Hartman Will Trust You Requires No References Asks No Advance Payment

Remarkable Bargain Sale

Now is the time to furnish—to get the rug, rocker, refrigerator or any of those other home-furnishings you've been needing so long. Never buy a great House of Hartman, or anyone else, been used to equal to these truly remarkable bargains. Hartman, the famous House of Hartman, you should send for the Big, Special, FREE Hartman Credit Bargain Book and find out for yourself everything in home-furnishings, including a marvelous assortment of carpets, rugs and draperies in color, patterns and designs photographed from the originals. It's like bringing into your own home a tremendous stock of home-furnishings, many times the size of largest department store, including Furniture Stoves, Ranges Dishes Jewelry Carpets Refrigerators Clocks Curtains Rugs Silverware Go-Carts Springs Bedding Mattresses Sewing Machines

Your Credit Good at Hartman's

To the millions of honest home-lovers, everywhere, Hartman says: "I will trust you—just as I am trusting over a million of other home-lovers who are now buying their household needs from Hartman." Hartman's transactions with you are strictly confidential, no references are asked—no embarrassment. Your neighbors need not know your business—you'll like the Hartman plan when you know all about it.

Hartman Makes Easiest Terms

No matter who you are or where you live, your credit is good at Hartman. No matter how small your income Hartman meets your requirements. We trust home-lovers everywhere. On an open charge account without any red tape whatever. There are no extra charges, no mortgages to sign. Interests are kept.

30 Days' Free Examination

Every Hartman Bargain must actually sell itself on its own merit, after you see it in your own home. At the end of a month return anything you do not find to be perfectly satisfactory. Hartman refunds your money—including freight.

FREE Bargain Catalog

You must see this Mammoth Hartman Credit Special Bargain Book—so send name and address on postal today to HARTMAN Furniture & Carpet Co.

Chicago, Ill.

HARTMAN'S Legal Guarantee

We Unconditionally Guarantee every article sold to be as accurately described and as represented and described in our catalog. Guarantee is for prices to be lower than those of anyone else. Carefully compare prices. Get no good goods at our guaranteed prices. Guaranteed to ship each order. Your satisfaction is our top priority. Your satisfaction is our top priority. Your satisfaction is our top priority.

HARTMANTO'S Legal Guarantee

We Unconditionally Guarantee every article sold to be as accurately described and as represented and described in our catalog. Guarantee is for prices to be lower than those of anyone else. Carefully compare prices. Get no good goods at our guaranteed prices. Guaranteed to ship each order. Your satisfaction is our top priority. Your satisfaction is our top priority. Your satisfaction is our top priority.

FREE Bargain Catalog

You must see this Mammoth Hartman Credit Special Bargain Book—so send name and address on postal today to HARTMAN Furniture & Carpet Co.

Chicago, Ill.

HARTMAN'S Legal Guarantee

We Unconditionally Guarantee every article sold to be as accurately described and as represented and described in our catalog. Guarantee is for prices to be lower than those of anyone else. Carefully compare prices. Get no good goods at our guaranteed prices. Guaranteed to ship each order. Your satisfaction is our top priority. Your satisfaction is our top priority. Your satisfaction is our top priority.

FREE Bargain Catalog

You must see this Mammoth Hartman Credit Special Bargain Book—so send name and address on postal today to HARTMAN Furniture & Carpet Co.

Chicago, Ill.

HARTMAN'S Legal Guarantee

We Unconditionally Guarantee every article sold to be as accurately described and as represented and described in our catalog. Guarantee is for prices to be lower than those of anyone else. Carefully compare prices. Get no good goods at our guaranteed prices. Guaranteed to ship each order. Your satisfaction is our top priority. Your satisfaction is our top priority. Your satisfaction is our top priority.

FREE Bargain Catalog

You must see this Mammoth Hartman Credit Special Bargain Book—so send name and address on postal today to HARTMAN Furniture & Carpet Co.

Chicago, Ill.

HARTMAN'S Legal Guarantee

We Unconditionally Guarantee every article sold to be as accurately described and as represented and described in our catalog. Guarantee is for prices to be lower than those of anyone else. Carefully compare prices. Get no good goods at our guaranteed prices. Guaranteed to ship each order. Your satisfaction is our top priority. Your satisfaction is our top priority. Your satisfaction is our top priority.

FREE Bargain Catalog

You must see this Mammoth Hartman Credit Special Bargain Book—so send name and address on postal today to HARTMAN Furniture & Carpet Co.

Chicago, Ill.

HARTMAN'S Legal Guarantee

We Unconditionally Guarantee every article sold to be as accurately described and as represented and described in our catalog. Guarantee is for prices to be lower than those of anyone else. Carefully compare prices. Get no good goods at our guaranteed prices. Guaranteed to ship each order. Your satisfaction is our top priority. Your satisfaction is our top priority. Your satisfaction is our top priority.

FREE Bargain Catalog

You must see this Mammoth Hartman Credit Special Bargain Book—so send name and address on postal today to HARTMAN Furniture & Carpet Co.

Chicago, Ill.

HARTMAN'S Legal Guarantee

We Unconditionally Guarantee every article sold to be as accurately described and as represented and described in our catalog. Guarantee is for prices to be lower than those of anyone else. Carefully compare prices. Get no good goods at our guaranteed prices. Guaranteed to ship each order. Your satisfaction is our top priority. Your satisfaction is our top priority. Your satisfaction is our top priority.
They Started Equal

The Difference Is Training

These two men like thousands of others, started side by side at desks in a row — equal.
One stood still. Today he's just a little older, a little more discouraged — but right where he started.
The other, with just the same opportunity, has grown to a position of command and big pay.

The only difference is training.

Every one of the men who worked at his side had exactly the same opportunity; just as much spare time; just as much natural ability.
But he had the pluck to start and determination to win.

Go where you will, you will find thousands of such men who have risen from the ranks to positions as Superintendents, Managers, Engineers, Contractors, Owners, solely through the help of the International Correspondence Schools.
It is just the same with you. You too can increase your earning power just as fast and just as far as you have the courage to.

It makes no difference what you are doing; how old you are or where you live.

For the International Correspondence Schools will bring right into your own home all the help you need to train in a little spare time for whatever position you mark on the attached coupon.
Take the first step today!

Mail the Coupon! Now!

When writing, please mention "Modern Electrics and Mechanics."
Contents

ELECTRICITY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Frequency Current Apparatus</td>
<td>762</td>
</tr>
<tr>
<td>The New Cable Telegraph</td>
<td>737</td>
</tr>
<tr>
<td>Small Alternating Current Motors</td>
<td>739</td>
</tr>
<tr>
<td>The Strength of the Hills</td>
<td>717</td>
</tr>
</tbody>
</table>

MECHANICS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Electrically Fired Cannon</td>
<td>730</td>
</tr>
<tr>
<td>The Energy of the Future</td>
<td>726</td>
</tr>
<tr>
<td>Simple Home-Craft Furniture</td>
<td>765</td>
</tr>
<tr>
<td>The Steamship Vaterland</td>
<td>728-729</td>
</tr>
</tbody>
</table>

RADIO COMMUNICATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification of Ship Stations</td>
<td>783</td>
</tr>
<tr>
<td>Do Radio Ghosts Exist</td>
<td>722</td>
</tr>
<tr>
<td>A Good Receiving Set</td>
<td>735</td>
</tr>
<tr>
<td>Institute of Radio Engineers</td>
<td>767</td>
</tr>
<tr>
<td>The Marconi Station at San Pedro</td>
<td>721</td>
</tr>
<tr>
<td>Wireless Station Aboard S. S. Imperator</td>
<td>810</td>
</tr>
<tr>
<td>Wireless Telegraph</td>
<td>745</td>
</tr>
</tbody>
</table>

GENERAL

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Advantages of Trade Mark Registration</td>
<td>756</td>
</tr>
<tr>
<td>Chaos or System in Shop Operation</td>
<td>769</td>
</tr>
<tr>
<td>Flying Sparks</td>
<td>774</td>
</tr>
<tr>
<td>Recent Novel Patents</td>
<td>790-792</td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparatus Exchange</td>
<td>829</td>
</tr>
<tr>
<td>Book Reviews</td>
<td>804</td>
</tr>
<tr>
<td>The Editor's Desk</td>
<td>772</td>
</tr>
<tr>
<td>Experimental Department</td>
<td>747</td>
</tr>
<tr>
<td>New Things</td>
<td>786</td>
</tr>
<tr>
<td>Practical Hints</td>
<td>757</td>
</tr>
<tr>
<td>Questions and Answers</td>
<td>822</td>
</tr>
<tr>
<td>Wireless Telegraph Contest</td>
<td>812</td>
</tr>
</tbody>
</table>

Advertisers' Index 708
Here is a set of books that no man in the ELECTRICAL FIELD should do without. This is the ELECTRICAL AGE in which we live; ELECTRICITY now controls more trades, directs more men, offers more opportunities than any other power that man has yet discovered. Do you wish to know the underlying principles of MODERN ELECTRICAL PRACTICE?

