300 \\
& 3500 \\
& \hline
\end{aligned}
\] & 2796 & . 030 & 2906 & . 037 & 1542 & . 043 & 1746 & . 058 & 1833 & . 075 \\
\hline \[
\begin{aligned}
& 3600 \\
& 3900
\end{aligned}
\] & \[
\begin{gathered}
(2797) \\
2798 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.029 \\
.028 \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
2907 \\
2908 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .035 \\
& .034 \\
& \hline
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 4000 \\
& 4300
\end{aligned}
\] & (2799) & . 026 & (2909) & . 032 & 1543 & . 040 & 1747 & . 054 & 1834 & . 070 \\
\hline \[
\begin{aligned}
& 4500 \\
& 4700 \\
& \hline
\end{aligned}
\] & 2800 & . 025 & 2910 & . 031 & 1544 & . 038 & 1748 & . 051 & 1835 & . 066 \\
\hline \[
\begin{aligned}
& 5000 \\
& 5100
\end{aligned}
\] & (2801) & . 024 & 2911 & . 030 & 1545 & . 036 & 1749 & . 049 & 1836 & . 063 \\
\hline \[
\begin{aligned}
& 5600 \\
& 6000
\end{aligned}
\] & (2802) & . 023 & 2912 & . 028 & 1546 & . 033 & 1750 & . 044 & 1837 & . 057 \\
\hline \[
\begin{aligned}
& 6200 \\
& 6800
\end{aligned}
\] & \[
\begin{aligned}
& (2803) \\
& (2804)
\end{aligned}
\] & \[
\begin{array}{r}
.022 \\
.021 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2913 \\
& 2914
\end{aligned}
\] & \[
\begin{aligned}
& .027 \\
& .026
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 7000 \\
& 7500
\end{aligned}
\] & (2805) & . 020 & 2915 & . 025 & \[
\begin{aligned}
& 1547 \\
& 1548 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.030 \\
.029 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1751 \\
& 1752
\end{aligned}
\] & \[
\begin{aligned}
& .041 \\
& .036 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1838 \\
& 1839
\end{aligned}
\] & \[
\begin{array}{r}
.053 \\
.051 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 8000 \\
& 8200
\end{aligned}
\] & 2806 & . 019 & 2916 & . 023 & 1549 & . 029 & 1753 & . 035 & 1840 & . 050 \\
\hline \[
\begin{aligned}
& 8500 \\
& 9000 \\
& \hline
\end{aligned}
\] & & & & & 1550 & . 027 & \[
\begin{aligned}
& (1754) \\
& 1754 \mathrm{~A}
\end{aligned}
\] & \[
\begin{array}{r}
.034 \\
.033 \\
\hline
\end{array}
\] & (1840A) & . 047 \\
\hline \[
\begin{gathered}
9100 \\
10 \mathrm{~K}
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline(2807) \\
2808 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .018 \\
& .016 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline(2917) \\
2918
\end{array}
\] & \[
\begin{array}{r}
.022 \\
.021 \\
\hline
\end{array}
\] & 1551 & . 026 & 1755 & . 032 & 1841 & . 043 \\
\hline \[
\begin{aligned}
& 11 \mathrm{~K} \\
& 12 \mathrm{~K}
\end{aligned}
\] & & & \[
\begin{array}{c|}
\hline(2919) \\
2920 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.020 \\
.019 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& (1756) \\
& 1757 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.030 \\
.029 \\
\hline
\end{array}
\] & & \\
\hline \[
\begin{aligned}
& 12.5 \mathrm{~K} \\
& 13 \mathrm{~K}
\end{aligned}
\] & & & 2921 & . 019 & 1552 & . 023 & 1758 & . 028 & 1842 & . 032 \\
\hline \[
\begin{aligned}
& 13.5 \mathrm{~K} \\
& 15 \mathrm{~K}
\end{aligned}
\] & & & 2922 & . 017 & 1553 & . 021 & \[
\begin{aligned}
& 1759 \\
& 1761 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.027 \\
.026 \\
\hline
\end{array}
\] & 1843 & . 029 \\
\hline \[
\begin{aligned}
& 16 \mathrm{~K} \\
& 17.5 \mathrm{~K}
\end{aligned}
\] & & & 2923 & . 017 & 1554 & . 019 & \[
\begin{aligned}
& 1762 \\
& 1763
\end{aligned}
\] & \[
\begin{aligned}
& .025 \\
& .024 \\
& \hline
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
& 18 \mathrm{~K} \\
& 20 \mathrm{~K}
\end{aligned}
\] & & & \[
\begin{aligned}
& 2924 \\
& 2925
\end{aligned}
\] & \[
\begin{aligned}
& .016 \\
& .014
\end{aligned}
\] & 1555 & . 018 & \[
\begin{aligned}
& 1764 \\
& 1765 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .024 \\
& .022
\end{aligned}
\] & 1844 & . 026 \\
\hline \[
\begin{aligned}
& 22.5 \mathrm{~K} \\
& 25 \mathrm{~K}
\end{aligned}
\] & & & & & \[
\begin{aligned}
& 1556 \\
& 1557
\end{aligned}
\] & \[
\begin{array}{r}
.017 \\
.015 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1766 \\
& 1767
\end{aligned}
\] & \[
\begin{aligned}
& .021 \\
& .020 \\
& \hline
\end{aligned}
\] & 1845 & . 023 \\
\hline \[
\begin{aligned}
& 30 \mathrm{~K} \\
& 35 \mathrm{~K}
\end{aligned}
\] & & & & & & & \[
\begin{aligned}
& 1768 \\
& 1769
\end{aligned}
\] & \[
\begin{aligned}
& .018 \\
& .017 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1846 \\
& 1847
\end{aligned}
\] & \[
\begin{array}{r}
.021 \\
.019 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 40 \mathrm{~K} \\
& 45 \mathrm{~K}
\end{aligned}
\] & & & & & & & \[
\begin{aligned}
& 1770 \\
& 1771
\end{aligned}
\] & \[
\begin{aligned}
& .016 \\
& .015 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
1848 \\
(1849)
\end{gathered}
\] & \[
\begin{array}{r}
.018 \\
.017 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 50 \mathrm{~K} \\
& 55 \mathrm{~K}
\end{aligned}
\] & & & & & & & 1772 & . 014 & \[
\begin{array}{|c}
1850 \\
(1851) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .016 \\
& .015 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 60 \mathrm{~K} \\
& 6.5
\end{aligned}
\] & & & & & & & & & \[
\begin{aligned}
& 1852 \\
& 1853 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.015 \\
.014 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 70 \mathrm{~K} \\
& 75 \mathrm{~K}
\end{aligned}
\] & & & & & & & & & \[
\begin{aligned}
& (1854) \\
& (1855) \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.014 \\
013 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 80 \mathrm{~K} \\
& 85 \mathrm{~K}
\end{aligned}
\] & & & & & & & & & \[
\begin{aligned}
& (1856) \\
& (1857) \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.013 \\
.012 \\
\hline
\end{array}
\] \\
\hline \[
\begin{array}{r}
90 \mathrm{~K} \\
95 \mathrm{~K} \\
100 \mathrm{~K}
\end{array}
\] & & & & & & & & & \[
\begin{gathered}
(1858) \\
(1859) \\
1860
\end{gathered}
\] & \[
\begin{array}{r}
.012 \\
.012 \\
.011 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{m HMITE. \\ type 270 vitreous enameled fixed resistors}
hese lug type resistors are wire-wound on high quality ceramic cores protected and insulated by Ohmite vitreous enamel - the time-proved standard covering that is the best conductor of heat for a material which must also be a good electrical insulator.

Resistance tolerance is \(\pm 5 \%\) for values 1 ohm or higher; \(\pm 10 \%\) below 1 ohm.

Wattage ratings are for use in free air. When resistors are mounted in
closed spaces or where the circulation of air is restricted, they should not be used at more than one-half rating. Currents and voltages for reduced ratings can be obtained by muitiplying full rating by the following factors \(75 \%\) load \(=.86,66 \%=.81,50 \%=.71,33 \%=.57,25 \%=.50\).
Mounting brackets are automaticaily supplied in individual unit packs; supplied only when specified in bulk pack orders. See page 18, "Mounting Brackets for Tubular Resistors" to specify other brackets.

\section*{앙 H MITE \({ }_{\text {® }}\) dividohm \({ }^{\circ}\) type 210 adjustable vitreous enameled resistors}
"Dividohm" resistors make ideal voltage dividers for original equipment and replacement in transmitters, rectifiers and other apparatus. Such tapped "bleeders" are mace by using one or more adjustable lugs, as required, "Dividohms for use on equipment which must be set to meet various line voltages.
"Dividohm" resistors are vitreous enameled resistors on which a narrow strip has been left uncovered to expose a portion of each turn. Contact to any wire in this strip is made by an embossed contact on the adjustable lug (supplied).

WATT RATING: The stated wattage rating applies only when the entire resistance is in the circuit. When the adjustable lug is set at an intermediate point, the wattage rating is reduced in approximately the same proportion, i.e., if the lug is set at half the resistance, the wattage is reduced by one-half. A safe rule to follow is to make sure that the maximum rated current is not exceeded. This should be carefully checked particularly if the resistor will be used as a voltage divider with several adjustable lugs. Resistance tolerance is \(\pm 10 \%\) for the total resistance value.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
12 WATT \\
 \\
Mtn ctrilat. Av. WL B210. 5th Mis Brat. MS.
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
25 WATI \\
Cotil \(2 \times 0\). D . MiE CIf 23, aly 1015 Std Mte itret : No. 9
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
50 WATT \\
Cord: \(4^{7} 0^{\circ} \mathrm{S}^{2} \mathrm{D}\). ME Gtr \(4 \%\) to Wh no H Std Mle Arkt. *ie. 9
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
75 WATT \\
Cors \(=5^{\circ} 904\). . MtI, Ctr \(6 \mathrm{H}_{2}=\) A. WI: 15 In 5td Mte 慁kt - 160.9
\end{tabular}} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\begin{tabular}{l}
225 WATT \\
Core: \(10 / 5 \times 13{ }^{\circ} 0\). \\
Mtg. \(\operatorname{cts} 11)^{2}-\) \\
A\% W, 62 lo. \\
Std. Mife. Brikt=No. 18
\end{tabular}} \\
\hline Resist. Ohms & Cataiog No. \({ }^{1}\) & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps. }
\end{aligned}
\] & Catalog No.' & Max. Amps. & Catalog No. & Max. Amps. & Catalog No. \({ }^{1}\) & Max. Amps. & Catalog No. \({ }^{1}\) & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps. }
\end{aligned}
\] & Catalog No. \({ }^{1}\) & Max. Amps. & Catalog No. 1 & Max.
Amps. \\
\hline \(\frac{1}{2}\) & \[
\begin{aligned}
& 1001 \\
& 1002
\end{aligned}
\] & \[
\begin{aligned}
& 3.46 \\
& 2.45
\end{aligned}
\] & \[
\begin{aligned}
& 0360 \\
& 03608
\end{aligned}
\] & \[
\begin{aligned}
& 5.00 \\
& 3.54
\end{aligned}
\] & \[
\begin{aligned}
& \text { 0580A } \\
& 0560 \mathrm{~B}
\end{aligned}
\] & \[
\begin{array}{r}
7.07 \\
5.00 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { 0769A } \\
& 0769 \mathrm{~B}
\end{aligned}
\] & \[
\begin{aligned}
& 8,66 \\
& 6.12
\end{aligned}
\] & \[
\begin{aligned}
& 0956 A \\
& 0956 \mathrm{~B}
\end{aligned}
\] & \[
\begin{gathered}
10.0 \\
7.07
\end{gathered}
\] & \[
\begin{aligned}
& 1156 \mathrm{~A} \\
& 1156 \mathrm{~B}
\end{aligned}
\] & \[
\begin{gathered}
13.2 \\
9.35
\end{gathered}
\] & \[
\begin{aligned}
& 1356 \mathrm{~A} \\
& 1356 \mathrm{~B}
\end{aligned}
\] & \[
\begin{aligned}
& 15.00 \\
& 10.60
\end{aligned}
\] \\
\hline 3
4 & 1003 & 2.00 & 0361 & 2.88 & \[
\begin{aligned}
& 0560 \mathrm{C} \\
& 05600
\end{aligned}
\] & \[
\begin{array}{r}
4.07 \\
3.53
\end{array}
\] & \[
\begin{aligned}
& 0769 \mathrm{C} \\
& 0769 \mathrm{D}
\end{aligned}
\] & \[
\begin{aligned}
& 5.00 \\
& 4.33
\end{aligned}
\] & \[
\begin{aligned}
& 0956 \mathrm{C} \\
& 0956 \mathrm{D}
\end{aligned}
\] & \[
\begin{aligned}
& 5.77 \\
& 5.00
\end{aligned}
\] & \[
\begin{aligned}
& 1156 \mathrm{C} \\
& 1156 \mathrm{D}
\end{aligned}
\] & \[
\begin{aligned}
& 7.63 \\
& 6.60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13566 \\
& 13560
\end{aligned}
\] & \[
\begin{aligned}
& 8.67 \\
& 7.50
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5 \\
& 7.5
\end{aligned}
\] & \[
\begin{aligned}
& 1004 \\
& 1005
\end{aligned}
\] & \[
\begin{aligned}
& 1.54 \\
& 1.26
\end{aligned}
\] & \[
\begin{aligned}
& 0362 \\
& 0362 \mathrm{~B}
\end{aligned}
\] & \[
\begin{aligned}
& 2.24 \\
& 1.82
\end{aligned}
\] & 0560 & 3.16 & 0769 & 3.87 & 0956 & 4.47 & 1156 & 5.92 & 1356 & 6.72 \\
\hline \[
\begin{aligned}
& 10 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1006 \\
& 1007
\end{aligned}
\] & \[
\begin{array}{r}
1.09 \\
\hline .89 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0363 \\
& 0364
\end{aligned}
\] & \[
\begin{aligned}
& 1.58 \\
& 1.29 \\
& \hline
\end{aligned}
\] & 0561 & 2.23 & \[
\begin{aligned}
& 0770 \\
& 0771
\end{aligned}
\] & \[
\begin{aligned}
& 2.74 \\
& 2.24 \\
& \hline
\end{aligned}
\] & 0957 & 3.16 & 1157 & 4.18 & 1357 & 4.74 \\
\hline \[
\begin{aligned}
& 20 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1008 \\
& 1009
\end{aligned}
\] & \[
\begin{array}{r}
.77 \\
.69 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 03648 \\
& 0365
\end{aligned}
\] & \[
\begin{aligned}
& 1.12 \\
& 1.00 \\
& \hline
\end{aligned}
\] & 0562 & 1.41 & 0772 & 1.73 & 0958 & 2.00 & 1158 & 2.64 & 1358 & 3.00 \\
\hline \[
\begin{aligned}
& 50 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 1010 \\
& 1011
\end{aligned}
\] & \[
\begin{array}{r}
.49 \\
.40
\end{array}
\] & \[
\begin{aligned}
& 0366 \\
& 0367
\end{aligned}
\] & \[
\begin{array}{r}
.71 \\
.58
\end{array}
\] & \[
\begin{aligned}
& 0563 \\
& 0564
\end{aligned}
\] & \[
\begin{array}{r}
1.00 \\
.82
\end{array}
\] & 0773 & 1.22 & 0959 & 1.41 & 1159 & 1.87 & 1359 & 2.12 \\
\hline \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 1012 \\
& 1013
\end{aligned}
\] & \[
\begin{array}{r}
.34 \\
.28
\end{array}
\] & \[
\begin{array}{r}
0368 \\
0369
\end{array}
\] & \[
\begin{aligned}
& .50 \\
& .41
\end{aligned}
\] & \[
\begin{aligned}
& 0565 \\
& 0566
\end{aligned}
\] & \[
\begin{array}{r}
.71 \\
.58 \\
\hline
\end{array}
\] & 0774 & . 86 & 0960 & 1.00 & 1160 & 1.32 & 1350 & 1.50 \\
\hline \[
\begin{array}{r}
200 \\
250 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1014 \\
& 1015
\end{aligned}
\] & \[
\begin{array}{r}
.24 \\
.22 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0370 \\
& 0371
\end{aligned}
\] & \[
\begin{array}{r}
.35 \\
.32 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0567 \\
& 0568
\end{aligned}
\] & \[
\begin{aligned}
& .50 \\
& .45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 07748 \\
& 0775
\end{aligned}
\] & \[
\begin{aligned}
& .61 \\
& .55 \\
& \hline
\end{aligned}
\] & 0960B & . 63 & 1160B & . 84 & 13808 & . 95 \\
\hline \[
\begin{array}{r}
300 \\
350 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1016 \\
& 1017
\end{aligned}
\] & \[
\begin{array}{r}
.20 \\
.18 \\
\hline
\end{array}
\] & 03718 & . 29 & 05688' & . 41 & 0775B & . 50 & & & & & & \\
\hline \[
\begin{aligned}
& 400 \\
& 500 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1018 \\
& 1019
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& .15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0371 C \\
& 0372
\end{aligned}
\] & \[
\begin{array}{r}
25 \\
.22 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0568 \mathrm{C} \\
& 0569
\end{aligned}
\] & \[
\begin{array}{r}
.35 \\
.32 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0775 \mathrm{C} \\
& 0776
\end{aligned}
\] & \[
\begin{array}{r}
.43 \\
.39 \\
\hline
\end{array}
\] & 0961 & . 45 & 1161 & . 59 & 1361 & . 67 \\
\hline \[
\begin{aligned}
& 600 \\
& 750 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1020 \\
& 1021
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& .13 \\
& \hline
\end{aligned}
\] & 0373 & . 18 & 0570 & . 26 & 0777 & . 32 & & & & & & \\
\hline \[
\begin{array}{r}
800 \\
1000 \\
\hline
\end{array}
\] & 1022
1023 & \[
\begin{aligned}
& 12 \\
& .11 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0374 \\
& 0375
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& .16 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0571 \\
& 0572
\end{aligned}
\] & \[
\begin{array}{r}
.25 \\
.22 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (0777 B) \\
& 0778
\end{aligned}
\] & \[
\begin{array}{r}
.30 \\
.27 \\
\hline
\end{array}
\] & 0962 & . 32 & 1162 & 42 & 1362 & .47 \\
\hline \[
\begin{aligned}
& 1250 \\
& 1500 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1024 \\
& 1025
\end{aligned}
\] & \[
\begin{array}{r}
.098 \\
.089
\end{array}
\] & \[
\begin{aligned}
& 03758 \\
& 0376
\end{aligned}
\] & \[
\begin{array}{r}
14 \\
.13 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 05728 \\
& 0573
\end{aligned}
\] & \[
\begin{array}{r}
.20 \\
.18 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 07788 \\
& 0779 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.24 \\
.22 \\
\hline
\end{array}
\] & 09628 & 26 & 11628 & . 34 & 13628 & . 39 \\
\hline \[
\begin{aligned}
& 2000 \\
& 2250 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1026 \\
& 1027 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.077 \\
.073 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0377 \\
& 03778
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& .11 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0574 \\
& (0574 B)
\end{aligned}
\] & \[
\begin{aligned}
& .16 \\
& .15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0780 \\
& (0780 \mathrm{~B})
\end{aligned}
\] & \[
\begin{array}{r}
.19 \\
.18 \\
\hline
\end{array}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 2500 \\
& 3000
\end{aligned}
\] & \[
\begin{aligned}
& 1028 \\
& 1029
\end{aligned}
\] & \[
\begin{array}{r}
.069 \\
.063 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0378 \\
0379 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .10 \\
& .091 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0575 \\
& 0576 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& .13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (0781) \\
& (0781 \mathrm{~B})
\end{aligned}
\] & \[
\begin{aligned}
& .17 \\
& .16
\end{aligned}
\] & 0963 & . 20 & 1163 & . 26 & 1363 & . 30 \\
\hline \[
\begin{aligned}
& 3500 \\
& 4000
\end{aligned}
\] & \[
\begin{aligned}
& 1030 \\
& 1031
\end{aligned}
\] & \[
\begin{array}{r}
.058 \\
.055
\end{array}
\] & \[
\begin{array}{r}
0380 \\
0381 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.084 \\
.079
\end{array}
\] & \[
\begin{aligned}
& 05768 \\
& 0577
\end{aligned}
\] & \[
\begin{aligned}
& .12 \\
& .11
\end{aligned}
\] & \[
\begin{gathered}
0782) \\
0782 B
\end{gathered}
\] & \[
\begin{aligned}
& .15 \\
& .14 \\
& \hline
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 4500 \\
& 5000
\end{aligned}
\] & \[
\begin{aligned}
& 1032 \\
& 1033
\end{aligned}
\] & \[
\begin{array}{r}
.052 \\
.049 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 03818 \\
& 0382
\end{aligned}
\] & \[
\begin{aligned}
& .074 \\
& .070
\end{aligned}
\] & \[
\begin{aligned}
& 05778 \\
& 0578
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
.10 \\
\hline
\end{array}
\] & \[
\begin{gathered}
(0782 C) \\
0783
\end{gathered}
\] & \[
\begin{aligned}
& 13 \\
& .12 \\
& \hline
\end{aligned}
\] & 0964 & . 14 & 1164 & . 19 & 1364 & 21 \\
\hline \[
\begin{aligned}
& 6000 \\
& 7000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1034 \\
& 1035
\end{aligned}
\] & \[
\begin{array}{r}
.045 \\
.042 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0383 \\
& 0383 \mathrm{~B}
\end{aligned}
\] & \[
\begin{aligned}
& .064 \\
& .060 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 05788 \\
& 0578 \mathrm{C}
\end{aligned}
\] & \[
\begin{array}{r}
.091 \\
.084 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (07838) \\
& (07836)
\end{aligned}
\] & \[
\begin{aligned}
& .11 \\
& .10 \\
& \hline
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 7500 \\
& 8000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1036 \\
& 1037
\end{aligned}
\] & \[
\begin{array}{r}
.040 \\
.039 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0384 \\
& 0384 \mathrm{~B} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.057 \\
.055 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0579 \\
& 0580 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.081 \\
.079 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (0784) \\
& (07848)
\end{aligned}
\] & \[
\begin{aligned}
& .10 \\
& .096 \\
& \hline
\end{aligned}
\] & & & & & & \\
\hline \[
\begin{aligned}
& 8500 \\
& 9000 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
(1038) \\
1039
\end{gathered}
\] & \[
\begin{aligned}
& .037 \\
& .036
\end{aligned}
\] & 0384 C & . 052 & (05808) & . 074 & (0784C) & . 091 & & & & & & \\
\hline \[
\begin{aligned}
& 10000 \\
& 12000
\end{aligned}
\] & 1040 & . 035 & \[
\begin{aligned}
& 0385 \\
& 0386
\end{aligned}
\] & \[
\begin{array}{r}
.050 \\
.042 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0581 \\
& 0582
\end{aligned}
\] & \[
\begin{aligned}
& .071 \\
& .064 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0785 \\
(07858) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& .086 \\
& .079
\end{aligned}
\] & 0965 & . 10 & 1165 & . 13 & 1365 & . 15 \\
\hline \[
\begin{aligned}
& 15000 \\
& 20000
\end{aligned}
\] & & & \[
\begin{aligned}
& 0387 \\
& 0388
\end{aligned}
\] & \[
\begin{aligned}
& .036 \\
& .031
\end{aligned}
\] & \[
\begin{aligned}
& 0583 \\
& 0584 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.057 \\
.050 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (0786) \\
& (0787) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .070 \\
& .061
\end{aligned}
\] & \[
\begin{aligned}
& 0966 \\
& 0967
\end{aligned}
\] & \[
\begin{aligned}
& .081 \\
& .071
\end{aligned}
\] & \[
\begin{array}{r}
(1166) \\
(1167) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .11 \\
& .094 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1366 \\
& 1367 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
13 \\
.11 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 25000 \\
& 30000
\end{aligned}
\] & & & 0389 & . 028 & \[
\begin{aligned}
& 0585 \\
& 0586 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.045 \\
.036 \\
\hline
\end{array}
\] & \[
\begin{gathered}
0788 \\
(0789) \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.054 \\
.050 \\
\hline
\end{array}
\] & \[
\begin{gathered}
0968 \\
(0969) \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.063 \\
.058 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (1168) \\
& (1169) \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.083 \\
.076 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1368 \\
\text { (1369) } \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.095 \\
.087 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 35000 \\
& 40000
\end{aligned}
\] & & & & & 0587 & . 029 & \[
\begin{array}{r}
10790) \\
(0791) \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.046 \\
.043 \\
\hline
\end{array}
\] & 0970 & . 050 & (1170) & . 066 & 1370 & . 075 \\
\hline \[
\begin{array}{r}
45000 \\
50000 \\
\hline
\end{array}
\] & & & & & 0588 & . 026 & \[
\begin{array}{r}
(0792) \\
(0793) \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.035 \\
.033 \\
\hline
\end{array}
\] & 0971 & . 045 & (1171) & . 059 & 1371 & . 067 \\
\hline \[
\begin{aligned}
& 60000 \\
& 75000 \\
& \hline
\end{aligned}
\] & & & & & (0589) & . 024 & (0794) & . 030 & (0972) & . 032 & (1172) & . 048 & 1372 & . 055 \\
\hline \[
\begin{array}{r}
80000 \\
100000
\end{array}
\] & & & & & \[
\begin{aligned}
& 0590 \\
& 0591
\end{aligned}
\] & \[
.021
\] & \[
\begin{aligned}
& (0795) \\
& (0796)
\end{aligned}
\] & \[
\begin{aligned}
& .026 \\
& .023
\end{aligned}
\] & 0973 & . 028 & \[
1173
\] & \[
.042
\] & \[
1373
\] & \[
.047
\] \\
\hline
\end{tabular}
popular items appear in BOLD frint and are usually In stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking distributors but are not normally stocked in depth, Parentheses indicate non-stock standard items subject to a minimum nandiing charge per item,
- Mounting brackets are automatically supplied in individual unit packs; supplied orly when specified in bulk packs.
adjustable lugs

One "Screw Driver Type Adjustable Lug" is supplied with each unit. Lugs with a silver contact button can be ordered from the table shown below. MOVING THE LUGS: Lugs always should be loosened completely before moving

STANDARD

and not moved except while the current is off, in order to protect the exposed wire from mechanical or electrical injury and to protect the operator from dangerous voltages:
With Silver contact buttons double Thumb screw

ADJUSTABLE LUG
This adjustable lug, which is illustrated at left, features two advantages - ease of adjustment and less chance of dam. aging the resistance wire while moving lugs. Available for \(11 / e^{\prime \prime}\) cores. Catalog No. 2160

\section*{20) HMITE \({ }^{\text {® }}\) type 250 "THIN" vitreous enameled resistors}

Ohmite "Thin" Resistors are intended for use in equipment where space is at a premium. They are wound on flat, oval shaped ceramic cores, and covered with Ohmite's exclusive vitreous enamel coating. Resistance tolerance, \(\pm 5 \%\).

Integral mounting brackets extend through the resistor core to equalize heat distribution and to conduct heat directly to the mounting surface provides equivalent wattage with less bulk and in less space. Wattage ratings assume the use of a metal mounting surface. Reduce ratings \(15 \%\) for non-metallic surfaces.
"Thin" resistors are mounted or compactly stacked by means of spacing brackets which are perforated to receive assembly bolts. The load should be reduced for each unit when resistors are stacked or used in confined, poorly ventilated spaces. Total height from mounting surface to top of resistor is approximately Y/ \(_{6}\) " for the Standard units and \(11 / 32\) for the Miniature units.

For other sizes, closer tolerances, non-stacking brackets, Dividohm adjustable or other features. consult factory.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{MINIATURE SIZES} & \multicolumn{9}{|c|}{STANDARD SIZES} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
10 WATT* \\
 Mite ctr. 1 . Mts मole \(125^{\circ}\) Av, wt. 007 ib .
\end{tabular}} & \multicolumn{3}{|r|}{\begin{tabular}{l}
20 WATT* \\
 \(\mathrm{Mt}, \mathrm{Ctr}, 24 \mathrm{~S}^{\circ}\) Mg - Hole \(125^{\circ}-\) A. Wt. 015 lb .
\end{tabular}} & \multicolumn{3}{|r|}{} & \multicolumn{3}{|r|}{} & \multicolumn{3}{|r|}{} \\
\hline Resist. Ohms & Cat. No. \({ }^{1}\) & Max.
Volts & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Cat. } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & Max. Volts & Max. Amps & Cat. No. & Volts. & Max. Amps & Cat. No. \({ }^{1}\) & Max. Volts & Max Amps & Cat.
\[
\text { No. } 1
\] & Max. Volts & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 1 . \\
& 1.5
\end{aligned}
\] & F101 & 3.16 & 3.16 & F201 & 4.47 & 4.47 & \[
\begin{gathered}
\text { F301 } \\
\text { (F302) }
\end{gathered}
\] & \[
\begin{aligned}
& 5.47 \\
& 6.70
\end{aligned}
\] & \[
\begin{aligned}
& 5.47 \\
& 4.47 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { F401 } \\
\text { (F402) }
\end{gathered}
\] & \[
\begin{aligned}
& 6.32 \\
& 7.74 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.32 \\
& 5.16
\end{aligned}
\] & \[
\begin{aligned}
& \text { F501 } \\
& \text { F502 }
\end{aligned}
\] & \[
\begin{array}{r}
7.42 \\
8.25 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7.42 \\
& 6.05
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & F102 & 4.47 & 2.24 & F202 & 6.32 & 3.16 & \[
\begin{aligned}
& \text { (F303) } \\
& \text { F304 } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
7.74 \\
9.45 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.88 \\
& 3.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F403 } \\
& \text { F404 }
\end{aligned}
\] & \[
\begin{array}{r}
8.94 \\
10.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.47 \\
& 3.65 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F503 } \\
& \text { F504 }
\end{aligned}
\] & \[
\begin{aligned}
& 10.4 \\
& 12.8
\end{aligned}
\] & \[
\begin{array}{r}
5.24 \\
4.28 \\
\hline
\end{array}
\] \\
\hline 4
5 & \(F 103\) & 7.07 & 1.41 & F203 & 10.0 & 2.00 & F305 & 12.2 & 2.46 & \[
\begin{gathered}
\text { (F405) } \\
\text { F406 }
\end{gathered}
\] & \[
\begin{aligned}
& 12.6 \\
& 14.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.16 \\
& 2.83 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& F 505 \\
& \text { F506 }
\end{aligned}
\] & \[
\begin{aligned}
& 14.8 \\
& 16.6
\end{aligned}
\] & \[
\begin{array}{r}
3.70 \\
3.32 \\
\hline
\end{array}
\] \\
\hline \({ }_{10}^{7.5}\) & F104 & \[
\begin{array}{r}
8.66 \\
10.0 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 1.15 \\
\hline 1.00 \\
\hline
\end{array}
\] & F204 & 14.1 & 1.41 & F306 & 17.3 & 1.73 & \[
\begin{aligned}
& F 407 \\
& \text { F408 }
\end{aligned}
\] & \[
\begin{aligned}
& 17.3 \\
& 20.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.31 \\
& 2.00
\end{aligned}
\] & \[
\begin{aligned}
& \text { F507 } \\
& \text { F508 }
\end{aligned}
\] & \[
\begin{aligned}
& 20.6 \\
& 23.4
\end{aligned}
\] & \[
\begin{aligned}
& 2.72 \\
& 2.34
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 15 \\
& 20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F106 } \\
& \text { F107 }
\end{aligned}
\] & \[
\begin{aligned}
& 12.2 \\
& 14.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.82 \\
& 0.71 \\
& \hline
\end{aligned}
\] & F205 & 17.3 & 1.16 & F307 & 21.2 & 1.42 & & & & & & \\
\hline \[
\begin{aligned}
& 25 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& \text { F108 } \\
& \text { (F109) }
\end{aligned}
\] & \[
\begin{aligned}
& 15.8 \\
& 17.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.63 \\
& 0.58 \\
& \hline
\end{aligned}
\] & F206 & 22.3 & 0.89 & F308 & 27.4 & 1.10 & \(F 409\) & 31.6 & 1.26 & F509 & 37.1 & 1.48 \\
\hline \[
\begin{aligned}
& 40 \\
& 50 \\
& \hline
\end{aligned}
\] & (F110) & 20.0
22.3 & \[
\begin{aligned}
& 0.50 \\
& \hline 0.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F207 } \\
& \text { F208 }
\end{aligned}
\] & 28.3
31.6 & \[
\begin{aligned}
& 0.71 \\
& 0.63
\end{aligned}
\] & \[
\begin{aligned}
& \text { F309 } \\
& \text { F310 }
\end{aligned}
\] & 34.6
38.7 & \[
\begin{aligned}
& 0.87 \\
& 0.77
\end{aligned}
\] & \[
\begin{aligned}
& \text { F410 } \\
& \text { F411 }
\end{aligned}
\] & 40.0
44.7 & 1.00
0.89 & \[
\begin{aligned}
& \hline \text { F510 } \\
& \text { F511 } \\
& \hline
\end{aligned}
\] & 46.9
52.4 & \[
\begin{aligned}
& 1.17 \\
& 1.05
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
75 \\
100
\end{array}
\] & \[
\begin{aligned}
& \text { F112 } \\
& \text { F113 }
\end{aligned}
\] & \[
\begin{array}{r}
27.4 \\
31.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.32 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F209) } \\
& \text { F210 }
\end{aligned}
\] & \[
\begin{aligned}
& 38.7 \\
& 44.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.52 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& \text { F311 } \\
& \text { F312 }
\end{aligned}
\] & \[
\begin{array}{r}
47.4 \\
54.8
\end{array}
\] & \[
\begin{aligned}
& 0.63 \\
& 0.55
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F412) } \\
& \text { (F413) }
\end{aligned}
\] & \[
\begin{aligned}
& 54.8 \\
& 63.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.73 \\
& 0.63
\end{aligned}
\] & \[
\begin{aligned}
& \text { F512 } \\
& \text { F513 }
\end{aligned}
\] & \[
\begin{aligned}
& 64.2 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.86 \\
& 0.74
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 125 \\
& 150 \\
& \hline
\end{aligned}
\] & F114 & \[
\begin{aligned}
& 35.3 \\
& 38.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.28 \\
& 0.26 \\
& \hline
\end{aligned}
\] & F211 & 54.8 & 0.36 & (F313) & 67.0 & 0.45 & (F414) & 77.4 & 0.52 & F514 & 82.5 & 0.61 \\
\hline \[
\begin{aligned}
& 200 \\
& 250
\end{aligned}
\] & F116 & 44.7
50.0 & \[
\begin{aligned}
& 0.22 \\
& 0.20
\end{aligned}
\] & \[
\begin{aligned}
& \text { F212 } \\
& \text { F213 }
\end{aligned}
\] & \[
\begin{aligned}
& 63.2 \\
& 70.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& 0.28
\end{aligned}
\] & \[
\begin{gathered}
\text { (F314) } \\
\text { F315 } \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
77.4 \\
86.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.39 \\
& 0.35 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F415) } \\
& \text { (F416) } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
89.4 \\
100.0
\end{array}
\] & \[
\begin{aligned}
& 0.45 \\
& 0.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F515 } \\
& \text { F516 }
\end{aligned}
\] & \[
\begin{aligned}
& 104.0 \\
& 117.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.52 \\
& 0.47
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 300 \\
& 400 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline F 118 \\
& F 119 \\
& \hline
\end{aligned}
\] & 54.8
63.2 & 0.18
0.16 & \[
\begin{aligned}
& \text { F214 } \\
& \text { F215 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 77.4 \\
& 89.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.26 \\
& 0.22 \\
& \hline
\end{aligned}
\] & (F316) & 108.0 & 0.28 & (F417) & 126.0 & 0.32 & F517 & 148.0 & 0.37 \\
\hline \[
\begin{aligned}
& 500 \\
& 600 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
F 120 \\
\text { (F121) }
\end{gathered}
\] & \[
\begin{aligned}
& 70.7 \\
& 77.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.14 \\
& 0.13 \\
& \hline
\end{aligned}
\] & F216 & 100.0 & 0.20 & F317 & 122.0 & 0.25 & F418 & 141.0 & 0.28 & F518 & 166.0 & 0.33 \\
\hline \[
\begin{aligned}
& 750 \\
& 800
\end{aligned}
\] & F122 & 86.6 & 0.12 & (F217) & 126.0 & 0.16 & F318 & 150.0 & 0.20 & F419 & 173.0 & 0.23 & (F519) & 206.0 & 0.27 \\
\hline \[
\begin{aligned}
& 1000 \\
& 1250
\end{aligned}
\] & F123
(F124) & \[
\begin{aligned}
& 100.0 \\
& 111.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.10 \\
& 0.089 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F218 } \\
& \text { F219 }
\end{aligned}
\] & \[
\begin{aligned}
& 141.0 \\
& 158.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.14 \\
& 0.12 \\
& \hline
\end{aligned}
\] & F319 & 173.0 & 0.17 & (F420) & 200.0 & 0.20 & F520 & 234.0 & 0.23 \\
\hline \[
\begin{aligned}
& 1500 \\
& 1750 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& F 125 \\
& F 126
\end{aligned}
\] & \[
\begin{aligned}
& 122.0 \\
& 132.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.081 \\
& 0.075
\end{aligned}
\] & F220 & 173.0 & 0.12 & F320 & 212.0 & 0.14 & (F421) & 245.0 & 0.16 & (F521) & 287.0 & 0.19 \\
\hline \[
\begin{aligned}
& 2000 \\
& 2500 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& F 127 \\
& F 128 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 141.0 \\
& 158.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.071 \\
& 0.063 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F221) } \\
& \text { (F222) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 200.0 \\
& 223.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.10 \\
& 0.089 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F321) } \\
& \text { F322 }
\end{aligned}
\] & \[
\begin{aligned}
& 245.0 \\
& 274.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.12 \\
& 0.11 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
F 422 \\
\text { (F423) }
\end{gathered}
\] & \[
\begin{aligned}
& 283.0 \\
& 316.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.14 \\
& 0.13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F522) } \\
& \text { (F523) }
\end{aligned}
\] & \[
\begin{aligned}
& 332.0 \\
& 371.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.17 \\
& 0.15
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3000 \\
& 3500 \\
& \hline
\end{aligned}
\] & F129 & 173.0 & 0.057 & \[
\begin{aligned}
& \text { (F223) } \\
& \text { (F224) }
\end{aligned}
\] & \[
\begin{aligned}
& 245.0 \\
& 264.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.081 \\
& 0.075
\end{aligned}
\] & (F323) & 300.0 & 0.10 & (F424) & 345.0 & 0.12 & (F524) & 406.0 & 0.14 \\
\hline \[
\begin{aligned}
& 4000 \\
& 5000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline(F 130) \\
& \text { (F131) }
\end{aligned}
\] & \[
\begin{aligned}
& 200.0 \\
& 223.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.050 \\
& 0.045
\end{aligned}
\] & \[
\begin{gathered}
(F 225) \\
\text { F226 }
\end{gathered}
\] & \[
\begin{aligned}
& 283.0 \\
& 316.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.070 \\
& 0.063
\end{aligned}
\] & \[
\begin{gathered}
\text { F324 } \\
\text { (F325) }
\end{gathered}
\] & \[
\begin{aligned}
& 346.0 \\
& 387.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.087 \\
& 0.076
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F425) } \\
& \text { (F426) }
\end{aligned}
\] & \[
\begin{aligned}
& 400.0 \\
& 447.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.10 \\
& 0.089 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F525) } \\
& \text { (F526) }
\end{aligned}
\] & \[
\begin{aligned}
& 469.0 \\
& 524.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.12 \\
& 0.10
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
6000 \\
7500 \\
\hline
\end{array}
\] & & & & \[
\begin{aligned}
& \text { (F227) } \\
& \text { (F228) }
\end{aligned}
\] & \[
\begin{aligned}
& 346.0 \\
& 387.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.058 \\
& 0.052 \\
& \hline
\end{aligned}
\] & (F326) & 424.0 & 0.057 & (F427) & 548.0 & 0.073 & (F527) & 642.0 & 0.086 \\
\hline \[
\begin{aligned}
& 10000 \\
& 12500 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{gathered}
\text { F229 } \\
\text { (F230) } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 445.0 \\
& 500.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.045 \\
& 0.040 \\
& \hline
\end{aligned}
\] & (F327) & 490.0 & 0.049 & F428 & 632.0 & 0.063 & (F528) & 741.0 & 0.074 \\
\hline \[
\begin{aligned}
& 15000 \\
& 20000 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{gathered}
\text { F231 } \\
\text { (F232) }
\end{gathered}
\] & \[
\begin{aligned}
& 555.0 \\
& 625.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.036 \\
& 0.032
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { (F429) } \\
& \text { (F430) }
\end{aligned}
\] & \[
\begin{aligned}
& 670.0 \\
& 774.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.045 \\
& 0.039 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F529) } \\
& \text { F530 } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
825.0 \\
1040.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.061 \\
& 0.052
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 25000 \\
& 30000 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& (\text { (F233) } \\
& \text { (F234) }
\end{aligned}
\] & \[
\begin{aligned}
& 715.0 \\
& 770.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.028 \\
& 0.026
\end{aligned}
\] & & & & (F431) & 866.0 & 0.035 & \[
\begin{aligned}
& \text { (F531) } \\
& \text { (F532) }
\end{aligned}
\] & \[
\begin{aligned}
& 1170.0 \\
& 1210.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.047 \\
& 0.040
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 35000 \\
& 40000 \\
& 50000
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { (F235) } \\
& \text { (F236) } \\
& \text { F237 }
\end{aligned}
\] & \[
\begin{aligned}
& 835.0 \\
& 910.0 \\
& 990.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.024 \\
& 0.022 \\
& 0.020
\end{aligned}
\] & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
"popular items appear in bold print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in Light Face print are available from stocking distributors but are not normally stocked in depth. Parentheses indicate non-stock standard litems subject to a minimum handling charge per item.
*Ratings are based on use of steel panel mounting and should be reduced on non-metallic mounting surface because of reduced thermal conductivity.
}

\section*{© \({ }^{\text {WMITE }}{ }_{\text {® non-inductive }}\) type 270N vitreous enameled fixed resistors}

Popular Items appear in BOLD print and are usually in stock at authorized ohmite stocking distributors. Items appearing in LIGHT FACE print are avallable from stocking distrbutors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item. * Mounting brackets are automatically supplied in individual unit packs; supplied only when specified in bulk packs.

\section*{thru-bolts}

Thru-bolts with centering and mica insulating washers are used to mount tubular resistors perpendicularly to a panel, up to \(1 / 4^{\prime \prime}\) thick.

metal centering washers
\begin{tabular}{|c|c|c|c|c|c|}
\hline Cst ko. & \[
\begin{aligned}
& 0.0 . \\
& \text { of corr }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1.b. } \\
& \text { sif Cere }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Bia. of } \\
& \text { Washer }
\end{aligned}
\] & \[
\begin{aligned}
& \text { gine of } \\
& \text { Hale }
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { For Man } \\
\operatorname{sertw} \\
\sin \\
\hline
\end{gathered}
\] \\
\hline 6000 & \(K_{0}{ }^{\text {a }}\) & K* & \(\mathrm{K}_{6}^{\prime \prime}\) & . 190 & *10 \\
\hline 6001 & 3*" & \(4 / 2^{\prime \prime}\) & 34" & . 190 & +10 \\
\hline 6003 & \(14^{\prime \prime}\) & * \({ }^{\text {" }}\) & 12/1" & . 250 & \(1 / 4^{\prime \prime}\) \\
\hline
\end{tabular}
mica insulating washers
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Dore} & \multicolumn{2}{|l|}{Weahar,} \\
\hline 6010 & \(\mathrm{K}_{6}{ }^{\prime \prime}\) & \(\mathrm{Ki}^{\prime \prime}\) & \(79^{\prime \prime}\) & \(\mathrm{K}_{0}{ }^{\prime \prime}\) \\
\hline *6011 & \(\mathrm{K}_{6}{ }^{\prime \prime}\) & \(\mathrm{K}_{8}{ }^{\prime \prime}\) & \(3{ }^{4 \prime \prime}\) & \%0" \\
\hline 5012 & * \({ }^{\prime \prime}\) & \(1 / 2{ }^{\prime \prime}\) & 1 1/ & \(\mathrm{K}_{4}{ }^{\prime \prime}\) \\
\hline *6013 & \(3{ }^{\prime \prime}\) & \(1 / 2^{\prime \prime}\) & \(1^{\prime \prime}\) & \(1 / 2^{\prime \prime}\) \\
\hline 6016 & 14/" & 3" \({ }^{\prime \prime}\) & 11/2" & \(\mathrm{K}_{6}{ }^{\text {" }}\) \\
\hline *8017 & 14/n & ** & 11/2" & 3/4 \({ }^{\prime \prime}\) \\
\hline
\end{tabular}

\section*{thru-bolt and mounting brackets}

These sturdy cadmium-plated steel brackets mount tubular resistors type 270 (fixed) and type 210 (adjustable Dividohm(®) via thru-bolts and centering washers with mica insulating washers. Slotted, consisting of one end-slot and one side-slot bracket, and elongated styles are offered.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Thru-Bolt Bracket Cat. No.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Wart } \\
& \text { Size }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { For } \\
& \text { Tubular Resistor, }
\end{aligned}
\]} \\
\hline slotted Style & \[
\begin{gathered}
\text { Elongated } \\
\text { Styif }
\end{gathered}
\] & & Flxed Type Cat. No. & \\
\hline - & 6120-D-13/4 & 12 & 3723-3843 & 1001-1040 \\
\hline 6101-2 & 6120-K-2 & 25 & 0200A-0229 & 0360-0389 \\
\hline 6101.4 & 6120-K-4 & 50 & 0400A-0428 & 0560-0591 \\
\hline 6101-6 & - & 75 & - & 0769-0796 \\
\hline 6104-61/2 & - & 100 & 0600A-0625 & 0956.0973 \\
\hline 6110.81/2 & - & 175 & 0700A-0725 & 1156-1173 \\
\hline 6110-101/2 & - & 225 & 0900A-0925 & 1356-1373 \\
\hline
\end{tabular}

OIMENSIONS FOR SLOTTEO BRACKET
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Cat. No } \\
& \text { Type }
\end{aligned}
\] & A. & 8 & \(c\) & D & E & F & \\
\hline 6101 & 28/3 & 1\%6 & 3/4 & \(1 / 2\) & 7/6 & 1/4 & 17/2 \\
\hline 6104 & 25/2 & 11/8 & 3/4 & 1/22 & 1/60 & 1/4 & 12/82 \\
\hline 6110 & 1 & 13/4 & 11/8 & 1/6 & 以 & K6 & \% 6 \\
\hline
\end{tabular}

\section*{mounting brackets for tubular resistors}

Brackets fit inside the cores of tubular resistors and remain in place by friction The standard bracket (indicated by catalog number without suffix) is cadmium plated steel. An " \(S\) " suffix on the catalog number indicates spring steel; a " \(B\) ' suffix indicates brass; a "8N" suffix indicates brass bracket for 100 Watt type 270 N non-inductive resistor with flat sided core.
Spring steel brackets are excellent where vibration is involved; brass brackets are used with non-inductive resistors or for corrosion resistance. A pair of standard brackets is supplied with each individually boxed resistor soid through distribu tors Brackets are not automatically supplied for bulk resistor orders. Brackets are sold in lots of 100 pieces (50 pair).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Catalog No.} & \[
\begin{gathered}
\text { Mtg; } \\
\text { Screw Max }
\end{gathered}
\] & Fits these Pesistors & \[
\begin{aligned}
& \text { Welght Lbs } \\
& 100 \text { pcs. }
\end{aligned}
\] \\
\hline 5, & 5S, & 5B & 6 & 12 W Brown Devil or Divid. & . 17 \\
\hline 7. & 7S, & 78 & 6 & 20W Brown Devil & . 24 \\
\hline 9. & 9S, & 9 B & 6 & \begin{tabular}{l}
25, 50W Fixed; \\
25, 50, 75W Dividohm
\end{tabular} & . 30 \\
\hline 12. & 12S, & 12 B & 10 & 100W Fixed or Dividohm & 1.30 \\
\hline 18. & 18S, & 18 B & 10 & 175, 225W Fixed or Divid. & 1.50 \\
\hline
\end{tabular}

\footnotetext{
*100 pieces per pkg. - Minimum Order
}

STOCK CDRRIBS - 300 WATT SIZE Type 280 Fixed; 230 Dividohmo
Core: \(81 / 2 \times 11 / 1^{\prime \prime \prime}\) Fixed or Adjustable (DIVIDOHM) Avg. Weight (Fixed) . 61 lb.; (0 ividohm) . 64 lb .
\begin{tabular}{|c|c|c|c|}
\hline Ohms & Aitipl. & Catalog No. & tividohm*1 Catalog 10. \\
\hline . 10 & 54.7 & 2501 & 2601 \\
\hline . 12 & 50.0 & 2502 & (2602) \\
\hline . 16 & 43.3 & 2503 & 2603 \\
\hline . 20 & 38.7 & 2504 & 2604 \\
\hline . 25 & 34.6 & 2505 & 2605 \\
\hline . 31 & 31.1 & 2506 & 2606 \\
\hline . 40 & 27.4 & 2507 & 2607 \\
\hline . 50 & 24.5 & 2508 & 2608 \\
\hline . 63 & 21.8 & 2509 & 2609 \\
\hline 80 & 19.3 & 2510 & 2610 \\
\hline 1.0 & 17.3 & 2511 & 2611 \\
\hline 1.2 & 15.8 & 2512 & (2612) \\
\hline 1.6 & 13.7 & 2513 & 2613 \\
\hline 2.0 & 12.2 & 2514 & 2614 \\
\hline 2.5 & 10.9 & 2515 & 2615 \\
\hline 3.1 & 9.8 & 2516 & 2616 \\
\hline 4.0 & 8.6 & 2517 & 2617 \\
\hline 5.0 & 7.7 & 2518 & 2618 \\
\hline 6.3 & 6.9 & 2519 & 2619 \\
\hline 8.0 & 6.1 & 2520 & 2620 \\
\hline 10.0 & 5.5 & 2521 & 2621 \\
\hline 12.0 & 5.0 & 2522 & 2622 \\
\hline 16.0 & 4.3 & 2523 & 2623 \\
\hline 20.0 & 3.8 & 2524 & 2624 \\
\hline
\end{tabular}

THRU-BOLT MDUNTING BRACKETS FOR CORRIBS
Includes 2 brackets; bolt; centering, mica, and lock washers; nuts. Diagram below.

High current, low resistance, heavy duty units used in motor starting, dynamic braking, etc. "Corrib" type units employ a corrugated ribbon of resistance alloy. This is space-wound edge-wise around a ceramic tube. Vitreous enamel is fused around the alloy ribbon to lock the turns securely in place. Heavy lug terminals. Resistance tolerance is \(\pm 10 \%\).
Available in fixed or Dividohm \({ }^{(}\)adjustable types. Dividohm type is similar to fixed and includes one adjustable lug. Rating of Fixed or Dividohm \({ }^{\text {® }}\) stock units- 300 watts-reduce unit load for stack-mounted resistors; core size (bare) \(81 / 2^{\prime \prime}\) long \(\times 1 \frac{1}{1 / 8^{\prime \prime}}\) diameter. Other sizes made to order.
*Adjustable Lug Sth. No. 1974 supplied with Dividohm.

\section*{powr-rib BHIGH CURRENT LOW OHMS \\ resistors}

Even higher power handling capability-approximately 700 to 1000 watts-is available in stock, "Powr-Rib" resistors. These are UNCOATED types and are wound either edgewise with ribbon ("Edgewound" type) or with round wire (Round-Wire type).

The core of these units consists of ceramic segments on a metal bar which is slotted on both ends for rapid installation. Standard resistance tolerance is \(\pm 10 \%\). Terminals clamp onto the resistor wire and may be moved in from the ends for intermediate resistance values. Extra terminals available for use as taps. See diagrams for terminals. Terminal Stk. No. 2172G (not shown) has screw connections.

\({ }^{1}\) Popular items appear in BOLD print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking distributars but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handfing charge per item.

\title{
앙 HMITE \(0.1 \%\) precision Determ-Ohm \({ }^{\circ}\) resistance box
}

The new Ohmite Precision Determ-ohm \({ }^{(8)}\) is a resistance decade box with an accuracy of \(\pm 0.1 \%\). Four models cover the resistance range from 1 ohm to 1 megohm in a choice of three-4 decade and one-6 decade models.
Simplified selection of resistance values is accomplished by operation of rocker-type thumbwheel switches. Resistance setting is indicated by a direct in-line numeric readout. Unique switch feature (pat. pend.) allows advancing or decreasing of values directly from 9 thru 0 to 1 or vice versa, without retracing all the other values.
The housing is a functional sloping panel metal case equipped with universal binding posts and a grounded metallic binding post for effective shielding.

\section*{SPECIFICATIONS}

Accuracy: \(0.1 \%\) (plus \(.01 \Omega\) max. contact and circuit resistance per decade).

Selection: Rocker-type thumbwheel switches, continuous rotation in either direction.

Switch Life: In excess of 50,000 operations.

Power: \(1 / 4\) Watt per resistor.
Operating Temperature: +15 to \(+35^{\circ} \mathrm{C}\).
T.C. of Resistors: \(\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), max. \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

MAXIMUM CURRENT RATINGS
(Do not exceed 500 volts.)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Resistance Range \\
Ohims)
\end{tabular} & \begin{tabular}{c}
Maximum Current \\
(Milliamps)
\end{tabular} \\
\hline \(1-9\) & 710 \\
\hline \(10-99\) & 220 \\
\hline \(100-999\) & 71 \\
\hline \(1000-9999\) & 22 \\
\hline \(10,000-99,999\) & 7.1 \\
\hline \(100,000-999,999\) & 1.1 \\
\hline
\end{tabular}

\section*{SELECTION}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Resistance Range \\
(Ohims)
\end{tabular} & \begin{tabular}{c}
Ohms \\
Per Step
\end{tabular} & \begin{tabular}{c}
Number of \\
Decades
\end{tabular} & \begin{tabular}{c}
Catalog \\
Number
\end{tabular} \\
\hline 0 to 9.999 K & 1 & 4 & 3405 \\
\hline 0 to 99.99 K & 10 & 4 & 3406 \\
\hline 0 to 999.9 K & 100 & 4 & 3407 \\
\hline 0 to 999.999 K & 1 & 6 & 3410 \\
\hline
\end{tabular}

\section*{dummy-antenna resistors now.-Noccive}

Ohmite Models D-101 and D-251 Dummy Antenna Resistors provide a simple, accurate, and direct means of measuring R.F. power for the radio amateur, experimenter and manufacturer and for operators of aviation, police and broadcast stations. These units consist of a number of special, vitreous enameled resistors connected in parallel in a concentric arrangement and mounted inside a perforated metal cage. The dummy antenna resistors feature constant R.F. resistance (within their recommended frequency range), low reactance, high wattage dissipation, and compactness. Actual D.C. resistance tolerance is \(\pm 5 \%\).

The residual inductance and distributed capacitance have been kept to a minimum, thereby making the natural resonant frequency as high as possible. These factors and the D.C. resistance have been proportioned in such a manner as to give the best possible response characteristics. This resistor may be considered practically a "Non-Reactive Resistor."
\begin{tabular}{|c|c|c|c|c|c|}
\hline Catalog & & & & D & \\
\hline D-101-52*, (D-101-73*) & 11/2 & \(31 / 2\) & \(23 / 8\) & 3/12 & 2312 \\
\hline (D-101-300), (D-101-600) & \(23 / 4\) & \(31 / 2\) & 23/8 & \(35 / 32\) & 47/22 \\
\hline D-251-52*, (D-251-73*) & \(31 / 8\) & 37/8 & 21/2 & 323/2 & \(4{ }^{19 / 2}\) \\
\hline D-251-300, (D-251-600) & \(51 / 8\) & \(37 / 8\) & \(21 / 2\) & 323/22 & \(613 /\) \\
\hline
\end{tabular}
*Employs coax connector.

FREQUENCY CHARACTERISTICS OF OHMITE DUMMY ANTENNAS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{D-101} & \multicolumn{4}{|c|}{D-251} \\
\hline Resistance & 52 Otims & 73 Ohms & 300 Ohms & 500 Ohms & 52.0 mm & 73 Ohms & 300 Nomm & 200 0hms \\
\hline \begin{tabular}{l}
Maximum frequency at which \\
\(R s=R d c \pm 10 \%\)
\end{tabular} & 22 mc & 38 mc & 22 mc & 31 mc & \[
19 \mathrm{mc}
\] & 21 mc & 15 mc & 19 mc \\
\hline Rs at this frequency \(z\) at this frequency & \[
\begin{aligned}
& 1.10 \mathrm{R} \mathrm{dc} \\
& 1.18 \mathrm{R} \mathrm{de}
\end{aligned}
\] & \[
\begin{aligned}
& 1.10 R_{\text {dr }} \\
& 1.14 R_{\text {de }}
\end{aligned}
\] & \[
1.10 \mathrm{R} \mathrm{dr}
\] & .90 R dr
.99 R de & \[
\begin{aligned}
& 1.10 \mathrm{R} \mathrm{de} \\
& 1.25 \mathrm{R} \mathrm{de}
\end{aligned}
\] & \[
\begin{aligned}
& 1.10 \mathrm{R} \mathrm{de} \\
& \mathrm{~L} .13 \mathrm{R} \mathrm{de}
\end{aligned}
\] & \[
\begin{aligned}
& 1.10 \mathrm{R} \mathrm{de} \\
& 1.15 \mathrm{R} \mathrm{dc}
\end{aligned}
\] & \[
\begin{array}{r}
.90 \mathrm{R} \mathrm{de} \\
1.00 \mathrm{R} \mathrm{de} \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
Maximum frequency at which \\
\(Z=R d c \pm 10 \%\)
\end{tabular} & 18 mc & 32 mc & 22 mc & 60 mc & 13 mc & 19 mc & 13 mc & 30 mc \\
\hline Rs at this frequency \(Z\) at this frequency & \[
\begin{aligned}
& 1.06 \mathrm{R} \mathrm{dr} \\
& 1.10 \mathrm{R} \mathrm{dc}
\end{aligned}
\] & 1.07 R de
1.10 R de & 1.10 R de
1.10 Ra & .60 R dr
.90 R de & 1.03 R dr
1.10 R dr & \[
\begin{aligned}
& 1.07 \mathrm{R} \mathrm{dr} \\
& 1.10 \mathrm{R} \mathrm{de}
\end{aligned}
\] & \[
\begin{aligned}
& 1.08 \mathrm{R} \mathrm{dr} \\
& 1.10 \mathrm{R} \mathrm{dr}
\end{aligned}
\] & \[
\begin{array}{r}
.64 \mathrm{R} \mathrm{de} \\
.90 \mathrm{R} \mathrm{de} \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LNol & Watts & ? & Wet \\
\hline D-101-52 & 100 & 52 & . 60 \\
\hline (D-101-73) & 100 & 73 & . 60 \\
\hline (D-101-300) & 100 & 300 & . 65 \\
\hline (D-101-600) & 100 & 600 & . 65 \\
\hline 0-251-52 & 250 & 52 & 1.25 \\
\hline (D-251-73) & 250 & 73 & 1.25 \\
\hline (D-251-300) & 250 & 300 & 1.50 \\
\hline D-251-600 & 250 & 600 & 1.50 \\
\hline
\end{tabular}

Rdc D.C. Resistance of Dummy Antenna
Rs Effective Series Resistance of Dummy Antenna
\(z \quad\) Scalar value of Impedance of Dummy Antenna

\title{
:()HMITE®outeRebel carbon film resistors high stability • low noise • extra long life
}

\begin{abstract}
(1)

\section*{11}
\end{abstract}

High stability, very low noise level, and exceptionally long life make these resistors ideal for applications requiring a steady low power drop. Their accuracy and consistency are relatively unaffected by adverse environmental conditions. Resistors of \(10 \Omega\) to \(1 \mathrm{M} \Omega\) have a homogenous film of pure carbon deposited values lower than \(10 \Omega\) have a nickel film instead of cracked carbon.

Contact caps of special alloy are pressed onto the ends of the resistor body to which the tin coated electrolytic copper connecting wires are welded. Finally the resistors are coated with three or more layers of a special lacquer for electrical, mechanical and environmental protection. This special lacquer will withstand regular industrial cleaning solutions used for cleansing printed circuit boards.

Tally Tape \({ }^{8}\) is Ohmite's exclusive conyenient packaging of \(1 / 4\) and \(1 / 2\) watt Little Rebel resistors that prevents spilling or tangling simplifies counting, decodes ohmic value for quick identigcation, and guarantees ofiginal, factory fresh stock. Each perforated segment halds 5 resistors; 10 segments packaged in poly bag 50 pack.

\section*{SPECIFICATIONS}

Ratings
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Ratings} \\
\hline Power rating \(\mathrm{P}_{\text {nom }}\) & 48 & 14 W & Y2W \\
\hline TA \(<70^{\circ} \mathrm{C}\) & 0.125 W & 0.25W & 0.5W \\
\hline Maximum voltage AC or DC & 150 V & 250 V & 350 V \\
\hline \multicolumn{4}{|l|}{Voltage (RMS) that may be applied for 1 sec. across} \\
\hline Insulation resistance & 104M2 & \(104 \mathrm{M} \Omega\) & \(10^{4} \mathrm{Ms}\) \\
\hline Ambient temperature Temperature coefficient Noise voltage \(\qquad\) & & \begin{tabular}{l}
LI TYPE \\
to + \\
figure \\
figure
\end{tabular} & \\
\hline \multicolumn{4}{|l|}{Voltage Breakdown} \\
\hline \(2 x\) limiting voltage for 1 m
between terminals of resin
and metal foil & in. & own or & shover \\
\hline \multicolumn{4}{|l|}{Short Term Overload (Room Temperature)} \\
\hline Loaded 5 sec . at \(6.25 \mathrm{P}_{\text {max }}\) (not to exceed \(2 x\) maxim 10 cycles: 5 sec. on 10 sec . off & \begin{tabular}{l}
at \(25^{\circ} \mathrm{C}\) \\
um volta
\end{tabular} & & \\
\hline
\end{tabular}

Shelf Test
At \(25^{\circ} \mathrm{Cnom}\) for 12 months
\(\Delta R_{\max }\) for \(R<1 M \Omega\) \(R>1 M \Omega\)
\(\qquad\)

\section*{Temperature Cycling}

5 cycles: 3 hours \(-55^{\circ} \mathrm{C}\)
3 hours \(+155^{\circ} \mathrm{C}\)
\(\Delta\) Rimar \(^{2}\)..........
Humidity Specifications
After long-term exposure to
damp heat at \(40^{\circ} \mathrm{C}, 5\) VDC
\(\mathrm{RH}=90-95 \%\) for 56 days with no drying
5 VDC
5 VDC
\[
\begin{aligned}
& \Delta R_{\text {max }} \text { for } R_{\text {nom }}=10 \Omega \text { to } 100 \mathrm{k} \Omega \text {.................... } 1 \% \\
& R_{\text {nom }}=100 \mathrm{k} \Omega \text { to } 1 \mathrm{M} \Omega \\
& \text { 2\% } \\
& \mathrm{R}_{\text {nom }}=1 \mathrm{M} \Omega \text { or higher } \\
& 3 \%
\end{aligned}
\]

Solder Test (thermal shock)
Terminations immersed for 3 sec. up to .24 inches
from end cap in solder bath at \(350^{\circ} \mathrm{C}\)
\(\triangle R_{\text {max }}\)
Flgure 1. Noise as a function of the resistance value, applicable to all resistor wattages (as per JEC specifi cations 195; Method of measurement of current noise generated in fixed resistors).

Figure 2. Temperature coefficient as a function of the resistance value, applicable to all resistor wattages.
\(0.5 \%\) or \(0.5 \Omega\)

\section*{Lead Test}
a. Tensile
diameter . 024-. 032 inches; load 2.20 lbs ; 10 sec. diameter \(>.032\) inches; load 4.41 lbs
Bending
diameter .024-.032 inches; laad 1.10 lbs; \(4 \times 90^{\circ}\) diameter \(>.032\) inches; load 2.20 lbs ;

Torsion
\(2 \times 360^{\circ}\) in opposite directions no damage \(\triangle R_{\text {max }}\) (for all tests) \(0.5 \%\) or \(0.5 \Omega\) Shock Test
\(3 \times 1500\) shocks in three directions: 50 G :
\(\triangle R_{\text {max }}\)... \(0.5 \%\) or \(0.5 \Omega\)

\section*{Vibration}

Frequency: \(10-500 \mathrm{~Hz}\)
Displacement 0.06 inches or acceleration 10 G ; three directions; total 9 hrs.
\(\triangle R_{\text {max }}\)
Voltage Coefficient
 (0.0....5PPM/Volt \(0.0005 \% /\) Volt)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
Resistance \\
(Ohma) \(\pm 5 \%\)
\end{tabular} & \[
\begin{aligned}
& \text { Watt Watt } \\
& \text { Type of }
\end{aligned}
\] & \[
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline \text { Type OK }
\end{array}
\] & \[
\begin{aligned}
& \text { y/2 Waft } \\
& \text { Type OL }
\end{aligned}
\] & Resistance (Otms) \(\pm 5 \%\) & \[
\begin{aligned}
& \hline \text { is Watt } \\
& \text { Type os }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1/4 Watt } \\
& \text { Type OX }
\end{aligned}
\] & \[
\begin{aligned}
& 3_{2} \text { Watt } \\
& \text { Type OL }
\end{aligned}
\] & Resistance (ahms) \(\pm 5\) & \[
\begin{array}{|l|}
\hline \text { So Watt } \\
\text { iype of } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { x/ Ws: } \\
\text { Type OK } \\
\hline
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ph Wett } \\
& \text { Thpe OL }
\end{aligned}
\] & Resistanse (Chns) \(\pm 5\) \% & \[
\begin{aligned}
& \begin{array}{l}
\text { Yo Watt } \\
\text { type of } \\
\hline
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l}
\begin{array}{l}
\text { Ka Watt } \\
\text { Iype of }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1 / 2 \text { Watt } \\
& \text { 1ype ol }
\end{aligned}
\] \\
\hline & & OK10G5 & 0L10G5 & 56 & 015605 & OK5605 & 0.5605 & 1600 & 011625 & OK1625 & 0 L 1625 & 47 K & 0.44735 & OK4735 & 014735 \\
\hline 1.2 & & OK12G5 & OL12G5 & 62 & 0 J 6205 & OK6205 & OL6205 & 1800 & 011825 & OK1825 & OL1825 & 51 K & 015135 & OK5135 & 0.5135 \\
\hline 1.5 & & OK15G5 & OLTSG5 & 68 & 0 J 6885 & OK6805 & OL6805 & 2000 & 012025 & 0 K 2025 & 012025 & 56 K & 015635 & OK5635 & OL5635 \\
\hline 1.8 & & OK18G5 & 011865 & 75 & 017505 & \(0 K 7505\) & 027505 & 2200 & 0.2225 & OK2225 & 012225 & 62 K & \({ }_{0} 016235\) & OK6235 & OL6235 \\
\hline 2.2 & & OK2265 & \(0 L 2265\)
012765 & 82
91 & 018205
019105 & OK8205 & OL8205 & 2400
2700 & 012425 & 0k2425 & 0L2425 & 68 K
75 K & \(0 J 6835\)
0.7535 & OK7535 & 0.7535 \\
\hline 3.3 & & OK33G5 & \({ }^{0} \mathbf{1} 3365\) & 100 & \(0 / 1015\) & OK1015 & OL1015 & 3000 & 013025 & 0 K 3025 & Ot3025 & 82 K & 018235 & OK8235 & 018235 \\
\hline 3.9 & & OK3965 & 013965 & 110 & 0.1115 & OK1115 & 0.1115 & 3300 & 013325 & 0 K 3325 & 013325 & 91 K & 019135 & OK9135 & 0:9135 \\
\hline 4.3 & & OK43G5 & 014365 & 120 & 0 J 1215 & OK1215 & OL1215 & 3600 & 013625 & OK3625 & 013625 & 100 K & 011045 & OK1045 & OL1045 \\
\hline 4.7 & & OK47G5 & 0L47G5 & 130 & 011315 & OK1315 & OL1315 & 3900 & 013925 & OK3925 & OL3925 & 110 K & 011145 & OK1145 & 0.1145 \\
\hline 5.1 & & OK5165 & 0L5165 & 150 & 011515 & OK1515 & OL1515 & 4300 & 014325 & OK4325 & 0L4325 & 120 K & 011245 & 0 K 1245 & 011245 \\
\hline 5.6 & & OK56G5 & OL5665 & 160 & 011615 & OK1615 & OL1615 & 4700 & 014725 & OK4725 & 014725 & 130 K & 011345 & OK1345 & OL1345 \\
\hline 6.2 & & OK62G5 & 0L62G5 & 180 & 011815 & OK1815 & OL1815 & 5100 & 015125 & OK5125 & 015125 & 150 K & 0.1545 & OK1545 & DL1545 \\
\hline 6.8 & & OK68G5 & 0L68G5 & 200 & 0.12015 & OK2015 & OL2015 & 5600 & 015625 & OK5625 & 015625 & 160 K & 011645 & OK1645 & 0.1645 \\
\hline 7.5 & & OK7565 & 017565 & 220 & 0.2215 & OK2215 & 012215 & 6200 & 016225 & OK6225 & 0L6225 & 180k & 011845 & OK1845 & OL1845 \\
\hline 8.2 & & OK82G5 & 018265 & 240 & 012415 & OK2415 & 0.2415 & 6800 & 0.6825 & OK6825 & OL6825 & 200 K & 012045 & OK2045 & \(0 \mathrm{L2045}\) \\
\hline 9.1 & & OK9165 & 0L9165 & 270 & 012715 & OK2715 & 012715 & 7500 & 017525 & OK7525 & 017525 & 220 K & 0.2245 & \(0 \times 2245\) & 012245 \\
\hline 10.0 & 011005 & OK1005 & \(0 L 1005\) & 3300 & 013015
013315 & OK3015 & 023015 & 8200 & 038225 & OK8225 & 0 L 8225 & & & OK2445 & 012445
012745 \\
\hline 11 & 011105
0.1205 & OK1105 & \(0 L 1105\)
011205 & 330
360 & 013315
\(0 / 3615\) & OK3315 & \(0 L 3315\)
0.3615 & 9100
10 K & 019125
011035 & OK9125 & 061125
011035 & 270 K
300 K & & OK2745 & \(0 L 2745\)
013045 \\
\hline 13 & 0.11305 & OK1305 & 0 L1305 & 390 & 013915 & OK3915 & OL3915 & 11 K & 0.1135 & OK1135 & 0L1135 & 330 K & & 0 K 3345 & 013345 \\
\hline 15 & 011505 & OK1505 & 011505 & 430 & 014315 & OK4315 & OL4315 & 12 K & 011235 & 0 K 1235 & \(0 L 1235\) & 360 K & & OK3645 & 013645 \\
\hline 16 & 011605 & OK1605 & OL1605 & 470 & 014715 & OK4715 & 014715 & 13K & 011335 & OK1335 & OL1335 & 390 K & & OK3945 & 023945 \\
\hline 18 & 0.1805 & OK1805 & OL1805 & 510 & 015115 & OK5115 & 0.5115 & 15 K & 011535 & OK1535 & OL1535 & 430 K & & OK4345 & 0.4345 \\
\hline 20 & 012005 & OK2005 & 012005 & 560 & 015615 & OK5615 & 015615 & 16 K & 011635 & OK1635 & OL1635 & 470 K & & & \\
\hline 22 & 012205 & OK2205 & 012205 & 620 & 0 J 6215 & OK6215 & OL6215 & 18 K & 011835 & OK1835 & OL1835 & 470 K
510 K & & OK4745 & \(0 L 4745\)
0.5145 \\
\hline 24
27 & 0.2405
0.2705 & OK2405
OK2705 & OL2405 & 680
750 & 016815
017515 & OK6815 & 026815
0.7515 & 20 K
22 K & 0.2035
0.2235
0. & OK2035 & 012035
0.2235 & 510 K
560 K & & OK5145 & OL5145 \\
\hline 30 & 0.3005 & 0k3005 & 0 OL3005 & 820 & 018215 & OK8215 & 0.8215 & 24 K & 012435 & OK2435 & OL2435 & 620 K & & OK6245 & 0.6245 \\
\hline 33 & 0.3305 & OK3305 & OL3305 & 910 & 019115 & OK9115 & 0.9115 & 27 K & 012735 & OK2735 & 012735 & 680k & & DK6845 & 0L6845 \\
\hline 36 & 013605 & OK3605 & 013605 & 1000 & 011025 & OK1025 & 0 L 1025 & 30 K & 013035 & OK3035 & OL3035 & 750 K & & OK7545 & 0t7545 \\
\hline 39 & 013905 & OK3905 & 013905 & 1100 & 01125 & OK1125 & \(0 \mathrm{OL125}\) & 33 K & 013335 & OK3335 & 013335 & & & & \\
\hline 43 & 034305 & 0 K 4305 & 014035 & 1200 & 011225 & 0 K 1225 & 011225 & 36 K & 013635 & OK3635 & 013635 & 820 K
910 K & & OK8245 & \(0 L 8245\) \\
\hline 47
51 & 014705
0.5105 & OK4705 & 0.4705
0.5105 & 1300
1500 & 011325
0.1525 & OK1325
OK1525 & OL1325
0.1525 & 39 K
43 K & 0.3935
0.4335 & OK3935 & 013935
0.4335 & 91.0 K & & OK9145
OK1055 & \[
\begin{aligned}
& \text { OL9145 } \\
& \text { OLI055 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{따NMITE \({ }_{\text {® }}\) _ouleRebel carbon film resistor assortments and cabinets for price of resistors alone}

Always have the right resistor on hand and thwart Murphy's Law which states: "The resistance value needed will not be available." Ohmite Assortments of Little Rebel carbon film resistors come in Nine assortments and offer a wide selection of values in \(1 / 8,1 / 4\) and \(1 / 2\) watt sizes. All values have been selected by popularity.
The attractive gray and blue cabinet is furnished at no extra cost. Each cabinet has five drawers and each drawer has eight compartments, all individually labeled.
Dimensions of the single cabinet are \(9^{\prime \prime}\) long, \(43 / 4^{\prime \prime}\) high, \(51 / 4^{\prime \prime}\) deep. Dovetail tops and bottoms facilitate stacking. Assemblies of 2,3 and 4 cabinets are riveted to metal strips for wall hanging.
Assortments are factory packed per the schedule shown below.

NINE ASSORTMENTS
\begin{tabular}{c|r|r|c|c|}
\hline & \begin{tabular}{c}
Res. \\
Quant.
\end{tabular} & \begin{tabular}{c}
No. of \\
Valuas
\end{tabular} & \begin{tabular}{c}
No. of \\
Cabinets
\end{tabular} & Cat. No. \\
\hline \(\mathbf{1 / 8 W \text { Watt }}\) & 150 & 31 & 1 & CAB-5F \\
\(\pm 5 \%\) & 500 & 52 & 2 & CAB-22F \\
& 1000 & 103 & 3 & CAB-34F \\
\hline \(\mathbf{1 / 4 ~ W a t t ~}\) & 150 & 36 & 1 & CAB-6F \\
\(\pm 5 \%\) & 1000 & 75 & 2 & CAB-23F \\
& 1500 & 136 & 4 & CAB-43F \\
\hline \(\mathbf{1 / 2 ~ W a t t ~}\) & 150 & 36 & 1 & CAB-7F \\
\(\pm 5 \%\) & 1000 & 75 & 2 & CAB-24F \\
& 1500 & 136 & 4 & CAB-44F \\
\hline
\end{tabular}

\title{
wN HMITE SiuleDevil molded composition resistors on "Tally Tape"
}

Tally Tape," Ohmite's wonderfully convenient packaging presently pro. vides for \(1 / 4,1 / 2,1\) and 2 -watt re. sistors. Each perforated segment holds 5 resistors - prevents spill. ing or tangling -simplifies count.
ing -is printed for quick identifica-ing-is printed for quick identifica.
tion-guarantees original, factory. lion-guarantees original, factory-
fresh stock.

Now Includes MIL-R-II Types
Also available per MIL•R-39008 for \(1 / 4,1 / 2\) and 1 Watt, \(\pm 5 \%\) Tol.
Little Devils, Ohmite's famous molded composition resistors, find broad use in commercial and military applications The \(1 / 4,1 / 2,1\) and 2 -watt sizes, which conform respectively to Styles RC07, RC20, RC32 and RC42 of MIL-R-11, meet all the stringent requirements of this military specification. All sizes available satisfy a wide range of design and service needs

Little Devils have molded insulation for high dielectric strength. Noted advantages of these units are great stability, low noise level, low voltage coefficient, high insulation breakdown voltage and rapid heat dissipation. They may be used at full rated wattage at \(70^{\circ} \mathrm{C}\) (\(158^{\circ} \mathrm{F}\)) ambient temperature.

Little Devils are available from stock in standard EIA resistance values in the tolerances and resistance ranges shown in the price table. Ratings for maximum continuous RMS voltage drop are high: 150 volts for \(1 / 8\) watt units, 250 volts for \(1 / 4\) watt, 350 volts for \(1 / 2\) watt, 500 volts for 1 watt, and 750 volts for 2 watt units. See "Little Devil" Resistor Assortments, next page.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
1 / 8 \\
\text { WATT }
\end{gathered}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Stite 1457.106208 \\
Ladts \(015^{\prime \prime}\) D. \(\times 1^{\prime \prime}\) L
\end{tabular}} & WATT & \multicolumn{3}{|l|}{(8) te: \(1455^{\circ} \mathrm{L} .082^{\circ} 0\). Lads: .0150 D x \({ }^{\circ} \mathrm{C}\)} & WATT & \multicolumn{3}{|l|}{Site: \(1452 \times .0620\). Leads 015" D. x. \({ }^{\circ}\) L} & \multicolumn{3}{|r|}{SIf: \(1457 \times .062^{2} \mathrm{D}\). Leads \(015^{\prime \prime} \mathrm{D}, \times 1^{17} \mathrm{~L}\)} & \[
\begin{gathered}
1 / 8 \\
\text { WATT }
\end{gathered}
\] & \multicolumn{3}{|l|}{Site: \(1457 \times .062^{\circ} \mathrm{D}\) Leads: . \(015^{\circ} \mathrm{D}, \mathrm{y} \mathrm{I}^{\prime} \mathrm{L}\)} \\
\hline \multicolumn{2}{|l|}{Fexistance} & \multicolumn{2}{|l|}{Cataler Number \(+531=102\)} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{Catalod Number
\[
+501 \pm 108
\]} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { Catalog Foumber } \\
-508,1=1035 \\
\hline
\end{gathered}
\]} & Revatance & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Oitalog Nimmber } \\
& \pm 56,1=10^{\circ} \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Cataloe fumber } \\
& \pm 5 \%, \pm \pm 10 \% \\
& \hline
\end{aligned}
\]} \\
\hline 2.7 & ohms & OB2765 & OB27G1 & 62. & ohms & 086205 & & 1,500. & ohms & 0B1525 & OB1521 & 36,000. ohms & 083635 & & 0.82 & megs & 088245 & 088241 \\
\hline 3.0 & ohms & 083065 & OB27G1 & 68. & ohms & 086805 & 086801 & 1,600. & ohms & 081625 & O8182 & 39,000. ohms & OB3935 & OB3931 & & megs & 089145 & \\
\hline 3.3 & ohms & 0833G5 & OB33G1 & 75. & ohms & 087505 & & 1,800. & ohms & 081825 & OB1821 & 43,000. ohms & OB4335 & & & megs & 081055
081155 & 081051 \\
\hline 3.6
3.9 & ohms & OB3665 & & 82. & ohms & 088205
089105 & 088201 & \(2,000\).
2.200. & ohms & 082025 & & 47,000 . ohms
51,000
chms & 084735
085135 & 084731 & 1.1 & megs
megs

deg & OB1155 & 081251 \\
\hline 3.9
4.3 & ohms & OB39G5
OB4365 & OB3961 & 91.
100. & ohms & O89105 & OB1011 & 2,200. & ohms
ohms & 082225
082425 & 082221 & \(\begin{array}{ll}51,000 & \text { ohms } \\ 56,000 & \text { ohms }\end{array}\) & OB5135
085635 & OB5631 & 1.3 & megs & OB1355 & 081251 \\
\hline 4.7 & ohms & 084765 & 0B4761 & 110. & ohms & OB1115 & & 2,700. & ohms & 082725 & 082721 & 62,000. ohms & OB6235 & & 1.5 & megs & 081555 & 081551 \\
\hline 5.1 & ohms & 085165 & & 120. & ohms & 081215 & 081211 & 3.000. & ohms & \(0 \mathrm{B3} 325\) & & 68,000. ohms & 086835 & 086831 & 1.6 & megs & 0B1655 & \\
\hline 5.6 & ohms & OB5665 & OB56G1 & 130. & ohms & 0B1315 & & 3,300. & ohms & OB3325 & OB3321 & 75,000. ohms & 087535 & & 1.8
2.0 & megs & 081855
082055 & OB1851 \\
\hline 6.2 & ohims & OB6265 & & 150. & ohms & \(0 \mathrm{OB1515}\) & 081511 & 3,600. & ohims & 083625 & & 82,000 . ohms & OB8235 & 088231 & 2.0 & megs & 082055
OB2255 & \\
\hline 6.8 & ohms & OB68G5 & 0868G1 & 160. & ohtms & 081615 & & 3,900. & ohms & 083925 & OB3921 & 91,000. ohms & OB9135 & & 2.2 & megs & 082255
OB2455 & 082251 \\
\hline 7.5 & ohms & OB7565
O88265 & & 180. & ohms & 081815
082015 & 081811 & \(4,300\).
\(4,700\). & ohms & OB4325
0B4725 & & 0.1 megs & OB1045
OB1145 & 081041 & 2.4
2.7 & megs & OB2455
OB2755 & 082751 \\
\hline 8.2 & ohms & OB8265
OB9165 & OB82G & 200. & ohms & 082015 & 082211 & \(4,700\).
\(5,100\). & ohms & 084725
085125 & 084721 & 0.11 megs & 081145
OB1245 & OB1241 & 3.0 & megs & OB3055 & 082751 \\
\hline 10. & ohms & 081005 & 081001 & 240. & ohms & 082415 & & 5,600. & ohms & 085625 & 085621 & 0.13 megs & OB1345 & & 3.3 & megs & OB3355 & 083351 \\
\hline 11. & ohms & 081105 & & 270. & ohms & 082715 & 0B2711 & 6,200. & ohms & OB6225 & & 0.15 megs & 081545 & 0B1541 & 3.6
3.9 & megs & 083655
083955 & 083951 \\
\hline 12. & ohms & OB1205 & OB1201 & 300. & ohms & O83015 & & 6,800. & ohms & OB6825 & 086821 & 0.16 megs & OB1645 & & 4.3 & megs & OB4355 & 083951 \\
\hline 13. & ohms & OB1305 & & 330. & ohms & 083315 & OB3311 & 7,500. & ohms & 087525 & & 0.18 megs & OB1845 & 081841 & 4.7 & megs & OB4755 & 084751 \\
\hline 15. & ohms & OB1505 & OB1501 & 360. & ohms & OB3615 & & 8,200. & ohms & OB8225 & 088221 & 0.20 megs & OB2045 & & 5.1 & megs & OB5155 & \\
\hline 16. & ohms & 081605 & & 390. & ohms & 083915 & OB3911 & 9,100. & ohms & O89125 & & 0.22 megs & OB2245 & 082241 & 5.6 & megs & 085655 & 085651 \\
\hline 18. & ohms & OB1805 & 081801 & 430. & ohims & 084315 & & 10,000. & ohms & OB1035 & 081031 & 0.24 megs & OB2445 & & 6.2 & megs & 086255 & \\
\hline 20. & ohms & OB2005 & & 470. & ohms & 0 O 4715 & OB4711 & 11,000. & ohms & OB1135 & & 0.27 megs & 082745 & OB2741 & 6.8 & megs & OB6855 & 086851 \\
\hline 22. & ohm & OB2205 & OB2201 & 510. & ohms & OB5115 & & 12,000. & ohms & 081235 & 081231 & 0.30 megs & O83045 & & 7.5 & megs & 0B7555 OB8255 & \\
\hline 24. & ohms & 082405 & & 560. & ohms & 085615 & OB5611 & 13,000. & Ohms & OB1335 & & 0.33 megs & OB3345 & 083341 & 8.2
9.1 & megs megs & \[
\left.\begin{array}{|c|}
088255 \\
089155
\end{array} \right\rvert\,
\] & 088251 \\
\hline 27. & ohms & OB2705
OB3005 & OB2701 & 620.
680. & ohms
ohms & 085215
086815 & 086811 & \(15,000\).
16,000 & ohms & 081535
OB1635 & 0B1531 & 0.36 megs
0.39 megs & OB3645
083945 & 0B3941 & & megs & 0891065 & OB1061 \\
\hline 33. & ohms & OB3305 & 083301 & 750. & ohms & 087515 & 08681 & 18,000. & ohms & 081835 & OB1831 & 0.43 megs & OB4345 & 083941 & 11. & megs & O81165 & \\
\hline 36. & ohms & OB3605 & & 820. & ohms & O88215 & 0B8211 & 20,000. & ohms & 082035 & & 0.47 megs & 084745 & 084741 & & megs & \[
\left|\begin{array}{l}
081265 \\
0 \mathrm{~B} 1365
\end{array}\right|
\] & \\
\hline 39. & ohms & 083905 & O83901 & 910. & ohms & 089115 & & 22,000. & ohms & 082235 & OB2231 & 0.51 megs & 085145 & & 15. & megs & OB1565 & 081561 \\
\hline 43. & ohms & OB4305 & & 1,000. & ohms & O81025 & 081021 & 24,000. & ohms & O82435 & & 0.56 megs & 085645 & 0B5641 & 16. & megs & OB1665 & \\
\hline 47. & ohms & OB4705 & OB4701 & 1,100. & ohms & OB1125 & & 27,000. & ohms & 082735 & 082731 & 0.62 megs & 086245 & & 18. & megs & OB1865 & 081861 \\
\hline 51. & ohms & OBS105 & & 1,200. & ohms & 081225
081325 & OB1221 & \(30,000\). & ohms & O83035 & & 0.68 megs & OB6845 & OB6841 & 20. & megs & \[
082065
\] & \\
\hline 56. & ohms & OB5605 & 085601 & 1,300. & ohms & OB1325 & & 33,000. & ohms & 083335 & OB3331 & 0.75 megs & 087545 & & 22. & megs & OB2265 & 082261 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& 1 / 4 \\
& \text { WATT }
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
MLType RC.0Z \\
Site \(62 \times .090^{\circ} 0\) \\
Leads 025 D: \(x 1 /{ }^{1} \mathrm{~L}\).
\end{tabular}} & \[
\begin{gathered}
1 / 4 \\
\text { WATT }
\end{gathered}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
ML. Typel RCOT \\
S(20) 72.9 .09 D \\
Leadr .025 D. \(\times 11^{2}\) L
\end{tabular}} & \begin{tabular}{l}
\[
1 / 4
\] \\
WATT
\end{tabular} & \multicolumn{3}{|l|}{} & \multicolumn{4}{|l|}{\(1 / 4\) MIL Types RC 07
WATI Leadit \(.025^{\circ} 0.090^{\prime 0} 01 / 2^{2} \mathrm{~L}\).} & \[
\begin{aligned}
& 1 / 4 \\
& \text { WATT }
\end{aligned}
\] & \multicolumn{3}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Rellstance} & Catiliog & unther & & & Cotalog & umber & & & Catale & uty & Fosist & & Catalos & jmbes & fresist & & Catalor & unber \\
\hline 2.7 & ohms & OC2765 & 0C2761 & 68. & ohms & \(0 \mathrm{C6805}\) & \(0 \mathrm{C6801}\) & 1,800. & ohms & 0 C 1825 & OC1821 & 47,000. & ohms & \(0 \mathrm{C4735}\) & \(0 \mathrm{C4731}\) & 1.2 & megs & OC1255 & OC1251 \\
\hline 3.0 & ohms & OC3065 & & 75. & ohms & OC7505 & & 2,000. & Ohms & OC2025 & & 51,000. & ohms & OC5135 & & 1.3 & megs & OC1355 & \\
\hline 3.3 & ohms & OC3365 & 0C3361 & 82. & ohms & OC8205 & OC8201 & 2,200. & ohms & OC2225 & 0c2221 & 56,000. & ohms & OC5635 & \(0 C 5631\) & 1.5 & megs & OC1555 & 0 C 1551 \\
\hline 3.6
3.9 & ohms & OC36G5 & & 191. & ohms & OC9105
OC1015 & & 2,400
2, & Ohms & OC2425
OC2725 & & 62,000. & ohms & OC6235 & & 1.6
1.8 & megs & OC1655
OC1855 & \\
\hline 3.9
4.3 & ohms & OC3965 & OC3961 & 100. & ohms & OC1015
OC1115 & 0 C 1011 & \(2,700\).
\(3,000\). & ohms & OC2725
OC3025 & 0C2721 & 68,000
75,000 & ohms & OC6835 & OC6831 & 1.8
2.0 & megs & OC1855
OC2055 & OC1851 \\
\hline 4.7 & ohms & OC4765 & 0C4761 & 120. & ohms & OC1215 & \(0 \mathrm{C1211}\) & 3,300. & ohms & OC3325 & 0c3321 & 82,000. & ohms & OC8235 & 0C8231 & 2.2 & megs & OC2255 & 0c2251 \\
\hline 5.1 & ohms & 0 C 5165 & & 130. & ohms & 0 C 1315 & & 3,600. & ohims & OC3625 & & 91,000. & ohms & OC9135 & & 2.4 & megs & OC2455 & \\
\hline 5.6 & ohms & OC56G5 & 0C56G1 & 150. & ohms & OC1515 & \(0 C 1511\) & 3,900. & ohms & OC3925 & OC3921 & 0.1 & megs & OC1045 & 0C1041 & 2.7 & megs & 0 C 2755 & 0C2751 \\
\hline 6.2
6.8 & ohms & OC6265
OC6865 & & 160. & ohms & \(0 C 1615\)
0.1815 & & 4,300. & ohms & OC4325 & & 0.11 & megs & OC1145 & & 3.0
3.3 & megs & OC3055 & \\
\hline 6.8
7.5 & ohms & OC6865 & OC68G1 & 180.
200. & ohms & OC1815
OC2015 & 001811 & 4,700.
5,100. & ohms & OC4725
OC5125 & \(0 \mathrm{C4721}\) & 0.12
0.13 & megs & OC1245
OC1345 & OC1241 & 3.3
3.6 & megs
megs & OC3355 & 0C3351 \\
\hline 8.2 & ohms & OC8265 & OC82G1 & 220. & ohms & OC2215 & 0 C 2211 & 5,600. & ohms & OC5625 & 0C5621 & 0.15 & megs & OC1545 & 0C1541 & 3.9 & megs & OC3955 & OC3951 \\
\hline \({ }_{10}^{9.1}\) & ohms & OC9165 & & 240. & ohms & 0 C 2415 & & 6,200. & ohms & OC6225 & & 0.16 & megs & OC1645 & & 4.3 & megs & OC4355 & \\
\hline 10. & ohms & OC1005 & 0C1001 & 270. & ohms & 0 O 2715 & 0 C 2711 & 6,800. & ohms & OC6825 & 0C6821 & 0.18 & megs & OC1845 & OC1841 & 4.7 & megs & 0C4755 & \(0<4751\) \\
\hline 11. & ohms & OC1105 & & 300. & ohms & OC3015 & & 7,500. & ohms & OC7525
OC8225 & & 0.20
0.22 & megs & OC2045 & & 5.1 & megs & OC5155 & \\
\hline 12. & ohms & OC1205 & 0 Cl 201 & 330.
360. & ohms & OC3315
OC3615 & 0 C 3311 & \(8,200\).
\(9,100\). & ohms & OC8225 & 0c8221 & 0.22 & megs & OC2245 & 0C2241 & 5.6 & megs & OC5655 & \(0 \mathrm{C5651}\) \\
\hline 15. & ohms & OC1505 & OC1501 & 390. & ohms & OC3915 & 0 0-3911 & 10,000. & ohms & OC1035 & 0c1031 & & megs & 0 C 2745 & OC2741 & 6.2 & megs & OC6255 & \\
\hline 16. & ohms & OC1605 & & 430. & ohms & OC4315 & & 11,000. & ohims & OC1135 & & 0.30 & megs & OC3045 & & 6.8 & megs & OC6855 & OC6851 \\
\hline 18. & ohms & OC1805 & OC1801 & 470. & ohms & OC4715 & 0C4711 & 12,000. & ohims & OC1235 & 0C1231 & 0.33 & megs & 0C3345 & 0C3341 & 7.5 & megs & \(0 C 7555\) & \\
\hline 20. & ohms & OC2005 & & 510. & ohms & 065115 & & 13,000. & ohms & OC1335 & & 0.36 & megs & OC3645 & & 8.2 & megs & OC8255 & 0C8251 \\
\hline 22. & ohms & OC2205 & \(0 \mathrm{C2201}\) & 560. & ohms & OC5615 & 0 C 5611 & 15,000. & ohms & DC1535 & 0C1531 & 0.39 & megs & OC3945 & OC3941 & 9.1 & megs & OC9155 & \\
\hline 24. & ohms & OC2405
OC2705 & OC2701 & 620.
680. & ohms & OC6215
OC6815 & 0C6811 & \(16,000\).
\(18,000\). & ohms & OC1635
OC1835 & 0C1831 & 0.43
0.47 & megs & OC4345 & \(0 C 4741\) & 10. & megs & OC1065 & 0C1061 \\
\hline 30. & ohms & OC3005 & & 750. & ohms & OC7515 & 0cserf & 20,000. & ohms & OC2035 & 0c1831 & 0.51 & megs & OC5145 & 0cat & 11. & megs & \(0 \mathrm{Cl1165}\) & \\
\hline 33. & ohms & OC3305 & 0c3301 & 820. & ohms & OC8215 & 0C8211 & 22,000. & ohms & OC2235 & 0C2231 & 0.56 & megs & OC5645 & 0 C 5641 & 12. & megs & OC1265 & 0 Cl 1261 \\
\hline 36. & ohms & OC3605 & & 910. & Ohms & OC9115 & & 24,000. & ohms & OC2435 & & 0.62
0.68 & megs & OC6245 & & 13. & megs & OC1365 & \\
\hline 39. & ohms & OC3905 & 0 C 3901 & 1,000. & ohms & OC1025 & \(0 \mathrm{C1021}\) & 27,000. & ohims & OC2735 & 0 C 2731 & & megs & OC6845 & 0C6841 & 15. & megs & OC1565 & 0 C 1561 \\
\hline 43. & ohms & OC4305 & 064701 & 1,100. & ohims & OC1125
OC1225 & 0C1221 & \(30,000\).
\(33,000\). & ohms
ohms & OC3035
OC3335 & 0C3331 & 0.75
0.82 & megs & OC7545 & OC82 & 16. & megs & OC1665 & \\
\hline 51 & ohms & OC5105 & & 1,300. & ohms & OC1325 & & 36,000. & ohms & OC3635 & & & megs & \(0 \mathrm{C9145}\) & & 18. & megs & OC1865 & OC1861 \\
\hline 56. & ohms & OC5605 & OC5601 & 1,500. & ohms & OC1525 & OC1521 & 39,000. & ohms & OC3935 & OC3931 & & megs & OC1055 & 0C1051 & 20. & megs & OC2085 & \\
\hline 62. & ohms & OC6205 & & 1,600. & ohms & OC1625 & & 43,000. & ohms & 0C4335 & & 1.1 & megs & OC1155 & & 22. & meg & OC2265 & \(0 \mathrm{C2261}\) \\
\hline
\end{tabular}

\footnotetext{
distributors but normally are not stocked in depth.
}

\footnotetext{
\(\$\) Min. Resistance under MIL-R. 11 is 2.7 ohms.
}

Items appearing in BOLO print are popular values and are usually stocked by authorized OHMITE distributors. Items appearing in LIGHT FACE print are available from stocking distributors but normally are not stocked in depth.

\section*{쏘 HMITE \({ }^{8}\) Little Devil industrial and service resistor assortments}

resistors and handy cabinet for the price of the resistors alone Select the composition resistor you need. pight on the job from time-saving Little Devile Assortments. Ohmite now offers seven industrial assortments in addition to the four service assortments that have been so popular trial and service need. An complete line, there is an assortment to fill every furnished at no extra cost with attractive plastic cabinet or cabine single 5 .drawer cabinet has eight compartments, each assortment \(5 \nu^{\prime}\)," deep. Dovetail tops and bottoms facilitate stacking. Cabinet assemblies for industrial assortments are riveted to metal strips which afford rigidity and permit hanging of the unit on the wall
Of the seven industrial assortments, there are three \(\pm 10 \%\) tolerance assort ments of \(1 / 4,1 / 2\) or 1 watt sizes each containing 80 values. A two-cabinet assembly is furnished for these assortments. \(1 / 4,1 / 2\), or 1 watt sizes. A four-cabinet assembly is furnished for each of these assortments.
The four popular service assortments provide \(\pm 10 \%\) tolerance resistors in a single cabinet in \(1 / 4,1 / 2,1\) or 2 watt sizes.

Cabinets are factory packed in accordance with the tables shown below
11 ASSORTMENTS
\begin{tabular}{|c|c|c|c|}
\hline & Buat & & \\
\hline INDUSTRIAL & CAB-25 & 1000 & 1/4 \\
\hline \(\pm 10 \%\) Tolerance & CAB-26 & 1000 & 1/2 \\
\hline 80 Resistance Values 2 Cabinets & CAB-27 & 600 & 1 \\
\hline INDUSTRIAL & CAB-45 & 1000 & 1/8 \\
\hline \(\pm 5 \%\) Tolerance & CAB-46 & 1500 & 1/4 \\
\hline 160 Resistance Values & CAB-47 & 1500 & 1/2 \\
\hline 4 Cabinets & CAB-48 & 900 & 1 \\
\hline RADIO \& TV SERVICE KITS & & 150 & 1/4 \\
\hline \(\pm 10 \%\) Tolerance & CAB. 10 & 150 & 1/2 \\
\hline 37 Values-CAB-4 & CAB-2 & 125 & 1 \\
\hline 40 Values-Others & CAB- 3 & 125 & 2 \\
\hline
\end{tabular}

IITEMS APPEAQING in bOLD PRINT ARE POPULAR VALUES AND ARE USUALLY STOCKED BY AUTHORIZED Ohmite dIStRIBUTORS.

\section*{power line chokes}

*One section is wound as a second layer over the other. Non-magnetic brackets furnished with each choke.

Prevents high-frequency currents of radio transmitters, diathermy and therapeutic equipment from going out over the power lines and interfering with nearby radio receiving sets. They are used as filters in conjunction with two grounding capacitors of 0.1 microfarad capacity each. The 2.20 Choke is also used at radio receivers to keep out interference. All chokes consist of two, single-layer windings on a single ceramic core, insulated and protected by moisture-proof coating.

\section*{radio frequency plate chokes}

This series of seven, single-layer-wound, solenoid type radio frequency plate chokes, covers the entire frequency range of 3 to 520 megacycles. The stock number corresponds to the approximate frequency at which maximum efficiency will be obtained, but the chokes may be used at any other frequencies within their operating ranges, as listed in the țable.

Chokes of the four highest frequencies are wound on low power factor plastic cores while the other three units are wound on steatite tubes. Windings are insulated and protected by a moisture-proof coating. The single
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Cataleg Nia. & Operatix! Rank & nqactance Miero henries & & \[
\begin{aligned}
& \text { Katra } \\
& \text { Curreat } \\
& \text { Anps }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Rest, } \\
& \text { anant } \\
& \text { fres. Ms }
\end{aligned}
\] & Care & \[
\begin{aligned}
& \text { WL } \\
& \text { LRE }
\end{aligned}
\] \\
\hline 2.7 & 3 to 20 Mc . & 84.0 & 4.70 & 1.00 & 13 & \(6^{\prime \prime} \times 16^{\prime \prime}\) & . 106 \\
\hline 2.14 & 7 to 35 Mc . & 44.0 & 2.60 & 0.68 & 23 & \(2^{\prime \prime} \times 76^{\prime \prime}\) & . 026 \\
\hline 2.28 & 20 to 60 Mc . & 21.0 & 2.70 & 0.60 & 41 & \(134^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}\) & . 011 \\
\hline 2.50 & 35 to 110 Mc . & 7.0 & 0.98 & 1.00 & 79 & \(1^{\prime \prime} \times{ }^{\prime \prime} \mathbf{8}^{\prime \prime}\) & . 005 \\
\hline 2-144 & 80 to 200 Mc . & 1.8 & 0.33 & 1.10 & 168 & \(34^{\prime \prime} \times 8^{\prime \prime}{ }^{\prime \prime}\) & . 002 \\
\hline 2-235 & 160 to 350 Mc . & 0.84 & 0.14 & 1.70 & 300 & \(3^{\prime \prime \prime}{ }^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime \prime}\) & . 002 \\
\hline 2-460 & 320 to 520 Mc . & 0.20 & 0.034 & 4.00 & 500 & 122 \(\mathbf{2}^{\prime \prime} \times{ }^{\text {\% }}\) & . 001 \\
\hline
\end{tabular}

Non-magnetic Brackets Furnished with 2.7.
* At \(100 \mathrm{ma}, 25^{\circ} \mathrm{C}\) ambient.
layer winding is designed to avoid adverse harmonic effects and also prevents breakdown from high r.f. potentials. Non-magnetic mounting brackets are furnished with the largest size, Z.7. The Z-14 and Z-28 have wire leads weided to lug type terminals; the Z-50, Z.144, Z-235 and Z-460 have axial-type wire leads.

Any one of these chokes may be selected for a particular frequency within its recommended operating range with the assurance that it will give excellent performance. Selection should be made, however, subject to the following qualification. It is generally advisable to select a choke with a resonant frequency (see chart) slightly higher than the desired operating frequency since any additional capacity to ground will tend to shift the resonant frequency closer to the operating frequency. Also, for this reason, the frequency designated by the catalog number of a choke is lower than its natural resonant frequency.

\section*{parasitic suppressor}

The P-300 Suppressor is designed to prevent unwanted ultra-high-frequency parasitic oscillations which occur in the plate and grid leads of push-pull and parallel tube circuits. The P-300 is a non-inductive, 50 ohm, vitreous enameled resistor combined with a choke
(in parallel) of .3 microhenries inductance and .003 ohms D.C. resistance. The two form a small integral unit only \(13 / 4^{\prime \prime \prime}\) long overall and \(21 / 32^{\prime \prime}\) diameter. The unit may be mounted directly in the grid lead without extra support.
Model P. 300 Wt. . 04 lb .

\section*{diode metersaver protects meters}

Designed to protect sensitive (high internal resistance) meters against burnout due to overload even where potential is reversed. Introduces negligible error. Consists of 2 silicon diodes in compact case with leads and lugs. Connects across meter terminals without regard for polarity. Shunts excess current
around meters - for example, can convert 200 times overload to 3 times overload. Allows use of less expensive meter fuses. Can be used with meters of low internal resistance but use of series resistor is then recommended.
catalog No. omc7111

\footnotetext{
Popular items appear in BOLD print and are usually in stock at authorized Ohmite stocking distributors. items appearing in Light FACE print are a
}

\section*{:) HMITE \({ }_{\text {® }}\) vitreous enameled rheostats (potentiometers) \\ Now, Ohmite offers TWELVE sizes in its line of famous rheostats} ranging from 7.5 to 1000 watts. Nothing to shrink or burn, all models, are metal and ceramic construction and coated with

Ohmite's exclusive vitreous enamel or Ohmicone@ silicone ceramic. The revolutionary Model C, \(71 / 2\) watt miniature unit, the smallest rheostat of its rating available, employs this same construction! All Model C stock units and the enclosed Model E unit, are normally supplied in a corrosion-resistant dust-proof case. Models \(\mathrm{C}, \mathrm{E}\) and H are stocked with both standard and locking shafts.

In all Ohmite rheostats, the resistance wire is wound on a solid ceramic core. The turns are locked in place with tough, protective vitreous enamel or Ohmicone® silicone ceramic. Pivoted, universal action mounting of the brush, assures perfect contact. Metal-graphite contact brushes, varied to fit current and resistance, insure good contact with negligible wear of the wire. Terminals at each end of the winding permit connection of the unit as a potentiometer.
Models H, J, G, K, L, P, and N, are listed under the Underwriter's Laboratories Reexamination Service. RHEOSTAT KNOBS are listed on page 22. Rheostats can be supplied to mee military specification MIL-R-22.
RATINGS: Current ratings shown, assume use in free air. If units are enclosed, wattage should be reduced to as much as \(50 \%\) depending upon ventilation. The rated current causes the rheostat to dissipate its rated wattage when its full resistance is in the circuit.
SPECIAL RHEOSTAT FEATURES: Hundreds of features to meet your special rheostat requirements can be furnished. Submit your specifications.

NOW, FOR ITS RATING, ndustry's Smallest RHEOSTAT!

Unenclosed
Model E
 Enclosed
Model E Model E

MOOEL "C" - 7½ WATT* - STANDARD \& LOCKING SHAFT
Diameter .515" max. - Depth behind panet 7/"" - Shaft \(1 / \mathbf{M}^{\prime \prime}\) diameter. slotted for both types; Std. shaft accommodates knob - Rotation \(300^{\circ}\) - Mounting for panels up to \(1 / \mathrm{s}^{\prime \prime}\) by means of \(1 / 4^{\prime \prime} \cdot 32\) knob recommended - Solder terminals also fit EIA type TS.E3R100 transistor socket - Wt. O27 oz.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Otims & Amp & standard Staft Dataloz Hol & Locking Shaft Catalos No. 1 & Otme & Attips & Standard Staft Catalog Na. 1 & Locking Stult Catalog No. 1 \\
\hline 10 & . 86 & 4908 & 4948 & 250 & . 17 & 4917 & (4957) \\
\hline 15 & . 71 & 4909 & (4949) & 350 & . 15 & 4918 & 4958 \\
\hline 25 & . 55 & 4910 & (4950) & 500 & . 12 & 4919 & (4959) \\
\hline 35 & . 46 & (4911) & (4951) & 750 & . 10 & (4920) & (4960) \\
\hline 50 & . 39 & 4912 & (4952) & 1000 & . 086 & 4921 & 4961 \\
\hline 75 & . 32 & (4913) & (4953) & 1500 & . 071 & (4922) & (4962) \\
\hline 100 & . 27 & 4914 & 4954 & 2500 & . 055 & (4923) & 4963 \\
\hline 150 & . 22 & (4915) & (4955) & 3500 & . 046 & (4924) & (4964) \\
\hline 200 & . 19 & 4916 & (4956) & 5000 & . 039 & 4925 & 4965 \\
\hline
\end{tabular}

Locking-type Model C mounteo in socket on panel. Solder terminals fit transistor socket.

*Rating on metal panel - unit is silicone-ceramic coated.
MODEL "E" - \(121 / 2\) WATT* - UNENCLOSEO \& ENCLDSED
 \(1 / / 2^{\prime \prime}\) - Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / a^{\prime \prime}\) by means of \(1 / 4^{\prime \prime}-32\) bushing and hex nut - Non.turn lug requires \(1 / e^{\prime \prime}\) hole \(1 / 4^{\prime \prime}\) below center of shaft. No. 5151 knob recommended-Wt. 0.6 oz.; enclosed 0.85 oz.

MODEL E ENCLOSED

*Rating on metal panel. \(\dagger\) Silicone-ceramic coating. \(\ddagger 7.5 \mathrm{~K} \Omega=305 \mathrm{~V}\), max; \(10 \mathrm{~K} \Omega, 12.5 \mathrm{~K} \Omega\). and \(15 \mathrm{~K} \Omega=350 \mathrm{~V}\). max
dimensions: models \(\mathbf{H}, \mathbf{J}, \mathbf{G}, \mathrm{K}, \mathrm{L}^{*}\)

MODELS P, N, R, T, U

\title{
(2) HITE \({ }_{\text {© }}\) vitreous enameled rheostats (potentiometers)
}

\section*{25 WATT}

MODEL "H"; UL Listed
Dia, 1Kis" - Depth behind panel 13/" - Shaft \(1 / /^{\prime \prime}\) dia. Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime \prime}\) by means of \(7{ }^{\prime \prime}\) " 32 Bushing and Hex. Nut - Non-turn lug requires \(\mathrm{K}_{6}^{\prime \prime \prime}\) hole \(1 / 2^{\prime \prime}\) below ctr. of shaft - No. 5150 knob recom. -C dimension is "Kic"-Weight 0.19 lb .
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { eking } \\
& \text { Shaft } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Std } \\
\text { shift } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Total } \\
& \text { Onins }
\end{aligned}
\] & M1 & \\
\hline 10140 & 0140 & 1 & 5.000 & 30 \\
\hline 10141 & 0141 & 2 & 3.540 & 30 \\
\hline L0142 & 0142 & 3 & 2.880 & 31 \\
\hline 10143 & 0143 & 6 & 2.040 & 50 \\
\hline 10144 & 0144 & 8 & 1.770 & 53 \\
\hline 10145 & 0145 & 10 & 1.580 & 52 \\
\hline 10146 & 0546 & 15 & 1.290 & 67 \\
\hline 10147 & 0147 & 25 & 1.000 & 89 \\
\hline 10148 & 0148 & 35 & . 845 & 88 \\
\hline 10149 & 0149 & 50 & . 707 & 80 \\
\hline 10150 & 0150 & 75 & . 575 & 107 \\
\hline 10151 & 0151 & 100 & . 500 & 142 \\
\hline 10152 & 0152 & 125 & . 445 & 139 \\
\hline 10153 & 0153 & 175 & . 375 & 154 \\
\hline 10154 & 0154 & 250 & . 316 & 177 \\
\hline 10155 & 0155 & 350 & . 267 & 197 \\
\hline 10156 & 0156 & 500 & . 222 & 220 \\
\hline 10157 & 0157 & 750 & . 182 & 261 \\
\hline L0158 & 0158 & 1,000 & . 155 & 278 \\
\hline 10159 & 0159 & 1,500 & . 129 & 267 \\
\hline 10160 & 0160 & 2,500 & . 100 & 341 \\
\hline 10161 & 0161 & 3,500 & . 084 & 315 \\
\hline 10162 & 0162 & 5,000 & . 070 & 355 \\
\hline 14200 & \(4200+\) & 7.500 & . 058 & 439 \\
\hline \(14201+\) & \(4201+\) & 10,000 & . 050 & 476 \\
\hline 4202 & 42027 & 15,000 & . 041 & 431 \\
\hline \(14203+\) & \(4203+\) & 20,000 & . 035 & 422 \\
\hline \(\underline{14204 t}\) & 42047 & 25,000 & . 032 & 527 \\
\hline \multicolumn{5}{|l|}{\(\dagger\) Silicone-ceramic coating. 500 V max. for \(10 \mathrm{k} \Omega\) and above. Not UL listed.} \\
\hline
\end{tabular}

\section*{225 WATT}

MODEL "P"; UL Listed
Dia. \(5^{\prime \prime \prime}\) - Depth behind panel 21/8" - Shaft \(3 /^{\prime \prime}\) dia. Rotation \(310^{\circ}\) - Mounting for panels up to \(11 / 4^{\prime \prime}\) by two \(1 / /^{\prime \prime \prime} 20\) screws, mounting centers (M) \(7 / \mathbf{s}^{\prime \prime}\) each side of center of shaft on cen. ter line of cross-bar. - Stock No. 5105 Knob Recommended C dimension is \(2313_{2}^{\prime \prime}\) - Weight
2 lbs .
\begin{tabular}{|c|c|c|c|}
\hline & & Amps & \\
\hline (1250) & 1.0 & 15.000 & 42 \\
\hline 1251 & 2.0 & 10.600 & 41 \\
\hline 1252 & 3.0 & 8.660 & 61 \\
\hline (1253) & 4.0 & 7.500 & 58 \\
\hline 1254 & 5.0 & 6.710 & 57 \\
\hline (1255) & 7.5 & 5.490 & 60 \\
\hline 12 & 10 & 4.740 & 115 \\
\hline 1257 & 15.0 & 3.870 & 108 \\
\hline 1258 & 25.0 & 3.000 & 114 \\
\hline 12 & & 2.1 & 218 \\
\hline 1260 & 75.0 & 1.730 & 206 \\
\hline 1261 & 100 & 1.500 & 275 \\
\hline 1262 & 150 & 1.220 & 59 \\
\hline 1263 & 200 & 1.060 & 345 \\
\hline 1264 & 300 & . 866 & 326 \\
\hline 1265 & 400 & . 750 & 342 \\
\hline 1265 & 700 & . 500 & 483 \\
\hline 1267 & 900 & . 500 & 484 \\
\hline 1268 & 1,20 & . 43 & 513 \\
\hline 1269 & 1,500 & . 387 & 641 \\
\hline (1270) & 1,750 & . 358 & 603 \\
\hline (1270A) & 2,000 & . 336 & 690 \\
\hline 1271 & 2,500 & . 300 & 679 \\
\hline
\end{tabular}

50 WATT MODEL "J"; UL Listed

Dia. 2Ks" - Depth behind panel \(17 /{ }^{\prime \prime}\) - Shaft \(1 / 4^{\prime \prime}\) dia. Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime}\) by means of \(3 / 8^{" 1} \cdot 32\) Bushing and Hex. Nut - Nonturn lug requires \(\mathrm{K}_{6}^{\prime \prime}\) hole \(1 / 2^{\prime \prime}\) below ctr. of shaft - No. 5150 knob recom. - C dimension is \(1 \% \mathbf{K}^{\prime \prime}\) - Weight 0.32 lb .
\begin{tabular}{|c|c|c|c|}
\hline Cataine Ne. 1 & \[
\begin{aligned}
& \hline \text { Total } \\
& \text { Ohen: }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Max} \\
& \mathrm{~A}=\mathrm{y}, \mathrm{~s}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Steps } \\
& \text { Appros, }
\end{aligned}
\] \\
\hline 0308 & 0.5 & 10.000 & 24 \\
\hline 0309 & 1 & 7.070 & 44 \\
\hline 0310 & 2 & 5.000 & 43 \\
\hline 0311 & , & 3.530 & 42 \\
\hline 0312 & 6 & 2.880 & 45 \\
\hline 0313 & 8 & 2.500 & 43 \\
\hline 0314 & 12 & 2.040 & 86 \\
\hline 0315 & 16 & 1.760 & 91 \\
\hline 0316 & 22 & 1.500 & 100 \\
\hline 0317 & 35 & 1.190 & 125 \\
\hline 0318 & 50 & 1.000 & 112 \\
\hline 0319 & 80 & . 790 & 143 \\
\hline 0320 & 125 & . 630 & 176 \\
\hline 0321 & 150 & . 575 & 170 \\
\hline 0322 & 225 & . 470 & 199 \\
\hline 0323 & 300 & . 408 & 211 \\
\hline 0324 & 500 & . 316 & 284 \\
\hline 0325 & 800 & . 250 & 282 \\
\hline 0326 & 1,000 & . 224 & 352 \\
\hline 0327 & 1,600 & . 176 & 355 \\
\hline 0328 & 2,500 & .141 & 449 \\
\hline 0329 & 3,500 & . 119 & 496 \\
\hline 0330 & 5,000 & . 100 & 459 \\
\hline 0331 & 8,000 & . 079 & 576 \\
\hline 0332 & 10,000 & . 070 & 565 \\
\hline \(4210+\) & 15,000 & . 058 & 568 \\
\hline \(4211+\) & 20,000 & . 050 & 599 \\
\hline \(4212 \dagger\) & 25,000 & . 045 & 573 \\
\hline \(4213+\) & 30,000 & . 041 & 688 \\
\hline (4214 \(\dagger\)) & 40,000 & . 035 & 673 \\
\hline 4215 + & 50,000 & . 032 & 842 \\
\hline
\end{tabular}

75 WATT
MODEL "G"; UL Listed
Dia. \({ }^{23 / 4^{\prime \prime}-\text { Depth behind panel }}\) \(134^{\prime \prime}\) - Shaft \(1 / 4^{\prime \prime}\) dia. Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime}\) by means of \(3 \mathbf{y}^{\prime \prime} .32\) Bushing and Hex. Nut - Non-turn lug requires Ki" hole \(1 / 2^{\prime \prime}\) below ctr. of shaft -No. 5150 knob recom. - C dimension is \(125 / 2^{2 \prime \prime}\)-Weight 0.52 lb .

100 WATT
MODEL "K"; UL Listed
Dia. \({ }^{31 / /^{\prime \prime}}\) - Depth behind panel \(13 / 4^{\prime \prime}\) - Shaft \(14^{\prime \prime}\) dia. Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime}\) by means of \(36{ }^{\prime \prime} \cdot 32\) Bushing and Hex. Nut - Non-turn lug requires Ki" hole \(1 / 2^{\prime \prime}\) below ctr. of shaft - No. 5150 knob recom. - C dimension is \(12 \% \mathrm{sa}^{\prime \prime}\) - Weight 0.64 lb .
\begin{tabular}{|c|c|c|c|}
\hline atalag & \[
\begin{aligned}
& \text { Total } \\
& \text { Ohins }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max } \\
& \text { Ampt }
\end{aligned}
\] & Steps
Ipprox \\
\hline 0440 & 0.5 & 14.100 & 33 \\
\hline 0441 & 1 & 10.000 & 33 \\
\hline 0442 & 2 & 7.070 & 32 \\
\hline 0443 & 3 & 5.750 & 39 \\
\hline 0444 & 5 & 4.470 & 57 \\
\hline 0445 & 7.5 & 3.650 & 60 \\
\hline 0445 & 10 & 3.160 & 57 \\
\hline 0447 & 16 & 2.500 & 88 \\
\hline 0448 & 25 & 2.000 & 109 \\
\hline 0449 & 50 & 1.410 & 137 \\
\hline 0450 & 75 & 1.150 & 163 \\
\hline 0451 & 100 & 1.000 & 172 \\
\hline 0452 & 200 & . 707 & 216 \\
\hline 0453 & 300 & . 575 & 261 \\
\hline 0454 & 400 & . 500 & 272 \\
\hline 0455 & 500 & . 447 & 269 \\
\hline 0456 & 750 & . 365 & 326 \\
\hline 0457 & 1,000 & . 316 & 343 \\
\hline 0458 & 1.500 & . 258 & 404 \\
\hline 0459 & 2.000 & . 224 & 426 \\
\hline 0460 & 2.500 & . 200 & 426 \\
\hline 0461 & 5.000 & . 141 & 543 \\
\hline 0462 & 7,500 & . 115 & 528 \\
\hline 0463 & 10,000 & . 100 & 704 \\
\hline
\end{tabular}

150 WATT
MODEL "L"; UL Listed
Dia. \(4^{\prime \prime}\) - Depth behind panel 2" - Shaft \(14^{\prime \prime}\) diameter. Rota tion \(300^{\circ}\) - Mounting for panels up to \(1 / 4^{\prime \prime}, 3 / 6^{\prime \prime} .32\) Bushing and Hex. Nut or two \(10 \cdot 32\) flat head screws, mounting centers \(7 / 8^{\prime \prime}\) each side of center of shaft on line perpendicular to center terminal. - Stock No. 5150 knob recom. - C dimension is \(2 \% z^{\prime}\) - Weight 1.1 lbs
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Catalog \\
Ne. 1
\end{tabular} & \[
\begin{aligned}
& \text { Total } \\
& \text { Ohms } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max: } \\
& \text { Amps }
\end{aligned}
\] & 5thens Appros. \\
\hline 0524 & 0.5 & 17.300 & 29 \\
\hline 0525 & 1 & 12.300 & 41 \\
\hline 0526 & 2 & 8.650 & 40 \\
\hline 0527 & 3 & 7.070 & 42 \\
\hline 0528 & 5 & 5.480 & 44 \\
\hline 0529 & 7.5 & 4.470 & 75 \\
\hline 0530 & 10 & 3.880 & 79 \\
\hline 0531 & 15 & 3.163 & 75 \\
\hline 0532 & 25 & 2.450 & 120 \\
\hline 0533 & 35 & 2.070 & 133 \\
\hline 0534 & 50 & 1.735 & 151 \\
\hline 0535 & 75 & 1.415 & 179 \\
\hline 0536 & 100 & 1.225 & 190 \\
\hline 0537 & 150 & 1.000 & 225 \\
\hline 0538 & 200 & . 865 & 239 \\
\hline 0539 & 250 & . 775 & 236 \\
\hline 0540 & 350 & . 655 & 265 \\
\hline 0541 & 500 & . 548 & 296 \\
\hline 0542 & 750 & . 447 & 352 \\
\hline 0543 & 1,250 & . 346 & 473 \\
\hline 0544 & 1,800 & . 288 & 537 \\
\hline 0545 & 2,250 & . 259 & 529 \\
\hline 0546 & 3,000 & . 224 & 558 \\
\hline 0547 & 4,500 & . 182 & 667 \\
\hline 0548 & 7,500 & . 141 & 714 \\
\hline 0549 & 10,000 & 122 & 952 \\
\hline
\end{tabular}

300 WATT
MODEL "N"; UL Listed

Dia. 6" - Depth behind panel 23/" \(320^{\circ}\) - Mounting for panels up to \(11 / 4^{\prime \prime}\) by two \(1 / 4^{\prime \prime}-20\) screws (supplied) mounting centers (M) Hs each side of center of shat Stock No. 5105 Knob Recom. mended - c dimension is \(37 \mathrm{~K}^{\circ}\) Weight - 2.6 lbs .

500 WATt
MODEL "R"
Dia. \(8^{\prime \prime}\) - Depth behind panel 21/6" - Shaft 3/" dia. Rotation \(325^{\circ}\) - Mounting for panels up to \(114^{\prime \prime}\) by two \(1 / 4^{\prime \prime} \cdot 20\) screws, mounting centers (M) \(11 / 2^{\prime \prime}\) each side of center of shaft on cen No. line of cross-bar, - Stock C dimension is 4K/t \({ }^{\prime \prime}\) - Weigh 4 lbs.

750 WATT
MODEL "T"

Dla. \(10^{\prime \prime}\) - Depth behind panel \(3^{\prime \prime}\) - Shaft \(3 / \mathbf{y}^{\prime \prime}\) dia. Rotation \(330^{\circ}-\) Mounting for panels up to \(11 / /^{\prime \prime}\) by two \(1 / 4^{\prime \prime \prime}-20\) screws, mounting centers (M) \(17 / 8^{\prime \prime}\) each side of center of shaft on cen. ter line of cross-bar. - Stock Is \(5 \% \mathrm{~s}^{\prime \prime}\) - Weight 7.6 lbs .

1000 WATT
MODEL "U"

Dia. \(12^{\prime \prime \prime}\) - Depth behind pane \(3^{\prime \prime \prime}\) - Shaft \(\%^{\prime \prime \prime}\) dla. Rotation \(335^{\circ}\) - Mounting for panels up to \(11 / 4^{\prime \prime}\) by two \(1 / 4^{\prime \prime} \cdot 20\) screws mounting centers (M) \(3^{\prime \prime}\) each side of center of shaft on cen ter line of cross.bar. - Stock No. 5105 Knoo Recommended 10 lbs .
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Catalgal } \\
\text { No. } \\
\hline
\end{gathered}
\] & Total Ghems & \[
\begin{aligned}
& \text { Mar } \\
& \text { Amps }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Steps } \\
\text { Approx. }
\end{array}
\] \\
\hline 1450 & 1.0 & 31.600 & 91 \\
\hline 1451 & 1.5 & 25.800 & 90 \\
\hline 1452 & 2.0 & 22.400 & 90 \\
\hline 1453 & 2.5 & 20.000 & 127 \\
\hline 1454 & 3.0 & 18.300 & 114 \\
\hline 1455 & 4.0 & 15.800 & 120 \\
\hline 1456 & 5.0 & 14.100 & 124 \\
\hline 1457 & 8.0 & 11.200 & 118 \\
\hline 1458 & 10.0 & 10.000 & 117 \\
\hline (1459) & 12.5 & 8.950 & 163 \\
\hline 1460 & 16.0 & 7.900 & 166 \\
\hline 1461 & 25.0 & 6.330 & 162 \\
\hline 1462 & 50.0 & 4.470 & 327 \\
\hline 1463 & 75.0 & 3.650 & 307 \\
\hline 1464 & 100 & 3.160 & 446 \\
\hline 1465 & 175 & 2.390 & 490 \\
\hline 1466 & 225 & 2.110 & 630 \\
\hline 1467 & 300 & 1.830 & 661 \\
\hline 1468 & 400 & 1.580 & 704 \\
\hline 1469 & 500 & 1.410 & 695 \\
\hline 1470 & 750 & 1.150 & 828 \\
\hline 1471 & 1,000 & 1.000 & 870 \\
\hline 1472 & 1,500 & . 816 & 1,040 \\
\hline 1473 & 2,500 & . 633 & 1,100 \\
\hline
\end{tabular} distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item.

\section*{© HMITE \({ }_{\text {© }}\) rheostat tandem coupling kits \\ Tandem rheostat assemblies can be ordered from the}
 permit assembly of by the user with these kits which steel " U " frame of two units. Each kit consists of a steel " \(U\) " frame, a coupling with set screw, mica
washer, Allen wrench and instructions.

Rheostat shafts are joined by the coupling which is fastened to the shaft of the rear unit. Projections on the coupling fit a recess on the rear of the hub of
the front unit. the front unit.
Three kits are available as follows

Cat. No. 6532-Mounts Models H or J in either front or rear position. Models \(G, K\) or \(L\) in rear position when panel-mounted.
Cat. No. 6533-Mounts G, K or L units, also accommodates Models \(H, J, G, K\) or \(L\) in rear position. Cat. No. 6591-Mounts Model E units only.

black bakelite knobs

\section*{rheostat dials}
\begin{tabular}{|c|c|c|c|}
\hline Cat No. & For Rimoatat & Dial Dia & \\
\hline 5007
5000 & C, E & 11/4" & 5151 \\
\hline 5001 & H,
P,
N, \(, ~ R, ~ K, ~ L ~ U ~\) & \(2 \mathrm{~K} 6^{\prime \prime}\) & 5150, 5116, 5103 \\
\hline & P, N, R, T, U & \(51 / 2^{\prime \prime}\) & 5104, 5106 \({ }^{\text {, }}\) \\
\hline
\end{tabular}

Handsomely finished dials for Ohmite rheostats and other apparatus, feature bright figures and lines on etched black background. Divisions marked from 0 to 100 indicate approximate percentage of rheostat resistance in circuit

\section*{heat control rheostats}

A convenient control for regulating the temperature of soldering irons, melting pots (such as those used for solder, wax, potting material) or other
heater loads. With soldering irons, it permits heat for the type of job and grade of solder. Consists of
with knob and dial enameled rheostat housed in a perforated metal cage cord. The cord from the heater load is plugged ind six feet of heater type is then plugged into a receptacle. Order in plugged into the series plug which mum wattage load.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{rating of Device To te controlled} & \multirow[t]{2}{*}{Rheortal Control Catalog No} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Coge Dimentions}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Net } \\
& \text { Welight }
\end{aligned}
\]} \\
\hline matis & Voits & & & & \\
\hline & 115 & & & zight & \\
\hline 85-100 & 115 & SRC100 & 31/8" \({ }^{\prime \prime}\) & \(2^{\prime \prime}\) & . 58 \\
\hline 120-150 & 115 & (SRC150) & 31/8" & & . 58 \\
\hline \(175-220\)
\(300-350\) & 115 & (SRC220) & \(33 / 4{ }^{\prime \prime}\) & \(238^{\prime \prime}\) & . 93 \\
\hline & 115
115 & & \(41 / 2^{\prime \prime}\) & 236" & 1.05 \\
\hline 430-500 & 115 & (SRC500) & \(71 / 2^{\prime \prime}\) & \(23 / 8^{\prime \prime}\)
\(31 / 4\) & 1.63 \\
\hline
\end{tabular}

\section*{T-pad and L-pad attenuators}

Stepless control of speaker volume with es. sentially constant impedance is provided by Ohmite attenuators. In use, these units are interposed between high power amplifiers and speaker or speakers.

Housed in gray, perforated metal cage \(31 / 8^{\prime \prime}\) high, \(25 / 8^{\prime \prime}\) wide and extending \(41 / 4\) " behind panel for \(L\)-pads; \(61 / 4^{\prime \prime}\) for \(T\)-pads. Shaft \(1 / 4^{\prime \prime}\) and bushing \(3 / 8^{\prime \prime}\) diameter; bushing length is for \(1 / 4^{\prime \prime}\) maximum panel specify greater thicknesses). Mounted with two \(10 / 32\) screws (supplied)

\section*{rheostat repair kits}
or replacing contact. Kits include contact/slip ring assemblies for round and ribbon wire rheo stats, copper graphite washer, spring arm and hub. Instructions included.

\section*{\begin{tabular}{|c|c|c|c|c|c|}
\hline For Model & P & N & R & T & U \\
\hline Catalog No. & 7070 & 7071 & 7072 & 7073 & 7074 \\
\hline
\end{tabular}}

Popular items appear in 800 print and are usuall
distributors but are not normally stocked in depl
 extra mounting hardware

Handy kit of 25 nuts and lock washers for panel mounting rheostats, tap switches and variable transformers. Nup switches plated brass. ERHA
E Rheostat
H, J, G, K, L Rheostat
H, J, G, K, L Rheostat
111, 212, 711 Tap Switch
111, 212, 711 Tap Switch
VT1, VT2, VT02, VT3, Var. Tr

\section*{FEATURES}
- CONSERVES SPACE \& POWER
- SMALLEST 1 \& 2 KW CONTROL
- AC \& DC OUTPUT TYPES
- BUILT-IN ON-OFF SWITCH
- ADJUSTABLE CONTROL RANGE
- CHOICE OF COMPONENT \& PORTABLE STYLES
- LONG LIFE

\section*{USE IT TO CONTROL}

\author{
POWER \\ mODEL PCA: AC Output \\ Shaded pole motors \\ Permanent split capacitor motors \\ Universal motors \\ Heaters - both resistive and infra-red
}

Now, for the first time, a Solid State Power Control is available which is adaptable to a wide variety of applications by a simple turn of a screwdriver!

An internal trimmer allows the starting point of the control voltage of the Ohmitrol to be set anywhere within the stated trimmer voltage range. (This adjustment can be preset at the factory at small additional cost).

From the starting point to full line voltage, infinitely smooth control is obtained by means of the control knob. An "on-off" line switch actuated at the counterclockwise end of the control knob rotator is provided on all models.

Ohmite solid state power controls are the smallest 1 or 2 KW controls available and offer the advantages not only of convenient size, but also of power savings, long life and low initial cost.

Two styles are available: the component style for panel mounting in equipment, and the lightweight, self-contained portable style. Portable units are completely self contained with grounded line cord and standard grounded AC receptacle.

Ohmitrol Controls are available with AC output and with two DC output delivered simultaneously. One output is rectified DC, at approximately full line voltage; the other is the variable or controlled DC. This double output is useful, for example, for controlling shunt wound motors. Terminals at the rear of the controls accept quick-connectors.

Component Style* PCA series

Portable Style PCA and PCD series
* Knob not included. Ohmite P/N 5150 recommended.

Component Style PCD series

Adjustment of the integral trimmer sets the starting point of the control voltage within the stated trimmer voltage adjust range.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model PCA-C & ent Style & \multicolumn{3}{|r|}{Model PCD-Component Style} & \multicolumn{2}{|r|}{Models PCA and PCD-Portabl} \\
\hline \multicolumn{2}{|c|}{crtat in} & 81 & & atp & Leat crumblants & 45 \\
\hline 73748 & Eriualitis & & Ine & & & \\
\hline PCA-1000 & PCA-1001 & \multirow{3}{*}{120 VAC} & \multirow[t]{2}{*}{60 Hz} & \multirow{3}{*}{0-120 VAC} & 1 KW, 8.3 Amps AC & \multirow{3}{*}{0-50 Volts} \\
\hline PCA-1050 & - & & & & 15 Amps AC & \\
\hline PCA-1100 & PCA-1101 & & 50 Hz & & \(1 \mathrm{KW}, 8.3 \mathrm{Amps}\) AC & \\
\hline PCA-1020 & PCA-1021 & \multirow[t]{2}{*}{240 VAC} & 60 Hz & \multirow[t]{2}{*}{0-240 VAC} & \multirow[t]{2}{*}{\(2 \mathrm{KW}, 8.3 \mathrm{Amps} \mathrm{AC}\)} & \multirow[t]{2}{*}{0.100 Volts} \\
\hline PCA-1120 & PCA-1121 & & 50 Hz & & & \\
\hline PCD-1000 & PCD-1001 & \multirow[t]{2}{*}{120 VAC} & 60 Hz & \multirow[t]{2}{*}{\(0-120\) VDC and Full 120 VDC} & \multirow{4}{*}{6.0 Amp DC — Resistive 3.5 Amp DC - Motor Load} & \multirow[t]{2}{*}{10-50 Volts} \\
\hline PCD-1100 & PCD-1101 & & 50 Hz & & & \\
\hline PCD-1020 & PCD-1021 & \multirow[t]{2}{*}{240 VAC} & 60 Hz & \multirow[t]{2}{*}{\(0-240\) VDC and Full 240 VDC} & & \multirow[t]{2}{*}{20-100 Volts} \\
\hline PCD-1120 & PCD-1121 & & 50 Hz & & & \\
\hline
\end{tabular}

MOTOR SPEED MODEL PCD: DC Output
Shunt wound motors
Series wound motors Permanent magnet motors Magnetic clutches and brakes

Note: Controls are available for voltages to 480 VAC and currents to 40 A in both single and three-phase configurations. Consult the factory for details.

\section*{© HMITE \({ }_{\text {® }}\) molded composition potentiometers}

Ohmite molded composition potentiometers are used in commercial and military electronic applications where high quality and dependable per formance are important. Type \(A B\) is rated 2 watts at \(70^{\circ} \mathrm{C}\) ambient and is available with \(7 / \mathbf{8}^{\prime \prime}\) slotted shaft (CMU), \(2^{\prime \prime}\) unslotted shaft (CU, CA, CB, CCU and locking type bushing with slotted shaft (CLU). Type AS is a miniature unit rated \(1 / 2\) watt. It is available with locking type bushing and slotted shaft (Style AS) and standard bushing with longer (slotted) shaft for knob control (Style ASM)

Because the resistance element is a thick, solid-molded ring - not a sprayed film or paint-type resistor - longer life and smoother operation are obtained. This is due also to the molded composition contact. Units are dust and splash proof, fungus and corrosion resistant and meet the requirements of military specification MIL-R-94. Styles CMU, CLU, AS and ASM conform respectively to MIL-R-94, Styles RV4N, RV4L, RV6L and RV6N

Styles and tapers are listed in table. Dimensions of all stock units are shown below.

STOCK "POTS - MIL Units are stamped with MIL and Commercial Designations.

distributors but normally are not stocked in depthes
distributors but normally are not stocked in depth.

\title{
ㅇ․ HMITE \({ }_{\text {© }}\) Resistance Trimmers
}
hot molded single-turn trimmers

OHMITE type AFR Trimmers are single-turn controls built to withstand severe environmental conditions. Their unique design includes a hot-molded resistor track bridged by a single moving molded contact brush. Resistance material, collector track material, insulation material and metal terminals are all molded together at one time into a single, solid, integral structure. There are no cracks or crevices to admit moisture.

Enclosure of the Ohmite type AFR is non-magnetic, corrosion resistant, and splash-proof. Type AFR Trimmers are designed for screwdriver adjustment. Fixed stops withstand a maximum shaft torque of 2 inch-pounds.
In excess of 50,000 operational cycles with low "noise" level initially - decreasing with use - can be expected in conventional applications.

\section*{CHARACTERISTICS}

Power Rating: \(1 / 4\) watt @ \(+70^{\circ} \mathrm{C}\) ambient tempera. ture. Derate power linearly to zero at \(+120^{\circ} \mathrm{C}\) ambient for resistance values to 0.5 megohms. Additional derating required for resistance values over 0.1 megohms at ambients higher than \(70^{\circ} \mathrm{C}\).
Resistance Range: 100 ohms to 5.0 megohms. Resistance change is nominally linear with shaft rotation.
Tolerance: \(\pm 20 \%\) standard.
Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+120^{\circ} \mathrm{C}\).
Working Voltage: 350 volts ,RMS, maximum.
Dielectric Strength: 750 VAC, RMS, at sea level.
Adjastment: Single turn, \(295 \pm 5^{\circ}\).
Torque: 0.25 to 3.0 inch-ounces.
Leads: Designed for mounting directly on printed wiring boards using the terminal leads which are spaced to fit the \(0.1^{\prime \prime}\) printed wiring board standard spacing.

TYPE AFR TRIMMERS
\begin{tabular}{|r|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Ohms
\end{tabular}} & \begin{tabular}{c}
Cataiog \\
Number
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Ohms \\
\(=20 \%\)
\end{tabular}} & \begin{tabular}{c}
Cataleg \\
Kumbter
\end{tabular} \\
\hline 100 & AFR-101M & 25,000 & AFR-253M \\
250 & AFR-251M & 50,000 & AFR-503M \\
500 & AFR-501M & .1 meg & AFR-104M \\
1,000 & AFR-102M & .25 meg & AFR-254M \\
2,500 & AFR-252M & .5 meg & AFR-504M \\
5,000 & AFR-502M & 1.0 meg & AFR-105M \\
10,000 & AFR-103M & 2.5 meg & AFR-255M \\
& & 5.0 meg & AFR-505M \\
\hline
\end{tabular}

Cermet 25 -turn trimmers

TYPE ANP

Ohmite type ANP Cermet Trimmers are continuously adjustable variable resistors intended primarily for trimmer applications. Designed for use on printed circuit boards, these dependable three-terminal devices can be applied as either rheostats or potentiometers with equally satisfactory results. They are stepless and relatively non-inductive regardless of resistance value and have unexcelled stability of setting in normal environmental conditions.

The type ANP Trimmer features a low resistance collector track and terminal pins - all combined into a single, solid, integral structure. It is splashproof, dust-tight and can be mounted by its own rugged terminals.

\section*{CHARACTERISTICS}

Power Rating: \(1 / 3\) watt @ \(50^{\circ} \mathrm{C}\) ambient temperature. Derate power linearly to zero at \(100^{\circ} \mathrm{C}\).
Resistance Range: 100 ohms to 0.1 megohms. Resistance change is nominally linear with shaft rotation.
Tolerance: Standard resistance tolerance is \(\pm 20 \%\).
Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\).
Working Voltage: 350 volts RMS, maximum at sea level.
Dielectric Strength: 700 volts RMS maximum, at sea level.
Insulation Resistance: 1000 megohms minimum.
Adjustment: \(25 \pm 3\) turns for continuous resistance change. Mechanical release at end positions. Turning torque is 0.10 to 8 inches-ounce. Slotted for screwdriver adjustment.
Leads: Pin type terminals, spaced in accordance with \(0.1^{\prime \prime}\) printed wiring board grid system.

TYPE ANP TRIMMERS
\begin{tabular}{|r|c|r|c|}
\hline \begin{tabular}{r}
Ohms \\
\(\pm 205 \%\)
\end{tabular} & \begin{tabular}{c}
Catalgig \\
Numbar
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Ohms \\
\(\pm 20 \%\)
\end{tabular}} & \begin{tabular}{c}
Cataleg \\
Number
\end{tabular} \\
\hline 100 & ANP-101M & 5,000 & ANP-502M \\
250 & ANP-251M & 10,000 & ANP-103M \\
500 & ANP-501M & 25,000 & ANP-253M \\
1,000 & ANP-102M & 50,000 & ANP-503M \\
2,500 & ANP-252M & .1 meg & ANP-104M \\
\hline
\end{tabular}

\section*{Ohnitrim \\ Ohmitrim trimmers \\ wirewound}

IPW and TPS series, Ohmitrim™ wirewound trimmers have a nominal 1 watt rating and are offered in esistance values ranging from 10 to 20 K ohms eas are printed circultype, spaced for standard . 1 rewdriver thumbwheel (TPW series) and slide screwdriver / thumbwheel (TPW series) and slide TPS series) actuator styles.
Model TPW is lead-screw operated (approximately 35 turns) and provides clutching action at either end of the winding. Trimming is accomplished by ther screwdriver or hand via a thumbwheel.
Model TPS is slide operated. It permits fast approximate placement of the slide actuator to a pre determined position and subsequent fine adjustment by an additional small movement. This model is especially useful where a number of trimmers stacked side by side, can be quickiy positioned to stacked side by side, can be quickiy positioned to
heir approximate location by using a single template,
Both models are of a new "open" design and are
not "sealed." A number of openings in the enclosure permit cleaning solvents to enter and readily leave. thorough testing has assured that when the cleaning process is properly performed in a vapor degreaser, there is no danger of contamination of either the winding of the contact.
Both models meet the requirements outlined in EIA Standard RS-345 "Resistors, Variable, Wirewound" for characteristic "A." They both have the exact lead spacing of style CRT 11 of the EIA Standard. While they deviate slightly in dimensions, both models conform closest in this respect to style CRT 11.

\section*{FEATURES}

Ohmitrim™ trimmers offer four features, especially important in view of their economical price:
1. Gold plated leads for excellent solderability
2. Gold plated contact for excellent oxidation-free long life service.
3. Resistance wire is welded to leads for noiseless connection.
4. Choice of thumbwheel or slider for easy adjust ment without tools.

\section*{CHARACTERISTICS}

Temperature Rating: \(40^{\circ} \mathrm{C}\) maximum ambient.
(For full wattage rating.)
power Rating: 1 watt.
Resistance Tolerance: \(+10 \%\)
Temperature Coefficient: \(0 \pm .010 \%\) per \({ }^{\circ} \mathrm{C}\)
Diemperatric Strength: 500 Volts \(A C\).
Insulation Resistance: 100 megohms
Torque: 0.1 to 0.8 oz .-inches.
Iorque: 0.1 to 0.8 oz.-inches.
Number of Turns: 35 approximately.
Number of Turns: 35 approximately
Contacts: Gold Plated.
for \(\Delta \mathfrak{F}= \pm 10 \%\) : Thermal Shock: -55 to \(\pm 85^{\circ} \mathrm{C}\) Rotational Life: 200 cycles.
Electrical Life: 1000 hours.
TYPES TPW AND TPS TRIMMERS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Ohm } \\
& \pm 70 \%
\end{aligned}
\]} & \multicolumn{2}{|c|}{Catalog Number} \\
\hline & Thumbwheel & Slide Type \\
\hline 10 & TPW-100 & TPS. 100 \\
\hline 20
50 & TPW. 200 & TPS. 200 \\
\hline 100 & TPW-101 & TPS-101 \\
\hline 200 & TPW-201 & TPS.201 \\
\hline 500
1,000 & TPW-501 & TPS.501 \\
\hline \({ }_{2} \mathbf{2}, 000\) & TPW-202 & TPS. 202 \\
\hline 5.000 & TPW-502 & TPS.502 \\
\hline \({ }_{20 \mathrm{~K}}^{10 \mathrm{~K}}\) & (TPW-203) & (TPS.203) \\
\hline
\end{tabular}

\section*{띠NMITE \({ }_{\odot}\) power tap switches, high current, non-shorting type}

Ohmite single pole, rotary, multi-position switches have proven their durability over many years in demanding applications. Such applications are found in switchboards, arc welders, spot welders, battery chargers, motor controls, tapped transformers, \(X\)-ray equipment, diathermy equipment, radio transmitters, electrical machine tools and many other products. Six sizes, including the new, miniature Model 711, provide a choice of ratings from 7 amperes at 125 volts to 100 amperes at 300 volts AC. A choice of the number of taps is provided up to the maximums indicated. All switches are enclosed except for the Models 711 and 111. All switches feature the slowbreak, quick-make action deemed so desirable for switching of AC current.

The five sizes offering ratings from 15 amperes to 100 amperes (Models \(111,212,312,412\) and 608) feature all ceramic, arc-proof bodies and solid silver alloy, fixed and movable contacts. The large, thick, silver-alloy fixed contact disks are permanently welded to copper studs. These, in turn, are riveted and soldered to sturdy terminal lugs, assuring a permanent mechanical and electrical joint. The rotor (moving) contact, also of solid silveralloy, is riveted and soldered to the contact arm. Face of the rotor contact is slightly rounded assuring a perfect seating of the contacts with a slight rubbing, self-cleaning motion on every operation.

MODEL 711 TAP SWITCH
Alternating Current Rating 7 Amps. 125 Volts - Diameter \(11 /{ }^{\prime \prime}\) " Shaft Diameter \(1 / 4\) " - Standard Mounting: For \(1 / \mathbf{s}^{\prime \prime}\) panel maximum, by means of \(3 / 4 /=32\) threaded approximately. Dual-purpose terminals accept Ko' quick-connectors as well as soldering. Non-turn lug can be positioned at " 12.3 3. 6 . and \(90^{\prime}\) clock."

MODEL 212 TAP SWITCH
Alternating Current Rating 20 Amps. 150 Volts - Diameter \(21 / 4^{\text {" }}\) - Shaft Diameter \(1 / 4^{\prime \prime}-\) Standard Mounting: for \(1 / 4^{\prime \prime}\) panel maximum, by means of \(3 / 0^{\prime \prime}-32\) threaded bushing and hex. nut - See mounting illustration "C." Tandem Mounting for \(1 / 4\) " ing illustration "D." Weight, single unit: 4 lb approximately long - see mount-

\section*{Introducing \\ MODEL 711 \\ Smallest Switch for Its Rating 7 Amps, 125 Volts}

The new Model 711 tap switch was designed to achieve high current capability with small size. It is actually smaller than many low current instrument switches. It interrupts 7 amperes at 125 VAC and can carry 15 amperes AC or DC. The Model 711 features a melamine phenolic body with solid silver alloy fixed and movable contacts. Dual-purpose terminals allow connection by soldering or by means of \(\mathcal{K}_{0}\) " quick-connectors. This switch is stocked as a single, unenclosed unit, but is available made-to-order in enclosed tandem assemblies up to 10 units or as a single enclosed unit.

The following Ohmite Tap Switches are listed by the Underwriters' Laboratories, Inc., Reexamination Service for use where the acceptability of combination (with other apparatus) has been determined by them: Models 111, 212, 312 and 412. Variations from the basic switch design, identified by suffixes A, B, C, or X are also Underwriters' approved. When the switches are not factory installed, screw terminals are specified by the Underwriters' Laboratories for Model 312 and soldering lugs for Model 412. Further information on terminal fittings is available on request. When an Underwriters' approved unit is required, specify this on the order.

\section*{MODEL 111 TAP SWITCH}

Alternating Current Rating 15 Amps .125 Volts - Diameter \(174^{\prime \prime}\) - Shaft Diameter \(1 / 4^{\prime \prime}\) - Standard Mounting: For \(1 / 4^{\prime \prime}\) panel maximum, by means of \(3 / /^{"}=32\) threaded bushing and hex. nut. See mounting illustration "A."' For Tandem Mounting see illustration "B." Weight, single unit: . 16 lb . approximately.
\begin{tabular}{|c|c|c|}
\hline & Sincle Unit & 2 in Tandem \\
\hline Depth Behind Pantl & \(12{ }^{\prime \prime}\) & \(274{ }^{\text {2 }}\) \\
\hline No. of Taps \({ }^{\text {Notal motation }}\) & catalogfio. & Catalor \(\mathrm{No}^{3}\) \\
\hline \(3 \mathrm{l\mid l}\) & 111.3 & 111-3-72 \\
\hline \(4{ }^{4} \quad 120{ }^{\circ}\) & 111-4 & 111-4-T2 \\
\hline \(5120^{\circ}\) & 111-5 & \(111.5-12\) \\
\hline 6 ¢ \(150^{\circ}\) & 111-6 & 111-6-T2 \\
\hline \(7180{ }^{\circ}\) & 111.7 & (111.7-T2) \\
\hline \(8 \quad 210^{\circ}\) & 111-8 & 111-8-T2 \\
\hline \(9 \quad 240^{\circ}\) & 111.9 & (111-9 - T2) \\
\hline \(10 \quad 270^{\circ}\) & \(111-10\) & (111-10-12) \\
\hline \(113300^{\circ}\) & 111-11 & 111-11-T2 \\
\hline \begin{tabular}{l}
Recommended Knobs- \\
(See p. 22 for description)
\end{tabular} & Catalog No. 5150A to 5116A & Catalog No. 5109 A or 5110A \\
\hline
\end{tabular}

\section*{MODEL 312 TAP SWITCH}

Alternating Current Rating 30 Amps. 300 Volts - 150 V A.C. between taps D'ameter \(3 \%_{6}{ }^{\prime \prime}\) - Shaft Diameter \(1 / 4^{\prime \prime}\) - Standard Mounting: For \(1 / 4^{\prime \prime}\) panel maximum, three No. \(10-32\) flat-head machine screws \(3 / \mathrm{m}^{\prime}\) long - See mtg. illus. "D." Weight, single unit: .75 lb . approx
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Depth Behind Pand} & \[
\frac{\text { Singie Unit }}{244^{*}}
\] & \[
\frac{2 \text { in Tandem }}{45^{-2}}
\] & \[
\frac{3 \text { in Tandem }}{7}
\] \\
\hline \[
\begin{aligned}
& \text { Na, of } \\
& \text { facs }
\end{aligned}
\] & Total Rutatios & Cataiog Nu. 1 & Catalog No. 1 & Cataion No. 1 \\
\hline 3
4
5
6
7
8
9
9
10
11
12 & \[
\begin{array}{r}
60^{\circ} \\
90^{\circ} \\
120^{\circ} \\
150^{\circ} \\
180^{\circ} \\
210^{\circ} \\
240^{\circ} \\
270^{\circ} \\
300^{\circ} \\
330^{\circ}
\end{array}
\] & \[
\begin{aligned}
& 312-3 \\
& 312-4 \\
& 312-5 \\
& 312-6 \\
& 312-7 \\
& 312-8 \\
& 312-9 \\
& 312-10 \\
& 312-11 \\
& 312-12
\end{aligned}
\] & \(312-3-T 2\)
\((312-4-T 2)\)
\(312-5-T 2\)
\(312-6-T 2\)
\((312-7-12)\)
\((312-8-12)\)
\((312-9-T 2)\)
\((312-10-T 2)\)
\((312-11-T 2)\)
\(312-12-T 2\) & \\
\hline \multicolumn{2}{|l|}{Recommended Knobs (See p. 22 for description} & Catalog No. 5109A or 5110A & Catalog No. 5111A or 5112A & Catalog No. 5111 A or 5112A \\
\hline
\end{tabular}

\footnotetext{
Popular items appear in BOLD print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are availabie from stocking distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item.
}

\section*{(:) HMITE \({ }_{\text {® }}\) power tap switches, high current, non-shorting type}

MODEL 412 TAP SWITCH
Alternating Current Rating 50 Amps. 300 Volts -150 V . A.C. between taps Diameter \(4^{3} K_{0}^{\prime \prime}\) - Shaft Diameter \(1 / a^{* \prime}\) - Standard Mounting: For \(1 / 4^{\prime \prime}\) panel maxiWeight, single unit. fiat-head machine screws \(\%_{6}\) " long - See mtg. illus. "E,"

MODEL 608 TAP SWITCH
Alternating Current Rating 100 Amps. 300 Volts - Oiameter \(6^{\prime \prime}\) - Shaft Olameter m" - Standard Mounting: For 1" \(^{\prime \prime}\) panel maximum, three flat-head machine screws \(1 / 4\) "-20 \(\times 11 / 4\) " - See mounting illustration " \(F\)." Weight, single unit: 5 lbs, approx.

TAP SWITCH MOUNTING DIMENSIONS

\section*{ALL CERAMIC OPEN TYPE TAP SWITCHES}

Designed to transfer currents of several amperes in circuits requiring high voltage insulation. Ceramic body construction is the same as employed in Models J and K rheostats (see page 21). Monel metal taps; silver-graphite brush.

SHORTING TYPE SWITCH: Moving contact bridges closely spaced taps completing a new circuit before breaking the previous one. Switch arm is not indexed and can be left in any position.

NON-SHORTING SWITCH: Positively indexed, moving contact completely disconnects from one tap before contacting succeeding tap.

Switches up to 8 taps are approximately \(31 / 4^{\prime \prime}\) diameter including lugs; 9 to 12 tap switches are approximately \(41 / 4^{\prime \prime}\) diameter. Switches can be ordered assembled 2 to 3 in tandem. Single hole mounting by means of \(3 / 6^{\prime \prime}\) diameter bushing and hexagon nut accommodates panels up to \(1 / 4^{\prime \prime}\) thick (maximum). The "non-turn" lug requires a \(\mathcal{K}_{6}\) " panel hole \(1 / 2\) " below the center of the shaft. Shaft diameter is \(1 / 4^{\prime \prime}\). Recommended knob, Stock No. 5150, see Rheostat Knobs in Section 4750.

Maximum current capacity is 7 amperes but only 3 amperes at 120 V.A.C. should be interrupted. Current ratings are less for all direct current circuits above 20 volts, for inductive circuits and high voltages.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SHORTING TYPE \(\dagger\)} & \multicolumn{2}{|l|}{NON-SHORTING TYPE \(\dagger\)} \\
\hline No, of Contacts & Cataige \(\mathrm{Na}^{\text {a }}\). & Hio. of Contrets & Catolog \(\mathrm{No} \mathrm{Cl}^{1}\) \\
\hline 4 & T-504-S & 3 & (T-503) \\
\hline 5 & (T.505-S) & 4 & (T-504) \\
\hline 6 & (T-506-S) & 5 & T-505 \\
\hline 7 & (T-507-S) & \({ }_{7}\) & T.506 \\
\hline 8 & (T-508-S) & 7 & (T.507) \\
\hline - & (T-1009.S) & 8 & (T-1009) \\
\hline 10 & (T-10010-S) & 10 & (T-10010) \\
\hline 11 & (T-10011-S) & 11 & (T-10011) \\
\hline 12 & T-10012-S & 12 & (T -10012) \\
\hline
\end{tabular}
\(\dagger\) Avg. Wt. T-500 Series . \(28 \mathrm{lb} . ;\) T-100 Series .68 ld.

Dials for Ohmite tap switches are made of aluminum, etched and enameled black. Dial markings are bright aluminum. The number of dial calibrations or position markings agree with the actual number of positions on the switch. Note, in the table, that dials for switches Models 212 and 312 are available in two diameters to suit the recommended knob.

"Specify no. of positions as a suffix.
†See Rheostat Knobs, Section 4750.

\footnotetext{
I Popular items appear In sold print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking distributors but are not normally stecked in depth. Parentheses imdicate non-stack standard itams subject to a minimum händíng charge per item.
}

\section*{(-) HMITE \({ }_{\text {© }}\) general purpose relays}

\section*{MODEL GPR - indicator, plate, thyratron and latching versions in unenclosed and enclosed types \\ Simple, rugged, low cost relays handling substantial power for}
small size. Uncomplicated design provides unusual flexibility for making and changing connections and mounting. Stock includes
relays in versatile enclosures, some with indicator light, also plate, thyratron and latching versions. Wide commercial and

\section*{UNENCLOSED RELAYS}

Basic (Unenclosed) Relay: All connections terminate on barrier-type terminal panel on combination solder - quick-connect (push-on) lugs which accept AMP 110 female connec. tors. The terminal panel is conveniently incorporated into printed circuit boards. Fixed contacts are integral inlay on terminal itself. Normally furnished with a \(6.32 \times 1 / 2^{\prime \prime}\) mount. ing stud and non-turn boss (or lug for 4 -pole relays). A 6.32 threaded hole is optional. Unenclosed relays can also be mounted by

ENCLOSED RELAYS

plugging their panels into Ohmite SOGPR sockets. See "Socket" below.

Contact Ratings: Two ratings - fine silver contacts, 5 amps at 115 VAC or 32 VDC resistive; silver-cadmium contacts, 10 amps . Insulation: Tested at 1500 VAC.
Coil Wattage: 1.4 watts DC operation; 1.6 watts (2.0 volt-amps) AC except 2.4 watts (3.70 volt-amps) for 4 -pole AC and AC latth ing relays.

GPRTA., GPRTI-, GPRTS; GPRTP.
Four types of clear plastic enclosures as follows:
Chassis Mounting Types: "GPRTA"-("Terminals-Above.Chassis" type) has terminal panel opposite to mounting flange; "GPRTT" - ("Terminals-Through.Chassis" type) has terminal panel on same end as mounting flange, requires chassis cutout; "GPRTS" type ing flanges (tocket Use) is similar to GPRTT but has no mountsocket "SOGPR" (see "Socket" below).

Plug Base Type: "GPRTP" - employs octal plug for 1 and 2 pole relays; 11 -pin plug for 3 -pole. The octal plug base is integral with relay for rigidity - is designed with recessed pins which meet UL spacing requirements (150V).

Indicator Relay: Incorporates light bulb to indicate energized condition of coil. Stocked oniy in GPRTP enclosures described in preceding. Neon bulb furnished with coil ratings 70 volts and above; incandescent bulbs for coil ratings below 70 volts.
UL \& CSA Approval: Column heads in the stock tables carry the ards Associters Laboratories) or CSA symbol (Canadian Stand indicates the relays are applicable. The gray tint in the column program." The acceptability of suzed under the "UL components their combination with of such relays by UL depends upon heir combination with other equipment such as sockets etc.

Socket (SOGPR): Unique socket fits the terminal panels of all GPR relays and provides over-the-surface spacing to meet UL requirements for 150 volts. Requires chassis cut-out to mount. Hold down springs (see illustration) for unenclosed and enclosed relays, are provided with each socket but are not required except under conditions of vibration or shock. Socket solder terminals will also accept AMP 110 quick-connectors. See socket listings. SOCKEIS FOR GPR, GPRTS RELAYS
For up to 3 PDT: \(13 / /^{\prime \prime}\) square, requires \(1 \frac{1}{4} 4^{\prime \prime} \times 1 \frac{1}{2 \prime \prime}\) cutout.* 2 holes (for No. 6 screws) on \(13 /\) " \(^{\prime \prime}\) centers.

\section*{Catalog No. SOGPR-9}

For 4-pole models, \(13 / 4^{\prime \prime} \times 2^{\prime \prime}\), re. quires \(11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}\) cutout. \({ }^{2} 2\) holes (for No. 6 screws) on \(15 / 8^{\prime \prime}\) centers. Catalog No. SOGPR-12

*Std. punches and dies from Ward Machinery
22N, \(1 \frac{1}{4} \times 1 \frac{1}{2}\), for SOGPR-9: No 28 Shinery Co., Chicago. No. 28, Style

\title{
빵MITE \\ general purpose relays • GPR series
}

STOCK GPR RELAYS*

5 AMP CONTACTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\begin{tabular}{c}
Con \\
tacts \\
\hline
\end{tabular} \\
tacts
\end{tabular} & \multicolumn{3}{|c|}{COLL DATA,} & \[
\begin{aligned}
& \hline \text { UL-CSA } \\
& \text { UNEN. } \\
& \text { CLOSED } \\
& \text { Cat. No. } \\
& \text { Prefix } \\
& \text { CPRX. } \\
& \hline
\end{aligned}
\] & & \begin{tabular}{|l|}
\hline UL.CSA \\
PLUG \\
BASE MOUNT \\
ENCLOSED \\
Cat. Mo. \\
Prefix. \\
GPRTPX. \\
\hline (37) \\
\hline
\end{tabular} & & CSA SOCKET
MOUNT
ENCLOSED
(for SOGPR
Socketht
Cat. No.
Prefix
sPRTSX. & \begin{tabular}{l}
CSA \\
PLUR \\
日ASE MOUNT \\
EMCLOSED \\
OAL. No. \\
Prefix. \\
apripx. \\
\hline
\end{tabular} & \begin{tabular}{l}
INDICATOR. \\
plug base \\
ENCLOSED \\
Cat. No. \\
Prefix \\
GPRTPX.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & 6VAC 6 VAC 6VAC 6VAC & \[
\begin{aligned}
& .334 \\
& .334 \\
& .334 \\
& .650 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.2 \\
& 4.2 \\
& 4.2 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-3 \mathrm{~T}) \\
& -6 \mathrm{~T} \\
& (-9 \mathrm{~T}) \\
& (-403 \mathrm{~T}) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (.67) \\
& (.97) \\
& (.403 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-3 T) \\
& (-6 T) \\
& (-9 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-203 \mathrm{~T}) \\
& (-206 \mathrm{~T}) \\
& (-209 \mathrm{~T}) \\
& (-433 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-206 T) \\
& (-209 T) \\
& (-433 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-203 \mathrm{~T}) \\
& (-206 \mathrm{~T}) \\
& (-209 \mathrm{~T})
\end{aligned}
\] & (-291T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& 12 \mathrm{VAC} \\
& 12 \mathrm{VAC} \\
& 12 \mathrm{VAC} \\
& 12 \mathrm{VAC}
\end{aligned}
\] & \[
\begin{aligned}
& .167 \\
& .167 \\
& .167 \\
& .309
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 17 \\
& 17 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-12 T) \\
& (-15 T) \\
& (-18 T) \\
& (-406 T) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-15 T) \\
& (-18 T) \\
& (-406 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-12 \mathrm{~T}) \\
& -15 \mathrm{~T} \\
& (-18 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-212 T) \\
& (-215 T) \\
& (-218 T) \\
& (-436 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-215 \mathrm{~T}) \\
& (-218 \mathrm{~T}) \\
& (-436 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-212 T) \\
& (-215 T) \\
& (-218 T)
\end{aligned}
\] & (-292T) \\
\hline EPDT DPDT 3PDT 4PDT & 24VAC 24 VAC 24VAC 24VAC & \[
\begin{aligned}
& .084 \\
& .084 \\
& .084 \\
& .155 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 65 \\
& 65 \\
& 40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-217) \\
& -24 \mathrm{~T} \\
& (-27 T) \\
& (-409 T) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-24 \mathrm{~T}) \\
& (-27 \mathrm{~T}) \\
& (-409 \mathrm{P})
\end{aligned}
\] & \[
\begin{aligned}
& (-21 \mathrm{~T}) \\
& -24 \mathrm{~T} \\
& (-27 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-221 T) \\
& (-224 T) \\
& (-227 T) \\
& (-439 T) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { (-224T) } \\
& (.227 T) \\
& (-439 T)
\end{aligned}
\] & \[
\begin{aligned}
& \text { (-221T) } \\
& -224 \mathrm{~T} \\
& -227 \mathrm{~T}
\end{aligned}
\] & (-293T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT } \\
& \hline
\end{aligned}
\] & 115VAC 115VAC 115 VAC 115VAC & \[
\begin{array}{r}
.0174 \\
.0174 \\
.0174 \\
.0325 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1600 \\
& 1600 \\
& 1600 \\
& 1000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-30 T) \\
& -33 \mathrm{~T} \\
& -36 \mathrm{~T} \\
& -412 \mathrm{~T} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-33 T) \\
& (.36 T) \\
& -412 T
\end{aligned}
\] & \[
\begin{aligned}
& -30 \mathrm{~T} \\
& -33 \mathrm{~T} \\
& -36 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& -230 \mathrm{~T} \\
& -233 \mathrm{~T} \\
& -236 \mathrm{~T} \\
& -442 \mathrm{~T}
\end{aligned}
\] & \[
\begin{gathered}
-233 \mathrm{~T} \\
(-236 \mathrm{~T}) \\
-.442 \mathrm{t}
\end{gathered}
\] & \[
\begin{aligned}
& -230 T \\
& -233 T \\
& -236 T
\end{aligned}
\] & -294T \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 230VAC } \\
& \text { 230VAC } \\
& 230 \mathrm{VAC} \\
& 230 \mathrm{VAC}
\end{aligned}
\] & \[
\begin{aligned}
& .0087 \\
& .0087 \\
& .0087 \\
& .0147
\end{aligned}
\] & \[
\begin{aligned}
& 7000 \\
& 7000 \\
& 7000 \\
& 4000
\end{aligned}
\] & \[
\begin{aligned}
& (-39 \mathrm{~T}) \\
& (.42 \mathrm{~T}) \\
& (-45 \mathrm{~T}) \\
& (-415 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-42 T) \\
& (-45 T) \\
& (-415 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-39 \mathrm{~T}) \\
& (-42 \mathrm{~T}) \\
& (-45 \mathrm{~T})
\end{aligned}
\] & (-239T)
\((-242 \mathrm{~T})\)
\((-245 \mathrm{~T})\)
\((-445 \mathrm{~T})\) & \[
\begin{aligned}
& (-242 T) \\
& (-245 T) \\
& (-445 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-239 \mathrm{~T}) \\
& -242 \mathrm{~T} \\
& (-245 \mathrm{~T})
\end{aligned}
\] & (-2957) \\
\hline SPDT DPDT 3PDT 4PDT & 6VDC 6 VDC 6VDC 6VDC & \[
\begin{aligned}
& .23 \\
& .23 \\
& .23 \\
& .23
\end{aligned}
\] & \[
\begin{aligned}
& 26 \\
& 26 \\
& 26 \\
& 26 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-48 T) \\
& -.51 \mathrm{~T} \\
& (-54 T) \\
& (-418 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-51 T) \\
& (.54 T) \\
& (-418 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-481) \\
& -51 T \\
& (-54 T)
\end{aligned}
\] & \((-248 T)\)
\((-251 T)\)
\((-254 T)\)
\((-448 T)\) & \[
\begin{aligned}
& (-251 T) \\
& (-254 T) \\
& (-448 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-248 \mathrm{~T}) \\
& (-251 \mathrm{~T}) \\
& (-254 \mathrm{~T})
\end{aligned}
\] & (-296T) \\
\hline SPDT DPDT 3PDT 4PDT & \[
\begin{aligned}
& \text { 12VDC } \\
& 12 \mathrm{VDC} \\
& 12 \mathrm{VDC} \\
& 12 \mathrm{VDC}
\end{aligned}
\] & \[
\begin{aligned}
& .114 \\
& .114 \\
& .114 \\
& .114
\end{aligned}
\] & \[
\begin{aligned}
& 105 \\
& 105 \\
& 105 \\
& 105 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
-57 \mathrm{~T} \\
-60 \mathrm{~T} \\
.63 \mathrm{~T} \\
(-421 \mathrm{~T})
\end{gathered}
\] & \[
\begin{aligned}
& (-607) \\
& (.63 T) \\
& (-421 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-57 T) \\
& -60 T \\
& -63 T
\end{aligned}
\] & \[
\begin{aligned}
& (-257 T) \\
& -260 \mathrm{~T} \\
& (-263 \mathrm{~T}) \\
& (-451 \mathrm{~T}) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-260 T) \\
& (-263 T) \\
& (-451 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-257 T) \\
& -260 \mathrm{~T} \\
& (-263 \mathrm{~T})
\end{aligned}
\] & (-2975) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT } \\
& \hline
\end{aligned}
\] & 24 VDC 24vDC 24VDC 24VDC & .060
.060
.060
.060 & \[
\begin{aligned}
& 400 \\
& 400 \\
& 400 \\
& 400 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-66 \mathrm{~T}) \\
& -69 \mathrm{~T} \\
& .72 \mathrm{~T} \\
& (-424 \mathrm{~T}) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-69 \mathrm{~T}) \\
& .72 \mathrm{I} \\
& (-424 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-66 \mathrm{~T}) \\
& -69 \mathrm{~T} \\
& -72 \mathrm{~T}
\end{aligned}
\] & \((-266 T)\)
\((-269 T)\)
\((-272 T)\)
\((-454 T)\) & \[
\begin{aligned}
& (-269 T) \\
& (-272 T) \\
& -454 T
\end{aligned}
\] & \[
\begin{aligned}
& (-266 T) \\
& -269 T \\
& -272 T
\end{aligned}
\] & (-298T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT } \\
& \hline
\end{aligned}
\] & 110VDC 110VDC 110VDC 110 VDC & \[
\begin{aligned}
& .0110 \\
& .0110 \\
& .0110 \\
& .0110 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1000 \\
& 1000 \\
& 1000 \\
& 1000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-75 \mathrm{~T}) \\
& (-78 \mathrm{~T}) \\
& -81 \mathrm{~T} \\
& (-427 \mathrm{~T}) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (-781) \\
& (-81 T \\
& (-4271)
\end{aligned}
\] & \[
\begin{aligned}
& (.751) \\
& (-781) \\
& (-81 T)
\end{aligned}
\] & \((-275 T)\)
\((-278 T)\)
\((-281 T)\)
\((-457 T)\) & \[
\begin{aligned}
& (-278 T) \\
& (-281 T) \\
& -457 T \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
(-275 \mathrm{~T}) \\
-278 \mathrm{~T} \\
(-281 \mathrm{~T})
\end{gathered}
\] & (-2997) \\
\hline \multicolumn{4}{|c|}{Approx. weight} & 2.502. & 3.0 oz . & 3.502. & 2.502. & 3.502. & 3.502. & 3.502. \\
\hline
\end{tabular}

SENSITVE PLATE CIRCUIT RELAYS - 5 AMP CONTACTS

\section*{Plate Relays:}

Feature same physical construction as standard general purpose relays but are adjusted for greater sensitivity and can be used as electronic circuit controls, i.e. in the plate circuits of standard vacuum tubes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Con } \\
& \text { tacts }
\end{aligned}
\]} & \multicolumn{2}{|c|}{COIL DATA} & \multirow[t]{2}{*}{INENCLOSED Cat. No. Prefix aprx-} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline & Ohms & Pulf-in Max. ma & & & \\
\hline SPDT & 2500 & 7.2 & -82T & & (-82T) \\
\hline DPDT & 2500 & 10 & (-83T) & & -83T \\
\hline 3PDT & 2500 & 12.3 & (-84T) & & (-84T) \\
\hline 4PDT & 2500 & 15.0 & (-463T) & (-463T) & \\
\hline SPDT & 5000 & 5 & (-85T) & & (-85T) \\
\hline DPDT & 5000 & 7.2 & (-867) & & -86T \\
\hline 3 3PDT & 5000 & 8.7 & (-875) & & (-875) \\
\hline 4 PDT & 5000 & 11 & (466T) & (-466T) & \\
\hline SPDT & 10,000 & 3.6 & (-88T) & & (-887) \\
\hline DPDT & 10,000 & 5 & -89T & & -89T \\
\hline 3 3PDT & 10,000 & 6.1 & (-907) & & -905 \\
\hline 4PDT & 10,000 & 7.5 & (-469T) & (-469T) & \\
\hline \multicolumn{3}{|c|}{Approx. weight} & 2.502. & 3.0 oz . & 3.502. \\
\hline
\end{tabular}

STOCK GPR THYRATRON RELAYS
5 AMP CONTACTS
10 AMP CONTACTS

Relay in Circuit Showing Thyratron

Thyratron Plate Relay: Designed specifically for plate circuit of thyratron tubes 2050 and 2021 with 115 VAC supply (see diagram). Also suitable for operation in series with silicon controlled rectifiers from a 115 VAC

\section*{NOTES}
*Column heads carry symbols to indicate UL or CSA (Canadian Standards Assn.) appraval, The grey tint indicates that relay is recognized under UL "components
program" (File No. E33069, Guide No. 380 W 1.14 C Assignment No. 62 C 3559 A). Program" File No. is 21309 . See explanation in "UL and CSA Approval."
supply. Ready to work, no capacitors or adjustments required, no chatter. Available unenclosed and in most GPR enclosures.

\footnotetext{
distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item.
}

\section*{© HMITE \({ }_{\text {© }}\) power relays • ratings to 25 amperes}

MODEL DO RELAYS (AC or DC)
Particularly adaptable to aircraft and mobile equipment applications where severe shock and vibration are encountered. Design of molded parts around contact arms protects against mechanical injury. Stocked in 3-pole or 4 -pole type, and also in hermetic enclosures and in latching types.
Coil Wattage: 3.00 watts, DC operation; 6.00 watts, 60 cycle AC. Maximum temperature rise \(45^{\circ} \mathrm{C}, \mathrm{DC}\) operation; \(75^{\circ} \mathrm{C}, \mathrm{AC}\).
Coil Operating Voltage: Any voltage up to 230 VDC or 440 VAC, 60 cycle. Stock volt ages in table.
Contacts: 10 amps nominal. Ratings are for 115 VAC or 32 VDC , resistive load.
Weight: Unenclosed 3-pole, 5 0z.; 4-pole, 6 oz.

00 RELAYS IN HERMETIC ENCLDSURES

DOHPX-16T, 3PDT, 11 Prongs
DDHPX-15T, 4PDT, 20 Prongs

DDHX-22T, 3POT, 14 Terminals
DDHX-23T, 4PDT, 14 Terminals

Stock DO relays with 115 volt coil in hermetically sealed metal enclosures, filled with dry nitrogen. Enclosures provide protection for relay under most adverse ambient conditions. Both 3 and 4 -pole D0 relays are supplied in these enclosures with plug (DOHPX.) or solder terminal (DOHX.) connectors as illustrated. See listings in stock table at right.
Weight: 3 -pole hermetic relay approx. 14 oz.; 4 -pole approx. 150 oz.

\section*{WIRING FOR PLUG-BASE} 00 RELAYS

Eeo

DDHPX-16T
DOHPX-15T

\section*{STANDARD} UNENCLDSED
Wide application, general purpose relay, compact and lightweight. Handles loads usually demanded of much larger relays Meets rigorous aircraft relay standards. Coil Wattage: 2.5 watts, DC operation; 3 watts, 60 cycle \(A C\). Maximum temperature rise \(45^{\circ} \mathrm{C}, \mathrm{DC}\) operation; \(65^{\circ} \mathrm{C}, \mathrm{AC}\).
Coil Operating Voltage: Any voltage up to 230 VDC or 440 VAC, 60 cycles. Table lists stock voltages
Contacts: 15 amps nominal. Rating is for 115 VAC or 32 VDC, resistive load.
Weight: Unenclosed, \(40 z\)

DOS RELAYS WITH

Hermetic Enclosures DOSHX-39T, 115 VD DOSHX-4DT, 115 VAC

DOSEPX-5T DOSEPX-5T with Dust Cover with Dust Cover

ENCLOSURES
DOS relays with 115 VAC coils are available from stock with a standard octal plug base, unenclosed (DOSPX-1T) or with an octal plug base and drawn aluminum, removable dusttight enclosure (DOSEPX-5T).
Weight: 8 oz. each.
Hermetically Sealed non-removable enclosures, filled with dry nitrogen, are also available to provide protection under adverse ambient conditions. DOS relays with verse ambient conditions. DOS relays with
115 VAC or DC coils are provided in these 115 VAC or DC coils are provided in these
enclosures with either octal plug (DOSHPX-) enclosures with either octal plug (DOSHPX-) illustrated. See listings and prices in DOS stock table.
Weight: 8 oz. each approx.

distributors but are not
distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a minimum handling charge per item.

\title{
© H MITE \({ }_{\odot}\) latching relays \& sensitive 15 amps relays
}

Latching Relay: Consists of two GPR relays with armatures linked so that the n.o. contacts of one are mechanically latched in closed position when, and after, this relay is energized. When \(2 n d\) relay is energized, first relay restores and latches 2nd. Permits switching of twice the number of circuits and holding without coil current. Unenclosed type "GPRLE." Enclosed type "GPRLETP" in clear plastic case with Jones plug P-324-SB fitting S-324-AB socket.

\section*{STOCK GPR LATCHING RELAYS - 5 AMP CONTACTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & Coil & & Endioned \\
\hline B & Voits & Amps & Ohms & Gremis & CPrietri \\
\hline 4PDT & 6VAC & . 650 & 2.5 & (GPRLEX-1T) & (GPRLETPX-1T) \\
\hline 6PDT & 6VAC & . 650 & 2.5 & (GPRLEX-2T) & (GGRLETPX-2T) \\
\hline 4PDT & 12VAC & . 309 & 10.0 & GPRLEX-3T & (GPRLETPX-3T) \\
\hline 6PDT & 12VAC & . 309 & 10.0 & GPRLEX-4T & (GPRLETPX-4T) \\
\hline 4PDT & 24VAC & . 155 & 40.0 & (GPRLEX-5T) & (GPRLETPX-5T) \\
\hline 6PDT & 24VAC & . 155 & 40.0 & (GPRLEX-6T) & (GPRLETPX-6T) \\
\hline 4PDT & 115VAC & . 0325 & 1000 & GPRLEX-7T & PRLETPX-7T \\
\hline 6PDT & 115 VAC & . 0325 & 1000 & (GPRLEX-8T) & GPRLETPX-8T \\
\hline 4PDT & 230VAC & . 0147 & 4000 & (GPRLEX-9T) & (GPRLETPX-97) \\
\hline 6PDT & 230 VAC & . 0147 & 4000 & (GPRLEX-10T) & (GPRLETPX-10T) \\
\hline 4PDT & 6VDC & . 35 & 17 & (GPRLEX-117) & (GPRLETPX-11T) \\
\hline 6PDT & 6VDC & . 35 & 17 & (GPRLEX-12T) & (GPRLETPX-12T) \\
\hline 4PDT & 12VDC & . 185 & 65 & (GPRLEX-13T) & (GPRLETPX-13T) \\
\hline 6PDT & 12VDC & . 185 & 65 & (GPRLEX-14T) & (GPRLETPX-14T) \\
\hline 4PDT & 24VDC & . 093 & 256 & GPRLEX-15T & (GPRLETPX-15) \\
\hline 6PDT & 24VDC & . 093 & 256 & (GPRLEX-16T) & GPRLETPX-16T \\
\hline 4PDT & 110VDC & .022) & 5000 & (GPRLEX-17T) & X-17T \\
\hline 6PDT & \multicolumn{2}{|l|}{\(\frac{\text { Approx. weight }}{\text { APO }}\)} & 5000 & (GPRLEX-18T) & (GPRLETPX-18T) \\
\hline \multicolumn{4}{|c|}{Approx. weight} & 7.002. & 11.3 oz. \\
\hline
\end{tabular}
*Column heads carry symbols to indicate UL or CSA (Canadian Standards Assn.) approval. The gray tint indicates that relay is recognized under UL "components program" (File No. E33069, Guide No. 380W1.14C, Assignment No. 62(3559A). CSA File No. is 21309 . See explanation in '"UL and CSA Approval."

Consists of Model DO relay and a "reset magnet" with both armatures mechanically latched so that the normally open contacts of the relay remain closed when the relay energizing voltage is removed. The relay releases to

Standard latching type
normal position when the reset coil is pulsed. Permits "holding" of circuits without continuous coil current. Coils of stock units (both relays and reset coils) are 115 VAC. Available with 3 or 4 -pole DO relays
\begin{tabular}{|c|c|c|c|c|}
\hline Catalog Ma. & type & Voits & Coil Data & DC Ori \\
\hline (DOLEX-3T) DOLEX.5T) & \[
\begin{aligned}
& 3 P D T \\
& 4 P D T
\end{aligned}
\] & 115VAC & \[
.110
\] & \[
145.0
\] \\
\hline
\end{tabular}

\section*{SENSITIVE MODEL DOSY RELAY FOR PLATE CIRCUITS - 15 AMPS}

Similar in construction to Model DOS relay but equipped with twin coils for increased sensitivity. The DOSY relay is adaptable to a wide range of electronic control applications such as plate circuit controls, or as overload or underload controls in D.C. circuits to signal attainment of predetermined current levels.
Coil Wattage: 1.00 watt, with maximum temperature rise of \(45^{\circ} \mathrm{C}\). Lower wattages available.
Contacts: Stock combinations as listed. Ratings are for 115 VAC or 32 VDC, resistive load.
Weight: Approximately \(41 / 2\) ounces.

MODEL DOS LATCHING RELAY (DOSLEX-)

Consists of Model DOS relay and a "reset magnet" with both arma.
 tures mechanically latched so that the normally open contacts of the relay remain closed when the relay energizing voltage is removed. The relay releases to normal position when the reset coil is pulsed. Permits "holding" of circuits without continuous coil current. Coils of stock units (both relay and reset magnet) are 115VAC.

Weight: 14.202.
LATCHING TYPE
\begin{tabular}{|c|c|c|c|c|}
\hline Eatalog No. & Type & Volts & Coll Data & Amps \\
DO obm \\
\hline DOSLEX-1T & DPDT & 115VAC & .043 & 450 \\
\hline
\end{tabular}
tCoil data applies to relay part of latehing assembly. Reset magnet operates on 115 VAC. 60 cycle also.
' Popular items appear in BOLD print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking distributors but are not normally stocked in de th. Parentheses indicate non-stock standard items subject to a minimum handing charge per item.

\title{
․․).MITE \({ }_{\odot}\) variable transformers
}

Unique for the design innovations they incorporate, Ohmite "OHMITRAN" v.t. variable transformers include exclusive field-proven features. They offer long, low maintenance operation with excellent regulation at any voltage setting within the rated load plus an output free of waveform distortion. Six frame sizes offer a wide range of electrical ratings to meet most industrial applications. These include three new, compact, low-power models (VT1, VTO2, VT3,) which permit a fine choice of six ratings from 1.3 to 3.3 amperes.

UL LISTING: A number of VT4, VT8 and VT20 transformers used for 120 volt line operation are underwriters' laboratories listed. See tables, page 34 for details.

POSITIVE CURRENT TRANSFER... achieved with specially designed brushes connected through high conductivity contact arms or pigtails to a large slip ring which contacts a wide area of the collector ring. The brush contact assembly on the VT1, VT02, and VT3 is instantly replaceable, when necessary, as a result of a slide-on, snap-in design. Brushes of the other models are easily replaced also.
ADJUSTABLE SHAFT: On all Ohmite transformers, except the VT2LN, the shaft may be extended out from either the brush or opposite side as desired. On the VT1, VTO2 and VT3, both single and tandem assemblies, this is an exclusive Ohmite feature which affords greater versatility of mounting and application. For example, substitution of a longer shaft or extension of the standard shaft allows actuation of other devices, such as switches or potentiometers without special construction. The shaft is freed simply by loosening set screw in the hub assembly. A double flat on the shaft permits two knob positions.

On the VT4, VT8, and VT20 types, the adjustable shaft feature permits table or panel use. "Ganged" or tandem VT4, VT8 and VT20 units employ a thru-shaft offering the same flexibility. On VT4 and VT8 units, shafts are fixed in the desired position by means of socket head screws located in the hub of each "brush-radiator" plate. The VT20 employs a unique collettype shaft lock.

INTERCHANGEABLE WITH OTHER POPULAR TYPES: Basic "v.t." units have mounting provisions which match those of virtually all popular transformers of comparable current rating. Models VT4, VT8 and VT20 mount by means of bolts. Normally 3 -hole mounting, single' VT4 units can be "4-hole mount-

VT1,VT02,VT2LN,VT3 SERIES,SINGLE, UNCASED Angle of rotation \(320^{\circ} \pm 5^{\circ}\)
The VT1, rated 1 ampere, is the smallest commercial variable transformer available.

VT4 SERIES, SINGLE, UNCASED Angle of rotation: \(324^{\circ} \pm 5^{\circ}\)

ed" by means of adapter plate, see page 33. Individual Model VT1, VT02, VT2LN, or VT3 units mount by means of a standard \(3 / 8-32\) threaded bush. ing. All tandem assemblies mount by means of bolts or nuts. Knob, dial and mounting hardware are included with each transformer.
DIRECT READING, TWO SCALE DIAL . . . calibrated on one side for overvoltage connection; on the reverse side for line voltage connection. Dials normally included with transformer read clockwise for increasing voltage; counter-clockwise calibration available-see page 33.
WIRING AND CONNECTIONS: Wiring instructions to arrange various modes of operation are enclosed with all OHMITE variable transformers. Terminal panels or adjacent nameplate carry convenient wiring diagram, coded terminals and input and output data. Three way terminals on VT1, VT2LN, VT02, VT3 will accept \(1 / 4^{\prime \prime}\) push-on connectors, screws and nuts, or conventional soldering.
ROTATION OPTION: On VT4, VT8 and VT20 transformers connected for overvoltage, either clockwise or counter-clockwise increase of voltage can be arranged easily by the user. Increasing voltage in either direction can be arranged on all units connected for no-overvoltage output. Dials for coun-ter-clockwise operation are stocked. See "Accessories."

OVERVOLTAGE OPIION: On all transformers with overvoltage feature, noovervoltage operation can be arranged on the terminal panel.
NO-OVERVOLTAGE TRANSFORMERS ["N" suffix): Provide considerably more current due to heavier gage winding.
240-VOLT INPUT ("H" suffix): On units which are wound for 240 -volt input, a 120 volt input tap is also provided. With the use of this input, the maximum current rating applies up to 120 volts output but beyond this reduces proportionately to approximately \(50 \%\) at maximum voltage output.
LOW VOLTAGE INPUT ("L" feature): Designed for a maximum input of approximately 40 volts, with high current output.
GROUNDED INPUT \& OUTPUT ("C" feature): Units in type F or G cases can be provided with a three-conductor cord and outlet. One conductor is grounded to the case. This feature standard on all cased VT20 units and on all metered units.
 Angle of rotation: \(324^{\circ} \pm 5^{\circ}\)

\section*{;-HMITE © variable transformers}

\section*{ENCLOSURES}

Gray hammer tone finish. "Basic protective en. closures" (Type B) expose the transformer's terminal panel and mounting base and are sup. plied presently on VT20 models only. (See tandams in " \(B\) " enclosures below.) "Fixed mounting enclosures" (Type E) are intended for permanent mounting on table, panel or in-conduit-line. Standard portable units (Type F) carry a line cord, outlet socket, and fuse (VT2OF has circuit breaker). Deluxe portable units (Type G), VT8 and VT20 only, have circuit breaker, overvoltage or no-overvoltage selector, handle which also serves as an easel.
METERED ENCLOSURES: VT8NFC,VT8GC, VT20NFC and VT20GC transformers are available with voltmeter (\(V\)), voltmeter and ammeter (A) or voltmeter and wattmeter (W). All have threeconductor grounded cord and outlet. All, except VT8NF group, are equipped with handles.
ENCLOSURE DIMENSIONS

NOTES:
* Add \(1^{\prime \prime}\) for knob thickness for VT8 types; 7/8" for VT, 02 and VT4 types, \(11 / 4^{\prime \prime}\) for VT20 types.
\(53 / 4\) h including handle fittings.
\(\ddagger\) Case height only. \(\quad \$ 9^{\prime \prime}\) including handle fittings. a. \(V, A\) and \(W=\) voltmeter, ammeter and wattmeter respectively.

VT 20B

\section*{PARTS \& ACCESSORIES}
adapter plate
For 4-hole mtg. of VT4-matches other popular 4-hole megs.; dimensions same as shown for front plate of VT4 tandems, page 33.
BRUSH-CONTACT ASSEMBLIES
VT1, VT1N, VT02, VT02N, VT3, VT3N - 6507; VT2LN - 6517; VT4 Series except VT4LN - 6515; VT8 Series except VT 8H, HN, LN - 6515; VT4LN6518 ; VT8H, HN only - \(6516 \mathrm{H}_{\text {; }}\) VT8LN only - 6519 ; VT20 Series and VT 20N - 6594; VT2OH, HN only. 6596.

\section*{ADJUSTABLE STOP}

For limiting rotational arc of transformers.
Stop for VT4 Series - 6536; Stop for VT8 Series 6537; Stop for VT20 Series - 6538.
FUSE LINKS
For VT4-6508; For VT4N-6509; For VT20-6535. EXTRA KNOBS
For VT1, VT02, VT2LN, VT3 Series - 5158; for VT4, VT8 Series - 5155 ; for VT 20 Series \(\cdot 5157\). EXTRA DIALS \& DIALS WITH C.C.W.

units

\section*{tandems \& 3-phase}

TANDEM OR GANGED UNITS: Two or 3 -i n-tandem assemblies are standard. Larger tandem assemblies available made to order. All tandem assemblies are normally furnished with interconnections between the units. A few cased tandems are stocked. Tandems in " B " type enclosures have individual cases
tandem vil, vtol, vt o dimensions
\begin{tabular}{|l|c|c|c|}
\hline Series & \(A\) & \(B\) & 0 \\
\hline VT1 & \(47 / 22\) & \(613 / 2\) & \(41 / 4\) \\
VT02 & \(57 / 2\) & \(81 / 22\) & \(41 / 2\) \\
VT3 & \(61 / 32\) & \(97 / 32\) & \(41 / 2\) \\
\hline
\end{tabular}

(1)

VII, VT02, VT TYPE TANDEMS "Luck"
 \(\square\) [——— \(\square\) Col -1

\title{
© HMITE \(_{\text {® }}\) variable transformers
}

\section*{STOCK VARIABLE TRANSFORMERS}

SINGLE PHASE
SINGLE TRANSFDRMERS - UNCASED (Dimensions p. 32)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Voits & \[
\left\lvert\, \begin{gathered}
\text { Frea } \\
\left.\begin{array}{c}
\text { Hz } \\
\text { from }
\end{array} \right\rvert\,
\end{gathered}\right.
\] & Feature or Connection & \[
\begin{aligned}
& \begin{array}{l}
\text { i. } \\
\text { see } \\
\text { foot. } \\
\text { notes } \\
\text { pelow }
\end{array}
\end{aligned}
\] & Maximum Voiti & Dutput Anms & Cataiog
\[
\text { Ne. }{ }^{12}
\] & \[
\begin{aligned}
& \text { Wt. } \\
& \text { ths }
\end{aligned}
\] \\
\hline 40 & 60 & Hi-amps, low volts & & 0-40 & 5.0 & VT2LN & 2.4 \\
\hline 40 & 50 & Hi-amps, low volts & & 0-40 & 12.0 & VT4LN & 5.25 \\
\hline 40 & 50 & Hi-amps, low volts & & 0-40 & 22.0 & VTgLN & 10.25 \\
\hline 120 & \(60^{\circ}\) & Basic 1.0A Model & & 0-120/132 & 1.3 & VTI & 1.5 \\
\hline 120 & 60 & No overvoltage & & 0-120 & 1.5 & VTIN & 1.5 \\
\hline 120 & \(60^{\circ}\) & Basic 1.75A Model & & 0-120/132 & 2.0 & VT02 & 2.25 \\
\hline 120 & 60 & No overvoltage & & 0-120 & 2.5 & VT02N & 2.25 \\
\hline 120 & \(60^{\circ}\) & Basic 2.6A Model & & 0-120/132 & 3.0 & VT3 & 3.0 \\
\hline 120 & 60 & No overvoltage & & 0-120 & 3.3 & VT3N & 3.0 \\
\hline 120 & 50 & Basic 3.5A Model & 11 & 0-120/140 & 3.5 & VT4 & 5.25 \\
\hline 120 & 50 & No overvoltage & 11 & 0-120 & 4.75 & VT4N & 5.25 \\
\hline 120 & 50 & Basic 7.5A Model & 1 & 0-120/140 & 7.5 & V78 & 10.25 \\
\hline 120 & 50 & No overvoltage & 11 & 0-120 & 10.0 & VT8N & 10.25 \\
\hline 120 & 50 & Basic 20A Model & 11 & 0-120/140 & 20.0 & VT20 & 22.0 \\
\hline 120 & 50 & No overvoltage & 11 & 0-120 & 25.0 & VT20N & 22.0 \\
\hline \(240{ }^{2}\) & 50 & 240 V Input \({ }^{2}\) & & 0-240/280 & 3.0 & VT8H & 10.25 \\
\hline 2402 & 50 & 240 V In. No ovrvit. \({ }^{2}\) & & 0-240 & 4.0 & VT8HN & 10.25 \\
\hline \(240{ }^{2}\) & 50 & 240 V Input \({ }^{2}\) & & 0-240/280 & 9.0 & VT20H & 22.0 \\
\hline 2402 & 50 & 240 V In. No ovrvit. \({ }^{2}\) & & 0-240 & 11.0 & VT2OHN & 22.0 \\
\hline
\end{tabular}

SINGLE TRANSFDRMERS - CASED (Dimensions p. 33)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 120 & \(60^{\circ}\) & Fixed Mtg. & & \(0-120 / 132^{4}\) & . 8 & (VT1E) & 1.9 \\
\hline 120 & \(60^{\circ}\) & Portable & & \(0-132^{3}\) & 1.0 & (VT-1F) & 2.3 \\
\hline 120 & 60 & Fixed Mtg. & & 0-120 & 1.0 & (VT1NE) & 1.9 \\
\hline 120 & 60 & Portable & & 0-120 & 1.2 & (VT1NF) & 2.3 \\
\hline 120 & \(60^{\prime \prime}\) & Fixed Mtg. & & \(0-120 / 132^{4}\) & 1.4 & VT02E & 2.8 \\
\hline 120 & \(60^{8}\) & Portable & & \(0-132^{3}\) & 1.75 & VT02F & 3.2 \\
\hline 120 & 60 & Fixed Mtg. & & 0-120 & 1.6 & IT02NE & 2.8 \\
\hline 120 & 60 & Portable & & 0-120 & 2.0 & VT02NF & 3.2 \\
\hline 120 & 50 & Fixed Mtg. & 12 & 0-120/1404 & 2.8 & IT4E & 7.4 \\
\hline 120 & 50 & Portable & 12 & \(0-140^{3}\) & 3.5 & VT4F & 7.8 \\
\hline 120 & 50 & VT4F w/gnd. in. \& out. & 12 & \(0-140^{3}\) & 3.5 & VT4FC & 7.8 \\
\hline 120 & 50 & Fixed Mtg. & & 0-120 & 3.8 & (VT4NE) & 7.4 \\
\hline 120 & 50 & Portable & & 0-120 & 4.75 & VT4NF & 7.8 \\
\hline 120 & 50 & VT4NF w/gnd. in. \& out. & & 0-120 & 4.75 & VTANFC & 7.8 \\
\hline 120 & 50 & Fixed Mtg. & 12 & \(0-120 / 140^{4}\) & 6.0 & (VT8E) & 13.5 \\
\hline 120 & 50 & Portable & 12 & \(0-140^{3}\) & 7.5 & VT8F & 13.8 \\
\hline 120 & 50 & VT8F w/gnd. in. \& out. & 12 & \(0-140^{3}\) & 7.5 & VT8FC & 13.8 \\
\hline 120 & 50 & Deluxe Portable & 12 & \(0-120 / 140^{3}\) & 6.0 & VT8G & 14.2 \\
\hline 120 & 50 & VT8G w/gnd. in. \& out. & 12 & \(0-120 / 140^{3}\) & 6.0 & VT8GC & 14.2 \\
\hline 120 & 50 & Fixed Mtg. & & 0-120 & 8.0 & (VT8NE) & 13.5 \\
\hline 120 & 50 & Portable & & 0-120 & 10.0 & VT8NF & 13.8 \\
\hline 120 & 50 & VT8NF w/gnd. in. \& out. & & 0-120 & 10.0 & VT8NFC & 13.8 \\
\hline 120 & 50 & Basic Case & & 0-120/140 & 20.0 & VT208 & 22.5 \\
\hline 120 & 50 & Basic Case & & 0-120 & 25.0 & (VT20NB) & 22.5 \\
\hline 120 & 50 & Fixed Mtg. & 12 & \(0-120 / 140^{4}\) & 20.0 & (VT20E) & 29.0 \\
\hline 120 & 50 & Portable & & 0-140 & 20.0 & (VT20FC) & 31.0 \\
\hline 120 & 50 & Portable & 12 & \(0-120 / 140^{3}\) & 20.0 & (VT20GC) & 31.0 \\
\hline 120 & 50 & Fixed Mtg. & 12 & 0-120 & 25.0 & (VT20NE) & 29.0 \\
\hline 120 & 50 & Portable & & 0-120 & 25.0 & (VT20NFC) & 31.0 \\
\hline \(240^{2}\) & 50 & Basic Case & & 0-240/280 & 9.0 & (VT20HB) & 21.5 \\
\hline \(240{ }^{2}\) & 50 & Basic Case & & 0-240 & 11.0 & (VT20HNB) & 21.5 \\
\hline 2402 & 50 & Fixed Mtg. & & 0-240/2804 & 9.0 & (VT20HE) & 28.0 \\
\hline \(240^{2}\) & 50 & Fixed Mtg. & & 0-240 & 11.0 & (VT2OHNE) & 28.0 \\
\hline \(240{ }^{2}\) & 50 & Portable & & 0-240/280 & 9.0 & (VT20HFC) & 30.0 \\
\hline \(240{ }^{2}\) & 50 & Portable & & 0-240 & 11.0 & (VT20HNFC) & 30.0 \\
\hline
\end{tabular}

SINGLE TRANSFDRMERS - CASED WITh meters (Dimensions p. 33)
\begin{tabular}{l|l|l|l|l|l|l}
\hline 120 & 50 & w/voltmeter, gnd. conn. & \(0-120 / 140^{3}\) & 6.0 & VT8GCV & 15.2 \\
120 & 50 & w/volt. \& a mmtr., gnd. conn. & \(0-120 / 140^{3}\) & 6.0 & (VT8GCVA) & 15.5 \\
120 & 50 & w/volt. \& wattmtr., gnd. conn. & \(0-120 / 140^{3}\) & 6.0 & (VT8GCVW) & 15.5 \\
120 & 50 & w/voltmeter, gnd. conn. & \(0-120\) & 10.0 & (VT8NFCV) & 14.8 \\
\hline
\end{tabular}

SINGLE PHASE (contd.)
SINGLE TRANSFDRMERS - CASED WITH METERS (Dimensions p. 33) (coñtd.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\left[\begin{array}{c}
\text { Freal } \\
1 \\
\mathrm{~Hz} \\
\text { ram }
\end{array}\right.
\] & Feature or Connection & \[
\begin{aligned}
& \text { Maximium D } \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{aligned}
& \text { thput } \\
& \text { Autpos }
\end{aligned}
\] & Catalog \(\mathrm{Na}+\mathrm{u}\) & \[
\begin{array}{|c|c}
\text { Wh. } \\
\text { Los. }
\end{array}
\] \\
\hline 120 & 50 & w/volt. \& ammtr., gnd. conn. & 0-120 & 10.0 & (VT8NFCVA) & 15.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd. conn. & 0-120 & 10.0 & (VT8NFCVW) & 15.2 \\
\hline 120 & 50 & w/voltmeter, gnd. conn. & \(0.120 / 140^{3}\) & 20.0 & (VT20GCV) & 32.0 \\
\hline 120 & 50 & w/volt. \& ammtr, gnd. conn. & 0-120/140 \({ }^{3}\) & 20.0 & (VT20GCVA) & 32.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd. conn. & \(0-120 / 140^{3}\) & 20.0 & (VT20GCVW) & 32.2 \\
\hline 120 & 50 & w/voltmeter, gnd. conn. & 0-120 & 25.0 & (VT20NFCV) & 32.0 \\
\hline 120 & 50 & w/volt. \& ammtr., gnd. conn. & 0-120 & 25.0 & (VT2ONFCVA) & 32.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd. conn. & 0-120 & 25.0 & (VT20NFCVW) & 32.2 \\
\hline
\end{tabular}

TWD-IN-TANDEM ASSEMBLIES \({ }^{510}\) (Dimensions p. 33)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 240 & \(60^{\circ}\) & Series Conn.* & 0-240/264 & 1.0 & (VT1-2) & 3.5 \\
\hline 240 & 60 & Series Conn. \({ }^{\text {6 }}\) & 0-240 & 1.2 & (VT1N-2) & 3.5 \\
\hline 240 & \(60^{4}\) & Series Conn.* & 0-240/264 & 1.75 & (VT02-2) & 5.25 \\
\hline 240 & 60 & Series Conn. \({ }^{\text {6 }}\) & 0-240 & 2.0 & (VT02N-2) & 5.25 \\
\hline 240 & \(60^{4}\) & Series Conn.* & 0-240/264 & 2.6 & (VT3-2) & 6.5 \\
\hline 240 & 60 & Series Conn. \({ }^{\text {6 }}\) & 0-240 & 3.0 & (VT3N-2) & 6.5 \\
\hline 240 & 50 & Series Conn.* & 0-240/280 & 3.5 & (VT4-2) & 11.3 \\
\hline 240 & 50 & Series Conn.* & 0-240 & 4.75 & (VT4N-2) & 11.3 \\
\hline 240 & 50 & Series Conn.* & 0-240/280 & 7.5 & (VT8-2) & 20.6 \\
\hline 240 & 50 & Series Conn. \({ }^{6}\) & 0-240 & 10.0 & VT8N-2 & 20.6 \\
\hline 240 & 50 & Series Conn. \({ }^{6}\) & 0-240/280 & 20.0 & (VT20-2) & 45.0 \\
\hline 240 & 50 & Above unit, B case & 0-240/280 & 20.0 & (VT20-2B) & 46.0 \\
\hline 240 & 50 & Series Conn. \({ }^{6}\) & 0-240 & 25.0 & VT20N-2 & 45.0 \\
\hline 240 & 50 & Above unit, B case & 0-240 & 25.0 & (VT20N-2B) & 46.0 \\
\hline \(480^{2}\) & 50 & Series Conn. \({ }^{\text {c }}\) & 0-480/560 & 3.0 & (VT8H-2) & 20.6 \\
\hline \(480{ }^{2}\) & 50 & Series Conn. \({ }^{\text {6 }}\) & 0-480 & 4.0 & (VT8HN-2) & 20.6 \\
\hline \(480^{2}\) & 50 & Series Conn. \({ }^{6}\) & 0-480/560 & 9.0 & (VT20H-2) & 43 \\
\hline \(480{ }^{2}\) & 50 & Series Conn. \({ }^{6}\) & 0-480 & 11.0 & (VT2OHN-2) & 43 \\
\hline
\end{tabular}

\section*{THREE PHASE}
\begin{tabular}{l|l|l|c|c|l|l}
120 & \(60^{\circ}\) & Open Delta Conn. & \(0-120 / 132\) & 1.0 & (VT1-2) & 3.5 \\
120 & 60 & Open Delta Conn. & \(0-120\) & 1.2 & (VT1N-2) & 3.5 \\
120 & \(60^{\circ}\) & Open Delta Conn. & \(0-120 / 132\) & 1.75 & (VT02-2) & 5.25 \\
120 & 60 & Open Delta Conn. & \(0-120\) & 2.0 & (VT02N-2) & 5.25 \\
120 & \(60^{\circ}\) & Open Delta Conn. & \(0-120 / 132\) & 2.6 & (VT3-2) & 6.5 \\
120 & 60 & Open Delta Conn. & \(0-120\) & 3.0 & (VT3N-2) & 6.5 \\
120 & 50 & Open Detia Conn. & \(0-120 / 140\) & 3.5 & (VT4-2) & 11.3 \\
120 & 50 & Open Delta Conn. & \(0-120\) & 4.75 & (VT4N-2) & 11.3 \\
120 & 50 & Open Delta Conn. & \(0-120 / 140\) & 7.5 & (VT8-2) & 20.6 \\
120 & 50 & Open Delta Conn. & \(0-120\) & 10.0 & VT8N-2 & 20.6 \\
120 & 50 & Open Delta Conn. & \(0-120 / 140\) & 20.0 & (VT20-2) & 45.0 \\
120 & 50 & Above unit, B case & \(0-120 / 140\) & 20.0 & (VT20-2B) & 46.0 \\
120 & 50 & Open Delta Conn. & \(0-120\) & 25.0 & (VT20N-2) & 4.0 \\
120 & 50 & Above unit, B case & \(0 .-120\) & 25.0 & (VT20N-2B) & 46.0 \\
\(240^{2}\) & 50 & Open Deita Conn. & \(0-240 / 280\) & 3.0 & (VT8H-2) & 20.6 \\
\(240^{2}\) & 50 & Open Oelta Conn. & \(0-240\) & 4.0 & (VT8HN-2) & 20.6 \\
\(240^{2}\) & 50 & Open Delta Conn. & \(0-240 / 280\) & 9.0 & (VT20H-2) & 43 \\
\(240^{2}\) & 50 & Open Delta Conn. & \(0-240\) & 11.0 & (VT2OHN-2) & 43 \\
\hline
\end{tabular}

THREE-IN-TANDEM ASSEMBLIES 510 (Dimensions p. 33)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 240 & 60 & "Y" Conn. & 0-240* & 1.0 & (VT1-3) & 5.3 \\
\hline 240 & 60 & "Y" Conn. & 0-240* & 1.75 & VT02-3 & 8.0 \\
\hline 240 & 60 & "Y" Conn. & \(0-240^{\circ}\) & 2.6 & (VT3-3) & 9.8 \\
\hline 240 & \(60^{\circ}\) & "Y" Conn. & 0-240/280 & 3.5 & (VT4-3) & 17.0 \\
\hline 240 & \(60^{\circ}\) & "Y"' Conn. & 0-240/280 & 7.5 & VT8-3 & 31.0 \\
\hline 240 & \(60^{\circ}\) & Above unit, E case & 0-240/280 & 6.0 & (VT8-3E) & 40.0 \\
\hline 240 & \(60^{\circ}\) & "Y" Conn. & 0-240/280 & 20.0 & \(\checkmark\) V20-3 & 68.0 \\
\hline 240 & \(60^{\circ}\) & Above unit, B case & 0-240/280 & 20.0 & VT20-38 & 69.5 \\
\hline 240 & 60 & "Y" Conn. & 0-240 & 25.0 & (VT20N-3) & 68.0 \\
\hline 240 & 60 & Above unit, B case & 0-240 & 25.0 & (VT20N-3B) & 69.5 \\
\hline \(480{ }^{2}\) & \(60^{4}\) & "Y" Conn. & 0-480/560 & 3.0 & VT8H-3 & 31.0 \\
\hline \(480^{2}\) & \(60^{\circ}\) & "Y' Conn. & 0-480/560 & 9.0 & (VT20H-3) & 65.0 \\
\hline \(480{ }^{2}\) & 60 & "Y" Conn. & 0-480 & 11.0 & (VT20HN-3) & 65.0 \\
\hline
\end{tabular}

\footnotetext{
Footnotes for Stock Table
' Frequency shown is a minimum - units may be used up to 1000 cps .
\({ }^{2} \mathrm{VT} 8 \mathrm{H}\) and VT 20 H and 240 V output for VT8HN and VT20HN. With use of 120 V input \(V T 8 \mathrm{H}, \mathrm{V}\) I8HN, VT2OH, VT2OHN also have taps for 120 V input with 280 V output for the max. current rating applies up to 120 V output but reduces to approx. \(50 \%\) at would correspondingly derate the current at the higher output voltages
\({ }^{1}\) Connected at factory for overvoltage output - easily reconnected by user for no-overvoltage output. On VT8G and VT20G, switch selects overvoltage or noovervoltage.
- User wires for desired output. Dial normally calibrated for overvoltage.

3 2-in-tandem normally wired for series connection; 3-in-tandem for \(Y\) connection.
}
\({ }^{6}\) When transformers are series connected, load cannot be grounded.
7 Includes knob, dial and mounting hardware.
- May be used at ! 50 Hz if connected for no-overvoltage output.
- Overvoltage connection must not be used.
\(10240 / 280\) volt CW dial standard except on VT1, VT02 and VT3 tandems where 240/264 volt dial is standard or on VT8H-2, VT8HN-2, VT8H-3, VT20H-2, VT20HN-2, VT2OH. 3 and VT2OHN-3 where \(480 / 560\) volt dial is standard. Request other dials if desired - see "Dials", previous page.
" Underwriters' Laboratories listed under components program (File Number E10946).

\section*{: \(\mathbf{0}\) HMITE Solid State Relays \& Switches}

Originators of the HIGH POWER SOLID STATE RELAY
- For interfacing I.C. logic with motors, solenoids, lamps, heaters, etc
- Complete false actuation protection
- Built-in inductive load commutation
- Substantially lower prices

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & 11 & 1 ta & In & & & & & 113 & & B.tera \\
\hline & \multicolumn{3}{|c|}{H18 letiet} & \multicolumn{3}{|c|}{} & \multicolumn{2}{|l|}{iniverivins} & \multicolumn{4}{|c|}{} & Itient \\
\hline & 31 in & Lerta 4 & LHI & Eertis & Ethrat & bet & 7 & I & E1ei & 2ial & 85a & 1rek & 21930. \\
\hline Input Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 15 \text { to } 120 \text { VAC } \\
& 10 \text { to } 185 \text { VDC }
\end{aligned}
\]} & \(25^{2}\) to 120 VAC 10 to \(185 \mathrm{VDC}^{1}\) & 3 to 32 VDC (polarized) & 4 to 32 VDC (polarized) & 4 to 32 VDC (polarized) & 20 to 40 VAC 20 to 40 VDC & 75 to 140 VAC
40 to 185 VDC & \[
\begin{aligned}
& 3 \text { to } 9 \mathrm{VDC} \\
& 3.5 \mathrm{~V} . \text { nom. }
\end{aligned}
\] & \[
\begin{aligned}
& \hline 5 \text { to } 9 \mathrm{VDC} \\
& 6 \mathrm{~V} . \text { nom. }
\end{aligned}
\] & \begin{tabular}{l}
10 to 18 VDC \\
12 V . nom.
\end{tabular} & \[
\begin{array}{|c}
\hline 20 \text { to } 30 \mathrm{VDC} \\
24 \mathrm{~V} . \text { nom. }
\end{array}
\] & \multirow{6}{*}{Any external contact closure capable of carrying 50 mA . current and insulated to withstand the line voltage being used.} \\
\hline Input Current & \[
4 \mathrm{~mA} .
\]
\[
\max .
\] & \[
\underset{\max .}{2.2 \mathrm{~mA}}
\] & 2.2 mA. max. & 4 mA . max. & 2.2 mA max. & 2.2 mA. & 10 mA . max. & 18 mA . max. & 11.5 mA . & 33 mA . & 17 mA . & 10 mA . & \\
\hline Threshold Volts & \[
\begin{aligned}
& 10 \mathrm{~V} . \\
& \mathrm{min} .
\end{aligned}
\] & \[
\begin{aligned}
& 10 \mathrm{v} . \\
& \mathrm{min} .
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 20 \mathrm{~V} . \min . \mathrm{AC} \\
10 \mathrm{~V} . \min . \mathrm{DC} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.0 \mathrm{~V} \cdot \text { max. }{ }^{3} \\
& 2.5 \mathrm{~V} . \text { min. }
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \mathrm{~V} . \max . \\
& 3.5 \mathrm{~V} . \min .
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \mathrm{~V} \text { max. } \\
& 3.5 \mathrm{~V} \text { min. }
\end{aligned}
\] & 5 VAC min.
5 VDC min. & \begin{tabular}{l}
20 VAC min. \\
10 VDC min.
\end{tabular} & \[
\begin{aligned}
& 3.5 \mathrm{~V} . \text { max. } \\
& \text { 1.0 V. min. }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \text { V. max. } \\
& 1 \text { V. min. }
\end{aligned}
\] & \[
\begin{aligned}
10 \mathrm{~V} . \max . \\
3 \mathrm{~V} . \min .
\end{aligned}
\] & \[
\begin{aligned}
& 20 \mathrm{~V} . \text { max. } \\
& 5 \mathrm{~V} . \min ,
\end{aligned}
\] & \\
\hline Dropout Volts & 3 & 3 & 3 & - & - & - & 3 & 3 & 0.5 V . & 0.5 V . & 1.0 V . & 2.0 V . & \\
\hline Hysteresis & - & - & - & 0.2 V . & 0.2 V . & 0.2 V . & - & - & - & - & - & - & \\
\hline Coil Impedance & - & - & - & - & - & - & - & - & \(300 \Omega\) & 150 』 & 60012 & \(2000 \Omega\) & \\
\hline
\end{tabular}

Non-polarized. \({ }^{2}\) Starting voltage for 120 VAC load model. 50 VAC start for 240 VAC load model. 35.0 V . max. for synchronous switching models. 100 VDC max. for synch.

\section*{OUTPUT/LOAD}

Load Voltage: 120 or 240 VAC, rms., depending on model.
Load Ratings: (@ \(25^{\circ} \mathrm{C}\) ambient).

Maximum:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 02 & 05 & 10 & 15 & 25 \\
\hline E-mep & 2 A . & 5A. & 10A. & 15A. & 25A \\
\hline Prict & 2 A . & 3.5 & 4.5A. & 5 A . & 8A \\
\hline
\end{tabular}

\section*{Minimum: 40 mA .}

Surge Current: Withstand at least 10 times rated current for 1 cycle of load current Voltage Drop: Closed ("on"), 1.6 volts, typical.

Transient Protection: Onmite relays and switches are protected from transient line voltages which can damage and cause false operation. Ohmite's field proven snubber network limits the \(\mathrm{dV} / \mathrm{dr}\) seen by the device to \(1 \mathrm{~V} / \mu \mathrm{Sec}\)., in the "off" state.
Dielectric Strength: 1500 Volts, rms for all units for input or output to heat sink 1500 Volts, rms for input to output on standard non-synchronous units only.

Isolation:
Standard Switching 500 Gigaohms between "coil" and "contacts," "contacts" to case and case to "coil."
Synchronous Swisching 500 Gigaohms between "coil" and case and "contacts" and case. Between "coil" and "contacts:" See
\begin{tabular}{c|c|c}
\multicolumn{2}{c}{ table. } \\
\hline \multirow{2}{*}{ Series } & \multicolumn{2}{|c}{ l.oad Voltage } \\
\cline { 2 - 3 } & 120 V. & 240 V. \\
\hline SSC & \(220 \mathrm{~K}!\) & \(470 \mathrm{~K} \Omega\) \\
\hline SSB & \(200 \mathrm{~K} \Omega\) & \(470 \mathrm{~K} \Omega\) \\
\hline SSH & \(150 \mathrm{~K}!\) & \(220 \mathrm{~K} \Omega\) \\
\hline
\end{tabular}

Speed of Operation:
Drop-out (Turn "off"):
\(1 / 2\) cycle load current, all models.
Pick-up (Turn "on"): See table
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{trest} & 1+17 & 24nt \\
\hline & tur & -2 \\
\hline SSA & \(500 \mu \mathrm{sec}\). & - \\
\hline SSB & \(500 \mu \mathrm{sec}\). & \(1 / 2\) cycle \\
\hline SSC & \(500 \mu \mathrm{sec}\). & \(1 / 2\) cycle \\
\hline SSH & 1 msec . & \(1 / 2\) cycle \\
\hline SSS & 1 msec . & - \\
\hline
\end{tabular}

Ambient Temperature Range: Storage: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). Operating: \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C} * *\)
Mounting: For full load ratings on Style 1 terminal models, mount 5 ampere models on an aluminum panel \(6^{\prime \prime}\) square \(x\) \(1 / 8^{\prime \prime}\) thick or equivalent; mount 10,15 and 25 ampere roodels on a panel \(9^{\prime \prime}\) square \(x^{3 \prime \prime \prime}\) thick or equivalent Ratings for styles 4 and 5 terminations are limited to the "free air" rating for style 1 models unless an auxiliary heat dissipator used. Style 6 (octal socket with dissipator) models are rated 7 amperes maximum for equivalent Style 1, 10 and 15 ampere models.
Terminals: Style 1: Combination \(1 / 4^{\prime \prime}\) faston tab and solder lug. Also \#8 screw adapters.* Style 4: Printed circuit pins, \(.032^{\prime \prime}\) diameter. Style 5: Octal socket (available on special order). Style 6: Octal socket \(w /\) heat sink (available on special order).
Weight: Approximately 2.5 ounces
*Note: If screw terminals are required, specify Style 1 (faston tab) and order screw adapters, Cat. No. 5950, packed 10 per package
** See factory for \(-55^{\circ} \mathrm{C}\) to \(+110^{\circ} \mathrm{C}\) Operating Temperature
 Note: For special requirements consult factory.

\section*{RESISTORS}

Wirewound
Carbon Film
Caroon Composition

\section*{CHOKES}

Power Chokes
if Plate Chokes

\section*{RHEOSTATS}

SOLID STATE CONTROLS
Power/Motor Speed Controls

\section*{SWITCHES}

\section*{RELAYS}

Electromechanical
Magnatic Laiching
Solid State Time Delay
Solid State and Hybrid
Solld State Power Switches and Contactors

\section*{VARIABLE TRANSFORMERS}

For furthes information
on any of the Olinibe produets.
whits ar calt
Ohmite Manufocturing Company
\(300)\) Howadd Strel
SWolit, lin in in d60\%
(312) OR \(\$ 2600\)
a North American Phlips Company

OHMITE
ghas the answer

ORDERING INFORMATION

For your convenience, we recommend that you place your orders with your local authorized OHMITE stocking distributor for standard distributors stock factory-fresh OHMITE components in-depth and therefore are able to offer same-day or overnight service.

QUICK-DELIVERY COMPONENTS
You are assured of immediate delivery of those items listed in this catalog that appear in bold print. Bold listings indicate that these
items have, over the years, become the most popular components on a national basis.

Items appearing in light face type are available from authorized they are distributors but normally are not stocked in depth because
are s appearing in parentheses are non-stock standard items and

Copyright 1970. OHMITE Mfg. Co., A North American Philips Co., 3660 Howard St., Skokie, Illinois 60075.

\section*{© HMITE radial lead resistors for P.C. boards}

\section*{Increases productivity 28.1\% - Saves circuit board space}

If you are manually inserting axial lead resistors in printed circuit boards, it will pay you to examine the new Ohmite PC-58 resistor.

\section*{ADVANTAGES:}

LABOR SAVING: Radial Leads eliminate cutting, bending, and forming of leads. Productivity is increased \(28.1 \%\). You achieve a \(21.9 \%\) savings in labor cost. (Time Study Publication No. 163 available on request.)
SPACE SAVINC: Radial leads reduce total length dimension required compared to axial lead types, increases packaging density possibilities.
POSITIVE POSITIONING: Built in stand-off automatically provides correct spacing between resistor and P.C. board.

COST SAVING: PC-58 resistors are priced lower than comparable axial lead types. This is in addition to savings in labor as explained above.
STANDARD SIZE: PC-58 Radial Leads fit standard .1 inch matrix boards with standard .046 inch diameter holes.
MARKINGS ALWAYS VISIBLE: Value and Ohmite code markings are always visible from the top of the PC-58. Eliminates time consuming orientation normally required of axial lead types.
CHOICE DF COATINGS: PC-58 resistors are available in \(\pm 5 \%\) tolerance with Vitreous Enamel (Type 270) for resistance values to 3300 ohms for 3 -watt and to 6800 ohms for \(51 / 4\)-watt or Ohmicone silicone-ceramic (Type 470) for values over 3300 ohms and 6800 ohms for 3 and \(51 / 4\)-watt sizes, respectively. For tolerances of \(\pm 3 \%\) and closer or for low T.C., specify Ohmicone Type 474.

AVAILABILITY: Now standard PC-58 resistors are in stock at your local Ohmite authorized stocking distributor.

3-WATT
Free air rating thru 10K ohms.
\begin{tabular}{|r|c|c|c|c|c|c|c|c|}
\hline Ohms & \begin{tabular}{c}
Catalog \\
No.
\end{tabular} & \begin{tabular}{c}
Max. \\
Amps
\end{tabular} & Ohms & \begin{tabular}{c}
Catalog \\
No.
\end{tabular} & \begin{tabular}{c}
Max. \\
Amps
\end{tabular} & \begin{tabular}{c}
Ohms
\end{tabular} & \begin{tabular}{c}
Catalog \\
No.
\end{tabular} & \begin{tabular}{c}
Max. \\
Amps
\end{tabular} \\
\hline 1.0 & 5800 & 1.73 & 120 & 5817 & .158 & 1200 & 5834 & .0500 \\
1.5 & 5801 & 1.41 & 150 & 5818 & .141 & 1500 & 5835 & .0447 \\
2.0 & 5802 & 1.22 & 200 & 5819 & .122 & 1800 & 5836 & .0408 \\
2.4 & 5803 & 1.12 & 250 & 5820 & .110 & 2000 & 5837 & .0387 \\
3.0 & 5804 & 1.00 & 270 & 5821 & .105 & 2500 & 5838 & .0346 \\
4.0 & 5805 & .866 & 300 & 5822 & .100 & 2700 & 5839 & .0333 \\
5.0 & 5806 & .774 & 330 & 5823 & .0953 & 3000 & 5840 & .0316 \\
7.5 & 5807 & .632 & 400 & 5824 & .0866 & 4000 & \(5841^{*}\) & .0274 \\
10.0 & 5808 & .548 & 450 & 5825 & .0816 & 4700 & \(5842^{*}\) & .0253 \\
15 & 5809 & .447 & 500 & 5826 & .0775 & 5000 & \(5843^{*}\) & .0245 \\
20 & 5810 & .387 & 560 & 5827 & .0732 & 5600 & \(5844^{*}\) & .0231 \\
30 & 5811 & .316 & 600 & 5828 & .0707 & 6200 & \(5845^{*}\) & .0220 \\
50 & 5812 & .245 & 620 & 5829 & .0696 & 7000 & \(5846^{*}\) & .0209 \\
56 & 5813 & .231 & 750 & 5830 & .0632 & 7500 & \(5847^{*}\) & .0200 \\
68 & 5814 & .210 & 800 & 5831 & .0612 & 9000 & \(5848^{*}\) & .0182 \\
82 & 5815 & .191 & 900 & 5832 & .0577 & 10000 & \(5849^{*}\) & .0173 \\
100 & 5816 & .173 & 1000 & 5833 & .0548 & & & \\
\hline
\end{tabular}
*NOTE: These resistors are Ohmicone Coated, Type 470.
' All standard values shown above are popular values and are stocked by authorized OHMITE stocking distributors.

\section*{SPECIFICATIONS:}
mechanical on Type.
electrical

Free air rating thru 15 K ohms.

Coating: Vitreous Enamel or Ohmicone (silicone-ceramic), depending
Terminals: Radial, solder-dipped.
Markings: Ohmite Code and Resistance (Ohms) Value.
Weight: 3-Watt: . 002 lbs ; \(51 / 4\) Watt: .003 lbs .
Tolerance: \(\pm 5 \%\) for 1 ohm and above; \(\pm 10 \%\) below 1 ohm.
Wattage: 3 -Watt, derated to 0 at \(350^{\circ} \mathrm{C}-514 / 4\)-Watt, derated to 0 at \(350^{\circ} \mathrm{C}\)
Temperature Coefficient: Less than \(260 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

\begin{tabular}{c|c|c|c|c|c}
\hline \begin{tabular}{c}
Rated \\
Watts \\
@ \(25^{\circ} \mathrm{C}\)
\end{tabular} & \multicolumn{6}{|c}{ OIMENSIONS Unches) } \\
\hline \(\mathbf{A} \pm .010\) & \(\mathrm{~B} \pm 1 / 22\) & C Max. & E Min. & \(\mathrm{L} \pm .006\) \\
\hline 3 & .300 & .335 & \(2 / 32\) & \(/ 4\) & \(5 / 6\) \\
\hline \(51 / 4\) & .500 & .375 & \(5 / 6\) & \(1 / 22\) & \(5 / 6\) \\
\hline
\end{tabular}

\section*{51⁄4-WATT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ohms & \[
\begin{array}{|c|}
\hline \text { Catalog } \\
\mathrm{No} \text { I }
\end{array}
\] & Max. Amps & Ohms & Catalog No. 1 & \[
\begin{array}{|c|}
\hline \text { Max. } \\
\text { Amps }
\end{array}
\] & Ohms & Catalog
\[
\mathrm{No.}^{1}
\] & \[
\begin{array}{|l|}
\hline \text { Max. } \\
\text { Amps }
\end{array}
\] \\
\hline 1.0 & 5850 & 2.29 & 100 & 5864 & . 229 & 1800 & 5882 & . 0540 \\
\hline 1.5 & 5850A & 1.87 & 120 & 5865 & . 209 & 2000 & 5883 & . 0512 \\
\hline 2.0 & 5851 & 1.62 & 150 & 5866 & . 187 & 2200 & 5883A & . 0488 \\
\hline 3.0 & 5851A & 1.32 & 160 & 5867 & . 181 & 2500 & 5884 & . 0458 \\
\hline 4.0 & 58518 & 1.15 & 200 & 5868 & . 162 & 3000 & 5885 & . 0418 \\
\hline 5.0 & 5852 & 1.02 & 220 & 5869 & . 154 & 3300 & 5885A & . 0399 \\
\hline 5.6 & 5852A & . 968 & 250 & 5870 & . 145 & 3900 & 5885B & . 0367 \\
\hline 10.0 & 5853 & . 725 & 270 & 5870A & . 139 & 4000 & 5886 & . 0362 \\
\hline 15 & 5854 & . 592 & 300 & 5871 & . 132 & 4500 & 5887 & . 0341 \\
\hline 18 & 5855 & . 540 & 330 & 5872 & . 126 & 5000 & 5888 & . 0324 \\
\hline 20 & 5856 & . 512 & 350 & 5873 & . 122 & 5600 & 5889 & . 0306 \\
\hline 22 & 5856A & . 489 & 400 & 5874 & . 115 & 6000 & 5890 & . 0296 \\
\hline 25 & 5857 & . 458 & 500 & 5875 & . 102 & 7500 & 5891* & . 0265 \\
\hline 30 & 5858 & . 418 & 510 & 5875A & . 101 & 8200 & 5892* & . 0253 \\
\hline 40 & 5859 & . 362 & 560 & 5875B & . 0968 & 9000 & 5893* & . 0241 \\
\hline 50 & 5860 & . 324 & 600 & 5876 & . 0935 & 9100 & 5893A* & . 0240 \\
\hline 51 & 5860A & . 321 & 750 & 5877 & . 0837 & 10000 & 5894* & . 0229 \\
\hline 56 & 5860B & . 306 & 800 & 5878 & . 0810 & 12000 & 5895* & . 0209 \\
\hline 68 & 5861 & . 278 & 1000 & 5879 & . 0725 & 15000 & 5896* & . 0187 \\
\hline 75 & 5862 & . 265 & 1200 & 5880 & . 0661 & 20000 & 5897* & . 0152 \\
\hline 82 & 5863 & . 253 & 1300 & 5881 & . 0635 & & & \\
\hline
\end{tabular}
*NOTE: These resistors are Ohmicone Coated, Type 470.

\section*{징 HMITE type 995 MOLDED axial lead vitreous enameled resistors}

- FIRST MOLOEO WIREWOUNO, VITREOUS ENAMEL RESISTOR
- INSULATEO! Meets 1000 VAC Test
- WITHSTANDS \(1500^{\circ}\) F Temperatures without Distortion
- RESISTS Chipping, Breaking
- VITRIFIED MARKINGS, Resist Abrasion and Active Solvents
- UNIFORM SIZE Permits Clip-Mounting with Significant Heat Sink Benefits
- high overload capability

An exclusive technique (U. S. Patent No.'s \(3,229,237\) and \(3,489,828\)) permits application
of the vitreous enamel coating by molding instead of the conventional "dip" process. The dimensionally consistent and thicker coating that results, guarantees a 1000 VAC insulation rating plus unparalleled capability for withstanding very high temperatures, high humidity and immersion in salt solution.

These resistors are normally mounted by their axial leads. However, their consistent form also permits mounting in clips with heat sink benefits up to \(100 \%\) (see "Clips" lower left). Resistor markings are also vitreous and will not burn off even under extreme overloads. Resistance tolerance is \(\pm 5 \%\). Series 99 resistors meet the requirements of MIL-R-26 for "insulated" resistors. See Catalog 101 for specific MIL types.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(11 / 2\) WATT} & \multicolumn{6}{|c|}{21/4 WATT} \\
\hline Ohms & \[
\begin{aligned}
& \text { Cataliog } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps }
\end{aligned}
\] & Dhmis & \[
\begin{aligned}
& \text { Catalog } \\
& \text { No, }
\end{aligned}
\] & Max. hmps & Ohns & \[
\begin{aligned}
& \text { Catater } \\
& \text { W\&: }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max } \\
& \text { Rmpipi }
\end{aligned}
\] & dinim & \[
\begin{aligned}
& \text { Cataligg } \\
& \text { Bo, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max } \\
& \text { Kmpz }
\end{aligned}
\] \\
\hline 1.0 & 4030 & 1.24 & 75 & 4087 & . 141 & 1.0 & 3860 & 1.50 & 68 & (3916) & . 18 \\
\hline 1.1 & (4031) & 1.17 & 82 & 4089 & . 135 & 1.1 & (3861) & 1.43 & 75 & (3918) & . 17 \\
\hline 1.2 & 4032 & 1.12 & 91 & 4091 & . 128 & 1.2 & (3862) & 1.37 & 82 & (3920) & . 16 \\
\hline 1.3 & 4033 & 1.08 & 100 & 4092 & . 123 & 1.3 & (3863) & 1.31 & 91 & (3922) & . 16 \\
\hline 1.5 & 4034 & 1.00 & 110 & 4093 & . 117 & 1.5 & (3864) & 1.22 & 100 & 3923 & . 15 \\
\hline 1.6 & 4035 & . 97 & 120 & 4094 & . 112 & 1.6 & 3865 & 1.18 & 110 & (3924) & . 14 \\
\hline 1.8 & 4036 & . 91 & 130 & 4095 & . 108 & 1.8 & (3866) & 1.11 & 120 & (3925) & . 14 \\
\hline 2.0 & 4037 & . 87 & 150 & (4096) & . 100 & 2.0 & (3867) & 1.05 & 130 & 3926 & . 13 \\
\hline 2.2 & 4038 & . 83 & 160 & (4097) & . 097 & 2.2 & 3868 & 1.01 & 150 & 3927 & . 12 \\
\hline 2.4 & 4039 & . 79 & 180 & 4098 & . 091 & 2.4 & (3869) & . 97 & 160 & 3928 & . 12 \\
\hline 2.7 & 4041 & . 75 & 200 & 4099 & . 087 & 2.7 & (3871) & . 91 & 180 & 3929 & . 11 \\
\hline 3.0 & 4042 & . 71 & 220 & 4100 & . 083 & 3.0 & 3872 & . 86 & 200 & (3930) & . 10 \\
\hline 3.3 & 4043 & . 67 & 240 & (4101) & . 079 & 3.3 & 3873 & . 82 & 220 & 3931 & . 10 \\
\hline 3.6 & 4044 & . 65 & 250 & (4102) & . 077 & 3.6 & (3874) & . 79 & 240 & (3932) & . 097 \\
\hline 3.9 & 4045 & . 62 & 270 & (4103) & . 075 & 3.9 & (3875) & . 76 & 250 & 3933 & . 094 \\
\hline 4.0 & 4046 & . 61 & 300 & 4104 & . 071 & 4.0 & 3876 & . 73 & 270 & 3934 & . 091 \\
\hline 4.3 & (4047) & . 59 & 330 & 4105 & . 067 & 4.3 & (3877) & . 72 & 300 & 3935 & . 086 \\
\hline 4.7 & (4048) & . 56 & 350 & (4105A) & . 065 & 4.7 & 3878 & . 69 & 330 & (3936) & . 082 \\
\hline 5.0 & 4049 & . 55 & 360 & 4106 & . 064 & 5.0 & 3879 & . 67 & 350 & 3937 & . 080 \\
\hline 5.1 & (4050) & . 54 & 390 & (4107) & . 062 & 5.1 & 3880 & . 66 & 360 & (3938) & . 079 \\
\hline 5.6 & 4051 & . 52 & 400 & (4108) & . 061 & 5.6 & 3881 & . 63 & 390 & (3939) & . 076 \\
\hline 6.2 & 4053 & . 49 & 430 & 4109 & . 059 & 6.2 & 3883 & . 60 & 400 & (3940) & . 075 \\
\hline 6.8 & 4054 & . 47 & 450 & 4109A & . 058 & 6.8 & 3884 & . 57 & 430 & (3941) & . 072 \\
\hline 7.5 & 4056 & . 45 & 470 & 4110 & . 056 & 7.5 & (3886) & . 55 & 450 & (3942) & . 071 \\
\hline 8.2 & 4058 & . 43 & 500 & 4111 & . 055 & 8.2 & 3888 & . 52 & 470 & 3943 & . 069 \\
\hline 9.1 & (4060) & . 41 & 510 & 4112 & . 054 & 9.1 & (3890) & . 50 & 500 & 3944 & . 067 \\
\hline 10 & 4061 & . 39 & 560 & 4113 & . 052 & 10 & 3891 & . 47 & 510 & (3945) & . 066 \\
\hline 11 & 4062 & . 37 & 600 & 4114 & . 050 & 11 & 3892 & . 45 & 560 & (3946) & . 063 \\
\hline 12 & 4063 & . 35 & 620 & 4115 & . 049 & 12 & 3893 & . 43 & 600 & (3947) & . 061 \\
\hline 13 & . 4064 & . 34 & 680 & 4116 & . 047 & 13 & (3894) & . 41 & 620 & (3948) & . 060 \\
\hline 15 & (4065) & . 32 & 700 & 4117 & . 046 & 15 & 3895 & . 39 & 680 & (3949) & . 057 \\
\hline 16 & 4066 & . 31 & 750 & 4118 & . 045 & 16 & (3896) & . 37 & 700 & 3950 & . 056 \\
\hline 18 & (4067) & . 29 & 800 & 4119 & . 043 & 18 & (3897) & . 35 & 750 & (3951) & . 055 \\
\hline 20 & 4068 & . 27 & 820 & (4120) & . 043 & 20 & 3898 & . 33 & 800 & (3952) & . 053 \\
\hline 22 & 4069 & . 26 & 900 & (4121) & . 041 & 22 & 3899 & . 32 & 820 & 3953 & . 052 \\
\hline 24 & 4070 & . 25 & 910 & (4122) & . 041 & 24 & (3900) & . 31 & 900 & (3954) & . 050 \\
\hline 25 & (4071) & . 25 & 1000 & 4123 & . 039 & 25 & 3901 & . 30 & 910 & (3955) & . 050 \\
\hline 27 & 4072 & . 24 & 1100 & (4124) & . 037 & 27 & 3902 & . 29 & 1000 & 3956 & . 047 \\
\hline 30 & 4073 & . 22 & 1200 & 4125 & . 035 & 30 & (3903) & . 27 & 1100 & 3957 & . 045 \\
\hline 33 & 4074 & . 21 & 1300 & 4126 & . 034 & 33 & (3904) & . 26 & 1200 & 3958 & . 043 \\
\hline 35 & (4074A) & . 207 & 1400 & (4126A) & . 033 & 35 & (3905) & . 25 & 1300 & 3959 & . 041 \\
\hline 36 & (4075) & . 200 & 1500 & 4127 & . 032 & 36 & (3906) & . 25 & 1400 & (3960) & . 040 \\
\hline 39 & 4076 & . 196 & 1600 & 4128 & . 031 & 39 & 3907 & . 24 & 1500 & (3961) & . 039 \\
\hline 40 & 4077 & . 193 & 1800 & 4129 & . 029 & 40 & (3908) & . 24 & 1600 & (3962) & . 037 \\
\hline 43 & (4078) & . 187 & 2000 & 4130 & . 027 & 43 & 3909 & . 23 & 1800 & (3963) & . 035 \\
\hline 47 & (4079) & . 179 & 2200 & 4131 & . 026 & 47 & 3910 & . 22 & 2000 & 3964 & . 033 \\
\hline 50 & 4080 & . 173 & 2400 & (4132) & . 025 & 50 & (3911) & . 21 & 2200 & 3965 & . 032 \\
\hline 51 & (4081) & . 171 & 2500 & 4133 & . 025 & 51 & (3912) & . 21 & 2400 & (3966) & . 031 \\
\hline 56 & 4082 & . 164 & 2700 & (4134) & . 024 & 56 & (3913) & . 20 & 2500 & 3967 & . 030 \\
\hline 62 & 4084 & . 156 & 3000 & 4135 & . 022 & 62 & 3915 & . 19 & 2700 & (3968) & . 028 \\
\hline 68 & 4085 & . 149 & & & & & & & 3000 & (3969) & . 027 \\
\hline
\end{tabular}

\footnotetext{
Popular items appear In BOLD print and are usually In stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are availabie from stocking
} distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a \(\$ 15.00\) per ina item minimum charge.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{31/4 WATT} \\
\hline Ohms & \begin{tabular}{l}
Catalof \\
No.
\end{tabular} & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps } \\
& \hline
\end{aligned}
\] & Ohms & Catalog No. & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps }
\end{aligned}
\] \\
\hline 1.0 & 4330 & 1.80 & 200 & 4399 & . 13 \\
\hline 1.1 & (4331) & 1.71 & 220 & 4400 & . 12 \\
\hline 1.2 & (4332) & 1.65 & 240 & 4401 & . 11 \\
\hline 1.3 & 24333) & 1.58 & 250 & 4402 & . 11 \\
\hline 1.5 & 4334 & 1.47 & 270 & 4403 & . 109 \\
\hline 1.6 & (4335) & 1.42 & 300 & 4404 & . 100 \\
\hline 1.8 & 4336 & 1.34 & 330 & 4405 & . 099 \\
\hline 2.0 & 4337 & 1.27 & 350 & (4405A) & . 096 \\
\hline 2.2 & 4338 & 1.22 & 360 & 4406 & . 095 \\
\hline 2.4 & 4339 & 1.16 & 390 & 4407 & . 091 \\
\hline 2.7 & 4341 & 1.09 & 400 & 4408 & . 090 \\
\hline 3.0 & 4342 & 1.04 & 430 & 4409 & . 087 \\
\hline 3.3 & 4343 & . 99 & 450 & 4409A & . 084 \\
\hline 3.6 & 4344 & . 95 & 470 & 4410 & . 083 \\
\hline 3.9 & (4345) & . 91 & 500 & 4411 & . 081 \\
\hline 4.0 & 4346 & . 90 & 510 & 4412 & . 080 \\
\hline 4.3 & 4347 & . 87 & 560 & 4413 & . 076 \\
\hline 4.7 & 4348 & . 83 & 600 & 4414 & . 073 \\
\hline 5.0 & 4349 & . 81 & 620 & 4415 & . 072 \\
\hline 5.1 & 4350 & . 80 & 680 & 4416 & . 069 \\
\hline 5.6 & 4351 & . 76 & 700 & 4417 & . 068 \\
\hline 6.2 & 4353 & . 72 & 750 & 4418 & . 065 \\
\hline 6.8 & 4354 & . 69 & 800 & 4419 & . 064 \\
\hline 7.5 & 4356 & . 65 & 820 & 4420 & . 063 \\
\hline 8.2 & 4358 & . 63 & 900 & 4421 & . 060 \\
\hline 9.1 & 4360 & . 60 & 910 & 4422 & . 060 \\
\hline 10 & 4361 & . 56 & 1000 & 4423 & . 056 \\
\hline 11 & 4362 & . 54 & 1100 & 4424 & . 054 \\
\hline 12 & 4363 & . 52 & 1200 & 4425 & . 052 \\
\hline 13 & 4364 & . 50 & 1300 & 4426 & . 050 \\
\hline 15 & 4365 & . 47 & 1400 & (4426A) & . 048 \\
\hline 16 & (4366) & .45 & 1500 & 4427 & . 047 \\
\hline 18 & 4367 & . 42 & 1600 & 4428 & . 045 \\
\hline 20 & 4368 & . 40 & 1800 & 4429 & . 042 \\
\hline 22 & 4369 & . 39 & 2000 & 4430 & . 040 \\
\hline 24 & (4370) & . 36 & 2200 & 4431 & . 039 \\
\hline 25 & 4371 & . 36 & 2400 & 4432 & . 036 \\
\hline 27 & 4372 & . 35 & 2500 & 4433 & . 036 \\
\hline 30 & 4373 & . 30 & 2700 & 4434 & . 035 \\
\hline 33 & 4374 & . 31 & 3000 & 4435 & . 033 \\
\hline 35 & 4374A & . 30 & 3300 & 4436 & . 031 \\
\hline 36 & (4375) & . 30 & 3500 & 4436A & . 030 \\
\hline 39 & 4376 & . 29 & 3600 & (4437) & . 030 \\
\hline 40 & 4377 & . 28 & 3900 & 4438 & . 029 \\
\hline 43 & (4378) & . 27 & 4000 & 4439 & . 028 \\
\hline 47 & 4379 & . 26 & 4300 & (4440) & . 027 \\
\hline 50 & 4380 & . 25 & 4500 & (4440A) & . 027 \\
\hline 51 & 4381 & . 25 & 4700 & 4441 & . 026 \\
\hline 56 & 4382 & . 24 & 5000 & 4442 & . 025 \\
\hline 62 & 4384 & . 23 & 5100 & (4443) & . 025 \\
\hline 68 & 4385 & . 22 & 5600 & 4444 & . 024 \\
\hline 75 & 4387 & . 21 & 6000 & 4445 & . 023 \\
\hline 82 & 4389 & . 20 & 6200 & 4446 & . 023 \\
\hline 91 & 4391 & . 19 & 6800 & 4447 & . 022 \\
\hline 100 & 4392 & . 18 & 7000 & 4448 & . 021 \\
\hline 110 & (4393) & . 17 & 7500 & 4449 & . 021 \\
\hline 120 & 4394 & . 16 & 8000 & 4450 & . 020 \\
\hline 130 & 4395 & . 16 & 8200 & 4451 & . 020 \\
\hline 150 & 4396 & . 15 & 9000 & 4452 & . 019 \\
\hline 160 & 4397 & . 14 & 9100 & (4453) & . 019 \\
\hline 180 & 4398 & . 13 & 10000 & 4454 & . 018 \\
\hline \multicolumn{2}{|l|}{STYLE 995-} & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{STYLE 995--}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1A:
2A:
A22
.}} & & & & \\
\hline & & & \multicolumn{2}{|l|}{\(1-1 / 2^{\prime \prime}\)} & 2A: . 188 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{array}{r}
3 A: .547 \\
58: .938 \\
10 A: 1.781
\end{array}
\]}} & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Wife Lead}} & 3A: . 203 \\
\hline & & & & & 58: . 203 \\
\hline & & & & & 10A: . 312 \\
\hline \multicolumn{2}{|r|}{¢} & & & & \\
\hline
\end{tabular}

5 WATT
\(.938^{\prime \prime} \times .203^{\prime \prime}\) Dia. Style 995.5B
Avg. Wt., . 004 lb .
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ohims & Cataiog Nio.! & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps }
\end{aligned}
\] & Otims & \[
\begin{aligned}
& \text { Catalog } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{M}_{3 x} \\
& \mathrm{Ampy}
\end{aligned}
\] \\
\hline 1.0 & 4530 & 2.24 & 330 & 4605 & . 12 \\
\hline 1.1 & 4531 & 2.13 & 350 & 4605A & . 12 \\
\hline 1.2 & 4532 & 2.04 & 360 & (4606) & . 12 \\
\hline 1.3 & (4533) & 1.96 & 390 & 4607 & . 11 \\
\hline 1.5 & 4534 & 1.83 & 400 & 4608 & . 11 \\
\hline 1.6 & 4535 & 1.77 & 430 & (4609) & . 11 \\
\hline 1.8 & 4536 & 1.67 & 450 & 4609A & . 11 \\
\hline 2.0 & 4537 & 1.58 & 470 & 4610 & . 10 \\
\hline 2.2 & 4538 & 1.51 & 500 & 4611 & . 10 \\
\hline 2.4 & 4539 & 1.44 & 510 & 4612 & . 10 \\
\hline 2.7 & 4541 & 1.36 & 560 & 4613 & . 094 \\
\hline 3.0 & 4542 & 1.29 & 600 & 4614 & . 091 \\
\hline 3.3 & (4543) & 1.23 & 620 & 4615 & . 090 \\
\hline 3.6 & 4544 & 1.18 & 680 & 4616 & . 086 \\
\hline 3.9 & (4545) & 1.13 & 700 & 4617 & . 084 \\
\hline 4.0 & 4546 & 1.11 & 750 & 4618 & . 082 \\
\hline 4.3 & (4547) & 1.07 & 800 & 4619 & . 079 \\
\hline 4.7 & 4548 & 1.03 & 820 & 4620 & . 078 \\
\hline 5.0 & 4549 & 1.00 & 900 & 4621 & . 074 \\
\hline 5.1 & 4550 & . 99 & 910 & (4622) & . 074 \\
\hline 5.6 & 4551 & . 94 & 1000 & 4623 & . 071 \\
\hline 6.2 & 4553 & . 90 & 1100 & 4624 & . 067 \\
\hline 6.8 & (4554) & . 86 & 1200 & 4625 & . 065 \\
\hline 7.5 & 4556 & . 82 & 1300 & 4626 & . 062 \\
\hline 8.2 & 4558 & . 78 & 1400 & (4626A) & . 059 \\
\hline 9.1 & (4560) & . 74 & 1500 & 4627 & . 058 \\
\hline 10 & 4561 & . 71 & 1600 & 4628 & . 056 \\
\hline 11 & (4562) & . 67 & 1800 & 4629 & . 053 \\
\hline 12 & 4563 & . 65 & 2000 & 4630 & . 050 \\
\hline 13 & 4564 & . 62 & 2200 & 4631 & . 048 \\
\hline 15 & 4565 & . 58 & 2400 & 4632 & . 046 \\
\hline 16 & 4566 & . 56 & 2500 & 4633 & . 045 \\
\hline 18 & 4567 & . 53 & 2700 & 4634 & . 043 \\
\hline 20 & 4568 & . 50 & 3000 & 4635 & . 041 \\
\hline 22 & 4569 & . 48 & 3300 & 4636 & . 039 \\
\hline 24 & 4570 & . 46 & 3500 & 4636A & . 038 \\
\hline 25 & 4571 & . 45 & 3600 & (4637) & . 037 \\
\hline 27 & 4572 & .43 & 3900 & 4638 & . 036 \\
\hline 30 & 4573 & . 41 & 4000 & 4639 & . 035 \\
\hline 33 & 4574 & . 39 & 4300 & 4640 & . 034 \\
\hline 35 & 4574A & . 38 & 4500 & 4640A & . 033 \\
\hline 36 & (4575) & . 37 & 4700 & 4641 & . 033 \\
\hline 39 & 4576 & . 36 & 5000 & 4642 & . 032 \\
\hline 40 & 4577 & . 35 & 5100 & (4643) & . 031 \\
\hline 43 & 4578 & . 34 & 5600 & 4644 & . 030 \\
\hline 47 & 4579 & . 33 & 6000 & 4645 & . 029 \\
\hline 50 & 4580 & . 32 & 6200 & (4646) & . 028 \\
\hline 51 & 4581 & . 31 & 6800 & 4647 & . 027 \\
\hline 56 & 4582 & . 30 & 7000 & 4648 & . 027 \\
\hline 62 & 4584 & . 28 & 7500 & 4649 & . 026 \\
\hline 68 & 4585 & . 27 & 8000 & 4650 & . 025 \\
\hline 75 & 4587 & . 26 & 8200 & 4651 & . 025 \\
\hline 82 & 4589 & . 25 & 9000 & 4652 & . 024 \\
\hline 91 & (4591) & . 23 & 9100 & 4653 & . 023 \\
\hline 100 & 4592 & . 22 & 10000 & 4654 & . 022 \\
\hline 110 & 4593 & . 21 & 11000 & (4655) & . 021 \\
\hline 120 & 4594 & . 20 & 12000 & 4656 & . 020 \\
\hline 130 & 4595 & . 20 & 13000 & (4657) & . 020 \\
\hline 150 & 4596 & . 18 & 14000 & (4657A) & . 018 \\
\hline 160 & 4597 & . 18 & 15000 & 4658 & . 018 \\
\hline 180 & 4598 & . 17 & 16000 & 4659 & . 018 \\
\hline 200 & 4599 & . 16 & 17000 & 46598 & . 017 \\
\hline 220 & 4600 & . 15 & 18000 & 4660 & . 017 \\
\hline 240 & 4601 & . 14 & 20000 & 4661 & . 016 \\
\hline 250 & 4602 & . 14 & 22000 & 4662 & . 015 \\
\hline 270 & 4603 & . 14 & 24000 & (4663) & . 014 \\
\hline 300 & 4604 & . 13 & 25000 & 4664 & . 014 \\
\hline
\end{tabular}

11 WATT
\(1.781^{\prime \prime} \times .312^{\prime \prime}\) Dia. Style 995.10A Avg. Wt., 015 lb .

OHM'S LAW CALCULATOR . . .

\section*{아NITE type 884 Riteohm \({ }^{\circ}\) Resistors - \(1 \%\) tolerance}

\author{
molded \\ for uniform shape and size
}
- insulated for 1000 volts \(\bullet\) low Tc
wound on ceramic cores, Riteohm resistors feature a pressure-molded coating of tough upon resistance. Single layer exhibit negligible inductance at audio rrequ 1000 VAC insulation test. Riteohms tough, resilient ohmiconelag silicone. etc. . Vatues shown are based on the MIL.Bell syst

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 3 \\
& \text { WaITS }
\end{aligned}
\] & \multicolumn{2}{|l|}{} & & \multicolumn{2}{|l|}{Patily in Iree An to 13.3 H Ohms} & 3 WATTS & \multicolumn{2}{|l|}{Ralife to fret Air fo ketslars Values to 13.3 K Ohms} & 3 WATTS & \multicolumn{2}{|l|}{Raving in Free Alr for Pithestese viluts to 13.3 K Ohms} \\
\hline Ohms & Catalog No. \({ }^{2}\) & Max. Volts & Ohms & Catalog No. \({ }^{2}\) & Max. Volts & Ohms & Catalog No. \({ }^{2}\) & \begin{tabular}{l}
Max. \\
Volts
\end{tabular} & Ohms & Catalog No. \({ }^{2}\) & Max. Volts \\
\hline 681 & 82893 & 45.2 & 1,650 & (83263) & 70.3 & 4,020 & 83633 & 110 & 9,760 & (84003) & 171 \\
\hline 698 & (82903) & 45.7 & 1,690 & (83273) & 71.2 & 4,120 & (83643) & 111 & 10,000 & 84013 & 173 \\
\hline 715 & 82913 & 46.3 & 1,740 & (83283) & 72.2 & 4,220 & (83653) & 112 & 10,200 & (84023) & 175 \\
\hline 732 & (82923) & 46.8 & 1,780 & 83293 & 73.0 & 4,320 & (83663) & 114 & 10,500 & (84033) & 178 \\
\hline 750 & 82933 & 47.4 & 1,820 & 83303 & 73.9 & 4,420 & (83673) & 115 & 10,700 & (84043) & 179 \\
\hline 768 & (82943) & 48.0 & 1,870 & (83313) & 74.9 & 4,530 & (83683) & 117 & 11,000 & (84053) & 182 \\
\hline 787 & (82953) & 48.6 & 1,910 & (83323) & 75.7 & 4,640 & (83693) & 118 & 11,300 & (84063) & 184 \\
\hline 806 & 82963 & 49.2 & 1,960 & (83333) & 76.6 & 4,750 & 83703 & 119 & 11,500 & (84073) & 186 \\
\hline 825 & 82973 & 49.7 & 2,000 & 83343 & 77.4 & 4,870 & 83713 & 121 & 11,800 & (84083) & 188 \\
\hline 845 & (82983) & 50.4 & 2,050 & (83353) & 78.4 & 4,990 & 83723 & 122 & 12,100 & (84093) & 190 \\
\hline 866 & (82993) & 51.0 & 2,100 & (83363) & 79.4 & 5,110 & 83733 & 124 & 12,400 & (84103) & 193 \\
\hline 887 & (83003) & 51.6 & 2,150 & 83373 & 80.3 & 5,230 & (83743) & 125 & 12,700 & (84113) & 195 \\
\hline 909 & 83013 & 52.2 & 2,210 & 83383 & 81.4 & 5,360 & (83753) & 127 & 13,000 & (84123) & 197 \\
\hline 931 & (83023) & 52.8 & 2,260 & 83393 & 82.3 & 5,490 & 83763 & 128 & 13,300 & (84133) & 200 \\
\hline 953 & 83033 & 53.4 & 2,320 & (83403) & 83.4 & 5,620 & 83773 & 130 & 13,700 & (84143) & 200 \\
\hline 976 & (83043) & 54.1 & 2,370 & (83413) & 84.3 & 5,760 & (83783) & 131 & 14,000 & (84153) & 200 \\
\hline 1,000 & 83053 & 54.7 & 2,430 & 83423 & 85.4 & 5,900 & (83793) & 133 & 14,300 & (84163) & 200 \\
\hline 1,020 & (83063) & 55.3 & 2,490 & 83433 & 86.4 & 6,040 & 83803 & 134 & 14,700 & (84173) & 200 \\
\hline 1,050 & (83073) & 56.1 & 2,550 & (83443) & 87.4 & 6,190 & 83813 & 136 & 15,000 & 84183 & 200 \\
\hline 1,070 & (83083) & 56.6 & 2,610 & (83453) & 88.4 & 6,340 & (83823) & 138 & 15,400 & (84193) & 200 \\
\hline 1,100 & 83093 & 57.4 & 2,670 & (83463) & 89.5 & 6,490 & (83833) & 140 & 15,800 & (84203) & 200 \\
\hline 1,130 & (83103) & 58.2 & 2,740 & 83473 & 90.6 & 6,650 & (83843) & 141 & 16,200 & (84213) & 200 \\
\hline 1,150 & (83113) & 58.7 & 2,800 & (83483) & 91.6 & 6,810 & 83853 & 143 & 16,500 & (84223) & 200 \\
\hline 1,180 & 83123 & 59.5 & 2,870 & (83493) & 92.8 & 6,980 & 83863 & 145 & 16,900 & (84233) & 200 \\
\hline 1,210 & (83133) & 60.2 & 2,940 & 83503 & 93.9 & 7,150 & (83873) & 146 & 17,400 & (84243) & 200 \\
\hline 1,240 & (83143) & 61.0 & 3,010 & 83513 & 95.0 & 7,320 & (83883) & 148 & 17,800 & (84253) & 200 \\
\hline 1,270 & (83153) & 61.7 & 3,090 & 83523 & 96.2 & 7,500 & 83893 & 150 & 18,200 & (84263) & 200 \\
\hline 1,300 & 83163 & 62.4 & 3,160 & 83533 & 97.4 & 7,680 & (83903) & 152 & 18,700 & (84273) & 200 \\
\hline 1,330 & (83173) & 63.2 & 3,240 & 83543 & 98.6 & 7,870 & (83913) & 154 & 19,100 & (84283) & 200 \\
\hline 1,370 & (83183) & 64.1 & 3,320 & 83553 & 99.8 & 8,060 & 83923 & 155 & 19,600 & (84293) & 200 \\
\hline 1,400 & (83193) & 64.8 & 3,400 & (83563) & 101 & 8,250 & 83933 & 157 & 20,000 & 84303 & 200 \\
\hline 1,430 & (83203) & 65.5 & 3,480 & 83573 & 102 & 8,450 & (83943) & 159 & 20,500 & 84313 & 200 \\
\hline 1,470 & 83213 & 66.4 & 3,570 & (83583) & 103 & 8,660 & (83953) & 161 & 21,000 & (84323) & 200 \\
\hline 1,500 & 83223 & 67.0 & 3,650 & (83593) & 105 & 8,870 & 83963 & 163 & 21,500 & (84333) & 200 \\
\hline 1,540 & (83233) & 68.0 & 3,740 & (83603) & 106 & 9,090 & (83973) & 165 & 22,100 & 84343 & 200 \\
\hline 1,580 & (83243) & 68.8 & 3,830 & (83613) & 107 & 9,310 & (83983) & 167 & & & \\
\hline 1,620 & 83253 & 69.7 & 3,920 & 83623 & 108 & 9,530 & (83993) & 169 & & & \\
\hline 5
WATTS & \multicolumn{2}{|l|}{Prtatr lit Fre Air fit ars,stance Values Lo 222 K Omm} & 5 WATIS & \multicolumn{2}{|l|}{Diting in Free Air for Resistance Values to 42.2 K Ohms} & 5 WATTS & \multicolumn{2}{|l|}{Rating in Free Aur for Resistance Values to 42.2 K Ohms} & 5 WATTS & \multicolumn{2}{|l|}{Rating in Free Alr for Resistance Values to 42.2 K Ohms} \\
\hline Ohms & Catalog No. \({ }^{2}\) & Max. Volts & Ohms & Catalog No. \({ }^{2}\) & Max. Volts & Ohms & \[
\begin{gathered}
\text { Catalog } \\
\mathrm{No}^{2}
\end{gathered}
\] & Max. Volts & Ohms & \[
\begin{gathered}
\text { Catalog } \\
\text { No. }
\end{gathered}
\] & Max. Volts \\
\hline 22,600 & (84355) & 337 & 31,600 & (84495) & 397 & 44,200 & (84635) & 460 & 61,900 & (84775) & 460 \\
\hline 23,200 & (84365) & 341 & 32,400 & (84505) & 402 & 45,300 & 84645 & 460 & 63,400 & (84785) & 460 \\
\hline 23,700 & 84375 & 344 & 33,200 & (84515) & 407 & 46,400 & (84655) & 460 & 64,900 & (84795) & 460 \\
\hline 24,300 & (84385) & 347 & 34,000 & 84525 & 412 & 47,500 & 84665 & 460 & 66,500 & (84805) & 460 \\
\hline 24,900 & 84395 & 353 & 34,800 & (84535) & 417 & 48,700 & (84675) & 460 & 68,100 & (84815) & 460 \\
\hline 25,500 & 84405 & 357 & 35,700 & (84545) & 422 & 49,900 & 84685 & 460 & 69,800 & (84825) & 460 \\
\hline 26.100 & (84415) & 361 & 36,500 & 84555 & 427 & 51,100 & 84695 & 460 & 71,500 & (84835) & 460 \\
\hline 26,700 & (84425) & 365 & 37,400 & (84565) & 432 & 52,300 & (84705) & 460 & 73.200 & (84845) & 460 \\
\hline 27,400 & 84435 & 370 & 38,300 & (84575) & 437 & 53,600 & (84715) & 460 & 75,000 & (84855) & 460 \\
\hline 28,000 & (84445) & 374 & 39,200 & (84585) & 442 & 54,900 & (84725) & 460 & 76,800 & (84865) & 460 \\
\hline 28,700 & (84455) & 379 & 40,200 & 84595 & 448 & 56,200 & (84735) & 460 & 78,700 & (84875) & 460 \\
\hline 29,400 & (84465) & 383 & 41,200 & (84605) & 454 & 57,600 & (84745) & 460 & 80,600 & 84885 & 460 \\
\hline 30,100 & 84475 & 388 & 42,200 & (84615) & 460 & 59,000 & (84755) & 460 & & & \\
\hline 30,900 & (84485) & 393 & 43,200 & 84625 & 460 & 60,400 & (84765) & 460 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
10 \\
\text { waाTS }
\end{gathered}
\] & \multicolumn{2}{|l|}{Antile io ine Air for Ren 121 K مmi me to 121 K biml} & \[
10
\] WATTS & \multicolumn{2}{|l|}{Riling In Free Alr for Retistance Values to 121 K Ohm} & \[
10
\] Watts & \multicolumn{2}{|l|}{Rasing in Free Air or Resistance Values to 121 K Ohms} & \[
\begin{aligned}
& 10 \\
& \text { WATTS }
\end{aligned}
\] & \multicolumn{2}{|l|}{Rating in Free Air for Resistance Values to 121 K Ohms} \\
\hline Ohms & \[
\begin{aligned}
& \text { Catalotog } \\
& \text { No. }
\end{aligned}
\] & Max.
Valt
des & Ohms & \[
\begin{aligned}
& \text { Catalog } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max } \\
& \text { Volts }^{2}
\end{aligned}
\] & Ohms & \[
\begin{aligned}
& \text { Catalog } \\
& \text { NO. }
\end{aligned}
\] & Max,
Volits & Ohms & & \(\underset{\text { Max. }}{\text { Volis }}\) \\
\hline 82,500 & 84890 & 908 & 105,000 & (84990) & 1,020 & 133,000 & (85090) & 1,100 & 169,000 & (85190) & 1,100 \\
\hline 84,500 & (84900) & 919 & 107,000 & (85000) & 1,030 & 137,000 & (85100) & 1,100 & 174,000 & 85200 & 1,100 \\
\hline 86,600 & (34910) & 930 & 110,000 & (85010) & 1,050 & 140,000 & (85110) & 1,100 & 178,000 & (85210) & 1,100 \\
\hline 88,700 & (84920) & 942 & 113,000 & (85020) & 1,060 & 143,000 & (85120) & 1,100 & 182,000 & (85220) & 1,100 \\
\hline 90,900 & 84930 & 952 & 115,000 & (85030) & 1,070 & 147,000 & (85130) & 1,100 & 187,000 & (85230) & 1,100 \\
\hline 93,100 & (84940) & 965 & 118,000 & (85040) & 1,090 & 150,000 & 85140 & 1,100 & 191,000 & (85240) & 1,100 \\
\hline 95,300 & (84950) & 976 & 121,000 & (85050) & 1,100 & 154,000 & (85150) & 1,100 & 196,000 & (85250) & 1,100 \\
\hline 97,600 & (84960) & 988 & 124,000 & (85060) & 1,100 & 158,000 & (85160) & 1,100 & 200,000 & 85260 & 1,100 \\
\hline 100,000 & 84970 & 1,000 & 127,000 & (85070) & 1,100 & 162,000 & (85170) & 1,100 & & & \\
\hline 102,000 & (84980) & 1,010 & 130,000 & (85080) & 1,100 & 165,000 & (85180) & 1,100 & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1} \mathrm{~T}\) C. of values in 3 Watt size under 97.6 ohms is as follows: From 97.6 thru 10 ohms, \(0 \pm 20 \mathrm{pmm} /{ }^{\circ} \mathrm{C}\); from 9.76 thru 1.0 ohms, \(0 \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\); below \(1 \mathrm{hhm}, 0 \pm 90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).
\({ }^{2}\) Popular items appear in BOLD print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are avallable from stocking distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a \(\$ 15.00\) per line item minimum charge.
}

\section*{: HMITE type 270 vitreous enameled fixed resistors}

These lug type resistors are wire-wound on high quality ceramic cores, protected and insulated by Ohmite vitreous enamel - the time-proved standard covering that is the best conductor of heat for a material which must also be a good electrical insulator.

Resistance tolerance is \(\pm 5 \%\) for values 1 ohm or higher; \(\pm 10 \%\) below 1 ohm.

Wattage ratings are for use in free air. When resistors are mounted in
closed spaces or where the circulation of air is restricted, they should not be used at more than one-half rating. Currents and voltages for reduced ratings can be obtained by muitiplying full rating by the following factors: \(75 \% \mathrm{load}=.86,66 \%=.81,50 \%=.71,33 \%=.57,25 \%=.50\).
Mounting brackets are automatically supplied in individual unit packs; supplied only when specified in bulk pack orders. See page 18, "Mounting Brackets for Tubular Resistors" to specify other brackets.

popular items appear in BOLO print and are usually in stock at authorized ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a \(\$ 15.00\) per line Item minimum charge.

\section*{(2) MITE dividohm \({ }^{\circ}\) type 210 adjustable vitreous enameled resistors}
"Dividohm" resistors make ideal voltage dividers for original equipment and re placement in transmitters, rectifiers and other apparatus. Such tapped "bleeders are made by using one or more adjustable lugs, as required. "Dividohms" are also handy for obtarning odd resistance values, for adjusting circuits, and for use on equipment which must be set to meet various line voltages
"Dividohm" resistors are vitreous enameled resistors on which a narrow strip has been left uncovered to expose a portion of each turn. Contact to any wire in this strip is made by an embossed contact on the adjustable lug (supplied).

WATT RATING: The stated wattage rating applies only when the entire resistance is in the circuit. When the adjustable lug is set at an intermediate point, the wattage ratıng is reduced in approximately the same portion, i.e., if the lug is set at half the resistance, the wattage is reduced by one-half. A safe rule to follow is to make sure that the maximum rated current is not exceeded. This should be carefully checked particularly if the resistor will be used as a voltage divider with several adjustable lugs. Resistance tolerance is \(\pm 10 \%\) for the total resistance value.

 Poptributs but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a \(\$ 15.00\) per line item minimum charge.
Mounting brackets are automatically supplied in individual unit packs; supplied only when specified in bulk packs.

\section*{adjustable lugs}

One 'Screw Driver Type Adjustable Lug'" is supplied with each unit. Lugs with a silver contact button can be ordered from the table shown below.

MOVING THE LUGS: Lugs always should be loosened completely before moving
STANDARD

and not moved except while the current is off. in order to protect the exposed wire from mechanical or electrical injury and to protect the operator from dangerous voltages

\section*{With SILVER CONTACT BUTTONS DOUBLE THUMB SCREW ADJUSTABLE LUG}

This adjustable lug, which is illustrated above, features two advantages - ease of adjustment and less chance of damaging the resistance wire while for \(11 / 8^{\prime \prime}\) cores. Catalog No. 2160

\section*{(2)MITE type 200 brown devil fixed resistors}

BROWN DEVIL® (Type 200) resistors, are vitreous enameled, wirewound units long famous for ruggedness and durability in small power resistors. With the emphasis towards miniaturization and the current industry trend towards ge the ratings watt size size is now rated 8 watts and the 10 The higher ratings may be watts. The 20 watt unit retains the same rating. The higher ratings may be confidently applied to any 5 or 10 watt unit now in the possession of users or distributors. At this time also, to meet the demand for lower wattage units, 0hmite introduces two, new, small stock sizes -3 and \(51 / 4\) watts.

Standard resistance tolerance is \(\pm 5 \%\) for values 1 ohm or higher; \(\pm 10 \%\) for values below 1 ohm. Tinned leads \(11 / 2^{\prime \prime}\) long: 3 and \(51 / 4\) watt

DIMENSIONS, WEIGHTS, CODES
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & E & Te & \\
\hline Core Dimen. Weight (los.) & \[
\begin{gathered}
{ }_{1}^{1 s} \times 210 \\
.003
\end{gathered}
\] & \[
\begin{gathered}
3 / 8 \times 1 / 4 \mathrm{D} \\
.005 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1 \times \xi_{1 / 2} \mathrm{D} \\
01 \\
01
\end{gathered}
\] & \[
\begin{gathered}
13 / 4 \times K_{6} \mathrm{D} \\
.015 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 x / 100 \\
03 \\
03
\end{gathered}
\] \\
\hline
\end{tabular}

Popular items appear in 8020 print and are usually in stock

\section*{: HMITE non-inductive \\ type 27ON vitreous enameled fixed resistors}

These non-inductively wound power resistors are widely used at radio frequencies or such purposes as dummy antennas, terminating resistors for antennas, and in diathermy apparatus. Their properly proportioned Ayrton-Perry type windings, reduce the inductance to low proportions (less than \(1 \%\) of regular solenoid type resistors) while the distributed capacity is small. R.F. resistance is the same as the D.C. resistance over the useful range of frequencies.

Change of impedance with frequency is so slight that the resistors can be used throughout the broadcast band and at even higher frequencies, depending on the particular resistance to be used. All the resistors are lug-type tubular units which mount by means of non-magnetic mounting brackets (furnished). Ohmite's high rade ceramic construction and exclusive vitreous enamel coating assure long, reliable performance under full rated load. Resistance tolerance is \(\pm 5 \%\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & 12 Y & & & \\
\hline & & \[
\begin{aligned}
& \text { Cores } \\
& 2 \mathrm{tr} 2 \mathrm{~K}
\end{aligned}
\] & & \(\frac{0288 .}{}\) & \\
\hline Ohms & \begin{tabular}{l}
Cat. \\
No. 1
\end{tabular} & Max. MilliAmps & Ohms & \begin{tabular}{l}
Cat. \\
No, \({ }^{1}\)
\end{tabular} & Max. MilliAmps \\
\hline 5 & \[
\begin{aligned}
& 2050 \\
& 2051
\end{aligned}
\] & \[
\begin{aligned}
& 1,540 \\
& 1,090
\end{aligned}
\] & \[
\begin{aligned}
& 600 \\
& 700
\end{aligned}
\] & \[
\begin{aligned}
& (2066) \\
& (2067)
\end{aligned}
\] & \[
\begin{aligned}
& 140 \\
& 130
\end{aligned}
\] \\
\hline 15
20 & \[
\begin{gathered}
(2052) \\
2053
\end{gathered}
\] & 890
770 & \[
\begin{aligned}
& 800 \\
& 900 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (2068) \\
& (2069)
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 110
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 25 \\
& 30
\end{aligned}
\] & \[
\begin{gathered}
\hline 2054 \\
(2055) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 690 \\
& 630
\end{aligned}
\] & \[
\begin{aligned}
& 1,000 \\
& 1,500
\end{aligned}
\] & \[
\begin{aligned}
& (2070) \\
& (2071)
\end{aligned}
\] & \[
\begin{array}{r}
110 \\
89 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 40 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 2056 \\
& 2057
\end{aligned}
\] & \[
\begin{aligned}
& 550 \\
& 490
\end{aligned}
\] & \[
\begin{aligned}
& 2,000 \\
& 2,500
\end{aligned}
\] & \[
\begin{aligned}
& (2072) \\
& (2073)
\end{aligned}
\] & \[
\begin{aligned}
& 77 \\
& 69
\end{aligned}
\] \\
\hline 75
100 & \[
\begin{aligned}
& 2058 \\
& 2059
\end{aligned}
\] & \[
\begin{array}{r}
400 \\
340 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3,000 \\
& 4,000
\end{aligned}
\] & \[
\begin{aligned}
& (2074) \\
& (2075)
\end{aligned}
\] & \[
\begin{aligned}
& 63 \\
& 54 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 150 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& (2060) \\
& (2061)
\end{aligned}
\] & \[
\begin{aligned}
& 280 \\
& 240 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5,000 \\
& 6,000
\end{aligned}
\] & \[
\begin{aligned}
& (2076) \\
& (2077)
\end{aligned}
\] & \[
\begin{aligned}
& 49 \\
& 44
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 250 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& 2062 \\
& (2063)
\end{aligned}
\] & \[
\begin{aligned}
& 220 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& 7,500 \\
& 8,000
\end{aligned}
\] & \[
\begin{aligned}
& (2078) \\
& (2079)
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 38
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
400 \\
500
\end{array}
\] & \[
\begin{aligned}
& (2064) \\
& (2065)
\end{aligned}
\] & 170
150 & \[
\begin{array}{r}
9,000 \\
10,000
\end{array}
\] & \[
\begin{aligned}
& (2080) \\
& (2081)
\end{aligned}
\] & \[
\begin{aligned}
& 36 \\
& 35
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
50 WATT \\
Core: \(4^{\prime \prime} \times{ }^{\prime} 6^{\prime \prime}\) \\
Mtg. Ctr: \(434^{\prime \prime}\) \\
Ay, Wt 09 .lb. \\
Std. Mtg. Erkt. * No. 98
\end{tabular}} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline Resist. Ohms & \begin{tabular}{l}
Cat. \\
No. 1
\end{tabular} & Max. Milliamps & Cat. No. 1 & Max. Milliamps & \begin{tabular}{l}
Cat. \\
No. 1
\end{tabular} & Max. Milliamps \\
\hline \[
\begin{array}{r}
5 \\
10
\end{array}
\] & \[
\begin{aligned}
& \hline(2001) \\
& 2002 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3,160 \\
& 2,230 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2201 \\
& 2202
\end{aligned}
\] & \[
\begin{aligned}
& 4,470 \\
& 3,160
\end{aligned}
\] & \[
\begin{aligned}
& 2401 \\
& 2402
\end{aligned}
\] & \[
\begin{aligned}
& 5,920 \\
& 4,180 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 25 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 2003 \\
& 2004 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,410 \\
& 1,000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2203 \\
& 2204
\end{aligned}
\] & \[
\begin{aligned}
& 2,000 \\
& 1,410
\end{aligned}
\] & \[
\begin{aligned}
& 2403 \\
& 2404
\end{aligned}
\] & \[
\begin{aligned}
& 2,640 \\
& 1,870 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 100 \\
& 150 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
(2005) \\
2006
\end{gathered}
\] & \[
\begin{aligned}
& 710 \\
& 580
\end{aligned}
\] & \[
\begin{aligned}
& 2205 \\
& (2206)
\end{aligned}
\] & \[
\begin{array}{r}
1,000 \\
816 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2405 \\
& 2406
\end{aligned}
\] & \[
\begin{aligned}
& 1,320 \\
& 1,090 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
200 \\
250 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (2007) \\
& (2008)
\end{aligned}
\] & \[
\begin{array}{r}
500 \\
450 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& (2207) \\
& (2208)
\end{aligned}
\] & \[
\begin{aligned}
& 707 \\
& 630
\end{aligned}
\] & \[
\begin{gathered}
(2407) \\
2408
\end{gathered}
\] & \[
\begin{array}{r}
935 \\
840 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 500 \\
& 750
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 2009 \\
2010 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 320 \\
& 260
\end{aligned}
\] & \[
\begin{gathered}
(2209) \\
2210
\end{gathered}
\] & \[
\begin{array}{r}
450 \\
365 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2409 \\
& 2410 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
590 \\
480 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 1000 \\
& 1500 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2011 \\
& 2012
\end{aligned}
\] & \[
\begin{aligned}
& 220 \\
& 180 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (2211) \\
& 2212
\end{aligned}
\] & \[
\begin{aligned}
& 320 \\
& 260
\end{aligned}
\] & \[
\begin{gathered}
2411 \\
(2412)
\end{gathered}
\] & \[
\begin{aligned}
& 420 \\
& 340
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 2000 \\
& 2500
\end{aligned}
\] & \[
\begin{aligned}
& (2013) \\
& (2014)
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 140 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (2213) \\
& (2214)
\end{aligned}
\] & \[
\begin{array}{r}
224 \\
200 \\
\hline
\end{array}
\] & \[
\begin{gathered}
(2413) \\
2414
\end{gathered}
\] & \[
\begin{array}{r}
290 \\
260 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 3000 \\
& 3500
\end{aligned}
\] & \[
\begin{aligned}
& (2015) \\
& (2016)
\end{aligned}
\] & \[
\begin{aligned}
& 130 \\
& 119
\end{aligned}
\] & \[
\begin{array}{r}
2215 \\
(2216)
\end{array}
\] & \[
\begin{aligned}
& 180 \\
& 169
\end{aligned}
\] & \[
\begin{array}{r}
2415 \\
(2416)
\end{array}
\] & \[
\begin{array}{r}
240 \\
222 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 4000 \\
& 5000
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline(2017) \\
2018
\end{array}
\] & \[
\begin{aligned}
& 110 \\
& 100 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (2217) \\
& (2218)
\end{aligned}
\] & \[
\begin{aligned}
& 158 \\
& 140
\end{aligned}
\] & \[
\begin{aligned}
& (2417) \\
& (2418)
\end{aligned}
\] & \[
\begin{aligned}
& 208 \\
& 190 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

I Popular items appear in BOLD print and are usually In stock at authorized ohmite stockint distributars. Items appearine in distributors but are not normally stocked in depth. Parentheses indicate nonstock standard items subject to a \(\$ 15.00\) per. line item minimum charge.
- Mounting brackets are automatically supplied in individual unit packs; supplied only when specified in bull packs.

\section*{dummy-antenna resistors non-nouctive}

Ohmite Models D-101 and D-251 Dummy Antenna Resistors provide a simple, accurate, and direct means of measuring R.F. power for the radio amateur, experimenter and manufacturer and for operators of aviation, police and broadcast stations. These units consist of a number of special, vitreous enameled resistors connected in parallel in a concentric arrangement and mounted inside a perforated metal cage. The dummy antenna resistors feature constant R.F. resistance (within their recommended frequency range), low reactance, high wattage dissipation, and compactness. Actual D.C. resistance tolerance is \(\pm 5 \%\).

The residual inductance and distributed capacitance have been kept to a minimum, thereby making the natural resonant frequency as high as possible. These factors and the D.C. resistance have been proportioned in such a manner as to give the best possible response characteristics. This resistor may be considered practically a "Non-Reactive Resistor."
\begin{tabular}{|c|c|c|c|c|c|}
\hline Catalog & A & a & \multicolumn{2}{|c|}{Inches)} & \\
\hline (D-101-52*), (D-101-73*) & \(11 / 2\) & \(31 / 2\) & 23/6 & 35/12 & \(24 / 3\) \\
\hline (D-101-300), (D-101-600) & 23/4 & \(31 / 2\) & 23/8 & 33/2, & 4/2/2 \\
\hline D-251-52*, (D-251-73*) & \(31 / 6\) & 3\%/8 & 21/2 & & \({ }_{6}{ }^{193}\) \\
\hline D-251-300, (D-251-600) & 51/8 & 3 \(7 / 2\) & 21/2 & \(37 / 52\) & 6 \% \\
\hline
\end{tabular}

FREQUENCY CHARACTERISTICS OF OHMITE OUMMY ANTENNAS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{D.101} & \multicolumn{4}{|c|}{D-251} \\
\hline Renistance & 52 Ofiths & 73. Dhmir & 300 Ohims & 600 Ohms & 52. Ohms & 73. Ohms & 300 Ohms & 600 Ohms \\
\hline Maximum frequency at which & 22 mc & 38 mc & 22 mc & 31 mc & 19 mc & 21 mc & 15 mc & 19 mc \\
\hline Rs = Rdc \(\pm 10 \%\) & 22 mc & & & & & & & \\
\hline Rs at this frequency & 1.10 Rde & 1.10 Rde & 1.10 Rat & .90R de & 1.10 R de & 1.10 R de & 1.10 R de & \[
90 \mathrm{Rde}
\] \\
\hline 2 at this frequency & 1.18 R Ae & 1.14 R de & 1.10Rde & .998.de & 1.25 Rac & 1.13 Rec & 1.15R Re & \[
1.00 \text { R de }_{\text {de }}
\] \\
\hline Maximum frequency & 18 mc & 32 mc & 22 mc & 60 mc & 13 mc & 19 mc & 13 mc & 30 mc \\
\hline \(2=\) Rdc \(\pm 10 \%\) & 18 me & 32 mc & & & & & & \\
\hline Rs at this frequency
2 at this frequency & 1.06 R de
1.10 R
de & 1.07 R de
1.10 R & \(1.10 R_{\text {de }}\)
1.10 Rat & .60 R de
.90 R de & 1.03 R de
1.10 R de & 1.07 R de
1.10 R de & \[
\begin{aligned}
& 1.08 \mathrm{R} \mathrm{dr} \\
& 1.10 \mathrm{R} \mathrm{dr}
\end{aligned}
\] & \[
\begin{aligned}
& .64 \mathrm{R} \text { de } \\
& .90 \mathrm{R} \mathrm{de}
\end{aligned}
\] \\
\hline
\end{tabular}

Rdc D.C. Resistance of Dummy Antenna Rs Effective Series Resistance of Dummy Antenna

\section*{OHMITE type 250 "THIN" vitreous enameled resistors}

Ohmite "Thin" Resistors are intended for use in equipment where space is at a premium. They are wound on flat, oval shaped ceramic cores, and covered with Ohmite's exclusive vitreous enamel coating. Resistance tolerance, \(\pm 5 \%\).

Integral mounting brackets extend through the resistor core to equalize heat distribution and to conduct heat directly to the mounting surface provides equivalent wattage with less bulk and in less space. Wattage ratings assume the use of a metal mounting surface. Reduce ratings \(15 \%\) for non-metallic surfaces.
"Thin" resistors are mounted or compactly stacked by means of bracket studs which are hollow to receive assembly bolts. The load should be reduced for each unit when resistors are stacked or used in confined, poorly ventilated spaces. Total height from bottom of mounting stud to top of resistor is approximately 916 "' for the Standard units and \(1 / 32^{\prime \prime}\) for the Miniature linits.

For other sizes, closer tolerances, non-stacking brackets, Dividohm adjustable or other features, consult factory.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{MINIATURE SIZES} & \multicolumn{9}{|c|}{STANDARD SIZES} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
10 WATT* \\
Core: \(74^{\circ} \times 33^{7} \times 45^{2}-\) \\
Me. Ctr, I \\
Stud Hele 1250 \\
AV. WL. 007 lb .
\end{tabular}} & \multicolumn{3}{|r|}{\begin{tabular}{l}
20 WATT* \\
Core: \(2 \times 76\) Mtg, Ctr, \(2 \mathrm{KN}_{5}\) Stud Hole \(125^{\circ}\) Av, WL. 015 lb .
\end{tabular}} & \multicolumn{3}{|r|}{\begin{tabular}{l}
30 WATT* \\
Cors: \(144^{\prime \prime} \times 1{ }^{1 \prime} x^{1} 4^{\prime \prime}-\) Mte. Ctr, 2 stud Hole igeo AY. Wt. 037 加.
\end{tabular}} & \multicolumn{3}{|r|}{} & \multicolumn{3}{|r|}{\begin{tabular}{l}
55 WATT* \\
Core: \(31 / 2^{\prime \prime} x 1 \times 14\) " Mts. \(\mathrm{Ct}, 41\) a stiu4 Hele \(195^{2}\) Av. W1 095 ib.
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { Resist. } \\
& \text { Ohms. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Cat, } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max. } \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps }
\end{aligned}
\] & Cat. No. 1 & Max. Volts & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps }
\end{aligned}
\] & Cat. No. 1 & Max. Volts & Max. Amps & Cat. No. 1 & Max Volts & \[
\begin{aligned}
& \text { Max. } \\
& \text { Amps }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Cat, } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & Max. Volts & Max. Amps \\
\hline 1.5 & F101 & 3.16 & 3.16 & F201 & 4.47 & 4.47 & \[
\begin{aligned}
& \text { F301 } \\
& \text { (F302) }
\end{aligned}
\] & \[
\begin{aligned}
& 5.47 \\
& 6.70
\end{aligned}
\] & \[
\begin{aligned}
& 5.47 \\
& 4.47
\end{aligned}
\] & \[
\begin{aligned}
& \text { F401 } \\
& \text { F402 }
\end{aligned}
\] & \[
\begin{aligned}
& 6.32 \\
& 7.74
\end{aligned}
\] & \[
\begin{aligned}
& 6.32 \\
& 5.16
\end{aligned}
\] & \[
\begin{aligned}
& \text { F501 } \\
& \text { F502 }
\end{aligned}
\] & \[
\begin{array}{r}
7.42 \\
8.25
\end{array}
\] & \[
\begin{aligned}
& 7.42 \\
& 6.05
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & F102 & 4.47 & 2.24 & F202 & 6.32 & 3.16 & \[
\begin{aligned}
& \text { (F303) } \\
& \text { F304 }
\end{aligned}
\] & \[
\begin{aligned}
& 7.74 \\
& 9.45
\end{aligned}
\] & \[
\begin{aligned}
& 3.88 \\
& 3.17
\end{aligned}
\] & \[
\begin{aligned}
& \text { F403 } \\
& \text { F404 }
\end{aligned}
\] & \[
\begin{gathered}
8.94 \\
10.9
\end{gathered}
\] & \[
\begin{aligned}
& 4.47 \\
& 3.65 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F503 } \\
& \text { F504 }
\end{aligned}
\] & \[
\begin{aligned}
& 10.4 \\
& 12.8
\end{aligned}
\] & \[
\begin{aligned}
& 5.24 \\
& 4.28
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 4 \\
& 5 \\
& \hline
\end{aligned}
\] & F103 & 7.07 & 1.41 & F203 & 10.0 & 2.00 & F305 & 12.2 & 2.46 & \[
\begin{aligned}
& \text { (F405) } \\
& \text { F406 }
\end{aligned}
\] & \[
\begin{aligned}
& 12.6 \\
& 14.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.16 \\
& 2.83 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F505 } \\
& \text { F506 }
\end{aligned}
\] & \[
\begin{aligned}
& 14.8 \\
& 16.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.70 \\
3.32 \\
\hline
\end{array}
\] \\
\hline \[
10^{7.5}
\] & \[
\begin{aligned}
& \text { F104 } \\
& \text { F105 }
\end{aligned}
\] & \[
\begin{gathered}
8.66 \\
10.0
\end{gathered}
\] & \[
\begin{aligned}
& 1.15 \\
& 1.00
\end{aligned}
\] & F204 & 14.1 & 1.41 & F306 & 17.3 & 1.73 & \[
\begin{aligned}
& \text { F407 } \\
& \text { F408 }
\end{aligned}
\] & \[
\begin{array}{r}
17.3 \\
20.0
\end{array}
\] & \[
\begin{aligned}
& 2.31 \\
& 2.00
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F507) } \\
& \text { F508 }
\end{aligned}
\] & \[
\begin{aligned}
& 20.6 \\
& 23.4
\end{aligned}
\] & \[
\begin{array}{r}
2.72 \\
2.34 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 15 \\
& 20
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { (F106) } \\
\text { F107 }
\end{gathered}
\] & 12.2
14.1 & \[
\begin{aligned}
& 0.82 \\
& 0.71 \\
& \hline
\end{aligned}
\] & F205 & 17.3 & 1.16 & F307 & 21.2 & 1.42 & & & & & & \\
\hline \[
\begin{aligned}
& 25 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& \text { F108 } \\
& \text { F109 }
\end{aligned}
\] & \[
\begin{aligned}
& 15.8 \\
& 17.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.63 \\
& 0.58 \\
& \hline
\end{aligned}
\] & F206 & 22.3 & 0.89 & F308 & 27.4 & 1.10 & F409 & 31.6 & 1.26 & F509 & 37.1 & 1.48 \\
\hline \[
\begin{aligned}
& 40 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& \text { F110 } \\
& \text { F111 }
\end{aligned}
\] & \[
\begin{aligned}
& 20.0 \\
& 22.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.50 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& \text { F207 } \\
& \text { F208 }
\end{aligned}
\] & \[
\begin{aligned}
& 28.3 \\
& 31.6
\end{aligned}
\] & \[
\begin{aligned}
& 0.71 \\
& 0.63
\end{aligned}
\] & \[
\begin{aligned}
& \text { F309 } \\
& \text { F310 }
\end{aligned}
\] & \[
\begin{aligned}
& 34.6 \\
& 38.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.87 \\
& 0.77
\end{aligned}
\] & \[
\begin{aligned}
& \text { F410 } \\
& \text { F411 }
\end{aligned}
\] & \[
\begin{aligned}
& 40.0 \\
& 44.7
\end{aligned}
\] & \[
\begin{aligned}
& 1.00 \\
& 0.89
\end{aligned}
\] & \[
\begin{aligned}
& \text { F510 } \\
& \text { F511 }
\end{aligned}
\] & \[
\begin{array}{r}
46.9 \\
52.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.17 \\
& 1.05 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
75 \\
100
\end{array}
\] & \[
\begin{aligned}
& \text { F112 } \\
& \mathrm{F} 113
\end{aligned}
\] & \[
\begin{aligned}
& 27.4 \\
& 31.6
\end{aligned}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.32
\end{aligned}
\] & \[
\begin{aligned}
& \text { F209 } \\
& \text { F210 }
\end{aligned}
\] & \[
\begin{array}{r}
38.7 \\
44.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.52 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& \text { F311 } \\
& \text { F312 }
\end{aligned}
\] & \[
\begin{array}{r}
47.4 \\
54.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.63 \\
& 0.55
\end{aligned}
\] & \[
\begin{gathered}
\text { (F412) } \\
\text { F413 }
\end{gathered}
\] & \[
\begin{aligned}
& 54.8 \\
& 63.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.73 \\
& 0.63
\end{aligned}
\] & \[
\begin{gathered}
(\text { F512) } \\
\text { F513 }
\end{gathered}
\] & \[
\begin{aligned}
& 64.2 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.86 \\
& 0.74
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 125 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& \text { F114 } \\
& \text { F115 }
\end{aligned}
\] & \[
\begin{array}{r}
35.3 \\
38.7
\end{array}
\] & \[
\begin{aligned}
& 0.28 \\
& 0.26 \\
& \hline
\end{aligned}
\] & F211 & 54.8 & 0.36 & (F313) & 67.0 & 0.45 & (F414) & 77.4 & 0.52 & F514 & 82.5 & 0.61 \\
\hline \[
\begin{aligned}
& 200 \\
& 250
\end{aligned}
\] & F116 & 44.7
50.0 & 0.22
0.20 & F212 & \[
\begin{aligned}
& 63.2 \\
& 70.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& 0.28
\end{aligned}
\] & (F314)
F315 & \[
\begin{aligned}
& 77.4 \\
& 86.6
\end{aligned}
\] & \[
\begin{aligned}
& 0.39 \\
& 0.35
\end{aligned}
\] & (F415)
(F416) & \[
\begin{array}{r}
89.4 \\
100.0
\end{array}
\] & \[
\begin{aligned}
& 0.45 \\
& 0.40
\end{aligned}
\] & F515
F516 & \[
\begin{aligned}
& 104.0 \\
& 117.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.52 \\
& 0.47
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
300 \\
400
\end{array}
\] & \[
\begin{aligned}
& \text { F118 } \\
& \text { F119 }
\end{aligned}
\] & \[
\begin{aligned}
& 54.8 \\
& 63.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& \text { F214 } \\
& \text { F215 }
\end{aligned}
\] & \[
\begin{aligned}
& 77.4 \\
& 89.4
\end{aligned}
\] & \[
\begin{aligned}
& 0.26 \\
& 0.22
\end{aligned}
\] & (F316) & 108.0 & 0.28 & (F417) & 126.0 & 0.32 & F517 & 148.0 & 0.37 \\
\hline \[
\begin{aligned}
& 500 \\
& 600
\end{aligned}
\] & \[
\begin{gathered}
F 120 \\
\text { (F121) }
\end{gathered}
\] & \[
\begin{array}{r}
70.7 \\
77.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.14 \\
& 0.13
\end{aligned}
\] & F216 & 100.0 & 0.20 & F317 & 122.0 & 0.25 & F418 & 141.0 & 0.28 & F518 & 166.0 & 0.33 \\
\hline \[
\begin{aligned}
& 750 \\
& 800
\end{aligned}
\] & F122 & 86.6 & 0.12 & F217 & 126.0 & 0.16 & (F318) & 150.0 & 0.20 & F419 & 173.0 & 0.23 & (F519) & 206.0 & 0.27 \\
\hline \[
\begin{aligned}
& 1000 \\
& 1250
\end{aligned}
\] & \[
\begin{gathered}
F 123 \\
\text { (F124) }
\end{gathered}
\] & \[
\begin{aligned}
& 100.0 \\
& 111.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.10 \\
& 0.089
\end{aligned}
\] & \[
\begin{aligned}
& \text { F218 } \\
& \text { F219 }
\end{aligned}
\] & \[
\begin{aligned}
& 141.0 \\
& 158.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.14 \\
& 0.12 \\
& \hline
\end{aligned}
\] & F319 & 173.0 & 0.17 & (F420) & 200.0 & 0.20 & (F520) & 234.0 & 0.23 \\
\hline \[
\begin{aligned}
& 1500 \\
& 1750
\end{aligned}
\] & \[
\begin{aligned}
& \text { F125 } \\
& \text { F126 }
\end{aligned}
\] & \[
\begin{aligned}
& 122.0 \\
& 132.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.081 \\
& 0.075
\end{aligned}
\] & F220 & 173.0 & 0.12 & F320 & 212.0 & 0.14 & (F421) & 245.0 & 0.16 & (F521) & 287.0 & 0.19 \\
\hline \[
\begin{aligned}
& 2000 \\
& 2500
\end{aligned}
\] & \[
\begin{aligned}
& \text { F127 } \\
& \text { F128 }
\end{aligned}
\] & \[
\begin{aligned}
& 141.0 \\
& 158.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.071 \\
& 0.063
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F221) } \\
& \text { (F222) }
\end{aligned}
\] & \[
\begin{aligned}
& 200.0 \\
& 223.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.10 \\
& 0.089
\end{aligned}
\] & \[
\begin{gathered}
(\text { F321) } \\
\text { F322 }
\end{gathered}
\] & \[
\begin{aligned}
& 245.0 \\
& 274.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.12 \\
& 0.11
\end{aligned}
\] & \[
\begin{gathered}
\text { F422 } \\
\text { (F423) }
\end{gathered}
\] & \[
\begin{aligned}
& 283.0 \\
& 316.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.14 \\
& 0.13
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F522) } \\
& \text { (F523) }
\end{aligned}
\] & \[
\begin{aligned}
& 332.0 \\
& 371.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.17 \\
& 0.15
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3000 \\
& 3500
\end{aligned}
\] & F129 & 173.0 & 0.057 & \[
\begin{aligned}
& \text { (F223) } \\
& \text { (F224) }
\end{aligned}
\] & \[
\begin{aligned}
& 245.0 \\
& 264.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.081 \\
& 0.075
\end{aligned}
\] & (F323) & 300.0 & 0.10 & (F424) & 345.0 & 0.12 & (F524) & 406.0 & 0.14 \\
\hline \[
\begin{aligned}
& 4000 \\
& 5000
\end{aligned}
\] & \[
\begin{gathered}
F 130 \\
\text { (F131) }
\end{gathered}
\] & \[
\begin{aligned}
& 200.0 \\
& 223.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.050 \\
& 0.045
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F225) } \\
& \text { F226 }
\end{aligned}
\] & \[
\begin{aligned}
& 283.0 \\
& 316.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.070 \\
& 0.063
\end{aligned}
\] & \[
\begin{gathered}
\text { F324 } \\
\text { (F325) }
\end{gathered}
\] & \[
\begin{aligned}
& 346.0 \\
& 387.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.087 \\
& 0.076
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F425) } \\
& \text { (F426) }
\end{aligned}
\] & \[
\begin{aligned}
& 400.0 \\
& 447.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.10 \\
& 0.089
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F525) } \\
& \text { (F526) }
\end{aligned}
\] & \[
\begin{aligned}
& 469.0 \\
& 524.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.12 \\
& 0.10
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 6000 \\
& 7500 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { (F227) } \\
& \text { (F228) }
\end{aligned}
\] & \[
\begin{aligned}
& 346.0 \\
& 387.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.058 \\
& 0.052
\end{aligned}
\] & (F326) & 424.0 & 0.057 & (F427) & 548.0 & 0.073 & (F527) & 642.0 & 0.086 \\
\hline \[
\begin{aligned}
& 10000 \\
& 12500
\end{aligned}
\] & & & & \[
\begin{gathered}
\text { F229 } \\
\text { (F230) }
\end{gathered}
\] & \[
\begin{aligned}
& 445.0 \\
& 500.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.045 \\
& 0.040
\end{aligned}
\] & (F327) & 490.0 & 0.049 & F428 & 632.0 & 0.063 & F528 & 741.0 & 0.074 \\
\hline \[
\begin{array}{r}
15000 \\
20000 \\
\hline
\end{array}
\] & & & & \[
\begin{gathered}
\text { F231 } \\
\text { (F232) }
\end{gathered}
\] & \[
\begin{aligned}
& 555.0 \\
& 625.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.036 \\
& 0.032
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { (F429) } \\
& \text { (F430) }
\end{aligned}
\] & \[
\begin{aligned}
& 670.0 \\
& 774.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.045 \\
& 0.039
\end{aligned}
\] & \[
\begin{aligned}
& \text { (F529) } \\
& \text { (F530) }
\end{aligned}
\] & \[
\begin{array}{|r|}
\hline 825.0 \\
1040.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.061 \\
& 0.052
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 25000 \\
& 30000 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { (F233) } \\
& \text { (F234) }
\end{aligned}
\] & \[
\begin{aligned}
& 715.0 \\
& 770.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.028 \\
& 0.026
\end{aligned}
\] & & & & (F431) & 866.0 & 0.035 & \[
\begin{aligned}
& \text { (F531) } \\
& \text { (F532) }
\end{aligned}
\] & \[
\begin{aligned}
& 1170.0 \\
& 1210.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.047 \\
& 0.040
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 35000 \\
& 10000 \\
& 50000 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { (F235) } \\
& \text { (F236) } \\
& \text { (F237 }
\end{aligned}
\] & \[
\begin{aligned}
& 835.0 \\
& 910.0 \\
& 990.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.024 \\
& 0.022 \\
& 0.020
\end{aligned}
\] & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Popular items appear in BOLO print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a \(\$ 15.00\) per line item minimum charse.
- Ratings are based on use of steel panel mounting and should be reduced on non-metalic mounting surface hecause of reduced thermal conductivity.
}

STOCK CORRIBS - 300 WATT SIZE Type 280 Fixed; 230 Dividohm \({ }^{(8)}\)
Core: \(81 / 2 \times 11 / /^{\prime \prime}\) Fixed or Adjustable (DIVIDOHM) Avg. Weight (Fixed) .61 lb .; (Dividohm) .64 lb .
\begin{tabular}{|c|c|c|c|}
\hline Qfins & Asps. & fratalog No. & Oingonm"
Castalog N0. \\
\hline 10 & 54.7 & 2501 & 2601 \\
\hline 12 & 50.0 & 2502 & (2602) \\
\hline . 26 & 43.3
38.7 & 2503
2504 & (2603) \\
\hline . 25 & 34.6 & 2505 & 2605 \\
\hline . 31 & 31.1 & 2506 & 2606 \\
\hline 40 & 27.4 & (2507) & 2607 \\
\hline 50 & 24.5 & 2508 & 2608 \\
\hline . 63 & 21.8 & 2509 & 2609 \\
\hline 1.80 & 19.3
17.3 & 2510
2511 & 2610 \\
\hline 1.0 & 17.3
15.8 & 2511
2512 & (2611) \\
\hline 1.6 & 13.7 & 2513 & 2613 \\
\hline 2.0 & 12.2 & 2514 & 2614 \\
\hline 2.5 & 10.9 & 2515 & 2615 \\
\hline 3.1 & 9.8 & 2516 & 2616 \\
\hline 4.0 & 8.6 & 2517 & 2617 \\
\hline 5.0 & 7.7 & 2518 & 2618 \\
\hline 6.3 & 6.9 & 2519 & 2619 \\
\hline 8.0 & 6.1 & 2520 & 2620 \\
\hline 10.0 & 5.5 & 2521 & 2621 \\
\hline 12.0 & 5.0 & 2522 & 2622 \\
\hline 16.0 & 4.3 & 2523 & 2623 \\
\hline 20.0 & 3.8 & 2524 & 2624 \\
\hline
\end{tabular}

THRU-BOLT MOUNTING BRACKETS FOR CORRIBS
Includes 2 brackets; bolt; centering, mica, and lock washers; nuts. Diagram below.

High current, low resistance, heavy duty units used in motor starting, dynamic braking, etc. "Corrib" type units employ a corrugated ribbon of resistance alloy. This is space-wound edge-wise around a ceramic tube. Vitreous enamel is fused around the alloy ribbon to lock the turns securely in place. Heavy lug terminals. Resistance tolerance is \(\pm 10 \%\).
Available in fixed or Dividohm \({ }^{(1)}\) adjustable types. Dividohm \({ }^{(}\)type is similar to fixed and includes one adjustable lug. Rating of Fixed or Dividohm \({ }^{\text {B }}\) stock units-300 watts-reduce unit load for stack-mounted resistors; core size (bare) \(81 / 2^{\prime \prime}\) long \(\times 11 / 8^{\prime \prime}\) diameter. Other sizes made to order.

\section*{extra adjustable lugs for corribs}
\begin{tabular}{|c|c|}
\hline For Dividohm & tug Catalog No. \\
\hline 2601 to 2618 & \(1974-8\) \\
\hline 2619 to 2624 & \(1974-A\) \\
\hline
\end{tabular}
*Adjustable Lug Stk. No. 1974 supplied with Dividohm.

\section*{}

Even higher power handling capability-approximately 700 to 1000 watts-is available in stock, "Powr-Rib" resistors. These are UNCOATED types and are wound either edgewise with ribbon ("Edgewound" type) or with round wire (Round-Wire type).

The core of these units consists of ceramic segments on a metal bar which is slotted on both ends for rapid installation. Standard resistance tolerance is \(\pm 10 \%\). Terminals clamp onto the resistor wire and may be moved in from the ends for intermediate resistance values. Extra terminals available for use as taps. See diagrams for terminals. Terminal Stk. No. 2172G (not shownt has screw connections.

EXTRA TERMINALS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{For Round Wire Powr-Rib} & For Edgewound & Powr-Rib \\
\hline Descrip & Catalog No. & Descrip & Cataiog No. \\
\hline In-Line Mtg. \(90^{\circ} \mathrm{Mtg}\). & \[
\begin{gathered}
2175 \\
(2176)
\end{gathered}
\] & 30 Amps \& more 29 Amps \& less & \[
\begin{aligned}
& 21728 \\
& 21726
\end{aligned}
\] \\
\hline
\end{tabular}

\title{
※HMITE \\ Siutle Decuic "molded composition resistors on "Tally Tape"
}

\begin{abstract}
"Tally Tape," Ohmite's wonderfully convenient packaging presently prosistors. \(1 / 4,1 / 2,1\) and 2 -watt re. holds 5 resistors - prated segment holds 5 resistors - prevents spilling or tangling - simplifies count-ion-is printed for quick identifica fresh stock.
\end{abstract}

\section*{Now Includes MIL-R-II Types}

Little Devils, Ohmite's famous molded composition resistors, find broad use in commercial and military appications. The \(1 / 8,1 / 4,1 / 2,1\) and 2 -watt sizes, which conform respectively to Styles RC05, RC07, RC20, RC32 and RC42 of MIL-R-11 meet all the stringent requirements of this military specification. The flve sizes avallable satisfy a wide range of design and service needs.

CATALOG NO. 5190 stability, low noise level, low voltage coefficient, high insulation breakdown voltage and rapid heat dissipation. They may be used at full rated wattage at \(70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)\) ambient temperature. may be used at full rated wattage at \(70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)\) ambient temperature.

Little Devils are available from stock in standard EIA resistance values in the tolerances and resistance ranges shown in the price table. Ratings for maximum continuous RMS voltage drop are high: 150 volts for \(1 / 2 \mathrm{~b}\) watt units, \(\mathbf{2 5 0}\) volts for \(1 / 4\) watt, 350 volts for \(1 / 2\) watt, 500 volts for 1 watt, and 750 volts for 2 watt units. See "Little Devil",
Resistor Assortments page 16 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
1 / 8 \\
\text { WATT }
\end{gathered}
\] & \multicolumn{3}{|l|}{MIL Type: RC 05* Size: \(145^{\prime \prime} L \times .062^{\prime \prime} 0\). Leads: . \(015^{\prime \prime} \mathrm{D} . \times 1^{\prime \prime} \mathrm{L}\).} & \multicolumn{4}{|l|}{1/8 MIL Type: RC 05* WATT Leads: \(15^{\circ} \mathrm{L} 5^{\prime \prime} \mathrm{x}, 062^{\circ} \mathrm{D}\).} & \multicolumn{4}{|l|}{\[
\begin{array}{cl}
1 / 8 & \text { MIL Types RC 05 } \\
\text { Size } .145^{\circ} \mathrm{K} \times .052^{\circ} \mathrm{D} \\
\text { WATT Leads: } .015^{\circ} \mathrm{D}, \times 1^{\prime \prime} \mathrm{L} .
\end{array}
\]} & \multicolumn{3}{|l|}{\[
\begin{array}{cl}
1 / 8 & \text { MIL Type: RC 05 } \\
\text { Size. } 145^{\circ} L^{\circ}, 062^{\circ} \mathrm{D}
\end{array},
\]} & \multicolumn{4}{|l|}{\(\begin{array}{cl}1 / 8 & \text { MIL. Typer RC } 00^{\circ} \\ \text { Size, } 145^{\circ} L, x, 062 \mathrm{D} \\ \text { WATT Leadst. } 015^{\circ} \mathrm{D}, \times 1 \mathrm{M} \text {. }\end{array}\)} \\
\hline Resista & ohms & \begin{tabular}{l}
\[
\begin{gathered}
\text { Catalog } \\
\pm 5 \% \\
\hline
\end{gathered}
\] \\
082765
\end{tabular} & Number
\[
\pm 10 \%
\] & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{Catalog Number
\[
\pm 5 \% \mid \pm 10 \%
\]} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{Catalog Number
\[
\pm 5 \%, \pm 10 \%
\]} & Resistance & \multicolumn{2}{|l|}{Catalog Number
\[
\pm 5 \% \mid \pm 10 \%
\]} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Catalog Number } \\
& \pm 5 \% \quad \pm 10 \%
\end{aligned}
\]} \\
\hline 2.7 & ohms & 082765 & OB27G1 & 62. & ohms & OB6205 & & 1,500. & Ohms & OB1525 & 0B1521 & 36,000. ohms & 083635 & & 0.82 & megs & 088245 & 088241 \\
\hline 3.3 & ohms & OB33G5 & OB33G1 & & ohms & OB6805 & 086801 & 1,600. & ohms & OB1625 & & 39,000. ohms & 083935 & 083931 & & megs & 089145 & -83241 \\
\hline 3.6 & ohms & 0836G5 & - & 82. & ohms & 088205 & 088201 & 1,800. & ohms & 081825 & 081821 & 43,000. ohms & 0 O 4335 & & & megs & OB1055 & OB1051 \\
\hline 3.9 & ohms & OB39G5 & OB39G1 & 91. & ohms & 089105 & & \(2,200\). & Onms & & & 47,000. ohms & 084735 & 084731 & 1.1 & meg & OB1155 & \\
\hline 4.3 & ohms & OB43G5 & & 100. & ohms & OB1015 & 0B1011 & 2,400. & ohms & OB2425 & & 51,000. ohms & 085135 & & 1.2 & megs & 081255 & 081251 \\
\hline 4.7 & ohms & OB4765 & 0847G1 & 110. & ohms & OB1115 & & 2,700. & ohms & OB2725 & 082721 & 56,000. ohms & 085635 & 085631 & 1.3 & megs & OB1355 & \\
\hline 5.1 & ohms & 085165 & & 120. & ohms & OB1215 & 081211 & 3,000. & ohms & 083025 & 082721 & 62,000. ohms & OB6235 & & 1.5 & megs & OB1555 & 081551 \\
\hline 5.6 & Ohms & 0B56G5 & 0856G1 & 130. & ohms & 081315 & & 3,300. & ohms & 083325 & 0B3321 & \(\begin{array}{ll}68,000 & \text { ohms } \\ 75,000 & \text { ohms }\end{array}\) & 086835 & 086831 & 1.6 & megs & 081655 & \\
\hline 6.2 & ohms & 0862G5 & & 150. & ohms & 081515 & 081511 & 3,600. & ohms & 083625 & & \(\begin{array}{ll}75,000 . & \text { ohms } \\ 82,000 & \text { ohms }\end{array}\) & O87535 & & 1.8 & megs
megs & OB1855 & OB1851 \\
\hline 7.8 & ohims & 0868G5 & 0868G1 & 160. & ohms & 081615 & 081811 & 3,900. & ohms & 083925 & 0B3921 & 91,000. ohms & 089135 & 088231 & 2.2 & megs & OB2255 & 0B2251 \\
\hline 8.2 & ohms & 0B82G5 & OB82 & 180. & ohms & OB1815 & 081811 & 4,300. & ohms & 084325 & & 0.1 megs & 081045 & 081041 & 2.4 & megs & OB2455 & \\
\hline 9.1 & ohms & 089165 & & 220. & ohms & 082215 & 082211 & 5,100. & 5 & & & 0.11 megs & 081145 & & 2.7 & megs & OB2755 & 082751 \\
\hline 10. & ohms & 081005 & 081001 & 240. & ohms & OB2415 & 082211 & 5,600. & ohms & 085625 & & 0.12 megs & OB1245 & OB1241 & 3.0 & megs & 083055 & \\
\hline 11. & ohms & OB1105 & & 270. & ohms & OB2715 & 082711 & 6,200. & ohms & 086225 & 085621 & 0.13 megs & OB1345 & & 3.3
3.6 & megs & 083355 & 083351 \\
\hline 12. & ohims & OB1205 & OB1201 & 300. & ohms & OB3015 & 082711 & 6,800. & ohms & OB6825 & 086821 & 0.15 megs & 081545
081645 & 081541 & 3.6 & megs & O83655 & 083951 \\
\hline 13. & ohms & OB1305 & & 330. & ohms & O83315 & 083311 & 7,500. & ohms & 087525 & 086821 & 0.16 megs & OB1645 & & 4.3 & megs & 084355 & \\
\hline 15. & ohms & OB1505 & OB1501 & 360. & ohms & OB3615 & & 8,200. & ohms & OB8225 & 088221 & 0.18 megs & OB1845 & 081841 & 4.7 & megs & 084755 & 084751 \\
\hline 16. & Ohms & OB1605 & 081801 & 390. & ohms & OB3915 & 083911 & 9,100. & Ohms & 089125 & & 0.22 megs & 082245 & OB2241 & 5.1 & megs & OB5155 & \\
\hline 20. & ohms & OB2005 & & 470. & & 084315 & 084711 & 10,000. & ohms & OB1035 & 081031 & 0.24 megs & 082445 & & 6.6 & megs & 085655 & B5651 \\
\hline 22. & ohms & 082205 & 082201 & 510. & ohms & O85115 & & 11,000. & Ohms & OB1135 & & 0.27 megs & OB2745 & 082741 & 6.8 & megs & 086855 & 086851 \\
\hline 24. & ohms & 082405 & & 560. & ohms & OB5615 & OB5611 & \(12,000\).
\(13,000\). & ohms & OB1235 & 081231 & 0.30 megs & OB3045 & & 7.5 & megs & OB7555 & \\
\hline 27. & ohms & 082705 & 082701 & 620. & ohms & OB6215 & 0b5611 & \(13,000\). & ohms & 081335
081535 & & 0.33 megs & 083345 & 083341 & 8.2 & megs & 088255 & 088251 \\
\hline 30. & ohms & 083005 & & 680. & ohms & OB6815 & 086811 & 16,000. & ohms & 081535 & OB & 0.36 megs & 083645 & & \({ }_{10}^{9.1}\) & megs & 089155 & \\
\hline 33. & ohms & OB3305 & 083301 & 750. & ohms & OB7515 & 08681 & 18,000. & ohms & O81835 & & 0.39 megs & 083945 & 083941 & 11. & megs & 081065
081165 & OB1061 \\
\hline 36. & Ohm & 083605 & & 820. & ohms & OB8215 & 088211 & 20,000. & ohms & 082035 & 081831 & 0.43 megs & 084345 & & 11. & megs & 081165
081265 & OB1261 \\
\hline 39. & Ohms & 083905 & 083901 & 910. & ohms & 089115 & & 22,000. & ohms & 082235 & 0B2231 & 0.47 megs & 084745 & 084741 & 13. & megs & OB1365 & \\
\hline 47. & ohms & 084305
084705 & & 1,000. & ohms & OB1025 & 081021 & 24,000. & ohms & OB2435 & & 0.56 megs & 085645 & 085641 & 15. & megs & 081565 & \(0 \mathrm{OB1561}\) \\
\hline 51. & ohms & 085105 & OB & 1,100. & ohms & 081125 & & 27,000. & ohms & 082735 & 082731 & 0.62 megs & OB6245 & & 16. & megs & 0 O 1665 & \\
\hline 56. & ohms & 085605 & OB5601 & 1,300. & Ohms & OB1225 & 0 & 30,000. & ohms & 083035 & & 0.68 megs & 086845 & 086841 & 20. & megs & 081865 & \\
\hline & & & Obs601 & 1,300. & S & OB1325 & & 33,000. & ohms & 0B3335 & 083331 & 0.75 megs & 0B7545 & & 22. & megs & OB2265 & 082261 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1 / 4 \\
& \text { WATT }
\end{aligned}
\] & \multicolumn{3}{|l|}{MIL Type: RC 07 Size: \(1 / 4^{\prime \prime}\), X . 090 \({ }^{\circ} \mathrm{D}\). Leads: \(.025^{\circ} \mathrm{D} . \times 11_{2} \mathrm{Z}^{\prime} \mathrm{L}\).} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& 1 / 4 \text { MIL Type: RC } 07 \\
& \text { Sixe: } 1 / 2 / 2 \times .090{ }^{\prime} \mathrm{D} \\
& \text { WATT Leads: } .025{ }^{\circ} \mathrm{D}^{\prime} \times 11^{\prime} 2 .
\end{aligned}
\]} & \multicolumn{4}{|l|}{\(1 / 4\) MIL Type: RC 07
Size: \(1 / 2.2, \times .090^{\prime} D\)
WATT Leads: \(.025^{\prime} D . \times 11^{2}\) L.} & \multicolumn{3}{|l|}{} & \multicolumn{4}{|l|}{\begin{tabular}{ll}
\(1 / 4\) & MIL Typet RC 07 \\
Size: \(1 / 2,2, x, 090^{\circ} \mathrm{D}\) \\
WATT Leads: \(025^{\circ} 0 . \times 1 / 3^{2} \mathrm{~L}\)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{Catalog Number
\[
\pm 5 \% \mid \pm 10 \%
\]} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{Catalog Number \(\pm 5 \% \mid \pm 10 \%\)} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{Catalog Number
\[
\pm 5 \% \mid \pm 10 \%
\]} & Resistance & \multicolumn{2}{|l|}{Catalog Number
\[
\pm 5 \% \mid \pm 10 \%
\]} & \multicolumn{2}{|l|}{Resistance} & \multicolumn{2}{|l|}{Catalog Number
\[
\pm 5 \% \mid \pm 10 \%
\]} \\
\hline 2.0
3.0 & Ohms & 063065 & 0C2761 & 68.
75. & Ohms & \[
\begin{aligned}
& \text { OC6805 } \\
& \text { OC7505 }
\end{aligned}
\] & 0C6801 & \[
\begin{aligned}
& 1,800 . \\
& 2,000 .
\end{aligned}
\] & ohms ohms & OC1825
OC2025 & 0C1821 & 47,000. ohms & \[
0 C 4735
\] & 0C4731 & 1.2 & megs & OC1255 & \(\underline{ \pm}\) \\
\hline 3.3
3.6 & ohms & OC33G5 & 063361 & 82. & ohms & Oce20s & 0 Cd 201 & \[
\begin{aligned}
& 2,000 . \\
& 2,200 .
\end{aligned}
\] & ohms ohms & OC2025 & 0 C 2221 & \[
\begin{array}{ll}
51,000 & \text { ohms } \\
56,000 \text {. ohms }
\end{array}
\] & \[
\begin{aligned}
& \text { OC5135 } \\
& \text { OC5635 }
\end{aligned}
\] & & 1.3 & megs & \(0 \mathrm{Cl135}\) & OC1251 \\
\hline 3.6
3.9 & ohms & OC36G5 & 0 & 91.
100. & ohms & OC9105 & & 2,400. & ohms & OC2425 & 02221 & \(\begin{array}{ll}56,000 . & \text { ohms } \\ 62,000 & \text { ohms }\end{array}\) & OC6235 & 0C5831 & 1.5 & megs & OC155 & OC1551 \\
\hline 4.3 & ohms & OC43G5 & & 110. & Ohms & OC1015 & 0 C 1011 & 2,700. & ohms & OC2725 & \(0 \mathrm{C2721}\) & 68,000. ohms & OC6835 & 0CBE31 & 1.8 & megs & 0c1855 & OC1851 \\
\hline 4.7 & ohms & 0C4795 & 064761 & 120. & ohms & OC1215 & & 3,000. & ohms & 0 O 3025 & & 75,000. ohms & OC7535 & & 2.0 & megs & 0C2055 & \\
\hline 5.1 & ohms & \(0 \mathrm{C5165}\) & & 130. & ohms & OC1315 & \(0 \mathrm{Cl211}\) & \(3,300\).
\(3,600\). & Ohms & \(0 \mathrm{OC3325}\) & 0 03321 & 82,000. ohms & OC8235 & 0C3231 & 2.2 & megs & OC2255 & 0 C 2251 \\
\hline 5.6 & ohms & \(0 \mathrm{CS6G5}\) & 0C5661 & 150. & ohms & 0C1515 & 0 C 1511 & 3,9 & ohms & \(0 \mathrm{OC3} 925\) & & 91,000. ohms & OC9135 & & 2.4 & megs & OC2455 & \\
\hline 6.2 & ohms & OC62G5 & & 160. & ohms & OC1615 & & 4,300 & Ohms & OC3925 & 0c3921 & 0.1 megs & \(0 \mathrm{OC1045}\) & 0 C 1041 & 2.7 & megs & 0C2755 & 0 C 2751 \\
\hline 6.8 & ohms & OC6865 & OC68G1 & 180. & Ohms & OC1815 & 0C1811 & & & OC4725 & 0 C 4721 & 0.11 megs & OC1145 & & 3.0 & megs & OC3055 & \\
\hline 7.5 & ohms & 0C75G5 & & 200. & ohms & OC2015 & & 5,700.
5, & Ohms & OC4725
OCF125 & 0C4721 & 0.12 megs & OC1245 & OC1241 & 3.3 & megs & 0C3355 & 0 0.3351 \\
\hline 8.2 & ohms & 0ca295 & 0C82G1 & 220. & Ohms & OC2215 & \(0 \mathrm{C2211}\) & 5,100. & Ohms & OC. 125 & OC5621 & 0.13 megs & OC1345 & & 3.6 & megs & 0 O 3655 & \\
\hline 10.1 & Ohms & OC9165 & & 240. & ohims & 0 O 2415 & & 6,200. & ohms & OC8225 & 0 Cs 21 & 0.15 megs & OC1545 & \(0 \mathrm{C1541}\) & 3.9 & megs & OC3955 & OC3951 \\
\hline 11. & ohms & 0 C 1105 & 0 Cl 001 & 270. & ohims & \(0 \mathrm{C2715}\) & 0 C 2711 & 6,800. & Ohms & OC8825 & 0C6*21 & 0.18 megs & OC1845 & \(0 \mathrm{C1} 41\) & 4.3 & megs & OC4355 & \\
\hline 12. & ohms & OC1205 & OC1201 & 330. & ohms & OC3315 & \(0 C 3311\) & \(8,500\). & ohms & 0 C 7325 & & 0.20 megs & OC2045 & & 4.7 & megs & 0 O 4755 & 0C4751 \\
\hline 13. & ohms & OC1305 & & 360. & ohms & OC3615 & 0c3311 & & Ohms & OC8225 & \(0 \mathrm{C8221}\) & 0.22 megs & \(0 C 2245\) & \(0 \mathrm{C2241}\) & 5.1 & megs & OC5155 & \\
\hline 15. & ohms & OC1505 & OC1501 & 390. & ohms & 0 C 3915 & 0 C 3911 & 10,000. & ohms & OC9125 & & 0.24 megs & OC2445 & & 5.6 & megs & OC5655 & 0C5651 \\
\hline 16. & ohms & OC1605 & & 430. & ohms & 0 C 4315 & - \({ }^{\text {a }}\) & 11,000. & ohms & OC1135 & \(0 ¢ 1031\) & 0.27 megs & OC2745 & 0C2741 & 6.2 & megs & OC6255 & \\
\hline 18. & Ohms & OC1805 & OC1801 & 470. & ohms & OC4715 & \(0 \mathrm{C4711}\) & 12,000. & ohms & OC1235 & \(0 C 1231\) & 0.30 megs & OC3045 & & 6.8 & megs & OC855s & OCBES 1 \\
\hline 22. & Ohms & \(0 \mathrm{OC2005}\) & & 510. & ohms & OC5115 & 0c471 & 13,000. & ohms & 0 C 1335 & \(0 \mathrm{C1231}\) & 0.33 megs & OC3345 & 0C3341 & 7.5 & megs & OC7555 & \\
\hline 24. & ohms & 0C2405 & & 560.
620. & ohms & OC5615 & 0C5811 & 15,000. & ohms & OC1535 & \(0 \mathrm{C1531}\) & 0.39 megs & OC3945 & 0c3941 & 8.2 & megs & OC8255 & 0C8251 \\
\hline 27. & ohms & 0C2705 & 0c2701 & 680. & ohms & OC6815 & OCB11 & 16,000. & Ohms & OC1635 & & 0.43 megs & 0 C 4345 & & 9.1 & megs & 0c9155 & \\
\hline 30. & ohms & OC3005 & & 750. & ohms & 0 C 7515 & 0c6e11 & 18,000. & Ohms & OC1835 & \(0 \mathrm{C1} 181\) & 0.47 megs & 0 O 4745 & 0C4741 & 10. & megs & OC1065 & OC1081 \\
\hline 33. & ohms & OC3305 & OC3301 & 820. & ohms & OC8215 & 0C8211 & 22,000. & ohms & OC2035 & & 0.51 megs & OC5145 & & 11. & megs & OC1165 & \\
\hline 36. & ohms & 0 C 3605 & & 910. & Ohms & OC9115 & & 24,000. & ohms & OC2435 & 0 C 2231 & 0.56 megs & \(0 \mathrm{OC5} 845\) & \(0 C 5841\) & 12. & megs & OC1265 & 0C1261 \\
\hline 39. & ohms & OC3905 & 0 C 3901 & 1,000. & ohms & OC1025 & OC1021 & 27,000. & ohms & OC2735 & OC2 & 0.62 megs & OC6245 & & 13. & megs & OC1365 & \\
\hline 47. & Ohms & 0 C 4305 & & 1,100. & ohms & OC1125 & & 30,00. & ohms & OC3035 & 0 & 0.68 megs & OC7545 & \(0 \mathrm{C6841}\) & 15. & megs & OC1565 & \(0 ¢ 1561\) \\
\hline 51. & ohms & 0 C 5105 & & 1,200. & ohms & OC1225 & 0 C 1221 & 33,000. & ohms & \(0 \mathrm{OC3335}\) & \(0 \mathrm{C3331}\) & 0.82 megs & Oca 245 & OC824 & 16. & megs & OC1665 & \\
\hline 56. & ohms & OC5605 & OC5601 & 1,500. & Ohms & \begin{tabular}{l}
0 O1325 \\
OC1525
\end{tabular} & & 36,000. & ohms & OC3635 & & 0.91 megs & OC9145 & & 18. & megs & OC1865 & OC1881 \\
\hline 62. & ohms & OC6205 & & 1,600. & ohms & 0 OC1525 & \(0 \mathrm{C1521}\) & 39,000. & Ohms & OC3935 & \(0 \mathrm{C3931}\) & 1. megs & OC1055 & \(0 \mathrm{C1051}\) & 20. & megs & OC2065 & \\
\hline & & & & & ohms & & & 43,000. & Oh & OC & & 1.1 megs) & OC1155 & & 22. & megs & 0 C 2265 & \(0 C 2281\) \\
\hline
\end{tabular}

\footnotetext{
distributors but normally are not stocked in depth.
}

\footnotetext{
*Min. Resistance under MIL-R-11 is 10 ohms.
\#Min. Resistance under MIL-R-11 is 2.7 ohms
' Items appearing in bolo print are popular values and are usually stocked by authorised OHMITE distributors. Items appearing in LIGHT faCE print are available from stocking
distributors but normally are not stocked in depth.
}

\section*{넝NITE Liule Deuil \({ }^{\circ}\) industrial and service resistor assortments}

RESISTORS ANO HANOY CABINET FOR THE PRICE OF THE RESISTORS ALONE Select the composition resistor you need, right on the job from time-saving Little Devile) Assortments. Ohmite now offers seven industrial assortments in addition to the four service assortments that have been so popular for many years. In this complete line, there is an assortment to fill every industrial and service need. An attractive plastic cabinet or cabinet assembly is furnished at no extra cost with each assortment. Each drawer of a single \(j\)-drawer cabinet has eight compartments, all individually labeled. Dimensions of the single cabinet are \(9^{\prime \prime}\) long, \(43 / 4^{\prime \prime}\) high, industrial assortments are riveted to metal strips which afford rigidity and permit industrial assortments are rivet
of the seven industrial assortments, there are three \(\pm 10 \%\) tolerance assortments of \(1 / 4,1 / 2\) or 1 watt sizes each containing 80 values. A two-cabinet assembly values each of resistors in the \(1 / 8,1 / 4,1 / 25 \%\) tolerance assortments provide is furnished for each of these assortments. The four popular service assortments
gle cabinet in \(1 / 4,1 / 2,1\) or 2 watt sizes. Cabinets are factory packed in accorda

11 ASSORTMENTS
\begin{tabular}{|c|c|c|c|c|}
\hline & 120 & keswis & \#\% & Hes \\
\hline INDUSTRIAL & & & & \\
\hline \(\pm 10 \%\) Tolerance & CAB-25 & 1000 & 1/4 & \$ 70.00 \\
\hline 80 Resistance Values & CAB-26 & 1000 & 1/2 & 60.00 \\
\hline 2 Cabinets & CAB-27 & 600 & 1 & 54.00 \\
\hline INDUSTRIAL & CAB-45 & 1000 & 1/8 & 225.00 \\
\hline \(\pm 5 \%\) Tolerance & CAB-46 & 1500 & 1/4 & 210.00 \\
\hline 160 Resistance Values & CAB-47 & 1500 & \(1 / 2\) & 180.00 \\
\hline 4 Cabinets & CAB-48 & 900 & 1 & 160.00 \\
\hline RADIO \& TV SERVICE KITS & & & & \\
\hline \(\pm 10 \%\) Tolerance & CAB-10 & 150 & 1/4/2 & 18.00 \\
\hline 37 Values--CAB-4 & CAB-2 & 125 & 1 & 22.50 \\
\hline 40 Values-0thers 1 Cabinet & CAB-3 & 125 & 2 & 30.00 \\
\hline
\end{tabular}

10\% TOLERANCE ASSORTMENTS

ittems appearing in bold print are popular values and are usually stocked by authorized ohmite distributors.

\section*{power line chokes}

Prevents high-frequency currents of radio transmitters, diathermy and therapeutic equipment from going out over the power lines and interfering with nearby radio receiving sets. They are used as filters in conjunction with two grounding capacitors of 0.1 microfarad capacity each. The 2.20 Choke is also used at radio receivers to keep out interference. All chokes consist of two, single-layer windings on a single ceramic core, insulated and protected by moisture-proof coating.

\section*{radio frequency plate chokes}

This series of seven, single-layer-wound, solenoid type radio frequency plate chokes, covers the entire frequency range of 3 to 520 megacycles. The stock number cortesponds to the approximate frequency at which maximum efficiency will be obtained, but the chokes may be used at any other frequencies within their operating ranges, as listed in the price table.

Chokes of the four highest frequencies are wound on low power factor plastic cores while the other three units 'are wound on steatite tubes. Windings are insulated and protected by a moisture-proof coating. The single
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Catalot KP . & 0peratist Fante & Inductince BierDhenries & \[
\begin{gathered}
6.6 \\
\text { Res } \\
\text { Dims }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Ratag } \\
\text { Curtert } \\
\text { Ampt }
\end{array}
\] & \begin{tabular}{|l|}
\hline Res- \\
ousint \\
Fras. Mt
\end{tabular}\(|\) & Care & \[
\begin{aligned}
& \text { WL } \\
& \text { Lits }
\end{aligned}
\] \\
\hline 2.7 & 3 to 20 Mc . & 84.0 & 4.70 & 1.00 & 13 & \(6^{\prime \prime} \times 16^{\prime \prime}\) & . 106 \\
\hline 2-14 & 7 to 35 Mc . & 44.0 & 2.60 & 0.68 & 23 & \(2^{\prime \prime} \times 16^{\prime \prime}\) & . 026 \\
\hline 2-28 & 20 to 60 Mc . & 21.0 & 2.70 & 0.60 & 41 & \(134^{\prime \prime} \times 1{ }^{\prime \prime}\) & . 011 \\
\hline 2-50 & 35 to 110 Mc . & 7.0 & 0.98 & 1.00 & 79 & \(1^{\prime \prime} \times 8^{\prime \prime}\) & . 005 \\
\hline 2.144 & 80 to 200 Mc & 1.8 & 0.33 & 1.10 & 168 & \(34^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}\) & . 002 \\
\hline 2.235 & 160 to 350 Mc . & 0.84 & 0.14 & 1.70 & 300 & \(34^{\prime \prime} \times{ }^{\text {¢ }}\) & . 002 \\
\hline 2-460 & 320 to 520 Mc . & 0.20 & 0.034 & 4.00 & 500 & \(1 / 2^{\prime \prime} \times 1 / 22^{\prime \prime}\) & . 001 \\
\hline
\end{tabular}

Non-magnetic Brackets Furnished with 2.7.
- At \(100 \mathrm{ma}, 25^{\circ} \mathrm{C}\) ambient.
layer winding is designed to avoid adverse harmonic effects and also prevents breakdown from high r.f. potentials. Non-magnetic mounting brackets are furnished with the largest size, Z-7. The Z-14 and Z-28 have wire leads welded to lug type terminals; the \(2-50,2-144,2-235\) and \(2-460\) have axial-type wire leads.

Any one of these chokes may be selected for a particular frequency within its recommended operating range with the assurance that it will give excellent performance. Selection should be made, however, subject to the following qualification. It is generally advisable to select a choke with a resonant frequency (see chart) slightly higher than the desired operating frequency since any additional capacity to ground will tend to shift the resonant frequency closer to the operating frequency. Also, for this reason, the frequency designated by the catalog number of a choke is lower than its natural resonant frequency.

\section*{parasitic suppressor}

The P. 300 Suppressor is designed to prevent unwanted ultra-high-frequency parasitic oscillations which occur in the plate and grid leads of push-pull and parallel tube circuits. The P-300 is a non-inductive, 50 ohm, vitreous enameled resistor combined with a choke
(in parallel) of .3 microhenries inductance and .003 ohms D.C. resistance. The two form a small integral unit only \(13 / 4^{\prime \prime}\) long overall and \(21 / 32^{\prime \prime}\) diameter. The unit may be mounted directly in the grid lead without extra support.
model P. 300 Wt. .04 lb . \(\qquad\) Net \(1.9 \$ 1.90\)

\section*{diode metersaver protects meters}

Designed to protect sensitive (high internal resistance) meters against burnout due to overload even where potential is reversed. Introduces negligible error. Consists of 2 silicon diodes in compact case with leads and lugs. Connects across meter terminals without regard for polarity. Shunts excess current
around meters - for example, can convert 200 times overload to 3 times overload. Allows use of less expensive meter fuses. Can be used with meters of low internal resistance but use of series resistor is then recommended.
catalog No. omc7111
.Net (1-99) \$1.98

\footnotetext{
- Popular Items appear in BOLD print and are usually in stock at authorized ohmite stocking distributors. Items appearing in light FACE print are availabie from stocking distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a \(\$ 15.00\) per line item minimum charge.
}

\section*{:) HMITE 0.1\% precision Determ-0hm \({ }^{\circ}\) resistance box}

maximum current ratings (Do not exceed 500 volts.)
\begin{tabular}{l}
(Do not exceed 500 Volts.) \\
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Resistance Range \\
(Ohms)
\end{tabular} & \begin{tabular}{c}
Maximum Current \\
(Milliamps)
\end{tabular} \\
\hline \(1-9\) & 710 \\
\hline \(10-99\) & 220 \\
\hline \(100-999\) & 71 \\
\hline \(1000-9999\) & 22 \\
\hline \(10,000-99,999\) & 7.1 \\
\hline \(100,000-999,999\) & 1.1 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The new Ohmite Precision Determ-ohm is a resistance decade box with an accuracy of \(\pm 0.1 \%\). Four models cover the resistance range from 1 ohm to 1 megohm in a choice of three-4 decade and one- 6 decade models.
Simplified selection of resistance values is accomplished by operation of rocker-type thumbwheel switches. Resistance setting is indicated by a direct in-line numeric readout. Unique switch feature (pat. pend.) allows advancing or decreasing of values directly from 9 thru 0 to 1 or vice versa, without retracing all the other values.
The housing is a functional sloping panel metal case equipped with universal binding posts and a grounded metallic binding post for effective shielding.

\section*{SPECIFICATIONS}

Accuracy: \(0.1 \%\) (plus \(.01 \Omega\) max. contact and circuit resistance per decade).

Selection: Rocker-type thumbwheel switches, continuous rotation in either direction.

Switch Life: In excess of 50,000 operations.
Power: \(1 / 4\) Watt per resistor.
Dperating Temperature: +15 to \(+35^{\circ} \mathrm{C}\).
T.C. of Resistors: \(\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), max. \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

\section*{SELECTION AND PRICING}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
Resistance Range \\
(Ohms)
\end{tabular} & \begin{tabular}{c}
Ohms \\
Per Step
\end{tabular} & \begin{tabular}{c}
Number of \\
Decades
\end{tabular} & \begin{tabular}{c}
Catalog \\
Number
\end{tabular} & \begin{tabular}{c}
Net \\
Price
\end{tabular} \\
\hline 0 to 9.999 K & 1 & 4 & 3405 & \(\$ 85.00\) \\
\hline 0 to 99.99 K & 10 & 4 & 3406 & 85.00 \\
\hline 0 to 999.9 K & 100 & 4 & 3407 & 90.00 \\
\hline 0 to 999.999 K & 1 & 6 & 3410 & 125.00 \\
\hline
\end{tabular}
prices subject to change without notice.

\section*{thru-bolt type mounting brackets for tubular resistors}

These sturdy cadmium-plated steel brackets mount tubular resistors type 270 (fixed) and type 210 (adjustable Dividohm (3i) via thru-bolts and centering washers with mica insulating washers. Slotted, consisting of one end-slot and one side-slot bracket, and elongated styles are offered.

OIMENSIONS FOR SLOTTEO BRACKET
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Cat, No. Type & A & 8 & c & 0 & \(E\) & \(F\) & 1 \\
\hline 6101 & 28/3 & 3/6 & \(3 / 4\) & \(3_{2}\) & \% 6 & 1/4 & 872 \\
\hline 6104 & 26/3 & 11/6 & 3/4 & K2 & \%/6 & \(1 / 4\) & 1\%2 \\
\hline 6119 & 1 & 13/4 & 1\%/6 & K, & 1\%6 & \(\mathrm{K}_{6}\) & \% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{THRU-BOLT BRACKET CATALDS KUMBER} & & \multicolumn{2}{|l|}{FOR TUBULAR RESISTOR} \\
\hline SLOTTED STYLE & ELONGATED STML & \[
\begin{aligned}
& \text { WATT } \\
& \text { SIzE }
\end{aligned}
\] & FIXED TYPE CATALOG NUMEER & Divioorm QATALDG NUMBER \\
\hline - & 6120-D-13/4 & 12 & 3723-3843 & 1001-1040 \\
\hline 6101.2 & 6120-K-2 & 25 & 0200A-0229 & 0360-0389 \\
\hline 6101-4 & 6120-K-4 & 50 & 0400A-0428 & 0560-0591 \\
\hline 6101-6 & - & 75 & - & 0769-0796 \\
\hline 6104-61/2 & - & 100 & 0600A-0625 & 0956-0973 \\
\hline 6110-81/2 & - & 175 & 0700A-0725 & \(1156-1173\) \\
\hline 6110-101/2 & - & 225 & 0900A-0925 & 1356-1373 \\
\hline
\end{tabular}

SLOTTED BRACKET TYPE

ELONGATEO BRACKET TYPE

\section*{mounting brackets for tubular resistors}

Brackets fit inside the cores of tubular resistors and remain in place by friction. The standard bracket (indicated by catalog number without suffix) is cadmium plated steel. An "s" suffix on the catalog number indicates spring steel: a "B" suffix indicates brass.

Spring steel brackets are excellent where vibration is involved; brass brackets are used with non-inductive resistors or for corrosion resistance. A pair of standard brackets is supplied with each individually boxed resistor sold through distribus tors. Brackets are not automatically supplied for bulk resistor orders. Brackets are sold in lots of 100 pieces (50 pair)

\title{
이NITE hot molded single-turn trimmers
}

\section*{TYPE AFR - SINGLE TURN}

OHMITE type AFR Trimmers are single-turn controls built to withstand severe environmental conditions. Their unique design includes a hot-molded resistor track bridged by a single moving molded contact brush. Resistance material, collector track material, insulation material and metal terminals are all molded together at one time into a single, solid, integral structure. There are no cracks or crevices to admit moisture.
Enclosure of the Ohmite type AFR is non-magnetic, corrosion resistant, and splash-proof. Type AFR Trimmers are designed for screwdriver adjustment. Fixed stops withstand a maximum shaft torque of 2 inch-pounds.

In excess of 50,000 operational cycles with low "noise" level initially - decreasing with use - can be expected in conventional applications.

\section*{CHARACTERISTICS:}

Power Rating: \(1 / 4\) watt @ \(+70^{\circ} \mathrm{C}\) ambient temperature. Derate power linearly to zero at \(+120^{\circ} \mathrm{C}\) ambient for resistance values to 0.5 megohms. Additional derating required for resistance values over 0.1 megohms at ambients higher than \(70^{\circ} \mathrm{C}\).

Resistance Range: 100 ohms to 5.0 megohms. Resistance change is nominally linear with shaft rotation.
Tolerance: \(\pm 20 \%\) standard.
Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+120^{\circ} \mathrm{C}\).
Working Voltage: 350 volts, RMS, maximum.
Dielectric Strength: 750 VAC, RMS, at sea level.
Adjustment: Single turn, \(295 \pm 5\) degrees.
Torque: 0.25 to 3.0 inch-ounces.
Leads: Designed for mounting directly on printed wiring boards using the terminal leads which are spaced to fit the \(0.1^{\prime \prime}\) printed wiring board standard spacing.

STOCK OHMITE TYPE AFR TRIMMERS
\begin{tabular}{|c|c|c|c|}
\hline Ohms \(+20 \%\) & \begin{tabular}{l}
Catalog \\
Number
\end{tabular} & \[
\begin{aligned}
& \text { Ohms } \\
& \pm 20 \%
\end{aligned}
\] & \begin{tabular}{l}
Catalog \\
Number
\end{tabular} \\
\hline 100 & AFR 101M & 25,000 & AFR 253M \\
\hline 250 & AFR 251M & 50,000 & AFR 503M \\
\hline 500 & AFR 501M & .1 meg & AFR 104M \\
\hline 1,000 & AFR 102M & . 25 meg & AFR 254M \\
\hline 2,500 & AFR 252M & . 5 meg & AFR 504M \\
\hline 5,000 & AFR 502M & 1.0 meg & AFR 105M \\
\hline 10,000 & AFR 103M & 2.5 meg & AFR 255M \\
\hline & & 5.0 meg & AFR 505M \\
\hline
\end{tabular}

\section*{hot molded 25-turn trimmers}

\author{
TYPE ANP - 25-TURN
}

Ohmite type ANP Hot-Molded Trimmers are continuously adjustable 25 -turn variable resistors intended primarily for trimmer applications. Designed for use on printed circuit boards, these dependable three-terminal devices can be applied as either rheostats or potentiometers with equally satisfactory results. Stepless and relatively non-inductive regardiess of resistance value. Unexcelled stability of setting in normal environmental conditions.
The type ANP Trimmer is produced by a hot-molding process using a high insulatian material together with a hot molded resistance track, low resistance collector track and terminal pins - all combined into a single, solid, integral structure. The type ANP is splash-proof, dust-tight and can be mounted by its own rugged terminals.

CHARACTERISTICS:

Power Rating: \(1 / 3\) watt @ \(50^{\circ} \mathrm{C}\) ambient temperature. Derate power linearly to zero at \(100^{\circ} \mathrm{C}\).
Resistance Range: 100 ohms to 0.1 megohms. Resistance change is nominally linear with shaft rotation.
Tolerance: Standard resistance tolerance is \(\pm 20 \%\).
Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\).
Working Voltage: 350 volts RMS, maximum at sea level.
Dielectric Strength: 700 volts RMS maximum, at sea level.
Insulation Resistance: 1000 megohms minimum.
Adjustment: \(25 \pm 3\) turns for continuous resistance change. Mechanical release at end positions. Turning torque is 0.10 to 8 inches-ounce. Slotted for screwdriver adjustment.
Leads: Pin type terminals, spaced in accordance with 0.1" printed wiring board grid system.

STOCK OHMITE TYPE ANP TRIMMERS
\begin{tabular}{|c|c|c|c|}
\hline Ohms & \begin{tabular}{c}
Catalog \\
Number
\end{tabular} & 0 Ohms & Catalog \\
\(\pm 20 \%\) & \(\pm 20 \%\) & Number \\
\hline 100 & ANP-101M & 5,000 & ANP-502M \\
250 & ANP-251M & 10,000 & ANP-103M \\
500 & ANP-501M & 25,000 & ANP-253M \\
1,000 & ANP-102M & 50,000 & ANP-503M \\
2,500 & ANP-252M & .1 meg & ANP-104M \\
\hline
\end{tabular}

\section*{}

Now, Ohmite offers TWELVE sizes in its line of famous rheostats ranging from 7.5 to 1000 watts. Nothing to shrink or burn, al models are metal and ceramic construction and coated with Ohmite's exclusive vitreous enamel or Ohmicone silicone ceramic. The revolutionary Model C, \(71 / 2\) watt miniature unit, the smallest rheostat of its rating available, employs this same construction! All Model C stock units and the enclosed Model E unit, are normally supplied in a corrosion-resistant dust-proof case. Model C units are stocked in both standard and locking type bushings.
In all Ohmite rheostats, the resistance wire is wound on a solid ceramic core. The turns are locked in place with tough, protective vitreous enamel or Ohmicone \({ }^{(3)}\) silicone ceramic. Pivoted, universal action mounting of the brush, assures perfect contact. Metal-graphite contact brushes, varied to fit current and resistance, insure good contact with negligible wear of the wire. Terminals at each end of the winding permit connection of the unit as a potentiometer.
Models \(H_{1}\) J, G, K, L, P, and N, marked "Series A," are listed under the Underwriter's Laboratories Reexamination Service. RHEOSTAT KNOBS are listed on page 20. Rheostats can be supplied to meet military specification MIL-R-22.

RATINGS: Current ratings shown, assume use in free air. If units are enclosed, currents should be reduced to as much as \(50 \%\) depending upon ventilation. The rated current causes the rheostat to dissipate its rated wattage when its full resistance is in the circuit
SPECIAL RHEOSTAT FEATURES: Hundreds of features to meet your special rheostat requirements can be furnished. Submit your specifications.

NOW, FOR ITS RATING INDUSTRY'S SMALLEST RHEOSTAT!

Unenclosed Model E

Enclosed
Model E
\(121 / 2\) Watts

\section*{MODEL "C" - 7½ WATT* - STANDARD \& LOCKING BUSHINGS}

Diameter .515" max. - Depth behind panel \(7 / \mathbf{" 月}^{\prime \prime}\) - Shaft \(1 / 8^{\prime \prime}\) diameter, slotted for both types; Std. shaft accommodates knob - Rotation \(300^{\circ}\) - Mounling for panels up to \(1 / 8^{\prime \prime}\) by means of \(1 / /^{" \prime}-32\)
bushing and hex. nut - Non-turn lug requires \(1 / 9^{\prime \prime}\) hole \(1 / 4^{\prime \prime}\) below center of shaft - No. 5151 knob recommended - Solder terminals also fit EIA type TS-E3R100 transistor socket - Wi. 0.27 oz.
\begin{tabular}{|c|c|c|c|}
\hline Ohms & Ampr & stancarc Shaft Cstaloz Ha. \({ }^{1}\) & Locking Shatt Catalog No. \({ }^{1}\) \\
\hline 10 & . 86 & 4908 & 4948 \\
\hline 15 & . 71 & 4909 & (4949) \\
\hline 25 & . 55 & 4910 & (4950) \\
\hline 35 & . 46 & (4911) & (4951) \\
\hline 50 & . 39 & 4912 & (4952) \\
\hline 75 & . 32 & (4913) & (4953) \\
\hline 100 & . 27 & 4914 & 4954 \\
\hline 150 & . 22 & (4915) & (4955) \\
\hline 200 & . 19 & (4916) & 4956) \\
\hline
\end{tabular}

Locking-type Model C mounted in socket on panel. Solder terminals fit transistor socket.
\begin{tabular}{|c|c|c|c|}
\hline Ohms & Ampx. & \begin{tabular}{c}
Standard Shaft \\
Catalog \\
No.1
\end{tabular} & \begin{tabular}{c}
Locking Shaft \\
catalog \\
No.
\end{tabular} \\
\hline 250 & .17 & 4917 & \((4957)\) \\
350 & .15 & 4918 & 4958 \\
500 & .12 & 4919 & \((4959)\) \\
750 & .10 & \((4920)\) & \((4960)\) \\
1000 & .086 & 4921 & 4961 \\
1500 & .071 & \((4922)\) & \((4962)\) \\
2500 & .055 & \((4923)\) & 4963 \\
3500 & .046 & \((4924)\) & \((4964)\) \\
5000 & .039 & 4925 & 4965 \\
\hline
\end{tabular}

MODEL C

-Rating on metal panel - unit is silicone-ceramic coated.
MODEL "E" - \(121 / 2\) WATT* - UNENCLOSED \& ENCLOSEO
Diameter \(7 / 8^{\prime \prime}\); Diameter with dust-tight aluminum enclosure \(11 / 44^{\prime \prime}\) - Depth behind panel "1/8"; for enclosed, \(132_{2}^{\prime \prime}\) - Rotation \(300^{\circ}\) - Mounts on panels up \(101 / 8^{\prime \prime}\) by means of \(1 / 4^{\prime \prime}-32\) bushing and hex nut - Non-turn lug requires \(1 / 6^{\prime \prime}\) hole \(1 / 4^{\prime \prime}\) below center of shaft. No. 5151 knob recommended-WI. 0.6 oz .; enclosed 0.8502.

\begin{tabular}{|c|c|c|c|c|}
\hline Total Ohns & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps }
\end{aligned}
\] & Steps Appr. & Unencloned Catalog No.? & Enclosed Cutalag No' \\
\hline 175 & . 27 & 155 & 0114 & (W0114) \\
\hline 200 & . 25 & 135 & 0114 A & (W0114A) \\
\hline 250 & . 22 & 170 & 0115 & W0115 \\
\hline 350 & . 19 & 190 & 0116 & (W0116) \\
\hline 500 & . 16 & 210 & 0117 & (W0117) \\
\hline 750 & . 13 & 200 & 0118 & (W0118) \\
\hline 1,000 & . 11 & 260 & 0119 & W0119 \\
\hline 1,500 & . 091 & 209 & 0120 & (W0120) \\
\hline 2,500 & . 071 & 323 & 0121 & W0121 \\
\hline 3,500 & . 060 & 400 & \(0122+\) & (W0122 \({ }^{\text {+ }}\)) \\
\hline 5,000 & . 050 & 340 & \(0123+\) & W0123+ \\
\hline 7,500 & .041********* & 420 & \(4190+\) & W4190t \\
\hline 10,000 & .035** & 560 & \(4191-\) & (W04191 \(\dagger\)) \\
\hline 12,500 & .031** & 480 & (4192t) & (W04192t) \\
\hline 15,000 & .029* & 490 & \(4193+\) & (W04193t) \\
\hline
\end{tabular}
*Rating on metal panel. tSilicone-ceramic coating - 350V maximum; 7500 ohms \(=305 \mathrm{~V}\)

\title{
지NMITE vitreous enameled rheostats (potentiometers)
}

\author{
25 WATT \\ MODEL "H," SERIES A
}

Dia. 1Ki" - Depth behind panel \(13 \mathbf{3}^{\prime \prime}\) - Shaft \(1 / 4^{\prime \prime}\) dia. Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime}\) by means of \(3 \mathbf{e n}^{\prime \prime}-32\) Bushing and Hex. Nut - Non-turn lug requires Kis \(_{6}\) hole \(1 / 2^{\prime \prime}\) below ctr. of shaft 一No, 5150 knob recom. -C dimension is ' \(\mathrm{Ks}_{\mathrm{s}}\) "-Weight 0.19 lb.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Cralop } \\
\mathrm{No}, \mathrm{I}
\end{gathered}
\] & Total Ohens & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps }
\end{aligned}
\] & Steps Approx: \\
\hline 0140 & 1 & 5.000 & 30 \\
\hline 0141 & 2 & 3.540 & 29 \\
\hline 0142 & 3 & 2.880 & 51 \\
\hline 0143 & 6 & 2.040 & 50 \\
\hline 0144 & 8 & 1.770 & 52 \\
\hline 0145 & 10 & 1.580 & 52 \\
\hline 0146 & 15 & 1.290 & 74 \\
\hline 0147 & 25 & 1.000 & 95 \\
\hline 0148 & 35 & . 845 & 107 \\
\hline 0149 & 50 & . 707 & 97 \\
\hline 0150 & 75 & . 575 & 117 \\
\hline 0151 & 100 & . 500 & 123 \\
\hline 0152 & 125 & . 445 & 155 \\
\hline 0153 & 175 & . 375 & 171 \\
\hline 0154 & 250 & . 316 & 159 \\
\hline 0155 & 350 & . 267 & 210 \\
\hline 0156 & 500 & . 222 & 245 \\
\hline 0157 & 750 & . 182 & 286 \\
\hline 0158 & 1,009 & . 155 & 305 \\
\hline 0159 & 1,500 & . 129 & 380 \\
\hline 0160 & 2,500 & . 100 & 300 \\
\hline 0161 & 3,500 & . 084 & 335 \\
\hline 0162 & 5,000 & . 070 & 380 \\
\hline 42004 & 7.500 & . 058 & 590 \\
\hline \(4201+\) & 10,000 & . 050 & 525 \\
\hline 4202 & 15,000 & . 041 & 750 \\
\hline \(4203+\) & 20,000 & . 035 & 750 \\
\hline \(4204+\) & 25,000 & . 032 & 700 \\
\hline
\end{tabular}

225 WATT
MODEL "P," SERIES A

Dia. \(5^{\prime \prime}\) - Depth behind panel \(21 / 8^{\prime \prime}\) - Shaft \(3 /^{\prime \prime}\) dia. Rotation \(310^{\circ}\) - Mounting for panels up to \(11 / 4^{\prime \prime}\) by two \(1 / 4^{\prime \prime}-20\) screws, mounting centers (\(M\)) \(7 / 8^{\prime \prime}\) each side of center of shaft on cen. ter line of cross-bar, - Stock C dimension is \(23 / z^{\prime \prime}\) — Weight C dim
2 lbs.
\begin{tabular}{|c|c|c|c|}
\hline Catalos No: 1 & ahms & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps }
\end{aligned}
\] & Steps Auptox \\
\hline (1250) & 1.0 & 15.000 & 42 \\
\hline 1251 & 2.0 & 10.600 & 42 \\
\hline 1252 & 3.0 & 8.660 & 43 \\
\hline (1253) & 4.0 & 7.500 & 57 \\
\hline 1254 & 5.0 & 6.710 & 57 \\
\hline (1255) & 7.5 & 5.490 & 61 \\
\hline 1256 & 10.0 & 4.740 & 103 \\
\hline 1257 & 15.0 & 3.870 & 109 \\
\hline 1258 & 25.0 & 3.000 & 115 \\
\hline 1259 & 50.0 & 2.120 & 183 \\
\hline 1260 & 75.0 & 1.730 & 192 \\
\hline 1261 & 100 & 1.500 & 268 \\
\hline 1262 & 150 & 1,220 & 256 \\
\hline 1263 & 200 & 1.060 & 337 \\
\hline 1264 & 300 & . 866 & 323 \\
\hline 1265 & 400 & . 750 & 343 \\
\hline 1266 & 700 & . 567 & 484 \\
\hline 1267 & 900 & . 500 & 493 \\
\hline 1268 & 1,200 & . 433 & 520 \\
\hline 1269 & 1,500 & . 387 & 647 \\
\hline 1270 & 1,750 & . 358 & 603 \\
\hline 1270A & 2.000 & . 336 & 650 \\
\hline 1271 & 2.500 & 300 & 652 \\
\hline
\end{tabular}

50 WATT
MODEL "J," SERIES A
Dia. 2\%" - Depth behind panel \(13 /^{\prime \prime}-\) Shaft \(1 / 4^{\prime \prime}\) dia. Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime}\) by means of \(3 \mathbf{B}^{\prime \prime}-32\) Bushing and Hex. Nut - Non-turn lug requires \(\mathrm{K}_{4}^{\prime \prime}\) hole \(12_{2}{ }^{\prime \prime}\) below ctr. of shaft - No. 5150 knob recom. -C dimension is \(1 \mathrm{Kc}^{\prime \prime}\) - Weight 0.32 lb .
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Catalont } \\
& \text { Ne. }
\end{aligned}
\] & Total Onm: & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps } \\
& \hline
\end{aligned}
\] & Steps Appros \\
\hline 0308 & 0.5 & 10.000 & 25 \\
\hline 0309 & 1 & 7.070 & 44 \\
\hline 0310 & 2 & 5.000 & 44 \\
\hline 0311 & 4 & 3.530 & 44 \\
\hline 0312 & 6 & 2.880 & 74 \\
\hline 0313 & 8 & 2.500 & 82 \\
\hline 0314 & 12 & 2.040 & 85 \\
\hline 0315 & 16 & 1.760 & 89 \\
\hline 0316 & 22 & 1.500 & 98 \\
\hline 0317 & 35 & 1.190 & 126 \\
\hline 0318 & 50 & 1.000 & 111 \\
\hline 0319 & 80 & . 790 & 143 \\
\hline 0320 & 125 & . 630 & 177 \\
\hline 0321 & 150 & . 575 & 175 \\
\hline 0322 & 225 & . 470 & 203 \\
\hline 0323 & 300 & . 408 & 215 \\
\hline 0324 & 500 & . 316 & 286 \\
\hline 0325 & 800 & . 250 & 286 \\
\hline 0326 & 1,000 & . 224 & 360 \\
\hline 0327 & 1,600 & . 176 & 368 \\
\hline 0328 & 2,500 & . 141 & 463 \\
\hline 0329 & 3,500 & . 119 & 510 \\
\hline 0330 & 5,000 & . 100 & 442 \\
\hline 0331 & 8,000 & . 079 & 560 \\
\hline 0332 & 10,000 & . 070 & 567 \\
\hline \(4210+\) & 15,000 & . 058 & 700 \\
\hline 42117 & 20,000 & . 050 & 850 \\
\hline \(4212+\) & 25,000 & . 045 & 950 \\
\hline \(4213+\) & 30,000 & . 041 & 900 \\
\hline (4214t) & 40,000 & . 035 & 950 \\
\hline \(4215+\) & 50,000 & . 032 & 1130 \\
\hline
\end{tabular}

300 WATT
MODEL "N," SERIES A
Dia. \(\mathbf{6}^{\prime \prime}\) - Depth behind panel \(236^{\prime \prime}\) - Shaft \(1 /^{\prime \prime}\) dia. Rotation \(320^{\circ}\) - Mounting for panels up to \(11 / 4^{\prime \prime}\) by two \(1 / /^{\prime \prime}-20\) screws, mounting centers (M) 1Kis" each side of center of shaft on cen ter line of cross-bar. - Stock C dimension is \(3 \mathrm{~K} \mathrm{~K}^{\prime \prime}\) - Weight C dime.
2.6 lbs .
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Catalof } \\
\text { Fo. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Total } \\
\text { Otme }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Mas, } \\
& \text { Anvs }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Staps } \\
& \text { Approx }
\end{aligned}
\] \\
\hline 0850 & 1.0 & 17.320 & 50 \\
\hline 0651 & 2.0 & 12,240 & 52 \\
\hline 0852 & 3.0 & 10,000 & 52 \\
\hline 0653 & 4.0 & 8.660 & 78 \\
\hline 0654 & 5.0 & 7.750 & 78 \\
\hline 0655 & 7.5 & 6.320 & 72 \\
\hline 0656 & 10.0 & 5.480 & 78 \\
\hline 0657 & 15.0 & 4.470 & 144 \\
\hline 0658 & 25.0 & 3.460 & 135 \\
\hline 0859 & 50.0 & 2.450 & 218 \\
\hline 0660 & 75.0 & 2.000 & 225 \\
\hline 0661 & 100 & 1.730 & 285 \\
\hline 0662 & 150 & 1.410 & 342 \\
\hline 0663 & 200 & 1.220 & 363 \\
\hline 0664 & 300 & 1.000 & 424 \\
\hline 0655 & 400 & . 866 & 454 \\
\hline 0666 & 700 & . 655 & 504 \\
\hline 0667 & 900 & . 578 & 528 \\
\hline 0668 & 1,200 & . 500 & 546 \\
\hline 0669 & 1,500 & . 447 & 678 \\
\hline (0670) & 1,750 & . 414 & 626 \\
\hline (0670A) & 2,000 & . 387 & 700 \\
\hline 0671 & 2,500 & . 346 & 708 \\
\hline
\end{tabular}

75 WATT
MODEL "G," SERIES A
Dia. 23/4" - Depth behind panet \(13 / 4^{\prime \prime}\) - Shaft \(1 / 4^{\prime \prime}\) dia. Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime}\) by means of \(36^{\prime \prime}-32\) Bushing and Hex. Nut - Non-turn lug requires \(K_{6}\) " hole \(1 / 2^{\prime \prime}\) below ctr. of shaft - No, 5150 knob recom. - C dimension is \(12 \% / 2 z^{\prime \prime}\)-Weight 0.52 lb .
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { Patalog } \\
& \text { No. }
\end{aligned}
\] & Total Ohms & \[
\begin{aligned}
& \text { Mar } \\
& \text { Amps }
\end{aligned}
\] & Steps Approx \\
\hline 1100 & 0.5 & 12.300 & 28 \\
\hline (1101) & 1 & 8.660 & 27 \\
\hline 1102 & 2 & 6.120 & 28 \\
\hline 1103 & 3 & 5.000 & 53 \\
\hline 1104 & 5 & 3.880 & 54 \\
\hline 1105 & 7.5 & 3.160 & 51 \\
\hline 1106 & 10 & 2.740 & 55 \\
\hline 1107 & 16 & 2.170 & 131 \\
\hline 1108 & 25 & 1.730 & 113 \\
\hline 1109 & 50 & 1.230 & 143 \\
\hline 1110 & 75 & 1.000 & 134 \\
\hline 1111 & 100 & . 866 & 180 \\
\hline 1112 & 200 & . 612 & 186 \\
\hline 1113 & 300 & . 500 & 217 \\
\hline 1114 & 400 & . 433 & 230 \\
\hline 1115 & 500 & . 388 & 291 \\
\hline (1116) & 750 & . 316 & 345 \\
\hline 1117 & 1,000 & . 274 & 351 \\
\hline (1118) & 1,500 & . 224 & 434 \\
\hline 1119 & 2,000 & . 194 & 450 \\
\hline (1120) & 2,500 & . 173 & 448 \\
\hline (1121) & 5,000 & . 123 & 590 \\
\hline (1122) & 7,500 & . 100 & 544 \\
\hline 1123 & 10,000 & . 087 & 568 \\
\hline
\end{tabular}

500 WATT
MODEL "R"

100 WATT
MODEL "K," SERIES A
Dia, 318" - Depth behind panel \(13 / 4^{\prime \prime}\) - Shaft \(1 / 4^{\prime \prime}\) dia, Rotation \(300^{\circ}\) - Mounts on panels up to \(1 / 4^{\prime \prime}\) by means of \(3{ }^{\prime \prime \prime} \cdot 32\) Bushing and Hex. Nut - Non-turn lug requires \(\mathrm{Kic}^{\prime \prime}\) hole \(1 / 2^{\prime \prime}\) below ctr. of shaft - No, 5150 knob recom, -C dimension is \(12 \%_{2} z^{\prime \prime}\) - Weight 0.64 lb .
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Catalos } \\
\text { Ne. }
\end{gathered}
\] & Total Chms & \[
\begin{gathered}
\text { Mar, } \\
\text { 2mps }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Steps } \\
& \text { Agpros }
\end{aligned}
\] \\
\hline 0440 & 0.5 & 14,100 & 33 \\
\hline 0441 & 1 & 10.000 & 33 \\
\hline 0442 & 2 & 7.070 & 33 \\
\hline 0443 & 3 & 5.750 & 30 \\
\hline 0444 & 5 & 4.470 & 57 \\
\hline 0445 & 7.5 & 3.650 & 60 \\
\hline 0446 & 10 & 3.160 & 57 \\
\hline 0447 & 16 & 2.500 & 124 \\
\hline 0448 & 25 & 2.000 & 107 \\
\hline 0449 & 50 & 1.410 & 135 \\
\hline 0450 & 75 & 1.150 & 158 \\
\hline 0451 & 100 & 1.000 & 168 \\
\hline 0452 & 200 & . 707 & 213 \\
\hline 0453 & 300 & . 575 & 259 \\
\hline 0454 & 400 & . 500 & 270 \\
\hline 0455 & 500 & . 447 & 269 \\
\hline 0456 & 750 & . 365 & 319 \\
\hline 0457 & 1.000 & ,316 & 330 \\
\hline 0458 & 1,500 & . 258 & 402 \\
\hline 0459 & 2,000 & . 224 & 417 \\
\hline 0460 & 2,500 & . 200 & 515 \\
\hline 0461 & 5.000 & . 141 & 560 \\
\hline 0462 & 7.500 & . 115 & 495 \\
\hline 0463 & 10,000 & . 100 & 673 \\
\hline
\end{tabular}

750 WATT
MODEL "T"

Dia. \(10^{\prime \prime}\) - Depth behind panel \(3^{\prime \prime}-\) Shaft \(3 \mathbf{3}^{\prime \prime}\) dia, Rotation \(330^{\circ}-\) Mounting for panels up to \(11 / /^{\prime \prime}\) by two \(1 / /^{\prime \prime}-20\) screws, mounting centers (M) \(17 / \mathrm{s}^{\prime \prime}\) each ter line of cross-bar, - Stock ter line of cross-bar, - Stock is \(5 \% \mathrm{~K}^{\prime \prime}\) - Welght 7.6 lbs.