If so, HAWKINS ELECTRICAL GUIDES will give you the information in reality they are a school within themselves, containing a complete study course with QUESTIONS, ANSWERS AND ILLUSTRATIONS, written in plain everyday language so that a practical man can understand the "HOW, WHEN AND WHY" OF ELECTRICITY.

"THAT'S JUST WHAT I NEED"

Read over the titles shown on the back of each volume, and note the scope of each book. They are handsomely bound in flexible black leather with gold edges and will readily go in the pocket. THEY ARE NOT ONLY THE BEST, BUT THE CHEAPEST WORKS PUBLISHED ON ELECTRICITY.

Each book is complete in itself and will be supplied $1.00 per copy, but we believe that the complete set is the best bargain.

The books can speak for themselves and a careful examination, page by page, and illustration by illustration, will convince you of their big value.

If you will fill out the following coupon giving all the information requested, WE WILL SUBMIT THE SIX VOLUMES FOR EXAMINATION ON CONDITIONS NAMED.

FREE EXAMINATION OFFER

THEO. AUDEL & CO., 72 5th Ave., NEW YORK

Please submit me for examination HAWKINS ELECTRICAL GUIDES (Price $1.00 each.)

Help at once, prepaid the 6 numbers: if satisfactory I agree to send you $1 within seven days and to further mail you $1 each month until paid.

Signature

Occupation

Business Address

Residence

Reference

When writing, please mention "Modern Electrics and Mechanics."
MODERN ELECTRICS and MECHANICS