150 WATT
MODEL "L," SERIES A
Dia. \(4^{\prime \prime}\) - Depth behind panel \(2^{\prime \prime}-\) Shaft \(1 / 4^{\prime \prime \prime}\) diameter. Rotation \(300^{\circ}\) - Mounting for panels up to \(1 / 4^{\prime \prime}, 3 /{ }^{\prime \prime}, 32\) Bushing and Hex. Nut or two 10-32 flat head screws, mounting centers \(7 / 8^{\prime \prime}\) each side of center of shaft on line perpendicular to center terminal. - Stock No. 5150 knob recom. - C dimension is \(2 \%_{2}^{\prime \prime}\) - Weight 1.1 lbs.
\begin{tabular}{|c|c|c|c|}
\hline Catalge
Fio. & \[
\begin{aligned}
& \text { Total } \\
& \text { Ohms }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps }
\end{aligned}
\] & Steps Appros \\
\hline 0524 & 0.5 & 17.300 & 28 \\
\hline 0525 & 1 & 12.300 & 44 \\
\hline 0526 & 2 & 8.650 & 43 \\
\hline 0527 & 3 & 7.070 & 74 \\
\hline 0528 & 5 & 5.480 & 78 \\
\hline 0529 & 7.5 & 4.470 & 81 \\
\hline 0530 & 10 & 3.880 & 77 \\
\hline 0531 & 15 & 3.163 & 130 \\
\hline 0532 & 25 & 2.450 & 114 \\
\hline 0533 & 35 & 2.070 & 125 \\
\hline 0534 & 50 & 1.735 & 142 \\
\hline 0535 & 75 & 1.415 & 170 \\
\hline 0536 & 100 & 1.225 & 177 \\
\hline 0537 & 150 & 1.000 & 215 \\
\hline 0538 & 200 & . 865 & 229 \\
\hline 0539 & 250 & . 775 & 285 \\
\hline 0540 & 350 & . 655 & 315 \\
\hline 0541 & 500 & . 548 & 366 \\
\hline -0542 & 750 & . 447 & 335 \\
\hline 0543 & 1,250 & . 346 & 453 \\
\hline 0544 & 1,800 & . 288 & 497 \\
\hline 0545 & 2,250 & . 259 & 511 \\
\hline 0546 & 3,000 & . 224 & 526 \\
\hline 0547 & 4,500 & . 182 & 630 \\
\hline 0548 & 7,500 & . 141 & 894 \\
\hline 0549 & 10,000 & . 122 & 929 \\
\hline
\end{tabular}

1000 WATT
MODEL "U"

Dia. \(12^{\prime \prime}\) - Depth behind panel \(3^{\prime \prime}\) - Shaft 3 'h' dla. Rotation \(335^{\circ}\) - Mounting for paneis up to \(11 / 4^{\prime \prime}\) by two \(1 / 4^{\prime \prime}-20\) screws, mounting centers of center of shaft on censide of center of shaft - Stock No. 5105 Knob RecommendedNo. 5105 Knob Recommended -
c dimenslon Is \(6 \%{ }^{\prime \prime}\) - Weight C dime
10 lbs .
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Eatalog } \\
\mathrm{Nos} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Total } \\
& \text { Qher }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Max } \\
& \text { Amps } \\
& \hline
\end{aligned}
\] & Stept \\
\hline 1450 & 1.0 & 31.600 & 86 \\
\hline 1451 & 1.5 & 25,800 & 89 \\
\hline 1452 & 2.0 & 22,400 & 115 \\
\hline 1453 & 2.5 & 20.000 & 122 \\
\hline 1454 & 3.0 & 18.300 & 125 \\
\hline 1455 & 4.0 & 15.800 & 118 \\
\hline 1456 & 5.0 & 14.100 & 122 \\
\hline 1457 & 8.0 & 11.200 & 116 \\
\hline 1458 & 10.0 & 10.000 & 114 \\
\hline (1459) & 12.5 & 8.950 & 181 \\
\hline 1460 & 16.0 & 7.900 & 164 \\
\hline 1461 & 25.0 & 6.330 & 181 \\
\hline 1462 & 50.0 & 4.470 & 321 \\
\hline 1463 & 75.0 & 3.650 & 301 \\
\hline 1464 & 100 & 3.160 & 321 \\
\hline 1465 & 175 & 2.390 & 520 \\
\hline 1466 & 225 & 2.110 & 608 \\
\hline 1467 & 300 & 1.830 & 640 \\
\hline 1468 & 400 & 1.580 & 685 \\
\hline 1469 & 500 & 1.410 & 687 \\
\hline 1470 & 750 & 1.150 & 806 \\
\hline 1471 & 1,000 & 1.000 & 855 \\
\hline 1472 & 1,500 & . 816 & 1,026 \\
\hline 1473 & 2.500 & . 633 & 1,097 \\
\hline
\end{tabular}

\footnotetext{
Popular items appear in BOLO orint and are usually in stock at authorized onmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking
} distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to a \(\$ 15.00\) per line item minlmum charge.
:- HMITE rheostat tandem coupling kits

Tandem rheostat assemblies can be ordered from the factory or assembled by the user with these kits which permit assembly of two units. Each kit consists of a steel "U" frame, a coupling with set screw, mica washer, Allen wrench and instructions.

Rheostat shafts are joined by the coupling which is fastened to the shaft of the rear unit. Projections on the coupling fit a recess on the rear of the hub of the front unit.

Three kits are available as follows:

Cat. No. 6532-Mounts Models H or J, also accommodates Models H, J, G, K or L in rear position.
Cat. No. 6533-Mounts G, K or L units, also accommodates Models H, J, G, K or L in rear position.
Cat. No. 6591-Mounts Model E units only.

*Using No. 5150 Knob.

\section*{black bakelite knobs}

\section*{rheostat dials}

Handsomely finished dials for Ohmite rheostats and other apparatus, feature bright figures and lines on etched black background. Divisions marked from 0 to 100 indicate approximate percentage of rheostat resistance in circuit.
\begin{tabular}{|c|c|c|c|}
\hline Catalog Nio. & For Rheostat & Dial Dia. & Recom'd, Knobs* \\
\hline 5007 & C, E & \(11 / 4^{\prime \prime \prime}\) & 5151 \\
5000 & H, J, G, K, L & 2 K \(_{6 \prime \prime}^{\prime \prime}\) & \(5150,5116,5103\) \\
5001 & P, N, R, T, U & \(512^{\prime \prime}\) & 5104,5106 \\
\hline
\end{tabular}
*See Bakelite Knobs above

\section*{heat control rheostats}

A convenient control for regulating the temperature of soldering irons, melting pots (such as those used for solder, wax, potting material) or other heater loads. With soldering irons, it permits quick adjustment of operating heat for the type of job and grade of solder.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Wattage o To Be Co Watts & \[
\begin{aligned}
& \text { Price } \\
& \text { iled } \\
& \text { Voits }
\end{aligned}
\] & fincostat contral Catitogtio & \multicolumn{2}{|l|}{Cage dimensions Dia. Height} & Net Welsht 1 bE . & Net Price 1 Dty. \\
\hline \(40-65\) & 115 & (SRC65) & 31/8" & 2 & . 58 & \$15.50 \\
\hline 85-100 & 115 & SRC100 & \(31 / 8^{\prime \prime}\) & \(2 \times\) & . 58 & 15.50 \\
\hline 120-150 & 115 & (SRC150) & \(33144^{\prime \prime}\) & 23/3" & . 93 & 17.50 \\
\hline 175-220 & 115 & (SRC220) & 334" & \(278^{\prime \prime}\) & 1.05 & 21.50 \\
\hline 300-350 & 115 & (SRC350) & 41/2" & 27/8" & 1.63 & 24.00 \\
\hline 430-500 & 115 & (SRC500) & \(71 / 2^{\prime \prime}\) & \(31 / 4^{\prime \prime}\) & 2.25 & 29.50 \\
\hline
\end{tabular}

Consists of vitreous enameled rheostat housed in a perforated metal cage, with knob and dial. Supplied with series plug and six feet of heater type cord. The cord from the heater load is plugged into the series plug which is then plugged into a receptacle. Order in accordance with expected maximum wattage load.

\section*{high wattage \(t\)-pad and 1 -pad attenuators}

Stepless control of speaker volume with essentially constant impedance is provided by Ohmite attenuators. In use, these units are interposed between high power amplifiers and speaker or speakers.

Housed in gray, perforated metal cage \(31 / \mathrm{s}^{\prime \prime}\) high, \(25 / 8^{\prime \prime}\) wide and extending \(41 / 4^{\prime \prime}\) behind panel for L-pads; \(61 / 4^{\prime \prime}\) for T-pads. Shaft \(1 / 4^{\prime \prime}\) and bushing \(3 / 8^{\prime \prime}\) diameter; bushing length is for \(1 / 4^{\prime \prime}\) maximum panel (specify greater thicknesses). Mounted with two \(10 / 32\) screws (supplied) on \(25 / 8^{\prime \prime}\) vertical centers.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{T-PAD ATTENUATORS} & \multicolumn{3}{|c|}{L-PAD ATTENUATORS} \\
\hline \multicolumn{3}{|c|}{25 WATI Ave. Wt. 1.44 its} & \multicolumn{3}{|c|}{\begin{tabular}{l}
25 WATT \\
Avg. Wt. 1 ib
\end{tabular}} \\
\hline Catalog No . & & \[
\begin{gathered}
\text { Net } \\
\text { Price } \\
1 \text { Qty. } \\
\hline
\end{gathered}
\] & Catalog No . & Line
Impedance
in Ohms & \[
\begin{aligned}
& \text { Net } \\
& \text { Price } \\
& 1 \text { Qty. } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& (3001) \\
& 3002) \\
& 30033 \\
& 3004) \\
& \hline
\end{aligned}
\] & 15
50
200
500 & \[
\begin{array}{r}
\$ 30.00 \\
30.00 \\
30.00 \\
30.00 \\
\hline
\end{array}
\] & \begin{tabular}{l}
\((3201)\) \\
\((3202)\) \\
\((3203)\) \\
\((3204)\) \\
\hline
\end{tabular} & \[
\begin{array}{r}
15 \\
50 \\
200 \\
500 \\
\hline
\end{array}
\] & \(\begin{array}{r}\$ 27.50 \\ 27.50 \\ 27.50 \\ 27.50 \\ \hline\end{array}\) \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
50 Watr \\
Aug. Wt, 1.88 tbs
\end{tabular}} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { So WATt } \\
& \text { Ant. } 1.25 \text { bs. }
\end{aligned}
\]} \\
\hline \[
\begin{aligned}
& (3101) \\
& (3102) \\
& (3103 \\
& (3104)
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
50 \\
200 \\
500
\end{array}
\] & \[
\begin{array}{r}
\$ 30.50 \\
30.50 \\
30.50 \\
30.50
\end{array}
\] & \[
\begin{array}{r}
(3301) \\
(3302) \\
(3303) \\
(3304)
\end{array}
\] & \[
\begin{array}{r}
15 \\
50 \\
200 \\
500
\end{array}
\] & \(\begin{array}{r}\$ 29.00 \\ 29.00 \\ 29.00 \\ 29.00 \\ \hline\end{array}\) \\
\hline
\end{tabular}

Popular items appear in Bold print and are usually in stock at authorized onmite stocking distributors. Items appearing in LIGHT FACE print are avaliable from stoching distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to apparing in per line item minlmum charge.

\section*{엉MITE molded composition potentiometers}

Ohmite molded composition potentiometers are used in commercial and mititary electronic applications where high-quality and dependable per. formance are important. Type \(A B\) is rated 2 watts at \(70^{\circ} \mathrm{C}\) ambient and is available with \(7 / 8^{\prime \prime}\) slotted shaft (CMU), \(2^{\prime \prime}\) unslotted shaft (CU, CA, CB, CCU) and locking type bushing with slotted shaft (CLU). Type AS is a miniature unit rated \(1 / 2\) watt. It is available with locking type bushing and slotted shaft (Style AS) and standard bushing with longer (slotted) shaft for knob control (Style ASM).

Because the resistance element is a thick, solid-molded ring - not a sprayed film or paint-type resistor - longer life and smoother operation are obtained. This is due also to the molded composition contact. Units are dust and splash proof, fungus and corrosion resistant and meet the requirements of military specification MIL-R-94. Styles CMU, CLU, AS and ASM conform respectively to MIL-R-94, Styles RV4N, RV4L, RV6L and RV6N.

Styles and tapers are listed in table. Dimensions of all stock units are shown below. A SPST switch for single \(A B\) controls can be supplied (see below table).

STOCK "POTS" - MIL Units are Stamped with MIL and Commercial Designations

SWITCH CS. 1 (UNMOUNTED) For CMU, CU, CA, CB, CLU (order CS-1X for potentiometers with

- Items appaaring in BoLO print are popular values and are usually stocked by authorized OHMITE distributors. Items appearing in LIGHT FACE print are available from stocking distributors zut normally are not stocked in depth.

\title{
: WMITE \\ power tap switches, high current, non-shorting type
}

Ohmite single pole, rotary, multi-position switches have proven their durability over many years in demanding applications. Such applications are found in switchboards, arc welders, spot welders, battery chargers, motor controls, tapped transformers, X-ray equipment, diathermy equipment, radio transmitters, electrical machine tools and many other products. Six sizes, including the new, miniature Model 711, provide a choice of ratings from 7 amperes at 125 volts to 100 amperes at 300 volts AC. A choice of the number of taps is provided up to the maximums indicated. All switches are enclosed except for the Models 711 and 111. All switches feature the slowbreak, quick-make action deemed so desirable for switching of AC current.

The five sizes offering ratings from 15 amperes to 100 amperes (Models \(111,212,312,412\) and 608) feature all ceramic, arc-proof bodies and solid silver alloy, fixed and movable contacts. The large, thick, silver-alloy fixed contact disks are permanently welded to copper studs. These, in turn, are riveted and soldered to sturdy terminal lugs, assuring a permanent mechanical and electrical joint. The rotor (moving) contact, also of solid silveralloy, is riveted and soldered to the contact arm. Face of the rotor contact is slightly rounded assuring a perfect seating of the contacts with a slight rubbing, self-cleaning motion on every operation.

MDOEL 711 TAP SWITCH
Alternating Current Rating 7 Amps. 125 Volts - Diameter \(11 / s^{\prime \prime}\) - Shaft Diameter \(1 / 4^{\prime \prime}\) - Standard Mounting: For \(1 / \mathbf{s}^{\prime \prime \prime}\) panel maximum, by means of \(3 / 8^{\prime \prime}-32\) threaded bushing and hex. nut, See mounting illustration "A." Weight, single unit: . 047 lb . approximately. Dual-purpose terminals accept \(\mathrm{Ky}_{4}\) " quick-connectors as well as
soldering. Non-turn lug can be positioned at " 12,6 , and \(90^{\prime}\) clock" soldering. Non-turn lug can be positioned at "12. 3. 6. and 9 o'clock.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{Depth Behind Panel} & \(\frac{\text { Singie Unit }}{\text { Fsist }}\) \\
\hline No. of Taps & Total Rotation & Catalog No. \({ }^{1}\) \\
\hline 3 & \(60^{\circ}\) & 711.3 \\
\hline 4 & \(90^{\circ}\) & 711.4 \\
\hline 5 & \(120^{\circ}\) & 711-5 \\
\hline 6 & \(150{ }^{\circ}\) & 711.6 \\
\hline 7 & \(180^{\circ}\) & (711-7) \\
\hline 8 & \(210^{\circ}\) & 711-8 \\
\hline 9 & \(240^{\circ}\) & (711-9) \\
\hline 10 & \(270^{\circ}\) & (711-10) \\
\hline 11 & \(300{ }^{\circ}\) & (711-11) \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Recommended Knobs- \\
(See p. 22 for description)
\end{tabular}} & Catalog No. 5103A \\
\hline
\end{tabular}

MDOEL 212 TAP SWITCH
Alternating Current Rating 20 Amps. 150 Volts - Diameter \(21 / 4^{\prime \prime}\) - Shaft Diameter \(1 / 4^{\prime \prime}\) - Standard Mounting: For \(1 / 4^{\prime \prime}\) panel maximum, by means of \(3 / /^{\prime \prime}-32\) threaded bushing and hex. nut - See mounting illustration "C." Tandem Mounting for \(1 / 4\) " ing illustration "'D." Weight, single unit: .4 lb . approximately.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Dopth Eehind Panel}} & Sitnele Unit & 2 in Tandem & 3 In Tandetif \\
\hline & & \(17 \mathrm{~m}^{\prime \prime}\) & 4Kan & 6\%" \\
\hline \[
\begin{aligned}
& \text { No. of } \\
& \text { Taps }
\end{aligned}
\] & Total Rotation & Catalog No. 1 & Catalog No. 1 & Catalog
\[
\text { No. }{ }^{1}
\] \\
\hline 3 & \(60^{\circ}\) & 212-3 & 212-3-12 & 212. 3-13 \\
\hline 4 & \(90^{\circ}\) & \(212-4\) & 212-4-12 & (212-4-73) \\
\hline 5 & \(120^{\circ}\) & 212.5 & (212-5-12) & (212. 5-73) \\
\hline 6 & \(150{ }^{\circ}\) & 212.6 & 212-6-12 & 212-6-13 \\
\hline 7 & \(180^{\circ}\) & 212.7 & (212. 7-12) & (212. 7-73) \\
\hline 8 & \(210{ }^{\circ}\) & 212-8 & 212-8-12 & (212. 8-13) \\
\hline 9 & \(240{ }^{\circ}\) & 212.8 & (212-9-T2) & (212. 9-13) \\
\hline 10 & \(270^{\circ}\) & 212-10 & (212-10-T2) & (212-10-73) \\
\hline 11 & \(300^{\circ}\) & \(212-11\) & (212-11-T2) & (212-11-T3) \\
\hline 12 & \(330^{\circ}\) & 212.12 & 212-12-T2 & (212-12-13) \\
\hline \multicolumn{2}{|l|}{Recommended Knobs (See p. 22 for description)} & Catalog No. 5150A or 5116A & Catalog No. 5111A or 5112A & Catalog No. 5111A or 5112A \\
\hline
\end{tabular}

Intraducing
MODEL 711
Smallest Switch for Its Rating

The new Model 711 tap switch was designed to achieve high current capability with small size. It is actually smaller than many low current instrument switches. It interrupts 7 amperes at 125 VAC and can carry 15 amperes AC or DC. The Model 711 features a melamine phenolic body with solid silver alloy fixed and movable contacts. Dual-purpose terminals allow connection by soldering or by means of \(3 / 6\) " quick-connectors. This switch is stocked as a single, unenclosed unit, but is available made-to-order in enclosed tandem assemblies up to 10 units or as a single enclosed unit.

The following Ohmite Tap Switches are listed by the Underwriters' aboratories, Inc., Reexamination Service for use where the acceptability of combination (with other apparatus) has been determined by them: Models 111, 212, 312 and 412. Variations from the basic switch design, identified by suffixes A, B, C, or X are also Underwriters' approved. When the switches are not factory installed, screw terminals are specified by the Underwriters' Laboratories for Model 312 and soldering lugs for Model 412. Further information on terminal fittings is available on request. When an Underwriters' approved unit is required, specify this on the order.

\section*{MODEL 111 TAP SWITCH}

Alternating Current Rating 15 Amps, 125 Volts - Diameter \(13 / 4^{\prime \prime}\) - Shaft Diameter \(1 / 4^{\prime \prime}\) - Standard Mounting: For \(1 / 4^{\prime \prime}\) " panel maximum, by means of \(3 /^{\prime \prime}-32\) threaded bushing and hex. nut. See mounting illustration "A." for Tandern Mounting see illustration "'B." Weight, single unit: .16 Jb . approximately.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Depth Behind Panel}} & Single Unit & 2 in Tandem \\
\hline & & \(\underline{12 / 4{ }^{\prime \prime}}\) & 2787 \\
\hline No. of Taps & Total Rotation & Catalog \(\mathrm{No}_{0} 1\) & Catalog \(\mathrm{No}^{1}{ }^{1}\) \\
\hline 3 & \(60^{\circ}\) & 111.3 & 111-3-T2 \\
\hline 4 & \(90^{\circ}\) & 111.4 & 111-4-12 \\
\hline 5 & \(120^{\circ}\) & 111-5 & \(111-5\) - 12 \\
\hline 6 & \(150^{\circ}\) & 111-6 & 111.6-T2 \\
\hline 7 & \(180^{\circ}\) & 111.7 & (111.7-T2) \\
\hline 8 & \(210^{\circ}\) & 111-8 & 111-8-12 \\
\hline 9 & \(240^{\circ}\) & \(111-9\) & (111.9-12) \\
\hline 10 & \(270{ }^{\circ}\) & 111-10 & (111-10-12) \\
\hline 11 & \(300^{\circ}\) & 111-11 & 111-11-T2 \\
\hline \multicolumn{2}{|l|}{Recommended Knobs(See p. 22 for description)} & Catalog No. 5150A to 5116A & Catalog No. 5109A or 5110A \\
\hline
\end{tabular}

MOOEL 312 TAP SWITCH
Alternating Current Rating 30 Amps. 300 Volts - \(150 V\) A.C. between taps D'ameter 3 廨" - Shaft Diameter \(1 / 4^{\prime \prime}\) - Standard Mounting: For \(1 / 4^{\prime \prime}\) panel maxinum, three No. \(10-32\) flat-head machine screws 3 " long - See mtg. illus. "D." Weight, single unit: .75 lb . approx.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Depth Behind Panel}} & Single Unit & 2 in Tandem & 3 In Tandem \\
\hline & & 21/4" & \(455^{\prime \prime}\) & 71 \\
\hline \[
\begin{aligned}
& \text { No. of } \\
& \text { Taps }
\end{aligned}
\] & Total Rotation & Catalog No. \({ }^{3}\) & Cataiog No. \({ }^{1}\) & Cataleg No. \({ }^{1}\) \\
\hline 3 & \(60^{\circ}\) & 312.3 & (312-3-T2) & (312. 3-T3) \\
\hline 4 & \(90^{\circ}\) & 312.4 & (312. 4-12) & 312. 4.73 \\
\hline 5 & \(120^{\circ}\) & 312.5 & 312. 5-12 & 312. 5-73 \\
\hline 6 & \(150^{\circ}\) & 312.6 & 312. 6-12 & (312. 6-T3) \\
\hline 7 & \(180^{\circ}\) & 312-7 & (312. 7-12) & (312. 7-13) \\
\hline 8 & \(210^{\circ}\) & 312-8 & 312. 8-12 & 312. 8-13 \\
\hline 9 & \(240^{\circ}\) & 312 -9 & (312. 9-12) & 312. 9-73 \\
\hline 10 & \(270{ }^{\circ}\) & 312.10 & (312-10-72) & 312 -10-73 \\
\hline 11 & \(300^{\circ}\) & \(312 \cdot 11\) & (312-11-T2) & (312-11-73) \\
\hline 12 & \(330^{\circ}\) & 312-12 & (312-12-T2) & 312-12-73 \\
\hline \multicolumn{2}{|l|}{Recommended Knobs (See p. 22 for description} & Catalog No. 5109A or 5110A & Catalog No. 5111A or 5112A & Catalog No. 5111A or 5112A \\
\hline
\end{tabular}

\section*{: WMITE \\ power tap switches, high current, non-shorting type}

MODEL 412 TAP SWITCH
Alternating Current Rating 50 Amps. 300 Volts - 150V. A.C. between taps Diameter \(43 / 6^{\prime \prime}\) - Shaft Diameter \(1 / 4^{\prime \prime}\) - Standard Mounting: For \(1 / 4^{\prime \prime}\) panel maxi. mum three No. 10.32 flat-head machine screws 3 " long - See mtg. illus. "E." Weight, single unit: 1.4 lbs . approx.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Depth Behind Pane!}} & Single Unit & 2. In Tandem & 3 in Tandem \\
\hline & & 2 kV & \(51 / 2 x^{\prime \prime}\) & \(75^{18}\) \\
\hline \[
\begin{gathered}
\text { No. of } \\
\text { Taps }
\end{gathered}
\] & Total Rotation & Catalog No. 1 & Catalog
\[
\text { No. } 1
\] & \[
\begin{aligned}
& \text { Catalog } \\
& \text { No. }
\end{aligned}
\] \\
\hline 3 & \(60^{\circ}\) & \(412 \cdot 3\) & 412-3-72 & (412-31-3) \\
\hline 4 & \(90^{\circ}\) & 412.4 & (412-4.72) & 412. 4-73 \\
\hline 5 & \(120^{\circ}\) & 412.5 & (412. 5-T2) & 412. 5-13 \\
\hline 6 & \(150^{\circ}\) & 412-6 & (412. 6-12) & 412-6.13 \\
\hline 7 & \(180^{\circ}\) & 412.7 & 412. 7-12 & (412-7-73) \\
\hline 8 & \(210^{\circ}\) & 412.8 & 412. 8-72 & 412. 8-73 \\
\hline 9 & \(240^{\circ}\) & 412.9 & (412. 9-72) & (412. 9-73) \\
\hline 10 & \(270{ }^{\circ}\) & \(412 \cdot 10\) & 412-10-72 & \(412-10.73\) \\
\hline 11 & \(300{ }^{\circ}\) & 412.11 & (412-11-T2) & (412-11-73) \\
\hline 12 & \(330{ }^{\circ}\) & 412-12 & 412-12-72 & 412-12-T3 \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Recommended } \\
& \text { Knobs (see p 22) }
\end{aligned}
\]} & \begin{tabular}{l}
Catalog No. \\
5111A or 5112A
\end{tabular} & Catalog No. 5111A or 5112A & Catalog No. 5111A or 5112A \\
\hline
\end{tabular}

MODEL 608 TAP SWITCH
Alternating Current Rating 100 Amps. 300 Volts — Diameter \(6^{\prime \prime}\) - Shaft Dlameter 78" - Standard Mounting: For \(1^{\prime \prime}\) panel maximum, three flatohead machine screws \(1 / 4\) " \(-20 \times 11 / 4\) " - See mounting illustration "F." Weight, single unit: 5 los. approx.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Depth Behind Panel}} & Single Unit & 2 in Tandem & 3 in Tandem \\
\hline & & 3 Kr & 612\% & 10\%" \\
\hline \[
\begin{aligned}
& \text { No. of } \\
& \text { Taps }
\end{aligned}
\] & Total Rotation & Catalog No. 1 & Catalog No. 1 & Catalog No. 1 \\
\hline 3 & \(80^{\circ}\) & 608.3 & (608-3-12) & (608. 3-T3) \\
\hline 4 & \(120^{\circ}\) & \(608-4\) & (608. 4-12) & (608-4-T3) \\
\hline 5 & \(160^{\circ}\) & 608.5 & (608- 5-72) & 808-5-T3 \\
\hline 6 & \(200{ }^{\circ}\) & \(608 \cdot 6\) & 608. 6-12 & 608-6.13 \\
\hline 7 & \(240^{\circ}\) & 608.7 & (608. 7-12) & (608-7-13) \\
\hline 8 & \(280^{\circ}\) & 608-8 & 608-8-12 & 608-8-13 \\
\hline \multicolumn{2}{|l|}{Recommended Knobs (see p 22)} & Catalog No. 5104A or 5105A & Catalog No. 5104A, 5115 or 5105A & Catalog No. 5115 \\
\hline
\end{tabular}

\section*{ALL CERAMIC OPEN TYPE TAP SWITCHES}

Designed to transfer currents of several amperes in circuits requiring high voltage insulation. Ceramic body construction is the same as employed in Models J and K rheostats (see page 21). Monel metal taps; silver-graphite brush.

SHORTING TYPE SWITCH: Moving contact bridges closely spaced taps completing a new circuit before breaking the previous one. Switch arm is not indexed and can be left in any position.

NON-SHORTING SWITCH: Positively indexed, moving contact completely disconnects from one tap before contacting succeeding tap.

Switches up to 8 taps are approximately \(31 / 4^{\prime \prime}\) diameter including lugs; 9 to 12 tap switches are approximately \(41 / 4^{\prime \prime}\) diameter. Switches can be ordered assembled 2 to 3 in tandem. Single hole mounting by means of \(3 / \mathbf{g}^{\prime \prime}\) diameter bushing and hexagon nut accommodates panels up to \(1 / 4^{\prime \prime}\) thick (maximum). The "non-turn" lug requires a \(\mathcal{K}_{0}\) " panel hole \(1 / 2\) " below the center of the shaft. Shaft diameter is \(1 / 4^{\prime \prime}\). Recommended knob Stock No. 5150, see page 22.

Maximum current capacity is 7 amperes but only 3 amperes at 120 V.A.C. should be interrupted. Current ratings are less for all direct current circuits above 20 volts, for inductive circuits and high voltages.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SHORTING TYPE \(\dagger\)} & \multicolumn{2}{|l|}{NON-SHORTING TYPE \(\dagger\)} \\
\hline No. of Contacts & Cataloz NoL I & No. of & Catalog No. 1 \\
\hline & (T.504.5) & & (1.503) \\
\hline 5 & (T-505-55) & 4 & (T.554) \\
\hline 7 & (T.507.S) & 6 & T-506 \\
\hline 8 & (T.508-5) & 8 & (T-508) \\
\hline 10 & (T-1009-St & \(\stackrel{8}{6}\) & (T-100) \\
\hline 10 & \[
\begin{aligned}
& (T-10010-S) \\
& (T-10011-S)
\end{aligned}
\] & 11 & (T-1001 \\
\hline 12 & (T-10012-S) & 12 & (T-10012) \\
\hline
\end{tabular}
\(\dagger\) Avg. Wt. T-500 Series . \(28 \mathrm{lb} . ;\) T- 100 Series .68 lb.

Dials for Ohmite tap switches are made of aluminum, etched and enameled black. Dial markings are bright aluminum. The number of dial calibrations or position markings agree with the actual number of positions on the switch. Note, in the table, that dials for switches Models 212 and 312 are available in two diarseters to suit the recommended knob.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Catatog } \\
\text { Nio. }
\end{gathered}
\] & For Model & \[
\begin{aligned}
& \text { For } \\
& \text { Knob }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dial } \\
& \text { Dias. }
\end{aligned}
\] \\
\hline (5002-*) & \[
\begin{gathered}
111 \\
212 \text { (Slngle) } \\
312 \text { (Single) }
\end{gathered}
\] & \[
\begin{aligned}
& 5109 \\
& 5116 \\
& 5150
\end{aligned}
\] & 23/4" \\
\hline (5003**) & \[
\begin{aligned}
& 212 \text { (Tandem) } \\
& 312 \text { (Tandem) } \\
& 412
\end{aligned}
\] & \[
\begin{aligned}
& 5111 \\
& 5152 A
\end{aligned}
\] & 33/" \\
\hline (5004*) & 608 & \[
\begin{aligned}
& 5104 \\
& 5115
\end{aligned}
\] & 51/2" \\
\hline
\end{tabular}

\footnotetext{
1 Popular items appear in BOLD print and are usually in stock at authorized Ohmite stocking distributors, Items apparing In LIGHT FACE print are available from stocking distributors but are not normally stoched in depth. Parentheses indicate non-stock standard items subject to \(\mathbf{\$ 1 5 . 0 0}\) per jline item minimum charge.
}

\section*{~HMITE general purpose relays}

\section*{MODEL GPR - INDICATOR, PLATE, thYratron and latching versions in unenclosed and enclosed types}

Simple, rugged, low cost relays handling substantial power for small size. Uncomplicated design provides unusual flexibility for making and changing connections and mounting. Stock includes
relays in versatile enclosures, some with indicator light, also plate, thyratron and latching versions. Wide commercial and industrial use where economy and versatility are important.

\section*{unenclosed relays}

Basic (Unenclosed) Relay: All connections terminate on barrier-type terminal panel on combination solder - quick-connect (push-on) lugs which accept AMP 110 female connectors. The terminal panel is conveniently incorporated into printed circuit boards. Fixed contacts are integral inlay on terminal itself. Normally furnished with a \(6.32 \times 1 / 2^{\prime \prime}\) mounting stud and non-turn boss (or lug for 4 -pole relays). A 6.32 threaded hole is optional. Unenclosed relays can also be mounted by

ENCLOSED RELAYS

plugging their panels into Ohmite SOGPR sockets. See "Socket" below.
Contact Ratings: Two ratings - fine silver contacts, 5 amps at 115 VAC or 32 VDC resistive; silver-cadmium contacts, 10 amps. Insulation: Tested at 1500 VAC.
Coil Wattage: 1.4 watts DC operation; 1.6 watts (2.0 volt-amps) AC except 2.4 watts (3.70 volt-amps) for 4 -pole AC and AC latching relays.

(GPRTA-, GPRTT-, GPRTS., GPRTP-)
Four types of clear plastic enclosures as follows:
Chassis Mounting Types: "GPRTA"-("Terminals-Above-Chassis" type) has terminal panel opposite to mounting flange; "GPRTT" - ("Terminals-Through-Chassis" type) has terminal panel on same end as mounting flange, requires chassis cutout; "GPRTS" type (Terminals for Socket Use) is similar to GPRTT but has no mounting flanges. It is intended strictly for plug-in mounting in Ohmite socket "SOGPR" (see "Socket" below).
Plug Base Type: "GPRTP" - employs octal plug for 1 and 2 pole relays; 11 -pin plug for 3 -pole. The octal plug base is integral with relay for rigidity - is designed with recessed pins which meet UL spacing requirements (150V).

Socket (SOGPR): Unique socket fits the terminal panels of all GPR relays and provides over-the-surface spacing to meet UL
requirements for 150 volts. Requires chassis cut-out to mount. Hold down springs (see illustration) for unenclosed and enclosed relays, are provided with each socket but are not required except under conditions of vibration or shock. Socket solder terminals will also accept AMP 11 quick-connectors. See socket listings.

\section*{SOCKETS FOR GPR, GPRTS RELAYS}

For up to 3PDT: \(134^{\prime \prime}\) square, requires \(11 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}\) cutout. * 2 holes (for No. 6 screws) on \(13 / 8\) " centers. Catalog No. SOGPR-9
For 4 -poie models, \(13 / 4^{\prime \prime} \times 2^{\prime \prime}\), re. quires \(11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}\) cutout. \({ }^{*} 2\) holes (for No. 6 screws) on \(15 / 8^{\prime \prime}\) centers.
Catalog No. SOGPR. 12

"Std. punches and dies from Ward Machinery Co., Chicago. No. 28, Style \(22 N, 11 / 4 \times 11 / 2\), for SOGPR-9: No. 28 , Style \(14 R, 11 / 2 \times 11 / 2\), for SOGPR-12.

Indicator Relay: Incorporates light bulb to indicate energized condition of coil. Stocked only in GPRTP enclosures described in preceding. Neon bulb furnished with coil ratings 70 volts and above; incandescent bulbs for coil ratings below 70 volts.

UL \& CSA Approval: Column heads in the stock tables carry the

UL (Underwriters' Laboratories) or CSA symbol (Canadian Standards Association) where applicable. The gray tint in the column indicates the relays are recognized under the "UL components program." The acceptability of such relays by UL depends upon their combination with other equipment such as sockets etc.

\section*{MODEL GPR - continued STOCK GPR RELAYS*}

5 AMP. CONTACTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{5}{|c|}{5 AMP. CONTACTS} & \multicolumn{4}{|c|}{10 Amp. CONTACTS} \\
\hline & \multicolumn{3}{|c|}{O1. Data} & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 6VAC } \\
& \text { 6VAC } \\
& \text { 6VAC }
\end{aligned}
\] & \[
\begin{aligned}
& .334 \\
& .334 \\
& .334 \\
& .650
\end{aligned}
\] & \[
\begin{aligned}
& 4.2 \\
& 4.2 \\
& 4.2 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& (-3 T) \\
& -6 T \\
& (-9 T) \\
& -403 T
\end{aligned}
\] & \[
\begin{aligned}
& (-3 T) \\
& \binom{-6 T)}{(.9 T)}
\end{aligned}
\] & \[
\begin{aligned}
& (-3 T) \\
& \binom{(-6 T)}{(-9 T)}
\end{aligned}
\] & \[
\begin{aligned}
& (-67) \\
& (-97) \\
& (-403 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& \left(\begin{array}{l}
(3 T) \\
-6 T \\
.9 T
\end{array}\right.
\end{aligned}
\] & \[
\begin{aligned}
& (-203 T) \\
& (-2067 \\
& (-2097) \\
& (-433 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-206 T) \\
& (-2097) \\
& (-433 T)
\end{aligned}
\] & \[
\begin{aligned}
& (.203 \mathrm{~T}) \\
& .206 \mathrm{~T} \\
& .209 \mathrm{~T}
\end{aligned}
\] & (-291T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& 12 \mathrm{VAC} \\
& 12 \mathrm{AVC} \\
& 12 \mathrm{VAC} \\
& 12 \mathrm{VVC}
\end{aligned}
\] & \[
\begin{aligned}
& .167 \\
& .167 \\
& .167 \\
& .309
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 17 \\
& 17 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& (-12 \pi) \\
& -151 \\
& (-187) \\
& (-4067)
\end{aligned}
\] & \[
\begin{aligned}
& (-12 T) \\
& \binom{(155)}{(-18 T)}
\end{aligned}
\] & \[
\begin{aligned}
& (.12 T) \\
& (-15 T) \\
& (-18 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-15 T) \\
& (-187) \\
& (-406 T
\end{aligned}
\] & \[
\begin{aligned}
& (.12 \pi) \\
& -155 \\
& -18 T
\end{aligned}
\] & \[
\begin{aligned}
& (-212 T) \\
& (-1215 T) \\
& (-218 T) \\
& (-436 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-215 T) \\
& (-218 T) \\
& (-436 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-212 T) \\
& .215 T \\
& (-218 T)
\end{aligned}
\] & (-292T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& 24 \mathrm{VAC} \\
& 24 \mathrm{VAC} \\
& 24 \mathrm{VCC} \\
& 24 \mathrm{VAC} \\
& \hline 15 \mathrm{~V} /
\end{aligned}
\] & \[
\begin{aligned}
& .084 \\
& .084 \\
& .084 \\
& .155
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 65 \\
& 65 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& (-215) \\
& -247 \\
& (-270 \\
& -4097
\end{aligned}
\] & (-215)
-245
-275 & (-217)
\(\left(\begin{array}{l}\text { (24T) } \\ (-27 T)\end{array}\right.\) & \[
\begin{aligned}
& (-24 \mathrm{~T}) \\
& (-27 \mathrm{~T}) \\
& (.409 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-217) \\
& -247 \\
& .277
\end{aligned}
\] & \[
\begin{aligned}
& (-221 T) \\
& (-124 T) \\
& (-227 T) \\
& (-439 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-224 T) \\
& (-227 T) \\
& (-439 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-221 \mathrm{~T}) \\
& .224 \mathrm{~T} \\
& .227 \mathrm{~T}
\end{aligned}
\] & (-293T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& 4 P D T
\end{aligned}
\] & \[
\begin{aligned}
& 115 \mathrm{VAC} \\
& 115 \mathrm{VAC} \\
& 115 \mathrm{VAC} \\
& 115 \mathrm{VAC}
\end{aligned}
\] & \[
\begin{aligned}
& .0174 \\
& .0174 \\
& .0174 \\
& .0325
\end{aligned}
\] & 1600
1600
1600
1000 & \[
\begin{aligned}
& (-30 T) \\
& -3 \pi \\
& -36 T \\
& .412 T
\end{aligned}
\] & \[
\begin{aligned}
& (.300) \\
& .33 \mathrm{I} \\
& .36 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& (-30 T) \\
& (.33 T) \\
& (-36 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-33 \mathrm{~T}) \\
& (-36 T) \\
& -412 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& (-30 \mathrm{~T}) \\
& .33 \mathrm{~T} \\
& .36 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& -230 T \\
& -(-233 T \\
& (-236 T) \\
& -442 T
\end{aligned}
\] & \[
\begin{aligned}
& -233 \mathrm{~T} \\
& (-236 \mathrm{~T}) \\
& .442 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& -230 T \\
& -233 T \\
& -236 T
\end{aligned}
\] & -2947 \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& 3 P D T \\
& 4 P D T
\end{aligned}
\] & 230VAC 230VAC 230VAC 230VAC & \[
\begin{aligned}
& .0087 \\
& .0087 \\
& .0087 \\
& .0147 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7000 \\
& 7000 \\
& 7000 \\
& 4000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (.39 T) \\
& -42 T \\
& (.45 T) \\
& (-415 T)
\end{aligned}
\] & (.39T)
(.42T)
-45T & \[
\begin{aligned}
& (-39 T) \\
& (-42 T) \\
& (-45 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-42 T) \\
& (-45 T) \\
& (-415 T)
\end{aligned}
\] & \[
\begin{aligned}
& \text { (.39T) } \\
& .42 T \\
& .45 T
\end{aligned}
\] & \[
\begin{aligned}
& (-239 T \mathrm{~T} \\
& -242 \mathrm{~T} \\
& (-245 \mathrm{~T}) \\
& (-445 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& (-242 T) \\
& (-245 \mathrm{~T}) \\
& (-445 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& \text { (-239T) } \\
& .242 T \\
& .245 T
\end{aligned}
\] & (-295T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& 3 P D T \\
& 4 P D T
\end{aligned}
\] & \[
\begin{aligned}
& 6 \mathrm{VDC} \\
& 6 \mathrm{VDC} \\
& 6 \mathrm{VDC} \\
& 6 \mathrm{VDC}
\end{aligned}
\] & \[
\begin{aligned}
& .23 \\
& .23 \\
& .23 \\
& .23
\end{aligned}
\] & \[
\begin{aligned}
& 26 \\
& 26 \\
& 26 \\
& 26
\end{aligned}
\] & \[
\begin{aligned}
& (-487) \\
& -517 \\
& (-547) \\
& (-418 T)
\end{aligned}
\] & \[
\begin{aligned}
& (.487) \\
& (.51 T) \\
& (.54 T)
\end{aligned}
\] & \[
\begin{aligned}
& (.48 \mathrm{~T}) \\
& (.517) \\
& (.54 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& -51 \mathrm{~T} \\
& (-54 T) \\
& (-418 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-481) \\
& -517 \\
& -547
\end{aligned}
\] & \[
\begin{aligned}
& (-248 \mathrm{~T}) \\
& (-251 \mathrm{~T}) \\
& (-254 \mathrm{~T}) \\
& (-448 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (-251 T) \\
& (-254 T) \\
& (-448 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-248 T) \\
& -251 T \\
& .254 T
\end{aligned}
\] & (-296T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& 3 P D T \\
& 4 P D T
\end{aligned}
\] & 12VDC
\(122 V D C\)
12VVC
12VD & \[
\begin{aligned}
& .114 \\
& .114 \\
& .114 \\
& .114
\end{aligned}
\] & \[
\begin{aligned}
& 105 \\
& 105 \\
& 105 \\
& 105
\end{aligned}
\] & \[
\begin{aligned}
& -5 \pi \\
& .60 \pi \\
& .63 T \\
& -421 T
\end{aligned}
\] & \[
\begin{gathered}
(-57 \mathrm{~T}) \\
-60 \mathrm{~T} \\
(-63 \mathrm{~T})
\end{gathered}
\] & \[
\begin{aligned}
& (-57 T) \\
& (-60 T) \\
& (-63 T)
\end{aligned}
\] & \[
\begin{aligned}
& (.60 T) \\
& (.635) \\
& (-4217)
\end{aligned}
\] & \[
\begin{aligned}
& (.57 \mathrm{~T}) \\
& .607 \\
& .637
\end{aligned}
\] & \[
\begin{aligned}
& (-257 T) \\
& -(-2607 \\
& (-2637) \\
& (-4517)
\end{aligned}
\] & \[
\begin{aligned}
& (-2607) \\
& (-263 T) \\
& (-451 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-257 \mathrm{~T}) \\
& -260 \mathrm{~T} \\
& -263 \mathrm{~T}
\end{aligned}
\] & (-297T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& 3 P D T \\
& 4 P D T
\end{aligned}
\] & \[
\begin{aligned}
& 24 V V C \\
& 24 V C \\
& 24 V D C \\
& 24 V D C
\end{aligned}
\] & \[
\begin{aligned}
& .060 \\
& .060 \\
& .060 \\
& .060
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400 \\
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& .66 T \\
& -69 T \\
& .72 T \\
& -424 T
\end{aligned}
\] & \[
\begin{aligned}
& (-66 T) \\
& \binom{(-69)}{(.72 T)}
\end{aligned}
\] & \[
\begin{aligned}
& (-66 T) \\
& (-699) \\
& (.72 T)
\end{aligned}
\] & \[
\begin{aligned}
& (.69 \mathrm{~T}) \\
& .721 \\
& (-424 \mathrm{~T})
\end{aligned}
\] & \[
\begin{aligned}
& (.66 \mathrm{TI} \\
& .69 \mathrm{~T} \\
& .72 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& (-2667) \\
& (-2697) \\
& (-2727) \\
& -4547
\end{aligned}
\] & \[
\begin{aligned}
& (-269 T) \\
& (.272 T) \\
& .454 T
\end{aligned}
\] & \[
\begin{aligned}
& (-266 T) \\
& .269 T \\
& .272 T
\end{aligned}
\] & (-298T) \\
\hline \[
\begin{aligned}
& \text { SPDT } \\
& \text { DPDT } \\
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& 110 \mathrm{VDCC} \\
& 110 \mathrm{CDC} \\
& 110 \mathrm{CDC} \\
& 110 \mathrm{VOC}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline .0110 \\
.0110 \\
.0110 \\
.0110
\end{array}
\] & \[
\begin{aligned}
& 10,000 \\
& 10,000 \\
& 10,000 \\
& 10,000
\end{aligned}
\] & \[
\begin{aligned}
& (.75 T) \\
& (.78 T) \\
& -81 T \\
& (-427 T)
\end{aligned}
\] & \[
\begin{aligned}
& (.755) \\
& (.781) \\
& .817
\end{aligned}
\] & \[
\begin{aligned}
& (-755) \\
& (-781) \\
& (-817
\end{aligned}
\] & \[
\begin{aligned}
& (.78 T) \\
& -81 T \\
& -427 T
\end{aligned}
\] & \[
\begin{aligned}
& (.755) \\
& .781 \\
& .817
\end{aligned}
\] & \[
\begin{aligned}
& (-2757) \\
& (-2787) \\
& -2817 \\
& -457 T
\end{aligned}
\] & \[
\begin{aligned}
& (-278 T) \\
& (-281 T) \\
& -457 T
\end{aligned}
\] & \[
\begin{aligned}
& (-275 \mathrm{~T}) \\
& .278 \mathrm{~T} \\
& .281 \mathrm{t}
\end{aligned}
\] & (-299T) \\
\hline & & rox. wei & & 2.502 & 3.002. & 3.0 oz. & 3.0 & 3.502. & 2.5 & 3.502. & 3.502. & 3.502. \\
\hline
\end{tabular}
*Column heads carry symbols to indicate UL or CSA (Canadian Standards Assn.) approval. The grey tint indicates that relay is recognized under UL "components program" (File No. E33069, Guide No. 380W1.14C, Assignment No. 62C3559A). CSA File No. is 21309. See explanation in "UL and CSA Approval."
t4-Pole GPRTS relays are not covered by CSA.
\(\ddagger\) GPRTA and GPRTT types as listed by UL, differ slightly from the stock versions above and consequently, are made to order. These UL versions have a " \(U\) " added to the catalog number, such as in "GPRTAU." They also have CSA approval.

\section*{STOCK GPR PLATE CIRCUIT RELAYS - 5 AMP CONTACTS}

Plate Relays: Feature same physical construction as standard general purpose relays but are adjusted for greater sensitivity and can be used as electronic circuit controls, i.e., in the plate circuits of standard vacuum tubes.
\begin{tabular}{|c|c|c|c|c|c|c}
\hline
\end{tabular}

\footnotetext{
' Popular items appear in BOLD print and are usualty in stock at authorized ohmite stocking distributors. Items appearing in LIGHT FACE print are avaliable from stocking ' Popular items appear in
}

\title{
앙NITE general purpose relays
}

Thyratron Plate Relay: Designed specifically for plate circuit of thyratron tubes 2050 and 2021 with 115 VAC supply (see diagram). Also suitable for operation in series with silicon
controlled rectifiers from a 115 VAC supply. Ready to work, no capacitors or adjustments required, no chatter. Available unenclosed and in most GPR enclosures.

Relay in circuit Showing Thyratrot

STOCK GPR THYRATRON RELAYS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{5 AMP CONTACTS} & \multicolumn{4}{|c|}{10 AMP CONTACTS} \\
\hline Contacts & & & & & & (4) & \[
\begin{aligned}
& \text { UREN. } \\
& \text { cosed } \\
& \text { Cat No. } \\
& \text { Prefix. } \\
& \text { CPRX. } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & & \\
\hline SPDT DPDT 3PDT 4PDT & \[
\begin{gathered}
-191 \mathrm{~T} \\
-192 \mathrm{~T} \\
(-193 \mathrm{~T}) \\
(-473 \mathrm{~T}) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { (-191T) } \\
& (-192 T) \\
& (-193 T)
\end{aligned}
\] & \[
\begin{aligned}
& (-191 T) \\
& (-192 T) \\
& (-193 T)
\end{aligned}
\] & (.473T) & \[
\begin{aligned}
& (-191 T) \\
& (-192 T) \\
& (-193 T)
\end{aligned}
\] & & \[
\begin{gathered}
(-391 T) \\
(-392 T \\
(-493 T) \\
(-483 T)
\end{gathered}
\] & & (-4837) & \[
\begin{aligned}
& (-391 \mathrm{~T}) \\
& (.392 \mathrm{~T}) \\
& (-393 \mathrm{~T})
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{MODEL DO RELAYS AC or DC}

Particularly adaptable to aircraft and mobile equipment applications where severe shock and vibration are encountered. Design of molded parts around contact arms protects against mechanical injury. Stocked in 3-pole or 4-pole type, and also in hermetic enclosures and in latching types.
Coil Wattage: 3.00 watts, DC operation; 6.00 watts, 60 cycle AC. Maximum temperature rise \(45^{\circ} \mathrm{C}, \mathrm{DC}\) operation; \(75^{\circ} \mathrm{C}, \mathrm{AC}\).
Coil Operating Voltage: Any voltage up to 230 VDC or 440 VAC, 60 cycle. Stock voltages in table.
Contacts: 10 amps nominal. Ratings are for 115 VAC or 32 VOC, resistive load.
Weight: Unenclosed 3-pole, 5 oz.; 4-pole, 6 oz.

\section*{DO RELAYS in hermetic enclosures}

Stock 00 relays with 115 volt coil in hermetically sealed metal enclosures, filled with dry nitrogen. Enclosures provide protection for relay under most adverse ambient conditions. Both 3 and 4 -pole DO relays are supplied in these enclosures with plug (DOHPX.) or solder terminal (DOHX -) connectors as illustrated. See listings in stock table above.
Weights: 3-pole hermetic relay approx. 14 oz.; 4-pole approx. 1502.

DOHPX-16T, 3PD'T, 11 Prongs DOHPX-15T, 4PDT, 20 Prongs

DOHX-22T, 3PDT, 14 Terminals DOHX-23T, 4PDT, 14 Terminals

WIRING FOR PLUG-BASE STOCK DO RELAYS

OOHPX-167
Mates with Amphenol 71 MIP 11 Socket Mates with Amphenol 77 MIP 20 Socket

STOCK DO RELAYS - 10 AMP CONTACTS*
\begin{tabular}{|c|c|c|c|c|}
\hline Catalor No. \({ }^{\text {a }}\) & Typet & Voits & \[
\begin{gathered}
\text { Colt Data } \\
\text { Amps }
\end{gathered}
\] & DC. Ohm, \\
\hline \multicolumn{5}{|l|}{UNENCLOSED} \\
\hline \[
\begin{gathered}
\hline \text { DOX.50T } \\
\text { (DOX-183T) }
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & 6VAC 6VAC & \[
\begin{aligned}
& 2.33 \\
& 2.33
\end{aligned}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.36
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& (00 X-49 T) \\
& (00 X-184 T) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& 12 \mathrm{VAC} \\
& 12 \mathrm{VAC}
\end{aligned}
\] & \[
\begin{aligned}
& 1.28 \\
& 1.28
\end{aligned}
\] & 1.40
1.40 \\
\hline \[
\begin{aligned}
& \hline \text { D0X-181T } \\
& \text { (00X-185T) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& 24 \text { VAC } \\
& 24 \text { VAC }
\end{aligned}
\] & \[
.57
\] & 5.50
5.50 \\
\hline \[
\begin{aligned}
& \hline(D 0 X-226 \mathrm{~T}) \\
& (\mathrm{DOUX}-34 \S)
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { DPST* }^{\text {DPST* }} \\
& \text { DPS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 115VAC } \\
& 115 \mathrm{VAC}
\end{aligned}
\] & . 110 & \[
\begin{aligned}
& 145.0 \\
& 145.0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { DOX-227T } \\
& \text { (DOUX-28§) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PST } \\
& \text { 3PST }
\end{aligned}
\] & \[
\begin{aligned}
& 115 \mathrm{VAC} \\
& 115 \mathrm{VAC}
\end{aligned}
\] & . 110 & \[
\begin{aligned}
& 145.0 \\
& 145.0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { D0X46T } \\
& \text { (D0UX-308) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 3PDT }
\end{aligned}
\] & \[
\begin{aligned}
& 115 \mathrm{VAC} \\
& 115 \mathrm{VAC}
\end{aligned}
\] & . 110 & \[
\begin{aligned}
& 145.0 \\
& 145.0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOX-228T } \\
& \text { (DOUX-31§) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 4PST } \\
& \text { 4PST }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 115VAC } \\
& 115 \mathrm{VAC}
\end{aligned}
\] & . 1110 & \[
\begin{aligned}
& 145.0 \\
& 145.0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { DOX-53T } \\
& \text { (DOUX-33§) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 4PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 115VAC } \\
& 115 \mathrm{VAC}
\end{aligned}
\] & . 1110 & \[
\begin{aligned}
& 145.0 \\
& 145.0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOX-61T } \\
& \text { (DOX-130T) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 230VAC } \\
& \text { 230VAC }
\end{aligned}
\] & \[
\begin{array}{r}
.070 \\
.070
\end{array}
\] & \[
\begin{aligned}
& 550.0 \\
& 550.0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { (DOX-145T) } \\
& \text { (DOX-186T) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & 6VDC
6VDC & .487
.487 & 12.3
12.3 \\
\hline \[
\begin{aligned}
& 00 \times-51 T \\
& 00 X-102 T \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & 12 VDC
12 VDC & .231
.231 & 51.8
51.8 \\
\hline \[
\begin{aligned}
& \text { DOX-141T } \\
& \text { D0X-137T }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \(24 V D C\)
\(24 V D C\) & .105
.105 & \[
\begin{aligned}
& 230.0 \\
& 230.0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOX-93T } \\
& \text { DOX-187T }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 110VDC } \\
& \text { 110VDC }
\end{aligned}
\] & .022
.022 & \[
\begin{aligned}
& 5,000 \\
& 5,000
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { (D0X-182T) } \\
& \text { (DOX-188T) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3PDT } \\
& \text { 4PDT }
\end{aligned}
\] & 220VDC
220VDC & .014
.014 & \[
\begin{aligned}
& 16,100 \\
& 16,100
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{l|c|c|c|c}
\\
\hline (DOHPX-16T) & 3PDT & 115 VAC & .110 & 145.0 \\
(DOHPX-15T) & 4PDT & 115 VAC & .110 & 145.0 \\
\hline (DOHX-22T) & 3PDT & 115 VAC & .110 & 145.0 \\
DOHX-23T & 4PDT & 115 VAC & .110 & 145.0 \\
\hline
\end{tabular}
*Except DOX-226T, DOUX-34 20 amps, double break contacts.
\(\ddagger\) All single-throw (- ST) relays are normally open.
Slisted by Ut.

\section*{띠NMITE general purpose relays}

\section*{MODEL DOS RELAYS AC or DC}

Wide application, general purpose relay, compact and lightweight. Handles loads usually demanded of much larger relays. Meets rigorous aircraft relay standards.

Coil Wattage: 2.5 watts, DC operation; 3 watts, 60 cycle AC. Maximum temperature rise \(45^{\circ} \mathrm{C}\), DC operation; \(65^{\circ} \mathrm{C}, \mathrm{AC}\).
Coil Operating Voltage: Any voltage up to 230 VDC or 440 VAC, 60 cycles. Table lists stock voltages.
Contacts: 15 amps nominal. Rating is for 115 VAC or 32 VDC, resistive load.
Weight: Unenclosed, 4 ounces.

\section*{DOS RELAYS WITH PLUG-BASE OR IN dUST-TIGHT OR HERMETIC ENCLOSURES}

DOS relays with 115 volt AC coils are available from stock with a standard octal plug base, unenclosed (DOSPX-1T) or with an octal plug base and drawn aluminum, removable dust-tight enclosure (DOSEPX-5T).
Weights: 8 oz. each.
Hermetically Sealed non-removable enclosures, filled with dry nitrogen, are also available to provide protection under adverse ambient conditions. DOS relays with 115 volt AC or CC coils are provided in these enclosures with either octal plug (DOSHPX-) or solder-terminal (DOSHX.) connectors as illustrated. See listings and prices in DOS stock table.
Weights: 8 oz. each approx.

STOCK DOS RELAYS - 15 AMP CONTACTS*
\begin{tabular}{|c|c|c|c|c|}
\hline Catalog No, \({ }^{\text {a }}\) & Typet & Voits & Coll Dats Amps & DC Ohms \\
\hline \multicolumn{5}{|l|}{UNENCLOSED} \\
\hline (DOSX-229T) & SPST* & 6VAC & . 890 & 1.07 \\
\hline (DOSX-230T) & DPST & 6VAC & . 890 & 1.07 \\
\hline (DOSX-30T) & DPDT & 6VAC & . 890 & 1.07 \\
\hline DOSX-16T & DPDT & 12VAC & . 460 & 4.20 \\
\hline (DOSX-231T) & SPST* & 24VAC & . 269 & 15.5 \\
\hline DOSX-232T & DPST & 24VAC & . 269 & 15.5 \\
\hline DOSX-162T & DPDT & 24VAC & . 269 & 15.5 \\
\hline DOSX-233T & SPST* & 115VAC & . 043 & 450 \\
\hline (DOSUX-34§) & SPST* & 115VAC & . 043 & 450 \\
\hline DOSX-234T & DPST & 115 VAC & . 043 & 450 \\
\hline (DOSUX-31§) & DPST & 115VAC & . 043 & 450 \\
\hline DOSX-7T & DPDT & 115VAC & . 043 & 450 \\
\hline (DOSUX-33§) & DPDT & 115VAC & . 043 & 450 \\
\hline (DOSX-235T) & SPST* & 230VAC & . 030 & 1,450 \\
\hline (DOSX-236T) & DPST & 230VAC & . 030 & 1,450 \\
\hline DOSX-12T & DPDT & 230 VAC & . 030 & 1,450 \\
\hline DOSX-158T & DPDT & 6VDC & 450 & 13.4 \\
\hline DOSX-66T & DPDT & 12VDC & . 210 & 56.2 \\
\hline DOSX-9T & DPDT & 24VDC & . 105 & 230.0 \\
\hline DOSX-237T & SPST** & 110VDC & . 022 & 5,000 \\
\hline (D0SX-238T) & DPST & 110VDC & . 022 & 5,000 \\
\hline DOSX-59T & DPDT & 110VDC & . 022 & 5,000 \\
\hline (DOSX-177T) & DPDT & 220VDC & . 013 & 16,400 \\
\hline \multicolumn{5}{|l|}{WITH PLUG BASE} \\
\hline DOSPX-1T & DPDT & 115VAC & . 043 & 450 \\
\hline \multicolumn{5}{|l|}{WITH DUST COVER} \\
\hline DOSEPX-5T & DPDT & 115VAC & . 043 & 450 \\
\hline \multicolumn{5}{|l|}{M HERMETIC ENCLOSURE} \\
\hline DOSHX-40T & DPDT & 115VAC & . 043 & 450 \\
\hline DOSHPX-47T & DPDT & 115VAC & . 043 & 450 \\
\hline (DOSHX-39T) & DPDT & 110VDC & . 022 & 5,000 \\
\hline (DOSHPX-46T) & DPDT & 110VDC & . 022 & 5,000 \\
\hline
\end{tabular}

\footnotetext{
*Except relays with * which have double-break contacts - 25 amp rating. ESingle throw relays (- - ST) are normally open.
}

Elingle throw
Elisted by UL.

\footnotetext{
Popular items appear in BOLO print and are usually in stock at authorized Ohmite stocking distributors. Items appearing in LIGHT FACE print are avallable from stocking distributors but are not nomally stocked in depth. Parentheses Indicate non-stock standard items subject to a \(\$ 15.00\) per line item minimum charge.
}

\title{
: HMITE latching relays
}

Latching Relay: Consists of two GPR relays with armatures linked so that the n.o. contacts of one are mechanically latched in closed position when, and after, this relay is energized. When 2 nd relay is energized, first relay restores and latches 2nd. Permits switching of twice the number of circuits and holding without coil current. Unenclosed type "GPRLE." Enclosed type "GPRLETP" in clear plastic case with Jones plug P-324-SB fitting S-324-AB socket.

STOCK GPR LATCHING RELAYS - 5 AMP CONTACTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Total } \\
& \text { con } \\
& \text { tocts }
\end{aligned}
\]} & \multicolumn{3}{|l|}{COIL Data - (Esch Coll)} & \multirow[t]{2}{*}{\begin{tabular}{l}
(5) Unen- \\
1) clased GPRLET
\end{tabular}} & \multirow[t]{2}{*}{(4) Enclostad Plug-Base GPRLETP} \\
\hline & Voits & Amps & Ohms & & \\
\hline 4PDT & 6VAC & \[
.650
\] & 2.5 & (GPRIEX-1T) & (GPRLETPX-17) \\
\hline 4PDT & 12 VAC & . 309 & 10.0 & & \\
\hline 6PDT & 12 VAC & . 309 & 10.0 & & \\
\hline 4PDT & 4VAC & 155 & 40.0 & (GPRLEX-5T) & \\
\hline 6PDT & 24 VAC & . 155 & 40.0 & (GPRLEX-6T) & (GPRLETPX-6T) \\
\hline 4 PDT & 115VAC & . 0325 & 1000 & GPRLEX-7T & GPRLETPX-7T \\
\hline 6PDT & 115VAC & . 0325 & 1000 & (GPRLEX-8T) & GPRLETPX-8T \\
\hline 4PDT & 230VAC & . 0147 & 4000 & (GPRLEX-9T) & (GPRLETPX-9T) \\
\hline 6PDT & 230VAC & . 0147 & 4000 & (GPRLEX-107) & GPRLETPX-10T \\
\hline 4PDT & 6VDC & . 23 & 26 & (GPRLEX-117) & (GPRLETPX-11T) \\
\hline 6PDT & 6VDC & 23 & 26 & (GPRLEX-12T) & (GPRLETPX-12T) \\
\hline 4PDT & 12 VDC & . 114 & 105 & (GPRLEX-13T) & (GPRLETPX-13T) \\
\hline 6PDT & 12 VDC & . 114 & 105 & (GPRLEX-14T) & GPRLETPX-14T \\
\hline 4PDT & 24VDC & . 060 & 400 & GPRLEX-15T & GPRLETPX-15T \\
\hline 6PDT & 24VDC & . 060 & 400 & (GPRLEX-16T) & GPRLETPX-16T \\
\hline 4PDT & 110VDC & . 0110 & 10,000 & (GPRLEX-177) & GPRLETPX-17T \\
\hline 6 6PD & 110 VDC & . 0110 & 10,000 & (GPRLEX-18T) & GPRLETPX-18T \\
\hline \multicolumn{4}{|c|}{Approx. weight} & 7.0 oz. & 11.302. \\
\hline
\end{tabular}
*Column heads carry symbols to indicate UL or CSA (Canadian Standards Assn.) approval. The gray tint indicates that relay is recognized under UL "components program" (File No. E33069, Guide No. 380W1.14C, Assignment No. 62C3559A. CSA File No. is 21309. See explanation in "UL and
CSA Approval."

MODEL DO
LATCHING RELAY (DOLEX-)

Weights: 3 -pole -16.5 02.; 4-pole -1702.

Consists of Model DO relay and a "reset magnet" with both armatures mechanically latched so that the normally open contacts of the relay remain closed when the relay energizing voltage is removed. The relay releases to LATCHING TYPE
normal position when the reset coil is pulsed. Permits "holding" of circuits without continuous coil current. Coils of stock units (both relays and reset coils) are 115 VAC. Available with 3 or 4 -pole DO relays
\begin{tabular}{|l|l|c|c|c|}
\hline Catalog Hor & Type & Voits & \begin{tabular}{c}
Coil Data \\
Amps
\end{tabular} & Dc ohms \\
\hline DOLEX-3T & 3PDT & 115VAC & .110 & 145.0 \\
DOLEX-5T & 4PDT & 115VAC & .110 & 145.0 \\
\hline
\end{tabular}
\(\dagger\) Coil data applies to relay part of latching assembly. Reset magnet operates on \(115 \mathrm{VAC}, 60\) cycle also.
 tures mechanically latched so that the normally open contacts of the relay remain closed when the relay energizing voltage is removed. The relay releases to normal position when the reset coil is pulsed. Permits "holding" of circuits without continuous coil current. Coils of stock units (both relay and reset magnet) are 115VAC.

Weight: 14.2 oz .
LATCHING TYPE
\begin{tabular}{|c|c|c|c|c|}
\hline Catalog No.1 & Type & Valts & \begin{tabular}{c}
Coll Data \\
Ampe +1
\end{tabular} & DC Ohms \\
\hline DOSLEX-1T & DPDT & 115VAC & .043 & 450 \\
\hline
\end{tabular}
†Coil data applies to relay part of latching assembly. Reset magnet operates on 115 VAC, 60 cycle also.

\section*{MODEL DOSY RELAY FOR PLATE CIRCUITS}

Similar in construction to Model DOS relay but equipped with twin coils for increased sensitivity. The DOSY relay is adaptable to a wide range of electronic control applications such as plate circuit controls, or as overload or underload controls in D.C. circuits to signal attainment of predetermined current levels.
Coil Wattage: 1.00 watt, with maximum temperature rise of \(45^{\circ} \mathrm{C}\). Lower wattages available.
Contacts: Stock combinations as listed. Ratings are for 115 VAC or 32 VDC, resistive load.
Weight: Approximately \(41 / 2\) ounces.

- SAVE SPACE, SAVE POWER, SAVE \$\$
- SMALLEST 1 \& 2 KW CONTROL
- LONG LIFE
- AC \& DC OUTPUT TYPES
- INTEGRAL TRIMMER ADJUSTS CONTROL RANGE FOR DIFFERENT APPLICATIONS
- INCORPORATES ON-OFF SWITCH

\section*{USE IT TO CONTROL}

\section*{POWER}

MODEL PCA: AC Output
Shaded pole motors
Permanent split capacitor motors
Universal motors
Heaters—both resistive and infra-red

MOTOR SPEED
MODEL PCD: DC Output
Shunt wound motors
Series wound motors Permanent magnet motors
Magnetic clutches and brakes

Now, for the first time, a Solid State Power Control is available which is adaptable to a wide variety of applications by a simple turn of a screwdriver!

An internal trimmer allows the starting point of the control voltage of the Ohmitrol to be set anywhere within the stated trimmer voltage range. (This adjustment can be preset at the factory at small additional cost).

From the starting point to full line voltage, infinitely smooth control is obtained by means of the control knob. An "on-off" line switch actuated at the counterclockwise end of the control knob rotator is provided on all models.

Ohmite solid state power controls are the smallest 1 or 2 KW controls available and offer the advantages not only of convenient size, but also of power savings, long life and low initial cost.

Two styles are available: the component style for panel mounting in equipment, and the lightweight, self-contained portable style. Portable units are completely self contained with grounded line cord and standard grounded AC receptacle.

Ohmitrol Controls are available with AC output and with two kinds of DC output delivered simultaneously. One kind consists of rectified DC, at approximately full line voltage; the other is the variable or controlled DC. This double output is useful, for example, for controlling shunt wound motors. Two-way terminals at the rear of the controls accept quick-connectors (push-on connectors), or can be soldered.

COMPONENT STYLE*

Catalog No.
PCD-1000
PCA. 1000
PCA-1020
PCD-1020
* Knob not included
\begin{tabular}{|c|c|c|}
\hline Catalog No. & Input & Output \\
\hline PCA-1001 & 120 VAC & 0.120 VAC \\
\hline PCD-1001 & 60 Hz & Pulsating 0.120 VDC and Full 120 VDC \\
\hline PCA-1021 & 240 VAC & 0-240 VAC \\
\hline PCD-1021 & 60 Hz & Pulsating 0-240 VDC and Full 240 VDC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Cutalor No. & Input & Output \\
\hline PCA-1000 & 120 VAC & 0.120 VAC \\
\hline PCD-1000 & 60 Hz & Pulsating 0-120 VDC and Full 120 VDC \\
\hline PCA-1020 & 240 VAC & 0-240 VAC \\
\hline PCD-1020 & 60 Hz & Pulsating 0-240 VDC and Full 240 VDC \\
\hline
\end{tabular}

\title{
ㅇ․ HMITE
}

Unique for the design innovations they incorporate, Ohmite "OHMITRAN" v.t.(®) variable transformers include exclusive field-proven features. They offer long, low maintenance operation with excellent regulation at any voltage selting within the rated load plus an output free of waveform distortion. Six frame sizes offer a wide range of electrical ratings to meet most industrial applications. These include three new, compact, low-power models (VT1, VTO2, VT3,) which permit a fine choice of six ratings from 1 to 3 amperes.

The VT1, rated 1 ampere, is the smallest commercial variable transformer available.
UL LISTING: A number of VT4, VT8 and VT20 transformers used for 120 volt line operation are underwriters' laboratories listed. See tables, page 26 for details.

POSITIVE CURRENT TRANSFER ... achieved with specially designed brushes connected through high conductivity contact arms or pigtails to a large slip ring which contacts a wide area of the collector ring. The brush contact assembly on the VT1, VT02, and VT3 is instantly replaceable, when necessary, as a result of a slide-on, snap-in design. Brushes of the other models are easily replaced also.

ADJUSTABLE SHAFT: On all Ohmite transformers, except the VT2LN, the shaft may be extended out from either the brush or opposite side as desired. On the VT1, VT02 and VT3, both single and tandem assemblies, this is an exclusive Ohmite feature which affords greater versatility of mounting and application. For example, substitution of a longer shaft or extension of the standard shaft allows actuation of other devices, such as switches or potentiometers without special construction. The shaft is freed simply by loosening set screw in the hub assembly. A double flat on the shaft permits two knob positions.

On the VT4, VT8, and VT20 types, the adjustable shaft feature permits table or panel use. "Ganged" or tandem VT4, VT8 and VT20 units employ a thru-shaft offering the same flexibility. On VT4 and VT8 units, shafts are fixed in the desired position by means of socket head screws located in the hub of each "brush-radiator" plate. The VT20 employs a unique collettype shaft lock

INTERCHANGEABLE WITH OTHER POPULAR TYPES: Basic "v.t." units have mounting provisions which match those of virtually all popular transformers of comparable current rating. Models VT4, VT8 and VT20 mount by means of bolts. Normally 3 hole mounting, single VT4 units can be " 4 -hole mount-

VII. VTO2, VT2LN, VT3, SINGLE, UNCASEO Angle of rotation \(320^{\circ} \pm 5^{\circ}\)

VI4 TYPES, SINGLE, UNCASEO Angle of rotation: \(324^{\circ} \pm 5^{\circ}\)

ed" by means of adapter plate, see page 35 . Individual Model VT1, VT02, VT2LN, or VT3 units mount by means of a standard \(3 / 8-32\) threaded bushing. All tandem assemblies mount by means of bolts or nuts. Knob, dial and mounting hardware are included with each transformer.
DIRECT READING, TWO SCALE DIAL ... calibrated on one side for overvoltage connection; on the reverse side for line voltage connection. Dials normally included with transformer read clockwise for increasing voltage; counter-clockwise calibration available-see page 35.

WIRING AND CONNECTIONS: Wiring instructions to arrange various modes of operation are enclosed with all OHMITE variable transformers. Terminal panels or adjacent nameplate carry convenient wiring diagram, coded terminals and input and output data. Three way terminals on VT1, VT2LN, VT02, VT3 will accept \(1 / 4^{\prime \prime}\) push-on connectors, screws and nuts, or conventional soldering.
ROTATION OPTION: On VT4, VT8 and VT20 transformers connected for overvoltage, either clockwise or counter-clockwise increase of voltage can be arranged easily by the user. Increasing voltage in either direction can be arranged on all units connected for no-overvoltage output. Dials for coun-ter-clockwise operation are stocked. See "Accessories."

OVERVOLTAGE OPTION: On all transformers with overvoltage feature, noovervoltage operation can be arranged on the terminal panel.
NO-OVERVOLTAGE TRANSFORMERS ("N" suffix): Provide considerably more current due to heavier gage winding.
240-VOLT INPUT ("H" suffix): On units which are wound for 240 -volt input, a 120 volt input tap is also provided. With the use of this input, the maximum current rating applies up to 120 volts output but beyond this reduces proportionately to approximately \(50 \%\) at maximum voltage output.
LOW VOLTAGE INPUT ("L" feature): Designed for a maximum input of approximately 40 volts, with high current output.
GROUNDED INPUT \& OUTPUT ("C" feature): Units in type F or G cases can be provided with a three-conductor cord and outlet. One conductor is grounded to the case. This feature standard on all cased VT20 units and on all metered units.

VIB TYPES, SINGLE, UNCASEO Angle of rotation: \(324^{\circ} \pm 5^{\circ}\)

VT20 TYPES, UNCASEO
Angle of rotation: \(317^{\circ} \pm 5^{\circ}\)

\section*{: HMITE variable transformers}

ENCLOSED OR CASED UNITS: In gray hammer tone finish. "Basic protective enclosures" (Type B) expose the transformer's terminal panel and mounting base and are supplied presently on VT20 models only. (See tandems in " 8 " enclosures below.) "Fixed mounting enclosures" (Type E) are intended for permanent mounting on table, panel or inconduit-line. Standard portable units (Type F) carry a line cord, outlet socket, and fuse except for VT20F which has a circuit breaker. Deluxe portable units (Type G) utilize a circuit breaker, can be switched to overvoltage or no-overvoltage as desired, have a handle which also serves as an easel.
metered enclosures: vT8NFC, VT8GC, vT20NFG and VT20GC transformers are available with voltmeter (\(V\), voltmeter and ammeter (A) or voltmeter and wattmeter (\(W\)). The metered transformer enclosures are larger than the non-metered types of comparable designation, (see dimensions below). All stock metered units have the three-conductor grounded cord and outlet and all, except the VT8NF group, are equipped with carrying handles.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SIngle unit case dimensions} & \multirow[b]{4}{*}{*Add 1 " for knob thickness for VT8 types; \(7 / /^{\prime \prime}\) "or VT1,
O2 and VT4 types, \(11 / 4^{\prime \prime}\) for vT20 types.} \\
\hline & crat & & & & \\
\hline \[
\begin{aligned}
& \text { V1 or } \\
& \text { VT02 }
\end{aligned}
\] & \[
\bar{F}
\] & \[
\left[\begin{array}{l}
33 / 8 \\
338
\end{array}\right.
\] & \[
\begin{aligned}
& 2 \frac{1}{2 / 2 *} \\
& 2_{1}^{2} 2^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 41 / 4 \\
& 41 / 4
\end{aligned}
\] & \\
\hline VT4 & \[
E
\] & \[
\begin{aligned}
& 41,2,2 \\
& 4 \%
\end{aligned}
\] & \[
\begin{aligned}
& 41 / 2^{*} \\
& 4 \frac{1}{2}
\end{aligned}
\] & \[
\begin{aligned}
& 61 / 6 \\
& 61 / 4
\end{aligned}
\] & \\
\hline V78 & E
FV, FVA, FVW
GV,
GV, GVA. GVW
\(3 E\) & \[
\begin{aligned}
& 531 / 6 \\
& 51 / 2 \\
& 73 / 8 \\
& 5316 \\
& 7 \\
& 53 / 6
\end{aligned}
\] & & & \begin{tabular}{l}
\(\dagger 53 / 4\) " including handle fit. tings. \\
\(\ddagger\) Case height only. \\
§ \(9^{\prime \prime}\) including handle fittings.
\end{tabular} \\
\hline VT20 & & \[
\begin{aligned}
& 75 / 8 \\
& 73 / 4 \\
& 81 / 4 \\
& 81 / 4 \\
& 73 / 4 \S \\
& 81 / 4 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { - } v_{\text {o }} \text { a and } w=\begin{array}{c}
\text { voltmeter, } \\
\text { ammeter } \\
\text { respectively. }
\end{array} \text { wattmeter }
\end{aligned}
\] \\
\hline
\end{tabular}

TANDEM OR GANGED UNITS: Two or 3 -in-tandem assemblies are standard. Larger tandem assemblies available made to order. All tandem assemblies are normally furnished with inter-connections between the units. A few cased tandems are stocked. Tandems in " B " type enclosures have individual cases on each transformer.

TANDEM VTI, VTO2, VT3 DIMENSIONS
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{} \\
\hline VT1 & 47/32 & 611/22 & 41/2 \\
\hline VT02 & 5 \(7 / 32\) & 81/32 & 41/2 \\
\hline VT3 & 61132 & 921/2 & \(41 / 2\) \\
\hline
\end{tabular}

\title{
© HMITE variable transformers
}

\section*{STOCK VARIABLE TRANSFORMERS}

SINGLE PHASE
SinGiE TRANSFDRMERS - UNCASED (Dimensions p. 32)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline pput & \[
\left|\begin{array}{c}
\text { Freq. } \\
1 \\
\mathrm{~Hz} \\
\text { from }
\end{array}\right|
\] & Feature of Cornection & \[
\begin{aligned}
& \text { U.L } \\
& \text { see } \\
& \text { foot- } \\
& \text { notes } \\
& \text { pelow }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Manmur } \\
& \text { Voits }
\end{aligned}
\] & tput Amps & \[
\begin{aligned}
& \text { Catatog } \\
& \mathrm{No}, 0^{-}
\end{aligned}
\] & Wt. \\
\hline 40 & 60 & Hi-amps, low volts & & 0-40 & 5.0 & VT2LN & 2.4 \\
\hline 40 & 50 & Hi-amps, low volts & & 0-40 & 12.0 & (VT4LN) & 5.25 \\
\hline 40 & 50 & Hi-amps, low volts & & 0-40 & 22.0 & VT8LN & 10.25 \\
\hline 120 & \(60^{*}\) & Basic 1.0A Model & & 0-120/132 & 1.3 & VT1 & 1.5 \\
\hline 120 & 60 & No overvoltage & & 0.120 & 1.5 & VTIN & 1.5 \\
\hline 120 & \(60^{\circ}\) & Basic 1.75A Model & & 0-120/132 & 2.0 & VT02 & 2.25 \\
\hline 120 & 60 & No overvoltage & & 0-120 & 2.5 & VT02N & 2.25 \\
\hline 120 & \(60^{\circ}\) & Basic 2.6A Model & & 0-120/132 & 3.0 & VT3 & 3.0 \\
\hline 120 & 60 & No overvoltage & & 0-120 & 3.0 & VT3N & 3.0 \\
\hline 120 & 50 & Basic 3.5A Model & 11 & 0-120/140 & 3.5 & VT4 & 5.25 \\
\hline 120 & 50 & No overvoltage & 11 & 0-120 & 4.75 & VT4N & 5.25 \\
\hline 120 & 50 & Basic 7.5A Model & 11 & \(0.120 / 140\) & 7.5 & VT8 & 10.25 \\
\hline 120 & 50 & No overvoltage & 11 & 0-120 & 10.0 & VT8N & 10.25 \\
\hline 120 & 50 & Basic 20A Model & 11 & 0-120/140 & 20.0 & VT20 & 22.0 \\
\hline 120 & 50 & No overvoltage & 11 & 0.120 & 25.0 & VT20N & 22.0 \\
\hline \(240{ }^{2}\) & 50 & 240 V Input \({ }^{2}\) & & 0-240/280 & 3.0 & VT8H & 10.25 \\
\hline 2403 & 50 & 240 V In. No ovrvit. \({ }^{2}\) & & 0-240 & 4.0 & VT8HN & 10.25 \\
\hline \(240{ }^{2}\) & 50 & 240 V Input \({ }^{2}\) & & 0-240/280 & 9.0 & (VT20H) & 22.0 \\
\hline \(240^{2}\) & 50 & 240 VIn . No ovrvit. \({ }^{2}\) & & 0.240 & 11.0 & (VT20HN) & 22.0 \\
\hline
\end{tabular}

SIMGLE TRANSFDRMERS - CASED (Dimensions p. 33)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 120 & \(60^{\circ}\) & Fixed Mtg. & & 0-120/1324 & . 8 & (VTIE) & 1.9 \\
\hline 120 & \(60^{\circ}\) & Portable & & \(0.132^{3}\) & 1.0 & VT1F & 2.3 \\
\hline 120 & 60 & Fixed Mtg. & & 0.120 & 1.0 & (VTINE) & 1.9 \\
\hline 120 & 60 & Portable & & 0-120 & 1:2 & (VTINF) & 2.3 \\
\hline 120 & \(60^{4}\) & Fixed Mtg. & & 0-120/1324 & 1.4 & (VT02E) & 2.8 \\
\hline 120 & \(60^{\circ}\) & Portable & & \(0.132^{3}\) & 1.75 & VT02F & 3.2 \\
\hline 120 & 60 & Fixed Mtg. & & 0.120 & 1.6 & (VT02NE) & 2.8 \\
\hline 120 & 60 & Portable & & 0-120 & 2.0 & VTO2NF & 3.2 \\
\hline 120 & 50 & Fixed Mtg. & 12 & 0-120/1404 & 2.8 & (VT4E) & 7.4 \\
\hline 120 & 50 & Portable & 12 & \(0-140^{3}\) & 3.5 & VT4F & 7.8 \\
\hline 120 & 50 & VT4F w/gnd. in. \& out. & 12 & \(0.140^{3}\) & 3.5 & VT4FC & 7.8 \\
\hline 120 & 50 & Fixed Mtg. & & 0-120 & 3.8 & (VT4NE) & 7.4 \\
\hline 120 & 50 & Portable & & 0-120 & 4.75 & (VT4NF) & 7.8 \\
\hline 120 & 50 & VTANF w/gnd. in. \& out. & & 0-120 & 4.75 & VTANFC & 7.8 \\
\hline 120 & 50 & Fixed Mig. & 12 & \(0-120 / 140^{4}\) & 6.0 & (VT8E) & 13.5 \\
\hline 120 & 50 & Portable & 12 & \(0.140^{3}\) & 7.5 & VT8F & 13.8 \\
\hline 120 & 50 & VT8F w/gnd. in. \& out. & 12 & \(0-140^{3}\) & 7.5 & VT8FC & 13.8 \\
\hline 120 & 50 & Deluxe Portable & 12 & \(0-120 / 140^{3}\) & 6.0 & VT86 & 14.2 \\
\hline 120 & 50 & VT8G w/gnd. in. \& out. & 12 & \(0-120 / 140^{3}\) & 6.0 & VT8GC & 14.2 \\
\hline 120 & 50 & Fixed Mtg. & & 0-120 & 8.0 & VT8NE & 13.5 \\
\hline 120 & 50 & Portable & & \(0-120\) & 10.0 & (VT8NF) & 13.8 \\
\hline 120 & 50 & VT8NF w/gnd. in. \& out & & 0-120 & 10.0 & VT8NFC & 13.8 \\
\hline 120 & 50 & Basic Case & & 0-120/140 & 20.0 & VT20B & 22.5 \\
\hline 120 & 50 & Basic Case & & 0-120 & 25.0 & (VT20NB) & 22.5 \\
\hline 120 & 50 & Fixed Mtg. & 12 & \(0.120 / 140^{4}\) & 20.0 & (VT20E) & 29.0 \\
\hline 120 & 50 & Portable & & 0-140 & 20.0 & (VT20FC) & 31.0 \\
\hline 120 & 50 & Portable & 12 & 0-120/140 & 20.0 & (VT20GC) & 31.0 \\
\hline 120 & 50 & Fixed Mtg. & 12 & 0-120 & 25.0 & (VT20NE) & 29.0 \\
\hline 120 & 50 & Portable & & 0.120 & 25.0 & (VT20NFC) & 31.0 \\
\hline \(240{ }^{2}\) & 50 & Basic Case & & 0-240/280 & 9.0 & (VT20HB) & 21.5 \\
\hline \(240{ }^{2}\) & 50 & Basic Case & & 0-240 & 11.0 & (VT20HNB) & 21.5 \\
\hline \(240^{2}\) & 50 & Fixed Mtg. & & 0.240/2804 & 9.0 & (VT20HE) & 28.0 \\
\hline \(240^{2}\) & 50 & Fixed Mtg. & & 0-240 & 11.0 & (VT20HNE) & 28.0 \\
\hline 2402 & 50 & Portable & & 0-240/280 & 9.0 & (VT20HFC) & 30.0 \\
\hline \(240^{2}\) & 50 & Portable & & 0-240 & 11.0 & (VT20HNFC) & 30.0 \\
\hline
\end{tabular}
single transfdrmers - cased with meters (Dimensions p. 33)
\begin{tabular}{l|l|l|c|c|l|l}
\hline 120 & 50 & w/voltmeter, gnd. conn. & \(0-120 / 140^{3}\) & 6.0 & (Vi8GCV & 15.2 \\
120 & 50 & w/volt. \& ammtr., gnd. conn. & \(0-120 / 140^{3}\) & 6.0 & (VT8GCVA) & 15.5 \\
120 & 50 & w/volt. \& wattmtr., gnd. conn. & \(0-120 / 140^{3}\) & 6.0 & (VT8GCVW) & 15.5 \\
120 & 50 & w/voltmeter, gnd. conn. & \(0-120\) & 10.0 & (VT8NFCV & 14.8 \\
\hline
\end{tabular}

SINGLE PHASE (contd.)
SINGLE TRANSFDRMERS - CASED WITH METERS (Dimensions p. 33) (contd.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline vor & \[
\begin{array}{|l}
\text { Freg } \\
\text { Hz } \\
\text { from }
\end{array}
\] & Festure or Cannection & Maximum & utput
Ampi & Catalor
\[
\mathrm{No} \text {. }
\] & Wt. \\
\hline 120 & 50 & w/volt. \& ammtr., gnd. conn. & 0.120 & 10.0 & (VT8NFCVA) & 15.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd. conn. & 0-120 & 10.0 & (VT8NFCVW) & 15,2 \\
\hline 120 & 50 & w/voltmeter, gnd. conn. & \(0.120 / 140^{3}\) & 20.0 & (VT20GCV) & 32.0 \\
\hline 120 & 50 & w/volt. \& ammer., gnd. conn. & \(0-120 / 140^{3}\) & 20.0 & (VT20GCVA) & 32.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd. conn. & \(0-120 / 140^{3}\) & 20.0 & (VT20GCVW) & 32.2 \\
\hline 120 & 50 & w/voltmeter, gnd. conn. & 0-120 & 25.0 & (VT20NFCV) & 32.0 \\
\hline 120 & 50 & w/volt. \& ammtr., gnd. conn. & 0-120 & 25.0 & (VT2ONFCVA) & 32.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd. conn. & 0-120 & 25.0 & (VT20NFCVW) & 32.2 \\
\hline
\end{tabular}

TWD-JN-TANDEM ASSEMBLIES 510 (Dimensions p. 33)
\begin{tabular}{l|l|l|c|l|l|l}
\hline 240 & \(60^{-}\) & Series Conn. & \(0-240 / 264\) & 1.0 & (VT1-2) & 3.5 \\
240 & 60 & Series Conn. & \(0-240\) & 1.2 & (VT1N-2) & 3.5 \\
240 & \(60^{\circ}\) & Series Conn. & \(0-240 / 264\) & 1.75 & (VT02-2) & 5.25 \\
240 & 60 & Series Conn. & \(0-240\) & 2.0 & (VT02N-2) & 5.25 \\
240 & \(60^{\circ}\) & Series Conn. & \(0-240 / 264\) & 2.6 & VT3-2 & 6.5 \\
240 & 60 & Series Conn. & \(0-240\) & 3.0 & (VT3N-2) & 6.5 \\
240 & 50 & Series Conn. & \(0-240 / 280\) & 3.5 & (VT4-2) & 11.3 \\
240 & 50 & Series Conn. & \(0-240\) & 4.75 & (VT4N-2) & 11.3 \\
240 & 50 & Series Conn. & \(0-240 / 280\) & 7.5 & (VT8-2) & 20.6 \\
240 & 50 & Series Conn. & \(0-240\) & 10.0 & VT8N-2 & 20.6 \\
240 & 50 & Series Conn. & \(0-240 / 280\) & 20.0 & (VT20-2) & 45.0 \\
240 & 50 & Above unit, B case & \(0-240 / 280\) & 20.0 & (VT20-28) & 46.0 \\
240 & 50 & Series Conn. & \(0-240\) & 25.0 & VT20N-2 & 45.0 \\
240 & 50 & Above unit, B case & \(0-240\) & 25.0 & (VT20N-2B) & 46.0 \\
\(480^{2}\) & 50 & Series Conn. & \(0-480 / 560\) & 3.0 & (VT8H-2) & 20.6 \\
\(480^{2}\) & 50 & Series Conn. & \(0-480\) & 4.0 & (TRHN-2) & 20.6 \\
\(480^{2}\) & 50 & Series Conn. & \(0-480 / 560\) & 9.0 & (VT20HH-2) & 43 \\
\(480^{2}\) & 50 & Series Conn. & \(0-480\) & 11.0 & (VT20HN-2) & 43 \\
\hline
\end{tabular}

\section*{THREE PHASE}
\begin{tabular}{l|l|l|c|l|l|l}
\hline 120 & \(60^{2}\) & Open Delta Conn. & \(0-120 / 132\) & 1.0 & (VT1-2) & 3.5 \\
120 & 60 & Open Delta Conn. & \(0-120\) & 1.2 & (VT1N-2) & 3.5 \\
120 & \(60^{2}\) & Open Delta Conn. & \(0-120 / 132\) & 1.75 & (VTO2-2) & 5.25 \\
120 & 60 & Open Detta Conn. & \(0-120\) & 2.0 & (VTT2N-2) & 5.25 \\
120 & \(60^{\circ}\) & Open Delta Con. & \(0-1201132\) & 2.6 & (VT3-2) & 6.5 \\
120 & 60 & Open Delta Conn. & \(0-120\) & 3.0 & (VT3N-2) & 6.5 \\
120 & 50 & Open Delta Conn. & \(0-120 / 140\) & 3.5 & (VT4-2) & 11.3 \\
120 & 50 & Open Delta Conn. & \(0-120\) & 4.75 & (VTAN-2) & 11.3 \\
120 & 50 & Open Delta Conn. & \(0-120 / 140\) & 7.5 & (VT8-2) & 20.6 \\
120 & 50 & Open Delta Conn. & \(0-120\) & 10.0 & VT8N-2 & 20.6 \\
120 & 50 & Open Delta Conn. & \(0-120 / 140\) & 20.0 & (VT20-2) & 45.0 \\
120 & 50 & Above unit, B case & \(0-120 / 140\) & 20.0 & (VT20-2B) & 46.0 \\
120 & 50 & Open Delta Conn. & \(0-120\) & 25.0 & VT20N-2 & 45.0 \\
120 & 50 & Above unit, B case & \(0-120\) & 25.0 & (VT20N-28) & 46.0 \\
\(240^{2}\) & 50 & Open Delta Conn. & \(0-2401280\) & 3.0 & (VT8H-2) & 20.6 \\
\(240^{2}\) & 50 & Open Delta Conn. & \(0-240\) & 4.0 & (VT8HN-2) & 20.6 \\
\(240^{2}\) & 50 & Open Delta Conn. & \(0-240 / 280\) & 9.0 & (VT20H-2) & 43 \\
\(240^{2}\) & 50 & Open Delta Conn. & \(0-240\) & 11.0 & (VT20HN-2) & 43 \\
\hline
\end{tabular}

THREE-IN-TANDEM ASSEMBLIES 510 (Dimensions p. 33)
\begin{tabular}{l|l|l|c|l|l|r}
\hline 240 & 60 & "Y" Conn. & \(0-240 "\) & 1.0 & (VT1-3) & 5.3 \\
240 & 60 & "Y" Conn. & \(0-240\) " & 1.75 & VT02-3 & 8.0 \\
240 & 60 & "Y" Conn. & \(0-240\) " & 2.6 & (VT3-3) & 9.8 \\
240 & \(60^{8}\) & "Y" Conn. & \(0-240 / 280\) & 3.5 & VT4-3 & 17.0 \\
240 & \(60^{8}\) & "Y" Conn. & \(0-240 / 280\) & 7.5 & (VT8-3) & 31.0 \\
240 & \(60^{8}\) & Above unit, E case & \(0-240 / 280\) & 6.0 & (VT8-3E) & 40.0 \\
240 & \(60^{4}\) & "Y" Conn. & \(0-240 / 280\) & 20.0 & VT20-3 & 68.0 \\
240 & \(60^{8}\) & Above unit, B case & \(0-240 / 280\) & 20.0 & VT20-3B & 69.5 \\
240 & 60 & "Y" Conn. & \(0-240\) & 25.0 & (VT20N-3) & 68.0 \\
240 & 60 & Above unit, B case & \(0-240\) & 25.0 & (VT20N-3B) & 69.5 \\
\(480^{2}\) & \(60^{8}\) & "Y" Conn. & \(0-480 / 560\) & 3.0 & VT8H-3 & 31.0 \\
\(480^{2}\) & \(60^{9}\) & "Y" Conn. & \(0-480 / 560\) & 9.0 & (VT20H-3) & 65.0 \\
\(\mathbf{4 8 0}\) & 60 & "Y" Conn. & \(0-480\) & 11.0 & (VT2OHN-3) & 65.0 \\
\hline
\end{tabular}

\section*{Footnotes for stock Table}
' Frequency shown is a minimum - units may be used up to 1000 cps .
\({ }^{2}\) VT8H and VT20H and 240 V output for VT8HN and VT20HN. With use of 120 V input the max. current rating applies up to 120 V output but reduces to approx \(50 \%\) for max. output voltage. In the case of tandem units, use of the to approx. \(50 \%\) at would correspondingly derate the current at the higher output voltages inpu
\({ }^{3}\) Connected at factory for overvoltage output - easily reconnected by no-overvoltage output. On VT8G and VT20G, switch selects overvoltage user for overvoltage.
- User wires for desired output. Dial normally calibrated for overvoltage.

5 2-in-tandem normally wired for series connection; 3 -in-tandem for \(Y\) connection.
\({ }^{12}\) Underwriters' Laboratories isted under apparatus program (File Number E10946). distributors but are not nomally stocked in depth. Parentheses indicat ohmite stocking distributors. Items appearing in LIGHT FACE print are available from stocking

\section*{ACCESSORIES - PARTS}

ADAPTER PLATE for 4-hole mtg. of VT4 - matches other popular 4-hole mtgs.; dimensions same as shown for front plate of VT4 tandems, page 33. Catalog No. 6512
\begin{tabular}{|c|c|}
\hline Brush-Contact Assemblies for ... & Catalog No. \\
\hline VT1, VT1N, VT02, VT02N, VT3, VT3N & 6507 \\
\hline VT2LN & 6517 \\
\hline VT4 Types except VT4LN & 6515 \\
\hline VT8 Types except VT8H, HN, LN & 6515 \\
\hline VT4LN & 6518 \\
\hline VT8H, HN only & 6516H \\
\hline VT8LN only & 6519 \\
\hline VT20 Types and VT20N & 6594 \\
\hline VT20H, HN only & 6596 \\
\hline ADJUSTABLE STOP for limiting rotational arc of transformers. & \\
\hline Stop for VT4 types & ... 6536 \\
\hline Stop for VT8 types & 6537 \\
\hline Stop for VT20 types & 6538 \\
\hline FUSE LINKS & Catalor No \\
\hline For VT4 & ... 6508 \\
\hline For VT4N & 6509 \\
\hline
\end{tabular}

EXTRA DIALS AND DIALS WITH C.C.W. calibration
\begin{tabular}{|c|c|c|}
\hline \(\tau\) & nitralipration & Eralicers \\
\hline VT1 & 0-120, 0-132 CW & 5005 \\
\hline VT02 & 0-100, 100-0* CW & 5011 \\
\hline VT2LN VT3 & 0-240, 0-264 cW & 5019 \\
\hline \multirow[t]{2}{*}{VT4} & 0-120, 0-140 CW & 5006 \\
\hline & 0-120, 0-140 CCW & 5008 \\
\hline \multirow[b]{2}{*}{and} & 0.240, 0-280 CW & 5009 \\
\hline & \(0-240,0-280, \mathrm{CCW}\) & 5010 \\
\hline \multirow[t]{2}{*}{VT8} & \(0 \cdot 100,100-0^{*} \mathrm{CW}\) & 5012 \\
\hline & 0-480, 0-560 CW & 5018 \\
\hline \multirow{5}{*}{VT20} & \(0-120,0.140 \mathrm{CW}\) & 5013 \\
\hline & \(0-120,0-140 \mathrm{CCW}\) & 5014 \\
\hline & 0.240, 0-280 CW & 5015 \\
\hline & \(0.240,0.280 \mathrm{CCW}\) & 5016 \\
\hline & 0-100, 100-0 CW & 5017 \\
\hline
\end{tabular}

Percent-of-output dial furnished with "LN" series units.

\section*{MOTOR-DRIVEN ASSEMBLIES}

Single or tandem assemblies can be supplied with motor drives, direct from the factory. Either AC or DC motors are available. Standard AC motor drives have traverse speeds of \(3-4,10-12,40.50,100-120\) seconds. Typical traverse speeds for \(D C\) drives are \(4,8,16,30\) and 45 seconds. Write to the factory for more information.

\section*{wire-wound}

\section*{resistor assortments}

\section*{of type 995 axial lead MOLDED vitreous enamel}
- Perfect for R \& D and Prototype Labs
- All popular values included.
- Resistors and handy cabinet for the resistors alone.
- 4 Wattage sizes to choose from.
- Contents clearly marked on front of each drawer segment.

Select the wire-wound resistor you need, right on the job. All the popular resistance values, as determined by national usage, are contained in these handy, compact assortments.

The attractive plastic cabinet is furnished at no extra cost with each assortment. Cabinets are factory packed in accordance with the table (shown at right) which states the quantities of each resistance value per assortment. Each drawer segment is individually labeled. Dovetail tops and bottoms of cabinets facilitate stacking. Dimensions for single cabinets are \(9^{\prime \prime}\) long \(\times 43 / 4^{\prime \prime}\) high \(\times 5 \frac{1}{4} 4^{\prime \prime}\) deep double cabinets are \(10^{\prime \prime}\) high, including wall hanging brackets.

SPECIFICATIONS AND PRICING

prices subject to change without notice.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{} & \multirow[b]{2}{*}{\begin{tabular}{l}
\[
\pm 5 \%
\] \\
Resistance Values
\end{tabular}} & \multicolumn{4}{|l|}{} \\
\hline \begin{tabular}{l}
\(\pm 5 \%\) \\
Resist- \\
ance \\
Values
\end{tabular} & & & & & & & & \[
\begin{aligned}
& =0 \\
& 0 \\
& 30 \\
& 3 \\
& \text { n }
\end{aligned}
\] & \#
\%
\%
\(=0\)
\(=0\) \\
\hline 1.0 & 10 & 7 & 7 & 5 & 470 & 5 & 7 & 4 & 4 \\
\hline 1.2 & - & - & 4 & - & 500. & 5 & 7 & 7 & 5 \\
\hline 1.5 & 5 & 4 & 4 & - & 510 & 5 & - & 4 & - \\
\hline 2.0 & 5 & 4 & 4 & 5 & 560 & - & 4 & 4 & - \\
\hline 2.2 & 5 & - & - & - & 600 & 5 & 7 & 4 & - \\
\hline 2.7 & - & 4 & - & - & 620 & - & 4 & - & - \\
\hline 3.0 & 5 & 4 & 4 & 5 & 680 & 2 & 7 & - & - \\
\hline 4.0 & 3 & 4 & 4 & 5 & 700 & - & 4 & - & - \\
\hline 5.6 & 5 & 7 & 7 & 5 & 750 & 2 & 7 & 7 & 5 \\
\hline 5.6 & - & 1 & 4 & - & 800 & 2 & 4 & 4 & - \\
\hline 6.8 & - & 4 & - & - & 820 & - & - & 4 & - \\
\hline 7.5 & 3 & 4 & 1 & 5 & 900 & - & 4 & - & - \\
\hline 10.0 & 10 & 4 & 7 & 5 & 1000 & 5 & 7 & 7 & 5 \\
\hline 12 & - & 1 & 4 & - & 1200 & 2 & 4 & 4 & - \\
\hline 15 & 5 & 7 & 7 & 5 & 1300 & - & 7 & 7 & - \\
\hline 18 & - & 1 & 4 & - & 1500 & 5 & 7 & 4 & 4 \\
\hline 20 & 3 & 4 & 7 & 5 & 1800 & 2 & 4 & 4 & - \\
\hline 22 & 2 & 7 & 4 & 5 & 2000 & 5 & 7 & 7 & 4 \\
\hline 25 & - & 4 & 7 & 5 & 2200 & 2 & 4 & 4 & - \\
\hline 30 & 3 & 4 & 4 & 5 & 2500 & 2 & 4 & 4 & 4 \\
\hline 33 & - & 4 & - & - & 2700 & - & 4 & 1 & - \\
\hline 39 & - & 4 & 4 & 5 & 3000 & 5 & 4 & 7 & 4 \\
\hline 40 & 3 & 4 & 4 & 5 & 3300 & - & 4 & 4 & - \\
\hline 47 & - & 4 & 4 & - & 3900 & - & 1 & 1 & - \\
\hline 50 & 5 & 7 & 7 & 5 & 4000 & - & 4 & 4 & 4 \\
\hline 51 & - & - & 7 & - & 4300 & - & - & 4 & - \\
\hline 56 & 2 & 4 & 4 & - & 4500 & - & - & - & - \\
\hline 68 & 2 & 4 & 4 & 5 & 4700 & - & 4 & 4 & - \\
\hline 75 & 2 & 7 & 4 & 4 & 5000 & - & 4 & 7 & 4 \\
\hline 82 & - & 4 & 4 & 5 & 5600 & - & 1 & 4 & - \\
\hline 91 & 5 & - & - & - & 6000 & - & - & 4 & - \\
\hline 100 & 5 & 7 & 7 & 5 & 6800 & - & 1 & 5 & 4 \\
\hline 110 & 5 & - & - & - & 7000 & - & 4 & - & - \\
\hline 120 & - & 7 & 4 & - & 7500 & - & 3 & - & - \\
\hline 150 & - & 4 & 4 & 5 & 8000 & - & - & 4 & - \\
\hline 160 & - & 1 & 4 & - & 8200 & - & 4 & 4 & - \\
\hline 200 & 5 & 7 & 7 & 5 & 9000 & - & -- & 4 & - \\
\hline 220 & 5 & 7 & 7 & - & 9100 & - & - & - & - \\
\hline 250 & - & 4 & 7 & 5 & 10,000 & - & 7 & 7 & 4 \\
\hline 270 & - & 4 & 4 & - & 12,000 & - & - & 4 & - \\
\hline 300 & 5 & 7 & 7 & 5 & 15,000 & - & - & 4 & 4 \\
\hline 330 & 5 & 4 & 4 & - & 20,000 & - & - & 4 & - \\
\hline 350 & - & - & 4 & 4 & 22,000 & - & - & 4 & - \\
\hline 390 & - & 4 & 4 & - & 25,000 & - & - & 4 & 4 \\
\hline 400 & - & 4 & 4 & - & 40,000 & - & - & - & 4 \\
\hline 450 & - & 4 & - & - & 50,000 & - & - & - & 4 \\
\hline
\end{tabular}

\title{
M OHMITE
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Tolerance} & \multirow[b]{2}{*}{Resistance Range (Chms)} & \multicolumn{7}{|c|}{\begin{tabular}{l}
UNIT MET PRICES \\
Standard Package is 50 Unlts
\end{tabular}} \\
\hline & & & \[
\begin{aligned}
& 1- \\
& 9 \\
& \hline
\end{aligned}
\] & \[
10
\] & \[
\begin{aligned}
& 100- \\
& 249
\end{aligned}
\] & \[
\begin{array}{r}
250- \\
499 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathbf{5 0 0 -} \\
& \mathbf{9 9 9}
\end{aligned}
\] & \[
\begin{aligned}
& 1000- \\
& 4999
\end{aligned}
\] & \[
\begin{aligned}
& 5000 \\
& \& U_{p}
\end{aligned}
\] \\
\hline 1/1 WATT TYPE OJ & 5\% (J) & \[
\begin{aligned}
& 10 \text { to } \\
& 220 \mathrm{~K}
\end{aligned}
\] & \$.34 & \$.16 & 5.14 & \$.13 & \$ 12 & \$. 095 & \$.093 \\
\hline \(1 / 4\) WATT TYPE OK & 5\% (J) & \[
\begin{array}{|l}
\hline 1.0 \text { to } 9.1 \\
10 \text { to } 1 \mathrm{~m} \\
\hline
\end{array}
\] & 29
26 & 110 & . 08 & 069
063 & \[
\begin{array}{r}
\hline .058 \\
.053 \\
\hline
\end{array}
\] & .041
.037 & 035
032 \\
\hline \(1 / 2\) WATT TYPE OL & 5\% (J) & \[
\begin{aligned}
& 1.0 \text { to } 2.4 \\
& 2.7 \text { to } 1 \mathrm{~m}
\end{aligned}
\] & \[
\begin{array}{r}
.26 \\
.24 \\
\hline
\end{array}
\] & .13
.12 & . 07 & .057
.052 & \begin{tabular}{l}
.048 \\
.044 \\
\hline
\end{tabular} & \begin{tabular}{l}
.042 \\
.038 \\
\hline
\end{tabular} & .040
.037 \\
\hline
\end{tabular}

\section*{OHMITRIM \({ }^{\text {™ }}\) wirewound rectilinear multiturn resistance trimmer}
\begin{tabular}{lllllll}
NUMBER & 1 & 10 & 25 & 50 & 100 & 250 \\
\hline & -9 & -24 & -49 & -99 & -249 & \(80 p\) \\
TPS 10 thru 5K ohms & 1.75 & 1.60 & 1.45 & 1.35 & 1.25 & 1.15 \\
TPS 10K ohms & 1.85 & 1.70 & 1.55 & 1.45 & 1.35 & 1.25 \\
TPS 20K ohms & 2.00 & 1.85 & 1.70 & 1.60 & 1.50 & 1.40 \\
\hline & & & & & & \\
TPW 10 thru \(5 K\) ohms & 1.75 & 1.60 & 1.45 & 1.35 & 1.25 & 1.15 \\
TPW 10K ohms & 1.85 & 1.70 & 1.55 & 1.45 & 1.35 & 1.25 \\
TPW 20K ohms & 2.00 & 1.85 & 1.70 & 1.60 & 1.50 & 1.40 \\
\hline
\end{tabular}

TYPE 442 wirewound axial lead resistors
available from the Factory only.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline WATT, TYPE 442-2 & 1-9 & 10-49 & 50-99 & 100-249 & 250-499 & 500 & \\
\hline . 1 thru .9 ohms & \multirow[t]{5}{*}{\(\$.87\)
.766
.75
.78} & \multirow[t]{5}{*}{\$} & \multirow[t]{5}{*}{\$.} & \$. 49 & \multirow[t]{5}{*}{\[
\begin{array}{r}
.40 \\
.33 \\
.30 \\
.34 \\
.42
\end{array}
\]} & \multirow[t]{5}{*}{\$} & \\
\hline 1.0 thru 100 ohms & & & & . 40 & & & \\
\hline 100 thru 1k ohms & & & & . 37 & & & \\
\hline 1001 thru 5 K ohme & & & & . 41 & & & \\
\hline 5001 thru 6500 ohms & & & & . 53 & & & \\
\hline 3 WATT, TYPE 442-3A & & & & & & & \\
\hline . 1 thru . 9 ohms & . 68 & . 58 & . 48 & . 37 & . 31 & . 29 & \\
\hline 1.0 thru 100 ohms & . 55 & . 47 & . 39 & . 30 & . 25 & . 23 & \\
\hline 100 thru 18 ohms & . 50 & .43 & . 35 & . 28 & . 23 & . 21 & \\
\hline 1001 thru 5k ohms & . 55 & . 47 & . 39 & . 30 & . 25 & . 23 & \\
\hline 5001 thru 10 K ohms & . 68 & . 58 & . 43 & . 37 & . 31 & . 29 & \\
\hline 5 WATT, TYPE 442-5 & & & & & & & \\
\hline . 1 thru .9 ohms & . 74 & . 63 & . 52 & .41 & . 33 & . 31 & \\
\hline 1.0 thru 100 ohms & . 61 & . 52 & . 43 & . 34 & . 27 & . 26 & \\
\hline 100 thru 1 k ohas & . 55 & . 47 & . 39 & . 30 & . 25 & . 23 & \\
\hline 1001 thru 5 K ohas & . 61 & . 52 & . 43 & . 34 & . 27 & . 26 & \\
\hline 5001 thru 10k ohms & . 71 & . 60 & . 50 & . 39 & . 32 & . 30 & \\
\hline 10,001 thru 20 K ohms & . 84 & . 71 & . 59 & . 46 & . 38 & . 35 & \\
\hline 20,001 thzu 25 K ohms & . 92 & . 78 & . 64 & . 51 & . 51 & . 39 & \\
\hline 7 WATT, TYPE 442-7 & & & & & & & \\
\hline . 1 thru .9 ohms & . 76 & . 65 & . 54 & . 43 & . 35 & . 32 & \\
\hline 1.0 thru 100 ohms & . 63 & . 54 & . 44 & . 36 & . 29 & . 26 & \\
\hline 100 thru 1 k ohms & . 58 & . 50 & . 41 & . 33 & . 27 & . 24 & \\
\hline 1001 thru 5 K ohms & . 63 & . 54 & . 44 & . 36 & . 29 & . 26 & \\
\hline 5001 thru 10K ohms & . 74 & . 64 & . 52 & . 41 & . 34 & . 31 & \\
\hline 10,001 thru 20 K ohms & . 87 & . 75 & . 61 & . 49 & . 40 & . 37 & \\
\hline 20,001 thru 25 K ohms & 92 & . 80 & . 65 & . 52 & . 42 & . 39 & \\
\hline 25,001 thru 37 K ohms & 1.02 & . 88 & . 72 & . 57 & . 47 & . 43 & \\
\hline 37,001 thru 75 K ohms & 1.26 & 1.05 & . 89 & . 70 & . 58 & . 53 & \\
\hline 75,001 thru 100k ohms & 2.10 & 1.80 & 1.48 & 2.20 & . 97 & . 88 & \\
\hline
\end{tabular}

\title{
© \\
}

STANDARD RESISTANCE \& ELECTRO-MECHANICAL PRODUCTS
This Schedule contains prices for all Ohmite standard catalog items, as described in the Component Selectar Catalog, in quantities available from authorized Ohmite Stocking Distributors. For quantities greater than shown, please cantact your local Ohmite Soles Office or the Factory
Minimum charges, exclusive of transportation charges are
-Hems Bold and Light foce listed: \(\$ 15.00\) per order. *ltems in Parenthesis: \(\mathbf{\$ 2 5 . 0 0}\) per item per order. (Bold, Light face and Parenthesis are indicated in the Component Selector Catalog.) Terms: \(1 \%, 10\) th and 25 th, net 30 days, F.O.8. our factory Prices subject to change without notice.

Supersedes
all previous
schedules.

PRODUCT IDENTIFIER
Prices in this schedule are arranged in numeric-alph or
numbers and their descriptions. Complete descriptions of er. For your convenience we have also provided a cross-reference of

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory.

than shown are available from your local Ohmite Sales Office authorized Ohmite stocking distributors. Prices for quantities greater

Ohmite Manufacturing Company a North American Philips Company
3660 Howerd Street. Skokie

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory.

Ohmite Manufacturing Company a North American Philips Company

Ohmite Manufacturing Company
3660 Howard Street, Skokie, Illinois

\begin{tabular}{lrl}
& & NET \\
NUMBER & UNIT NET PRICES \\
& 54.00 \\
3401 & 54.00 \\
\(34 n 2\) & 54.00 \\
3403 & 54.00 \\
3404 & 85.00 \\
3405 & 85.00 \\
3406 & 90.00 \\
3407 & 125.00 \\
3410 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{NUMBER}} & \multicolumn{7}{|c|}{UNIT NET PRICES} \\
\hline & & 1 & 10 & 25 & & 100 & 250 & 500 \\
\hline & & -9 & -24 & -99 & & -249 & -499 & \&up \\
\hline 3723 & THRU 380? & . 66 & . 56 & . 46 & & . 40 & . 33 & . 31 \\
\hline 3804 & THRU 3818 & . 70 & . 60 & . 49 & & . 42 & . 35 & . 33 \\
\hline 3820 & THRU 3826 & .81 & . 69 & . 57 & & . 49 & . 41 & . 38 \\
\hline 3828 & THRU 3832 & . 90 & . 77 & . 63 & & . 54 & . 45 & . 42 \\
\hline 3834 & THRU 3840 & . 95 & . 81 & . 67 & & . 57 & . 48 & . 45 \\
\hline 3842 & ANO 3843 & 1.10 & . 94 & . 77 & & . 66 & . 55 & . 52 \\
\hline 3860 & THRU 3956 & . 64 & . 54 & .45 & & . 38 & . 32 & . 30 \\
\hline 3957 & THRU 3969 & . 68 & . 58 & . 48 & & . 41 & . 34 & . 32 \\
\hline 4030 & THRU 4123 & . 66 & . 56 & . 46 & & . 40 & . 33 & . 31 \\
\hline 4124 & THRU 4135 & . 70 & . 60 & . 49 & & . 42 & . 35 & . 33 \\
\hline
\end{tabular}
\begin{tabular}{lccc}
& \multicolumn{4}{c}{ UNIT NET PRICES } \\
NUMBER & 1 & 5 & 10 \\
& -4 & -9 & \&UP \\
\(412-3\) & 14.75 & 12.54 & 8.85 \\
\(412-4\) & 15.00 & 12.75 & 9.00 \\
\(412-5\) & 15.25 & 12.96 & 9.15 \\
\(412-6\) & 15.50 & 13.18 & 9.30 \\
\(412-7\) & 15.75 & 13.39 & 9.45 \\
\(412-8\) & 16.00 & 13.60 & 9.60 \\
\(412-9\) & 16.25 & 13.81 & 9.75 \\
\(412-10\) & 16.75 & 14.24 & 10.05 \\
\(412-11\) & 17.00 & 14.45 & 10.20 \\
\(412-12\) & 17.25 & 14.66 & 10.35 \\
\hline
\end{tabular}

Ohmite Manufacturing Company a North American Philips Company
3660 Howard Street, Skokie, Illinois 60076/Phone (312) 675

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory.

\begin{tabular}{lr}
5180 & .25 \\
5182 & 1.50 \\
5190 & .10
\end{tabular}

Ohmite Manufacturing Company a North American Philips Company

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory

Ohmite Manufacturing Company a North American Philips Company
3660 Howard Street. Skokie, Illinois 60076/Phone (312) 675-2600/TWX: 910-223-0805/TELEX 72-4433

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory.

Ohmite Manufacturing Company a North American Philips Company
3660 Howard Street, Skokie, llinois 60076/Phone (312) 675-2600/TWX: 910-223-0805/TELEX 72-4433

Ohmite Manufacturing Company a North American Philips Company
3660 Howard Street, Skokie Illiny

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory.

Ohmite Manufacturing Company a North American Philips Company

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory.

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohmite Sales Office or the Factory.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Tolerance} & \multirow[b]{2}{*}{Resistance Range (Ohms)} & \multicolumn{7}{|c|}{UNIT NET PRICES} \\
\hline & & & \[
\begin{aligned}
& 1- \\
& 9
\end{aligned}
\] & \[
\begin{aligned}
& 10- \\
& 99
\end{aligned}
\] & \[
\begin{aligned}
& 100- \\
& 249 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
250- \\
499 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 500- \\
& 999
\end{aligned}
\] & \[
\begin{aligned}
& 1000- \\
& 4999
\end{aligned}
\] & \[
5000
\] \\
\hline \[
\begin{aligned}
& \text { 1/8 WATT }
\end{aligned}
\] & 5\% (J) & \[
\begin{aligned}
& 2.7 \text { to } 9.1 \\
& 10 \text { to } 22 \mathrm{M}
\end{aligned}
\] & \[
\begin{array}{r}
\$.37 \\
\hline .34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\$.175 \\
.158
\end{array}
\] & \[
\begin{array}{r}
\$.165 \\
.150
\end{array}
\] & \[
\begin{array}{r}
\$.158 \\
.144
\end{array}
\] & \[
\begin{array}{r}
\$.153 \\
.139
\end{array}
\] & \[
\begin{array}{r}
\$.147 \\
.134
\end{array}
\] & \[
\begin{array}{r}
\$.142 \\
.130
\end{array}
\] \\
\hline TYPE OB & 10\% (K) & \[
\begin{aligned}
& 2.7 \text { to } 8.2 \\
& 10 \text { to } 22 \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& .27 \\
& .24
\end{aligned}
\] & \[
\begin{aligned}
& .125 \\
& .112
\end{aligned}
\] & \[
\begin{aligned}
& .117 \\
& .106
\end{aligned}
\] & \[
\begin{aligned}
& .112 \\
& .102
\end{aligned}
\] & \[
\begin{aligned}
& .108 \\
& .098
\end{aligned}
\] & \[
\begin{aligned}
& .105 \\
& .095
\end{aligned}
\] & \[
\begin{aligned}
& .103 \\
& .093
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 1/4 WATT } \\
& \text { RC-07 }
\end{aligned}
\] & 5\% (J) & \[
\begin{aligned}
& 2.7 \text { to } 9.1 \\
& 10 \text { to } 1 \mathrm{M} \\
& 1.1 \mathrm{M} \text { to } 22 \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& .29 \\
& .26 \\
& .29
\end{aligned}
\] & \[
\begin{aligned}
& .11 \\
& .10 \\
& .11
\end{aligned}
\] & \[
\begin{aligned}
& .10 \\
& .07 \\
& .10
\end{aligned}
\] & \[
\begin{aligned}
& .09 \\
& .063 \\
& .09
\end{aligned}
\] & \[
\begin{aligned}
& .08 \\
& .053 \\
& .08
\end{aligned}
\] & \[
\begin{aligned}
& .069 \\
& .037 \\
& .069
\end{aligned}
\] & \[
\begin{aligned}
& .058 \\
& .032 \\
& .058
\end{aligned}
\] \\
\hline Trpe OC & 10\% (K) & \[
\begin{aligned}
& 2.7 \text { to } 8.2 \\
& 10 \text { to } 1 \mathrm{M} \\
& 1.2 \mathrm{M} \text { to } 22 \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& .14 \\
& .13 \\
& .14
\end{aligned}
\] & \[
\begin{aligned}
& .09 \\
& .06 \\
& .09
\end{aligned}
\] & \[
\begin{aligned}
& .08 \\
& .05 \\
& .08
\end{aligned}
\] & \[
\begin{aligned}
& .069 \\
& .04 \\
& .069
\end{aligned}
\] & \[
\begin{aligned}
& .058 \\
& .03 \\
& .058
\end{aligned}
\] & \[
\begin{aligned}
& .044 \\
& .02 \\
& .044
\end{aligned}
\] & \[
\begin{aligned}
& .033 \\
& .019 \\
& .033
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 1 / 2 \text { WATI } \\
& \text { RC-20 }
\end{aligned}
\] & 5\% (J) & \[
\begin{aligned}
& 1.0 \text { to } 2.4 \\
& 2.7 \text { to } 22 \mathrm{M} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.26 \\
.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.13 \\
.12 \\
\hline
\end{array}
\] & \[
.11
\] & \[
\begin{aligned}
& .09 \\
& .052 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .08 \\
& .044 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.069 \\
.038 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.059 \\
.037
\end{array}
\] \\
\hline TYPE OE & 10\% (K) & \[
\begin{aligned}
& 1.0 \text { to } 2.2 \\
& 2.7 \text { to } 22 \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& .13 \\
& .12
\end{aligned}
\] & \[
\begin{aligned}
& .08 \\
& .06
\end{aligned}
\] & \[
\begin{aligned}
& .07 \\
& .04
\end{aligned}
\] & \[
\begin{aligned}
& .059 \\
& .033
\end{aligned}
\] & \[
\begin{aligned}
& .048 \\
& .025
\end{aligned}
\] & \[
\begin{aligned}
& .036 \\
& .019
\end{aligned}
\] & \[
\begin{aligned}
& .028 \\
& .018
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 1 \text { WAT } \\
& \text { RC-32 }
\end{aligned}
\] & 5\% (J) & 2.7 to 22M & . 36 & . 18 & . 08 & . 077 & . 069 & . 062 & . 059 \\
\hline TYPE OG & 10\% (K) & 2.7 to 22M & . 18 & . 09 & . 05 & . 046 & . 038 & . 031 & . 029 \\
\hline 2 WATT & 5\% (J) & 10 to 22 M & . 48 & . 30 & . 15 & . 143 & . 135 & . 10 & . 094 \\
\hline RC-42 & 10\% (K) & 10 to 22 M & . 24 & . 19 & . 10 & . 089 & . 081 & . 052 & . 049 \\
\hline
\end{tabular}

Ohmite Manufacturing Company a North American Philips Company

\title{
contact your nearest OHMITE stocking
} distributor for instant availability

\section*{AUTHORIZED OHMITE STOCKING ELECTRONIC COMPONENT DISTRIBUTORS}

\begin{tabular}{|c|c|c|c|c|c|}
\hline STATE AND CITY & NAME & ADDRESS & ZIP & AREA CODE & TELEPHONE* \\
\hline \multicolumn{6}{|l|}{CALIFORNIA (Continued)} \\
\hline Los Angeles. & Federated Purchaser, Inc & . 11820 Olympic Blvd. & . 90064 & 213 & 272-8771 \\
\hline Los Angeles. & Kierulff Electionics Inc. & . 2585 Commerce Way .. & . 90022 & 213 & 685-5511 \\
\hline Los Angeles. & Radio Pioducts Sales Inc & 1501 S. Hill St. & . 90015 & 213 & 748-1271 \\
\hline Mountain View & Brill Electronics. & . 1065 Terra Bella Ave. & . 94040 & 415 & 961-1500 \\
\hline Mountain View & Elmar Electronics Inc & 2288 Charleston Rd. & . 94041 & 415 & 961-3611 \\
\hline Oakland.. & Brill Electronics & . 610 East Tenth St. & . 94606 & 415 & 834-5888 TWX \\
\hline Palo Alto & Zack Electronics & . 654 High St. & .. 94301 & 415 & 326-5432 \\
\hline Pasadena. & Milo of California. & . 1759 E. Colorado Ave. & 91106 & 213 & 681-8111 TWX \\
\hline Redwood City & Fortune Electronics & . 695 Veterans BIvd. & . 94063 & 415 & 365-4000 \\
\hline Sacramento ... & Dunlap Electionics. & . 1800 18th St. ... & . 95809 & 916 & 444-8070 \\
\hline San Diego ... & Milo of California & . 2060 India St. & . 92101 & 714 & 232.8951 TWX \\
\hline San Diego. & Western Radio \& TV Supply Co & . 1415 India St. & . 92112 & 714 & 2390361 \\
\hline San Francisco & Zack Electionics & 1444 Market St. & 94102 & 415 & 626-1444 \\
\hline San Jose . & Quement Electronics & . 1000 S. Bascom Ave. & .. 95128 & 408 & 294-0464 \\
\hline Santa Barbara & Channel Radio Supply & 18 E. Ortega St. & 93101 & 805 & 965-8551 \\
\hline \multicolumn{6}{|l|}{COLORADO} \\
\hline Denver & Electronic Parts Co. & 1277 Broadway & 80202 & 303 & 266-3755 \\
\hline Denver & , Kierulff Electronics & 10890 East 47th Ave & 80239 & 303 & 343-8090 TWX \\
\hline Denver & . Newark Denver Electronics & 2170 S. Grape & . 80222 & 303 & 757-3351 TWX \\
\hline Denver & L. B. Walker Radio & . 300 Bryant St. & . 80219 & 303 & 935-2406 \\
\hline Pueblo & . Johnson Electric Co. & 324 S. Union Ave. & . 81003 & 303 & 543-1746 \\
\hline \multicolumn{6}{|l|}{connecticut} \\
\hline East Haven.. & J. V. Electronics & . 690 Main St. & . 06512 & 203 & 469-2321 \\
\hline \multicolumn{6}{|l|}{delaware} \\
\hline Wilmington & . Radio Electric Service Co. & 3rd \& Tantall Sts. & 19801 & 302 & 655-4401 \\
\hline \multicolumn{6}{|l|}{district of columbia} \\
\hline Washington. & Electionic Wholesalers, Inc. & 2345 Sherman Ave, N.W. & 20001 & 202 & 483-5200 TLX \\
\hline \multicolumn{6}{|l|}{florida} \\
\hline Jacksonville & Southeast Electronics Inc & .. 1125 Roselle. & .. 33204 & 904 & 356-3007 \\
\hline Miami & . Electronic Equipment Co & 2701 N.W. 42nd Ave. & . 33142 & 305 & 635-0421 TLX \\
\hline Orlando & . Hammond Electronics & 911 W. Central Blvd. & . 32802 & 305 & 241-6601 \\
\hline Panama City & Central Electronic Supply & 318 Luverne. & . 32401 & 904 & 785-0237 \\
\hline Pensacola... & Grice Electronics Inc. & . 320 E. Gregory. & . 32501 & 904 & 433-4616 \\
\hline St. Petersburg & - Cooper Radio Co. & 165 13th St. N. & 33705 & 813 & 894.7607 \\
\hline Tallahassee & Dell Electionics inc. & 227 W. Carolina St. & . 32301 & 904 & 2245145 \\
\hline Tampa.... & . Thurow Electionics & 1215 Water St. & . 33602 & 813 & 223-1694 TLX \\
\hline \multicolumn{6}{|l|}{GEORGIA} \\
\hline Atlanta & . Jackson Electionics Supply Co., Inc. & ... 1135 Chattahoochee NW & .. 30318 & 404 & 355-2223 \\
\hline Atlanta & Southeastern Radio Parts Co. & ... 430 W. Peachtree NW & . 30308 & 404 & 524.7536 \\
\hline Atlanta... & Specialty Distributing Co., Inc & .. 763 Juniper St. NE & .30308 & 404 & 873-2521 \\
\hline Columbus & Westad, Inc. & . 1028 13th St. & 31901 & 404 & 327-3208 \\
\hline Hapeville & Electro-Tech Inc. & 3020 Commerce Way & 30054 & 404 & 767-8761 \\
\hline \multicolumn{6}{|l|}{idaho} \\
\hline Boise.. & S. R. Ross Company & . 418 N. Orchard St. & . 83704 & 208 & 342-3559 \\
\hline Lewiston & .. Columbia Electric & ... 9th \& F Sts. & 83501 & 208 & 743-7151 \\
\hline Pocatello & Hanson Inc. & 609 S. First Ave. & 83201 & 208 & 233-6480 \\
\hline \multicolumn{6}{|l|}{ILLINOIS} \\
\hline Champaign & Electronic Parts Co. & . 905 S. Neil Street & . 61820 & 217 & 356-1896 \\
\hline Chicago. & Allied Radio Corp. & .. 100 N . Western Ave. & . 60680 & 312 & 421-6800 TWX \\
\hline Chicago & Electronic Distributors Inc & . 4900 N. Elston Ave. & .. 60630 & 312 & 283-4800 \\
\hline Chicago & Newark Electronics Inc. & 500 N. Pulaski Rd. & 60024 & 312 & 638-4411 TWX, TLX \\
\hline Danville & Bud Electronic Supp ly & 22 N. Jackson. & . 61832 & 217 & 446-0925 \\
\hline Decatur & York Radio \& TV Corp. & 590 N. Broadway & 62523 & 217 & 423-3484 \\
\hline Elgin & .. Stolz-Wicks, Inc. & 415 Dundee & 60120 & 312 & 741-4506 \\
\hline Jacksonville & Baptist Electronic Sup. & 419 S. Mauvaisterre St. & 62650 & 217 & 245-4109 \\
\hline Joliet & Keck Electric Corp. & 1225 E. Washington St. & 60434 & 815 & 726-6153 \\
\hline Oak Park & Melvin Electronics, Inc & 541 W. Madison St. & . 60302 & 312 & 385-5800 \\
\hline Peoria.. & Klaus Radio \& Electric Co. & 8400 N. Pioneer Pkwy. & 61614 & 309 & 691-4840 \\
\hline Rockiord & J \& M Electronics, Inc. & 2001 Ninth St. & 61101 & 815 & 963-6445 \\
\hline Rockford & Midwest Associated Dists. & 225 S. 6th St. & . 61108 & 815 & 964-4657 \\
\hline Springfield & Bilbo Electionics, Inc. & 217 E. Washington St. & .. 62701 & 217 & 544-8444 \\
\hline Springfield & Bruce Electionics & . 1120 E. Capitol Ave. & 62703 & 217 & 528-7523 \\
\hline Skokie & .. Merquip Electronics, Inc. & .. 7701 N. Austin Ave. . & ... 60076 & 312 & 965-7500 TWX \\
\hline \multicolumn{6}{|l|}{IndIANA} \\
\hline Anderson & Electronic Sup. of Anderson & ... 2228 Columbus Ave. & ... 46014 & 317 & 664-3381 \\
\hline Angola. & Lakeland Radıo Supply. & . 525 S. West St......... & ... 46703 & 219 & 665-6311 \\
\hline Evansville & Ohio Valley Sound, Inc... & 20 E . Syc amore St. & ... 47713 & 812 & 425-6173 \\
\hline Fort Wayne & Fort Wayne Electronics Sup. & 3606 Maumee Ave. & -.. 46803 & 219 & 742.4346 \\
\hline Fort Wayne & Warien Radio & 625 E. Wayne St. & ... 46801 & 219 & 743-5344 \\
\hline Indianapolis & Graham Electronics Sup., Inc. & 122 S. Senate . & ... 46225 & 317 & 634-8486 \\
\hline Indianapolis & Ra-Dis-Co., Inc. & 814 N . Senate.. & -.. 46206 & 317 & 637-5571 TLX \\
\hline Marion........ & Myers Radio Supply, Inc. & 115 W. 22nd St. & -.. 46952 & 317 & 664-7394 \\
\hline Michigan City & Tri-State Electrical Sup. & 216 E. Michigan & -.. 46360 & 219 & 872-5551 \\
\hline Muncie & Muncie Electronics Sup., Inc. & . 222 N. Madison & -.. 47305 & 317 & 288-8837 \\
\hline Portage
South Bend & Portage Electric Supply
Radio Distribution Co., Inc. & 6487 Melton Rd.
1212 High St... & ... 463688 & 219
219 & \(762-3126\)
\(287-2911\) \\
\hline
\end{tabular}

STATE ANO CITY
STATE AND CIT
NAME

\section*{20}

OHMITE
has the answer

Ohmite Manufacturing Company

Typical 5\% Tol. Industrial Ass't.

Typical 10\% Tol.
Industrial Ass't.

Typical Service
Assortment

\title{
INDUSTRIAL and SERVICE RESISTOR ASSORTMENTS
}

\section*{RESISTORS AND HANDY CABINET FOR the price of the resistors alone}

Select the composition resistor you need, right on the job from timesaving Little Devil Assortments. Ohmite now offers seven industrial assortments in addition to the four service assortments that have been so popular for many years. In this complete line, there is an assortment to fill every industrial and service need. An attractive plastic cabinet or cabinet assembly is furnished at no extra cost with each assortment. Each drawer of a single 5 -drawer cabinet has eight compartments, all individually labeled. Dimensions of the single cabinet are \(9^{\prime \prime}\) long, \(4^{3 / 4} 4^{\prime \prime}\) high, \(5 \frac{1}{4}\) " deep. Dovetail tops and bottoms facilitate stacking. Cabinet assemblies for industrial assortments are riveted to metal strips which afford rigidity and permit hanging of the unit on the wall.

Of the seven industrial assortments, there are three \(\pm 10 \%\) tolerance assortments of \(1 / 4,1 / 2\) or 1 watt sizes each containing 80 values. A twocabinet assembly is furnished for these assortments. Four \(5 \%\) tolerance assortments provide 160 values each of resistors in the \(1 / 8,1 / 4,1 / 2\), or 1 watt sizes. A four-cabinet assembly is furnished for each of these assortments.

The four popular service assortments provide \(\pm 10 \%\) tolerance resistors in a single cabinet in \(1 / 4,1 / 2,1\) or 2 watt sizes.

Cabinets are factory packed in accordance with the tables (shown on the next 2 pages of this bulletin) which state the quantities of each resistance value and tolerance for each assortment.

\section*{11 \\ INDUSTRIAL and \\ SERVICE ASSORTMENTS}

SOLD ONLY THROUGH OHMITE DISTRIBUTORS
\begin{tabular}{|c|c|c|c|c|}
\hline Assortment & Stock No. & Quantity of Resistors & Wattage Size & Net Price \\
\hline INDUSTRIAL & CAB-25 & 1000 & 1/4 & \$ 70.00 \\
\hline \(\pm 10 \%\) Tolerance & САВ-26 & 1000 & 1/2 & 60.00 \\
\hline \begin{tabular}{l}
80 Resistance Values \\
2 Cabinets
\end{tabular} & CAB-27 & 600 & 1 & 54.00 \\
\hline INDUSTRIAL & CAB-45 & 1000 & 1/8 & 225.00 \\
\hline \(\pm 5 \%\) Tolerance & CAB-46 & 1500 & 1/4 & 210.00 \\
\hline 160 Resistance Values & CAB-47 & 1500 & \(1 / 2\) & 180.00 \\
\hline 4 Cabinets & CAB-48 & 900 & 1 & 160.00 \\
\hline RADIO AND TV SERVICE KITS & CAB-4 & 150 & 1/4 & 19.50 \\
\hline \(\pm 10 \%\) Tolerance & САВ-10 & 150 & \(1 / 2\) & 18.00 \\
\hline 37 Values-CAB-4 & CAB-2 & 125 & 1 & 22.50 \\
\hline \begin{tabular}{l}
40 Values-Others \\
1 Cabinet
\end{tabular} & CAB-3 & 125 & 2 & 30.00 \\
\hline
\end{tabular}

Prices Subject to Chonge Without Notice

\section*{Sinle Dowil RESISTOR ASSORTMENTS}
\(10 \%\) TOLERANCE ASSORTMENTS
QUANTITIES IN EACH ASSORTMENT
QUANTITIES IN EACH ASSORTMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(\stackrel{10 \%}{\text { RESISTANCE }}\) \\
VALUES
\end{tabular}} & \multicolumn{4}{|c|}{SERVICE ASST'S.} & \multicolumn{3}{|c|}{INDUS. ASST'S.} & \multirow[t]{2}{*}{\(10 \%\)
RESISTANCE
VALUES
(CONT.)} & \multicolumn{4}{|c|}{SERVICE ASST'S.} & \multicolumn{3}{|c|}{INDUS. ASST'S.} \\
\hline & \[
\begin{gathered}
\text { CAB-4 } \\
1 / 4 ~ W
\end{gathered}
\] & \[
\begin{gathered}
C A B-10 \\
1 / 2 W
\end{gathered}
\] & \[
\begin{gathered}
C A B-2 \\
1 W
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-3 } \\
2 W
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-25 } \\
1 / 4 \text { W }
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-26 } \\
1 / 2 W
\end{gathered}
\] & \[
\begin{gathered}
C A B-27 \\
1 W
\end{gathered}
\] & & \[
\begin{array}{|c|c|}
\hline \text { CAB-4 } \\
1 / 4 ~ W
\end{array}
\] & \[
\begin{gathered}
\text { CAB-10 } \\
1 / 2 \text { W }
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-2 } \\
1 W
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CAB}-3 \\
2 \mathrm{~W}
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-25 } \\
1 / 4 \mathrm{~W}
\end{gathered}
\] & \[
\begin{gathered}
C A B-26 \\
1 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB- } 27 \\
1 W
\end{gathered}
\] \\
\hline 2.7 & & & & & 5 & 5 & 10 & 6,800 & 5 & 1 & 1 & 1 & 30 & 15 & 10 \\
\hline 3.3 & & & & & 5 & 5 & 5 & 8,200 & & & & & 20 & 5 & 5 \\
\hline 3.9 & & & & & 5 & 5 & 5 & 10,000 & 10 & 10 & 10 & 10 & 30 & 30 & 10 \\
\hline 4.7 & & & & & 5 & 5 & 10 & 12,000 & & & & & 20 & 15 & 5 \\
\hline 5.6 & & & & & 5 & 5 & 5 & 15,000 & 5 & 3 & 3 & 3 & 30 & 5 & 10 \\
\hline 6.8 & & & & & 5 & 5 & 10 & 18,000 & & & & & 20 & 5 & 5 \\
\hline 10 & & 1 & 1 & 1 & 20 & 20 & 10 & 22,000 & 5 & 5 & 5 & 5 & 30 & 30 & 10 \\
\hline 12 & & & & & 5 & 5 & 5 & 27,000 & 5 & 10 & 10 & 10 & 20 & 20 & 10 \\
\hline 15 & & 1 & 1 & 1 & 5 & 5 & 10 & 33,000 & 3 & 3 & 1 & 1 & 20 & 20 & 10 \\
\hline 18 & & & & & 5 & 5 & 5 & 39,000 & 3 & 5 & 5 & 5 & 5 & 15 & 10 \\
\hline 22 & & & & & 5 & 5 & 10 & 47,000 & 5 & 10 & 10 & 10 & 30 & 30 & 10 \\
\hline 27 & & 1 & 1 & 1 & 5 & 5 & 10 & 56,000 & & & & & 20 & 15 & 5 \\
\hline 33 & & & & & 5 & 5 & 10 & 68,000 & 3 & 3 & 1 & 1 & 20 & 20 & 5 \\
\hline 39 & & & & & 5 & 5 & 5 & 82,000 & 2 & 1 & 1 & 1 & 5 & 15 & 5 \\
\hline 47 & 5 & 1 & 1 & 1 & 20 & 20 & 10 & 0.10 meg . & 10 & 10 & 10 & 10 & 30 & 30 & 10 \\
\hline 56 & & & & & 5 & 5 & 5 & 0.12 meg . & & & & & 5 & 5 & 5 \\
\hline 68 & & & & & 5 & 5 & 5 & 0.15 meg . & 3 & 5 & 5 & 5 & 5 & 15 & 10 \\
\hline 82 & & & & & 5 & 5 & 5 & 0.18 meg . & & & & & 5 & 5 & 5 \\
\hline 100 & 5 & 5 & 1 & 1 & 30 & 30 & 10 & 0.22 meg . & 3 & 3 & 1 & 1 & 20 & 20 & 10 \\
\hline 120 & & & & & 5 & 5 & 5 & 0.27 meg. & 3 & 10 & 10 & 10 & 5 & 20 & 10 \\
\hline 150 & 1 & 1 & 1 & 1 & 20 & 15 & 10 & 0.33 meg . & 3 & 3 & 1 & 1 & 20 & 15 & 5 \\
\hline 180 & & & & & 5 & 5 & 5 & 0.39 meg. & & & & & 5 & 5 & 5 \\
\hline 220 & & & & & 20 & 20 & 10 & 0.47 meg. & 5 & 10 & 10 & 10 & 20 & 30 & 10 \\
\hline 270 & 3 & 3 & 1 & 1 & 30 & 15 & 10 & 0.56 meg . & & & & & 5 & 5 & 5 \\
\hline 330 & 1 & 1 & 1 & 1 & 20 & 15 & 10 & 0.68 meg. & 1 & 1 & 1 & 1 & 5 & 5 & 5 \\
\hline 390 & & & & & 5 & 5 & 10 & 0.82 meg . & & & & & 5 & 5 & 5 \\
\hline 470 & 3 & 3 & 1 & 1 & 20 & 30 & 10 & 1.0 meg. & 10 & 10 & 10 & 10 & 30 & 30 & 10 \\
\hline 560 & & & & & 5 & 15 & 10 & 1.2 meg. & & & & & 5 & 5 & 5 \\
\hline 680 & 1 & 1 & 1 & 1 & 20 & 15 & 10 & 1.5 meg. & 1 & 1 & 1 & 1 & 5 & 5 & 5 \\
\hline 820 & & & & & 5 & 5 & 5 & 1.8 meg. & & & & & 5 & 5 & 5 \\
\hline 1,000 & 10 & 5 & 3 & 3 & 5 & 30 & 10 & 2.2 meg. & 1 & 1 & 1 & 1 & 5 & 15 & 5 \\
\hline 1,200 & & & & & 5 & 5 & 10 & 2.7 meg. & 1 & 3 & 1 & 1 & 5 & 5 & 5 \\
\hline 1,500 & 5 & 1 & 1 & 1 & 20 & 20 & 10 & 3.3 meg. & & & & & 5 & 15 & 5 \\
\hline 1,800 & & & & & 5 & 15 & 5 & 3.9 meg. & 1 & 1 & 1 & 1 & 5 & 5 & 5 \\
\hline 2,200 & 10 & 1 & 1 & 1 & 30 & 30 & 10 & 4.7 meg. & 1 & 1 & 1 & 1 & 5 & 5 & 5 \\
\hline 2,700 & 5 & 3 & 3 & 3 & 20 & 15 & 10 & 5.6 meg. & & & & & 5 & 5 & 5 \\
\hline 3,300 & & & & & 30 & 20 & 10 & 6.8 meg. & 1 & 1 & 1 & 1 & 5 & 5 & 5 \\
\hline 3,900 & & & & & 20 & 5 & 10 & 10.0 meg. & 1 & 1 & 1 & 1 & 5 & 5 & 5 \\
\hline 4,700 & 10 & 10 & 5 & 5 & 30 & 30 & 10 & 15.0 meg. & & & & & 5 & 5 & 5 \\
\hline 5,600 & & & & & 5 & 20 & 5 & 22.0 meg. & & & & & 5 & 5 & 5 \\
\hline
\end{tabular}
\(5 \%\) TOLERANCE ASSORTMENTS
QUANTITIES IN EACH ASSORTMENT
QUANTITIES IN EACH ASSORTMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
5 \% \\
\text { RESISTANCE } \\
\text { VALUES }
\end{gathered}
\]} & \multicolumn{4}{|c|}{INDUSTRIAL ASSORTMENTS} & \multirow[t]{2}{*}{5\%
RESISTANCE
VALUES
(CONT.)} & \multicolumn{4}{|c|}{INDUSTRIAL ASSORTMENTS} \\
\hline & \[
\begin{gathered}
\text { CAB-45 } \\
1 / 8 \mathrm{~W}
\end{gathered}
\] & CAB-46
\[
1 / 4 W
\] & \[
\begin{gathered}
\text { CAB-47 } \\
1 / 2 \mathrm{~W}
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-48 } \\
1 \mathrm{~W}
\end{gathered}
\] & & \[
\begin{gathered}
\text { CAB-45 } \\
1 / 8 \mathrm{~W}
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-46 } \\
1 / 4 \mathrm{~W}
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-47 } \\
1 / 2 \mathrm{~W}
\end{gathered}
\] & \[
\begin{gathered}
\text { CAB-48 } \\
1 W
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& 2.7 \\
& 3.0 \\
& 3.3 \\
& 3.6 \\
& 3.9
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
7,500 \\
8,200 \\
9,100 \\
10,000 \\
11,000
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
20 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
25 \\
5 \\
30 \\
50
\end{array}
\] & \[
\begin{array}{r}
5 \\
15 \\
5 \\
30 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
10 \\
5
\end{array}
\] \\
\hline \[
\begin{aligned}
& 4.7 \\
& 5.1 \\
& 5.6 \\
& 6.8 \\
& 7.5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 12,000 \\
& 13,000 \\
& 15,000 \\
& 16,000 \\
& 18,000
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
5 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
25 \\
5 \\
30 \\
5 \\
10
\end{array}
\] & \[
\begin{array}{r}
20 \\
5 \\
30 \\
5 \\
15
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 8.2 \\
& 9.1 \\
& 10 \\
& 11 \\
& 12
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
5 \\
20 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
25 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
30 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
10 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 20,000 \\
& 22,000 \\
& 24,000 \\
& 27,000 \\
& 30,000
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
25 \\
25 \\
5 \\
10 \\
10
\end{array}
\] & \[
\begin{array}{r}
15 \\
30 \\
15 \\
15 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
10 \\
5 \\
5 \\
5
\end{array}
\] \\
\hline \[
\begin{aligned}
& 15 \\
& 16 \\
& 18 \\
& 20 \\
& 22
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 33,000 \\
& 36,000 \\
& 39,000 \\
& 43,000 \\
& 47,000
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
5 \\
10
\end{array}
\] & \[
\begin{array}{r}
25 \\
5 \\
10 \\
5 \\
25
\end{array}
\] & \[
\begin{array}{r}
20 \\
5 \\
15 \\
5 \\
20
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
5 \\
10
\end{array}
\] \\
\hline \[
\begin{aligned}
& 24 \\
& 27 \\
& 30 \\
& 33 \\
& 36
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
15 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 51,000 \\
& 56,000 \\
& 62,000 \\
& 68,000 \\
& 75,000
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
5 \\
5 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
15 \\
15 \\
5 \\
15 \\
5
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 39 \\
& 43 \\
& 47 \\
& 51 \\
& 56
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
5 \\
10 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
10 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
15 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
10 \\
5
\end{array}
\] & \[
\begin{gathered}
82,000 \\
91,000 \\
0.10 \text { meg. } \\
0.11 \text { meg. } \\
0.12 \mathrm{meg} .
\end{gathered}
\] & \[
\begin{array}{r}
5 \\
5 \\
20 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
10 \\
5 \\
30 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
30 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
10 \\
5 \\
5
\end{array}
\] \\
\hline \[
\begin{aligned}
& 62 \\
& 68 \\
& 75 \\
& 82 \\
& 91
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
5 \\
20 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \begin{tabular}{l}
0.13 meg . \\
0.15 meg . \\
0.16 meg . \\
0.18 meg . \\
0.20 meg .
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
10 \\
5 \\
5 \\
10
\end{array}
\] & \[
\begin{array}{r}
5 \\
15 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& \mathbf{5} \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 100 \\
& 110 \\
& 120 \\
& 130 \\
& 150
\end{aligned}
\] & \[
\begin{array}{r}
20 \\
5 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
30 \\
5 \\
5 \\
5 \\
10
\end{array}
\] & \[
\begin{array}{r}
30 \\
5 \\
5 \\
5 \\
15
\end{array}
\] & \[
\begin{array}{r}
10 \\
5 \\
5 \\
5 \\
10
\end{array}
\] & 0.22 meg. 0.24 meg . 0.27 meg . 0.30 meg . 0.33 meg . & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
5 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 160 \\
& 180 \\
& 200 \\
& 220 \\
& 240
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
20 \\
5 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
25 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
15 \\
15 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
10 \\
10 \\
5
\end{array}
\] & 0.36 meg. 0.39 meg . 0.43 meg . 0.47 meg . 0.51 meg . & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
20 \\
5
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 270 \\
& 300 \\
& 330 \\
& 360 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
5 \\
25 \\
5 \\
10
\end{array}
\] & \[
\begin{array}{r}
15 \\
5 \\
15 \\
5 \\
15
\end{array}
\] & \[
\begin{array}{r}
10 \\
5 \\
10 \\
5 \\
5
\end{array}
\] & \begin{tabular}{l}
0.56 meg. \\
0.62 meg . \\
0.68 meg . \\
0.75 meg . \\
0.82 meg.
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & 5
5
5
5
5 & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 430 \\
& 470 \\
& 510 \\
& 560 \\
& 620
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
10 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
25 \\
10 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
20 \\
15 \\
15 \\
15
\end{array}
\] & \[
\begin{array}{r}
5 \\
10 \\
10 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 0.91 \text { meg. } \\
& 1.0 \text { meg. } \\
& 1.1 \text { meg. } \\
& 1.2 \text { meg. } \\
& 1.3 \text { meg. }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
25 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
20 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{gathered}
680 \\
750 \\
820 \\
910 \\
1,000
\end{gathered}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
5 \\
20
\end{array}
\] & \[
\begin{array}{r}
10 \\
5 \\
10 \\
5 \\
30
\end{array}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
5 \\
30
\end{array}
\] & \[
\begin{array}{r}
10 \\
5 \\
5 \\
5 \\
10
\end{array}
\] & \begin{tabular}{l}
1.5 meg. \\
1.6 meg . \\
1.8 meg. \\
2.0 meg. \\
2.2 meg .
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
5 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline 1,100
1,200
1,300
1,500
1,600 & \[
\begin{array}{r}
5 \\
10 \\
5 \\
20 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
25 \\
5 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
15 \\
5 \\
20 \\
5
\end{array}
\] & \[
\begin{array}{r}
5 \\
10 \\
5 \\
5 \\
5
\end{array}
\] & \begin{tabular}{l}
2.4 meg. \\
2.7 meg. \\
3.0 meg . \\
3.3 meg . \\
3.6 meg .
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 1,800 \\
& 2,000 \\
& 2,200 \\
& 2,400 \\
& 2,700
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
20 \\
20 \\
5 \\
10
\end{array}
\] & \[
\begin{aligned}
& 25 \\
& 25 \\
& 30 \\
& 10 \\
& 25
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
30 \\
30 \\
5 \\
15
\end{array}
\] & \[
\begin{array}{r}
5 \\
10 \\
10 \\
5 \\
5
\end{array}
\] & \begin{tabular}{l}
3.9 meg. \\
4.3 meg. \\
4.7 meg. \\
5.1 meg. \\
5.6 meg.
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3,000 \\
& 3,300 \\
& 3,600 \\
& 3,900 \\
& 4,300
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
5 \\
5 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
10 \\
25 \\
5 \\
25 \\
5
\end{array}
\] & \[
\begin{array}{r}
15 \\
30 \\
5 \\
15 \\
5
\end{array}
\] & \[
\begin{aligned}
& \mathbf{5} \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
6.2 & \text { meg. } . \\
6.8 & \text { meg. } \\
7.5 & \text { meg. } \\
8.2 & \text { meg. }
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 4,700 \\
& 5,100 \\
& 5,600 \\
& 6,200 \\
& 6,800
\end{aligned}
\] & \[
\begin{array}{r}
20 \\
10 \\
5 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& 30 \\
& 25 \\
& 25 \\
& 10 \\
& 30
\end{aligned}
\] & \[
\begin{array}{r}
30 \\
15 \\
15 \\
5 \\
20
\end{array}
\] & \[
\begin{array}{r}
10 \\
5 \\
5 \\
5 \\
5
\end{array}
\] & \begin{tabular}{l}
12.0 meg. \\
15.0 meg. \\
18.0 meg. \\
20.0 meg. \\
22.0 meg.
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline
\end{tabular} MOLDED COMPOSITION RESISTORS

\section*{SOLD ONLY THROUGH OHMITE DISTRIBUTORS}

Little Devils, Ohmite's famous molded composition resistors are available in five sizes-the subminiature \(1 / 8\) watt, and the \(1 / 4,1 / 2,1\) and 2 watt sizes. These high quality resistors find broad use in commercial and military applications.

All sizes have molded insulation for high dielectric strength. Other noted advantages are great stability, low noise level, low voltage coefficient, high insulation breakdown voltage and rapid heat dissipation. "Little Devils" may be used at full rated wattage at \(70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)\) ambient temperature.

The \(1 / 1 / 1 / 4,1 / 2,1\) and 2 watt sizes conform to certain styles of MIL-R\(11 F\) as shown in the "Price" table
below and meet the stringent requirements of this military specification.

All the resistors are available from stock in the standard EIA resistance values (see table below) in the tolerances and ranges shown in the price table below. Ratings for maximum continuous RMS voltage drop are high: 150 volts for \(1 / 8\) watt units, 250 volts for \(1 / 4\) watt, 350 volts for \(1 / 2\) watt, 500 volts for 1 watt, and 750 volts for 2 watt units.
"Tally Tape," Ohmite's wonderfully convenient packaging is now provided for the \(1 / 4,1 / 2,1\) and 2 watt resistors. Each perforated tape segment holds 5 resistors neatly aligned, spill-proof, tangle-proof and easy to count! Indi-

vidual resistors are easily pulled from the strip ready to use. In addition to the standard EIA color coding on the resistors, each Tally Tape segment is imprinted with the value, size, tolerance and the MIL type designation, where applicable. With Tally Tape you know that you are getting original, factory fresh stock.

PRICES, RESISTANCE RANGES, DIMENSIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Watts} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Size}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Lead } \dagger \\
& \text { Dia. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Resistance
From Thru}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { MIL } \\
& \text { Type }
\end{aligned}
\]} & \multicolumn{2}{|r|}{\(\pm 5 \%\)} & \multicolumn{2}{|c|}{\(\pm 10 \%\)} \\
\hline & & & & & & & Net
\(1-4\) & Net
S-49 & \[
\begin{aligned}
& \text { Net } \\
& 1-4 \\
& \hline
\end{aligned}
\] & Net
5.49 \\
\hline \multirow[b]{2}{*}{1/8} & \multirow[b]{2}{*}{.145"} & \multirow[b]{2}{*}{.062"} & \multirow[b]{2}{*}{. 015} & 2.7 ohms & 9.1 ohms & \multirow[b]{2}{*}{RC 05才} & \[
\begin{gathered}
37 c \\
\text { LIDNU }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3lc } \\
\text { LIDNU }
\end{gathered}
\] & \[
\begin{gathered}
\text { 27c } \\
\text { LIDVS }
\end{gathered}
\] & \[
\begin{gathered}
22 \mathrm{c} \\
\text { LIDVs }
\end{gathered}
\] \\
\hline & & & & 10 ohms & 22 megs & & \[
\begin{gathered}
34 \mathrm{c} \\
\text { LIDNU }
\end{gathered}
\] & \[
\begin{gathered}
\text { 28c } \\
\text { LIDNU }
\end{gathered}
\] & \[
\begin{gathered}
\text { 24c } \\
\text { LIDVS }
\end{gathered}
\] & \[
\begin{gathered}
20 c \\
\text { LIDVS }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{1/4} & \multirow[b]{2}{*}{1/4'} & \multirow[b]{2}{*}{.090'} & \multirow[b]{2}{*}{. 025} & 2.7 ohms & 9.1 ohms & \multirow[b]{2}{*}{RC 07} & \[
\begin{gathered}
\text { 29c } \\
\text { LIDED }
\end{gathered}
\] & \[
\begin{gathered}
\text { 24c } \\
\text { LIDED }
\end{gathered}
\] & \[
\begin{gathered}
\text { 14c } \\
\text { LIDSM }
\end{gathered}
\] & \[
\begin{gathered}
12 c \\
\text { LIDSM }
\end{gathered}
\] \\
\hline & & & & 10 ohms & 22 megs & & \[
\begin{gathered}
\text { 26c } \\
\text { LIDED }
\end{gathered}
\] & \[
\begin{gathered}
\text { 22c } \\
\text { LIDED }
\end{gathered}
\] & \[
\begin{gathered}
13 \mathrm{c} \\
\text { LIDSM }
\end{gathered}
\] & \[
\begin{gathered}
11 c \\
\text { LIDSM }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{1/2} & \multirow[b]{2}{*}{3/8'} & \multirow[b]{2}{*}{9/64'} & \multirow[b]{2}{*}{. 033} & 1 ohm & 2.4 ohms & \multirow[b]{2}{*}{RC 20*} & \[
\begin{gathered}
\text { 26c } \\
\text { LIDFA }
\end{gathered}
\] & \[
\begin{gathered}
22 \mathrm{c} \\
\mathrm{LIDFA}
\end{gathered}
\] & \[
\begin{aligned}
& 13 \mathrm{c} \\
& \text { LIDLO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 11c } \\
& \text { LIDLO }
\end{aligned}
\] \\
\hline & & & & 2.7 ohms & 22 megs & & 24c LIDFA & 20c LIDFA & \[
\begin{gathered}
\text { 12c } \\
\text { LIDLO }
\end{gathered}
\] & \[
\begin{aligned}
& 10 \mathrm{c} \\
& \text { LIDLO }
\end{aligned}
\] \\
\hline 1 & 9/16" & 7/32' & .041 & 2.7 ohms & 22 megs & RC 32 & \[
\begin{gathered}
36 \mathrm{c} \\
\text { LIDBU }
\end{gathered}
\] & \[
\begin{array}{c|}
30 c \\
\text { LDBU }
\end{array}
\] & \[
\begin{gathered}
\text { 18c } \\
\text { LIDME }
\end{gathered}
\] & \[
\begin{gathered}
15 c \\
\text { LIDME }
\end{gathered}
\] \\
\hline 2 & 11/16" & 5/16" & . 046 & 10 ohms & 22 megs & RC 42 & \[
\begin{gathered}
\text { 48c } \\
\text { LIDOC }
\end{gathered}
\] & \[
\begin{gathered}
40 c \\
\text { LIDOC }
\end{gathered}
\] & \[
\begin{gathered}
24 \mathrm{c} \\
\text { LIDHI }
\end{gathered}
\] & \[
\begin{gathered}
\text { 20c } \\
\text { LIDHI }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{\(\dagger\) All leads \(1 / 2^{\prime \prime}\) long except \(1 / 8\) watt size which are \(l^{\prime \prime}\).} & Minimum Minimum & stance stance & \[
\begin{aligned}
& \text { ider M } \\
& \text { ider } \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& \text { R-11 is } \\
& \text { R-11 is }
\end{aligned}
\] & 7 ohms. ohms. \\
\hline
\end{tabular}

Quantities and resistance values for each assortment shown on next page.

SPECIFICATIONS and
PRICING

Prices subject lo change without notice
QUANTITIES AND RESISTANCE VALUES FOR EACH ASSORTMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\pm 5 \%
\] \\
Resistance
\end{tabular} & 11/2 Watt & & & & \(\pm 5 \%\) & & & & & CH ASS & ORTME & & & \\
\hline Values & CAB-91 & \[
\begin{gathered}
3 / 4 \text { WaH } \\
\text { CAB- } 93
\end{gathered}
\] & \[
\begin{aligned}
& 5 \text { WoHt } \\
& \text { CAB- } 95
\end{aligned}
\] & 11 Watt & Resistance & 11/2 Wom & & & & \(\pm 5 \%\) & & & & \\
\hline & & & & CAB. 99 & Values & CAB-91 & \({ }^{\text {CAB-93 }}\) & \[
\begin{aligned}
& 5 \text { WatH } \\
& \text { CAB-95 }
\end{aligned}
\] & 11 Watt
CAB.99 & Resistance
Values & 11/2 Wart & \(31 / 14\) Wath & & \\
\hline 1.2 & 10 & 7 & 7 & 5 & 91 & & & & & Values & CAB-91 & CAB.93 & CAB-95 & \[
11 \text { wott }
\] \\
\hline 1.5 & 5 & & 4 & & 100 & & & & & & & & & \\
\hline 2.0 & 5 & 4 & 4 & & 110 & 5 & 7 & 7 & 5 & 1500 & & 7 & 7 & \\
\hline 22 & 5 & 4 & 4 & 5 & 120 & & & & & 1800 & & 7 & 4 & 4 \\
\hline 2.7 & & & & & 150 & & 7 & 4 & & 2000 & 5 & 4 & 4 & \\
\hline 3.0 & 5 & 4 & & & 160 & & 4 & 4 & 5 & 2200 & 5 & 7 & 7 & 4 \\
\hline 4.0 & 3 & + & 4 & 5 & 200 & & 1 & 4 & & 2200 & 2 & 4 & 4 & 4 \\
\hline 50 & 5 & 4 & 4 & 5 & 220 & 5 & , & 7 & 5 & 2700 & 2 & 4 & 4 & 4 \\
\hline 56 & & 7 & 7 & 5 & 250 & 5 & 7 & 7 & & 3000 & & 4 & 1 & \\
\hline 6.8 & & 1 & 4 & & 270 & & 4 & 7 & 5 & 3300 & 5 & 4 & 7 & 4 \\
\hline 75 & & 4 & & & 300 & & 4 & 4 & & 3900 & & 4 & 4 & \\
\hline 10.0 & 10 & 4 & 1 & 5 & 330 & 5 & 7 & 7 & 5 & 4000 & & 1 & 1 & \\
\hline 12 & & 4 & 7 & 5 & 350 & & 4 & 4 & & 4300 & & 4 & 4 & 4 \\
\hline 15 & 5 & 7 & 4 & & 390 & & & 4 & 4 & 4700 & & & 4 & \\
\hline 18 & & 7 & 7 & 5 & 400 & & 4 & 4 & & 5000 & & 4 & 4 & \\
\hline 20 & 3 & & \({ }^{4}\) & & 450 & & 4 & 4 & & 5600 & & 4 & 7 & 4 \\
\hline 22 & 2 & 7 & 7 & 5 & 470 & & 4 & & & 6000 & & 1 & 4 & \\
\hline 25 & & 7 & 4 & 5 & 500 & 5 & 7 & 4 & 4 & 6800 & & & 4 & \\
\hline 30 & 3 & 4 & 7 & 5 & 510 & & 7 & 7 & & 7000 & & 1 & 5 & 4 \\
\hline 33 & & 4 & 4 & 5 & 560 & 5 & & 4 & & 7500 & & 4 & & \\
\hline 39 & & 4 & & & 600 & & 4 & 4 & & 7500 & & 3 & & \\
\hline 40 & 3 & 4 & 4 & 5 & 620 & 5 & 7 & 4 & & 8000 & & & 4 & \\
\hline 47 & 3 & 4 & 4 & 5 & 680 & & 4 & & & 8200 & & 4 & 4 & \\
\hline 50 & & 4 & 4 & & 700 & 2 & 7 & & & 9000 & & & 4 & \\
\hline 51 & 5 & 7 & 7 & 5 & 750 & & 4 & & & 10,000 & & 7 & & \\
\hline 56 & & & 7 & & 800 & 2 & 7 & 7 & & 12,000 & & & & 4 \\
\hline 68 & 2 & 4 & 4 & & 820 & 2 & 4 & 4 & & 15.000 & & & & \\
\hline 75 & 2 & \({ }_{4}\) & 4 & & 820 & & & 4 & & 20,000 & & & & 4 \\
\hline 2 & & 7 & 4 & & & & 4 & & & 22,000 & & & 4 & \\
\hline & & 4 & & 5 & & 5 & 7 & 7 & & 25,000 & & & & \\
\hline & & & & & & & 4 & 4 & & & & & & 4 \\
\hline & & & & & & & & & & & & & & 4 \\
\hline
\end{tabular}

Type 995 MOLDED axial lead vitreous enameled resistors.

FIRST MOLDED WIREWOUND. VITREOUS ENAMEL RESISTOR
- INSULATED! Meets 1000 VAC Test
- WITHSTANDS \(1500^{\circ}\) F Temperatures without Distortion
- RESISTS Chipping, Breaking
- VITRIFIED MARKINGS, Resist Abrasio and Active Solvents
- UNIFORM SIZE Permits Clip-Mounting with Significant Heat Sink Benefits
- HIGH OVERLOAD CAPABILITY

Ohmite Manufacturing Company
a Narth American Philips campany

An exclusive technique (U.S. Patent No \(3.229,237\)) permits application of the vitre ous enamel coating by molding instead of the conventional "dip" process. The dimen sionally consistent and thicker coating that results, guarantees a 1000 VAC insulation rating plus unparalleled capability for withstanding very high temperatures, high humidity and immersion in salt solution.

These resistors are normally mounted by their axial leads. However, their consistent form also permits mounting in clips with heat sink benefits up to \(100 \%\) (see Clip in illustration). Resistor markings are also vitreous and will not burn off even under extreme overloads. Resistance tolerance is \(\pm 5 \%\).

\footnotetext{
PRINTED in U.S.A
}

OHMITE
A North American Philips Company

\section*{POSTFREE ORDER FORM}

Simply fold, staple and mail to OHMITE.

Please ship the following Lab items
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{0.1\% Precision Determ-ohm Box} & \multicolumn{3}{|l|}{Assortments of Type 995 Resistors} \\
\hline Quantity & Cat. No. & Price & Cat. No. & Price & Quantity \\
\hline & 3405 & S 85.00 & CAB-91 & \$110.00 & \\
\hline & 3406 & 85.00 & CAB-93 & 205.00 & \\
\hline & 3407 & 90.00 & CAB. 95 & 240.00 & \\
\hline & 3410 & 125.00 & CAB-99 & 140.00 & \\
\hline
\end{tabular}

Prices F.O.B. factory. Terms: \(1 \%, 10\) th \(\& 25\) th, net 30 days to rated firms.

Date \(\qquad\) Purchase Order No. \(\qquad\)

Ship via \(\square\) Cheapest Way \(\square\) Other \(\qquad\)

Bill to:

Company Name
\(\qquad\)

Street address/P.O. no.
\(\overline{\text { City }}\) State
- Ship to:

Company Name

Street address/P.O. no.
City
Mark Shipping Label:
\begin{tabular}{l}
\(\square\) I am unable to buy at present but wish to see a sales representative. \\
(But please write name and address above).
\end{tabular}

\section*{OHMITE}

The new Ohmite Precision Determ-ohm \({ }^{\ominus}\) is a resist ance decade box with an accuracy of \(\pm 0.1 \%\). Four models cover the resistance range from 1 ohm to 1 megohm in a choice of 4 and 6 -decade models.
Simplified selection of resistance values is accomplished by operation of rocker-type thumbwheel switches. Resistance setting is indicated by a direct in-line numeric readout to 4 or 6 significant digits depending on model. Pushing the lower portion of the rocker advances the number, pushing the upper portion of the rocker decreases the number. Unique

\section*{SPECIFICATIONS}

Accurac
\[
\begin{aligned}
& 0.1 \% \text { (plus } 01 \Omega \text { max contacl and circuit resistance } \\
& \text { per decade) }
\end{aligned}
\]

Selection: Rocker-type thumbwheel switches, continuous rotation in either direction
Switch Life: In excess of 50,000 operations
Power: 1/4 Watt per resistor
Operating Temperature: +15 to \(+35^{\circ} \mathrm{C}\)
T.C. of Resistors: \(\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, \max 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)

Size: \(5^{\prime \prime} w \times 4^{1 / 4} \|^{\prime d} \times 41 / 4^{\prime \prime} h\)
Weight: 1.6 lbs
Finish: Metallic Blue

\section*{JUL \(2107 n\)}
switch feature (pat. pend.) allows advancing or decreasing of values directly from 9 thru 0 to 1 or vice versa, without retracing all the other values.

The housing is a functional sloping panel metal case equipped with universal binding posts and agrounded metallic binding post for effective shielding. In addition to being a handsome addition to the R \& D lab, the precision Determ-ohm is ideal for production line testing applications and checkout procedures in ground support operations.

\section*{maximum Current ratings \\ 1Do not exceed 500 Volts.}
\begin{tabular}{|l|c|}
\hline \begin{tabular}{l}
Resistance \\
Range (Ohms)
\end{tabular} & \begin{tabular}{c}
Max Current \\
(milliamps)
\end{tabular} \\
\hline 1.9 & 710 \\
\(10-99\) & 220 \\
\(100-999\) & 71 \\
\(1000-9999\) & 22 \\
\(10,000-999,999\) & 7.1 \\
\hline
\end{tabular}

\section*{SELECTION and PRICING}
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l}
Resistance \\
Range (Ohms)
\end{tabular} & \begin{tabular}{l}
Ohms \\
Per Step
\end{tabular} & \begin{tabular}{l}
Number of \\
Decades \\
(Switches)
\end{tabular} & \begin{tabular}{c}
Catalog \\
Number
\end{tabular} & \begin{tabular}{l}
Net \\
Price
\end{tabular} \\
\hline 0 to 9.999 K & 1 & 4 & 3405 & 585.00 \\
01099.99 K & 10 & 4 & 3406 & 85.00 \\
0 to 999.9 K & 100 & 4 & 3407 & 90.00 \\
010999.999 K & 1 & 6 & 3410 & 125.00 \\
\hline
\end{tabular}

\footnotetext{
Ohmite Manufacturing Company o North Americon Philips Campany
3660 Howard Street
3660 Howard Street, Skokie, Illinois 60076 Americon Philips Compony
}

\title{
TAP SWITCHES
}

CATALOG SEQUENCE 400

\section*{OHMITE}

\section*{© \\ ROTARY TAP SWITCHES}

Compactness，dependability and convenience in oper－ ation distinguish time－proven Ohmite rotary tap switches．Ceramic and metal construction（except melamine－phenolic for Model 711）assures resistance to arcing，burning and charring．These switches are designed particularly for heavy duty alternating current use．Each switch is a single－pole，rotary，multi－position unit which can be assembled in gangs or＂tandems＂ of 2 or 3 to form multi－pole assemblies．Any number of positions can be provided on a switch up to the permissible maximum which is indicated in the de－ scription for each switch．
＂POWER－TYPE＂switches（enclosed except for Models 711 and 111）are offered in high current ratings of 15 to 100 amperes AC， although they may be used in DC circuits under proper conditions．These rugged non－ shorting units are intended for load－break applications at these high currents．Con－ tacts of these switches are thick，silver－alloy discs welded to copper studs．A cam and roller mechanism provides the＂break＂and ＂make＂action．

Introduction and Selection Tap Switch Guide Power Type Switch Construction Power Type Switches（Standard and Made－to－Order）
Model 7II
Model 111
Model 212
Model 312
Model 412
Model 608
Special Switch Features
Spectial Contact Spacing Special Shafts and Bushing Auxiliary Switehes Stage Lighting Switch Special Terminals
Knobs，Dials and Panel
Markings
Open Type Tap Switches
Made－to－Order Standard
＂OPEN－TYPE＂or unenclosed switches，the second variety， are designed to transfer much lighter currents（break 3 am－ peres，standstill 7 amperes）． These switches employ taps consisting of monel metal bands．They are available in both non－shorting and shorting varieties and are described on page 11.

\section*{Selection}

LOAD: When the load consists of tungsten filament lamps, there is a starting surge which may be ten times the normal current. While Ohmite tap switches will withstand large surges, this factor should be allowed for in some measure, if operation is to be very frequent.

LIFE: All switches, regardless of type or manufacturer, are subject to mechanical and electrical wear and therefore have a useful life which may be very long but is obviously limited. The ratio between the actual current and the switch rating will have some effect on the life of the contacts. When the number of operations becomes very great, mechanical fatigue in the spring materials may be the determining factor. Special long-life switches can be supplied.
ENVIRONMENTAL CONDITIONS: The maximum standstill (or carrying current) of a switch is limited by the permissible temperature rise of the contacts and other parts. If the switch is to be used at an ambient temperature much higher than the \(40^{\circ} \mathrm{C}\) standard reference, the rating may be affected. Recommendations made on request. The presence of dust in the application may dictate the use of an enclosed switch or special provisions.
ELECTRICAL RATINGS: The ratings given for Ohmite tap switches are for both interrupting and carrying operation except where otherwise indicated. The interrupting ratings for power-type switches conform to Underwriters' Laboratories spacings for use only on alternating current circuits, either inductive or noninductive, i.e., at any power factor. Switches can be
used, however, on higher voltages (300 V. for Model 111 or 212 and 600 V . for 312,412 or 608) with reduced current where load-break is involved. Load-break switches for 440 or 600 V . use are provided with additional internal insulation. Current ratings are reduced on the basis of a fixed load wattage. The formula is:
\[
I_{\mathrm{HI}-\mathrm{v}}=\frac{\text { Rated Volts }}{\text { High Volts }} \times \text { Rated Amps }
\]

Full rated currents can be handled where load-break is not involved. Considerably greater currents can be handled where extremely short pulses are to be carried without load-break. Switches can be used also with rated line voltage between taps. (Also see "Stage Lighting Switch," page 9.) Use at conditions other than standard is not UL listed, except where special arrangements are made.

The switches may be used on direct current noninductive circuits up to 20 volts at full current ratings; recommendations for other conditions will be supplied on request.
SWITCH INSULATION: Ohmite switches withstand testing at 2000 volts AC (except 1250 volts AC for Model 711) with the voltage applied either between taps or to ground (between contacts and shaft). However, such voltages should not be considered as the working voltage. Ceramic insulation, used in Models except 711, is permanent in nature, unaffected by age and resistant to arcing. Plastic material used in Model 711 has excellent physical and electrical stability and resistance to arc-tracking.

\section*{COMPLETE LINE OF TAP SWITCHES}
the 711 , smallest switch for its rating

\section*{0 OHMITE}

Compactness for the current rating combined with high insulation value is the basis of this switch design. resistantitch insulation is provided by the inert, arcbodies. Switch shaterial used in the heavy one-piece by strong hubs of cerame electrically "dead," insulated forced plastic. Coramic or, in some instances, reinand protected (except for mechanism are enclosed The fixed contacts for Models 111 and 711). alloy discs permanently large diameter, thick, silver-silver-alloy on Modetly brazed to copper studs (inlaid The studs are fastened to one-piece contact-terminals). riveting and soldering to sturdy terminal lugs by both ical and electrical joint assure a permanent mechan-silver-alloy, generoust. The rotor (moving) contact is soldered to the conty proportioned and riveted and contact is slightly round arm. The face of the rotor of the contacts with a sligsuring a perfect seating motion on every operation. The silver-to-silver contan.
switch reduces contact resistance of the Ohmite tap requires no maintenance. The contact arm of high
spring metal, carries thigh conductivity, non-ferrous and provides strong pre current to the rotor terminal dependent coil spring ressure at the contacts. An inthe contact arm and maintains the pressure between surfaces are plated to rotor terminal; the contacting tivity.

\section*{"Slow-Break" Mechanism Specially Designed for AC} Use: A positive cam-and-roller mechanism provides the "slow-break, quick-make" action proved best for switching AC current. The relatively slow separation of the contacts means that the alternating current wave will most probably pass through zero value sometime during the separation, hence minimizing sparking steel roller wh contact life. The contact arm carries a ring as the shaft is follows the contour of a fixed cam arm and moving contact. This action lifts the contact positions it on the next fixed one fixed contact and sure and a slight wiping, self-cleaning action.

UL LISTINGS:
Underwriters' Laborate Tap Switches listed by the ice, include Model 111 , Inc. Reexamination ServModel 412 where the use in components or equipment combination with other Underwriters. Variations from the been accepted by identified by suffixes from the basic switch design, Underwriters' listed. W, B, C, D, E or H are also When an Underwriters' listed for specific information. on the order.

\section*{TANDEM (GANGED) SWITCHES}

\section*{Switches assembled in angs or} multi-pole arrangements or in "tandem," form power-type switches are stock Tandem assemblies of in 2 -in-tandem. Models stocked. Model 111 is stocked stocked in 2- and 3-in-tand 212, 312, 412 and 608 are on pages 5,6 and 7 for tandem versions (see diagrams panel thickness is \(1 / 8^{\prime \prime}\) for Mom dimensions). Standard 312 and 412; and \(1^{\prime \prime}\) for Modol 711; \(1 / 4^{\prime \prime}\) for 111, 212, panel thicknesses, tandem \(\mathbf{~ m o d e l}\). For use on greater to order. Different mem assemblies must be made and 412) may be combine (including 111, 212, 312 assembly (3 switches maximum).
 CARRIES 15 AMPS., 125 VOLTS

WEIGHT: .047 lb . approx. single unenclosed.
RECOMMENDED KNOB: Cat. No. 5103. Optional extra.
TORQUE: 7 to 12 inch-ounces.
DUAL PURPOSE TERMINALS: Soldering or \(\beta_{16}^{\prime \prime}\) quick-connectors.
AVAILABLE STYLES AND CODES: Single unenclosed and up to five-in-tandem assemblies are standard. Consult factory for tandems with more than five switches. (Tandem assemblies are inherently enclosed-see diagrams. To specify an enclosed single switch add an " \(E\) " to the catalog number as in "711-3E").

Add " E " suffix for enclosed version.
'Items in bold print are usually in stock. Items in light face are available from stocking distributors but are not normally stocked in depth. Parentheses indicate non-stock standard items subject to \(\$ 15.00\) per line item minimum chaigs.

\section*{SPECIFICATIONS}

SHAFT: 1/4" Diameter.
DIAMETER: \(13 / 4^{\prime \prime}\).
STANDARD MOUNTING: For \(1 / 4^{\prime \prime}\) panel, maximum, by means of \(3 / 8^{\prime \prime}-32\) bushing and hex. nut. A 3, hole is required for the non-turn washer No. 5050.
MAXIMUM NUMBER OF TAPS: 11.

WEIGHT: 0.16 lbs. approximately.
RECOMMENDED KNOB: No. 5116A. Optional extra. TORQUE: 1.5 to 3.8 inch-pounds, approximately.
TERMINALS: Soldering type. (Also quick-connect terminals -Model 111A, see page 9.)
Model 111 differs in type from the other switches in this series only by not being enclosed.
\begin{tabular}{|c|c|c|c|}
\hline & & Sirgle Unix & 2 in Taullem \\
\hline \multicolumn{2}{|l|}{Deptt Behind Pami} & \(1{ }^{1 \times 1}\) & PIT \\
\hline 4. of Tay & Intal Ratatint & Catain Pra: & Cutilig Kas \\
\hline 3 & \(60^{\circ}\) & \(111 \cdot 3\) & 111.3-72 \\
\hline 4 & \(90^{\circ}\) & 111.4 & 111.4 . 12 \\
\hline 5 & \(120^{\circ}\) & 111.5 & 111-5-T2 \\
\hline 6 & \(150^{\circ}\) & 111.6 & 111.6 -T2 \\
\hline 7 & \(180^{\circ}\) & 111.7 & (111-7-T2) \\
\hline 8 & \(210^{\circ}\) & 111-8 & 111.8-72 \\
\hline 9 & \(240^{\circ}\) & \(111-9\) & (111-9 -T2) \\
\hline 10 & \(270^{\circ}\) & 111-10 & (111-10-T2) \\
\hline 11 & \(300^{\circ}\) & 111.11 & 111-11-T2 \\
\hline \multicolumn{2}{|l|}{Recommended Knobs(See p. 10 for description)} & Catalog No . 5150A or 5116A & Catalog No. 5109A or 5110A \\
\hline
\end{tabular}

Items in bold print are usually in stock. Items in light face are less popular and therefore not normally stocked in depth. Parentheses indicate

\section*{SPECIFICATIONS}

DIAMETER: \(21 / 4^{\prime \prime}\).
SHAFT: \(1 / 4^{\prime \prime}\) Diameter.
STANDARD MOUNTING: For \(1 / 4^{\prime \prime}\) panel, maximum. by means of \(3 / 8^{\prime \prime}-32\) threaded bushing and hex. nut. A \(1 / 8^{\prime \prime}\) hole is required for the non-turn pin.
MAXIMUM NUMBER OF TAPS: 12.
WEIGHT: 0.4 lbs. approximately.
RECOMMENDED KNOB: No. 5116A. Optional extra.
TORQUE: 3 to 7 inch-pounds, approximately.
TERMINALS: Soldering type. (Also quick-connect terminals —Model 212D, see page 9.)