ADVERTISERS' INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actina Appliance Co.</td>
<td>718</td>
</tr>
<tr>
<td>Adams-Morgan Co.</td>
<td>819</td>
</tr>
<tr>
<td>Albright, J. E.</td>
<td>714</td>
</tr>
<tr>
<td>Al-Makes Typewriter Exchange Co.</td>
<td>713</td>
</tr>
<tr>
<td>American Chafeur, The</td>
<td>710</td>
</tr>
<tr>
<td>American Civil Service School</td>
<td>777</td>
</tr>
<tr>
<td>American Correspondence School of Law</td>
<td>811</td>
</tr>
<tr>
<td>American Enameled Magnet Wire Co.</td>
<td>813</td>
</tr>
<tr>
<td>American School of Correspondence</td>
<td>822</td>
</tr>
<tr>
<td>American Technical Society</td>
<td>773</td>
</tr>
<tr>
<td>Armstrong Mfg. Co., The</td>
<td>789</td>
</tr>
<tr>
<td>Arnold, J. F.</td>
<td>780</td>
</tr>
<tr>
<td>Audel & Co., Theo</td>
<td>707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnes Mfg. Co.</td>
<td>711</td>
</tr>
<tr>
<td>Barrett's Wireless School</td>
<td>809</td>
</tr>
<tr>
<td>Baseball Magazine Co.</td>
<td>977</td>
</tr>
<tr>
<td>Beetle & Maclean</td>
<td>817</td>
</tr>
<tr>
<td>Bliss Electrical School</td>
<td>782</td>
</tr>
<tr>
<td>Boston School of Telegraphy</td>
<td>806</td>
</tr>
<tr>
<td>Bowring & Company</td>
<td>761</td>
</tr>
<tr>
<td>Bradley Polytechnic Institute</td>
<td>777</td>
</tr>
<tr>
<td>Brandes, Co., Inc.</td>
<td>813</td>
</tr>
<tr>
<td>Bronx Girls Club</td>
<td>782</td>
</tr>
<tr>
<td>Brooklyn Telephone School</td>
<td>809</td>
</tr>
<tr>
<td>Bunnell & Co., J.</td>
<td>819</td>
</tr>
<tr>
<td>Burlington Watch Co.</td>
<td>777</td>
</tr>
<tr>
<td>B. V. D. Company</td>
<td>714</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell Electric Co.</td>
<td>807</td>
</tr>
<tr>
<td>Carleton Company</td>
<td>809</td>
</tr>
<tr>
<td>Chenoweth & Co., F. E.</td>
<td>818</td>
</tr>
<tr>
<td>Chandler & Chandle</td>
<td>793</td>
</tr>
<tr>
<td>Chicago Stock Gear Works</td>
<td>787</td>
</tr>
<tr>
<td>Chief Draftman</td>
<td>777</td>
</tr>
<tr>
<td>Clapp-Eastham Co.</td>
<td>810</td>
</tr>
<tr>
<td>Cleveland Automobile School</td>
<td>775</td>
</tr>
<tr>
<td>Colby's Telegraph School</td>
<td>819</td>
</tr>
<tr>
<td>Coleman, Watson E.</td>
<td>794</td>
</tr>
<tr>
<td>Colonial Works</td>
<td>800</td>
</tr>
<tr>
<td>Columbus Correspondence School</td>
<td>788</td>
</tr>
<tr>
<td>Cosmos Electric Co.</td>
<td>818</td>
</tr>
<tr>
<td>Crescent Machine Co.</td>
<td>797</td>
</tr>
<tr>
<td>Crowther, G. S.</td>
<td>800</td>
</tr>
<tr>
<td>Cutler, H. C., Jr.</td>
<td>798</td>
</tr>
<tr>
<td>Cut-Price Gas Tank Sales Co.</td>
<td>775</td>
</tr>
<tr>
<td>Cyclecar & Motorette</td>
<td>880</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dearborn Typewriter Exchange</td>
<td>713</td>
</tr>
<tr>
<td>Department of Signalling</td>
<td>777</td>
</tr>
<tr>
<td>Detroit Boat Co.</td>
<td>810</td>
</tr>
<tr>
<td>Detroit School of Lettering</td>
<td>777</td>
</tr>
<tr>
<td>Dewey Company, The</td>
<td>713</td>
</tr>
<tr>
<td>Dorn, J. C.</td>
<td>772</td>
</tr>
<tr>
<td>Dubiler Electric Co.</td>
<td>816</td>
</tr>
<tr>
<td>Duck Company, The J. J.</td>
<td>811</td>
</tr>
<tr>
<td>Duffe & Co., John S.</td>
<td>789</td>
</tr>
<tr>
<td>Du Pont Powder Co.</td>
<td>709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earlington Hotel</td>
<td>784</td>
</tr>
<tr>
<td>Eastern Radio Institute</td>
<td>810</td>
</tr>
<tr>
<td>Edelman, Philip E.</td>
<td>818</td>
</tr>
<tr>
<td>Edstrom's Wireless Co.</td>
<td>821</td>
</tr>
<tr>
<td>Edwards Mfg. Co.</td>
<td>778</td>
</tr>
<tr>
<td>Eichhoff, C. W. R.</td>
<td>710</td>
</tr>
<tr>
<td>Ellis Piano Co., F. O.</td>
<td>711</td>
</tr>
<tr>
<td>Evans & Co., Vector J.</td>
<td>783</td>
</tr>
<tr>
<td>Fraasa Engineering Co.</td>
<td>807</td>
</tr>
<tr>
<td>Fort Wayne Correspondence School</td>
<td>777</td>
</tr>
<tr>
<td>Fox Typewriter Co.</td>
<td>713</td>
</tr>
<tr>
<td>Print & Company</td>
<td>782</td>
</tr>
<tr>
<td>Gardam & Son, Wm.</td>
<td>789</td>
</tr>
<tr>
<td>Goetzmann, O. J.</td>
<td>807</td>
</tr>
<tr>
<td>Haller-Cunningham Electric Co.</td>
<td>815</td>
</tr>
<tr>
<td>Harrison, Walton</td>
<td>794</td>
</tr>
<tr>
<td>Hartnel Furniture & Carpet Co.</td>
<td>777</td>
</tr>
<tr>
<td>Haywood Tire & Equipment Co.</td>
<td>775</td>
</tr>
<tr>
<td>Heilman, Fred R.</td>
<td>711</td>
</tr>
<tr>
<td>Holzer-Cabot Electric Co.</td>
<td>814</td>
</tr>
<tr>
<td>Independent Elec. Supply Co.</td>
<td>789</td>
</tr>
<tr>
<td>International Correspondence Schools</td>
<td>705-779-805</td>
</tr>
<tr>
<td>International Textbook Co.</td>
<td>795</td>
</tr>
<tr>
<td>Johnson & Son, J. C.</td>
<td>714</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keith, M. L.</td>
<td>800</td>
</tr>
<tr>
<td>Kendrick & Davis Co.</td>
<td>711</td>
</tr>
<tr>
<td>Kerns Mfg. Co.</td>
<td>711</td>
</tr>
<tr>
<td>Knapp Elec. & Nov. Co.</td>
<td>710</td>
</tr>
<tr>
<td>Knickerbocker Mfg. Co.</td>
<td>783</td>
</tr>
<tr>
<td>Lacey, R. S. & A. B.</td>
<td>793</td>
</tr>
<tr>
<td>La Salle Light Co.</td>
<td>791</td>
</tr>
<tr>
<td>Leiman Bros.</td>
<td>785</td>
</tr>
<tr>
<td>Lennox Novelty Co.</td>
<td>780</td>
</tr>
<tr>
<td>Levy Electric Co.</td>
<td>788</td>
</tr>
<tr>
<td>Lindstrom-Smith Co.</td>
<td>788</td>
</tr>
<tr>
<td>Long, W. Z.</td>
<td>709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mack Company</td>
<td>787</td>
</tr>
<tr>
<td>Manhattan Elec. Sup. Co.</td>
<td>803</td>
</tr>
<tr>
<td>Marconi Wireless Training School</td>
<td>809</td>
</tr>
<tr>
<td>Marr, Arthur Phelps</td>
<td>783</td>
</tr>
<tr>
<td>Mears Ear Phone Co.</td>
<td>783</td>
</tr>
<tr>
<td>Matt, G. W.</td>
<td>796</td>
</tr>
<tr>
<td>Miller-Hoefe Co.</td>
<td>707</td>
</tr>
<tr>
<td>Model Flying Machine Co.</td>
<td>809</td>
</tr>
<tr>
<td>Model Trains Pres.</td>
<td>809</td>
</tr>
<tr>
<td>Montgomery & Co.</td>
<td>787</td>
</tr>
<tr>
<td>Moore, Elbert</td>
<td>787</td>
</tr>
<tr>
<td>Morrow Company, The</td>
<td>707</td>
</tr>
<tr>
<td>Mueller, M.</td>
<td>788</td>
</tr>
<tr>
<td>Munn & Company</td>
<td>794</td>
</tr>
<tr>
<td>Murdock Co., Wm. J.</td>
<td>808</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Education Bureau</td>
<td>777</td>
</tr>
<tr>
<td>National Salesmen's Training Ass'n</td>
<td>711</td>
</tr>
<tr>
<td>New England School of Telephony</td>
<td>809</td>
</tr>
<tr>
<td>New York Electrical School</td>
<td>812</td>
</tr>
<tr>
<td>Nichols Electric Co.</td>
<td>817</td>
</tr>
<tr>
<td>North Bros. Mfg. Co.</td>
<td>787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omigraph Mfg. Co.</td>
<td>808</td>
</tr>
<tr>
<td>Owen, Richard B.</td>
<td>793</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packard Electric Co., The</td>
<td>807</td>
</tr>
<tr>
<td>Paine Uptown Business School</td>
<td>777</td>
</tr>
<tr>
<td>Parker, C. L.</td>
<td>794</td>
</tr>
<tr>
<td>Park Row Motorcycle Co.</td>
<td>775</td>
</tr>
<tr>
<td>Parker-Warren Laboratories</td>
<td>710</td>
</tr>
<tr>
<td>Patent Exchange, The</td>
<td>793</td>
</tr>
<tr>
<td>Powhatan Hotel</td>
<td>784</td>
</tr>
<tr>
<td>Pursell, John V.</td>
<td>817</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Apparatus Co. (Philadelphia)</td>
<td>815</td>
</tr>
<tr>
<td>Radio Apparatus Co. (Pots- town)</td>
<td>816</td>
</tr>
<tr>
<td>Radio Tel. & Tel. Co., The</td>
<td>817</td>
</tr>
<tr>
<td>Randolph & Company</td>
<td>791</td>
</tr>
<tr>
<td>Redfield Co., Scott F., The</td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Andrews Bay Nursery & Orchard Co.</td>
<td>781</td>
</tr>
<tr>
<td>Sanders, H. J.</td>
<td>796</td>
</tr>
<tr>
<td>Saunders & Co., Geo. S.</td>
<td>819</td>
</tr>
<tr>
<td>School of Engineering of Milwaukee</td>
<td>797</td>
</tr>
<tr>
<td>Seabright Mfg. Co.</td>
<td>782</td>
</tr>
<tr>
<td>Shaw Co., E. L.</td>
<td>781</td>
</tr>
<tr>
<td>Shaw Mfg. Co.</td>
<td>819</td>
</tr>
<tr>
<td>Shuman & Co., Geo. L.</td>
<td>782</td>
</tr>
<tr>
<td>Siggers, E. G.</td>
<td>793</td>
</tr>
<tr>
<td>Smith, "Cyclone"</td>
<td>777</td>
</tr>
<tr>
<td>Smith & Hemenway</td>
<td>789</td>
</tr>
<tr>
<td>Spiegel, May, Stern Co.</td>
<td>778</td>
</tr>
<tr>
<td>Standard Typewriter Co.</td>
<td>715</td>
</tr>
<tr>
<td>Starrett Co., The L. S.</td>
<td>787</td>
</tr>
<tr>
<td>Steffey Mfg. Co.</td>
<td>775</td>
</tr>
<tr>
<td>Strauss & Schen</td>
<td>778</td>
</tr>
<tr>
<td>Sweaney Auto School</td>
<td>775</td>
</tr>
<tr>
<td>Swift & Company, D.</td>
<td>796</td>
</tr>
<tr>
<td>System</td>
<td>798</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamblyn, F. W.</td>
<td>811</td>
</tr>
<tr>
<td>Thomson, H. C.</td>
<td>794</td>
</tr>
<tr>
<td>Thordarson Elec. Mfg. Co.</td>
<td>787</td>
</tr>
<tr>
<td>Thorpe, Samuel S.</td>
<td>801</td>
</tr>
<tr>
<td>T-Square & Triangle Co.</td>
<td>777</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. Expansion Bolt Co.</td>
<td>799</td>
</tr>
<tr>
<td>U. S. Leather Goods Co.</td>
<td>783</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Supply Co.</td>
<td>711</td>
</tr>
<tr>
<td>Victor Typewriter Co.</td>
<td>712</td>
</tr>
<tr>
<td>Viking Electric Co.</td>
<td>806</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading River Mfg. Co.</td>
<td>780</td>
</tr>
<tr>
<td>Western Oxygenator Co.</td>
<td>713</td>
</tr>
<tr>
<td>Wightman & Co., Luther H.</td>
<td>789</td>
</tr>
<tr>
<td>Wilson, A. M.</td>
<td>789</td>
</tr>
<tr>
<td>Wing & Son</td>
<td>778</td>
</tr>
<tr>
<td>Winger Elec. & Mfg. Co.</td>
<td>818</td>
</tr>
<tr>
<td>Wireless Age, The</td>
<td>782</td>
</tr>
<tr>
<td>Wireless Mfg. Co.</td>
<td>814</td>
</tr>
<tr>
<td>Wurlitzer Co., Rudolph</td>
<td>707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. M. C. A. Telegraph School</td>
<td>809</td>
</tr>
</tbody>
</table>
$1500.00 MADE IN ONE MONTH
WITH A "LONG" CRISPETTE MACHINE

LONG'S Personal Message to YOU.

Yes, sir, right straight from me to you—just as if I were talking personally to you. This is my message. My popcorn crispette machine built a big store for me—a big confectionery business, right here in Springfield, on High Street. I have started a lot of other men in business. I want to start YOU. Just let a small store or a cozy nook where the rent isn’t high, where people pass by and you’re ready for business. The nickels will drop in almost like rain. Then later this summer you can make a lot of money at Fairs, Parks, Resorts, Carnivals, Circuses, Fairs, Conventions, on street corners, in small stands, moving picture lobbies, etc. Five machines at Coney Island, three at Atlantic City. Thousands of resorts haven’t any. Crispettes are a new, delightful, crisp, popcorn confection. Sell for a nickel a package. Almost Four Cents Profit in Each Sale.

This is a recent picture of the man who made $1500 in one month with a Long Crispette machine, in a store window. After he got his machine he only had $10 left, but he sailed in and made good.

Make Your Fortune in 5 Cent Pieces

Think of the fortunes made in 5 cent pieces—street cars, moving picture shows, 5 & 10c stores, etc. It’s the way to make money. Everybody will spend a nickel. Everybody likes crispettes—children—parents—old folks. One sale always means two—two means four. So it goes. It’s a great business. I found it so—so should you.

Send for my Free Book "Dollars and Sense in the Crispette Business."

36 pages illustrated—complete information and story of how I built my business. Read it and then come to Springfield.

W. Z. LONG, 874 High St., Springfield, Ohio

EARN YEARLY

$3,000.00 TO $10,000.00

IN THE REAL ESTATE BUSINESS

FREE BOOK

"No matter where you live, if you want an independent business of your own, send your name and address and I will mail you our 64 Page Book, showing how you may earn $3,000 to $10,000 a Year in the Real Estate, Brokerage and Insurance business.

OUR SYSTEM IS A POSITIVE SUCCESS

We will teach you by mail and appoint you SPECIAL REPRESENTATIVE of the oldest and largest co-operative realty company in the world and help you make money from the start. EXCEPTIONAL OPPORTUNITY FOR MEN WITHOUT CAPITAL

Write today

J. H. JOICE, Pres. 433 Dearborn St., CHICAGO, ILL.

There’s Money in Agricultural Blasting

WE TEACH YOU FREE

Our extensive national advertising yields thousands of inquiries from farmers, orchardists, etc., who need blasters to clear land, blast ditches, holes for tree planting, tight subsoils, etc. More than twenty million pounds of agricultural dynamite used in 1913. We refer all inquirers to nearest blaster, supply free advertising matter and help you get the business. We want to start in this independent business, reliable men who have $200 capital for tools, magazine, and running expenses.

Write for free booklet No. 422 B.

Agricultural Division, Du Pont Powder Company, Wilmington, Del.

When writing, please mention "Modern Electrics and Mechanics."
MODERN ELECTRICS and MECHANICS

THE CONSOLIDATION OF
MODERN ELECTRICS, Established 1908
BUBIER'S POPULAR ELECTRICIAN, Established 1890
COLLINS WIRELESS BULLETIN, Established 1908
THE AMERICAN INVENTOR, Established 1904

ELECTRICIAN AND MECHANIC, Established 1908
BUILDING CRAFT, Established 1908
AMATEUR WORK, Established 1901
SCIENTIFIC DIGEST, Established 1911

ORLAND J. RIDENOUR, Publisher

Expiration We enclose a renewal blank with the last copy sent out on each subscription. To avoid missing valuable numbers, renewals should be made at once.

Change of Address When you change your address notify us promptly, giving old as well as new address. Also notify your former postmaster, as it often happens that our mailing list is made up when your notification old address, but the postmaster will forward copy to your new address upon request. No copies sent after expiration of subscription.

Magazine issued monthly. Yearly subscription in U. S., $1.50. Manhattan and Canada, $1.85. Foreign, $2.00 in Gold. SINGLE COPY, 15 cents.

Modern Electrics and Mechanics may be had at all newsstands in the United States and Canada; also at Breton's, 87 Avenue de l'Opera, Paris.

Original contributions of timely interest pertaining to the electrical and mechanical arts, are welcomed. Articles of popular science and invention, especially with practical working directions, drawings or photographs are solicited. No manuscript returned unless postage is enclosed.

Forms close the 1st of the month preceding date of publication. Advertising rates on application. Entered as second class matter March 81, 1908, at the New York Post Office, under the Act of Congress of March 3, 1879. Modern Electrics and Mechanics should be on the newsstands on the 16th of the month preceding the date of issue. Readers unable to get the magazine on the 17th will confer a favor by notifying the Publishers. Newsstand patrons should instruct their Newsdealer to receive their copy of Modern Electrics and Mechanics, otherwise they are likely to find the magazine "sold out."

The contents of this Magazine are copyrighted and must not be reprinted without permission.

Copyright, 1914, by Modern Publishing Co., 32 Union Square, New York, U. S. A.

BOY ELECTRICS
The KNAPP LEADER—The Best

PRICE

$2.50

Guaranteed as Reputed

Many other motors at all prices. Live dealers everywhere. Order direct or ask your dealer to show you the Knapp line and inspect Knapp goods. Dealers not already handling the Knapp line should ask for prices.

Catalogue illustrating full line of dynamo, motors and electrical novelties free on request.

Knapp Electric & Novelty Co.
517 West 8th St.
NEW YORK

WE CARRY A STOCK OF
KNAPP GOODS

LEVY ELECTRIC CO.
630 Market Street.
San Francisco, Calif.

When writing, please mention "Modern Electrics and Mechanics."

LEARN DRAFTING

I am now in a position to give my personal attention to a limited number of additional students in Mechanical, Structural or Architectural Draftsmanship and Designing. My home-study course is simple, easy—can be mastered in a few months. This is your chance to prepare yourself for this profitable, pleasant work. Hundreds of big paying positions now open. Steadily increasing demand for trained Draftsmen and Designers everywhere, at salaries of from $125 to $375 per month. Write today for free catalog and full particulars.

CHAUFFEURS-OWNERS-BEGINNERS Send for FREE copy of the new Instructive, Technical Auto Magazine. Contains 60 Illustrations of valuable information. THE AMERICAN CHAUFFEUR 80 Butler Bld, Glendale, O.
34c
Runs this 6 H.P. Engine for a
10 hour day on KEROSENE

By means of the patent throttle you can run it as a 4 H.P. engine for 23 cents a day, or as a 2 H.P. for 12 cents a day. Many other strong points: force-feed lubrication; uniform speed; sight-feed fuel supply; automobile muffler; no cranking; runs either way; uses any fuel oil satisfactorily. And it's Guaranteed for 10 Years. Write for catalog and 30 days' free trial.

WE PAY THE FREIGHT

ELLIS ENGINE CO., 70 Mullett Street, Detroit, Mich.

K. & D. MOTORS

No. 17 June Motor
Price, $5.00

Our line of battery motors and small generators is very complete. All machines are high grade construction and designed for practical work.

K. & D. Measuring Instruments

Voltmeter, No. 22,
Ammeter, No. 20,

Price, $2.00

Our measuring instruments are inexpensive but well made and designed for practical work.

For Sale by all dealers
Send for our new catalog, No. 18-A. All dealers should write for catalog and prices on this line.

KENDRICK & DAVIS CO., LEBANON, NEW HAMPSHIRE

You Can Vary the Tone or Pitch of Your Spark
at will by using the

BARNES VARIABLE SPEED A.C. MOTOR
on your revolving spark gap.

Made in two sizes suitable for direct connection to any gap from 1/4 K.W. to 6 K.W., or larger, and instantly variable in speed from 2,000 to 7,000 revolutions per minute without the use of external resistance or other regulating devices. Absolutely reliable and positively non-heating. High efficiency at all speeds.

The Barnes Motor is indispensable to Dentists, Jewelers, Toolmakers, and all who require a reliable source of power at variable speed on A. C. and D. C. circuits.

For the Motion Picture Machine, the motor is an acquisition. The simplicity of the control is invaluable under such circumstances. Let us send you free catalog.

BARNES MFG. CO.
777 Belmont Street, SUSQUEHANNA, PA.

AMERICAS STANDARD 12-H.P. MARINE MOTOR

4 Cycle
4 Cylinder

Made in one size only by specialists in engine building. The Kermath hasn't an equal in this size and type. Absolutely regardless of price. Catalog on request.

KERMATH MFG. CO.
DEPT. 20
DETROIT, MICH.

VACUUM PUMPS
Tools, Hose and Parts
for cleaners at wholesale. Electric or gasoline power. For stationary houses or flat machines or wagon outfits. Our pumps rugged, will stand any wear. Assemble your own machine. Save half. Dept. E.

VACUUM SUPPLY CO., Ann Arbor, Mich.

DYNAMOS MOTORS
We make a specialty of small, compact sturdy little dynamos for charging storage batteries and private lighting plants. Capacity, 5 to 30 alicone candle-power twenty watt tungsten lamps. They are correctly designed, well built, have brush rocker, reaction brush holders, removable bronze bearing shells, are shunt wound for voltages from 6 to 110. Also motors for from 100 to 800 watts for voltages from 6 to 220. Send for Circular "B" for prices, also all parts for dynamos and motors.