Model 212 differs in type from the larger switches by having a cupshaped metal cover.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Depth Behint Panel}} & Single Unit & 2 in Tandem & 3 in Tandem \\
\hline & & \(13 / 4{ }^{\prime \prime}\) & \(451{ }^{10}\) & \(6{ }^{3} /{ }^{\text {a }}\) \\
\hline Ne. of Taps & Total Rotation & Catalog No. \({ }^{1}\) & Catalog No. \({ }^{1}\) & Catalog No. \({ }^{1}\) \\
\hline 3 & \(60^{\circ}\) & 212.3 & 212-3-12 & 212 3-T3 \\
\hline 4 & \(90^{\circ}\) & 212-4 & 212-4-T2 & (212-4-T3) \\
\hline 5 & \(120^{\circ}\) & 212-5 & (212-5-T2) & (212-5-73) \\
\hline 6 & \(150^{\circ}\) & 212-6 & 212-6-72 & 212. 6-T3 \\
\hline 7 & \(180^{\circ}\) & 212.7 & (212-7-T2) & (212-7-T3) \\
\hline 8 & \(210^{\circ}\) & 212-8 & 212-8-T2 & (212-8 T3) \\
\hline 9 & \(240^{\circ}\) & 212.9 & (212-9-T2) & (212-9-T3) \\
\hline 10 & \(270^{\circ}\) & 212-10 & (212-10-12) & (212-10-T3) \\
\hline 11 & \(300{ }^{\circ}\) & 212-11 & (212-11 T2) & (212-11-T3) \\
\hline 12 & \(330^{\circ}\) & 212-12 & 212-12-I2 & (212-12-T3) \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Recommended \\
Knobs--(See p. 10 for description)
\end{tabular}} & Catalog No. 5150A or 5116A & Catalog No. \(5111 A\) or 5112A & Catalog No. 5111A or 5112A \\
\hline
\end{tabular}

Items in bold print are usually in stock. Items in light face are less popular and therefore not normally stocked in depth. Parentheses indicate non-stock standard items subject to \(\$ 15.00\) per line item minimum charge.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Depth Behind Panel}} & Single Unit & 2 in Tantem & 3 in Tantem \\
\hline & & 21/4" & 4\% \({ }^{17}\) & \(71 /{ }^{\prime \prime}\) \\
\hline No. of Taps & Total Rotation & Catalog No. \({ }^{1}\) & Catalog No. \({ }^{2}\) & Catalog No. \({ }^{1}\) \\
\hline 3 & \(60^{\circ}\) & 312-3 & (312- 3-T2) & (312-3-Т3) \\
\hline 4 & \(90^{\circ}\) & 312-4 & (312-4-T2) & 312. 4-T3 \\
\hline 5 & \(120^{\circ}\) & 312-5 & 312-5-72 & 312-5-T3 \\
\hline 6 & \(150^{\circ}\) & 312-6 & 311-6-12 & (312-6-73) \\
\hline 7 & \(180^{\circ}\) & 312-7 & (312-7-T2) & (312-7-T3) \\
\hline 8 & \(210^{\circ}\) & 312-8 & 312-8-T2 & 312-8-T3 \\
\hline 9 & \(240^{\circ}\) & 312.9 & (312-9-T2) & 312. 9-73 \\
\hline 10 & \(270^{\circ}\) & 312-10 & (312-10-T2) & 312-10-13 \\
\hline 11 & \(300^{\circ}\) & \(312-11\) & (312-11-T2) & (312-11-T3) \\
\hline 12 & \(330^{\circ}\) & 312-12 & (312-12-T2) & 312-12-73 \\
\hline \multicolumn{2}{|l|}{Recommended Knobs (See p. 10 for description)} & Catalog No. 5109A or 5110A & Catalog No. 5111A or 5112A & Catalog ioo. 5111A or 5112A \\
\hline
\end{tabular}

Items in bold print are usually in stock. Items in light face are less popular and therefore not normally stocked in depth. Parentheses indicate non-stock standard items subject to \(\$ 15.00\) per line item minimum charge.

\section*{SPECIFICATIONS}

DIAMETER: \(4_{16}^{3 \prime \prime}\).
SHAFT: 1/4" Diameter.
STANDARD MOUNTING: For \(1 / 4^{\prime \prime}\) panel, rnaximum. Three No. \(10-32\) flat-head machine screws \(3 / 8^{\prime \prime}\) long are supplied. Drill \(5 / 16^{\prime \prime}\) hole in panel for shaft
MAXIMUM NUMBER OF TAPS: 12.
WEIGHT: 1.4 lbs., approximately.
RECOMMENDED KNOB: No. 5111A. Optional extra.
TORQUE: 3 to 8 inch-pounds, approximately.
TERMINALS: For use with soldering lugs, No. 10 screws or direct soldering of wires.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Depth Behint Panel}} & Single Unit & 2 in Tantem & 3 in Tandem \\
\hline & & 2\%'1' & 512 & \(73 / 4{ }^{\prime \prime}\) \\
\hline No. of
Taps & Total Rotation & Catalog No. \({ }^{1}\) & Catalog No. \({ }^{1}\) & Catalog No. \({ }^{1}\) \\
\hline 3 & \(60^{\circ}\) & 412-3 & 412. 3-T2 & (412-3-13) \\
\hline 4 & \(90^{\circ}\) & 412-4 & (412-4-T2) & 412-4-T3 \\
\hline 5 & \(120^{\circ}\) & 412-5 & (412-5-72) & 412. 5-73 \\
\hline 6 & \(150^{\circ}\) & 412-6 & (412 6-T2) & 412-6-T3 \\
\hline 7 & \(180^{\circ}\) & 412.7 & 412-7-12 & (412-7-73) \\
\hline 8 & \(210^{\circ}\) & 412-8 & 412. 8-T2 & 412. 8 T3 \\
\hline 9 & \(240{ }^{\circ}\) & 412-9 & (412-9.T2) & (412 9-T3) \\
\hline 10 & \(270{ }^{\circ}\) & 412-10 & 412-10-12 & 412-10-73 \\
\hline 11 & \(300^{\circ}\) & 412-11 & (412-11-T2) & (412-11-T3) \\
\hline 12 & \(330^{\circ}\) & 412-12 & 412-12-I2 & 412-12-73 \\
\hline \multicolumn{2}{|l|}{Recommended Knobs (see p. 10)} & Catalog No. \(5111 A\) or 5112A & Catalog No. 5111A or 5112A & Catalog No. \(5111 A\) or \(5112 A\) \\
\hline
\end{tabular}

Itemis in bold print are usually in stock. Items in light face are less popular and therefore not normally stocked in depth. Parentheses indicate non-stock standard items subject to \(\$ 15.00\) per line item minimum charge.

\section*{SPECIFICATIONS}

DIAMETER: \(6^{\prime \prime}\)
SHAFT: \(3 / 8^{\prime \prime}\) Diameter.
STANDARD MOUNTING: For \(I^{\prime \prime}\) panel, maximum. Three flathead machine screws \(1 / 4^{\prime \prime}-20 \times 11 / 4^{\prime \prime}\) long are supplied. Drill 1/16" hole in panel for shaft.
MAXIMUM NUMBER OF TAPS: 8.
WEIGHT: 5 lbs., approximately.
RECOMMENDED KNOB : No. 5104A. Optional extra.
TORQUE: 25 to 35 inch-pounds, approximately.
TERMINALS: For use with soldering lugs or \(1 / 4^{\prime \prime}\) bolts.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Depth Behint Panel}} & Single Unit & 2 in Tantem & 3 in Tandem \\
\hline & & \(35_{6}^{\prime \prime}\) & \(6{ }^{11 \%}{ }_{6}{ }^{\text {a }}\) & 10\%\% \({ }^{\prime \prime}\) \\
\hline \[
\begin{aligned}
& \text { No. of } \\
& \text { Taps }
\end{aligned}
\] & Total Rotation & Catalog Na. 1 & Catalog No. \({ }^{1}\) & Catalog No. \({ }^{1}\) \\
\hline 3 & \(80^{\circ}\) & 608-3 & (608-3-T2) & (508 3-T3) \\
\hline 4 & \(120^{\circ}\) & 608-4 & (608-4-T2) & (508-4-T3) \\
\hline 5 & \(160^{\circ}\) & 608-5 & (608. 5 T2) & 608-5.13 \\
\hline 6 & \(200^{\circ}\) & 608-6 & 608. 6-T2 & 608. 6-T3 \\
\hline 7 & \(240^{\circ}\) & 608-7 & (608-7-T2) & (608-7.73) \\
\hline 8 & \(280^{\circ}\) & 608.8 & 608-8-T2 & 608. 8-T3 \\
\hline \multicolumn{2}{|l|}{Recommended Knobs (see p. 10)} & Catalog No. 5104 A or 5105A & Catalog No. 5104A or 5115A or 5105A & Catatog No. 5115 \\
\hline
\end{tabular}
'Items in bold print are usually in stock. Items in light face are less World ponular and therefore not normally stocked in depth. Parentheses indicate non-stock standard items subject to \(\$ 15.00\) per line item minimum charge.

\section*{SPECIAL CONTACT SPACING}

Switches with less than the maximum number of taps are furnished ordinarily with the standard contact spacing of \(30^{\circ}\) (\(40^{\circ}\) for Model 608). However, switches of limited number of taps, as shown in the table, can be supplied with contacts spaced 2 or 3 times standard. Switches can be made, also, without a stop so that there are no end positions to the shaft rotation.
\begin{tabular}{|c|c|c|c|}
\hline Model & \begin{tabular}{c}
Maximum \\
No. of Taps
\end{tabular} & \begin{tabular}{c}
Tap \\
Spacing
\end{tabular} & \begin{tabular}{c}
Total Rotation \\
(Maximum)
\end{tabular} \\
\hline \(212,312,412\) & 6 & \(60^{\circ}\) & \(300^{\circ}\) \\
\(212,312,412\) & 4 & \(90^{\circ}\) & \(270^{\circ}\) \\
608 & 4 & \(80^{\circ}\) & \(240^{\circ}\) \\
608 & 3 & \(120^{\circ}\) & \(240^{\circ}\) \\
\hline
\end{tabular}

\section*{SPECIAL SHAFTS AND BUSHINGS}

Standard switches can be mounted on any thickness of panel up to the maximum specified. Switches can be supplied at increased cost with shafts or bushings made for mounting on any of the following panel thicknesses: \(1 / 8^{\prime \prime}, 1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}, 1^{\prime \prime}, 11 / 2^{\prime \prime}\) and \(2^{\prime \prime}\). Special length shafts can be provided also, as well as shafts without flat or with slot for screw driver adjustment, or with rear extension.

\section*{SWITCHES WITH OFF-POSITION}

Model 608 can be supplied with \(320^{\circ}\) rotation, including eight contacts and an off-position at the contactor terminal location. In general, on switches where an off-position is desired, it is more economical for the user to leave one contact unwired than to call for an off-position on the switch. The latter requires special work, as the contact must be mounted in any case.

AUXILIARY SWITCHES

Model 608 with two auxiliary switches

Model 111 with toggle switch

Model 412 with sensitive switch

\section*{AUXILIARY SWITCH OPERATED AT EACH POSITION}

All models of tap switches except Model 711 can be supplied with a sensitive switch which must be operated by pushing on the knob before the tap switch shaft can be rotated to another position. The sensitive switch is returned to its normal position when the knob is restored.
A tap switch with auxiliary switch is used in two general ways. So that any tap can be selected without operating intermediate taps, and without requiring use of a separately operated load switch, an auxiliary switch is cormected in series with the tap switch common lead and serves to hold the circuit open while the knob is being rotated.
To use a tap switch as a selector for line voltage DC applications, the auxiliary switch controls a separate
electro-magnetic contactor which opens and closes the load circuit.
Orders or inquiries should give complete description of the tap switch, auxiliary switch (including its load) operating requirements, and whether the auxiliary switch is to be supplied wired to the tap switch center lead.

\section*{AUXILIARY SWITCH OPERATED AT ONE POSITION ONLY}

All models of tap switches except Model 711 can be supplied with a toggle switch or sensitive switch mounted on the tap switch and arranged so the auxiliary switch is operated when the tap switch shaft is rotated between a prescribed pair of contacts. Orders and inquiries should give complete description of tap switch, auxiliary switch and operating location.

\title{
SPECIAL TERMINALS
}

\section*{QUICK-CONNECT TERMINALS}

Model 111 and 212 switches can be supplied with tab terminals designed to mate with \(1 / 4\) " "quickconnect" or "push-on" female connectors. This mode of connection is used where a sequence of wiring must be periodically modified or where accessibility for service

Model 212D tap switch with quick-connect terminals
is important. Savings may be effected in wiring of equipments through elimination of soldering and its attendant series of hand operations. Model "212D" is furnished with tab Type No. \(53-25 \mathrm{D}\) for \(1 / 4^{\prime \prime}\) connectors only. Model "111A" is provided with tab Type No. 53-25B, Ohmite's exclusive "Three-Way" terminal. This unique terminal accommodates three different types of connection as follows:
(1) Accepts standard \(1 / 4^{\prime \prime}\) female quick-connector
(2) Accepts 6 -32 screw and nut
(3) Accepts soldering

Specify Model 111A or 212D where tab terminals are required.

Model 111A tap switch with Three-Way quick-connect terminals.

\section*{SCREW-GLAMP AND TWIN CABLE TERMINALS}

SPECIAL SCREW CLAMP terminals on 3 -in-tandem Model 412 tap switch, simplify attachment of heavy cables.

Switch Models 312, 412 and 608 can be provided with special terminals to accommodate heavy cable or to suit unusual wirng schemes. Some users attach a lug to the wire, then bolt the lug to the switch terminal. With the screwclamp terminal, the cable is merely inserted in the opening and clamped in place with the hex-head screw. This arrangement also permits quick changes of connections. Twin cable terminals facilitate parallel or multiple wiring to other components.

TWIN CABLE TERMINALS on Model 412 switch facilitate parallel connections to other switches. Cables may be crimped or soldered.

\section*{STAGE LIGHTING SWITCH FOR 208/240 VOLTS BETWEEN TAPS}

Where 120 volt stage lighting or other circuits also present voltages of 208 volts (3-phase) or 240 volts (single phase) between adjacent taps, a modified Model 312, designated " 312 H " may be used. It is Underwriters' Laboratories listed. Load rating of the Model 312 H is 20 amperes at 120 VAC for tungsten filament lamp circuits-the maximum allowed for stage lighting circuits. The greater voltages between taps occur when the terminals are connected to different phases of a three-phase system or to opposite sides of the familiar \(120 / 240\) volt 3 -wire system. Various modifications, including the insertion of fibre barriers between extemal terminals, assure the necessary be-tween-taps spacing. Same choice of number of taps as standard Model 312.

Model 312H

\section*{KNOBS, DIALS AND PANEL MARKINGS}

\section*{PANEL MARKINGS \\ Tap Locations-Flats on Shafts Panels should be marked so first and last positions are the top center-line, with the wise and clockwise from center-lead down. Flats on the switch mounted with the ing odd or even numbers of taps ently so as to make this possible. Viewed from the terminal side, the terminals are al follows: around the switch top center-line as}

\section*{TAP SWITCH KNOBS}

Knobs are made of black phenolic plastic. They fasten
by means of two hexagon socket plastic. They fasten No. 5150A which has only socket set screws, except requires a tapped hole and a drivind No. 5115 which on the shaft of the Model driving pin as furnished Pointers are nickel-plated. 608 tandem assembly. Numbers 5150A 5109 A , 51
with Models 111, 212, and 312 and 5116A are for use preferred for Model 412 and the larger knobs are these models as well as the the tandem versions of recommendations with switch open-type switches. See description.
Ordering: Specify knobs as a separate item.

\section*{Typical Tap Switch Dials}

Dials are mace
2 to 12 to agree with different numbers of taps from switches and in three dia the rotations of the various with appropriate knobs. Theters to coordinate properly with the markings bright on are made of aluminum used with a single Model a black background. Dials the switch mounting nut 111 or 212 are secured by screws (or the switch mounting dials fasten by No. 6 are pierced in the dials). Nounting screws, provided holes be specified as a suffix to thumber of positions must

All-ceramic Open-type tap switches are designed to transfer currents of several amperes in circuits requiring high voltage insulation. The body consists of a porcelain base to which a porcelain ring, carrying the fixed contacts is vitreous enameled or otherwise secured. Contact is made to the monel metal taps by a silver-graphite brush of very low resistance. Ceramic parts which withstand a test voltage of 3000 VAC insulate the bushing and shaft from the electrical circuit.
Made-to-Order: Ten diameters from \(1 \% / s^{\prime \prime}\) to \(12^{\prime \prime}\) with the maximum possible number of contacts increasing with the diameter. The maximum voltage to be applied between adjacent contacts determines the minimum practicable spacing between the contacts.
Angular Spacing and Rotation: The angle between taps on the non-shorting switches and the total rotation (up to the maximum) generally can be made as desired. Shorting type switches must have the contacts close
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Switch Model} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Base } \\
& \text { Diameter }
\end{aligned}
\]} & \multicolumn{2}{|l|}{APPROX. MAX. NO. OF CONTACTS*} & \multirow[t]{2}{*}{Maximum Angle of Rotation} \\
\hline & & & \[
\begin{aligned}
& \text { Non-Shorting } \\
& 316^{\prime \prime}=3 z_{3 \prime \prime}^{\prime \prime} 3_{8^{\prime \prime}} \mathrm{I}_{2}^{\prime \prime}
\end{aligned}
\] & \\
\hline T-25 & \(19 \%\) & 11, 8, - - & 6, 5, - - & \(300^{\circ}\) \\
\hline T-50 & 25/6" & 15, 11 - - & 9, 8 - - & \(300^{\circ}\) \\
\hline T-75 & \(23 / 4{ }^{\prime \prime}\) & 19, 14, !1- & 11, 9, 8 - & \(300^{\circ}\) \\
\hline T-100 & \(31 / 8{ }^{\prime \prime}\) & 21, 15, \(12-\) & 17, 12, \(11-\) & \(300^{\circ}\) \\
\hline T-150 & \(4 \prime\) & 27, 20, 16 - & 22, 18, 15 - & \(300^{\circ}\) \\
\hline T-225 & \(5 \prime \prime\) & - 28,22,17 & - 25, 20. 16 & \(310^{\circ}\) \\
\hline T-300 & 6 ' & - 35, 28.21 & - 28,24.19 & \(315{ }^{\circ}\) \\
\hline T.500 & \(8{ }^{\prime \prime}\) & - 48, 37, 29 & - 37, 31, 25 & \(325^{\circ}\) \\
\hline T.750 & \(10^{\prime \prime}\) & - 63, 50, 38 & - 47, 40, 33 & \(330^{\circ}\) \\
\hline T-1000 & \(12^{\prime \prime}\) & -- 77.61,47 & - 58, 49, 40 & \(335^{\circ}\) \\
\hline
\end{tabular}

Number of contacts depends on type of contact and other factors. Consult factory.
\(+\mathrm{T}-25\) to \(\mathrm{T}-150-\mathrm{I}^{\prime \prime}\) " diameter shaft- \(-3 / 8^{\prime \prime}-32\) bushing mounting.
\(\mathrm{T}-225\) to \(\mathrm{T}-1000-3 / 8^{\prime \prime}\) diameter snaft--mounts by 2 screws.
together so the moving contact can bridge from one to the other in passing. The total angle of rotation increases with the number of contacts.

Current and Voltage Ratings: The maximum standstill current varies with the model and lug width from 5 A . on a \(\mathrm{T}-25\), to 32 A . on the \(\mathrm{T}-225\) to \(\mathrm{T}-1000\) models. Solid silver-alloy fixed ontacts may be used on the higher currents and for better interrupting capacity. Interrupting currents vary with circuit conditions. Nominal maximum is 3 A . at 120 VAC. Current ratings are less for all direct current circuits above 20 volts, for inductive circuits and for high voltages. Recommendations given on receipt of details. The load break rating is also somewhat dependent upon the desired life. While the stock switches are nominally insulated for 300 V . and the larger switches (T-225 and up) are insulated for 600 V ., they are both frequently used at higher voltage, depending upon the application.

RATCHET MECHANISM: Ratchet mechanisms should be used on all shorting switches where sparking might otherwise occur, on all tandems and on other nonshorting, single-pole switches where increased indexing action is desired. The ratchet action indexing mechanism, definitely positions the moving contact over each tap. Maximum number of taps for use with ratchet is 15 on Models T-25 to T-50 and 20 on T-225 to \(T-1000\). The mechanism adds to the depth behind the panel, \(9 / 32^{\prime \prime}\) for T-25 to T-150, \(\% / 1_{18}^{\prime \prime}\) for T-225 to T-1000. The switch mounts by two No. 10-32 screws located \(3 / 4^{\prime \prime}\) on each side of the shaft (as illustrated) for T-25 to \(\mathrm{T}-150 ; 1 / 4-20\) screws on \(13 / 6^{\prime \prime}\) centers are employed for the T-225 to T-1000 switches. Pairs of contacts can be bridged by a variation of the design.

When ordering Ratchet ActionStopping on Lugs (Model TA), specify the Code Word RATAP

TANDEM MOUNTINGS: Tandems are limited usually to 2 decks and are not always practical when large numbers of contacts are involved. Ratchet-action is generally recommended. Consult factory for details on specific applications.

KNOBS: Refer to page 10 .

\section*{OHMITE has the answer \\ in products for today's © tomorrow's circuitry}

\title{
MODEL 711 Mimiature POWER TAP SWITCH
}
(Single-Pole, Non-Shorting Selector Switch)

ACTUAL SIZE

\section*{ CanRIIS 15. \\ THAN MANY SйMLIR. low CurRent, INSTRUMENT swiches!}

The Model 711 is definitely a power switch! You know that immediately when you learn its power rating-it interrupts 7 amperes at 125 VAC and carries 15 amperes at 125 volts AC or DC.
This single pole, non-shorting rotary selector switch, extends the Ohmite line of Power Tap Switches down to the "miniature" size classification (body diameter \(11 / 8^{\prime \prime}\), depth behind panel \({ }^{13 / 166^{\prime \prime}}\) max.) but nevertheless provides a unit which can handle a "man-sized" amount of current.
The culmination of over 28 years of experience in producing tap switches, the Model 711 embodies advanced design principles, generous use of quality materials and superior workmanship to make its extraordinary capability possible.
(See reverse side for data and listings.)

Dimensions,

RATING: Interrupts 7 amperes at 125 VAC (\(75 \%\) power Standstill (carry); 7 amperes at 20 VDC , non-inductive load or DC.

\section*{SOLID SILVER ALLOY INLAY}
tacts; silver alloy button...for stationary conis carried through thick for movable contact. Current assembly springs.

\section*{DUAL PURPOSE TERMINALS \\ soldering or by means of \(3 / 16^{\prime \prime}\). allow connection by}

SLOW-BREAK, QUICK-MAKE ACTION
deemed best for switching of ACION... the action with a cam and cam follg of AC current is achieved provides positive indexing meeting of contacts to assure a wiping, self-cleaning connections.

\section*{HIGH INSULATION RESISTANCE \\ the melamine-phelic body}
of arche-phenolic body which resi is provided by of arc tracks. Terminals positioned for maximum form tween-terminal insulation.

\section*{DIMENSIONS \\ \(11 / 8^{\prime \prime}\); overall diameter \(1 \% / a^{\prime \prime} ;\) dosed): Body diameter maximum. See diagrams for \(190^{\prime \prime}\); depth behind panel \({ }^{13 / 16^{\prime \prime}}\)} assemblies.

MOUNTING: Mounts by means of \(3 / 8-32\) bushing for \(1 / 8^{\prime \prime}\) thick maximum panel, except \(1 / 6_{6}^{\prime \prime}\) maximum panel lug positions are switches (suffix " E "). Four non-turn switch. Recesses in bodyle on the single, unenclosed of non-turn washer at " 12 of switch permit positioning

AVAILABLE STYLES and CODES: Single unenclosed and up to five-in-tandem assemblies are standard. Consult factory for tandems with more than five switches. (TanTo specify an enclosed inerently enclosed-see diagrams. catalog number as in "711-2E.")

STANDARD MODEL 711 TAP SWITCHES \(\dagger\)

\footnotetext{
Recommended knob: No. 5103

RESISTIRS • RHEISTATS • TAF SWITCHES SGOI HOWARD ST. O SKOKIE, ILLINOIS 60076 Printed in USA tantalum caparit tap switches 2.67
}

\title{
VARIABLE TRANSFORMERS
}

\section*{OHMITE}

\title{
(0) \\ OHMITE \\ OHMITRAN VARIABLE TRANSFORMERS \\ CATALOG 501
}

\section*{OHMITRAN W.0. VARIABLE TRANSFORMERS}

OHMITE

\section*{OHMITE Manufacturing Company}

February, 1971

Dear Ohmite Customer:
Meet the new breed of Ohmitran Variable Transformers for 1971.

Enclosed is our brand new catalog of Ohmite Variable Transformers. We think the many new items and changes incorporated into the V.T. line deserve your attention. Some highlights are:
1. Both U.L. and CSA approvals, where indicated.
2. New higher ratings: more amps for the money! \(\bar{A}\). New higher constant current ratings for Series VTl, VTO2 and VT3.
B. Addition of Constant Impedance ratings for all series.
C. New "non U.L." ratings for VT4 Series.
3. Connection Schematics so that you can design your production wiring hook-ups from the catalog.
4. More descriptive information about lab bench types and other enclosed models.

Couple all these features with Ohmite's most competitive pricing, and you have one heck of a Variable Transformer source. Availability? Off-the-shelf from authorized stocking distributors listed on the back side of the enclosed price schedule. Or, if you prefer, from the factory.

Very truly yours,
OHMITE MANUFACTURING COMPANY

max sanders
Director of Marketing

> P.S.: Please insert Catalog 501 in section 500 of your Ohmite 3-ring binder. Please discard all previous publications.

MS: ss \(\quad 280 \mathrm{~B}\)

MAY 4, 1970

Prices shown are recommended resale schedules offered through authorized Ohmite stocking distributors. Prices for quantities greater than shown are available from your local Ohinite Sales Office or the Factory.

Fig. 3: Typical voltage regulation curves

Fig. 4 : Derating for
ambient temperatures above \(50^{\circ} \mathrm{C}\). Derating for use of 120 -volt input on 240 -volt transformers (" H " type).

Series VT4
8, 9
Series VT8
10, 11
Series VT20
12, 13
Terminal Connection Schematics,
VT8 \& VT20
Series LN Hi-current/Low-voltage 15
Dials15

Motor Driven and Special V.T.'s 16

\section*{FEATURES}

POSITIVE CURRENT TRANSFER . . achieved with specially designed brushes connected through high conductivity contact arms or pigtails to a large slip ring which contacts a wide area of the collector ring. The brush contact assembly on VT1, VT02, and VT3 is instantly replaceable, when necessary, as a result of a slide-on, snap-in design. Brushes of the other models are easily replaced also.
ADJUSTABLE SHAFT: On all Ohmitran v.t.® transformers, except the VT2LN, the shaft may be extended out from either the brush or opposite side as desired. On the VT1, VT02 and VT3, both single and tandem assemblies, this is an exclusive 0hmitran feature which affords greater versatility of mounting and application. For example, substitution of a longer shaft or extension of the standard shaft allows actuation of other devices, such as switches or potentiometers without special construction. The shaft is freed simply by loosening set screw in the hub assembly. A double flat on the shaft permits two knob positions.
On the VT4, VI8, and VT20 types, the adjustable shaft feature permits table or panel use. "Ganged" or tandem VT4, VT8 and VT20 units employ a thru-shaft offering the same flexibility. On VT4 and VI8 units, shafts are fixed in the desired position by means of socket head screws located in the hub of each "brush-radiator" plate. The vT20 employs a unique collet-type shaft lock.
Interchanceable with other popular types: Basic Ohmitran v.t.® units have mounting provisions which match those of virtually all popular transformers of comparable current rating. Models VT4, VT8 and VT20 mount by means of bolts. Normally 3 -hole mounting, single VT4 units can be " 4 -hole mounted" by means of adapter plate, see page 9. Individual Model VT1, VTO2, VT2LN, or VT3 units mount by means of a standard \(3 / 8-32\) threaded bushing. All tandem assemblies mount by means of bolts or nuts. Knob, dial and mounting hardware are included with each transformer.
EXCELLENT REGULATION: Figure 3 illustrates very negligible variation in output voltage from no-load to full-load current for all basic Ohmitran v.t.© models. The curves trace the voltage drop at any brush setting when full load is applied. Voltage drops for loads less than full load are proportional.
ENCLOSED OR CASED UNITS: In gray hammer tone finish. Basic protective enclosures (Type B) expose the transformer's terminal panel and mounting base and are supplied on VT20 models only. (See tandems in " B " enclosures on page 12 and 13.) Fixed mounting enclosures (Type E) are intended for permanent mounting on table, panel or in-conduit-line. Standard portable units (Type F) carry a line cord, outlet socket, and fuse except for VT20F which has a circuit breaker. Deluxe portable units (Type G), available for VT8 and VT20 models utilize a circuit breaker, can be switched to overvoltage or no-overvoltage as desired and have a handle which also serves as an easel.
METERED ENCLOSURES: VTBNFC, VI8GC, VTZONFC and VTZOGC transformers are available with voltmeter (\(W\), voltmeter and ammeter (A) or voltmeter and Wattmeter (\(W\)). The metered transformer enclosures are larger than the non-metered types of comparable designation, (see dimensions in tables on pages 10 and 13). All stock metered units have the three-conductor grounded cord and outlet. All except the VT8NF group, are equipped with carrying handles.
TANDEM OR GANGED UNITS: Two or 3 -in-tandem assemblies are standard. Larger tandem assemblies available made-to-order. Standard 2 -in-tandem assemblies are normally factory wired for series or open delta-connection; 3-in-tandem assemblies are normally wired for wye-connection, unless otherwise specified. A few cased tandems are stocked. Tandems in " B " type enclosures have individual cases on each transformer.
DIRECT READING, TWO-SCALE DIAL . . calibrated on one side for overvoltage connection; on the reverse side for line voltage connection. Dials normally included with transformers are voltage calibrated (except LN types) and read clockwise for increasing voltage; counter-clockwise calibration and "percent-of-output" types, calibrated from \(0-100\), are also available-see page 15 .
TEMPERATURE: Ratings are based on an ambient temperature from \(-55^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\). For applications operating continuously in ambients higher than \(50^{\circ} \mathrm{C}\), the output current is derated according to the curve shown in Figure 4.
UL and CSA LISTING: A number of Ohmitran v.t.e transformers used for 120 volt line operation are Underwriters' Laboratories and Canadian Standards Association listed. For details, see tables contained in each frame size description section and Application/Selection Guide, page 5.
LINE FREQUENCY RATINGS: Most VT1, VT02 and VT3 types-60 to over 1000 cps , some from 50 cps where indicated. All VT4, VT8 and VT20 types-50 to over 1000 cps except where otherwise indicated. WIRING AND CONNECTIONS

Fig. 6: Simplified basic transformer circuits. (In the case of VT4, VT8 and VT20 types, circuits D, F and H would also have overvoltage taps for CCW rotation. Taps shown in dotted line in circuits B and C represent 120 volt inputs on " H " models oniy.)

\title{
ORDERING INFORMATION
}

Catalog Number Feature Suffix Codes Explained

The physical or frame size of a given variable transformer is indicated by a basic catalog number, such as VT1 or VT8. Optional features are indicated by suffixes to the basic catalog number such as VT8N-2 which specifies two units of VT8 frame
size, in tandem, each wound without overvoltage feature. Order from table of available types given for each basic size. For special features, combinations of features not listed and motor driven assemblies, Ohmite invites your inquiries.
\begin{tabular}{c|l}
SUFFIX & FEATURE \\
\hline A. & Built-in Ammeter for portable style enclosures. \\
B. & Protective enclosure with basic transformer's terminal panel and base exposed. \\
C. & 3-conductor, grounded input line and output receptacle. \\
E. & Enclosure with knockouts for permanent mounting in a conduit line. \\
F. & Portable enclosure with switch, line cord/plug, outlet receptacle and fuse. \\
G. & \begin{tabular}{l}
Deluxe portable enclosure with 3-position switch to select nominal or overvoltage and "off," has line cord/plug, \\
outlet recepticle, circuit breaker and adjustable handle.
\end{tabular} \\
H. & 240 volt input, has tap for 120 -volt input with 240 or 280 volt output. \\
L. & Low voltage input and output (40 V. max.), high current output. \\
N. & No overvoltage provision for higher current rating. \\
V. & Built-in Voltmeter for portable style enclosures. \\
W. & Built-in Wattmeter for portable style enclosures. \\
\(-\mathbf{2}\) & Two transformers assembled in tandem. \\
-3 & Three transformers assembled in tandem.
\end{tabular}

\title{
APPLICATION/SELECTION GUIDE \\ STANDARD TRANSFORMERS
}

SINGLE PHASE
SINGLE TRANSFORMERS-UNCASED
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input Volts} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Freq. } \\
1 \\
\mathrm{~Hz} \\
\text { from }
\end{gathered}
\]} & \multirow[b]{2}{*}{Feature or Connection} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Maximum Output} & \multirow[b]{2}{*}{Catalog \(\mathrm{No}^{13}{ }^{13}\)} & \multirow[b]{2}{*}{Wt. Lbs. \({ }^{\text { }}\)} \\
\hline & & & & Volts & Amps & & \\
\hline 40 & 50 & Hi-amps, low volts & & 0-40 & 5.0 & VT2LN & 2.4 \\
\hline 40 & 50 & Hi-amps, low volts & 14 & 0-40 & 12.0 & VTALN & 5.25 \\
\hline 40 & 50 & Hi-amps, low volts & 14 & 0-40 & 22.0 & VT8LN & 10.25 \\
\hline 120 & \(60^{\circ}\) & Basic 1.3A Model & \({ }^{14}\) & 0-120/132 & 1.3 & VTI & 1.5 \\
\hline 120 & 60 & No overvoltage & 14 & 0.120 & 1.5 & VTIN & 1.5 \\
\hline 120 & \(60^{\circ}\) & Basic 2.0A Model & \({ }^{14}\) & 0-120/132 & 2.0 & VT02 & 2.25 \\
\hline 120 & 60 & No overvoltage & 14 & 0.120 & 2.5 & VTO2N & 2.25 \\
\hline 120 & \(60^{*}\) & Basic 3.0A Model & \({ }^{11}\) & 0.120/132 & 3.0 & VT3 & 3.0 \\
\hline 120 & 60 & No overvoltage & 11 & 0.120 & 3.3 & VT3N & 3.0 \\
\hline 120 & 50 & Basic 3.5A Model & i, & 0-120/140 & 3.5 & VT4 & 5.25 \\
\hline 120 & 50 & No overvoltage & 11. 14 & 0.120 & 4.75 & VTAN & 5.25 \\
\hline 120 & 50 & Basic 7.5A Model & \({ }^{13}\) & 0.120/140 & 7.5 & V18 & 10.25 \\
\hline 120 & 50 & No overvoltage & 11. 14 & 0-120 & 10.0 & VI8N & 10.25 \\
\hline 120 & 50 & Basic 20A Model & 11 & 0-120/140 & 20.0 & V120 & 22.0 \\
\hline 120 & 50 & No overvoltage & 11 & \(0-120\) & 25.0 & VT20N & 22.0 \\
\hline \(240^{3}\) & 50 & 240 V Input \({ }^{2}\) & \({ }^{11}\) & 0-240/280 & 3.0 & VI8H & 10.25 \\
\hline \(240{ }^{-}\) & 50 & 240 V in. No ovrvit. \({ }^{2}\) & \({ }^{14}\) & 0.240 & 4.0 & VT8HN & 10.25 \\
\hline \(240{ }^{2}\) & 50 & 240 V Input \({ }^{2}\) & & 0.240/280 & 9.0 & VI20H & 22.0 \\
\hline \(240^{2}\) & 50 & 240 V In. No ovrvit. \({ }^{\text {2 }}\) & & 0.240 & 11.0 & VT2OHN & 22.0 \\
\hline
\end{tabular}

\section*{SINGLE TRANSFORMERS-CASED}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 120 & \(60^{*}\) & Fixed Mtg. & & 0-120/132 & . 8 & VTIE & 1.9 \\
\hline 120 & \(60^{\text {s }}\) & Portable & & \(0.132^{3}\) & 1.0 & VT1F & 2.3 \\
\hline 120 & 60 & Fixed Mtg. & & 0-120 & 1.0 & VTINE & 1.9 \\
\hline 120 & 60 & Portable & & 0.120 & 1.2 & VTINF & 2.3 \\
\hline 120 & \(60^{8}\) & Fixed Mtg. & & 0-120/132 & 1.4 & VTO2E & 2.8 \\
\hline 120 & \(60^{3}\) & Portable & & \(0-132^{3}\) & 1.75 & VT02F & 3.2 \\
\hline 120 & 60 & Fixed Mtg. & & 0-120 & 1.6 & VT02NE & 2.8 \\
\hline 120 & 60 & Portable & & 0.120 & 2.0 & VT02NF & 3.2 \\
\hline 120 & 50 & Fixed Mig. & & 0.120/140 & 2.8 & VI4E & 1.4 \\
\hline 120 & 50 & Portable & 12 & \(0-140^{3}\) & 3.5 & VT4F & 7.8 \\
\hline 120 & 50 & VT4F w/gnd. in. \& out. & \({ }^{12,15}\) & \(0-140^{3}\) & 3.5 & VT4FC & 7.8 \\
\hline 120 & 50 & Fixed Mtg. & 18 & 0-120 & 3.8 & VT4NE & 7.4 \\
\hline 120 & 50 & Portable & & 0-120 & 4.75 & VT4NF & 7.8 \\
\hline 120 & 50 & VT4NF w/gnd. in. \& out. & 15 & 0-120 & 4.75 & VT4NFC & 7.8 \\
\hline 120 & 50 & Fixed Mitg. & 15 & 0.120/140 & 6.0 & VT8E & 13.5 \\
\hline 120 & 50 & Portable & 12 & \(0-140^{3}\) & 7.5 & VT8F & 13.8 \\
\hline 120 & 50 & VI8F w/gnd. in. \& out. & 22, 15 & \(0-140^{3}\) & 7.5 & VT8FC & 13.8 \\
\hline 120 & 50 & Deluxe Portable & 12 & 0.120/140 \({ }^{3}\) & 6.0 & VT8G & 14.2 \\
\hline 120 & 50 & VTBG w/gnd. in. \& out. & 2 15 & 0-120/140 \({ }^{3}\) & 6.0 & VT8GC & 14.2 \\
\hline 120 & 50 & Fixed Mtg. & 15 & 0-120 & 8.0 & VT8NE & 13.5 \\
\hline 120 & 50 & Portable & & 0-120 & 10.0 & VT8NF & 13.8 \\
\hline 120 & 50 & VT8NF w/gnd. in. \& out. & 15 & 0-120 & 10.0 & VT8NFC & 13.8 \\
\hline 120 & 50 & Basic Case & & \(0.120 / 140\) & 20.0 & VT208 & 22.5 \\
\hline 120 & 50 & Basic Case & & 0.120 & 25.0 & VT20NB & 22.5 \\
\hline 120 & 50 & Fixed Mtg. & 12 & 0-120/140 & i6.0 & VT20E & 29.0 \\
\hline 120 & 50 & Portable & & \(0-140\) & 20.0 & VT20FC & 31.0 \\
\hline 120 & 50 & Portable & 12 & \(0.120 / 140^{3}\) & 16.0 & VT20GC & 31.0 \\
\hline 120 & 50 & Fixed Mtg. & 12 & 0-120 & 20.0 & VT20NE & 29.0 \\
\hline 120 & 50 & Portable & & 0-120 & 25.0 & VT20NFC & 31.0 \\
\hline \(240{ }^{2}\) & 50 & Basic Case & & 0-240/280 & 9.0 & VT20HB & 22.5 \\
\hline \(240{ }^{\text {a }}\) & 50 & Basic Case & & 0-240 & 13.0 & VT20HNB & 22.5 \\
\hline \(240^{*}\) & 50 & Fixed Mtg. & & 0-240/280 & 7.2 & VT20HE & 28.0 \\
\hline \(240^{2}\) & 50 & Fixed Mtg. & & 0.240 & 8.8 & VT20HNE & 28.0 \\
\hline \(240{ }^{-}\) & 50 & Portable & & 0-240/280 & 9.0 & VT20HFC & 30.0 \\
\hline \(240^{*}\) & 50 & Portable & & \(0-240\) & 11.0 & VT20HNFC & 30.0 \\
\hline
\end{tabular}

\section*{SIngle transformers-CaSEd with meters}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 120 & 50 & w/voltmeter, gnd. conn. & \({ }^{13}\) & 0-120/140* & 6.0 & VT8GCV & 15.2 \\
\hline 120 & 50 & w/volt. \& ammtr., & 15 & & & & \\
\hline 120 & 50 & gnd. conn. w/volt. \& wattmtr. & 15 & 0-120/140 \({ }^{3}\) & 6.0 & VT8GCVA & 15.5 \\
\hline & & gnd. conn. & 15 & 0-120/140 \({ }^{3}\) & 6.0 & VT8GCVW & 15.5 \\
\hline 120 & 50 & w/voltmeter, gnd. conn. & 13 & 0.120 & 10.0 & VT8NFCV & 14.8 \\
\hline
\end{tabular}

1Frequency shown is a minimum-units may be used up to 1000 cps . 280 V output for VT8H, and VT20H and 240V output for VT8HN and VT2OHN. With use of 120 V input VT8H and VT20H and 240 V output for VT8RN and VTzOHN. With use of 120 V input the max. current rating applies up to 120 y output voltage. In the case of tandem units use of the low voltage inputs max. output voltage, in the case of tandern units use of the low wolt
would correspondingly derate the current at the higher outpot voltages. Connected at factory for overvoltage output-easily reconnected by user for noovervoltage output. On VT8G and VT20G, switch selects owsrvoltage or
* User wires for desired output. Dial normally calibrated for overvoltage.
- When transformers are series connected, load cannot be grounded.
i Includes knob, dial and mounting hardware.
8 May be used at 50 Hz if connected for no-overvoltage output.

SINGLE PHASE (contd.)
SINGLE TRANSFORMERS-CASED WITH METERS (contd.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input Volts} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Freq. } \\
1 \\
\mathrm{~Hz} \\
\text { from }
\end{gathered}
\]} & \multirow[b]{2}{*}{Feature or Connection} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Maximum Output} & \multirow[b]{2}{*}{Catalog \(\mathrm{No}^{1{ }^{13}}\)} & \multirow[b]{2}{*}{Wt. Lbs. \({ }^{7}\)} \\
\hline & & & & Volts & Amps & & \\
\hline 120 & 50 & w/volt. \& ammtr., gnd. conn. & \({ }^{1.5}\) & 0.120 & 10.0 & VT8NFCVA & 15.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd conn. & 1s & 0.120 & 10.0 & & 15.2 \\
\hline 120 & 50 & w/voltmeter, gnd. conn. & & \(0-120 / 140^{3}\) & 16.0 & VT20GCV & 32.0 \\
\hline 120 & 50 & w/volt. \& ammtr., gnd. conn. & & \(0-120 / 140^{3}\) & 16.0 & VT20GCVA & 32.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., & & & & & \\
\hline & & gnd. conn. & & \(0-120 / 140^{3}\) & 16.0 & VT20GCVW & 32.2 \\
\hline 120 & 50 & w/voltmeter, gnd. conn. & & 0-120 & 25.0 & VT20NFCV & 32.0 \\
\hline 120 & 50 & w/volt. \& ammtr., & & & & & \\
\hline & & gnd. conn. & & 0.120 & 25.0 & VT20NFCVA & 32.2 \\
\hline 120 & 50 & w/volt. \& wattmtr., gnd. conn. & & \[
0-120
\] & 25.0 & VT20NFCVW & 32.2 \\
\hline
\end{tabular}

TWO IN TANDEM ASSEMBLIES * \({ }^{10}\) (Dimensions p . 33)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 240 \\
& 240 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Series Conn. \({ }^{\text {. }}\) \\
Series Conn."
\end{tabular} & \[
\begin{aligned}
& 14 \\
& 14
\end{aligned}
\] & \[
\begin{gathered}
0-240 / 264 \\
0.240 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.5 \\
& \hline
\end{aligned}
\] & VT1-2 VIIN-2 & \begin{tabular}{l}
3.5 \\
3.5 \\
\hline
\end{tabular} \\
\hline 240 & \(60^{*}\) & Series Conn. \({ }^{\text {a }}\) & \(\cdots\) & 0-240/264 & 2.0 & VT02-2 & 25 \\
\hline 240 & 60 & Series Conn.* & & 0-240 & 2.5 & VT02N. 2 & 5.25 \\
\hline 240 & \(60^{\circ}\) & Series Conn. \({ }^{\text {a }}\) & \({ }^{14}\) & 0-240/264 & 3.0 & VT3-2 & 6.5 \\
\hline 240 & 60 & Series Conn. & 14 & 0.240 & 3.3 & VT3N-2 & 6.5 \\
\hline 240 & 50 & Series Conn. & 11,10 & 0-240/280 & 3.5 & VT4-2 & 11.3 \\
\hline 240 & 50 & Series Conn." & 11,14 & 0.240 & 4.75 & VTAN-2 & 11.3 \\
\hline 240 & 50 & Series Conn. \({ }^{\text {a }}\) & \({ }^{11,18}\) & 0-240/280 & 7.5 & VT8-2 & 20.6 \\
\hline 240 & 50 & Series Conn. \({ }^{\text {a }}\) & & 0.240 & 10,0 & VT8N-2 & 20.6 \\
\hline 240 & 50 & Series Conn. \({ }^{\text {a }}\) & 1,4 & 0.240/280 & 20.0 & VT20-2 & 45.0 \\
\hline 240 & 50 & Above unit, B case & & 0-240/280 & 20.0 & VT20-2B & 46.0 \\
\hline 240 & 50 & Series Conn. \({ }^{\text {² }}\) & 11 & 0-240 & 25.0 & VT2ON-2 & 45.0 \\
\hline 240 & 50 & Above unit, 8 case & & 0.240 & 25.0 & VT20N-2B & 46.0 \\
\hline \(480^{-2}\) & 50 & Series Conn. \({ }^{\text {a }}\) & & 0-480/560 & 3.0 & VT8H-2 & 20.6 \\
\hline \(480^{2}\) & 50 & Series Conn. & & 0.480 & 4.0 & VT8HN-2 & 20.6 \\
\hline \(480^{2}\) & 50 & Series Conn. \({ }^{\text {a }}\) & & 0-480/560 & 9.0 & VT20H-2 & 43 \\
\hline \(480{ }^{\text {² }}\) & 50 & Series Conn. \({ }^{\text {® }}\) & & 0-480 & 11.0 & VT2OHN-2 & 43 \\
\hline
\end{tabular}

THREE PMASE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
120
\] & \(60^{\circ}\) & Op & \[
\begin{aligned}
& 14 \\
& 10
\end{aligned}
\] & \(\left.\right|^{0.120 / 132}\) & \[
1.3
\] & VT1.2 & 3.5 \\
\hline 120 & \(60^{\circ}\) & Open Delta Conn. & \({ }^{4}\) & 0-120/132 & 2.0 & VT02-2 & \\
\hline 120 & 60 & Open Delta Conn. & 14 & 0.120 & 2.5 & VTO2N-2 & 25 \\
\hline 120 & \(60^{*}\) & Open Deita Conn. & & 0-120/132 & 3.0 & VT3-2 & 6.5 \\
\hline 120 & 60 & Open Delta Conn. & 1 & 0-120 & 3.3 & VT3N-2 & 6.5 \\
\hline 120 & 50 & Open Delta Conn. & 12,14 & 0-120/140 & 3.5 & VT4-2 & 11.3 \\
\hline 120 & 50 & Open Delta Conn. & 11,24 & 0.120 & 4.75 & VTAN. 2 & 11.3 \\
\hline 120 & 50 & Open Delta Conn. & \({ }^{12,14}\) & 0.120/140 & 7.5 & VT8.2 & 20.6 \\
\hline 120 & 50 & Open Delta Conn. & & 0.120 & 10.0 & VT8N-2 & 20.6 \\
\hline & 50 & Open Deita Conn. & 1,14 & -120/14 & 20.0 & VT20-2 & 45.0 \\
\hline 120 & 50 & Above unit, B case & & 0.120/140 & 20.0 & VT20-2B & 46.0 \\
\hline 120 & 50 & Open Delta Conn. & 11,14 & 0.120 & 25.0 & VT20N-2 & 45.0 \\
\hline 120 & 50 & Above unit. B case & & 0.120 & 25.0 & VT20N-2B & 46.0 \\
\hline 40 & 50 & Open Delta Conn. & & 0.240/280 & 3.0 & VT8H-2 & \\
\hline \(240{ }^{\text {a }}\) & 50 & Open Della Conn. & 14 & 0.240 & 4.0 & VT8HN-2 & 20.6 \\
\hline \(240^{2}\) & 50 & Open Delta Conn. & & 0-240/280 & 9.0 & VT20H-2 & 43 \\
\hline \(240^{2}\) & 50 & Open Delta Conn. & & 0.240 & 11.0 & VT2OHN 2 & 43 \\
\hline
\end{tabular}

THREE-IN-TANDEM ASSEMBLIES \({ }^{\text {s }} 10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 240 \\
& 240 \\
& 240 \\
& 240
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60 \\
& 60 \\
& 60^{*}
\end{aligned}
\] & \[
\begin{aligned}
& \text { "Y" Conn. } \\
& \text { "Y } \mathrm{y} \text { ", Conn. } \\
& \text { " } \mathrm{y} \text { ", Conn. } \\
& \text { "y" Conn. }
\end{aligned}
\] & \[
\begin{aligned}
& 111 \\
& 11 \\
& 11
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
0-240^{\circ \prime} \\
0-240^{9} \\
0.20^{\circ} \\
0-240 \cdot 280
\end{gathered}\right.
\] & \[
\begin{aligned}
& 1.3 \\
& 2.0 \\
& 3.0 \\
& 3.5
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { VTI-3 } \\
\text { VT02-3 } \\
\text { VT3 } 3 \\
\text { VT4-3 } \\
\hline \text { VTO ? }
\end{array}
\] & \(\begin{array}{r}5.3 \\ 8.0 \\ 9.8 \\ 17.0 \\ \hline 1.0\end{array}\) \\
\hline 240 & \(60^{\circ}\) & "Y" Conn. & 11,14 & 0-240/280 & 7.5 & VI8-3 & 31.0 \\
\hline 240 & \(60^{\circ}\) & Above unit, E case & 11 & 0.240/280 & 6.0 & VT8-3E & 40.0 \\
\hline 240 & \(60^{\circ}\) & "Y" Conn. & 1 & 0.240/280 & 20.0 & VT20.3 & 68.0 \\
\hline 240 & \(60^{*}\) & Above unit, \(B\) case & & 0-240/280 & 20.0 & VT20-38 & 69.5 \\
\hline 240 & 60 & "Y" Conn. & 11, 14 & 0-240 & 25.0 & VT20N-3 & 68.0 \\
\hline 240 & 60 & Above unit, B case & & 0.240 & 25.0 & VT20N.38 & 69.5 \\
\hline \(480^{2}\) & \(60^{\circ}\) & "Y" Conn. & & -480/560 & 3.0 & V18H-3 & . 1.0 \\
\hline \(480{ }^{\text {a }}\) & \(60^{\circ}\) & "Y" Conn. & & 0-480/560 & 9.0 & VT20H-3 & \\
\hline \(480{ }^{\text {a }}\) & 60 & "Y" Conn. & & 0.480 & 11.0 & VT20HN-3 & 65.0 \\
\hline
\end{tabular}

\footnotetext{
:Overvoltage connection must not be used
11. 240 /280 volt CW dial standard except on VT1, VT02 and VT3 tandems where \(240 / 264\) volt dial is standard or on VT8H-2, VTBHN-2, VT8H-3, VT20H-2, VT20HN-2, VT2OH-3 and VT2OHN-3 where \(480 / 560\) volt dial is standard. Request other dials if desired-see "Dials" above.
\({ }^{11}\) Underwriters' Laboratories listed under components program (File Number E10946).
\({ }^{13}\) Underwriters' Laboratories listed under apparatus program (File Number E10946).
13 Some items are classified "non-stock standard" due to limited usage and therefore
are not stocked. Consult latest issue of catalog 300 series for availability.
\({ }^{14}\) CSA Listed for use only in equipment where the suitability of the combination is to be determined by the Testing Laboratories. (File No. 21309).
}

\title{
LOW POWER SERIES VT1, VT02, VT3
}

Save dollars and space! Select the rating closest to your needs; 1.3 A through 3.3 A.

Ohmite is the first to anticipate and meet the needs of industry with this line of low power, highly compact Variable Transformers. A choice of six ratings ranging from 1.3 to 3.3 amperes in overvoltage and no-overvoltage types are offered with the same bushing mounting arrangements and small base silhouette.
Adjustable Shaft, an exclusive Ohmite feature on bushing mounted units, makes it possible to extend the shaft from either end or to substitute a longer shaft. A set screw in the hub assembly is readily loosened (see Fig. 8) with a \#6 hex key. This feature affords greater versatility in mounting and application. For example, the transformer can be mounted with the brush adjacent to the panel by means of a bracket to allow access for servicing. The shaft can also be extended to allow actuation of other devices (switches and potentiometers) without the necessity of special construction. A double flat on the shaft permits the knob pointer to be in line with, or \(180^{\circ}\) opposed to the brush-contact position.
Instantly Replaceable Brush Contacts. A brush-contact assembly with over size heat sink is instantly replaced, when necessary, as a result of a slide-on snap-in design that assures permanent positive retention of the contact.

Heat Dissipation Improved. Increased heat dissipation efficiency is obtained with an insulated metal base, which though insulated, nevertheless conducts more heat to the panel than plastic types.
Three-way Terminals. Ohmite's 3 -way terminals are standard and permit connections to be made with conventional soldering, with standard \(1 / 4\) inch quickconnector (push-on) clips and with \#2 screws and nuts.

\section*{SPECIFICATIONS}

Frequency: 60 to over 1000 Hz
Rotation Angle: \(320^{\circ} \pm 5^{\circ}\)
Torque: \begin{tabular}{c|c|c}
Single & 2 -Tandem & 3 -Tandem \\
\hline \(3-15 \mathrm{in}\). -oz. & \(10-40 \mathrm{in} .-\mathrm{oz}\). & \(20-60 \mathrm{in} .-\mathrm{oz}\).
\end{tabular}
Terminations: Combination \(1 / 4\) inch quick-connect, solder and No. 2 screw and nuts.

\section*{Replacement Parts and Accessories:}
- Brush-contact assembly for VT1, VT02 \& VT3 types -Catalog No. 6507.
- Extra Knob for uncased types-Catalog No. 5158.
- Special Purpose Dials--see page 15.

Model VT02, VTO2N

Model VT3, VT3N
3/16 DIA HOLE
Fig. 7: Dimensions for basic uncased single models.
\begin{tabular}{l|l|l|l}
& "A" DIMENSION \\
\hline VT1 & \(131 / 6\) & VTO2N & \(25 / 16\) \\
VT1N & 1316 & VT3 & 2316 \\
VTO2 & \(25 / 16\) & VT3N & \(23 / 16\) \\
\hline
\end{tabular}

Fig. 8: Set-screw in hub assembly readily loosened with \#6 hex key to extend shaft from either end or substitute a longer shaft.

VII and VT02 CASE DIMENSIONS
\begin{tabular}{l|c|c|c}
\multicolumn{4}{c}{ TANDEM VII, VTO2, VI3 } \\
\hline \multicolumn{4}{c}{ DIMENSIONS } \\
\hline & \(A\) & \(B\) & \(C\) \\
\hline VT1 & \(47 / 32\) & \(617 / 32\) & \(41 / 4\) \\
VTO2 & \(51 / 32\) \\
VT3 & \(6^{11 / 32}\) & \(971 / 32\) & \(41 / 2\) \\
\hline
\end{tabular}
1.5 Amps with overvoltage feature - 1.75 Amps, no overvoltage feature. Includes knob and 5005 dial (120 V.) or 5019 dial (240 V .) Tandem assemblies are factory inter-connected
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{3}{*}{DESCRIPTIOM}} & \multirow[b]{3}{*}{catalag MUMBER} & \multirow[b]{3}{*}{INPUT voits} & \multirow[b]{3}{*}{\[
\begin{array}{|}
\text { FREQ. } \\
\text { fRon } \\
(\mathrm{Hz})
\end{array}
\]} & \multicolumn{3}{|l|}{OUTPUT (max.)} & \multicolumn{5}{|c|}{COWPECTIENS} & \multirow[b]{3}{*}{(LSS.)} \\
\hline & & & & & \multirow[b]{2}{*}{volis} & \multirow[t]{2}{*}{CONSTANT CUARENT AMPS} & \multirow[t]{2}{*}{COWSTAMT IMPE OANCE AMPS 10} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Fig. } \\
\text { No. }
\end{gathered}
\]} & \multirow[t]{2}{*}{WNO rotarION} & \multicolumn{3}{|c|}{TEMMMALS} & \\
\hline & & & & & & & & & & IMPUT & SUMPER & OUTPUT & \\
\hline \multicolumn{14}{|l|}{SINGLE TRANSFORMERS (Single Phase)} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Basic uncased model, overvoltage}} & \multirow[t]{3}{*}{\[
\mathrm{V} 11^{\text {© }}
\]} & \multirow{3}{*}{120} & \multirow[t]{2}{*}{\(50^{*}\)} & \multirow[b]{2}{*}{0.120} & \multirow[b]{2}{*}{\(1.5{ }^{\circ}\)} & \multirow[b]{2}{*}{2.0} & \multirow[t]{2}{*}{12A} & CW & 1.2 & - & 1-3 & \multirow{3}{*}{1.5} \\
\hline & & & & & & & & & CCW & 1.2 & - & \(2 \cdot 3\) & \\
\hline & & & & 60 & 0.132 & \(1.5{ }^{\circ}\) & - & 12A & CW & 1-4 & - & 1.3 & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Basic uncased model, no-overvoltage}} & \multirow[t]{2}{*}{\[
\mathrm{VT} 1 \mathrm{~N}^{\text {Si }}
\]} & \multirow[b]{2}{*}{120} & \multirow[b]{2}{*}{60} & \multirow[b]{2}{*}{0.120} & \multirow[b]{2}{*}{\(1.75{ }^{\circ}\)} & \multirow[b]{2}{*}{2.25} & \multirow[b]{2}{*}{128} & CW & 1.2 & - & 1.3 & \multirow[t]{2}{*}{1.5} \\
\hline & & & & & & & & & CCW & 1.2 & - & \(2 \cdot 3\) & \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{Cased, fixed mounting, overvoltage}} & \multirow{3}{*}{VT1E} & \multirow{3}{*}{120} & \multirow[b]{2}{*}{\(50^{\circ}\)} & \multirow[b]{2}{*}{0.120} & \multirow[b]{2}{*}{. 8} & \multirow[b]{2}{*}{1.2} & \multirow[b]{2}{*}{12A} & CW & 1.2 & - & 1.3 & \multirow{3}{*}{1.9} \\
\hline & & & & & & & & & CCW & 1.2 & - & 2.3 & \\
\hline & & & & 60 & \(0.132^{1}\) & . 8 & - & 12A & CW & 1.4 & - & 1.3 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cased, fixed mounting, no-overvoltage}} & \multirow[b]{2}{*}{VTINE} & \multirow[b]{2}{*}{120} & \multirow[b]{2}{*}{60} & \multirow[b]{2}{*}{0.120} & \multirow[b]{2}{*}{1.0} & \multirow[b]{2}{*}{1.5} & \multirow[b]{2}{*}{128} & CW & 1.2 & - & 1.3 & \multirow[t]{2}{*}{1.9} \\
\hline & & & & & & & & & CCW & 1.2 & - & 2-3 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Portable enclosure, overvoltage}} & \multirow[b]{2}{*}{VTIF} & \multirow[b]{2}{*}{120} & \(50^{\circ}\) & 0.120 & 1.0 & 1.5 & 12A & CW & 1.2 & - & 1-3 & \multirow[t]{2}{*}{2.3} \\
\hline & & & & 60 & \(0.132^{10}\) & 1.0 & - & 12A & \multicolumn{4}{|c|}{FACTORY WIREO} & \\
\hline \multicolumn{2}{|l|}{Portable enclosure, no-overvoltage} & VIINF & 120 & 60 & 0.120 & 1.2 & 1.8 & 12B & \multicolumn{4}{|c|}{FACTORY WIREO} & 2.3 \\
\hline \multicolumn{14}{|l|}{TWO-IN.TANDEM ASSEMBLIES \({ }^{11}\) (Single \& Three Phase)} \\
\hline \multirow{6}{*}{Basic uncased, overvoltage feature.} & \multirow[b]{3}{*}{Series Connected \({ }^{13} 1 \phi\)} & \multirow{6}{*}{\[
\begin{gathered}
\text { (3) } \\
\mathrm{VTl}-2
\end{gathered}
\]} & \multirow[b]{3}{*}{240} & \multirow[t]{2}{*}{\(50^{\circ}\)} & \multirow[t]{2}{*}{0.240} & \multirow[t]{2}{*}{1.3} & \multirow[t]{2}{*}{\(2.0^{13}\)} & \multirow[t]{2}{*}{12 C} & CW & \(2-2\) & 1.1 & 3-3 & \multirow{6}{*}{3.5} \\
\hline & & & & & & & & & CCW & 1-1 & 2-2 & 3-3 & \\
\hline & & & & 60 & 0.264 & 1.3 & - & 12C & CW & 4.4 & 1-1 & 3.3 & \\
\hline & \multirow[t]{3}{*}{Open Delta Connected \(3 \phi\)} & & \multirow{3}{*}{120} & \multirow[b]{2}{*}{\(50^{\circ}\)} & \multirow[b]{2}{*}{0-120} & \multirow[b]{2}{*}{1.3} & \multirow[b]{2}{*}{2.0} & \multirow[b]{2}{*}{12 C} & CW & 2-1-2 & 1-1 & 3.1.3 & \\
\hline & & & & & & & & & CCW & 1.2-1 & 2-2 & \(3 \cdot 2 \cdot 3\) & \\
\hline & & & & 60 & 0.132 & 1.3 & - & 12 C & CW & 4.1.4 & 1-1 & 3.1-3 & \\
\hline \multirow[b]{4}{*}{Basic uncased, no-overvoltage feature.} & & \multirow[t]{4}{*}{VIIN. 2} & & \multirow{4}{*}{60} & \multirow[t]{2}{*}{0-240} & \multirow[t]{2}{*}{1.5} & \multirow[t]{2}{*}{2.25} & \multirow[t]{2}{*}{12D} & CW & 2.2 & 1.1 & 3-3 & \multirow{4}{*}{3.5} \\
\hline & \[
\text { Connected }{ }^{10} 1 \phi
\] & & 240 & & & & & & CWW & 1-1 & \(2-2\) & 3-3 & \\
\hline & & & \multirow[t]{2}{*}{120} & & \multirow[t]{2}{*}{0.120} & \multirow[t]{2}{*}{1.5} & \multirow[t]{2}{*}{2.25} & \multirow[t]{2}{*}{120} & CW & 2.1.2 & 1.1 & 3-1-3 & \\
\hline & Connected \(3 \phi\) & & & & & & & & CCW & 1-2-1 & \(2-2\) & 3.2-3 & \\
\hline \multicolumn{14}{|l|}{THREE-IN-TANDEM ASSEMBLY (Three Phase)} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Basic Uncased, Wye connected}} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{240} & \multirow[b]{2}{*}{60} & \multirow[t]{2}{*}{\(0.240^{13}\)} & \multirow[t]{2}{*}{1.3} & \multirow[t]{2}{*}{2.0} & \multirow[t]{2}{*}{12E} & CW & 2.2 .2 & 1.1.1 & 3-3-3 & \multirow[t]{2}{*}{5.3} \\
\hline & & & & & & & & & CCW & 1-1.2 & 2-2-2 & 3-3-3 & \\
\hline
\end{tabular}

\section*{STANDARD VT02 TYPES}
2.2 Amps with overvoltage feature - 2.7 Amps, no-overvoltage feature.

Includes knob and 5005 dial (120 V.) or 5019 dial (240 V.) Tandem assemblies are tactory inter-connected
SIMGIE TRESERITYION \begin{tabular}{c}
Phase) \\
\hline Rum \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Basic uncased model, overvoltage} & \multirow[t]{2}{*}{\[
\mathrm{V}_{102}^{\text {(13) }}
\]} & \multirow[b]{2}{*}{120} & \(50^{\circ}\) & 0.120 & 2.24 \({ }^{14}\) & 2.8 & 12A & \({ }_{\text {cw }}\) & 1.2 & - & 3 & \multirow[t]{2}{*}{2.25} \\
\hline & & & 60 & 0.132 & \(2.2{ }^{14}\) & - & 12 A & CW & 1.4 & - & 1.3 & \\
\hline Basic incased model , no-verervoltage & & 120 & 60 & 0.120 & \(2.7{ }^{18}\) & 3.5 & 128 & \(\mathrm{CW}^{\text {cw }}\) & 1.2 & - & 1.3 & 2.25 \\
\hline & \multirow{3}{*}{VT02E} & & & & & & & CWW & 1.2 & - & \({ }^{2.3}\) & \multirow{3}{*}{2.8} \\
\hline \multirow[t]{2}{*}{Cased, fixed mounting, overvoltage} & & \multirow[t]{2}{*}{120} & \(50^{\circ}\) & 0.120 & 1.4 & 1.8 & 12 A & CCW & \(\frac{1.2}{1.2}\) & - & \(2 \cdot 3\) & \\
\hline & & & 60 & 0.132 & 1.4 & & 12A & CW & 1.4 & - & 1-3 & \\
\hline \(f x\) fed mo & VTO2NE & 120 & 60 & 0.120 & 1.6 & 2.2 & 128 & \(\mathrm{CWW}^{\text {cw }}\) & 1.2 & - & 2.3 & 2.8 \\
\hline no-overroltage & & & \(50^{\circ}\) & 0.120 & 1.75 & 2.4 & 12 A & CW & 1.2 & & 1.3 & \\
\hline Portable enclosure, overvoliage & VT02F & 120 & 60 & \(0.132^{\circ}\) & 1.75 & & 12 A & & Facto & WIREO & & 3.2 \\
\hline Portable enclosure, no overvoltage & 02NF & 120 & 60 & 0.120 & 2.0 & 2.8 & 128 & & Facto & WIREO & & 3.2 \\
\hline
\end{tabular} TWO-IN.TANOEM ASSEMBLIES" (Single \& Three Phase)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Basic uncased, overvoltage feature.} & \multirow[b]{3}{*}{Series Connected \({ }^{21} 1 \phi\)} & \multirow{6}{*}{vT02.2} & \multirow[b]{3}{*}{240} & & & & \multirow[b]{2}{*}{2.8} & \multirow[b]{2}{*}{12 C} & CW & 2.2 & 1-1 & 3.3 & \multirow{6}{*}{5.25} \\
\hline & & & & \(50^{\circ}\) & 0.240 & 2.0 & & & CCW & 1.1 & \(2-2\) & 3 3-3 & \\
\hline & & & & 60 & 0.264 & 2.0 & - & 12 C & CW & 4.4 & 1-1 & 3-3 & \\
\hline & \multirow[t]{3}{*}{Open Oetta Connected \(3 \phi\)} & & \multirow[t]{3}{*}{120} & & & & 2.8 & 12 C & CW & 2.1.2 & \(1 \cdot 1\) & 3.1-3 & \\
\hline & & & & \(50^{\circ}\) & 0.120 & 2.0 & 2.8 & 120 & CCW & 1-2.1 & 2-2 & 3.2-3 & \\
\hline & & & & 60 & 0.132 & 2.0 & \(2.8{ }^{\text {² }}\) & 12 C & CW & 4.1-4 & 1-1 & 3-1-3 & \\
\hline \multirow[t]{4}{*}{Basic uncased, no-overvoltage feature.} & Series & \multirow[t]{4}{*}{\[
\mathrm{VTO2N}-2
\]} & & & & 25 & 3.5 & 120 & CW & 2.2 & 1-1 & \(3-3\) & \multirow{4}{*}{2.8} \\
\hline & Connected \({ }^{18} 1 \phi\) & & 240 & 60 & 0.240 & 2.5 & 3.5 & 120 & CCW & 1.1 & 2.2 & 3-3 & \\
\hline & Open Delta & & & & & & & & CW & 2.1.2 & 1-1 & 3.1.3 & \\
\hline & Connected \(3 \phi\) & & 120 & 60 & 0.120 & 2.5 & 3.5 & 120 & CCW & 1-2.1 & 2.2 & 3.2.3 & \\
\hline \multicolumn{14}{|l|}{THREE-IN-TANOEM ASSEMBLY (Three Phase)} \\
\hline Basic unc ased & connected & & 240 & 60 & \(0-240^{13}\) & 2.0 & 2.8 & 12 E & CW & 2.2.2 & 1.1-1 & 3,-3,3 & 8.0 \\
\hline
\end{tabular}

\section*{Standard vi3 types}
3.0 Amps with overvoltage feature - 3.3 Amps, no-overvoltage feature. Includes knob and 5005 dial ((120 v.) or 5019 (240 V .). Tandem assemblies are factory inter.connected
SIMGLE TRANSFORMERS (Single Phase)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Basic uncased model, overvoltage} & \multirow[t]{3}{*}{\[
\mathrm{VI}^{5}
\]} & \multirow{3}{*}{120} & \(50^{\circ}\) & 0.120 & & & 12A & CW & 1.2 & - & 1-3 & \multirow{3}{*}{3.0} \\
\hline & & & \(50^{\circ}\) & 0.120 & 3.0 & 4.0 & 12A & CCW & 1-2 & - & 2.3 & \\
\hline & & & 60 & 0.132 & 3.0 & - & 12A & CW & 1.4 & - & 1-3 & \\
\hline \multirow[t]{2}{*}{Basic uncased model, no-overvoltage} & \multirow[t]{2}{*}{\[
\mathrm{VT}_{3} \mathrm{~N}^{\text {b }}
\]} & \multirow[t]{2}{*}{\[
120
\]} & \multirow[t]{2}{*}{60} & \multirow[t]{2}{*}{0.120} & \multirow[t]{2}{*}{3.3} & \multirow[t]{2}{*}{4.4} & \multirow[t]{2}{*}{128} & CW & 1-2 & - & 1-3 & \multirow[t]{2}{*}{3.0} \\
\hline & & & & & & & & CCW & 1-2 & - & 2.3 & \\
\hline
\end{tabular}

TWO.IN.TANOEM ASSEMBLIES" (Single \& Three Phase)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Basic uncased, overvoltage feature.} & \multirow[b]{3}{*}{Series
\[
\text { Connected }{ }^{12} 1 \phi
\]} & \multirow{6}{*}{\[
\begin{array}{r}
\text { (3) } \\
\text { vT3-2 }
\end{array}
\]} & & & & & & & CW & 2.2 & 1-1 & 3-3 & \multirow{6}{*}{6.5} \\
\hline & & & 240 & \(50^{\circ}\) & 0.240 & 3.0 & 4.0 & 12 C & CCW & 1.1 & 2.2 & 3-3 & \\
\hline & & & & 60 & 0.264 & 3.0 & - & 12 C & CW & 4-4 & 1-1 & 3-3, & \\
\hline & \multirow[t]{3}{*}{Open Delta Connected \(3 \phi\)} & & \multirow{3}{*}{120} & & & & \(40^{13}\) & & CW & 2-1.2 & \(1 \cdot 1\) & 3-1-3 & \\
\hline & & & & \(50^{\circ}\) & 0.120 & 3.0 & 4.0 & 126 & CCW & 1-2.1 & 2.2 & 3-2-3 & \\
\hline & & & & 60 & 0-132 & 3.0 & - & 12 C & CW & 4.1.4 & 1-1 & 3.1-3 & \\
\hline \multirow[t]{3}{*}{Basic uncased, no-overvoltage feature.} & Series & \multirow[t]{3}{*}{\[
\begin{array}{r}
(2) \\
\text { vT3N-2 }
\end{array}
\]} & 240 & 60 & 0.240 & 33 & 4.4 & 120 & CW & 2.2 & 1.1 & 3.3 & \multirow[b]{3}{*}{6.5} \\
\hline & Connected \({ }^{21} 1 \phi\) & & 240 & 60 & & 3.3 & & & CCW & 1.1 & 2.2 & 3-3 & \\
\hline & Open Delta Connected \(3 \phi\) & & 120 & 60 & 0-120 & 3.3 & 4.4 & 120 & CW & \(\frac{2 \cdot 1 \cdot 2}{1 \cdot 2 \cdot 1}\) & 1.1 & 3-1-3 & \\
\hline \multicolumn{14}{|l|}{ThREE-IM-TANDEM ASSEMBLY (Three Phase)} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Basic Uncased, Wye connected}} & \multirow[t]{2}{*}{vT3-3} & \multirow[b]{2}{*}{\[
240
\]} & \multirow[b]{2}{*}{\[
60
\]} & \multirow[t]{2}{*}{\[
\mid 0-240^{13}
\]} & \multirow[t]{2}{*}{3.0} & \multirow[t]{2}{*}{4.0} & \multirow[b]{2}{*}{12 E} & CW & 2-2-2 & 1-1-1 & 3-3-3 & 98 \\
\hline & & & & & & & & & CCW & 1.1-1] & 2.2-2 & 3-3-3 & 9.8 \\
\hline
\end{tabular}

Figure 12: Terminal Connection Schematics for Series VT1, VT02, and VT3.

\section*{Footnotes:}
'Some items are classified "non-stock stnadard" due to limiterl usage and therefore are not stocked. Consult latest issue of Catalog 300 series for availability.
\({ }^{2}\) Frequency shown is a minimum-units may be used up to 1000 Hz .
\({ }^{3}\) As viewed from bushing (base plate) end.
4 Factory wired jumpers are: for 2 -in-tandem, 1-1; for 3-in-tandem, 1-1-1.
\({ }^{5}\) Includes knob, dial and mounting hardware.
- May be used at 50 Hz if connected for no-overvoltage.
\({ }^{7}\) User wires for desired output. Dial calibrated for overvoltage.
\({ }^{8}\) Rating when mounted on metal panel. Derate to 1.3
A when mounted on bracket or non-metalic panel.
? Rating when mounted on metal panel. Derate to 1.5 A when mounted on bracket or non-metalic panel.
\({ }^{10}\) Factory connected for overvoltage output. Easily reconnected for no-overvoltage output by user.
\({ }^{11}\) Two-In-Tandem assemblies are wired for series connection, single phase; for 3 -phase, open delta.
\({ }^{12}\) When transformers are series connected, load cannot be grounded.
\({ }^{33}\) Overvoltage connection must not be used.
\({ }^{14}\) Rating when mounted on metal panel. Derate to 2.0 A when mounted on bracket or non-metalic panel.
\({ }^{15}\) Rating when mounted on a metal panel. Derate to 2.5 A when mounted on bracket or non-metalic panel.
\({ }^{16}\) With a constant impedance load the current shown in this columr, can be drawn at maximum voltage (if the line voltage is connected across the full winding) and proportionately less at any intermediate point. CAUTION: Over-voltage connection must not be used.
(SA) For use only in equipment where the suitability of the combination is to be determined by the constant current.

\subsection*{3.5 Amps. with overvoltage/4.75 Amps. no-overvoltage type}

Ohmite standard of quality is designed into the VT4 series of Ohmitran v.t.e variable transformers. Extra economy can be realized utilizing the newly published non-U.L. ratings in selection of the right VT for your application. No longer is it necessary to purchase a more expensive transformer because the available rating does not fall near your requirements.
The adjustable shaft, an exclusive Ohmite feature, makes it possible to extend the shaft from either end or to substitute a longer shaft. This affords greater versatility of mounting and application. For example, by means of a bracket, the transformer can be mounted with the brush adjacent to the panel to allow easy access for servicing. The shaft can also be extended to allow actuation of other devices such as switches and potentiometers without special construction.
Basic units can be either panel mounted or set-up for bench-top use. Three-hole mounting is standard but a 4-hole mounting adapter plate (see Accessories below) to match other popular 4 -hole mountings is available.
A complete instruction manual detailing installation with mounting hole templates, and servicing is included with each unit.

\section*{SPECIFICATIONS}

Frequency: 50 to over 1000 Hz
Rotation angle: \(324^{\circ} \pm 5^{\circ}\)
Torque: Single unit: \(15-25\) in-oz.
2-Tandem: \(30-60 \mathrm{in}\)-oz.
3-Tandem: 50-85 in-oz.
Termination: No. 6-32 screws. Quick-connect terminals available on special order.

\section*{REPLACEMENT PARTS AND ACCESSORIES}
-Brush-contact assembly for VT4 types (except VT4LN)—Catalog number 6515
-Four hole mounting adapter plate (See Fig. 14 for Dimensions)-Catalog number 6512
-Extra knob for uncased units-Catalog number 5155
-Special purpose dials-see page 15 .
-Adjustable stop for limiting rotation arc-Catalog number 6536
-Fuse link for VT4 types-Catalog number 6508
-Fuse link for VT4N types-Catalog number 6509

Fig. 14: Dimensions-VT4, VT4N basic uncased construction. for panel mounting.
\begin{tabular}{c|c|c|c}
\multicolumn{4}{c}{ VT4 CASE DIMENSIONS } \\
\hline Type & W & \(D^{*}\) & \(H\) \\
\hline\(E\) & \(41 / 2\) & \(41 / 2\) & \(63 / 6\) \\
F & \(4 \% / 8\) & \(41 / 2\) & \(61 / 4\) \\
\hline \multicolumn{4}{c}{ Add \(7 / 8^{\prime \prime}\)} \\
\hline
\end{tabular}

Fig. 18:
VT4FC; VT4NFC similar

STANDARD VT4 TYPES
3.5 Amps U.L. with overvoltage - 4.75 U.L. without overvoltage feature
4.5 Amps non-U.L. with overvoltage - 6.25 non.U.L. without overvoltage feature Includes knob and 5006 dial (120 V.) or 5009 dial (240 V.). Tandem assemblies are factory inter-connected.

SINGLE TRANSFORMERS (Single Phase)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Basic uncased model, overvol tage feature} & \multirow{4}{*}{VT4} & \multirow{4}{*}{120} & \multirow{4}{*}{50} & & & & & & CW & 2.4 & - & 2.3 & \multirow{4}{*}{5.25} \\
\hline & & & & 0-120 & 3.5 & 4.5 & 6.0 & 20A & CCW & 2.4 & - & \(4 \cdot 3\) & \\
\hline & & & & \multirow[b]{2}{*}{0.140} & \multirow[b]{2}{*}{3.5} & \multirow[b]{2}{*}{4.5} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{20 A} & CW & 2.5 & - & 2.3 & \\
\hline & & & & & & & & & CCW & 4.1 & - & 4.3 & \\
\hline Basic uncased model, & & & & & & & & & CW & 1-2 & - & 2.3 & 525 \\
\hline no-overvoltage feature & VI4N & 120 & 50 & 0-120 & 4.75 & 6.25 & 8.0 & 208 & CCW & 1-2 & - & 1.3 & 5.25 \\
\hline \multirow{4}{*}{Cased, fixed mounting, overvoltage} & \multirow{4}{*}{VT4E} & \multirow{4}{*}{120} & \multirow{4}{*}{50} & & & & & & CW & 2.4 & - & 2.3 & \multirow{4}{*}{7.4} \\
\hline & & & & 120 & 2.8 & 2.8 & 3.7 & 20 A & CCW & 2.4 & - & 4.3 & \\
\hline & & & & \multirow[t]{2}{*}{0-140 \({ }^{4}\)} & \multirow[b]{2}{*}{2.8} & \multirow[b]{2}{*}{2.8} & \multirow[t]{2}{*}{-} & \multirow[b]{2}{*}{20A} & CW & 2.5 & - & \(2 \cdot 3\) & \\
\hline & & & & & & & & & CCW & 4-1 & - & \(4 \cdot 3\) & \\
\hline Cased, fixed mounting, & VTANE & 120 & 50 & 0.120 & 3.5 & 3.8 & 5.0 & 208 & CW & 1.2 & - & \(2 \cdot 3\) & \multirow[t]{2}{*}{7.4} \\
\hline no-overvoltage & & 120 & 50 & 0.120 & 3.5 & 3.8 & 5.0 & 208 & CCW & 1-2 & - & 1-3 & \\
\hline Portable enclosure, overvoltage & VT4F & 120 & 50 & \(0.140^{\circ}\) & 3.8 & 3.5 & - & - & \multicolumn{4}{|c|}{FACTORY WIRED} & 7.8 \\
\hline Portable enclosure, no-overvoltage & VT4NF & 120 & 50 & 0-120 & 4.75 & 4.75 & 6.3 & - & & FACTO & WIRE & & 7.8 \\
\hline VT4F with grounded inout/output & VT4FC & 120 & 50 & 0-140 & 3.5 & 3.5 & - & - & & FACTO & WIRE & & 7.8 \\
\hline VTANF with grounded input/output & VT4NFC & 120 & 50 & 0-120 & 4.75 & 4.75 & 6.3 & - & & FACTO & WIRE & & 7.8 \\
\hline
\end{tabular}

TWO-IN-TANDEM ASSEMBLIES \({ }^{\circ}\) (Single and Three Phase)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{8}{*}{Basic uncased overvoltage feature} & \multirow[b]{4}{*}{Series Connected \(1 \phi\)} & \multirow{8}{*}{VT4-2} & \multirow{4}{*}{240} & \multirow{4}{*}{50} & & & & & & CW & 4.4 & 2-2 & 3-3 & \multirow{8}{*}{11.3} \\
\hline & & & & & 0-240 & 3.5 & 4.5 & 6.0 & 20 C & CCW & 2-2 & 4.4 & 3-3 & \\
\hline & & & & & 0-280 & 3.5 & 4.5 & - & 20 C & CW & 5.5 & 2.2 & 3.3 & \\
\hline & & & & & & & & & & CCW & 1-1 & 4.4 & 3-3 & \\
\hline & \multirow[t]{4}{*}{Open Delta Connected \(3 \phi\)} & & \multirow{4}{*}{120} & \multirow{4}{*}{50} & 0-120 & 3.5 & 4.5 & 6.0 & 20 C & CW & 4-2-4 & 2.2 & 3-2-3 & \\
\hline & & & & & & 3.5 & & 6.0 & & CCW & 2-4-2 & 4.4 & 3-4-3 & \\
\hline & & & & & 0.140 & 3.5 & 45 & - & 200 & CW & 5.2-5 & 2-2 & 3-2-3 & \\
\hline & & & & & \(0-140\) & 3.5 & 4.5 & - & 200 & CCW & 1-4-1 & 4.4 & 3-4-3 & \\
\hline \multirow[t]{4}{*}{Basic
uncased
no-over-
voltage
feature} & Series & \multirow{4}{*}{VT4N-2} & \multirow[b]{2}{*}{240} & \multirow[b]{2}{*}{50} & \multirow[b]{2}{*}{0-240} & \multirow[b]{2}{*}{4.75} & \multirow[b]{2}{*}{6.25} & \multirow[b]{2}{*}{8.0} & \multirow[b]{2}{*}{200} & CW & 1-1 & 2-2 & 3.3 & \multirow{4}{*}{11.3} \\
\hline & Connected 1 1 \(\phi\) & & & & & & & & & CCW & 2.2 & 1-1 & 3-3 & \\
\hline & Open Delta & & & & & & & & & CW & 1-2.1 & 2-2 & 3-2.3 & \\
\hline & Connected 3¢ & & 120 & 50 & 0-12C & 4.75 & 6.25 & 8.0 & 200 & CCW & 2-1-2 & 1-1 & 3-1-3 & \\
\hline \multicolumn{15}{|l|}{THREE-IN-TANDEM ASSEMBLIES (Three Phase)} \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Uncased, Wye Connected}} & \multirow{4}{*}{VT4-3} & \multirow{4}{*}{240} & \multirow[t]{2}{*}{50} & \multirow[t]{2}{*}{0-240} & \multirow[t]{2}{*}{3.5} & \multirow[t]{2}{*}{4.5} & \multirow[t]{2}{*}{6.0} & \multirow[t]{2}{*}{20 E} & CW & 4-4-4 & 2-2-2 & 3-3-3 & \multirow{4}{*}{17.3} \\
\hline & & & & & & & & & & CCW & 2-2-2 & 4-4-4 & 3-3-3 & \\
\hline & & & & & & & & - & & CW & 5.5 .5 & 2-2-2 & 3-3-3 & \\
\hline & & & & 60 & 0-280 & 3.5 & 4.5 & - & 20 E & CCW & 1-1-1 & 4-4.4 & 3-3-3 & \\
\hline
\end{tabular}

Footnotes:
\({ }^{1}\) Some items are classified "non-stock standard" due to limited usage and therefore are not stocked. Consult latest issue of Catalog 300 series for availability.
= Frequency shown is a minimum-units may be used up to 1000 Hz .
\({ }^{3}\) Includes knob, dial and mounting hardware.
\({ }^{4}\) User wires for desired output. Dial calibrated for overvoltage.
\({ }^{5}\) Factory connected for overvoltage output. Easily reconnected for no-overvoltage output by user.
- Two-In-Tandem assemblies are wired for series connection, single phase; for 3 -phase, open delta.
\({ }^{T}\) When transformers are series connected, load cannot be grounded.
\({ }^{8}\) Factory wired jumpers are: for VT4-2, 2-2; for VT4N-2, 2-2; for VT4-3, 2-2-2.
- Under components program-Underwriters' Laboratories (File No. E10946) listed: Cat. Nos. VT4, VT4-2, -3, VTAN, VT4N-2, -3. CSA approved: Cat. Nos. VT4, VI4-2, -3, VTAN, VT4N-2 (File number 21309).
Under apparatus program-Underwriters' Laboratories (File No. E10946) listed: Cat. NOS. VT4E, VT4F, VT4FC. CSA aperoved: Cat. Nos. VT4E, VT4FC, VT4NFC.' (File 'Number 21309).
\({ }^{10}\) As viewed from base plate end.
\({ }^{11}\) With a constant impedance load the current shown in this column can be drawn at maximum voltage (if the line voltage is connected across the full winding) and proportionately less at any intermediate point. CAUTION: Over-voltage connection must not be used.

Fig. 20A

Fig. 20B

Fig. 20C

Fig. 20D

Fig. 20E
*As viewed from base plate end

Fig. 20: Terminal Connection Schematics for VT4 Series.

1/4 \(^{1 / 4 .} 20\) TAP 2 SETS OF PANEL MTT HOLES

SERIES VT8
7.5 Amps with overvoltage/ 10 Amps no-overvoltage type

Compact, the VT8 series requires at least one-half inch less back-of-panel depth than others. Long, maintenance-free life, excellent regulation at any point within rated load and an output free of wave form distortion are other distinguishing features of the VT8 series.

As with all Ohmitran v.t. \({ }^{\circledR}\) transformers, the VT8 series features an adjustable shaft so that you may panel mount or set-up on bench or other horizontal mounting surface. The shaft is fixed in the desired position by means of socket head screws located in the hub of the brush-radiator plate.
A complete line of enclosed models, including portable models with built-in meters are offered with a choice of overvoltage and no-overvoltage feature.

Included with each unit is a complete instruction manual detailing servicing and installation.

\section*{SPECIFICATIONS}

Frequency: 50 to over 1000 Hz .
Rotation Angle: \(324^{\circ} \pm 5^{\circ}\)
Torque: Single Unit: \(20-35\) inch-ounces
2-Tandem: 45-70 inch-ounces
3-Tandem: 80-115 inch-ounces
Terminations: No. 6 screws. Quick-connect terminals available on special order.

\section*{REPLACEMENT PARTS and ACCESSORIES}
-Brush-contact assembly for VT8 and VT8N typesCatalog Number 6515
-Brush-contact assembly for VT8H and VT8HN types-Catalog Number 6516H
-Adjustable stop for limiting rotation arc-Catalog Number 6537
-Extra knob for uncased units-Catalog Number 5155
-Special purpose dials-see page 15 .

Fig. 26: VT8GCV (with voltmeter) VT8GCVA (with volt and ammeter VT8GCVW (with volt and wattmeter
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{vi8 Case dimensions} \\
\hline Fig.
No. & \[
\begin{aligned}
& \text { Case } \\
& \text { Style }
\end{aligned}
\] & W & \(\mathrm{D}^{2}\) & H \\
\hline 23 & E & 53/16 & 51/4 & 73/10 \\
\hline 24 & F & 517/32 & 51/4 & 73/8 \\
\hline & FV, etc. & 73/8 & 51/4 & 101/2 \\
\hline 25 & G & 53/16 \({ }^{1}\) & 51/4 & \(73 / 8^{3}\) \\
\hline 26 & GV, etc. & 7 & 51/4 & \(101 / 2^{3}\) \\
\hline 28 & 3 E & 53/16 & 153/4 & 73/16 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
\({ }^{1} 5^{3} \mathbf{a}^{\prime \prime}\) including handle fittings. \\
"Add 1 " for knob thickness.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Case height only. Does not include
handle.} \\
\hline
\end{tabular}
1.5 Amps, overvoltage - 10.0 Amps , no-overvoltage feature Includes knob and 5006 dial (120.V) or 5009 dial (240 V.). Jandem assemblies are factory inter-connected.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESCRIPTION} & \multirow[b]{2}{*}{CATALOE¹ nUMBER} & \multirow[b]{2}{*}{\[
\begin{array}{|l|}
\hline \text { INPUT } \\
\text { YOLTS }
\end{array}
\]} & \multirow[b]{2}{*}{FRER. \({ }^{2}\) FROM (Hiz)} & \multicolumn{3}{|c|}{OUTPUT (Max.)} & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { WEIGHT } \\
& \text { (LBS.) }
\end{aligned}
\]} \\
\hline & & & & VOLTS & CON-
STANT
CURRENT
U.L. CSAA1
AMPS & \[
\begin{aligned}
& \text { CON-12 } \\
& \text { STANT } \\
& \text { IMPED- } \\
& \text { ANCE } \\
& \text { AMPS }
\end{aligned}
\] & CONNECTION SCHEMATIC Fig. No. (see page 14) & \\
\hline
\end{tabular}

SINGLE TRANSFORMERS (Single Phase)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Basic uncased model, overvoltage feature. & V78 & 120 & 50 & 0-120/140 & 7.5 & 9.0 & 39A & 10.25 \\
\hline Basic uncased model, no-overvoltage feature. & VI8N & 120 & 50 & 0.120 & 10.0 & 12.0 & 39B & 10.25 \\
\hline Cased, Fixed mounting, overvoltage. & VT8E & 120 & 50 & \(0-120 / 140^{4}\) & 6.0 & 7.2 & 39A & 13.5 \\
\hline Cased, Fixed mounting, no-overvoltage. & VIENE & 120 & 50 & 0-120 & 8.0 & 9.5 & 39B & 13.5 \\
\hline Portable enclosure, overvoltage. & VT8F & 120 & 50 & \(0-140^{3}\) & 7.5 & - & Factory Wired & 13.8 \\
\hline Portable enclosure, no-overvoltage. & VİNF & 120 & 50 & 0.120 & 10.0 & 12.0 & Factory Wired & 13.8 \\
\hline VT8F with grounded input/output. & VI8FC & 120 & 50 & \(0.140^{8}\) & 7.5 & - & Factory Wired & 13.8 \\
\hline VT8NF with grounded input/output. & VT8NFC & 120 & 50 & 0.120 & 10.0 & 12.0 & Factory Wired & 13.8 \\
\hline VI8NFC with volt meter. & VI8NFCV & 120 & 50 & 0.120 & 10.0 & 12.0 & Factory Wired & 14.8 \\
\hline VT8NFC with volt and ammeter. & VI8NFCVA & 120 & 50 & 0.120 & 10.0 & 12.0 & Factory Wired & 15.2 \\
\hline VT8NFC with volt and wattmeters. & VT8NFCVW & 120 & 50 & 0-120 & 10.0 & 12.0 & Factory Wired & 15.2 \\
\hline Deluxe Portable, overvoltage. & VI8G & 120 & 50 & \(0.120 / 140^{\circ}\) & 6.0 & 7.2 & Factory Wired & 14.2 \\
\hline VI8G with grounded input/output. & VI8GC & 120 & 50 & \(0-120 / 140^{\circ}\) & 6.0 & 7.2 & Factory Wired & 14.2 \\
\hline VT8GC with voltmeter. & VI8GCV & 120 & 50 & \(0-120 / 140^{8}\) & 6.0 & 7.2 & Factory Wired & 15.2 \\
\hline VT8GC with volt and ammeters. & VI8GCVA & 120 & 50 & \(0-120 / 140^{\circ}\) & 6.0 & 7.2 & Factory Wired & 15.5 \\
\hline VT8GC with volt and wattmeter. & VT8GCVW & 120 & 50 & \(0-120 / 140^{8}\) & 6.0 & 7.2 & Factory Wired & 15.5 \\
\hline Basic, uncased, overvoltage feature, 240 V . input with 120 V . tap. & VT8H & \[
\begin{array}{|l|}
\hline 240 \\
\hline 120 \\
\hline
\end{array}
\] & \(\frac{50}{50}\) & \[
\frac{0-240 / 280}{0-280}
\] & \[
\frac{3.0}{3.0^{T}}
\] & 3.6 & \(39 C\) & 10.25 \\
\hline Basic, uncased, no-overvoltage feature, 240 V . input with 120 V . tap. & VI8HN & 240 & 50 & 0.240 & 4.0 & \[
\frac{4.8}{4.8}
\] & 390 & 10.25 \\
\hline
\end{tabular}

TWO-IN-TANDEM \({ }^{8}\) (Single and Three Phase)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Basic, uncased, overvoltage} & \[
\begin{aligned}
& 240 \text { V, Input, } \\
& \text { Series Connected }{ }^{2}, 1 \phi
\end{aligned}
\] & \multirow[t]{2}{*}{VT8-2} & 240 & 50 & 0-240/280 & 7.5 & 9.0 & \multirow[t]{2}{*}{397} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 20.6 \\
& 20.6
\end{aligned}
\]} \\
\hline & 120 V Input, & & 120 & 50 & 0-120/140 & 7.5 & 9.0 & & \\
\hline \multirow[b]{2}{*}{Basic, uncased, no-overvoltage} & 240 V, Input, Series Connected \({ }^{\circ}, 1 \phi\) & \multirow[t]{2}{*}{VT8N-2} & 240 & 50 & 0-240 & 10.0 & 12.0 & \multirow[t]{2}{*}{39G} & \multirow[t]{2}{*}{20.6
20.6} \\
\hline & 120 V Input, Open Delta Connected, \(3 \phi\) & & 120 & 50 & 0-120 & 10.0 & 12.0 & & \\
\hline \multirow[b]{2}{*}{Basic, uncased, overvoltage} & \[
\begin{aligned}
& 240 \text { V, Input, } \\
& \text { Series Connected }{ }^{\circ}, 1 \phi
\end{aligned}
\] & \multirow[b]{2}{*}{VT8H-2} & 480 & 50 & 0-480/560 & 3.0 & 3.6 & \multirow[b]{2}{*}{39K} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 20.6 \\
& 20.6
\end{aligned}
\]} \\
\hline & 120 V Input, Open Delta Connected, \(3 \phi\) & & 240 & 50 & 0-240/280 & 3.0 & 3.6 & & \\
\hline \multirow[t]{2}{*}{Basic, uncased, no-overvoltage} & \[
\begin{aligned}
& 240 \text { V, Input, } \\
& \text { Series Connected }{ }^{\circ}, 1 \phi \\
& \hline
\end{aligned}
\] & \multirow[t]{2}{*}{VT8HN-2} & 480 & 50 & 0-480 & 4.0 & 4.8 & \multirow[t]{2}{*}{39L} & \multirow[t]{2}{*}{20.6
20.6} \\
\hline & \[
\begin{aligned}
& 120 \mathrm{~V} \text { Input, } \\
& \text { Open Delta Connected, } 3 \phi
\end{aligned}
\] & & 240 & 50 & 0-240 & 4.0 & 4.8 & & \\
\hline
\end{tabular}

\section*{THREE-IN-TANDEM (Three Phase)}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Uncased, Wye connected & VT8-3 & 240 & \(60^{10}\) & \(0-240 / 280\) & 7.5 & 9.0 & 39 H & 31.0 \\
\hline Fixed mounting case, wye connected & VT8-3E & 240 & \(60^{10}\) & \(0-240 / 280\) & 6.0 & 7.2 & 39 H & 41.5 \\
\hline Uncased 480 V. input, wye connected & VT8H-3 & 480 & \(60^{10}\) & \(0-480 / 560\) & 3.0 & 3.6 & 39 N & 31.0 \\
\hline
\end{tabular}

Footnotes:
\({ }^{1}\) Some items are classified "non-stock standard" due to limited usage and therefore are not stocked. Consult lates issue of Catalog 300 series for availabil ity.
\({ }^{2}\) Frequency shown is a minimum-units may be used up to 1000 Hz .
\({ }^{3}\) Includes knob, dial and mounting hardware.
- User wires for desired output. Dial calibrated for overvoltage.
s Factory connected for overvoltage output. Easily reconnected for no-overvoltage output by user.
- Switch selects overvoltage or line voltage output mode.
When 120 volt input tap is used, unit must be derated for output greater than 120 volts. See Figure 5, page 3.
Two-In-Tandem assemblies are wired for series connection, single phase; for 3 phase, open delta.
9 When transformers are series connected, load cannot be grounded.
\({ }^{10}\) May be used at 50 Hz if connected for no-overvoltage.
11 Under components program-Underwriters' Laboratories (File No. E10946 listed: Cat. Nos. VT8, VT8-2, -3, VT8N, VT8N-2. CSA approved: VT8, VT8-2, -3, VT8N, VT8N-2 VT8H, VT8H-2, VT8HN, VT8HN-2. (File No \(21309)\).
Under apparatus program-Underwriters' Laboratories (File No. E10946) listed Gat. Nos. VT8E, VT8F, VT8FC, VT8G VT8GC. CSA approved: VT8E, VI8-3E, GCVW' VT8NE' VTBNFC VT8NFCV' VTB NECV, VT8NFCVW Fi, NIBNFCV, VT8 FCVA, VI8NFCVW. (File No. 21309)
\({ }^{12}\) With a constant impedance load the current shown in this column can be drawn at maximum voltage (if the lin voltage is connected across the full winding) and proportionately less at any intermediate point. CAUTION: Over-volt age connection must not be used.

Whether you use the VT20 series as a laboratory instrument or a system's component, you will be specifying a variable transformer with distinctive sturdiness of construction. To provide an extra margin of heat dissipation, the VT20's brush assembly is oversize. Added stability under conditions of vibration is assured by the unique counter-balanced radiator plate.

As with all Ohmitran V.T.'s, the VT20 series features an adjustable shaft which means the shaft may be extended from either end of the transformer as required for panel or horizontal surface mounting. A unique collet-type shaft lock permits ready repositioning of the shaft without scarring or defacing shaft surface.
VT20 series are offered in a choice of the overvoltage variety for low-line compensation, and the no-overvoltage version for higher current rating. A special " B " type case, a round ventilated enclosure with exposed terminal panel and base is an ideal accessory where protection of the winding area is required. The deluxe portable enclosure, type G, is also available with built-in meters and is an excellent lab instrument.

Also included in the VT20 series is the high voltage input version, type VT20H. In addition to the higher voltage input, a tap for lower voltage is provided and the terminals are brought out to the terminal panel to facilitate wiring.

A complete instruction manual detailing installation with mounting holes templates and servicing are included with each unit.

\section*{SPECIFICATIONS}

Frequency: 50 to over 1000 Hz .
Rotation Angle: \(317^{\circ} \pm 5^{\circ}\)
Torque: Single unit: \(45-90\) inch-oz.
2-Tandem: \(\quad 90-180\) inch-oz.
3-Tandem: 200-300 inch-oz.
Terminations: VT20 series: No. 10 screws; VT20H Series: No. 6 screws. Quick-connect terminals available on special order.

\section*{REPLACEMENT PARTS and ACCESSORIES}
-Brush-contact assembly for VT20 and VT20N types -Catalog Number 6594
-Brush-contact assembly for VT2OH and VT20HN types-Catalog Number 6596
-Adjustable stop for limiting rotation arc-Catalog Number 6538
-Extra knob for uncased units-Catalog Number 5157
-Special purpose dials-see page 15.
-Fuse link-Catalog Number 6535

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESCRIPTION} & \multirow[b]{2}{*}{CATALOG NUMBEF} & \multirow[b]{2}{*}{INPUT VOLTS} & \multirow[b]{2}{*}{FREQ.: FROM Hz} & \multicolumn{3}{|c|}{OUTPUT MEx} & \multirow[b]{2}{*}{CONAECTION SCHE MATIC FIG. NO. (See page 14)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { EIGH } \\
& \text { (LBS.) } \\
& \hline
\end{aligned}
\]} \\
\hline & & & & VOLTS & CON-
STANT
CUR-
RENT UL
APS & \[
\begin{aligned}
& \text { CON. } \\
& \text { STANT } \\
& \text { IMPEI- } \\
& \text { ANCE } \\
& \text { AMPS } \\
& \hline
\end{aligned}
\] & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{SIngle transformers (Single Phase)} \\
\hline Basic uncased model, overvoltage feature & VT20 & 120 & 50 & 0-120/140 & 20.018 & 23.0 & 39A & 22.0 \\
\hline VT20 without overvoltage feature & VT20N & 120 & 50 & 0-120 & \(25.0{ }^{13}\) & 25.0 & 398 & 22.0 \\
\hline "8" type enclosure, overvoltage & VT208 & 120 & 50 & 0.120/140 & 20.0 & 23.0 & 39A & 22.5 \\
\hline VT208 without overvoltage feature & VT20NB & 120 & 50 & 0.120 & 25.0 & 25.0 & 398 & 22.5 \\
\hline Cased, fixed mounting, overvoltage & VT20E & 120 & 50 & 0.120/140 & \(16.0{ }^{32}\) & 18.0 & 39A & 29.0 \\
\hline VT20E without overvoltage feature & VT2ONE & 120 & 50 & 0.120 & \(20.0{ }^{17}\) & 20.0 & 398 & 29.0 \\
\hline Portable enclosure w/grounded in/out, overvoltage & VT2OFC & 120 & 50 & \(0-140^{3}\) & 20.0 & - & Factory Wired & 31.0 \\
\hline VT20FC without overvoltage feature & VTZONFC & 120 & 50 & 0.120 & 25.0 & 25.0 & Factory Wired & 31.0 \\
\hline VT2ONFC with voltmeter & VİONFCV & 120 & 50 & 0.120 & 25.0 & 25.0 & Factory Wired & 32.0 \\
\hline VT20NFC with volt and ammeter & VITONFCVA & 120 & 50 & 0.120 & 25.0 & 25.0 & Factory Wired & 32.0 \\
\hline VI20NFC with volt and wattmeter & VTZONFCLW & 120 & 50 & 0-120 & 25.0 & 25.0 & Factory Wired & 32.0 \\
\hline Deluxe Portable, grounded in/out, overvoltage & VT20GC & 120 & 50 & \(0-120 / 140^{8}\) & \(16.0{ }^{12}\) & 18.0 & Factory Wired & 31.0 \\
\hline VT20GC with voitmeter & VT20GCV & 120 & 50 & 0.120/140 \({ }^{\circ}\) & 16.0 & 18.0 & Factory Wired & 32.0 \\
\hline VT20GC with volt and ammeter & VT20GCVA & 120 & 50 & \(0.120 / 140^{\circ}\) & 16.0 & 18.0 & Factory Wired & 32.2 \\
\hline VT20GC with volt and wattmeter & VT2OGCVW & 120 & 50 & \(0.120 / 140^{\circ}\) & 16.0 & 18.0 & Factory Wired & 32.2 \\
\hline \multirow[t]{2}{*}{Basic uncased model, overvoltage 240 V . input with 120 V . tap} & \multirow[t]{2}{*}{VT2OH} & 240 & 50 & 0-240/280 & 5.0 & 10.25 & \multirow[t]{2}{*}{39 C} & \multirow[t]{2}{*}{22.0} \\
\hline & & 120 & 50 & 0.280 & \(9.0{ }^{\text { }}\) & - & & \\
\hline \multirow[b]{2}{*}{VT2OH with no-overvoltage} & \multirow[t]{2}{*}{VT2OHN} & 240 & 50 & \(0-240\) & 11.0 & 12.5 & \multirow[t]{2}{*}{395} & \multirow[t]{2}{*}{22.0} \\
\hline & & 120 & 50 & 0.240 & \(11.0{ }^{7}\) & 12.5 & & \\
\hline \multirow[b]{2}{*}{VT2OH in type "B" enclosure} & \multirow[t]{2}{*}{VT2OHB} & 240 & 50 & 0.240/280 & 9.0 & 10.25 & \multirow[t]{2}{*}{\(39 C\)} & \multirow[t]{2}{*}{22.5} \\
\hline & & 120 & 50 & 0.280 & \(9.0{ }^{7}\) & - & & \\
\hline \multirow[b]{2}{*}{VT2OHN in type "B" enclosure} & \multirow[t]{2}{*}{VT2OHNB} & 240 & 50 & \(0-240\) & 11.0 & 12.5 & \multirow[t]{2}{*}{\(39 E\)} & \multirow[t]{2}{*}{22.5} \\
\hline & & 120 & 50 & 0.240 & \(11.0{ }^{7}\) & 12.5 & & \\
\hline \multirow[t]{2}{*}{Cased, fixed mounting type, overvoltage, 240 V . input with 120 V . tap} & \multirow[t]{2}{*}{VT2OHE} & 240 & 50 & 0.240/280 \({ }^{\text {a }}\) & 7.2 & 8.2 & \multirow[t]{2}{*}{390} & \multirow[t]{2}{*}{28.0} \\
\hline & & 120 & 50 & 0.280 & 7.2 & - & & \\
\hline \multirow[b]{2}{*}{VT2OHE without overvoltage feature} & \multirow[t]{2}{*}{VT2OHNE} & 240 & 50 & 0.240 & 8.8 & 10.0 & \multirow[t]{2}{*}{395} & \multirow[t]{2}{*}{28.0} \\
\hline & & 120 & 50 & 0.240 & \(8.8{ }^{\text {²}}\) & 10.0 & & \\
\hline \multirow[t]{2}{*}{Portable enclosure with grounded in/out overvoltage, 240 V . input with 120 V . tap} & \multirow[t]{2}{*}{VT2OHFC} & 240 & 50 & \(0.280^{3}\) & 9.0 & - & \multirow[b]{2}{*}{Factory Wired} & \multirow[t]{2}{*}{30.0} \\
\hline & & 120 & 50 & \(0-280^{13}\) & \(9.0{ }^{7}\) & - & & \\
\hline \multirow[b]{2}{*}{VT20HFC without overvoltage feature} & \multirow[b]{2}{*}{VT2OHNFC} & 240 & 50 & 0.240 & 11.0 & 12.5 & \multirow[b]{2}{*}{Factory Wired} & \multirow[b]{2}{*}{30.0} \\
\hline & & 120 & 50 & 0-240 \({ }^{14}\) & \(11.0{ }^{7}\) & 12.5 & & \\
\hline \multicolumn{9}{|l|}{TWO-IN-TANDEM \({ }^{\text {s }}\) (Single and Three Phase)} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Basic, uncased, \\
overvoltage
\end{tabular} & \begin{tabular}{l}
240 V. Input, \\
Series Connected \({ }^{\circ}, 1 \phi\) \\
\begin{tabular}{l}
120 \\
D. V. Input, Open \\
Delta Connected, \(3 \phi\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{VT20-2} & 240 & 50 & 0-240/280 & \multirow[t]{2}{*}{\(20.0{ }^{11}\)} & \multirow[t]{2}{*}{23.0} & \multirow[t]{2}{*}{397} & \multirow[t]{2}{*}{45} \\
\hline & & 120 & 50 & 0.120/140 & & & & \\
\hline & \multirow[t]{2}{*}{VT20N-2} & 240 & 50 & 0.240 & \multirow[t]{2}{*}{\(25.0{ }^{12}\)} & \multirow[t]{2}{*}{25.0} & \multirow[t]{2}{*}{396} & \multirow[t]{2}{*}{45} \\
\hline \begin{tabular}{l|l}
no-overvoltage & \begin{tabular}{l}
120 V. Input, Open \\
Delta Connected, \(3 \phi\)
\end{tabular} \\
\hline & 20 V .
\end{tabular} & & 120 & 50 & 0-120 & & & & \\
\hline "B" type enclosure 240 Series Connected", \(1 \phi\) & \multirow[b]{2}{*}{VT20-28} & 240 & 50 & 0.240/280 & \multirow[b]{2}{*}{20.0} & \multirow[b]{2}{*}{23.0} & \multirow[b]{2}{*}{39F} & \multirow[t]{2}{*}{46} \\
\hline \begin{tabular}{l|l}
overvoltage & \begin{tabular}{l}
120 V. Input, 0 0pen \\
Oelta \\
\end{tabular} \\
\hline
\end{tabular} & & 120 & 50 & 0.120/140 & & & & \\
\hline " 8 " type enclosure 2 Series Connected", \(1 \phi\) & \multirow[t]{2}{*}{VT20N-28} & 240 & 50 & 0-240 & \multirow[t]{2}{*}{25.0} & \multirow[t]{2}{*}{25.0} & \multirow[t]{2}{*}{396} & \multirow[t]{2}{*}{46} \\
\hline & & 120 & 50 & 0-120 & & & & \\
\hline \begin{tabular}{l|l}
& 480 V. Input \\
Uncased with & Series Connected \({ }^{\circ}, 1 \phi\)
\end{tabular} & \multirow[b]{2}{*}{VT2OH-2} & 480 & 50 & 0-480/560 & \multirow[b]{2}{*}{\(9.0{ }^{1}\)} & \multirow[b]{2}{*}{10.25} & \multirow[b]{2}{*}{39K} & \multirow[b]{2}{*}{43} \\
\hline \begin{tabular}{l|l|}
\begin{tabular}{l|l}
overvoltage & 240 V. Input \\
Open Delta Connected, \(3 \phi\)
\end{tabular} \\
\hline
\end{tabular} & & 240 & 50 & 0-240/280 & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l}
480 V. Input \\
VT2OH-2 without \\
overvoltage feature
\end{tabular} \\
\begin{tabular}{ll}
Series Connected \\
& \begin{tabular}{l}
240 V. Input
\end{tabular} \\
\begin{tabular}{ll}
Open Delta
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}} & \multirow[b]{2}{*}{VT2OHN-2} & 480 & 50 & 0.480 & \multirow[b]{2}{*}{\(11.0{ }^{\text {r }}\)} & \multirow[b]{2}{*}{12.5} & \multirow[b]{2}{*}{39M} & \multirow[b]{2}{*}{43} \\
\hline & & 240 & 50 & 0-240 & & & & \\
\hline \multicolumn{9}{|l|}{THREE-IN-TANDEM (Three Phase)} \\
\hline Uncased, Wye connected, overvoltage & VT20-3 & 240 & \(60^{10}\) & 0.240/280 & 20.012 & 23.0 & 39H & 58.0 \\
\hline VT20.3 without overvoltage feature & VT20N-3 & 240 & 60 & 0.240 & 25.013 & 25.0 & 391 & 58.0 \\
\hline " 8 " type enclosure, overvoltage & VT20.38 & 240 & \(60^{10}\) & 0.240/280 & 20.0 & 23.0 & 39 H & 69.5 \\
\hline VT20-38 without overvoitage feature & VT20N-3B & 240 & 60 & 0.240 & 25.0 & 25.0 & 391 & 69.5 \\
\hline \multirow[t]{2}{*}{Uncased, 480 V . input with \(240 \mathrm{~V} . \operatorname{tap}\), overvoltage} & \multirow[t]{2}{*}{Vi2OH-3} & 480 & \(60^{10}\) & 0.480/560 & 9.0 & 10.25 & \multirow[t]{2}{*}{39N} & \multirow[t]{2}{*}{65} \\
\hline & & 240 & \(60^{10}\) & 0.560 & \(9.0^{7}\) & - & & \\
\hline \multirow[t]{2}{*}{VT2OH-3 without overvoltage feature} & \multirow[t]{2}{*}{VT2OHN-3} & 480 & 60 & 0.480 & 11.0 & - & \multirow[t]{2}{*}{39 P} & \multirow[t]{2}{*}{65} \\
\hline & & 240 & 60 & 0-480 & \(11.0^{\text { }}\) & - & & \\
\hline
\end{tabular}

\section*{Footnotes:}
'Some items are classified "non-stock standard" due to Tmited usage and therefore are not stocked. Censult latest issue of Catalog 300 series for availability.
*Frequency shown is a minimum-units may be used up to 1000 Hz .
\({ }^{3}\) Includes knob, dial and mounting hardware.
- User wires for desired output. Dial calibrated for overvoltage.
\({ }^{5}\) Factory connected for overvoltage output. Easily reconnected for no-overvoltage output by user.
- Switch selects overvoltage or line voltage output mode. \({ }^{7}\) When 120 volt input tap is used, unit must be cerated for output greater than 120 volts. See figure 5, page 3. Two-In-Tandem assemblies are wired for series connection, single phase; for 3 -phase, open delta.

\section*{See page 14 for connection schematic details}
\({ }^{9}\) When transformers are series connected, load cannot be grounded.
\({ }^{10}\) May be used at 50 Hz if connected for no-overveltage.
\({ }^{11}\) Underwriters' Lajoratories listed under components program (File Number E10946).
\({ }^{12}\) Underwriters' Laboratories listed under apparatus program (File Number El0946).
\({ }^{13}\) Factory connected for overvoltage output with 240 V . in put. Has to be re-connected fer 120 V . input by user.
\({ }^{14}\) Factory connected for 240 V . input. Has to be reconnected for 120 V . input.
\({ }^{13}\) With a constant impedance load the current shown in this column can be drawn at maximum voltage (\(f\) the line voltage is connected across the full winding) and proportionately less at any intermediate point. CAUTION: over-voltage connection must not be used.

\title{
TERMINAL CONNECTION SCHEMATICS vt8 AND VT20 TRANSFORMERS
}
ohmite

Fig. 39A
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Knob* Rotation} & Input & \multicolumn{2}{|c|}{Output} \\
\hline & 120 V. & 0-120V. & 0.140V. \\
\hline CW & 4-1 & 4-3 & \\
\hline CCW & 4-I & 1-3 & \\
\hline CW & 4.5 & & 4.3 \\
\hline CCW & 1-2 & & :-3 \\
\hline
\end{tabular}

Fig. 39B
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Knob* Rotation} & Input & Output & \multirow[t]{4}{*}{} \\
\hline & 120V1 & \(0-120^{2}\) & \\
\hline CW & 1.2 & 2-3 & \\
\hline CCW & 1.2 & 1-3 & \\
\hline
\end{tabular}

Fig. 39C
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{c}
Knob* \\
Rotation
\end{tabular} & \multicolumn{1}{|c|}{ Input } & \multicolumn{2}{c|}{ Output } \\
\hline & 120 V. & 240 V. & \(0-240 \mathrm{~V}\) & \(0-280 \mathrm{~V}\) \\
\hline CW & & \(4-1\) & \(4-3\) & \\
\hline CCW & & \(4-1\) & \(1-3\) & \\
\hline CW & & \(4-5\) & & \(4-3\) \\
\hline CCW & & \(1-2\) & & \(1-3\) \\
\hline CW & \(4-7\) & & & \(4-3\) \\
\hline CCW & \(1-6\) & & & \(1-3\) \\
\hline
\end{tabular}

Fig. 39F
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Knob*
Rotation} & Input & \multirow[t]{2}{*}{Jumper} & \multicolumn{2}{|r|}{Output} & \multirow[b]{6}{*}{\[
\begin{array}{ll}
40-2 \\
20-2 & 031 \\
50-3 & \mathrm{cw} \\
10-9
\end{array}
\]} \\
\hline & 240 V . & & 0-240V. & 0-280V. & \\
\hline CW & I-1 & 4-4 & 3-3 & & \\
\hline CCW & 4.4 & 1-1 & 3-3 & & \\
\hline CW & 55 & 4-4 & & \(3 \cdot 3\) & \\
\hline CCW & 2-2 & 1-1 & & 3-3 & \\
\hline \multicolumn{5}{|l|}{3-Phase Open Delta Operation} & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Knob** } \\
\text { Rotation }
\end{gathered}
\]} & Input & \multirow[t]{2}{*}{Jumper} & \multicolumn{2}{|c|}{Output} & \multirow[t]{6}{*}{} \\
\hline & 120 V . & & 0-120V. & 0-140V. & \\
\hline CW & 1-4-1 & 4.4 & 3-4-3 & & \\
\hline CCW & 4-1-4 & 1-1 & 3-1-3 & & \\
\hline CW & 5-4-5 & 4-4 & & 3-4-3 & \\
\hline CCW & 2-1-2 & 1-1 & & 3.1-3 & \\
\hline
\end{tabular}

Fig. 39G
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Knob*
Rotation} & Input & \multirow[b]{2}{*}{Jumper} & Output \\
\hline & 240V. & & 0-240V. \\
\hline CW & 1-1 & 2-2 & 3-3 \\
\hline CCW & 2-2 & 1-1 & 3-3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Knob* } \\
\text { Rotation }
\end{array}
\]} & Inpat & \multirow[b]{2}{*}{Jumper} & \multirow[t]{2}{*}{\[
\text { Output } \mid
\]} \\
\hline & 120 V. & & \\
\hline CW & 1-2-1 & 2-2 & 3-2.3 \\
\hline CCW & 2-1-2 & -1 & 3-1-3 \\
\hline
\end{tabular}

Fig. 39J
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Knob
\end{tabular} & Input & Jumper & Outpott \\
Rotation & 240V. & O-240V. \\
\hline CW & \(1-1-1\) & \(2 \cdot 2 \cdot 2\) & \(3-3-3\) \\
\hline CCW & \(2-2-2\) & \(1-1-1\) & \(3-3-3\) \\
\hline
\end{tabular}

Fig. 39K
Single-Phase Series Operation
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Knob* \\
Rotation
\end{tabular}} & \multicolumn{2}{|c|}{ Input } & \multirow{2}{*|}{ 240V. } & 480V. & \\
\cline { 5 - 6 } & & \multicolumn{2}{|c|}{ Output } \\
\hline CW & & \(1-1\) & \(4-4\) & \(3-3\) & \\
\hline CCW & & \(4-4\) & \(1-1\) & \(3-3\) & \\
\hline CW & & \(5-5\) & \(4-4\) & & \(3-3\) \\
\hline CCW & & 2.2 & \(1-1\) & & \(3-3\) \\
\hline CW & \(7-7\) & & 4.4 & & \(3-3\) \\
\hline CCW & \(6-6\) & & \(1-1\) & & \(3-3\) \\
\hline
\end{tabular}

3-Phase Open Delta Operation
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Knob* Rotation} & \multicolumn{2}{|r|}{Input} & \multirow[b]{2}{*}{Jumper} & \multicolumn{2}{|c|}{Output} \\
\hline & 120V. & 240 V. & & (1-240V. & 0-289V. \\
\hline CW & & 1-4-1 & 4-4 & 3-4-3 & \\
\hline CCW & & 4-1-4 & 1-1 & 3-1-3 & \\
\hline CW & & 5-4-5 & 4-4 & & 3-4 3 \\
\hline CCW & & 2-1-2 & 1-1 & & 3-1 3 \\
\hline CW & 7-4.7 & & 4-4 & & 3-4 3 \\
\hline CCW & 6-1-6 & & 1-1 & & 3-1-3 \\
\hline
\end{tabular}

Fig. 39E
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Knob* \\
Rotation
\end{tabular}} & \multicolumn{2}{|c|}{ Input } & Output \\
\cline { 3 - 4 } & 120 V. & 240 V & \(0-240 \mathrm{~V}\) \\
\hline CW & & \(1-2\) & \(2-3\) \\
\hline CCW & & \(1-2\) & 1.3 \\
\hline CW & \(2-4\) & & 2.3 \\
\hline CCW & \(1-4\) & & \(1-3\) \\
\hline
\end{tabular}

\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{c}
Knob \\
Rotation
\end{tabular} & \multicolumn{2}{|c|}{ Input } & Output \\
\hline CW
\end{tabular}

Originally developed by OHMITE, Series LN variable transformers are designed to meet the control requirements for low-voltage, high-current power supplies used with semi-conductor apparatus. They are intended for inputs of 40 volts or less at 50 to over 1000 Hertz. Special brushes and heavy wire enable these units to carry their rated currents within normal temperature specifications. They are supplied with 0-100, "percent-of-output" dials. Constructed in the conventional frame sizes for VT2, VT4 and VT8 units, they can be made to order in tandem assemblies or enclosures or can be modified to meet special requirements. Physical size of VT4LN and VT8LN are same as VT4 (pages 8, 9) and VT8 (pages 10, 11), respectively. Dimensions for VT2LN are shown at right.

\section*{STANDARD LN HI-CURRENT/LO-VOLTAGE TRANSFORMERS} Includes knob and 5011 dial (VT2LN) or 5112 dial (VT4LN and VT8LN). Frequency from 50 to over 1000 Hertz.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CATALOG \({ }^{1}\) NUMBER} & \multirow[b]{2}{*}{\begin{tabular}{l}
INPUT \\
VOLTS \\
(max.)
\end{tabular}} & \multicolumn{2}{|r|}{OUTPUT (max)} & \multirow[b]{2}{*}{\begin{tabular}{l}
CONNECTION SCHEMATIC \\
FIG. 39 \\
(See page 14)
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { WEIGHT: } \\
& \text { (LBS.) }
\end{aligned}
\]} \\
\hline & & VOLTS & CONSTANT CURREAT (AMPS) & & \\
\hline VT2LN & 40 & 0.40 & 5.0 & 390 & 2.4 \\
\hline VT4LN SF: & 40 & 0.40 & 12.0 & 398 & 5.25 \\
\hline VT8LN \({ }^{\text {SB }}\) & 40 & 0-40 & 22.0 & 398 & 10.25 \\
\hline
\end{tabular}
\({ }^{1}\) Some items are classified "nun-stock standard" due to limited usage and therefore are not stccked. Consult latest issue of Catalog 300 series for availability.
z Includes knob, dial and mounting hardware.
(SA) Approved under component program

Fig. 41: VT4LN
Fig. 42: VT8LN

\section*{DIRECT READING, REVERSIBLE DIALS M}

DIRECT READING, REVERSIBLE DIALS . . . calibrated on one side for overvoltage connection; on the reverse side for normal line connection. Dials normally included with transformers are voltage calibrated (except LN types) and read clockwise for increasing voltage; counter-clockwise calibration and "per-cent-of-output" types, calibrated from 0-100, are also available.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V.T. } \\
& \text { SERIES }
\end{aligned}
\]} & \multicolumn{3}{|l|}{REVERSIRLE OIAL CALIBRAIION} & \multirow[t]{2}{*}{FICURE NUMBER} & \multirow[t]{2}{*}{CATALOG NUMBER \({ }^{2}\)} \\
\hline & NORMAL LINE & OVERVOLTAGE & OIRECTION & & \\
\hline VT? & 0.120 & 0.132 & C.W. & 44 & 5005 \\
\hline VT02 & 0.100 & \(100-0\) & C.W. & 44 & \(5011{ }^{\text {* }}\) \\
\hline VT3 & 0.240 & 0.260 & C.W. & 44 & 5019 \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \text { VT4 } \\
& \text { and } \\
& \text { VT3 }
\end{aligned}
\]} & 0.120 & \(0-140\) & C.W. & 45 & 5006 \\
\hline & 0.120 & 0.140 & C.C.W. & 45 & 5088 \\
\hline & 0.240 & 0.280 & C.W. & 45 & 5009 \\
\hline & 0.240 & 0.280 & C.C.W. & 45 & \(5010^{*}\) \\
\hline & 0-100 & 100-0 & C.W. & 45 & \(5012{ }^{\prime}\) \\
\hline & 0-480 & 0-560 & C.W. & 45 & 5018 \\
\hline \multirow{6}{*}{VT20} & 0.129 & \(0-140\) & C.W. & 46 & 5013 \\
\hline & \(0-120\) & 0.140 & C.C.W. & 46 & 5014 \\
\hline & 0.246 & 0.280 & C.W. & 46 & \(5015{ }^{\prime}\) \\
\hline & 0.240 & 0-280 & C.C.W. & 46 & 5016 \\
\hline & 0-100 & 1000 & C.W. & 46 & \(5017{ }^{+}\) \\
\hline & 0.480 & 0.560 & C.W. & 46 & 5025 \\
\hline
\end{tabular}

Bold indicai.es s:andar
: Furnished with \(V T 8 \mathrm{H}\)

\footnotetext{
\({ }^{3}\) Furnishee with VT2OH
\({ }^{4}\) Fercent-0 -output dial.
}

Fig. 44: For series VTi, VT02, VT2LN and VT3.

Fig. 45: For series VT4 and VT8.

\section*{SPECIAL \(\boldsymbol{y}_{10} \cdot\) TRANSFORMERS}

Fast engineering and delivery on "specials" has long been a distinguishing mark of Ohmite service to industry. Here are some of the modifications commonly requested:

Special Tandem Assemblies: Ainy reasonable number of transformers beyond that listed for the standard tandem assemblies can be supplied. Transformers in the assembly can be all of the same size or of different sizes. Also, transformers can be furnished in tandem with rheostats, tap switches, potentiometers or other devices. Tandem elements can be controlled in unison by means of a common shaft, or individually with a concentric control.
Auxiliary Switches: Transformers can be equipped with switch or switches arranged to operate at any point in the rotational arc.
Special Windings: Where special input or output voltages are involved or extra heavy load capacity is required, transformers with special windings can be supplied. Supplementary fixed voltages can be obtained with fixed taps. Transformers with an adjustable tap working on a bared side of the winding also can be supplied.
Motor-Driven Assemblies: Motor-driven single and tandem units may be obtained completely assembled to any specification direct from the factory.
Special Enclosures: Ohmite can supply modified standard enclosures or special enclosures such as "explosion proof" types.
Special Mechanical Features: Shafts, for example, can be provided in special lengths or with flats, splines, slots or locking device.
Ohmite invites your inquiry for all types of non-standard units.

Fig. 52: Made-to-order, motor-driven VT8-2.

Fig. 1: Basic frame sizes of "v.t." line

A fresh approach to variable transformer design by OHMITE, and made to the same universally recognized high quality as other Ohmite components. Ratings now extend to 25 amperes to provide a range suitable to a large percentage of industrial applications. In addition to a number of unique design features, Ohmite Variable Transformers incorporate exclusive features which have been field-proven for years on famous Ohmite rheostats. Long, maintenance-free life, excellent regulation at any point within rated load and an output free of wave-form distortion are other distinguishing characteristics of " \(v . t\). ." variable transformers. All units deliver their rated current at any brush setting.
UL Approval: Series VT4 and VT8 type transformers have received Underwriters' Laboratories approval. Approval is pending on other models.

Positive Current Transfer . . . achieved in traditional OHMITE fashion by means of a pigtail directly connecting the brush to the large slip-ring which contacts a wide area of the collector ring (Fig. 2).

Table or Panel Use: On VT4, VT8 and VT20 type units, shafts may be extended out from either the brush or base side as desired. "Ganged" (tandem) VT4, VT8 or VT20 units employ a "thru-shaft" offering the same flexibility. On VT4 and VT8 units, such shafts are fixed in the desired position by means of socket head screws located in the hub of each "brush-radiator" plate (Fig. 4). The VT20 employs a collet-type shaft lock-see page TR9.

Interchangeable with Other Popular Types: Basic "v.t." units have mounting provisions which match those of virtually all popular transformers of comparable current rating. Knob, dial and mounting hardware are included with each transformer. See individual model descriptions and diagrams.

Direct Reading, Reversible Dial . . . calibrated on one side for overvoltage connection; on the reverse side for normal line connection. Dials normally included with
transformers are voltage calibrated (except LN types) and read clockwise for increasing voltage; counterclockwise calibration and "percent-of-output" types, calibrated from \(0-100\), are also available.

DIALS
\begin{tabular}{|c|c|c|}
\hline "vs." & Dial Calibration & Stock No. \\
\hline VT2 & \[
\begin{aligned}
& 0.120,0.132 \text { C.W. } \\
& 0.100,100-0^{*} \text { C.W. }
\end{aligned}
\] & \[
\begin{aligned}
& 5005 \\
& 5011
\end{aligned}
\] \\
\hline \begin{tabular}{l}
VT4 \\
and \\
VT8
\end{tabular} & \(0-120,0-140\) C.W. 0-120, 0-140 C.C.W. \(0-240,0-280\) C.W. 0-240, 0-280 C.C.W. 0-100, 100-0* C.W. & \begin{tabular}{l}
5006 \\
5008 \\
5009 \\
5010 \\
5012
\end{tabular} \\
\hline VT20 & \[
\begin{aligned}
& 0-120,0-140 \text { C.W. } \\
& 0-120,0-140 \text { C.C.W. } \\
& 0-240,0-280 \text { C.W. } \\
& 0-240,0-280 \text { C.C.W. }
\end{aligned}
\] & \begin{tabular}{l}
5013 \\
5014 \\
5015 \\
5016
\end{tabular} \\
\hline
\end{tabular}
*Percent-of-output diol.
Line Frequency Ratings: Most VT2 types- \(\mathbf{6 0}\) to over 400 cps , some from 50 cps where indicated. All VT4, VT8 and VT20 types -50 to over 400 cps except where otherwise indicated.

Enclosures: "Basic protective enclosures" (Type B) expose the transformer's terminal panel and mounting base and are supplied presently on VT20 models only. "Fixed mounting enclosures" (Type E) are intended for permanent connection and mounting on table, panel or in-conduit-line. Standard portable units (Type F) carry a line cord, outlet socket, and fuse. Deluxe portable units available in VT8 only (Type G) utilize a circuit breaker, and can be switched to overvoltage or no-overvoltage as desired (see "Features").

Tandem (Ganged) Units: Two or 3-in-tandem assemblies are standard. More than 3 are supplied on special order. Construction is exceedingly sturdy, employing rigid mounting plates and heavy, threaded and insulated spacers. All tandem assemblies are normally

\section*{OHMITE}

Fig. 2: Cutaway view VT8 transformer
furnished without interconnections between the units. These may be connected by the user for various purposes as described in "Mode of Wiring," below. Factory wired tandem assemblies can be provided at additional cost.

\section*{FEATURES AND CATALOG NUMBER CODES}

The physical or frame size of a given transformer assembly is indicated by a basic designation. Various features are indicated by suffixes. "VT8" is an example of a basic designation.

Feature Suffixes: The following suffixes shown at right, added to the basic size designation, indicate various features on the transformer. Thus, "VT8N-2 indicates two units of " 8 " frame size, in tandem. each wound without overvoltage feature using heavier gage wire for greater current output. Order from table of available types given for each basic size. For special features or combinations not listed here, Ohmite invites your inquiries.
(Cont. on hext page)
\begin{tabular}{|c|c|c|}
\hline & Suffix & Feature \\
\hline \multirow{4}{*}{Special Winding} & A & No overvoltage provision-unit has same current rating as std., overvoltage unit (Fig. 3B). \\
\hline & \(N\) & No overvoltage provision but unit has higher current rating due to heavier gage winding (Fig. 3B). \\
\hline & 1 & Low voltage input and output (40 V max.) high current output. \\
\hline & H & Single unit, wound for 240 -volt, single phase input-Has tap for 120 volt input with 240 - or 280 -volt output. (Figs. 3B, \(3 C\) resp.). \\
\hline \multirow{4}{*}{Enclosures} & B & Simple protective enclosure which exposes transformer terminal panel and base. \\
\hline & E & Enclosure with knockouts for fixed mounting in conduit line. \\
\hline & F & Portable enclosure with switch, line cord, outlet and fuse. \\
\hline & G & Deluxe portable enclosure with on-off, overvoltage selection switch, line cord, outlet, circuit breaker, adi. handle. \\
\hline Speciol Cord & C & 3 -conductor, grounded input and output. \\
\hline Units in Assembly & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & Two units in tandem. Three units in tandem. \\
\hline
\end{tabular}

Fig. 3: Simplified basic transformer circuits. (In the case of VT4, VT8 and VT20 types, circuits D, F and H would also have overvoltage taps for CCW rotation. Taps shown in dotted line in circuits B and C represent 120 volt inputs on " H " models only.)

\section*{MODE OF WIRING AND CONNECTIONS}

Wiring instructions to arrange various modes of operation are enclosed with Ohmite transformers. On VT4, VT8 and VT20 types, a rigid plastic terminal panel carries convenient wiring diagram, coded terminals and input and output data. On VT2 types, diagram, coding and data, are provided on a plastic nameplate.

Overvoltage Option: On all units with overvoltage feature (Fig. 3A) either overvoltage or no-overvoltage output can be arranged on the terminal panel.

Rotation Option: On VT4, VT8 and VT20 transformers connected for overvoltage, either clockwise or counterclockwise increase of voltage can be arranged quickly by the user (Fig. 3C). Increasing voltage in either direction can be arranged on all units connected for no-overvoltage output.

240-Volt Input (" H '" feature): On units which are wound for 240 -volt input, a 120 volt input tap is also provided (Figs. 3B and C-dotted taps). With use of this input, the maximum current rating applies up to 120 volts output but beyond this reduces in accordance with Fig. 7.

Low Voltage Input ('‘'" feature): Designed for a maximum input of 40 volts with relatively high current output (see page TR8).

\section*{WIRING TANDEM ASSEMBLIES}

Tandem assemblies may be wired for individual unit operation. Two-in-tandem assemblies can also be wired as follows:
(1) SERIES connection for 1-phase input at a line voltage double that of the individual transformer's input rating-with or without overvoltage output (Fig. 3D).
(2) OPEN DELTA connection for 3-phase input, with or without overvoltage output (Fig. 3F).

Fig. 4: On VT4, VT8 and VT20 types, shaft can be moved from brush side (left) to base side (right). Socket head screws (left) in radiator hub of VT4 and VT8 hold shaft. (See Fig. 33 for VT20 shaft lock.)

Three-in-tandem assemblies may be wired for:
(1) "Y" connection for 3-phase input at line voltage double that of the individual transformer's input rating with or without overvoltage output (Fig. 3H).
"N" type (no-overvoltage) transformers can be connected as shown in the foregoing but, of course, without overvoltage option. See model descriptions following, and Application-Selection Guide on last page.

Fig. 5: Typical voltage regulation curves

Fig. 6: Derating for ambient temperature

Fig. 7: Derating for use of 120 -volt input on 240 -volt transformers ("H" type).

Panel mounting. Combination type solder terminals will also accept \(1 / 4\) " wide quick-connect receptacles.

\section*{STOCK VT2 TYPES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Units \\
in Assy.
\end{tabular} & Stock No. \({ }^{1}\) & Feature or Connection' & Fig. 3 def. & Phase & Max. In. Volts & Max. Out. Volis at Rated Amps & \begin{tabular}{l}
Nom. \\
Amps
\end{tabular} & Weight Lbs. \\
\hline \multirow{7}{*}{1} & VT2 \({ }^{2,9}\) & Basic unit & A & 1 & 120 & \(0.120^{6} 0.132\) & 1.75 & 2.4 \\
\hline & VT2E \({ }^{\text {a }}\) & Fixed mtg. case & A & 1 & 120 & \(0-120 / 132^{3}\) & 1.40 & 2.8 \\
\hline & VI2F9 & Partable case & A & 1 & 120 & \(0.132^{4}\) & 1.75 & 3.2 \\
\hline & VT2N & Na overvaltage & B & 1 & 120 & \(0.120^{6}\) & 2.00 & 2.4 \\
\hline & VT2NE & Fixed mtg. case & B & 1 & 120 & 0.120 & 1.60 & 2.8 \\
\hline & VT2NF & Partable case & B & 1 & 120 & 0.120 & 2.00 & 3.2 \\
\hline & VT2LN & Hi-amps, la-valts & B & 1 & 40 & 0.40 & 5.00 & 2.4 \\
\hline \multirow{4}{*}{2} & \multirow[b]{2}{*}{VT2-2 \({ }^{\circ}\)} & Series conn. & \(D^{5}\) & 1 & 240 & \(0.240^{6} 0.264\) & 1.75 & \multirow[b]{2}{*}{5.25} \\
\hline & & Open delta cann. & F & 3 & 120 & \(0-120^{6} 0.132\) & 4.75 & \\
\hline & \multirow[b]{2}{*}{VT2N-2} & Series cann. & \(\mathrm{E}^{5}\) & 1 & 240 & \(0.240^{\circ}\) & 2.00 & \multirow[t]{2}{*}{5.25} \\
\hline & & Open delta cann. & G & 3 & 120 & \(0.120^{6}\) & 2.00 & \\
\hline 3 & VT2-3 & " \(Y\) " cannectian & H & 3 & 240 & 0-2406, \({ }^{\text {7 }}\) & 1.75 & 8.0 \\
\hline
\end{tabular}
' Complete explonotion given Poges TR2-TR4.
\({ }^{2}\) VT2A (1.75 omps, no-overvaltoge), con be supplied.
\({ }^{3}\) User wires for desired output-stondord dial coli-
\({ }^{5}\) With series-connected units lood connot be grounded.
- Nominol roting.
broted for overvoltoge. Specify no-overvoltoge diol if required.

7 Overvaltoge connection connot be used.
- Torque (inch-oz.): Single units, 3-6; 2 -in-tondem, 10-20; 3-in-tondem, 15-30.
Normoily connected of foctory for overvoltoge output. - 50 cps if connected for no-overvoltoge output. Eosily reconnected for no-overvaltoge output by user.

Brush assembly for VT2 Types except VT2LN.
Brush assembly for VT2LN.
Extra dials, Page 2. Extra knobs for uncased units

Cat. No. 6514
Cat. No. 6517
Cat. No. 5158

Fig. 8:
Basic VT2

Fig. 9: Dimensions-VT2

Fig. 11: VT2F VT2NF similar

VT2 CASE DIMENSIONS
\begin{tabular}{c|c|c|c}
\hline Type & W & D* & H \\
\hline E & \(33 / 8\) & \(21 / 2\) & \(41 / 4\) \\
F & \(33 / 8\) & \(21 / 2\) & \(41 / 4\) \\
\hline *Add \(2 / 6^{*}\) for knob thickness.
\end{tabular}

Fig. 12: Dimensions-VT2 Type Tandems

Fig. 14: VT4 arr. for panel mtg.
 \(120^{\circ}\) APART, \(1 / 4^{-2}-20\) TAP.

Fig. 15: Dimensions-VT4

\section*{"TII venamer \\ TRANSFORMERS 3.5 AMPS with OVERVOLTAGE 4.75 AMPS NO-OVERVOLTAGE TYPE}

Table or panel mounting. Three-hole mounting is normally provided, but a 4 -hole mounting adapter plate (see accessories below) to match other popular 4-hole mountings, is available.

\section*{STOCK VT4 TYPES}

Includes knob and dial; specify 240 V dial if desired. Freq. 50 to over 400 cps . Rotation angle \(324^{\circ} \pm 5^{\circ}\). Torque \({ }^{7}\). Tandem assemblies furnished without interconnection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Units in Assy. \({ }^{7}\) & Stock No. \({ }^{2}\) & Feature or Connection \({ }^{2}\) & Fig. 3 det. & Phase & \begin{tabular}{l}
Max. \\
In. \\
Volts
\end{tabular} & Max. Out. Volts of Rated Amps & \begin{tabular}{l}
Nom. \\
Amps
\end{tabular} & Weight Lbs. \\
\hline \multirow{11}{*}{1} & VT4 \({ }^{\text {S }}\) & \multirow[t]{5}{*}{\begin{tabular}{l}
Basic unit \\
Fixed mtg. case Portable case VT4F w/gnd. in. and out.
\end{tabular}} & C & 1 & 120 & \(0.120 / 140\) & 3.5 & 5.25 \\
\hline & VT4E & & C & 1 & 120 & \(0.120 / 1404\) & 2.8 & 7.4 \\
\hline & VT4F & & \multirow[t]{2}{*}{c} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{120} & \multirow[t]{2}{*}{\(0.140^{5}\)} & \multirow[t]{2}{*}{3.5} & \multirow[t]{2}{*}{7.8} \\
\hline & VT4FC & & & & & & & \\
\hline & & & C & 1 & 120 & \(0.140^{5}\) & 3.5 & 7.8 \\
\hline & VT & No overvoltage & B & 1 & 120 & 0.120 & 4.75 & 5.25 \\
\hline & VT4NE & Fixed mtg. case & B & 1 & 120 & \(0-120\) & 3.8 & 7.4 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
VT4NF \\
VT4NFC
\end{tabular}} & \multirow[t]{2}{*}{Portable case VT4NF w/and.} & \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{120} & \multirow[t]{2}{*}{0.120} & \multirow[t]{2}{*}{4.75} & \multirow[t]{2}{*}{7.8} \\
\hline & & & & & & & & \\
\hline & & in. and out. & B & 1 & 120 & 0.120 & 4.75 & \\
\hline & VT4LN & Hi-amps, lo volts & B & 1 & 40 & 0.40 & 12 & 5.25 \\
\hline \multirow{4}{*}{2} & \multirow[t]{2}{*}{VT4-2} & \multirow[t]{2}{*}{\begin{tabular}{l}
Series conn. \\
Open delfa conn.
\end{tabular}} & \multirow[t]{2}{*}{F \({ }^{6}\)} & \multirow[t]{2}{*}{13} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.240 / 280 \\
& 0.120 / 140
\end{aligned}
\]} & & \multirow[b]{2}{*}{11.3} \\
\hline & & & & & & & \[
3.5
\] & \\
\hline & \multirow[t]{2}{*}{VT4N-2} & \multirow[t]{2}{*}{Series conn. Open delta conn.} & \multirow[t]{2}{*}{E
G} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.240 \\
& 0.120
\end{aligned}
\]} & & \multirow[b]{2}{*}{11.3} \\
\hline & & & & & & & 4.75 & \\
\hline 3 & VT4-31 & 'Y" connection & H & 3 & 240 & 0-240/2801 & 5 & 70 \\
\hline
\end{tabular}
" 60 cps min. on "Y" connected units wired for over
voltage
\({ }^{2}\) Complete explanation, page TR2-TR4
\({ }^{3}\) VT4A (3.5 amps-no overvoltage) can be supplied
4 User wires for desired output-standard dial calibrated for overvoltage. Specify no-overvoltage dia
if required.
\({ }^{3}\) Normally connected at factory for overvoltage outpur. Easily reconnected for no-overvoltage output by user. Easily reconnected for no-overvoltage output by user. 7 Torque (inch.-oz.): Single unit 15.25; 2 -in-tandem 30-60; 3 -in-tandem, \(50-85\).
Brush assembly for VT4 types except VT4LN
Brush assembly for VT4LN
Four-hole mtg. adapter plate (Dimensions, figs. 15,19)
Extra dials or dials with CCW Calibrations, Page 2.
Extra knobs for uncased units
Adjustable stop for limiting rotation arc

Cat. No. 6515 Cat. No. 6518 Cat. No. 6512

Cat. No. 5155 Cat. No. 6536

VT4 CASE DIMENSIONS
\begin{tabular}{c|c|c|c}
\hline Type & W & D* & \(H\) \\
\hline E & \(41 / 2\) & \(41 / 2\) & \(63 / 16\) \\
F & \(47 / 8\) & \(41 / 2\) & \(61 / 4\) \\
\hline \multicolumn{3}{c}{ *Add \(1 / 3^{\prime \prime}\) for knob thickness. }
\end{tabular}

Fig. 16: VT4E; VT4NE similar

Fig. 17: VT4FC; VT4NFC similar

Fig. 17A: VT4F; VT4NF similar

Fig. 19: Dimensions-VT4 type tandems

\section*{VT8 VARIABLE TRANSFORMERS 7.5 AMPS with OVERVOLTAGE 10 AMPS NO-OVERVOLTAGE TYPE}

Table or panel mounting. This series includes individual units for 220 240 volt input.

\section*{STOCK VT8 TYPES}

Includes knob and dial; specify 240 V dial if desired. Freq. 50 to over 400 cps . Rota tion angle \(324^{\circ} \pm 5^{\circ}\). Torque? \({ }^{\circ}\). Tandem assemblies furnished without interconnection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Units in Assy. & Stock No. \({ }^{2}\) & Feature or Connection \({ }^{2}\) & Fig. 3 det. & Phase & \begin{tabular}{l}
Max. \\
In. \\
Volts
\end{tabular} & Max. Out. Valts at Rated Amps & Nom. Amps & Weight Lbs. \\
\hline \multirow{13}{*}{1} & VT8 \({ }^{3}\) & Basic unit & C & 1 & 120 & 0-120/140 & 7.5 & 10.25 \\
\hline & VT8E & Fixed mtg, case & C & 1 & 120 & \(0-120,140^{5}\) & 6.0 & 13.5 \\
\hline & VT8F & Portable case & C & 1 & 120 & \(0-140^{6}\) & 7.5 & 13.8 \\
\hline & VT8FC & VT8F w/gnd. & C & 1 & 120 & \(0-140^{6}\) & 7.5 & 13.8 \\
\hline & VT8G & Deluxe, Portable & C & 1 & 120 & 0-120/1407 & 6.0 & 14.2 \\
\hline & VT8GC & VT8G w/gnd. in. and out. & C & 1 & 120 & 0-120/1407 & 6.0 & 14.2 \\
\hline & VT8N & No overvoltage & B & 1 & 120 & 0-120 & 10.0 & 10.25 \\
\hline & VT8NE & Fixed mig. case & B & 1 & 120 & 0.120 & 8.0 & 13.5 \\
\hline & VT8NF & Portable case & B & 1 & 120 & 0-120 & 10.0 & 13.8 \\
\hline & VT8NFC & VT8NF w/gnd. in. and out. & B & 1 & 120 & 0-120 & 10.0 & 13.8 \\
\hline & VIBLN & Hi amps, lo volts & B & 1 & 40 & \(0-40\) & 22 & 10.25 \\
\hline & VT8H & 240 input & C & I & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & \[
\begin{gathered}
0-240 / 280 \\
0-280^{4}
\end{gathered}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0^{4}
\end{aligned}
\] & 10.25 \\
\hline & VT8HN & 240 V in., no overvoltage & B & 1 & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & \[
\begin{aligned}
& 0-240 \\
& 0-240^{4}
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.0^{4}
\end{aligned}
\] & 10.25 \\
\hline \multirow{4}{*}{2} & VT8-2 & \begin{tabular}{l}
Series conn. \\
Open delta conn.
\end{tabular} & \[
\begin{aligned}
& \mathrm{D}^{8} \\
& \mathrm{~F}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & \[
\begin{aligned}
& 0-240 / 280 \\
& 0-120 / 140
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5
\end{aligned}
\] & 20.6 \\
\hline & VT8N-2 & \begin{tabular}{l}
Series conn. \\
Open delta conn.
\end{tabular} & \[
\begin{aligned}
& E^{a} \\
& G
\end{aligned}
\] & \[
3
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & \[
\begin{aligned}
& 0.240 \\
& 0.120
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & 20.6 \\
\hline & VT8H-2 & \begin{tabular}{l}
Series conn. \\
Open delta conn.
\end{tabular} & \[
\begin{aligned}
& D^{B} \\
& F
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & \[
\begin{aligned}
& 0.480 / 560 \\
& 0.240 / 280
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & 20.6 \\
\hline & VT8HN-2 & \begin{tabular}{l}
Series conn. \\
Open delta conn.
\end{tabular} & \[
\begin{aligned}
& E^{8} \\
& G
\end{aligned}
\] & \[
3
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & \[
\begin{aligned}
& 0.480 \\
& 0-240
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & 20.6 \\
\hline \multirow{3}{*}{3} & VT8-3 & "Y' connection & H & 3 & 240 & 0.240/280' & 7.5 & 31.0 \\
\hline & VT8-3E & Fixed mtg. case & H & 3 & 240 & \(0-240{ }^{\prime} 280^{\prime}\) & 6.0 & 41.5 \\
\hline & \(\mathrm{VT} 8 \mathrm{H}-3\) & "Y" connection & H & 3 & 480 & \(0-480 / 560^{1}\) & 3.0 & 31.0 \\
\hline
\end{tabular}

160 cps min . on " \(Y\) " cann. units wired far aver-valtoge. "Narmally cannected at factory for overvaltage oufput
2 Camplete explanation, pages TR2-TR4,
\({ }^{3}\) VT8A (7.5 amps , na-overvaltage) con be supplied.
- When 120 valt input tap is used, unit must be derated for autput greater than 120 V (Fig. 7).
User wires for desired output-standord dial calibrated far avervaltage. Specify na-avervaltage dio if required.

Brush assembly for VT8 types except those below.
Brush assembly for VT8H, HN only
Brush assembly for VT8LN only
Extra dials or dials with CCW calibration, see Page 2
Extra knobs for uncased units
Adjustable stop for limiting rotation are.

VT8 CASE DIMENSIONS
\begin{tabular}{l|l|l|c}
\hline Type & W & \(\mathbf{D}^{*}\) & H \\
\hline E & \(53 / 16\) & \(51 / 4\) & \(73 / 16\) \\
F & \(517 / 2\) & \(51 / 4\) & \(73 / 8\) \\
G & \(53 / 16 \pm\) & \(51 / 4\) & \(73 / 8 \pm\) \\
\hline
\end{tabular}

Fig. 22: VT8E; VT8NE similar

6 Normally cannected ot factory for overvaltage autput
-easily recannected by user for no-overvaltage autput.
Switch selects overvaltage ar line valtoge output.
With series-connected units load connot be grounded, - Tarque (inch-az.): Single unit, 20-35; 2-in-tandem 45-70, 3-in-tandem, 80-115.

Cat. No. 6516 Cat. No. 6516 H Cat. No. 6519

Cat. No. 5155
Cot. No. 6537

Fig. 20: VT8 arr. for panel mtg.

Fig. 21: Dimensions-VT8

TANDEM ASSEM. DIMENSIONS -NEXT PAGE

Fig. 23: VT8FC; VT8F has 2 cond. socket \& plug

\section*{VTB (continued)}

\section*{GERIES "LN" HI-CURRENT TRANGFORMERE}

Fig. 28: VT2LN
Max. volts input-40
Max. amps output-5

Fig. 29: VT4LN
Max. volts input-40
Max. amps output-12

Fig. 30: VT8LN
Max. volts input-40
Max. amps output-22

Originally developed by OHMITE, Series LN variable transformers were designed to meet the control requirements for low-voltage, high-current power supplies used with semi-conductor apparatus. They are intended for inputs of 40 volts or less at 50 to over 400 cycles per second. Special brushes and heavy wire enable these units to carry their rated currents within normal temperature specifications. They are supplied with \(0-100\),
"percent-of-output" dials. Constructed in the conventional frame sizes for VT2, VT4 and VT8 units, they can be made to order in tandem assemblies or enclosures or can be modified to meet special requirements. Physical and electrical data for these units will be found in the respective sections dealing with Series VT2, VT4 and VT8 transformers.

\title{
VT2O
}

Distinctive sturdiness of construction and mounting versatility. The radiator plate is counterbalanced for stability under conditions of vibration to compensate for the weight of the oversize brush assembly, furnished to provide an extra margin of heat dissipation. The shaft can be extended from either side of the transformer as required for panel or horizontal surface mounting. A unique collet-type shaft lock permits ready repositioning of the shaft without scoring or defacing the shaft surface (see Fig. 33).

At present, Ohmite offers the Model VT20 overvoltage type and the higher rated VT20N, no-overvoltage

Fig. 32: VT20B; VT20NB similar

type. These units are also supplied in a "B" type case (VT20B, VT20NB) a simple, ventilated enclosure which differs from Ohmite's optional E, F and G enclosures in being round and in exposing the transformer's terminal panel and base. Tandem assemblies unenclosed or in " \(B\) " type enclosures are also available. The VT20 series will eventually include the high voltage and enclosure variations shown for the VT8 series.
Continued on next page

\section*{VT20 (continued)}

Fig. 34: Dimensions-VT20

\section*{STOCK VT20 TYPES}

Brush-Contact assembly for VT20 types except VT2ON
Brush-Contact assembly for VT2ON type
Extra knob
Extra dials or dials with CCW calibration, see Page 2.
\[
\text { Cat. No. } 5157
\]

Fig. 36: Dimensions-VT20 Type Tandems

\title{
special wifl: transformers
}

Fast engineering and delivery on "specials" has long been a distinguishing mark of Ohmite service to industry. Here are some of the modifications commonly requested:

Special Tandem Assemblies: Any reasonable number of transformers beyond that listed for the standard tandem assemblies can be supplied. Transformers in the assembly can be all of the same size or of different sizes. Also, transformers can be furnished in tandem with rheostats, tap switches, potentiometers or other devices. Tandem elements can be controlled in unison by means of a common shaft, or individually with a concentric control.

Auxiliary Switches: Transformers can be equipped with switch or switches arranged to operate at any point in the rotational arc.

Special Windings: Where special input or output voltages are involved or
extra heavy load capacity is required, transformers with special windings can be supplied. Supplementary fixed voltages can be obtained with fixed taps. Transformers with an adjustable tap working on a bared side of the winding also can be supplied.

Motor-Driven Assemblies: Single or tandem assemblies can be easily and quickly "motorized" with Ohmite "do-it-yourself" motor modules. Request Bulletin 167. Motor-driven units can also be obtained completely assembled to any specification direct from the factory.
Special Enclosures: Ohmite can supply modified standard enclosures or special enclosures such as "explosion proof" types.

\section*{Special Mechanical Features:} Shafts, for example, can be provided in special lengths or with flats, splines, slots or locking device.

Ohmite invites your inquiry for all types of non-standard units.

Fig. 39: Special VT2 -20-volt input, 30-volt output at 5 amps . Binding post terminals

Fig. 40: VT4 and VT2 in tandem with concentric control

Fig. 41: Rheostat-transformer tandem assembly

Fig. 42: Multi-tap transformer delivers a number of fixed voltages plus the adjustable voltage.

\title{
TANTALUM CAPACITORS
}

CATALOG SEQUENCE GOO

OHMITE

Ohmite TAN-O-MITE® Series TW' capacitors are tantalum wire, electrolytic type units of fering amazingly high capacitance for their small size. The smallest subminiature capacitors available, they provide microfarads of capacity in less space than that required for micro-microfarads in other units. In addition to their space saving benefits, they offer excellent performance under temperature extremes, long shelf life and electrical stability superior to aluminum electrolytics.

\section*{APPLICATION}

Miniaturized or transistorized apparatus where space is a prime consideration. They are intended for coupling, filter and by-pass uses in non-critical, non-resonant. low voltage DC circuits where capacitance values can exceed nominal circuit requirements considerably (see "Capacitance" in "Specifications").

\section*{WIDE CAPACITY RANGE}

Thirteen case sizes provide sufficient range and flexibility to satisfy virtually any design need. Overall capacitance range of the Tan-O-Mite line is .01 to 150 mfds . The size of the smallest unit "TK", including insulation, is only .150 " long by .060 " diameter; the largest size " \(E\) ", including insulation, is only \(.812^{\prime \prime}\) long by \(.134^{\prime \prime}\) diameter. The largest sizes D and E , offer the greatest capacitance of the series, yet remain well within the "suhminiature" size designation. They are provided in values formerly available only in foil type units and may be used to replace foil units of the same volt \(x\) microfarad \(\mu\) roduct with advantageous savings in space. Maximum capacitance is limited by the size of each case and by the magnitude of the rated D.C. working voltage (see Table, "Max. Mfds.").

\section*{CONSTRUCTION}

A tantalum wire with specially processed oxide film forms the anode. It is enclosed with an electrolyte solution in a. cylindrical silver case which serves as the cathode. The neg. ative lead is connected axially to the end of this case. The "open" end is sealed with a "Teflon" plastic bushing through which the anode wire projects. The positive lead is welded to the anode. A small plastic embedment covers the Teflon bushing, protects the weld and provides an additional seal.

Standard Series TW capacitors are supplied insulated with a tough , Mylar plastic sleeve \(.002^{\prime \prime}\) thick. The capacitors are stocked in certain standard values by Ohmite (see "Stock Values" table). Series TW' units, normally have axial leads. Radial leads or other special construction can be furnished to order.

Single End Lead Termination, for example, can be supplied on all Series TW capacitors (see illustration-right). This type of construction facilitates fast assembly into modules and/or into printed circuit hoards. Other types of special construction to meet the requirements of certain assembly methods can be supplied. Submit your requircments to OHMITE.

\section*{OPERATING TEMPERATURE RANGE}

From \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\). See graphs on typical performance data over this range.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { CASE } \\
& \text { SIZE }
\end{aligned}
\] & \(\mathrm{D} \pm .005^{\prime \prime}\) & \(1{ }^{+.015^{\prime \prime}}\) & \begin{tabular}{l}
CASE \\
SIZE
\end{tabular} & D \(\pm .005^{\prime \prime}\) & \(1 \begin{aligned} & +.015^{\prime \prime} \\ & -.005^{\prime \prime}\end{aligned}\) \\
\hline TK & . 060 & . 150 & M & .100 & . 218 \\
\hline TJ & . 060 & .190 & A & . 100 & . 312 \\
\hline HK & . 075 & . 150 & B & . 134 & . \(375^{*}\) \\
\hline HJ & . 075 & .190 & C & . 134 & .562* \\
\hline H & . 075 & . 255 & D & . 134 & .687* \\
\hline T & . 080 & .203 & E & . 134 & .812* \\
\hline 5 & . 080 & .234 & * Tole & e is \(+.025^{\prime \prime}\) & \(-.005^{\prime \prime}\) \\
\hline
\end{tabular}

CAPACITANCE—Rated capacitance is determined at 120 cps and \(+25^{\circ} \mathrm{C}\). Standard tolerance is \(-0,+100 \%\).

In making capacitance measurements, the following precautions should be observed. If a polarizing voltage is used (1) the limits given under "DC WORKIN(, VOLTAGE RATIVG" must be observed or the capacitor may be permanently damaged; (2) the applied AC voltage should be within the limit given under " 120 CYCLE RIPPLE VOLTAGE RATINC" otherwise temporary changes in capacitance may occur due to internal heating. If desirable, capacitance may be measured without a DC polarizing voltage provided not more than 50 millivolts rms is impressed across the capacitor.

SERIES TW — STOCK VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mfd. & DCWV \(\dagger\) & Cose
Size & Stock No. & Mfd. & DCWV \({ }^{\dagger}\) & \[
\begin{aligned}
& \text { Case } \\
& \text { Size }
\end{aligned}
\] & Stock No. \\
\hline \multirow[b]{2}{*}{0.1} & 20 & TJ & R1TJ20 & \multirow{3}{*}{4} & 3 & HJ & 4HJ3 \\
\hline & 60 & M & RIM60 & & 4 & S & 454 \\
\hline \multirow[b]{2}{*}{0.2} & 20 & TK & R2TK20 & & 20 & B & 4B20 \\
\hline & 150 & E & R2E150 & \multirow[b]{2}{*}{5} & 30 & C & 5C30 \\
\hline \multirow{3}{*}{0.5} & 10 & TK & R5TK10 & & 60 & E & 5E60 \\
\hline & 16 & TJ & R5TJ16 & 6 & 1.25 & HJ & 6HJTR25 \\
\hline & \[
\begin{aligned}
& 20 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& \mathrm{~B}
\end{aligned}
\] & \[
\begin{aligned}
& \text { R5520 } \\
& \text { R5B880 }
\end{aligned}
\] & \multirow{2}{*}{8} & 1.25 & 5 & 851 R25 \\
\hline \multirow{6}{*}{1.0} & 4 & TK & ITK4 & & 4 & M & 8 M \\
\hline & 8 & HK & 1HK8 & \multirow{3}{*}{10} & 8 & \(B\) & \(10 \mathrm{B8}\) \\
\hline & 10 & HJ & 1HJ10 & & 16 & C & 10C16 \\
\hline & 20 & M & \(1 \mathrm{M2O}\) & & 30 & E & 10E30 \\
\hline & 60 & \(B\) & 1860 & 15 & 1.25 & M & 15M1R25 \\
\hline & 80 & \(C\) & 168 & 20 & 2 & B & 20B2 \\
\hline \multirow{3}{*}{2} & 1.25 & TK & 2TKIR25 & 25 & 6 & C & 25 Cb \\
\hline & 0 & 5 & 258 & 30 & 10 & E & 30E10 \\
\hline & 40 & B & \(2 \mathrm{B40}\) & 50 & 2 & C & 50C2 \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{\[
\begin{gathered}
1.25 \\
80 \\
4
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { HK } \\
\text { E } \\
\text { HJ }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 3HKIR25 } \\
& \text { 3E80 } \\
& \text { 3HJ4 }
\end{aligned}
\]} & 60 & 4 & E & 60.4 \\
\hline & & & & 75 & 2 & E & 75E2 \\
\hline
\end{tabular}
+Capacitor may be operated at any voltage less than that shown in tabie.
POWER FACTOR- \(50 \%\) maximum, but generally substantially less since power factor is roughly related to the volt \(x\) microfarad product for a given size. For extremely high capacitance values (50 mfds . and above) the power factor may be somewhat higher than \(50 \%\). (All measurements made at 120 cps at \(25^{\circ} \mathrm{C}\).) To convert power factor to dissipation factor or E.S.R. x C Product (equivalent series resistance \(x\) capacity) see scale, page 3 .

DC LEAKAGE CURRENT - Less than . 09 microamperes/ volt-mfd. for units .5 mfd . and up; less than .4 micro-amperes/volt-mfd. for units under .5 mfd . In any instance, the leakage current is not required to be less than 1 micro-
ampere (see table, page 4). Measurement is made at \(25^{\circ} \mathrm{C}\) after 5 minutes of electrification at rated DC voltage applied through a 1000 ohm series resistor to limit charging current.

DC WORKING VOLTAGE RATING - The maximum DC. voltage which may be applied to the capacitor continuously. When AC voltage is present, the peak voltage across the capacitor (applied steady state DC voltage plus the positive peak AC voltage) must not exceed the rated DCW'V.

DC SURGE VOLTAGE RATING - The DC surge voltage rating is \(120 \%\) of the DC rated voltage and should never be exceeded. The capacitor will withstand this voltage for 1000 cycles of \(1 / 2\) minute on and \(41 / 2\) minutes off in an ambient temperature of \(65^{\circ} \mathrm{C}\).

120 CYCLE RIPPLE VOLTAGE RATING-The peak value of 120 cycle AC ripple voltage should not exceed \(10 \%\) of the DC working voltage rating. In no case shall the peak ripple voltage exceed the actual applied steady state DC voltage.

CAPACITOR CODING - Catalog numbers of Series TW capacitors are composed as follows-Example 1A8:
\begin{tabular}{ccc}
\begin{tabular}{c}
Cap.
\end{tabular} & Working \\
in Mfds. & Size & Volts \\
1 & A & 8
\end{tabular} " \(R\) " is used to represent a decimal point as in \(0.1=R 1\).
*MAX. MFDS. PERMITTED FOR EACH CASE SIZE FOR TYPICAL RATED WORKING VOLTS D.C.
\begin{tabular}{c|l|l|l|l|c|c|c|c|c|c|c|c}
\hline \begin{tabular}{c}
Yolts \\
DCt
\end{tabular} & TK & HK & TJ & HJ & \begin{tabular}{c}
H or \\
S
\end{tabular} & T & M & A & B & C & D & E \\
\hline 1.25 & 2 & 3 & 3.5 & 6 & 10 & 7 & 16 & 20 & 35 & 70 & 110 & 150 \\
1.5 & 1.75 & 2.5 & 3.0 & 5.5 & 9 & 6.5 & 14 & 16 & 30 & 60 & 100 & 130 \\
2 & 1.5 & 2.25 & 2.5 & 5.0 & 1 & 6.0 & 10 & 14 & 25 & 55 & 90 & 110 \\
3 & 1.25 & 2.0 & 2.25 & 4 & 6 & 5.0 & 8 & 12 & 20 & 45 & 75 & 90 \\
4 & 1.0 & 1.5 & 2.0 & 3 & 5 & 4.0 & 8 & 10 & 11.5 & 40 & 60 & 75 \\
\hline 6 & .75 & 1.0 & 1.5 & 2 & 3.5 & 2.5 & 4 & 6 & 15 & 25 & 45 & 55 \\
8 & .6 & 1.0 & 1.25 & 1.5 & 2.5 & 2.0 & 3 & 5 & 12 & 20 & 35 & 40 \\
10 & .5 & .75 & .8 & 1.25 & 2.0 & 1.5 & 2.5 & 4 & 10 & 16 & 30 & 35 \\
12 & .4 & .5 & .6 & .9 & 1.5 & 1.0 & 2.0 & 3 & 8 & 14 & 25 & 30 \\
16 & .3 & .5 & .5 & .1 & 1.25 & .15 & 1.5 & 2.5 & 6 & 12 & 20 & 25 \\
\hline 20 & .2 & .3 & .4 & .4 & 1.0 & .5 & 1.0 & 2 & 5 & 10 & 15 & 20 \\
25 & & & .3 & .3 & .8 & .4 & .8 & 1.25 & 4 & 8 & 12 & 15 \\
30 & & & & .25 & .6 & .3 & .6 & 1.0 & 3 & 6 & 9 & 10 \\
40 & & & & & .4 & .25 & .4 & .7 & 2 & 4 & 7 & 8 \\
50 & & & & & .25 & & .3 & .5 & 1.5 & 3 & 5 & 6 \\
\hline 60 & & & & & & & .25 & .4 & 1.25 & 2.5 & 4 & 5 \\
70 & & & & & & & & .3 & 1.0 & 2.0 & 3 & 4 \\
80 & & & & & & & & & .7 & 1.5 & 2 & 3 \\
150 & & & & & & & & & .04 & .08 & .1 & .2 \\
\hline
\end{tabular}

\footnotetext{
* For unlisted and intermediate values inquire of foctory.
}
†Capacitor may be operated at any voltoge less than that shown in table.

\section*{TEMPERATURE CHARACTERISTICS}

TEMPERATURE IN DEGREES C.

TEMPERATURE IN DEGREES C.

\section*{FREQUENCY CHARACTERISTICS}

The table below is used in conjunction with Fig．A．＂Capacitance vs Frequency＂．Fig．B shows the possible variance from initial power factor with frequency．The relatively wide spread is due to inherent dif affect affect power factor．It should be noted that the effects of higher fre tance ratings．

FREQUENCY CHARACTERISTICS DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Case } \\
\text { Size }
\end{gathered}
\] & \[
\begin{aligned}
& \text { DC } \\
& \text { wv } \\
& \hline
\end{aligned}
\] & Cap．
\(\mu f d\). & \[
\begin{gathered}
\text { P.F. } \% \\
{ }^{\circ} \mathrm{Q} \\
120 \mathrm{cps}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Freq. } \\
& \text { vs. CCop. } \\
& \text { Fig A }
\end{aligned}
\] & \[
\begin{gathered}
\text { Case } \\
\text { Sire }
\end{gathered}
\] & \[
\begin{aligned}
& \text { DC } \\
& \text { WV }
\end{aligned}
\] & Cap． \(\mu \mathrm{fd}\) ． & & \[
\begin{array}{|c}
\text { Freq. } \\
\text { vs. Co }
\end{array}
\]
\[
\left\lvert\, \begin{gathered}
\text { vs. Cap } \\
\text { Fig. A }
\end{gathered}\right.
\] \\
\hline TK & \[
\begin{aligned}
& 1.25 \\
& 4^{4}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 24 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CB}_{3} \\
& \mathrm{C2} \\
& \mathrm{Cl}_{2} \\
& \hline
\end{aligned}
\] & M & \[
\begin{aligned}
& 1.25 \\
& 60
\end{aligned}
\] & \[
\begin{gathered}
15 \\
4 \\
0.1 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
27 \\
16 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline c 3 \\
\hline c 2 \\
c 2 \\
\hline
\end{array}
\] \\
\hline IJ & \[
24
\] & \[
\begin{aligned}
& 2 \\
& 0.1 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
37 \\
7 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{C2} \\
& \mathrm{c1} \\
& \hline
\end{aligned}
\] & 4 & \[
\begin{array}{r}
2 \\
20
\end{array}
\] & \({ }^{14}\) & \({ }_{3}^{22}\) & \({ }_{C 1}^{C 2}\) \\
\hline нк & \[
\begin{aligned}
& 1.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 39 \\
& 21 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& C_{3} \\
& c 2 \\
& \hline
\end{aligned}
\] & B & 1
20 & 40
4
4 & 26
13 & C2 \\
\hline H／ & \[
\frac{1.25}{10}
\] & \({ }_{1}^{6}\) & \[
{ }_{23}^{33}
\] & C3 & & 80 & 0.5 & 10 & \({ }^{\text {c2 }}\) \\
\hline H & 2
6
20 & 8
2
2
0 & \[
\begin{aligned}
& 14 \\
& 32 \\
& 32
\end{aligned}
\] & C3

\(C 2\)
c2 & ¢ & \[
\begin{array}{r}
2 \\
6 \\
80 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 50 \\
& 25 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 22 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& C_{2} \\
& C_{2} \\
& { }_{2}
\end{aligned}
\] \\
\hline ז & \({ }_{20}^{3}\) & \[
\begin{aligned}
& 4.1 \\
& 0.1 \\
& \hline
\end{aligned}
\] & \(\begin{array}{r}23 \\ 6 \\ \hline\end{array}\) & \[
\begin{aligned}
& C_{22} \\
& { }_{1}
\end{aligned}
\] & 0 & \[
\begin{aligned}
& 2.5 \\
& 60 \\
& 60
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
1
\end{gathered}
\] & \[
\begin{aligned}
& 44 \\
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& C 3 \\
& C_{3} \\
& c_{2}
\end{aligned}
\] \\
\hline \(s\) & \[
\begin{array}{r}
1.25 \\
40^{4} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 8 \\
& 4 \\
& 0.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
24 \\
22 \\
8 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{C2} \\
& \mathrm{C}_{2} \\
& \mathrm{C1} \\
& \hline
\end{aligned}
\] & E & \[
\begin{array}{r}
2 \\
5 \\
150
\end{array}
\] & \[
\begin{aligned}
& 75 \\
& 40 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 16 \\
& \hline 9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C}_{3} \\
& \mathrm{C}_{2}
\end{aligned}
\] \\
\hline
\end{tabular}

leakage current
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline シ & Mfd & Volts & & \[
\begin{aligned}
& \mu \mathrm{a} / \mathrm{l} \\
& 25^{\circ} \mathrm{C} \\
& \mathrm{Avg} .
\end{aligned}
\] & \begin{tabular}{l}
－\(\mu \mathrm{fd}\) ＠ \\
Max．
\end{tabular} & \[
15^{\circ} \mathrm{C}
\] Avg． & 岕 & \(\mu \mathrm{fd}\) & Voits & & \[
5^{\circ} \mathrm{Ca}
\] & It－\(\mu \mathrm{fd}\) & \\
\hline & 0.2 & 20 & ． 059 & & & & & & & Max & Avg． & Max． & Avg． \\
\hline \(\underline{y}\) & 1 & 4 & ． 003 & ． .003 & ． 122 & & & 0.1 & 30 & ． 0146 & ． 0134 & ． 0393 & ． 0166 \\
\hline & 2 & 1.25 & ． 004 & ． 004 & ． 012 & ． 0008 & ＜ & 2 & 8 & ． 0047 & ． 0026 & ． 0117 & ． 0039 \\
\hline & 0.5 & 20 & ． 013 & & & & & & 4 & ． 0338 & ． 0146 & ． 407 & ． 258 \\
\hline エ & 2 & 6 & ． 030 & ． 0262 & ． 040 & & & 0.5 & 40 & ． 0113 & ． 0064 & ． 0795 & ． 0646 \\
\hline & 8 & 2 & ． 015 & ． 010 & .125
.052 & .075
.042 & \(\infty\) & 2 & 20 & ． 0012 & ． 0008 & ． 0600 & ． 0179 \\
\hline & 0.1 & 20 & ． 099 & & & & & 8 & 10 & ． 0016 & ． 0008 & ． 0142 & ． 0064 \\
\hline \(\vdash\) & 1 & 8 & ． 0049 & ． 0043 & .414
.075 & ． 183 & & 2 & 40 & ． 0043 & ． 0018 & ． 0249 & \\
\hline & 4 & 3 & ． 013 & ． 010 & .075
.068 & ． 0225 & \(u\) & 10 & 16 & ． 0089 & ． 0019 & ． 0781 & ． 0158 \\
\hline & 0.1 & 20 & ． 0020 & & & ． 031 & & 40 & 4 & ． 0049 & ． 0021 & ． 0236 & ． 0123 \\
\hline \(\cdots\) & 1 & 8 & ． 0055 & ． 0019 & ． 0020 & ． 0019 & & 8 & 30 & ． 032 & ． 0017 & & \\
\hline & 4 & 4 & ． 0075 & ． 0047 & ． 0274 & ． 0130 & 0 & 15 & 15 & ． 0015 & ． 0006 & ． 0116 & ． 0240 \\
\hline \multirow{4}{*}{\(\Sigma\)} & 0.1 & 30 & ． 0132 & & & 0289 & & 40 & 6 & ． 0009 & ． 0007 & ． 0012 & ． 0007 \\
\hline & 4 & 4 & ． 0017 & ． 0124 & ． 0132 & ． 0124 & \multirow{3}{*}{\(\boldsymbol{\omega}\)} & \multirow[t]{3}{*}{\begin{tabular}{|l|l|}
10 \\
25 \\
30 \\
\hline
\end{tabular}} & \multirow[t]{3}{*}{30
6
10} & \multirow[t]{3}{*}{\[
\begin{aligned}
& .0057 \\
& .0056 \\
& .0427
\end{aligned}
\]} & \multirow[t]{3}{*}{.0043
.0032
.0271} & \multirow[t]{3}{*}{.0373
.0392
.587} & \multirow[t]{3}{*}{\[
\begin{aligned}
& .0312 \\
& .0202 \\
& .307
\end{aligned}
\]} \\
\hline & 8 & 4 & ． 0054 & ． 0035 & ． 05445 & ． 0240 & & & & & & & \\
\hline & & & & & ． 0445 & ． 0300 & & & & & & & \\
\hline
\end{tabular}

SHELF LIFE（at \(25^{\circ} \mathrm{C}\) ）
\begin{tabular}{c|c|c|c}
Type & \begin{tabular}{c}
No． \\
Units
\end{tabular} & \begin{tabular}{c}
Shelf Life \\
Hours
\end{tabular} & \begin{tabular}{c}
Avg．\％ \\
Less Than
\end{tabular} \\
\hline 118 & 10 & 10000 & +1 \\
\hline R1T20 & 10 & 10000 & -12 \\
\hline \(2 T 4\) & 10 & 10000 & -17 \\
\hline R5T20 & 10 & 10000 & -15 \\
\hline \(4 T 4\) & 13 & 10000 & +8 \\
\hline R5B10 & 6 & 10000 & +3 \\
\hline R5B16 & 6 & 10000 & +18 \\
\hline
\end{tabular}
＊Average \％change from Initial
Capacity \(\left(25^{\circ} \mathrm{C}\right)\) measured at 120 cps

\section*{OHMITE}

\title{
TAN-O-MITE \({ }^{\text {® }}\) \\ SERTES TF TANTALUM FOIL CAPACITORS
}

\section*{Plain \& Etched Foil Types}

\section*{- Polar \& Non-Polar Types}
- Meets MIL-C-3965C

Styles CL20, CL21, CL24, CL25, CL30, CL31, CL34, CL35

Series TF capacitors are tantalum foil electrolytic type units designed for low voltage AC and DC applications. In common with all tantalum capacitors, these units exhibit such characteristics as high capacitance for small size, great stability in use or in storage, long operating and shelf life, operation at wide temperature extremes, small capacitance drop at low temperatures, low leakage current and power factor. In comparison to the wire type of tantalum, wet-electrolytic capacitors, Series TF units have markedly superior leakage current and power factor characteristics. They are the only variety supplied in both polar and non-polar types. Two operating temperature ranges are available; \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) and \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).

Types and Construction: Series TF capacitors are supplied in plain foil and etched foil varieties. The etched foil type provides higher maximum capacitances for a given case size and, in addition, has somewhat lower leakage current than the plain foil type. All Series TF capacitors are supplied in metal cases (five sizes) and are sealed against atmospheric conditions. Insulation in the form of a plastic sleeve can be provided on all units.
Range: Overall capacitance range for plain foil capacitors, 0.25 to 400 mfds .; for etched foil units, 0.5 to 580 mfds. Working voltages for both types to 150 VDC depending upon capacitance.

\section*{POLAR AND NON-POLAR UNITS}

Non-Polar units are intended for DC applications where reversal of potential occurs or for AC applications at limited voltage. Consult factory for AC ratings. Non-polar units must have their cases insulated from ground. Insulated types (see ". . . Construction") can be used here. For the same case size and voltage
rating, the maximum possible capacity for a non-polar unit is generally about half that of a polar unit. In the low voltage range, it is somewhat more than half.
Polar Units are designed for application where reversals of potential do not occur. The cathode (negative) foil is treated to withstand small reversals up to 3.75 volts DC except where the DC rated voltage is less. Cases of polar units must be either insulated or grounded at the same potential as the cathode lead. Polar units are marked " + " on one end.
Standard Ratings are shown in tables. All \(85^{\circ} \mathrm{C}\) plain and etched foil listings are carried in stock for immedi-
ate shipment. MIL capacitors also carry commercial markings. Other ratings provided on request. Highest capacitance indicated for a given case size and voltage rating is maximum possible for that combination. Commercial catalog numbers are coded as follows: Example 6J10

A letter " \(R\) " is used to represent a decimal point as in 4.5 \(=4 R 5\); an " \(E\) " follows the case size designation in the case of "etched foil" capacitors; a " C " following the case size or the " \(E\) " indicates \(125^{\circ} \mathrm{C}\) rating; an " \(N\) " following the catalog number indicates "non-polar" unit; an "Sow,
following the catalog number indicates "insulating sleeve."