FRED R. HEILMAN 442 Niagara St., Buffalo, N. Y.
The Interchangeable Platen as one Feature of the Victor Typewriter

ILLUSTRATES the wonderful elasticity of Victor service.
Suppose you want to get off a rush letter—a telegram—a communication that must make special connections. Your stenographer has some half completed statement and a half a dozen carbon copies in the machine; to move it means hopeless disarrangement.

The Advantage of the Interchangeable Platen

If you have an additional platen, the platen in the machine can be removed in a "jiffy," the other one substituted, and the "rush" work "goes ahead" on the "clean" machine.

This completed, the other is replaced with the previous work carbons and statement intact, just as before.

Aside from this the Victor has many other features not found in any other machine.

Speed, Ribbon Economy, Dependability, Improved Escapement, Quality of work, are a few of these.

A five minute demonstration will convince you.

Victor Typewriter Company
NEW YORK
A Folding Typewriter
For Your Personal Use

IN THE CORONA
we offer you every up to date feature found on the expensive office machine—nothing is left out—but weight and bulk. Hence, you can carry the Corona wherever you go, just as you would a camera.

Simplicity of construction, the finest materials and high class workmanship insure long life and freedom from repair.

The Corona is not a cheap machine, it costs fifty dollars but it will pay for itself in a short time.

Write for illustrated booklet.

Standard Typewriter Company
142 Main Street, Groton, N. Y.
Agencies in principal cities of the world.

WHY buy at manufacturers' prices when you can buy at your own price.

STOP Don't buy before you have seen our cut rate prices on all makes of typewriters.

Underwood, Olivetts, L. C. Smiths, Remingtons, Royals, Smith Premiers and other makes, some as low as $10. Every one PERFECT and GUARANTEED 2 years.

Write today. Don't delay.
Our free trial offer will interest you.
All-Makes Typewriter Exchange Co.
155 N. Clark St.
Chicago, Ill.

Eyeglasses Not Necessary

That the eyes can be strengthened so that eyeglasses can be dispensed with in many cases has been proven beyond a doubt by the testimony of hundreds of people who publicly claim that their eyesight has been restored by that wonderful little instrument called "Actina." "Actina" is a reliable remedy for Weak Eyes, Granulated Lids, Iritis, Cataracts, etc. with cutting or drooping. Over 30,000 "Actinas" have been sold: therefore Actina is not an experiment.

Miss Lue Terry, Proctor Home, Peoria, Ill., writes:—"I assure you I have great faith in Actina; I believe it has saved me from total blindness, and as an eye strengtheners is better than any spectacles ever made."

"Actina" can be used with perfect safety by every member of the family for any affliction of the eye, ear, throat or head.

Send for our FREE TRIAL offer and valuable FREE BOOK.
Address Actina Appliance Co., Dept. 305, 811 Walnut St., Kansas 'City, Mo.

DON'T TRY TO REDUCE COST OF LIVING SELL TYPEWRITERS FOR US

In your present income sufficient to meet your every day expenses and leave you at least a small margin to put away for that "rainy day" that is so sure to come?
If it is not, then what are you doing about it to better the conditions?

To earn more you must work more! Sell Typewriters for us.

Will you work for us on a commission basis, and help us increase our sales of Fox Typewriters in your vicinity?

We have nothing free to offer—ours is a business proposition to business and professional people who can—and will—devote a little of their spare time in sending us in the names of possible purchasers of typewriters.

Our salesmen, doctors, lawyers, students, clergy, bookkeepers, cashiers and men in all kinds of mercantile business—these are the men we want.

If we do not already have a local representative we will let you have an absolutely new, latest model, visible typewriter at our regular wholesale price. This will give you a typewriter for your own use and to use as an occasional sample to show.

Write today for catalog and ask for Local Agency offer. Be sure and mention Modern Electrics and Mechanics.

FOX TYPEWRITER COMPANY
7306-7336 Front Ave., Grand Rapids, Mich.

From Modern Electrics & Mechanics for June
Name ...
Address ..

When writing, please mention "Modern Electrics and Mechanics."
Johnson's Wood Dye is equally adapted for use on old and new furniture.

for the artistic coloring of hard and soft wood — floors, woodwork and furniture. With it inexpensive woods may be finished so they are as beautiful and artistic as hard wood. Made in 17 standard shades, including Mission, Early English, Golden Oak, Weathered, Fumed, etc.

Johnson's Wood Dye is a combination spirit-oil preparation, embodying all the good qualities of both a spirit and an oil stain, with the disadvantages of neither. It is unsurpassed for staining reed baskets and manual training models — also for burlap and other wall coverings.

Johnson's Prepared Wax.

A complete finish and polish for all wood — floors, woodwork, furniture, automobile bodies, etc. Apply with a cloth and polish with a dry cloth. Gives perfect results over any finish — varnish, shellac or oil.

For Polishing Automobile Bodies it has no equal for holding the luster in the paint indefinitely. Sheds water and is the one preparation that eliminates the objectionable dust-collecting feature, leaving a hard, perfect, smooth finish. Johnson's Prepared Wax is unsurpassed as a polish for the finest mahogany and mission furniture, including pianos.

Ask your paint, hardware or drug dealer for a free copy of our 25c book "The Proper Treatment for Floors, Woodwork and Furniture." If he hasn't a copy, write us.

S. C. Johnson & Son
"Wood Finishing Authorities"
Dept. NE6
Racine, Wis.

There is nothing equal to Johnson's Prepared Wax for polishing Automobile bodies.

When writing, please mention "Modern Electrics and Mechanics."
ANNOUNCEMENT

This issue marks the last number of MODERN ELECTRICS & MECHANICS under that name. Beginning with the July number, it will be merged with POPULAR ELECTRICITY AND THE WORLD'S ADVANCE, both of which will be published in the future as one magazine under the title of POPULAR ELECTRICITY AND MODERN MECHANICS.

For some time it has been evident to the publishers of both magazines that the fields covered by each were essentially the same, although the editorial policies differed slightly in some respects. After due consideration, it was shown conclusively that the merging of the two papers would effect economic advantages, making possible the publication of a magazine absolutely unparalleled in its wealth of material in this particular field.

The new magazine will be published by the Modern Publishing Co., 32 Union Square, New York City, and its editorial policy will be quite unique in the field of popular scientific literature. The aim will be two-fold, namely, to afford both entertainment and practical instruction in the world of science, electricity, wireless and mechanics.

The present policy of POPULAR ELECTRICITY AND THE WORLD'S ADVANCE in presenting bright and newsy stories of the latest achievements of science will be fully carried out and enlarged upon, and each number will be replete with profusely illustrated articles covering all that is new and interesting in the World's Advance.
The plan for the departments of practical instruction has been evolved only after a most careful study of the requirements of the host of readers to whom this section of the magazine is most interesting. It is believed that there is a growing demand for authoritative information covering modern practice in the design, construction and use of electrical, mechanical, wireless and scientific apparatus of both unusual and special types. The available textbooks and reference works have not always given this information in a form conveniently available to the practical worker who wishes explicit but concise instructions, free from burdensome theory and confusing terms. It will essentially be the scope of this magazine to supply this information, for, when all is said and done, the most complete reference book is but a resumé of all that has been published in the periodicals during a certain period of time, supplemented by the personal knowledge and opinions of the authors.

In presenting the first issue of POPULAR ELECTRICITY AND MODERN MECHANICS, the publishers feel that they are taking the initial step toward the realization of an ambition to supply a journal of practical and useful information, the object of which shall be to tell the readers "how to make and how to do." Every effort will be exerted to supply data based upon the practical experience of the author in the actual construction and use of apparatus and devices described. Further than this, the efforts will be extended to the acquisition of material hitherto unpublished in any form. The result, it is hoped, will be a veritable gold mine of suggestions and aids to the man with a hobby, the practical electrical and mechanical worker, the experimenter, the high school or college student, the manual training or physics instructor, the lecturer, and the man or boy who wishes to absorb all available knowledge pertaining to electricity, mechanics, wireless telegraphy and the allied arts.

In order that the ambition of the publishers may be fully realized, the hearty co-operation of the readers is necessary. The magazine is published for you; without your support it could not exist. Therefore, your suggestions are more than welcome. On the appearance of the first and succeeding numbers of POPULAR ELECTRICITY AND MODERN MECHANICS, will you not voice an opinion which may aid us in realizing our highest ambition,—to give you a magazine you will refer to as your ideal?
THE STRENGTH OF THE HILLS

High in the Sierra Nevadas, the Harnessed Mountain Streams Furnish Power and Light to Far-Away Los Angeles

By Charles Elmer Jenney

BACK into unmeasured time a little stream of the mountains, rather presumptuously named Big Creek in these latter days, had played and frolicked over boulder and cliff, through valley and gorge, high up in the Sierra Nevadas. The other day it became grown up and went to work, and is now turning the wheels of business activity in Los Angeles, two hundred and seventy-five miles away. Its former playground, known to the favored few who have camped out in the high Sierras in past summers as the Big Creek Basin, a beautiful little rock-walled valley back in the wilds of Fresno County mountains, is now a basin indeed, or rather a large lake several miles long, made so by two immense dams of re-enforced concrete. And the many small waterfalls, cascades and swift rushes of the creek down through and out of it are now combined in one swift leap of over two thousand feet, and its excess force running in lightning current over aluminum wires to a great city in a far distant part of California.

The whole Sierra Nevada range of California, the backbone of the State, is a vast source of latent power, and this one project is but a mere unit of which hundreds more are available when capital and labor are able to unite in civilized the rude force of nature. Light and power for the whole Pacific Coast of the United States lie sleeping beneath the blanket of snow that enfolds the Sierra summits. There is no need to encroach on the few well-known pleasure resorts like the Hetch-Hetchy, when a hundred drinking cups big enough for a western metropolis are dripping along the range.

A little over a year ago the Pacific Light & Power Corporation decided to develop one of the most favorable of these mountain storage situations at Big Creek, about seventy miles east of Fresno, in the Sierras. It is located almost the exact centre of the State of California in its north and south direction. The natural conditions made it one of the most feasible, and by damming Big Creek, a branch of the upper San Joaquin River, at a narrow pass and by erecting another lesser dam at the only other low point in the outline, a large lake could be formed of the Big Creek Basin, and peculiarly well situated for controlling the thus pent-up force.

The Stone & Webster Construction Company, of Boston, undertook the project and successfully carried it through to completion. The country was a wild one, accessible only to pack-trains with difficulty, and for the conveying of the vast quantity of material and machinery necessary one of the first steps was the construction of a mountain railroad fifty-six miles long, one of the most crooked in the world and with many excessively steep grades. This cost in the neighborhood of five million dollars. In addition to the clearing of forests from the basin and the right of way in a diagonal line across the mountain to the plains, incidentally about one hundred
and twenty-five miles of wagon road was constructed, which means a great deal with one familiar with the ruggedness of this range. Right through the mountain they drilled a new channel for the impetuous waters—a tunnel twelve feet in diameter and six miles long; through granite of such compression that the electric drills fast dulled. The power of neighboring mountain streams was called into use in the form of electricity to carry on the work. Three thousand six hundred men were employed at one time on the work and the names of sixty thousand men altogether are shown on the payrolls. In spite of the inability to carry on the work during part of the winter months, the undertaking was completed in a little over a year's time, and the power turned on just before midnight of November 7th. Within an hour the full output of one of the two power-houses, 80,000 horse-power, was passing over the line that runs nearly one-third the length of the State.

This transmission line has its own remarkable features. Starting from two twelve-story re-enforced concrete power houses, each of which cost in excess of half a million dollars, and wherein are installed the most complicated and latest electrical appli-
ances, the current passes over aluminum wires one inch in diameter, from one steel tower to another, down the mountain side, across the foothills and two hundred miles across the great interior plains of California, to the city of Los Angeles. The securing of the right of way for the placing of these towers and maintenance of the line was no mean task. Eight million pounds of aluminum is stretched in the two long cobwebs, spread, as it were, in a night. This means that the equivalent of the entire output of aluminum of the United States for a year was consumed in this one job. The combined capacity of the two power houses, which are four miles apart, is 150,000 h.p. It brings back the fancies of the Arabian Nights to us adults again, to realize that the power to move mountains is traversing the little shining wire; that the turning of one wheel by the water up in the mountain will turn a thousand car wheels in a great city a day’s journey away. This is believed to be the longest power transmission in the world.

It cost twelve million dollars to complete the work, yet so overshadowed is it by the great canal project that comparatively few people have ever heard of it. Within the bounds of the moun-

POWER HOUSE NO. 1 AT BIG CREEK. THIS BUILDING IS OVER TEN STORIES HIGH AND CONSTRUCTED OF CONCRETE. THE WINDOWS ARE NUMEROUS AND SO ARRANGED AS TO PERMIT THE MAXIMUM OF LIGHT TO ENTER THE BUILDING

A DISTANT VIEW OF POWER HOUSE NO. 1 AND KERSCHOFF DOME
tain region of this one county of Cali-
ifornia there is sufficient latent power
undeveloped but fully capable of being
developed, to supply San Francisco and
the other Bay cities with all their light
and power.

Men in these days are realizing the
eternal truth embodied in the ancient
psalm, "I will lift up mine eyes unto the
hills, whence cometh my help."

Back and forth across the mind flash
the two pictures so different, and yet
each so vivid—the beautiful mountain
valley with its blue lake, with the Keiser
Summit outlining its horizon, and the
magnificent pines darkening the slopes,
off in any direction from any of the
surrounding heights are seen trackless
snow-vistas equal to the best Switzer-
land can afford; and the other, the beau-
tiful city of the Angels set amidst the
green of its orange groves. And a touch
hath made them kin.

A TYPICAL SCENE DURING THE CONSTRUCTION OF THE POWER PLANTS.
PACK MULES WERE PRACTICALLY THE ONLY MEANS OF
TRANSPORTATION IN THE BEGINNING BECAUSE OF THE
ROUGH CHARACTER OF THE COUNTRY

A GIGANTIC SILENCER

The principle of the Maxim silencer
has been suggested to solve the problem
of eliminating the disagreeable rumble
of huge generators.

Because of the great speed at which
the generators of the 201st Street Sta-
tion of the United Electric Light & Pow-
er Company, of New York, are run, the
sound is carried out through the ven-
tilating doors, disturbing the sleep of
nearby residents.

Professor Sabine, of Harvard College,
and his associate, Professor Swan, have
worked out an elaborate system which
they think will do away with the sleep-
disturbing roar in the future. They be-
lieve that the rush of air up from the
basement carrying off the sound of the
generators through the open doors is the
vital part of the problem. Due to the
great speed at which the turbine-driven
generators are run it is necessary to
keep a draught circulating through the
generator room. Otherwise the air
would become unbearably warm and the
machines would be overheated to a dan-
gerous degree.

A system has been devised whereby
the air from the basement will be con-
ducted into a small well, which will lead
to the first floor. This well is to be
equipped with partitions arranged close
together after the fashion of the series
of compartments in the Maxim silencer.
The partitions are made of thin boards
which provide a substantial foundation
for layer after layer of felt made of cat-
tle hair. The felt is three inches thick.
The idea is that when the air rushes
through the well to the first floor the
sound will be killed, as in the Maxim
silencer, and the rumble of the genera-
tors reduced to a minimum.—Frank H.
Jones.
THE MARCONI STATION AT SAN PEDRO, CALIFORNIA

By Stanley E. Hyde

The latest commercial station belonging to the Marconi Company on the Pacific Coast and in the United States, is situated at the little port of Los Angeles harbor, or as the natives would term it, East San Pedro. It is situated near the water front and from the outside the station appears as in one of the accompanying views, which shows the two-room house, the aerial and the masts. The tallest mast is 200 feet high while the shorter one is but 50 feet.

The transmitting set of this station comprises a five kilowatt commercial transformer, which may be seen at the right of the illustration depicting the complete transmitting apparatus, a leyden jar condenser, oscillation transformer and rotary spark discharger. The discharger is operated by a small induction motor, a closer view of which is shown in another illustration. A spark can be seen jumping from the fixed electrodes.

As for the receiving apparatus, this comprises a valve tuner and telephone receivers. Aside from these, there are placed on the desk of the operator a sounder connected to the Western Union system and a telephone. A switchboard, on which are mounted numerous switches, rheostats, and a volt and ammeter, is within convenient reach of the operator.

This station (KPJ) works with ships along the southern California coast and also with the station at Avalon, Catalina Island. Three operators are kept busy handling the traffic and work their watches at eight hour shifts.