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Cose Size*} & \multicolumn{2}{|l|}{Uninsulated CL20, CL30, CL24, CL34} & \multicolumn{2}{|l|}{Insulated CL21, CL31, CL25, CL35} \\
\hline com- & \multicolumn{2}{|c|}{MIL} & A \(\pm 1 / 16\) & B \(\pm 1 / 4\) & \(\mathrm{A}^{+1 / 8}\) & B \(\pm 1 / 2\) \\
\hline K & Cl & D1 & 11/6 & & & \\
\hline K & C2 & D2 & 7/6 & \% \(\%\) & 1/4/16 & \({ }_{19}^{13 / 4}\) \\
\hline N & C3 & D3 & 1716 & 3/8 & 1/2/2 & 25/4 \\
\hline \(\underset{\mathrm{p}}{\mathrm{N}}\) & C4 & D4 & 21/3 & 3/8 & 23/16 & 23/4 \\
\hline P & C5 & D5 & \(23 / 4\) & 3/2 & 21/6 & 25/4. \\
\hline
\end{tabular} STOCK PLAIN FOIL CAPACITORS \(\left(85^{\circ} \mathrm{C}\right)\) MIL Styles CL34, CL35
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mfd.} & & \multirow[t]{2}{*}{D.c. Rated Volts} & \multirow[t]{2}{*}{\[
\begin{aligned}
& P \dagger \\
& \text { Or } \\
& \mathbf{N}
\end{aligned}
\]} & \multicolumn{2}{|r|}{Commercial} & \multicolumn{2}{|r|}{M1L-C-3965C} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Numbers in}} & \multicolumn{5}{|c|}{\multirow[b]{2}{*}{NOTES FOR TABLES}} \\
\hline & & & & \[
\begin{aligned}
& \text { Case } \\
& \text { Size }
\end{aligned}
\] & \[
\begin{array}{l|l}
\text { Stock } \\
\text { No. } \ddagger
\end{array}
\] & \[
\begin{aligned}
& \text { Case } \\
& \text { Size }
\end{aligned}
\] & Designatian \(\ddagger\) & & & & & & & \\
\hline 10
50 & & 3 & P* & J & 10 J 3 & C1 & Cl3_BAIOOMP3 & & & & & e non-p & & \\
\hline & & 3 & P* & K & 50K3 & C2 & \(\mathrm{Cl3} 3\) _BA500 MP3 & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{When selecting ratings, choose volt}} \\
\hline 10
45 & & 3.75
3.75 & \multirow[t]{4}{*}{N
N
N
N
N} & J & \multirow[t]{4}{*}{loJ3R75N
\(45 K 3 R 75 N\)
\(140 L 3 R 75 N\)
\(280 N 3 R 75 N\)
\(400 P 3 R 75 N\)} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} & \multicolumn{7}{|l|}{\multirow[t]{4}{*}{than required. A capacitor will always operate satisfactorily at voltages below its rating.
\[
\dagger P=\text { polar } ; N=\text { non-polar type. A nor }
\]}} \\
\hline 140 & & 3.75 & & L & & & & & & & & & & \\
\hline 280 & & 3.75 & & N & & & & & & & & & & \\
\hline 400 & & 3.75 & & P & & & & & & & & & & \\
\hline 8 & & 6 & P & J & 8 J 6 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C} 2
\end{aligned}
\]} & & \multicolumn{7}{|l|}{unit.} \\
\hline 30
35 & & 6 & P & \(K\) & 30 K 6 & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{CL3} \text { _BBO80MP3 } \\
& \mathrm{CL3} \text { _ BB } 300 \mathrm{MP3}
\end{aligned}
\]} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\#For insulating sleeve odd "S" to commercial stock number Complete MIL}} \\
\hline 35
100 & & 6 & P & K & 35K6 & & & & & & & & & \\
\hline 100
200 & & 6 & P & 1 & 10016 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{C} 3 \\
& \mathrm{C} 4 \\
& \mathrm{C} 5
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{CL} 3 \ldots \mathrm{BB} 101 \mathrm{MP} 3 \\
& \mathrm{CL} 3 \ldots \mathrm{BB} 201 \mathrm{MP3} \\
& \mathrm{CL} 3 \ldots \mathrm{BB} 301 \mathrm{MP3}
\end{aligned}
\]} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
type designation as follows: \\
For \(85^{\circ} \mathrm{C}\) uninsulated
\end{tabular}}} \\
\hline 200
300 & 6 & 6 & P & N & 200N6 & & & & & & & & & \\
\hline 300
7 & 6 & 6 & N & P & 300P6 & & & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
insulated units insert " 5 " instead. \\
For \(125^{\circ} \mathrm{C}\)
\end{tabular}}} \\
\hline 25 & 6 & 6 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{~N}
\end{aligned}
\]} & K & 7J6N & & & & & & & & & \\
\hline 85 & 6 & 6 & & L & \multicolumn{3}{|l|}{8516 N} & \multicolumn{7}{|l|}{insulated units insert " 1 " instead.} \\
\hline 175 & 6 & 6 & \multirow[t]{2}{*}{\[
\begin{aligned}
& N \\
& N
\end{aligned}
\]} & N & 175 N 6 N & & & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{MIL Grade 3 vibration test requirement is standard and satisfies requirements of Grades 1 and 2.}} \\
\hline 250 & 6 & & & P & 250P6N & & & & & & & & & \\
\hline 6
25 & 10 & & P & \(J\) & 6 J 10 & \multirow[t]{9}{*}{\[
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C} 2 \\
& \mathrm{C} 3 \\
& \mathrm{C} 4 \\
& \mathrm{C} 5
\end{aligned}
\]} & \multirow[t]{9}{*}{} & \multicolumn{7}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
*Regardless of polarity indicated, these low voltage units can be us as either polar or non-polar units within their rating. \\
STOCK ETCHED FOIL CAPACITORS (\(85^{\circ} \mathrm{C}\)) MIL Styles CL24, Cl25
\end{tabular}}} \\
\hline 25
80 & 10 & & P & \(k\) & 25K10 & & & & & & & & & \\
\hline 160 & 10 & & P & \(\stackrel{L}{\text { L }}\) & 80 LlO & & & & & & & & & \\
\hline 220 & 10 & & P & N & 160N10 & & & & & & & & & \\
\hline 4 & 10 & & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{~N} \\
& \mathrm{~N} \\
& \mathrm{~N} \\
& \mathrm{~N}
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& J \\
& K \\
& L \\
& N \\
& \mathbf{N}
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
4JION \\
16KION \\
55 LION \\
IIONION \\
150P10N
\end{tabular}} & & & & & & & & & \\
\hline 16 & 10 & & & & & & & & & & & & & \\
\hline 110 & 10 & & & & & & & & & & & & & \\
\hline 150 & 10 & & & & & & & \multirow[b]{2}{*}{Mfd.} & \multirow[t]{2}{*}{D.C. Rated} & & \multicolumn{2}{|r|}{Commercial} & \multicolumn{2}{|r|}{MIL-C-3965C} \\
\hline 4.5 & \(\frac{10}{15}\) & & N & P & & & & & & \[
\begin{aligned}
& \text { or } \\
& \mathbf{N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Case } \\
& \text { Size }
\end{aligned}
\] & Stock No. \(\ddagger\) & \[
\begin{aligned}
& \text { Case } \\
& \text { Size }
\end{aligned}
\] & Type Designation \(\ddagger\) \\
\hline 10 & 15 & & P & K & 10 K 15 & C1 & CL3__BE4R5MP3 & 15 & 15 & P & & & & \\
\hline 18 & 15 & & P & K & 18 K 15 & C2
C 2 & CL3_BE100MP3 & 60 & 15 & P & K & 60KE15 & Cl & CL2_BEI 50UP3 \\
\hline 55 & 15 & & P & L & 55L15 & C2
C3 & CL3_-BE180MP3 & 200 & 15 & P & L & & C2 & CL2_BE600UP3 \\
\hline 110 & 15 & & P & N & 110N15 & C3 & \(\mathrm{CL3}\) BE5 \(50 \mathrm{MP3}\) & 400 & 15 & P & N & 200LE15 & C3 & CL2_BE201UP3 \\
\hline 160 & 15 & & P & P & 160P15 & C4 & CL3_BE111MP3 & 580 & 15 & P & N & 400NE15 & C4 & CL2_BE401UP3 \\
\hline 2.5 & 15 & & N & J & 2R5J15N & C5 & CL3_BE161MP3 & 10 & 15 & N & j & 10JE15N & C5 & CL2_BE58 IUP3 \\
\hline 10 & 15 & & N & K & \(10 \mathrm{K1} 5 \mathrm{~N}\) & & & 40 & 15 & N & K & 40KE1 5N & & \\
\hline 35 & 15 & & \(N\) & L & 35115 N & & & 120 & 15 & N & L & 40KE15N
\(1201515 N\) & & \\
\hline 70 & 15 & & N & N & 70 NI 5N & & & 125 & 15 & \(N\) & L & 1251 El 5N & & \\
\hline 100 & 15 & & N & P & \(100 \mathrm{P1} 5 \mathrm{~N}\) & & & 250 & 15 & N & N & 250NE15N & & \\
\hline \multicolumn{8}{|c|}{(Contimued left col., next page)} & 350 & 15 & N & P & 350PE15N & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & OJVNOANATA－ & & & & & \(\frac{3}{2}\) & 0 \\
\hline & & çucucusucucusuc & & & & Nunusunununu & 容翋员员 & D \\
\hline zzzzz0000000． & zzzzzoooo & zzzzzooorot & zzzuz00000 & zzzzzoooto & zzzzzooovo & zzzzzoooo & 29 & \\
\hline つz「スーナzzz「ースー & & 『z「スレッチースー & & & ワz「スーフz「スー & & 皆： & \\
\hline & & & & & \begin{tabular}{l}
A \({ }^{\omega}\) \\

\end{tabular} & & 20atio & \\
\hline & & Gヘニ®Ñ & & & ヘペ & & \％ & \(\sim\) \\
\hline & & & & & & & crex & on
0
0
0
0
0
0
0
0 \\
\hline चanounūar & & & จuñuncinmous & & & & \(\frac{3}{\square}\) & 3 \\
\hline & 뭉뭉ㅁํㅇㅇㅇㅇㅇ & çucucusucusucus & & & & NuNuNuNuNuNuN & 年䛒： & m \\
\hline zzzzzooovo & zzzzzoovo & zzzzo0000 & zzzzzoovor & zzzazoovor & zzazzootoo & zzazzootoor & 207 & T \\
\hline 『て「スーって「スー & 0z「スーvz「スー & & & & & & & \(\underset{\equiv}{3}\) \\
\hline & & & & & & & （ & \\
\hline N®AÑ & & MEEN2 & & OSENS & SEANS & O¢ ล2a & & 通 \\
\hline & & & & & & & & 응
0
0
0
0
0
0
0 \\
\hline
\end{tabular}

\section*{SPECIFICATIONS}

Capacitance and Tolerance: The rated capacitance is measured at 120 cps and at \(+25^{\circ} \mathrm{C}\). For plain foil, the standard tolerance is \(\pm 20 \%\) (MIL tolerance desig nation "M"). For etched foil, tolerances are as follows
\begin{tabular}{|c|c|c|}
\hline \(35^{\circ} \mathrm{C}\) & \(125^{\circ}\) & lerance \\
\hline Below 50 Volts & Below 30 volts & \(-15+75 \%\) (MIL Desig. "U") \\
\hline 50.99 Volts & 30 & \(-15+50 \%\) (MIL Desig. "T") \\
\hline \(100-150\) Volts & 100 Volts & \(-15+30 \%\) \\
\hline
\end{tabular}
\(30 \%\) MIL Desig. "S"
At extremes of operating temperatures, the capacients of MIL-C-3965C and is shown in table below

Change in capacitance from \(+25^{\circ} \mathrm{C}\) rating
\begin{tabular}{|c|c|c|c|}
\hline Type & & \(-55^{\circ} \mathrm{C}\) & \(+85^{\circ} \mathrm{C}\) \\
\hline Plain Foil Polar and Non-polar & Less than 15 Volts 15 Volts and Higher & \[
\begin{aligned}
& -30 \% \\
& -20 \%
\end{aligned}
\] & \[
\begin{aligned}
& +20 \% \\
& +20 \%
\end{aligned}
\] \\
\hline Etched Foil Polar and Non-polar & Less than 50 Volts 50 Volts and Higher & \[
\begin{aligned}
& -40 \% \\
& -35 \%
\end{aligned}
\] & \(+20 \%\)
\(+20 \%\) \\
\hline \multicolumn{4}{|c|}{\(125^{\circ} \mathrm{C}\) Rated Capacitors} \\
\hline Typ & & \(-55^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) \\
\hline Plain Foil Polar and Non-polar & 10 Volts to 39 Volts 40 Volts to 100 Volts & \[
\begin{aligned}
& -25 \% \\
& -25 \%
\end{aligned}
\] & \[
\begin{aligned}
& +25 \% \\
& +15 \%
\end{aligned}
\] \\
\hline Etched Foil P (Polar) & 10 Volts to 64 Volts 65 Volts to 100 Volts & \[
\begin{aligned}
& -40 \% \\
& -35 \%
\end{aligned}
\] & \[
\begin{aligned}
& +50 \% \\
& +30 \% \\
& \hline
\end{aligned}
\] \\
\hline Etched Foil N (Non-polar) & 10 Volts to 64 Volts 65 Volts to 100 Volts & \[
\begin{aligned}
& -40 \% \\
& -40 \%
\end{aligned}
\] & \[
\begin{aligned}
& +45 \% \\
& +30 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Operating Temperature Ranges: Two types of units available; one is designed for operating over the ambient temperature range of \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), the other \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

DC Working Voltage Rating: The DC rated voltage is the maximum voltage for continuous duty. Where \(A C\) is superimposed on DC voltage, the sum of the positive AC peak and the DC voltage, must not exceed the DC rated voltage subject to the limitations shown under " 120 CYCLE RIPPLE VOLTAGE RATING "

DC Surge Voltage Rating: The DC surge voltage be exceeded. The capacitor will withstand this voltage
applied for 1000 successive cycles of \(1 / 2\) minute on and \(51 / 2\) minutes off, at the maximum rated ambient temperature.

Power Factor: When measured at 120 cps and at Power Factor: When measured at 120 cps and at
\(+25^{\circ} \mathrm{C}\), the power factor is substantially below the following limits:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Power Factor in Per Cent \(85^{\circ} \mathrm{C}\) Rated Capacifors} \\
\hline Type & & \(25^{\circ} \mathrm{C}\) & \(8^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline Plain Foil & Less than 15 Volts & & \\
\hline Polar and Non-polar & 15 Volts and Higher & 10\% & \[
15 \%
\] \\
\hline Etched Foil & Less than 50 Volts & 15\% & 20\% \\
\hline P (Polar) & 50 Volts and Higher & 10\% & 15\% \\
\hline Etched Foil & Less than 50 Volts & 20\% & 30\% \\
\hline \(N\) (Non-polar) & 50 Volts and Higher & 15\% & 25\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(125^{\circ} \mathrm{C}\) Rated Capa} \\
\hline Type & & \(25^{\circ} \mathrm{C}\) & \(125^{\circ} \mathrm{C}\) \\
\hline Plain Foil Polar and Non-polar & \begin{tabular}{l}
10 Volts to 39 Volts \\
40 Volts to 100 Volts
\end{tabular} & \[
\begin{aligned}
& 10 \% \\
& 10 \%
\end{aligned}
\] & \[
\begin{aligned}
& 25 \% \% \\
& 15 \%
\end{aligned}
\] \\
\hline Etched Foil P (Polar) & 30 Volts and Less Higher than 30 Volts & \[
\begin{aligned}
& 20 \% \\
& 15 \%
\end{aligned}
\] & \[
\begin{aligned}
& 30 \% \\
& 20 \%
\end{aligned}
\] \\
\hline Etched Foil \(N\) (Non-polar) & \begin{tabular}{l}
30 Volts and Less \\
Higher than 30 Volts
\end{tabular} & \[
\begin{aligned}
& 20 \% \\
& 15 \%
\end{aligned}
\] & \[
\begin{aligned}
& 40 \% \\
& 30 \%
\end{aligned}
\] \\
\hline
\end{tabular}
\(\mathbf{1 2 0}\) Cycle Ripple Voltage Rating: The peak value of 120 cycle ripple voltage should not exceed \(10 \%\) of the DC rated voltage. For polar capacitors, the applied DC voltage must be sufficient to limit the negative peak to 3.75 volts.

DC Leakage Current: DC leakage current is less than these limits:
\begin{tabular}{c|c|c}
Foil Type & \begin{tabular}{c}
Mieroamperes \\
per volt-md. \\
of \(15^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
Microamperes \\
per volt- md d. \\
of \(85^{\circ} \mathrm{C}\) or \(125^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Plain & 0.017 & 0.10 \\
\hline Etched & 0.01 & 0.06
\end{tabular}

Life Test: Capacitors will withstand a life test of more than 2000 hours at DC rated voltage and a maximum rated temperature, as required by MIL-C-3965C.

Remember... /
Ohnite Makes Tartalum Wire and Tautalum Slug Capacitors Too!

RESISTORS • RHEOSTATS - TAP SWITCHES • RELAYS • VARIABLE TRANSFORMERS TANTALUM CAPACITORS • SOLID STATE CONTROLS • R. F. CHOKES

TAN-O-MITE Series TS capacitors, in conjunction with the other types of tantalum wet-electrolytic capacitors, feature high capacitance with small size. In comparison with tacother types, however, they offer superiority in most (equivteristics... lower leakage current and power capacitance tolerances. alent series resistance) and coseration or in storage are Their stability and long life ihstand extraordinary conditions unexcelled and they will withstand and acceleration.
of high frequency vibration, shock a porous slug of
Construction: These capacitors employ a pealed into a fine sintered tantalum for the anode. Thode and as the container silver case which serves as the catde and cathode leads are for the electrolyte. Both the anode supplied insulated with a solderable. The capacitor can be supplied plastic sleeve.

Two physical types are available. The "hat-shaped" type includes commercial case sizes \(U, F\) and \(G\) which are respectively equivalent to cases \(\mathrm{T1}, \mathrm{~T} 2, \mathrm{~T} 3\) supplied under military styles CL44 and CL45 of MIL-C-3965/4D. The "straight-

Tolerances-Rated ca-
Capacitance Rating and Tolerances and at \(25^{\circ} \mathrm{C}\). pacitance is measured at
Standard tolerances are:
\begin{tabular}{c}
Tolerance \\
\hline\(\pm 5 \%\) \\
\(\pm 10 \%\) \\
\(\pm 20 \%\)
\end{tabular}

Operating Temperature Range-All capacitors are available in "B" \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) and "C" \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) characteristics.
DC Working Voltage Rating . . . is the maximum value of voltage for continuous duty at rated temperature. Where AC is superimposed on DC voltage, the sum of the AC peak and the DC voltage must not exceed the DC rated voltage. See "AC Ripple Current."
DC Surge Voltage Rating ... is \(115 \%\) of the DC Working Voltage Rating. It is the maximum voltage that the capacitor may be subjected to intermittently under any condition. This peak voltage includes AC ripple that may be superimposed on

cylindrical" type occupies less space but offers a comparable range of capacitance, voltage commercial case sizes characteristics. These are suppled Styles CL64 and CL65 SU, SF, SG or sizes T1, \(4 E\), a later revision.
of MIL-C-3965/40 available in both physical
"High Capacitance Units" are availabled slugs, the hightypes. Because of specially capacitance units provide ove voltage rating.
units with the same case size and straight-cylindrical types
Range: Both the hat-shape 1.7 to 560 mfds . Working
offer a collective to 125 DC depending upon capacitance voltages range tomperature rating.
Application: Intended for DC applications, in their indicated polarity only, the capacitors will function in applications where a super-imposed \(A C\) ripple is present subject to the limitations in the "Specifications" following.

\section*{ATIONS}
the DC. The capacitor will withstand this surge voltage applied for 1000 successive cycles of \(1 / 2\) minute on, \(5 \frac{1}{2}\) minutes off, at the maximum rated ambient temperature.
AC Ripple Current.
\begin{tabular}{c|c|c}
AC Ripple Current. \\
Case Size
\end{tabular}\(\quad\) Max. Ripple Current in ma
age Current. is measured at the appli-
DC Leakage Current . . . is measter 5 minutes of eleccable ambient temperatured voltage. Voltage is applied trification at DC rated resistor in series with each through a 1000 ohm reing current. The maximum capacitor to limirents are shown in the table.
DC leakage currents ariance . . in ohms, as deter-
Equivalent Series Resistance \(\ldots\) in ohms, as \(+25^{\circ} \mathrm{C}\), mined by measuremen described in MIL-C-3965. is less than the limill operate at a
Reduced Pressure-Capacitors of 0.82 inches of reduced atmospheric pritude) exceeding the requirements of MIL-C-3965.

High Frequency Vibration, Shock, Acceleration-TS units will exceed vibration test requirements of MIL-C-3965, Grade 3, from 5 to 2000 cps with acceleration of 15 g 's. They have been successfully tested over this range with an acceleration of 30 g's. They will withstand a 50 g shock test in accordance with MIL Std. 202A, Method 205; also a constant acceleration test of 50 g 's.

Shelf \& Load Life-Tests have shown that the capacitors exhibit no perceptible change in capacitance over 10,000 hours of storage at \(25^{\circ} \mathrm{C}\). At rated voltage for 10,000 hours at \(85^{\circ} \mathrm{C}\) ambient, the typical change of capacitance is \(2 \%\).

Terminal Strength-Leads will withstand pull test of 3 pounds in an axial direction for 30 seconds as required by MIL-C-3965, will withstand bend test also per MIL-C-3965.

Testing Precautions - Capacity ratings are established at 120 cps . Before measurements are made, it should be carefully determined that the DC bias is sufficiently large to prevent polarity reversal due to the AC component. The peak AC voltage should be limited to 30 percent of the rated DC voltage or 4 volts rms , whichever is smaller.

Parallel or Series Connection-Capacitors may be connected in parallel to obtain greater total capacitance. Capacitors may be connected in series to accommodate higher voltage requirements but shunting resistors are required, maximum values for which are achieved with these formulae*:
Cases \(U\), \(S U\) (II) \(R=\frac{3.4}{\sqrt{C}}\) Cases \(F, S F\), (T2) \(R=\frac{5.2}{\sqrt{C}}\)
Coses \(G, S G(T 3) \quad R=\frac{6.5}{\sqrt{C}}\) (*R in megohms; C in mfds.)
Coding of Commercial Catalog Numbers-Catalog numbers for Series TS capacitors are translated as follows:
\begin{tabular}{ccccc}
& Example- 1 R 7 U B 125 K \\
Cop. & Cose & Operoting & Volts & Cop. \\
in Mid. & Size & Temp. Ronge & DC & Toleronce \\
1.7 & U & B & 125 & K
\end{tabular}

The letter " \(R\) " represents a decimal point. Case size designation of "straight-cylindrical" unit would be "SU." Adopting the military coding system, the letter "B" represents an operating, temperature range of \(-55^{\circ} \mathrm{C}\). to \(+85^{\circ} \mathrm{C}\). Substitute " C " for \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) range. To specify an insulating sleeve, add "A" as a suffix to the catalog number.

On MIL capacitors, "C" type \(\left(125^{\circ} \mathrm{C}\right)\) capacitors carry a dual voltage rating, for example, " \(60 / 40\) VDC." The first number is the rating at \(85^{\circ} \mathrm{C}\); the second is the \(125^{\circ} \mathrm{C}\) rating.

STRAIGHT CYL TYPE; CASE SIZES SU, SF, SG MIL STYLES CL64, CL65; CASE SIZES TI, T2, T3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Dim.} & \multicolumn{8}{|l|}{} \\
\hline & \multicolumn{8}{|l|}{Uninsulated Case (C164) Insulated Case (C165)} \\
\hline & Tol. & \[
\begin{gathered}
\text { su } \\
(\mathrm{T} 1)
\end{gathered}
\] & \[
\begin{aligned}
& \text { SF } \\
& \text { (T2) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SG } \\
& \text { (T3) } \\
& \hline
\end{aligned}
\] & Tol. & \[
\begin{aligned}
& \text { su } \\
& \text { (II) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SF } \\
& \text { (T2) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SG } \\
& (\mathrm{T} 3) \\
& \hline
\end{aligned}
\] \\
\hline A & +1/82-1/64 & 29/64 & 41/4 & 4\% \(\%\) & \(\pm 1 / 2\) & 35/44 & 47/84 & 55/64 \\
\hline C & \(\pm 1 / 64\) & 3/16 & 9/2 & 1/8 & max. & 7/2 & 5/16 & 13/2 \\
\hline D & \(\pm 1 / 4\) & \(11 / 2\) & 21/4 & 21/4 & \(1 / 4\) & \(11 / 2\) & 21/4 & 21/4 \\
\hline F & +.005
+.001 & . 025 & . 025 & . 025 & +.005
-.001 & . 025 & . 025 & . 025 \\
\hline
\end{tabular}

Characteristics shown here for hat-shaped capacitors may also be considered applicable to their straight-cylindrical counterparts in sizes SU, SF, and SG.

\section*{Commercial Case Sizes SU, SF, SG-MIL-C-3965/4E, Styles CL64, CL65} Commercial Case Sizes U, F, G-MIL-C-3965/4D, Styles CL44, CL45
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Stock Slug Capacitors} & \multicolumn{7}{|c|}{Capacitor Characteristics} \\
\hline & \multicolumn{2}{|l|}{\[
\underset{\text { Rated Volts }}{\text { D.C. }}
\]} & \multicolumn{3}{|r|}{Commersial} & \multicolumn{2}{|r|}{MIL-C-3965} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max. ESR
@ 120 cps
(25 \({ }^{\circ} \mathrm{C}\) \\
Ohms
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max. \\
Imp. \\
@ 120 cps \\
Ohms
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Max. D.C. Leakage Current, Microamps of Rated Valts
\[
\begin{array}{r}
@ \\
25^{\circ} \mathrm{C} \\
\hline
\end{array} 8_{8}^{@} 85^{\circ} \mathrm{C} \mathrm{C}
\]}} & \multicolumn{3}{|l|}{\% Max. Capac. Change fram Rating at \(25^{\circ} \mathrm{C}\).} \\
\hline Mfd. & \(85^{\text {c }} \mathrm{C}\) & \[
125^{@} \mathrm{C}
\] & \[
\begin{gathered}
\hline \text { Case§ } \\
\text { Size } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Srock No. } \\
& \left(85^{\circ} \mathrm{C}\right)^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Stack No. } \\
& \left(125^{\circ} \mathrm{C}\right)^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Cose } \\
& \text { Size } \\
& \hline
\end{aligned}
\] & Type Designatian \(\dagger\) & & & & & \[
55^{\circ} \mathrm{C}
\] & \[
\begin{array}{r}
@ \\
+85^{\circ} \\
\hline
\end{array}
\] & \[
125^{\circ} \mathrm{C}
\] \\
\hline \[
\begin{aligned}
& 30 \\
& 68
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{U} \\
& \mathrm{U}
\end{aligned}
\] & \[
\begin{aligned}
& 30 \text { U_UB6 } \\
& 68 \quad \text { UB6 }
\end{aligned}
\] & \begin{tabular}{l}
30 \(\qquad\) UC4 \(\qquad\) \\
68 \(\qquad\) UC4
\end{tabular} & \[
\begin{array}{ll}
\mathrm{T} \\
\mathrm{~T}
\end{array}
\] & & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
60
\end{array}
\] & \[
\begin{aligned}
& 0.8 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& -40 \\
& -40
\end{aligned}
\] & \[
\begin{aligned}
& +10.5 \\
& +14 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +16
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 140 \\
& 270 \\
& \hline
\end{aligned}
\] & 6 & 4 & F & \begin{tabular}{ll}
140 & FB6 \\
270 & FB6
\end{tabular} & \[
\begin{array}{ll}
140 & \text { FC4 } \\
270 & \text { FC4 }
\end{array}
\] & \[
\begin{aligned}
& T 2 \\
& T 2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cl}-\mathrm{Bl} 41 _\mathrm{P} 3 \\
& \mathrm{CL}-\mathrm{B} 271 _\mathrm{P} 3
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
1
\] & 6.5 & \[
\begin{array}{r}
-40 \\
-44 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +14 \\
& +17.5
\end{aligned}
\] & \[
\begin{aligned}
& +16 \\
& +20 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline 330 \\
560 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { G } \\
& \text { G }
\end{aligned}
\] & \[
\begin{aligned}
& 330 _G B 6 \\
& 560 \quad \text { GB6 }
\end{aligned}
\] & \[
\begin{aligned}
& 330-G C 4 \\
& 560-G C 4
\end{aligned}
\] & \[
\begin{array}{r}
13 \\
\mathrm{~T} 3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{CL} \quad \mathrm{~B} 331 _\mathrm{P} 3 \\
& \mathrm{CL} \ldots
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
7.9 \\
13 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
-44 \\
-64 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +14 \\
& +17.5
\end{aligned}
\] & \[
\begin{aligned}
& +16 \\
& +20
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 25 \\
& 56
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{U} \\
& \mathrm{U}
\end{aligned}
\] & \begin{tabular}{ll}
25 & UB8 \\
56 & UB8
\end{tabular} & \[
\begin{aligned}
& 25 \quad \cup C 5 \\
& 56 \quad \text { UC5 }
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{T} \\
\mathrm{~T}
\end{array}
\] & \begin{tabular}{ll}
\(\mathrm{CL}-\quad \mathrm{C} 250-\mathrm{P} 3\) \\
CL & \(-\quad \mathrm{C} 560\) \\
P 3
\end{tabular} & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
59
\end{array}
\] & \[
\begin{aligned}
& \hline 0.9 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-35 \\
-40 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +10.5 \\
& +14
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +16
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline 220 \\
430 \\
\hline
\end{array}
\] & 8 8 & \[
\begin{aligned}
& 5 \\
& 5 \\
& \hline
\end{aligned}
\] & F & \[
\begin{array}{ll}
220 & \text { FB8 } \\
430 & \text { GB8 }
\end{array}
\] & \[
\begin{array}{ll}
220 & \text { FC5 } \\
430 & \text { GC5 } \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12 \\
13 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{CL} \\
& \mathrm{CL} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
30 \\
25 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
7 \\
13.8 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
-44 \\
-64 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+17.5 \\
+17.5
\end{array}
\] & \[
\begin{aligned}
& +20 \\
& +20
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 20 \\
& 47 \% \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{U} \\
& \mathrm{U}
\end{aligned}
\] & \[
\begin{aligned}
& 20 \text { UBIO } \\
& 47 _\quad U B 10
\end{aligned}
\] & \[
\begin{aligned}
& 20 \quad \cup C 7-\quad 47-\quad \cup C 7- \\
& 47-1
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 11 \\
\mathrm{TI}
\end{array}
\] & \begin{tabular}{lll}
Cl & D 200 & P 3 \\
Cl & \(\quad\) & D 470 \\
Cl 3
\end{tabular} & \[
\begin{aligned}
& 4 \\
& 3.6
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{r}
-30 \\
-36 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +10.5 \\
& +14
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +16
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 100 \\
& 180 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& F
\end{aligned}
\] & \[
\begin{array}{ll}
100-F B 10 \\
180 _F B 10
\end{array}
\] & \[
\begin{aligned}
& 100 _F C 7 \\
& 180 _F C 7
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{~T} 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CL} _ \text {D101_P3 } \\
& \mathrm{Cl} _\quad \mathrm{D} 181 _\mathrm{P} 3
\end{aligned}
\] & 2 & \[
\begin{aligned}
& 60 \\
& 40
\end{aligned}
\] & & \[
\begin{aligned}
& 4 \\
& 7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-36 \\
-36
\end{array}
\] & \[
\begin{aligned}
& +14 \\
& +14
\end{aligned}
\] & \[
\begin{aligned}
& +16 \\
& +16
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 250 \\
& 390 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G} \\
& \mathrm{G}
\end{aligned}
\] & \[
\begin{aligned}
& 250 \quad \text { GB10 } \\
& 390 _\quad \text { GB10 }
\end{aligned}
\] & \[
\begin{array}{ll}
250 & \text { GC7 } \\
390 & \text { GC7 }
\end{array}
\] & \[
\begin{aligned}
& 13 \\
& \mathrm{~T} 3
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CL}-\mathrm{D} 251 _\mathrm{P} 3 \\
& \mathrm{CL}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 15.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-40 \\
-64 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +14 \\
& +17.5
\end{aligned}
\] & \[
\begin{aligned}
& +16 \\
& +20
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 15 \\
& 33 \hat{6}
\end{aligned}
\] & 15
15 & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& u \\
& u
\end{aligned}
\] & \[
\begin{aligned}
& 15 _ \text {UB } 15 \\
& 33 _ \text {UB15 }
\end{aligned}
\] & \[
\begin{aligned}
& 15 _U C 10 \\
& 33 _\quad U C 10
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{T} \\
\mathrm{~T}
\end{array}
\] & \begin{tabular}{lll}
CL & E150 & P 3 \\
Cl & \(\ldots\) & E330 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 3.6
\end{aligned}
\] & \[
\begin{array}{r}
145 \\
90
\end{array}
\] & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{r}
-24 \\
-28
\end{array}
\] & \[
\begin{aligned}
& +10.5 \\
& +14
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +16
\end{aligned}
\] \\
\hline \[
\begin{gathered}
70 \\
120 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & F & \[
\begin{aligned}
& 70 \quad \text { FB } 15 \\
& 120 \quad \text { FB15 }
\end{aligned}
\] & \[
\begin{aligned}
& 70 \quad \text { FC10 } \\
& 120 \quad \text { FC10 }
\end{aligned}
\] & T2 & \[
\begin{aligned}
& \mathrm{Cl} \ldots \mathrm{E} 700 \ldots \mathrm{P3} \\
& \mathrm{Cl} \ldots \ldots \mathrm{El} 21 \ldots \mathrm{P} 3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 63 \\
& 50
\end{aligned}
\] & \[
1
\] & \[
\begin{aligned}
& 4 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& -28 \\
& -28 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +14 \\
& +17.5
\end{aligned}
\] & \[
\begin{aligned}
& +16 \\
& +20
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 170 \\
& 270 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G} \\
& \mathrm{G}
\end{aligned}
\] & \[
\begin{array}{ll}
170 & \text { GB15 } \\
270 & \text { GB15 }
\end{array}
\] & \[
\begin{array}{ll}
170-G C 10 \\
270 & G C 10
\end{array}
\] & \[
\begin{aligned}
& 13 \\
& 13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cl}-\mathrm{E} 771 _\mathrm{P3} \\
& \mathrm{Cl} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 16 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-32 \\
-56 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +14 \\
& +17.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +16 \\
& +20 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 10 \\
& 22
\end{aligned}
\] & 25 & 17 & U & \[
\begin{array}{|ll|}
\hline 10 & \text { UB25 } \\
22 & \text { UB25 } \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
10 & U C 17 \\
22 & U C 17
\end{array}
\] & \[
\begin{aligned}
& \mathrm{T1} \\
& \mathrm{T1} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CL} \\
& \mathrm{CL} \\
& \mathrm{G} 100 \\
&
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 3.6
\end{aligned}
\] & \[
\begin{aligned}
& 190 \\
& 140 \\
& \hline
\end{aligned}
\] & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +8 \\
& +10.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +9 \\
& +12
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline 100 \\
180 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 25 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{G}
\end{aligned}
\] & \[
\begin{array}{lll}
100 & \text { FB25 } \\
180 _ & \text {GB25 } \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
100 & \mathrm{FCl} \\
180 & \mathrm{GCl}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{~T} 3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CL}-\mathrm{G} 101 \quad \mathrm{P3} \\
& \mathrm{CL}-\quad \mathrm{G} 181 \quad \mathrm{P3}
\end{aligned}
\] & 4
4 & \[
\begin{aligned}
& 50 \\
& 32 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-28 \\
-48 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +13 \\
& +13
\end{aligned}
\] & \[
\begin{aligned}
& +15 \\
& +15
\end{aligned}
\] \\
\hline \[
\begin{gathered}
8 \\
15 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 30 \\
& 30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{U} \\
& \mathrm{U}
\end{aligned}
\] & \[
\begin{array}{ll}
8 _\cup B 30- \\
15 _ & U B 30
\end{array}
\] & \[
\begin{aligned}
& 8 _\cup \cup 20 \\
& 15 _\quad \cup C 20
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 11 \\
\mathrm{~T}
\end{array}
\] & \(\mathrm{CL}-\quad \mathrm{H} 080 \quad \mathrm{P} 3\)
CL
\(\mathrm{H} 150 _\mathrm{P} 3\) & \[
\begin{aligned}
& 7 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 230 \\
& 175
\end{aligned}
\] & \[
\overline{1}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -20
\end{aligned}
\] & \[
\begin{aligned}
& +8 \\
& +10.5
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +12
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 40 \\
& 68 \text { 人 }
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{F} \\
& \mathrm{F}
\end{aligned}
\] & \begin{tabular}{ll}
40 & FB3O \\
88 & FB3O
\end{tabular} & \begin{tabular}{ll}
40 & FC 20 \\
68 & FC 20
\end{tabular} & \[
\begin{aligned}
& T 2 \\
& T 2
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{Cl} & \mathrm{H} 400 \\
\mathrm{Cl} & \mathrm{P} 3 \\
\mathrm{Cl} & \mathrm{H} 60 \ldots \mathrm{P} 3
\end{array}
\] & \[
\begin{aligned}
& 4 \\
& 6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 4.8 \\
& 8
\end{aligned}
\] & \[
\begin{array}{r}
-24 \\
-24
\end{array}
\] & \[
\begin{aligned}
& +10.5 \\
& +13
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +15
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & 20 & G & \[
\begin{array}{ll}
100 & \text { GB30 } \\
150 _ & \text {GB30 }
\end{array}
\] & \[
\begin{aligned}
& 100 \quad \text { GC20__ } \\
& 150 _ \text {GC20_ } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { T3 } \\
& \text { T3 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CL}-\mathrm{H} 101-\mathrm{P} 3 \\
& \mathrm{CL} \\
& \hline
\end{aligned}
\] & 2.5
4 & \[
\begin{aligned}
& 40 \\
& 35
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
12 \\
18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-28 \\
-48 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +10.5 \\
& +13
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +15
\end{aligned}
\] \\
\hline \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& \hline 33 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{u} \\
& \mathrm{U}
\end{aligned}
\] & \[
\begin{array}{ll}
5 & U B 50 \\
10 & U B 50
\end{array}
\] & \[
\begin{array}{cc}
5 \\
10 \quad \text { UC33_ }
\end{array}
\] & \[
\begin{array}{ll}
\mathrm{T} \\
\mathrm{~T} \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 7.2 \\
& 5.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
355 \\
250 \\
\hline
\end{array}
\] & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{r}
-16 \\
-24 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +5 \\
& +8
\end{aligned}
\] & \[
\begin{aligned}
& +6 \\
& +9
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 25 \\
& 47 \%
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 33 \\
& 33
\end{aligned}
\] & F & \[
\begin{array}{ll}
25 & \mathrm{FB} 50 \\
47 & \mathrm{FB50}
\end{array}
\] & \begin{tabular}{ll}
25 & FC33 \\
47 & FC 33
\end{tabular} & \[
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{~T} 2
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{Cl} & \mathrm{~J} 250 \\
\mathrm{Cl} & \mathrm{P3} \\
\hline
\end{array} 470 \quad \mathrm{P} 3
\] & \[
\begin{array}{r}
4 \\
6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 90 \\
& 70
\end{aligned}
\] & \[
i
\] & \[
\begin{aligned}
& 5 \\
& 9
\end{aligned}
\] & \[
\begin{aligned}
& -20 \\
& -28
\end{aligned}
\] & \[
\begin{aligned}
& +10.5 \\
& +13
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +15 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 60 \\
& 82 \% \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 33 \\
& 33 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G} \\
& \mathrm{G}
\end{aligned}
\] & \[
\begin{array}{ll}
60 & \text { GB50 } \\
82 & \text { GB50 }
\end{array}
\] & \begin{tabular}{ll}
60 & GC33_ \\
82 & GC33
\end{tabular} & \[
\begin{aligned}
& \text { T3 } \\
& \text { T3 } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{CL} & -1600 \\
\mathrm{Cl} & \mathrm{P3} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3 \\
& 4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -32
\end{aligned}
\] & \[
\begin{aligned}
& +10.5 \\
& +13
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +15
\end{aligned}
\] \\
\hline \[
\begin{gathered}
4 \\
8.26
\end{gathered}
\] & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{U} \\
& \mathrm{U}
\end{aligned}
\] & \[
\begin{aligned}
& 4 \quad U B 60 \\
& 8 R 2 \quad U B 60
\end{aligned}
\] & \[
\begin{aligned}
& 4 \quad U C 40 \\
& 8 R^{2} \quad U C 40
\end{aligned}
\] & \[
\begin{array}{ll}
\hline \mathrm{Tl} \\
\mathrm{TI} \\
\hline
\end{array}
\] & \[
\begin{array}{lll}
\mathrm{CL} & \mathrm{KO40} & \mathrm{P3} \\
\mathrm{CL} & \mathrm{~K} 8 \mathrm{R} 2 & \mathrm{P} 3
\end{array}
\] & \[
\begin{aligned}
& 8.1 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
405 \\
275 \\
\hline
\end{array}
\] & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-16 \\
-24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+5 \\
+8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +6 \\
& +9
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 20 \\
& 39 \div
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& F
\end{aligned}
\] & \[
\begin{array}{ll}
20 & \text { FB60 } \\
39 & \text { FB60 }
\end{array}
\] & \[
\begin{array}{ll}
20 & \text { FC40 } \\
39 & \text { FC40 }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{~T} 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{Cl} & \mathrm{~K} 200 \\
\mathrm{CL} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.3 \\
& 7
\end{aligned}
\] & \[
\begin{array}{r}
105 \\
90
\end{array}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 4.8 \\
& 9
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -28
\end{aligned}
\] & \[
\begin{aligned}
& +10.5 \\
& +10.5
\end{aligned}
\] & \[
\begin{aligned}
& +12 \\
& +12
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 50 \\
& 68 \%
\end{aligned}
\] & 60
60 & 40
40 & G & \[
\begin{array}{ll}
50-G B 60 \\
68 & \text { GB60 }
\end{array}
\] & \[
\begin{array}{ll}
50 & \text { GC40 } \\
68 & \text { GC40 }
\end{array}
\] & \[
\begin{aligned}
& 13 \\
& 13 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lll}
\mathrm{CL} & \mathrm{~K} 500 & \mathrm{P3} \\
\mathrm{CL} & \mathrm{~K} 680 & \mathrm{P3}
\end{array}
\] & \[
\begin{aligned}
& 4 \\
& 6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& \hline
\end{aligned}
\] & 2 & \[
\begin{aligned}
& 12 \\
& 16 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-16 \\
-32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+10.5 \\
+10.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +12 \\
& +12 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3.5 \\
& 6.8 \text { ? }
\end{aligned}
\] & \[
\begin{aligned}
& 75 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& u \\
& u
\end{aligned}
\] & 3R5_—UB75
6R8_UB75 & \begin{tabular}{ll}
\(3 R 5\) & \(U C 50\) \\
6R8 & UC50_
\end{tabular} & \[
\begin{array}{ll}
\mathrm{Tl} \\
\mathrm{TI}
\end{array}
\] & & \[
\begin{aligned}
& 9 \\
& 6.3
\end{aligned}
\] & \[
\begin{aligned}
& 505 \\
& 300
\end{aligned}
\] & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -20
\end{aligned}
\] & \[
\begin{aligned}
& +5 \\
& +8
\end{aligned}
\] & \[
\begin{aligned}
& +6 \\
& +9
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 15 \\
& 33
\end{aligned}
\] & 75
75 & 50
50 & F & \[
\begin{array}{ll}
15 & \text { FB75 } \\
33 & \text { FB75 }
\end{array}
\] & \(15-\quad \mathrm{FC} 50\)
33 & \[
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{~T} 2
\end{aligned}
\] & \[
\begin{array}{lll}
\mathrm{Cl} & \mathrm{ll} & \mathrm{P3} \\
\mathrm{Cl} & 1330 & \mathrm{P} 3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
135 \\
90 \\
\hline
\end{array}
\] & \[
1
\] & \[
\begin{aligned}
& 4.5 \\
& 9.9
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -24
\end{aligned}
\] & \[
\begin{aligned}
& +8 \\
& +10.5
\end{aligned}
\] & \[
\begin{aligned}
& +9 \\
& +15
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 40 \\
& 56 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 75 \\
& 75 \\
& \hline
\end{aligned}
\] & 50
50 & G & \[
\begin{array}{ll}
40 & \text { GB75 } \\
56 & \text { GB75 }
\end{array}
\] & \[
\begin{aligned}
& 40 \quad \text { GC5O___ } \\
& 56 \quad \text { GC50__ }
\end{aligned}
\] & T3 & \[
\begin{array}{ll}
\mathrm{Cl} & \mathrm{~L} 400 \quad \mathrm{P3} \\
\mathrm{Cl} & \mathrm{~L} 560
\end{array}
\] & \[
\begin{aligned}
& 4.7 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 16.8
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -28
\end{aligned}
\] & \[
\begin{aligned}
& +10.5 \\
& +10.5
\end{aligned}
\] & \[
\begin{array}{r}
+12 \\
+15 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
2.5 \\
4.7 \\
\hline 18
\end{tabular} & 100
100 & \[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& U \\
& U
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2R5_UB } 100 \\
& 4 R 7 \quad \text { UB } 100
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2R5_UC70_-_UC70 } \\
& \text { 4R7_ }
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{T1} \\
\mathrm{TI}
\end{array}
\] & \begin{tabular}{lll}
Cl & \(\ldots\) & N 2 R 5 \\
Cl & P 3 \\
Cl & \(\ldots\) & N 4 R 7 \\
P 3
\end{tabular} & 9.5
9 & 710
500 & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& -16 \\
& -16
\end{aligned}
\] & \[
\begin{array}{r}
+3 \\
+5
\end{array}
\] & \[
\begin{aligned}
& +4 \\
& +6
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 11 \\
& 22
\end{aligned}
\] & 100
100 & 70
70 & F & \(11 \ldots\) FB100
\(22 \ldots\) FB100 & \[
\begin{aligned}
& 11 \ldots \mathrm{FC} 70 \\
& 22 \ldots \mathrm{FC} 70
\end{aligned}
\] & T2 & \[
\begin{array}{ll}
\mathrm{Cl}-\mathrm{N}_{1} 10 \quad \mathrm{P3} \\
\mathrm{Cl} \\
\mathrm{~N} 220 & \mathrm{P} 3
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & 4
8.8 & \[
\begin{aligned}
& -15 \\
& -16
\end{aligned}
\] & \[
\begin{aligned}
& +5 \\
& +5
\end{aligned}
\] & +6
+6 \\
\hline \[
\begin{aligned}
& 30 \\
& 43 \text { ? }
\end{aligned}
\] & 100
100 & \[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& \text { G } \\
& \mathrm{G}
\end{aligned}
\] & \[
\begin{aligned}
& 30 \text { GB100 } \\
& 43 \text { _GB100 }
\end{aligned}
\] & \[
\begin{aligned}
& 30 \quad \text { GC70__ } \\
& 43 _G C 70 _
\end{aligned}
\] & \begin{tabular}{l}
13 \\
\hline 13
\end{tabular} & \[
\begin{array}{lr}
\mathrm{Cl} & \mathrm{~N} 300 \\
\mathrm{Cl} & \mathrm{P3} \\
\mathrm{Cl} & \mathrm{~N} 430 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4 \\
& 6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& -15 \\
& -20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +7 \\
& +7
\end{aligned}
\] & \[
\begin{aligned}
& +8 \\
& +8
\end{aligned}
\] \\
\hline 1.7
3.6 & 125
125 & 85
85 & \(\cup\) & 1R7__UB125
3R6_UB125 & \[
\begin{aligned}
& \text { 1R7__UC85 } \\
& \text { 3R6_UC85 }
\end{aligned}
\] & 11
\(T 1\) & \[
\begin{aligned}
& \mathrm{Cl} \quad \mathrm{PlR7} \text { P3 } \\
& \mathrm{Cl} \ldots \quad \mathrm{P} 3 \mathrm{RS} \text { _P3 }
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \\
& 12 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
950 \\
500 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & 2 & \[
\begin{aligned}
& -15 \\
& -16
\end{aligned}
\] & \[
\begin{aligned}
& +3 \\
& +5
\end{aligned}
\] & +4
+5 \\
\hline \[
9
\] & 125
125 & 85
85 & F & \[
\begin{array}{ll}
9 & \text { FB125 } \\
14 & \text { FB125 }
\end{array}
\] & \[
\begin{aligned}
& 9 \text { FC85 } \\
& 14 \ldots \text { FC85 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{~T} 2
\end{aligned}
\] & Cl CL_PPOPO_P3 & \[
\begin{array}{r}
5 \\
12
\end{array}
\] & \[
\begin{aligned}
& 235 \\
& 167
\end{aligned}
\] & \[
1
\] & \[
\begin{aligned}
& 4.5 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& -15 \\
& -16
\end{aligned}
\] & \[
\begin{aligned}
& +4 \\
& +6
\end{aligned}
\] & \[
\begin{aligned}
& +6 \\
& +7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 25 \\
& 39 \% \\
& \hline
\end{aligned}
\] & 125
125 & \[
\begin{aligned}
& 85 \\
& 85
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G} \\
& \mathrm{G}
\end{aligned}
\] & \[
\begin{array}{ll}
25 & \text { GB125 } \\
39 & \text { GB125 }
\end{array}
\] & \[
\begin{array}{ll}
25 & \text { GC85 } \\
39 & \text { GC85 }
\end{array}
\] & T3 & CL & 5 & 90 & 2 & 12.5 & -15 & +8 & \(+10\) \\
\hline
\end{tabular}

Camplefe cammercial stack no. as fallaws: If straight-cylindrical capacitar i desired, insert on ' \(S\) "' in the middle of the number where the underlined space is pravided as in "30SUB6-." If a hat-shape capasitor is desired, write this number without the space as in "'30UB6-" Add \(J . K\) or \(M\) at end af number ta indicate talerance. Add " \(A\) " after tolerance letfer if insulating sleeve is desired
Camplete MIL type designation as fallaws: Far hat-shape, uninsulated type, insert " 44 " after "CL__"; for insulated type insert " 45 " instead. Far
straight-cylindrical shape, uninsulated, insert "64" ofter "CL_-.; far in sulated type insert " " \(65^{\prime \prime}\) instead. After desired style designation ("Cl44 \(\mathrm{Cl} 64^{\circ}\) etc.) insert " \(B\) " for \(85^{\circ} \mathrm{C}\) or " C " far \(125^{\circ} \mathrm{C}\) characteristic. Insert J, \(K\) ar \(M\) betare " \(P\) " ta indicate talerance.
High capacitance units.
§"S" precedes case letter far straight-sided units.

\section*{RELAYS}

CATALOG SEQUENGE 700

\section*{OHMITE}

Typical Molded Panel and Pile-Up Type Relays

Introduction: Ohmite relays embody the same careful engineering, strict quality control and generous use of high quality materials for which Ohmite products have become famous. Parts are plated where necessary for corrosion resistance. Springs are of nickel-silver, phos-phor-bronze or beryllium copper. Contacts are fine silver except where the catalog description indicates otherwise. (Special contact materials can be supplied.)

Every precaution is taken to assure reliable operation under demanding as well as ideal ambient conditions. Protection against humidity and moisture is paramount and is accomplished in layer-wound coils, through complete sealing with cellulose-acetate. A sheet of this high temperature plastic is placed between each layer of wire. Then, by means of a patented process, the acetate is caused to flow around the ends of the coil to form a completely plastic-sealed unit. Where layer winding is not possible, suitable bobbin construction is used with (optional) vacuum varnish impregnation.

Relay Selection: The Relay Selection Guide on pages 4 and 5 will be useful in making an initial choice of a relay. All the essential data is presented here including the availability of special mountings and enclosures. The Guide also indicates which relays are carried in stock for immediate delivery. Details of each relay and stock listings, where available, will be found in the individual relay descriptions (see Guide, "Described on page .."). See "Contents" page 1 this section, for other special relays.

The data presented in the Guide is qualified by the factors discussed below and should be considered in making a choice of relays for a particular application.

Coil Operating Voltage or Current: The Relay Selection Guide clearly distinguishes between relays that operate on 60 -cycle AC or DC . (Other frequency requirements for AC relays should be stated.) Where a relay must operate on a specific voltage or current, the
pull-in and drop-out values should be specified and the allowable variation indicated. Where the variation is not specified, relays will be adjusted to pull in at \(80 \%\) or less of the nominal voltage for DC relays and \(85 \%\) or less for AC relays (at normal ambient temperature of \(20^{\circ} \mathrm{C}\)).

Ohmite may be able to furnish relays which will operate on less pull-in power than indicated under "Pull-In Coil Watts" in the Guide, particularly if the desired contact combination is less than the maximum. (Data in the Guide assumes the maximum contact combination unless otherwise indicated.) However, this possibility is affected by the ambient operating temperature and the temperature coefficient of resistance of the coil wire. In applications where shock and vibration are encountered, heavier contact spring pressures may be required to prevent momentary openings. Greater coil power would then be necessary to operate the contacts. Engineering analysis is provided by Ohmite where critical coil requirements arise. The maximum operating voltage for DC relays is \(20 \%\) above the nominal voltage; for AC relays, \(15 \%\) above nominal.

Contacts: Contact ratings presented in the Guide and in the individual relay descriptions are conservative and assume that the load is non-inductive. Where extra sets of contacts are available on a relay, "double break contacts", see column "Cont. Rating") the current handling capacity can be increased appreciably. Where the load is non-inductive, it is sometimes possible to switch voltages greater than 115 volts AC. However, current ratings must be reduced-current must be halved as voltage doubles. For voltages over 460 volts AC or 32 volts DC, engineering analysis is required.

For inductive loads, Ohmite can supply silver-tungsten or silver-cadmium-oxide instead of the standard, fine silver contacts. Contact current capacity must also be considered in the light of the duty cycle of the relay. Where a relay is called upon to operate only a few times daily, overloading of the contacts might be permitted. Conversely, where the relay must operate several hun-
dred times a minute for long periods, it may be necessary to use contacts with capacity greater than that demanded by the load.

Mechanical Requirements: Where more than one relay satisfies the electrical requirements, the mechanical requirements may be the determining factor. This involves size of the relay and manner of mounting which is particularly important where shock and vibration are encountered. Where protection from ambient conditions is desired, the availability of anclosures is a factor.

Moisture and Tropicalization Treatment: Coil and phenolic parts can be supplied with a fungus-resistant varnish coating.

Contact Arrangements and Ordering Code: Complete contact combinations are made up from simple combinations which are coded by letter for pile-up type relays such as TKL, TO, TT and TS and by number for molded panel type relays* such as GPR, DOS, DOSY, DO, DOY and CR.

Thus, a double-pole, double-throw combination would consist of two "C" combinations in a pile-up type relay or one " 6 " combination in a molded panel type (see

*So called because the base and contact carrying parts are panels of molded plastic.
diagrams below). Because of this difference in contact designation, the ordering codes for molded panel and pile-up relays differ as shown.
Example: Code Designation for Pile-Up Relay with DPDT, SPST-N.O. and SPST-N.C. combination.

\(\ddagger\) As viewed from terminal end with contact springs on top.
Example: Code Designation for Molded Panel Type Relay with DPDT combination.

Different model codes are assigned to Ohmite relays when they are modified through the addition of plug mountings, dust or hermetically sealed enclosures. The new model codes are obtained through the use of suffixes as described on pages 21-23.

Where enclosures or special mountings are desired, it is necessary to use the modified model code in the code designation. Thus, the simple code designations shown above might appear:
```

TKLHP-STYLE 2-(CC-AB)D-24V (or)
DOSHP-STYLE 3-6A-115V

```

See the Guide and individual relay descriptions for available modifications.

Specification Numbers: Relays supplied on an order, and the acknowledgments and invoices pertaining to same, carry the number of the covering specification. This number is unrelated to the code designation and should be used on re-orders instead of the code designation. Specification numbers may be identified by the " X " following the model code as in DOSX-7. Where the item is carried in stock i.e., a "stock item", a "T" follows the number as in DOSX-7T.

When ordering Ohmite Relays, give:
1. The information required in the code designation, or the stock number if the item is carried in stock or the specification number if a non-stock item is being re-ordered.
2. On initial orders, describe the contact load completely; give voltage and current in amperes, type of current- AC or DC and whether the load is inductive or non-inductive.
3. Describe any special requirements in detail such as non-standard mountings.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC RELAYS} & \multicolumn{3}{|c|}{DC RELAYS} & \multirow{3}{*}{CONTACT RATING AMPS} & \multirow[t]{3}{*}{MAXIMUM CONTACT COMBINATION} & \multicolumn{3}{|l|}{UNENCLOSED SIZE} & \multirow{3}{*}{\[
\begin{aligned}
& \text { DESC. } \\
& \text { ON } \\
& \text { PAGE }
\end{aligned}
\]} & \multirow{3}{*}{STOCK RELAYS} & \multirow{3}{*}{APPLICATION} \\
\hline \multirow[b]{2}{*}{MODEL} & \multirow[t]{2}{*}{NOM. COIL WATTS} & \multirow[b]{2}{*}{MODEL} & \multicolumn{2}{|l|}{COIL WATTS} & & & & & & & & \\
\hline & & & Nom. & Pull-in & & & Leng & & Height & & & \\
\hline GPR§ & \begin{tabular}{l}
3-Pole 1.6 \\
4-Pole \\
2.4
\end{tabular} & GPR§ & 1.4 & 0.9 & 5 and 10 & \begin{tabular}{l}
3PDT \\
4PDT
\end{tabular} & 15/16
\[
1^{29} / 32
\] & \[
1^{\prime \prime}
\]
\[
13 / 8
\] & \begin{tabular}{l}
\(13 / 16 \dagger\) \\
\(113 / 32 \dagger\)
\end{tabular} & 6 & \(\checkmark\) & General purpose, plate circuit thyratron plate and indicator types \\
\hline \multirow[t]{2}{*}{DOS§} & 3.0 & DOS§ & 2.5 & 1.6 & \[
\begin{aligned}
& 15 \\
& 25 \text { with } \\
& \text { D.B. }
\end{aligned}
\] & DPDT SPDT with D.B. & \(15 / 8\) & \(11 / 2\) & 178 & 10 & \(\checkmark\) & Industrial and mobile \\
\hline & & DOSY & 1.0 & . 64 & \[
\begin{aligned}
& 15 \\
& 25 \text { with } \\
& \text { D.B. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DPDT } \\
& \text { SPDT with } \\
& \text { D.B. }
\end{aligned}
\] & \(15 / 8\) & 11732 & 178 & 14 & \(\downarrow\) & Plate circuit \\
\hline \multirow[t]{2}{*}{DO§} & 6.0 & DO§ & 3.0 & 1.9 & \[
\begin{aligned}
& 10 \\
& 20 \text { with } \\
& \text { D.B. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 4PDT } \\
& \text { DPDT with } \\
& \text { D.B. }
\end{aligned}
\] & \[
\left(\begin{array}{c}
21 / 16 \\
(4 \text { Pole }) \\
15 / 8 \\
(3 \text {-Pole })
\end{array}\right.
\] & 113/16 & 21/4 & 12 & \(\checkmark\) & Industrial and mobile \\
\hline & & DOY & 1.5 & 1.0 & \[
\begin{aligned}
& 10 \\
& 20 \text { with } \\
& \text { D.B. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 4PDT } \\
& \text { DPDT with } \\
& \text { D.B. }
\end{aligned}
\] & \[
\begin{gathered}
21 / 16 \\
\text { (4-Pole) } \\
15 / 8 \\
(3-\text { Pole })
\end{gathered}
\] & \(113 / 16\) & 21/4 & 15 & & Plate circuit \\
\hline & & TT & & .15 per pole & 5 & 4PDT & 17/64 & 51/64 & \(11764 \ddagger\) & 16 & & Aircraft applications \\
\hline & & TS & & .25 per pole & 10 & 4PDT & \(117 / 3\) & 7/8 & \(11 / 2 \ddagger\) & 17 & & Aircraft applications \\
\hline & & TKL & 1.25 & . 8 & \[
\begin{gathered}
1 \\
3 \text { with } \\
\text { pall. cont. }
\end{gathered}
\] & 4PDT or 6PST (6 springs in each pile-up) & 11932 & \(31 / 32\) & 117/32* & 18 & & Aircraft applications \\
\hline & & TO & & . 1 per pole & 3 & 6PDT & 21/16 & 11/16 & \(127 / 32 \ddagger\) & 19 & & Medium telephone type \\
\hline QC & 5.6 & QC & 2.75 & 1.75 & 25 & SPST N.O. D.B. only & 129/32 & \(13 / 22\) & \(123 / 23\) & 20 & & Miniature contactor \\
\hline CR & 5.6 & CR & 2.75 & 1.75 & \[
\begin{aligned}
& 7.5 \\
& 15 \text { with } \\
& \text { D.B. }
\end{aligned}
\] & DPST N.O. SPST with D.B. & 125/32 & \(11 / 32\) & 123/12 & 20 & & Industrial and mobile, small size \\
\hline
\end{tabular}
* With 6 springs in each pileup
\(\ddagger\) With max. no. springs in each pileup
\(\dagger\) Exclusive of mtg. stud
: @) 115 VAC or 32 VDC tResistive
§ UL versions available; pages 6.9 for GPR, 11 for DOS, 13 for DO.

\title{
SELECTION GUIDE
}

** For variations not shown here, see pages 24-27

Model GPR relays are an extensive and popular series for general purpose use where versatility, ease of replacement and economy are desired. They are capable of handling substantial power for their small size and offer unusual flexibility for making connections and mounting either with or without enclosures. The series includes plate relays for standard vacuum tubes or thyratrons, and "indicator" relays which incorporate lamps to indicate the energized condition of the coil. A large variety of types and ratings are stocked for immediate delivery.
Construction, Terminals and Mounting: A rigid frame helps to assure long retention of adjustments and an adequate magnetic circuit. A 6-32 threaded stud and nut, standard on unenclosed units, permits mounting on panels up to \(1 / 4^{\prime \prime}\) thick. A hole is also required for the non-turn boss on the relay frame. (A "lug-washer" is employed for 4-pole relays). A 6-32 tapped mounting hole can be supplied in place of the stud on 1 to 3 -pole relays.

The coil is wound on a nylon bobbin. All connections terminate on one terminal panel on combination solder -quick-connect (push-on) lugs which accept AMP Series 110 female connectors. Relay contacts are integral inlays on the terminals themselves. With all terminals appearing on one panel, these relays are easily incorporated into printed circuit assemblies. The standard
panels (with standard terminals) also can be plugged into Ohmite "SOGPR" sockets as an alternative to mounting by means of the threaded studs (See "Socket" following). To maintain UL spacing requirements for 150 volts, 3 - and 4-pole GPR relays are fitted with fiber insulating barriers between the rows of terminals. One, two and three-pole relays have a fiber chassis-insulator also. These barriers and chassis insulators are easily removed to permit plugging of the panel into the SOCPPR socket in which case 150 volt spacing is still retained.
Contact Combinations: Up to four-pole doublethrow. Also see "GPRLE Latching Relay" page 24 for larger combinations.

GPRTA Enclosure

GPRTT Enclosure

GPRTS Enclosure GPRTS Enclosure
for up to 3-Pole

GPRTS Enclosure for 4-Pole

SPDT

DPDT

3PDT

Contact Ratings: Two ratings--fine-silver contacts, gold-flashed, 5 amps resistive at 115 VAC or 32 VDC ; silver-cadmium fixed contacts, silver-cadmium-oxide movable contacts, 10 amps .

Coil Operating Voltage Range: Any voltage up to 230 VAC, 60 cycles or 120 YDC.

Coil Waftage: 1.4 watts DC operation; 1.6 watts (2.0 volt-amps) AC except 2.4 watts (3.70 volt-amps) for t-pole AC relays.

Weights: Figures shown below stock tables are based on three-pole, double-throw relay. Relays with fewer
poles weigh slightly less.
Insulation: Tested at 1500 V AC between all terminals and ground

\section*{ENCLOSED GPR RELAYS}

Four GPR enclosures afford a liberal choice of mounting arrangements. Four-pole relays are available only in the GPRTS enclosure described below but the GPRTA version can be made-to-order.

Chassis-Mounting Panel Types: "GPRTA" ("Ter-minals-Above-Chassis" type) has terminal panel opposite mounting flange;"GPR"'T"' ("Terminals-Through

STOCK "GPR" RELAYS*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Con. tacts} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{COIL DATA}} & \multicolumn{5}{|c|}{5 Amp Contacts} & \multicolumn{4}{|c|}{10 Amp Contacts} \\
\hline & & & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{Enclosed Above Chossis GPRTA \(\ddagger\)} & \multirow[b]{2}{*}{Enclosed Thre. Chassis GPRTT \({ }^{i}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
U (SA \\
Enciosure for SOGPR Sackel GPRTS \({ }_{+}\)
\end{tabular}} & \multirow[t]{2}{*}{U (SA) Enclosed Plug Base GPRTP} & \multirow[b]{2}{*}{Unenclased GPR} & \multirow[t]{2}{*}{Enclosure for SOGPR Sackel GPRTS} & \multirow[t]{2}{*}{(SA) Enclosed Plug Bose GPRTP} & \multirow[b]{2}{*}{Indicator Plug Base GPRTP} \\
\hline & Volts & Amps. & Ohms & & & & & & & & & \\
\hline SPDT & GVAC & . 334 & 4.2 & GPRXX 31 & GPrTAX-3T & GPRTTX.3T & & GPRTPX 3T & GPRX-203T & & GPRTPX 2031 & \\
\hline DPDT & GVAC & . 334 & 4.2 & GPRXX 6 T & GPRTAX-6T & GPRTTX 6 GT & GPRTSX-6T & GPRTPX \(6 T\) & GPRX-2061 & GPRTSX \(206 T\) & GPRTPX.206T & GPRTPX.291T \\
\hline 3 PDT & orac & . 334 & 4.2 & GPRXX 91 & GPrtax.9T & GPRTTX -9T & GPRTSX 91 & GPRTPX.9T & GPRX-2091 & GPRTSX 209T & GPRTPX 209T & \\
\hline 4 PDT & ofac & 650 & 2.5 & GPRX.403T & & & GPRTSX.403T & & GPRX-433T & GPRTSX-433T & & \\
\hline SPDT & 12 VaC & . 167 & 17 & GPRX.12T & GPRTAX-12T & GPRTTX 12 T & & GPRTPX-12T & GPRX-212T & & GPRTPX 212 T & \\
\hline DPDT & 12 VaC & 167 & 17 & GPRX.15t & GPRTAX 15 S & GPRTTX-15T & GPRTSX-15T & GPRTPX 151 & GPRX-215T & GPRTSX-215T & GPRTPX. \(215 \mathrm{5T}\) & GPRTPX-292T \\
\hline 3 PDT & 12 VAC & 167 & 17 & GPRX.18T & GPRTAX-18t & GPRTTX.18T & GPRTSX-18T & GPRTPX 181 & GPRX-2181 & GPRTSX.218T & GPRTPX 218 T & \\
\hline \(\triangle\) PDT & 12 VaC & 309 & 10 & GPRX-406T & & & GPRTSX 406 T & & GPRX-436T & GPRTSX.436T & & \\
\hline SPDT & 24 VAC & . 084 & 65 & GPRX-21T & GPRTAX-21T & GPRTTX 21 IT & & GPRTPX.21T & GPRX-221T & & GPRTPX 221 1T & \\
\hline DPDT & 24 VaC & . 084 & 65 & GPRX 24 4T & GPRTAX 24 T & GPRTIX 24 T & GPRTSX-24T & GPRTPX.24T & GPRX-224T & GPRTSX-224T & GPRTPX 224T & GPRTPX.293T \\
\hline 3PDT & 24 VAC & . 084 & 65 & GPRX-271 & GPRTAX-27T & GPRTTX 27T & GPRTSX-27T & GPRTPX 271 & GPRX-2271 & GPRTSX-227T & GPRTPX 227 T & \\
\hline 4 PDT & 24 VaC & . 155 & 40 & GPRX-409T & & & GPRTSX-409T & & GPRX-4391 & GPRTSX 439T & & \\
\hline SPDT & 115VAC & . 0174 & 1,600 & GPRX 301 & GPRTAX-30T & GPRITX-30T & & GPRTPX.30T & GPRX-2301 & & GPRTPX \(230 T\) & \\
\hline DPDT & 115 VAC & . 0174 & 1,600 & GPRX 331 & GPRTAX 33 T & GPRTIX-33T & GPRTSX-33T & GPRTPX.33T & GPRX-2331 & GPRTSX-233T & GPRTPX 233T & GPRTPX-294T \\
\hline 3 PDT & 115 VAC & . 0174 & 1.600 & GPRX-361 & GPRTAX-36T & GPRTTX 36 T & GPRTSX-36T & GPRTPX.36T & GPRX.236T & GPRTSX-236T & GPRTPX.236T & \\
\hline 4 PDT & 115VAC & . 0325 & 1.000 & GPRX 412 T & & & GPRTSX.412T & & GPRX.442T & GPRTSX.442T & & \\
\hline SPDT & 230VaC & . 0087 & 7.000 & GPRX.391 & GPRTAX-39T & GPRTIX 39T & & GPRTPX 39 T & GPRX 2397 & & GPRTPX 239T & \\
\hline DPDT & 230 VaC & . 0087 & 7,000 & GPRX.42T & GPRTAX-42T & GPRTTX 42 L & GPRTSX-42T & GPRTPX-42T & GPRX-242T & GPRTSX-242T & GPRIPX-242T & GPRTPX-295t \\
\hline 3 PDT & 230 VaC & . 0087 & 7,000 & GPPX.45T & GPrtax-45t & GPRTTX.45T & GPRTSX 45 5T & GPRTPX-45T & GPRX-245T & GPRTSX-245T & GPRTPX-245T & \\
\hline 4 PDT & 230 VaC & 0147 & 4.000 & GPRX-415T & & & GPRTSX 415 T & & GPRX-445T & GPRTSX-445T & & \\
\hline SPDT & 6VDC & 23 & 26 & GPRX-48T & GPRTAX-48T & GPRTTX-48T & & GPRTPX 48 T & GPRX-2481 & & GPRTPX.248T & \\
\hline DPDT & GVDC & 23 & 26 & GPRX-51T & GPrtax-51T & GPRTIX-51T & GPRTSX-51T & GPRTPX-51T & GPRX-251T & GPRTSX-251T & GPRIPX-251T & GPRTPX.296T \\
\hline 3PDT & 6VDC & 23 & 26 & GPREX 54T & GPRTAX-54T & GPRTTX 54 T & GPRISX-54T & GPRTPX-54T & GPRX-254T & GPRTSX-254T & GPRTPX-254T & \\
\hline 4 PDT & 6 VDC & 23 & 26 & GPRX-418T & & & GPRTSX-418T & & GPRX.4481 & GPRTSX.448T & & \\
\hline SPDT & 12 VDC & 114 & 105 & GPRX.571 & GPRTAX-57T & GPRTTX 57 T & & GPRTPX.57T & GPRX-257T & & GPRTPX-257T & \\
\hline DPDT & 12 VDC & . 114 & 105 & GPRX 601 & GPRTAX.60t & GPRTIX.60T & GPRISX.60T & GPRTPX.60T & GPRX-260T & GPRTSX-260T & GPRTPX 260T & GPRTPX.2971 \\
\hline 3 PDT & 12 VDC & . 114 & 105 & GPRX 631 & GPRTAX-63T & GPRTTX.63T & GPRTSX-63T & GPRTPX.63T & GPRX.263T & GPRTSX.263T & GPRTPX-263T & \\
\hline 4 PDT & 12 VDC & 114 & 105 & GPRX.421T & & & GPRTSX.421t & & GPRX.451T & GPRTSX.451T & & \\
\hline SPDT & 24 VDC & 080 & 400 & GPRX-66T & GPRTAX-66T & GPRTTX 66 T & & GPRTPX-66T & GPRX \(266{ }^{\text {a }}\) & & GPRTPX 266T & \\
\hline DPDT & 24VDC & 060 & 400 & GPRX-691 & GPRTAX-69T & GPRITX 697 & GPRTSX-69T & GPRIPX-69T & GPRX 2691 & GPRTSX-2691 & GPRIPX 269T & GPRTPX-298T \\
\hline 3PDT & 24 VDC & . 060 & 400 & GPRX-721 & GPRTAX-72T & GPRITX-72T & GPRTSX-72T & GPRTPX-721 & GPRX.2721 & GPRTSX-272T & GPRTPX 272T & \\
\hline 4 PDT & 24VDC & 060 & 400 & GPRX-424T & & & GPRISX 424 T & & GPRX-454T & GPRTSX.454T & & \\
\hline SPDT & 110 VDC & 0110 & 10,000 & GPRX. 751 & GPRTAX.75T & GPRTTX.75T & & GPRTPX.75T & GPRX-275T & & GPRTPX 27ST & \\
\hline DPDT & 110 VDC & 0110 & 10,000 & GPRX.781 & GPRTAX.78T & GPRTTX.78T & GPRTSX.78T & GPRTPX.78T & GPRX-2781 & GPRTSX-278T & GPRTPX 2781 & GPRTPX.2991 \\
\hline 3 PDT & 110 VDC & 0110 & 10,000 & GPRX-81T & GPRTAX.81T & GPRTTX 81 T & GPRTSX-81T & GPRTPX-81T & GPRX-281T & GPRTSX-28.IT & GPRTPX 281 T & \\
\hline 4 POT & 110 VDC & 0110 & 10,000 & GPRX-427t & & & GPRTSX-427T & & GPRX-457T & GPRTSX.457T & & \\
\hline \multicolumn{4}{|r|}{Approx. weight \(\longrightarrow\)} & 2.5 oz. & 3.0 oz. & 3.0 oz. & 3.0 or. & 3.5 oz . & 2.502. & 3.50 oz . & 3.5 or. & 3.50 or . \\
\hline
\end{tabular}
*Column heads carry symbals which indicate UL or CSA (Canadion Standards Assaciatian) appraval. UL appraval consists of listing under the UL "companents program." so these relays do nat carry a UL stomp. (See explanation in "UL and CSA Approval"., Only relays in the grey tinted areas ore listed by UL.
tGPRTA and GPRTT types as listed by UL, differ slightly from the stack versians obove and consequently, are mode to order. These UL versions have a "U" added to the cotolog number, such as in "GPRTAU." They also have CSA approval and will carry the CSA stomp.

Chassis' type) has terminal panel on same end as mounting flange, requires chassis cutout; "GPRTs" type ("Terminals for Socket Use") is similar to GPRTT but has no mounting flanges. It is intended strictly for plug-in mounting in Ohmite socket "SOGPR" (see "Socket" below). Terminals are the combination solder -quick-connect type (ANIP Series 110) described under "Construction." Mounting holes in the flange have rubber grommets except for UL-approved GPRTA (GPRTAU) and GPRTT (GPRTTU) relays which have holes for No. 10 screws in the flanges.
Pin-Plug Base Type, GPRTP: A modified octal plug (see "UL Requirements") is provided for 1-and 2-pole relays; an 11-pin plug for 3 -pole relays. The octal plug base is integral with the relay assembly and meets UL
spacing requirements for 150 volts. The cover is held by screws in the corners of the plug base

Hermetically Sealed GPR Relays: GPRH and GPRHP (plug-base) hermetically sealed relays for up to 3PDT are described on page 22 . See illustrations, page 9.

Sockef (SOGPR): Unique sockets fit the standard terminal panels of all GPR relays and provide over-thesurface spacing to meet UL requirements for 150 volts. Require chassis cut-out to mount. Hold clown springs (see illustration) for unenclosed and enclosed relays, are provided with each socket but are not required except under conditions of vibration or shock. Socket solder-terminals will also accept AMP 110 quickconnectors. See socket listings.

\section*{MODEL GPR RELAY (cont.)}

Indicator Relay: Incorporates lamp which lights to indicate energized condition of coil. Available only in GPRTP enclosures for 1 - and 2 -pole relays. described above. Stocked only in DPDT, 10 amp 1 ype. Neon bulb furnished with coil ratings 70 volts and higher; incandescent bulbs for coil ratings below 70 volts.

Plate Circuit Relays: GPR plate circuit relays feature the same physical characteristics described under "Construction . ." They are adjusted for greater sensitivity and are adaptable to a wide range of clectronic circuit controls such as signaling attainment of predetermined current levels in the plate circuits of vacuum tubes. GPR plate relays are supplied in the standard GPR enclusures (see tables).
Thyratron Plate Relay: I esigned specifically for plate circuit of thyratron tubes 2050 and 2 D 21 with 115 VAC supply (see diagram). At the nominal 115 AC line voltage, relays draw 17 ma when measured with a DC milliameter placed in series with the relay coil. They are also suitable for operation in series with siliconcontrolled rectifiers from a 115 VAC supply. Ready to work, no capacitors or adjust ments required, no chatter. Available unenclosed and in all GIPR enclosures.

UL and CSA Listings: Column heads in the stock tables carry the UL (Underwriters' Laboratories) and/or CSA (Canadian Standards Association) symbols where listing has been granted. The grey tint in the column indicates those relays which are recognized under the "UL Components Recognition Program" and are listed in the Component Recognition Index. The acceptability of such relays by UL depends upon their combination with other equipment such as sockets, etc., and therefore they do not carry the UL stamp. All relays with CSA listing carry the CSA stamp. GPlRTA and GPRTT relays as listed by UL are made to order and differ slightly from the stock versions by having "Lexan" instead of polystyrene covers and by not having rubber grommets in the mounting flanges. The UL versions add a "U" to the catalog number as in "GPlRTAU."

Hermetically Sealed

GPRHP
Hermetically Sealed

Showing Relay in Plate Circuit of Thyratron

STOCK "GPR" PLATE CIRCUIT RELAYS-5 Amp Contacts
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & COIL & DATA & & & & & \\
\hline Contocts & Ohms & Pull-in max. ma. & Unenclosed GPR & \begin{tabular}{l}
Above. \\
Chassis \\
GPRTA
\end{tabular} & \begin{tabular}{l}
Thru- \\
Chassis \\
GPRTT
\end{tabular} & for SOGPR Socket GPRTS & Enclosed Plug-Base GPRTP \\
\hline SPDT & 2,500 & 7.2 & GPRX-82T & GPRTAX-82T & GPRTTX-82T & & GPRTPX-82T \\
\hline DPDT & 2,500 & 10 & GPRX-83T & GPRTAX-83T & GPRTTX-83T & & GPRTPX-83T \\
\hline 3PDT & 2,500 & 12.3 & GPRX.84T & GPRTAX-84T & GPRTTX-84T & & GPRTPX-84T \\
\hline 4 PDT & 2,500 & 15.0 & GPRX-463T & & & GPRTSX-463T & \\
\hline SPDT & 5,000 & 5 & GPRX-85T & GPRTAX-85T & GPRTIX-85T & & GPRTPX-85T \\
\hline DPDT & 5,000 & 7.2 & GPRX-86T & GPRTAX-86T & GPRTTX-86T & & GPRTPX-86T \\
\hline 3PDT & 5,000 & 8.7 & GPRX-87T & GPRTAX-87T & GPRTIX-87T & & GPRTPX-87T \\
\hline 4PDT & 5,000 & 11 & GPRX-466T & & & GPRTSX.466T & \\
\hline SPDT & 10,000 & 3.6 & GPRX-88T & GPRTAX-88T & GPRTTX-88T & & GPRTPX-88T \\
\hline DPDT & 10,000 & 5 & GPRX-89T & GPRTAX-89T & GPRTTX-89T & & GPRTPX-89T \\
\hline 3PDT & 10,000 & 6.1 & GPRX-90T & GPRTAX-90T & GPRTTX-90T & & GPRTPX-90T \\
\hline 4 PDT & 10,000 & 7.5 & GPRX-469T & & & GPRTSX-469T & \\
\hline \multicolumn{3}{|l|}{Approx. weight \(\longrightarrow\)} & 2.5 dz . & 3.0 az . & 3.0 oz. & 3.0 oz. & 3.5 oz. \\
\hline
\end{tabular}

STOCK GPR THYRATRON RELAYS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{5 Amp Contacts} & \multicolumn{3}{|c|}{10 Amp Contacts} \\
\hline \begin{tabular}{l}
Con- \\
tacts
\end{tabular} & Unenclosed GPR & Enclosed AboveChassis GPRTA & Enclosed ThruChassis GPRTT & \begin{tabular}{l}
Enclosed for SOGPR \\
Socket GPRTS
\end{tabular} & Enclosed Plug. Base GPRTP & Unenclosed GPR & Enclosed for SOGPR Sacket GPRTS & Enclosed Plug. Base GPRTP \\
\hline \begin{tabular}{l}
SPDT \\
DPDT \\
3PDT \\
4 PDT
\end{tabular} & \begin{tabular}{l}
GPRX-191T \\
GPRX-192T \\
GPRX-193T \\
GPRX-473T
\end{tabular} & \[
\begin{aligned}
& \text { GPRTAX-191T } \\
& \text { GPRTAX-192T } \\
& \text { GPRTAX-193T }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GPRTTX-191T } \\
& \text { GPRTTX-192T } \\
& \text { GPRTTX-193T }
\end{aligned}
\] & GPRTSX-473T & \[
\begin{aligned}
& \text { GPRTPX-191T } \\
& \text { GPRTPX-192T } \\
& \text { GPRTPX-193T }
\end{aligned}
\] & \begin{tabular}{l}
GPRX-391T \\
GPRX-392T \\
GPRX-393T \\
GPRX-483T
\end{tabular} & GPRTSX-483T & \[
\begin{aligned}
& \text { GPRTPX-391T } \\
& \text { GPRTPX-392T } \\
& \text { GPRTPX-393T }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{AC OR DC OPERATION-STOCK AND MADE-TO-ORDER}

The Model DOS is a general purpose relay with a wide range of applications. It meets the rigorous standards for aircraft relays and industrial needs for a lightweight relay capable of handling loads demanded of much heavier relays. Contact and terminal carrying parts are molded panels of high grade phenolicmaterial.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cat. No.} & \multirow[b]{2}{*}{Type} & \multirow[t]{2}{*}{Normal Position} & \multicolumn{3}{|c|}{COIL DATA} \\
\hline & & & Volts & Amps. & D.C. Ohms \\
\hline \multicolumn{6}{|c|}{Unenclosed} \\
\hline DOSX-229T & SPST* & Open & 6 VAC & . 890 & 1.07 \\
\hline DOSX-230T & DPST & Open & 6 VAC & . 890 & 1.07 \\
\hline DOSX-30T & DPDT & - & 6 VAC & . 890 & 1.07 \\
\hline DOSX-16T & DPDT & - & 12 VAC & . 460 & 4.20 \\
\hline DOSX-231T & SPST* & Open & 24 VAC & . 269 & 15.5 \\
\hline DOSX-232T & DPST & Open & 24 VAC & . 269 & 15.5 \\
\hline DOSX-162T & DPDT & - & 24 VAC & . 269 & 15.5 \\
\hline DOSX-233T & SPST* & Open & 115 VAC & . 043 & 450 \\
\hline DOSX-234T & DPST & Open & 115 VAC & . 043 & 450 \\
\hline DOSX-7T & DPDT & , & 115 VAC & . 043 & 450 \\
\hline DOSX-235T & SPST* & Open & 230 VAC & . 030 & 1,450 \\
\hline DOSX-236T & DPST & Open & 230 VAC & . 030 & 1,450 \\
\hline DOSX-12T & DPDT & , & 230 VAC & . 030 & 1,450 \\
\hline DOSX-158T & DPDT & - & 6 VDC & . 450 & 13.4 \\
\hline DOSX-66T & DPDT & - & 12 VDC & . 210 & 56.2 \\
\hline DOSX-9T & DPDT & - & 24 VDC & . 105 & 230.0 \\
\hline DOSX-237T & SPST* & Open & 110 VDC & . 022 & 5,000 \\
\hline DOSX-238T & DPST & Open & 110 VDC & . 022 & 5,000 \\
\hline DOSX-59T & DPDT & , & 110 VDC & . 022 & 5,000 \\
\hline DOSX-177T & DPDT & - & 220 VDC & . 013 & 16,400 \\
\hline \multicolumn{6}{|c|}{With Plug Bose**} \\
\hline DOSPX-1T \(\ddagger\) & DPDT & - & 115 VAC & . 043 & 450 \\
\hline \multicolumn{6}{|c|}{With Dust Covers**} \\
\hline DOSEPX-5T \(\ddagger\) & DPDT & - & 115 VAC & . 043 & 450 \\
\hline \multicolumn{6}{|c|}{In Hermetic Enclosure**} \\
\hline (1)DOSHX-40T & DPDT & - & 115 VAC & . 043 & 450 \\
\hline (2)DOSHPX-47T \(\ddagger\) & DPDT & - & 115 VAC & . 043 & 450 \\
\hline (1)DOSHX-39T & DPDT & - & 110 VDC & . 022 & 5,000 \\
\hline (2)DOSPHX-46T \(\ddagger\) & DPDT & - & 110 VDC & . 022 & 5,000 \\
\hline
\end{tabular}

\footnotetext{
\#Except double break confocts-25 amps resistive.
** See text cbove for pages listing dimensions. Weights: 8 oz . each approx.
}
right for plug wiring.
(3) In DOSH style 2 enclosure.

Coil Wattage: Normally rated at 2.5 watts for DC operation with a temperature rise not exceeding \(45^{\circ} \mathrm{C}\). For AC operation, the rating is 3 watts with a temperature rise not exceeding \(65^{\circ} \mathrm{C}\). Lower wattages are available.

Coil Operating Voltage Range: Coils can be supplied to operate on any voltage up to 220 VDC or 440 VAC 60 cycles. Stock voltages are shown in table.
Insulation: Tested at 1500 VAC.
Contact Combination: Maximum standard, DPDT. Contact Rating: Nominal 15 amps for 115 VAC or 32 VDC resistive load (see stock table).
Weight: Approximately 4 ounces (114 grams).
Mounting Styles: Standard mounting, Style 1, with stop nuts, as illustrated. Other mountings available as listed. All holes are on same center's as Style 1 .

Style 2-4 tapped holes \#6-32
Style 3-4 holes .165 dia. (Clearance for \#8 serew) Style 4-4 holes . 152 dia. (Clearance for \#6 screw) Style 5-2 holes 1875 dia. on \(21 / 4^{\prime \prime}\) centers (permits mounting from front of panel).
Enclosed, Plug-In and Special Terminal DOS Relays: Hermetically sealed relays, DOSH and (plugbase) DOSHP (see stock listings left), Dust-Tight DOSC and (plug-base) DOSCP are described on page 22 ; Plug-base relay DOSP on page 21 ; Plug-base with dust-covers DOSEP, DOSTP on page 23; With special terminals, page 26.

Ohmite DOS relays listed in the Underwriters' Laboratories Components Recognition Index (see definition page 9, "UL and CSA Listings") are designated "DOSU." Essentially, they are DOS types but incorporate a number of modifications. The modifications consist principally of different coil wrappings to satisfy UL insulation thickness and spacing requirements.

In all other respects-frame size, basic construction and configuration, mounting facilities, etc., DOSU and DOS relays are the same. Both series feature "molded
panel" construction where the terminal and contactcarrying parts are panels of high grade phenolic plastic. Operating characteristics and ratings are the same except that Underwriters' Laboratories limits the operating voltage range to \(110 \mathrm{~V}^{\mathrm{D}} \mathrm{DC}\) or 115 VAC . Both the DOS or DOSU families of relays have wide general purpose use, meeting industrial needs for a light weight relay capable of handling the loads demanded of heavier models.

\section*{UL APPROVED DOS RELAYS - 15 AMP CONTACTS \(\dagger\) - D.B. 22 \(1 / 2\) AMPS \(\dagger\)}

Listings in Tinted Areas are In Stock

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{DC COIL} \\
\hline & & & \multicolumn{3}{|c|}{COIL DATA} & \\
\hline Cot No. & Contacts & Normal Position & \[
\underset{\text { Volts }}{\text { DC }}
\] & Amps. & DC Ohms & Style \\
\hline \[
\begin{aligned}
& \text { DOSUX }-37 \\
& \text { DOSUX- } 38 \\
& \text { DOSUX- } 39
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPST } \\
& \text { SPST } \\
& \text { SPDT }
\end{aligned}
\] & Open Closed & 6
6
6 & \[
\begin{array}{r}
.450 \\
.450 \\
.450
\end{array}
\] & \[
\begin{aligned}
& 13.4 \\
& 13.4 \\
& 13.4
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX-40 } \\
& \text { DOSUX-41 } \\
& \text { DOSUX-42 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DPST } \\
& \text { DPST } \\
& \text { DPDT }
\end{aligned}
\] & Open Closed & 6
6
6 & \[
\begin{array}{r}
.450 \\
.450 \\
.450
\end{array}
\] & \[
\begin{aligned}
& 13.4 \\
& 13.4 \\
& 13.4
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline DOSUX. 43 DOSUX-44 DOSUX-45 & \[
\begin{aligned}
& \text { SPST }{ }^{\bar{*}} \\
& \text { SPST* } \\
& \text { SPDT* }
\end{aligned}
\] & Open Closed & 6
6
6 & \[
\begin{array}{r}
.450 \\
.450 \\
.450
\end{array}
\] & \[
\begin{aligned}
& 13.4 \\
& 13.4 \\
& 13.4
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline DOSUX-46 DOSUX-47 DOSUX-48 & \[
\begin{aligned}
& \text { SPST } \\
& \text { SPST } \\
& \text { SPDT }
\end{aligned}
\] & Open Closed & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& .210 \\
& .210 \\
& .210
\end{aligned}
\] & \[
\begin{aligned}
& 56.2 \\
& 56.2 \\
& 56.2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX-49 } \\
& \text { DOSUX- } 50 \\
& \text { DOSUX- } 51
\end{aligned}
\] & DPST DPST DPDT & Open Closed & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& .210 \\
& .210 \\
& .210
\end{aligned}
\] & \[
\begin{aligned}
& 56.2 \\
& 56.2 \\
& 56.2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX-52 } \\
& \text { DOSUX-53 } \\
& \text { DOSUX- } 54
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPST* } \\
& \text { SPST* }
\end{aligned}
\]
SPDT* & Open Closed
\(\qquad\) & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& .210 \\
& .210 \\
& .210
\end{aligned}
\] & \[
\begin{aligned}
& 56.2 \\
& 56.2 \\
& 56.2
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX-55 } \\
& \text { DOSUX-56 } \\
& \text { DOSUX-57 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPST } \\
& \text { SPST } \\
& \text { SPDT }
\end{aligned}
\] & Open Closed & \[
\begin{aligned}
& 24 \\
& 24 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& .105 \\
& .105 \\
& .105
\end{aligned}
\] & \[
\begin{aligned}
& 230.0 \\
& 230.0 \\
& 230.0
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX. } 58 \\
& \text { DOSUX- } 59 \\
& \text { DOSUX- } 60
\end{aligned}
\] & DPST DPST DPDT & Open Closed & \[
\begin{aligned}
& 24 \\
& 24 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& .105 \\
& .105 \\
& .105
\end{aligned}
\] & \[
\begin{aligned}
& 230.0 \\
& 230.0 \\
& 230.0
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX-61 } \\
& \text { DOSUX- } 62 \\
& \text { DOSUX- } 63
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPST* } \\
& \text { SPST* } \\
& \text { SPDT* }
\end{aligned}
\] & Open Closed & \[
\begin{aligned}
& 24 \\
& 24 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& .105 \\
& .105 \\
& .105
\end{aligned}
\] & \[
\begin{aligned}
& 230.0 \\
& 230.0 \\
& 230.0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline DOSUX-64 DOSUX-65 DOSUX-66 & \[
\begin{aligned}
& \text { SPST } \\
& \text { SPST } \\
& \text { SPDT }
\end{aligned}
\] & Open Closed & \[
\begin{aligned}
& 110 \\
& 110 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& .022 \\
& .022 \\
& .022
\end{aligned}
\] & \[
\begin{aligned}
& 500.0 \\
& 500.0 \\
& 500.0
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX-67 } \\
& \text { DOSUX- } 68 \\
& \text { DOSUX- } 69
\end{aligned}
\] & DPST DPST DPDT & Open Closed & \[
\begin{aligned}
& 110 \\
& 110 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& .022 \\
& .022 \\
& .022
\end{aligned}
\] & 500.0 500.0 500.0 & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DOSUX-70 } \\
& \text { DOSUX. } 71 \\
& \text { DOSUX- } 72
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPST* } \\
& \text { SPST* }
\end{aligned}
\]
SPDT* & Open Closed & \[
\begin{aligned}
& 110 \\
& 110 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& .022 \\
& .022 \\
& .022
\end{aligned}
\] & \[
\begin{aligned}
& 500.0 \\
& 500.0 \\
& 500.0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline
\end{tabular}

DO 3-Pole

The Model DO relay is similar to the Model DOS relay and has the same mounting dimensions. It offers a greater maximum contact combination (4PDT) and is particularly adaptable to aircraft and mobile equipment applications where severe shock and vibration may be encountered.

Coii Waitage: Rated at 3 watts for DC operation with a temperature rise not exceeding \(45^{\circ} \mathrm{C}\); for AC operation, the rating is 6 watts with a temperature rise not exceeding \(75^{\circ} \mathrm{C}\). Lower wattages are available.
Coil Operating Voltage Range: For any voltage up to 220 VDC or 440 VAC 60 cycle.
Insulation: Tested at 1500 VAC between all terminals and ground.

Contact Combination: Maximum standard combinations: 3PDT and 4PDT.

Contact Rating: Nominal 10 amps for 115 VAC or 32 VDC resistive load (see stock table).

Weight: For DO-3 pole approximately 5 ounces (140 grams); for DO-4 pole 6 ounces (168 grams).
Mounting Styles: Standard mounting, Style 1, with stop nuts as illustrated. Others below. Holes for Styles 2, 3 and 4 on same centers as Style 1.
Style 2-4 tapped holes \#6-32
Style 3-4 holes . 165 dia. (Clearance for \#8 screw) Style 4-4 holes 152 dia. (Clearance for \#6 screw) Style 5-2 holes . 1875 dia. on \(21 / 4^{\prime \prime}\) centers (permits mounting from front of panel).
Enclosed, Plug-In and Special Terminal DO Relays (Note listings in stock table at right): Hermetically Sealed Relays DOH and (plug-in type) DOHP, also dust-tight relays DOC and (plug-in type) DOCP on

page 22; Plug mounted relay with dust cover DOEP on page 23 ; Plug mounted relay DOP on page 21 ; Bindingpost terminal relay DOB, also DO relay with push-on (AMP style) and screw terminals are shown on page 26.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{STOCK DO RELAYS - 10 Amp. Contacts*} \\
\hline \multirow[b]{2}{*}{Cat. No.} & \multirow[b]{2}{*}{Type} & \multirow[t]{2}{*}{Normal Position} & \multicolumn{3}{|c|}{COIL DATA} \\
\hline & & & Volts & Amps. & D.C. Ohms \\
\hline \multicolumn{6}{|c|}{Unenclosed} \\
\hline DOX-50T & 3 3PDT & - & 6 VAC & 2.33 & 0.36 \\
\hline DOX-183T & 4 PDT & - & 6 VAC & 2.33 & 0.36 \\
\hline DOX-49T & 3PDT & - & 12 VAC & 1.28 & 1.40 \\
\hline DOX-184T & 4 PDT & - & 12 VAC & 1.28 & 1.40 \\
\hline DOX-181T & 3PDT & - & 24 VAC & . 57 & 5.50 \\
\hline DOX-185T & 4PDT & - & 24 VAC & . 57 & 5.50 \\
\hline DOX-226T & DPST* & Open & 115 VAC & .110 & 145.0 \\
\hline DOX-227T & 3PST & Open & 115 VAC & .110 & 145.0 \\
\hline DOX-46T & 3PDT & - & 115 VAC & . 110 & 145.0 \\
\hline DOX-228T & 4PST & Open & 115 VAC & .110 & 145.0 \\
\hline DOX-53T & 4PDT & - & 115 VAC & . 110 & 145.0 \\
\hline DOX-61T & 3PDT & - & 230 VAC & . 070 & 550.0 \\
\hline DOX-130T & 4PDT & - & 230 VAC & . 070 & 550.0 \\
\hline \[
D O X-145 T
\] & 3PDT & - & 6 VDC & . 487 & 12.3 \\
\hline DOX-186T & 4PDT & - & 6 VDC & . 487 & 12.3 \\
\hline & 3PDT & - & 12 VDC & . 231 & 51.8 \\
\hline DOX-102T & 4PDT & - & 12 VDC & . 231 & 51.8 \\
\hline DOX-141T & 3PDT & - & 24 VDC & . 105 & 230.0 \\
\hline DOX-137T & 4PDT & - & 24 VDC & . 105 & \[
230.0
\] \\
\hline DOX-93T & 3PDT & - & 110 VDC & . 022 & 5,000 \\
\hline DOX-187T & 4PDT & - & 110 VDC & . 022 & 5,000 \\
\hline DOX-182T & 3PDT & - & 220 VDC & . 014 & 16,100 \\
\hline DOX-188T & 4 PDT & - & 220 VDC & . 014 & 16,100 \\
\hline
\end{tabular}

In Hermetic Enclosure**
\begin{tabular}{l|l|l|l|l|l}
\hline & & & \\
(1)DOHPX.16T \(\ddagger\) & 3PDT & - & 115 VAC & .110 & 145.0 \\
(1)DOHPX.15T \(\ddagger\) & 4PDT & - & 115 VAC & .110 & 145.0 \\
(2)DOHX.22T & 3PDT & - & 115 VAC & .110 & 145.0 \\
(2)DOHX.23T & 4PDT & - & 115 VAC & .110 & 145.0 \\
\hline
\end{tabular}
*Except double break contacts-20 amps. *SEe text above for pages listing dimensions. Weights: 3-pole hermetic reloy opprox. 14 oz .; 4-pole opprox. 15 oz. \$See below for plug wiring. Plug base for DOHPX-16T mates with Amphenol 77 MIP- 11 socket. Plug base for DOHPX.15T mates with Amphenol 77MIP20 socket. (1)in DOHP enclosure. ©in DOH enclosure.

Model "DO" relays listed in the Underwriters' Laboratories Components Recognition Inclex (see definition page 9, "ÜL and CSA Listings") are designated "DOU." Essentially, they are "DO" types but incorporate a number of modifications which consist principally of different terminals. alddition of flexible coil leads and different coil wrappings to satisfy UL. insulation thickness requirements.

In all other respects-frame size, basic construction
and configuration, mounting facilities, etc., DOU and DO relays are the same. Both series feature "molded panel" construction where the terminal and contactcarrying parts are panels of high grade phenolic plastic. Operating characteristics are also the same except that UL limits operating voltage to 220 VDC or 230 VAC .

Listings in Tinted Areas are In Stock
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{AC COIL} \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Cot. \\
No.
\end{tabular}} & \multirow[b]{2}{*}{Contocts} & \multirow[b]{2}{*}{Normal Position} & \multicolumn{3}{|c|}{COIL DATA} & \\
\hline & & & \[
\begin{gathered}
\text { AC } \\
\text { Volts }
\end{gathered}
\] & Amps. & \begin{tabular}{l}
DC \\
Ohms
\end{tabular} & Style \\
\hline DOUX-1 & 3PST & Open & 6 & 2.33 & 0.36 & 1 \\
\hline DOUX-2 & 3PST & Closed & 6 & 2.33 & 0.36 & 1 \\
\hline DOUX-3 & 3PDT & - & 6 & 2.33 & 0.36 & 1 \\
\hline DOUX-4 & 4 PST & Open & 6 & 2.33 & 0.36 & 2 \\
\hline DOUX-5 & 4 PST & Closed & 6 & 2.33 & 0.36 & 2 \\
\hline DOUX-6 & 4 PDT & - & 6 & 2.33 & 0.36 & 2 \\
\hline DOUX-7 & DPST** & Open & 6 & 2.33 & 0.36 & 3 \\
\hline DOUX-8 & DPST** & Closed & 6 & 2.33 & 0.36 & 3 \\
\hline DOUX-9 & DPDT* & - & 6 & 2.33 & 0.36 & 3 \\
\hline DOUX-10 & 3PST & Open & 12 & 1.28 & 1.40 & , \\
\hline DOUX-11 & 3PST & Closed & 12 & 1.28 & 1.40 & 1 \\
\hline DOUX-12 & 3PDT & - & 12 & 1.28 & 1.40 & 1 \\
\hline DOUX-13 & 4PST & Open & 12 & 1.28 & 1.40 & 2 \\
\hline DOUX-14 & 4PST & Closed & 12 & 1.28 & 1.40 & 2 \\
\hline DOUX-15 & 4PDT & - & 12 & 1.28 & 1.40 & 2 \\
\hline DOUX-16 & DPST* & Open & 12 & 1.28 & 1.40 & 3 \\
\hline DOUX-17 & DPST** & Closed & 12 & 1.28 & 1.40 & 3 \\
\hline DOUX-18 & DPDT* & - & 12 & 1.28 & 1.40 & 3 \\
\hline DOUX-19 & 3PST & Open & 24 & . 57 & 5.50 & 1 \\
\hline DOUX-20 & 3PST & Closed & 24 & . 57 & 5.50 & , \\
\hline DOUX-21 & 3PDT & - & 24 & . 57 & 5.50 & 1 \\
\hline DOUX-22 & 4 PST & Open & 24 & . 57 & 5.50 & 2 \\
\hline DOUX-23 & 4 PST & Closed & 24 & . 57 & 5.50 & 2 \\
\hline DOUX-24 & 4 PDT & d & 24 & . 57 & 5.50 & 2 \\
\hline DOUX-25 & DPST* & Open & 24 & . 57 & 5.50 & 3 \\
\hline DOUX-26 & DPST** & Closed & 24 & . 57 & 5.50 & 3 \\
\hline DOUX-27 & DPDT* & - & 24 & . 57 & 5.50 & 3 \\
\hline DOUX-28 & 3PST & Open & 115 & . 110 & 145 & 1 \\
\hline DOUX-29 & 3PST & Closed & 115 & . 110 & 145 & 1 \\
\hline DOUX-30 & 3PDT & - & 115 & . 110 & 145 & 1 \\
\hline DOUX-31 & 4 PST & Open & 115 & .110 & 145 & 2 \\
\hline DOUX-32 & 4 PST & Closed & 115 & .110 & 145 & 2 \\
\hline DOUX-33 & 4 PDT & - & 115 & .110 & 145 & 2 \\
\hline DOUX-34 & DPST* & Open & 115 & . 110 & 145 & 3 \\
\hline DOUX-35 & DPST* & Closed & 115 & .110 & 145 & 3 \\
\hline DOUX-36 & DPDT* & & 115 & . 110 & 145 & 3 \\
\hline DOUX-37 & 3PST & Open & 230 & . 070 & 550 & 1 \\
\hline DOUX-38 & 3PST & Closed & 230 & . 070 & 550 & 1 \\
\hline DOUX-39 & 3PDT & - & 230 & . 070 & 550 & 1 \\
\hline DOUX-40 & 4PST & Open & 230 & . 070 & 550 & 2 \\
\hline DOUX-41 & 4PST & Closed & 230 & . 070 & 550 & 2 \\
\hline DOUX-42 & 4 PDT & - & 230 & . 070 & 550 & 2 \\
\hline DOUX-43 & DPST* & Open & 230 & . 070 & 550 & 3 \\
\hline DOUX-44 & DPST* & Closed & 230 & . 070 & 550 & 3 \\
\hline DOUX-45 & DPDT* & - & 230 & . 070 & 550 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{DC COIL} \\
\hline \multirow[b]{2}{*}{Cot. No.} & \multirow[b]{2}{*}{Contocts} & \multirow[b]{2}{*}{Normol Position} & \multicolumn{3}{|c|}{COIL DATA} & \\
\hline & & & \[
\begin{gathered}
D C \\
\text { Volts }
\end{gathered}
\] & Amps. & \[
\begin{gathered}
\text { DC } \\
\text { Ohms }
\end{gathered}
\] & Style \\
\hline DOUX-46 & 3PST & Open & 6 & 487 & 12.3 & 1 \\
\hline DOUX-47 & 3 PST & Closed & 6 & . 487 & 12.3 & 1 \\
\hline DOUX-48 & 3 PDT & - & 6 & . 487 & 12.3 & 1 \\
\hline DOUX-49 & 4 PST & Open & 6 & . 487 & 12.3 & 2 \\
\hline DOUX-50 & 4PST & Closed & 6 & . 487 & 12.3 & 2 \\
\hline DOUX-51 & 4 PDT & - & 6 & . 487 & 12.3 & 2 \\
\hline DOUX-52 & DPST* & Open & 6 & . 487 & 12.3 & 3 \\
\hline DOUX-53 & DPST* & Closed & 6 & . 487 & 12.3 & 3 \\
\hline DOUX-54 & DPDT* & - & 6 & . 487 & 12.3 & 3 \\
\hline DOUX-55 & 3PST & Open & 12 & . 231 & 51.8 & 1 \\
\hline DOUX-56 & 3PST & Closed & 12 & . 231 & 51.8 & 1 \\
\hline DOUX-57 & 3PDT & - & 12 & . 231 & 51.8 & 1 \\
\hline DOUX-58 & 4 PST & Open & 12 & . 231 & 51.8 & 2 \\
\hline DOUX-59 & 4 PST & Closed & 12 & . 231 & 51.8 & 2 \\
\hline DOUX-60 & 4 PDT & - & 12 & . 231 & 51.8 & 2 \\
\hline DOUX-61 & DPST* & Open & 12 & . 231 & 51.8 & 3 \\
\hline DOUX-62 & DPST* & Closed & 12 & . 231 & 51.8 & 3 \\
\hline DOUX-63 & DPDT* & - & 12 & . 231 & 51.8 & 3 \\
\hline DOUX-64 & 3PST & Open & 24 & . 105 & 230 & 1 \\
\hline DOUX-65 & 3PST & Closed & 24 & . 105 & 230 & , \\
\hline DOUX-66 & 3PDT & - & 24 & . 105 & 230 & 1 \\
\hline DOUX-67 & 4 PST & Open & 24 & . 105 & 230 & 2 \\
\hline DOUX-68 & 4 PST & Closed & 24 & . 105 & 230 & 2 \\
\hline DOUX-69 & 4PDT & - & 24 & . 105 & 230 & 2 \\
\hline DOUX-70 & DPST** & Open & 24 & . 105 & 230 & 3 \\
\hline DOUX-71 & DPST** & Closed & 24 & . 105 & 230 & 3 \\
\hline DOUX-72 & DPDT* & - & 24 & . 105 & 230 & 3 \\
\hline DOUX-73 & 3PST & Open & 110 & . 022 & 5000 & \\
\hline DOUX-74 & 3PST & Closed & 110 & . 022 & 5000 & 1 \\
\hline DOUX-75 & 3PDT & - & 110 & . 022 & 5000 & 1 \\
\hline DOUX-76 & 4 PST & Open & 110 & . 022 & 5000 & 2 \\
\hline DOUX-77 & 4 PST & Closed & 110 & . 022 & 5000 & 2 \\
\hline DOUX-78 & 4PDT & - & 110 & . 022 & 5000 & 2 \\
\hline DOUX-79 & DPST* & Open & 110 & . 022 & 5000 & 3 \\
\hline DOUX-80 & DPST** & Closed & 110 & . 022 & 5000 & 3 \\
\hline DOUX-81 & DPDT* & - & 110 & . 022 & 5000 & 3 \\
\hline DOUX-82 & 3PST & Open & 220 & . 014 & 16100 & 1 \\
\hline DOUX-83 & 3PST & Closed & 220 & . 014 & 16100 & 1 \\
\hline DOUX-84 & 3PDT & - & 220 & . 014 & 16100 & 1 \\
\hline DOUX-85 & 4 PST & Open & 220 & . 014 & 16100 & 2 \\
\hline DOUX-86 & 4PST & Closed & 220 & . 014 & 16100 & 2 \\
\hline DOUX-87 & 4 PDT & - & 220 & . 014 & 16100 & 2 \\
\hline DOUX-88 & DPST** & Open & 220 & . 014 & 16100 & 3 \\
\hline DOUX-89 & DPST** & Closed & 220 & . 014 & 16100 & 3 \\
\hline DOUX-90 & DPDT* & - & 220 & . 014 & 16100 & 3 \\
\hline
\end{tabular}

The Model DOSY relay is similar to the Model D()S relay in construction with the exception that the DOSY relay is equipped with twin coils. This two coil design increases the magnetic efficiency (sensitivity) of the relay by permitting a greater number of ampere-turns. This increased operating sensitivity makes the DOSY adaptable to a wide range of electronic control circuits, such as plate circuit controls or as underload or overload controls in DC circuits to signal attainment of predetermined current levels.
Coil Wattage: The operating coil is normally rated at 1.00 watt for DC operation with a temperature rise not exceeding \(45^{\circ} \mathrm{C}\). Lower wattages are available on special designs.
Coil Operating Voltage Range: Coils can be supplied to operate on any voltage up to 150 VDC.

Insulation: Tested at 1500 VAC between all terminals and ground.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{TYPICAL OPERATING DATA FOR DC OPERATION} \\
\hline DC Voltage & Total Ohms Resistance for Both Coils & Current Amperes \\
\hline 6 & 35.6 & . 170 \\
\hline 12 & 138.0 & . 087 \\
\hline 24 & 540.0 & . 045 \\
\hline 48 & 2260.0 & . 022 \\
\hline 110 & 13600.0 & . 0081 \\
\hline
\end{tabular}

Contact Combination: Maximum standard contact combination double-pole, double-throw; other combinations available upon request, and as per table.
Contact Rating: 15 amperes at 115 VAC or 32 VDC resistive load.
Weight: Approximately \(41 / 2\) ounces (128 grams).
Mounting Styles: Standard mounting is shown in dimension diagram. An optional style provides two .1875 dia. holes on \(21 / 4^{\prime \prime}\) centers-permits mounting of relay from front of panel.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{STOCK DOSY RELAYS} \\
\hline \multirow[b]{2}{*}{Cat. No.} & \multirow[b]{2}{*}{Type} & \multicolumn{3}{|c|}{COIL DATA} \\
\hline & & D.C. Ohms & Max. Pull-in Current & Contact Amps. \\
\hline DOSYX-67T & DPDT & 10,000 & 8 MA & 15 \\
\hline DOSYX-68T & DPDT & 5,000 & 11 MA & 15 \\
\hline DOSYX-69T & SPDT & 10,000 & 5 MA & 15 \\
\hline DOSYX-70T & SPDT & 5,000 & 7 MA & 15 \\
\hline
\end{tabular}

Plug-In, Enclosed and Special Terminal DOSY
Relays: Plug-in type relay DOSYP is described on page 21; Hermetically sealed relays DOSYH and DOSYHP (plug-in type), and dust tight relays DOSYC and DOSYCP (plug-in type) on page 22; DOSY relays with push-on (AMP style) or screw terminals are described on page 26.

\title{
MODEL DOY RELAY
}

DC OPERATION - MADE-TO-ORDER

The Model DOY relay is similar to the Model DO relay in construction with the exception that the DOY relay is equipped with twin coils. This two coil design increases the magnetic efficiency (sensitivity) of the relay by permitting a greater number of ampere-turns. The consequent low powet requirement coupled with the high load carrying capacity, makes this relay adaptable to a wide variety of industrial applications. It is useful, particularly in electronic circuits as a plate circuit relay, where multiple contact combinations are required.

Coil Wattage: The Model DOY relay is available only for DC operation. The operating coils are normally rated at 1.5 watts DC with a temperature rise not exceeding \(45^{\circ} \mathrm{C}^{\prime}\). Lower wattages are available on special designs.

Coil Operating Voltage Range: Coils can be supplied for any voltage up to 175 VDC.

Insulation: Tested at 1500 VAC between all terminals and ground.

Contact Combination: Maximum standard contact combination is four-pole, double-throw for the four-

TYPICAL OPERATING DATA
FOR DC OPERATION
\begin{tabular}{c|c|c}
\begin{tabular}{c}
DC \\
Voltage
\end{tabular} & \begin{tabular}{c}
Resistance \\
Ohms
\end{tabular} & \begin{tabular}{c}
Current \\
Amperes
\end{tabular} \\
\hline 6 & 26 & .230 \\
12 & 100 & .120 \\
24 & 380 & .063 \\
48 & 1,380 & .035 \\
110 & 10,000 & .011
\end{tabular}

DOY 3-Pole;

pole relay; three-pole, double-throw for the three-pole relay; other combinations available, upon request.

Contact Rating: 10 amperes at 115 VAC or 32 VDC resistive load.

Mounting Styles: Standard mounting is shown in dimension diagram. An optional style provides two . 1875 dia. holes on \(21 / 4^{\prime \prime}\) centers-permits mounting of relay from front of panel.

Weight: Approximately 8 ounces (227 grams) for 4 -pole relay.

Plug-In, Enclosed and Special Terminal DOY Relays: Plug-In relay DOYP described on page 21; Plugin type with dust cover DOYEP on page 23; Hermetically sealed relays DOYH and (plug-in type) DOYHP and dust tight relays DOYC and DOYCP (plug-in type) on page 22; DOY relays with pusk-on (AMP style) terminals and screw terminals on page 26 .

Mountings and Enclosures for DOY Relay

TT-DPDT

Exceptional sensitivity for a relay of its small size is achieved in the Model TT relay, a high quality miniature telephone type unit. It finds wide application in aircraft as well as in numerous industrial uses (also see Model Ts next page). Sensitive performance is the result of several unique design features (described under Model TS Relay, next page).

Military Applications: Model TT relay has been designed to meet the requirements of relay specification MIL-R-5757C (Class A and B) and can be furnished for operation in ambients up to \(+125^{\circ} \mathrm{C}\). Hermetically sealed enclosures for military use are also availablesee below.

Coil Waffage: The operating coil is rated nominally at .150 watts per pole at an ambient temperature of \(+20^{\circ} \mathrm{C}\).

Coil Operafing Voltage Range: Coils can be provided for operation up to 120 volts DC.

Insulafion: Tested at 1000 volts AC between all terminals and ground. Relays intended for operation in ambients up to \(+85^{\circ} \mathrm{C}\) are equipped with nylon bobbins. Those intended for operation in ambients up to \(+125^{\circ} \mathrm{C}\) are equipped with Kel-F bobbins.

Contact Combinations: Maximum standard combination is 4PDT. Other combinations available on request.

Confact Rafings: Up to 5 amperes at 115 volts AC or 32 volts DC resistive, with standard contact material, palladium. Other materials can be supplied.

Terminals: Solder terminals are standard. Taper-tab terminals to receive "AMP 78" push-on type female connectors can be furnished upon request.

Taper Tab Terminals
Weight: Approximately 2 ounces for 4PDT unit.

Enclosed TT Relays: Hermetically sealed relays TTH and (plug-in type) TTHP are described on page 23.

Enclosures for TT Relay

\title{
MODEL TS RELAY
}

\section*{DC OPERATION-MADE-TO-ORDER}

The Model TS relay is essentially the same type of high quality telephone type unit as Model TT described on the preceding page except that it is somewhat larger and is designed to transfer heavier currents. Like its smaller counterpart, the Model TS relay is exceptionally sensitive for its size and is widely used in aircraft as well as industrial control applications. Sensitive performance is the result of several design features, notable among which is the design of the armature retaining guard which minimizes undesirable heel gap. The resulting manner of assembly, makes it possible to use a staked-in polepiece thereby eliminating an undesirable gap between the frame and polepiece.

Military Applications: Model TS relay has been designed to meet the requirements of relay specification MIL-R-6106C and can be furnished to operate in ambient temperatures up to \(125^{\circ} \mathrm{C}\). Hermetically sealed enclosures for military use are available-see below.

Coil Waftage: The operating coil is rated nominally at .250 watts per pole at an ambient temperature of \(+20^{\circ} \mathrm{C}\).

Coil Operating Voltage Range: Coils can be provided for operation up to 220 volts DC.

Insulation: Tested at 1000 volts AC between all terminals and ground. Relays intended for operation in ambient temperatures up to \(85^{\circ} \mathrm{C}\) are equipped with nylon bobbins. Those designed for operation in ambients of \(+125^{\circ} \mathrm{C}\) are equipped with Kel-F bobbins.

Contact Combinations: Maximum standard combination is 4PDT. Other combinations available on request.

Confact Rafings: Up to 10 amperes at 115 volts AC or 32 volts DC resistive with standard contact material, silver-cadmium oxide. Other contact materials can be supplied.

Weight: Approximately 3 ounces for 4PDT unit.
Enclosed TS Relays: Hermetically sealed relays TSH and (plug-in type) TSHP are described on page 23. Enclosures with AN-type connectors can also be furnished.

TO Relay

The longer coil of Ohmite's new Model TO relay provides increased operating sensitivity as compared to the Model TKl, (miniature telephone type) to which it is similar. Operating voltage range of the Model TO is greater and it can carry a greater number of contacts. The relay features a mounting similar to the standard long telephone types; i.e., terminals project at the mounting end for typical chassis assembly. Model T() incorporates the time-proven hinge-pin armature construction and a staked-in polepiece which eliminates the undesirable air-gap between polepiece and frame, and thereby increases sensitivity.

Coil Wattage: 100 milliwatts per pole at an ambient temperature of \(20^{\circ} \mathrm{C}\).

Coil Operating Voltage Range: Up to 260 volts DC.
Insulation: Laminated phenolic . . . Tested at 7.50 volts

AC between all terminals and ground. Mycalex insulation can be supplied for special requirements.

Confact Combination: Maximum standard contact combination is six-pole, double-throw.

Confact Rating: 3 amperes at 115 VAC or 32 VDC, resistive with standard palladium contacts. Contacts with ratings up to 5 amperes are available.

Coil Resisfance: Maximum resistance is 20,000 ohms.
Weight: Approximately 3.5 ounces for 4PIT unit.

Enclosures: Write for complete information on hermetically sealed or dust-tight enclosures for Model TO relay.

\section*{MODEL CR, QC RELAYS MADE-TO-ORDER}

MODEL CR RELAY-AC or DC OPERATION
A small, positive action unit with single-pole, singlethrow, double-break, normally open or normally closed contacts having high load capacity. Contacts can be supplied as double-pole, single-throw, normally open.

Coil Wattage: 2.75 watts DC with temperature rise not exceeding \(45^{\circ} \mathrm{C} ; 5.6\) watts 60 cycle AC with temperature rise not exceeding \(75^{\circ} \mathrm{C}\). Lower wattages available.

Coil Operating Voltage Range: Any voltage up to 240 VDC or 440 VAC at 60 cycles.

Insulation: Tested at 1000 VAC .
Contact Combination \& Rating: For SPST-N.O. or N.C., double break -1.5 amperes at 115 VAC or 32 VDC resistive load; for DPSTT-N.O. -7.5 amperes.

Weight: Approximately 3 ounces (84 grams).

Plug-In, Enclosed and Snap-Switch CR Relays: Plug-in relay CRP described on page 21; Hermetically sealed relay CRH and dust tight CRC on page 22; Snap-switch type CRSA on page 27. See Guide, page 5, for illustrations of enclosures.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{FOR 60 CYCLE AC}} & \multicolumn{3}{|c|}{DATA} \\
\hline & & & \multicolumn{3}{|c|}{FOR DC} \\
\hline AC Voltoge & DC Resistance Ohms & Current Amperes & DC Voltage & DC Resistance Ohms & Current Amperes \\
\hline 6 & 1.0 & 1.20 & 6 & 15.2 & . 40 \\
\hline 12 & 4.2 & . 60 & 12 & 63.4 & . 20 \\
\hline 24 & 15.7 & . 38 & 24 & 238.0 & . 10 \\
\hline 48 & 61.7 & . 19 & 48 & 858.0 & . 056 \\
\hline 115 & 380.0 & . 075 & 110 & 5,100.0 & . 022 \\
\hline 230 & 1,420.0 & . 046 & 230 & 20,600.0 & . 01 \\
\hline
\end{tabular}

Model QC

\section*{MODEL QC RELAY-AC or DC OPERATION}

The Model QC relay may be considered a miniature contactor for industrial applications. The contact arms carry screw type terminals.

Coil Wattage: 2.75 watts DC with temperature rise not exceeding \(45^{\circ} \mathrm{C}\); 5.6 watts AC with temperature rise not exceeding \(75^{\circ} \mathrm{C}\).

Coil Operating Voltage Range: To any voltage up to 240 VDC or 440 VAC, 60 cycle.

Insulation: Tested at 1000 VAC.
Contact Combination: Single-pole, single-throw, normally open, double break.

Contact Rating: 25 amperes at 115 VAC or 32 VDC resistive loads.

Weight: Approximately 3 ounces (84 grams).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TYPICAL OPERATING DATA} \\
\hline AC Voltage & \[
\begin{gathered}
\text { DC } \\
\text { Resistance } \\
\text { Ohms }
\end{gathered}
\] & Current Amperes & DC Voltage & \begin{tabular}{l}
DC \\
Resistance Ohms
\end{tabular} & Current Amperes \\
\hline 6 & 1.0 & 1.20 & 6 & 15.2 & . 40 \\
\hline 12 & 4.2 & . 60 & 12 & 63.4 & . 20 \\
\hline 24 & 15.7 & . 38 & 24 & 238.0 & . 10 \\
\hline 48 & 61.7 & . 19 & 48 & 858.0 & . 056 \\
\hline 115 & 380.0 & . 075 & 110 & 5,100.0 & . 022 \\
\hline 230 & 1,420.0 & . 046 & 230 & 20,600.0 & . 011 \\
\hline
\end{tabular}

DOYP

DOP

DOSYP

DOSP

CRP

Plug mountings make for virtually effortless replacement of components, and standard Ohmite relays such as DOS, DOSY, DO, DOY and CR can be furnished on plug bases. Where plug mounting is supplied, the suffix " P " is added to the basic model code as in "DOSP" (basic relay DOS). Operating data for these plug-mounted relays is the same as for ummounted relays. See basic relay descriptions for data. Illustrations below give pertinent dimensional data for these units.

Models DOP and DOYP: Style No. 1 uses an 11 pin, octal style plug; Style No. 2 uses Howard B. Jones industrial plug. Number of pins will be varied to suit specified contact combination.

Models DOSP and DOSYP: Octal plug standardallows for DPDT contacts maximum. Mountings for DOSP and DOSYP are identical.

Model CRP: Octal plug is standard-allows for SPSTN.O. double break contacts.

Hermetically Sealed Relays, protected from ambient conditions have hecome important to industry and particularly to the Armed Forces where components are called upon for unfailing operation under the most adverse conditions. These non-removable enclosures are exhausted and filled with dry nitrogen or other gas. A trace of helium is added to the gas so that leakage tests can be made by means of the mass spectrometerthe most sensitive device available for this purpose. Ohmite supplies many of its basic relays in hermetically sealed enclosures as illustrated in the Selection Guide and individual relay deseriptions. Dimensions for the enclosures are shown below.
Ohmite relays available in hermetically sealed enclo-
sures carry different model designations i.e., letter sufffixes are added to the basic relay model depending upon the type of enclosure. Thus, hermetically sealed relays with solder terminal "headers" carry the suffix "H" as in "DOSH" (basic relay DOS). Hermetically sealed relays with plug-in type headers carry the suffix "HP" as in "IOSHP". Where more than one design or size of enclosure is available, it is also distinguished by a "style" number as shown below. For operating data concerning these relays, refer to basic model descriptions in the preceding pages. Stock hermetically sealed relays are listed on pages for DOS and DO relays. Enclosures other than those shown here can be supplied to order.

Dimensions of Mermetically Sealed and Dust Tight Enclosures

Dust tight selays employ non-removable enclosures identical with the hermetically sealed types except for the absence of a solder seal and the omission of evacuation and gas filling. The suffixes that designate relays so enclosed are "(") for the solder terminal type of enclosure as in "DOSC" (DOS basic relay) and "(CP " for the plug-in type of dust tight enclosure as in "DOSCP". Dust tight relays have the same dimensions as their hermetically sealed counterparts and the drawings below consequently carry both model designations.
Terminals and Headers: The number of solder terminals or pins in the headers of hermetically sealed or dust-tight units is varied to fit the size of the relay contact combination.

Finish: Enclosures have a durable, light grey finish. The circuit diagram is printed on each can or provided on drawings where small quantities are involved.

Military Enclosures: Hermetically sealed units in AN-type enclosures and/or with AN-type connectors can be provided.

Dimensions of Hermetic Enclosures for TT and TS Relays
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{MODEL TTH} \\
\hline Contact Comb. & Style Enc. & A & B & \(C\) & D & E & F & Studs & Term. \\
\hline 1 C or 2 C & 1 & 121/32 & 121/64 & 15/16 & 1 & \(1 / 2\) & 13/20 & 21/64 \(\times 4.40\) & 8 \\
\hline 3 C or 4 C & 2 & \(1^{21 / 2}\) & 127/4 & 1 & 1 & 1/2 & 15/22 & 21/64 \(\times 4.40\) & 14 \\
\hline 3 C or 4 C & 3* & 21/2 & \(15 / 8\) & 17/16 & 13/16 & 15/16 & 1/2 & \(3 / 8 \times 6.32\) & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ MODEL TTHP } \\
\hline \begin{tabular}{c}
Contact \\
Comb.
\end{tabular} & \begin{tabular}{c}
Style \\
Enc.
\end{tabular} & A & B & C & Pins \\
\hline 1 C or 2 C & 1 & \(123 / 22\) & \(121 / 4\) & \(15 / 16\) & 7 \& 9 Resp. \\
\hline 3 C or 4 C & 2 & \(123 / 22\) & \(127 / 4\) & 1 & 14 \\
\hline
\end{tabular}
*Same as enclosure used for AN3304-1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{MODEL TSH} \\
\hline 1 C or 2 C & 1 & 21/2 & \(121 / 20\) & 15/32 & 13/6 & 15/6 & 31/64 & \(13 / 20 \times 6.32\) & 8 \\
\hline 3 C or 4 C & 2 & 21/8 & 27/44 & 11/82 & \(15 / 8\) & 1 & 13/66 & \(13 / 22 \times 6.32\) & 14 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|r|}
\hline \multicolumn{6}{|c|}{ MODEL TSHP } \\
\hline 1 C or 2 C & 1 & 2 & \(15 / 6\) & \(17 / 16\) & 8 \\
\hline 3 C or 4 C & 2 & \(23 / 12\) & \(2 \% / 4\) & \(119 / 2\) & 14 \\
\hline
\end{tabular}

\section*{PLUG MOUNTED RELAYS WITH DUST COVER}

Ohmite relays equipped with plug base and removable covers. Covers are attached with screws. Metal (drawn aluminum) covers are indicated by the suffix "EP" as in "DOSEP" (for DOS relay). A transparent enclosure is shown (below) only for the DOS relay *and is indicated by the suffix "TP"." Important: Highly versatile transparent enclosures for GPR type relays are described on page 6. PLUGS-All enclosures described below
incorporate a standard octal plug termination except enclosures for DOEP or DOYEP which feature a 15 prong Jones Industrial Plug. For 3 -pole, double-throw combinations, DOEP or DOYEP can be provided with an 11-point, octal-style plug.
*Contacts of the DOSTP relay are rated at 15 amperes also, provided the switching rate does not exceed one per minute. Contacts should be derated to 10 amperes when the switching rate is more than 1 and not more than 4 per minute.

Dimensions of Plug-Mounted Relays with Dust Covers

MODELS GPRLE, GPRLETP

6PDT Latching Relay (GPRLE)

Dimensions - Unenclosed Latching Relay (GPRLE)
("Standard" configuration is furnished on stock units)

Latching relays consisting of two GPR relays, eath with any number of contacts up to the maximum (3PDT). The armatures of both relays are so linked that the normally open contacts of one relay are mechanically latched in the closed position when the relay is energized. It remains latched even after the energizing current is removed until the other relay is energized. The second relay remains closed after de-energizing until the first relay is pulsed again. GPR latching relays thus make it possible to switch up to 6 circuits and hold for long periods without continuous relay coil current and with resetting accomplished remotely. Coils of AC Latching Relays are rated 3.7 volt-amperes. Operating characteristics are otherwise as described on page 6.
"GPRLETP" Enclosed, Plug-Base Type: This is the same relay assembly as the unenclosed GPIRLE described above but supplied in a clear plastic enclosure with a Jones P-32t-SB Plug. see stock tables.

UL and CSA Approval: (iPl latehing relays (exeept for 230 VAC ratings) are listed in the CL " ('omponents Recognition Index." see "L'L and CNA. .", page !.

Column heads corry symbals to indicate UL or CSA (Canadion Standards Association) approval. The grey tint indicates that relay is listed in the UL "Campanents Recognition index." See explonotion in "UL and CSA Approval," page 9.

\title{
LATCHING RELAYSELECTRICAL RESET
}

\section*{MODELS DOSLE, DOLE}

Latching relays incorporating Model DOS (I)OSLE) or DO (DOLE) relays. The armature is mechanically latched to the armature of a reset magnet so that the normally open contacts of the relay close when the coil is momentarily encrgized and remain closed after the coil energizing voltage has been removed. The armature is released and the contacts are returned to the normal position by impulsing the reset coil. Thus, the contacts may be maintained in closed position for long periods of time without continuous coil current and resetting is accomplished remotely.

\section*{MODEL DOSLE}

STOCK DOSLE LATCHING RELAYS 15 Amp Contacts
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{2}{*}{ Cat. No. } & \multirow{2}{*}{ Type } & \begin{tabular}{c}
Normal \\
Position
\end{tabular} & \multicolumn{3}{|c}{ COIL DATA† } \\
\cline { 4 - 6 } & & Volts & Amps. & DC Ohms \\
\hline DOSLEX-IT & DPDT & - & 115 VAC & .043 & 450 \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Coil data applies to relay part of latching assembly. Reset magnet operates on \(115 \mathrm{VAC}, 60\) cycle also.
}

The Model DOSLE and DOLE latching relays differ from the Model GPRLE and GPRLETP (on the opposite page) in that their reset magnets function strictly as latching and release devices and carry no contacts of their own. The DOS and DO relays used here, have the same operating characteristics as their counterparts described in the preceding pages.

For made-to-order units specify operating voltage for both the relay and reset coils and indicate AC or D(' operation. Stock DOSLE and DOLE relays are shown in the tables below.

\section*{MODEL DOLE}

\begin{tabular}{l|c|c|c|c|c}
\multicolumn{6}{c|}{ STOCK DOLE LATCHING RELAYS } \\
10 Amp Contacts \\
\hline Cat. No. & Type & \begin{tabular}{c}
Normal \\
Position
\end{tabular} & \multicolumn{3}{|c|}{ COIL DATA \(\dagger\)} \\
\cline { 4 - 7 } & & Volts & Amps. & DC Ohms \\
\hline DOLEX-3T & 3PDT & - & 115 VAC & .110 & 145 \\
DOLEX.5T & 4PDT & - & 115 VAC & .110 & 145 \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Coil data applies to relay part of latching assembly. Reset magnet operates on \(115 \mathrm{VAC}, 60\) cycle also.
}

\title{
RELAYS WITH SPECIAL TERMINALS OR SPECIAL CONSTRUCTION
}

\section*{RELAYS WITH PUSH-ON OR SCREW TERMINALS}

Model DOS, DOSY, DO, or DOY relays can be supplied with solderless "push-on" type terminals which will receive a female connector similar to AMP, "Faston" No. 41202 or a corresponding AKK-LES connector. The same relays can also be supplied with screw-type terminals. Operating characteristics for these relays are

DOS - Push-On;

DO - Push-On;
the same as indicated in the individual relay sections for DOS, DOSY, DO and DOY relays. To order units with these terminals, specify "push-on" or "screw" terminals in addition to the proper ordering code (see Introduction). For relays with other types of push-on and tab terminals, see pages 6 and 16 .

DO - Screw

\section*{RELAYS WITH BINDING-POST TERMINALS}

Models DOSB and DOB are used where screw type binding posts are preferred to solder type terminals. The DOSB and DOB are actually the standard Model DOS and DO relays mounted on a heavy laminated plastic base. Operating data for the standard Models DOS and DO, applies to the DOSB and DOB. Approximate weight of the DOSB and DPDT contact combination is 8 ounces; the approximate weight of the DOB with four pole, double throw contact combination is 12 ounces.

"SPECIALS" MADE TO YOUR SPECIFICATIONS
Where quantities warrant, Ohmite will manufacture relays with special features. Ohmite can furnish not only special terminals, special contact combinations, contact materials, and coils, but special enclosures, connectors, impregnation, or frames. For example, the illustration shows a DOS relay with special black bakelite base and enclosure and banana plug that meets Underwriters' Laboratories spacing requirements, and a standard DO relay with special mounting employing a Jones industrial plug.

Typical Custom-Made Relays

\section*{RELAYS WITH SNAP-ACTION SWITCH CONTACTS}

To obtain sensitive relay operation with heavy duty contacts, the CR relay is available with snap-action switch contacts. These switches have a high current rating and are available in a variety of contact combinations and sizes. The switch-equipped CR relay is called Model CRSA

Switch Contact Combinations: Standard combina-tions-SPST, N.O.; SPS'1, N.C.; and SPI)T. DPDT and DPST' switches can sometimes be supplied.

Contact Ratings: 10 amperes at 115 VAC non-inductive load. Switches of higher rating are available.

LEAF SWITCH

Virtually hundreds of different switch assemblies can be made. Illustrated is a typical example of a leaf switch assembly. The drawing shows the most commonly used parts. Ohmite engineers welcome your inquiry.

Model LS Leaf Switch Parts

Coil Operating Data: Refer to the operating data for the Model CR on page 20 .

> COIL
> WINDINGS

Coil

Ohmite can supply coils to meet individual specifications. Layer-wound coils have a sheet of high temperature cellulose-acetate between each layer of wire and by means of heat and pressure, the acetate is caused to How around the ends of the coil, forming a completely plastic-sealed coil. This process affords maximum protection from ambient conditions, particularly moisture and humidity. Bobbin wound coils can also be supplied. Your inquiries are invited.

resistors
rheostats
tap switches
relays
variable transformers
tantalum capacitors
semiconductor devices
r. f. chokes

OHMITE MANUFACTURING COMPANY • 3601 HOWARD ST. - SKOKIE, ILLINOIS 60076

\section*{DATA SHEET 701-1}

March 25, 1968 / Supplement to Catalog 701

\title{
Magnetic Latching Relays Series GPRM
}

\section*{same size as standard general-purpose relays . . . economical cost.}

Latching functions of the new Series GPRM relays are performed magnetically; no mechanical latching levers required. Unlike conventional latching relays, the Series GPRM magnetic latching relays are less susceptible to shock and vibration, and do not require critical lever adjustments.

\section*{Principle of Operation}

The latching function of the new Series GPRM mag. metic latching relay is accomplished by using a magnet structure made from a steel having high "remanence". This means that once the coil has been energized and the relay armature has closed, it will remain in the closed position indefinitely even after the coil energizing voltage has been removed.

\section*{Advantages}

Small size. Because the new GPRM magnetic latching relay uses standard size relay frames and only one coil, you can now design latching functions into the same space required of general purpose relays. On the other hand, mechanical latching relays are usually
twice the general purpose relay size and are available only in large contact configurations.

Long Life. Magnetic latching relays have no mechanical latching levers to wear or go out of adjustment.
Reliable. Magnetic latching relays work in any positon. Unlike mechanical latching relays, Ohmite's GPRM relay accommodates moderate shock and vibration and will not inadvertently unlatch.

Positive Action. The GPRM relay does not require expensive safeguards against subsequent power or circhit failure. It cannot be locked-in manually.

Low Power Consumption. In the Ohmite GPRM relay remanent magnetism keeps the relay latched without continuous coil energization.

Economical Price. Conventional mechanical latching relays require latching mechanisms and dual coils and frames. Because Ohmite's Series GPRM magnetic latching relays do not have extra mechanisms, coils or frames, the price of these relays is less than conventional mechanical latching relays.

OHMITE

\section*{General Characteristics \\ Mechanical \\ Electrical}

Series GPRM magnetic latching relays are available in a variety of packages offering flexibility in mounting and termination. Series GPRM is available in open frame and enclosed models.

Construction. A rigid frame assures long retention of adjustments. The coil is wound on a nylon bobbin for long life. All connections terminate on one terminal panel for easy wiring.

Multiple Use Terminals. Four termination possibilities are offered: the universal terminals can be used as solder lug, quick-connect (push-on) which accept Amp series 110 female connectors or to plug into standard Ohmite SOGPR sockets; the pin plug type is designed for octal base sockets.

Variety in Mounting. Open frame models mount on panels up to \(1 / 4\) inch using a 6.32 threaded stud and nut. A hole is also required for the non-turn boss on the relay frame.

A 6-32 tapped mounting hole can be supplied in place of the stud. Open frame models also can be mounted using the Ohmite SOGPR socket as an alternative to stud mounting.

Enclosed models are offered in four mounting styles: through-chassis flange (TT style), above-chassis flange (TA style), socket (TS style, for use with SOGPR-23 socket), and octal pin-plug (TP style.)

Series GPRM magnetic latching relays have one coil with two windings; a "latch" winding and a "release" winding. Specific operating voltages are shown in the table at right. Relay contacts are integral inlays on the terminals.

Contact Configurations. Up to double-pole, doublethrow contact forms are available in the Series GPRM magnetic latching relay as standard. Contact the factory for other contact forms.

Contact Ratings. There are two ratings. Relays with fine-silver contacts, gold flashed are rated 5 amps resistive at 115 VAC or 32 VAC. Relays with silvercadmium oxide gold flashed movable and silver-cad gold flashed fixed contacts are rated 10 amps.

Coil Operating Voltages. Any voltage up to 230 VAC, 60 Hertz or 110 VDC. See table of coil data for listing of standard operating voltages.

Insulation. All relays tested at 1500 VAC between all terminals and ground.

Socket Model SOGPR-23 for one and two pote magnetic latching relays.
Unique sockets fit the standard terminal panel of GPRM and GPRMTS styles and provide over-the-surface spacing to meet UL requirements for 150 volts. Require chassis cut out to mount. Hold down springs for open frame and enclosed relays are provided but are only required under conditions of vibration or shock. Socket terminals accept Amp 110 quick connec.
 tors or soldering.

Relay Wiring Panel Front View of Panel

*Polarity as shown for the latch and release coils applies only if windings are for DC operation. It is not applicable for AC operation.

Ordering Information
all relays are dpdt contact configurations. contact factory for spdt and other contact arrangements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Coil Data}} & \multicolumn{5}{|c|}{5 Amp Rated Contacts} & \multicolumn{3}{|c|}{10 Amp Rated Contacts} \\
\hline & & & \multirow[t]{3}{*}{Open
Frame
GPRM
Style} & \multicolumn{4}{|c|}{Enclosed} & \multirow[t]{3}{*}{Open
Frame
GPRM
Style} & \multicolumn{2}{|c|}{Enclosed} \\
\hline \multirow[t]{2}{*}{Volts} & \multicolumn{2}{|l|}{OC Coil Resistance \(\pm 10 \%\)} & & ThruChassis & \begin{tabular}{l}
Above \\
Chassis
\end{tabular} & \[
\begin{aligned}
& \text { For } \\
& \text { SOGPR-23 }
\end{aligned}
\] & Plug Base & & \[
\begin{gathered}
\text { For } \\
\text { SOGPR-23 }
\end{gathered}
\] & Plug Base \\
\hline & Latch Winding & Release Wind ing & & GPRMTA Style & \[
\begin{aligned}
& \text { GPRMTT } \\
& \text { Style }
\end{aligned}
\] & Socket GPRMTS & Style & & Socket GPRMTS & Style \\
\hline 6 VAC & 3.64 & 8.77 & GPRMX-6 & GPRMTAX-6 & GPRMTTX-6 & GPRMTSX-6 & GPRMTPX-6 & GPRMX-206 & GPRMTSX-206 & GPRMTPX-206 \\
\hline 12 VAC & 14.7 & 34.5 & GPRMX-15 & GPRMTAX-15 & GPRMTTX-15 & GPRMTSX-15 & GPRMTPX-15 & GPRMX-215 & GPRMTSX-215 & GPRMTPX-215 \\
\hline 24 VAC & 56.2 & 135 & GPRMX-24 & GPRMTAX-24 & GPRMTTX-24 & GPRMTSX-24 & GPRMTPX-24 & GPRMX-224 & GPRMTSX-224 & GPRMTPX-224 \\
\hline 115 VAC & 865 & 1350 & GPRMX-33 & GPRMTAX-33 & GPRMTTX-33 & GPRMTSX-33 & GPRMTPX-33 & GPRMX-233 & GPRMTSX-233 & GPRMTPX-233 \\
\hline 230 VAC & 3460 & 1350 & GPRMX-42 & GPRMTAX-42 & GPRMTTX-42 & GPRMT SX-42 & GPRMTPX-42 & GPRMX-242 & GPRMTSX-242 & GPRMTPX-242 \\
\hline 6 VDC & 14.7 & 34.5 & GPRMX-51 & GPRMTAX-51 & GPRMTTX-51 & GPRMTSX-51 & GPRMTPX-51 & GPRMX-251 & GPRMTSX-251 & GPRMTPX-251 \\
\hline 12 VDC & 56.2 & 135 & GPRMX-60 & GPRMTAX-60 & GPRMTTX-60 & GPRMT SX-60 & GPRMTPX-60 & GPRMX-260 & GPRMTSX-260 & GPRMTPX-260 \\
\hline 24 VDC & 222 & 540 & GPRMX-69 & GPRMTAX-69 & GPRMTTX-69 & GPRMTSX-69 & GPRMTPX-69 & GPRMX-269 & GPRMTSX-269 & GPRMTPX-269 \\
\hline 110 VDC & 3460 & 1350 & GPRMX-78 & GPRMTAX-78 & GPRMTTX-78 & GPRMTSX-78 & GPRMTPX-78 & GPRMX-278 & GPRMTSX-278 & GPRMTPX-278 \\
\hline
\end{tabular}

\section*{other OHMITE answers} in products for today's \(\mathcal{E}\) tomorrow's circuitry
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Series 99 \\
RESISTORS \\
molded wire-wound \\
- Commercial and hi-stability types \\
- Sizes from 1.5 to 15 watts \\
- Coating and markings withstand \(1500^{\circ} \mathrm{F}\) \\
- Consistent shape for automatic insertion equipment Pat. No. 3,229.237
\end{tabular} & \begin{tabular}{l}
Series SSA \\
SOLID STATE RELAYS \\
- Universal coil accepts AC or DC input \\
- 10 amp capacity \\
- 6 milliwatt sensitivity \\
- Versatile - a few models serve all needs
\end{tabular} & \begin{tabular}{l}
Ohmitran VT* \\
VARIABLE \\
TRANSFORMERS \\
low power series \\
- Now you can select the exact power rating you need \\
- Multiple use 3 -way terminals \\
- Instantly replaceable brush contacts \\
- Adjustable shaft \\
- Six ratings from 1.0 to 3.0 amp
\end{tabular} \\
\hline \begin{tabular}{l}
WORLDS SMALLEST CERAMIC POWER RHEOSTAT \\
- The only \(71 / 2\) watt metal/ceramic rheostat \\
- Withstands hot spot temperatures to \(340^{\circ} \mathrm{C}\) \\
- Only \(1 / 2\) inch in diameter
\end{tabular} & \begin{tabular}{l}
OHMITROLT.M. power control SOLID STATE CONTROLS \\
- Provides infinitely smooth control of power over the full voltage range \\
- Smallest 1 and 2 KW controls \\
- Integral trimmer adjusts control range \\
- Component and portable models
\end{tabular} & \begin{tabular}{l}
Model 711 \\
MINIATURE TAP SWITCHES \\
Breaks: 7 amps @ 125 VAC \\
Carries: 15 amps \\
Smaller: than many low current instrument switches
\end{tabular} \\
\hline
\end{tabular}

\section*{for first hand answers \\ contact your nearest OHMITE office}

\section*{ARIZONA}

Shefler-Kahn Co.
P. O. Box 1587

Phoenix 85001
Phone: (602) ALpine 8-7893
TWX: 910-951-0659

CALIFORNIA (Northern)
Ohmite Manufacturing Co.
201 Town \& Country Village
Palo Alto 94301
Phone: (415) DAvenport 1-6953

\section*{CALIFORNIA (Southern)}

Ohmite Manufacturing Co.
6115 Selma Ave, Rm. 211
Hollywood 90028
Phone: (213) \(466-3434\)

\section*{COLORAOO}

McLoud \& Raymond Co.
P. O. Box 22044

Denver 80222
Phone: (303) SKyline 6.1589
TWX: 303-292-2931

FLORIOA
Stanley K. Wallace Associates, Inc. P. O. Box 67

Lutz (Suburb of Tampa) 33549
Phone: (813) 949-1817
ILLINOIS
Ohmite Manufacturing Co.
3601 Howard Street
Skokie 60076
Phone: (312) 675-2600
TWX: 910-223-0805
TELEX 72-4433
WUX
inOIANA
Val-Skol Sales, Inc.
510 Ft. Wayne Bank Bldg.
Fort Wayne 46802
Phone: (219) 742-9122

\section*{MASSACHUSETTS}

Ohmite Manufacturing Co.
99 Cambridge Street Rm. 102
Burlington 01803
Phone: (617) 272-6060
TELEX: 094-6595

\section*{MICHIGAN}

Ohmite Manufacturing Co.
725 S. Adams Street Rm. 243
Birmingham 48011
Phone: (313) 642-6040

MINNESOTA
Fred B. Hill Co. 6110 Excelsior Blyd.
Minneapolis 55416
Phone: (612) 929-6727
TWX: 910-576-2924
TELEX: 29-5247

MISSOURI
H. A. Roes and Co.

2601 Cherry Street
Kansas City 64108
Phone: (816) BAltimore 1-0866

MISSOURI
Russ D. Sebright \& Co.
7120 West Florissant Avenue
St. Louis 63136
Phone: (314) 261-0055

NEW JERSEY and Metropolitan
New York City - CONN.
Ohmite Manufacturing Co.
P. O. Box 148

Palisades Park, N.J. 07650
Phone: (201) 947-1777 (N.J.)
(212) 563.7371 (N.Y.)

TELEX: 13.5426

NEW YORK
Ohmite Manufacturing Co.
3700 East Avenue
Rochester 14618
Phone: (716) 381-1890
TWX: 510-254-2877

\section*{OHIO}

Ohmite Manufacturing Co.
P. O. Box 3084

Cleveland 44117
Phone: (216) 261-6000

\section*{PENNSYLVANIA}

Samuel K. Macdonald, Inc.
1531 Spruce Street
Philadelphia 19102
Phone: KIngsley 5-1205, FAX: HHK

\section*{TEXAS}
J. Earl Smith Co.

1353 Chemical Street
Dallas 75207
Phone: (214) MEIrose 1-1727

\section*{WESTERN CANADA}
C. M. Robinson Agencies (1963) Ltd.

1550 Erin Street
Winnipeg 3, Manitoba
Phone: (204) 776-1855 \& 6
in products for today's \(\mathcal{E}\) tomorrow's circuitry

This cross reference deals only with Ohmite's new versatile MODEL GPR general purpose relays and the equivalents produced by other manufacturers. The relays produced by other manufacturers are listed in alpha-numerical order along with the Ohmite equivalents.

5 AMP CONTACTS
POTTER \& BRUMFIELD (P\&B) vs OHMITE

\section*{KA5AY-6V} KA5AY-115V KA5AY-230V KA5D-6V KA5D-24V KASD \(110 V\) KAllAY-6V KAllAY-12V KAllAY-24V KAllAY. 115 V KAllAY-230V KAllD. 6 V KAllD.12V KAllD.24V KAllD.110V KA14AY. 6 V KA14AY-12V KA14AY-24V KA14AY-115V KA14AY.230V KA14D. 6 V KA14D.12V KA14D-24V KA14D. 110 V KB17AY-6V KB17AY-12V KBITAY-24V KB17AY-115V KB17AY-230V KB17D. 6 V KB17D.12V KB17D.24V KB17D-110V KB23AY-6V KB23AY-12V KB23AY-24V KB23AY-115V KB23AY-230V

OHMITE
GPRX-3T GPRX-3T
GPRX-30T GPRX-39T GPRX-48T GPRX-66T GPRX.75T GPRX-6T GPRX-15T GPRX-24T GPRX 33 T GPRY.42T GPRX-51 T GPRX-60T GPRX-69T GPRX-78T GPRX-9T GPRX-18T GPRX-27T GPRX-36T GPRX-45T GPR X. 54 T GPRX.63T GPRX-72T GPRX-81T GPRLEX.1T GPRLEX-3T GPRLEX-5T GPRLEX-7T GPRLEX-9T GPRLEX.11T GPRLEX-13T GPRLEX.15T GPRLEX-17T GPRLEX-2T GPRLEX-4T GPRLEX.6T GPRLEX-8T GPRLEX-10T
\(\qquad\) KB23D KB23D. 6 V
KB23D.12V KB23D-12V KB23D.24V KB23D-110V
KCP5.3.6MA KCP5.3.6MA
KCP5.5MA KCP5-7.2MA KCPII.5MA KCP11.7.2MA KCP11-10MA KCP14-6.1MA KCP1 4.8.7MA KCP14-12.3MA - KRP5A.6V *KRP5A.115V * KRP5A-230V KRP5D.6V -KRP5D-24V - KRP5D.110V -KRP11A.6V - KRP11A.12V -KRP11A.24V * KRP11A-115V *KRPllA.230V -KRPIID.6V -KRPIID-12V *KRPIID-24V *KRPIID-110V KRP14A.6V - KRP14A.12V -KRPI4A.24V *KRP14A.115V - KRP14A.230V - KRP14D-6V *KRP14D.12V -KRP14D-24V *KRP14D.110V
\(\qquad\)
OHMITE GPRLEX-12T GPRLEX-12T
GPRLEX-14T GPRLEX.16T GPRLEX-18T GPRTPX-88T GPRTPX-85T GPRTPX-82T GPRTPX.89T GPRTPX-86T GPRTPX.83T GPRTPX-90T GPRTPX-87T GPRTPX.84T GPRTPX.3T GPRTPX.30T GPRTPX-39T GPRTPX-48T GPRTPX-66T GPRTPX-75T GPRTPX-6T GPRTPX-15T GPRTPX-24T GPRTPX-33T GPRTPX.42T GPRTPX-51T GPRTPX.60T GPRTPX-69T GPRTPX-78T GPRTPX-9T GPRTPX-18T GPRTPX-27T GPRTPX-36T GPRTPX-45T GPRTPX-54T GPRTPX-63T GPRTPX.72T GPRTPX-81T
E.A
GHAIC.6VAC GHAIC.6VAC
GHAIC.6VDC GHAIC-24VDC GHA1C-110VDC GHAIC-1 15 VAC GHAIC-230VAC GHA2C. 6 VAC GHA2C.6VDC GHA.2C-12VAC GHA2C.12VDC GHA2C-24VAC GHA2C-24VDC GHA2C-110VDC GHA2C-115VAC GHA2C-230VAC GHA3C. 6 VAC GHA3C.6VDC GHA3C.12VAC GHA3C.12VDC GHA3C-24VAC GHA3C.24VDC GHA3C-110VDC GHA3C-115VAC GHA3C-230VAC GHEIC.2500* GHEIC.5000* GHE1C. 10000* GHE2C-2500 GHE2C. 5000 GHE2C-10000 GHE 3C. 2500 GHE3C-5000 GHE3C. 10000

5 AMP CONTACTS
E.A ELGIN-ADVANCE (E-A) vS OHMITE
EHPIC-6VAC*

OHMITE
GPRTPX-3T GPRTPX-3T
GPRTPX 48 T GPRTPX-66T GPRTPX.75T GPRTPX-30T GPRTPX-39T GPRTPX.6T GPRTPX-51 T GPRTPX.15T GPRTPX.60T GPRTPX-24T GPRTPX-69T GPRTPX.78T GPRTPX.33T GPRTPX.42T GPRTPX.9T GPRTPX-54T GPRTPX-18T GPRTPX.63T GPRTPX-27T GPRTPX.72T GPRTPX-81T GPRTPX-36T GPRTPX-45T
*Also KAP Series
5 AMP CONTACTS - LINE ELECTRIC(L-E) vs OHMITE
\begin{tabular}{|c|c|c|c|c|c|}
\hline L - E & OHMITE & L-E & OHMITE & L-E & OHMITE \\
\hline MK1A.6V & GPRX-3T & MK 3D-12V & GPRX-63T & MKP1A.115V & GPRTPX-30T \\
\hline MK1A.12V & GPRX-12T & MK 3D.24V & GPRX-72T & MKP1A.230V & GPRTPX-39T \\
\hline MK1A.24V & GPRX-21 T & MK 3D-110V & GPRX-81T & MKPID.6V & GPRTPX-48T \\
\hline MK1A.115V & GPRX-30T & MKC-1-2500 & GPRX-82T & MKPID.12V & GPRTPX-57T \\
\hline MK1A.230V & GPRX-39T & MKC.1-5000 & GPRX-85T & MKPID-24V & GPRTPX-66T \\
\hline MKID. 6 V & GPRX-48T & MKC.1-10000 & GPRX-88T & MKP1D.110V & GPRTPX-75T \\
\hline MK1D.12V & GPRX-57T & MK C-2-2500 & GPRX-83T & MKP2A.6V & GPRTPX-6T \\
\hline MK1D-24V & GPRX-66T & MKC.2-5000 & GPRX-86T & MKP2A-12V & GPRTPX-15T \\
\hline MK1D-110V & GPRX.75T & MKC. 2.10309 & GPRX-89T & MKP2A-24V & GPRTPX-24T \\
\hline MK 2A. 6 V & GPR \(\times\)-6T & MKC.3-2500 & GPRX-84T & MKP2A.115V & GPRTPX-33T \\
\hline MK 2 A.12V & GPRX-15T & MKC.3.5000 & GPRX-87T & MKP2A-230V & GPRTPX-42T \\
\hline MK2A.24V & GPRX-24T & MKC.3-10000 & GPRX-90T & MKP2D.6V & GPRTPX-51T \\
\hline MK 2A-115V & GPRX-33T & MK F-1-2500 & GPRTPX-82T & MKP2D.12V & GPRTPX-60T \\
\hline MK 2A-230V & GPRX-42T & MK F-1-5000 & GPRTPX-85T & MKP2D.24V & GPRTPX-69T \\
\hline MK 2D-6V & GPRX-51 T & MK F-1-10000 & GPRTPX-88T & MKP2D.110V & GPRTPX-78T \\
\hline MK 2D-12V & GPRX.60T & MKF-2-2500 & GPRTPX-83T & MKP3A.6V & GPRTPX-9T \\
\hline MK2D-24V & GPRX-69T & MK F-2.5000 & GPRTPX-86T & MKP3A-12V & GPRTPX-18T \\
\hline MK 2D-110V & GPRX-78T & MK F.2-10000 & GPRT PX-89 & MKP3A-24V & GPRTPX-27T \\
\hline MK3A. 6 V & GPRX-9T & MK F-3-2500 & GPRTPX-84T & MKP3A-115V & GPRTPX-36T \\
\hline MK 3A.12V & GPRX-18T & MK F-3.5000 & GPRTPX-87T & MKP3A-230V & GPRTPX-45T \\
\hline MK3A-24V & GPRX-27T & MKF.3.10000 & GPRTPX-90T & MKP3D.6V & GPRTPX-54T \\
\hline MK3A.115V & GPRX-36T & MKP1A.6V & GPRTPX-3T & MKP3D.12V & GPRTPX-63T \\
\hline MK3A-230V & GPRX-45T & MKP1A.12V & GPRTPX-12T & MKP3D-24V & GPRTPX-72T \\
\hline MK3D.6V & GPRX-54T & MKPIA-24V & GPRTPX-21T & MKP3D.110V & GPRTPX-81 T \\
\hline
\end{tabular}

\begin{tabular}{c|c}
\(P \& B\) & OHMITE
\end{tabular}

\section*{KA5AG.6V}

KA5AG-12V
KA5AG-24V
KA5AG-115V
KA5AG-230V KAllAG.6V KAllAG-12V KAllAG-24V KA11AG-115V KAllAG-230V KAl4AG-6V KA14AG.12V KA14AG.24V KA14AG-115V KA14AG.230V
*KRP5AG-6V
*KRP5AG-12V
* KRP5AG-24V
*KRP5AG.115V
*KRP5AG-230V
*KRP5DG-6V
*KRP5DG-12V
*KRP5DG-24V
*KRP5DG.110V
*KRP11AG-6V
*KRP11AG.12V
*KRP11AG-24V
*KRP!1AG-115V
*KRP11AG-230V
*KRP11AN-6V
*KRP11AN-12V
*KRP11AN-24V
*KRP11AN-115V
*KRP11AN-230V
*KRP11DG-6V
*KRP11DG-12V
*KRP11DG-24V
*KRP11DG-110V
*KRPIIDN-6V
*KRP11DN-12V
*KRP11DN-24V
*KRP11DN-110V
*KRP14AG-6V
*KRP14AG-12V
*KRP14AG-24V
*KRP14AG-115V
*KRP14AG-230V
*KRP14DG.6V
*KRP14DG-12V
*KRP14DG-24V
*KRP14DG-110V

\footnotetext{
* Also KAP Series
}

GPRX-203T GPR X-212T GPRX-221T GPRX-230T GPRX-239T GPR X-206T GPRX-215T GPRX-224T GPRX-233T GPRX-242T GPRX-209T GPRX-218T GPRX-227T GPRX-236T GPRX-245T G PRTPX-203T GPRTPX-212T GPRTPX-221T GPRTPX-230T GPRTPX-239T GPRTPX-248T GPRTPX-257T GPRTPX-266T GPRTPX-275T GPRTPX-206T GPRTPX-215T GPRTPX-224T GPRTPX-233T GPRTPX․242T GPRTPX-291 T GPRTPX-292T GPRTPX-293T GPRTPX-294T GPRTPX-295T GPRTPX-251 T GPR TPX-260T GPRTPX.269T GPRTPX.278T GPRTPX-296T GPRTPX-297T GPRTPX-298T GPRTPX-299T GPRTPX.209T GPRTPX-218T GPRTPX-227T GPRTPX-236T GPRTPX-245T GPRTPX-254T GPRTPX-263T GPRTPX-272T GPRTPX-281T

\section*{GUARDIAN vs OHMITE *}
\begin{tabular}{|c|c|}
GUARDIAN & OHMITE \\
\hline \(1200-G 6\) & GPRX.206T
\end{tabular}
1200-G6 GPRX.206T

1200-G12
1200-G24
1200-G115
1200-GC6
1200-GC12
1200-GC24
1200-GC115
1210.G6

1210-G12
1210-G24
1210.G115
1210.GC6

1210-GC12
1210-GC24
1210-GC115
1210N.G115
1215-G6
1215-G12
1215-G24
1215-GC6
1215.GC12

1215-GC24

GPRX-215T GPRX-224T GPR X-233T GPRX-209T GP RX-218T GPRX-227T GPRX-236T GPRTPX-206T GPRTPX-215T GPRTPX-224T GPRTPX-233T GPRTPX-209T GPRTPX-218T GPRTPX-227T GPRTPX.236T GPRTPX-294T GPRTPX-251T GPRTPX-260T GPRTPX-269T GPRTPX-254T GPRTPX-263T GPRTPX-272T
*Ohmite relays have 10 ampere contacts; Guardian 8 ampere contacts.

GPRX-203T GPRX-212T GPRX-221T GPRX-230T GPRX-239T GPRX-206T GPRX-215T GPRX-224T GPRX-233T GPR X-242T GPRX-209T GPR X-218T GPR X-227T GPRX-236T GPRX-245T

10 AMP CONTACTS LINE ELECTRIC (L-E) vs OHMITE
\begin{tabular}{|c|c|c|c|}
\hline L-E & OHMITE & L-E & OHMITE \\
\hline MKF:IA.GV & GPRTPX-203T & MK H3D.6V & GPRTPX-254T \\
\hline MKHIA.12V & GPRTPX-212T & MKH3D-12V & GPRTPX-263T \\
\hline MKHIA-24V & GPRTPX-221T & MKH3D-24V & GPRTPX-272T \\
\hline MKHIA. 115 V & GPRTPX-230T & MKH3D.110V & GPRTPX-281T \\
\hline MKHIA. 230 V & GPRTP X-239 T & & \\
\hline MKHID-6V & GPRTPX-248T & MKOIA.6V & GPRX-203T \\
\hline MKHID.12V & GPRTPX-257T & MKOIA.12V & GPRX-212T \\
\hline MKHID-24V & GPRTPX-266T & MKOIA.24V & GPRX-221T \\
\hline MKHID. 110 V & GPRTPX-275T & MKOIA-115V & GPRX-230T \\
\hline MKH2A-6V & GPRTPX-206T & MKO1A.230V & GPRX-239 \({ }^{\text {a }}\) \\
\hline MKH2A.12V & GPRTPX-215T & :MKO2A.6V & GPRX-206T \\
\hline MKH2A-24V & GPRTPX-224T & MKO2A.12V & GPRX-215T \\
\hline MKH2A.115V & GPRTPX-233T & MKO2A.24V & GPRX-224T \\
\hline MK H2A-230V & GPRTPX-242T & MKO2A-115V & GPRX-233T \\
\hline MKH2D-6V & SPRTPX-251T & MKO2A-230V & GPRX-242T \\
\hline MK H2D.12V & GPRTPX-260T & MK 03 A .6 V & GPRX-209T \\
\hline MK H2D-24V & GPRTPX-269 & MKO3A.12V & GPRX-218T \\
\hline MKH2D. 110 V & GPRTPX-278T & MKO3A.24V & GPRX-227T \\
\hline MKH3A-6V & GPRTP X-209 & MK03A-115V & GPRX-236T \\
\hline MKH3A-12V & GPRTPX-218T & MKO3A.230V & GPRX-245 \({ }^{\text {T }}\) \\
\hline MKH3A-24V & GPRTPX-227T & & \\
\hline MKH3A-115V & GPRTPX-236T & & \\
\hline MKH3A-230V & GPRTPX-245T & & \\
\hline
\end{tabular}

\title{
O SOLD STATE
TIME RELAYA
}

JUN 101970
CATALOG 709
NOVEMBER, 1969

Ohmite Solid State Time Delay Relays, are designed to achieve delays in the closing and opening of the output contacts of an electro-mechanical relay. This delay occurs from the time a switch is operated i.e. closed or opened. Also, time delay relays are supplied for closing or opening a set of relay output contacts for a finite period upon the momentary closing of a switch. (See Table I.) Delays up to 180 seconds are possible.

Utilization of a solid state timing device, a unijunc-
tion transistor triggered by a resistance-capacitance timing network, means greater timing accuracy and repeatability and exceedingly long life. The difficulties sometimes encountered with electro-mechanical timing devices such as bulk due to gears, motors, plus the wear common to such devices, are eliminated.

The Ohmite Time Delay Relay offers the finest solid state elements and circuitry for the timing portion of this device along with long-life Ohmite electro-mechanical relays as the power switching portion.

\section*{INTERNAL OR EXTERNAL RELAY}

As indicated above, Ohmite Time Delay Relays consist of a solid state timing network and an electromechanical relay which is energized by the timing network. For the "Delay on Operate" type of relay, the electro-mechanical relay can be supplied in the same
enclosure as the timing network or can be external to it. The internal electro-mechanical relay has DPDT contacts rated at 10 amperes. Where an external relay is required, Ohmite GPR, DOS or DO relays can be used. See paragraph, "Recommended External Relays."

\section*{USES OF TIME DELAY RELAYS}

Time delay relays find application where delays must be introduced as a safety factor for the protection of equipment such as motors, or where certain machine sequences must be established. They may also be used for timing and sequencing certain operations as in welding or photographic developing. Thus time delay relays are
found in motor starting circuits, injection molding and die casting machines, warm-up controls in radio transmitters or X-ray machines, in automatic elevator systems, dispensing or vending machines and in all types of automated equipment systems.

TABLE I-CHARACTERISTICS OF OHMITE TIME DELAY RELAYS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \multirow[b]{2}{*}{EXTERNAL OUTPUT RELAY OPTION} & \multicolumn{2}{|c|}{OUTPUT RELAY} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TO RE-SET } \\
& \text { FOR NEXT } \\
& \text { CYCLE }
\end{aligned}
\]} \\
\hline TYPE OF RELAY & \[
\begin{aligned}
& \text { SERIES } \\
& \text { DESIGNA- } \\
& \text { TION }
\end{aligned}
\] & timing cycle INITIATED BY & CAN PERFORM IHESE FUNCTIONS & & AT START OF CYCLE & AT END OF CYCLE & \\
\hline "Delay on Operate" & "SO _ _ " & Sustained closing of a switch in supply circuit. & \begin{tabular}{l}
(1) Switch "on" a device upon expiration of the pre-set delay. \\
(2) Switch "off" a device upon expiration of the pre-set delay. \\
(3) Switch "on" a device for a pre-set interval.
\end{tabular} & Yes & Remains De-Energized & Becomes Energized & \begin{tabular}{l}
Open \\
Initio- \\
ting \\
Switch
\end{tabular} \\
\hline ```
"Delay
 on
Release"
``` & "SRI __" & Sustained opening of a switch in "Control Circuit" (Supply circuit always connected.) & \begin{tabular}{l}
(1) Switch "off" a device upon expiration of the pre-set delay. \\
(2) Switch "on" a device upon expiration of the pre-set delay. \\
(3) Switch "off" a device for a pre-set interval.
\end{tabular} & No & \begin{tabular}{l}
Remains \\
Energized
\end{tabular} & Becomes De-Energized & \begin{tabular}{l}
Close \\
Switch in "Control Circuit"
\end{tabular} \\
\hline Momentary Actuation & "SMI __" & Momentary closing of a switch in Supply Circuit. & \begin{tabular}{l}
(1) Switch "on" a device for a pre-set interval. \\
(2) Switch "off" a device for a pre-set interval.
\end{tabular} & No & \begin{tabular}{l}
Becomes \\
Energized
\end{tabular} & Becomes Derenergized & No resetting necessary \\
\hline
\end{tabular}


A
Variable Delay
with Internal Relay


C
Fixed Delay
with Internal Relay


B
Variable Delay Module Requiring External Relay


D
Fixed Delay Module Requiring External Relay

\section*{DELAY AND DELAY ADJUSTMENTS}

Variable - The Ohmite Time Delay Relay, designated as "variable" incorporates a knob (on top of the case) which permits adjustment of the time delay over a range as indicated in the table on pages 6 and 8 . Three ranges are offered as follows:

\section*{0.1 to 10 seconds \\ 0.6 to 60 seconds \\ 1.8 to 180 seconds}

Fixed Maximum and Remote - This type is supplied with a factory set time delay. However, it incorporates provisions (terminals) for connecting an external resistor for reducing the time delay from the maximum. Alternatively, a variable resistance may be used to adjust the delay over the range down from nearly the maximum to the minimum. The minimum delay is ob-
tained when a short circuit is placed across the delay circuit terminals. The delay adjusting resistance can be located remotely providing still another element of flexibility in the use of these relays.
Standard "Fixed Maximum Delay" values are shown in Table II:

Operating Voltage Ratings: Ohmite Time Delay Relays can be supplied to operate from the following voltages:
\[
\begin{array}{lrrr}
\text { AC: } & 24, & 115 & \\
\text { DC: } & 24, & 48, & 110
\end{array}
\]

Contacts and Rating of Internal Relay: DPDT, 10 amperes at \(115 \mathrm{VAC}, 32 \mathrm{VDC}\) resistive.

Recommended External Relays: For "Delay on Operate" relays SOEV, SOEF; see Table III. Descriptions of recommended external relays are provided in Catalog 700 available on request.
table II - fixed maximum delays \& RESISTANCE VALUES* (OHMS) FOR REDUCING DELAYS FROM FIXED MAX. TO . . .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline FIXED MAX. \(\dagger\) DELAY (Sec.) & 1/4 & (MODELS SOIF, & \(3 / 4\) & 1/4 & \[
\begin{gathered}
\text { (MODEL SRIF) } \\
1 / 2
\end{gathered}
\] & 3/4 & 1/4 & \[
\underset{1 / 2}{(\text { MODEL SMIF) }}
\] & \(3 / 4\) & SHORT CKT. DELAY (Sec.) \\
\hline 1 & 3300 & 9100 & 20K & 18K & 56 K & 160K & 5100 & 10K & 56 K & 0.1 \\
\hline 5 & 27K & 75K & 220K & 110K & 330K & 910 K & 27K & 82K & 270K & 0.1 \\
\hline 10 & 56K & 150K & 430K & 240K & 750K & 2 meg. & 51 K & 160K & 510K & 0.1 \\
\hline 30 & 56K & 180K & 510K & 240K & 750 K & 2 meg . & 51 K & 150K & 470K & 0.6 \\
\hline 60 & 120K & 360K & 1.1 meg. & 510K & 1.6 meg . & 6.2 meg . & 110K & 330K & 1.3 meg . & 0.6 \\
\hline 120 & 240K & 680K & 2.2 meg . & 910 K & 3 meg . & 12 meg . & 180K & 560K & 1.8 meg . & 1.8 \\
\hline 180 & 330K & 1 meg . & 3.3 meg . & 1.3 meg . & 4.3 meg . & 20 meg. & 820K & 910K & 3 meg . & 1.8 \\
\hline
\end{tabular}
*Resistances designated were selected to correspond to standard E.I.A. values
so that the reduced cielays are approximate only.
†Where a remote variable resistonce (control) is employed, the longest delay
obtainable will generally be \(90 \%\) of the stated "fixed maximum" delay and this is obtainable with the use of a potentiometer having a resistance equal to approximately 10 times the resistance shown in the " \(1 / 2\) " columns above.

\section*{ORDERING CODES}

The catalog numbers listed in the tables of Types and Ratings are really descriptive codes based on the following schemes:

\(\begin{aligned} & \text { Internal or } \\ & \text { External Relay: }\end{aligned} \quad \begin{aligned} & \text { Internal } \\ & \text { External }\end{aligned}=1\)


Delay Range or Value:
\begin{tabular}{c|c|c|c}
\begin{tabular}{c} 
Range or \\
Value \\
(Seconds)
\end{tabular} & Code & \begin{tabular}{c} 
Range or \\
Value \\
(Seconds)
\end{tabular} & Code \\
\hline \(0.1-10\) & 0 & 10 & 5 \\
\(0.6-60\) & 1 & 30 & 6 \\
\(1.8-180\) & 2 & 60 & 7 \\
1 & 3 & 120 & 8 \\
5 & 4 & 180 & 9
\end{tabular}

TABLE III - RECOMMENDED EXTERNAL RELAYS*
Relays in Tint areas are Enclosed Types


115 A Contacts 210 A Contacts
*See Catalog 700 for description of External Relays

TABLE IV - DELAY ON OPERATE - INTERNAL RELAY (DPDT IOA CONTACTS): VARIABLE DELAY - "SOIV"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Delay
Range* Range* & \[
\begin{gathered}
\text { Dimen. } \\
\text { P. } 3
\end{gathered}
\] & \(\underset{\mathrm{P}, 7}{\mathrm{Wiring}}\) & 24VAC & 115 VaC & SUPPLY VOLTAG 24VDC & 48 VDC & 110 VDC \\
\hline 0.1-10 & \multirow{3}{*}{A} & \multirow{3}{*}{A} & SOIV-24A-0 & SOIV-115A-0 & soiv-24D-0 & SOIV-48D-0 & SOIV-1100-0 \\
\hline 0.6-60 & & & SOIV-24A-1 & SOIV-115A-1 & SOIV- \(24 \mathrm{D}-1\) & SOIV-480-1 & SOIV-1100-1 \\
\hline 1.8-180 & & & SOIV-24A-2 & SOIV-115A-2 & SOIV-24D-2 & SOIV-48D-2 & SOIV-1100-2 \\
\hline
\end{tabular}
*Seconds
TABLE V - DELAY ON OPERATE - INTERNAL RELAY (DPDT 10A CONTACTS): FIXED DELAY - "SOIF"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Delay* & \[
\begin{gathered}
\text { Dimen. } \\
\text { P. }
\end{gathered}
\] & \[
\mathbf{W i r i n g}_{\text {P. }}
\] & 24VAC & 115 VaC & SUPPLY VOLTAGE 24VDC & 48 VDC & IIOVDC \\
\hline 1 & & & SOIF-24A-3 & SOIF-115A-3 & SOIF-240-3 & SOIF-48D-3 & SOIF-1100-3 \\
\hline 5 & & & SOIF-24A-4 & SOIF-115A-4 & SOIF-240-4 & SOIF-48D-4 & SOIF-1100-4 \\
\hline 10 & & & SOIF-24A-5 & SOIF-115A-5 & SOIF-24D-5 & SOIF-48D-5 & SOIF-1100-5 \\
\hline 30 & c & B & SOIF-24A-6 & SOIF-115A-6 & SOIF-24D-6 & SOIF-48D-6 & SOIF-1100-6 \\
\hline 60 & & & SOIF-24A-7 & SOIF-115A-7 & SOIF-24D-7 & SOIF-480-7 & SOIF-1100-7 \\
\hline 120 & & & SOIF-24A-8 & SOIF-115A-8 & SOIF-24D-8 & SOIF-48D-8 & SOIF-1100-8 \\
\hline 180 & & & SOIF-24A-9 & SOIF-115A-9 & SOIF-24D-9 & SOIF-480-9 & SOIF-1100-9 \\
\hline
\end{tabular}
*Seconds
TABLE VI - DELAY ON OPERATE - EXTERNAL RELAY: VARIABLE DELAY - "SOEV"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Delay
Range* Range* & \[
\begin{gathered}
\text { Dimen. } \\
\text { P. } 3
\end{gathered}
\] & \[
\begin{aligned}
& \text { Wiring } \\
& \text { P. }
\end{aligned}
\] & \multicolumn{5}{|l|}{} \\
\hline 0.1-10 & & & SOEV-24A-0 & SOEV-115A-0 & SOEV-24D-0 & SOEV-480-0 & SOEV-1100-0 \\
\hline 0.6-60 & B & c & SOEV-24A-1 & SOEV-115A-1 & SOEV-24D-1 & SOEV-48D-1 & SOEV-1100-1 \\
\hline 1.8-180 & & & SOEV-24A-2 & SOEV-115A-2 & SOEV-24D-2 & SOEV-48D-2 & SOEV-1100-2 \\
\hline
\end{tabular}
*Seconds
TABLE VII - DELAY ON OPERATE - EXTERNAL RELAY: FIXED DELAY - "SOEF"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Delay*} & \multirow[b]{2}{*}{\[
\underset{\text { P. } 3 .}{\text { Dimen. }}
\]} & \multirow[b]{2}{*}{\(\underset{\substack{\text { P. } \\ 7 \\ \hline}}{\text { Wing }}\)} & \multirow[b]{2}{*}{24VAC} & \multicolumn{4}{|c|}{SUPPLY VOLtage} \\
\hline & & & & 115 VAC & 24VDC & 48 VDC & Ifovde \\
\hline 1 & & & SOEF-24A-3 & SOEF-115A-3 & SOEF-24D-3 & SOEF-48D-3 & SOEF-110D-3 \\
\hline 5 & & & SOEF-24A-4 & SOEF-115A-4 & SOEF-24D-4 & SOEF-48D-4 & SOEF-1100-4 \\
\hline 10 & & & SOEF-24A-5 & SOEF-115A-5 & SOEF-24D-5 & SOEF-48D-5 & SOEF-1100-5 \\
\hline 30 & D & D & SOEF-24A-6 & SOEF-115A-6 & SOEF-24D-6 & SOEF-480-6 & SOEF-1100-6 \\
\hline 60 & & & SOEF-24A-7 & SOEF-115A-7 & SOEF-24D-7 & SOEF-48D-7 & SOEF-1100-7 \\
\hline 120 & & & SOEF-24A-8 & SOEF-115A-8 & SOEF-24D-8 & SOEF-48D-8 & SOEF-1100-8 \\
\hline 180 & & & SOEF-24A-9 & SOEF-115A-9 & SOEF-24D-9 & SOEF-48D-9 & SOEF-1100-9 \\
\hline
\end{tabular}
*Seconds
TABLE VIII - DELAY ON RELEASE - INTERNAL RELAY (DPDT 10A. CONTACTS): VARIABLE DELAY - "SRIV"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Delay Range \({ }^{*}\) & Dimen P. 3 & Wiring P. 7 & \multicolumn{5}{|l|}{\(24 \mathrm{VAC} |\)\begin{tabular}{c|c|c|c} 
SUPPLY VOLTAGE \\
24 VDC & 115 VAC & 48 VDC & 110 VDC
\end{tabular}} \\
\hline \(0.1-10\) & & & SRIV-24A-0 & SRIV-115A-0 & SRIV-24D-0 & SRIV-48D-0 & SRIV-1100-0 \\
\hline 0.6-60 & A & E & SRIV-24A-1 & SRIV-115A-1 & SRIV-24D-1 & SRIV-48D-1 & SRIV-110D-1 \\
\hline 1.8-180 & & & SRIV-24A-2 & SRIV-115A-2 & SRIV-24D-2 & SRIV-48D-2 & SRIV-1100-2 \\
\hline
\end{tabular}
*Seconds



TO COIL OF EXTERNAL RELAY



CONTROL VOLTAGE


TABLE IX - DELAY ON RELEASE - INTERNAL RELAY (DPDT 10A. CONTACTS): FIXED DELAY - "SRIF"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Delay* & \[
\underset{\mathrm{P} .3}{\text { Dimen }^{2}}
\] & \[
\underset{\text { P. } 7}{\mathbf{W i r i n g}}
\] & 24 VAC & 115 VAC & SUPPLY VOLTAGE 24VDC & 48VOC & 110VOC \\
\hline 1 & & & SRIF-24A-3 & SRIF-115A-3 & SRIF-24D-3 & SRIF-48D-3 & SRIF-1100-3 \\
\hline 5 & & & SRIF-24A-4 & SRIF-115A-4 & SRIF-24D-4 & SRIF-48D-4 & SRIF-110D-4 \\
\hline 10 & & & SRIF-24A-5 & SRIF-115A-5 & SRIF-24D-5 & SRIF-48D-5 & SRIF-1100-5 \\
\hline 30 & C & F & SRIF-24A-6 & SRIF-115A-6 & - SRIF-24D-6 & SRIF-48D-6 & SRIF-110D-6 \\
\hline 60 & & & SRIF-24A-7 & SRIF-115A-7 & SRIF-24D-7 & SRIF-48D-7 & SRIF-110D-7 \\
\hline 120 & & & SRIF-24A-8 & SRIF-115A-8 & SRIF-24D-8 & SRIF-48D-8 & SRIF-110D-8 \\
\hline 180 & & & SRIF-24A-9 & SRIF-115A-9 & SRIF-24D-9 & SRIF-48D-9 & SRIF-110D-9 \\
\hline
\end{tabular}
*Seconds
TABLE X - MOMENTARY ACTUATION - INTERNAL RELAY (DPDT \(10 A\).
CONTACTS): VARIABLE INTERVAL - "SMIV"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline On or Off Interval Range* & Dimen. P. 3 & \[
\begin{gathered}
\text { Wiring } \\
\text { P. } 7
\end{gathered}
\] & 24 VAC & 115 VAC & SUPPLY VOLTAGE 24VDC & 48 VDC & 110VDC \\
\hline \(0.1-10\) & & & SMIV-24A-0 & SMIV-115A-0 & SMIV-24D-0 & SMIV-48D-0 & SMIV-110D-0 \\
\hline 0.6-60 & A & G & SMIV-24A-1 & SMIV-115A-1 & SMIV-24D-1 & SMIV-48D-1 & SMIV-110D-1 \\
\hline 1.8-180 & & & SMIV-24A-2 & SMIV-115A-2 & SMIV-24D-2 & SMIV-48D-2 & SMIV-110D-2 \\
\hline
\end{tabular}
*Seconds
TABLE XI - MOMENTARY ACTUATION - INTERNAL RELAY (DPDT 10A.
CONTACTS): FIXED INTERVAL - "SMIF"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline On or Off Interval & Dimen P. 3 & Wiring P. 7 & 24 VAC & 115 VAC & UPPLY VOLTAGE 24VDC & 48 VDC & l10VDC \\
\hline 1 & & & SMIF-24A-3 & SMIF-115A-3 & SMIF-24D-3 & SMIF-48D-3 & SMIF-110D-3 \\
\hline 5 & & & SMIF-24A-4 & SMIF-115A-4 & SMIF-24D-4 & SMIF-48D-4 & SMIF-1100-4 \\
\hline 10 & & & SMIF-24A-5 & SMIF-115A -5 & SMIF-24D-5 & SMIF-48D-5 & SMIF-110D-5 \\
\hline 30 & c & H & SMIF-24A-6 & SMIF-115A-6 & SMIF-24D-6 & SMIF-48D-6 & SMIF-110D-6 \\
\hline 60 & & & SMIF-24A-7 & SMIF-115A-7 & SMIF-24D-7 & SMIF-48D-7 & SMIF-110D-7 \\
\hline 120 & & & SMIF-24A-8 & SMIF-115A-8 & SMIF-24D-8 & SMIF-48D-8 & SMIF-110D-8 \\
\hline 180 & & & SMIF-24A-9 & SMIF-115A-9 & SMIF-24D-9 & SMIF-48D-9 & SMIF-110D-9 \\
\hline
\end{tabular}
*Seconds

\section*{Mr SOLID RELAYS S}

\[
\left[\begin{array}{l}
\text { oHMITE } \\
\text { has another } \\
\text { new answer }
\end{array}\right]
\]


3-Way Terminals Quick Connect-Solder-Screw Styles 1 and 3


Printed Circuit Terminals Style 4


Octal Pin Plug Style 5


Octal Pin Plug With Integral Heat Dissipator Style 6

Ohmite Models SSA and SSB relays are completely solid state; there are no moving parts, nothing to wear or fall out of adjustment. Being all solid state, these relays perform excellently under extreme environmental conditions such as severe shock and vibration, dust and high rates of actuation. They are true relays in the functional sense because the input is completely isolated from the switching elements.

\section*{Hi-Rel, Long Life}

Ohmite solid state relays provide the ultimate in reliability, long life and trouble-free service. Expected electrical life is over \(10^{8}\) operations. There are no contacts to bounce and there is little chance for erratic operation under abnormal conditions.

\section*{Opens New Applications}

Although SSA and SSB relays can be used to replace elec-tro-mechanical relays in critical applications where exceptional life and reliability are paramount or where reduction of maintenance is desired, the unusual flexibility and sensitivity of the relay enables it to be used in highly specialized applications where electro-mechanical relays cannot be applied successfully. For instance, the predictable threshold voltage (pull-in/drop-out) and other design features enable the relay to be applied in level detectors, go/ no-go differentials and servo applications, to name a few.

\section*{Predictable DC Threshold Voltage (Pull-in/Drop-out)}

These relays have a predictable low DC threshold voltage with low hysteresis (typically 175 millivolts), something not offered in electromechanical or other solid state relays. The "contacts" will always close when the threshold voltage is applied to the "coil' and will always open when the voltage is reduced below the threshold. The threshold voltage is in the range of 2.5 to 4.5 VDC depending upon model.

\section*{Highly Sensitive}

SSA and SSB relays will operate on as little as six milliwatts and will not draw more than two milliamps independent of the "coil" voltage level. They are capable of being operated directly from integrated circuit generated logic signals. They can serve as an interface between linear or digital systems and power circuits.

\section*{Wide "Coil" Voltage Range}

Any one Model SSA catalog number operates on any input voltage within the nominal range of 4.5 to 140 VAC (to 25 KHz ) or 4 to 200 VDC , a unique feature not normally associated with relays. Likewise, any one Model SSB ratalog number operates on any input voltage within the range of 4 to 50 VAC or 2.75 to 50 VDC. When specifying an Ohmite SSA or SSB relay, the coil voltage need not be specified as long as the relay will be operated from a source voltage within the stated ranges.

\section*{Transient Protection}

The relay is protected from transient voltages. The extent of protection from damage of either the "coil" or "contacts" is shown in Figure 1.
Also inherent in the design is protection from false attuation resulting from transient voltages. Both false attuation and damage due to transients is characteristic of other solid state switching devices.

\section*{Surge Current Handling}

The relay is capable of withstanding current surges of at least 10 times rated current within the limits shown in Figure 2. Surge current overloads within these limits should not be repeated more than once per minute.

\section*{Load Current/Temperature Berating}

Temperature measurement is made near the center of the metal mounting for styles 1,3 and 4 . Ratings for styles 5 and 6 (octal base) shown in the "Types and Ratings" table are not intended to be derated based on the curves shown in Figure 3.

\section*{Standard or Synchronous Switching}

All relays switch \(50 / 60 \mathrm{~Hz}\) AC power. Drop-out ("turnoff") occurs at the zero current crossing point.
Standard models turn on at any point in a half cycle and turn off at any half cycle zero crossing point. Synchronous models turn on only at a zero crossing point and turn off only at a full cycle zero crossing point. See Figure 4. The synchronous option provides the switching function free of radio frequency interference, a very important consideration in meeting EMI requirements in computer and military systems.


FIG. 1. TRANSIENT PROTECTION


FIG. 2. SURGE CURRENT HANDLING


FIG. 3. LOAO CURRENT/TEMPERATURE OERATIMG


FIG. 4. Standard and SYnchronous "turn-ON" SEQuence

FIG. 5. TYPICAL MARKINGS

FOR WIRING.


\section*{"Contacts" and Ratings}

Models SSA and SSB relays are available in SPST (N.O.), DPST (N.O.) and SPDT "contact" configurations. They are intended for switching AC power-50/60 Hertz. For 400 Hz models, consult factory.
The AC currents these relays are capable of switching depend on the physical style and/or the manner in which the relay is mounted. For example, the basic SSA or SSB relay (Styles 1 and 3) unmounted, can switch currents of 2 amperes at \(40^{\circ} \mathrm{C}\) ambient ( 3 amperes at \(25^{\circ} \mathrm{C}\) ). Mounted on a metal panel of sufficient size, the same relay will switch 10 amperes at \(40^{\circ} \mathrm{C}\left(13.0\right.\) amperes at \(25^{\circ} \mathrm{C}\) ). Relay styles such as octal base styles which cannot readily transfer heat to the mounting surface, are rated on the same basis as the basic, unmounted styles. The various models, catalog designations and current ratings are shown in the table, "Types and Ratings," page 6.

\section*{Rugged, Compact Construction}

Tough transfer molded plastic package completely encloses the all solid state circuitry. Impervious to environmental conditions. Metal mounting surface assures efficient heat transfer.

\section*{Safety}

The relay is incapable of producing any arcing which, under abnormal conditions, could supply ignition to potentially explosive atmospheres.

\section*{Military Specifications}

The relay is designed to meet the requirements of MIL-STD-202 in respect to shock, vibration, altitude, acceleration, salt spray and humidity.

\section*{SPECIFICATIONS}

\section*{ELECTRICAL}

\section*{"CONTACTS"}

Forms: SPST-(N.O), DPST-(N.O.), SPDT. Standard models switch \(50 / 60 \mathrm{~Hz}\) AC only.
Ratings: Maximum: 10 A , (a) \(40^{\circ} \mathrm{C}\left(13 \mathrm{~A}\right.\) (2) \(\left.25^{\circ} \mathrm{C}\right)\) depending on model and mounting. See Fig, 2 and Fig. 3, page 3 for temperature derating and surge current data.
Minimum: 10 mA .
Voltage: 140 or 260 VAC. maxirum depending on model.
Resistance: Closed ("On"): 75 milliohms minimum, typically 1 to 1.5 V . drop.
Open ("0ff"): 55 K ohms typical.
Isolation: 500 gigaohms-"coil" to "rontacts," "contacts", to mounting plate, mcunting plate to "coil"

Dielectric Strength: 1500 V RMS-"coil" to "contacts," "contacts" to mountiing plate, mounting plate to "coil."
Transient Protection: See Figrue 1, page I
Speed of Operation:
Standard Model. Pull-in ("Turn-on": 5 microseconds for all voitages, \(1 C\) or DC. Drop-out ("Turn-off") 100 microseconds to 8.3 millis iconds ( 60 Hz ).

Synchronous Option: Pull-in ("Turn-on") 100 microseconds to 8.3 milliseconds ( 60 Hz ) Drop-out ("Turn-off'): 135 microseconds to 16.6 milliseconds ( 60 Hz )

\section*{"COIL"}

Imput Voltage: Any voltage in the range of \(4.5 \pm 75\) to 140 VAC (to 25 KHz ) or \(4 \pm .5\) to 200 VDC , for model SSA. Hiso, any voltage in the range of \(4 \pm .75\) to 50 VAC or \(2.75 \pm .25\) to 50 VDC, for model SSB. Lower pull-in/drop-out voltages are available.
Operate-Realease Voltage: DC hysterasis typically 175 millivolts. Current: 2 milliamps maximum, independent of voltage. Transient Protection: See Figure 1, page 3.

\section*{MECHANICAL}

Ambient Temp. Range: \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Shock/Vibration: Meets requirements of MIL-STD-202
Mounting: For full "contact" ratings for styles 1 and 3 , mount basic models on an aluminum panel \(6^{\prime \prime} \times 6^{\prime \prime} \times 1 / 8^{\prime \prime}\) or equivalent. See dimensional drawings for mounting method data.
Terminals: Styles 1 and 3 offer quick-connect and solder, or screw termination, respectively. Styles 5 and 6 provide octal pin base mounting/termination.
Weight: 31 grams ( 1.1 oz. )

\title{
MODELS SSA \& SSB SOLID STATE RELAYS
}

\section*{DIMENSIONS}


Style 6
Octal base with heat dissipator.


TYPES \& RATINGS


\section*{ORDERING CODES}

The catalog numbers shown in the table of "Types and Ratings" are descriptive codes based on the following formula:

I. Model: SSA = all solid state-Type A

SSB \(=\) all solid state-Type B
II.Max. Contact Volts: \(1=140\) volts RMS
III. "Contact" Form:

SS = Single pole, single throw, normally open
DS = Double pole, single throw, normally open
SD \(=\) Sirgle pole, double throw

\section*{IV. Terminal/Mounting}

Describes the physical construction and/or mounting arrangements of the relay as follows:

Style 1. Basic model with tinned quick-connect terminals, suitable for soldering.
3. Basic model with screw terminals.
4. Printed circuit board mounting.
5. Octal base mounting.
6. Octal base with heat dissipator.
V. Synchronous: Add " G " to the catalog number when synchronous switching feature is desired.

\section*{in relays for today's and tomorrow's circuitry}

\section*{GENERAL PURPOSE RELAYS}

GPR-
GENERAL
PURPOSE
- 5 and 10 amp capacity
- Up to 4PDT
- Open frame and enclosed models
- Multiple use terminals
- Over 300 madels in stock

\section*{DO-DOS-}

INDUSTRIAL
- 15 and 25 amp capacity
- Long life
- Heavy duty construction
- Single and tual coils

LATCHING RELAYS

MAGNETIC LATCHING SERIES GPRM
- Fail-safeshock resistant
- No levers to adjust
- Small-same size as
general purpose relay
- Positive action
- Economical price

MECHANICAL


LATCHING
SERIES GPRLE \& GPRLETP
- 5 Amp Capacity
- 4PDT and 6PDT
- Plug-in, solder or quick-connect terminal
- Open frame and enclosed models
- 32 models in stock

\section*{for first hand answers contact your nearest OHMITE office}
```

ALABAMA, (See Georgia)
ARIZONA, Phoenix 85001
Shefler-Kahn Co.
P.O. Box 1587
Phone: (602) 258-7893
ARKANSAS, (See Texas)
CALIFORNIA, (Northern)
Ohmite Manufacturing Co.
999 Commercial St., Suite 3
Palo Alto, 94303
Phone: (415) 321-6953
CALIFORNIA, (Southern)
Ohmite Manufacturing Co.
6115 Selma Ave., Room 211
Hollywood 90028
Phone: (213) 466-3434
COLORAOO, Denver 80204
I. W. Strong and Associates
635 Canosa court
Phone: (303) 292-6900
CONNECTICUT, (See New York City)
DISTRICT OF COLUMBIA, (Washington)
Samuel K. Macdonald Inc.
Riggs Bank Bldg., 217
3308 - 14th Street, N.W.
Washington, D.C. 20010
Phone: (202) 265-3938
FLORIDA, Lutz (Sub. of Tampa) 33549
Stanley K. Wallace Assocs. Inc.
P.O. Box 67
Phone: (813) 949-1817
FLORIDA, Miami 33147
Stanley K. Wallace Assoc. Inc.
3115 N. W. 81st Terrace
Phone: (305) 691-1654
GEORGIA, Atlanta 30329
Austin Brown Associates
1771 Tully Circle
Phone: (404) 636-9446
ILLINOIS, Skokie 60076
Ohmite Manufacturing Co.
3601 Howard Street
Phone: (312) 675-2600
LOUISIANA, (See Texas)

```

MARYLAND, Baltimore 21214
Samuel K. Macdonald Inc.
5500 Harford Road
Phone: (301) 254-3380-1
MASSACHUSETTS, Burlington 01803
Ohmite Manufacturing Co.
99 Cambridge Street
Phone: (617) 272-6060
MICHIGAN, Birmingham 48011
Ohmite Manufacturing Co.
725 S. Adams Street, Room L-8
Phone: (313) 642-6040
MINNESOTA, Minneapolis 55416
Fred B. Hill Co.
7317 Cahill Road
Phone: (612) 941-5270
MISSISSIPPI, (See Tennessee)
MISSOURI, Kansas City 64108
H. A. Roes \& Co.

2601 Cherry Street
Phone: (816) 221-0866
NEW JERSEY, (Northern)
Ohmite Manufacturing Co .
40 Zabriskie St.
Hackensack, New Jersey 07601
Phone: (201) 488-3690
NEW JERSEY, (Southern)
Samuel K. Macdonald
1531 Spruce Street
Philadelphia 19102
Phone: (215) 545-1205
NEW MEXICO, Albuquerque 87108
Shefler-Kahn Co.
P.O. Box 8342

Phone: (505) 565-7077
NEW YORK, Metro NYC. (See N.J. No.)
NEW YORK (Except Metro. N.Y. City)
Ohmite Manufacturing Co.
3700 East Avenue
Rochester 14618
Phone: (716) 381-1890

NORTH CAROLINA, Kernerville 27284
Stanley K. Wallace Assoc. Inc.
P.O. Box 526

Phone: (919) 993-3993
OH O
Ohmite Manufacturing Co.
P.O. Box 3084

Cleveland 44117
Phone: (216) 261-6000
PENNSYLVANIA, Philadelphia 19102
Samuel K. Macdonaid, Inc.
1531 Spruce Street
Phone: (215) 545-1205
Samuel K. Macdonald, Inc.
Kniveton Bldg., Room 205
7805 McKnight Road
Pittsburgh 15237
Phone: (412) 366-2643
SOUTH CAROLINA
Stanley K. Wallace Assoc. Inc.
P.O. Box 215

Mathews, N.C.
Phone: (704) 847-9262
TENNESSEE, Memphis 38117
Stanley K. Wallace Assoc. Inc.
5960 Brierdale Cove
Phone: (901) 682-2281
TEXAS, Houston, 77055
The Bill Wylds Company 8385 Westview Drive
Phone: (713) 468-3264
The Bill Wylds Company 3505 Turtle Creek Lane Dallas, Texas 75219
Phone: (214) 522-0120
WASHINGTON, Sattle 98119
M. K. Widdekind Company

815 West Ewing Street
Phone: (206) 284-8020
CANADA, Toronto 19
Len Finkler, Ltd.
2 Tycos Drive
Phone: (416) 781-5231

\section*{M}

\section*{OHMITE}
has the answer
in products for today's 尺્C tomorrow's circuitry

\section*{m SOLID STATE
ELAXS}


\section*{has another new answer
}

MODEL SSA SOLID STATE RELAYS


3-Way Terminals
Quick Connect-Solder-Screw Styles \(1,2,3\) respectively


Printed Circuit Terminals Style 4


Octal Pin Plug Style 5


Octal Pin Plug With Integral Heat Sink Style 6

Ohmite Model SSA relays are completely solid state; there are no moving parts, nothing to wear or fall out of adjustment. Being all solid state, model SSA relays perform excellently under extreme environmental conditions such as severe shock and vibration, dust and high rates of actuation. Model SSA relays are true relays in the functional sense because the input is completely isolated from the switching elements.

\section*{Hi-Rel, Long Life}

Ohmite Model SSA relays provide the ultimate in reliability, long life and trouble-free service. Expected electrical life is over \(10^{8}\) operations. There are no contacts to bounce so there is not chance for erratic operation under abnormal conditions.

\section*{Opens New Applications}

Although SSA relays can be used to replace electro-mechanical relays in critical applications where exceptional life and reliability are paramount or where reduction of maintenance is desired, the unusual flexibility and sensitivity of the SSA relay enables it to be used in highly specialized applications where electro-mechanical relays cannot be applied successfully. For instance, the predictable threshold voltage (pull-in/drop-out) and other design features of the SSA enable the relay to be applied in level detectors, go/nogo differentials and servo applications, to name a few.

\section*{Predictable Threshold Voltage (Pull-in/Drop-out)}

The Model SSA relay has a predictable low threshold voltage with low hysteresis, something not offered in electromechanical or other solid state relays. The "contacts" will always close when a minimum of 3 volts is applied to the "coil" and will always open when the voltage is reduced to less than 3 volts.

\section*{Highly Sensitive}

SSA relays will operate on as little as six milliwatts and will not draw more than two milliamps regardless of the "coil" voltage level. They are capable of being operated directly from integrated circuit generated logic signals. They can serve as an interface between linear or digital systems and power circuits.

Wide "Coil" Voltage Range
Any one Model SSA catalog number operates on any input voltage within the range of 3 to 140 VAC (to 25 HKz ) or 3 to 200 VDC, a unique feature not normally associated with relays. When specifying an Ohmite SSA relay, the coil voltage need not be specified as long as the relay will be operated from a source voltage within the stated ranges.

\section*{Transient Protection}

The SSA is protected from transient voltages. The extent of protection from damage of either the "coil" or "contacts" is shown in Figure 1.

Also inherent in the SSA design is protection from false actuation resulting from transient voltages. Both false actuation and damage due to transients is characteristic of other solid state switching devices.

\section*{Surge Current Handling}

The SSA relay is capable of withstanding current surges of at least 10 times rated current within the limits shown in Figure 2. Surge current overloads within these limits should not be repeated more than once per minute.

\section*{Load/Current Temperature Derating}

Temperature measurement is made near the center of the metal mounting plate for styles \(1,2,3\) and 4 . Ratings for styles 5 and 6 (octal base) shown in the "Types and Ratings" table are not intended to be derated based on the curves shown in Figure 3.


FIG. 1. TRAMSIENT PROTECTION


FIG. 2. SURGE CURRENT HANDLIMG


FIG. 3. LOAD/CURRENT TEMPERATURE DERATIMG


FIG. 4. STANDARD AND SYMCHRONOUS "TURN-ON" SEQUENCE

FIG. 5.
TYPICAL
MARKINGS
FOR
WIRING.

\section*{"Contacts" and Ratings}


Ohmite SSA relays are available in SPST (N.O.), DPST (N.O.) and SPDT "contact" configurations. They are intended for switching AC power-50/60 Hertz. For 400 Hz models, consult factory.
The AC currents these relays are capable of switching depend on the physical style and/or the manner in which the relay is mounted. For example, the basic SSA relay (Styles 1, 2, and 3) unmounted, can switch currents of 3 amperes at \(40^{\circ} \mathrm{C}\) ambient ( 4 amperes at \(25^{\circ} \mathrm{C}\) ). Mounted on a metal panel of sufficient size, the same relay will switch 10 amperes at \(40^{\circ} \mathrm{C}\left(13.0\right.\) amperes at \(\left.25^{\circ} \mathrm{C}\right)\). Relay styles such as octal base styles which cannot readily transfer heat to the mounting surface, are rated on the same basis as the basic, unmounted styles. The various models, catalog designations and current ratings are shown in the table, "Types and Ratings," page 6.

\section*{Rugged, Compact Construction}

Tough transfer molded plastic package completely encloses solid state circuitry-all silicon devices. Impervious to environmental conditions. Metal mounting surface assures efficient heat transfer.

\section*{Safety}

Underwriters Laboratories listing can be obtained on a specific application basis.
The SSA relay is incapable of producing any arcing and/or sparking and contains no energy storage circuits which, under abnormal conditions, could supply sparking to potentially explosive atmospheres.

\section*{Military Specifications}

The SSA relay is designed to meet the requirements of MIL-STD-202 in respect to shock, vibration, altitude, acceleration, salt spray and humidity.

\section*{SPECIFICATIONS ELECTRICAL}

\section*{"CONTACTS"}

Forms: SPST-(N.O.). DPST-(N.O.), SPDT. Standard models switch \(50 / 60 \mathrm{~Hz}\) AC only.
Ratings: Maximum: 10A, Resistive or Inductive @ \(40^{\circ} \mathrm{C}\) (13A@ \(25^{\circ} \mathrm{C}\) ) depending on model and mounting. See Fig. 2 and Fig. 3, page 3 for temperature derating and surge current data. Minimum: 10 mA .
Voltage: 140 or 260 VAC . maximum depending on model.
Resistance: Closed ("On"): 100 milliohms, typically. 75 to 1.0V. drop.

Open ("Off"): 1.5 megohms typical.
Isolation: 500 Kilomegohms-"coil" to "contacts," "contacts", to mounting plate, mounting plate to
Dielectric Strength: 2000 V RMS-"coil" to "contacts," "contacts" to mounting plate, mounting plate to "coil."
Transient Protection: See Figure 1, page 3.
Speed of Operation:
Standard Model.
Pull-in ("Turn-on"): 5 microseconds for all voltages, \(A C\) or \(D C\). Drop-out ("Turn-off") 100 microseconds to 8.3 milliseconds ( 6 OHz ).
Synchronous Option: Pull-in ("Turn-on"): 100 microseconds to 8.3 milliseconds ( 60 Hz )
Drop-out ("Turn-off"): 135 microseconds to 16.6 milliseconds ( 6 OHz )
"COIL"
Input Voltage: Any voltage in the range of 3 to 140VAC (to 25 KHz ) or 3 to 200 VDC .
Operate-Release Voltage: Predictable pull-in/drop-out threshold of 3 volts, \(A C\) or \(D C\).
Current: 2 milliamps maximum, independent of voltage.
Impedance: Below 3 volt threshold: 15 megohms Above 3 volt threshold: 100 K ohms, minimum, and constant over entire voltage range.
Transient Protection: See Figure 1, page 3.

\section*{MECHANICAL}

Ambient Temp. Range: \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Shock/Vibration: Meets requirements of MIL-STD-202.
Mounting: For full "contact" ratings for styles 1, 2, and 3, mount basic models on an aluminum panel \(6^{\prime \prime} \times 6^{\prime \prime} \times 1 / 8^{\prime \prime}\) or equivalent. See dimensional drawings for mounting method data.
Terminals: Styles 1, 2, and 3 offer quick-connect, solder or screw termination, respectively. Styles 5 and 6 provide octal pin base mounting/termination.
Weight: 31 grams ( 1.1 oz.)

\section*{MODEL SSA SOLID STATE RELAYS}

\section*{DIMENSIONS}


TYPES \& RATINGS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{"CONTACTS"} & & \multicolumn{3}{|c|}{"COIL"} \\
\hline "CONTACT" FORM & MAX. VOLTS R.M.S. 50/60 CPS. & CATALOG NUMBER \({ }^{9}\) & \[
\begin{aligned}
& \text { NOT } \\
& \text { MTO. }
\end{aligned}
\] & RATING \({ }^{\circ}{ }^{\circ}\) MTD. \({ }^{(2}\) & MPS-A NOT MTD. & \(5^{\circ} \mathrm{C}\) MTD. \({ }^{(3)}\) & TERMINAL \({ }^{(3)}\) NOS & NORMAL POSITION & INPUT DC & \[
\begin{aligned}
& \text { VOLTS } \\
& \text { AC TO } \\
& 25 \mathrm{~K}
\end{aligned}
\] & TERMINALS \({ }^{(3)}\) \\
\hline \multirow[b]{2}{*}{SPST-N.O} & 140 & \begin{tabular}{l}
SSA-1-SS-1 \\
SSA-1-SS-2 \\
SSA-1-SS-3 \\
SSA-1-SS-4 \\
SSA-1-SS-5 \\
SSA-1-SS-6
\end{tabular} & \[
\begin{aligned}
& 3 \\
& \hline 3 \\
& \hline 6
\end{aligned}
\] & 10

3
6 & \[
\begin{aligned}
& 4 \\
& \hline 4 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& \hline 4 \\
& 7
\end{aligned}
\] & 2,7 & \multirow[b]{2}{*}{Open} & \multirow{6}{*}{3 to 200} & \multirow{6}{*}{3 to 140} & \multirow{6}{*}{4, 5} \\
\hline & 260 & \[
\begin{aligned}
& \text { SSA-2-SS-1 } \\
& \text { SSA-2-SS-2 } \\
& \text { SSA-2-SS-3 } \\
& \text { SSA-2-SS-4 } \\
& \text { SSA-2-SS-5 } \\
& \text { SSA-2-SS-6 }
\end{aligned}
\] & \[
\begin{gathered}
3 \\
\hline 3 \\
\hline 6
\end{gathered}
\] & \[
\begin{gathered}
10 \\
\hline 3 \\
6
\end{gathered}
\] & \[
\begin{aligned}
& 4 \\
& \hline 4 \\
& \hline 7
\end{aligned}
\] & \[
13
\] & 2, 7 & & & & \\
\hline \multirow[t]{2}{*}{DPST-N.O.} & 140 & \begin{tabular}{l}
SSA-1-DS-1 \\
SSA-1-DS-2 \\
SSA-1-DS-3 \\
SSA-1-DS-4 \\
SSA-1-DS-5 \\
SSA-1-DS-6
\end{tabular} & \[
\begin{aligned}
& 3 \\
& \hline 3 \\
& \hline 4
\end{aligned}
\] & \[
\begin{gathered}
7 \\
\hline 3 \\
4
\end{gathered}
\] & \[
\begin{aligned}
& 4 \\
& \hline 4 \\
& \hline 6
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& \hline 4 \\
& 6
\end{aligned}
\] & 7,8
1,2 & \multirow[b]{2}{*}{Open} & & & \\
\hline & 260 & \begin{tabular}{l}
SSA-2-DS-1 \\
SSA-2-DS-2 \\
SSA-2-DS-3 \\
SSA-2-DS-4 \\
SSA-2-DS-5 \\
SSA-2-DS-6
\end{tabular} & \[
\begin{aligned}
& 3 \\
& \hline 3 \\
& \hline 4
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& \hline 3 \\
& 4
\end{aligned}
\] & \[
4
\] & \[
\begin{gathered}
10 \\
\hline 4 \\
\hline 6
\end{gathered}
\] & 7.8
1,2 & & & & \\
\hline \multirow[b]{2}{*}{SPDT} & 140 & \begin{tabular}{l}
SSA-1-SD-1 \\
SSA-1-SD-2 \\
SSA-1-SD-3 \\
SSA-1-SD-4 \\
SSA-1-SD-5 \\
SSA-1-SD-6
\end{tabular} & 3 & 10 & 4 & 13 & 7,1
7.2 & Open
Closed & & & \\
\hline & & \begin{tabular}{l}
SSA-2-SD-1 \\
SSA-2-SD-2 \\
SSA-2-SD-3 \\
SSA-2-SD-4 \\
SSA-2-SD-5 \\
SSA-2-SD-6
\end{tabular} & 3 & 10 & 4 & 13 & 7,1
7,2 & \begin{tabular}{l}
Open \\
Closed
\end{tabular} & & & \\
\hline \multicolumn{5}{|l|}{(1) The last digit or suffix ( \(-1,-2,-3\) etc.) represents different termi nal styles as described on page 5. The optional synchronous switching feature is indicated by adding an " \(S\) ", at the end of number formula explanation.} & \multicolumn{7}{|r|}{\begin{tabular}{l}
(2) Rating when mounted to an aluminum panel \(6^{\prime \prime} \times 6^{\prime \prime} \times .125\) or equivalent. \\
\({ }^{\text {(7) }}\) See page 5, "Dimensions", for terminal or pin designations.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Multiple Poles: "Coils" of multiple units can be connected in parallel} & \multicolumn{7}{|l|}{Caution: Paralleling "contacts" to increase rating is not recommended.} \\
\hline
\end{tabular}

\section*{ORDERING CODES}

The catalog numbers shown in the table of "Types and Ratings" are descriptive codes based on the following formula:

I. Model: SSA \(=\) all solid state-Type A
II.Max. Contact Volts: \(1=140\) volts RMS
\(2=260\) volts RMS
III. "Contact" Form:

SS = Single pole, single throw, normally open
DS \(=\) Double pole, single throw, normally open
SD \(=\) Single pole, double throw

\section*{IV. Terminal/Mounting}

Describes the physical construction and/or mounting arrangements of the relay as follows:

Style 1. Basic model with untinned quick-connect terminals.
2. Basic model with tinned terminals (will also accept quickconnectors).
3. Basic model with screw terminals.
4. Printed circuit board mounting.
5. Octal base mounting.
6. Octal base with heat sink.

\footnotetext{
V. Synchronous: Add "S" to the catalog number when synchronous switching feature is desired.
}

\title{
other OHMITE answers
}

\section*{in relays for today's and tomorrow's circuitry}


\section*{for first hand answers contact your nearest OHMITE office}

ALABAMA, Montgomery 36106
S. K. Wallace Assocs. Inc.

1871 Grove Hill Lane
Phone: (205) 262-2011
ARIZONA, Phoenix 85001
Shefler-Kahn Co.
P.O. Box 1587

Phone: (602) 258-7893
CALIFORNIA, (Northern) Ohmite Manufacturing Co.
201 Town \& Country Village
Palo Alto 94301
Phone: (415) 321-6953
CALIFORNIA, (Southern)
Ohmite Manufacturing Co.
6115 Selma Ave., Room 211
Hollywood 90028
Phone: (213) 466-3434
COLORADO, Denver 80222
McLoud \& Raymond Co.
P.O. Box 22044

Phone: (303) 756-1589
CONNECTICUT, (See New York City)
DISTRICT OF COLUMBIA, (Washington)
Samue! K. Macdonald Inc.
Riggs Bank Bldg., 217
3388 - 14th Street, N.W.
Washington, D.C. 20010
Phone: (202) 265-3938
FLDRIDA, Lutz (Sub. of Tampa) 33549 Stanley K. Wallace Assocs. Inc. P.O. Box 67

Phone: (813) 949-1817
FLORIDA, Miami 33147
Stanley K. Wallace Assoc. Inc.
3115 N. W. 81st Terrace
Phone: (305) 691-1654
ILLINOIS, Skokie 60076
Ohmite Manufacturing Co.
3601 Howard Street
Phone: (312) 675-2600
MARYLAND, Baltimore 21214
Samuel K. Macdonald Inc.
5500 Harford Road
Phone: (301) 254-3380-1

MASSACHUSETTS, Burlington 01803
Ohmite Manufacturing Co.
99 Cambridge Street
Phone: (617) 272-6060
MICHIGAN, Birmingham 48011
Ohmite Manufacturing Co.
725 S. Adams Street, Room L-8
Phone: (313) 642-6040
MINNESOTA, Minneapolis 55416
Fred B. Hill Co.
6110 Excelsior Blvd.
Phone: (612) 929-6727
MISSISSIPPI, (See Tennessee)
MISSOURI, Kansas City 64108
H. A. Roes \& Co.

2601 Cherry Street
Phone: (816) 221-0866
NEW JERSEY, (Northern)
Ohmite Manufacturing Co.
P.O. Box 148

Palisades Park 07650
Phone: (201) 947-1777
NEW JERSEY, (Southern)
Samuel K. Macdonaid
1531 Spruce Street
Philadelphia 19102
Phone: (215) 545-1205
NEW MEXICO, Albuquerque 87108 Shefler-Kahn Co.
P.O. Box 8342

Phone: (505) 565-7077
NEW YORK, (Metro. N.Y. City) Ohmite Manufacturing Co. P.O. Box 148

Palisades Park, N.J. 07650
Phone: (212) 563-7371
NEW YORK (Except Metro. N.Y. City)
Ohmite Manufacturing Co.
3700 East Avenue
Rochester 14618
Phone: (716) 381-1890


NDRTH CAROLINA, Kernerville 27284
Stanley K. Wallace Assoc. Inc.
P.O. Box 526

Phone: (919) 993-3993
OHIO
Ohmite Manufacturing Co.
P.O. Box 3084

Cleveland 44117
Phone: (216) 261-6000
PENNSYLVANIA, Philadelphia 19102
Samuel K. Macdonald, Inc.
1531 Spruce Street
Phone: (215) 545-1205
Samuel K. Macdonald, Inc.
Kniveton BIdg., Room 205
7805 McKnight Road
Pittsburgh 15237
Phone: (412) 366-2643
SOUTH CAROLINA
Stanley K. Wallace Assoc. Inc. P.O. Box 215

Mathews, N.C.
Phone: (704) 847-9262
TENNESSEE, Memphis 38117
Stanley K. Wallace Assoc. Inc.
5960 Brierdale Cove
Phone: (901) 682-2281
TEXAS, Dallas 75207
J. Earl Smith Co.

1353 Chemical Street
Phone: (214) 631-1727
J. Earl Smith Co.

9623 Winsome Lane
Houston 77042
Phone (713) 782-5720
CANADA, Winnipeg 3, Manitoba
C. M. Robinson Agencies

1550 Erin Street
Phone: (204) 776-1855 \& 6
C. M. Robinson Agencies

1206 Hamilton Street
Vancouver, B.C.
Phone: (604) 681-0743

\section*{- Wr}

\section*{Model SSB Solid State Relay is the "MISSING LINK" between Mini Computer Logic and Power Devices}

\section*{Model SSB \\ SOLID STATE RELAY}

With the advent of linear and digital mini-computers for use in process control applications, interfacing the computer's 3 to 5 volt logic signals with power devices such as contactors, solenoid valves, etc. has been somewhat a problem. The SSB relay is the "missing link" between the computer logic and power devices.

Replacing op-amps and mechanical relays, the Model SSB solid state relay provides compact and complete interfacing while increasing reliability and simplifying design and installation. Full isolation between the output of the computer and the input to power devices is maintained, safeguarding against any interaction between the power and logic circuitry.

Immunity to false actuation is a primary design feature and insures reliable operation in critical systems. This feature is especially important in "missing link" applications where power devices have a history of generating spurious signals. A bogus signal could cause an unsafe personnel environment or spoil a process operation. Particular attention to safe-guarding against this possibility is incorporated in the Ohmite SSB relay.


\section*{JAN 16197}


\section*{MODEL SSB FEATURES}
- Direct interface with low-level logic signals.
- Immunity to false actuation.
- Less than 0.2 V . hysteresis (on-off differential).
- Speed: Pull-in ("on") and Drop-out ("off") is \(1 / 2\) cycle load current.
- Highly Sensitive: Draws less than 2 milliamps, independent of input voltage; will operate on as little as 3 milliwatts.
- "Contacts" handle up to 13A, 120 V or 240 V AC.
- Choice of four types of terminations: Solder/quickconnect, screw, p.c. pins, and octal socket.


Octal base mounting.


\section*{SPECIFICATIONS}

\section*{"COIL"}

Input Voltage: Any voltage within the range of 2.5 to 32 volts D.C. maximum.
Threshold Voltage: 3.5 V. maximum, 2.5 V . minimum. (Specific threshold voltages between 2.5 and 3.5 V . a vailable on special order.)
Operate-Release Voltage: D.C. hysteresis maximum is 0.2 volts.

Input Current: 2 milliamps, maximum; 1.7 milliamps, typical, independent of voltage. Requires 7 milliwatts maximum, 5 milliwatts, typical.

\section*{"CONTACTS"}

Form: SPST-N.O., form A, \(50 / 60 \mathrm{~Hz}\), A.C. only.
Ratings: Maximum: 13 Amperes at \(25^{\circ} \mathrm{C}\left(10 \mathrm{~A}\right.\). @ \(\left.40^{\circ} \mathrm{C}\right)\) mounted to an aluminum panel \(6^{\prime \prime} \times 6^{\prime \prime} \times .125^{\prime \prime}\) or equivalent. 3 Amperes at \(25^{\circ} \mathrm{C}\left(2 \mathrm{~A}\right.\). @ \(\left.40^{\circ} \mathrm{C}\right)\) unmounted, depending on model.
Minimum: 100 milliamps.
Voltage: 120, 240 VAC, RMS, depending on model.
Surge Current: Withstands at least 10 times rated current for 1 cycle of load current.
Voltage Drop: Closed ("ON"), 1 to 1.5 Volts, typical.


Fig. 1. LOAD CURRENT/TEMPERATURE DERATING

Impedance: Open ("Oíf"), 26K ohms, typical.
Isolation: 500 gigaohms - "coil" to "contacts", "contacts" to mounting plate, mounting plate to "coil."
Dielectric Strength: 1500 V RMS - "coil" to "contacts", "contacts" to mounting plate, mounting plate to "coil."
Transient Protection: The relay is protected from transient voltages in both the "coil" and "contact" circuitry, to the extent shown in Fig. 2.
Protection from false actuation resulting from transient voltages is a primary design feature.
External transient protection devices are not only unnecessary, they are undesirable.
Speed of Operation: Pull-in: 1/2 cycle load current.
Drop-out: 1/2 cycle load current.


PULSE OURATION-MICROSECONOS
Fig. 2. TRANSIENT PROTECTION

\section*{MECHANICAL}

Ambient Temp. Range: Storage \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Operating \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
Mounting: For full "contact" ratings for styles 1 and 3, mount basic models on an aluminum panel \(6^{\prime \prime} \times\) \(6^{\prime \prime} \times 1 / 8^{\prime \prime}\) or equivalent. See dimensional drawings for mounting method data.
Terminals: Styles 1 and 3 offer quick-connect and solder, or screw termination, respectively. Style 4 offers pins for printed circuit board mounting. Styles 5 and 6 provide octal pin base mounting/ termination. Weight: 2 oz. approximately.

TYPES and RATINGS
All relays are SPST-N.O.
\begin{tabular}{|c|l|}
\hline \begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c} 
Catalog \\
Number
\end{tabular}} \\
\hline SSB-3SS-1 & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Termination \\
Style
\end{tabular}} \\
\hline-3 & Quick-connect \\
\hline-4 & P.C. pins \\
\hline-5 & Octal base \\
\hline-6 & Octal base w/heat dissipator \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Volts \\
(RMS) \\
\(50 / 60 \mathrm{~Hz}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline @ \(25^{\circ} \mathrm{C}\) & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Ratings (Amperes, A.C.) } \\
\text { @ } 40^{\circ} \mathrm{C}
\end{gathered}
\]} & \\
\hline Mounted & Free Air & Mounted & Free Air \\
\hline 13 & 3 & 10 & 2 \\
\hline 3 & 3 & 2 & 2 \\
\hline 7 & 7 & 6 & 6 \\
\hline 13 & 3 & 10 & 2 \\
\hline 3 & 3 & 2 & 2 \\
\hline 7 & 7 & 6 & 6 \\
\hline
\end{tabular}

Ohmite Manufacturing Company a North American Phllips company
3601 Howard Street, Skokie, Illinois 60076/Phone (312) 675-2600/TWX: 910-223-0805/Telex 72-4433 SUPERSEDES CATALOG 750A

ORIGINATORS OF THE HIGH POWER SOLID STATE RELAY

\section*{Model SSA Solid State Relays . . . for Interfacing AC or DC Logic With Power Devices}

\section*{\(\underset{\substack{\text { Mout } \\ \text { sous } \\ \hline}}{ }\)}

Model SSA relays are all solid state, designed to control power devices (solenoids, contactors, etc.) where logic signals of either \(A C\) or \(D C\) voltage are available. Highly sensitive, Model SSA's draw less than 2 milliamps, independent of input voltage.

Complete isolation between input and output is maintained, safeguarding against any interaction between the power and logic circuitry.

Immunity to false actuation is a primary design feature and assures reliable operation in critical systems. This feature is especially important in applications where power devices could possibly generate spurious signals. A bogus signal could cause an unsafe personnel environment or spoil a process operation. Particular attention to safe-guarding against this possibility is incorporated in the Ohmite SSA relay.


STYLE 4
- Input: 15 to 120 VAC; 10 to 185 VDC (non-polar).
- Highly Sensitive: Draws less than 2 milliamps, independent of input voltage.
- Immunity to false actuation.
- Direct interface with logic signals.
- Complete isolation between input and output.
- Speed: Pull-in ("on") and Drop-out ("off') is \(1 / 2\) cycle load current.
- "Contacts" handle up to 13 A, 120 V . or 240 V AC.
- Choice of four types of terminations: solder/quickconnect, screw, p.c. pins, and octal socket.


STYLE 6


\section*{SPECIFICATIONS}
"COIL
Input Voltage: Any voltage within the range of 15 to 120 volts A.C. RMS or 10 to 185 volts D.C. maximum (non-polar).
Drop-out Voltage: 3 volts A.C. or D.C.
Input Current: 2 milliamps, maximum; 1.7 milliamps, typical, independent of voltage. Requires 7 milliwatts maximum to actuate; 5 milliwatts, typical.

\section*{'CONTACTS'}

Form: SPST-N.O., form \(\mathrm{A}, 50 / 60 \mathrm{~Hz}\), A.C. only.
Ratings (Max.): 13 Amperes at \(25^{\circ} \mathrm{C}\left(10 \mathrm{~A}\right.\). @ \(\left.40^{\circ} \mathrm{C}\right)\) mounted to an aluminum panel \(6^{\prime \prime} \times 6^{\prime \prime} \times .125^{\prime \prime}\) or equivalent. 3 Amperes at \(25^{\circ} \mathrm{C}\left(2 \mathrm{~A}\right.\). @ \(\left.40^{\circ} \mathrm{C}\right)\) unmounted, depending on model.
Minimum: 100 milliamps.
Voltage: 120, 240 VAC, RMS, depending on model.
Surge Current: Withstands at least 10 times rated current for 1 cycle of load current.
Voltage Drop: Closed ("ON"), 1 to 1.5 Volts, typical.


Fig. 1 LOAD CURRENT/TEMPERATURE DERATING

Impedance: Open ("Off"), 26K ohms, typical.
Isolation: 500 gigaohms - "coil" to "contacts," "contacts" to mounting plate, mounting plate to "coil."
Dielectric Strength: 1500 V RMS - "coil" to "contacts," "contacts" to mounting plate, mounting plate to "coil."
Transient Protection: The relay is protected from transient voltages in both the "coil" and "contact" circuitry, to the extent shown in Fig. 2.
Protection from false actuation resulting from transient voltages is a primary design feature.
Speed of Operation: Pull-in: 1/2 cycle load current.
Drop-out: 1/2 cycle load current.


Fig. 2. TRANSIENT PROTECTION

\section*{MECHANICAL}

Ambient Temp. Range: Storage \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Operating \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
Mounting: For full "contact" ratings for styles 1 and 3 , mount basic models on an aluminum panel \(6^{\prime \prime} x\) \(6^{\prime \prime} \times 1 / 8^{\prime \prime}\) or equivalent. See dimensional drawings for mounting method data.
Terminals: Styles 1 and 3 offer quick-connect and solder, or screw termination, respectively. Style 4 offers pins for printed circuit board mounting. Styles 5 and 6 provide octal pin base mounting/ termination. Weight: 2 oz. approximately.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Catalog Number} & All relays are SPST-N.O. & \multicolumn{5}{|l|}{\begin{tabular}{l}
TVPES and RATINGS \\
Contact Factory for SPDT and DPST-N.O. "contact" forms.
\end{tabular}} \\
\hline & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Termination } \\
& \text { Style }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
Volts \\
(RMS) \\
\(50 / 60 \mathrm{~Hz}\)
\end{tabular}} & \multicolumn{4}{|c|}{Ratings (Amperes, A.C.)} \\
\hline & & & \multicolumn{2}{|l|}{@ \(25^{\circ} \mathrm{C}\) ambient} & \multicolumn{2}{|l|}{\(@ 40^{\circ} \mathrm{C}\) ambient} \\
\hline & & & Mounted & Free Air & Mounted & Free Air \\
\hline SSA-3-SS-1 & Quick-connect & \multirow{5}{*}{120} & \multirow{3}{*}{13} & \multirow{3}{*}{3} & \multirow{3}{*}{10} & \multirow{3}{*}{2} \\
\hline -3 & Screw & & & & & \\
\hline -4 & P.C. pins & & & & & \\
\hline -5 & Octal base & & 3 & 3 & 2 & 2 \\
\hline -6 & Octal base w/heat dissipator & & - & 7 & - & 6 \\
\hline SSA-4-SS-1 & Quick-connect & \multirow{5}{*}{240} & \multirow{3}{*}{13} & \multirow{3}{*}{3} & \multirow{3}{*}{10} & \multirow{3}{*}{2} \\
\hline -3 & Screw & & & & & \\
\hline 4 & P.C. pins & & & & & \\
\hline -5 & Octal base & & 3 & 3 & 2 & 2 \\
\hline -6 & Octal base w/heat dissipator & & - & 7 & - & 6 \\
\hline
\end{tabular}

Ohmite Manufacturing Company a North American Philips company

\section*{Model SSH Solid State Hybrid Relays ... for Interfacing DC Logic with Power Devices}

Model SSH relays are hybrid units employing a reed type input with a solid state output. Designed for industrial control applications, these relays interface directly with low power DC logic signals and control power devices (solenoids, contactors, etc.) with loads to 15 amperes. Six models handle logic signals of 6,12 or 24 volts DC and draw less than 160 milliwatts.

SSH relays are used in applications such as machine and process control, automatic assembly operations and other applications using logic to control a multitude of programmed monitoring and operating activities performed by power devices.

Complete isolation between input and output of the relay is maintained, safeguarding against any interaction between the logic and power circuitry.

High immunity to false actuation is provided by special commutation circuitry. When controlling inductive loads, this circuitry limits the \(\mathrm{dv} / \mathrm{dt}\) seen by the relay and assures turn off.


\section*{SPECIFICATIONS}
"COIL"
Input Voltage: 5 to 30 volts DC, depending on Model.
Input Current: 10 to 33 milliamps, nominal, depending on Model.
"CONTACTS"
Form: SPST-N.O., form A, \(50 / 60 \mathrm{~Hz}, 120\) VAC.
Rating: See table for maximum ratings.
Surge Current: Withstands at least 10 times rated current for 1 cycle of load current.
Voltage Drop: Closed ("on"), 1.6 volt, typical.
Impedance: Open ("off"), 26K ohms, typical.
Isolation: \(\mathbf{5 0 0}\) gigaohms between "coil" and "contacts", coil and case and contacts and case.
Dielectric Strength: 1500 V RMS.

Transient Protection: Components used in both the "coil" and "contact" are self-protecting devices. Protection from false actuation provided. Special commutator circuitry assures turn off under inductive loads.
Speed of Operation: Pull-in: Less than 1 millisecond. Drop-out: \(1 / 2\) cycle of load current.

\section*{MECHANICAL}

Ambient Temp. Range: Storage \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\). Operating \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
Mounting: For full "contact" ratings for styles 1 and 3, mount basic models on an aluminum panel \(6^{\prime \prime} x\) \(6^{\prime \prime} \times 1 / 8^{\prime \prime}\) or equivalent. See dimensional drawings for mounting method data.
Terminals: Styles 1 and 3 offer quick-connect and solder, or screw termination, respectively. Style 4 offers pins for printed circuit board mounting. Styles 5 and 6 provide octal pin base mounting/ termination. Weight: 2 oz . approximately.

TYPES AND RATINGS
All relays are SPST-N.O., 120 VAC, RMS, \(50 / 60 \mathrm{~Hz}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Catalog Number} & \multirow{3}{*}{Termination/Mounting Style} & \multicolumn{5}{|c|}{"COIL"} & \multicolumn{4}{|c|}{"Contact" Ratings
(Max, Amperes @120 VAC)} \\
\hline & & \multirow[t]{2}{*}{Input Volts (D.C.)} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Threshold Voltage} & \multirow[t]{2}{*}{Dropout Voltage} & \multirow[t]{2}{*}{Impedance} & \multicolumn{2}{|l|}{\(@ 25^{\circ} \mathrm{C}\) ambient} & \multicolumn{2}{|l|}{@ \(40^{\circ} \mathrm{C}\) ambient} \\
\hline & & & & & & & Mounted* & Free Air & Mounted & ree Air \\
\hline SSH6-3A-SS-1 & Quick-Connect/Solder & \multirow{5}{*}{5 to 9} & \multirow{5}{*}{33 ma . nominal} & \multirow{5}{*}{\begin{tabular}{l}
5 V , max. \\
1 V. min.
\end{tabular}} & \multirow{5}{*}{0.5 V .} & \multirow{5}{*}{\(150 \Omega\) nominal} & \multirow{3}{*}{8} & \multirow{3}{*}{3.5} & \multirow{3}{*}{8} & \multirow{3}{*}{2.5} \\
\hline 3 & Screw & & & & & & & & & \\
\hline 4 & P.C. pins & & & & & & & & & \\
\hline -5 & Octal base & & & & & & - & 3.5 & - & 2.5 \\
\hline -6 & Octal base w/heat dissipator & & & & & & - & 5.0 & - & 4.0 \\
\hline SSH6-3C-SS-1 & Quick-Connect/Solder & \multirow{5}{*}{5 to 9} & \multirow{5}{*}{33 ma . nominal} & \multirow{5}{*}{\[
\begin{aligned}
& 5 \mathrm{~V}, \text { max. } \\
& 1 \mathrm{~V}, \text { min. }
\end{aligned}
\]} & \multirow{5}{*}{0.5 V .} & \multirow{5}{*}{\(150 \Omega\) nominal} & \multirow{3}{*}{15} & \multirow{3}{*}{3.5} & \multirow{3}{*}{10.5} & \multirow{3}{*}{2.5} \\
\hline -3 & Screw & & & & & & & & & \\
\hline 4 & P.C. pins & & & & & & & & & \\
\hline - 5 & Octal base & & & & & & - & 3.5 & - & 2.5 \\
\hline -6 & Octal base w/heat dissipator & & & & & & - & 7.5 & - & 5.0 \\
\hline SSH12-3A-SS-1 & Quick-Connect/Solder & \multirow{5}{*}{10 to 18} & \multirow{5}{*}{17 ma . nominal} & \multirow{5}{*}{\[
\begin{aligned}
& 10 \mathrm{~V}, \text { max. } \\
& 3 \mathrm{~V} . \min .
\end{aligned}
\]} & \multirow{5}{*}{1 V} & \multirow{5}{*}{\(600 \Omega\) nominal} & & \multirow{3}{*}{3.5} & \multirow{3}{*}{8} & \multirow{3}{*}{2.5} \\
\hline 3 & Screw & & & & & & 8 & & & \\
\hline 4 & P.C. pins & & & & & & & & & \\
\hline -5 & Octal base & & & & & & - & 3.5 & - & 2.5 \\
\hline -6 & Octal base w/heat dissipator & & & & & & - & 5.0 & - & 4.0 \\
\hline SSH12-3C-SS-1 & Quick-Connect/Solder & \multirow{5}{*}{10 to 18} & \multirow{5}{*}{17 ma . nominal} & \multirow{5}{*}{\[
\begin{aligned}
& 10 \mathrm{~V} . \max . \\
& 3 \mathrm{~V} . \min .
\end{aligned}
\]} & \multirow{5}{*}{1 V} & \multirow{5}{*}{\(600 \Omega\) nominal} & & \multirow{3}{*}{3.5} & \multirow{3}{*}{10.5} & \multirow{3}{*}{2.5} \\
\hline -3 & Screw & & & & & & 15 & & & \\
\hline 4 & P.C. pins & & & & & & & & & \\
\hline -5 & Octal base & & & & & & - & 3.5 & - & 2.5 \\
\hline -6 & Octal base w/heat dissipator & & & & & & - & 7.5 & - & 5.0 \\
\hline SSH24-3A-SS-1 & Quick-Connect/Solder & \multirow{5}{*}{20 to 30} & \multirow{5}{*}{10 ma . nominal} & \multirow{5}{*}{\[
\begin{aligned}
& 20 \mathrm{~V} . \text { max. } \\
& 5 \mathrm{~V} . \text { min. }
\end{aligned}
\]} & \multirow{5}{*}{2 V .} & \multirow{5}{*}{\[
2000 \Omega
\]
nominal} & & \multirow{3}{*}{3.5} & \multirow{3}{*}{8} & \multirow{3}{*}{2.5} \\
\hline -3 & Screw & & & & & & 8 & & & \\
\hline -4 & P.C. pins & & & & & & & & & \\
\hline -5 & Octal base & & & & & & - & 3.5 & = & 2.5 \\
\hline -6 & Octal base w/heat dissipator & & & & & & - & 5.0 & - & 4.0 \\
\hline SSH24-3C-SS-1 & Quick-Connect/Solder & \multirow{5}{*}{20 to 30} & \multirow{5}{*}{10 ma . nominal} & \multirow{5}{*}{\[
\begin{aligned}
& 20 \mathrm{~V}, \text { max. } \\
& 5 \mathrm{~V}, \text { min. }
\end{aligned}
\]} & \multirow{5}{*}{2 V .} & \multirow{5}{*}{\[
2000 \Omega
\]
nominal} & \multirow{3}{*}{15} & \multirow{3}{*}{3.5} & \multirow{3}{*}{10.5} & \multirow{3}{*}{2.5} \\
\hline -3 & Screw & & & & & & & & & \\
\hline -4 & P.C. pins & & & & & & & & & \\
\hline -5 & Octal base & & & & & & - & 3.5 & - & 2.5 \\
\hline -6 & Octal base w/heat dissipator & & & & & & - & 7.5 & - & 5,0 \\
\hline
\end{tabular}

Ohmite Manufacturing Company a North American Philips company
*Mounted to an aluminum panel \(6^{\prime \prime} \times 6^{\prime \prime} \times .125^{\prime \prime}\) or equivalent.
3601 Howard Street, Skokie, Illinois 60076/Phone (312) 675-2600/TWX: 910-223-0805/Telex 72-4433 MANUFACTURER'S PRICE SCHEDULE

\author{
Minimum charges exclusive of Iransportation charges are: 1. STOCK ITEMS-\$15.00 per order 2. MADE.TO.ORDER ITEMS- \(\$ 25.00\) per item Terms: 1\%, I0th \& 25th, net 30 days, F.O.B. our factory Prices subject to change without notice.
}

\section*{SOLID STATE RELAYS}
\begin{tabular}{|r|c|c|c|c|}
\hline & \(1-9\) & \(10-24\) & \(25-49\) & \(50-99\) \\
\hline SSA-3-SS-1 & 38.10 & 36.20 & 34.29 & 32.39 \\
-3 & 39.60 & 37.62 & 35.64 & 33.66 \\
-4 & 38.90 & 36.96 & 35.01 & 33.07 \\
-5 & 43.60 & 41.42 & 39.24 & 37.06 \\
-6 & 45.90 & 43.61 & 41.31 & 39.02 \\
& & & & \\
SSA-4-SS-1 & 41.30 & 39.24 & 37.17 & 35.11 \\
-3 & 42.80 & 40.66 & 38.52 & 36.38 \\
-4 & 42.40 & 40.28 & 38.16 & 36.04 \\
-5 & 46.10 & 43.80 & 41.49 & 39.19 \\
-6 & 48.60 & 46.17 & 43.74 & 41.31 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|}
\hline & \(1-9\) & \(10-24\) & \(25-49\) & \(50-99\) \\
\hline SSB-3-SS-1 & 32.90 & 31.26 & 29.61 & 27.97 \\
-3 & 34.20 & 32.49 & 30.78 & 29.07 \\
-4 & 33.60 & 31.92 & 30.24 & 28.56 \\
-5 & 38.40 & 36.48 & 34.56 & 32.64 \\
-6 & 41.10 & 39.05 & 36.99 & 34.94 \\
& & & & \\
SSB-4-SS-1 & 36.50 & 34.68 & 32.85 & 31.03 \\
-3 & 38.00 & 36.10 & 34.20 & 32.30 \\
-4 & 36.80 & 34.96 & 33.12 & 31.28 \\
-5 & 41.40 & 39.33 & 37.26 & 35.19 \\
-6 & 43.90 & 41.71 & 39.51 & 37.32 \\
\hline
\end{tabular}

\section*{SOLID STATE HYBRID RELAYS}
\begin{tabular}{r|c|c|c|r|}
\hline & \(1-9\) & \(10-24\) & \(25-49\) & \(50-99\) \\
\hline SSH6-3A-SS-1 & 16.40 & 15.58 & 14.76 & 13.94 \\
-3 & 19.20 & 17.29 & 16.38 & 15.47 \\
-4 & 17.60 & 16.72 & 15.84 & 14.96 \\
-5 & 22.20 & 21.09 & 19.98 & 18.87 \\
-6 & 24.80 & 23.56 & 22.32 & 21.08 \\
& & & & \\
SSH6-3C-SS-1 & 19.40 & 18.43 & 17.46 & 16.49 \\
-3 & 21.50 & 20.43 & 19.35 & 18.28 \\
-4 & 20.90 & 19.86 & 18.81 & 17.77 \\
-5 & 25.60 & 24.32 & 23.04 & 21.76 \\
-6 & 28.10 & 26.70 & 25.29 & 23.89 \\
& & & & \\
SSH12-3A-SS-1 & 16.40 & 15.58 & 14.76 & 13.94 \\
-3 & 18.20 & 17.29 & 16.38 & 15.47 \\
-4 & 17.60 & 16.72 & 15.84 & 14.96 \\
-5 & 22.20 & 21.09 & 19.98 & 18.87 \\
-6 & 24.80 & 23.56 & 22.32 & 21.08 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|l|}
\hline & \(1-9\) & \(10-24\) & \(25-49\) & \(50-99\) \\
\hline & & & & \\
SSH12-3C-SS-1 & 19.40 & 18.43 & 17.46 & 16.49 \\
-3 & 21.50 & 20.43 & 19.35 & 18.28 \\
-4 & 20.90 & 19.86 & 18.81 & 17.77 \\
-5 & 25.60 & 24.32 & 23.04 & 21.76 \\
-6 & 28.10 & 26.70 & 25.29 & 23.89 \\
& & & & \\
SSH24-3A-SS-1 & 16.40 & 15.58 & 14.76 & 13.94 \\
-3 & 18.20 & 17.29 & 16.38 & 15.47 \\
-4 & 17.60 & 16.72 & 15.84 & 14.96 \\
-5 & 22.20 & 21.99 & 19.98 & 18.87 \\
-6 & 24.80 & 23.56 & 22.32 & 21.09 \\
& & & & \\
SSH24-3C-SS-1 & 19.40 & 18.43 & 17.46 & 16.49 \\
-3 & 21.50 & 20.43 & 19.35 & 18.28 \\
-4 & 27.90 & 19.86 & 18.81 & 17.77 \\
-5 & 25.60 & 24.32 & 23.04 & 21.76 \\
-6 & 28.10 & 26.70 & 25.29 & 23.89 \\
\hline
\end{tabular}

Ohmite Manufacturing Company a North American Philips Company

\section*{SOLID STATE CONTROLS}

CATALOG SEQUENCE 800

OHMITE

The Ohmite "Metersaver," OMC7111. is a semiconductor device used for the protection of sensitive meter movements. Some typical applications follow:

Production meters of all types up to \(100 \mu \mathrm{a}\)
VOM's (Volt-Ohm-Milliammeters)
Wheatstone \& Kelvin Bridge indicators
Laboratory type meters during setup
Student setups awaiting instructor's okay
During experimental setups where sensitive dc meters are involved.
Theory: To understand the theory and application of the "Metersaver" consider a 0 to 50 microamp meter with a representative value of internal resistance of the order of 4000 ohms . The meter requires about 200 millivolts for full scale deflection, but will usually stand an overload 10 times that amount for short periods of time. To protect this meter, we place an OMC7111 across it. This unit contains two silicon diodes back to back; in effect, one of the diodes is always across the meter in the forward direction. The "Metersaver" is provided with two lugs which slip over the present terminals of the meter. When operating normally, there are 200 millivolts or less across the meter and the effective diode then represents a shunting resistance greater than \(1 / 2\) megohm. The other diode across the meter is in the reverse direction and represents a completely negligible shunt path.

A \(1 / 2\) megohm resistor shunted across 4 K ohms will shunt out \(\frac{4 \mathrm{k}}{500 \mathrm{k}}=\frac{1}{125}\) of the current. and introduce an error of \(.8 \%\), entirely tolerable for an average \(2 \%\) instrument.
The device applies the characteristic of silicon diodes that before the forward voltage reaches about 500 mv , the current is quite small. After 500 mv , however, the current rises very rapidly and as it does the resistance of the diode drops. Near 1000 mv , (1V) the resistance may be of the order of a few ohms.

If you try to peg the meter on a 10 times overload or
\(500 \mu \mathrm{a},(.5 \mathrm{ma})\) the diode begins to conduct and shunts out most of the overload current.

In an actual circuit, using an OMC7111, the system settled down so that the meter current was \(145 \mu \mathrm{a}\) and the by-passed current \(355 \mu\) a: in effect, then, a 10 times overload was converted into a 3 times overload. Most standard meters will tolerate a 3 times overload continuously. At a circuit current of 10 ma , representing an overload of \(\frac{10000}{50}=200\), the meter sees only \(155 \mu\) a, the balance of ( \(10,000-155\) ) microamperes going thru the shunting diode.

The curves show how the shunting effect of the protector behaves for different types of meters and different degrees of overload.
The protection is most effective for meters of relatively high internal resistance. For meters of low internal resistance, a resistor can often be installed in series with the meter for improved performance.

Use of the meter protection diode enables you to use more economical fuses. For example, if the overload is so severe that 125 ma flows in the circuit, the meter will see only \(220 \mu \mathrm{a}\). and the 125 ma . in effect, flows thru the diode. Hence. a \(1 / 8 \mathrm{amp}\). fuse will suffice here. Lower rating fuses are more expensive.

The reason for having 2 diodes back to back is that even if you connect the meter with reverse polarity: and with a serious overload, it will be protected from burning out in the same way as it would have been if you had connected it with the correct polarity.
Installation: To install, take off the two nuts which now hold the lugs on the back of your meter and place the OHMITE "Metersaver" across the two terminals and put back the 2 nuts securely. Do not worry about polarity. The meter is now protected in the manner described above and shown on the curves on this page. There is nothing more to do.
METERSAVER OMC7111
Net Price (1-99) \(\$ 1.98\)


OHMITE MANUFACTURING COMPANY 3601 Howard Street, Skokie, lllinois 60076

\title{

}

Now, for the first time, a Solid State Power Control is available which is adaptable to a wide variety of applications by a simple turn of a screwdriver!

An internal trimmer allows the starting point of the control voltage of the Ohmitrol to be set anywhere within the stated trimmer voltage range. (This adjustment can be preset at the factory at small additional cost).

From the starting point to full line voltage, infinitely smooth control is obtained by means of the control knob. An "on-off" line switch actuated at the counterclockwise end of the control knob rotator is provided on all models.

Ohmite solid state power controls are the smallest 1 or 2 KW controls available and offer the advantages not only of convenient size, but also of power savings, long life and low initial cost.

Two styles are available: the component style for panel mounting in equipment, and the lightweight, self-contained portable style. Portable units are completely self contained with grounded line cord and standard grounded AC receptacle.

Ohmitrol Controls are available with AC output and with two kinds of DC output delivered simultaneously. One kind consists of rectified DC, at approximately full line voltage; the other is the variable or controlled DC. This double output is useful, for example, for controlling shunt wound motors. Two-way terminals at the rear of the controls accept quick-connectors (push-on connectors), or can be soldered.
- SAVE SPACE, SAVE POWER, SAVE \$\$
- SMALLEST 1 \& 2 KW CONTROL
- LONG LIFE
- AC \& DC OUTPUT TYPES
- INTEGRAL TRIMMER ADJUSTS CONTROL RANGE FOR DIFFERENT APPLICATIONS
- INCORPORATES ON-OFF SWITCH

USE IT TO CONTROL

POWER
model pCa ac output
Shaded pole motors
Permanent split capacitor motors
Universal motors
Heaters-both resistive and infra-red

\section*{MOTOR SPEED}

MODEL PCD DC OUTPUT
Shunt wound motors
Series wound motors
Permanent magnet motors
Magnetic clutches and brakes

PORTABLE STYLE
COMPONENT STYLE*

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{SPECIFICATIONS AND ORDERING INFORMATION} \\
\hline & 120 volt types & 240 Volt Types \\
\hline LOAD RATING PCA Models
PCD Models & \begin{tabular}{l}
1 KW. 8.3 Amps. AC 3.5 Amp DC Motorload \\
6.0 Amp DC-Resistive
\end{tabular} & \begin{tabular}{l}
2 KW .8 .3 Amps \\
3.5 Amp DC.Motorload \\
6.0 Amp DC. Resistive
\end{tabular} \\
\hline INPUT & 120 V AC. 60 Hzt & \(240 \mathrm{vaC} .60 \mathrm{~Hz} \dagger\) \\
\hline OUTPUT & 0.120 V AC(PCA). \(\mathrm{DC}(\mathrm{PCD})\) & 0.240 v AC (PCA), DC(PCD) \\
\hline TRIMMER VOLTAGE RANGE & 0.50 Voits & \(0-100\) Volts \\
\hline
\end{tabular}
Mounting (Component Style) \(3 / 8^{\prime \prime}-32\) Bushing, Non-Turn Projection on \(1 / 2^{\prime \prime}\) centers with shaft. Knob (not included) Recommend Catalog No. 5150.
Terminals (Component Style) Two-way Accept \(1 / 4^{\prime \prime}\) Faston connectors or soldering.
+50 Hz also available. Contact factory.


Catalog Ne.
PCD-1000, PCA-1000, PCA-1020,
* Knob not included
\begin{tabular}{c|c|c}
\hline Catalog No. & input & Output \\
\hline PCA-1000 & 120 VAC & 0.120 VAC \\
\cline { 1 - 1 } PCD-1000 & 60 Hz & \begin{tabular}{c} 
Pulsating 0-120 VDC \\
and Full 120 VDC
\end{tabular} \\
\hline PCA-1020 & 240 VAC & \(0-240\) VAC \\
\hline PCD-1020 & 60 Hz & \begin{tabular}{c} 
Pulsating 0-240 VDC \\
and Full 240 VDC
\end{tabular} \\
\hline
\end{tabular}


Mounting Dimensions Portable Style
\begin{tabular}{|c|c|c|}
\hline Catalog No. & Input & Output \\
\hline PCA-1001 & 120 VAC & 0-120 VAC \\
\hline PCD-1001 & 60 Hz & Pulsating 0-120 VDC and Full 120 VDC \\
\hline PCA-1021 & 240 VAC & \(0-240\) VAC \\
\hline PCD-1021 & 60 Hz & Pulsating 0.240 VDC and Full 240 VDC \\
\hline
\end{tabular}

Ohmite Manufacturing Company o North Americon Philips company

OHMITROL SOLID STATE SPEED CONTROLS FOR MOTORS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pype of Motor} & \multirow[b]{2}{*}{Current} & \multirow[b]{2}{*}{Reversobility} & \multirow[b]{2}{*}{Broking} & \multicolumn{2}{|c|}{Chorocteristics} & \multirow[b]{2}{*}{Circuit Diogrom} & \multirow[t]{2}{*}{Type of Ohmilral Control} \\
\hline & & & & Motor Only & Motor with Control & & \\
\hline \multirow[t]{2}{*}{Iniversol ,Series)} & \(A C\) & Yes, if ormature and field connecfions ore brought & \begin{tabular}{l}
Yes; \\
Dynomic.
\end{tabular} & High Speed, High Storling forque. Speed varies widely with lood. & Some os motor only. Fullspeed range. &  & PCA \\
\hline & DC & out of motor, or motor may be provided with split field. & \begin{tabular}{l}
Requires \\
Switch.
\end{tabular} & High Speed, High Storting torque. Increased speed \& improved torque over Universal motor operoted on A.C. & Increased speed and greatly improved torque, i.e., speed vs. load choracteristic, due to feedbock circuilry in Ohmitrol. &  & PCD \\
\hline \begin{tabular}{l}
Permanent \\
Split \\
Copocitor
\end{tabular} & \(A C\) & Yes & \begin{tabular}{l}
Yes, \\
Dynomic. \\
Requires \\
odditional \\
circuilry.
\end{tabular} & \begin{tabular}{l}
Speed foirly constont with load \\
Storting torque opproximotely some as full lood forque.
\end{tabular} & Speed foirly constont with load. High slip motor design will yield better low speed performance. &  & PCA \\
\hline Shoded Pole & \(A C\) & No. Unless designed for reversing service. & \begin{tabular}{l}
Yes; \\
Dynamic. \\
Requires \\
odditional \\
circuitry.
\end{tabular} & Speed fairly constont with lood but poorer than PSC. Starting torque less thon full lood torque. & Speed foirly constont with lood. Speed control range somewhor limited. &  & PCA \\
\hline Series & DC & Yes, If ormoture ond field connec tions ore brought out of motor, or motor may be provided with split field. & \begin{tabular}{l}
Yes; \\
Dynamic. \\
Requires \\
Switch.
\end{tabular} & High Speed, High Storting torque, speed vories widely with lood. & High Speed, High Starting torque, much improved speed vs. load charocteristic due to feedbock circuirry in Ohmitral. &  & PCD \\
\hline Shunt & DC & Yes, reverse armofure or field connections, preferobly ormature & \begin{tabular}{l}
Yes; \\
Dynomic. \\
Requires \\
Switch.
\end{tabular} & Speed foirly constont with load. Storting torque higher thon full lood torque. & Speed vs. lood chorocteristic improved over thot of bare mofor, due to feedbock circuitry in Ohmitrol. &  & PCD \\
\hline \begin{tabular}{l}
Permonent \\
Magnet
\end{tabular} & DC & Yes. reversearmofure connections. & \begin{tabular}{l}
Yes; \\
Dynomic. \\
Requires \\
Switch.
\end{tabular} & Some os Shunt. & Same os Shunt. &  & PCD \\
\hline Compound & DC & Yes, reverse armoture or fieldconnections, preferably ormature. & \begin{tabular}{l}
Yes: \\
Dynamic. \\
Requires \\
Switch.
\end{tabular} & Some os Shunt but has improved storting torque. & Some os Shunt. &  & PCD \\
\hline
\end{tabular}

\section*{OHMITE}

\section*{ELECTRONIC（Solid State）}
（B）

\section*{DIMMERS}

\section*{for incandescent lighting}

\section*{600}

Watts

\section*{CONTINUOUSLY}

VARIABLE DIMMING by means of silicon symmetri－ cal switch－a modern semiconductor device．

PUSH－PUSH KNOB for ON／OFF at any light setting．

\section*{CONSERVES POWER－}

Draws only the power needed by the circuit at the light level desired．

Replace Any 2 or 3－Way Switch Made by OHMITE Famous Producer of Quality Components


SCREW TERMINALS for con－ venient wiring without spic－ ing or wire fastening nuts－ eliminates space consuming leads －permits use of dimmer even in shallow boxes．

\section*{INSTALLATION NOTES}

NO RADIO OR TV INTERFERENCE due to special filter．
GUARANTEED for 1 year against defects in materials and work－ manship provided units have been properly installed and operated．

Maximum Ambient－ \(120^{\circ} \mathrm{F}\) ．
Use only 1 dimmer for each lighting circuit． Install dimmer with power OFF．
Ganging－Several dimmers may be installed in a common box provided units are derated as follows：two units， 500 watts each；three or more units， 400 watts each．

ORDERING INFORMATION
\begin{tabular}{l|c|l|r} 
& \begin{tabular}{c} 
UL \\
Cat．No．
\end{tabular} & \multicolumn{1}{|c|}{ Description } & Net \(\$\) \\
\hline LD600 N & - & Single－Pole Push－Push Switch & 7.00 \\
LD600 & Yes & 600 Watts，120 Volts，60 Cycle & 9.30 \\
\hline LD600－3 N & - & 3－Way Push－Push Switch & 9.50 \\
LD600－3 & Yes & 600 Watts，120 Volts，60 Cycle & 11.30
\end{tabular}

\section*{BULLETIN 809A}

OHMITE MANUFACTURING COMPANY 3601 Howard Street，Skokie，Illinois 60076
RESISTロRS • RHEQSTATS＊TAP SWITCHES • RELAYS • VARIABLE TRANSFロRMERS TANTALUM CAPACITロRS • SロLID STATE CロNTPロLS • R．F．CHロKES \\ \title{
STOCK DIODES \\ \title{
STOCK DIODES Germanium and Silicon
} Germanium and Silicon
} SUPERSEDES LISTINGSIN STOCK CATALOG SOKI!

\section*{Alsa "Metersaver" Meter Protector}


STOCK GERMANIUM DIODES
\begin{tabular}{|c|c|c|c|c|}
\hline Stock No. & PIV & Max. Rev. \(\mu \mathrm{a}\) at \(25^{\circ} \mathrm{C}\) & \begin{tabular}{l}
Min. \\
Fwd. \(\operatorname{mag}_{\mathrm{at} \mid \mathrm{V}}\)
\end{tabular} & \[
\begin{aligned}
& \text { Net } \\
& 1 / 99 .
\end{aligned}
\] \\
\hline 1N34 & 100 & 800@ 50V & 8.5 & \$ . 22 \\
\hline 1N34A & 75 & 500@ 50V & 5 & . 24 \\
\hline 1N38A & 120 & 500@100V & 4 & . 50 \\
\hline 1N48 & 85 & 833@ 50V & 4 & . 28 \\
\hline 1N51 & 50 & 1677@50V & 4 & . 30 \\
\hline 1N54A & 75 & 100@50V & 5 & . 42 \\
\hline 1N56 & 40 & 300@30V & 15 & . 38 \\
\hline 1N56A & 50 & 300@30V & 15 & . 38 \\
\hline 1N58A & 120 & 600@100V & 4 & . 55 \\
\hline 1N60 & 30 & 67@10V & - & . 29 \\
\hline 1N63 & 125 & 50@ 50V & 4 & . 52 \\
\hline 1N64 & 20 & 100@10V & - & . 27 \\
\hline 1N66 & 60 & 800@50V & 5 & . 36 \\
\hline 1N67 & 100 & 50@ 50V & 4 & . 49 \\
\hline 1N67A & 100 & 50@50V & 4 & . 28 \\
\hline 1N68A & 130 & 625@100V & 3 & . 63 \\
\hline 1N69 & 75 & 850@50V & 5 & . 34 \\
\hline 1N69A & 75 & 500@50V & 5 & . 62 \\
\hline 1 N87 & 23 & 30@1.5V & 1 (6) & . 39 \\
\hline 1N90 & 75 & 800@50V & 5 & . 32 \\
\hline 1N95 & 75 & 800@ 50V & 10 & . 40 \\
\hline 1N96 & 75 & 800@ 50V & 20 & . 53 \\
\hline 1N98 & 100 & 100@50V & 20 & . 31 \\
\hline 1N99 & 100 & 50@50V & 10 & . 45 \\
\hline 1N99A & 100 & 50@50V & 20 & . 45 \\
\hline 1N100 & 100 & 50@ 50V & 20 & . 31 \\
\hline 1N191(1) & 90 & 25@ 10V(5) & 5 & . 34 \\
\hline 1N198 & 100 & 250@ 50V③ & 4 & . 34 \\
\hline 1N270 & 100 & 100@50V & 200(4) & . 31 \\
\hline 1N273 & 40 & 200@ 20V & 100 & . 46 \\
\hline 1N276 & 100 & 100@ 50V & 40 & . 31 \\
\hline 1N277 & 120 & 250@50V3 & 100 & . 34 \\
\hline 1N279 & 40 & 200@ 20V & 100 & . 29 \\
\hline 1N281 & 75 & 500@50V & 100 & . 31 \\
\hline 1N294 & 70 & 10@10V & 5 & . 34 \\
\hline 1N295 & 50 & 200@10V & - & . 32 \\
\hline 1N295A & 40 & 200@ 10V & - & . 32 \\
\hline 1N497 & 30 & 20@ 20V & 100 & . 38 \\
\hline 1N695(2) & 20 & 20@10V(3) & 100 & . 29 \\
\hline
\end{tabular}

A wide choice of popular characteristics in low power germanium and silicon diodes is available immediately fromOhmitestock. Both the germanium and silicon types are supplied in the subminiature, hermetically sealed glass envelope (see diagram). The silicon envelope is light-shielded.

High stability is achieved through temperature cycling and aging. All units must meet severe environmental, electrical and mechanical requirements with a liberal safety factor.


STOCK SILICON DIODES
\begin{tabular}{|c|c|c|c|c|}
\hline Stock No. & PIV & Max. Rev. \(\mu \mathrm{at} 25^{\circ} \mathrm{C}\) & Min. Fwd. \(\mathrm{ma}_{\mathrm{at}}^{\mathrm{ma}} \mathrm{V}\) & \[
\begin{aligned}
& \text { Net } \\
& 1 / 99
\end{aligned}
\] \\
\hline 1N456 & 25 & .025@ 25V & 40 & \$ . 35 \\
\hline 1N456A & 25 & .025@ 25V & 100 & . 35 \\
\hline 1N457 & 60 & .025@ 60V & 20 & . 35 \\
\hline 1N457A & 60 & .025@ 60V & 100 & . 35 \\
\hline 1N458 & 125 & .025@125V & 7 & . 45 \\
\hline 1N458A & 125 & .025@125V & 100 & . 45 \\
\hline 1N459 & 175 & .025@175V & 3 & . 50 \\
\hline 1N459A & 175 & . 5 @ 175 V & 100 & . 50 \\
\hline 1N461 & 25 & . 5 @ 25 V & 15 & . 35 \\
\hline 1N462A & 60 & . 5 @ 60V & 100 & . 35 \\
\hline 1N463 & 175 & . 5 @175V & 1 & . 45 \\
\hline 1N645 & 225 & . 2 @225V & 400 & 1.30 \\
\hline
\end{tabular}

\section*{FOOTNOTES FOR}

\section*{ALL DIODE TABLES}

\section*{(1) \(0.5 \mu \mathrm{sec}\). \\ (2) \(0.3 \mu \mathrm{sec}\).}
(3) \(75^{\circ} \mathrm{C}\).
(4) Duty cycle must be adjusted in testing at these high forward currents so that average power dissipated does not exceed 80 mw . (5) \(55^{\circ} \mathrm{C}\) (6) At 0.25 volts.

GERMANIUM DIODES - Ohmite supplies the gold-bonded variety. Power rating is 80 mw at \(25^{\circ} \mathrm{C}\) except where otherwise indicated. Operating temperature range is \(-65^{\circ} \mathrm{C}\) to \(+90^{\circ} \mathrm{C}\).

SILICON DIODES - Employ either the alloy or diffusion method of junction formation. Power rating is 400 milliwatts at \(25^{\circ} \mathrm{C}\) except where otherwise indicated. Operating temperature range is \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\).

\section*{DIODE}

METERSAVER PROTECTS METERS


Designed to protect sensitive (high internal resistance) meters against burnout due to overload even where potential is reversed. Introduces negligible error. Consists of 2 silicon diodes in compact case with leads and lugs. Connects across meter terminals without regard for polarity. Shunts excess current around meters-for example, can convert 200 times overload to 3 times overload. Allows use of less expensive meter fuses. Can be used with meters of low internal resistance but use of series resistor is then recommended.

Stock No. OMC7111....Net (1-99) \$1.98

\section*{R. F. CHOKES}

OHMITE


OHMITE MANUFACTURING COMPANY • 3601 HOWARD ST. • SKOKIE, ILLINOIS 60076


Figure 1: Stock R. F. Plate Chokes
The series of seven ()hmite single layer wound solenoid radio frequency plate chokes covers the entire frequency range of 3 to 520 megacycles. The catalog number corresponds to the approximate frequency at which maximum efficiency will be obtained. The chart, Figure 2, gives the position and width of the amateur bands for convenience, but the chokes obviously may be used at any other frequencies within their operating ranges.

The four highest frequency chokes are wound on low
power factor plastic cores while the other three units are wound on steatite tubes. Windings are insulated and protected by a moisture-proof coating. The single layer winding is designed to avoid adverse harmonic effects within the recommended operating range and also prevents breakdown from high r.f. potentials. The \(/ /-14\) and Z-28, have wire leads welded to lug type terminals; the \(Z-50, Z-144, Z-235\) and \(Z-460\) have axial type wire leads.

The Ohmite line offers a series of engineered chokes, any one of which may be selected for a particular frequency within the recommended operating range with the knowledge that it will give excellent performance at the desired frequency. By means of the chart shown in Figure 2, which gives the recommended operating frequency range for each of the seven stock sizes of chokes, it is only necessary to select a choke whose operating range spans the frequency band of intended use.

The true inductance of a choke, as measured at a sufficiently low frequency, differs appreciably from and is considerably lower than the effective parallel inductance at frequencies within the operating range but below the natural resonant frequency indicated as \(f_{0}\) in Figure 3. At frequencies above \(f_{0}\) but within the operating range, the effective reactance of the choke is actually capacitive! This, of course, is in accordance with the


Figure 2: Recommended Operating Frequency Ranges of R.F. Plate Chokes.
inherent properties of parallel resonant circuits, the general characteristics of which are exhibited by the choke over its operating range of frequencies.

Figure 3 shows the frequency characteristics of the Z-28 choke over a broad range of frequencies. This graph is typical of all the chokes, and shows the basis which was used to determine limits of recommended operating frequency ranges.
'lhe inherent frequency characteristies of these chokes, as well as those of all single layer chokes, are such that they exhibit optimum performance when used at or near their natural resonant frequency. However, since the effective parallel resistance of these chokes remains sufficiently high over a broad range of frequencies both below and above the natural resonant frequency, \(f_{0}\), the chokes have good efficiency up to the limits of the recommended operating frequency ranges. This is illustrated for the Z-28 choke in Figure 3. Within the frequency limits shown, the apparent parallel resistance of the chokes, designated as \(R_{p}\), is appreciably in excess of 200,000 ohms; this arbitrary minimum figure is the criterion for the lower limit of operating frequency for all chokes except the \(Z-235\) and \(Z-460\). For these two chokes, the minimum value of \(R_{p}\) is approximately 100,000 ohms at the lower frequency limit.

Referring to Figure 3, the value of \(\mathrm{R}_{\mathrm{p}}\), rapidly drops to a very low value at the first overtone frequency. This frequency is designated as \(f_{1}\) in both ligures 2 and 3 , and occurs near the second harmonic frequency of the chokes.

At this aritical frequency, \(f_{1}\), the chokes behave in a manner similar to that of a series resonant circuit as contrasted to a parallel resonant circuit at \(\mathfrak{f}_{0}\). Consequently, at the frequency \(f_{1}\), the choke presents a low impedance path to ground for the r.f. currents. Therefore, the chokes should never be used at or near the


Figure 3: Frequency Characteristics of a Typical Plate Choke.
frequency \(f_{1}\). Any single layer choke used at this critical frequency will not only render the circuit in which it is used extremely inefficient, if not inoperative, but may destroy itself from heat as a result of the high energy absorption due to sectional series resonant effects.

Since the \(\mathrm{I}_{1}\) ( product detemines the values of \(\mathrm{f}_{0}\) and \(f_{1}\), it is evident that neither the inductance nor distributed capacity value for a choke is, in itself, an adequate indication of performance. The true indices of performance are the eritical frequencies of \(f_{0}\) and \(f_{1}\) and their proximity to the desired operating frequency of the choke. Both inductance and distributed capacity, as well as any small capacity existing between the choke and ground as a result of mounting conditions and wiring, will affect the frequency response of the choke.

All measurements on these chokes were made with the rhokes positioned remotely with respect to ground, that is, with minimum capacity to ground. When the chokes were mounted physically close to a grounded plane (or chassis) the effect was to shift the eritical frequencies \(f_{0}\) and \(f_{1}\) and, therefore, also the recommended operating frequency range downward by as much as \(20^{\circ} \%\), depending of course on the actual proximity to ground.
l'or this reason it is generally advisable to select a choke whose resonant frequency \(f_{0}\) is slightly higher than the desired operating frequener since any additional capacity to ground will tend to shift the resonant frequency lower. Also, for this reason, the frequene \(y\) designated by the chokes' catalog number is lower then the natural resonant frequency.

\section*{STOCK CHOKES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Cat. } \\
& \text { No. }
\end{aligned}
\] & Operating Range Megacycles & Microhenries & Rated Current Amps. & \[
\begin{aligned}
& \text { D.C.* } \\
& \text { Res. } \\
& \text { Ohms }
\end{aligned}
\] & \begin{tabular}{l}
Core \\
Dimensions
\end{tabular} & Weight Pounds \\
\hline 2.7 & 3 to 20 Mc . & 84.0 & 1.0 & 4.7 & \(6^{\prime \prime} \times \%_{10}{ }^{11}\) & . 106 \\
\hline 2.14 & 7 to 35 Mc . & 44.0 & 0.68 & 2.6 & \(2^{\prime \prime} \times 1 / 16^{\prime \prime}\) & . 026 \\
\hline Z-28 & 20 to 60 Mc . & 21.0 & 0.60 & 2.7 & \(1^{3} 4^{\prime \prime} \times{ }^{\prime \prime} /_{16}{ }^{\prime \prime}\) & . 011 \\
\hline Z.50 & 35 to 110 Mc . & 7.0 & 1.0 & 0.98 & \(1^{\prime \prime} \times{ }^{9} 33^{\prime \prime}\) & . 005 \\
\hline 2-144 & 80 to 200 Mc . & 1.8 & 1.1 & 0.33 & 3/4" \({ }^{\text {x }} 1818\) & . 002 \\
\hline 2-235 & 160 to 350 Mc . & 0.84 & 1.7 & 0.14 & \(3 / 410 \times 1{ }^{\prime \prime}{ }^{\prime \prime}\) & . 002 \\
\hline Z-460 & 320 to 520 Mc . & 0.20 & 4.0 & 0.034 & 1/2" \(\times 7 / 32^{\prime \prime}\) & 001 \\
\hline
\end{tabular}

Specify Non-magnetic Brackets No. 9B for use with Z-7, when desired. *At 100 ma . in \(\mathbf{2 5}{ }^{\circ} \mathrm{C}\) ambient.


Fig. 4: Current Derating Curves

\section*{POWER LINE CHOKES}


Figure 5：Stock Power Line Chokes
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Cat． \\
No．
\end{tabular} & Total Micro－ henries & Amps． & \begin{tabular}{l}
Tatal \\
D．C． \\
Ohms
\end{tabular} & Dimensions & Weight Pounds & Mounting Bracket No． \\
\hline Z－20 & 14 & 5 & 0.15 & \(4^{\prime \prime} \times 9 / 16^{\prime \prime}\) & .11 & 9 B \\
\hline Z－21 & 15 & 10 & 0.07 & \(61 / 2^{\prime \prime} \times 3 / 4^{\prime \prime}\) & .31 & 12 B \\
\hline Z－22 & 18 & 20 & 0.045 & \(81 / 2^{\prime \prime} \times 11 /{ }^{\prime \prime}\) & ． 73 & 18 B \\
\hline ＊Z－30 & 104 & 20 & 0.085 & \(81 / 2^{\prime \prime} \times 11 /{ }^{\prime \prime}\) & 1.45 & 18 B \\
\hline
\end{tabular}

Specify brackets on arder if desired．
＊One section is wound as a second layer over the other．

APPLICATION：To prevent radio or TV interference which may be caused by the inadvertent transmission of r．f．energy over common power lines from such equipment as r．f．generators for induction or dielectric heating，amateur radio transmitters，diathermy ma－ chines etc．Uset in conjunction with \(0.1 \mu \mathrm{f}\) paper－type capacitors rated at approximately twice line voltage to filter out interference at the source．

DESCRIPTION：Two single layer windings on a single ceramic core insulated and protected by Ohmicone \({ }^{\infty}\)
silicone－ceramic coating．In an ungrounded 240 V system，the windings are connected as in Figure 6a．A choke is shown connected in a 120 V grounded system in Figure 61）．For higher inductance，on the Z30 choke one coil is wound as a second layer over the first．It is connected as shown in ligure 6c．Special chokes can be made to order．


FIG．6a


FIG．6b


Figure 6：Connection Diagrams

\section*{PARASITIC SUPPRESSOR}

A PPLICATION：For the suppression of unwanted ultra－ high frequency parasitic oscillations due to incidental resonance between tube plate and grid circuit of push－ pull and parallel－operated transmitting radio ampli－ fiers．Also used to suppress＂hash＂in plate circuit of mercury vapor rectifiers．

DESCRIPTION：Consists of a 50 ohm vitreous enam－ eled non－inductive resistor which supports（in parallel）
ance．Dimensions are \(13 / 4{ }^{\prime \prime}\) by \(21 / 32^{\prime \prime}\) ．The parasi－ ties are suppressed，with－ out loss of driving power， by inserting the Model \(\mathrm{P}-300\) in the grid lead，


Figure 7 next to the tube socket，of one or both tubes．Sup－ pressors of special resistance and inductance can be supplied also．
Parasitic Suppressor．
Cat．No．P－300

\title{
ENGINEERING MANUAL
}

OHMITE


\section*{OHM'S LAW}

The fundamental law of the electric circuit is Ohm's Law which has been stated as follows: The current in a circuit is directly proportional to the E.M.F. (Electromotive Force) in the circuit and inversely proportional to the resistance. In formula form it is:
\[
I=\frac{E}{R} \text { or } R=\frac{E}{I} \text { or } E=I R
\]

The following formula, also used in connection with resistor calculations, expresses the basic fact that the power in watts is equal to the product of the volts and amperes:
\[
W=I E
\]

Because \(E=I R\) this can be written:
\[
W=I \times I R \text { or } W=I^{y} R \text { or } W=\frac{E^{2}}{R}
\]

The power formula is known as Joule's Law.
Ohm's Law can be expressed in several different forms, all of which are conveniently tabulated below. Note that in working out any problem, all terms must be reduced to volts, amperes and watts when used in any of the formulas. For example, 30 milliamperes must be written as 0.030 amperes, \(2.5 \mathrm{~K} . \mathrm{W}\). must be written as 2500 watts, 1 megohm as \(1,000,000\) ohms, and so forth.
\begin{tabular}{c|c|c|c|c|c|c}
\hline\(W=\) Watts & \(E I\) & \(I^{s} R\) & \(\frac{E^{v}}{R}\) & & & \\
\hline\(E=\) Volts & & \(I R\) & & \(\sqrt{W R}\) & & \(\frac{W}{I}\) \\
\hline\(I=\) Amperes & & & \(\frac{E}{R}\) & \(\sqrt{\frac{W}{R}}\) & \(\frac{W}{E}\) & \\
\hline\(R=\) Ohms & \(\frac{E}{I}\) & & & & \(\frac{E^{2}}{W}\) & \(\frac{W}{I^{2}}\) \\
\hline
\end{tabular}

Fig. 1: Table of Ohm's Law Formulas for Direct Current Circuits.

\section*{OHM'S LAW FOR ALTERNATING CURRENT}

Ohm's Law in the forms given in Fig. 1 applies to direct current circuits. However, the same formulas can be used for alternating current circuits, provided the amount of inductance (because of coils) or capacitance (because of capacitors or distributed capacitance)
in the circuit is negligible. Thus, for commercial frequencies ( 25 or 60 cycles) Ohm's Law can be used for the calculation of circuits involving heaters, lamps, vacuum tube filaments, etc., which for all practical purposes may be considered as pure resistance.

Even in circuits which have reactance, the direct current form of Ohm's Law still applies so far as the resistor itself is concerned (even at frequencies at the high end of the audio frequency range), because the reactance of the resistor, in that frequency range, is generally negligible when compared to the resistance. This is not true, however, at radio frequencies. Noninductive type resistors are used at the radio-frequencies in order to minimize the changes due to frequency (see "Non-Inductive Resistors" in "Resistor" catalog).

The formulas given in Fig. 2 apply to single-phase alternating current circuits containing reactance, such as circuits involving relays, magnets, solenoids, motors, chokes and filter circuits. It can be noted that these formulas reduce to the same form as the direct current formulas when the reactance is zero and cosine \(\boldsymbol{\theta}\) thereupon becomes equal to 1 .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& E= \\
& \text { Volts }
\end{aligned}
\] & & \(\frac{W}{I \cos \theta}\) & \(I Z\) & \(\frac{\sqrt{W R}}{\cos \theta}\) & \(\sqrt{\frac{W Z}{\cos \theta}}\) & \\
\hline \begin{tabular}{l}
\[
I=
\] \\
Amperes
\end{tabular} & \(\frac{W}{E \cos \theta}\) & & \(\frac{E}{Z}\) & \[
\sqrt{\frac{W}{R}}
\] & \[
\sqrt{\frac{W}{Z \cos \theta}}
\] & \\
\hline \begin{tabular}{l}
\[
Z=
\] \\
Ohms
\end{tabular} & \(\frac{E}{I}\) & \(\frac{W}{I^{\prime} \cos \theta}\) & & \(\frac{R}{\cos \theta}\) & \(\frac{E^{2} \cos \theta}{W}\) & \(\sqrt{R^{2}+X^{2}}\) \\
\hline \[
\underset{\text { Ohms }}{R=}
\] & \(\frac{E^{2} \cos ^{2} \theta}{W}\) & \[
\frac{E}{I} \cos \theta
\] & \(Z \cos \theta\) & & \(\frac{W}{I^{\prime \prime}}\) & \(\sqrt{Z^{2}-X^{2}}\) \\
\hline \[
\begin{aligned}
& W= \\
& \text { Watts }
\end{aligned}
\] & \(\frac{E^{*} \cos \theta}{Z}\) & EI \(\cos \theta\) & \(I^{\prime} Z \cos \theta\) & \(I^{2} R\) & & \\
\hline \[
\begin{gathered}
\cos \boldsymbol{\theta}= \\
\binom{\text { Power }}{\text { Factor }}
\end{gathered}
\] & \(\frac{I R}{E}\) & \(\frac{W}{I^{\prime} Z}\) & \(\frac{W Z}{E^{3}}\) & \(\frac{R}{Z}\) & \(\frac{W}{E I}\) & \(\frac{R}{\sqrt{R^{2}+X^{2}}}\) \\
\hline \[
\underset{\text { Ohms }}{X=}
\] & \(\left({ }_{L}{ }_{L}\right.\) & \(-X_{C}\) ) & \((2 \pi f L\) & \(\left.-\frac{1}{2 \pi f C}\right)\) & & \(\sqrt{Z^{2}-R^{2}}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
Z & =\text { Impedance } \\
X_{L} & =\text { Inductive Reactance } \\
X_{C} & =\text { Capacitive Reactance } \\
f & =\text { Frequency in cycles } \\
& \text { per second }
\end{aligned}
\]
\[
L=\text { Inductance in henries }
\]
\(C=\) Capacitance in farads
\(\theta=\) Angle of lead or lag
\(\omega=\) Angular velocity \(=2 \pi f\)
Note: Power Factor is often expressed as a percentage.
Fig. 2: Table of Ohm's Law Formulas Modified for Alternating Current, Single Phase Circuits.

\section*{OHMITE}


\section*{HOW TO USE THIS OHM'S LAW CHART}

This alignment chart enables graphical solution of Ohm's Law problems. To use, place a ruler across any two known values on the chart; the points at which the ruler crosses the other scales will show the unknown values. The italic figures on the left of the scales cover one range of values and the figures on the right of the scales cover another range. For a given problem, all values must be read on the left set or right set of numbers only, as required.

Example No. 1: The current through a 12.5 ohm resistor is 1.8 amperes. What is the voltage across it? The wattage? Answer: Dotted line No. 1 through \(R=12.5\) and \(I=1.8\) shows \(E\) to be 22.5 volts and \(W\) to be 40.5 watts.
Example No. 2: What is the maximum permissible current through a 10 watt resistor of 2000 ohms? Answer: Dotted line No. 2 through \(W=10\) and \(R=\) 2000 shows \(I\) to be 70 milliamperes.

\section*{OHMITE PARALLEL RESISTOR CHART}

For graphical determination of the resisfance of resistors in parallel.

\section*{Formulae:}


\(r_{1}\)
BRANCH


\section*{HOW TO USE THIS PARALLEL RESISTOR CHART}

This alignment chart enables graphical solution of problems involving resistances connected in parallel. The values of the parallel resistors \(r_{t}\) and \(r_{z}\) and of the total effective resistance \(R_{T}\) must be read on the scales marked with the corresponding letters. To use, place a ruler across the two known values; the point at which the ruler crosses the third scale will show the unknown value. Pairs of resistances which will produce a given parallel resistance can be obtained by rotating a ruler around the desired value on scale \(R_{T}\). The range of the chart can be increased by multiplying the values on all the scales by \(10,100,1000\), etc., as required. Scales \(r_{g A}\) and \(R_{T A}\) are used with scale \(r_{t}\) when the values of \(r_{t}\) and \(r_{2}\) differ greatly.

Example No. 1: What is the total resistance of a 75 ohm resistor and a 150 ohm resistor connected in parallel? Answer: From dotted line No. 1, \(R_{T}\) is 50 ohms.
Example No. 2: What resistance in parallel with 750 ohms will give a combined value of 500 ohms? Answer: From dotted line No. \(1, r_{z}\) is 1500 ohms.
Example No. 3: What is the combined resistance of 1750 ohms and 12,500 ohms? Answer: Scales \(r_{t}\) and \(r_{2 A}\) are used and from dotted line No. \(3, R_{T A}\) is 1535 ohms.
Example No. 4: What is the combined resistance of 400, 600 and 800 ohm resistors in parallel? Answer: First find \(R_{T}\) for 400 ohms and 600 ohins. Then set the 240 ohms thus found as a new \(r_{t}\) and 800 ohms as \(r_{g}\) and the final answer is found to be 185 ohms.

\section*{CURRENT, VOLTAGE AND POWER IN THREE-PHASE CIRCUITS}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{3}{|r|}{3 PhASE CONNECTIONS (BALANCED LOAD)} \\
\hline & & DELTA & STAR-(Y) \\
\hline & &  &  \\
\hline \(W_{L}\) = & & \(E_{P h}\) & \(\sqrt{3} E_{P h}=1.73 E_{P h}\) \\
\hline \(E_{P h}=\) & \multicolumn{2}{|r|}{\(E_{L}\)} & \[
\begin{aligned}
E_{L} / \sqrt{3} & =E_{L} / 1.73 \\
& =0.5 \% \gamma \mathscr{K}_{L}
\end{aligned}
\] \\
\hline \(I_{L} \quad=\) & \multicolumn{2}{|r|}{\(\sqrt{S} I_{P h}=1.73 I_{P h}\)} & \(I_{\text {Ph }}\) \\
\hline \(I_{P h}\) & \multicolumn{2}{|r|}{\[
\begin{aligned}
I_{L} / \sqrt{s} & =I_{L} / 1.73 \\
& =0.57 \gamma I_{L}
\end{aligned}
\]} & \(I_{L}\) \\
\hline \[
\begin{aligned}
& \text { Total } \\
& \text { Volt- } \\
& \text { Amperes }
\end{aligned}=
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
3 \times & E_{P h} \times I_{P h} \\
& =\sqrt{g} E_{L L} \times I_{L} \\
& =1.73 E_{L} I_{L}
\end{aligned}
\]} & \[
\begin{aligned}
3 \times & E_{P h} \times I_{P h} \\
& =\sqrt{3} E_{L} \times I_{L} \\
& =1.7 B E_{L} I_{L}
\end{aligned}
\] \\
\hline \[
\underset{\text { Watts }}{\text { Total }}=
\] & \multicolumn{3}{|r|}{\[
\begin{aligned}
& I^{\prime} F \times \text { Total Voll-Amperes } \\
& \text { or } P F \times 1.7 Я E_{L} I_{L}
\end{aligned}
\]} \\
\hline \multirow[b]{2}{*}{Power Factor (PF)} & \multicolumn{2}{|l|}{Cosine of angle by which \(E_{L}\) leads or lags \(I_{P h}\)} & Cosine of angle by which \(E_{\text {Ph }}\) leads or lags \(I_{L}\) \\
\hline & \multicolumn{3}{|r|}{\[
\frac{\text { Total Walts }}{\text { Total Volt-Amps. }}=\frac{\text { Total Watts }}{\sqrt{3} E_{L_{2}} I_{L}}
\]} \\
\hline
\end{tabular}

Fig. 3: Table of Three Phase Relationships.

\section*{RESISTANCES IN SERIES}

Total Resistance \(R_{T}=R_{t}+R_{2}+R_{s} \cdots+R_{N} O h m s\)

\section*{resistance of Parallel connections}

For resistances in parallel:
\[
\text { Total Resistance } R_{T}=\frac{1}{\frac{1}{R_{t}}+\frac{1}{R_{z}}+\frac{1}{R_{s}}+\frac{1}{R_{n}}} \text { Ohms }
\]

For two resistances in parallel:
\[
\text { Total resistance } R_{T}=\frac{R_{t} \times R_{z}}{R_{t}+R_{z}}
\]

When one of the resistances and the total are known the formula is conveniently written:
\[
R_{z}=\frac{R_{T} \times R_{t}}{R_{1}-R_{T}}
\]

When the resistances are all equal, the total parallel resistance is equal to the value of one resistance divided by the number of units. For example, the total resistance of two equal resistances in parallel is one-half that
of one, the parallel resistance of three equal resistances is one-third that of one.

The handy chart on page 4 can be used for quickly determining the approximate resistance of two resistors in parallel.
The resistance of any number of resistors in parallel can be determined readily by calculating the eurrent in each resistor, adding the currents and dividing the voltage across the resistors by the total current.

\section*{KIRCHHOFF'S LAWS}

Kirchhoff's laws are extremely useful for the calculation of circuits containing more than one source of voltage or containing parallel paths.

First Law: "The algetraic sum of the potential drops around every closed circuit is always equal to zero."

Note that one direction is assumed positive for voltages and currents, and that opposing voltages, or cireuits which are traversed in the opposite direction, take negative signs. A resistance drop is always negative with respect to the direction of the impressed voltage.
\[
\begin{gathered}
E_{t} \pm E_{z} \cdots \pm E_{n}-I R_{t}-I R_{z} \cdots-I R_{n}=0 \\
\text { or } E=\Sigma I R
\end{gathered}
\]

Second Law: "The algebraic sum of the currents at any junction of the conductors is always zero."

That is, the total current flowing towards a junction point of several conductors must be equal to the sum of the currents flowing away from the point.

\section*{DISSIPATION AND STORAGE FACTORSADMITTANCE PARAMETERS}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
* \(D=\) \\
Dissipation Frctor
\end{tabular} & \(\frac{R}{\bar{X}}\) & \(\cot \theta\) & \(\frac{1}{Q}\) & \(\frac{G}{B}\) \\
\hline \begin{tabular}{l}
\({ }^{*} Q=\) \\
Storage \\
Factor
\end{tabular} & \(\frac{X}{R}\) & \(\tan \theta\) & \(\frac{1}{D}\) & \(\frac{B}{G}\) \\
\hline \begin{tabular}{l}
\[
Y=
\] \\
Mhos \\
Admittance
\end{tabular} & \[
\frac{1}{2}
\] & & & \\
\hline \begin{tabular}{l}
\[
G=
\] \\
Mhos Conductance
\end{tabular} & \[
\begin{gathered}
\frac{1}{R} \\
\text { (For } X=0 \text { ) }
\end{gathered}
\] & \[
\frac{R}{Z^{z}}
\] & & \\
\hline \begin{tabular}{l}
\[
B=
\] \\
Mhos Susceptance
\end{tabular} & \[
\begin{gathered}
\frac{1}{X} \\
\text { (For } R=0 \text { ) }
\end{gathered}
\] & \[
\frac{X}{Z^{\prime}}
\] & \multicolumn{2}{|r|}{*D and Q are numbers} \\
\hline
\end{tabular}

Fig. 4: Table of Terms Used for Capacitors, Coils and Circuits.

\section*{SECTION I. BY CALCULATION}

When the current through, and the voltage across a resistor are known from the given conditions of a circuit, the resistance can be readily calculated by Ohm's Law. Cases which are calculable, rather than determinable only by test, are most often those in which the resistance is used as a voltage dropper to operate a low voltage device from a higher voltage source, or to limit the amount of current passing. Typical cases are: operation of low-voltage lamps or devices from 110 or 220 volt lines; dropping or bias resistors in radio circuits; current limiting heater control.

Example 1: It is desired to operate a 6 volt, 15 C.P. lamp drawing 2.02 amperes from the 115 volt power line. What resistance is required?
\[
\begin{aligned}
& \text { Method: Volts across resistor }=(115-6)=109 \\
& \text { By Ohm's Law : } R=\frac{E}{I}=\frac{109}{2.02}=54 \mathrm{ohms} \\
& \text { Also Watts }=E I=10.9 \times 2.02=220 \text { uatts }
\end{aligned}
\]

Note: If the lamp were to be operated at less than 6 volts, the fact that the lamp resistance is not a constant would have to be taken into account.
The lamp resistance can be calculated by reference to the graph, "Average Curves for Tungsten Filament Lamps" in the "Lamp Dimming" portion of the "Rheostat" catalog.

Selecting a Resistor: (a) Using Stock Units. A total resistance of 54 ohms can be made up of two Catalog No. 0701 fixed resistors of 25 ohms each, connected in series with a Catalog No. 0362 Dividohm Adjustable Resistor of 5 ohms, which is to have the adjustable lug set at 4 ohms.
(h) Using Made-to-Order Units. A single unit \(11 / 8^{\prime \prime} \mathrm{x}\) 111/4", Code: 111/4 P46 F-54, of 54 ohms and operating at \(94 \%\) load could be used; or two units \(11 / 8^{\prime \prime} \times 81 / 2^{\prime \prime}\), Code: \(81 / 2 \mathrm{P} 46 \mathrm{~F}^{-}-27\), each of 27 ohms and connected in series to operate at \(63 \%\) of rated watts, might be chosen.

Example 2: It is desired to control a 500 watt, 115 volt heater by means of a rheostat so that the amount of heat (number of B.T.U. per hour) may be reduced \(50 \%\). What rheostat resistance is required?

\section*{Calculation:}

Maximum current \(I=\frac{W}{E}=\frac{500}{115}=4.35\) amperes
Heater resistance is \(\frac{E}{I}=\frac{115}{4.95}=26.4 \mathrm{ohms}\)

Because the amount of heat produced is directly proportional to the watts, the heater watts must be reduced to 250 . The current is then:
\[
\begin{aligned}
I= & \sqrt{\frac{W}{R}}=\sqrt{\frac{250}{26.4}}=\sqrt{9.47}=3.08 \mathrm{amps} \\
& R_{\text {Total }}=\frac{115}{3.08}=37.4 \mathrm{ohms} . \\
R_{\text {Rheostat }}= & R_{\text {Total }}-R_{\text {Heater }}=37.4-26.4=11.0 \mathrm{ohms} .
\end{aligned}
\]

Selecting a Rheostat: (a) From Stock.
The smallest rheostat a vailable from stock for this particular case (sce "Rheostats"), is a Model N, 300 watt unit of 15 ohms, Catalog No. 0657. This rheostat is selected because it is the nearest stock unit that has a current rating ( 4.47 amps .) greater than the \(4.35 \mathrm{am}-\) peres maximum required for this application.

\section*{(b) Made-to-()rder.}

A Model P with uniform winding can be used for this application.

\section*{TAPPED RESISTORS—VOLTAGE DIVIDERS— POTENTIOMETERS}

The procedure for calculating a typical voltage divider is given in Example 3. The same method can be extended to cover a voltage divider of any number of sections. When a rheostat or "Dividohm" adjustable resistor is used as a potentiometer, it is in effect a voltage divider with variable sections and can be calculated in the same way.
Example 3: To find the resistance and wattage of each section of a voltage divider for a radio transmitter. Conditions: Rectifier voltage (maximum across bleeder) \(=1000\) volts. To be provided with taps at 750 volts, 40 milliamperes, and 500 volts, 20 milliamperes. Bleeder current to be 40 milliamperes.
Method: The first step is to make a sketch similar to Fig. 5 showing the voltages and eurrents. Commenee with Section A, which carries only the bleeder current 1a. By Ohm's Law:
\[
\begin{aligned}
& R_{A}=\frac{500}{.040}=12,500 \mathrm{ohms} \\
& W_{A}=500 \times .040=20 \text { uatts }
\end{aligned}
\]


Fig. 5: Voltage Divider Diagram for Example 3.

Section I 3 carries the bleeder current \(I_{A}\) plus the current \(I_{1}\), drawn at the 500 volt tap or
\[
\begin{aligned}
I_{B} & =40+20=60 \text { milliamperes } \\
R_{B} & =\frac{250}{.060}=4,166 \text { ohms } \\
W_{B} & =250 \times .060=15 \text { watts }
\end{aligned}
\]

Section C carries the current in Section B plus the current drawn at the 750 volt tap.
\(I_{C}=I_{B}+I_{z}\), or \(I_{C}=60+40=100\) milliamps. or 0.1 amp .
\[
\begin{gathered}
R_{C}=\frac{250}{.1}=2500 \text { ohms } \\
W_{c}=250 \times .1=25 \text { watts } \\
R_{\text {Total }}=12500+4166+2500=19,166 \mathrm{ohms} \\
W_{\text {Total }}=20+15+25=60 \text { watts. }
\end{gathered}
\]

Note that the voltage between the taps of a voltage divider will change if the currents drawn from the various taps change, and that the bleeder current (section A) is increased under no-load conditions and is then equal to supply voltage divided by total bleeder resistance. All sections should be designed to carry the maximum current which would occur under the different conditions of use.

\section*{Selecting the Resistor (a) from Stock.}

The total resistance required is 19,166 ohms; hence a Dividohm adjustable resistor of 20,000 ohms can be used. Three adjustable lugs will be needed to form the divider. The current rating of the Dividohm must not be exceeded in any section regardless of the watts to be dissipated in that section. Hence, a Dividohm with a rating equal to, or larger than, the maximum current ( 0.1 amp .) must be selected. This is Stock No. 1367, equipped with two lugs No. 2158 in addition to the one regularly supplied with the resistor.
The divider could be assembled also by using one of No. 0208, No. 0382 and No. 0583 resistors in series.
(b) From Made-to-Order Sizes. A tapped resistor on a \(3 / 4^{\prime \prime} \times 61^{\prime \prime}\) "core would be suitable. The winding space allowed for each section and the wire size would be determined by us according to the wattage and resistance.

\section*{SECTION 2. BY TRIAL OR SUBSTITUTION}

When the amount of control or change to be produced by a resistance unit is not or cannot be known without trial, a temporary or substitute resistance and suitable meters must be connected in the actual circuit; then the resistance is varied until the desired results are secured and the amount of resistance and current noted.


Fig. 6: Typical Test Circuit for Use in Determining Resistance and Current.

Circuit: Fig. 6 illustrates a typical test circuit (which may be only part of a larger circuit). The power supply may be the commercial 115 V . or 230 V . outlet, batteries or a generator. The load may be any device such as a motor, generator field, lamp, or heater. The adjustable trial resistance may be an Ohmite rheostat, or it may consist of a number of Ohmite fixed resistors, or one or more Ohmite adjustable Dividohm resistors. Fig. 7 illustrates a convenient way of inserting the trial resistance and ammeter by means of a series plug (such as Hubbell No. 7772).


Fig. 7: Typical Test Circuit Using a Series Plug for Connection.

\section*{PRACTICAL POINTS ON SELECTING METERS AND WIRING}

Before connecting any meter to a circuit, the meter range should be compared with the maximum current or voltage expected, to make sure that the meter range exceeds the values which are to be measured. The expected values can be obtained from the name plate data of the apparatus under test or by calculation from the wattage and voltage. It is well to include a fuse in the circuit to protect the meters and apparatus against accidental overload.
When possible, select meters on which the indications will occur in the upper half of the scale in order to obtain the most accurate reading. When the range between maximum and minimum current is very great, it may be necessary to substitute a lower range ammeter for the minimum values.

Because of the non-uniform calibration of the scale, alternating current instruments generally cannot be used below approximately \(20 \%\) of full scale value (except for rectifier type instruments). Small direct current meters commonly have an accuracy of \(2 \%\) of full scale readings. Alternating current meter accuracy varies (in descending order) according to the type as follows: electro-dynamometer, iron vane and rectifier ( \(5 \%\) ).
When the load current amounts to several amperes, as in most power applications, the effect of the current drawn by the voltmeter (when connected across the resistance or the load) generally can be ignored. But as altermating current voltmeters are quite generally of low resistance, the amount of current drawn by the meter should be considered whenever the load currents are small. In the case of high resistance, low current circuits (as in radio apparatus), high resistance rectifier type voltmeters or vacuun tube voltmeters must be used to avoid upsetting circuit conditions.
Pulsating Direct Current: Conventional permanent magnet (D'Arsonval) direct current meters read average values. When used on pulsating D.C., the average value indicated is not the true measure of the heating effect or power. For battery charging circuits, the average values are used, but for lighting or heating circuits, the R.M.S. (root-mean-square) value must be used. For unfiltered half-wave rectification, this is 1.57 times the average value; for unfiltered full-wave rectification, it is 1.11 times the average. For filtered circuits where the amount of ripple is less than one-third of the maximum, the difference between the average and R.M.S. is less than \(1 \%\).

Wiring: Copper wire of large enough gauge to carry the current without appreciable heating should be used so that the resistance of the connecting wires can be neglected.

\section*{MEASUREMENTS REQUIRED}

The number of measurements necessary to determine the required resistor depends upon whether the control resistance is to be fixed or adjustable and upon the nature of the load (i.e., of constant or varying resistance). Fig. 8 shows the measurements to be taken for each of the different possibilities. The intermediate tests for Type 3 Control are taken to obtain a curve showing how the current varies between the maximum and minimum.
Over-Voltage: If there is any possibility of operating voltages exceeding the test voltages, it is well to consider the effect on the current rating and resistance required to be certain of obtaining the desired amount of control under the most adverse operating conditions.

\section*{TYPE 1. FIXED RESISTOR CONTROL}

Example 4: An A.C. relay intended for operation on 110 volts is to be operated from a 220 volt line. The operating current is unknown. What resistance is required?
Method: The relay, a trial resistance (Ohmite "Dividohm' or rheostat) and a meter are connected in series as in Fig. 6. The resistance is then varied until the relay operates satisfactorily, with the voltage measured across the relay checking at 110 V . Typical measured data might be as follows:
\begin{tabular}{c|c|c|c}
\hline \multicolumn{4}{c}{ Measured Data for Example 4 } \\
\hline 1 & \(E_{p}\) & \(E_{R}\) & RRes. \\
\hline .105 Amp. & 220 V. & 110 V. & \(\frac{110}{.105}=1045\) ohms \\
\hline
\end{tabular}

Wattage in Resistor \(=E I=110 \times .105=11.55\) watts.
Selection of Resistor: A Stock No. 0375B, 1250 ohm "Dividohm" or 1000 ohm 20 watt Brown Devil.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Type of Contral and Load} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Conditions for Each Test}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
Measure Any Two \\
(or Three to Provide a Check)
\end{tabular}}} & \multirow[b]{2}{*}{Measure in Each Cose} & \multirow[b]{2}{*}{Measure or Calculate} \\
\hline Type 1 & *Type 2 & *Type 3 & & & & & & & \\
\hline Fixed Resistance Control- & Rheostat ControlConstont & Rheostat ControlVarying & & \multirow{3}{*}{For Type 3 Loods, More Than 5 Tests Are Often Taken to Obtain More Detailed Information.} & Ep & \(E_{R}\) & E. & 1 & R \\
\hline & load & lood & & & \multirow[b]{2}{*}{Line Volts} & \multirow[t]{2}{*}{\begin{tabular}{l}
Volts \\
Across Resistance
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Volts \\
Across Load
\end{tabular}} & \multirow[b]{2}{*}{Amps. Current} & \multirow[t]{2}{*}{Ohms Control Resistance} \\
\hline \multicolumn{3}{|c|}{Minimum Tests Required} & & & & & & & \\
\hline & \(\checkmark\) & \(\sqrt{ }\) & 1 & \[
\begin{aligned}
& \text { Resistance }=0 \\
& \text { Current }=I_{\text {Max. }}=\text { Maximum }
\end{aligned}
\] & & & & & \\
\hline \multirow[t]{2}{*}{\(\checkmark\)} & \(\sqrt{ }\) & \(\sqrt{ }\) & 2 & Res. \(=\) Max. Value Used. Current \(=I_{\text {Min. }}=\) Minimum & & \multicolumn{3}{|l|}{Your test data may be arranged in rabular form similar to this.} & \\
\hline & & \(\checkmark\) & 3 & Res. \(=3\) or more Intermediate Values & & \multicolumn{3}{|c|}{} & \\
\hline
\end{tabular}

\footnotetext{
*Measurements for Type 2 Loads are sufficient for Type 3 Loods if a uniformly wound rheostat is to be used.
}

Fig. 8: Table of Tests and Data Required for Different Types of Controls and Loads.

\section*{TYPE 2: RHEOSTAT CONTROL OF A CONSTANT RESISTANCE LOAD}

Typical Applications: The temperature control of heaters, such as drying ovens, solder pots, glue pots, electric furnaces, machine spot-heaters, soldering irons, etc.: field control of generators, balancing of control circuits; etc.

Example 5: A drying oven of 500 watts, 115 volt rating, is to be controlled between its maximum temperature and some lower value (to be determined during the test).

Method: From \(I=\frac{W}{E}=\frac{500}{115}=4.35\) amperes, it can be seen that a 5 ampere meter will handle the maximum current. The trial rheostat, of course, should be rated to carry this current or more.

Assuming that the temperature will fall at a somewhat lesser rate than the wattage, and that the desired minimum temperature is approximately \(75 \%\) of the maximum, select a trial rheostat which will reduce the wattage by about one half.

Calculations similar to those given in Example 2, show that approximately 10 ohms will be needed The cireuit in Fig. 6 or Fig. 7 can be used. The trial resistance is increased step by step and time allowed for the oven temperature to stabilize itself until the desired operating temperature is reached.

Data as called for in Fig. 8, Conditions 1 and 2, are taken.
\begin{tabular}{c|c|c|c|c}
\hline Conditions & \begin{tabular}{c}
1 \\
Amps.
\end{tabular} & \begin{tabular}{c}
\(E_{p}\) \\
Volts
\end{tabular} & \begin{tabular}{c}
\(E_{R}\) \\
Volts
\end{tabular} & R Ohms \\
\hline Maximum & 4.35 & 115 & 0 & 0 \\
\hline \begin{tabular}{c} 
At Desired \\
Temperature
\end{tabular} & 3.5 & 115 & 22.4 & \(\frac{22.4}{3.5}=6.4\) ohms \\
\hline
\end{tabular}

Selecting a Rheostat: Proceed as given under Example 2. Stock Rheostat: Model L, Cat. No. 0529, 7.5 ohms, 150 watts, 4.47 amps . maximum current.

\section*{TYPE 3. RHEOSTAT CONTROL FOR A VARYING RESISTANCE LOAD}

Typical Applications: Lamp dimming, motor speed control, etc.

Example 6: A ventilating fan is directly driven by a \(1 / 6\) H.P., 115 Volt D.C. series motor. It is desired to control the speed of the fan from the maximum down to a value determined by trial. From the chapter, "Rheostat Control of Motor Speed" in the "Rheostat" catalog, it is ascertained that a series rheostat will provide satisfactory control.
Test Must Be Made With Motor Loaded: All tests on motors must be run while they are connected to their normal loads.
Circuit: Fig. 6 or 7. Meters: From the name plate data on the motor, it is found that the full load current is 1.5 amperes.

The ammeter should be shorted while the motor is being started so as to protect the meter against the starting surge.
Procedure: From Fig. 8 it can be seen that for complete data, measurements nust be taken under at least five different conditions. The first condition is that of full speed, when the load current is at maximum and the control resistance is at zero.

The temporary resistances for the test should be selected so that their maximum current ratings are equal to, or greater than the load current when they are in the circuit. Therefore, the first adjustable resistance to be inserted in the circuit should have a current rating of more than 1.5 amps .
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Measured Data for Example 6} \\
\hline Condition & Speed R.P.M. & \[
\begin{aligned}
& \text { Ep } \\
& \text { Line } \\
& \text { Volt }
\end{aligned}
\] & \(E_{R}\) Volts Across Rheostat & \[
\begin{gathered}
\text { Imps. }
\end{gathered}
\] & R (Colculated) Ohms \\
\hline 1 & 1725 & 115 & 0 & 1.50 & 0 \\
\hline 2 & 1500 & 115 & 22.0 & 1.29 & 17.1 \\
\hline 3 & 1300 & 115 & 39.0 & 1.11 & 35.1 \\
\hline 4 & 1100 & 115 & 51.8 & 0.96 & 54.0 \\
\hline 5 & 900 & 115 & 66.7 & 0.82 & 81.2 \\
\hline
\end{tabular}

Your test data, including complete name plate description of the motor should be sent to us to permit calculation of the taper-wound rheostat best suited for the application.
Selecting a Rheostat: Proceed as given under Example 2. Stock Rheostat: Model N, Stock No. 0661, 100 ohms, 1.73 amps . maximum current. Tapered Rheostat: A Model L of 82 ohms can be used.

All the components of an electrical apparatus-resistors, rheostats, capacitors, transformers, chokes, wiring, terminal boards, rectifiers, transistors, electronic tubes, etc.-have their own limitations as to the maximum temperature at which they can reliably operate. The attained temperature in service is the sum of the ambient temperature plus the temperature rise due to the heat dissipated in the apparatus. The temperature rise of a component is affected by a number of factors as explained in some detail in Resistor Catalog 100 and Rheostat Catalog 200. Maximum operating temperatures are given also in all of the other catalogs.

The graphs and discussions which follow, amplify and supplement the data previously referred to.
Note that the Multiplying Factors given on the Short Cut Chart, in the "Resistor" catalog, are the reciprocals of the "Percent Load Ratings" shown on the graphs in this section. The percent figures are, of course, expressed as decimals before finding the reciprocals.

\section*{AMBIENT TEMPERATURE DERATING}

Fig. 9 shows the percent of full load which power resistors can dissipate for various high ambient temperatures. Curves for Rheostats, Riteohm Precision Resistors, and VT Variable Transformers are given in their respective catalogs.


Fig. 9: Derating of Resistors for High Ambient Temperatures.

\section*{DERATING DUE TO ENCLOSURE}

The amount of derating required, if any, because of enclosure is affected by a number of factors, most of which are hard to determine accurately. The watts per square inch of surface, size, shape, orientation, wall
thickness, material, finish and amount and location of ventilating openings all play a part. Fig. 10 serves to indicate for a particular set of conditions how the temperatures varied with the size of enclosure for a moderate size power resistor.


Fig. 10: Example of Effect of Size of Enclosure on Temperature Rise of An Enclosed Resistor.

\section*{DERATING DUE TO GROUPING}

The temperature rise of a component is affected by the nearby presence of other heat-producing units, such as resistors, electronic tubes, etc. The curves in Fig. 11 show the power rating for groups of resistors with various spacings between the closest points of the resistors, assuming operation at maximum permissible hot spot temperature. If resistors are to be operated at lower hot spot temperatures, the amount of derating for grouping can be reduced.


Fig. 11: Derating of Resistors to Allow for Grouping.

\section*{DERATING FOR ALTITUDE}

The curve in Fig. 12 shows the proportional watts for various altitudes, assuming standard atmospheric conditions.


Fig. 12: Derating for Altitude.

\section*{PULSE OPERATION}

Unlike the environmental factors, which result in reduction of the watt rating, pulse operation may permit higher power in the pulses than the continuous duty rating.

The NEMA has set up certain standard duty cycles for motor control resistors and the resistor ratings for some of these conditions are shown in Fig. 13.


Fig. 13: Percent of Continuous Duty Rating for Resistors for Typical NEMA Duty Cycles.

The curves in Figures 15, 16, 17 and 18 illustrate the more general case of various combinations of on and off time for specified loads up to \(1000 \%\) for a continuous series of pulses. Intermediate loads can be approximated by interpolation. The "on-time" at which each curve flattens out also indicates the maximum on-time for single pulses (with enough off-time for cooling to ambient). Additional data on single pulses is given by Fig. 14. Resistors will reach about \(75 \%\) of the rated maximum temperature rise in approximately 5 to 8 pulses and level off at maximum rise in another 10 to 20 cycles, depending on percent load, size, type, ete. Any curve passing above the intersection of the designated on and off-times indicates a percent load which can be used. A resistor operated at the rating of an interpolated curve through the point of intersection would operate at maximum rated temperature rise.

The exact temperature rise, of course, varies with each resistor, depending on size, ohms winding, etc. The curves shown indicate the approximate rise for typical


Fig. 14: Time Required for Typical Resistors to Reach Rated Operating Temperature at Various Watt Loads.
units only, as a band or range of values actually exists for each percent load.

Ratings at over \(1000 \%\) are not recommended except for POWR-RIB resistors. Curves for intermediate size resistors can be roughly estimated by comparison with the sizes given.

Ratings for single pulses in the milli-second range (and up to 1 to 2 seconds) require individual calculation. This is because the ratings vary greatly with the resistance, or more specifically with the actual weight and specific heat of the resistance alloy used. Calculation is based on the assumption that all of the heat generated in the pulse goes to raise the temperature of the resistance wire.


Fig. 15: Percent of Continuous Duty Rating for Pulse Operation of Small to Medium Size Vitreous Enameled Resistors.


Fig. 16: Percent of Continuous Duty Rating for Pulse Operation of Large Vitreous Enameled Resistors.


Fig. 19: Percent of Free Air Rating for Typical Resistor or Rheostat Cooled by Forced Air Circulation.


Fig. 17: Percent of Continuous Duty Rating for Pulse Operation of CORRIB, Corrugated Ribbon Resistors.


Fig. 18: Percent of Continuous Duty Rating for Pulse Operation of POWR-RIB, Bare Resistors.

\section*{COOLING AIR}

Resistors, rheostats and other components can be operated at higher than rated wattage when cooled by foreed circulation of air. A typical curve is illustrated in Fig. 19. The curve tends to level off at higher velocities as excessive hot spots develop where the air flow does not reach all parts uniformly.

\section*{LIMITED TEMPERATURE RISE}

When it is desired to operate a resistor or rheostat at less than maximum temperature rise, the percent watts for a given rise can be read from "Temperature Rise vs. Load" graphs in each catalog.

A number of difforent resistance alloys are used in winding resistors and rheostats as shown in Fig. 20. The general use for each alloy is indicated by the colmmn headed, "Resistance Range for Which Used." Whether a particular alloy can be used on a specifie resistor can be estimated by dividing the given resistance by the area of the given winding space and determining whether the quotient falls within the limits given hereafter. The "high resistance" alloys cover the range from approximately 10 to 25,000 ohms per square inch of winding area, the "low to medium" type from 5 to 400 ohms and the "very low resistance". alloys from less than an ohm to 250 ohms. It should be noted that the "Ohms per Square Inch" ranges overlap considerably, indicating that in many instances a given resistor could use any of several alloys. Both the upper and lower limits of the ranges are only approximate and in general can be extended somewhat when necessary.

The actual temperature confficient of a complete resistor is generally greater than the nominal for the
wire alone. The approximate change in overall resisttance at full load is shown in the table.

Other Alloys: In addition to the alloys tabulated which show small changes in resistance with temperature, there are others which sometimes have to be used for very low resistance units. These alloys have higher temperat ure coefficients, which limit their use to applications where the change in resistance with load is not important. An example is No. 60 alloy, which has a resistance of 60 ohms per circular-mil-foot and a temperature coefficient of \(+700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

Ballast Wire: There are other alloys which are selected especially for their high temperature coefficient of resistance. These are used for so-called "ballast" resistors where a large change in resistance is desired with a change in load. A typical ballast wire is Nickel, which has 58 ohms/cmf and a temperature coefficient of \(+4800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). Others are "Hytemco" and "Balco" at \(120 \mathrm{ohms} / \mathrm{cmf}\) and a TC of \(+4500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ASTM Alloy Closs* & Alloy Composition (Approximote) & Ohms per CMF & Trode Names & Meon Temperature Coeff. of Res. ppm \(/{ }^{\circ} \mathrm{C}\) & Temperoture Ronge for TC \({ }^{\circ} \mathrm{C}\) & Resistonce Ronge for Which Used & \(\dagger\) Averoge Resistonce Chonge of Full Lood \\
\hline 10 & \multirow[t]{2}{*}{Nickel bose, non-magnetic \(\mathrm{Ni} 75 \%, \mathrm{Cr} 20 \%\) plus \(\mathrm{Al}, \mathrm{Cu}_{\mathrm{u}}, \mathrm{Fe}\), etc.} & 800 & \multirow[t]{2}{*}{Evonohm Kormo Moleculoy Nikrothol 6} & \(0 \pm 20\) & -65 to +250 & \multirow[t]{2}{*}{Very high, medium ond up, for low temp, coeff.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Under } \pm 1 \% \\
& 10 \pm 2 \%
\end{aligned}
\]} \\
\hline 16 & & 800 & & \(0 \pm 10\) & \(-6510+150\) & & \\
\hline 20 & \multirow[t]{2}{*}{Iron base, mognetic Fe 73\%, Cr 22.5\%, Al \(4.5 \%\) (plus Co in one alloy)} & 800 & \multirow[t]{2}{*}{Alloy 815 -R Konthal DR Mesoloy} & \(0 \pm 20\) & -65 to +200 & \multirow[t]{2}{*}{Alternate sometimes for Closs 1} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Under } \pm 1 \% \\
& \text { to } \pm 2 \%
\end{aligned}
\]} \\
\hline 2b & & 800 & & \(0 \pm 10\) & 0 to +150 & & \\
\hline 30 & \multirow{2}{*}{Nickel-Chromium
\[
80 \%-20 \%
\]} & 650 & \multirow[t]{2}{*}{\begin{tabular}{l}
Chromet A \\
Nichrome V \\
Nikrothol B \\
Protoloy A \\
Tophet A
\end{tabular}} & \(+80 \pm 20\) & \multirow{2}{*}{\(-6510+250\)} & \multirow[t]{2}{*}{High ond medium} & \multirow{2}{*}{+4 10 \(+6 \%\)} \\
\hline 3b & & 675 & & \(+60 \pm 20\) & & & \\
\hline 4 & Nickel-Chromium—Iron \(60 \%-16 \%-24 \%\) & 675 & Chromel C Electroloy Nichrome Nikrothal 6 Tophet C & \(+140 \pm 30\) & -65 to +200 & Migh and medium & +5 to \(+8 \%\) \\
\hline 50 & \multirow[t]{2}{*}{Copper-Nickel
\[
55 \%-45 \%
\]} & \multirow[t]{2}{*}{300} & \multirow[t]{2}{*}{\begin{tabular}{l}
Advance \\
Copel Cupron Cuprothol 294 Neutroloy
\end{tabular}} & \(0 \pm 20\) & \multirow[t]{2}{*}{-65 to +150} & \multirow[t]{2}{*}{Low and low to medium for low temp. coeff.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Under } \\
& \pm 1 \% \text { to } \\
& \pm 2 \%
\end{aligned}
\]} \\
\hline 5b & & & & \(0 \pm 40\) & & & \\
\hline 6 & Monganin
\[
13 \% \mathrm{Mn}, 87 \% \mathrm{Cu}
\] & 290 & Mongonin & \(0 \pm 15\) & +15 to +35 & Low ond low to medium for low TC neor \(25^{\circ} \mathrm{C}\) & Under \(\pm 1 \%\) to \(\pm 2 \% \dagger\) \\
\hline 7 & Copper-Nickel \(77 \%-23 \%\) & 180 & 180 Alloy Cuprothal 180 Midohm & \(+180 \pm 30\) & -65 to +150 & Very low & +5\% to \(+8 \%\) \\
\hline 9 & \[
\begin{aligned}
& \text { Copper-Nickel } \\
& 90 \%-10 \%
\end{aligned}
\] & 90 & 90 Alloy 95 Alloy Cuprothol 90 & \(+450 \pm 50\) & \(-6510+150\) & Very low & +5\% to \(+10 \%\) \\
\hline
\end{tabular}

Fig. 20: Table of Resistance Alloys Generally Used for Resistors and Rheostats.
Emmite OHMS LAW"CALCULATOR

TAP SWITCH CONSIDERATIONS
Few problems arise in the choice of a tap switch to be used within its normal, published rating. Questions are frequently asked, however, about applications in which one of the normal factors has been altered. Typical variations involve standstill currents higher than rated load-break values, high current surges, operation on 400 cycles, higher voltages, operation of switches in parallel, operation in instrument type applications involving very low currents and voltages, DC ratings and operation at high altitude or high ambient temperature.
Other variations involve mechanical problems such as rotation at many RPM or life when subjected to an abnormally high number of operations.

Only a few of these questions have general answers, such as that switches can be operated on 400 cycles. Practical answers to the other questions depend on the circumstances. Ohmite engineers will be glad to answer specific requests as completely as possible. In many cases an actual trial is necessary to evaluate the suitability of a particular switch.

\section*{RELAY APPLICATIONS}

Relays are used as basic parts of such a limitless variety of control circuits that many relay types have evolved to handle the different needs. In many cases several different types of relays can be used and the designer's task is to select the one which provides the best halance of performance, mechanical convenience and cost.
Coil operating characteristics constitute one set of conditions, contact load another and mechanical or environmental conditions yet another. AC or DC operation and the amount of power required are the essentials to be considered for the coil. In pulse circuits the operate and release times may be important.

Contact loads and "dry circuit" operation set the requirements on the contacts although expected life (number of operations) is also a factor.

Mechanical considerations include method of mounting, desirability of plug-in connection, dust proof enclosures, hermetic sealing, and special requirements (generally according to military specifications) as to ability to withstand vibration, acceleration and shock, etc. Humidity and ambient temperatures are still other factors.

Ohmite engineers will make recommendations of relays for specific applications upon receipt of full information.

\section*{TANTALUM CAPACITOR CONSIDERATIONS}

All tantalum capacitors are "electrolytic capacitors" and therefore differ in some characteristics from the "classical" capacitor consisting of two plates (or sets of plates) separated by air or a solid dielectric. In a tantalum capacitor (regardless of type-wire, slug or foil) the dielectric is the thin oxide-layer formed on the tantalum. This layer acts as a dielectric or insulator only as long as the surface it is formed on is electrically positive (the anode).

The following basic formulas apply:
\[
\text { Capacitance } C=0.224 \frac{K A}{d \times 10^{6}} \text { microfarads }
\]
\(K=\) Dielectric constant \(\quad A=\) Area of one plate
\(d=\) thickness in inches in inches
Charge \(Q=C E \times 10^{-6}\)
\(Q=\) Coulombs \(\quad C=\) Capacitance in microfarads \(E=\) Volts \(\quad\) Coulombs \(=\) Amperes \(\times\) seconds
\[
\begin{aligned}
\text { Stored Energy } & =\frac{C E^{2}}{2} \times 10^{-6} \text { joules } \\
\text { Joules } & =\text { Watts } \times \text { seconds }
\end{aligned}
\]

In the application of tantalum capacitors to circuits, the differences between electrolytic and other capacitors must be taken into consideration. Basically, tantalum capacitors are used in typical electrolytic capacitor applications in filter and by-pass circuits where the capacitors are subjected to a constant DC bias and a small AC ripple voltage. This comes about because electrolytic capacitors are generally polar, i.e., act as capacitors only when the voltage does not reverse across them. However, foil type tantalum capacitors (Ohmite Tan-O-Mite Type TF) are also available as non-polar types and can be used on AC within their rating.
All types of capacitors show some changes in capacitance and power-factor or leakage current with temperature, frequency, voltage and time. All of these factors should be considered in the application of tantalum capacitors. Tantalum capacitors which are to be connected in series, require special consideration. On DC , the voltage will divide according to the ratio of leakage currents rather than the capacitances. Also, a series combination of polar and non-polar types on AC shows differences on each half-cycle. Instruments particularly suited for the purpose must be used for measuring tantalum capacitors as the relative amount of AC compared to the DC bias may affect the observed measurement results.

\section*{COMPONENT APPLICATION PROBLEMS - REFERENCE DATA}

\section*{VARIABLE AUTOTRANSFORMER USES}

Variable autotransformers provide a convenient means of voltage control of AC operated devices. As applied in Ohmite " \(v . t\). ." Transformers, they enable control of voltage from zero to \(110 \%\) or \(117 \%\) of line voltage (depending on the model). Apparatus requiring 240 volts can also be operated from a 120 volt source, by use of the transformers.

Where no step-up of voltage is required, a rheostat or potentiometer can generally be used, rather than a variable transformer, to do the same control job and the question therefore arises as to what determines the choice between them. A survey of each type of control discloses that transformers and rheostats each have their own advantages such that the details of the application determine the choice.

Variable autotransformers are of course limited to alternating current use, have excellent regulation under changing load, have high efficiency, produce little heat, and are fairly universal in application within their current rating. Current ratings (in general) go hand in hand with physical size, so that large currents require large transformers.

Rheostats can be connected as potentiometers or voltage dividers so as to be able to control the load from zero to line voltage, like the transformer. They are more generally used as series resistances however.

Unlike the transformers, rheostats work on DC as well as AC and can be provided to handle large currents on any size rheostat. They can also operate at higher ambient temperatures than the transformers. In a large percentage of applications, especially where the current or voltage does not have to be reduced to less than 25 to \(50 \%\), the rheostat provides the desired amount of control and is smaller, lighter and cheaper.

Tapered windings can also be provided on the rheostats so as to obtain special relationships between the angle of rotation and the controlled effect.

Special circuit arrangements with the load permit variable transformers to be used also for such purposes as providing a variable load of constant power factor, or to provide controlled phase shift.

\section*{RADIO FREQUENCY CHOKE PROBLEMS}

Problems involving the application of radio-frequency chokes become too involved in radio theory to permit adequate treatment in this manual. Suffice it to say, that while the standard series of Ohmite R.F. "plate" chokes covers a wide range of frequencies, it is of course possible to design chokes to fit other requirements. Recommendations for special chokes will be made by Ohmite engineers upon receipt of full information as to circuit and other considerations.

REFERENCE DATA
PROPERTIES OF VARIOUS METALS AND ALLOYS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MATERIAL & Ohms Per Circular-MilFoot At \(20^{\circ} \mathrm{C}\). ( \(68^{\circ} \mathrm{F}\).) & Relative Resistance With Copper \(=1\) & Approximate Temperature Coefficient \(20^{\circ} \mathrm{C}\). & Approximate Melting Point Degrees Centigrade & Maximum Working Temperature Degrees Centigrade & Specific Heat & Specific Gravity & Weight in Pounds Per Cubic Inch \\
\hline Silver & 9.796 & 0.95 & . 0038 & 960 & & . 057 & 10.5 & . 379 \\
\hline Copper. & 10.37 & 1.00 & . 00393 & 1085 & & . 10 & 8.89 & . 321 \\
\hline Aluminum. & 17.0 & 1.64 & . 00446 & 660 & & . 23 & 2.70 & . 096 \\
\hline No. 30 Alloy & 30.00 & 2.89 & . 00118 & 1100 & 350 & . 092 & 8.92 & . 322 \\
\hline Brass (Spring). & 36.30 & 3.50 & . 0020 & 965 & & . 10 & 8.55 & 309 \\
\hline Beryllium Copper (Heat Treated). . . . . . . . . & 41.5 to 57.6 & 4.0 to 5.55 & & 955 & & . 10 & 8.21 & . 297 \\
\hline Phosphor Bronze-5\% (Grade A). . . . . . . . & 56.5 & 5.45 & . 0018 & 1050 & & . 09 & 8.88 & . 320 \\
\hline Nickel. . . . . . . . . . . . . . . . . . . . . & 58.0 & 5.60 & . 0048 & 1445 & 500 & . 11 & 8.90 & . 321 \\
\hline Iron. . . & 61.1 & 5.90 & . 0062 & 1575 & & . 11 & 7.7 & . 278 \\
\hline Lohm Alloy & 60.0 & 5.78
6.75 & . 0008 & 1100 & 350 & . 092 & 8.9
21.45 & . 7215 \\
\hline Platinum. & 63.8 & 6.15 & . 0030 & 100 & 400 & . 032 & 8.96 & . 324 \\
\hline No. 90 Alloy & 90.0 & 8.68 & . 00045 & 1100
327 & 400 & . 031 & 11.4 & . 412 \\
\hline Lead. . . . . . . . . . . . . . . . . . . . . . . . . . . & 132.0
155.0 & 12.7
15.0 & . 00039 & 327
1019 & & . 097 & 11.4
8.52 & . 308 \\
\hline Everdur No. 1010. & 155.0
180.0 & 15.0
17.3 & . 000018 & 1130 & 400 & . 092 & 8.95 & . 323 \\
\hline No. 180 Alloy.
\(18 \%\) Nickel Silv & 190.0 & 18.3 & . 00019 & 1110 & 260 & . 09 & 8.50 & . 307 \\
\hline Monel. . . & 256.0 & 24.7 & . 00145 & 1360 & 500 & .127 & 8.9 & . 321 \\
\hline Manganin. . . . . . . . . . . . . . . . . . . . . . . . & 290.0 & 28.0 & \(\pm .00002\) & 1020 & 100 & . 09 & 8.39 & . 303 \\
\hline Copper-Nickel ( \(55 \%-45 \%\) ) . . . . . . . . . . . . & 294.0 & 28.4 & \(\pm .00002\). or'4 & 1290 & 500 & . 094 & 8.9 & . 321 \\
\hline Stainless Steel-Type 416... . . . . . . . . . . . & 343 & 33.1 & . 0014 & 1500 & 677 & .11 & 7.75 & . 280 \\
\hline Stainless Steel-Type 302 or \(303 . . . . . . .\). & 433 & 41.8 & . 0011 & 1410 & 760
1150 & .12 & 8.03 & . 290 \\
\hline Nickel-Chromium ( \(80 \%-20 \%\) )............. & 650 & 62.7 & . 00008 & 1400 & 1150 & . 104 & 8.412 & . 304 \\
\hline Nickel-Chromium-Iron ( \(60 \%-16 \%-24 \%\) ) .... & 675 & 65.0 & . 00014 & 1350 & 1000 & . 111 & 8.247
7.34 & .298
.265 \\
\hline Stainless Steel-Type 1-JR............. & 720
800 & 69.4
74.5 & .00015
+.00002 or' 1 & 1400 & 870
300 & . 1104 & 7.34
8.10 & . 293 \\
\hline Nickel-Chromium-Al-Cu (74.5-20-2.75-2.75). & 800 & 74.5 & \(\pm .00002\) or 1 & & & . 104 & & \\
\hline
\end{tabular}

TABLE OF WIRE SIZES
American Wire Gauge (B\&S)
\begin{tabular}{c|c|c|c|c|c}
\hline \begin{tabular}{c} 
Gauge \\
A. W. G. \\
(B\&S)
\end{tabular} & \begin{tabular}{c} 
Diameter \\
Inches
\end{tabular} & \begin{tabular}{c} 
Area \\
Circular \\
Mils
\end{tabular} & \begin{tabular}{c} 
Gauge \\
A. W. G. \\
(B\&S)
\end{tabular} & \begin{tabular}{c} 
Diameter \\
Inches
\end{tabular} & \begin{tabular}{c} 
Area \\
Circular \\
Mils
\end{tabular} \\
\hline 1 & .28930 & \(83,700.0\) & 21 & .02846 & 810.0 \\
2 & .25763 & \(66,400.0\) & 22 & .02535 & 642.0 \\
3 & .22942 & \(52,600.0\) & 23 & .02257 & 510.0 \\
4 & .20431 & \(41,700.0\) & 24 & .02010 & 404.0 \\
5 & .18194 & \(33,100.0\) & 25 & .01790 & 320.0 \\
6 & .16202 & \(26,300.0\) & 26 & .01594 & 254.0 \\
7 & .14428 & \(20,800.0\) & 27 & .01420 & 202.0 \\
8 & .12849 & \(16,500.0\) & 28 & .01264 & 160.0 \\
9 & .11443 & \(13,100.0\) & 29 & .01126 & 127.0 \\
10 & .10189 & \(10,400.0\) & 30 & .01003 & 101.0 \\
11 & .09074 & \(8,230.0\) & 31 & .00893 & 79.7 \\
12 & .08081 & \(6,530.0\) & 32 & .00795 & 63.2 \\
13 & .07196 & \(5,180.0\) & 33 & .00708 & 50.1 \\
14 & .06408 & \(4,110.0\) & 34 & .00630 & 39.8 \\
15 & .05707 & \(3,260.0\) & 35 & .00561 & 31.5 \\
16 & .05082 & \(2,580.0\) & 36 & .00500 & 25.0 \\
17 & .04526 & \(2,050.0\) & 37 & .00445 & 19.8 \\
18 & .04030 & \(1,620.0\) & 38 & .00397 & 15.7 \\
19 & .03589 & \(1,290.0\) & 39 & .00353 & 12.5 \\
20 & .03196 & \(1,020.0\) & 40 & .00315 & 9.9 \\
\hline \hline
\end{tabular}

\section*{Wire Table Relations}

The following approximate relations are convenient for rapid mental computations:
\begin{tabular}{c|c}
\hline \begin{tabular}{c} 
Increase in \\
AWG Na. By
\end{tabular} & \begin{tabular}{c} 
Multiplies \\
Resistance By
\end{tabular} \\
\hline 1 & 1.25 \\
2 & 1.6 \\
3 & 2.0 \\
10 & 10. \\
\hline \hline
\end{tabular}

To find the resistance per foot of any size wire of any alloy: OHMS/FOOT=OHMS per CMF/CM

To find the weight per 1000 feet of any bare wire of any alloy:
POUNDS/1000 FEET \(=.003 \times C M \times S P . G R . / 321\)
\[
=.000342 \times C M \times S P . G R .
\]

ALLOWABLE CURRENT + FOR COPPER WIRE From National Electric Code 1962
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{AWG or BIS} & \multicolumn{2}{|r|}{Rubber or Plastic} & \multicolumn{2}{|r|}{Asbestos} \\
\hline & \[
\begin{aligned}
& 1 \text { Cond.* } \\
& \text { Amps }
\end{aligned}
\] & To 3 Cond. \(\dagger\) Amps & \[
\begin{aligned}
& \text { Cond,* } \\
& \text { Amps }
\end{aligned}
\] & \[
\begin{gathered}
\text { To } 3 \text { Cond. } \dagger \\
\text { Amps }
\end{gathered}
\] \\
\hline 18 & - & 7 & - & 10 \\
\hline 16 & - & 10 & - & 15 \\
\hline 14 & 20 & 15 & 30 & 25 \\
\hline 12 & 25 & 20 & 40 & 30 \\
\hline 10 & 40 & 30 & 55 & 40 \\
\hline 8 & 55 & 40 & 70 & 50 \\
\hline 6 & 80 & 55 & 100 & 70 \\
\hline 4 & 105 & 70 & 135 & 90 \\
\hline 3 & 120 & 80 & 155 & 105 \\
\hline 2 & 140 & 95 & 180 & 120 \\
\hline 1 & 165 & 110 & 210 & 140 \\
\hline 0 & 195 & 125 & 245 & 155 \\
\hline
\end{tabular}

\footnotetext{
*-In free Ar. f-In raceway or cable.
\(\ddagger\)-Ratings apply only to certain wire insulation systems.
}

\section*{TEMPERATURE CONVERSION}

To convert degrees Fahrenheit ( \(\mathrm{F}^{\circ}\) ) into degrees Centigrade ( \(\mathrm{C}^{\circ}\) ):
\[
\mathrm{C}^{\circ}=\frac{5}{9}\left(\mathrm{~F}^{\circ}-32\right) \text { or } \mathrm{C}^{\circ}=.555\left(\mathrm{~F}^{\circ}-32\right)
\]

To convert degrees Centigrade into degrees Fahrenheit :
\[
\mathrm{F}^{\circ}=\frac{9}{5} \mathrm{C}^{\circ}+32 \text { or } \mathrm{F}^{\circ}=1.8 \mathrm{C}^{\circ}+32
\]

When a temperature rise (not the temperature attained) is to be converted from one system to the other, the \(32^{\circ}\) terms in the above formular are omitted.

\section*{OTHER USEFUL DATA}

Inches to Centimeters and Millimeters
1 inch \(=2.54 \mathrm{~cm} .=25.4\) millimeters

\section*{Pounds and Ounces to Grams \\ 1 pound \(=454\) grams \(\quad 1\) ounce \(=28\) grams}
\begin{tabular}{c|c|c|c|c|c}
\hline \multicolumn{7}{c}{ SCREW SIZES } \\
\hline Na. & Dia. & Na. & Dia. & Na. & Dia. \\
\hline 0 & .060 & 4 & .112 & 10 & .190 \\
1 & .073 & 5 & .125 & 12 & .216 \\
2 & .086 & 6 & .138 & & \\
3 & .099 & 8 & .164 & & \\
\hline
\end{tabular}

\section*{DECIMAL EQUIVALENTS}

an exchange of ideated and about
the thought
behind think
nankin.



expert opinion. .
everybody
think
continuous..

\title{
OHMITE THINK-IN SEMINAR II
}

\author{
Sheraton Inn at LaGuardia East Elmhurst, New York September 10, 1969
}

\section*{CONTENTS}
Relay Reliability - A Triple Edged Sword
by Arthur Siegel. ..... 2
The General Purpose Relays
0 to 2 Amperes for Ground Support Equipment by Barhyt Bonnell ..... 6
Electrical Make and Break Contacts - Are they Saints or Sinners?
by C. B. Gwyn, Jr. ..... 8
Guidelines for Reliable Relay Application and Selection
by L. W. Wendling and E. U. Thomas ..... 13
Transcript of a Three-hour Question and Discussion Period ..... 53

\footnotetext{
pubished by Ohmite Manufacturing Company a North American Philips company 3601 Howard Street, Skokie, Illinois 60076
}

\title{
RELAY RELIABILITY - A TRIPLE EDGED SWORD
}

By Arthur Siegel. Switching Devices Engineer, RCA Corp.

Relays are reliable parts. That must be our basic premise. Now 1 didn't use the term "Hi-Rel" or "Established Reliability" because these terms do not relate to an application. They merely relate to the part itself when supplied to a given set of parameters. To those who demand "Hi-Rel" relays I ask, "How high is high?." To those who purchase to Established Reliability Specifications I ask, "Can you afford the single failure you are forecasting by your failure rate and secondly can you accept the buyers risk inherent in your confidence level.

No, Reliability, especially in the relay category is not just a specification or a High Reliability document. Gentlemen (and ladies), Relay Reliability is a triple edged sword. I know this may sound flamboyant but I could find no more suitable analogy. You ask why a sword.

A weapon can kill as well as protect. Knowing how to use it can save a life, a battle, or a war. Not knowing is synonymous to signing a death warrant. Just as overtesting can destroy a relay's life without providing the necessary assurance of quality and capability, undertesting will not project the information required. The proper test procedures performed for the optimum number of operations and at the most revealing levels will prevent the relay failure which can produce catastrophic results.

The sword for relay reliability has three edges - Selection, Quality Assurance and Analysis. The acceptability of any relay is only as good as the capability of the weakest of the three links.

Let us examine the techniques that should be used in the selection of a relay for an application. I assume the basic electrical parameters are known but in many cases, the size is not specified at first, but must be selected based upon other factors. Let us examine these.

Don't make a "Spectacular" out of your application. Use a unit with the most experience at your application levels. If possible, use a Military Standard model or version, thereof, don't choose state of the art relays just for the sake of being a pioneer. Crusaders receive a great deal of applause when they are correct but they stand a good chance of sitting in a "hot seat."

If, however, you are backed into a corner and have to use a relay with very little backup information, tread very carefully and don't skip any steps in your evaluation of the manufacturer or his part. After size and application requirements are finalized, you now have the task of selecting the Vendor or Vendors, as the case may be. If possible, a trip to each potential supplier's manufacturing facility should be the first order of business. On this trip, don't be impressed by clean rooms, fancy offices, and all the rest of the fittings that some people believe are synonymous with reliable relays. Not that they are not important and useful. Many years ago in school, I learned that "Walls do not a prison make nor iron bars a jail." The same can be said for a component plant.

Clean rooms do not automatically produce reliable units nor does fancy test equipment on the production line assure a good product. It is your job to ascertain that full advantage is being taken of all these capital improvements. Do the personnel know what they are doing? Are there sufficient quality checks on the line? Who does the QC Manager report to? If his boss is the head of manufacturing you might have a problem. Does the factory have a training program for the people? Do they provide their personnel with a neat lunch room? This last factor may not seem important but take it from me, it is.

Alright, you have visited the two potential vendors and, in your estimation, their production facilities are acceptable. The next step is to sit down with the manufacturer's engineering departments and tell them of your complete application. Within the limits of security, hold nothing back. These men are there to help you. They may show you some areas you haven't thought about. Remember: someone may have had an almost identical application before and the fellow you would be speaking to has the job of knowing of it and determining how he could best meet it. Don't keep secrets from your supplier. He should have test data available to indicate meeting your requirement, or he may have to interpolate between the data on two tests. Now you are in a position to write the requirements specification for your application; getting approval from each of the potential supplies.

Your next step is to sit down with your projects office and purchasing group and find out just what dollar value has been allowed for the relay. If they figured on using a \(\$ 6\) unit, and your requirements indicate a TO-5 size relay, somebody has to shift.

In many cases, this is done prior to the initial step so all that will come out of this meeting is a target price; you know you are in the ballpark but the determination of the amount of Quality As. surance testing that can be performed will be decided. Many factors will enter into this Quality Assurance program. Is the program one where down time can be tolerated or are we talking about a space venture. If the relay is in the latter category, how critical is its operation to the mission. Another factor would be past history on the relay type, the vendor, and the price you are paying. If the relay is one which has been on the market for many years you can be pretty certain that a large percentage of the "bugs" have been removed. It is a state-of-the-art relay, where very little usage information is available you must leave nothing to doubt. If the manufacturer over the past few years has had an excellent reputation at your plant or company, especially in this basic type of unit, you can relax somewhat. If the converse is true be on your guard especially if the unit is in a critical application.

The first question to be faced is the area of qualification. Is the testing necessary? If so, who will do it? Do you have confidence that the manufacturer has the capability to perform or at least monitor the testing if it is done at an outside test lab. Do you have a facility that is adequate to evaluate the unit? Possibly a combination of testing by the vendor and yourself might be best. I usually try to get the manufacturer to do most of the testing leaving only those portions I consider most critical for my own lab. This keeps me from spending all of my time in the lab yet permits me to keep a sharp eye on the entire qualification program.

If the manufacturer is going to perform the entire evaluation you might ask for his proposed test schedule and ask him to advise you of any changes in the dates for specific tests due to slippage. You also should request a call within 24 hours of any failure, no matter how unimportant he may believe it is. The schedule will permit you to arrive at his plant to monitor what you feel are the critical tests. The calls keep him on his toes with regard to a daily review of the data. In many cases, companies have Field Quality Assurance personnel available who can "look-in" on the testing and make certain that things are proceeding as expected. Now I know what all you relay experts are going to say. What does a Field QA representative know about relay testing. I can only give you my experience and I think my company is representative of most. These field people may not know precisely how to test a relay but they do know how to test and they have a remarkable amount of
"savvy." If your procedures have been set up properly it will take them only a few minutes to get into the swing of the test and they can spot a problem much easier than many knowledgeable relay people. The reason is that they look at the test as merely that and do not go down to the "nitty gritty" of whether relays or transformers are being evaluated. The field people can be a valuable asset to you and should be used wherever possible.

So far, we have decided on our qualification test sample, based on the criticality of the part, decided who will perform the test, written or approved the test procedure and we now have received a test report indicating that the relay is qualified. For many, they would feel their job is done. I believe your job is just beginning. Why do I say that? Well first, we must examine my definition of Qualification Approval. A few years ago, actually more years than I care to state publicly, I taught a company course at GE on the proper application of parts in Military Equipment. For 14 weeks, I pounded a statement into the head of the pupils and I was rewarded on the final exam, when they were asked what does QPL mean, and they all answered 'that at sometime and someplace a required number of samples of a particular part were able to demonstrate that they had the capability of meeting a set of requirements." By the way, just for getting that right no one failed the course. The important word in the statement is capability. And what does that mean! To put it bluntly it says that the design and materials are such that if the necessary precautions are taken and the proper workmanship utilized there is a good chance that acceptable relays may result. Bear in mind, that relays are built and adjusted by human beings hence relays coming off the line a day apart are not like peas in a pod. On Monday the adjuster received his income tax refund check so that he is a happy fellow on Tuesday but Tuesday night his girl friend tells him she's marrying Bill. I hope my relays are not among those being adjusted on Wednesday but are in the Tuesday lot. With the ultimate in Q.C. this will be picked up and potentially the Wednesday reject rate will rise but if examination for electrical parameters alone are made, I am sure marginal and unacceptable units can get through.

Before any manufacturer starts to get bleeding ulcers, maybe I had better explain what I mean by marginal and unacceptable relays. For general purpose applications where the contacts close on a \(1 / 2\) ampere 28 volt circuit just about any properly designed and manufactured relay will operate satisfactorily, especially when there are no environmental requirements of significance. But lets look at an application that "can try men's souls"; an airborne or aerospace requirement where the current is about 100 milliamperes or even worse where it will randomly cycle between dry circuit and this intermediate current level. Units which will offer high resistances when their contacts are mechanically closed are barely acceptable and I call these relays marginal. Those that have electrically open contacts are unacceptable. Now the question is how do you keep these relays from finding their way into your plant and into your production material bins.

The technique, I believe, to be used has two parts; acceptance and screening. The first type of tests merely examines the relays to determine whether they meet the parametric requirements of the specification. The only heavy thought that must be given in this category is with regards to the precise tests and whether the testing should be done on a statistical sample. When considering the test procedures to be utilized bear in mind that testing costs money. Wherever possible use a vendor's past performance with the relay type in question as a basis for your decision. As an example, if a specific manufacturer has had no history of Dielectric problems on his relay you might be wise, if cost is a critical item, and I'd like to see when it isn't, to perform this testing on a very small sample. Any problem would be the result of faulty adjustment or setup tooling and the sample would highlight this difficulty. This might be especially true if this vendor did have a his-
tory of contact resistance problems. Then you would want to concentrate most of your acceptance test dollars in this known problem area.

When it comes to the Destructive acceptance tests a recent situation by the Military makes it imperative that a great deal of thought be given to the precise procedure and their frequency. Previously MIL-R-5757D required that these tests be done on a lot basis, therefore, it was necessary for an engineer to specify which tests he didn't want or the time gap between evaluation, if it were not to be done or a weekly lot basis. This all required thought and therefore. cut down on the possibility of something "slipping by." With the issuance of MIL-R-5757E destructive testing is done every 24 months as a requalification. Hence, a problem in a relay's capability in vibration that occurred six months after qualification would not be discovered under the Military system for 18 months; long after your first relays were shipped, installed in equipment, shipped to the field and failed in the field. So my hint for today is to reinstitute the old Group B Acceptance Tests of MIL-R-5757D, even if only on a once a month basis if you don't have the utmost confidence in the Vendor's product and especially if the manufacturer doesn't run destructive quality audits on his environmental capabilities.

We now come to the testing that separates the men from the boys. Some call it burn-in but I call it screening. The reason is simple. The basis of these tests is completely different from any of the other testing previously performed. During other procedures we apply certain loads to the relay contacts, operate them certain ways, expose the units to certain environments and then check certain specific parameters outlined on the specification sheet for the part. As an example, we load the relay contacts with rated load, place the relays in an ambient equivalent to its maximum operating temperature, cycle it 20 times a minute and maintain other factors within certain limits. Before this test the maximum contact resistance allowable was 50 milliohms. After 100,000 cycles of operation the maximum allowable contact resistance is 100 milliohms. No cognizance is taken of the percentage of change between the pre-life and post life values. Normal exposures were used. Screening looks beyond absolute values and tries to interpret what is taking place and whether the changes occurring are forecasting incipient failures. As an example, using the criteria from Group B Acceptance Testing of MIL-R-5757D for Life Testing if a relay had an initial constant resistance of 15 milliohms and a post life resistance of 75 milliohms it would have been considered acceptable. I personally would question a contact set whose resistance rose to five times the initial value. Another criteria for screening is that the testing must not remove much of the useful life of the relay therefore complete life tests cannot be run but results must be forecast. That last word is the key. A screening test must forecast future problems with a particular unit. The testing must be of relatively short duration, not remove more than about \(10 \%\) of the relays rated life, and accelerate problems. Its criteria for failure need not be a catastrophic occurrence within the relay nor even parameter values in excess of those specified on the procurement document. One method of forecasting with data, and the one used by RCA/DEP is the parameter drift method whereby certain drift limits are set up for each parameter after specific exposures. Should a relay have measured values that exceed these drifts it would be rejected. We know that some of these rejected relays are good but can't determine which of these are in this category, hence, all units failing screening are not used for applications requiring ultra-reliability. They are used in future bread boards or for ground equipment. If your screening procedures are optimum you will also note many actual failures in the few operations you put in the relay. These units, of course, must be scrapped.

Some people believe a simple run-in for relays or a short time overload for resistors will cure all ills. It is better than nothing but
surely a far cry from the program I will outline which is RCA/DEP's screening technique for relays. By the way, the reason this type of testing is commonly called burn-in is because resistors, capacitors and other components which have no moving parts were first screened by burning them in. Today those industries as well as ours, know that a burn-in or run-in is only part of the task.

Now let us examine one method of screening relays. All relays used in the last eight Tiros satellites, the camera portions of Nimbus and many controls assemblies on the Lunar Excursion Module as well as, all the VHF Communications for the entire Apollo Mission including the Astronauts Back Pack Radio, were screened by a modification of the following technique.

All relays are examined for their electrical parameters. One additional procedure is a coil current waveform in which the coil current oscillogram is photographed. In many cases this trace indicates a bearing' hangup or other difficulties which will never be found by other methods.

The relays are then exposed to a vibration scan in the most critical plane and at a high level; at least the level at which the relay is specified but not necessarily the application level. Contacts are monitored during the scan. One twenty minute sweep should suffice. Those electrical parameters chosen from those performed initially, which you feel would be most revealing and which are most affected by vibration should be measured. The relays would then be exposed to the maximum storage temperature, if it is different from the maximum operating temperature, for about \(1 / 2\) hour after which the relays would be cycled at a rate of 10 per minute with a \(50 \%\) duty cycle. The precise load would depend upon the application requirements. The contacts would either be checked for each closure or every 500 cycles. Each 500 cycles the relays would have their positions changed so that the cycling would take place with the units equally in all 6 positions. At the conclusion of the sequence and while the relays are still at the maximum temperature their coils are energized and maintained at this state while the units are cooled to minimum temperature. They are then individually deenergized and checked immediately upon deenergization for contact resistance. A relay whose interior contains gas with a high dew point will have iced normally closed contacts. The contact resistance measurements must be made with a current of 10 milliamperes or less to prevent melting of the ice. Ice will forecast all the other problems which moisture causes and that Win Crawford of Autonetics and Charlie Schneider of Bell Labs have been talking about for years.

After the last relay has been examined for icing, the relays are then cycled exactly as they were at the high temperature extreme. At the conclusion of these 3000 cycles all initial measurements with the exception of the coil current waveform are repeated. After these measurements the units are placed on a monitored run-in at room ambient conditions where regardless of how the contacts were checked previously, the contacts are examined for a specific dynamic contact resistance with automatic cutoff when this value is exceeded. Any failure occurring can then be verified since the entire setup stops. No confirmed misses are tolerated. I'm not going to go into the mechanics of the monitoring apparatus since there are an unlimited number of ways that it can be built; all of them correct. Only the results are fixed.

After the run-in all initial measurements are repeated. Just what was accomplished by this involved procedure? The exposure stressed all parts of the relay so that any problem areas would show up. Any insulation which out-gasses would cause difficulty during the cycling especially after the hot and cold exposure. The icing test would signal a problem in the manufacturer's bake-out equipment or technique. In addition, at the conclusion of all testing the values obtained for a given parameter for each relay are compared with regard to the initial reading, post-vibration value,
post thermal measurement and final reading with only certain percentage change permitted. We call this Allowable Parameter Drift. We feel that any unit whose values exceed this allowable limit must have a weakness hence, it is not the relay for an application where only the best is good enough.

Other screening methods are available but most look only for one type of problem. Since the most prevalent mechanism of relay failure is particle contamination two new methods have been developed to isolate relays with loose particles enclosed within their chamber. The first was developed by Raytheon. Further instrumentation was developed and it is presently being used by the Grumman Aerospace Engineering Corporation. This technique vibrates the relay in a plate at right angles to the motion of its contacts when operating. The acceleration to the sample is of the random type and of low frequency. During the vibration exposure the relay is slowly cycled and its contacts monitored for closure. Since the random vibration has the tendency to make the particles hop in the contact gap, they will insulate the contacts and show up as a miss. In some cases, they are squashed against the contact resulting in a permanent open. This procedure is an excellent one but does depend upon particle being in the right place at a precise time. Obviously a relay with many particles will surely fail.

A second method is one where a very accurate crystal is used to listen for particles as small as one thousandth of an inch. The technique is new and was developed by Lockheed at Sunnyvale, California. I personally have never seen it used but Ed Friera, one of the mentors behind it assures me that it has had excellent results. He has been able to open each relay where a particle was suspected and find something.

The Grumman method also checks for metallic particles by putting a voltage between pins and case. In the event of a piece of metal, such as weld flash, a broken spring, piece of solder, or any other assorted loose metallic material, a very small current is permitted to flow thereby doing no damage.

The screening techniques I have outlined are but a few. New methods are being developed daily. As long as you are sure they will isolate a major failure mechanism of the relay and do not impress upon the unit any load or environmental requirement which is damaging to a good unit, use it. I'm going to repeat that last phrase because it is the crux of the whole philosophy. You may overstress a relay but the stress should be such that it will not damage a good relay.

Well, now you've written the specification, selected the vendor, qualified the unit, decided on the acceptance testing, and screened the relay as required and the units are now going into equipment. Is your job done? Not by a long shot! A very critical part of your job still remains; the third edge of the sword.

Many times during the design of equipment certain facts are overlooked or not known. You can be sure if these little problem areas didn't come up before and they affect the capability of the relay they will show up in your failure reports, both from your factory and the field. The first relay failures isolated must be sent to you for your analysis. Even though the engineering design group may think that somebody "zapped" the relay you should see it. You might uncover unknown problems before they really become a panic. Carefully analyze each of these relays not only in the area where the problem is reported but in its entirety. This will be easier at the beginning when the failures are occurring at your plant. Once the equipment goes out in the field it gets more difficult. With a little luck and the proper care you may avert this situation by "nipping in the bud" any shortcomings of the relay. If you come up against a transient which is damaging coils or contacts it might be best to add other parts to your equipment to limit this spurious voltage. It is better to know about it and
retrofit equipment before it is shipped. If the relay must be changed you must start this game all over again except that you do not pass go and you do not collect \(\$ 200\). If all things are considered and the proper inputs are supplied this should rarely be the case. To preclude starting from scratch each time you might design an application form which you fill out as you start each job. Later on you will have all the facts if a trade-off is required.

Well there is your triple edged sword. One which when used properly can guarantee victory in the war against unreliable
equipment. Keep your weapon well honed by learning of the latest test techniques, reading about the proper methods of analysis and staying on a good technical base with all of your suppliers. Every once in a while you will make an error of judgment; we all do. This will result in a coat of tarnish forming on your sowrd. The best polish to use is the knowledge that you did your best and that you will profit from the mistake.

I now put my battered but sharp Triple Edged sword in its scabbard awaiting its next battle.

\title{
THE GENERAL PURPOSE RELAYS \\ 0 to 2 Amperes for Ground Support Equipment
}

By Barhyt Bonnell. Consulting Engineer, Sudbury, Mass.

My discussion on this subject will, I hope, give you something to think on. I am essentially a mechanic with practical mechanical ideas. I once worked for a rather remarkable man. He, also, was a mechanical man and although Vice President in charge of manufacturing of an electronic facility, he insisted that if he had an electrical design that was correct functionally, then all failures would be mechanical in origin. Even a dielectric test failure is definitely a mechanical failure.

For purposes of this discussion I would like to limit Ground Support Equipment to electronic systems or subsystems for use in support of navigation, fire control or other major radar or communication systems. These are usually installed in an air conditioned building or shelter for use by the Military or some other Government agency. This indicates that the operating environment would be benign; however, the non-operating environment, including storage and transportation, would be typical of the Military; that is, anything that could be encountered anywhere will be. (Another application of Murphy's Law.)

Because of this we are mainly concerned with an hermetically sealed relay or at least a sealed contact chamber with suitable coil protection. This type of relay is covered by Military Specification Mil-R-5757 and I would like to show you some of the relays that are available from Mil-R-5757 approved sources for these applications.

\section*{The following are typical relays:}

Mil-R-5757/1 6 PDT Low-Level and 2 Amperes Subminiature, panel mounted

Mil-R-5757/9 2 PDT Low-Level and 2 Amperes One half crystal can-can be PCB mounted

Mil-R-5757/10 2 PDT Low-Level and 2 Amperes
Crystal can-requires support besides pins

Mil-R-5757/21 2 PDT Low-Level to 2 Amperes (latching) Crystal can-requires support besides pins

Mil-R-5757/30 or / 19 2 PDT Low-Level and 0.5 Ampere One sixth crystal can-can be PCB mounted

Mil-R-5757/37 2 PDT Low-Level to 1 Ampere .15 inch grid pin spacing-can be PCB mounted

Mil-R-5757/40 2 PDT Low-Level to 1 Ampere For PCB mounting primarily

These specifications must be treated individually and with extreme care since we cannot expect even one small improvement in practice over and above the specified capabilities. Because these specifications are of necessity general in nature and since they attempt to be all things to all designers it becomes the problem of the circuit designer to apply his switching devices with this in mind, and if his particular type of load or method of operation is not included he must go into the "Special Relay" category and thoroughly evaluate his selection. There are many switching problems connected with this type of electronic hardware. Some of the more common usages will be discussed here.

\section*{To drive indicators:}

These indicators are usually of the moderately low DC voltage variety, typically 28 volt incandescent lamps mounted, often in
pairs for redundancy, in a housing behind a legend plate which may or may not change color and/or legend when energized. Due to the characteristics of incandescent tungsten filament lamps the turn-on surge is ten to eleven times the steady state current. For this reason the number of lamps controlled by one set of contacts must be closely controlled. For instance, two midget flangebased 28 volt lamps will draw 800 to 900 milliamperes on cold turn-on. There are, of course, ways to cut down on the surge. One is to keep the filaments warm by energizing in parallel with a suitable resistor with your driving contacts. Another is by means of a voltage dropping resistor which will result in a voltage divider when "on." This will cut down the voltage across the lamp and will reduce the light output but will also increase the lamp life inversely as the twelfth power of the voltage ratio.

To turn on power:
By this is meant to supply current to a device, small subsystem or assembly within the power capabilities of the relay contacts. There is not too much difficulty with this application as long as possible surges on turn-on or turn-off are considered. These could be RFI filters, inductances such as transformer coils, other relay coils or others.

At this point I would like to mention derating of relay contacts. This is more applicable to this type of load than either lamp loads or signal switching. I would recommend for switching power that a 2 ampere relay be used to switch, reliably, no more than \(35 \%\) of the rated power, this is, if the contact rating is 2 amperes at 28 volts DC or 56 watts, then the actual load switched should not be more than 20 watts with 2 amperes and 28 volt as maximums. This should result in more reliable switching for more operations with the contacts in better condition to switch at a lower voltage drop.

To switch signals:
(These signals can be of many forms from continuous direct current, pulses, various codes to Radio Frequency up to the low megahertz range.) In this case the contacts are often asked to switch current of the order of ten to one hundred milliamperes at voltages from two to three to as high as twenty-eight volts direct current. This is in the "Minimum Current" range that has received so much attention lately. The capability of switching this level of load is a firm requirement in many of the Mil-R-5757 individual specifications for the so-called high level relays. Before asking a particular relay to switch this type of load, investigate its capabilities thoroughly. If the signals you are switching are truly "Low Level," then a low level relay should be chosen. When applying a low level relay properly good performance and long life will be the result, BUT do not make a hybrid of a low level relay by switching power with one set of contacts. If this is done carbonaceous material will be formed and sooner or later the low level set of contacts will miss.

To maintain information (Fail Safe):
It is sometimes necessary or advisable to secure a piece of information, a yes or no, in the form of a bit and this can be done, even in the event of a power failure by a magnetic latch relay which when once set in one position will remain there until ordered away.

Relays as a means of obtaining redundancy:
By command, either manual or automatic by means of a sensing circuit, a failed operating device, sub assembly or unit can be replaced by a "Stand-By" device, etc., by means of a group of re-
lays. In this type of operation the individual switching contacts must be break before make or Form C. They must make and break with an extremely low failure rate. The contact that makes must make with a voltage drop that is acceptable and since the defective module is isolated from the now operating "Stand \(\cdot \mathrm{By}^{\prime \prime}\) module the isolation between the closed and open contacts must be sufficient to block any spurious signal or circuit noise.

Only a relay of proven capabilities should be used for this type of switching. These contacts could be in one position for extended periods of time where equipment is of a continuous use type, and then be asked to switch without failure.

These are some of the more common usages of this type of relay, with cautions supplied as to their application.

Now to consider some failure modes. In our discussion of applications we have cautioned about overloading and watching out for
dangerous surges on both turn-on and turn-off. Some other failures will be discussed.

A circuit designer selects a relay to be operated within his circuit but to supply energizing power to a portion of another circuit controlled by a second designer. They discuss the application and both are satisfied. But the interconnection designer was not considered and he decided on a RF1 filter as this particular line entered the second cabinet. The relay failed due to capacitance in the circuit that was not properly considered. So we will have to add intercommunication between affected design areas and those engineers responsible as another item necessary to satisfactory application.

Environment: We have only briefly discussed the assumed benign environment in an air conditioned building or shelter. But electronic equipment does not perform work with no losses, so temperatures sometimes exceed a nominal relay capability in a section of a cabinet not properly ventilated.

\title{
"ELECTRICAL MAKE AND BREAK CONTACTS ARE THEY SAINTS OR SINNERS?"
}

\author{
By C. B. Gwyn, Jr., Director of Engineering, Contacts Incorporated Alloys Unlimited Inc., Wethersfield, Conn.
}

For our Seminar we will define an electrical make and break contact as any body of material intentionally used under controlled limits to physically engage with or separate from an opposing mating surface - thereby establishing and/or terminating the flow of an electrical current - preferably this will be accomplished in a minimum time interval with a modicum of change in body physical dimensions and/or the controlled circuit characteristics.

Our present basic knowledge of contact behavior or rather misbehavior originated through gradual accumulation of individually obtained observations made during operational trials and failures. Frequently this resultant know-how was treated as a jealously guarded trade secret. Erratic service or outright functional failures often reflected inaccuracies in properly interpreting, recording and applying these empirical results to other service usages.

Since random choosing of a material found to be best for a thought to be similar application was often a prelude to failure, far-sighed manufacturers, engineers, designers, metallurgistsand physicists began to form groups to collectively "pool" their primary efforts. (You might call this recognizing the need of an initial "think in.")

Grouped intellect quickly showed proper electrical contact selection was not a simple problem with sharply defined parameters. Instead their individual and collective efforts definitely showed their factual information nadir - repeatedly emphasized the urgency and need to openly and collectively discuss and analyze their findings, theories, progress and/or inexplicable failures. Such collective efforts initiated the necessary integration of electrical, mechanical, metallurgical and physical factors. Through international publishing and freely interchanging research results the "X" factor denoting unknown, unpredictable or unresolved reasons for contact malfunctionings has been greatly reduced, but not yet zeroed. Issuance of some 700 U.S. and 280 foreign patents comprising contact materials compositions, processing, polarized (dis-similar) materials combinations, plus publication of some 630 papers, research articles, associated text books, data shown and developments detailed during various U.S. and international contact seminars, relay conferences, etc. evidence the tremendous "plus" developments being made in electrical contact know how.

This knowledge, plus the necessary added factors of availability, workability, economy, have combined to normally pick our initial make and break electrical contact choice or recommendation in pure, alloyed, admixed or sintered forms or combinations of the following elements:

Silver, copper, gold, platinum family group, tungsten, molybdenum, rhenium, nickel, cobalt, graphite or carbon, cadmium, iron, mercury, manganese.

How then do we choose from among these 14 elements for successful make and break contact applications in order to ameliorate or overcome the effects of the 21 major variables affecting contact performance?

\section*{PRIMARY MATERIAL.}

If we use a pure elemental form, for example highest purity fine silver-we have no way of altering its inherent electro-physical properties. We determine these, taking maximum advantage of their more valuable properties. We have no choice other than to stay within these maximums.

\section*{ALLOYED MATERIALS(S)}

Through proper alloying of two or more materials we can synergistically combine their more desirable "plus" features. We can now control hardness-alter corrosion resistance, polarize to advantage, retard or prevent weld ing together-often lower materials costs, etc. As a typical example, a certain automotive cutout relay originaily used fine silver contacts. These sometimes welded under overloading. Tests proved coin silver 90 Ag 10 Cu to resist welding. Through further electro-metallurgical deduction and confirming tests we developed the now widely used Conmet \#4 alloy comprised of \(75 \%\) silver, \(24.5 \%\) copper, \(.5 \%\) nickel - much lower in materials costs and virtually weld-proof in this application.

\section*{ADMIXTURES.}

These are characterized by having two or more materials intimately mixed mechanically or chemically but not altered otherwise. As examples: silver and carbon, silver and cadmium oxide, silver and nickel. When desirable these mixtures may advantageously be mechanically compacted, hot compressed, sintered, oxidized, etc. A new and novel method of producing admixtures is to impinge the proper percentages of the desired compositions against a baffle plate at extremely high velocities. This produces a cold bonding type of surface coating or amalgamation.

\section*{INFILTRATED MATERIALS.}

Basically these are comprised of a skeleton or sponge of a high melting point material infilatrated with or bonded together by a lower melting point, higher electro-thermal capacity material. Typically this may be tungsten-silver, the tungsten being the skeleton or support, the silver cementing and bonding the individual tungsten particles together, simultaneously enhancing the electrical and thermal characteristics of the resultant contact body.

As engineers we all know that surfaces which are sufficiently dirty and/or have an extremely high melting point are difficult to solder, fuse braze or spot weld together. We deliberately achieve this same non-sticking or non-welding surface action on the working face surfaces of our available Contact materials by some type of controlled surface "Dirtying" - through alloying, admixing, sintering, impregnating, mechanically or electro-chemically altering the surfaces, etc. In accomplishing this we of course must keep their electrical and/or thermal properties as high as possible. We have outlined our metallurgical preferences for producing our electrical make and break contacts with specific characteristics. How then do we use their proven metallurgical properties in overcoming or satisfactorily limiting the deleterious individual or cumulative effects of our recognized 21 -plus variables? What are these 21 -plus variables? For our convenience - and therefore not necessarily in the order or degree in which they influence contact operation and life, we group these 21 or more factors as follows:

\section*{A. Electrical Variable Factors, Primarily}
(1) Normal and peak (maximum) currents in amperes through and/or across the contact working faces.
(2) Normal and maximum peak voltages through and across the contact working faces.
(3) Is the circuit which we make and/or break AC or DC?

If D.C. can the contacts be definitely and permanently polarized?
If A.C. at what cycle (frequency)?
(4) Are the circuits major characteristics in effect resistivecapacitive, inductive?
(5) How often must the contacts make or break the circuit for example once a second, 100 times a second - once an hour - a-day - a year.
(6) When not operating, will the contacts be in a normally open or normally closed position?
(7) What type(s) of arc suppression or other contact protective means will be provided?
(8) Will the contacts have the same closed circuit capacity as the other portions of the circuit - This is an often overlooked and very important "must."

\section*{B. Mechanical Variable Factors}
(1) What is the maximum pressure exerted on the working faces of the contacts in their closed (conducting) positionexpressed in ounces or grams.
(2) Is there any no load fritting (dry interfacial-vibrational or rubbing action) between the contiguous areas on the mating closed contacts?
(3) Is there any wiping or interfacial rubbing action produced when the mating contact surfaces are brought together and/or separated?
(4) Will these contacts be subjected to strong bounce or chatter conditions?
(5) In reaching their closed position(s) will the contacts rorate, slide, rock or butt together?
(6) At what speed (rate) will the contacts physically close and/or separate (break apart)?
(7) Maximum separational distance in the open position?
(8) What means will be used to physically close and/or open the mating contacts - solenoid - magnetic materials, spring purely mechanical etc.?
(9) Will the mating contacts be subjected to mechanical cohesion (interlocking) from rough or pitted surfaces - and if so will the separational forces be strong enough to overcome this interlocking?

\section*{C. Physical Variable Factors}
(1) What is the permissible ambient operational range - minimum - maximum in degrees F. or C.?
(2) What comprises the atmosphere surrounding the contacts - or do they operate in a vacuum or a liquid?
(3) What - if any - is the ambient atmosphere pressure?
(4) Will these contacts operate in an open, a closed or a sealed container?
(5) How will the contact working face and body materials be assembled into their normal operational positions?
(6) What physical dimensions were allowed for the contact materials themselves and/or, when assembled to supports? How were these dimensions obtained?

\section*{D. Metallurgical Factors:}
(1) Availability of chosen materials.
(2) Calculated and/or allowable material(s) cost.
(3) Assurance of uniformity of materials compositions on succeeding lots of these chosen, tested and approved contacts.

\section*{HOW DO THE ABOVE PRIMARY ELECTRICAL, MECHANICAL, PHYSICAL and metallurgical variable factors cause or contribute TO FUNCTIONAL DEVIATIONS OF MAKE AND BREAK CONTACTS?}
(In the same order as listed above)

\section*{A. Primarily Electrical Factors}

A-1. Normal and peak currents. Insufficient area and/or body volume, electrical, thermal capacity produces welding, fusion, flashover, contact materials migration (D.C.) rapid dimensional changes.

Electrical welding can be broken down into three main forms: fusion bonded, welded, and tack welded.

Fusion bonding is a result of a molten metal being established between the mating or interface portions of the contacts creating an alloying of or brazing together of these contact faces if they are closed together while this condition exists. Normal corrective steps are changes in compositions and dimensions of the contacts, plus removing or ameliorating the causative peak electromechanical or surge conditions.

Welded contacts are just what their name implies, joined together by a resistance or projection weld, the same as any parts electrically welded by the \(I^{2} R\) heating action, while they were in a closed or substantially closed position - remedy, change in contact composition, use of polarized or dissimilar contact compositions change in contact dimensions, and limitation of the surge of maximum current through the contacts.

Tack welding is usually produced with lower than the contact maximum currents, but still sufficient, however, to produce localized welding on limited contiguous areas of the contacts or by the welding of some external contaminant to the surfaces of both mating contacts, or under contact bounce or chattering conditions. Tack welded parts usually separate readily or without a severe application of force. Remedy, dissimilar materials in mating contacts, or changes in compositions, stronger opening and closing forces, better contact alignments, amelioration or elimination of bounce or chatter, keeping out foreign metal particles.

A-2. Normal and maximum peak voltages working surface and inherent resistances of materials must be and remain sufficiently low to maintain a minimum allowable voltage drop across the contacts. Not doing this promotes early circuit continuity failures. Surge or peak voltages may bridge the space between open contacts, forcing (continuing) current flow. Assuming the applied voltage across the contacts is sufficient to obtain a normal operation, the most frequent causes of contact open circuits or high voltage drops causing variations in cycling are: Face contaminants: with contacts comprised of silver and certain other contact materials, humidity and ambient atmosphere contaminants causing chemical and/or so called battery actions - examples sulfides, nitrides, oxides, salts varying with the types and degree, the resultant surfaces may be nonconductive, highly resistive, or rectifying in character so that they will carry currents readily in one direction, block or limit currents in the reverse direction. Other surface contaminants include silicones, fungus growths, solder fluxes, oils, dusts, perspiration, plating materials or flakes from them.

\section*{A-3. Is the circuit which we make and break A.C. or D.C.?}

For general use contact diameters for D.C. voltages in the range of 6 to 28 volts are the same as those for 120/230 volts A.C. 60 cycle, however on the higher D.C. voltages such as 120 the safe contact operational current carrying capacity is approximately \(1 / 4\) that of 120 volts A.C. and for 230 volts D.C. approximately 1/5.

\section*{If \(A C\) at what cycle (frequency) per second?}

On 400 cycle AC the safe contact current carrying capacity is only \(70 \%\) that at 60 cycles. For further details refer to the "Current VS Contact Diameter Selector" which will be given to those attending Ohmite's THINK-IN Number II on Sept. 10, 1969.

\section*{If the circuit is D.C. can the mating contacts be definitely and permanently polarized?}

The use of mating contacts of different compositions is frequently necessary to prevent migration or buildup and control contact surface resistance rise, alternately to secure lower per pair contact costs, and to lower the effects of wear and/or erosion factors.

In general, on D.C. applications operating in the lower operational cycles per second range ( 1 to 120), transfer or migration is found to be from the positive contact to the negative. (This action is frequently abbreviated to P.P.T.N.)

In some other instances reverse direction D.C. transfers have occured - particularly in an operational cycle range of, for example, 150 to 300 per second. The use of dissimilar (different) contact compositions has shown to have marked advantage in overcoming or limiting these materials transfers. As examples, fine silver to fine silver transferred rapidly on a certain D.C. relay. Changing to a composition of 90 silver 10 iron-conmet \#68-positive and 97 silver 3 palladium-conmet \#30-negative not only eliminated transfer but also stabilized the resistance drop across the contact. Strangely, perhaps, dissimilar contact compositions are also often found advantageous for A.C. use. For example, a pump motor control relay manufacturer first tried coin silver contacts for controlling a 60 cycle 110 volt split phase motor. Inrush currents occasionally hit a 100 ampere R.M.S. peak for 2 milliseconds duration followed by 50 amps R.M.S. at .8 power factor for one second, followed by 10 amps R.M.S. at .65 power factor and life requirements were set at 50,000 operational cycles. Coin silver failed repeatedly at around 20,000 cycles.

In this particular contacts application case, the unsatisfactory coin silver contacts were successfully replaced with a dissimilar metals composition of Conmet \#72 ( 90 silver 10 cadmium oxide) against a mating contact of Conmet \#62 ( 85 silver 15 nickel). Repeated life tests exceeded 75,000 cycles of successful operation with the contacts still remaining in excellent service condition. A combination of \(85 \%\) silver \(15 \%\) cadmium oxide against \(60 \%\) silver \(40 \%\) tungsten carbide successfully met the A.C. life and service requirements for an automatic elevator control relay - also for an aircraft relay used to operate the cabin air pressure controls.

\section*{A-4. Are the circuits \(m\) ajor characteristics in effect resistive, capacitive, inductive?}

In general, a resistive load such as lamps, the usual electric range elements, etc. are subject to high peak (cold) inrush currents. These are often up to 10 times the normal operating current. This produces a fusion effect similar to that obtained in standard resistance type welders - to prevent this fusion we use high conductivity contact materiais having compositions chosen to offset the interfacial surface fusion forces. The most widely used composition is 90 Ag 10 Fe (Conmet \#68) operating against Conmet \#68. In other instances the dis-similar compositions of 77 Ag 22.8 Cd 0.2 Ni (Conmet \#12) against 85 Ag 15 Ni (Conmet \#62) are preferable.

Capacitive loads may produce momentary peak currents up to several thousand times normal currents. In such instances it is preferable to use mating contacts of pure refractory materials such as tungsten, molybdenum, carbon or infiltrated refractories such as 35 silver, 65 tungsten (Conmet \#83).

Inductive Loads. Typical of these are motors, solenoids, etc. Dependent on closing pressures, operational speeds, normal (closed) operational currents and the severity of peak current and voltage values of the induced "surge," our preferred compositions for mating contacts may comprise \(85 / 90 \mathrm{Ag} 10 / 15 \mathrm{Cd} 0\), or 75 silver - 25 carbon or refractories such as \(50 / 80 \mathrm{~W} \cdot 20 / 50 \mathrm{Ag}\).

\section*{A-5. How often do the contacts make and/or break the circuit?}

For example, once a second, 100 times a second, once a day, etc. The rate of mechanical wear overall heat capacity, electrical erosion and/or materials migration (transfer), allowable resistance rise materials compositions, etc. are all factors determined thereby.

\section*{\(A-6\). When not operating will the contacts be in a normally open or normally closed position?}

In an open position, non-shielded contacts are exposed to surface contaminations from many sources unless firmly held together in their closed position, on contacts subjected to high frequency mechanical vibrations, creating a rubbing action, fritting or cohesion (mechanical welding) may result.

\section*{A-7. What type(s) of arc suppression or other contact protective means will be provided?}

Such protection is extremely effective where high voltage and/or current transients may occur. Typical protectors include parallel resistors, half wave rectifiers, condensers, glow discharge tubes, etc. For D.C. services, polarized dissimilar materials contacts may suffice.

\section*{A-8. Will the contacts have the same closed circuit capacity as the other portions of the circuit?}

The short-time, current-carrying capacity of all contacts is, of course, heavily influenced by one or more of these factors:
(a) Ambient temperatures and maximum operational contact temperatures.
(b) The condition (cleanness and freedom of surface films) of the contact surfaces.
(c) The maximum and short-time, current-carrying capacity of the wires, etc. connecting the various component parts of the circuit, particularly including the load and those to the power supply and contacts. Under short-circuit conditions, all contacts are, of course, subjected to extreme electrodynamic forces. The ratio of the maximum circuit-current capacity to the contact diameter is, therefore, quite an important contact life factor as the degrees of arc erosion and contact welding are generally found to be in direct ratio to the amount of electrical energy passing through and interrupted by the contacts themselves. From a satisfactory performance stand point using too small a contact size is comparable to putting a Honda motor into a Cadillac. Correctional steps are obvious.

\section*{B. Mechanical variable factors}
\(\mathrm{B}-1, \mathrm{~B}-2, \mathrm{~B}-3\). What is maximum pressure exerted on the working faces of the contacts in their closed (conducting) position? The optimum pressure would of course be that at which the mechanical wear would just equal the electrical erosion, thereby maintaining constantly clean contact interfaces. Factually the pressure must be sufficient to prevent false openings, provide a little wiping action but not fritting.

\section*{B-4. "Bounce or chatter"}

This is generally defined as a nondesirable series of rapid make and break contact actions usually brought about through me-
chanical malfunctioning forces induced in the supports being transferred to the contact body members. These cause rapid erosion of the electrical contact materials and may lead to pitting or welding. Remedial steps frequently used are the use of a plastic coating on one of the support members or springs, changes in contact shapes, making openings in, ribbing or corrugating the springs or supports, using a dampener spring in parallel with the main contact spring, or a return spring having a cone helix with a smaller diameter at one end than the other. Other dampening or resonance methods include use of porous powdered metal supports, multi-layer contact supports, hollow contacts (some of which contain metallic powders), and magnets.

B-5. In reaching their closed (conducting position) will the contacts roll (rotate) slide, butt together - have a heel and toe action?
Properly used all of the above motions except abutting will assist in cleansing the contact surfaces from operational or other types of detrimental coatings. The contact working faces should be properly shaped to utilize one of these motions advantageously.
B-6. At what linear speed (rate) will the contacts physically close and or separate?
It is usually thought preferable to have the contacts move into their closed (conducting) position at the fastest rate possible without producing chatter or bounce. In most cases a fast break (circuit opening) time is best: However, for certain AC frequency cycles a slower rate is preferred to prevent opening at the peak load position.

\section*{B•7. Maximum separational distance in the open position?}

Provided it is not so large as to unduly delay closing, wide contact surface separation is insurance against voltage spill-over, arc continuance, etc. It should not be large enough to cause severe mechanical wear or to lower heat sink capacity obtained from support members.

B-8. What means will be used to physically open and/or close the mating contacts?
In general solenoid or magnetic force is found somewhat faster than mechanical spring or thermostatic opening forces. Sometimes the magnetic forces can be simultaneously used to achieve a "blow out" action for arc suppression. Silver-Iron and Silver plus Nickel contact materials are magnetizable and this property can be utilized to advantage for make or break purposes.

B-9. Will the mating contacts be subjected to mechanical cohesive forces from action produced rough or pitted faces or alternately from highly polished faces?
Such conditions may be brought about by severe vibration, mechanical wear, by too fast electrical wear, by the use of too small surface engagement areas in the mating contacts, or from foreign matter or materials coating the contact working faces. Separational forces should be sufficient to overcome these conditions.

\section*{C. Physical variable features.}

\section*{\(\mathrm{C}-1\). What is the permissible ambient operating range in degrees} F. or C.?

These temperatures should never exceed those at which changes in contact composition or contact contamination (metallurgical) will occur. They must be kept below temperatures at which "out gassing" of insulating materials etc. occur, also lower than those producing "tack welding" or fusion together of contacts.

\section*{\(\mathrm{C}-2\). What comprises the ambient atmosphere around the contacts? Could they operate better in vacuum or a liquid?}

The majority of make and break contacts operate in air and are therefore subject to humidity, airborne chemical, etc. contaminants and/or the metallurgical effects of oxygen, nitrogen at arcing, sparking, electrostatic temperatures. It is felt it will be best to discuss case remedial methods individually rather than to summarize such protective steps. Some contact materials transfer rap-
idly in a vacuum through sputtering etc. actions. Others function best in neutral gas mixtures such as helium, argon. Other than mercury type contacts, contacts operating in or as a liquid are not widely used in the relay industry.

\section*{\(\mathrm{C}-3\). What is the effect of the ambient atmospheric pressure on contact operation?}

Recent investigations have shown that many of the contact materials which function well in air at sealevel pressures failed rapidly in high altitude service in planes, etc. Refractory based contacts appear to be best for high altitude operation.

C-4. Will these contacts operate in open, closed or sealed containers? Make and break contacts function well under controlled conditions in all three types of containers. Lack of time presently prevents summarizing the salient features of each type.

\section*{C-5. How will the contact working face materials be assembled into their normal operational positions?}

This might best be restated as 'What's the best and most economical assembly method for my particular contact application?"
The majority of contacts used for relay assembly are produced in the form of:
(a) Rivets (including eyelets)
(b) Welded parts
(c) Brazed parts
(d) Clad materials - inlays, overlays, etc.
(e) Staked (interfering fit) or, hot upset contact assemblies
(f) Plated contacts - electroplated, vacuum plated, sprayed metals, etc.
(g) Spring parts (comprised of solid contact materials).
(h) Screws

These can be best discussed as individual applications since each type has its particular field of application. Improper assembly will of course obviate successful contact functionings.
\(\mathrm{C}-6\). When designing your relays what physical dimensions were allowed for the contact materials themselves and/or when they were assembled to supports? How were these dimensions obtained? The Current VS Contact Diameter Selector" which will be supplied to you at the Sept. 10 "Think In" was developed from data supplied by and through the cooperation of over 300 electronic, electrical and metallurgical engineers. We suggest you try it out "for size" and advise us your findings.

\section*{D. Metallurgical Factors.}
\(D \cdot 1\). Availability of chosen contact materials.
Most of the generally used contact materials are presently available in desired quantities. However, silver, cadmium, the platinum family group, tungsten and molybdenum are becoming increasingly difficult to obtain. Since this situation will continue, it is recommended that relay manufacturers check with contact suppliers on replacing some types of these contact materials with bonded or composite (Uniclad) types and/or some of the newly developed contact replacement materials.

D-2. Calculated and/or allowable contact materials costs. Closer liaison between relay and contact engineers and designers can produce worthwhile savings in assembly, materials, and testing costs. Since these projects are on specific applications, it is felt that they should be individually discussed rather than covered by my paper.

D-3. Assurance of uniformity of materials compositions on succeeding lots of tested and approved contacts.
(a) Request a certification of analysis with your purchase orders.
(b) Your contact supplier has carefully processed and packaged your contacts. Be sure that your inspection and storage before use prevents contamination from any source.

In conclusion:
Personally, I feel that electrical make and break contacts are neither "saints" nor "sinners," but servants; if used properly they will serve you well. If improperly used, they cannot in themselves solve the service complexities jointly introduced by our above outlined 21 variables plus our ignorance factor in improperly using them.

Regardless of their dimensions and compositions, electrical contacts cannot overcome the effects of faulty designs, slipshod assembly, improper service ratings if these exist in the relays into which they are incorporated. Provided your electrical contacts are correctly selected with regard to compositions, dimensions, and your circuits actual service requirements, plus proper assembly, they will have the same basic capabilities for service reliability as any other relay or controls component. Your progressive relay and controls manufacturers frequently re-evaluate your relays and controls on the basis of developments in and availability of new materials, competition, production improvements, automation, redesigns, field and laboratory service reliability history, changes in circuiting and terminal applications.

Are you simultaneously giving your electrical contacts a similar careful analysis? If not, why not? Yesterday's contacts may also become obsolete! Typical of these application questions is the "controversy" over when and where to use silver tungsten-when and where to use the silver cadmium oxide.

\section*{- SILVER-CADMIUM OXIDES vs. SILVER-TUNGSTEN CONTACTS WHICH-WHEN-WHERE-WHY?}

I have been asked to comment on the silver-cadmium oxides versus Silver-tungsten contact application controversy.

Actually although each type of these materials has its own optimum application field, they do have overlapping service parameters in which either material will give satisfactory service, and choice is dictated by preference.

Silver cadmium oxide achieves its chief purpose-non-weldingand a low erosion rate through a momentary "blasting action" or spreading out of the arc plasma, plus its unique inherent ability to absorb enormous amounts of heat energy during the temporary reduction of some of the contained cadmium oxides to metallic cadmium. This process arrests itself when the contact body is sufficiently cooled and the nascent cadmium so formed readily re-oxidizes to cadmium oxide.

In tungsten-silver, the tungsten body or matrix material has an extremely high melting point \(-3370^{\circ} \mathrm{C}\), boiling point \(5900^{\circ} \mathrm{C}\) and will therefore not readily weld to the similar tungsten matrix in the opposite or mating tungsten-silver contact. Since tungsten does oxidize readily it forms a natural surface "dirtying" agent which tends to dust or coat the silver surface(s). The silver con-
tact portion may therefore reach or even exceed its melting point without resultant fusing to the silver in the mating tungsten silver contact surfaces.

We have cross checked our application test results and conclusions on both Ag Cd 0 and Ag W contact materials with Dr. W. A. Merl, Manager of contact research for "Durrwachter Doduco K.G." in Pforzheim, Germany and find that we are in close agreement in the following:
1. Generally preferred for contactors or relays rated for handling around 400 ampere currents- 90 Ag 10 Cd 0 , for higher currents such as 600 ampere ratings 85 Ag 15 Cd 0 .
2. For breakers or relays up to 230 volts A.C. and perhaps to 100 amperes maximum rating, 60 W 40 Ag -alternately \(50 \mathrm{Ag} 50 \mathrm{Mo}-\) performs well if ample heat sink capacity is provided. For these same applications the erosion rate is usually higher on Ag CdO than on Ag W.

It is interesting to note that in Germany and on the continent, many of their 100 ampere medium voltage breakers and relays use a preferred dis-similar materials combination of \(\mathrm{Ag} 95 / \mathrm{C} 5\) against \(70 / 80 \mathrm{Ag} 20 / 30 \mathrm{Ni}\). The operational life of these combinations is somewhat below Ag W but less overall heating is experienced.
3. However we both find in 10 to 50 ampere ratings when using a strong magnetic force which produces fast opening speeds, the resultant arc is rapidly blown away and/or quickly extinguished, using 90 Ag 10 Cd 0 is preferable.
4. Where the arc suppression takes longer and the opening speed is slower the Ag Cd 0 erosion rate is too high. Provided the contacts are closed under higher applied pressures Ag W (alternately Ag Mo ) will give superior overall service. It is interesting to note that in our recent tests dis-similar material(s) combinations of Ag Cd 0 against a mating Ag W or Ag Mo contact has been surprisingly effective in heat reduction and obtaining enhanced overall service life.
5. For D. C. service European practice is generally to use Ag Cd 0 for quickbreak contacts widely separated after break and closed under lighter pressures.-Ag W, Ag Mo-against themselves, alternately \(90 / 95 \mathrm{Ag} 5 / 10 \mathrm{C}\) against \(85 / 90 \mathrm{Ag} 10 / 15 \mathrm{Ni}\) are preferred under higher closing pressures and slower opening speeds.
6. Some of our recent D.C. tests have indicated that using 85 Ag 15 Cd -cadmium and not cadmium oxide-polarity negative against \(90 / 95 \mathrm{Ag} 5 / 10 \mathrm{Cd} 0\) positive polarity often improves overall service life.

\section*{7. Summarizing:}
(a) \(\mathrm{Ag} \mathrm{Cd} O\) for quickbreaking contacts widely separated in open position and held closed under moderate pressures.
(b) Ag W (also Ag Mo ) for slower opening speeds, minimal separations in open positions, contacts subjected to severe mechanical wear and/or high closing pressures.

\title{
GUIDELINES FOR RELIABLE RELAY APPLICATION AND SELECTION
}

By L. W. Wendling, Naval Air Systems Command Hdq., Washington, D.C. and E. U. Thomas, Grumman Aerospace Corp., Bethpage, L.I., New York.

\section*{PREFACE}

Messrs. L. W. Wendling (Naval Air Systems Command) and E. U. Thomas (Chairman of the SAE A-2R Relay Committee) stressed the point that all too many military and aerospace relay failures are directly traceable to misapplication - misapplications that are not readily recognized by many, yet can be used to predict eventual field failures. Their published paper contains a wealth of information regarding proper selection and common sources of failures. These latter included first various types of loads (resistive, inductive, motor, lamp, and minimum current). Coupled with the load considerations is the power source and switching modes - e.g., single phase off-on, poly-phase off-on, and load transfer between unsynchronized power sources. Each switching mode is progressively more demanding upon relays' capability. Recent revisions and amendments to the general purpose specifications now provide adequate test requirements for each area. It is not necessary to use a relay with greater capabilities than the application requires, but it certainly is inviting trouble to use one with less than the capabilities required.

Besides the paper handed out (essentially the same as presented by the two men in April at Oklahoma State University) and now in the 1969 Proceedings (available from NARM Box 1649 . Scottsdale, Arizona 85252 at \(\$ 5\) ) with some addenda, additional circuit design help can be obtained by writing the Superintendent of Documents, General Printing Office, Washington D.C. 20402 and requesting copy of Section XI only, "Relays, Electromechanical" of NAVAIR 01-1A-514 "Design of Electric Systems for Naval Aircraft and Missiles." Section XI has been assigned Catalog Number D 217,14 : EL2/CH at \(\$ 2.75\) and is highly recommended by Mr. Wendling as an adjunct to the present paper.

Because the printed paper contains much too much data to be orally presented, the authors presented their theme on reliability by way of proper selection by showing colored slides of failed relays and explained why; provided selection data tables; showed that newer relays are smaller and lighter with greater capability than older ones; illustrated circuits where voltage sensors failed to detect phase loss; etc. Recently cancelled relays were also listed.

One of the items in their paper indicated that some surplus relay houses have reworked relays, changed the name tags and represented the reworks as updated relays to later revisions of the specifications and marked them as qualified MS parts when even the manufacturer using better materials than his early models is not qualified. Users who are victims should notify the FBI.

Although primary emphasis dealt with electromechanical relays, Mr. Wendling is responsible for the NAVAIR "'SOSTEL" program - (Solid State Electronic Logic) for contactless aircraft electric systems.

\begin{abstract}
With the assistance of the SAE A-2R subcommittee for relays, the representatives of the various military activities have been successful in incorporating necessary requirements directly into relay and equipment specifications. However, the ever increasing complexity of aircraft system designs, the demands on electric power, and the continual need for miniaturizing have, and continue to collectively cause design engineers to misapply relays. By acknowledging the problems which exist during the system paper design phase, it is hoped engineers and designers, upon recognizing these limitations, will more effectively utilize relays for the purposes intended. In order that relays will be accepted for their known basic reliability, these "guidelines" are presented and apply not only to military but to relay applications and selection in general.
\end{abstract}

The original material was first presented at Oklahoma State University at the 17th OSU/NARM National Relay Conference, 22/23 April 1969.

\section*{INTRODUCTION}

Relays are trustworthy devices. Were they not, they would not be so widely used in so many fields, nor for so many years by so many people. When they do fail, however, quite often no attempt is made to determine the cause. But, even when a diagnosis is made, frequently it is incorrect. In most instances, the relay is merely replaced - only to fail once more at a later date. Replacement is easier than admitting to an engineering systems design deficiency. The time to deal with misapplication is prior to the hardware design stage, a point reached long before corrective action becomes unduly expensive. Misapplication can and must be avoided.

Most engineers instinctively believe that once proper terminal voltage is applied to an electromechanical relay, it will switch and transfer its contacts in the manner the circuit designer intended. To do so is the axiomatic function of a relay. Surprisingly, this simple concept often turns out to be the very cause of many equipment failures because misapplication causes relays to "fight rather than switch." They are deterred from completing their appointed rounds in many ways, but seldom is it the fault of the relay. For example, if a circuit malfunction causes a contact failure, it is the relay that is blamed. When called upon, relays may make contact mechanically but not electrically in the "minimum current" area; contacts may weld; they may wearout; or the relay may literally blow up - all from being misapplied. Sometimes relays do fail, yet "were they properly understood, better standardized, less abused and less misused,' 6 the incidence of failure would be greatly diminished.

Different conditions impose entirely different requirements upon the switching device capabilities. These differences must be understood, recognized and dealt with. The components selected must be "technically suitable,"9 which means meeting all combinations of all of the specific application requirements. To meet the requirements they must all be stated for they are all part of any switching action. The ever increasing complexity of aircraft electric system design, the demands on electric power, and continued need for miniaturization, collectively cause design engineers to misapply electromechanical relays. These factors and the apparent lack of definition of characteristics of the relays selected, contribute to failures affecting the reliability of aircraft and their related systems such as support and checkout equipment. As design deficiencies are recognized, military specifications, military standards, handbooks and detail specification sheets are continually being revised by both the Military and Industry to more clearly define the performance requirements and to establish methods to assure that these requirements will be constantly met. Not only must requirements for intended usage be adequately covered, but the known limitations must likewise be identified in the military documents. These procedures generally increase relay capabilities and reduce the possibilities for misapplication (the choice of improper though qualified component for a specification application). For relays to be technically suitable and properly applied, the engineer must recognize both a relay's capabilities and its limitations. He must also recognize all his application's requirements and see that they and the relay's capabilities
correspond. Neither its QPL status nor the mention of a military specification establishes a preference ipso facto for a relay. It is the contractor's responsibility to meet specification requirements and stand behind trouble-free system operation. Correction of defects may well be at the contractor's own expense \({ }^{9}\) where engineering design deficiency exists. The granting of QPL does not bestow mystic properties on a relay, nor does it implicity imply a "quality" item.

To assist an engineer in recognizing merits and some of the problems of misapplication, such as: the areas of minimum current (or intermediate switching area); paralleling contacts; grounded relay cases; arc-over (between contacts or contacts to the case); catastrophic flash over failures; effects of various load types; effects of frequency; and source characteristics under which load switching commonly occurs; and whether switching be on-off; polyphase; load transfer; etc.: including slowly changing coil power upwards or downwards or just plain partial coil energization contribute to "relay failures", all of these topics are included in this discussion. Much has been written individually on each of these topics, but little has been accomplished to prepare a single digest presenting the combined overall problems and various considerations for deliberation at an industry wide conference such as the OSU/NARM Annual Relay Symposium. Distribution of this paper as a part of NARM proceedings should meet certainly both the users' and the manufacturers' approval.

\section*{DISCUSSION}

The transfer of electric loads between unsynchronized power sources has been one major cause for misapplications due to inadequate information and understanding. Using two position rather than three position relays to select between power sources, is becoming more prevalent in aircraft electric power systems than in the past. In a highly competive industry in which unnecessary component size and weight are costly, those safeguards such as extra internal insulation are not included inside relays primarily intended for the control of 28 VDC loads or single phase AC from a single source. In military aircraft electric systems hermetically sealed relays are mandatory 4,10 unless otherwise stated. The design engineer must select a relay to handle his specific requirements - it must be "technically suitable"9 to the particular application. A relay may be "highly reliable" in one application and not in another. Where relay reliable operation is needed at all locations it may be logistically expedient to use a single style relay throughout an electric system even though the more expensive version is needed at one or two locations. In an original system design MS27218 could be used not only to switch three phase circuits for which it was designed but also "single phase circuits only" for which the similarly sized MS25267 was designed. The MS27218 can be used everywhere the MS25267 is used, but not vice versa. The importance of this consideration will become more apparent as switching details are discussed. Therefore, let us start with the simplest switching requirements and progress through a variety of commonly encountered switching applications. At the request of the Navy, SAE A-2R subcommittee accepted the task to prepare a draft of a relay applications
manual for triservice military considerations --- a task that has not been completed, but is still being pursued.

\section*{Some Factors Affecting Switching Performance}

Tables I through VII list various switching considerations such as type of load, power, contacts, load level, and the switching function itself lon-off, load trasnfer, reversal, etc.). These concepts bear directly upon the typical basic circuits that follow and these in turn bear on ultimate system reliability and trouble free life. Relay selection must satisfy the switching requirements and not the other way around. Sometimes the circuit must be modified to fit existing relays while still retaining the basic circuit logic. In addition to the above, of course, must be added environmental considerations, gas pressures, contaminants, shock vibrations, etc., but only the "electrical" aspects will be treated at this time.

Typical Switching Circuits and their required relay design capability:
The simplest circuit is shown in Figure 1, ON-OFF DC control from the same source whether relay is single or multipole.

\section*{CAUTION}

THE TYPE OF LOAD (TABLE I) CAN MATERIALLY AFFECT THE RELIABILITY OF THE RELAY OPERA. TION. TUNGSTEN LAMP LOADS FOR EXAMPLE, MAY be Resistive but they are also non-linear AND SUBJECT THE CONTACTS TO HIGH INRUSH CURRENTS \((12\) TO 16 TIMES THE STEADY STATE VALUE) THAT MAY WELD IMPROPERLY SELECTED RELAY CONTACTS BECAUSE CONTACTS BOUNCE UPON CLOSING JUST WHEN CURRENT IS MAXIMUM. TO UTILIZE A RELAY TO SWITCH TUNGSTEN LAMP
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
TABLE I \\
Types of Load
\end{tabular} & TABLE V ON-OFF Switching \\
\hline Resistive Inductive Capacitive Motor Lamp & \begin{tabular}{ll} 
DC Power Source & Single \\
DC Power Source & Multiple (e.g., different voltages) \\
AC Power Source & Single Phase \\
AC Power Source & Single Source \\
AC Power Source & Polyphase, single source
\end{tabular} \\
\hline \begin{tabular}{l}
TABLE II \\
Type of Power
```