In northern Arizona, Utah, Nevada, southern Idaho, and western Wyoming, the fires in national forests set by campers have decreased in four years from nearly a third to approximately one-fifth. Lightning fires have increased from less than one-fourth to nearly one-half. The relatively larger proportion from lightning, however, is due partly to decrease in other causes.
DO RADIO GHOSTS EXIST?
The Experiences of Wireless Operators with Freak Atmospheric Conditions Give Rise to This Momentous Question

By Alfred C. Pickells
U. S. Radio Inspector

If the signals energizing one's radio receiving apparatus should come in loud and strong, should suddenly decrease in volume or die out altogether, and then should as suddenly resume their former strength, continuing as if there had been no interruption at the transmitting station, the supposition would be that something was wrong with the detector or that the power at the transmitting station was varying. Either might be the case. But what is the operator to suppose when the same effect is frequently encountered at approximately the same location? Neither detectors nor transmitting apparatus wait for local investigation and experiment have established the fact that certain localities and certain atmospheric conditions absorb or reflect sound waves. At sea they call them "Ghosts" because they interfere with the blasts from the fog horns. Unfortunately, little or no data has been collected bearing on this condition in radio telegraphy, but the experiences of operators give rise to the question: Are there radio ghosts? In other words, are electric waves refracted?

Such a condition is a serious matter in the aerial transmission of sound when it is applied to seafaring work. It means that lives are at stake; that

There are certain sections on the North Atlantic coast which seem to be "blind" under certain conditions. It has been frequently noted by operators on coastwise ships that on approaching Charleston the signals from that station will suddenly diminish in strength or die out altogether, remain so for a period covering the length of time necessary to travel several miles, and then resume their normal strength.

There are certain sections on the North Atlantic coast which seem to be "blind" under certain conditions. It has been frequently noted by operators on coastwise ships that on approaching Charleston the signals from that station will suddenly diminish in strength or die out altogether, remain so for a period covering the length of time necessary to travel several miles, and then resume their normal strength. There are other instances at various localities in which operators, who have been receiving messages, have noted the same effect covering shorter periods of time; in other words, in which the intensity of the signals was alternately strong and weak.

In the aerial transmission of sound, property to the amount of millions of dollars may be lost in a few short hours.

The volume of sound emitted from the axis of the bell of the average first-class trumpet or siren has been calculated to be from ten to fifteen times greater than that of the largest locomotive or ship's whistle. Should this enormous blast spread laterally, as it was supposed when aerial signals were first constructed, the sound waves from the siren would travel horizontally to a distance of eighteen miles, from the trumpet, eleven miles, and from the 12-inch whistle, ten miles.

This would mean that the navigator would first hear the signal about eighteen miles off shore and by its guidance steer directly for his objective point—a fact which might make it appear that
such a system would give thorough protection to the navigator in foggy weather. But it often occurs that he will hear the signal at its outer range, then pass through irregular intervals of silence that sometimes stretch out to four or five miles in extent. Sometimes he will hear a double report from two widely different points ahead. One is the original, one its echo; but the two are exact in tone. The question therefore arises: Which is the original? Which course shall he follow? There are other times, for instance, when, having heard the signal distinctly on his starboard bow, he passes through an area of silence and hears it again—as distinct as before—on his port bow. Then the question: Is this an echo, or has a cross-current swerved him from his course?

In the evening of February 21, 1901, the Pacific Mail steamship Rio de Janeiro approached the entrance to the passed. The pilot was a man of long experience. He steered by the fog signals of Point Bonita and Lime Point on the north and of Fort Point on the south, selecting by this help a course which undoubtedly would give the dangerous rocks off Fort Point a wide berth.

A half hour passed thus, then the warning notes suddenly faded into a deep, uncanny silence. The pilot tried his whistle, hoping to get an echo from the high bluffs of Point Diablo. He listened often, and having listened in vain, shook his head at the gravity of the situation. He knew that there existed a certain condition that the mariner has termed the “Ghost.”

Forty minutes later and barely a half mile farther in, the Rio de Janeiro rested at the bottom of the ocean. Captain Ward had met his death and 130 persons out of the 210 on board had been drowned. And all this oc-

The volume of sound emitted from the axis of the bell of the average first-class trumpet or siren has been calculated to be from ten to fifteen times greater than that of the largest locomotive or ship’s whistle. Should this enormous blast spread laterally, as it was supposed when aerial signals were first constructed, the sound waves from the siren would travel horizontally to a distance of eighteen miles, from the trumpet, eleven miles, and from the 12-inch whistle, ten miles.

Golden Gate in a dense fog. Under the circumstances the ship was a possible victim of two dangers—that of being run down if at anchor, or that of stranding if under way.

The Pacific Mail Steamship Company considered the act of anchoring the lesser of the two risks and their regulations so ordered. The ship, therefore, anchored. But the seafaring man knows that just as much danger, if not more, threatens the ship in a fog and out of command. Hence, at 5:30 a.m. the following day, when the mist showed the first signs of breaking, the commander, Captain William Ward, gave the order to proceed.

A few miles farther in the fog settled again. They were already in the channel; the opportunity to anchor had occurred well within the range of audibility of four fog signals which, proofs afterward declared, had been kept in continuous operation.

It was nearly twenty-two years before the loss of the Rio de Janeiro that the wrecking of the steamer Rhode Island caused the revelation of these startling facts, and upon these facts the owners based the reasonableness of their orders. But, as in the case of the Rio de Janeiro, the Rhode Island also demonstrated that it was sometimes necessary to disregard these orders.

In a similar way it was caught in the channel of the West Passage leading into Narragansett Bay after having been guided by the fog signal at Beaver Tail Point. An hour later,
while groping blindly in the thick mist in the center of an area of silence, the vessel crashed on the rocks of Bonnet Point. When the fog lifted in the morning, November 7, 1880, it was found that the vessel was within one and one-half miles of a fog signal whose range of audibility was about ten miles.

Naturally the officers and passengers swore that the fog signal was not sounding at the time. Quite as naturally, also, persons residing for many miles on either side along the coast testified that it was sounding uninterruptedly, because they had heard it.

It was this wreck which prompted the Lighthouse Service to engage in an investigation of the acoustic conditions surrounding this fog signal. In his report Lieutenant Commander Chadwick, U. S. N., said:

Refraction is considered the cause for areas of silence. Whenever the lower current of air opposes the direction of the sound and there exists a favoring current in the upper air, it is claimed that the front of a wave of sound is tilted upward. Sound waves, too, are said to have a tendency to spread laterally. Moreover, cold, denser air is found to reflect them. Hence one of the explanations that has been tendered is that the combined effects of reflection and the lateral spreading of the waves themselves causes them to descend to earth again at some point farther on.

"In the summer of 1881, in a heavy fog, while running from Narragansett Pier to Newport, I came near wrecking the steamer Cactus by steaming as near to Beavertail as possible, that I might find out for myself if the fog signal, which I could not hear, was really sounding. It was not until we were abreast of the signal that we heard it at all, and then it burst suddenly on us as if it had just been started. We carried the sound on another course clear to Newport, and lying there the next day, Sunday, in a fog, we heard it all day. In 1885, when I spent a day cruising round Beavertail, I heard it at points where I did not hear it in 1881; and I did not hear it in 1885 at points where I did hear it distinctly in 1881."

Lieutenant Commander Chadwick's results and the report which, in the meantime, came from Portland, Me., that the Cape Elizabeth fog signal, nine miles away to the southwest, could be plainly heard in the city of Portland in spite of northeast gales which blew directly against the sound, and that it could not be heard in the intervening distance, aroused the scientists in both the United States and British lighthouse services to advance theories. They were infant theories and therefore aroused controversies; but out of the controversies came an accepted explanation.

Refraction was considered the offending cause. Whenever the lower current of air opposes the direction of the sound and there exists a favoring current in the upper air, it was claimed that the front of a wave of sound is tilted upward. Sound waves, too, were said to have a tendency to spread laterally. Moreover, cold, denser air was found to reflect them. Hence the accepted explanation was that the combined effects of reflection and the lateral spreading of the waves themselves caused them to descend to earth again at some point farther on.

But there was still another explanation to be made; another question to be answered. Why should the same condition exist when the wind did not blow? A few months after the Rhode Island stranded, the yacht Galatea ran ashore in a dead calm and fog on Little Gull Island, in Long Island Sound, within a half-mile of the fog signal. The navigator did not hear the signal at all, though proof was given that it was heard in varying directions and distances as great as sixteen miles.
The suggestion was made that local conditions might be responsible. But this was refuted; and an extract from the journal of Professor Milton W. Humphrey, of the University of Virginia, showed that such phenomena existed over land as well as over water.