DC
AC - (Frequency)

```
\end{tabular} & \begin{tabular}{cl} 
AC Power Source & \begin{tabular}{l} 
(single and/or polyphase loads) \\
Polyphase, two sources \\
(not transfer) \\
Same Frequency
\end{tabular} \\
AC Power Source & \begin{tabular}{l} 
Different Frequency \\
Six Phase uncontrolled frequency
\end{tabular}
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
TABLE III \\
Loading Factor (Percent of Contact Rating) \\
Low Level (Dry Circuit) \\
Intermediate Loading (minimum current) \\
Full rated load \\
Rupture (Fail-Safe requirement)
\end{tabular}} & \\
\hline & \begin{tabular}{l}
TABLE VI \\
Load Transfer
\end{tabular} \\
\hline \begin{tabular}{l}
TABLE IV \\
Contact Type \\
SINGLE BREAK CONTACTS
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
Grounding DC load when off Grounding AC load when off Single Phase \\
Polyphase \\
Transfer of load between two DC sources \\
Transfer of load between two AC phases of some AC source Transfer of load between unsynchronized single phase AC sources \\
Transfer of load(s) between two unsynchronized polyphase AC sources
\end{tabular}} \\
\hline \begin{tabular}{ll} 
Form A & Normally Open \\
Form B & Normally Closed \\
Form C & Transfer (break-before-make) \\
Form D & (make-before-break) \\
Form K & (Center-Off)
\end{tabular} & \\
\hline DOUBLE BREAK CONTACTS & TABLE VII \\
\hline \begin{tabular}{ll} 
Form \(X\) & Normally Open \\
Form \(Y\) & Normally Closed \\
Form Z & Transfer (break-before-make) \\
Form & (make-before-break) \\
Form & (Center-Off)
\end{tabular} & \begin{tabular}{l}
Motor Reversal \\
Reversing DC motor \\
Reversing one phase of \(2 \varnothing\) motor
\end{tabular} \\
\hline FACTORS AFFECTING SWITCHING PER FORMANCE & Reversing two phase of three phase motor \\
\hline
\end{tabular}
FIG. 1 ON-OFF SWITCHING 28VDC
TABLE V


FIG. 2 ON-OFF SWITCHING 115VAC Single Phase, Single Source TABLE V

LOADS, THE DETAIL SPECIFICATION SHEET MUST SPECIFY THE CURRENT VALUE OF APPROXIMATELY ONE-EIGHTH THAT OF THE RELAY RESISTIVE CUR RENT VALUE. SIMILAR DERATING APPLIES TO MOTORS WHICH NOT ONLY HAVE HIGH IN-RUSH, BUT ARE INDUCTIVE WHEN DISCONNECTED. FIGURE 1A SHOWS ONE METHOD TO SAVE CONTACTS WHEN SWITCHING LAMP LOADS.


Figure 2 shows circuitry for ON-OFF switching from a single-phase, single AC source, but introduces "something else".

\section*{WARNING AND CAUTION}
in accordance with requirement 1 OF MIL. STD-454 (AS NOW SPECIFIED IN MIL-E-5400, FOR EXAMPLE) PERSONNEL MUST BE PROTECTED FROM THE FATAL ELECTRIC SHOCK RESULTING FROM INTERNAL FAULTING IN A RELAY. THE RELAY CASE MUST EITHER BE GROUNDED OR BE INACCESSIBLE TO PERSONNEL WHENEVER EQUIPMENT IS IN OPERATION. THIS INCLUDES TESTING AND SERVICING. THAT GROUNDING THE CASE IMPOSES NEED FOR ADDITIONAL RELAY CAPABILITY (e.g., ADDITIONAL INSULATION) TO PREVENT ARC-OVER TO THE CASE (INTERNAL FAULTING) DURING SWITCHING IN THE PRESENCE OF AN ARCING CONTACT HAS BEEN COVERED AT OSU/NARM CONFERENCES SEVERAL TIMES SINCE THE HAZARD

WAS FIRST RECOGNIZED BY MR. D. SAEWERT OF MOTOROLA IN 1958.2 CONSIDERING THAT MANY RELAYS BECOME AUTOMATICALLY GROUNDED WHEN MOUNTED, MOST DETAIL SHEETS SHOW GROUNDED CAPABILITIES. CAUTION MUST BE EXERCISED WHEN SELECTING RELAYS FROM CATALOGS LISTING VALUES WITH CASES UNGROUNDED, WHICH PRACTICE LEADS TO RELAY MISAPPLICA. TION AND NEEDLESS CATASTROPHIC FLASH OVER FAILURES. THE MILITARY HAVE ADDED THE AC RATINGS WITH GROUNDED CASES AND IT IS UPON THESE VALUES THAT THE LATEST SERIAL NUMBERS MEANT FOR EQUIPMENT DESIGNS THAT QPL IS GRANTED. NEW MILITARY REQUIREMENTS ONLY ESTABLISH THE NEED OF DESIGNS TO EXCEED THE EXISTING MILITARY STANDARDS; SUITABLE DETAIL SHEETS WILL FOLLOW. IMPROVED DESIGNS PERMIT INTERNAL INSULATION TO BE ADDED TO THE EXISTING RELAY CONFIGURATIONS THUS PREVENTING ARC OVER BOTH BETWEEN POLES AND TO CASE. FOR EXAMPLE, MS27218 IS ESSENTIALLY SIMILAR TO MS25267 EXCEPT THAT INSULATION BARRIERS HAVE BEEN ADDED BETWEEN CONTACTS, THEREBY ISOLATING THE POLES OF A POLYPHASE CIRCUIT. IT WILL DO ALL THAT THE FORMER WILL DO AND NOT FAIL WHEN SWITCHING POLYPHASE "115/200 VOLT" CIRCUITS.

\section*{WARNING}

SWITCHING GROUND - PLACING THE RELAY CONTROL CONTACT IN THE GROUND LEAD IS A VIOLATION OF REQUIREMENT 1 OF MIL-STD-454.9 GRANTED IT IS STANDARD TELEPHONE PRACTICE TO SWITCH GROUND WHERE THE VOLTAGES DO NOT EXCEED 48 VOLTS, AND THEREFORE PERMISSIBLE UNDER THE NATIONAL ELECTRICAL CODE. BUT THIS DOES NOT APPLY TO HIGHER VOLTAGES. EVEN 28 VOLTS ON A WET AIRCRAFT CARRIER DECK CAN BE HAZARDOUS. BESIDES BEING A PERSONNEL HAZARD AT THE HIGHER VOLTAGES, SWITCHING GROUND CAN CAUSE MANY A MALFUNCTION. IN HIGH IMPEDANCE CIRCUITS, FALSE OPERATION OCCURS BECAUSE OF LEAKAGE TO GROUND AND THIS ACTION CAN BE PERILOUS IN A WEAPONS RELEASE SYSTEM WHERE CONTROL LEADS PASS THROUGH MANY CONNECTORS OR MAY BECOME GROUNDED THROUGH WEAR AND TEAR OR ENEMY ACTION. THEREFORE, ONLY
"HOT-LEAD", FAIL-SAFE SWITCHING CIRCUITS ARE CONSIDERED IN THIS DISCUSSION. 4

\section*{Polyphase ON-OFF Switching}

In addition to the different types of leads (Tables I and III), it has been long recognized in certain areas but not in others, that polyphase switching imposes additional pole to pole stresses. Conditions will only become more severe as higher voltage aircraft. systems emerge, e.g., 240/416V. Military relay specifications and drawings include the polyphase requirements and so, too, should the relay manufacturers' drawings. These often list a current value without reference to voltage or type of load. In many instances this value is for 28 VDC resistive loads and is greater than for other conditions. Table \(V\) lists some of the more typical applications of relays for which Fiqure 3

is one, covering ON-OFF switching of a polyphase circuit, where the voltages between poles require that the poles be isolated whether by insulation or adequate spacing. The dielectric test voltages on the detail specifications are so rated when polyphase application is intended.

\section*{CAUTION}

THREE SINGLE PHASE LOADS ON DIFFERENT phases of the same source require the same ISOLATION AND THREE PHASE CAPABILITIES AS A SINGLE THREE PHASE LOAD.


Figure 4 illustrates another potential relay stress condition. Even if there should be sufficient dielectric spacing between contacts to handle each three phase power source separately on adjacent contacts, two unsynchronized sources can be directly out of phase where two adjacent contacts in the relay are supplied by different sources. At the time of this writing no QPL'd military standard six pole relay rated for \(115 / 200\) volts exists. MS25269, for example, is intended for single phase 115 volt switching and must not be used for polyphase. Although both MS27420 and MS21987 have been cancelled for lack of QPL sources, the use of polyphase on relays rated for single phase, is Russian Roulette. When the firing conditions become coincident, catastrophe strikes. Both MIL-R-5757E and MIL-6106F recognize this potential failure mode.

\section*{Transfer Switching, General (Table VI)}
"Transfer switching" can take several forms. It can involve (a) the transfer of a power source between different loads, or (b) the transfer of loads between different sources. The transfer of power between different loads is discussed first, being the less demanding.

Transferring power between loads is essentially "ON-OFF" switching. Where one load current is near the contact rated value and the other load is in the intermediate area (minimum current), switching failure problems (Table III) arise. These are explained under that heading.

\section*{Polarity Changing}

Another common use of the transfer contacts that creates

commonly unrecognized switching problems \({ }^{3}\) is the reversal of connections or polarity to a load as in Figure 6B, and 6A and 7B. Many small light, fast acting relays have a lower

\section*{Some Common Misconceptions Regarding Relays}
1. Dielectric test voltages do not "specify the relay's ability to withstand rated voltages and transient voltages that may be imposed during switching." Dielectric tests are conducted under static conditions in the absence of both switching and arcing. 13
2. Catalogs list \(A C\) voltages and currents for relays with ungrounded cases. Such usage does not comply with Requirement 1 of MIL-STD-454, nor is it in accordance with Military detail specifications.
3. "Operate values" may be determined properly at \(25^{\circ} \mathrm{C}\) - Military specifications require compliance over entire specified temperature range for pickup, dropout, operate and release times with nominal coil voltages. Even the specification values are not worst case values.
4. Water bubble test if "one of three hermetic seal tests". It is not sensitive enough by itself ( \(1 \times 10^{-5} \mathrm{cc} / \mathrm{sec}\) ) and is intended to detect gross leakers only. Additional tests must be imposed. See Myths.
specified dielectric test voltage across the open contact than between poles - e.g., crystal can relays are tested at 1000 volts pole to pole, but only 500 volts across open contacts, and TO-5 relays are tested at a mere 125 volts. These lower values should suggest to the engineer that the internal air

gap or amount of travel is short, and it is this short distance that cuases many transfer problems. The smaller the relay, the less the dielectric test voltage and the smaller the gap. TO- 5 relays, for example, have extremely small air gaps and even at 28 volts under load switching, an arc can be drawn across the contacts where both stationary sides are connected. Despite what has been said and written at this symposium in the past, the dielectric test voltages do not " 'specify' the relay's ability to withstand rated voltage and transient voltages that may be imposed during switching." \({ }^{13}\) The dielectric test voltages are static test voltages applied in the absence of both contact motion and arcing. Uncontrolled flash over without current limiting resistance can be devastating, the same as flash over to


Misapplication, unless relay is rated "115/200 VAC" i.e., 3 Phase (Relays rated "115 VAC" are for 1 phase only) e.g. MS25269 or MS25329
grounded case. Small multipole relays with tight tolerances and short contact travel can actually transfer one set of contacts before another with the result that one set will make before the other breaks. This results in a condition that can short circuit the power input of Figure 7B. (See also paralleling contacts.) Circuit designers must recognize that it is neither practical to adjust and maintain contacts to make and break simultaneously nor do the specifications require it. One contact set will be ahead of the other and the relative amount of displacement depends a great deal on the size and configuration of the relay as well as the
intended use and amount of armature travel. The smaller the relay the more difficult it is to adjust and maintain operation during the useful life of the relay.


\section*{Load Transfer Hazards (Table VI)}

Figure 8 illustrates a common typical switching hazard. When an inductive current wave form is interrupted at the right point, an arc can ionize the gas in the air gap and if air gap is small the arc will be sustained. Where the frequency exceeds the ionization decay time, and the voltage wave rises, the arc may continue and with no means for selfextinguishment such as in a horn gap lighting arrestor. In a horn gap, the heat of the arc causes it to rise and as the electrodes diverge the arc is extended until it goes out. Once an arc is broken it does not restrike because the original dielectric breakdown resistance has been restored as soon as the air is de-ionized. Relays are not built to be so fortunate.



FIG. 9 LOAD TRANSFER BETWEEN PHASES 115/200VAC Single source, Polyphase

TABLE VII
Figures 9 and 10 are variations of Figure 8, but the voltage potentials are greater and so are the number of relay failures. Failures that are predictable as going to happen eventually but as in Russian Roulette the particular occasion is not. It occurs everytime the AC voltage waves are interrupted at the right point, and in some instances, half the chambers are loaded.

\section*{MISAPPLICATION CATASTROPHIES}
"Technically Unsuitable" for the Application Failure of 10 Relays for On-Off Control of \(\mathbf{3 0}\)



MS25271 Type "before and after' three phase power selection (load transfer between ac sources)

Relay rated " \(115 / 200\) " volts or 200 volts pole to pole (see barrier strip) but only 115 volts across open transfer contacts.

Load Transfer Between Different Sources (Table VI) Figure 11 shows DC sources.

In the preceding AC figures, transfer was between different phases of the same source. Figures 12 and 13 show individual two-position relays used to transfer between different sources. In the case of AC supplies, whether single or polyphase, if the source voltages are \(180^{\circ}\) out of phase, twice the phase to neutral voltages may appear across the transfer contact. Once again it is Russian Roulette with loaded chambers. When the arcing starts between supplies, insulation destruction can cause shorting between phases of the same supply. The contact air gaps and the speed of operation during transfer must be great enough not to transfer the arcs.

FIG. 11 LOAD TRANSFER BETWEEN SOURCES 28VDC TABLE VI


FIG. 12 LOAD TRANSFER BETWEEN SOURCES Dual, 3 Phase 115/200VAC
TABLE VI

\section*{Neutral vs. Polarized Bistable Relays}

The diagrams show single coil two-position neutral relays, but the contact gap and other isolation problems are the same for polarized bistable, double biased, relays (or "magnetic latch" types as they are commonly called.)

\section*{Two-Position vs. Three-Position Relays}

In the past, aircraft power source selection was frequently done with two-coil center-off transfer relays. Here two air gaps exist between the different power sources and flash-over has not been a problem. \({ }^{3}\) With the increase of electric power and the number of aircraft systems, the use of two position relays for load transfer between power sources has multiplied, especially in the smaller relay


FIG. 13 PHASE WINDING REVERSAL TABLE VII
sizes. Such applications have become of more and more concern to the Naval Air Systems Command, particularly where flash over occurs between unsynchronized AC power sources. Where such applications are contemplated, both MIL-R-5757E and MIL-R-6106F include testing provisions to demonstrate that relays are technically suitable, and the MS sheets to the letter specification have been recently revised to show the transfer rating if it exists. (See FailSafe.)

\section*{Closed Circuit (Fail-Safe) Principal}

The closed circuit principal relates to fail-safe operation. In other words, a circuit must be closed and continuously energized for normal operation. If either the control circuit or if one of the contacts controlled thereby, fails, then the emergency condition should be established. Thus, if power fails, and it is necessary to remember what circuit condition existed before the failure, a latch relay may be suitable for the memory feature only, but not for transfer
to emergency configuration because it requires electrical power to "unlatch" a latching relay and this circuit may malfunction. If a relay is electrically latched over its own normally open contact, however, any circuit interruption to the relay coil releases the relay and it will not pickup until the proper sequence of events take place to reestablish its self-holding condition. The "fail-safe" criterion has been met by means of the closed circuit principle.

FIG. 14 RECOMMENDED FAIL-SAFE CIRCUIT


CAUTION
Contacts must be rated for "load transfer" between unsynchronized ac scources. (Both supplies may be on before relay picks up to assume normal conditions.)

NOTE:
30 loads should be treated similarly.

\section*{Latch-Relay (Not fail-safe)}

Latch relays whether they be mechanical or magnetic require control power to "unlatch" or "reset" the relay. Whether the relay coil shorts, or opens, or whether the external coil circuit opens or shorts, the results are the same; namely, the relay cannot be released from its latched condition. Therefore, as a safety-of-flight requirement, circuits involving flight operation must not use latch relays. For example, primary power circuits should use energized neutral relay to establish the normal configuration and must relax into the emergency configuration.

\section*{Fail-Safe Transfer}

It is common "failsafe" closed circuit railway signaling practice to transfer highway grade crossing signal controls from the normal AC power sources to the DC standby batteries in event of primary power failures. In other words the fail-safe concept is to apply energy to a neutral two position relay under normal operating conditions and to make the transfer to standby power in the emergency configuration without power on the relay coil. The same reasoning should apply to aircraft. Most general purpose relays are not designed for this type service but sometimes are erroneously used in this manner. Both the military and industry are now using special wide gap relays where the isolation between sources is adequate. (See photographs.)

\section*{Switched Energy}

If the energy is low, ionization and arcing may not occur. This means that the relays have resisted failures and switched as required even where the voltage may have been higher

than the intended application design. Success is based on the currents being exceedingly small and therefore, so is the total energy. At the other end, where the currents may have been large while the voltages were low catastrophic arc over has not occurred because once again the total energy has been low. In fact three phase 115/200 volts circuits have been switched successfully by some relays that did not incorporate barriers, but once again the current and energy levels were low. The margin of safety before failure, however, is not known and only the fact the energy is low explains why there have not been more failures when switching three phase. It is not, however, to be recommended - certainly not without exhaustive testing under operating conditions.

Still another aspect of switched energy involves the law of conservation of energy - see Arc Suppression.

\section*{Frequency Effects}

With DC, once an arc is established across contacts that are no longer in motion, there is nothing to extinguish the arc until parts of the relay are destroyed. With AC, as the frequency increases from zero, some interesting effects occur. Assuming the contacts separate at a reasonable speed and open sufficiently far enough, then at sixty hertz as the voltage goes through zero, arc interruption can take place. Inductive loads at this frequency are usually more severe than at 400 hertz. Frequently therefore, contacts are rated at lesser current values for inductive loads than for resistive loads and at lower values for 60 Hz than for 400 Hz inductive loads. Both 400 and 60 Hz inductive load values are now being added to the detail sheets for both MIL-R-5757 and MIL-R-6106. The problem, however, is not as simple as the above might be interpreted. As the frequency increases, the voltage may build up again within the same contact movement so that before the ionization decay is exceeded, restrike occurs as a result of the current to voltage phase lag. Once again the contacts suffer and once again as conditions change, so do the results. An ironclad rule regarding frequency and load cannot be made, but the effects of contact separation speed must not be overlooked.5, 15

\section*{Arc Suppression}

Aside from "rfi" considerations, there are other reasons for arc suppression as indicated under "Switched Energy" where the law of conservation of energy was mentioned, Lenz's law follows indicating that a voltage will develop of sufficient magnitude so as to maintain the current flow that existed the instant the contacts start to open. The energy must be dissipated somewhere. If arc suppression is not permitted then the energy is dissipated across the contacts, and they suffer. In the past for inductive loads MIL-R-6106 relays were rated at \(1 / 5\) the resistive operations. Where possible, inductive loads should have arc suppression added, but a compromise may become necessary in the case of contacts controlling relay coils. Arc suppression tends to lengthen the relay's release time while the energy dissipates through the coil resistance and the suppression circuit.

Some applications cannot tolerate a delay in release time. Also contact life may suffer from delay in extinguishing an arc as contacts separate more slowly

\section*{Minimum Current and Contact Contamination}
"Minimum current" switching problems have been recognized by the military for more than a decade \({ }^{16}\) and many
military relays have had the long standing test requirement as applicable. At nearly dry circuit conditions energy and voltage are too low to create arcing problems in an hermetically sealed environment. In most cases the contact resistance at microamperes does not represent an intolerable voltage drop. What is acceptable at dry circuit, however, is definitely not at the intermediate or "minimum current" levels, and users must learn to appreciate this distinction.

At full rated contact loading there is sufficient arc energy to carbonize or depolymerize the absorbed hydrocarbons on the contact faces, especially in hermetically sealed relays. While arcing contributes to the information of contaminants, at full load the energy is also sufficient to burn them away. One application survey concluded that \(85 \%\) of contact loads were at less than rated values and most of these in the so called minimum or intermediate current area of switching.

At the intermediate levels, - 50 MA to 300 MA more or less, - the story is different. The critical level of current varies somewhat with the type of load, but essentially arcing in an enclosed atmosphere carbonizes or depolymerizes the absorbed hydrocarbons on the contact faces and these contaminate the contacts. Because of the low current levels there is insufficient energy to clean the contacts and so relays that worked in the breadboard stage may fail in service after repeated operations have allowed these contaminations to build up. Failures increase with time and the number of operations which frequently fail in the range of 5,000 to 10,000 operations.

The reliable sealed relays are built with materials that will not off-gas and pains are taken during their fabrication to see that none is introduced. These relays may cost a bit more to make, but their ability to give reliable switching over prolonged periods of time is a military must and a contractor's responsbility to incorporate in his equipment. 9

\section*{Non-Standard Relays and New Potential Sources for Standards}

Military standards for relays provide the minimum accept able design requirements of quality and workmanship to encourage maximum competition and eliminate, insofar as it is possible, restrictive features which might limit potential producers. Before new designs are considered for any application, available data; tables, charts, etc., such as those contained here (see Appendix) should be reviewed. A manufacturer's claim of "complete interchangeability" with existing designs should always be verified before inclusion in military equipment as "technical suitable". An MS part can be misapplied, so if the application dictates it, a non standard relay may be the order of the day. If it is, however, then the procuring agency's permission should be obtained for the specific application and should be properly documented thereto.

\section*{Paralleling Contacts}

Paralleling contacts can be beneficial under special conditions, but under other conditions it can prove just the opposite and defeat the very purpose for which paralleling was undertaken. \({ }^{11}\)
a. Relay contacts should not be paralleled for the

purpose of increasing the switching capacity. One contact will invariably make before other(s) and bear the full brunt of input surge, and one contact will also suffer under interruption conditions. Progressively, one contact will fail and then another. Adequate contacts must be used in the first place.
action. (NOTE: Not all relays OPL'd to the same drawing have identical contact structure and the dif ference could be all important to some applications.) For instance, some crystal can relays have bifurcated contacts and others do not, even from the same manufacturer in the same housing.

DO NOT USE AT 10A.


TWO 5 AMPERE CONTACTS

10 A


10 A.


\section*{CAUTION}

MORE THAN ONE MILITARY SPECIFICATION IS RESTRICTED TO 10 AMPERES MAXIMUM AND CONTACTS SHOULD NOT BE PARALLELED FOR GREATER LOADS. USE THE PROPER RELAY SPECIFICATION.12. 9
b. Relay contact should not be paralleled for redundancy on the assumption that they will work in unison. The contacts will not make and break simultaneously and for small relays such as crystal can relays where contact travel is small, one contact may easily transfer before the other breaks. Instead of a break-before-make (form C) operation, a make-before-break contact (form D) operation will result. Allowance for contact operation changes due to wear, shock, vibration, and temperature effects must be considered. 11


\section*{FIG. 18 FORM D MAKE-BEFORE-BREAK}
c. Relay contacts may be paralleled, however, for redundancy, e.g., in minimum current applications where contact integrity is important. BUT contacts must not be paralleled if the circuits are critical and must maintain break-before-make operations (see step b). Bifurcated contacts are frequently used so as to provide for reliable restrained non-synchronized operation. i.e., unwanted make-before-break (form D)
d. Relay contacts may be paralleled to reduce the effects of contact bounce and vibration, BUT the same cautions expressed above apply. Where, contacts have different natural vibration frequencies the net effect during cohtact bounce is for less total open circuit time than for each contact separately. Some relays are designed having bifurcated contacts of unequal widths just so that the resonant frequencies will be different and, therefore, have different critical vibration frequencies.


FIG. 19 BIFURCATED CONTACT

\section*{Military Specifications and Standards - Changes To:}

Minimum current, and grounded relay case requirements have been a part of a number of military relay specifications and drawings for some time. Greater emphasis is now being applied to the details of these requirements for reasons of clarity and to, avoid misinterpretation. For replacement purposes only, old designs are retained. For new systems designs wherever possible requirements are being standardized and made specific. Both the military specifications, MIL-R-5757 and MIL-6106 and their related drawing titles, are being or have already been changed to incorporate the requirements of the foregoing circuits and the features of Table I through Vill. Thus wide gap relays for load transfer applications are now being processed as Military Standards and will appear shortly. Meanwhile, nonstandard relays should be used where application dictates.

\section*{Suitable Relays}

When the wrong relay is used, it fails as shown in the attached illustrations. What then are the correct relays for some of the foregoing circuits? Typical are the following 4 pdt 5 and 10 ampere relays showing their features and intended usage. As mentioned before the relay with added features can be used in place of the one with lesser features but not vice versa. In some cases, retrofit should be considered. In the future, retrofit may become mandatory. (Pages 10 \& 11).

\section*{Misapplication Circuit Correction, - Example of}

Crystal can relays have limited switching capability for \(A C\) because of the arc over to case problems. \({ }^{2}\) They are not assigned motor ratings by the military, yet are often so used and fail from welded contacts. Therefore, on two counts the use of crystal can relays to reverse one of the two phases of a motor as shown, is bound to result in failures. Instead of putting the phase shifting amplifiers ahead of the relays and motor field, the crystal can control relays should be at the input of the amplifier while the output is now continuously connected to the motor field. The relays now operate with in their design capabilities and without change in the components. Fig. 21.

\section*{Form D Contacts}

The "make-before-break" contact feature of Form D contacts is attractive for missiles and similar situations where the equipment must be transferred from external


FIG. 20 CONTINUITY OF TRANSFERFORM D CONTACT
(ground) supply to its internal power without circuit interruption. This can be done on DC with ease by using series blocking devices in the lead of each power source so that excessive currents will not flow where power sources are paralleled. In the case of AC, transfer is not so easy. The sources must be synchronized and be in phase, otherwise there will be all manner of fire works. Proper selection includes proper circuit design. Fig. 20.

\section*{IDEP (Data Availability Through IDEP Center)7}

One way of reducing relay failures is the use of IDEP, Interagency Data Exchange Program. Users, for example, can review what other users have found that contributed to relay failures and fur ther they can determine what relays were subjected to which tests and to what extent by other users. In addition, they can pick up useful information as to what not to use certain relays for and what may lead to


FIG. 21 MISAPPLICATION CIRCUIT CORRECTION
failures throungh misapplications which are to be avoided at all costs. Information for IDEP is compiled from private industry contractor members and government agencies such as Air Force, Navy \({ }^{7}\). Army, NASA and CAMESA (Canadian). See Appendix for addresses and explanation.

\section*{Hazards of Surplus Relays}

The use of relays from surplus houses may appear attractive from the standpoint of quick delivery and price, but prove disastrous in the end. First, many government contracts prohibit the use of surplus relays, and with good reason. To become surplus, relays are usually of older designs many of which are INACTIVE FOR NEW DESIGN. They were built before the minimum current requirement was mandated. Consequently, they have lain on the shelf and become selfcontaminated from off gassing. In all probability, they are to an older version of the relay specification when requirements were less stringent. And last but not least, they may have been reworked and had "forged" nameplates added to represent them as updated devices. \({ }^{17}\) FBI should be notified.

\section*{Graphical Symbols}

Relays should be shown graphically in accordance with United States Standard Y32.2 (1967) which has superseded MIL-STD-15-1 as of 1968. Contacts should be shown so as to be attracted towards the coil symbol when energized. System Wiring Diagrams should show relays in de-energized positions unless noted contrarywise (i.e., 3 position relay contacts should be centered and two position contacts should not.) 19

\section*{Polarized Relays}

Polarized relays should also follow Y 32.2 practice as was extensively treated at last year's relay conference \({ }^{18}\) by the military.

\section*{RECOMMENDATIONS}

To reduce the possibility of misapplication and thereby increase the reliability of any electric system, be it for military aircraft, missiles, or support systems the authors make the following recommendations:
1. Consider the whole system requirements as to (a) environment, (b) worst possible conditions, (c) power failures, (d) overloads, (e) types of loads, (f) switching functions, ( g ) etc. The last thing to think of is a particular specification and equally to be avoided is a preconceived idea as to size and shape of a relay. \({ }^{12}\) A relay must be "technically" (i.e., functionally) suitable and should be selected from a qualified source. Anything less will compromise performance.
2. Use the attached list in your checking (Table \(\mid \mathrm{X}\) ).
3. Consult the selection charts in the Apperidix as a starting guide and develop your own to maintain current data as new requirements evolve. (The mili-
tary specifications (e.g., MIL-R-6106F) are scheduled to include selection guides as a part of the document.)
4. Consult such SAE documents as AIR 875 - "Comparison of Government Relay Specification". 8 (This document will be updated and reissued to reflect specification changes such as " \(F\) " revision to MIL-R-6106 and the "E" revision to MIL-R-5757.
5. When in doubt consult with reliable relay manufacturers who will provide relays supported by suitable test data to assure that items produced will satisfy the requirements for the specified applications.
6. Avoid wishful thinking. Verify that the relay fits the application. Do not assume that contact ratings are universal in nature. They vary with loads.
7. Do not accept the first solution that may work. INVESTIGATE further. There may be a simpler, better and more reliable way of accomplishing the switching function.

\section*{CONCLUSIONS}

All too many relay failures result from misapplication. Misapplication often results from the design engineer's failure to appreciate the nature of the application switching requirements. Another fault is the engineer's attempt to save space and weight by using smaller relays without suitable safeguards such as proper circuit design or necessary internal isolation. The laws of physics do not change just because a relay acquires a military association. To select the proper relay circuit designers and component selectors must be familiar with the following: (a) the different relay specifications; (b) the significant features of the detail sheets; (c) minimum current; (d) parallel contacts; (e) relay case grounding; ( f ) predictable catastrophic failures; ( g ) arcover; (h) effects of load types; (i) effect of frequency; and (j) the switching mode to assure that the item used will not be applied in a manner for which it was not intended. Appendix data should prove most useful towards these goals. To do otherwise is like discovering that sirlion steak was available from the kitchen after you've finished eating the hamburger you ordered from the menu. (The steak may cost more, but you know what you are getting without embarrassing after effects.) Some aircraft have power plants comparable in capacity to those of a destroyer. If the skipper of a destroyer loses power through some relay fault, he loses headway and hence steerage and thereby becomes what is known in the vernacular as "dead in the water". The pilot of the aircraft overhead who loses power from a misapplied relay might find himself and all his passengers and crew "dead in the water". Surely such relay misapplication penalizes the skippers disproportionately. \({ }^{14}\)

\section*{SUMMARY}

More than a decade ago Oklahoma State University Professors C. F. Cameron and D. D. Linglebach as consultants to the Air Force's "Electronics Components Handbook" 6 opened the section on relays as follows:

\footnotetext{
"Of all the component parts employed in electronic equipment, relays are probably the least understood, least
}
1. MILITARY STANDARD PARTS SHOULD BE USED WHERE TECHNICALLY SUITABLE -(MIL-STD-143). THEY MUST BE LISTED ON A QUALIFIED PRODUCTS LIST (QPL); BE SUPPORTED WITH CERTIFIED DATA AS EVIDENCE, (SEE APPENDIX EXAMPLE), THAT ITEMS PRODUCED WILL MEET THE REQUIREMENTS OF THE SPECIFICATION. 9
2. THE USE OF MILITARY STANDARD PARTS DOES NOT GUARANTEE GOVERNMENT ACCEPT. ANCE - (MIL-STD-143). When misapplied or unsuitable for the application, the user is held responsible. 9
3. STANDARDIZATION FOLLOWS SUCCESSF UL APPLICATION. Normally a Military standard or detail specification sheet should never be issued where a requirement has been justified and met. This establishes a source. Once established, the military document can be issued. Unfortunately. MS's and detail specification sheets do exist without a qualified source. Therefore, verify QPL source before committing design. Military specification documents when issued specify the minimum requirements that must be met by prospective producers. e.g. MS27420 has been cancelled July 1969.
4. CLAIMS MADE BY PRODUCERS THAT ITEMS "MEET" or "EXCEED" MILITARY SPECIFICATION REQUIREMENTS ARE NOT TO BE CONSIDERED AS GOVERNMENT APPROVAL. Only Government issued letters of certification to a producer, stating specific items qualified, are authenic approval. It is not permissible to use these letters for advertisement. However, as verification that a producer is currently approved, when soliciting quotations, the prospective bidders should be requested to forward with the quotation a copy of the Government letter of approval. Since the Government issues Qualified Products Lists users should consult these publications for possible sources of items to be procured. Current Qualified Products Lists can be obtained by request from the Government activity referenced in the procurement specification. The user must also be aware of what the specification revision letter and amendment number represents, and remember there are different degrees of compliance, e.g., some crystal can relays are suitable for low level, others are not, yet both may bear QPL's to different serial numbers. (Not all serial numbers are for new design.) - Revised August 1969, see note. *
5. QUALIFICATION APPROVAL COVERS ONLY THE ITEMS SUBMITTED BY THE PRODUCER FOR QUALIFICATION. Appearance of a producer's name on a Qualified Products List is not to be construed that other items, being produced by the same manufacturer, are Government approved. See catagory II of MIL-R-5757E.
6. IT IS THE USER'S RESPONSIBILITY TO ASSURE THAT THE SYSTEM DESIGN MEETS ALL THE REQUIREMENTS - (MIL-STD-143). The Governmental contracting agency can insist on replacement and correction of engineering deficiencies at the contractor's expense. (Caveat Emptor and Venditor). \({ }^{9}\)
7. WHEN IT BECOMES NECESSARY TO USE NON-STANDARD PARTS TO MEET EQUIPMENT REQUIREMENTS, APPROVAL TO DO SO MUST BE OBTAINED FROM THE PROCURING AGENCY (WR-62). A justification requires supporting evidence to substantiate the selection in accordance with the the order of precedences specified in MIL-STD-143.9
8. USE OF MILITARY STANDARD PARTS IN NEW EQUIPMENT. The fact that a part has been used in initially procured equipment does not mean that it should be used for subsequent procurements. As long as form, fit and function are assured a review of military specifications and standards, due to new documents or revisions to existing documents, make available interchangeable items for use in new procurements and new design - (see Appendix).
9. PERIODICALLY MILITARY STANDARD PARTS BECOME OBSOLETE FOR NEW EQUIPMENT DESIGN. Some military standard parts qualified in an older revision of the specification become obsolete and are superseded by new military standard items. When superseded the obsolete documents should include the appropriate status note (MIL-STD-32). Only the current military approved standards containing the new requirements should be used for new design - (see Appendix). e.g. M5757/10-151.
10. APPROVAL OF NON-STANDARD PART DOES NOT CONSTITUTE APPROVAL OF A SIMILAR ITEM BY ANOTHER MANUFACTURER. Although multisources are preferred each source item authorized must be documented and approved separately.
11. SIMILAR RELAYS WITH DIFFERENT MS NUMBERS ARE NOT INTERCHANGEABLE FOR ALL APPLICATIONS. Example, MS27218 can be used instead of MS25267 but not vice versa, MS27255, MS27400, MS27709, and MS27725, have significant differences even though all three are basically 4 pdt, 10 ampere relays with interchangeable mounting configurations available. (See Appendix.)

\section*{A NOTE OF CAUTION. Users should not accept unsubstantiated assurances that a product is undergoing OPL testing. There are cases on record where such claims have been made and two years later there was still no test data and no qualified source. Information related to current OPL status should be obtained from activity responsible for qualification shown on the Military Specification. CLAIMS BY PRODUCERS THAT PRODUCTS THEY MANUFACTURE BUT ARE NOT ON A QUALIFIED PRODUCTS LIST ARE "COMPLETELY INTERCHANGEABLE," WITH OTHER ITEMS BEING USED BY THE MILITARY, IS NOT ALWAYS TRUE. -ipso facto. Users must verify such statements with supporting data.}
*Note: As of August 1969, M4120.3 Standardization Manual has been revised. Advertising that product (relay) is QPL'd is permissible provided there is no implication that it is sole item QPL'd or that it is endorsed by U.S. Government.
standardized, least controlled by specification and most abused. Although there is no doubt that they come under the general heading of troublesome components, it is remarkable that their reliability record in military equipment is as good as it is."*

These statements have been repeated several times since at OSU/NARM symposia and elsewhere. Unfortunately, they are still true. We nope, however, that this paper will help reduce some of the abuse and aid in the understanding of relays.

A failed relay contact is often only the symptom and not the cause of the malfunction.
*The "'Standards Engineering" Dec/Jan '69, disagrees, saying data is available. True, but unless data is read, and followed relays will continue to be "least understood. etc."

\section*{REFERENCES}
1. NAVAIR 01-1A-514 Technical Manual - ''Design of Electric Systems for Naval Aircraft and Missiles" (Available to those with "need-to-know" from Commanding Officer, U.S. Naval Supply Depot, 5801 Tabor Avenue, Philadelphia, Pa. 19120). Section XI only - "Relays, Electromechanical" is available from the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, as catalog Number D217.14: EL2/CH @ \$2.75.
2. "A study of Discharge Transients in Relays with Grounded Cases." - C.P. Nunn, Sr., and R. Halbeck 1961 NARM Proceedings.
3. "Hazards in the use of Double-Throw Contacts" P.N. Martin, 1963 NARM Proceedings.
4. MIL-E-5400 Electronic Equipment, Aircraft.
5. "AC Contact Ratings, Effect of Power Frequency and Type of Load" - P.N. Martin - 1961 NARM Proceedings.
6. "Electronic Components Handbook" Volume 1 Electronic Components Laboratory, Wright Air Development Center (McGraw-Hill) 1957.
7. IDEP - Interagency Data Exchange Program - Navy Commanding Officer (Code E-6) Naval Fleet Missile Systems Analysis and Evaluation Group. Corona, California, 91720. Attention: IDEP. Office Phone. 714-736-5388.
8. SAE - Society of Automotive Engineers - Aerospace Equipment Division - J.G. Lippert - 2 Pennsylvania Plaza, New York, New York 10001 - Phone 212-594-5700. (NOTE: SAE A-2 Aerospace Electrical Electronic Equipment Committee (Chairman B.F. Varney, North American Rockwell) is American ISO (International Standàrdization Organization) representative for aircraft electrical equipment including relays.)
9. MIL-STD-143. Specifications and Standards, Order of Precedence for the Selection of:
"1.1 PURPOSE: . . . Requirements for . . . the use of documents stating applicability of specifications and standards for special applications are subject to contract provisions.
"4.1.1 TECHNICAL SUITABILITY: Items shall be selected from standards where such exist, but in every case must be technically suitable in every respect for their application... The use of a specification does not, in itself, assure the suitability of an item for any specific application.
" 5.2 USE OF SPECIFICATIONS, STANDARDS, OR DRAWINGS: Satisfactory operation of equipment procured under any specification, standard, or drawing is the responsibility of the contractor, and the use of such specifications, standards, or drawings listed for use by the Government requiring activity is in no way to be considered as guaranty of Government acceptance of the finished product" Electromechanical Design, June 1963 (Relay Facts).
10. MIL-STD-454. Standard General Requirements for Electronic Equipment.
11. IDEP Alert Number S6-68-01 (Paralleling Contacts) Applied Physics Lab, John Hopkins University Silver Springs, Maryland.
12. "A Systems Approach to Relay Specification" E.U. Thomas and J.V. Iverson, 1961 NARM Proceedings.
13. "Anatomy of a Relay Specification for Military Application" C.B. Knox, Jr., 1967 NARM Proceedings.
14. "Relay Facts" Electromechanical Design, June 1963.
15. Holm, Ragnar. "Electric Contacts Theory and Application".
16. Amendment 1 to MIL-R-1606B, April 1956.
17. IDEP Alert Number SMD-036 covers forged relays from a number of surplus houses. You are requested to notify the FBI if you encounter any. (See Appendix.)
18. '"Relay Industry Savings Resulting From Polarized Bistable Crystal Can Relay Header Standardization" George E. Fogleman (preparing activity for MIL-R-5757 and MIL-R-39016) and E.U. Thomas - 16th Relay Conference 1968.
19. Viz. Cover sheet "Basic Principles and Application of Relays" - Pollack (Rider Publications). 1962

\section*{Popular Myths Dispelled}
1. The water bubble test is not the criterion for hermetic seal. It is too insensitive to be suitable. \({ }^{13}\)
2. A dielectric test does not "specify the contact capability under transient switching conditions". - It is a static test in the absence of both switching and arcing. \({ }^{13}\)
3. Switching AC in the ground lead may save a relay, but it also constitutes a personnel hazard violating the National Electrical Code, MIL-B-5087 and requirement 1 of MIL-STD-454.

\section*{APPENDIX}

\section*{Index to Tabular Relay Data}

\section*{TABLE}

\section*{SUBJECT MATTER}

VIII
IX
\(x\)
XI
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX
XXI
XXII
XXIII
XXIV
XXV
XXVI
XXVII
XXVIH
XXIX

MI L-R-5757 Development (History)
MIL.R-6106 Development (History)
MIL-R-5757E (1968) Salient Features
MIL-STD-454, Requirement 57 Relays
Miscellaneous information
General Purpose and Established Reliability Specifications
MIL-R-6106 MS Dash Numbering Systems and Revision Letters -
Examples
Ground Support Power Supply Connections
Example of Relay Selection Chart (To be part of MIL-R-6106F
Amendment)
Similar 4 PDT, 10 Ampere Relays
Conditions Under which Qualification is Granted
MIL-STD-831 Chart Orientation
MIL-R-6106 New Tabular Format for Data - Example
QPL Sheet List - Example
SAE A-2R Committee
IDEP - Interagency Data Exchange Program - Explanation of and Service Offices
DoD (Depar tment of Defense) Policy Manual - Excerpts
Pertinent Relay Specifications and Documents (List)
Military Relay Program for 1969 - Depar tment of Defense
Federal Classifications and Descriptions
Some Abbreviations and Symbology Conventions - Comparison of
Standards - Examples of Coverage
Aircraft Electric Systems - Design Manuals and Comments
Organization Contributing to Relay Specifications
Phase Loss Detection
Circuit Tips
Letter Symbols • USA Std Y10.19
Relay Terminology Comparison
MIL-R-b75/ Wiring Diagrams
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{TABLE I - MIL-R-5757 DEVELOPMENT} & SPECIFICATION & DATE & TITLE \\
\hline \multicolumn{2}{|l|}{\multirow[t]{13}{*}{}} & \[
\begin{aligned}
& \text { MIL-R-5757 } \\
& \text { MIL-R- } 575 \text { (USAF) }
\end{aligned}
\] & \[
26 \text { Oct. } 1951
\] & \\
\hline & & MIL-R-5757B & \[
8 \text { May } 1952
\] & Relays, Armature (For Electronic and Communication Equipment) \\
\hline & & MIL-R-5757C & 26 July 1955 & Relays, Armature (For Electronic and Communication Equipment) \\
\hline & & \begin{tabular}{l}
Amend. 1 \\
MIL-R.57570
\end{tabular} & \begin{tabular}{l}
6 Sept. 1956 \\
20 Sept. 1960
\end{tabular} & \\
\hline & & & 20 Sept. 1960 & and Communication- Type Equipment.) General Specification \\
\hline & & Amend. 1 & 14 Jan. 1963 & \\
\hline & & Amend. 3 & 1 April 1964 & \\
\hline & & Amend. 4 & 18 March 1965 & \\
\hline & & MIL-R-25018(USAF) & 9 Dec. 1954 & Relays, Miniaturized, Hermetically Sealed, Airborne Equipment \\
\hline & & \begin{tabular}{l}
Notice 1 \\
Amend. 1 \\
Amend. 2
\end{tabular} & 21 Feb. 1958 12 Feb. 1958 14 Nov. 1958 & \\
\hline & & MIL-R-21093(SHIPS) & 10 March 1958 & Relays, Armature, General Purpose \\
\hline & & MIL-R-21093A(SHIPS)
MIL-R-83722 (USAF) & \begin{tabular}{l}
11 March 1960 \\
12 April 1968
\end{tabular} & \begin{tabular}{l}
Relays, Armature, General Purpose \\
Relay, Telegraph, Electro-Mechanical
\end{tabular} \\
\hline & & \begin{tabular}{l}
MIL-R-5757E \\
Amend. 1
\end{tabular} & 15 Nov. 1968 30 Dec. 1968 & Relays, Electrical (for Electronic and Communicationtype equipment). General Specification \\
\hline
\end{tabular}


TABLE III


TABLE IV

\section*{MIL-STD-454B Standard General Requirements For Electronic Equipment 1968 - June}

\section*{EXCERPTS}
5. DETAIL REQUIREMENTS

Requirement 1 Safety (Personnel Hazard)
Requirement 10 Electric Connestors
25 Electrical Power Source
57 Relays
58 Switches
60 Sockets, Tube Shields, Parts, and Tube Clamps

MIL-STD-454B

\section*{REQUIREMENT 57 RELAYS}
1. Purpose. The purpose of this requirement is to establish criteria for the choice application of relays.
2. Documents applicable to Requirement 57:
*MIL-R.5757 Relays (Electrical - Excluding Thermal - for Electronic and Communication - type Equipment), General Specification for
MIL-R-6106 Relays, Electric, General Specification for
MIL-S-12883 Socket, for Plug-In Electric Components, and Accessories, General Specification for MIL-R-19648 Relays, Thermal, Time Delay, Hermetically Sealed, General Specification for MIL-R-39016 Relays, Electromagnetic, Established Reliability, General Specification for
3. Low current relays (up to 10 amperes). Low current relays up to 10 amperes shall conform to MIL-R-5757. However, relay applications requiring high in-rush current capabilities (e.g., motor and controller functions) may be in accord with MIL-R-6106, as applicable.
4. High current relays. Relays used in high current applications shall conform to MIL-R-6106.
5. Time delay relays. Thermal time delay relays shall conform to MIL-R-19648.
6. Solid state electromagnetic relay assemblies. Solid state electromagnetic relay assemblies with an electromagnetic relay output shall conform to MIL-R-5757.
7. Established reliability relays. Established reliability relays shall conform to MIL-R-39016.
8. Reed relays. Reed relays shall conform to MIL-R-5757.
9. Relay sockets. When relay sockets are required, they shall conform to MIL-S-12883.

NOTE: Requirement 57 was prepared under Uniformity Project Group Task 71 of Aerospace Industries Association of America - Mr. L. T. Miller (BTL) EIA Coordinations inconjunction with ASG (Aeronautical Standards Group).
*E Revision title now reads, "Relays, Electrical (For Electronic and Communication Type Equipment), General Specification For." - November 1968.

TABLE V

\section*{Miscellaneous Information}
1. Existence of a military detail sheet or military standard does not imply existence of a qualified source. Before specifying a unit obtain current certification that a qualified source exists. NOTE: MS27420 drawing was released in 1965 but as of February 1969 no OPL source existed. (The MS was cancelled July 1969.)
2. Unless a Government certification of qualification can be produced MS Part Numbers should not be specified. Invariably quotations specify "MS" Part Numbers when they should have specified a nonstandard part.
3. The use of non-standard parts requires approval from the procuring agency. User approval must be sup. ported with sufficient data to insure that the requirements have been met to satisfy the specified application.
4. The practice of relay manufacturers quoting \(A C\) relay ratings, based on ungrounded relay case, without so stating, is common practice, but it is not in accordance with any of the general purpose relay specification requirements. Relay cases must be grounded to protect personnel from the fatal electric shock. (MIL-B-5708, MIL-STD-454, et al.)
5. Polyphase loads should not be used with multi-contact relays that are rated only " 115 " volts. A " \(115 / 200\) " volt rated relay must be used, e.g., MS27218 should be used for polyphase applications and not MS25267 (4 pdt, 5 amperes). (Nor MS25325 - the plug-in version.)
6. Transferring AC loads between different phases or between different power sources can lead to catastrophic failures. Only relays which specify power transfer ratings should be used.
7. Paragraph 3.1.1.3 (MIL-E-5400J) "Unauthorized use of Government designations. Parts which require qualification approval but have not received such approval, shall not be identified by MIL-type numbers or AN-part numbers."
8. "It has been reported that surplus relays have been offered and sold to the Military Aerospace Industry by relay wholesale houses with original labels removed and replaced by new labels indicating incorrectly that the relays were new and to the latest revision of the Military drawing and governing Military spec. In addition, instances have been uncovered where reworked used relays have been sold as new without the original manufacturer's knowledge or consent. Several manufacturer's relays are involved. A court order has been obtained restraining at least one wholesale relay house from relabeling as new surplus relays built to earlier versions of applicable specifications." - A-2R minutes of meeting January 1969.
9. A QPL'd item does not guarantee the purchaser a good product nor a "quality" product. It indicates that manufacturer at a given facility has made a product meeting specification requirements.
10. MIL-R-5757D. Part II, no longer valid. - of Catagory II of MIL-R-5757E.

TABLE VI
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & STD SPECIFICATION & ESTABLISHED RELIABILITY \\
\hline \hline 10 amperes and less & MIL-R-5757 & MIL-R-39016 \\
\hline 5 amperes and up & MIL-R-6106 & "ER versions \\
\hline
\end{tabular}

Contrary to some catalog data implication MIL-R-5757 does not deal with reliability.

TABLE VII
Dash Numbers for MI L-R-6106 '"MS' Detail Drawings
Over the years there have been a number of recommended systems for assigning dash numbers to individual detail sheets. In some cases the overall policy regarding detail dash numbers especially where items become computerized have over ridden the individual specification procedures which had evolved so that the system had to be abandoned for those. A few examples of the variations that may be expected are listed in the table below. The only safe procedure is to consult the applicable detail in every case.


TABLE VIII

\section*{Ground Support Power Supply Connections}

MS17793A (1968) Schematic Wiring Diagram (External AC Power Connector, Aircraft) (FSC5935) supersedes AND10462 and MS24441 (cancelled). This drawing shows external wiring of plug and indicates aircraft components with greatly simplified wiring. Preparing Activity - Naval Air Systems Command. Custodians: Army and Air Force. Drawing is marked "International Interest".


TABLE X
Similar 4 PDT, 10 Ampere Relays


TABLE XI

\section*{Conditions Under Which Qualification Is Granted}
"Qualified Products Lists (QPL) listing does not guarantee acceptance of the product(s) in any future purchase.
"QPL listing does not constitute a wavier of any requirements of the specification or the provisions of any contract.
"Qualification of the product applies only to the product manufactured at the plant which produced the sample tested. If extension of qualification is desired to the product as manufactured at any other of your plants, request for such extension should be made to this Headquarters with reference to this notification.
"New qualification tests will be required if changes are made in the materials or construction of the approved product unless previous notification has been received indicating that such changes have been approved by the activity responsible for qualification.
"The QPL, the notification of qualification, the results of tests, or other information relating to qualification, the results of tests, or other information relating to qualification shall not be circulated or referred to for publicity, for adver tising, or for sales other than those leading to ultimate use of the product by an agency of the Federal Government. Violation is cause for removal of the product from the list by the Government activity concerned. (It must be understood that the Department of Defense takes no issue with advertisements indicating that the manufacturer's product conforms to the requirements of a specification, on the assumption that the determination of such conformance is a responsibility of the purchaser. However, there is objection to reference in an advertisement to a statement of Government approval, or to the listing of a product on a Qualified Products List issued by a Government activity. To the public, such statements connote endorsement by the Department of Defense, which is contrary to departmental policy.)"

\section*{TABLE XII}

MIL-STD-831
28 August 1963
Military Standard Test Report, Preparation of
". . . Full page tables, illustrations, etcetara, shall be arranged so that the bottom of the table or illustration will be either at the bottom or at the right hand edge of the bound document."


SHEET

TABLE XIII
MIL-R-6106 MS Sheet New Format Data - Partial


NOTES, APPLICATION (Note provision for two inductive values.)
(1) Over temperature range.
(2) \(115 / 200 \mathrm{VAC}\) for 60 Hz ratings, absence of value indicates relay is not rated for 3 phase applications.
(3) Transfer load indicates relay suitable for transfer between unsynchronized AC power supplies at rating indicated.
(4) Dielectric rating may be improved by suitable insuration of terminals and wiring after installation.

TABLE XIV
Example of Official Specification QPL*

\section*{QPL-5757-00 SUPERSEDING (DATE) QPL-5757.00 (DATE)}

QUALIFIED PRODUCTS LIST
OF
PRODUCTS QUALIFIED UNDER MILITARY SPECIFICATION
MIL-R-5757
FSC 5945
(FEDERAL STOCK

RELAYS
ELECTRICAL (FOR ELECTRONIC AND COMMUNICATION-TYPE EQUIPMENT) GENERAL SPECIFICATION FOR**

This list has been prepared for use by or for the Government in the Procurement of Products covered by the subject specification and such listing of a product is not intended to and does not connote endorsement of the product by the Department of Defense. All products listed herein have been qualified under the requirements for the product as specified in the latest effective issue of the application specification. This list is subject to change without notice: revision or amendment of this list will be issued as necessary. The listing of a product does not release the supplier from compliance with the specification requirements. Use of the information shown herein for advertising or publicity purposes is expressly forbidden.

THE ACTIVITY RESPONSIBLE FOR THIS QUALIFIED PRODUCTS LIST IS THE NAVAL ELECTRONIC SYSTEMS COMMAND.
\begin{tabular}{lcccc}
\hline \begin{tabular}{l} 
Government \\
Designation
\end{tabular} & \begin{tabular}{c} 
Manufacturer's \\
Designation \\
Or Type Number
\end{tabular} & \begin{tabular}{c} 
Test or \\
Qualification \\
Reference
\end{tabular} & \begin{tabular}{c} 
Detail \\
Specification
\end{tabular} & \begin{tabular}{c} 
Manufacturer's \\
(Address On Last Page)
\end{tabular} \\
\hline M5757/1-000 & \(\times 1\) Y2Z3 & \(5757-000-00\) & 11 & XYZ Corporation \\
\hline
\end{tabular}
*NOTE: Copies of specifications and OPL's may be obtained from Commanding Officer, Naval Supply Depot, 5801 Tabor Avenue, Philadelphia, Pa. 19120. Military Specification numbers are unique - i.e.. There is only one 5757 or 6106, therefore, QPL heading does not need to include the letter "R" (relay). The dash numbers are assigned consecutively as required. QPL's can be amended to avoid reprinting the whole lists. It is the contractor's responsibility to verify that item is currently OPL'd. (Items that have been OPL'd can be removed.) Between QPL issues, interim letters affirming QPL status are issued to the qualifying supplier and users should request same before acceptance of product as QPL'd.
**MIL-R-5757E title.

TABLE XV
SAE Relay Committee

The SAE Cooperative Engineering Program assists in preparation and acts as advisors to the military for their specifications.

The A-2 parent committee is the American Representative to the ISO (International Standardization organization) for Aircraft Electronic and Electric Equipment and as such includes relays.

At the request of the military, the SAE brought into being the A-2R relay subcommittee in 1956. Because the membership is comprised of men acting as individuals and not representatives of their employers, but who come from both user and manufacturing areas, the military have been able to implement considerable meaningful revisions to MIL-R-6106 and MIL-R-5757.


\section*{- EXCERPTS -}
"The Interagency Data Exchange Program (IDEP) is a cooperative Government activity whose task is to provide automatic interchange of parts/components test data among Government contractors and agencies, thereby reducing duplicate expenditures for par ts testing and improving system reliability.
"IDEP has created a constantly expanding and up-to-date file of documents dealing with all phases of parts testing. These documents are primarily test reports on "off-the-shelf" hardware likely to be available among participants (see page iii). In addition to normal laboratory-controlled tests, there are included general technical data when of particular significance to parts using activities; high reliability contractor specifications on parts; accounts of planned or in-process parts testing activity, and other specifically related documents of mutual value.
"The participants listed on page iii are either Government Agencies, or prime or major subcontractors engaged in parts testing activities under the Air Force, Navy, Army, and NASA. They are parts users rather than parts manufacturers or vendors.
"Distribution of data is automatic among all participants, " \(A\) " participants receiving the entire file and " \(B\) " participants receiving summaries only with complete reports available on request. The IDEP Offices microfilm, reproduce and distribute documents to participants without charge. Documents are reproduced in their entirety, not edited or abstracted by the IDEP Office.
"The IDEP data is transmitted to participants on 16 mm roll-film reels or cartridges. The microfilmed text can be reviewed or reproduced in easily readable size in a matter of seconds.

Summary cards of test data accompany the roll-film for distribution to cognizant design engineers, and a visual coincidence card (VC) system for searching specific test environments is also available to the IDEP user.

The documents listed herein are for the contractors' use as supporting evidence in parts-use justifications as well as in the following specific ways:
1. Selection of most reliable parts in designs avoids possible system failures.
2. Ear lier parts information promotes improved performance; shor tened delivery schedules.
3. Improved test reporting quality promotes higher output per test dollar.
4. Use of IDEP information reduces test duplication; more efficient information retrieval.
5. Broader access to current parts information permits more realistic bid proposals.
6. IDEP guidelines acceler ate parts specification writing and test planning, expediting eventual introduction of standardized improved parts.
7. Provides channels for direct intercontractor inquiries in urgent cases.
8. Alter nate vendor sources are suggested.
9. IDEP files are a source of general advice, confirmation, and general education at early program development stages.
Despite variations from exact data desired, reports which partly cover requirements yield savings proportionate to the degree of confidence or similarity. If a test cannot be eliminated entirely, it of ten can be shortened, or guided in sequence, method, or sample size from failure modes demonstrated by others. Many retests and tests on obviously inadequate parts, are avoided."

\section*{Government IDEP Offices}

\section*{ARMY/NASA}

Hq Army Missile Command Redstone Scientific Information Center
Redstone Arsenal, Alabama 35809
Attn: B.W. Barnett, AMSMI-RBP
Phone: 205-876-0851
Autovon: 266-0851, 6088

\section*{AIR FORCE}

Ha SAMSO (SMSDI)
Los Angeles Air Force Station
Air Force Unit Post Office
Los Angeles, California 90045
Attn: IDEP Office
Phone: 213-643-1021

\section*{NAVY}

Commanding Officer (Code E-6)
Naval Fleet Missile Systems
Analysis \& Evaluation Group
Corona, Cal ifornia 91720
Attn: IDEP Office
Phone: 714-736-5388
Autovon: 933-5388
CAMESA (ASSOCIATE IDEPO)
Canadian Military Electronics Standard Agency
Department of National Defense
Ottawa, Ontario, Canada
Attn: Mr. G. Seabrook
Phone: 613-996-2356, 26604

Autovon: 833-1021

TABLE XVII

\section*{Defense Standardization Manual 4120.3M + Standardization Policies Procedưres and Instructions}

\section*{GLOSSARY - EXCERPTS}

1-106 Activity, preparing. The military activity, or the activity in a Federal civil agency (for Federal documents only), responsible for document and study projects and for maintenance of the resultant Standardization Documents.

1-122 Custodian. The activity responsible for effecting coordination and other related functions for its own department in the DoD.

1-123 Department. The Department of the Army, the Department of the Navy, or the Department of the Air Force.

1-444 Qualified Products List. A list of products qualified under the requirements stated in the applicable specification, including appropriate product identification and test reference with the name and plant address of the manufacturer and distributor, as applicable. (Source: Department of Defense Directive 4120.3)

6-212 Activity symbols. The following symbols are used to identify the preparing activity, custodians, and review/user interest on Federal and military standardization documents, and to identify the issuing activity on limited, coordination documents (see Figures VI-1, 5 and 6).
\begin{tabular}{lll} 
& ARMY* \\
& \\
Electronics Command & EL \\
Missile Command & MI \\
Munitions Command & MU \\
Weapons Command & WC
\end{tabular}

\section*{NAVY*}

Naval Air Systems Command AS
U.S. Coast Guard CG
U.S. Marine Corps MC

Office of Management Information OM
Naval Ordnance Systems Command OS
Naval Ship Engineering Center SH
Nával Electronics Systems Command EC
AIR FORCE*
Hq U.S. Air Force Standardization Group 01
Rome Air Development Center (AFSC) 17
Quality \& Reliability Assurance Branch (AFLC) 23
Hq, AFLC, Standardization Branch 26
Interchangeability \& Substitution Systems Branch (AFLC) 85
DEFENSE SUPPLY AGENCY*
Headquarters, Defense Supply Agency DH
Defense Electronics Supply Center ES
OTHER
Other - If the issuance is applicable only to the Naval Air Systems Command and the Department of the Air Force, in the aeronautical field, use the symbol "ASG."
*Partial listing.
tFormerly M200B.

\section*{TABLE XVIII}

\section*{Pertinent Relay Specifications and Documents}

\section*{1. MIL-STDS}

MIL-STD-12
MIL-STD-454
MIL-STD-456
MIL-STD-202
MIL-STD-143
MIL-STD-XXX
MIL-STD-704
MIL-STD-831
2. DOD MANUAL
4120.3-M

Abbreviations (for panels)
Standard General Requirements for Electronic Equipment Electronic Parts, Data and Source Coding for
Test Methods for Electronic and Electrical Component Parts
Specifications and Standards, Order of Precedence for the Selection of Relays, Selection and Application (to be issued 1969)
Electric Power Aircraft, Characteristics and Utilization of
Test Reports, preparation of

Defense Standardization Manual, Standardization Policies, Procedures, and Instructions (formerly M200B)
3. MILITARY SPECIFICATIONS

MI L-B-5087
MIL-E-5400
Bonding, Electrical, and Lightning Protection for Aerospace Systems
MI L-R-5757
MIL-R-6106
Relays, Electrical for Electronic and Communication Type Equipment
Relays Electric
MIL-R-19648
Relays, Thermal, Time Delay, Hermetically Sealed
MIL-R-39016
Relays Electromagnetic, Established Reliability
4. NAVAIR

01-1A-514 Technical Manual "Design of Electric Systems for Naval Aircraft and Missiles." - FSN 0701-010-0160
5. SAE Society of Automotive Engineers*

Comparison of Government Relay Specifications
(To be updated by military whenever specifications are revised)
AIR 904
Polarized Relay Conventions
ARP 909
Electric and Electronic Relays and their applications
6. UNITED STATES STANDARDS (Formerly ASA)

Y32.16 Electrical and Electronic Reference Designations
(Supersedes MIL-STD-16)
Y32.2 Graphical Symbols for Electrical and Electronic Diagrams (Supersedes MIL-STD-15-1)
Y10.5 (IEEE No. 280) Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering
Y10.19 (IEEE No. 260) Letter Symbols for Units Used in Electrical Science and Electrical Engineering
Y14.15 Drafting Manual Electrical Diagrams
C42 Series - Definitions and Electrical Terms
C83.16 Relay Definitions and Terminology
C83.25 Testing Procedures for Relays

\section*{7. NARM}
"Engineers' Relay Handbook" - Revised Edition.

\footnotetext{
*Automotive = self-propelled (land, sea, air, or space
}

Representatives from the U.S. Air Force (AFLC), Naval Air Systems Command (AS), U.S. Army Electronic Command (EL), Defense Electronics Supply Center tDESC-EM) and Naval Electronic Systems Command (EC) in a show of solid unification announced at a SAE/A2R Relay meeting held in Washington, D.C. 14 Jan. 1969, the 69/70 DoD Military program for FSC 5945.
1. Development/coordination for General Relay Specifications covering the following:
a. Photo-Sensitive Devices
b. Hybrid Relays/Assemblies
c. Solid State Relays
d. Vacuum Relays
e. Time Delay Relays (Excluding Solid-State \& Thermal Devices)
2. Development/Coordination of MIL-STD's for the following:
a. Preferred Relays and Circuit Application
b. Standard Test Procedures.
3. Revisions G \& F to MIL-R-6106 and MIL-R-5757 based on completion of work outlined in 2(b).
4. Revisions of MIL-R-39016 to include "ER" requirements applicable to control relays covered under MIL-R-5757 and MIL-R-6106 as selected.
5. Agreement to nomenclature all future relay documentation for 60 Hz electrical loading ratings for standardization and convert previous documentation as applicable where loads at 400 hertz only were specified.

\section*{Military Representatives: (Project Engineers Assigned)}
U.S. Army Electronic Systems Command (EL) (I. Carol)
U.S. Air Force Logistic Commani (AFLC) (I. Soper)

Naval Air Systems Command (AS) (L. Wendling)
Naval Electronic Systems Command (EC) (G. Fogleman)
Defense Electronic Supply Center (DESC-EM) (G. Neyhouse)

TABLE XX
Classification and Descriptions

The government tries to define items so that adequate standards assure that components can be produced. procured, cataloged and maintained. To this end, Federal Handbook H6-1 covers Federal Item Identification (abbreviated FII). Supplementing this is Federal Handbook H4-1 which covers Federal Supply Classification (abbreviated FSC). Under this arrangement, various types of relays and other Government classes of items are identified. From these descritpions the Federal Supply Classifications are set up to cover relatively homogeneous areas of commodities. Accordingly, FSC 5945 covers Relays, Contactors and Solenoids. FSC 5930 covers Switches and FSC 5925 Circuit Breakers. Unfortunately, despite the best laid plans, classification problems do arise and both users and manufacturers should be aware that such problems do arise and both users and manufacturers should be aware that such problems do exist. For example, if a device for selecting different electrical circuits is manually operated, classification as a switch under FSC 5930 appears reasonable. If the same device has an electrical actuator mechanism added should the basic specification and classification change? Or let's start at another point. Take a solenoid - FSC 5945. Now add contacts. Is it a relay? Suppose the solenoid is the electric:al actuation mechanism for the first switching item is FSC 5930 not reasonable? Attention is invited therefore to the situtations as they can and have developed so that one will not find it incomprehensible as to why a "Relay. Stepping" falls under FSC 5945 and the nearly identical itern by the same manufacturer appears under FSC 5930 as a "switch, stepping". Our suggestion is that if you do not find an item under a particular classification, it may not necessarily mean that the item does not exist under another Federal Supply Classification.

TABLE XXI
Some Abbreviations and Symbology Conventions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ITEM (SELECTED FOR INFORMATIONAL PURPOSES) & MIL-STD-12C ABBREVIATIONS (FOR USE ON DRAWINGS) 1968 & NASA & (MIL-STD-16) SUPERSEDED USA STD Y32.16 LETTER DESIGNATIONS & MIL-STD-15-1 SYMBOLS SUPERSEDED BY USA STD Y 32.2 GRAPHICAL SYMBOLS & NASA
MSFC
DRAFTING
MANUAL
15 & \[
\begin{gathered}
\text { AAR } \\
\text { ASSOCIATION } \\
\text { OF } \\
\text { AMERICAN } \\
\text { RAILROADS }
\end{gathered}
\] \\
\hline Battery (Electrical) & BAT & BATT & BT & \[
\pm f^{-}
\] & \[
\mathrm{H}^{B T}
\] & \(-11+\) \\
\hline Switch Electrically op Manually op & SW & & K
\[
S
\] & & & \\
\hline \begin{tabular}{l}
Ground Chassis \\
Earth
\end{tabular} & GND* & GND & &  &  & \\
\hline Relay & REL & & K & \[
-5
\] & \[
-\sqrt{-}
\] &  \\
\hline Circuit & CKT & CIRC & & & & \\
\hline Capacitor "Condenser" is not a preferred term & CAP & & C & \(\pm 1\) & \begin{tabular}{l}
\[
-1 t
\] \\
or outside foil. \\
i.e. curved side.
\end{tabular} & \[
H 1
\] \\
\hline *Revised 1968 from "'GRD' after 19 years. & \multicolumn{3}{|l|}{\begin{tabular}{l}
NOTES: 1. Battery polarity symbols vary \\
2. Ground symbols are not consistent
\end{tabular}} & \multicolumn{3}{|l|}{3. Capacitors should always be shown with one side curved (US Std as of 1943)} \\
\hline
\end{tabular}

TABLE XXII
Standards
\begin{tabular}{|c|c|c|c|c|}
\hline SUBJECT & MIL-STD & USA STD \({ }^{(1)}\) & & EXAMPLES \\
\hline Abbreviations (for use on drawings) & \[
\begin{aligned}
& \text { MIL-STD-12C } \\
& 1968
\end{aligned}
\] & None & SW GND & \[
\begin{aligned}
& =\text { Switch on panel } \\
& =\text { Ground (not GRD) after } \\
& 1968
\end{aligned}
\] \\
\hline Graphical Symbols ( for use on wiring diagrams) & \begin{tabular}{l}
Superseded \\
Aug. 1968 \\
(MIL-STD-15-1)
\end{tabular} & Y32.2(1967) & \[
\begin{aligned}
& H F \\
& -H K
\end{aligned}
\] & \begin{tabular}{l}
\(=\) Capacitor \\
(one side ALWAYS curved) \\
on and after 1943
\end{tabular} \\
\hline Reference Designations & Superseded (MIL-STD.16) & Y32.16(1967) & \begin{tabular}{l}
S \\
Q \\
CR \\
DS
\end{tabular} & \[
\begin{aligned}
& =\text { Switch (wiring diagram) } \\
& =\text { Transistor } \\
& =\text { Rectifier } \\
& =\text { Lamp }
\end{aligned}
\] \\
\hline Letter Symbol for Units used in electrical science and electrical engineering & & Y10.19(1967) & \begin{tabular}{l}
Hz \\
dB \\
MW \\
\({ }^{\circ} \mathrm{C}\)
\end{tabular} & ```
= hertz (cycles/sec)
= deciBels
= MegaWatts
= Celsius - (not "centigrade" as of
``` \\
\hline \multicolumn{5}{|l|}{NOTES: 1. United States of America Standards Institute which superseded ASA (American Standard Association) - 10 East 40th Street, New York, N.Y. 10016} \\
\hline
\end{tabular}

\section*{TABLE XXIII}

\author{
Aircraft Electric Systems - Design Manuals (Use of Hermetically Sealed Relays)
}
1. "Guidance for Designers of Airborne Electronic Equipment" - ARINC, INC., Report No. 403-1955/64. ARINC (Aeronautical Radio, Inc.) is a corporation in which U.S. scheduled airlines are principal stockholders. Address: 2551 Riva Road, Annapolis, Md. 210401. "Manual recommends against the use of hermetically sealed relays in any size". Fifth printing 1964. Reaffirmed 1964 (ARINC Report No. 414.\()\)
2. "Design Manual of Aircraft Electrical Installation" - Aircraft Industries Association - June 1958. AIA now "Aerospace Industries Association. Document is out of print. Hermetic sealed relays are not mentioned.
3. "Technical Manual - Design of Electric Systems for Naval Aircraft and Missiles" - Naval Air Systems Command - NAVAIR 01-1A-514, FSN 0701-010-0160 - Issued June 1964, Revised August 1967. Section XI Catalog No. D217.14: EL2/CH @ \$2.75 Relays, Electromechanical is available from Supt. of Documents, General Printing Office, Washington DC 20402. Section XI devotes 170 pages to relays and their application. Most types are military qualified hermetically sealed types for military aircraft.
a. MIL-E-5400J (1966) Military Specification, Electronic Equipment Aircraft, paragraph 3.1.18" Only hermetically sealed relays shall be used."
b. Early "hermetically" sealed relays, circa 1950, were for piston aircraft and were largely comprised of telephone type relays that were enclosed before the contamination of contacts from off-gassing was recognized. Relays were not immune to shock and vibration as well as being imperfectly sealed. Military specifications for hermetically sealed relays have undergone extensive revisions to avoid early problems.

\section*{NOTES:}

\section*{1. Sealing}
a. Hermetic Sealing (Military vs. Commercial): The military require hermetically sealed relays for aircraft (e.g.. MIL-STD-454). The commercial airlines on the other hand vehemently recommend against their usage.*
b. Hermetic Sealing: Many relays are designated, "hermetically sealed," yet only a water bubble test is used and this is not sensitive enough to detect \(1 \times 10^{-8} \mathrm{cc} / \mathrm{sec}\) leak rate. Relays calling for "seal test I of MIL-R-5757D - (paragraph 4.7.2.1) alone have been considered or termed "hermetic". Relays meeting the bubble test only have been considered hermetically sealed, erroneously, and when used, developed contact contaminations and excessive moisture and contact failures. Reference: "Hermetic Seal, Leak Rate, and Vacuum Terminology" - J. Cittadini and E. U. Thomas, 1967 IEE/EIA Electronic Components Proceedings.
2. The Hazards of Surplus Relays Relays that were built years ago were not required to meet the same requirements that have been added to military specifications in recent years. The leak rate requirements have changed. Older relays that have had a long shelf life when used, developed contact failures in the minimum current area. In fact, relays produced to early versions of specifications, having only Class A insulation have "forged" name plates added. The part numbers were also changed, to indicate a part that has a higher temperature range, yet the relay insulation was unchanged. In at least one case the forged name plate contained an MS number yet no qualitied source for this part ever existed. Reference: IDEP Alert SMD 68036, 27 August 1968, 601.00.00.00.B2.1.
3. Common Catalog Errors: Catalogs frequently do not reflect the true military relay speciríication requirements and should not be used in lieu of actual military detail specification sheets of Military Standards. The following are typical examples:
a. Temperature Range: Military relay specifications specify that the pickup, dropout, and operate and release times apply for entire temperature range. Catalogs frequently list the maximum values of the military items and state "at \(25^{\circ} \mathrm{C}\) ".
b. Minimum Dronout: Aircraft relays must release when coil power is removed. One common detail requirement is that the relay release at 1.5 volts minimum. This means 1.5 volts over the temperature range, i.e., at \(-70^{\circ} \mathrm{C}\) with maximum current for a given terminal voltage. This is absolutely essential where transistor leakage currents may hold relay in picked up condition. Some catalogs in the past have indicated compliance with QPL for crystal can relays yet printed to a dropout value of " 0.8 volts at \(-65^{\circ} \mathrm{C}\)." The values do not tally.

\footnotetext{
*ARINC Reports 403 and 414.
}

\section*{Partial List of Organizations Contributing to Military Relay Standards}
```

AIA
AEROSPACE INDUSTRIES ASSOCIATION
EIA
NARM
SAE
IEEE
AACC
AAR
ISA
AIAA
USASI
ASQC
IDEP
NAS
NEMA

```

ELECTRONIC INDUSTRIES ASSOCIATION
NATIONAL ASSOCIATION OF RELAY MANUFACTURERS
SOCIETY OF AUTOMOTIVE ENGINEERS
INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
AMERICAN AUTOMATIC CONTROL COUNCIL
ASSOCIATION OF AMERICAN RAILROADS
INSTRUMENT SOCIETY OF AMERICA
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS
UNITED STATES OF AMERICA STANDARDS INSTITUTE
AMERICAN SOCIETY FOR QUALITY CONTROL
INTERAGENCY DATA EXCHANGE PROGRAM
NATIONAL AEROSPACE STANDARDS
NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION

TABLE XXV
Phase Loss Detection
Instantaneous phase loss detection involving rotating equipment requires a current (not voltage) sensor. The current in the open phase reverses, but the voltage does not, nor does it materially decrease immediately.

TABLE XXVI
Circuit Tips (Reliable Operation)
a. Do not pickup relays over their own back contacts. They will "doorbell" unless they are form D which is not available as a military standard general purpose relay.
b. Use the relay contacts to verify the relay armature position and not whether coil terminals do or do not have voltage.

\section*{TABLE XXVII (DoD Mandatory)}

Letter Symbols - USA Standard Y10.19 (1967)
1. Do Not Use
\(\begin{array}{ll}\text { Megamega }=\text { MM } & \text { Tera }=T\end{array}\)
Micro micro \(=\mu \mu \quad\) pico \(=p\)
2. Correct letter symbols
\begin{tabular}{ll}
A & ampere \\
dB & decibel \\
kHz & kilohertz \\
V & volts \\
\(\mathrm{O}^{\circ} \mathrm{C}\) & degree Celsius (do not use "centigrade") \\
C & coulomb \\
F & farad \\
GHz & gigahertz \\
H & henry \\
mH & millihenry \\
MHz & megahertz \\
\(\mu \mathrm{F}\) & microfarad \\
\(\Omega\) & ohm \\
pF & picofarad \\
VA & voltampere \\
W & watt
\end{tabular}

TABLE XXVIII
Relay Terminology Comparison Showing PREFERRED Practice
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|c|}{NASA} & \multicolumn{2}{|l|}{NARM} & \multicolumn{2}{|l|}{USASI} & NAS (7) \\
\hline MIL-R-57570 & MIL-R-6106F & MIL-R-39016 & MSFC. SPEC-339A & GSFC-S-601.100 & ST-R-001 & PREFERRED & NON. PREFERRED & C83.16 & C83.25 & 728 \\
\hline Pickup* & Pickup* & Pickup* & Operate & Pickup and Pull-in & Pickup & PICKUP & Pull-in & Operate Time & Pickup & Pickup* \\
\hline Dropout* & Dropout* & Dropout* & Release & Dropout & Dropout & DROPOUT & Release & \begin{tabular}{l}
Dropout- \\
Release
\end{tabular} & Dropout & Dropout \({ }^{*}\) \\
\hline Operate Time* & Operate Time* & Operate Time* & Operate Time & (MIL-R-5757)* & Operate Time & OPERATE TIME & Pickup Time & Operate Time & Operate Time & \begin{tabular}{l}
Operate* \\
Time
\end{tabular} \\
\hline Release Time* & Release Time* & Release Time* & Release Time & (MIL-R-5757)* & Release Time & RELEASE TIME & Dropout Time & ---- & Release Time & \begin{tabular}{l}
Release* \\
Time
\end{tabular} \\
\hline Contact Bounce Time** & Contact Bounce Time** & Contact Bounce Time** & \begin{tabular}{l}
(Contact- \\
Bounce) ***
\end{tabular} & \begin{tabular}{l}
(Contact- \\
Bounce) ***
\end{tabular} & Contact Bounce** & CONTACT BOUNCE & ----- & Contact Bounce & ---- & Contact Bounce? \\
\hline
\end{tabular}

NOTES: 1. Marshall Space Flight Center, Huntsville, Ala.
2. Goddard Space Flight Center, Greenbelt, Md.
3. NASA MSC, Houston, Texas
4. Engineers' Relay Handbook (Hayden) 1966
5. USASI (United States of America Standards Institute, formerly ASA) C83. 16 (1959) Relay Definitions
6. USASI C83.25 (1962)
† 7. NAS (National Aerospace Standard) 728 - 'Test Methods for Electro-mechanical Relays (1962)
8. 10 Ampere Maximum. For higher values do not parallel contacts. Go to another specification.
9. 5 Amperes Minimum (main contacts).
* OVER ENTIRE TEMPERATURE RANGE, and not at \(25^{\circ} \mathrm{C}\) only!
** EXCLUDED FROM OPERATING TIMES
*** INCLUDED IN OPERATION TIMES
\(\dagger \quad\) To be revised. AIA and A-2R

\section*{ADDENDUM}

\section*{GUIDELINES FOR RELIABLE RELAY APPLICATION AND SELECTION}

\author{
L. W. Wendling and E. U. Thomas \\ Additional Applications Tips
}

In the interim since the time when the "guidelines" paper was first presented at the 17th Annual Relay Conference in April at Oklahoma State University, the authors have considered that additional information would prove useful to relay users and circuit designers towards successful trouble free relay application.
1. Terminal Polarities and Designations (Military Practice)

Terminal \(X_{1}\) should nominally be considered as positive or high side of an ac circuit. If glass beaded headers are used, \(X_{1}\) should be blue. If a common terminal is used for two coils, the common terminal should be designated as \(X_{2} Y_{2}\) and connected to ground (negative or neutral). Note 1
2. Phase Loss Detection - False Sense of Security

The use of voltage sensors to detect phase loss is not a universal panacea. When voltages are induced or generated in rotating machinery or wye-delta transformer circuits, voltage detectors may malfunction. Other methods such as current direction (phase angle) sensors should be considered e.g., for gyro compasses. Note 2.

\section*{3. More Against Practice of Switching Ground Leads}

Switching grounds with relays where arc-over to grounded case may occur, does not eliminate the arc-over. It will limit discharge current to magnitude of load current, but arc-over can still occur and generate "rfi." Switching grounds leaves loads "hot" when relay contact is open. The National Electrical Code indicates loads should be solidly grounded and the hot side switched unless both sides are simultaneously opened.
4. "Simultaneity" of Relay Contacts - (impractical adjustment)

Simultaneous opening and closing of relay contacts is an almost impossible requirement and even more difficult to maintain in service once wear and tear sets in. Reed relay contacts are each independent with no mechanical connection between them. The closing of one changes the magnetic flux distribution and affects the pick-up value of all others. Where separate relay mechanisms are contained in same housing, MIL-R-6106 requires that the writing diagrams show the units as separate relays. Screening relays for simultaneous contact action is questionable practice and not recommended. What passed for simultaneous action one day, may not the next, and is even less likely after wear sets in. If circuits are critical to overlap or "make-before-break" (form D) action, a single contact may well prove more reliable than the mathematics used for redundant (paralleled) contacts.
5. Design Manual Availability

Section XI "Relays, Electromechanical" of NAVAIR 01-1A-514" Design of Electric Systems for Naval Aircraft and Missiles" is now available at \(\$ 2.75\) a copy from the Superintendent of Documents, General Printing Office, Washington, D.C. 20402 as catalog item D217.14:EL/CH.
6. Bifilar Winding Arc Suppression Adverse Effects of

Bifilar wound relay coils, where one winding is short circuited to provide arc-suppression without coil polarization, does provide arc suppressions, but at a price: Lost active winding space (less power for given size); slows pickup; slower release, slower contact motion (which can drag out arcs and shorten contact life); possible armature rebound (with extra contact opening and closings); shorter contact life; higher cost; loss of hammer blow to break contact films; and the increase in reliability as claimed in some quarters is subject to question.

\section*{7. Coil Interaction}

The design of relays can materially affect their operation in a circuit. For example, if one winding of a concentrically wound pair is shunted by a divide for arc suppression, the induced current when the other winding is energized may well be in the forward direction of the other winding's shunt diode. This will slow down pickup. If all the reset windings of a bank of magnetic latch relays are paralleled for instant reset, malfunction may occur from the induced circulating currents when any "operate" coil is energized. Again armature speed and possible rebound may occur from coil interaction either between windings on the same relay or paralleled windings of different relays.

\section*{ADDENDUM NOTES}

\section*{Note No.}

\section*{1. Terminal designations}
a. MIL-R-5757E specifies \(X_{1}\) positive with blue bead.
b. Section XI, Relays, Electromechanical, NAVAIR 01-1A-514 "Design of Electric Systems for Naval Aircraft and Missiles," indicates \(X_{1}\) should be positive.
c. SAE \(A-2 R\) has recommended \(X_{1}\) be shown as positive in Figure 1 of MIL-R-6106 and \(X_{2} Y_{2}\) be the common negative terminal.
2. Phase Loss Detectors
a. MIL-R-5757/68.
b. Oral presentation 17th Annual Relay Convention 1969 at Oklahoma State University.

\section*{3. Ground Switching}
a. National Electrical Code - section 310.
b. NAVAIR 01-1A-514 handbook - Section XI.
c. "Guidelines for Reliable Relay Application and Selection" - L. W. Wendling and E. U. Thomas.
d. SAE Aerospace Recommended Practice (ARP 909) Relays.
e. "Relay Facts" Electromechanical Design - 1962-1965.
f. "Transient Discharges in Relays with Grounded Cases" - C. Nunn.
g. Requirement 1, Personnel Safety - MIL-STD-454.
4. "Simulaneity of Contact Operations"
a. Ohmite "Think-In" - February, 1969 discussion notes.
b. MIL-R-5757E and MIL-R-6106F.
c. IDEP "alert" on failures resulting from contact transfer overlap.
d. 3.7.1.1 of MIL-R-6106F.
5. Design Manual
a. Reference 1 of "Guidelines" paper.
b. To be basis for MIL-STD- for relays.
c. Recommended by military at Oklahoma State University as a comparison piece to go with "Guidelines" paper.
6. Bifilar Arc-Suppression Disadvantages
a. "Inductive Transient Suppression of Relay Coils" - J. Schuessler, Leach Relays (1968)

\section*{7. Coil Interaction}
a. "Twenty ways to wreck a relay" EDN 1966.
b. "Inductive Transient Suppression of Relay Coils" - J. Schuessler, Leach (1968).

By L.W. WENDLING
Naval Air Systems Command Hdq. Washington, D.C.

Mr. Leonard W. Wendling is the engineer responsible for design of aircraft electric control equipment. His most recent publication (U) "'Controlling Aircraft Electric and Integrated Avionics Systems with Semiconductor Devices," appeared in the September 1968 issue of the Naval Air System News. This article discusses the development of a Solid State Electric Logic (SOSTEL) system which utilizes semiconductor devices as power controllers, signal sources and logic to control the performance of aircraft electric power. He is a liaison representative to the Society of Automotive Engineers (SAE) Aerospace Electrical Equipment subcommittee for relays A-2R, contributing to the preparation of military specifications.

\section*{E.U. THOMAS}

Grumman Aerospace Corp.
Bethpage, L.I., New York 11714
Mr. Edward U. Thomas is an engineer in the Components Applications Group of Grumman Aerospace Corporation's Vehicle Electronic Design Engineering Section. He authored the monthly column "Relay Facts" in Electromechanical Design; is a member of the Society of Automotive Engineers (SAE); and chairman of their Aerospace Electrical Equipment subcommittee for relays A-2R and thereby a party to the ISO program for aircraft relays. He has presented six papers at NARM/OSU relay conferences beginning with 1961 and was the innovator of SAE document AIR875. He is a senior member of Institute of Electrical and Electronics Engineers, Instrument Society of America and a member of American Ordnance Association, Society of American Military Engineers. American Association for the Advancement of Science; American Institute of Aeronautics and Astronautics. Standards Engineers Society, Toastmasters International and a member of EIA S 48 TC Switch Committee for International Standardization. He has also authored articles on circuit breakers and holds a patent for railway signaling control without line wires.

\title{
TRANSCRIPT OF A THREE-HOUR QUESTION AND DISCUSSION PERIOD
}

\section*{QUESTION: MR.SIEGEL}

If, in a screening for contact resistance, an increase of five times is considered excessive, what percentage increase is considered reasonable?

\section*{ANSWER:}

There is no rule of thumb that can be used for all relays across the board. We have figures which we use, determined by the contact material and the size of the relay. For example, a \(1 / 6\) th size crystal can relay would have different contact pressure than a full size crystal can relay; therefore contact pressures come into bearing.

A relay with gold contacts would have different results from a relay with silver contacts.

So before we work out a screening technique and allow for parameter drifts, we must know everything about the relay. This is why some of the vendors get calls from me and we ask, 'We are not going to put it in a drawing, but what is your contact material and what do you consider your maximum limits of pressure?"

RCA is not going to get into the relay business, but we are trying to find out what they use, and we have found pretty good correlation for certain materials, from vendor to vendor, the allowance for parameter drift remains the same if the materials remain the same, and the allowance for pressure remains constant. Any relay that exhibits a contact resistance rise of five times on a 2 amp life test, I would not accept.

\section*{QUESTION: MR. THOMAS}

In your 100 per cent inspection analysis, how many failures do you usually find, percentagewise?

\section*{ANSWER:}

I am sorry, I am not on the incoming inspection quality assurance program. I have a paper here which was delivered out at Oklahoma State University a year ago by J. J. Lombardi, Jr. I will look it up and see if he had any details but I can tell you that the percentage is a lot higher than you might think.

He does not discuss relay failure rate analysis figures. However, apparently, the program paid off; we made it to the moon.

If you would like to get a copy of the paper, entitled, Relay Failure Analysis Techniques, I suggest you get in touch with J. J. Lombardi, Jr., Quality Assurance, Plant Number 10, Grumman Aerospace Corporation, Bethpage, New York 11714; telephone is 516-575-7906.

They found the strangest things inside a so-called inspected and delivered, hermetically sealed relay which presumably was sent to us to put in a lunar module. But for the lunar module, we had 100 per cent incoming inspection by Vidicon, as it is called, and they put them in the chamber, where the device is so oriented that they can turn it all around and examine it.

The inspector has instantaneous view on the television monitor to see what is or is not there, and if he sees something as an abnormality, he lowers the Polaroid camera and photographs it. So we do not take records that we do not need, but only to show those things which have faults in them.

\section*{QUESTION: MR. WENDLING}

Could you define electrically what you mean by transfer? This was on one of the slides that you presented, and we would like to see the slide again, if you have it.

\section*{ANSWER:}

Are you talking about power transfer?

\section*{COMMENT: INTERLOCUTOR}

Power transfer, yes. The comment here, beyond the question, is in electric power engineering you neither parallel nor transfer power lines unless the sources are in synchronism. There are two commercially available synchronoscopes to do this. Connecting sources out of synch will not only damage the relay but the load as well.

\section*{ANSWER:}

That is inherently designed in the relay itself. In other words, the capability of the relay to transfer power successfully, is generally dependent on the contact design and switching capability with protection under dynamic load.

\section*{COMMENT: MR. THOMAS}

I think we ought to point out number one, primarily I think Mr. Wendling and my association is in the aircraft area and with ground support. Now in ground support there usually are no restrictions on size, weight, et cetera. A great many aircraft are built and have separate power supplies.

However, they are not paralleled, and they only make a transfer between one power unit and the other. The word power is very deceiving, because there are people who think that 5 amperes, 115 volts is power because they have a "power supply" to feed their electronics.

It is this latter group that are really the electronic geniuses who have been studying solid state phhysics and who have not been exposed to electro-mechanical relays, because I doubt if there are any colleges other than Purdue University which has a course on relays.

However, with a great many aircraft power supplies, if you lose one primary source, you need a standby to provide power.

\section*{COMMENT: MR. WENDLING}

Without interruption.

\section*{COMMENT: MR. THOMAS}

The electronics, because of the digital codes or bits of electronic information - at one time they could absorb the slight interruption and the aircraft did not tumble down because of that. A great many of the original power transfer devices were center-off so they had two coils, one to go to one side and one to the other.

In this case, the air gaps between the contacts gave sufficient isolation. Primarily, people who are dealing with power as power are interested in power and they know a little bit about it. The people who deal primarily with electronics find that they need, as Mr. Wendling said, a continuity in power. They want to go from something else in a hurry to something else, such as if a missile is primarily tested out on the ground and as it takes off, they want to transfer to the internal power supply, which they can save up to the last minute and when they transfer, they want to do so without even missing a beat.

So there are two things: number one, a lot of people try to make a transfer between power with a relay with a single coil such as shown on the slide, because it has multiple poles. And unfortunately the small relays that are put in aerospace equipment very frequently have a lower dielectric across the open contacts than they do between adjacent poles. And they do not have the capability. And the second one is that the boys want to transfer without loss of power, in which case sometimes it is necessary to put two relays in parallel, such, that one acts faster than the other, so they do temporarily parallel the power supply.

But an awful lot of people seem to forget about this fact that the utility companies, for years, have known what you have just said, that you have to synchronize AC sources before you parallel them, or you are going to have an awful transient reaction or peak value.

\section*{COMMENT: MR. WENDLING}

These transients, of course, affect the relay operation and its inherent function determines the reliability of the system. If you do not have this capability, you have catastrophic failures, and we are speaking not only in the electronics field, but we know there is power transmission in aerodynamics and the flight sys* tem cannot afford these power failures.

Consequently, those things that relate to 3-phase transfer - and we are talking of primary power - cannot afford this interruption which could be catastrophic.

\section*{COMMENT: MR. THOMAS}

One of the things I forgot, to get back to the second question I was asked to answer, one of the other things is to use a magnetic latch relay which has two coils, but they go bistable from one position to another, and this is where people are trying to get a fast shift between one power supply and the other power supply. And when they do so, they overlook that the air gap in the trans* fer is very small. The dielectric test voltage, as I said before, is a static test, in the absence of arcing, and without contact movement. When the contacts are asked to shift while drawing power they are apt to be arcing because the contacts are apt to move, changing the air gap. And if the power supplies are out of synchronism, the voltage can go to double or nothing.

On the other hand, certain relays can be used with a single coil or a bistable magnetic latch, in which case invariably you will find that the transfer rating, when the transfer rating is provided, is considerably less than for on-off switching. The total switched energy is down low enough that the transfer distance is adequate for the amount of energy switched.

\section*{COMMENT: MR. WENDLING}

Mil standard 704-A defines the parameters of utilization and power requirements for equipment, and this defines relatively what must occur in transfer of power. And it is available and I speak now from what which is called the prime mover, which in the airborne system initiates the continuity electric power.

\section*{QUESTION: MR. GWYN}

I have four questions concerning contacts for industrial limits which is Double Pole-Double Throw-10 amperes- 120 volts AC.

Are laminated contacts, silver over copper, acceptable for this service?

\section*{ANSWER:}

In a nominal case, yes. It depends on whether they have clearance by Underwriters', and in most cases they have approved so long as there is sufficient material to withstand all of your load requirements for the length of time you have to use it.

\section*{QUESTION: MR. GWYN}

What are the causes of separation of laminated contacts, copper and silver?

\section*{ANSWER:}

It depends on the method in making them. Sometimes they are cold bonded, using no brazing material; other times they are brazed; sometimes they are forced fitting procedures.

It would depend on the method you use in making them. But under normal conditions, they ought to carry any load that the solid contact would carry without separation, in some cases even more because the copper backing may have more conductivity and thermal capacity than does the contact material itself, if it is a solid contact.

\section*{QUESTION: MR. GWYN}

Will shock, caused by the force of the contacts mating, affect the laminated joint?

\section*{ANSWER:}

Not normally, if it has been made propertly it will not, because as a general rule, your shear tests are about the same, or even over that of a solid contact. There again, it depends on the method used in putting the two parts together.

\section*{QUESTION: MR. WENDLING}

Would you qualify the difference between minimum life and the term established reliability?

\section*{ANSWER:}

I think that the considerations of ER were well defined by Mr. Siegel this morning in his relationship. Minimum life is that par* ameter which can be defined as that which is normal in acceptance of the minimum requirements for that particular relay.

An ER relationship is that which is very specific in its requirement as regards, its application such as space. I know of very few components other than that specifically defined as specials that can meet the ER relationships with the exceptions of resistors or capacitors. In this area where you have the longevity of data defined to substantiate the capability of an ER relationship.
\(E R\) is costly. There is a definite need, but its need is predicated upon a specific suitability to a reliability capability, and I think the two are very relative.

When I say ER, established reliability, because at one time I think they started out calling it some other factor, but then they had to look at the facts and say that the only thing we can do is determine, by usage values, a statistical need of a basis of a capability of a particular component. And these factors can only be assured through usage in time.

There are new elements coming into being which are awfully hard to devise the parameters of the reliability factors, until such time as you have enough data substantiated to govern its process, its limitations and its values.

\section*{QuESTION: MR. WENDLING}

Can established reliability ultimately save money for the user, even though its initial cost is greater for ER ratings?

\section*{ANSWER:}

Again, depending upon the application. If it were a moon shot, yes; if it were a ground piece of equipment, I would question that.

\section*{ANSWER: MR. SIEGEL}

Can I answer that question? I would like to answer both parts.

Let us take that first question considering minimum life and established reliability. We are dealing with apples and oranges. Minimum life is a generic term. You design a relay for a minimum life, and that means when a designer built that relay, he designed it so that if you statistically laid out all the relays, you would find out all the ones that were properly produced should go at least 100,000 operations. Some will go a million, but they all should go 100,000.

Established reliability is a statistical analysis of a lot. Here you have an actual number, because you are taking a number of units from a particular lot and testing them. You are also coming up with a buyer's risk.

Now, you are saying you buy an ER relay, you are buying it at a sixty per cent confidence level which means you are taking a forty per cent risk that the relays will not meet established reliability that you are buying it to. That is why we do not believe in ER. You are also forecasting a failure.

The other problem is you do not forecast if the failure is going to happen in the first operation or the 999 thousandth operation. You just forecast a failure because all the others have to be put in a computer, and you come out with .01 per cent for 10,000 operations. One is a statistical figure based on data, and one is a purely generic term.

As far as your second question goes, when is it economically feasible to buy an ER relay, assuming the established reliability holds up, if you have to run preventive maintenance, if you have a piece of gear that lands airplanes, where this piece of equipment must operate and you have established preventive maintenance so that every thirty days you are going to change that relay, then you buy a standard relay. An established reliability relay is used in a space shot where obviously cost is the secondary objective and reliability is the primary one, with success in a mission the prime objective.

But each application must be examined within its own zone. You cannot just make a general statement about anything.

The problem with relay misapplication throughout the years has been that people have been using general terms and general techniques to select relays. That is our biggest problem in this business. Whenever you say, "it is a 2 amp relay, let us use it for 100 mils," that is where all of us get into trouble.

Look at the over-all picture. Is it established reliability or is it minimum life? Try to establish where you are using them.

\section*{COMMENT: INTERLOCUTOR}

You spoke about the missile shots. On the other end of the spectrum, what you are saying is that you are wasting your money buying an established reliability relay for a coffee vending machine.

\section*{ANSWER: MR. SIEGEL}

I do not know. It depends - have you ever stood at a coffee vend ing machine and put a dime in and did not get a cup of coffee? If I am standing there and angry, that is one thing; but if the president, who is going to install 10,000 of these machines, happens to be standing there, you just lost a lot of money. It depends on who is going to be putting the dime in the coffee machine.

\section*{QUESTION: MR. THOMAS}

What mil spec for relays provides the best general purpose capability and why?

\section*{ANSWER:}

That is a very nicely loaded question. As I was telling the people this morning coming in in the car, I get called up on the phone and the man says, "I want a relay. They tell me you are a relay expert."

Then there is a pause, and I say, "Keep talking. What do you want?"
"I want a 28 -volt relay. Can you give me the military part number."
"Well, tell me how many poles you want, do you want transfer, what is the type of load, are you going to have motors or 3-phase?"

He says, "Contacts. I want 28 volts."
I say, "What current?"
" 28 volts."
I wish it were not so, but this is the way it is. You ask a question that is so broad. What is your application? Then we can guide you! There is an overlap between relays that are built to MIL-R6106F, because that begins at 5 amperes and up. MIL-R's to 5757 are 10 amperes and down. However, you get the same size relay to two different relay specifications.

If you have an application which is a safety in flight, for example, a parameter known as rupture, which I think more correctly should be called interrupting capacility, to open a circuit because you do not want things to burn up, that is not included in 5757.

So if you want my telephone number, I can give you that. But you have to tell me your complete problem and not a generalization. I want loads, environments, life, etc.

\section*{QUESTION: MR. SIEGEL}

How do you know when exceeding a spec in testing a relay will not affect its expected life?

\section*{ANSWER:}

This takes about \(\$ 18,000\) and a year of my time. We have developed test techniques over the years. I have not been at RCA for eight years for nought. We have been developing these techniques and changing the parameter drifts coming up with the various allowable parameter drifts based on changes as designs change.

And we have found that the techniques that we are using, the techniques that we have outlined, in fact, in a paper I wrote in 1963, are still the same techniques we are using today. We are always looking into new ones, and when we find that it is degrading to the relay, we drop it. We have spent thousands testing, and I hope a lot of smarter people than I come up with something over what we have today. But what we are using now is the best we have found so far.

\section*{ANSWER: MR. WENDLING}

Let me add as we start to establish requirements and consider a need in military relays, there are times when we ask for that which is probably above the state-of-the-art. And once defined and realized that we cannot get it, it does not necessarily mean we won't change that document to reflect today's state-of-the-art. It is not that we do not need it, bu! it is a matter of how far can we go and are we willing to compromise to accept a given margin of effort to do today's job.

It does not mean that we will not get there tomorrow, but it does mean that just because we have a stated need, we do not always get it.

\section*{ANSWER: MR. THOMAS}

I wanted to add to what Mr. Wendling just said, and tie into it. There will be more connected with what I am saying. But the former branch chief of the Bureau of what was then known as the Bureau of Aeronautics which is the department of which the Naval Air Systems Command has now become, and the gentleman said in the business of military relays even the most conscientious supplier may not recognize all of the field requirements under which the military has to operate.

So the military is tied into the business of making relay specifications. They also obviously are the last word on it at the time of issuance of a detailed sheet. What they put down, as Mr. Wendling has said, is the minimum requirements that they hope will be consistently met by any of a plurality of sources because they would like to be able to, logistically, have more than one source. And they would like to be able to count on it. There is a specified set of parameters and conditions, as I said, like shock vibration above and beyond what a conscientious supplier may think he needs, but not recognize the corrosion problems that the military happens to know about and insists on taking into consideration.

One of the things now in MiL-R-5757, under contact springs, is the prohibition of cadmium plate because it grows whiskers.

\section*{ANSWER: MR. WENDLING}

One little adjunct to the statement that Mr. Thomas just made; many times a requirement exists for a single service entity and one is factually given and extended to all the services the utilization by that particular service to eliminate all other documents. The need to compromise and extend its value to where multiple sources ecist by defining specific requirements. Industry can provide relays to satisfy the total military program. Now, we have extended its value, looking at it on the broad aspect, optimumly we have utilized the requirements extending its value and worth.

\section*{ANSWER: MR. THOMAS}

To go on with that: This morning Mr. Wendling gave an example where a manufacturer had a commercial relay line which could be qualified if the manufacturer would shave a thirty-second inch off the height. The manufacturer could then change his present 5 ampere -4 pole relay to comply with the existing military and also use that design to revise his commercial line. (Ed. Note-MS-25267 and MS-27218)

Logistically, the military, for years, has stocked drilled filister-head screws because they can use them anywhere so that can use a non-drilled filister head screw. They have to stock only one complete set of screws and the drilled head costs like mad. The manufacturer who uses screws can use a plain filister head initially, but for the military replacement of supplies and repairs, it is cheaper for them to pay more and have less varieties.

I think what you have said, is true, that you could extend the capability of a unit to that of a tri-service capability and answer all of them. Sure, each individual service may pay a little bit more, but in the over-all, there is less confusion and fewer parts for the government as a whole.

\section*{QUESTION: MR. GWYN}

What problems are encountered when a relay must switch low levels and high levels alternately or randomly across the same contact? Comment on applications requiring application of high level current after switching.

\section*{ANSWER:}

It all depends on the general parameter in which it will work. I think I had better tell you a little story. These two medical students were worrying about whether smallpox was infectious or contagious. They decided to bet their whole lunch money for a week and asked the first person they saw for an answer, and they would accept this.

They walked up to this woman and asked her. She said, "Damned if I know, but it's powerful catching and killing."

You would have to study each case and application, because there are overlapping points for both voltage and current through the contact, below and above, when they do not function properly. There is no such thing as a universal contact material, unfortunately.

\section*{QUESTION: MR. GWYN}

Would you comment on the level of current after switching? In other words, if the relay is closed on a low level and then increased, is there any effect on the contact?

\section*{ANSWER: MR. GWYN}

You mean closed on the light amperage, and then carried on the heavier current? Not unless there was some overheating, because in general, if you break through the surface to conduct a low current, it will also conduct a high current without much problem.

\section*{QUESTION: DIRECTED TO ALL PANELISTS}

What trade-offs are involved in using solid state relays versus mechanical type relays?

\section*{ANSWER: MR. THOMAS}

What is the application? Define the parameters.

\section*{ANSWER: MR. GWYN}

They did not have a P.S. on that question saying who built the natural bridge, did they?

\section*{QUESTION: DIRECTED TO ALL PANELISTS}

Would you feel that the application is more critical with solid state than mechanical relays?

\section*{ANSWER: MR. THOMAS}

You have to give me the parameters - load, environment, speed, life, etc.

\section*{ANSWER: MR. SIEGEL}

I will give you a perfect example of this. Quite a few years ago | entered the relay application business and an engineer friend of mine said, "You have to be crazy to get into the relay business. Solid state is really moving. You're on a dead horse."

That horse is still running, and I have a wife and a daughter going to college, all on this dead horse that is still running. It seems that as long as people will misapply solid state relays, the electromechanical relay business is going to be here for a long time, plus the fact that there are many applications where the electromechanical is really superior to solid state.

It is like saying: What is better, a racing car that won the 500 or my little air conditioned Fairlane? I would look like a fool on the Jersey Turnpike with Mario Andretti's car. Certain applications have certain limitations where the electromechanical relay will really work. You have to look at the job.

The biggest problem, I think, in misapplication is that fools rush in where angles fear to tread, and I get about forty calls a day on
my phone from various divisions at RCA, and everybody is looking for a quick answer. I sit back and try to ask questions and they say, "Why are you asking all these questions?" And my only answer is, "To try to keep you out of trouble."

And if you say you want to go solid state or you want to go mechanical, you are looking for trouble. You cannot make a general rule. You can set up general guidelines and you have to read between the lines of these guidelines in order to determine where you should be.

\section*{ANSWER: MR. WENDLING}

Since I can only talk from the viewpoint of the airborne systems, I would like to ask the initiator of the question: Does he have any knowledge where a solid state relay has been used in an airborne system or has anybody who can tell me where a solid state relay, airborne, has been used?

I get complete silence. How can you ask me to determine the value of a solid state relay versus electromechanical at this point, when I speak of airborne systems, when nobody can tell me they have it in being?

\section*{COMMENT: THE AUDIENCE}

There are other systems besides airborne systems.

\section*{QUESTION: MR. WENDLING}

I only spoke for my end of that particular question.

\section*{ANSWER: MR. THOMAS}

Before you jump at the conclusion that \(I\) have an answer to that, I do not. But, what Mr. Siegel said earlier, in 1964 the Bureau of Weapons had a symposium down in Washington in which I was a speaker and Mr. Wendling's boss, Mr. Binderman, introduced me with, "I am going to put you out of business because you are the chairman of the A-2R committee for electromechanical relays, SAE."

As Mr. Wendling says, he is hoping to get to it, but it is taking time to go. He just illustrated that he does not yet know, although he asked for and inquires hopefully that somebody will give him a prime example of solid state relays in airborne equipment. So the dead horse is still dying, slowly.

\section*{QUESTIDN: MR. BDNNELL}

I think probably the best answer to that question is that an electromechanical relay and a solid state relay are not necessarily the same thing and will not necessarily do the same job. I think just one quick look at the semiconductor will give you the answer.

If you are in solid state, you have one set of parameters and one set of problems in order to do your switching. And when you are in an electromechanical, you have a different set of problems. I do not think you can take one out of here and put one in its place.

\section*{COMMENT: INTERLOCUTDR}

You have unanimous agreement with the rest of the board.

\section*{COMMENT: THE AUDIENCE}

Doesn't it depend on the end function of the problem? Doesn't the transfer function between the input or output depend on whether you want to use a solid state relay.

CDMMENT: MR. SIEGEL
That is one of the factors.
COMMENT: THE AUDIENCE
But in ninety per cent of the cases you can go solid state, be-
cause all you are looking for is results. It does not matter what kind of results so long as you achieve your function and you can do the solid state much more easily than with electromechanical relays.

\section*{QUESTION: MR. THOMAS}

Why do coils on some one-sixth size relays open at nominal voltage, room temperature, no shock or vibration? This occurs after about fifty hours.

\section*{ANSWER:}

That is an interesting question. I wish I knew. I am not a relay manufacturer, but as a user, I would stay away from the manufacturer that has that sort of trouble. He must probably have to overhaul the production facilities. (Ed. Note: Nylon bobbins with potassium bromide for deembrittlement have caused copper wire corrosion according to a recent IDEP "Alert.")

\section*{QUESTION: MR. THOMAS}

How do you feel about postlife test internal visual examination?

\section*{ANSWER:}

Again I want to know what the application is. It is one thing to go look and say that is very nice. And as a French chief engineer I used to work with said: "That is very interesting. But what does it prove?" You have to be able to interpret the results as to whether it is informative and constructive and does it assist you in doing what the gentleman just said, that ninety per cent of the switching problems he could do with solid state devices. I believe there are a few electromechanical manufacturers who would take issue with that.

But the point is, you have to know what you are after. You have to define the problem.

One of the hardest things to do is to get an engineer to define his problems. He does not want to think, he wants you to give him an answer, and he has not told you what he wants to know. And he does not know what he wants to know, and he has not taken the time to find out. He is wasting your time. When you find out precisely and define, as Mr. Wendling said in his paper this morning, define the problem and completely, then we know what we are after.

\section*{ANSWER: MR. SIEGEL}

If that life test is part of a "qualification examination," I would not consider it a life test unless I opened the door. The qualification test is done on a limited number of units to prove capability. Just because four or five relays went 100,000 operations does not mean it has the capability. Maybe we were lucky. I want to open those relays and see just what condition they are in at the end of 100,000 cycles.

\section*{COMMENT: MR. THOMAS}

I think an illustration of that case is when I was working for a railway signaling company. They had incandescent lights and they would start with 100 per cent of the lamps burning at zero time, and at the end of so many hours only eighty per cent of the lights would be burning. And after that, the rate of failures increased very rapidly. And yet you would find, where the eighty per cent knee of the curve came down. It may occur at 500 hours, yet at the end of 3,000 hours you would find two or three light bulbs still working.

You cannot project on limited sample as Mr. Siegel just pointed out, because supposing you had tested the lights that worked for 3,000 hours on the qualification test, you do not have a statistical sample. As a result of a statistical sample, when they have enough items, you can benefit. The Pennsylvania Railroad years
ago, when the crews would go from one signal locale to another, changing all the light signals at that locale on a rotationat basis, right on time. But they knew that most of the lights might still be lighted, but they were going to fail, or enough of them were going to fail that it behooved them to have the track team go down the line, one right after the other, and come back and catch this location on the next scheduled inspection or replacement schedule.

\section*{QUESTION: MR. SIEGEL}

During the analysis phase, what things do you look for when these first failed relays are examined?

\section*{ANSWER:}

Presuming these are the first factory failures that hit my desk, the first thing we see is a failure report along with them and it is usually loaded with information: "Relays don't work."

The first thing we have to do is run every electrical test. Here is another tip I will give you people: Run system electrical tests efficiently, and this is necessary on these first failures because once you open the relays, any tests you run are not fully qualified tests. Certainly you are adding things and substracting things in the opening of a relay, so you try to get as much information as you can.

Obviously, if the relay blew up inside, you are not going to get much information. I run a little puzzle with myself; I try to say, what is this thing going to look like when I open it up? And my technician very carefully opens up the relay and about ninety per cent of the time we find exactly what we expect to find.

But we unwrap all coils, we examine everything. If the thing failed immediately, that does not mean that there was not other failures coming along; if the contacts welded, that does not mean that something is not going to happen to the coils in another five or six hours. So you make certain that nothing has been overlooked, that there has not been any powerful transients going through the coils.

Many times we have found, by examining contacts we are able to determine - that something else that was operating caused the failure, the contact pressure went up. We could tell them they were using the wrong dial on some other piece of equipment. We try to forecast what was the cause of the failure as well as analyzing the failure within the relay.

But if you examine the relay very quickly, just don't examine by saying: 'The contact looks like it was overloaded, someone must have zapped it," and you put it away. After all we have gone through, and the program is going for a year and a half and we get something back, we mark it as zapped and throw it in the garbage can.

\section*{QUESTION: MR. SIEGEL}

Are there any corrective type procedures recommended rather than start again from scratch, presuming you find no errors in your application?

\section*{ANSWER:}

I tried to explain this morning that I hate to start over from scratch and therefore what you try to do is work backwards. If you have an application sheet and you find where your failure mechanism is, you can go back to that area. If someone told you he is handling 100 mils in the contacts and you open up three relays and find no contaminating film then somebody is fooling somebody.

Many times you go to the vendor and ask for a change in contact
material. But I really detest going back and starting from scratch. I thank the Lord I have never had to.

I have always gone back to the beginning, but never from the very start. Again, it is extremely difficult for me to try to tell you everything I have learned in many, many years. It is a matter of collecting your thoughts and if you have more than one problem, don't look at all the problems at once. It is like trying to see the apples and oranges and pears and trees at one time. If you look at them all, all you are going to see is fruit.

\section*{QUESTION: MR.BONNELL}

In power switching, would you please elaborate on thirty-five per cent switch in power? This was in part of your lecture and I missed your point.

\section*{ANSWER:}

We have a pair of contacts in a relay that were built and manufactured to switch a maximum of two amperes for 100,000 operations. This means that they will be capable of carrying a certain amount of power through the contacts, they will be able to dissipate a certain amount of heat through the leads and through the case, and if they are built correctly and if the design is proper, then you can normally expect 100,000 operations from that relay. You cannot expect an awful lot more than 100,000.

Of course, after 100,000 operations, if you figure on a 100,000 operation life, before failure of this relay, however many you have, you have ten relays or 10,000, no matter, it will have a random failure rate, provided that there are no catastrophic early failures. This random failure rate that you have will determine how many failures you have over the life of the relay and the life of the equipment.

If you reduce the load on the contacts, you will reduce the heat necessary to be dissipated by the contacts, by the leads and by the case. And at least theoretically you will increase the life of the relay. And because you will increase the life, you will undoubtedly decrease the failure.

This is the purpose of reducing the load, to decrease the failure rate, not to increase the life, necessarily, because most equipment where you use this type of relay specified for 100,000 operations, they will not even approach the 100,000 level because the equipment is obsolete and discarded.

\section*{QUESTION: MR. BONNELL}

Would you recommend paralleling contacts to share current such as two paralleled, two-ampere relays to switch four amperes?

\section*{ANSWER: MR. THOMAS}

I would not.

\section*{ANSWER: MR. BONNELL}

No?

\section*{ANSWER: MR. THOMAS}

Because obviously the contacts do not operate together; and one of them has to switch four amperes.

\section*{ANSWER: MR. BONNELL}

One of them, and the same one will always operate first.

\section*{ANSWER: MR. THOMAS}

It has been written in books, the MIT "radiation series" that were published in 1946 specifically state, "Do not parallel relay contacts for the purpose of increasing the contact handling capability, but select properly designed contacts." The papers that you are going
to get a copy of, have said this. I do not know how many times, or in how many places I have seen this, and why it takes so long to sink in I do not know. I would like to see that some of the editors here today repeat that for the benefit of those who are not here with us today.

\section*{QUESTION: MR. BONNELL}

What does the interconnection designer have to guard against to prevent failures? You hinted at capacitive coupling causing problems.

\section*{ANSWER:}

All I can say is that the designers on both ends of the system and the interconnection engineer have to, of necessity, work together in order to assure themselves that a design is going to work. As far as to what he has to watch out for, he just has to make sure that if there are three involved, that all three of them are thinking along the same lines and know the whole story.
COMMENT: INTERLOCUTOR
Do you have any comment about the capacitive problem?

\section*{ANSWER: MR. BONNELL}

If you are going to put a capacitor in the line, you have to have a relay that is going to handle that capacitor.

\section*{ANSWER: MR. THOMAS}

And if the line is long enough, you have capacity whether you realize it or not. The Telephone Company will tell you plenty about that, and I think you will find, in the case of large aircraft, that there is enough intercapacity from the cabling that they have capacity switching problems.

\section*{QUESTION: MR. GWYN}

Can contacts which have developed a high resistance through use, be efficiently cleaned by passing high current through the contacts?

\section*{ANSWER:}

It is much better cleaned by passing a low current and a high voltage, because you want to break through any film that is formed on it, and if you are going to pass a high current, you may additionally affect the contact surface.

\section*{QUESTION: MR. SIEGEL}

If one manufacturer has a record of little trouble in dielectric withstanding voltage, and another manufacturer has a good reputation on contact resistance, how should these factors be handled where each manufacturer is objectively qualifying relays for military specifications?

\section*{ANSWER:}

You have posed a difficult question. This is a good example: One vendor had a problem in dielectric and the other in contact resistance. I would not even go to the vendor with the contact resistance problem. Let us assume we must have two vendors. We would then have to, because of contractual obligations, put both requirements in the acceptance testing. You cannot make a drawing up for one vendor unless you are going to make a dash- 1 for one vendor and a dash-2 for another, and this gets a little hairy.

I would either advise you select your vendor more carefully or, number 2 , you just have to pay the additional cost of going to both vendors and calling out both tests.

\section*{QUESTION: MR. BONNELL and ALL PANEL MEMBERS}

What is the panel consensus regarding the exclusion of contamination (minimum) current testing in favor of the internal icing test?

\section*{ANSWER: MR. SIEGEL}

Let me give you a little background on the icing test. This was developed by RCA. It was originally in the paper I presented and to be very honest, the icing test came about as a result of technician error. The technician made a boo-boo and energized a coil while it was at maximum temperature and brought it down to minimum temperature while still energized, and he came running to me - "We made a terrible mistake. What do I do now?"

And I said, "If worse comes to worse, we blow the load. Run a test by de-energizing the contacts." And lo and behold we found ice.

For a year | tried to figure out why, if we did it the other way, if we brought the relays down de-energized and energized the relay at cold, we would not find the ice. We did not find out. And a year after I presented my paper in 1964, General Electric presented a paper where they explained to me why my system worked.

It seems that sixty-five per cent of the moisture in a relay is in the coil and by heating you drive it down to the coolest portion of the relays which are the contacts and it forms ice on the contacts.

Let us examine contamination of relays. I am going to forget about particulate contamination. I am only going to talk about gaseous contamination. There is outgassing in every relay of the Teflon and other insulating materials that are used throughout the insulating chamber. This material flies all over the relay and we have found it needs a catylist and this catylist is moisture. I have yet to find a relay that has moisture in the case that will pass this relay test one hundred per cent, bar none.

Not only that, but we have even been able to tell you approximately how many cycles of moisture occur, because it forms a lamination. You will find a lamination of a whitish-gray material, and it seems to be gaseous contamination. I call it a colloid suspension of the contamination that forms on the contacts. And yet when the contacts cool down, it solidifies, and no matter what you do after that, you do not seem to be able to get it to evaporate again.

If you do this again and again, you will finally build up enough of this contaminated plating that no matter what your pressure is, you will not be able to pass a 10 mil current, regardless of your pressure. Therefore we feel that the internal moisture test is probably one of the most critical tests in relays at this minimum current level.

\section*{ANSWER: MR. THOMAS}

I think there are two things: Number 1, the minimum current test runs about 34 days to do it complete whereas, as Mr. Siegel said, if you run the moisture test you can do it in one day. Second, Mr. Robert Holcomb of GE is, of course, the gentleman who explained to Mr. Siegel what it was, and as a result Mr. Robert Holcomb was immediately nominated to the College of Relay Engineers at Oklahoma State University for the annual award.

As Mr. Holcomb pointed out in that paper, if they had crystal can relays and at 3:00 o'clock in the afternoon the plant whistle ble and an assembler had the relay assembled except she left the tip off the hole overnight, when she came back the next morning the coil would have absorbed enough moisture overnight, despite the fact that the moisture would have to creep through that small seal-off hole, the ice was there when Mr. Siegel received the relay.

\section*{ANSWER: MR. SIEGEL}

I might add that vendors have come up with new and very unusual methods of getting that moisture in there. For example,
they have bake-out chambers which are designed to vacuum bake-out 500 relays at a time, and when business gets too good, they put 800 in and if you are the first one in and the last one out, you are full of water.

\section*{QUESTION: MR. WENOLING and MR. THDMAS}

Section XI of the NAVAIR advises against 3-phase load transfer, using relays with form C contacts, without interlocking. Has the state of the art advanced to the point where this classically accepted method can be discarded?

\section*{ANSWER: MR. THOMAS}

I think the question was answered to the effect that if you can synchronize the devices so that the AC relays are not out of phase, then you can make the transfer make-before-break contact. Let us go back and find out what the utility companies learned when they got into power switching - and an aircraft is nothing but a miniature utility company with the same types of switching problems. What the power companies learned over the years is certainly available, if the engineers would take the trouble to look at the literature. The answers have ail been solved long ago.

\section*{ANSWER: MR, WENOLING}

Provided the relay is properly designed. I say that from the standpoint of barriers, et cetera.

\section*{ANSWER: MR. THOMAS}

What Section XI properly cautions us against is just going about that without thinking and being very certain that you have the proper monitoring equipment. And pick a relay that has the 3 phase capability between poles and that there is provision for synchronizing the sources so that across the contacts they see no voltage differential for potential differences.

\section*{COMMENT: THE AUOIENCE}

For unsynchronized forces you would not use the form C.

\section*{ANSWER: MR. THOMAS}

Form C is a transfer which has a break. In other words, it is a break-before-make. I think it depends on what the application is.

If the man can stand the interruption of power - besides that, I have yet to find a military relay as a standard general purpose relay, with a continuity of transfer of contacts or Form D if the fact is worth anything. So they are bound to use form \(C\) or else they are going to use center-off or with two coils or some other variation. But they have to be sure that the relay in question has been tested adequately for the application in the manner in which it is going to be employed and for a sufficient number of cycles that it can be established that that relay has that capability.

If the capability is not listed on the detail sheet, it should not be used for applications for which adequate additional testing has not been conducted either by the manufacturer or by the user in his application. Just because it works on a breadboard for a couple of hours is no criterion that this will work beautifully from there on in.

\section*{ANSWER: MR. WENOLING}

I think what Mr. George Neyhouse is essentially asking is that: Will the form C design relay perform the functions of power transfer? (Ed. Note: Mr. Neyhouse is with Defense Electronic Supply Center, Dayton, Ohio and was a principal speaker at THINKIN NO. 1.)

\section*{ANSWER: MR. THDMAS}

There are relay companies who are making it.

\section*{ANSWER: MR. THOMAS}

There are a set of relays which are commercial at the moment, but I think the military is considering some where they have spread the normally open contacts far enough apart that even when the power supplies are out of synchronism, it will transfer. This is one of the reasons that transfer rating has been added to the detail sheet of the MS drawings and that is why 5757 has included the transfer test. But as yet, I do not believe there are any detail sheets that are proposed; are there, Mr. Neyhouse, that you know of?

But at least 5757 included the test both for 3-phase in the E Revision and the transfer between unsynchronized AC sources. They are now alerted, hopefully, and I hope the press members here will take this down, that this is a potential problem and that if you are going to have that type of application, be sure that you have adequate test data either of your own or the manufacturer's and hopefully he did not make it up at his desk, that a relay will do at the voltage and power factor that you want to use.

\section*{QUESTION: MR. GWYN}

Running a 2 ampere load, we have encountered a black carbonaceous growth (feathery bridging) between contacts or contacts and case after 60,000 plus operations at \(50^{\circ}\) Centigrade.

Do you have any idea of the origin of this problem and corrective measures that may be taken? This does not exhibit a problem at loads less than \(1 / 2\) ampere.

\section*{ANSWER:}

I think the person who addressed that has already talked with me. I told him if they send me a contact that has this on it, plus the circuit conditions, I think we can pretty well tell him what has caused it and what it is. There are so many different blackings, particularly for silver-based contacts, it might be sulfided or produced by half-a-dozen different agents.

In many cases we have found that there are solder fluxes that have been vaporized and deposit materials on the contact that you do not normally see, but show up under operation.

\section*{ANSWER: MR. THOMAS}

MIL-R-5757 E is requiring, for the new designs, that they all be welded construction and include the tip-off and the reason is to avoid the contamination from solder flux.

\section*{ANSWER: MR. GWYN}

I might add to that we have seen so many cases of solder flux contamination, even when people have used exhaust to remove the fumes and think they are not getting them on or between the contacts, the prevention of it is reaily something that should be of prime consideration either by using Coben solution or by mechanical means, et cetera. And some of the better relay manufacturers know it exists but are somewhat lax in taking corrective measures.

\section*{QUESTION: MR. BONNELL}

What are the common arc-quenching methods for \(A C\) and \(D C\) relays?

\section*{ANSWER:}

For DC, the commonest that I have seen used is just a simple diode with the proper PIV. This means that the coil terminals have to be polarized.

Some AC relays have coils which are essentially DC coils with a rectifier built into the relay. There is another solution for true AC coils; putting zeners back to back and this is about the best
way to approach this. On DC, there are a good many cases where a capacitor/resistor network is used, but in this case the capacitor/resistor network would have to be tailored to the coil where a diode, as I have seen used, a standard diode for every 28 volt coil, and if the PIV is high enough so that any of the surges you would get from the diversity of coils would not break down the diode, then you are on safe ground, and you have satisfactory protection for your contacts.

\section*{QUESTION: MR. GWYN}

Does bifurcation aid in prolonging contact life? If so, how much?

\section*{ANSWER:}

I think that subject has been pretty well covered by statements made by our speakers today. About the only thing we can do is if one contact has a little higher resistance than the other, it might help by passing current more readily to the paralleled surface with the higher resistance.

\section*{ANSWER: MR. WENDLING}

Again it depends on the design of the bifurcating contact. In reference to frequencies, for instance, as related to vibration and shock.

\section*{ANSWER: MR. THOMAS}

There is one relay company that specifically makes aerospace relays where they have a bifurcated contact is such where the resonant frequencies of the two halves are different, and if they get a critical resonance for one, the other will be closed. But each half is rated for the full load. This is a case of redundancy for the sake of bridging this resonant frequency, but not for increasing its contact capability. It is for an increase in current continuity. All it does is give you a little more assurance that over the whole frequency span, one of those two halves will be closed all the time, so at least you have contact continuity throughout the frequency span.

\section*{QUESTION: THE AUOIENCE}

Aren't these bifurcating contacts used in telephone circuitry rather than power circuitry?

\section*{ANSWER: MR. THOMAS}

Let us define power circuitry. When I went to work for a railway signal company, I can tell you they were switching 115 volts for some years with bifurcated contacts and still do.

\section*{QUESTION: MR. SIEGEL}

Could you provide more information on the Lockheed Crystal detection system for foreign particle contamination detection?

\section*{ANSWER:}

The process is called PIND and you write to Sunny Valley, California. I have spoken to Mr. Ed Freiria about it numerous times. Lockheed is one of my customers so we are obliged to, if possible, use the technique. This is the reason I investigated it. I found it is useful and since they want it as part of the contract, and we like the business, we do what they want.

Write to Mr. Ed Freiria and he will send you all the information he has about the system.

There are a number of manufacturers that are implementing the PIND system right now. One of them is Teledyne on the TO-5 relay. There are a few other vendors that are implementing. We have found it looks good, so we will use it.

\section*{QUESTION: MR. BONNELL}

In general purpose relays from 0 to 2 amps , is there any range of load currents that are definitely detrimental to contact life?

\section*{ANSWER:}

Let us keep to resistive currents. As far as detrimental to life, I again would like to see a definition of what we mean as being detrimental. If a relay is called upon to operate in a minimum current area and it is not satisfactory for that area, there will be misses occurring, but this will not necessarily limit contact life, per se, because it depends on how you define life.

If life is to the first failure, then it has been definitely limited. But if life is over the period of usability of the relay contacts, then it will not be affected. If the relay is properly selected for the load used, I would say there is no particular low level load that is detrimental to the life of the contact.

\section*{QUESTION: MR. BONNELL}

What is the lowest value of contact resistance that can be obtained in general purpose relays in a 0 to 2 ampere range?

\section*{ANSWER:}

That is a good question. Right now the general purpose relay, about the only one where you can get a really low level is in a common, ordinary button, round contact surface with the proper materials. And there you can expect nothing less in a new relay than 50 milliohms.

If some manufacturer would build a good wire spring relay, we might be able to do some business with them in a hermetically sealed case for the military usage, I might add.

\section*{QUESTION: MR. GWYN}

How useful will the Contact Analyzer presently being manufactured by 3 M be in contact evaluation? This instrument was developed by Burndy, and is capable of separating the real contact resistance from the bulk resistance.

\section*{ANSWER:}

I have to admit I know nothing of it.

\section*{ANSWER: MR. SIEGEL}

I was going to use that as a basis to answer the question that Mr. Bonnell answered. The actual contact resistance that you get, for example, in a crystal can relay where you could measure 16 or 18 milliohms, the actual contact resistance is very small. It is in the neighborhood of 4 or 5 milliohms. The balance is in the bulk resistance, the resistance is the contact to your arm, the arm coming down through your glass.

Burndy has come up with the system. They bring it up to the point where there is a weld taking place, and at that point, whatever their reading, is the exact contact resistance. They have actually negated all the bulk resistance and they are only reading the resistance at the interface and it is amazing.

Yet, if you take the same relay and run it up, and if you try to do things to carbonize the contacts and you run it back on the Burndy tester - (originally Burndy had given a contact to the George Risk Company to make the first five units) and if you took it and put it back on this checker, you found that your contact resistance was now up to about 14 milliohms, and if you measure, you add 14 to the 11 and you still get the same contact resistance.

The bulk resistance is a majority of the initial contact resistance that you measure. At a failure, it is not, assuming that you have
not had any mechanical break between a contact and a pin internally, when you measure a contact resistance, it is a misnomer, it is actually the entire resistance of the terminal line, the junction to the contact, the contact interface, the junction to the contact and the terminal line again.

\section*{QUESTION: MR. GWYN}

What are typical materials used in Reed switches where contacts provide mechanical spring action for separation of contacts and magnetic attraction for closing actions? What kinds of problems have been experienced, particularly in relation to welding of contacts in low current applications?

\section*{ANSWER:}

Let us take the first part of that. Here again it would depend on the maximum current and the voltage, if you are going to handle interrelays. The normal use of the materials will vary depending on the partular type of relay from fine silver up through soft gold and precious metals, or whether they are going to handle some types of surge currents, they even use tungsten which has been given electrolytic cleaning.

\section*{QUESTION: MR. GWYN}

What kinds of problems have been experienced, particularly in relation to the welding of contacts in low current applications?

\section*{ANSWER:}

Most of it may be welded by fritting actions such as what is shown on the slide or somehow vibrations that were set up to cause the fases of the materials to interlock. You will not get a welding unless you mean a full electrical welding where you might get it through shorting.

\section*{QUESTION: MR. WENOLING or MR. THOMAS}

Is an RC suppression network across a set of contacts a suitable and economical means of reducing transients developed by a 115 VAC or 230 VAC, 500 W inductive load? Are there any good general formulas for determining the resistor and capacitor values used in a suppression network described above?

\section*{ANSWER: MR. THOMAS}

I do not know, myself. I think Mr. Charles Schneider (Bell Telephone Laboratories. Holmdel, N.J.) made an awful lot of studies about RC. Prior to the diodes, RC, for the telephone industry, was the only way they know how to make arc suppression and the Telephone Company does have formulae for making calculations.

\section*{QUESTION: MR. SIEGEL}

What is the most widely used and most reliable method of nondestructive relay testing?

\section*{ANSWER:}

They are not compatible. Most people specify electrical parameter group "A" to make sure that garbage does not get through their front door. Let us say it does increase the reliability because there are certain safety factors inherent in your own specifications for initial parameters, and even if there is no degradation in your initial equipment, this will probably operate and therefore you have inherent safety factors when you do check for initial specifications.

I do not consider this reliability testing. Most manufacturers will give you test date for \(\$.50\) or \(\$.40\) a relay so that is why most people ask for it. Once you jump the gap from there to any reliability testing, you are talking money, and unless your program should warrant the expenditure, most people do not do it.

The next type of test would be a run-in, but do not be fooled in running-in of a relay at dry circuit, unless you have a dry circuit application. Every vendor will try to sell you this because they have loads and loads of dry circuit testers. But if you have a minimum current application and he runs them in for you at dry circuit, he is telling you you have a better chance of passing than if you did not run them in; but that is not the guarantee that you think you are paying for.

If you have a minimum current test, let him run it at minimum current; and if you have a dry circuit application, run it at dry circuit.

\section*{ANSWER: MR. THOMAS}

Just to go on with that, proof of being able to run it full load and at minimum load is no indication of a capability at the intermediate load which is what Mr. Siegel just said. So the manufacturer says, "We have the most beautiful set of 'mistest' data and we have the most beautiful test data at 2 ampere loads."

And he says, "Yes, sir, what about minimum current?" They do not have any data, and they cannot pass it.

\section*{QUESTION: DIRECTED TO ENTIRE PANEL}

What is present availability of solid state relays? What performance can be expected from available SSR's with respect to "off" resistance, acceptable contact voltage range, throw to throw isolation in SPDT devices, and RFI generation?

\section*{ANSWER: MR. WENDLING}

First of all, I think I clarified the question in the relationship as with respect to the Naval Air Systems requirements at this point. I cannot divulge or discuss that which may be beyond the Naval Air Systems' requirements or Airborne Systems. I know of none at this point utilized and available to us. They may be in a subsystem relationship, but I speak only from the electrical view point, because my primary responsibility is directed to and a part of electrical systems.

I can say that I am working toward the utilization of solid states in aircraft electric systems which is known as the SOSTEL program. To expound on that, and if I get started, it can last for two solid hours as happened last evening. I would be glad to discuss the subject with anyone. The items being developed, as we recognize them, are not solid state relays. They will be multifunctional units called power controllers, because they will be located in this system between the utilization equipment and the power control centers, between the subsystem interface, and the bus. These will function as multifunctional power, solid state devices to perform as we know it today to function as protective devices, known as today's relays, relays, circuit breakers, and current limiters. We are in the process of developing these items. The program is still in the exploratory state. We hope, if successful, to go into advanced development in the ' 71 fiscal period.

But other than that, to imply that there is a development of solid state relays, per se, for airborne use at this time, I can only say there is a project to develop a general specification for solid state relays. The preparing activity for this project is the Naval Electronics Systems Command. Mr. George Neyhouse at DESC (Defense Electronic Supply Center) has been designated agent for the formulation and coordination of this document. I think the intent here is to identify these relays to perform the functions which today's multipole relays perform.

\section*{COMMENT: INTERLOCUTOR}

I suggested that if anyone wishes to contact Mr. Neyhouse, he do so after this meeting or call (513) 252-6551, ext. 5830. Are there any more questions.

\section*{ANNOUNCEMENT:}

We thank you for attending THINK-IN \#2, here at the Sheraton Inn at LaGuardia.

Before we bring this seminar to a close, Mr. Thomas has provided us with a 20 minute movie on the Interagency Data Exchange

Program (IDEP) and how it works for military parts. We will now view this movie.

Please Note: Mr. L. W. Wendling's comments and opinions are solely his own and should not be construed as official U.S. Government information.

Ohmite Manufacturing Company a North American Philips Company 3601 Howard Street, Skokie, Illinois 60076/Phone (312) 675-2600/TWX: 910-223-0805/TELEX 72-4433

Relays and Related Devices

\section*{the thought}
behind

everybody gets into the act... es

OHMITE THINK-IN SEMINAR NO. III
International Hotel Los Angeles, California February 18, 1970
CONTENTS
Basic Relay Considerations
by Rudolf Steiner 2
Guide Lines for the Application of Semiconductor
Technology to Electric Power Distribution Systems
by Lee D. Dickey and Clyde M. Jones 7
Screening Relays for Contamination
by Howard V. Rode 16
The Evolution of General Purpose Relays and Application
Variables Concerning the Use of Bifurcated Contacts by Mr. R. P. Sykes 19
A Transcript of a Three-Hour Question and Discussion Period. 24

\section*{BASIC RELAY CONSIDERATIONS}

By Rudolf Steiner. Member of the Technical Staff, Space Division of North American Rockwell Corporation, Downey, California

\begin{abstract}
Because of the apparent need for continued improvement in relays, especially electromagnetic relays, the history and present situation of relay operations are reviewed. With the objective of determining realistic performance requirements, a discussion is presented of relay contacts, terminals, structures, and enclosures. Particular emphasis is placed upon the basic considerations and natural laws which are expected to govern sound design. In addition to specific recommendations for performance improvement, various future actions are compared with the advantages that may be gained.
\end{abstract}

\section*{INTRODUCTION}

It is reasonable to assume that the first need for a relay and the first construction of such a device occurred at the time of the first long-distance telegraph operation, approximately 100 years ago. Mounted firmly on a sturdy support, these relays had to meet only two requirements: to close a local circuit when energized and to open a local circuit when de-energized.

Since that time, requirements have changed considerably. Contemporary relays are expected to
perform as contact switching circuits, directional sensors, timers, circuit breakers, and other devices. In contrast to these ever-increasing demands, relay construction has changed but little and the applicable physical laws not at all.

This paper reviews the basic relay concepts, discusses the extent of change between modern requirements and the earlier basic ones, and offers an opinion on the merit of these changes.

\section*{CHANGING REQUIREMENTS}

The relay requirements that have undergone considerable change include the following:
1. A tremendous increase in relay usage; relay types; and relay operating speed, cycling, and life requirements
2. Mass production
3. Size reduction and miniaturization
4. An increase of contact loads toward heavy power
5. Reduction of contact loads to "dry circuit conditions"
6. Response level requirements

\section*{7. Sensitivity}

\section*{8. Resistance to environments}

Most seriously affected by these new demands, although not necessarily in this order, were the following relay elements: contacts, terminals, structures, and enclosures. These elements will be discussed in the following paragraphs.

\section*{SELECTED RELAY ELEMENTS}

\section*{CONTACTS}

The contacts are expected to make, break, or maintain an open or closed circuit dependably and for a specified number of operations.

\section*{Contact Design}

Contact operation, especially contact separation on circuit breaking, constitutes a transfer of electric energy from the formerly closed circuit to the opened contacts. This requires that the contacts be in a position to absorb and dissipate this energy without ill effects to themselves or to the circuit. This necessitates contact points having the adequate coefficient of heat transfer and, especially, the correct mass to absorb, temporarily, the energy in the form of heat until it is dissipated through convection and radiation. The coefficient of heat transfer is given when the contact material is selected, and the mass can be readily calculated from the basic equation of heat transfer. Any reduction in this mass will result in contact destruction. Modern design trends toward miniaturization produced contact dimensions incapable of the required heat transfer. This resulted in unsatisfactory contact performance. Tocompensate for these deficiencies, relay manufacturers attempted to determine the capabilities of these undersigned contacts through extensive and costly testing. It is obvious that several contact configurations passed these tests successfully. It may not be obvious, however, that a marginal performance situation resulted which is responsible for failures experienced in actual service.

It is remarkable that the contacts continue to present considerable problems, because a widely recognized book, Electrical Contacts by Ragnar Holm, appears to offer cures for all of the evils. The fact that the problems have not been solved indicates that additional efforts are required if dependable contact performance is to be attained.

\section*{Contact Condition}

Experience has shown that contact wear and con-
tamination cannot be prevented even when the greatest care and precautions are taken during relay manufacture. The sealed relays required by most specifications preclude observation of contact deterioration. Contacts are usually expected to perform satisfactorily in varying amounts through several million cycles. No other piece part is required to accomplish this without the benefit of periodic inspection or servicing. Sealed relays make this impossible.

Another requirement, not yet fully recognized, is that specific contacts shall work only once and then after an extended period of relay inactivity. There are also numerous relay applications where the relay contacts may never be called upon to operate although they are connected to an otherwise active system (for example, those in a fire alarm circuit if no fire occurs). The contact condition at the time of need is of equal significance in these two cases.

\section*{Contact Rating and Data}

The customary contact data include information on resistive, inductive, motor, and lamp-load parameters required for the testing of contacts. These tests are scheduled in that order. In actual service, however, these conditions may occur at the same time in a random sequence, or starting with the most severe service variety. Each of these possibilities can seriously affect the relay contacts and their performance in an unpredictablemanner with respect to the subsequent contact operation types

\section*{Contact Capacity}

The designation "relay" may be applied to a wide variety of devices ranging from miniaturized versions to heavy-duty types. No official, nationally standardized line has yet been drawn between the two rating extremes. Although the heavy-duty relays are sometimes correctly called "contactors," the dividing line is not distinct. The question arises: will a differentiation contribute anything to relay identification? In the author's opinion, it will not.

\section*{TERMINALS}

Relay terminals of conventional relays, especially those of multipole relays, can easily occupy more space than the relay itself. In the interest of saving space, therefore, many relay terminals are of marginal design and size. The miniaturization requirement imposed new restrictions on the size of terminals. The requirement was met by combining relay terminals with members carrying precisely positioned relay contacts on the other side of a fragile glass bead. Any excessive force or temperature applied to the terminals was transmitted to
the relay interior, disturbing the delicate parts adjustment and causing operational failure.

In present practice, the wires are usually attached directly to the coil and contact terminals. This may be of concern with open-type relays having solder lug terminals, because the applied soldering heat may damage relay members.

Other relay types have terminals positioned on a relay base plate, remote from the respective cur-rent-carrying member and connected to it through flexible leads. This is a more desirable terminal construction.

Perhaps the most widespread relay terminal variety is that using a post within and bonded to an insulating bead. The bead, in turn, is bonded within a relay header opening. This type of terminal provides a simplified construction, especially for miniaturized relays. The unfavorable heat transfer characteristics of this terminal construc tion were discussed previously.

Specific miniaturized relays have become so small that relay sockets combined with terminals of practical dimensions have been made available. Since the space occupied by these sockets exceeds that of a conventional relay, all advantages of miniaturization are eliminated.

\section*{STRUCTURES}

Various new operational requirements resulted in relay structures of greatly increased complexity. This converted the formerly rugged relay into a precision instrument demanding extremely careful handling during manufacture, shipment, storage, installation, and operation. Any negligence in these repsects usually results in relay shortcomings. If relay structures are to be functionally sound, they must occupy much of the space that is badly needed for the operationally required relay parts.

\section*{ENCLOSURES}

\section*{General Practices}

Relay enclosures serve primarily as containers for the relay structure and any gas that may have been used for its internal atmosphere. The vast majority of relay enclosures offer no protection or shielding against the electric or magnetic fields emanating from the so-energized relay members. This causes electric and magnetic interference among relays positioned adjacent to each other.

In addition, the relays are adversely affected by the electromagnetic field radiations of equipment and cables located near them. Conditions of this kind can easily be misinterpreted as relay failures, because the factors causing these failures no longer act once the relays have been removed from the affected installation.

\section*{Present Practice}

Frequently, the enclosures are used to carry the relay-mounting provisions, namely, a flange or one or more mounting studs. If the surface of the support to which the relay will be mounted is not flat, or if the binding nut for the studs does not have a true face, the relay enclosure may become warped. Internal clearances and other tolerances are very small (especially in miniaturized relays) and even those spaces are occupied with structural and insulating material. Consequently, any enclosure distortion is transmitted to the operational relay parts. This results in relay malfunctions which were not possible when the relay was tested in an unmounted position. Although failures of this kind cannot be attributed to the relay proper, the relay designer is definitely obligated to provide an adequate mounting provision.

\section*{Suggested Practices}

For stud mounting, only one stud should be provided. In addition, at least one positioning pin should be provided to register with a corresponding recess in the support.

For flange mounting, the flange should be so designed that differential forces are compensated within the flange without being transmitted to the relay enclosure.

\section*{ELECTRICAL RELAY CHARACTERISTICS}

This discussion is limited to the following electrical relay characteristics: pickup voltage, dropout voltage, minimum operating cycles, operate time, and release time. The general question applicable to all of these characteristics is: how essential are these requirements to the vast majority of relay operations?

Assuming that these five characteristics are associated with relays of conventional construction, one will observe that any one parameter value of one relay does not vary much from the corresponding value of another relay. The reason for this "togetherness" may be found in the fact that these values are the expressions of physical laws and conditions inherent in each such relay construction. Conversely, it seems absurd to toy with these physical factors merely for the sake of obtaining stricter requirements at tremendous cost.

Most relay applications require operation at or near the nominal system voltage and a dropout upon the completed circuit opening. Because both of these levels are far beyond the present pickup and dropout range, including its generous tolerances, a painstaking test for superficial values would contribute little. Comparable views can be taken of the operate and release time periods. The tricks required to alter these response periods usually result in only small changes which are not commensurate with the effort expanded.

The greatest extravagance or luxury is probably afforded the specification of minimum operating cycles. As was mentioned earlier, countless relays are expected to operate only once or twice, or perhaps not at all, during their useful lives. Nevertheless, they are required to pass tests in excess of tens of thousands of cycles. This appears unwarranted for such applications.

\section*{MINIATURIZATION}

Several effects of miniaturization on the performance of relays were mentioned earlier. The remaining major consequences of miniaturization are the following:
1. Excessive heat development and emission
2. Reduced insulation distances and spacings
3. Loss of structural strength
4. Lack of marking spaces
5. Complexity of manufacture
6. Performance

\section*{HEAT DEVELOPMENT}

The reduced surface of miniaturized relays offers a smaller cooling area than that of conventional relays. This, in turn, increases the development of hot spots and the possibilities of coil damage and material outgassing, followed by contact contamination.

\section*{INSULATION DISTANCES AND SPACINGS}

Insulation distances and spacings have been reduced to such an extent that their insulating capabilities can no longer be determined by means of calculation. The suitability of the design can be verified only through testing.

\section*{STRUCTURAL STRENGTH}

The reduced structural strength is of particular
importance during transit and storage when the relays are handled by untrained personnel.

\section*{MARKING SPACES}

Small marking spaces or the absence of such spaces requires separate labels, which may become lost. This can cause misapplications or erroneous connections.

\section*{COMPLEXITY OF MANUFACTURE}

Relays have always been delicate devices. Miniaturization has increased the difficulty of manufacture, assembly, quality control, and inspection.

\section*{PERFORMANCE}

Obviously, a miniaturized relay cannot be expected to negotiate electric loads in the manner of a rugged contactor. Further, it is not evident why a delicate relay should be expected to manage loads of undue complexity, such as ind uctive, capacitive, motor, or lamp loads. With but few exceptions, methods and arrangements exist which can rid circuits of the disturbing characteristics of inductive, capacitive, and inrush manifestations and reduce the load effect to that of a resistive type. It should be noted that the aforementioned principle can and should be considered in combination with relays of conventional dimensions.

\section*{CONCLUSIONS AND RECOMMENDATIONS}

Relay contacts continue to cause concern. Serious consideration must be given to performance improvement in possible combination with the establishment of realistic contact load requirements and an operationally clean, transient-free system. Attention should also be given to dependable drycircuit operation and to the possibility of contact servicing. Catalog information on contact ratings should be simplified to preclude both misinterpretations and misapplications.

Relay terminals appear to be vulnerable elements. They should not be exposed to excessive stresses of any kind when the relay is to be connected to the electric system. Comparatively long, flexible leads appear preferable to other methods, especially for miniaturized relays.

Because relay structure dimensions are limited to the space remaining between the functional parts and the standardized relay enclosure, the structures are adequate only for theoperational stresses. They are usually not capable of withstanding abusive handling or the like. This situation should be indicated through a precautionary noteattached to each such relay, and customer education programs should be conducted.

Relay enclosures should be adapted to function also as magnetic and electric shields. Enclosures should not be a part of the mounting bracketry. If this is unavoidable, any enclosure flexure upon the binding of mounting screws should be avoided.

The electrical relay characteristics given in conventional catalogs should be stated in a manner that will realistically present both the capabilities of the relay and the requirements of the user. Specialized relay characteristics should only be
presented when requested, or when they contribute to the relay selection.

Once the desirability or necessity of relay miniaturization has been established, little can be done to adjust any adverse factors without the addition of new elements occupying additional volume or a reduction in test standards. For example, reduction of test standards contributed to the commercial success of electric watt-hour meters and small appliances. If these devices were designed to established standards, their dimensions would be prohibitive. The only other alternative would be to eliminate testing completely.

\section*{RUDOLF STEINER}

Member of the Technical Staff
Space Division of North American Rockwell Corporation Downey, California

Rudolf Steiner has been with North American Rockwell's Space Division since 1963. At present, he is a member of the technical staff of the Reliability and Safety Department. Before joining the Space Division, he was associated with the Electrical Division of the U.S. Naval Air Development Center, Johnsville, Pennsylvania; Struthers-Dunn, Inc., Philadelphia, Pennsylvania; and Heinemann Electric Company, Trenton, New Jersey. In the course of these activities, he acquired 13 domestic and several foreign patents on electro-magnetic relays and other electric system control and protection devices.

Mr. Steiner received a Master of Science degree in electrical engineering from the Technical State University of Vienna, Austria, and is a registered professional engineer of the State of New Jersey. He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and the Austrian Institute of Electrical Engineers and president of the Aerospace Electrical Society of Los Angeles.

\title{
GUIDE LINES FOR THE APPLICATION OF SEMICONDUCTOR TECHNOLOGY TO ELECTRIC POWER DISTRIBUTION SYSTEMS
}

\author{
By Lee D. Dickey and Clyde M. Jones, Vought Aeronautics Division LTV Aerospace Corporation, Dallas, Texas
}

\section*{SUMMARY}

This paper presents an approach for applying solid state switching to aircraft electric systems. The systems approach presented separates signal switching requirements from power switching requirements and utilizes semi-conductor devices to perform the functions of switches, relays and circuit breakers. During the past ten years, these concepts have undergone laboratory and flight test evaluations to establish the feasibility of the systems approach. Recent studies have investigated the application of multiplexing techniques to the signal area.

\section*{INTRODUCTION}

The trend in advanced high performance aircraft is toward more sophisticated missions which require much more complex electric and electronic systems. This complexity has exponentially increased the quantity of switches, relays, circuit breakers and wire required in the aircraft. Complex digital avionics systems require clean (transient free) electric power, thus adding emphasis for electro-magnetic compatibility and interface compatibility between all signal systems and digital computers. This increase in complexity and requirements for compatibility cannot be compensated for or fully met by existing electromechanical devices. Present electromechanical devices are the result of two decades of development toward miniaturization. This miniaturization without a comparable reduction in system voltage has resulted in electrical stress levels so high that it is extremely easy to misapply the devices. It is felt that major advancements must be made to achieve the progress that is necessary to optimize future aircraft, and these advancements cannot be made by use of conventional approaches and techniques. Therefore, a new approach must be developed to increase performance and reliability. The approach must simplify circuitry, combine functions, separate signal and power switching requirements and eliminate unreliable features of switching control and protection devices and circuit techniques.

Since very rapid advances have been made in the electronics field, especially in digital computers through the development and application of solid state switching techniques utilizing semiconduct-
or devices, it is evident that investigations should be made to determine the applicability of similar techniques to aircraft electric systems. The application of this technology to aircraft electric distribution systems, however, has been slow to catch on. The slow start can be attributed to the application approach that has generally been made. A number of solid state devices (relays and circuit breakers) have been placed on the market with the idea of providing a solid state device to replace an electromechanical device on a part-for-part basis. This approach has some obvious drawbacks when it is considered that in most aircraft electric control circuits, the switching logic is performed at the power level. Because of the voltage drop and power dissipation characteristic of semiconductor devices, this approach results in a very inefficient system and makes it impossible to meet the voltage drop requirements of MIL-W-5088 (Aircraft Electric Distribution System Specification) in many circuits. At this point many have concluded that solid state switching for power distribution systems is not practical; and if there were no other factors to be considered, this might be the proper conclusion. However, semiconductor devices have advantages such as high reliability, long life and small size which, if properly applied, can provide the urgently needed improvements in aircraft electric distribution systems.

Work was initiated in January, 1960, specifically directed toward the development of an advanced electric system for aircraft. This development effort has continued since that time through programs sponsored by the NAVY, AIR FORCE, NASA, and INDUSTRY. During these studies, a new systems concept and component specifications were developed. The list of references (page 31) gives the reports and previous papers presented on various aspects of this development effort.

\section*{DISCUSSION}

The overall development effort toward an advanced electric system for aircraft has been given several names, such as "Contactless Switching," Solid State Switching, and SOSTEL (SOlid STate Electric Logic), but they all represent an application of semiconductor technology to the management and control of aircraft electric systems. The electric
system gathers and displays information and distributes the flow of power to equipment. Figure 1 is a block diagram of an aircraft electric system showing the primary area of concern during this development effort. Figure 2 is representative of present electric systems and is presented to highlight the fact that logic functions are performed at the power level. The present systems are inherently heavy, require complex harness routing, and are growing larger and heavier with each new requirement. These systems require large quantities of power-handling, electro-mechanical devices which are subject to wear, create large voltage transients, have limited cycle life, and have low cycling rate. These systems do not lend themselves to automated checkout, thus creating complex checkout and maintainability problems.

The inherent advantages of the semiconductor devices and technology are high reliability, long life, high cyclic rate and small size. The major disadvantage associated with semiconductor components when used as power switches is the high voltage drop across the device even when operating in deep saturation. A voltage drop of 0.5 volt in silicon power transistors and 1.5 volts in silicon controlled rectifiers can be expected. This limits the number of components that can be connected in series if MIL-W-5088 is to be compiled with or if high power control efficiency is to be obtained. Since the complexity of many aircraft power control circuits requires the use of several relay contacts in series, the use of solid state relays in these circuits is not permissible. Also, electromechanical circuit breakers cannot protect solid state switching devices. Admittedly, the purpose of circuit breakers in the airplane is to protect the wiring only; but solid state relays, flashers, timers, etc., are much more likely to be destroyed as a result of an overload or fault condition than their electromechanical counterpart when operating under the same conditions. The objective of the development work was to determine how solid state switching techniques could be applied to aircraft power control systems to exploit the advantages of this technology. Studies werecentered on separating power switching from signal switching, and on switching power through a minimum number of semiconductor devices. This not only minimizes the voltage drop between the source of power and utilization equipment but also provides efficient power control, since power dissipation is held to a minimum. Low power dissipation means that less heat sinking is required and, therefore, size and weight are reduced.

A concept was developed which separates power and signal switching and utilizes solid state devices to perform all of the switching and circuit protection functions presently performed by electromechanical switches, relays and circuit breakers. This concept makes maximum usage of the advantages of semiconductor devices and minimizes their disadvantages. The solid state electric system shown in Figure 3 is composed of three basic building blocks, namely: (1) signal sources, (2) control logic (including bus monitoring and builtin test) and (3) power controllers (bus switching and load controllers). Signal sources are transducers which provide a digital output. They are used to sense controlling functions, such as temperature, pressure, mechanical motion, etc. Their output signals are fed into the control logic unit where they are correlated in a prescribed manner to provide a signal to control the power controllers. The logic switching is performed by standard integrated circuit NAND/NOR gates to provide maximum reliability with minimum space and weight.

The fan-out capability provided by multiple pole switches and relays is provided by the integrated circuits and is peformed at the signal level instead of the power level. This reduces considerably the number of wires needed to gather intelligence from the various controlling functions. Since the intelligence is gathered at the signal level, small size wire may be used, which further reduces system weight. The flow of power from the power sources to the bus and from the bus to the loads is controlled by power controllers. Separation of power switching and signal switching provides high system efficiency and makes it possible to meet the voltage drop requirements of MIL-W-5088 in all circuits.

\section*{Bus Monitoring}

The flexibility of the system permits the incorporation of an automatic bus monitoring system which permits optimum loading on the source applying power. The limited capacity of any aircraft emergency source offers an excellent application for automatic bus monitoring. By assigning priorities to various loads in the airplane, it becomes possible to operate the emergency source at its optimum capacity. The emergency source must have the capacity to supply power to all the emergency loads, but in many instances the operation of an emergency load is not required. During these instances, automatic bus monitoring permits the pilot to operate some lesser priority load. If the emergency source is operating at full capacity with low priority loads operating, the selection of a higher priority load will automatically disconnect a lower priority load. Since automatic bus monitoring is performed by the control logic section, the system can be added with little size and weight penalty.

\section*{Built-in-Test}

A technique was developed to perform a preflight GO/NO-GO test on the low level portions of the system which are made up of the signal sources and data handling equipment. Bus controllers and
power controllers are not checked by the built-intest and are actually inhibited while the built-intest is in operation. However, they are checked as part of subsystem functional checks.

The test is divided into four parts: logic, input buffer, signal source short and signal source open. These tests correspond to four positions of the rotary selector switch on the BITE control panel shown in Figure 4. When the control switch is in the FLY position, the BITE circuits are disabled and the bus power and load power controllers are enabled. Before each test is performed the reset button is depressed. At the start of each test both the GO and NO-GO lights illuminate. One of them will be switched off at the conclusion of each test. A digital indicator identifies the faulty signal source during the short and open tests and the faulty input buffer card during the input buffer test.

The logic test checks the logic circuits within the logic unit through all possible input combinations to see that they will perform their logic functions when required to do so. The input buffer test checks the input buffers to see that a signal will pass through them. The signal source short test checks for short circuits between the signal leads and the power and ground leads both in the signal sources and the logic unit. The signal source open test checks the signal sources output circuits. The built-in-test circuits are packaged as a part of the logic unit.

\section*{Advanced Control Logic}

Recent investigations have been directed toward the development of an advanced solid state electric system as shown in Figure 5. The control signal sensing and the power switching approach remain essentially unchanged. The change occurs in the method of handling and processing the control data. Under the advanced system concept, remote multiplexing input terminals are located in close vicinity to large groups of signal sources, thus allowing a significant reduction in the length
of wires required to gather control information These terminals monitor each signal source and upon command from the master control unit (MCU), code and serially transmit the status of each signal source through the multiplexing transmission data line. The MCU decodes the data from the input terminals, solves the Boolean switching equations according to instructions permanently stored within the memory and then transmits the coded output data over the multiplex data transmission line to the properly addressed remote output terminal. At each remote output terminal, the data are decoded and routed to the particular channel addressed by the MCU. The output of this channel is then hard-wired to a particular bus, load, or indicator power controller. The output signal remains constant, either high or low, until the next up-dating of that output by the MCU.

The MCU is the heart of the data handling system and controls the entire data handling process. It contains a non-destruct read only (NDRO) memory in which are stored all control instructions and the switching equation associated with the control of power to each individual load. The control instructions and equations are programmed into the MCU through a software program. Thus,

changes in control logic can be accomplished by reprogramming the MCU with a paper or magnetic tape, thereby eliminating the need to make any wiring changes on the aircraft. For reliability, two (2) MCU's are to be used per system with one operational and the other in standby. Upon malfunction of the operating unit, the standby MCU is automatically switched into operation. The two MCU's are interchangeable. Parity check and monitor circuits are utilized within the MCU, thus providing a continuous built-in-test capability.

The remote terminals are totally redundant, circuitwise, in each package. The remote terminals have been optimized at 64 channels each. The package configuration and circuitry of the remote input terminals are identical, thus these units are interchangeable. The same standardization and interchangeability exist for the output terminals.

The multiplex data transmission line consists of two pair of twisted shielded wires each forming a closed loop. Redundant transmission lines are used and routed separately from each other to improve system survivability and decrease system vulnerability. Each transmission line can operate either shorted or open. Under this concept, one transmission line could be totally disabled and the remaining line open or shorted, and the system would still be in operation.

The solid state electric system as previously shown in Figure 5 is composed of three basic building blocks, namely: (1) signal sources, (2) control logic (including combinational logic and programmable logic with multiplexing for load control and built-in test) and (3) power controllers (bus switching and load switching). The signal sources and control logic can be implemented by use of solid state circuitry that is in general use today with minimal development effort required. Requirements for the power controllers, however, are many times more severe and make the job of applying semiconductor technology a difficult one. Therefore, the remainder of this paper will be confined to the requirements and characteristics of power controllers.

\section*{Power Controllers}

These devices must be capable of switching electric power in a system exhibiting MIL-STD-704 characteristics and be controlled on by a 5 volt 10 ma DC signal supplied by the control logic unit. The load switching power controllers are used between the bus and the utilization equipment to provide control, current limiting and circuit protection, while the bus switching controllers are used only to connect power sources to the bus.

These power controllers have the following operating characteristics:
- Isolation between the control and the power circuits
- Operating efficiency of \(95 \%\) minimum
- Voltage drop .5V Max DC, 1.5V Max AC
- Leakage current: Device rating \(\times 10^{-4} \mathrm{amp}\) at max temp
- Operating temperature range of \(-54^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- Require no external power supply

Providing the capability for the power controller to operate with variations in the aircraft bus voltage level is the major problem. Notice in Figure 6 that the voltage level is allowed to swing between 10 vdc and 80 vdc and in Figure 7 that the AC voltage is allowed to swing between 60 vrms and 180 vrms. The AC units must also control loads with a power factor between zero lagging and .4 leading as shown in Figure 8.

\section*{DC Load Power Controller}

The DC power controller contains a power switch, a regulator, a driver and circuitry for current limiting and circuit protection as shown in Figure 9.

Power Switch - The power switching element is an NPN silicon power transistor. This power transistor must have sufficient voltage rating to withstand MIL-STD-704 voltage transients and sufficient power dissipation capability to provide low thermal gradient during normal operation.

Regulator - The internal regulator is used to provide a buffer effect so that the voltage to the internal circuitry is independent of the bus voltage variations. A zener diode and resistor may be used for low current power controllers, but a shunt regulator consisting of a zener diode, transistor and resistor must be used to provide better packaging efficiency for the higher current units.

Drive Circuit - The power transistor must be driven deep into saturation if the voltage drop and power dissipation are to be held to a minimum. This requires a large base current which typically is one tenth the load current value. Also, the base-to-emitter and base-to-collector junctions must be forward biased for saturation. A DC to DC converter is used to provide signal to load isolation and the voltage necessary for saturating the transistor. This concept will permit switching power to the load at efficiencies in excess of \(95 \%\).

Current limit and circuit protection - There are two reasons for incorporating these features into the unit: (1) to protect the unit itself and (2) to protect the circuit it is controlling. The power dissipated in the switching transistor is held to a minimum during normal operation by providing the proper base drive current to cause the transistor to be saturated and thus have a small voltage drop across it. During overload, short circuit, or voltage transients, the load current tries to increase, thus causing the transistor to fall out of saturation and increase the power dissipation. Since the input voltage cannot be controlled by this device, current limiting provisions must be incorporated to hold the power dissipation within limits that will prevent the temperature of the semiconductor junction from rising above its rated value under conditions of maximum voltage on the input and short circuit on the output. Figure 10 shows the current limiting characteristics specified for the DC power controllers. Notice that at rated voltage (29 vdc) the current is limited to \(100 \%\) rated for a short circuit on the device output and to \(130 \%\) rated for an overload \(\frac{R_{1}}{R_{\text {Rases }}} ? \infty\). This characteristics is called fold back and is incorporated to provide current values greater than

rated for starting surges, yet allow current reduction to protect the switching transistor during circuit protection action (current limit and trip out). Since it would be impractical to design the power controller to be able to dissipate this large amount of power on a continuous basis, a trip-out circuit is provided. The trip-out time must be long enough to prevent nuisance tripping when using a MIL-STD-704 power source (see Figure 11). When a transient condition exists for a period longer than the trip-out time, the power switch is turned off and a trip indication signal is provided. Remote reset is accomplished by application of a 5 volt 10 ma signal (reset) from an external source. Notice that at 29 vdc , the trip-out time may be between 1.0 and 3.0 seconds.

One other difficult requirement to meet is-that of the \(\pm 600 \mathrm{vdc}\) spike voltage of MIL-STD-704 (Figure 12). This requires special attention to both input and output terminals of the device.

\section*{AC Load Power Controller}

The AC power controller contains a power switch, a power supply, a driver, circuitry for zero crossover turn-on, current sensing and circuit protection as shown in Figure 13.

Power Switch - The power switching elements are back-to-back silicon controlled rectifiers (SCR's). SCR's are ideally suited for this application since they are automatically commutated "off" by the alternating line voltage. The voltage drop of SCR's is higher than that of saturated power transistors, but this is not serious where the supply voltage is 115 volts. The primary requirements of the SCR are that it has sufficient voltage rating to meet MIL-STD-704 voltage characteristics and an \(1^{2} t\) rating to withstand the high fault current that can be obtained in the generating system. As an example, in a typical 20 KVA system, fault currents with 350 Amp sec. valves per phase have been recorded.

SCR;s rated for 35 Amps rms, have an \(1^{2} t\) rating of approximately 85 . Therefore, very large chips must be used or external protection provided by a device such as a crowbar on each phase of the bus. The present plan calls for a crowbar circuit which will sense bus current and turn on when the current approaches 200 Amps, peak, and divert the excess current to ground; thereby allowing the use of an SCR chip rated at 35 Amps, rms, in the load power controllers. SCR's also have low leakage currents (1.0 milliamp and less) in the off condition which enhances their usefulness for power switching circuits.

Application of AC power controllers is limited by the one half cycle current rating, particularly in systems using conventional generators because of their high transient current capacity. Use of these devices with variable speed constant frequency (VSCF) systems is not limited because the amplitude of transient current is readily controllable.

Power Supply - A power supply is required to provide regulated DC excitation for the driver, current limit and circuit protection circuitry. The power supply consists of a transformer, full wave rectifier, filter and series regulator. This power supply prevents line transients from affecting the internal circuitry.

Drive Circuit - To provide isolation between the control circuit and load circuit as well as power transfer efficiency, a DC to DC converter is used. This concept also provides a continuous gate signal to the SCR's, thereby ensuring SCR triggering for any load power factor during steady state operation.

Zero Crossover Sensing - Zero crossover sensing is required for zero crossover turn-on. The output of this circuit commands the driver circuit to turn-on at zero crossover for starting loads that are within the rating of the device.

Circuit Protection - As in the DC load controller, circuit protection must be incorporated into the unit to protect itself as well as the external circuit. SCR's do not inherently limit current as do power transistors; therefore, it is essential that circuitry be incorporated to provide time current sensing and trip out to protect the SCR's and to switch incandescent lamp loads which have very high starting currents. The time duration should be long enough to prevent nuisance tripping as a result of line transients (see Figure 14) or turning "on" into rated lamp loads. This can be accomplished by sensing load current, actuating a control circuit which determines the time before trip-out. Once tripped out, the device can be reset by applying a reset signal.

\section*{Bus Switching Power Controller}

The bus switching controller performs the function of a relay only. Transformer rectifier units are used to provide DC power in many systems; therefore, only AC units will be presented. The AC bus switching power controller block diagram is identical to that shown in Figure 13 except it does not contain the current limiting and circuit protection circuitry, but it does include a lock-out feature that is not included in the AC load controller. High current SCR's are used; therefore, \(\mathrm{I}^{2} \mathrm{t}\) ratings will not present a problem. Circuit protection need
not be incorporated since circuit protection is provided by the load controllers which are connected between the bus and the loads. The system concept utilizes a single bus which makes it imperative that no two unsynchronized sources be connected to the bus simultaneously. This feature can be designed into the logic, but a latching circuit within the bus power controller provides added protection. The design concept for low distortion and zero voltage crossover turn-on is basically the same as for the AC load power controller.

Package Design
Although packaging efficiency is an important factor in determining the size of the power controller module, the power dissipated within the module is of utmost importance. To prevent the junction temperature of the devices within the module from exceeding their maximum ratings, the heat generated within the module must be conducted away. The low current ratings will present no problem, but the high current devices must be attached to an external heat dissipator. Since the junction of the main switching device (power transistor and SCR) is most critical, the

thermal resistance between this device and the module surface must be low. To obtain a small package size, integrated circuits, transistor and SCR wafers, and thin-film techniques must be used (as shown in Figure 15). The objective is to minimize weight by letting the system designer handle the power controllers as he would a power transistor and provide heat sink as required for the particular application. Since most of the controllers will be used for loads which require current values less that the rating of the device, the heat sink may be sized according to the load.

\section*{CONCLUSION}

Aircraft electric systems designed utilizing the advanced solid state system approach offers many advantages over those designed utilizing conventional approaches. Some of these are: higher reliability, longer life, lower maintenance, environmentally rugged, higher versatility, lower weight and volume, simplified system design, electromagnetic compatability, improved fault clearing capability
and lower cost. These advantages are emphasized by the results of a study made for the A-7 in which conventional and solid state systems approaches were compared. It is evident from the data shown in Table I that the solid state system provides significant improvements to aircraft electric systems.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
Tans I \\
COAPAPARISON OF ELECTRIC SYSTEMS \\
(A-7 AIRCRAFT)
\end{tabular}} \\
\hline & CONVENTIONAL & SOLIO STATE & CHANGE \\
\hline WEIGHT & 576 LB & 315 LB & 45\% REOUCTION \\
\hline VOLUME & 2756 CU IN & 1500 CU IN & 45\% REOUCTION \\
\hline \begin{tabular}{l}
RELIABILITY \\
(FAIL/10 \({ }^{6}\) HR)
\end{tabular} & 498 & 116 & 77\% REDUCTION \\
\hline MAINTAINABILITY (MMH/FLT HR) & . 01407 & . 0028 & 80\% REOUCTION \\
\hline
\end{tabular}

\section*{CLYDE M. JONES}

Senior Specialist, Electrical Electronics System Vought Aeronautics Division, LTV Aerospace Corp. P.O. Box 5907

Dallas, Texas 75222
Mr. Jones is responsible for all R \& D activities of the Electrical and Electronic Design Group. Vought has been engaged in study and development programs for applying solid state switching technology to aircraft electric systems since 1960. During these programs which have been sponsored by Vought, Naval Air Systems Command Air Force Aeropropulsion Laboratory, system concepts and proposed military specifications have been developed. The Electric Power Management System defined for advanced air-
 craft utilizes solid state bi-level switches, data handling (including electrically reprogrammable memory and multiplexing) and solid state power controllers.

Mr. Jones is a member of the \(\mathrm{A}-2 \mathrm{~K}\) Multiplexing Committee of SAE and consultant to the Power Distribution, Conditioning and Control subcommittee of IEEE.

\section*{L. D. DICKEY}

Supervisor, Electrical and Electronic Design
LTV Aerospace Cor poration
Unit 2-51727
P.O. Box 5907

Dallas, Texas 75222
Since 1963, Mr. Dickey has been responsible for the supervision and technical management of all design and research and development activities of the Electrical and Electronic Design Group.

Between 1951 and 1963, Mr. Dickey was responsible for the design, coordination and installation of electrical and electronic systems for the F-8 (Crusader) airplane. He was Lead Design Engineer responsible for the electrical design effort on an advanced space glider. For four years, he was Lead Design Engineer for R \& D programs and had technical responsibility for all research and development programs of Product Design. Mr. Dickey earned his B.S. in Electrical Engineering from Texas Technological College, 1951. He is a member of the A-2R Relay Committee of SAE; Chairman: Power Distribution, Conditioning and Control Sub-committee of IEEE.

\section*{zEFERENCES}

\section*{Papers and Presentations}
1. Solid State (Static) Switching for Aircraft Electric Systems by .. D. Dickey, LTV Aerospace Corp., Dallas, Texas; presented at Vaval Air Systems Command Symposium on Advanced Techiques for Aircraft Electric Systems in Washington, D.C.; October, 1962.
2. Application of Contactless Switching to Aircraft Systems by .. D. Dickey, LTV Aerospace Corp., Dallas, Texas; presented at Vavel Air Systems Command Symposium on Advanced Techliques for Aircraft Electric Systems in Washington, D.C., October, 1963.
3. Development Program for, and the Application of Contactless Switching to Aircraft Electric Systems by L. D. Dickey and A. J. Uarek, LTV Aerospace Corp., Dallas, Texas; presented at Naval tir Systems Command Symposium on Advanced Techniques for tircraft Electric Systems in Washington, D.C., October, 1964.
4. Application of Contactless Switching to Aircraft Electric Sys:ems - Progress Report by L. D. Dickey and A. J. Marek, LTV terospace Corp., Dallas, Texas; presented at Naval Air Systems Jommand Symposium on Advanced Techniques for Aircraft Elec:ric Systems in Washington, D.C., October, 1965.
j. Application of Contactless Switching to Aircraft Electric Sys:ems - Progress Report by H. S. Bates and A. J. Marek, LTV Aero;pace Corp., Dallas, Texas; presented at Naval Air Systems Comnand Symposium on Advanced Techniques for Aircraft Electric Systems in Washington, D.C., October, 1966.
; Contactless Switching - An Application of Solid State Switchng Technology to Aircraft Electric Systems by C. M. Jones, LTV terospace Corp., Dallas, Texas; presented at Solid State Aircraft tdHoc Committee Meeting in Aero Propulsion Laboratory, Wrightدatterson AFB, Dayton, Ohio, November, 1966.
7. Contactless Switching - An Application of Solid State Switchng Technology to Aircraft Electric Systems by C. M. Jones and .. D. Dickey, LTV Aerospace Corp., Dallas, Texas; presented at Na:ional Aerospace Electronics Conference in Dayton, Ohio, May, 1967.
3. Solid State Electric Power Transmission System - Progress Zeport by C. M. Jones, LTV Aerospace Corp., Dallas, Texas; presented at Solid State Aircraft AdHoc Commission Meeting in Aero Propulsion Laboratory, Wright-Patterson AFB, Dayton, Ohio, May, 1968.
3. Built-in-Test for Aircraft Solid State Electric Systems by H. S. Zates and W. T. Turnage, LTV Aerospace Corp., Dallas, Texas; oresented at National Aerospace Electronics Conference in Day:on, Ohio, May, 1969.
10. Controlling Aircraft Electric and Integrated Avionics Systems with Semiconductor Devices by Leonard W. Wendling, Naval Air Zystems Command, Washington, D.C.; published in Naval Air Systems News, Vol. 2, No. 3.

\section*{Final Reports}
1. Investigation of Contactless Switching Concepts for Application to Aircraft Electrical Systems, Volume I Aircraft Systems Requirements, LTV Aerospace Corp., Dallas, Texas. (AD417130)
2. Investigation of Contactless Switching Concepts for Application to Aircraft Electrical Systems, Volume II-Concept Design Studies, LTV Vought Aeronautics Division, LTV Aerospace Corp., Dallas, Texas. (AD4 17245)
3. Investigation of Contactless Switching Concepts for Application to Aircraft Electrical Systems, Volume III - Systems Investigations and Developmental Requirements, LTV Aerospace Corp., Dallas, Texas. (AD417131)
4. Investigation of Contactless Switching Concepts for Application to Aircraft Electrical Systems, Volume IV - Development and Evaluation of Contactless Switching Components, LTV Aerospace Corp., Dallas, Texas. (AD453826)
5. Investigation of Contactless Switching Concepts for Application to Aircraft Electrical Systems, Volume V - Investigation of Multiple Signal Generation, Transmission and Detection, LTV Aerospace Corp., Dallas, Texas. (AD618527)
6. Investigation of Contactless Switching Concepts for Application to Aircraft Electrical Systems, Volume VI - Flight Test Evaluation of a Prototype Contactless Switching System, LTV Aerospace Corp., Dallas, Texas. (AD628581)
7. Investigation of Contactless Switching Concepts for Application to Aircraft Electrical Systems, Volume VII - Development and Evaluation of Checkout Concepts for a Contactless Switching System, LTV Aerospace Corp., Dallas, Texas. (AD645428)
8. Exploratory Development Program to Prove the Feasibility of Solid-State Switching for a Complex Electrical Control Network, LTV Aerospace Corp., Dallas, Texas. (AD818554)
9. Advanced Aircraft Electric System Studies and Consultation for a Proposed Technical Approach (PTA) Documentation, Final Report 2-50100/9R-2607, July, 1969, LTV Aerospace Corp., Dallas, Texas. Navy Contract 856506.
10. Military Specification; MIL-S-81619 (AS); Switches, Solid State Transducer, General Specification for (Approved by NASC Jan. 17, 1969).
11. Military Specification MIL-P-81653 (AS) Power Controller, Solid State; General Specification for 17 Nov. 69.
12. Solid State Electric Logic (SOSTEL) Mr. L. W. Wendling, Naval Air Systems Command, Digest: U.S. Naval Aviation Weapons Systems Digest. Feb. 69.
13. SOSTEL by Mr. L. W. Wendling, Naval Air Systems Command, Paper presented to Lima, Ohio Chapter of IEEE, 21 Jan. 70.

\title{
SCREENING RELAYS FOR CONTAMINATION
}

By Howard V. Rode, Member Technical Staff, Space Division North American Rockwell Corporation

\begin{abstract}
There is now no single universal method for detection of all contaminants within the container of a hermetically sealed relay.

Several available methods are described briefly, and results of a study, Programmed Random Vibration Testing for Particle Detection, are presented.
\end{abstract}

Finally, the most efficient solution to the problem is recommended to be a combination of two methods: \(X\)-ray and programmed vibration testing.

\section*{INTRODUCTION}

There is a need for a comprehensive inspection procedure, or procedures, to detect particulate contaminants within the sealed containers of relays. This paper describes various methods available and presents results of an investigation into programmed vibration testing (PVT). In PVT, components are classified according to size and complexity, and a program is established for each classification so that the greatest possible excitation is imparted to particulate contaminants. The purpose of PVT is to cause loose-particle migration into critical areas which results in a detectable malfunction. Of course, the magnitude and duration of testing must be nondestructive and nondetrimental to service life.

Observation and experience have disclosed a great array of contaminants including: chips, filings, weld splatter, solder splatter, lint, and eyelashes. Anything used in the component assembly area, or in construction of the component itself, is a candidate particulate contaminant. The question is, then, with the large number of types and sizes of contaminants potentially present, how does one provide nondestructive methods to detect a failureprone unit after it is sealed?

\section*{METHODS OF DETECTION}

The principal methods of detecting relay contamination are photographic processes-X ray and \(N\) ray-and various dynamic techniques. In the latter category is the "miss test," wherein a relay is operated for a specific number of cycles, usually 5000. Also there are programs using sinusoidal or random vibration of short duration, accompanied by the use of miss detection means such as oscilloscopes or solid-state switching devices. A recently
developed method identifies contamination by the detection of sound resulting from the impingement of loose particles against the walls of the container during low level vibration stimulation. Under investigation at North American Rockwell is a method wherein the relay is vibrated at a predetermined critical frequency and amplitude to adequately stimulate loose particles. The rationale for this type program is based upon the physical characteristics of various relays. Since no two relays are identical, no two relays have the same dynamic response characteristics. A single uniform test profile would not be realistic for a variety of designs. Therefore, individual vibration test programs must be developed for each relay model to ensure optimum detection capability. On this premise a study was conducted and yielded acceptable results.

\section*{X-RAY PHOTOGRAPHY}

Radiographic inspection is fast and low in cost and provides a permanent record. However, it requires a skilled equipment operator and photographic interpreter. Also, X rays will not detect particles less dense than the relay container nor show the presence of extraneous nonmetallic particles amidst the high density of internal metallic mechanisms.

\section*{N-RAY PHOTOGRAPHY}

Neutron radiography is a recently introduced inspection technique. N -ray photography complements the X ray because it can distinguish among materials of similar density but different chemical composition. N rays are good for locating light materials (nonmetals) within heavy materials (metals) and for examination of radioactive specimens. However, this technique is just now emerging from the experimental stage and it will be some time before equipment and operating costs are low enough to make thetechnique economically justifiable for the production line. Although the N -ray process will detect many nonmetallic particulates, it will remain a selective process, requiring specialized equipment and operator skill.

\section*{DYNAMIC DETECTION}

Random vibration closely approximates the vibration environment in which the relays will ultimately function. It is logical, therefore, to expose relays to a simulated operating environment beforeinstallation. If there are no failures during simulation,
the possibility of a failure in the final application can be considered remote.

North American Rockwell engineering postulated that a single fixed or universal test spectrum does not adequately stimulate particulate contaminant in every switching device. This is because of variations in geometry, size, weight, complexity, and materials. It was reasoned that components could logically be categorized according to size and construction details. This would be entitled programmed vibration testing.

\section*{PROGRAMMED VIBRATION TESTING}

An evaluation test program was formulated to determine the validity of the postulation. Sixty relays, four each of 15 types from nine different manufacturers, were subjected to sine wave and random vibration, with visual or electrical circuit monitoring. The primary objective was to establish vibration parameters that would most effectively stimulate the migration of loose particulate contaminants and result in a detectable open-circuit or shortcircuit condition as a mode of failure. The data accumulated would be analyzed, with the goal of classification being a secondary objective.

First, two samples of each relay specimen were prepared by having a window cut in the enclosure and a controlled sample of particles inserted. The window was then sealed with a piece of Lucite. The relays were subjected to sine wave vibration over a narrow low-frequency band and at various \(g\) levels. During this operation, the migration of loose particles was observed and photographed.

On an additional sample of each relay the container was punctured in a noncritical area, and an identical group of contaminants was introduced before the hole 'was sealed. The group was subjected to random vibration while the relays were electrically cycled at the rate of 90 Hertz, and with the contacts carrying 100 milliamperes (ma) at 26.5 vdc . Levels of acceleration spectral density from \(0.10 \mathrm{~g}^{2} / \mathrm{Hz}\) to \(0.20 \mathrm{~g}^{2} / \mathrm{Hz}\) were used. Each operation of the relay contacts was monitored for contact voltage drop in excess of 100 ma . The monitoring was done with a Visicorder in conjunction with circuitry that would detect an open- or short-circuit condition.

The remaining relay sample was used as a control sample and subjected to the random vibration test noted.

\section*{RESULTS OF TESTS}

All except one of the relays with introduced contaminant particles exhibited one or more malfunctions during one-minute test periods. Malfunctions included open-circuit contacts, shorted contacts, and shorts to the case.
(At this point a film was shown that depicts the vibration of particles within relay enclosures.)

This is a lucite window which covers the relay enclosure. We cut an opening in the side of the relay to introduce the contaminants, and then we sealed it up with a lucite window so that we could observe the contaminants.

These are the fiber optics which we use to illuminate the parts and also to photograph the excitation of contaminants - a typical test setup showing the illumination capability of the fiber optics:

This is our control console changing the amplitude and magnitude of the excitation. The operator is making such a change right now. It is interesting to note that of the 15 varieties of relays which we used in this evaluation program, we tentatively concluded that we could classify them in three different classes based on size and configuration.

This is the strobe light which was operating at the same frequency as the excitation of the shake table. The operator is adjusting the camera.

Now we are actually vibrating a test specimen. Specimens were taped to this heavy block. The specimens were light enough so that they didn't require mounting through the usual mounting techniques. It is vibrating now at 20 hertz. That is not a bad picture. Those are contaminants bouncing around inside it.

So those have been introduced. They were previously shown in a test tube.

To the right is what appears to be a piece of teflon lodged on the contact going at 30 hertz. These films vary in frequency of excitation from 20 hertz up to 200 hertz. You will notice now that the armature is starting to oscillate as well as the particulates. They just keep changing frequency; getting higher and higher. Later on when we get up to about 180 or 200 cycles, you will find that the particles all tend to colonize or gather in one isolated group and stay in that area. They are starting to do it now, which indicates that that is not a good frequency to use during vibration of testing with the presence of contaminants.

In the lower left they are starting to colonize at the bottom of the case near the header. I wonder if they shouldn't isolate it from the vibration.

Now, we have a good colony down there at the lower left; nothing is moving, see. It is a very bad frequency for detection of particulates. We ran two types of vibration: One was for the evaluation of particle migration at certain fixed frequencies as
you are witnessing now, and then later on we ran a vibration spectrum which we feel more closely resembles what you see in true light. True light is rarely depicted.

This is a different configuration, and it appears to be going at about 20 hertz. This is another configuration. All told we had 15 different configurations and a total of 60 relays were tested. The misses were detected in each and every case, and we feel we have substantiated our hypothesis and have established a technique for detecting particles within sealed relay enclosures using this dynamic approach. We have imposed this method of inspection on our various suppliers, and in the future we will make procurement for additional space programs.
(End of Film)
\begin{tabular}{|c|c|c|c|}
\hline & 1. & Profile: and & Reault* \\
\hline & & & \multirow[b]{2}{*}{Remmatis} \\
\hline \begin{tabular}{c}
Numple \\
Ne \\
\hline
\end{tabular} & NC Contacta & No Contact: & \\
\hline 31 & & & A \\
\hline 81 & -x, + & +Y & B. \(C\) \\
\hline 31 & -X & -x & \(\hat{\text { B, }}\) E \\
\hline 5 & -x & -x & \({ }_{\text {A }}{ }^{\text {E }}\) \\
\hline 36 & & & A \\
\hline 57
98 & & & A \\
\hline \({ }_{98}\) & \({ }_{-}^{-x}\) & -x. + x & B
c
c \\
\hline -0 & -x & & B \\
\hline 01 & & & A \\
\hline \({ }^{62}\) & \(-x_{1} \cdot x_{0}-y_{1} \cdot \underline{y}\) & & \({ }_{\text {a }}\) \\
\hline 64 & & & B. D \\
\hline \(6{ }_{6}^{63}\) & -x. +x. * \({ }^{\text {r }}\) & & \(A_{\text {A }}\) \\
\hline 67 & -x. +x. - \({ }^{\text {r }}\) & -x. + \(\mathrm{X}_{\text {, }}\) & \({ }_{\text {A }}{ }^{\text {B. }}\) \\
\hline \({ }^{68}\) & -x. *x. * y & & B. D.E \\
\hline \({ }^{69}\) & & & Severe contact chatter furing transier, no fallures \\
\hline 71 & & & Wanker, not \\
\hline 72 & -x & & \({ }^{8}\) \\
\hline 74 & -x. +x. - \%. *y & -x. \(+\mathrm{X} .-\mathrm{r} .+\mathrm{Y}\) & 8. \({ }^{\text {d }}\) \\
\hline 75 & & & A, D \\
\hline 77 & *x. *r & & \({ }^{\text {B. }}{ }^{\text {a }}\) \\
\hline 78 & - \(\boldsymbol{Y}\). \(+\boldsymbol{Y}\) & & \({ }_{\text {a }}\) \\
\hline so & - \(\mathrm{X}_{1}+\mathrm{X}_{1}\) - \(\boldsymbol{Y}\) & -x. +x, - \(\mathbf{Y}\) & B. D \\
\hline \multicolumn{4}{|l|}{Note: Oid-numbered remples had no contamanants introduced.} \\
\hline \multicolumn{4}{|l|}{A - no tastures} \\
\hline \multicolumn{4}{|l|}{A- open contect} \\
\hline \multicolumn{4}{|l|}{D - shorted conts cti} \\
\hline \multicolumn{4}{|l|}{E. multer} \\
\hline \multicolumn{4}{|l|}{See Figure Ifor diagram of teat axes a.} \\
\hline
\end{tabular}

Figure 1. Diagram of Teat Axes

Each and every relay will be exposed to this type of inspection procedure.

In addition to using the dynamic approach for particle detection, we feel that a static approach is necessary, and, therefore, we recommend the use of \(X\)-rays to screen the enclosure for contaminants.

The sum total of the inspection procedures that we use is a combination of static and dynamic testing, static being \(X\)-rays and dynamic being low-level random vibration.

It is estimated that the data accumulated in this brief test program, although limited, is adequate to support the original postulation. It was possible, through observation of contaminated relays under varying sinusoidal vibration levels, to establish effective random vibration profiles for PVT. Table 1 presents the PVT sample numbers, failure axes, and test results.

\section*{RECOMMENDATIONS}

While it is recognized that the contaminante introduced into the test samples was far in excess, in most cases, to what would be discovered in production, it is recommended the PVT program become an integral part of product acceptance testing. Furthermore, it is recommended that the X-ray technique be used to augment PVT. In this manner, particulate contaminants will be screened in both static and dynamic conditions. A by-product of the final assembly test plan is the detection of gross mechanical defects in the X -ray process.

\section*{CONCLUSION}

The combined method of \(X\) ray and PVT has been introduced and invoked on suppliers at North American Rockwell. A method for establishing profiles for each new component assembly has been established. It remains for enough data to be accumulated and collated to establish the uniform classes of assemblies mentioned previously.

HOWARD V. RODE
Member Technical Staff
Space Division of North American Rockwell Corp. 12214 Lakewood Boulevard Downey, California 90241
Mr. Howard V. Rode is responsible for electrical equipment and components engineering for the past eight years at the Space Division. In all, he has 25 years experience in electromechanical design engineering.

Mr. Rode has earned his BSME and is a registered Professional Engineer in the State of California.

\title{
the evolution of general purpose relays and applICATION VARIABLES CONCERNING THE USE OF BIFURCATED CONTACTS
}

By Mr. R. P. Sykes, Member Technical Staff, Redcor Corporation

\section*{THE EVOLUTION OF GENERAL PURPOSE RELAYS}

If you can picture an evolutionary tree with roots somewhere in the distant past, maybe telegraph sounders and relays evolving out of this telegraph sounder with contacts on them and so on with the dry reeds and mercury relays being the limbs of the tree for specialized applications, then the general purpose relay probably was something with a phenolic base screwed down with woodscrews to a bread board, back in the late 1800's! It seems to me that the evolution of relays from that time to the present has followed the prevailing packaging technology for packaging the equipment for which the relay is a part.

To go back to those earlier beginnings, we had leather cable clamps, fahnstock clips woodscrewed to a breadboard, coming up to the present where we have wire wrapped dual-inline packages on printed circuit boards. The packaging technology has come a long way.

The relays that were used on those original breadboards had no requirement to be fast or to be small; for that matter to be particularly inexpensive, because they were performing a major function, and they were a relatively complex component for the day. Then those breadboards were mounted vertically between two side rails, and we called them panelboards - power distribution type panelboards. Still basically the same relay mounted on a breadboard with straight runs of wire. You know, big. Remove the breadboards from between those vertical side rails and replace them with horizontal relay mounting bars to permit getting more relays in a given space, and the result was called a "relay rack."

The telephone company then worked that one to its ultimate, getting the maximum number of relays in the minimum amount of floor space. Here the relay had to evolve from something that was woodscrewed down to panelboards to something that was mounted on a single screw to a bar whose contact terminals were exposed for wiring on the back, not unlike our wire wrapped dual terminals that stick out on one side.

Then, say before the second world war, packaging technology evolved using metal chassis with vacuum tubes and big replaceable components on the top and the wiring underneath; and again the
general purpose - the mainstream of relay technology - involved taking relays that had been designed for mounting on these bars and relay racks, and mounting them on holes in the chassis.

So the point I am making is that at each step of the evolution the packaging technology has led the way, and the relays have followed. At each step we use the relays from the former packaging technology and adapt it to the present packaging technology until the usage becomes great enough to pay for the changes to the relay that make it more optimum.

For example, it was very difficult to replace a relay that was bolted to a chassis with a screw and hard wired, so this led to the evolution of relays that would fit into sockets, which had already been designed for making vacuum tubes easy to replace. This sort of thing prevailed pretty much all the way through the second world war. By the end of the war, the general purpose relay gained its name.

A general purpose relay was defined as something costing about \(\$ 4.00\) for a form 4C, at the thousand piece level. It was a big and slow general purpose relay.

Now, since the second world war, which has been a while, in -my view the trunk of this evolutionary tree hasn't grown. We still have general purpose relays and all the catalogs list it at about \(\$ 4.00\) for form 4C, available to plug into octal sockets and mounted by a single screw to the chassis or relay rack. But the packaging technology has undergone two or three flip-flops until we are at the point now of printed circuit boards mounted either in card cages on four-tenths to seven-tenths of an inch centers, limited by the connectors that they plug into, or daughter boards plugged into mother boards, or soldered into mother boards, with the means of interconnecting things with printed wiring rather than hard wiring or soldering individual leads.

In my view the packaging technology isn't quite at the point where the components are interconnected with wire wrap. Although that is done, I don't see that as the mainstream. I am staying back from that a little bit; I think that may come, but at the moment I think I might stop with the level
of circuit boards as the main thing, as in TV sets, radios, washers, and dryers. I think that defines where the mainstream of packaging technology is at the moment.

Now, as I said, in the past, each time packaging technology advanced a notch, it was possible to adapt relays from the former packaging technology to work the new one. I think we have reached the limit; the original hasn't adapted very well to right-angle sockets, and we have PC pins, but it is the inherent large bulk of the think that is its downfall. Yet if we go to subminiature relays, these are by definition not general purpose relays. They are several orders of magnitude more expensive. Hence, I say the trunk hasn't grown; the limbs are growing.

The new types of relays are all peripheral to the main - where the main market ought to be, and I suspect that (you know I am not a relay manufacturer and I would be the last to be able to prove this -) the volume of business in the relay industry as a whole is declining because the manufacturers have failed to serve the general purpose relay market in this day and age. Now they have stopped the trunk, and they are only growing limbs.

It seems to me that the hypothetical general purpose relay that ought to exist today ought to have four poles - form 4 C - sell for \(\$ 4.00\), and it ought to fit a printed circuit board without being subminiature. In other words, be quite wide in both directions and not very thick. I don't think it should plug into a right-angle socket; that implies to me a relay that is intended to plug-in upright that has been laid on its side. I am looking for a relay that is designed from scratch to mount on a printed circuit board more the way a mercury relay is constructed with pins coming out of the molded base to plug right into the p.c. board. It would be a telephone derivative relay with fair sized springs driven by a motor armature.

A number of relay manufacturers have taken a crack at this thing to use existing tooling, existing contact spring pileups and existing coils and to rearrange them so that they will lay side by side and make for the low, low height, and yet not require subminiature construction with varying degrees of success. I don't think we have really seen the answer yet, and I just leave it there.

This is a proposition to the representatives of relay manufacturers who are interested in entering the commercial general purpose high-volume, low-cost market: Let's make a PC relay, and adapt it for other uses by, for example, mounting it on a little PC board just its size - two-inch square relay,
two-inch square PC board with some edge fingers out to the side, - and this could be sold to distributors for experimenters to plug into available printed circuit card sockets. It would be the more expensive way because it is adapted for the unusual application, but in its basic raw form for use in printed circuit boards is where it would be cheapest because it doesn't need any extra adaptation for that use.

\section*{BIFURCATED CONTACTS}

This is simply an attempt to reduce the variables affecting the choice of whether to use bifurcated contacts or not to a form where we can, say, refer to a checklist, and if we have an application for relays, we can check off against these pros and cons that I will give you and decide: 1) why bifurcated contacts are definitely the thing to do; The reasons are as follows - (expected improvement and performance is as follows). - You can maybe not prove it, but you can make a very convincing argument!

I would have sworn there was something on this in some book or some article or some application information from some relay manufacturer; but if there is I haven't found it, and I made quite a search for it. So we can say that bifurcated contacts have been the subject of considerable controversy in the relay industry simply because they have never been defined. Very little mention is made of the effects of bifurcation in texts on contact theory, because individual contacts aretreated regardless of their means of support: you have books on the interface between two pieces of metal. It might be a switch; it might be a connector; it might be a relay. So relay manufacturers have some very influential customers who prefer bifurcated contact springs, and the manufacturers are consequently reluctant to publicize information that might cast aspersions on their customers' designs. In other words, for example, a customer comes to a relay manufacturer and says, "I will buy a large number of your relays if you will bifurcate the springs (slit the existing springs and put two contacts on the ends instead of one)!" Naturally you will do that. It has nothing to do with whether it is good or whether it is bad or whether it is better or whether it is worse. If that is what he wants, fine. And it isn't bad enough that it's going to make your production line look bad, so there is no risk in doing it. Actually it is more appropriate to speak of "bifurcated contact springs" because the contacts themselves are not changed by the decision to bifurcate. We con't cut contacts in half; we cut the spring that supports them in half.

\section*{BIFURCATED CONTACT SPRINGS}

The concept of contact spring bifurcation may take the form: "If a given contact in a given environment has a reliability \(R\), then two contacts in parallel will have a reliability of 2R." Probability theory takes a more rigorous view of two paths in parallel. If you say \(P_{0}\) is the probability of contact " A " conducting and \(\mathrm{P}_{\mathrm{B}}\) is the probability of contact " \(B\) " conducting, then \(P_{s}\) is the probability of Success; when either " \(A\) " or " \(B\) " conducts satisfactorily. \(P_{s}\) is equivalent to \(\left(P_{a}+P_{b}\right)-\left(P_{a} \times P_{b}\right)\).

For example, take a contact with a probability of conducting as .8 , and then \((.8+.8)-(.8 \times .8)\) is \((1.6-.64)=.96\). In other words, the parallel combination has a probability of .96 against the single contact probability of .8 which isn't twice at all. It is about a 20 percent improvement. So that is just by way of debunking 2R: Purely on the basis of probability argument, the maximum improvement that you could possibly get if there were no deteriorating factors would be a 20 percent improvement in the reliability of the system all other things remaining unchanged; no compensation.

The concept of parallel redundancy is sound. The problem with applying it to relay contacts is that the "reliability" or "probability of success" of the individual contacts on a bifurcated spring is no longer the same as for a single contact. You see, you can't say "everything is the same."
1) The first contact of the pair to close takes all the erosion due to voltage breakdown. The closed contact reduces the voltage on the second contact prior to its closing.
2) The two closed contacts, sharing a single bifurcated spring, each have a fraction of the total spring force. In the optimum case, each would have one half the force of the single contact they replace.
3) The last contact of the pair to open, which is usually the first to close as in No. 1 above, takes all the erosion due to current supported arcing.

So these are three ways in which the bifurcated combination doesn't perform. The environment around the individual contact is differed by the decision to bifurcate. So we have to explore these things one at a time and try to make some sense out of this because it is getting more complicated; it is not getting simpler.

\section*{Contact Life Under Eroding Circuit Conditions}

Since only one of the two contacts on a bifurcated spring does all the "making and breaking," its life
under eroding conditions of voltage and current is not influenced by the second contact. So the only improvement in practice will occur when the
contact that "makes first and breaks last" becomes so vaporized that the remaining contact starts making and breaking the circuit. Thus, the prediction of greater "reliability" should be replaced by a prediction of "longer life" at the "lower reliability" induced by lower contact pressure, where life is limited by voltage and current erosion.

\section*{Contact Life and Non-Eroding Circuit Conditions}

Under non-eroding circuit conditions, the only wear on the contacts is due to sliding, and the reduction in force on each contact due to bifurcation results in less wear-per-operation; so life may be doubled on that account. Circuit making reliability, however, is now only a function of mechanical breakdown of films and the reduction in force would therefore reduce reliability. Since films tend to be broken down by a specific force (one gram won't do it; two grams won't do it, and suddenly three grams and anything higher will do it) and we will give the designer credit that the device that we are talking about is designed to apply contact force greater than that required to breakdown films of the type anticipated by the design, then reduction of force to half the design value may well result in no breakdown of films at all, and consequent loss of function.

\section*{Immunity to Dust}

This is where the pro-bifurcationists make their biggest point; Since the occurrence of a particle of dust large enough to prevent a contact from conducting is some sort of a totally random function that I won't attempt to define, the probability of dust obstructing both contacts on a bifurcated spring would seem to be about half of that for a single contact. The same \(P_{s}=P_{a}+P_{b}-P_{a} \times P_{b}\) : for example, about 20 percent improvement for individual contact \(P=.8\) should result. Again, the theory is sound, but the problem with applying the theory is that the probability of a given particle of dust preventing a contact from conducting is inversely proportional to contact pressure. If contact pressure is high enough to smash the particle under consideration, reducing the pressure to half will greatly increase the probability of failure.

Now, I am not saying all dust is smashed in half by contact. I am saying some dust is too sticky to push out of the way. That is a mode of dealing with dust, but not the only one.

In a relay, where the power available to deflect the springs is limited by the heat rise of the coil, the bifurcation of contact springs cannot be accompanied by a proportional increase in spring force.

\section*{Immunity to Film Formation}

Many contact failures attributed to dust are actually due to a non-conducting film that has accumulated from vapors in the air. "Cleaning off the dust" may in fact remove the accumulated film and restore the contact to operation.
The three mechanisms which may normally destroy films as they form are:
1) voltage breakdown on make;
2) vaporization in the arc on break;
3) mechanical breakdown due to contact force and wipe.

\section*{Voltage Breakdown and Arc Vaporization of Films}

As discussed above, one contact of a bifurcated pair will always "make first" and break last." It will therefore breakdown and vaporize films as they form, if operated often enough. The twin contact, however, gains no advantage from this relationship and will suffer film formation unimpeded.

When the first contact finally does fail from carrying the whole load on both make and break, the second may well fail to "take over" as the theory promised because it has not been kept clean by arcing and sparking.

The consequence is:
1) Under eroding circuit conditions, exposed to air and therefore film formation, bifurcation will result in shorter life at reduced reliability.
2) Under eroding circuit conditions in an hermetically sealed dry gas environment, bifurcation will give longer life at reduced reliability due to lower force.

\section*{Mechanical Breakdown of Films}

As stated above, the efficiency of the process of mechanical breakdown of films due to a combination of contact force and wipe will suffer severely from the reduction in force due to bifurcation of the contact spring.
If the spring force of each half can be built up to equal that of the original spring, then mechanical breakdown will occur as with the original single contact.
That tends to be possible on manually operated switches and tends not to be possible in relays because they are heat limited.

\section*{Current Carrying Capacity of the Device With or Without Bifurcated Contact Springs}

One final effect of bifurcation is that the first contact to make establishes a higher conductivity contact, due to voltage breakdown and localized contact melting, than the last contact to make.

This results in a low-resistance path through one half-spring and a parallel higher-resistance path through the other half-spring. Consequently almost all the current will flow through the spring of the first contact to "make."
Since its width is half that of an unbifurcated spring, its cross-sectional area is half, so the blade resistance - exclusive of contact resistance - is doubled, doubling its heat rise for a given current.
Since the spring blade is also the principal means of dissipating heat from the contacts, and its efficiency as a radiator is directly proportional to its surface area, when the area is halved the temperature rise will double for a given heat input from the contacts.

These two separate effects add to increase blade temperature four times and reduction of the maximum current rating of the device to half its unbifurcated value is required to restore the original heat rise limit.

So in conclusion:
1) If you have a voltage and current eroding circuit:
a) With film formation present - (in other words, not hermetically sealed), bifurcation will result in reduced reliability and shortened life.
b) With no film formation (sealed in a dry gas environment), you will still suffer reduced reliability, but you will have longer life.
2) In a non-eroding circuit - and I am trying to avoid defining dry circuit:
a) With a film formation present as exposed to the air, then you suffer reduced reliability, but you have a longer physical life of the contacts due to bifurcation.
b) With no film formation present in a noneroding circuit, you have the same reliability and longer wear life and mechanical life.
3) Last, in terms of resistance to dust, regardless of what kinds of voltage you have to the circuit, bifurcation results in a slight improvement in reliability and shorter life.
Finally, I am glad that the proceedings of this Seminar are going to be published because I find this very difficult to remember. It is not easy to remember because it is not a simple cause and effect relationship. I have to keep referring to it to draw a conclusion. I can't always presume the right answers, so I propose that you refer to the table that I have just summarized as each application arises.
R. P. SYKES

Member Technical Staff
Redcor Corporation
7800 Deering Avenue
P.O. Box 1031

Canoga Park, California 91304

At REDCOR Mr. Sykes has recently assumed responsibility for the management of component parts application, from selection, application derating and package design through procurement, assembly and test on to field performance in all of REDCOR products.

A 17 year background of jobs involving component part theory preceded his employment at REDCOR. He was employed by Scientific Data Systems since 1965; there he specialized in all types of component characterization and application information to the various circuit design groups. He has had three papers on components published, with a fourth in preparation.

Mr. Sykes has been a Member of the IEEE since 1955.

\section*{A TRANSCRIPT OF A THREE-HOUR QUESTION AND DISCUSSION PERIOD}

\author{
QUESTION: MR. JONES AND MR. DICKEY
}

MIL-STD-704 was written with the conventional distribution system in mind. When using solid state distribution, is it still necessary to follow MIL-STD-704?

For example, it was shown that a solid state switch will reduce the system voltage transient significantly. If so, why should the solid state switch be designed for the large voltage excursion given by MS-704, which will not exist?

To obtain optimum solid state distribution components, a new standard tailored for solid state systems must be prepared. Do you agree?

\section*{ANSWER: MR. JONES}

Yes, we agree wholeheartedly. The problem is that if we go to an aircraft manufacturer and say, "l have a piece of equipment I would like to sell you," and he asks you, "Does it meet MIL-STD-704?" you say, "No."

He says, "Well, come back when you can bring a part that does pass."

That is the characteristics of the system we now have, so we really have a chicken-or-egg situation here - which is first? If these components are not compatible with MIL-STD-704, we cannot have acceptance of them.

Now, when we put together a complete electrical system using solid state components, granted we expect system performance to be much improved, and our next phase is to develop a new specification to replace MIL-STD-704 for solid state systems; but until we have such a system, we are still stuck with MIL-STD-704.

\section*{QUESTION: MR. DICKEY}

What are some of the risks of this Semi-Conductor System?

\section*{ANSWER:}

The risk at this time is the availability of production hardware in time to meet your need. If you start designing a system, you depend on having these devices because you have planned on a system with the reduced weight and volume and not allowed yourself the luxury of being able to go back to the electromechanical approach. Then you run into trouble if you can't get the production hardware. So this is the risk that management
sees in making decisions to go into proposals for the production of aircraft.

\section*{QUESTION: MR. SYKES}

Have you any test or statistical data to support or refute your analytical conclusions?

\section*{ANSWER:}

Well, as I said, the subject of whether to use bifurcated contacts or not hasn't been treated in papers attempting to prove as a result of testing whether they are good or not.

So I don't know of any references to such information that I could refer you to. I have used these guidelines in selecting relay and switch contacts for a variety of applications over a number of years and never felt that the results of the application indicated the necessity for reappraisal of these guidelines. That is about all I can say.

Most of the points that I have made I believe are obvious. For example, the first contact to make takes all the load. I don't think that sort of thing needs testing. I think it is intuitively obvious if you have two contacts, one must make before the other. They can't possibly make simultaneously, so that sort of thing isn't involved.

The testing that I think you are referring to is under a given set of load conditions. Does a relay with bifurcated contacts last longer than another relay without bifurcated contacts? And that is a generalization that I purposely avoided in my talk because these relays aren't necessarily identical.

If the one with the bifurcated contacts is truly identical to the other relay, the only difference being a split contact spring, then the result of the test would indicate whether bifurcation was good or not.

If the bifurcated relay consumes double the power to overcome double the spring force, which has been correctly designed in to compensate for the effect of bifurcation, then that by itself does not disprove anything I have said.

Does that answer the question?

\section*{ANSWER: AUDIENCE}

Yes.

\section*{QUESTION: MR.JONES}

Is there any development of a transducer to replace the synchro? This is needed for compatibility with solid state data transmission systems.

\section*{ANSWER:}

Specifically, I don't know of a transducer that is being developed to replace a synchro. I know that a number of shaft-angle encoders are being developed at the present time which could be used to replace the synchro for shaft-angle measurements, and the digital information from this encoder could be transmitted over the transmission system that is used for the other data in the power management system.

Does that answer your question?

\section*{ANSWER: AUDIENCE}

Yes. Thank you.

\section*{QUESTION: MR. DICKEY}

What heat sinking is available in the aircraft?

\section*{ANSWER:}

Well, part of the basic structure is available in some areas. Of course, if we go to composite structures, we lose that capability. The only other place to get rid of heat is to do it artificially with forced air cooling which means putting in an air conditioning load.

\section*{QUESTION: MR.JONES}

You only discussed single pole, single throw. Do you need 3 pole, single throw, single pole, double throw, and 3 pole, double throw?

\section*{ANSWER:}

These devices are used for on-off control of electrical power loads. To control three-phase loads, we will use three, single-phase devices, one for each phase.

Now, for other applications - double throw applications - as might be in a motor reversing circuit - (you relay people will probably shudder when you think of using a relay like that) you would use a single-pole device for each set of contacts presently required in that circuit. If a double-pole double-throw relay is replaced with power controllers, four power controllers are required to replace that one component.

So when you start trading off power controllers vs electro-mechanical relays on a part-for-part basis, you have some problems. But when you look at the total system, you come up with improvements not
only in the system performance, but also in weights.

In most applications relays are used to perform logic and isolation functions at the power level. Since these functions are performed at the signal level, the number of power controllers required is smaller than the number of power contacts required in a conventional system. Right now we see no real need for the double throw type of power controller.

\section*{QUESTION: MR. RODE}

How much better - life and reliability - were the relays that passed your vibration screening?

Were vendors screened for cleanroom facilities and procedures?

\begin{abstract}
ANSWER:
To answer the question - second question first the vendors were screened for cleanroom facilities and all were found to be acceptable. The answer to the first question is I can't answer it because they all failed. We didn't have any pass.
\end{abstract}

\section*{QUESTION: MR. STEINER}

For 50 to 150 volt switching, did you imply that no mechanical switch or relay should be permitted whose contacts have less than one-eighth inch spaching? If so, what do you suggest as an alternative?

\section*{ANSWER: \\ I hope I understood it correctly. This question should be answered in two parts, I believe.}

First of all, There are no rules at all now for anything from zero to 50 volts, which makes the second part of the answer even more difficult. I believe that the industry should get together and establish standards of minimum requirements like the power people did 75 and maybe 100 years ago to give a springboard for relay designers. Otherwise it would result in what I said during the morning session - in testing and testing and perhaps testing to death. I hope that this is an answer - one possible answer.

\section*{COMMENT: AUDIENCE}

I would like to ask a question of Mr. Steiner. When you said "industry gets together," do you mean manufacturers as well as users such as ourselves?

\section*{ANSWER: MR. STEINER}

I am sorry; it was a slip of my tongue. I meant the relay designers and manufacturers who establish relay design standards.

\section*{QUESTION: MR. JONES}

In view of all the problems and malfunctions involved in the use of electromechanical relays, would you recommend that new AC and DC control systems be designed on the basis of using solid state devices where possible?

\section*{ANSWER:}

Amen. Certainly; yes. That is the basis of our whole program, to provide a capability to eliminate the make and break contacts which are the source of many troubles in aircraft.

\section*{QUESTION: MR.RODE}

Are the details of your random vibration study available in published form, for example, in IDEP?

\section*{ANSWER:}

No, they are not. At the present time this information has not been published. What we anticipate doing is running further tests in the near future and then publishing a report which could be an IDEP item.

\section*{QUESTION: MR.JONES}

Am I correct in understanding that you suggest the elimination of fuses or other traditional protective devices and substitute solid state logic in a solid state power distribution system?

\section*{ANSWER:}

The intention here is to allow the solid state power controller to perform the function of circuit protection as well as on-off control of the power circuit.

If you have reference to the normal concept of fuse application, the answer is yes, we want to eliminate them. We are requiring that there be a back-up fuse element in the solid state power controller that will open in case the semi-conductor fails in the shorted condition and you have a fault in the aircraft wiring. Under these conditions, you want to clear this device off the line, so there will still have to be some sort of fusing element; but this fuse is never expected to operate as long as the semi-conductor device functions properly.

\section*{QUESTION: MR. DICKEY OR MR.JONES}

What are the expected random transients or spikes accepted on the AC bus line?

\section*{ANSWER: MR. DICKEY}

I don't guess I know what transients we are expecting. MIL-STD-704 doesn't specify the voltage transient - short duration transient - on AC lines. However, the device specifications require that
they will be good for 600-volt applications, not to be applied to a 600 -volt system, but able to withstand 600 volts.

\section*{ANSWER: MR. JONES}

Might I add a point to that. Particularly for the bus controllers, the device must remain open when exposed to unsynchronized sources. If you have a bus energized from one source and another source has been energized, but not connected to the bus, these two sources may be unsynchronized and 180 degrees out of phase. It is also possible in a split bus arrangement in the aircraft - for the buses to not only be 180 degrees out of phase, but for both of them to be at 180 volt point allowed by MIL-STD-704.

So all of this adds up to the requirement for a 600 -volt standoff with the device in the open state.

\section*{QUESTION: MR.JONES}

What is the ratio of cost between the conventional and solid state?

Do you recommend peak or average sensing on over-under voltage devices?

Read relay handbook written by NARM.

\section*{ANSWER: MR. JONES}

When you start talking about costs, you are comparing a Volkswagen and a Cadillac, so which would you rather have? Which are you willing to pay for? The performance of the system with the solid state components is certainly going to be much better than the performance of the system with electromechanical contacts. The electromechanical system has lower initial cost but the performance leaves much to be desired. With the solid state components you improve performance of a system at an increase in cost.

Now, our projections are that the initial cost of a complete system will be somewhere around four to five times that of a conventional system. However, because of the improvements in reliability, maintainability, and so forth, we are projecting the life cycle cost of the aircraft with the solid state system to be considerably less than with the conventional system. The total ownership cost to the customer is much less over the life of the airplane.

Question No. 2. I really have no thoughts whether you should sense peak or average values in overunder voltage devices. I would have to think about that awhile.

\section*{QUESTION: MR. STEINER}

Do you favor having the transient suppression device be placed inside the relay enclosure? Pros and cons.

\section*{ANSWER:}

This question again includes another question. It presupposes that we are talking about sealed relays. Well, in that case, I am inclined to say the protection device should be within the relay enclosure, but there are many applications where we use open-type relays and the protection device may be at the exterior part of the harness. It has to be in the proximity, though, for electrical reasons as has been established in many cases.

Sometimes the users will have requirements, but I would say if in doubt and all else being equal, the recommendations of the relay manufacturers should govern.

\section*{ANSWER: MR. RODE}

I would like to add to that question to which Mr. Steiner just gave an answer. If you use a coil with bi-filar winding, you don't add a suppression device inside the enclosure. This was borne out in a study conducted by Marshall Space Flight Center.

\section*{ANSWER: MR. STEINER}

I am grateful for that comment, yes. It is built in; but then, of course, necessarily inside the relay.

\section*{COMMENT: AUDIENCE}

Mr. Rode, in using a bi-filar winding coil, don't you have to sacrifice many things such as time, pick up, voltage, and things of that nature?

\section*{ANSWER: MR. RODE}

To some degree, yes, you do. Pick up, voltage, and drop-out time do change.

\section*{COMMENT: AUDIENCE}

I was under the impression that compared to a diode suppression of your coil, you have approximately 40 to 50 percent arc reduction. Now, is 40 percent enough? In other words, it is a compromise when you go to bi-filar wound coils. You lose your various parameters.

\section*{ANSWER: Mr. RODE}

I can't answer that too well; but in the report I read from Marshall, the bi-filar winding suppresses the arc better than the diode or the capacitor across the coil.

\section*{ANSWER: MR. STEINER}

Well, I would like to do two things with this gracious opportunity here.

To begin with, Howard, by answering something that you asked him about, then by adding another factor here that is true in life: you cannot get anything for nothing. You will gain advantages with bi-filar winding, with diodes, with other means, and lose other things. So there is no great difference between bi-filar and other devices. As far as bi-filar goes - by the way, we could talk now eight hours just on that subject alone, you realize, but with bi-filar winding you have only DC applications. If you use it on AC, then you and the system have had it.

So that is another disadvantage that you get for using bi-filar, although it has many advantages.

I believe I had better stop here.

\section*{QUESTION: MR.RODE}

Was lint the major cause of contaminants? Reason - film showed cotton glove used in handling relay.

\section*{ANSWER:}

No. Our experience has shown that the major cause for contamination is teflon, which is used in coil spools and in tape for wrapping the coil after it is wound. The presence of lint and eyelashes and fingernail polishes is usually very remote.

\section*{QUESTION: MR.DICKEY}

Can you explain further the risks involved in placing "SOSTEL" into operation, and what are the exact impediments to implementing this concept? What time in the future will these be under control? Will your slides be made available to us?

Do you foresee a future need for conventional switching or relays at either the power or signal level?

\begin{abstract}
ANSWER:
Well, we, in our investigations, have not run across any risk other than the unavailability of production hardware to meet the spec requirements. Until we get hardware that is qualified to the refined spec requirements, there is a certain amount of risk involved; and the impediments, of course, are the normal resistance to change and educational activities required to get acceptance for the first time. We see no technical risks other than those that were pointed out in the presentation which include half-cycle surge current capacity in the AC devices. There will be research and development work done to get semi-conductors for AC devices
\end{abstract}
to provide compatibly with fault currents of large generators.

\section*{ANSWER: MR.JONES}

May I add something to that, Lee.
If you use a solid state system with a VSCF generator, we don't see the problem that we have with a rotating machine because you do have continuous control of the current and you can limit to some prescribed value that is compatible with the SCR chip that you are using. With the rotating machine, of course, you have no control until you can remove field current which takes many cycles - not what you need to protect the chip.

\section*{QUESTION: MR. DICKEY}

What time in the future will these be under control?

\section*{ANSWER:}

I guess this depends on how much money is put into it - trying to get them under control. I would guess just offhand we are talking a couple of years, yet before they are fully under control and production hardware can be qualified for requirements.

\section*{QUESTION: MR. DICKEY}

Do you foresee a future need for conventional switching of relays at either the power or signal level?

\begin{abstract}
ANSWER:
Not if you can get a full solid state switching system incorporated and be able to take advantage of removing the bulk out of your generating system, which now has to supply fault current, and removing the power switching and protection out of the utilization equipment. Than I can't see going back to electromechanical components either at the signal or power level, but it is going to be quite a while before we can achieve the advantages offered by the complete system.
\end{abstract}

\section*{QUESTION: MR.DICKEY}

Will your slides be made available to us?

\section*{ANSWER:}

Copies of all slides that were pertinent are available in the THINK-IN Report publication. There are a couple of slides which were stated in words in the publication, but they were simple enough that you don't need an actual picture.

\section*{QUESTION: MR.JONES}

In your concept of a one-cubic inch solid state
relay, you specify a heavy copper heat sink. Are there any lower weight materials that can accomplish the same objective?

\section*{ANSWER:}

There may be - not that I know of. You are primarily interested here in the thermal capacitance of the material, and copper has about the best thermal capacitance that we know of.

\section*{QUESTION: MR. STEINER}

Do you feel that the present TO5 size relay is as reliable as the half-size crystal can relay in the proper application?

\begin{abstract}
ANSWER:
I seem to be very fortunate to get those questions which contain at least one other question. If relays are reliable the size doesn't matter. I have nothing against TO5 or half-size crystal can, and I mentioned T05 in the morning. It was merely to compare that its overall size is less than the minimum spacing required by Underwriters Laboratories for comparable devices in the power family.

But there is no bias against any of these devices in our area provided they are exactly what the gentleman asked that they are - reliable. I hope I am not deviating too much with my answer from the spirit of the question, or did I?

\section*{QUESTION: MR. DICKEY}

Was the LTV system mocked up with discrete components first?
\end{abstract}

\section*{ANSWER:}

Yes. We actually breadboarded the concepts for the entire system back as early as around 1962, '63. The prototype hardware was packaged and evaluated in the lab and actually flight tested in an F-8 airplane before arriving at the final spec requirements to go out to industry for production.

\section*{QUESTION: MR.JONES}

Will a paper be written concerning the solid state power switching for the A-7 mockup when completed, and if so, how may one obtain a copy?

\section*{ANSWER:}

I don't know if there are any plans to write a paper. There will be a final report on the Air Force contract which will be available through the Air Force Aero Propulsion Lab, Wright-Patterson Air Force Base, Dayton, Ohio. If you wish to be on distribution for that report, you may contact the Technical Monitor, Lt. Charles Lane, APIE-3.

\section*{QUESTION: MR. RODE AND MR. STEINER}

Have you ever encountered a carbonaceous black growth in relays evaluated after life testing of sealed relays at loads of one and a half amperes or more? This growth appearing on contacts and other internal parts in the contact area.

\section*{ANSWER: MR. RODE}

No, I haven't seen that growth. We have seen black deposits, but they were not carbonaceous. They were derivatives of teflon.

\section*{QUESTION: MR.RODE}

What is your opinion on the cleanroom assembly of relays versus, A, non-cleanroom assembly with extensive cleaning of relay versus, \(B\), non-cleanroom assembly with minimum cleaning of relay prior to hermetic sealing as a means of minimizing contamination?

\section*{ANSWER}

That is a hard question to answer. The two relays fit into separate categories. One we would call "high reliability." The cleanroom relay would fit in this category. It is monitored for cleanliness throughout its entire assembly life. In another product line, the relay is just cleaned periodically; and it is possible for contamination to exist without realizing that it is there.

\section*{QUESTION: MR.RODE}

What vibration screen test will North American impose on its relay vendors, and what will be the criteria for success for each device and the lot?

\begin{abstract}
ANSWER:
The criteria for success is no failures, naturally. We can't tolerate failures in our programs; so if there is one failure in the lot, the entire lot is rejected back for re-work. This has been our policy in the past and will continue to be so.

Criteria for vibration testing is established as a result of this test program by procedures which we documented wherein the manufacturer must essentially go through the same type of test program we did and establish a vibration profile which is critical for his particular configuration. When that is established, then all of his relays are tested to those parameters.
\end{abstract}

\section*{COMMENT: AUDIENCE}

It was my question. When you contract with a particular vendor, do you levey this as a requirement and establish a signature for his device?

\section*{ANSWER: MR. RODE}

That's correct. Yes, we do.

\section*{QUESTION: MR. RODE}

Mr. Rode, I noticed in your movie that you did not monitor the relays. You had no wires connected to them. Did you actually power the relay?

\section*{ANSWER: MR. RODE}

The particular phase that was shown in the movie was the establishment of the vibration spectrum which would exist for the particles. The actual test was a random vibration test monitoring the contact while cycling at the rate of 90 hertz, so that particles would be captured between the contacts.

In every case we had a failure.

\section*{QUESTION: MR.JONES}

Mr. Jones, you spoke of crowbar protection for your solid state switches. How is this accomplished or integrated into your system?

Do you use resistor-capacitor, or Zener diodes across your solid state switches at 400 hertz?

\section*{ANSWER:}

We did not use any resistors or capacitors across the SCR's or across the switches.

The crowbar will be installed on the AC bus and will monitor the current. At some prescribed level, the crowbar will be turned on. We have not yet set the turn-on value.
(Ed. Note. See p. 12 of Mr. Jones and Dickey's paper for specific details.)

Let's investigate this just a little bit further. If we have a fault on the load side of one AC power controller, the voltage to that phase is going to be zero during the remainder of the half-cycle, or for all practical purposes, zero. So it really doesn't make any difference whether you are pumping the current out through the load controller or sharing part through the crowbar. The main thing you want to do is minimize or hold the current through the power controller to a safe value so that the SCR can recover its blocking capability at the end of that half-cycle, or when the current goes through zero.

So by adding the crowbar to the bus, you could shunt the excess current through the crowbar. The crowbar would be a very large SCR-type device capable of handling much more current than your normal power controller. Therefore you could
protect the controller by shunting this excess current to ground and having the whole system recover at the end of the first half-cycle.

\section*{QUESTION: PANEL}

A question to all you gentlemen. Have any one of you gentlemen thought of using high-rel relays to MIL-R-39016? Military specifications on highrel relays established by approved filters and allied; and since we are discussing relay reliability, has this been thought of?

\section*{ANSWER: MR. STEINER}

Again two or three answers to that question.
Number one, two months ago in a two-day committee meeting in Washington, the opinion was expressed that the tendency of the public and the military is getting away from ER specifications.

So whatever we are saying today may be shortlived. By the time we form an opinnion, the ER specifications may have lost quite a bit of their glory.

Number two, the answer is that the fact that something is made according to extra reliability specifications does not make an extra reliability product.

Number three, it depends on what the user specifies. At North American Space Division we do have ER references, and in other instances we do not lean too heavily on ER. As a rule they were preferred for a longer period of time.

Does that answer your question, or do you wish to add more to it?

\section*{COMMENT: AUDIENCE}

In part it does.

\section*{ANSWER: MR. STEINER}

Would you mind then asking what part I overlooked.

\section*{COMMENT: AUDIENCE}

Here you gentlemen are talking about building two systems: one with conventional relays, and the other with solid state components. These are devices strictly for reliability, correct?

\section*{ANSWER: MR. DICKEY}

Not necessarily. Performance characteristics, getting rid of EMI transients is a large part, also.

\section*{COMMENT: AUDIENCE}

The point I am making here - there have been relay committees establishing high rel.-type components and many dollars have been spent to do this. From what I see here, it could be a waste of all these dollars going down the drain. I am not a manufacturer of relays, but I do use the relays and I see much dollars being wasted because of this. This is my own opinion; I am not sure whether anyone agrees with me or disagrees with me.

\section*{ANSWER: MR. DICKEY}

We have not had a need for high reliability relays in our economical aircraft system that we design. Space applications perhaps have the requirement for high rel. relay devices. We in the Aircraft Division don't require that kind of reliability.

\section*{ANSWER: MR. STEINER}

Maybe what should be underscored is that we are playing with expressions. We probably need a definition. What do you mean by "extra reliability"; and what I mean and the general public. In essence in daily work that I am doing, it now means two or three additional applications like burn-in, particular careful screening, and things like this, which is, of course, resulting in expenses which I expressed in dollars and cents, naturally.

But there is nothing of a miracle or mystery about it. It is just extra care, extra time which probably should have been expended in the first place at the time we didn't have the ER specs. So that is all we can ask for: extra careful screening and delivery.

\section*{COMMENT: AUDIENCE}

And this is borne out with relay specification MIL-R-39016?

\section*{ANSWER: MR. STEINER}

In essence, yes. Burn-in, screening, and other precautionary measures, in addition to a few more points which we haven't even discussed here today.

\section*{ANSWER: MR. SYKES}

I would like to add a footnote to that.
In my opinion a high rel. relay is any relay being properly applied; a low rel. relay is any relay being improperly applied. Reliability of the relay is less inherent in the device than relay specs would lead us to believe. In other words, the inference is that high rel. relay specs result in a relay that will be reliable no matter how you use it, and this is the reason for the trend away from the established reliability relays as a mandatory thing. It is much
more to do with the way the relay is used. The telephone company uses relays that we in the aerospace would classify as low reliability, crude relays. They last for 40 years! They work very well because they are properly applied.

\section*{COMMENT: AUDIENCE}

We have been deeply involved in all the established reliability specifications, either using them or avoiding them because of cost. MIL-STD-785, which is becoming a contractual requirement on most new systems requests that you use them. You play the contract; maybe you can get out from under it, but some parts run an order of magnitude more than the standard part, and we have to decide whether they are worth the money or not.

In fact, just maybe in the last few months we have become extremely conscious with the real world, and I should say extremely first-cost conscious; the first cost in the contract. Most contracts are written just for cost, not for total cost over their life. So in order to stay in business you get a little cagier than you used to be when contracts were easier to get.

We have looked at the ER specifications. They apply to relays, capacitors, resistors. Right now we are looking at many one-line capacitors. Your Tantalum capacitors have made the grade - readily available - done a lot of good for the industry. Industry has accepted them and the cost is about the same for the normal first grade of ER.

By the way, I should explain ER means "established reliability," not "extra reliability," or anything like this. You in your first level of reliability have really got the same part, maybe just slightly better. That is a long story, but, anyway, that means established reliability; so if you are looking for reliability theoretically you can take an ER spec and pick the reliability you need. There are several orders of magnitude; a number of ways you can play with the numbers than the standard part which is also available in the same specification.

I just wanted to clarify this point of the ER's.
ER carbon resistors are the same cost, exact same prices as non-ER's in their best level because that is all they make. They have made them for so long the same way they know exactly what they have and they are darn good.

As you come to develop mechanical items, it costs too much money to establish reliability. You just can't do it; and some parts are not prone to ER, and that is what we are seeing in the relay business because we don't have a standard enough
product to test the department to know exactly what test to get.

There are some slight advantages, Mr. Steiner, in in-burn, and screening, and so forth, and we should all get together in the specification and do this.

But going back to what this other gentleman asked, if you are going into an established reliability program and then compare this to your solid state which is supposed to give us more reliability, or one of the reasons they use it - we are wondering why we don't compare an ER, even if it costs a lot of money in the first system. Say this electromechanical versus - has a certain value - a certain number does this and our solid state does this, and the inference I get is that you are not looking as much for reliability although that will be a gain. You are looking for the other performance advantages in the EMI weight savings, things like this.

That was a long answer, but is that what you really mean?

\section*{ANSWER: MR. JONES}

May I answer that. The comparisons that were shown this morning were based upon conventional relays in aircraft as we use them today. These are not high rel. relays, switches, and circuit breakers. Now, for space shuttle applications, the comparison that you mention of the high rel. components versus solid state systems certainly must be made.

\section*{COMMENT: AUDIENCE}

That answers it. I work in all components, not only relays, and I made a mistake in the last few years and I have read the contracts. I found that if you really read the contract you may find that you are supposed to be using these ER parts and don't know it, and may not be using them because someone isn't enforcing the contract on you.

But I understand what you are saying. You are saying that in your case you didn't need this reliability so you weren't going to pay for it. So you are not involved in that phase.

\section*{ANSWER: MR. DICKEY}

I might add that in establishing the specs for the solid state hardware, the customer did not want to specify any established reliability because they feel that relays and solid state devices did not lend themselves to having established reliability like semi-conductor devices themselves and resistors and capacitors, et cetera.

So established reliability for complicated components may be short-lived.

\section*{COMMENT: AUDIENCE}

Yes. As Mr. Steiner said, a few months ago you at tended a meeting that said this, and we have got rumors back that way, too, that ER specs have already been developed completely and have QPL suppliers and are available.

It looks like they are going to die.

\section*{QUESTION: MR. SYKES}

Mr. Sykes, you said: "reliability is either a relay as properly applied or misapplied." I have to disagree 50 percent

Application-wise it is very important. If the relay is properly applied it is a proven fact that some relays are very good; but from what I gather from your conversation is that I can get a relay from Brand \(X\) as equally good as from Brand \(Y\), and that is not true.

\section*{ANSWER: MR. SYKES}

It is possible to misapply a high rel. established reliability relay so it wouldn't work well. It is not inherently guaranteed to give you success.

It is possible to devise a circuit under which any relay made will work well for a long time if you don't care about anything else but life. It is in between those extremes where we are all working. I just wanted to make the point that Established Reliability relays are not inherently reliable devices but only capable of reliable performance if you properly apply them.

\section*{COMMENT: AUDIENCE}

I would like to further add that it is a proven fact - it is my experience that there is a method whereby you can weed out the weak sisters, and ER specifications calls out this in their application, where you test for so many cycles per 10,000 , so many failures per 10,000 cycles, and if you wrote a screening process 100 percent at a certain level, it is a known fact that the ones who survived this test are very, very satisfactory in most applications.

\section*{ANSWER: MR. SYKES}

I don't mean to disparage that point of view at all. If you have a defined set of circuit conditions and you are testing relays under those circuit conditions, there will be some relays that work better than others; and if you screen those out and use them, certainly.

\section*{QUESTION: MR. JONES}

Mr. Jones, what do you see as the lowest power solid state relay requirement? Voltage, how low? Fifty millivolts?

\section*{ANSWER:}

Our present specification defines power controllers for 400 cycle, 115 volt AC, 400 cycle, 26 volt; and 28 volt DC to provide compatibly with the present aircraft distribution system voltages. In future aircraft we may be using a different distribution voltage. It may be 130 volt DC, or 230 volt DC. I don't know yet, but in most cases the solid state power controller will operate more efficiently at a high voltage than it will at a low voltage; so you probably would not want to make application of these in 6 volt circuits.

\section*{COMMENT: AUDIENCE}

I am interested in how low a voltage you ultimately might want to go in switching for signal sensing circuitry; things of this nature.

\section*{ANSWER: MR. JONES}

As previously stated we have addressed the problem of control power to this time. We do not at the present time have a switch suitable for use in a synchro line, for instance, where you are primarily interested in accuracy around the nul point.

The reason we are not using solid state switches in those circuits - at the present time we don't have one. Certainly in the synchro applications you would be interested in voltages in the very small millivolt range. If you have a large deadband there as you would have if you tried to use SCR's, this would not be a practical application at all.

\section*{ANSWER: MR. DICKEY}

Let me add one thing. We certainly are interested in getting devices that can be operated in these ranges, and this is part of the program in the future - to develop devices that can be added to the system to handle the switching requirements that are not presently capable within the power spectrum that we are working; so this is further refinement of the total system; and we are interested in it because we want to tie the multiplexing system into single switching as well as high power switching.

\section*{QUESTION: MR. DICKEY OR MR. JONES}

One of your slides showed many power factor curves. Where did this information come from? Was it from AC 400 hertz or DC? I might have missed the point.

\section*{ANSWER: MR. JONES}

That was one of my curves that came out of MIL-STD-704, and it is for AC.

\section*{QUESTION: MR.RODE}

Have your findings shown the major factor of failures to be teflon?

\section*{ANSWER:}

I guess the answer to the question is yes. We haven't found anything else recently. Since we instituted a high rel. assembly program four or five years ago, we have had isolated failures, and they have been due to - if I remember correctly teflon, a black deposit on the contacts, which appeared to be and which was analyzed to be a teflon derivative as possibly a result of arcing. Those are the major onces.

\section*{QUESTION: MR. JONES}

Do you need isolated ground between driver circuit and load circuit or can you accept common ground?

\section*{ANSWER:}

We would prefer to have isolated systems between the control circuit and the power circuits. We are getting hardware at the present time with a common ground. We will be evaluating this at the end of this year and further establishing our requirements there. I think the answer is that we would prefer to have isolation.

\section*{QUESTION: MR. STEINER}

What minimum technical information is typically absent, in your opinion, from available relay cata\(\log\) sheets? There is a practical size limit on the number of items which can be listed.

\begin{abstract}
ANSWER:
Yes, you are correct, sir. I had the pleasure of discussing it during the intermission. Of course, we realize there is no limit. You can never please everybody, and even if a 10-page manual were furnished as it may happen now, it may be considered incomplete yet. For example, the torque for mounting screws should be recorded, or the inductance of the coil and other things.

I repeat my willingness to cooperate with every party who wishes to receive inputs of this kind as they occur in my daily relay life.
\end{abstract}

\section*{COMMENT: AUDIENCE}

I would like to amplify a little bit on one of Mr. Dickey's statements. I agree with him that it will be at least two years to get the solid state systems to a production-acceptable state, but we do expect to have individual controllers in production before the end of this year. That will have been qualified, but from that point on there will be the

LTV study program of systems; and I am sure there will be a large study program - maybe even flight test programs by the government before you could really talk about a proven system.

\section*{QUESTION: BY MR. STEINER}

Mr. Sykes, I wonder whether it would be possible to become a little more specific about the pros and cons of bifurcated contacts.

\section*{ANSWER: MR. SYKES}

More specific in general without defining specific? Are you trying to get me to say that I am for bifurcated contacts or against bifurcated contacts?

\section*{QUESTION: BY MR. STEINER}

Well, let's try for that.

\section*{ANSWER: MR. SYKES}

All right. I have tried to be very fair in this thing. I recognize that there are cases where bifurcated contacts are used correctly, and they improve the reliability under those cases.

On the other hand I have attempted to show that the number of circuit combinations under which they result in less reliability is greater than the number under which they result in improved reliability; so if you don't know what the circuit operating conditions are going to be or can't define it - you don't have the source and load all within your little box, then I guess I have to say that the evidence shows you shouldn't gamble by using it.

\section*{QUESTION: BY MR. STEINER}

I see. Well, I was hoping for a statement like: if it is a plain bifurcated contact - and I wish to be corrected if necessary - that if it is possible to make and break at the same time, the first to make will be the last to break and take all the beating.

\section*{ANSWER: MR. SYKES}

Yes, that is what I said this morning.

\section*{QUESTION: BY MR. STEINER}

We would have to bifurcate the contact so that one arm is shorter than the other. We would accomplish at least one additional purpose, namely, to maybe make it more vibration resistant because the natural period of one will not respond to the natural period of the other; so there is at least one advantage. But having it just bifurcated and not possible to make contact with both halves at the same time, I see no advantage at all.

So this is the kind of decisions I was wishing for.

\section*{ANSWER: MR. SYKES}

With the dust example - contacts operated in the air and the dusty environment, you can argue that a piece of dust will get under one or the other, but not under both simultaneously. That could happen and in the best of all possible situations would result in a 20 -percent improvement in reliability over a single contact.

\section*{QUESTION: BYMR. STEINER}

Assuming that each half is capable of carrying the whole current?

\section*{ANSWER: MR. SYKES}

Yes. And assuming they are equally exposed to the dust and properly compensated so they have the increased force equal to the individual contact.

\section*{QUESTION: BYMR. STEINER}

I should stop here. Thank you for this interpretation. Otherwise we will run into midnight.

\section*{QUESTION: MR. JONES}

Mr. Jones, is there a basic requirement for conventional "feel" control devices? For example, toggletype actuated solid state switches, or trip-free mechanical feel for circuit breakers?

\section*{ANSWER:}

I am really not sure on this. The solid state power controller does provide tripout when you have an abnormal operating condition on the line. At the time the device trips out, it provides a trip indication signal which may be used to drive a lamp or other indicating-type device which would be analogous to the white stripe on the thermal circuit breaker when it trips.

As far as a reset is concerned, this signal is a 5 volt, 10 milli-amp signal supplied to the controller to cause it to reset; and this may be provided by any type of solid state signal sources. Or as far as that goes, a make and break type contact with a bounce eliminator on it, if you want to.

Does that answer your question?

\section*{ANSWER: MR. DICKEY}

In toggle-type actuated switches, your feel is in the mechanical part of the toggle. In toggle and push-button type signal sources, the mechanical portions which provide "feel" are unchanged, only the electrical switching portions are converted to
solid state.

\section*{ANSWER: MR. JONES}

I might add a little bit to that. On toggle-actuating
devices, you have some sort of a mechanism inside to hold the baton in the proper position so that when you look at the switch you can tell whether or not it is in the one state or zero state from a physical standpoint; so externally the devices look just like a baton-actuated or toggleactuated switch. Internally it would have some sort of a cam device for holding it in that position until you desire to return it to the other position.

So there you would have the tactal feel built into it.

\section*{QUESTION: MR. RODE}

What was the particulate detection scheme in the vibration test, in units without windows?

What was the method used for "miss" detection? Level of contact resistance considered as an open? Length of time for an open to classify as an open,
et cetera? et cetera?

\section*{ANSWER:}

We used an oscilloscope as a miss detector. In answer to the first question: What was the detection scheme used in the vibration test and in units without windows. We did the same profile as for units with windows with an oscilloscope as a miss detector. That answers part of question two.
The level of contact resistance considered as an open was anything over \(10,000 \mathrm{ohms}\). The length of time for an open was not measured but we had a 10 microsecond miss-detector attached to the circuit so if there was anything longer than 10 microseconds, it was a miss.

\section*{COMMENT: AUDIENCE}

Sir, was this miss detection done at room temperature only?

\section*{ANSWER: MR. RODE}

Room temperature only.

\section*{COMMENT: AUDIENCE}

It has been my experience that a high-low temperature miss test is the most valid miss test that I have ever heard of. In other words, if you heat a relay up to a maximum temperature and cycle it
for "X"amount of cycles -

\section*{ANSWER: MR. RODE}

We did not perform a temperature test; only a
vibration test.

\section*{COMMENT: AUDIENCE}

I misunderstood you, sir.

\section*{QUESTION: MR.DICKEY}

Are you anticipating a transition of failure modes when you make the transition from electromechanical relays to solid state relays? That is, are you trading one kind of a failure mode for another? What are the risks in applying solid state relays?

\section*{ANSWER:}

There is a possibility of trading your failure modes. We do not see right now what the problems are going to be, of course, with the solid state devices. Experience we have had with them - they have been free enough from failure modes. It is going to take time to discover any additional failure modes and what our problems have been.

I am sure you get into production - about production use of them. There will be some discovered and you will have figured out how to overcome them.

\section*{QUESTION: MR.RODE}

Concerning you level of contamination during your test, did you use one eyelash, one solder splash? Was there any level established for this?

\section*{ANSWER: MR. RODE}

No, it was random. It is recognized that we did introduce a lot more contamination than you would find in manufacturing processes, but it was done randomly; it wasn't following any set pattern.

\section*{COMMENT: AUDIENCE}

Just proving a theory?

\section*{ANSWER: MR. RODE}

That's correct.

\section*{QUESTION: MR. RODE}

With all the particles you put in those relays, it's no wonder some found their way into the contacts.

Do you believe that "PVT" testing a clean production relay with only one or two particles of contamination would necessarily disclose the existence of those particles?

\section*{ANSWER:}

Yes, I do. Alongside of the experimental sample we ran a control sample of theoretically or presumably clean relays. One of those samples failed at the same level of vibration as the experimental samples, so we do believe that.

\section*{QUESTION: MR.STEINER}

When you have a relay application, what manu-
facturer do you think of first for MIL relays, two amps or less; MIL relays, high current switching; commercial relays, all kinds?

\begin{abstract}
ANSWER:
This is again one of those fortunate questions that contains already some answers. If my application is two amps or less, naturally I select that; and for higher current switching, I very likely take the higher current relay.

The commercial relays are sometimes the only way out.

Now, what I have to check according to Howard's interpretation here is the emphasis of this question on the manufacturer; the make of the relays or the rating of relays. Would the writer be able to help me here.
\end{abstract}

\section*{COMMENT: AUDIENCE}

On manufacturer of relays. Who manufactures the relays?

\section*{ANSWER: MR. STEINER}

You mean -

\section*{ANSWER: MR. RODE}

Like Leach.

\section*{ANSWER: MR. STEINER}

A or B or C in regard to each of the three?

\section*{COMMENT: AUDIENCE}

Electronic Specialties, Leach, or someone.

\section*{ANSWER: MR. STEINER}

Does this explanation now refer to question one, two, and three each?

\section*{COMMENT: AUDIENCE}

Right. In other words, for the military relay, who would you think of first if you had an application for two amps - two-amp switching? Who would you look at first in the catalog? Leach? Electronic Specialties?

\section*{ANSWER: MR. STEINER}

Well, it is probably the most complex question that I have heard today. Not only ending up in my spot here, but anyone here at the table. My selections are based on qualification reports, whether they are our own or those which we retrieve through the IDEP system or others.

Very frequently I go on the phone if neither of these sources can help me and ask for references.

So what comparable system have you used, item one or two or three? If there is no usage shown in the answer, I probably turn to manufacturer "B" and then to manufacturer "C." That is the best answer I can give you. I personally have no preference except quality.

\section*{COMMENT: AUDIENCE}

As the only representative of distribution here, I would be more than happy to answer that question for you later on as far as specifications.

\section*{QUESTION: MR. RODE}

What is the minimum level of contamination that you expect to screen?

\section*{ANSWER: MR. RODE}

That is a good question. That is a hard one to answer. A single particle, something on the order of .005 diameter or .010 diameter. That is enough to cause a miss.

\section*{QUESTION: MR. RODE}

Was the PVT system compared with the particle impact noise detection system with respect to relative effectiveness? What is the difference in instrumentation complexity between the two systems?

\section*{ANSWER:}

Well, comparison was made, but I don't remember all the details of the findings. I would be happy to mail you a copy of our reports, whoever asked that question. We can get together after the meeting and set up a communications channel. We find that the noise particle impingement method is not as good as the one we have developed. The reasons are explained in the report.

\section*{QUESTION: MR.JONES}

If we should reduce the requirements of MIL-STD704A for applications where no contacts are used and all controls are solid state, how could we withstand the occasional high transient voltage resulting from a broken wire or an intermittent connection?

\footnotetext{
ANSWER:
I assume here that you mean a power wire being broken and thus providing a step change in the loading on the generator. If this is the case, the over-voltage transient is probably going to be somewhat less than we now experience in the conventional generators. The 180 volt transient that is specified by MIL-STD-704 is a result of switch-
}
ing approximately two-thirds the capacity of the generator off and allowing the generator voltage then to overshoot because of the regulator response characteristics of the regulator.

So if we are talking about just an individual wire breaking, the load on that wire would represent a much smaller proportion of the total generator capacity and we would have a very small overshoot. If a bus feeder line were to break you have lots more trouble than just over voltage.

\section*{COMMENT: AUDIENCE}

That was my question. What I was concerned about was the transient voltage conductive load portion of the circuit. It is the same as if you had opened a switch or a contact in that circuit. You get an inductive voltage spike.

\section*{ANSWER: MR.JONES}

What you are saying now is that those voltages produced by switching inductive loads are in the neighborhood of 600 volts as presently specified by MIL-STD-704. Now, one way of dealing with those, of course, is to put larger Zener arrangements on the DC bus to take care of spikes that are presently generated.

To begin with, these spikes generally occur on the DC line -28 -volt DC line, and by use of the solid state DC controller, the inductive spike is minimized for normal switching. Now, if you break the line and have an opening similar to the mechanical contact that we now have, you would have the high voltage spike generated, and this would be coupled to adjacent wires and carried back towards the bus. Depending upon the polarity of this spike, it might be carried to ground by a Zener in the power controller which would be used for protection of the switching transistors; or it may be carried to the bus and then to ground on the bus Zener. So I think it would be accommodated either way. The spike would be reduced and prevented from being coupled onto or coupled into other equipment by the characteristics of the power switch itself. We might discuss this further after the meeting.

\section*{QUESTION: MR.RODE}

Were parts vibrated with small particles, .001 to .005 of an inch? If so what were the results? Were there one or two particles per relay or more?

For magnetic particles in a magnetic latch relay, is the same test effective? What problems?

\section*{A NSWER:}

Well, the answer to the first part was answered quite some time ago when I pointed out that we introduced particles at random in large quantities. There were some particles in the size area specified here, .001 to .005 . The results of the test cannot be conclusively directed toward the size of the particle.

In answer to the second question on magnetic latching relay, we didn't test any of that type.

\section*{QUESTION: MR. RODE}

Do you 100 percent test all relays for contamination? If not, what sampling do you use?

\section*{ANSWER:}

Vibration testing is 100 percent.

\section*{QUESTION: MR.STEINER}

You stated that the U.L. standard which you quoted has specific requirements for 51 volts and over, but none for 50 volts and under. In other U.L. standards, these values are 31 and 30 volts, respectively.

Do you have, or know of, any technical basis to justify these break points? In other words, what justification is there for not having requirements for one voltage when they are established for only one volt higher?

This may appear to be trivial, but in light of recent court decisions regarding liability of manufacturers, this could become extremely important and apparently the origin of these values has been lost in antiquity.

\section*{ANSWER:}

I will be ready to answer that in some detail if | understood one phrase here which I would like to have repeated.

Am I to understand that you are referring to other value 31 volts and 30 volts values in other U.L. standards? Is this the meaning of this question?

\section*{COMMENT: AUDIENCE}

That was.

\section*{ANSWER: MR. STEINER}

I don't doubt that this exists. I just happened to pick one that started at 51 . I just want to make sure I interpreted it right.

COMMENT: AUDIENCE
It is immaterial.

\section*{ANSWER: MR. STEINER}

Did you pick that 31?

\section*{COMMENT: AUDIENCE}

It is immaterial which value you deal with. The fact is merely that these court decisions could hinge on the fact that in one case you have a voltage of one value; you go one volt higher. How are you going to justify that you have a standard in one case and not in another? I know this is one that has arisen a number of times and recently; and I know - so far as I know, no one knows exactly where either the value of 30 volts or the value of 50 volts has originally come from.

\section*{ANSWER: MR. STEINER}

Well, assuming I understood both your question and your interpretation correctly, I report the following from experience agreeing with you about the history. The values are antiquated. They came about through random choices made by people like Thomas Edison and his relatives and those who worked later on in his laboratory.

The situation is much less humorous than I chose to present it. There is no real background. I went personally to the Underwriters' Laboratories not only to determine what I was reporting to you. You are correct; they are arbitrary. The time has come to propose a change based upon logic rather than on grandfather experiences.

As far as language used in some of these standards, it is sometimes atrocious. For example, there shouldn't be any limits like if this is what you mean from 51 to 100; 100 to 200, because it leaves one volt uncovered. It should say from 50 to 100 and then in excess of 100 to 200 and excess of 200 to 300; but that is for Philadelphia lawyers perhaps to tackle first.

All I can say is that your question deserves great merit and has great merit and deserves great attention, and I would suggest that you write to the authorities who are in charge of it like Underwriters' Laboratories; and I will be happy to assist.

\section*{COMMENT: AUDIENCE}

We have already made such contact, but we have come up with about the same answers that you have. I thought possibly with your Austrian background you might have some additional information somewhere that we didn't have here in the United States; but everything that we have come across has apparently led back to some of the original workers such as Edison and others of his era, and apparently everyone who was involved in the establishment of these values has long since
died so that now you say it is a real problem, especially with the lawyers getting into the thing.

It wasn't so much the gap of one volt, but over and above that was - here you have an arbitrary breakoff point whether it be 30 volts or 50 volts is immaterial, but you have an arbitrary breakoff at some point. How do you justify at one voltage? You must have these requirements and just by that voltage, it isn't necessary.

\section*{ANSWER: MR. STEINER}

Right. No, this is true; and apparently worldwide, so my place of birth has little to do with it, I am afraid.

One of the worse statements - if I may steal one more minute of your time-is the statement "something should be tested at least twice the rated voltage plus 1,000 volts." It is entirely without history and entirely without logic. I think I was the only one who did look into this, however, without success.

Thank you.

\section*{QUESTION: MR. RODE}

You have been screening relays now with your vibration test and we were wondering what percentage do you get of good lots. We almost thought you said you never got a good lot. Could you give us the details.

\section*{ANSWER: MR. RODE}

I never said that. The failure rate has been very low. I don't have any statistical data on that, but roughly it is about one out of 5,000 .

\section*{COMMENT: AUDIENCE}

This is incoming parts?

\section*{ANSWER: MR. RODE}

Yes.

\section*{COMMENT: AUDIENCE}

So you are getting one in 5,000 out in incoming parts in your screening? How much do you think you are improving your reliability by doing this?

\section*{ANSWER: MR. RODE}

That I can't answer. I am not a reliability expert; I don't know how the number works.

\section*{COMMENT: AUDIENCE}

Is it worth anywhere near the cost?

\section*{ANSWER: MR. RODE}

The cost is worth the additional testing.

\section*{COMMENT: AUDIENCE}

To get that one in 5,000 in your program?

\section*{ANSWER: MR. RODE}

That's'correct. In our program, cost is not spared in order to save a life.

\section*{COMMENT: AUDIENCE}

Could I ask what program it is.

\section*{ANSWER: MR. RODE}

Apollo.
Anymore questions?
Thank you, gentlemen.

\section*{A MESSAGE FROM SAE:}

The Society of Automotive Engineers (SAE) and the National Association of Relay Manufacturers (NARM) have been watching the Ohmite THINK-IN series with considerable interest and satisfaction. Not by plan, but by Ohmite invitation to speakers of their selection, at least two A-2R committee members have spoken at each of the three THINK-INS.

The 3 Ohmite Sponsored THINK-INS have confirmed our thoughts that more relay education is needed and would be welcomed by design engineers and users.

Under the guidance of the SAE Aerospace, Electric and Electronic Equipment Subcommittee for relays, \(A-2 R\), plans are being developed for an educational program to be conducted in the 70's.

We wish to thank Ohmite for the service they are doing for industry, and for affording us the opportunity to advise you that SAE plans special relay education. As the subjects, topics, faculty and plans develop, we will keep you advised via various news media. Again, our thanks to Ohmite.
E. U. Thomas, Chairman SAE, A-2R Relay Committee.

Carl E. Nelson, SAE Manager, Continuing Engineering Education, Society of Automotive Engineers, Inc. 2 Pennsylvania Plaza, New York, N.Y. 10001.

Ohmite Manufacturing Company a North American Philips Company 3601 Howard Street, Skokie, Illinois 60076/Phone (312) 675 nted in us.a
an exchan perated Devices
Relays and
behind think -in.

of Relay appals during authors
comer

\section*{OHMITE THINK-IN SEMINAR I}

Hyatt House Hotel, Lincolnwood, III.
February 26, 1969

\section*{Contents}Solid State - Friend or Foeby William A. Paulson2
Application of Electro-Mechanical, Hybrid, and Solid State Relays
by James E. Davies 5
Relay Specification Practices
by George A. Neyhouse 9
Transcript of a Three-hour Question and Discussion Period 11

\section*{"SOLID STATE - FRIEND OR FOE"}

By William A. Paulson. Principal Engineer, Industrial Instruments Div., Barber-Colman Company

I should admit, at the outset, that when the idea of sharing some of my experience with relays was broached, my first reaction was rather negative. After all, everyone knows relays are terribly oldfashioned and besides, after all the effort expended over the years in various stamp-out relay movements, it might be a little frightening to look back and see that they're gaining on us. A little reflection, however, brought to light two areas that might be of general interest. One has to do with the effect of solid state - integrated circuit technology on the circuit imposed specifications of relays, and the other has to do with the apparent logical conflict between strenuous efforts to do away with relays in some applications, and their routine inclusion in others.

Before elaborating on these items, it is appropriate to give some indication of the kind of experience on which these remarks are based. I hope this will clarify some of the illustrations, but most importantly it should help avoid the temptation to extend conclusions drawn from limited experience too far afield.

The Industrial Instruments Division of Barber-Colman manufactures a variety of instruments intended to control industrial processes, with the major emphasis being on the control of temperatures, using thermocouples as sensors. This market, while highly competitive in itself, places somewhat greater emphasis on performance than on cost - greater, generally, than the "consumer" or "entertainment" markets, but certainly less than the aerospace hardware market.

The chief role of relays in such instruments is to switch load power - directly or through intermediate relays or contactors - in response to signals derived from the primary transducer, and interpreted by the instrument's electronics.

For insight into the direction modern semiconductors have headed us, a backward glance may be in order. In the good old days, when the world was simpler, and active devices relatively expensive and bulky, the route to reliable, economic designs was to use as few such devices as possible to achieve the desired effect. The result was frequently something like the circuit shown in Figure 1.

FIGURE 1

The idea of such a circuit was to close the relay when the process input signal became sufficiently large (as, for example, when the controlled temperature rose) and to cause the relay to drop out
when the process signal fell. Although very simple in form, this circuit interacted with relay design in a number of ways.
1. Because the active devices handled voltage easily but handled low currents, relay coils had to be wound with an inordinate number of turns of very fragile wire, tending to increase cost and reduce reliability.
2. Large margins had to be provided for tube wearout, (a \(50 \%\) decrease in Gm in 8000 hours was a routine expectation) which tended to increase initial dissipation undesirably.
3. The heat produced by the tubes tended to aggravate the temperature rise caused by (2).
4. The pressures that led to a preference for relatively simple circuits often placed additional burdens on relay design and adjustment.

Figure 2 illustrates the general relationship between coil current and relay state. Although familiar, it is reproduced here mainly to permit later comparison of this characteristic with the switching characteristics of a rather common present-day circuit.

The well known hysteresis depicted in Figure 2 not only is an inherent trait of all common relay designs, but also is a very significant operating characteristic of the control circuit as a whole. Some applications called for very narrow control deadbands, some wide, and all too many demanded rather narrow tolerances on whatever deadband was required. Obviously, much liaison between user and supplier, and (often reluctant) compromise on both sides was required to get and maintain such circuits in volume production.

The first impact of the move from vacuum tubes to transistors as relay drivers was somewhat a mixed blessing. Even early semiconductors exhibited little degradation over tens of thousands of hours, and so relieved the dissipation problem caused by large allowances for such degradation in the initial designs. However, they were all too often solimited in power-handling capacity that a great deal of pressure was exerted by users to reduce relay operating power below what many relay designers considered good practice.

Today, the near avalanche of low-cost, high-performance silicon devices pouring out of the semiconductor industry has all but eliminated this last limitation, and has given the circuit designer unprecedented freedom in choosing relay drivers. Active devices
are cheap enough to encourage the use of more complex circuitry, such as Schmidt triggers, to take over the jobs of insuring unambiguous switching and controlling hysteresis. A variety of switching devices, notably the "four layer" families (SCR's and SCS's) possessing rectifying and high voltage capabilities reminiscent of tubes, and inherent bistable operation and high current capabilities as well, are now available and widely used for driving relays. Although not without problems of their own, such devices have drastically reduced the pressures leading to undesirable compromises, whether from the point of view of the circuit designer or the relay manufacturer.

A further simplification of the relay's task seems inevitable as a consequence of the recent drastic expansion of capability and even more violent price reductions in integrated circuits. Although a number of examples might be cited, one outstanding trend should be sufficient to illustrate the point. Not long ago a "709 type" operational amplifier was in the \(\$ 25\) - \(\$ 50\) class, restricting interest to designers of exotic, "hang the cost" systems. Today, they are under \(\$ 2\) in modest quantities, with talk of reaching the fifty cent level in large quantities within the next one to two years. The uses for this versatile circuit are so numerous that most builders of electronic products will have several applications active, and thus tend to use them as routinely as any other component. One use, particularly appropriate to the present topic is shown in Figure 3.

FIGURE 3

The similarity between the transfer characteristic of this circuit and Figure 2 is obvious. What is particularly significant is that the hysteresis, so limited in range and difficult to adjust in relays, is now a simple and easily manipulated function. Expressed as a
percent of the switch on, or reference value, it is given approximately by:
\[
\% \text { Hysteresis }=\frac{200 R_{1} V_{\text {out }}}{\left(R_{1}+R_{2}\right) V_{r e}}
\]

In most cases, the output of the top amp will not drive a relay directly, but will drive a power transistor of SCR to make ample power available to eliminate the need for marginal relay designs. Thus the relay is freed of circuit limitations to do the uncomplicated switching job it can do best.

So far, the advent of solid state technology has been decidedly to the advantage of the relay maker, as well as the user. However, the combination of the relay like characteristic of Figure 3 and semiconductors of really significant switching capability has other, but equally obvious implications.

Although it is hard to classify many individual cases, it appears that the functions performed by relays may be divided into two broad categories: \(\log\) ic and power switching. The reason it is difficult to classify some uses is simply that, especially in simpler systems, the two functions are frequently performed simultaneously by the same elements, and so not easily seen as separate functions. The logic capability of relays arises, of course, from the shape of the characteristic of Figure 2.

Because this discussion of relays is oriented towards the power switching function, the logic function, though important, will not be treated in detail. The pace of integrated logic development strongly suggests that the future role of relays as logic elements will be chiefly in systems of rather limited complexity for economic reasons alone, if not for others. It should not be inferred, however, that this means that relays will not continue to be used in large numbers to perform logic functions. The majority of machine tool control panels, for example, are rather simple from the viewpoint of integrated logic systems, and relays will continue to be widely used. In small systems one of the chief attractions of relays is the ease with which the power switching and logic functions are combined at a considerable economic advantage, as in simple interlocks.

One of the outstanding attributes of relays, so commonplace it is often overlooked in discussions of relay vs. "solid state" switching, is the ease with which additional, isolated contacts may be added to supplement the primary function, or to perform a function, such as 3 -phase motor reversal, where this property is inherently necessary. Especially in the field of power switching, this relay characteristic is essential, yet rather difficult and expensive to achieve in solid state switches.

It is in the field of power switching that the challenge of "solid state" is most dramatic. Perhaps this is only because relays have been the only significant factor in this area for so long that any potential replacement would seem exciting. In any event, relays have performed so long and so well in this function that it may be worthwhile to examine the forces behind what many observers feel will be a major revolution in power switching technology.

First, it must be admitted, that in spite of the excellent results obtained in the past with relays, nagging questions of reliability remain, particularly for extended service, or service in hostile environments. It is no doubt naive to expect that solid state switches will solve all these problems, but there are a number of circumstances where failure mechanisms can be eliminated by solid state switches without (apparently) introducing new ones. In the long run, shock, vibration and corrosive atmospheres will probably be dealt with more effectively with nonmechanical switching.

Secondly, there are many applications where continuous control of power has such inherent advantages that relays were only
used for lack of alternatives. Such applications are already dominated by solid state devices, and this preponderance is certain to increase to the virtual exclusion of relays. Even here, however, the competition between mechanical and semiconductor switching is not as direct as it might seem. A large portion (most likely the majority) of such applications simply never were candidates for relay application (residential light dimmers are a good example), and so should be considered as new territory opened up by and largely open only to, semiconductor power switching devices.

A third major reason for preferring the solid state approach in spite of higher initial cost, is the hoped for lack of maintenance costs with properly designed semiconductor switches. A good example of this motive is found in industrial process temperature controls.

Control instruments of the type previously described, that switch power "on" when the process temperature falls and "off" when it rises, inevitably cause some cyclic fluctuation of the controlled temperature. Such cycling of the process is usually considered objectionable and is often unacceptable. To overcome this problem, it is common practice to modify such "on-off" action by causing the power to be switched periodically at a rate much faster than the process time constant, with control of average power affected by the switching duty cycle. This method, known as time proportioning, is very effective, but places severe life requirements on the switching device. A typical time proportioning controller may cycle at a 10 second rate, resulting in over three million operations per year on a continuous process. "Telephone type"
relays are often capable of tens of millions of operations; few power relays are even with severe de-rating. Thus the compromise between good control response (fast cycling rate) and relay life (slow cycle rate) is often an unhappy one.

The advantage of solid state switching in such cases is so clear that only initial cost and development time has so far prevented wholesale replacement of relays by semiconductor devices. The situation today is very fluid, with every reason to expect a large upsurge in solid state switching in the next two years.

For these reasons alone, it is clear that solid state switch families will expand rapidly in the next few years, and will very substantially increase their penetration into areas now served by electromechanical relays. However, it does not follow that the latter will be replaced en mass, or even decline. The factors favoring solid state switches are rather selective, and, though important, are by no means universal.

If the time is ever to come when a single technology will be dominant in a field as varied as this one, my crystal ball is too cloudy to predict it. If anything, the ability of solid state relays to do well some jobs electro-mechanical relays have done poorly, will in the long run improve the reputation of the latter by confining them to applications in which they perform reliably.

If there really is a contest between solid state and electro-mechanical relays, the real winner will be the product designer, who will be in a better position than ever to make rational choices for his many switching functions.

Biographical Sketch: WILLIAM A. PAULSON

William A. Paulson is Principal Engineer for the Industrial Instruments Division of the Barber-Colman Company, Rockford, Illinois.

The Industrial Instruments Division of Barber-Colman manufactures industrial process controls and, therefore, is a prime user of relays and related devices. Mr. Paulson received his BSEE degree from the University of Illinois. He holds six patents in the control area including industrial, process and radio transmitting controls.

\title{
APPLICATION OF ELECTRO-MECHANICAL, HYBRID, AND SOLID STATE RELAYS
}

By James E. Davies. Manager of Engineering, Specialty Products
Division, Cutler-Hammer, Inc

If you think I'm going to solve all your relay problems, forget it! I'm only 92 miles from home and that doesn't quite qualify me as an expert; however, we have some thoughts that we think might be of interest to this group. We're going to talk about relay hang-ups. Problems that you can get into - maybe have gotten into - in the application of electromechanical and hybrid or solid state relays

Now, I think in order to start we ought to define the types of relays we are talking about. The most common relays in commercial or military applications as we see it today are (and incidentally I am going to leave covering of specifications in these areas up to Mr. Neyhouse who is going to follow me and who I am sure will make a very thorough and capable presentation in this area) are the crystal can, \(D C\) armature type, \(A C\) armature type, rotary, power, mercury wetted and dry reed.

In addition to these basic types there are what I would like to refer to as miscellaneous types for specific applications. Some of these are offshoots of basic types. You might argue, in fact, that some of them are basic types. If you do, I am not going to argue with you. These miscellaneous types are thermal, bimetallic, time delay, stepping, sensitive, latched, polarized, vacuum, meter, crossbar, coaxial and hybrid and solid state.

Now, I would like to break the hybrid out as a separate subcategory. First of all, I would like to give you my definition of a hybrid relay. My definition, for better or for worse, is a combination of electromechanical and electronic components usually tailored for a specific purpose. Okay, what types of hybrid relays do we have. Time delay, sensing, sensing under and over voltage, under and over current, under and over frequency, phase, phase shift, phase sequence, etc. The rectified relay which permits operating a DC coil or solenoid directly from an AC line is an old stand-by which also comes under the hybrid category. An amplifier relay combination such that a conventional relay can be operated from low level logic or other low level electronic sources is a hybrid relay also as far as I am concerned. Bounce free or suppressed relays fall in this category, i.e., the RFI filtered relay

At this point I would like to take a minute to define or explore what a relay is generally used for. We're here to talk about the problems we can get into in applying relays. We have now defined what relays we are talking about, we ought now to take a look at what relays are generally used for. In the language I would like to use, I would say they are basically used for two general categories of application. Commutation and logic in the broadest sense. Commutation of what? Commutation of motors, lamps, heaters, other relays, load transfer, power supply transfer, and commutation or turning on and off electronic circuits. I didn't define commutation. I assume I won't get any static in the audience if I say it means "turning on and off."

Logic in the broadest sense I would define by examples such as time delay, over and under voltage, over and under frequency, phase and phase sequence relays, zero sequence relays, current sensitive relays - now that could be a current sensitive relay in the signal sense or overload which, in effect, makes the relay a circuit breaker. Other logic examples are reverse current relays, reverse current sensing, temperature sensitive relays and last, true logic where the relay is used in an "or," "and," "not," "exclusive or" or other logic circuit. These are all, of course, prime applica-
tions of hybrid relays in this latter area whereas you will primarily find conventional electromechanical relays in the former or commutation area.

Now, we're here to talk hang-ups and from my experience, limited as it is, one of the big hang-ups - I would say the biggest hang\(u p\), is application. The communication between the manufacturer and the user, with either the Military or in some cases an independent testing or specifying laboratory such as U.L., an intermediary represents the communication area where some of our biggest hang-ups occur.

What does the user need to know to apply a relay? First of all, I'd say of primary importance is contact voltage and current. Not just the current but the maximum, minimum and nominal. The type of load. Is it inductive, resistive or capacitance or motor? If it is a motor, is there an inrush, or if it is lamp and there is an inrush, what is the amount of the inrush and time duration of the inrush. If it's a motor, will the relay ever have to interrupt locked rotor current? This is frequently overlooked, but in many motor applications it is possible for the motor, due to perfectly natural causes, to be stalled, and the relay has to either make or break or both at the stalled condition. This could be trouble, if the relay isn't designed right. What is the inductance or power factor, if \(A C\) ? Is there over voltage at the moment of interruption? If the relay is going to handle a motor, will the motor ever be reversed or "plugged"? What's the duty cycle? This is frequently overlooked. It can be quite significant. I've seen several applications where everything else was very carefully thought out but an electromechanical relay was rated for a limited number of electrical cycles and in the particular application this number of cycles could be run during a very rapid period of time with resultant trouble. What's the available space? Is there heat sinking available? And believe me, for hybrid and solid state this is very important. What terminations are required? Will the relay be used on single phase or three phase on AC? What is the power supply and what is its capability?

Okay, we've now established some of the basic electrical data which is necessary in order to properly specify a relay. What are some of the environmental hang-ups we can run into? First of all, let's look at commercial and industrial applications. What kind of data do we need to know there to properly specify a relay? We need to know the ambient temperature; normally this is not a problem. In most industrial plants it will be somewhere within a few degrees of plus or minus \(70 \cdot 75\) degrees. However, relays, particularly in the industrial area, are called on to operate close to furnaces, in deep freezes and other non-normal environmental areas. Will there be exposure to dust environment or fluid? Will there be exposure to mechanical damage? Will there be exposure to tampering? Will the relay be repaired? (This may surprise some of you in the audience who are used to working with small hermetically sealed relays both as designers and/or users, but in the industrial area power relays and contactors are not only repaired, but they are designed to be repaired. Contacts are replaced at frequent intervals, coils can be replaced. This is standard practice in industrial and motor starting contactors.) Will there be exposure to explosive atmospheres? Again, in the military area, many, in fact, most devices are designed to be resistant to explosive vapors and in the commercial sense there is an entirely different category of explosion proof device which involves either extremely low voltage, low wattage control circuitry and/or power being controlled by devices in cast iron or cast metal cases with huge flanges which will dissipate the energy of any arc which might attempt to escape from within the enclosure.

So much for commercial and industrial environment, what about military. And here I would guess that most of you are quite familiar with the environmental specifications of altitude, the necessity for hermetic sealing versus environmental sealing versus dust tight enclosures, vibration requirements, shock requirements, maximum and minimum temperature, thermal shock, aircraft fluid, hydraulic fluid can be, of course, extremely injurious to many materials, radiation environment, voltage spikes, vacuum. Today, of course, we find relays operating in hard vacuum. The designers really didn't know how devices were going to perform out in hard vacuum until the last few years. We find to our great satisfaction that they perform pretty well if properly designed

We've covered what we need to know for general categories of relays but how about the hybrid and solid state. What additional information do we need to know to apply hybrid and solid state devices. Well, we need exact voltage limits. This can be quite critical. We need to know DVDT in addition to just what the voltage is. We want to know what the maximum rate of change of voltage can be and this can be very critical to certain semiconductors. We need to know the absolute maximum temperature. On conventional relays we are used to the abuse of occasionally permitting temperature to exceed recommended limits. Most relays will take this for limited periods of time. Solid state devices will not. We must know the exact maximum temperature that the device will ever see. We need to know detailed information on transients which the solid state or hybrid relay may be exposed to. We need to know what the requirements are at minimum temperature. Again, semiconductor devices can fall off quite rapidly at low temperatures below zero. Beta or gain can drop off with resultant loss of amplification which may or may not put the device outside spec limits. How much heat must be dissipated, and how much heat sink can be provided needs to be known. This is perhaps the most critical area in specifying a solid state or hybrid relay.

Now, we've covered the big hang-up, environment. Where are some of the other application areas that we can get in trouble? I'd like to break these down into hang-ups on the electromechanical relays and then separately discuss hang-ups on the hybrid or solid state relays, with electromechanical first.

Perhaps one of the most frequent mis-applications of electromechanical relays is using a relay that is rated for single phase AC in a three-phase AC circuit. Now, my good friend Ed Thomas of Grumman Aircraft Engineering on Long Island has given considerable publicity to this cause over the last three or four years. I think he has gotten his story pretty well sold with engineers who are applying relays throughout the company. Incidentally, Mr. Thomas and Mr. Leonard W. Wendling, Naval Air Systems Command, are going to give a paper at the Oklahoma Relay Conference in April jointly sponsored by the National Association of Relay Manufacturers. Their paper will be on relay reliability. I may be covering some of the points that they are going to cover in this paper. I hope I am not stealing their thunder, however.

Next mis-application of an electromechanical relay is using a 115 V AC only relay on 28 V or higher DC voltages. You know, with AC either 400 hertz or 60 hertz, on every half cycle the voltage and current go through zero. Now they may not go through at identical times if there is a power factor involved, but, nevertheless, they do go through zero. And you have an opportunity to put an arc out at this point and interrupt the current. If a relay is designed with small arc gaps and single break contacts, it may handle 115 V AC loads of substantial amounts quite adequately and yet be incapable of interrupting even very small loads at 28 V DC and virtually nothing at 120 V DC. Don't get sold down the river on this. Another hang-up is using a 400 hertz rated relay on 60 hertz voltage at the same rating as at 400 . This has been a subject of considerable discussion in the industry. You will hear people say that 400 hertz is more severe than 60 hertz. If you are talking normal relay ratings - don't you believe it. It's a simple
matter. At 400 hertz your half cycle time is one seventh that of 60 hertz, or one seventh of 8 milliseconds. So you are going to go through zero in a matter of one to one and a half milliseconds maximum and the current will go out. On 60 hertz, if you have a power load of any kind, the arc can hang on for up to 8 or 9 milliseconds. The additional wear and tear on the contact is, as the patent lawyer's say "obvious" to anyone skilled in the art. Now there is some justification for the argument that 400 hertz is more severe than 60 hertz and this situation occurs when you have very heavy power loads approaching short circuits. I'm talking currents at 115 V AC in the vicinity of 1500 amps and on up. Under these circumstances, on 400 hertz AC your current goes through zero so rapidly that the arc has insufficient time to deionize before the current reverses in the opposite direction and the arc hangs on or as it is commonly called, re-strike occurs. Under these circumstances, 400 hertz is more severe than 60 hertz. At normal rated load of conventional relays of 10 amps or even up to 50 or 100 or 200 amps , your contacts will last a lot longer at 400 hertz than they will at 60 hertz for a given load.

Next hang-up is poor regulation of power supply. This occurs much more frequently than we would like to believe. It can be a particular problem on power relays moreso than smaller relays in the \(1,2,5\) or even 10 amp area. One way it can get you is, if you are drawing a power load, the relay contacts close and the voltage dips as a result of poor regulation. The relay may suddenly find itself with a voltage that drops so low that there is insufficient coil power to pull the contacts completely home, in which case they sit there and fry or may even blow open. When they blow open, the voltage pops right back up to normal and then the coil starts back in again and you end up with a motor boating situation similar to what our P.A. system did earlier today. This will keep on until the relay contacts melt down and permanently interrupt the current.

The other problem with regulation of power supply is involved with overshoot on break and again this is primarily a problem either on high voltage applications or a combination of medium voltage and high current; where, at the moment of interruption, (the generator providing the voltage source has been fighting for regulation control) the voltage shoots up way over normal. This presents a very severe arcing load on the contacts, which lasts until the voltage gets back down to normal or goes through zero. This can be quite severe and is a hang-up that again is not always understood, but occurs more than you would believe.

The next hang-up on a mechanical relay is using a single break contact such as you will find on a crystal can or a 2A,5A or 10A relay on motor loads for reversing or motor starting applications where the motor load capability of the device is considerably below the resistive load capability. Although the drawing for this device may say it is a 10A or 5A device if you look in fine print you will find on the specification that the motor load rating is \(6 A\) on a 10A relay or possibly 2 or \(3 A\) on a \(5 A\) relay. An amazing number of times engineers will apply this supposed 10A relay on a 10A motor. It just can't handle the load. Again, they get sold down the primrose path, because many of the power relays with which they are familiar have double break contacts which are capable of handling the same motor load rating as their resistive load rating or even their inductive or lamp load. If an engineer had grown up with power devices, he doesn't realize when he gets into the crystal can or the TO5 can relays that this rule of thumb no longer applies.

Another hang-up with mechanical relays, of course, is using them in very rapidly cycling applications. And, of course, here is where the solid state or the hybrid combination solid state relay shines on the rapid cycling, long life applications. Another problem area is the use of power relays in low level applications or vice versa. Most of your power relays have a composition contact and generally these are rated not to be used below \(10 \%\) of their maximum
rating. In other words, if it's 100A or a 200A relay, it should not be used below 10A or 20A. Frequently, users of relays find they have great success with these power relays and they are very reliable. They are one of the most reliable tools the aircraft designer has. However, he thinks because it works fine at 100A that it ought to work equally well at 1 A or \(1-1 / 2 \mathrm{~A}\) and this just ain't so . . . Beware if you go much below \(10 \%\) of the maximum rating on a power relay. When you get to the 10A relays and lower, they have silver contacts and in some cases gold plated silver contacts and if used as rated by the manufacturer they can be used on the quite low levels. The auxiliary contacts on the power relays can, but not the power contacts.

Another area where we get into trouble is reversing and power supply transfer applications or load transfer applications. In the old days, designers were used to using a 3PDT relay with center off or a SPDT relay on DC with center off so that you have, in essence, two different relays with two separate coils wired to transfer between these two power supplies. So, you have got, in effect, infinite arc gap. The one cannot close until the other one is fully open. In many instances nowadays to save weight, the designers are using, in essence, form C type or I guess it's form \(Z\) with a double break contact. We have a normally open and normally closed and they transfer from the normally closed to the normally open. Well, the arc gap here between the normally open and normally closed contacts may only be 25 or 30 thousandths of an inch and it is possible to have an arc hanging on when the supply is transferred. In a reversing application, the arc may be hanging on, which in effect shorts out the line. These are areas that must be guarded against.

Now we've talked about the most common hang-ups for the electromechanical relays, let's have a look at some of the hang-ups on the hybrid relay. I think one of the first ones we have to be concerned about is using a hybrid or solid state relay on any voltage other than rated. Now, electromechanical relays may actually work quite satisfactorily on voltage lower than rated; however, if it's a hybrid relay with a contact output and logic input, the logic may not work at all or certainly not within specifications. Poor power supply regulation again is another major problem here which could permit operation but not within specification limits. Perhaps one of the most frequent problems with hybrid or solid state relays is exceeding the transient or steady state voltage current or temperature. Again, we are used to abusing the electromechanical relay. We've been doing it for many, many years. But with solid state you cannot. When you exceed the maximum current your semiconductors are done, that's it. At the other temperature extreme you can get in trouble as I indicated earlier. At ow tem perature your transistors and semiconductor devices lose tneir gain or beta and the device will not work per specification, if it all.

Another area of mis-application is using hybrid or solid state relays for complete output isolation where freedom from crosstalk is needed. It is true that we now have metal oxide field effect transistors (MOSFETS) which have very high input impedances. The fact remains that high input impedance or not you can still get crosstalk with a solid state amplifier type device, either in a hybrid or an all solid state relay.

Another rather unexpected area of problems with the solid state or hybrid device is inherent current limiting which may limit inrush to a motor and prevent starting of the motor, or cause burnout as the case may be. This is one of the problems that perhaps Mr. Neyhouse will touch on later. But if you design an all solid state relay to have inherent current limiting, you had better be sure that a motor which you use this relay to control can obtain
sufficient starting torque to get moving or you sit there in stalled rotor condition and the motor will overheat and either the semiconductor or the motor will burn out.

I'd like to close by listing the areas where I think electromechanical relays are best and those where hybrid and solid state relays are best. Incidentally, I went to a symposium several years ago which the Signal Corps put on on solid state relays. They had a contract at the time with a manufacturer who did some very excellent work for them. One of the speakers at this symposium, and this must have been six years ago or possibly seven, predicted that the mechanical relay was a dodo bird and that it was going to be out of existence in 2-3 years. Well, gentlemen, this is now 6-7 years later and the electromechanical relay is still going strong. They are finding applications in combination with electronic semiconductor devices that they couldn't perform before but are still going strong.

Okay, where is the electromechanical relay best? Well, again, where you need complete isolation. Where you may have possible overtemperature, over-current, or voltage transients. Where you have high power applications without any capability to sink heat. Where you may have locked rotor type loads. (A motor load where the mechanical load on the motor is such that it may be locked under certain circumstances.) The semiconductors are good on inrush, don't misunderstand me, but if they have to carry that locked rotor current for very long periods, unless they are very heavily rated and very heavily heat sunk they are in trouble. On multiple applications your mechanical relay is better. It's cheaper, you can get more poles per dollar, and more poles for a given weight. The conventional relay at present is better in deep space or radiation or reactor type environments. If you need low millivolt drop and low total heat generation, the relay obviously has it all over the solid state or hybrid relay. Again, a mechanical relay can be latched so that there is zero coil drain (in the energized position) for missile applications. You don't have to match impedances with conventional relays and again the relay costs less per pole. Now I would like to point out however, that with logic there are many applications where a single pole solid state relay may replace a multipole conventional relay. Of course this can be true of a hybrid relay also.

Finally, where are the hybrid or solid state relays best? What is their best area of application? Extremely long life. Extremely fast operation where you need complicated logic. Your conventional relay can do logic function with 4 PNO NC contacts. You can do logic with relays, but more economically and in a smaller space with solid state logic. I think more and more sensing type applications are going to be taken over by either hybrid or solid state relays. Very high shock and vibration applications will necessitate the use of solid state circuit. No audible noise is a solid state advantage. Semi-conductors are very good on inrush type loads if the loads are of short enough duration.

I think I have conveyed my feelings that both of these devices, or all three of them, are going to be with us for a considerable period of time. If we are going to be able to effectively use them, we have to learn how to apply them properly. Given the proper application information between the relay manufacturer or the solid state relay manufacturer and the user in cooperation with the specifying agency, the electromechanical relay in the areas where it is best and the hybrid or solid state relay in the areas where they perform best should be among your most reliable devices in any commercial application or military vehicle. It isn't always so, but it can and should be so.

\section*{Biographical Sketch: JAMES E. DAVIES}

James E. Davies is Manager of Engineering, for the Specialty Products Division, of Cutler-Hammer, Inc. Milwaukee, Wisconsin. He possesses a wealth of first hand experience in applying relays of all kinds. He has been active in the National Association of Relay Manufacturers and has recently been elected second vice-president of that organization.

Mr. Davies is also a member of IEEE and the GAES Group on Aerospace Systems. He has co-authored the paper "Specification and Design of Established Reliability of Power Relays" in addition to presentation of several talks covering the requirements of electrical aerospace systems. He serves with the Military Specification Coordinating Committee and the NARM Reliability Committee.

Mr. Davies is presently co-holder of five patents on electro-magnetic contactors.

\section*{"RELAY SPECIFICATION PRACTICES"}

By George A. Neyhouse, Electronic Engineer, Relays, Defense Elec
tronics Supply Center

Mr. Roeser, panelists, and guests. Mr. Davies is a difficult person for any speaker to follow. To compensate for that, you should find me to be a speaker that any person finds difficult to follow.

The fundamental differences among electro-magnetic, relays, solid state relays and hybrid relays have been well covered.*1

Relay specifications are a necessity to competent control circuit designers. A schematic diagram without definitive references for the components is analogous to a mechanical assembly drawing without proper identification of the parts - useful only to illustrate the principles involved. Specifications of the relays of various types provide information about the pertinent characteristics.

In order to compare relays covered by specifications, it will be helpful to reiterate the criteria by which the specifications are developed. Scope of a general specification is that of a generic type of relay. It describes the parameters by which the relays are classified and outlines the conditions under which the relays are applied. A testing regime is defined to stimulate the environments and treatments of relays from the time of their manufacture to the time of their installation in the intended application, and the operating characteristics after they have been installed. The procedures are designed to provide assurance that the relays remain intact while undergoing the rigors to which they may be subjected during shipment or storage under the adverse conditions possible or for prolonged periods of time. Furthermore, after installation, relays must operate satisfactorily initially, and continue to function properly during the various conditions which they could be expected to encounter during their service life. Certain test procedures, optionally required either in whole or in part, are needed for particular types of relays. These procedures are those that stress relays in areas known to be critical for the particular type of relay.

A procedure may include testing of the relays under combinations of thermal conditions, hostile environments, mechanical stresses, and electrical loading and switching operations. Typically, thermal tests include thermal shock, resistance to soldering heat, storage and operation at high and low temperature ambients, and thermal E.M.F. measurements; environmental tests include seal test, moisture resistance, salt spray, and exposures to explosive atmospheres or those containing acid, alkali, detergent, hydrocarbon, sand and dust; and mechanically-oriented tests include shock, vibration, acoustical noise, terminal strength, solderability, and visual, mechanical, and dimensional checks a part of the routine. Relays also undergo tests to determine insulation resistance, dielectric withstanding voltage, capacitance, electro-magnetic noise and cross-talk.

Meeting the foregoing tests, coupled with passing the electrical testing, constitute the requirements for determination of acceptable items. Electrical tests are made with the coil both energized and de-energized. Readings are made of coil current, resistance, and inductance, and of the contact resistance or voltage drop under stable conditions; measurements of pickup and dropout voltages, operate and release times, and contact bounce are made during the switching transfer operations of the relays. Inclusion of a requirement in a relay specification is by deliberate consideration.

Transient voltages, including overloads, are imposed on the coil and contact test circuit networks. The relays are then cycled with

\footnotetext{
-1. Presentation by Mr. James Davies of Cutler-Hammer preceding this paper. Mr. Neyhouse's comments and opinions are solely his own and should not be construed as to be official U.S. Government Information.
}
a variety of contact loads with various environmental and electrical conditions. (The terms "coil" and "contacts" are used throughout regardless of the actual relay type involved; the intended connotations are those of "operating input" and "load output," respectively.)

No imagination is required to agree that relays used in military systems are in critical operations, which encompass the entire range of conditions mentioned.

Therefore, the specifications for relays for the military are more rigorous and extensive than those for similar items intended for commercial and industrial applications. Relay functions in military equipments are identical to those used in commercial and industrial electrical and electronic gear. The operational requirements differ in terms of reliability under adverse conditions. Military specifications for relays reflect this by requiring additional test procedures beyond those routinely prescribed.

The particular requirements concerning thermal shock and high and low temperature operation, acoustic noise, vibration test, mechanical shock resistance, EMI and EMC, gravitational effects, acceleration, minimum current, altitude (reduced barometric tests), RI, abnormal voltage, salt spray, moisture resistance and internal moisture, fungus resistance dissimilar metals, are paraphrased for simplicity and clarity as follows:

\section*{See enclosure 1 (Applicable paragraphs from MIL-R-5757E covering the procedures).}

Individual specification sheets include the dimension, identification, ratings of coils and contacts, electrical and mechanical arrangements, mounting means and terminal styles. Specification sheets include statements as to the applicability of these requirements which are listed as optional in the general specifications. Pertinent classifications, such as enclosure design, vibration characteristic, temperature range, shock type, and pressure range likewise appear. Individual specification sheets also delineate and emphasize additional special information such as deviations from the requirements of the general specification and extraordinary requirements or procedures.

The information offered concerning relay specifications has been condensed to generalize on the fundamental issues and no effort has been directed toward any particular type; however, with regard to specifications of solid-state and electro-mechanical relays, since each family has certain inherent characteristics, adequate specifications for each would reflect those parameters. Due to these and other differences, neither type, as presently conceived and manufactured, will completely dominate the relay market.

This testing procedure is used to demonstrate suitability of a relay type. The points mentioned are more elaborately detailed in actual specifications. MIL-R-5757E exemplifies a general specification for electro-mechanical relays; MIL-R-27777A covers solid-state telegraph relays. MIL-STD-202 contains test methods applicable to all electronic parts. It is used extensively in the testing of relays used by the military services, thereby imposing similar test conditions to assure compatibility of a variety of parts used in conjunction with relays in control systems.

In recognition of the critical functions performed by relays, general specification MIL-R-39016 covering relays of established reliability is recommended for consideration.

Although it is recognized that performance specs are technically preferable to material (or design type) specs, universal performance type specs are impractical. For example, were "educated sawdust" available to perform a relay function satisfactorily to replace a classically accepted relay, specifications of the new type relay would differ from those it could replace. As an illustration, knowledge of the response under predetermined conditions would obviate testing of a solid-state relay in geometric planes, whereas such testing in various attitudes is needed for mercury-wetted reed types. Similarly, acceleration tests might correctly be omitted for solid-state relays, but be required for electromagnetic relays. Adequate specification coverage of hybrid relays entails the complete repertoire of parameter listing and testing. Hybrid relays, having the operational advantage of combining the speed and sensitivity of a solid-state nervous system with the isolation and low-contact resistance of an electromagnetic muscle system, also have the disadvantage of requiring complete test procedures including consideration of all tests normally to be expected with either type alone.

Specifications for relays for military use not only describe the requirements for the relays and the complementary testing required to assure the adequacy of the relays, but also include these types of tests:
a. Qualification testing, in which the complete testing of the relay is required. Design and construction, ma* terials, environmental, mechanical and electrical testing are called for. Life test is a part of this routine. Relays undergo a complete examination for approval. Due to the rigor of the testing, the equipment required, and the attendant expense, such qualification is not undertaken frivolously. Passing this testing assures that the design of the relay is adequate.
b. Group A tests, imposed on all lots; these are routine tests of a type normally expected to be performed by a
reputable manufacturer for his own quality control, but definitely required by military specifications. Testing may be required on each relay in the lot, or on a random sampling plan, or a combination, in which all relays are subjected to certain of the tests, are applied to random samples. These tests eliminate infant mortality of the relays as well as indicating the need for tighter production and inspection by the manufacturer.
c. Periodic inspection of predetermined numbers of samples; these tests are more thorough, and are intended to assure the maintenance of the quality of the relays.
Each general specification covers a generic type of relays and is used as a matrix to specify particular models within its scope. Specification sheets are developed to define the parameters of particular standard relays used in control systems. Advancement in the state-of-the-art is reflected by the revisions to existing specifications and by the issuing of new specifications, some generated by the requirements of new systems.

The elapsed time during which a particular relay will remain active in the military system is indefinitely long; therefore, traceability is a logistics factor required in military specifications; standard marking methods are incorporated for this purpose.

Due to the multiplicity of standard relay types and models available, a project to tabulate their characteristics and features has been initiated to assist circuit design engineers in the selection of relays adapted to particular applications.

To conserve time, not all facets have been completely covered; however, questions regarding relay specifications will be entertained at the close.

The choice of suitable relays remains the responsibility of the circuit designer.

George A. Neyhouse is an Electronics Engineer for the Defense Electronic Supply Center - EMD, Dayton, Ohio 45401.

Mr. Neyhouse is in charge of establishing standards for electronic systems and components. He obtained his BSEE degree from Rose Polytechnic Institute and is presently working on his MA degree in math at the University of Dayton.

Mr. Neyhouse has presented papers at the AIEG conference, and is a part-time instructor in Electric Machines, control circuits and math at the University of Dayton.

Mr. Neyhouse holds eleven patents with 4 more pending.

\title{
A TRANSCRIPT OF A THREE-HOUR QUESTION AND DISCUSSION PERIOD
}

\section*{QUESTION: MR. PAULSON}

What might be considered a major impediment in the way of near universal application of solid state relays?

\begin{abstract}
ANSWER:
There are enough impediments. It's pretty hard to say which is major. I alluded in the talk to design and development time, which in the fields where there are clear advantages, it is probably the significant one. Another one has to do with the maintenance problem and with the fact that especially in the smaller sized devices it is almost impossible to protect the semi-conductors against short circuited loads, which are fairly common, if you have uncontrolled circuit wiring. Very often the first time the thing is hooked up there will be a short in the load. If it's an electromechanical relay, you may burn the contact, some; you may even weld them together. The average mechanic can come out and look at it and see what's wrong; pry them apart; file them; and put the system back into operation. If it's a silent failure hidden in the thing, the only recourse you have is to diagnose that and locate the special part. In some applications this will always be a very significant thing.
\end{abstract}

\section*{QUESTION: MR. DAVIES}

Solid State relays can be equipped with suitable circuitry to minimize any chance of false actuation. However, assuming that a transient pulse is of sufficient duration and size to actuate a solid state relay, this may not necessarily cause the problem. For example, if the load is a heating element. What parts of loads do you consider most likely to cause a problem in solid state relays?

\section*{ANSWER:}

One would be where they are working into other logic or where the solid state relay is controlling other electronic components as a part of a logic system. If you are in a counting sequence, any false actuation of the relay would give you an unwanted output condition. This could be a broad category of applications.

Another application that could cause problems using solid state relays is machine tools. This could certainly be an application where electro-mechanical would be safer, because a transient under no circumstances operates electro-mechanical relays. If the circuit isn't properly protected, operating a solid state relay could cause a problem.

\section*{QUESTION: MR. NEYHOUSE}

Do you think that the present MIL-R-5757E Quality Assurance, group \(B\), is an adequate program?

\section*{ANSWER:}

No. However, there is an amendment on the way to rectify the situation.

\section*{QUESTION: MR. NEYHOUSE}

Is there a time table on this amendment?

\section*{ANSWER:}

Yes there is and it should be circulated in about a month and a half.

\section*{QUESTION: MR. DAVIES}

What are the typical operate and release times for a typical general purpose relay and can you give a comparison for the DC versus an \(A C\) relay?

\section*{ANSWER:}

Of course it depends on the size, but if you were to take the 10 ampere size of general purpose relay, your operate time would be in the 10 to 15 milli-second range, release time might be in the 5 milli-second range. Getting to the power relays you may have operate times going up to as much as 25 to 30 milli-seconds, release time again being in the vicinity of 10 to 15 milli-seconds. You get into the reeds, then I believe you're down to the 1 to 2 milli-second range.

To answer the second part of the question, an AC relay will generally operate faster than a DC relay. You've got the heavy in-rush of current in the coil and as soon as the magnetic circuit is closed the current drops off. I'd say perhaps twice the speed of a DC in half the time for a given frame size. (This applies to "True" AC relays, not rectified relays with DC coils.)

\section*{QUESTION: MR. DAVIES}

How can an industrial user intelligently apply relays when guide line data is not available from the manufacturers?

\section*{ANSWER:}

First of all I would say that manufacturers in their literature do restrict the total amount of information available and they do it for two reasons. One, we want to know what the application is. We think our application engineers at the factory and/or our sales engineers in the field can specifically tailor a device to an application if they get into that application. If our trade literature gives all of the parameters of these devices and if we try to be all things to all people and include everything we know about it, my personal feeling is that we would get into more application trouble than we do when we put the basic operating characteristics of the device, the current it will handle, the load, operating time, and so forth, and then rely on the applier to come to us for additional help when he needs it.
QUESTION: MR. NEYHOUSE
Why is there no specifications for "concurrency" for multipole military relays?

\section*{ANSWER:}

If "concurrency" means "simultaneity," there is a test that can be called out when specified in MIL-R-5757E Class III relays. It is not a usual requirement.

\section*{QUESTION: MR. NEYHOUSE}

Why shouldn't the simultaneity of relays be called out as a rule?

\section*{ANSWER:}

In multiple-pole telephone relay applications, where phone companies refer to it as "stagger," we call contact differential operating time; it is indeed one of the factors that could be called out. It is an expensive test and therefore not required on all general purpose relays. It becomes more important when you get into larger power relays because you'll be single phasing for two or 3 milli-seconds. These contacts play a piano as they come in and 1 think most of the manufacturers are aware of this and set internal specifications, usually of 1 to 2 milli-seconds differential operation of the contact.

\section*{QUESTION: MR. DAVIES}

Mr . Davies, you indicated that solid state relays are sometimes used as sensing devices. Could you elaborate on that?

\section*{ANSWER:}

I think the gentleman from Barber-Coleman, Mr. Paulson, indicated one area and that is in the temperature sensing area. Perhaps I should have said that in the hybrid area solid state sensing is used in conjunction with relays, either electro-mechanical or solid state. You can sense temperature with a thermistor, you can sense overcurrent with a thermistor by the heat generated. You can sense things with either passive or active solid state devices and then drive either a conventional relay or a solid state relay with them. If I said the solid state relay itself could be used as a sensor, I mis-spoke. The relay is used with some kind of a transducer that sends the signal to it, or perhaps an amplifier in between, solid state, generally. Other sensors could be overvoltage sensing, current sensing and so forth. For example, in the military, in a generator control panel, they may want to sense any over-voltage condition. Or you may want to sense wrong phase sequence to check motors running the wrong way and crank the landing gear up into the body of the plane. You may want to sense that the power coming into a military vehicle is correct. This is done electronically in many instances. Other examples are, where you want to be sure that the phase sequence, phase voltage, frequency, etc. all are within the parameters that will permit the devices in that vehicle to operate properly.

\section*{QUESTION: MR. NEYHOUSE}

Is there any activity in mil specs specifically regarding solid state relays? I know you mentioned the telegraph type relay which is used in teletype equipment. This question is more directly concerned with the power type solid state relay.

\section*{ANSWER:}

I don't know whether we call it power type essentially but, we have a project active, listed as 5945-0164 to promulgate a specification for both control and power solid state relays, excluding telegraph relays.

QUESTION: Does MIL-R-27777, the telegraph spec, specify the requirements for solid state relays and include recommended terminology?

\section*{ANSWER:}

The terminology is, if I may be allowed the term, a hybrid between the telegraphy vernacular and the vocabulary of the solid state people and that of the NARM Convention.

\section*{QUESTION: MR. OAVIES}

Does Cutler-Hammer have solid state relays available of a general purpose nature and if so what are the switching capabilities?

\section*{ANSWER:}

I would say no to that. I think somebody made the point earlier that an off-the-shelf general purpose solid state relay may be a long time coming - that doesn't mean that you can't make solid state relays - people are making them today and are selling them. I think you have to specify the application so finely on a solid state relay that it's going to be difficult to sell such an item as an off-the-shelf item unless you very very carefully control the applications of it and the usages of it. Time may prove me to be wrong on this - improvement of semi-conductor devices beyond today's state of the art, may permit you sometime in the future to make a GP solid state relay but just at the moment I don't really see it. Does the rest of the panel agree with me on this?

COMMENT: MR. PAULSON
Yes, I would say that in our own experience in house we view the relay as an integral part of the controller and its specifications are tailored this way. With this kind of control and this kind of knowledge of where it is to be used you can make something approaching a general purpose but you might say general purpose for specific fields. We intend to have available shortly, for example, a line of what we are going to call solid state contactors for use with our controlling instrument to handle power in the sense that it will be normally switched in a small and delicate instrument. It will be made in sizes fairly comparable to industrial contactors. In fact, they will be called size one and size two contactors, etc. Now, in one sense they're general purpose in that we aren't spec ifying exactly where they are going, but in another sense they're quite definite in purpose because basically the market, the usage area where the instruments are sold, is itself a fairly definite and very restricted area.

\section*{QUESTION: MR. DAVIES}

You mentioned that electro-mechanical relays are the ones to be used for complete isolation. What resistance and voltage break down combination would one estimate is adequate to call complete isolation, if one was to consider going to solid state for reliability requirements?

\section*{ANSWER:}

It would, of course, depend upon the application. Your electromechanical relay is generally going to have 100 meg ohms or better insulation resistance. We are getting MOS devices today which are up to one meg ohm or a couple of meg ohms - so they are beginning to get to the point where you have an input impedance to an electronic circuit which begins to approach that of an electro mechanical relay. The addition of another order of magnitude would, perhaps, make the two types of relays comparable. At the present time though you are talking two orders of magnitude difference, generally, between the solid state device and the electro mechanical relay. It depends on your circuit though and what voltage you may have generated. In a three volt circuit - perhaps you don't need 100 meg ohms of resistance if you're not going to have transients over 20 or 30 volts. The 100 meg ohms of the relay may be academic and unnecessary.

\section*{COMMENT: OHMITE REPRESENTATIVE}

We would like to comment on this subject of whether there is a solid state relay with isolation and if there is a solid state relay for general purpose use. Ohmite is sponsoring this THINK-IN, wishes to refrain from entering into any of the discussion, to insure an unbiased exchange of ideas. If we were to remain silent on this point, however, we feel we would be doing a disservice to this audience. Therefore, we wish to advise you that there is a solid state relay on the market that has true isolation between coil and contacts, in the order of 500 Kilo meg ohms, and that the relay is designed for direct replacement of electro-mechanical general purpose relays. This being a professional THINK-IN rather than any Ohmite selling pitch, all we wish to do at this time is to refer those who are interested, to Ohmite Catalog 750, describing the Model SSA all solid state true relay. It describes both isolation between "coil" and "contacts" and also isolation between the terminals and between the case and the terminals.

QUESTION: MR. PAULSON
From your vantage point what do you see the impact of Reed switches on the relay market?

ANSWER:
I'm not that familiar with the relay market as such. I can just illustrate a couple of places where we used these switches. The Reed switch is, of course, a logic type device, just by the nature of its' current carrying capacity. It is usually not capable of handling useful amounts of power, though that varies in what you call useful. One of our product groups has had some success using some of the larger Reed relays to switch directly the shading windings of shaded-pole motors. But this is unusual. Mostly they are in the logic area where they compete directly with digital integrated circuits. With the price and capabilities and speed of the latter increasing their use, therefore, is almost limited to interfaces.

About a year ago we made a solid state programmer for use with some furnace temperature controls for which we developed program ramps, not by electro-mechanical means but by means of summing pulses from a clock, in a digital integrated register. Then we utilized a bank of Reed switches, driven from this register, to control a resistance ladder network to generate a voltage very precisely proportional to the count. This sort of application has a good many applications for Reed relays, because the reeds do combine, as a rule, very good insulation between the coil and contact in sense of insulation resistance. They are almost always grossly defficient in terms of electrical clearance for those applications where you're getting into or approaching line voltage. In fact, the electric clearance area is a real sore point with small de vices in general. Reed switches are excellent from the isolation stand point but as are all small devices, they are limited. I don't see Reed switches as having a fundamental impact on the relay market because they represent an extension into an area of usage that relays haven't performed well in. It is comparable to the impact of solid state switching in the light dimmer market. They'll open up new areas - more than they will take old areas away.

\section*{COMMENT: AUDIENCE}

Just recently some Reeds have been introduced that can handle sizeable currents and we're beginning to use them on machine tool controls located in extremely dirty and corrosive areas, such as foundries. I'm referring to the Cutler-Hammer Power Reed Relay.

\section*{COMMENT: MR. OAVIES}

I think hermetic sealing is an answer to handling these extremely severe environments. It has been in the military areas where relays have been hermetically sealed and, of course, the Reed switch either the small ones or the power ones are hermetically sealed.

\section*{QUESTIDN: OIRECTEO TO ALL THREE PANELISTS}

What new techniques and/or devices are available for protection of contacts from arcing effects due to breaking conductive loads and, No. 2, prevention or suppression of spikes or noise generated when de-energizing coils.

\section*{ANSWER: MR. NEYHOUSE}

I think there are filter networks available and the use of a Zener diode properly applied would tend to suppress a great many of the spikes.

\section*{ANSWER: MR. PAULSON}

Breaking inductive loads is a thing that we run into very frequently in our solid state devices, even, in fact, some devices we wouldn't call switching devices. We have some outputs which we call current output, where we are delivering a regular DC current source but because the demand signal might cause turnoff rapidly or disconnect or something, we have to treat it as a switch, they often feed inductive loads. The most effective protection for that however, when it is possible, is to have free wheeling diodes across the load which is possible of course in DC circuits only. I think techniques similar to this could be done on AC circuits where a pair of switchable devices like SCR's might be made to act like free wheeling diodes by appropriate logic. It isn't universal because there are many cases where you simply do not have access to the load although we generally could have protection inside the controller at the instrument's terminals.

\section*{ANSWER: MR. OAVIES}

It is just a question of getting the load off the line. Putting multiple breaks in series could be an answer to this problem. However, that may actually intensify the spiking situation because you may interrupt more quickly. But this will insure that you do get off the line. It splits the arc across several contacts thereby minimizing the effect of it.

\section*{ANSWER: MR. NEYHOUSE}

I would like to comment on the use of the free wheeling diode. I think that it is one of the very good practices, however, it too has its limitations and we should realize that probably the time constant is going to change if you apply one. It's one of the reasons why I think many relays have a longer release time. They essentially have free wheeling diodes. It's wonderful, except the release time has been changed from that of immediately dropping to one of a sustained lingering in the energized position.

\section*{ANSWER: MR. OAVIES}

That's a good point Mr. Neyhouse - there is another connotation to this also, particularly in the power area. If you put a protective circuit across the coil which slows down the release you may also lose hammer blow on break which is inherently built into the device. You will be unable to break welds the relay would normally be capable of breaking. Do this with great caution and check with the manufacturer before you use a protective circuit on his device. I would strongly recommend that.

\section*{QUESTION: MR. OAVIES}

What do you mean by the double-break contact you mentioned?

\section*{ANSWER:}

Again, breaking both sides of the line is one way of putting it, or having a bridging type contact is a better way of saying it, where you break the circuit at two points simultaneously. With two breaks in series (on DC), you can break approximately four times as much current as you can break with one break and handle a larger load and higher voltages.

\section*{QUESTION: MR. NEYHOUSE}

Has DESC purchased any pure solid state relays?

\section*{ANSWER:}

I really wouldn't know since I don't get in on those things. I'm probably the last to know. There have been solid state telegraph relays purchased - but none of what might be classed as a general purpose type.

\section*{QUESTION: MR. OAVIES}

You indicated that the contact switching capability was better at 400 hertz than at 60 hertz except for heavy current ratings. At what current does this apply?

\section*{ANSWER:}

It's really hard to exactly specify the breaking point. I would say certainly up to relays rated 400 amp at their normal rated loads, you generally will get longer life on 400 hertz, than on 60 hertz. We also know that if you get up to 2000 amperes short circuit current, it switches over and 400 becomes more significant and more difficult. Where between 400 and 2000 that occurs, I'm not prepared to tell you, I don't have the data, but it is somewhere between there that it switches over.

\section*{QUESTION: MR. OAVIES}

Could you give us a brief description of the TO5 relay and do you feel that there is an increase in demand for the miniature packaged relays of this type for direct mounting to printed circuit boards?

ANSWER:
The T05 relay, as the name implies, is a miniature relay put in a TO5 transistor can which measures about .250 inches in diameter or something like that with wire leads coming out through miniature glass hermetically sealed terminals. When they first came out I couldn't believe that they would find real wide application. I've been wrong before and I'll be wrong again. Apparently they are finding rather broad application in printed circuit application, whether it is growing or not, I don't know.

\section*{COMMENT: FROM FLOOR}

We would like to see an 8 pole machine tool control relay in that can.

\section*{ANSWER: MR. OAVIES}

Give the industry enough money and enough time and they'll have it.

\section*{QUESTION: MR. PAULSON}

Would you please explain the meaning of a free wheeling diode?

\section*{ANSWER:}

In a DC circuit, this is simply a diode placed across the load. For example, when driving a relay, you place the diode across the load coil so that the normal or applied voltage would see the diode in a reversed direction. Then when the current to the circuit is interrupted, the current that is then in the inductance, which must
continue, can then flow through the diode around a loop consisting of simply the diode and the relay and it will flow there until the dissipation in the circuit damps it off. It causes no losses when the circuit is normally operating, however, as soon as the circuit is de-energized the relay current circulates within the loop of the free wheeling diode relay. This is why Mr. Neyhouse pointed out that there is a considerable change in the release time of the relay because you are now waiting for a current dieout by internal resistance damping rather than forcing it suddenly to zero. You can put resistance in series with the diode and affect the dropout time because you'll change the RC time current. You can put enough resistance in so that you have very little effect on the dropout time I'd say of the medium sized power relay, I'm not sure about some others, and still have a very pronounced limiting effect on the transient current. You don't get as much limiting though. If you have very abrupt cutoff of the power, you can get 10 or 100 times the normal circuit voltage as an inductive kick. With a free wheeling diode, even if that diode is in series with a resistance equal to that of the relay coil, you'll only get at most the normal circuit voltage or if your resistance gets quite high, only a few times the normal circuit voltage as an inductive kick.

\section*{ANSWER: MR. OAVIES}

There is another technique that has been tried here and it isn't universally used and I'm not sure that it's going to be and that the use of a bi-filar wound coil. A dual wound coil with the windings dispersed on the relay bobbin and one of the two windings is short circuited and serves the same function-to dissipate the energy at the moment of opening. But this has some disadvantages in that you're in essence carying waste copper when you're doing this, and you're taking away from your reliability because you've got two extra connections in your relay. Whether this will find universal acceptance or not is somewhat questionable.

\section*{ANSWER: MR. NEYHOUSE}

With respect to bi-filar windings the same time delay in release will be encountered as with the free wheeling diode.

\section*{ANSWER: MR. PAULSON}

This winding will also influence both pick-up and dropout. By contrast the free wheeling diode will affect dropout but not pickup.

\section*{ANSWER: MR. OAVIES (cont.)}

NASA is interested in this for some of their applications and I believe tried it somewhat successfully.

\section*{QUESTION: MR. OAVIES}

What is the future of photo or life activated relays and would you like to comment as to any new developments in that area?

ANSWER:
There is certainly one advantage here in that we get isolation between input and output which you don't normally get with a solid state device. This is more comparable to the isolation you get with an electro-mechanical relay. In applications where this is critical you may see some growth of these devices. I don't know how much it will be, I can't predict.

\section*{QUESTION: MR. OAVIES}

From the users point of view there are two problems involved in relay testing. One is when you get the relay, how do you tell whether you have a good one? The other one happens when the industrial user has a relay not completely protected against mishandling. By the time this relay is mounted to the control chassis, you may have a defective relay simply due to mishandling. It is often a problem for the user to tell when there is a maintenance problem or whether the relay needs an adjustment.

\section*{ANSWER:}

We've encountered situations like this. I think it's a problem of communication and education. One example is rectified relays. Occasionally they get high potted improperly in in-coming inspection. You've got to see that the in-coming inspection people know that they are not to high pot across the two coil terminals and blow that rectifier. I think this problem is going to be even more severe, though, with solid state relays, particularly if we ever do get to that wonderful point where there is such a thing as a general purpose solid state relay. They will even have to be more tightly specified as to how they are inspected on in-coming inspection. Another problem area occurs when in-coming inspection may decide to test gold flashed contracts designed for 10 milli amps duty, with a light. The gold is gone and it's no longer a dry circuit relay.

\section*{QUESTION: PANEL ANO AUOIENCE}

With the various kinds of solid state relays or so called solid state
relays that are on the market right now there is quite a bit of confusion between solid state switching devices and true solid state relays. Could you give us a quick definition of a relay?

\section*{ANSWER: AUDIENCE}

In our organization we say a solid state relay should have the same general characteristics of an electro-mechanical relay. We want the input isolated from the output devices, so that you could not get in trouble. It should have the capability of handling the same kind of currents with fairly high ratios of in rush to average currents. So far as I'm aware, there are no solid state relays on the market. You know there are solid state switching devices on the market but there are no solid state relays for sale that I could take an electro-mechanical relay out of a circuit and put a solid state in place of it and it would operate in the same way.
(Ed. Note. See Ohmite Catalog 750 on Solid State Relays that replace electro-mechanical relays rated to 10 amperes.)

\section*{ANSWER: MR. PAULSON}

I'm inclined to agree that isolation is one of the most important distinctions. We have found it necessary to have isolation in all of our output control packages. Another point of distinction besides isolation is the manner in which it controls output power. For several years we have made packages using SCR's based on isolated input circuitry which deliver output power proportional to an input control current. They are, of course, doing a switching job. They are phase controlled in that the conduction angle is a function of the input signal. If you took such a package and hit it with a fully "on" to fully "off" input signal you would have, in essance, a solid state relay although it would be an expensive one. We also have a line which we call solid state contactors. These, too, are fully isolated. They are not general purpose relays because we do have to know something of the loads that they are to deliver. One of the problems in solid state relays is when we have an inductive load, such as loads coupled with transformers. The transients due to this condition can drive such loads into saturation. The resultant excessive current would be damaging both to the equipment and to the solid state switch. It's things like this that would tend to make solid state relays special purpose. To be truly a general purpose solid state relay, it has to be able to handle all conditions without regard to special situations.

\section*{ANSWER: MR. NEYHOUSE}

May I comment on special purpose relays. You are entirely right that normally you do not get the isolation. However, on solid state telegraph relays, a requirement is that the input have a 50 meg ohm isolation from the output, which isn't easily achieved.

\section*{QUESTION: PANEL}

Would you define the term hybrid relay, semi-solid state relay and solid state relay? Does this mean that a hybrid relay could have a solid state input with an electro-mechanical output or vice versa, an electro-mechanical input and a solid state output?

\section*{ANSWER: MR. OAVIES}

I attempted to define a hybrid relay earlier as a combination of electro-mechanical and electronic components usually tailored for a specific purpose. I don"t see why you couldn't have an electromechanical input and a solid state output or vice versa.

\section*{ANSWER: MR. NEYHOUSE}

The term solid state relay has been taken to mean a relay with all passive semi-conducting or other parts, none of which move during the operation of the relay. The term hybrid has two separate and distinct meanings. As we have been applying it, the hybrid is a combination of a solid state input or output with an electro-mechanical relay and in order to term it a relay it must all be within the same package. Otherwise it is discrete components. There's another definition of hybrid used frequently by the people who deal in solid state items only which is a combination of discrete components with perhaps an IC circuit.

ANSWER: MR. OAVIES
Would a saturable reactor be a solid state relay? It has no moving parts. With DC you can control the AC output, turning it on and off.

\section*{ANSWER: MR. NEYHOUSE}

This and devices such as transistors, SCR's, triacs and the like, although they do perform a switching function and in many respects could be construed as a relay since they are a device which switches in response to an electric signal, have not been termed a relay by common consent.

\section*{QUESTION: PANEL}

What is the difference between the solid state switch and a solid state relay?

\section*{ANSWER: MR. NEYHOUSE}

Frequently it becomes a matter of cataloging and nomenclature. Those who are in the telephone industry and deal with stepping switches may call an item which is of the same general package a stepping switch. A pin ball manufacturer may term it a stepping relay. There is a very grey area, and depending on how close you care to define it, there is going to be an overlap. But frequently it's merely a matter of semantics, whether it be called a switching device or a relay.

\section*{ANSWER: MR. PAULSON}

The distinction very often is formed on whether there is electrical isolation between the signal or the command circuit and the main power circuit. It is by no means a universal definition. No standardization groups have yet met and agreed on a standard definition but I have noticed this distinction being accepted in practice today. A solid state device without isolation would be called a switch if it is bilateral such as a triac or package consist ing of two SCR's back-to-back. GE is marketing a thing they call an AC switch which is a couple of large chips and water pipes. This is a switching device but it does not contain isolation from the command signal. There is an SCS, a silicon controlled switch but again, it fits in the switch category. In electronic switching you do not consider isolation. Where you add the word "relay," it would, I believe, clarify the terminology if isolation were always a part of the device.

\section*{COMMENT: MR. VIRGIL JAMES, MEMBER OF NARM}

We struggled with this problem of what is a relay and what is a switch when we wrote the NARM Relay Handbook a few years ago. I am sure our definitions are opposite from what you are thinking of right now. We decided that as far as electro-magnetic switches are concerned, at least, a "relay" was something that was either up or down or it was to the right or the left or had a neutral position. In other words, it was either two position or three position or bi-stable or something of the sort. If it could assume more than three positions, it then became a "switch" and this was strictly in the category of telephone switching. In other words, a stepping switch which had a multiple number of positions and was not restructed to either "on" or "off" or to the right or left or neutral was defined as a switch. I think, based on that definition, it is pretty much opposed to what you have been talking about in respect to solid state, if I've followed the discussion.

NARM has had a committee for a couple of years that has been struggling with this problem of solid state devices and relays and hybrids. This committee's report is now final and it will be incorporated in the next edition of the Engineers' Relay Handbook. I see already a deficiency in their words because they have not defined what these devices are. There is no section given over to definitions. So if somebody can come up with some definitions that are meaning ful, I think we would be very grateful to have them.

\section*{QUESTION: MR. OAVIES}

Would the panel discuss the difference between input and output isolation in solid state relays and the isolation (open circuit resistance) between the output terminals?

\section*{ANSWER:}

I made quite a strong point in my talk about the difference in isolation between the electro-mechanical relay and the solid state relay. I think I failed to define that we are really talking two different things in isolation. This question brings that out quite well. Talking about the input versus output isolation is one thing. In the relay you have a coil that may have a million meg ohms resistance between it and the contacts. On the other hand, you also in a multi-pole relay have output contacts which have to meet a minimum of 1000 meg ohms between themselves. In your solid state devices, as somebody earlier suggested, you might have a light activated input which would give very good isolation between input and output but if there were a multi-pole output on that relay sharing a common power supply, the isolation between the output poles probably would be considerably less than the isolation between input and output.

\section*{QUESTION: MR.DAVIES}

Do you have any characteristic figures on the isolation between the output terminals in an open position?

\section*{ANSWER:}

I think that's a function of a semi-conductor. Basically, most semi-conductor manufacturers rate the device for reverse leakage. A typical backward conduction might be about 15 microamperes. So, for example, at 15 volts, it would be about 1 meg ohm.

\section*{ANSWER: MR. PAULSON}

That 15 microampere does not directly lead to ohm figure because that is only the resistance at the point where it is beginning to
go over to breakover. Below that point the breakage current be comes many times lower, often times a couple of orders of magnitude lower. Thus at even \(10 \%\) less than normal breakover voltage will receive 10 or 100 times less current. Therefore, the ratio of resistance to a usual load will be much higher than would be implied by the device rating. As a rule it's high enough that with respect to power circuits you can consider it the same as an electro-mechanical relay, i.e. when it is open, it's really open. Exceptions to that usually arise from circuit modifications. It is extremely common to apply a damping network across the semiconductor switch typically consisting of a capacitor in series with some resistance. This provides some beneficial functions so far as the switch is concerned, but also provides a finite impedance in the "off" state.

\section*{CDMMENT: AUDIENCE}

We don't consider the back resistance of any one of these semiconductors as sufficient isolation between a 460 volts system and an operator. As far as maintenance people are concerned and operators are concerned we must provide them with something better than this.

\section*{ANSWER: MR. DAVIES}

400 volts is probably the most lethal voltage you have because you grasp it and can not let go. If you get higher voltages, say 600 or 800 volts, you'il be kicked away. But 400 volts can drive enough current through you to do the job.

\section*{COMMENT: AUDIENCE}

I'd like to indicate what really constitutes a safe system. You indicate that you don't have a great variety of test subjects in order to try this system. What would you in your opinion consider something being safe? What kind of current flow would be acceptable?

\section*{ANSWER: MR. DAVIES}

There is a lot of work that needs to be done in this area. I understand they've been having quite a problem with swimming pool lighting - low voltage, 6 volt lights. You just wouldn't believe that somebody could be electrocuted at 6 volts, but there have been reports that people lying out flat in a swimming pool between two lights - where the current crosses the chest through the heart - have been knocked out and drowned. It apparently has caused enough concern that they are now specifying ground fault indicators in swimming pool lighting circuits.

\section*{COMMENT: AUDIENCE}

Underwriters has indicated that there are safe levels of current that the body can tolerate without shock hazard, about 5 or 10 milli-amps - I guess. Semi-conductors presently are below that level of leakage current.

\section*{ANSWER: MR. DAVIES}

Now wait a minute. The SCR's are higher. It all depends on whether you're standing in salt water or whether the current crosses the chest. If it goes in one finger and out the thumb, you can take 5 amperes through there and you may get a bad burn but you won't be electrocuted.

\section*{COMMENT: AUDIENCE - M. JOYCE}

It does sound that in order to be absolutely sure and where hard contacts have to be used in an open state, it would seem since it's near infinite that your application would always preclude the use of semi-conductor devices unless they were absolutely equivalent to hard contacts in an open state, meaning infinite resistance.

\section*{ANSWER: MR. DAVIES}

It's going to be an inhibiting factor, you're absolutely right.
COMMENT: AUDIENCE
To my understanding, the hospitals who are very concerned with their equipment, do allow a current, they ignore voltage completely, but they allow two mills as being safe. Tektronix recently published some figures and ignored voltage, too. It's the current that kills you. If it's over, say in area of 2 and 5 mills, it can kill you. Beyond these levels, you have chance of survival because the shock probably will knock you out temporarily. A low current, 2 to 5 milli amperes or so, causes your heart to go into fibrillation and there is nothing they can do for you except to give you another shock. Below this value, nothing happens, above it, you get thrown clear. So generally speaking, current limitation is important, not higher or lower than 440 volts or 200 for something.

\section*{ANSWER: MR DAVIES}

It's the voltage that drives that current through you.
ANSWER: MR. PAULSON
I think it's the safety factor that you have that probably is be-
hind us more than anything else. Take an electro-mechanical relay, especially the double-break contactors and the like that are rated for service up to 600 volts and so forth. When they are turned off, if you were simply to try to increase the voltage across the contacts and failed to arc through you'd go many many times the circuit rating. Whereas the typical 480 volt SCR package which is capable of controlling power all right and switching at 480, you would not have to increase the voltage to as much as twice before the device would turn itself on. Then of course line transients do exist, although they may be very momentary. It may be, of course, that ultimately you'll get such large safety margins with semi-conductor devices that you'll treat them just as you do other switches. But until safety factors for breakdown and breakover reach at least 5 and preferably 10 times the rated voltage, there will always be considered a certain amount of risk involved. This should not inhibit their use in a great many applications where the turn on of a switch is not in itself an immediate hazard. Certainly you wouldn't use them at present for disconnect switches on equipment that people have to maintain. They'd still have to have a disconnect that is more positive. In controlling the speed of motors and the like, the amount of damage that can be done by an occasional cycle of random firing is nil and doesn't constitute a hazard. This is something that at present state the user has to decide. He has to ask himself, under any circumstances will a single half cycle or a single cycle turned on anytime randomly create an unsafe condition. If it will, then you have a need for other backup. If it won't, then the only question becomes one of personnel safety and this is handled by a fairly conventional method.

\section*{COMMENT: AUDIENCE}

I wanted to speak at this point about what a safe number is. The low milliamperes mentioned is generally a figure of merit, given the assumption that the skin is at normal moisture and the electrical contact does not pierce the surface of the skin. If the patient has a weak heart, figures of merit are in the low microampere range. There is a rash of literature that has been generated in the last two months in the trade magazines related to medical electronic equipment, and why people are killed at the rate approaching 2,000 because of faults in medical instrumentation.

\section*{COMMENT: AUDIENCE}

I might add to that, as this gentleman just indicated, if you do pierce the skin and if you are going through the blood path especially if it's crossing the heart path, that as little as 5 microamperes or almost any low voltage will do you in. This has been determined from medical electronics that even the small potentials that are used, even on the order of 2 volts is lethal.

\section*{QUESTION: MR. NEYHOUSE}

Has the military published preferred lists of QPL items and if so, are there multiple sources?

\section*{ANSWER:}

There are such documents for relays. For Control Relays under 10 amperes it is QPL-5757. For thermal time delay relays it is QPL-19648. For heavy duty and aircraft relays it is QPL-6106. Established reliability products are listed in QPL-39016. These are preferred parts list.

I think you must all understand that the Military is in the same position as any manufacturer in trying to maintain equipment. It is considered poor practice to put all your eggs in one container. If you have only a single preferred item then everyone else goes out of business and if the remaining supplier is on strike or for various reasons cannot supply, then you're in a bind. The maintenance of more than one supplier is considered good business practice both in industry and in the military. Please do not get the impression that we're talking preferred manufacturers list, this is not true. Most of them are multiple source items and the listing is one of preferred parts.

\section*{QUESTION: MR. DAVIES}

For a relay that must switch power, 10 to 15 amperes, and also switch dry circuits, what type of contacts should be used and what is the minimum current that can be dependably switched in low power contacts?

\section*{ANSWER:}

I have to be a little careful in answering this in order not to give out proprietary information. I think it's generally accepted that gold is one of the good contact materials for low level applications if it is properly specified and properly applied. As far as the question of going from 15 ampere power down to low level, I think I'll beg off on that one. Generally, I think it's not a good practice although it's possible to do so.

QUESTION: MR. OAVIES
Would you recommend different materials for the two applications just discussed?

\section*{ANSWER}

Generally, I'd say yes, although it is technically possible to have a material that will handle 15 amperes and also milli-volt levels but it ties in with the design of the relay, whether there is wipe in the contacts, whether it's hermetically sealed, what environment you put in the hermetic sealed container of the relay. These are all involved and I think most of us who are manufacturers would be a little bit hesitant to reveal our trade secrets in this area.

\section*{QUESTION: MR. OAVIES}

When you mentioned gold contacts for dry circuits, were you referring to gold flash, or were you referring to solid gold or some gold plating?

ANSWER:
Not necessarily solid gold but sufficient gold not to wear away during the mechanical life of the relay.

\section*{QUESTION: MR. NEYHOUSE}

Is there such a thing as shelf life for solid state relays? If so what parameters of the relay are affected assuming that the relay is under ideal storage conditions?

\section*{ANSWER:}

It seems semi-conductors are supposedly rated for some half-life like 5 billion years or the age of the earth. I imagine that they fall far short of that. But in any case to throw out a little philosophy, you've got to remember that if you get an infinite shelf life it's going to be awful hard to get the recording equipment to indicate that as well as the observers that will really bear you out on it. You'd have the same thing if you had a relay that would stand any temperature from zero up to infinite. The equipment to bring it up to the temperature might be a little hard to come by. However, we've had experience with certain relays that have lasted 5 years in an operating system and these are not, shall I say experimental types, these are production type relays. At this time there is some thought about should they be replaced or not. Perhaps the question should be more on whether the technician should become acquainted with what these items are so that when a relay does fail, they know in what corner of the equipment it is located.

\section*{QUESTION: MR. NEYHOUSE}

Would you have any comments about the relative life of those solid state telegraph relays that are covered by the mil spec? At one time they were electro-mechanical and they had a limited life. Now that you're using solid state, does the life of the solid state come up to your expectations or go beyond it?

\section*{ANSWER:}

The five years that I was telling you about was the solid state telegraph relay. They are unlikely to fail on the shelf. They are unlikely to fail in service. But, they are subject to all the ills of any semi-conductor if you hit them with a spike, you then look for a replacement. If you run them at either too high or too low a temperature, the relay function either fails or the relay runs away. Other than that they seem to be, I think it's termed, indefinitely long-lived. It seems they'll last forever and even longer if properly applied. In other words all we can really say is that we have no way of knowing when it will fail. Actually, you can be certain that it will fail, eventually.

\section*{COMMENT: MR. PAULSON}

Regarding this business of life expectancy, rating it "indefinitely" is probably the best scheme. Everybody admits the fact that there is a strong motive behind the push toward solid state. There is a feeling that since there is no known wear-out mechanism the thing has no life that can be expressed as \(X\) number of cycles, or so many years of normal service. Everything made by man by hand contains some imperfections to a degree somewhere - sometimes it's a matter of enough time for impurities to diffuse. At high temperature, it might be a matter of minutes, weeks, days, it might be a matter of 10,000 years at room temperature. The fact is we have no way of knowing what defects are possibly buried there. But this is not so much in the way of shelf life or wear-out as it's the fact that you are saying nothing is \(100 \%\) reliable, that you cannot guarantee with perfect confidence there is no fault lying lurking. However, there are some fairly sophisticated screening methods which can look for faults in solid state devices if you are willing to pay the price. If you are self-screening, I can see no reason at all why a relay containing nothing but the type of devices that have been so reliable should have any short life rating of any kind. A good many packages might well contain, besides the relays, things such as electrolytic capacitors, which on the average, go quite a long time. But I've known failure rates and drying out times.

You have to be extremely careful that the so called solid state expression applies in depth throughout the whole package.

\section*{COMMENT: MR. OAVIES}

There are many connections in these packages too and they are certainly potential spots where corrosion will occur slowly over a long period of time. I think many of us are familiar with the purple plague problem they had with the highest quality transistors a few years ago. I think this is solved now but it was a tremendous problem some period of time ago, and had nothing to do with the chips themselves but with inter-connections with the outside world.

\section*{QUESTION: MR. OAVIES}

This question refers back to your discussion of an electro mechanical relay rated for 28 volts DC, whether it would be perfectly satisfactory on 120 volts AC. Is there a fixed and known ratio between AC and DC resistive load contact ratings and one with a \(75 \%-80 \%\) power factor? This might apply to Reed switches.

\section*{ANSWER:}

It's hard to answer that because it's a function of the arc gap and the number of breaks. We have found in the power relay area that if you have two breaks and a certain minimum arc gap, which shall remain unspecified for the moment, you can handle the same amount of power at 28 volts and 400 hertz - 115 volts AC. But this would not necessarily be true of a TO5 can relay with a single break and perhaps a .005 or .010 inch arc gap. So, I can't really give a ratio for that. The TO5 can with a .005 arc gap would probably interrupt a \(1 / 4\) of an amp or \(1 / 2 \mathrm{an}\) amp at 400 hertz and it might only handle micro amps or milli-amps at 28 volts DC. It's a function of the design, in other words.

Any more questions?

Please Note: Mr. Neyhouse's comments and opinions are solely his own and should not be construed as official U.S. Government information.

Ohmite Manufacturing Company a North American Philips Company 3601 Howard Street, Skokie, Illinois 60076/Phone (312) 675-2600/TWX: 910-223-0805/TELEX 72-4433```

[^0]: \dagger Min. ohms oll sizes $=1$ ohm.
 *Previous stock size.

[^1]: Resistance values in tinted
 imum voltage gradient considerations. Even with these voltage limitotions, how

[^2]: - 440 units tested; 40 for each resistance value; 10 eoch test
 \dagger Plus or minus signs have been disregarded in the computation of average values.

[^3]: -Effective series inductance (L) ar effective parallel capacitance (Cp) when measured af 5 megacycles. Capocitance in "picofarads;" lof =l $\mu \mu \mathrm{f}$

[^4]: "Stock No.'s are shown only for widely used standard $177 / \mathbf{e}^{\text {" }}$ long units.
 Order other sizes or variations by length and ohms. Two adjustable terminals supplied as standard unless otherwise specified.

[^5]: - 100 to 33 amp rating with terminal No. 2172 B

 29 to 8.5 amp rating with terminal No. 2172 G

[^6]: "Tally Tape ${ }^{(1)}$ for $1 / 4 \mathrm{~W}$. and $1 / 2 \mathrm{~W}$. sizes only; $1 / 8 \mathrm{~W}$ packed 50 to plastic box.
 End tape reel packaging also available on special order; minimum quantities per value: 5000 pcs for $1 / 8 \mathrm{~W}$., 3000 for $1 / 4 \mathrm{~W}$., 2500 for $1 / 2 \mathrm{~W}$.

[^7]: ${ }^{1}$ Char. U $\left(275^{\circ} \mathrm{C}\right.$ max, hot spot temperature).
 ${ }^{2}$ Minimum wire size except for Navy (See Table VII for standard values for 1.0% to 0.1% tolerances).

[^8]: ${ }^{3}$ Minimum wire size for Navy (See Table VII for standard values for 1.0% to 0.1% tolerances).
 4 Minimum resistance is 0.1Ω for 1% and 0.5% tolerance resistors; 0.499Ω for 0.1% tolerances.

[^9]:

[^10]: Talerance +.015, -. 005
 tSee "Standard Resistance Volues," Table VI for 5% tolerances; Table VIII far claser talerance.
 \ddagger AWG $20=.032^{\prime \prime}$ AWG $24=.020^{\prime \prime}$

[^11]: *440 units tested; 40 for each resistance value; 10 each test.
 tPlus ar minus signs have been disregarded in the camputation of average values.

[^12]: (1)Add $1 / 2^{* \prime}$ to obtoin projection from front of bushing to end of shaft.
 (3) For PFMS (projection from mounting surfoce) for ponels other thom $1 / 4$ " odd difference
 between the chosen bushing proiection ond $1 / 2$ to proiections shown.