"June 17, 1864.—Breckenridge, with 11,000 men, was joined by Early with 4,000 at Lynchburg, Va. We were entrenched around the southern limits of the city. Hunter, with about 20,000 men, was driving in our cavalry from the direction of Bedford City, nearly south. The weather was very hot and there had been no rain for a long time. About 6 p.m. I observed shells exploding in the air in our front, but I could hear neither the guns nor the shells, though the distance was barely two miles. I called the attention of others to the phenomenon, and their observa-

tions were in accord with mine. About sunset, when the shells were still exploding, the reports not only suddenly became audible, but seemed unusually loud. Then we also heard the guns."

Professor John Tyndall, the scientific adviser of the Elder Brethren of Trinity House, or the British Lighthouse Service, explained such phenomena to be due to the existence of an acoustic cloud in the atmosphere, a cloud which obstructs the waves of sound in the atmosphere in the same manner that heavy clouds break the sun's rays. He claimed that such a cloud consisted of air of different density and humidity than the surrounding atmosphere; that it also existed in clear as well as foggy weather.

Though Professor Tyndall and other scientists explained the cause, when it came to suggesting a remedy, their brains went the fog signals one better—even the more powerful shore stations.

In practical radio telegraph work this is partially overcome by the use of gaps of high spark frequency.

In radio transmission we have what are termed "freaks," the phenomenon that permits of the reception of signals at record-breaking distances. It is known also that the atmosphere can be, and frequently is, so irregularly ionized by local static electrical conditions as to completely destroy the signals sent out by even the more powerful shore stations.
OLE investigators who may bring out revelations that may put the Ghost, if it really does exist, to flight. They may show that the waves which transmit radio intelligence are in a class which will prove more likely of control than those which are given off by the fog signals.

THE ENERGY OF THE FUTURE
The Ultimate Exhaustion of Our Coal Supply Gives Rise to Several Unique Motive Power Producers

By Stephen House

Illustrations from drawings made by the author.

It is a question of no small interest as to what will occur when the present sources of energy are exhausted. We do not at the present day anticipate fuel exhaustion, though future generations must face the problem of finding a substitute for the coal which is so plentiful to-day. Many factors are at work to prolong the supply of coal. Oil, natural gas and peat all lend themselves as motive powers in modern engines. It is estimated that the sources of these, however, will be forgotten before the coal supply gives out. Timber is a poor substitute. We are in the progressive age distinguished by the dominating factors coal and steel. This must give place to a period of conservation, when man’s whole energies and powers of mind must be concentrated on the task of utilizing supplies of energy in the most economic manner and to prolong new sources. Among the factors which tend to prolong the coal supply are the increased transportable electric form. It has been estimated that this latter source will prove unequal to the demands of industries at their present rate of increase in more than about four hundred years.

This reduces man’s resources to the natural ones, viz.: 1—Solar energy; 2—internal heat of the earth; 3—wind power; 4—the tides; 5—the ether, and 6—transmutation. The following of these may be set aside as unfeasible: The internal heat of the earth, the ether, and transmutation. The first is rendered impracticable owing to the enormous depths to which shafts would have to be driven in the earth in order to reach a temperature zone of any use. The energy contained in the ether as calculated is immeasurable and were it possible to yoke it in man’s service it would prove a source of infinite supply. One may doubt, however, whether the genius of man will ever be able to harness it. The enormous quantities of energy liberated during the disintegration of the radio-active substances would be a tremendous help, but little real assistance is to be expected from this quarter unless man’s ingenuity devises a means of accelerating the process. Though these sources appear at present to be utterly outside the sphere of practical utilization, they supply a field as yet unploughed for the brain of genius.

There are left to us then, solar energy,
wind energy and the energy of the tides. It is a debatable point whether any great use will ever be made of the winds, for it is discovered that a wind travelling at a rate more than 20-25 miles per hour causes more damage to the machinery of the windmill than is equalled by the profit gained. Advance along this path appears to lie in improved and strengthened machinery. Both the energy of the sun and the energy of the tides lend themselves to very practical application and each is worthy of closer examination.

The sun is continually radiating into space enormous quantities of energy in the form of light and heat waves and these waves when focussed to a point are sufficient to cause fire. This is well known. The first system erected for the purpose of using the sun's heat in this way, employed a huge parabolic lens to concentrate a wide beam of rays upon a small stationary boiler. One of the chief disadvantages to this plan was the prohibitive first cost which the results obtained by no means repaid. Hence the simpler and handier method of heating water in shallow pans replaced the lens reservoir, and at the other end with the channel E, which leads from the internal combustion engine. A stream of water enters each pan from the channel E and flows very slowly through to channel B. During its passage it is heated to about 160° F. by the heat of the sun absorbed through the glass. The water thus warmed flows into the reservoir and thence to the internal combustion engine, where it gasifies such fuel as ether, liquid carbon dioxide, or sulphur dioxide, which gas expanding in the piston cylinder sets the engine in motion. In this way a continuous supply of energy is obtained so long as the sun is shining. During cloudy days the system is obviously at a standstill. In countries where the greater number of the days are sunny, as in California, Africa, and Australia, such a scheme ought to lend itself to more than theoretical consideration. It has during late years been used very successfully in both California and Egypt and must play a prominent part in the industrial life of the future. So far only small horsepower engines have been employed, though there has been discovered no reason why a higher power and higher degree of efficiency per square yard of land occupied should not be possible. In this system full use is made of the sun's rays. The loss incident upon the slope of the rays during the morning and afternoon is obviated by the use of special rotat-

A series of shallow pans is connected with a reservoir which in turn is connected with an internal combustion engine. Fig. 1 shows a simplified plan of this. The pans, A, are of metal with

(Continued on page 866)
THE STEAMSHIP "VATERLAND"

THE PROPELLERS OF THE "VATERLAND" AND A PORTION OF ITS HUGE KEEL
Four Propellers Revolving at a Speed of 150 Revolutions per Minute Drive this Latest Goliath at 23 Knots an Hour. Each Propeller is 10 Feet 7 inches in Diameter and Weighs Nearly 15 Tons.
THE STEAMSHIP "VATERLAND"

This Latest Ocean Greyhound, the Largest Ship Afloat, will Soon Make Her Maiden Trip

In the accompanying collection of views is shown the Vaterland—the world’s largest steamer at the present time. This huge vessel measures 950 feet in length. The top of the foremast rises 300 feet above the keel, which is equivalent to the height of the average skyscraper in New York City.

Although of huge proportions, the lines of the Vaterland are so graceful that one is apt to fail in realizing her immense size. In fact, the lines of her long narrow prow rather suggest those of a fast yacht than those of a monster ocean liner.

In the building of the Vaterland it was necessary to group two of the largest drydocks ever constructed to accommodate the great ship. In one of the accompanying views may be seen the prow as well as one of the huge anchors, said to be the largest in the world, weighing 11.8 tons. The starboard anchor weighs 10.5 tons. The liner has a tonnage of 58,000.

The propellers of the Vaterland set a new standard for size in such construction. The great blades suggest a windmill, strikingly dwarfing the workmen standing about them. Each of the four powerful propellers has a diameter of nineteen feet seven inches and weighs nearly fifteen tons. When the quadruple propellers revolve at a speed of 150 revolutions a minute, the great liner is driven forward at a speed of over 23 knots an hour. The propellers are made of the finest quality manganese bronze to withstand the strain which is put upon them, and before being installed they were subjected to the most exhaustive tests.

The adjustment of the rudder of a great ocean liner is one of the marvels of mechanics. The rudder of the Vaterland is shown in one of the accompanying views while being placed in position. This rudder is made of forged steel and weighs 50.5 tons. It is of the balanced type and a considerable part of its surface extends forward of the rudder post on which it turns. This offers a greater steering surface than the conventional forms and renders it much more sensitive to the steering wheel. Incidentally the rudder shaft measures nearly three feet in diameter. The rudder is upward of a fifth of a mile from the navigating bridge, yet so perfect is the machinery controlling the mammoth rudder that at a touch it swings smoothly from side to side. It is said that the great ship answers her helm as quickly as a tugboat.

The Vaterland is a sister ship of the Imperator, although exceeding her in every dimension. This new monster liner of the Hamburg-American Line will make its maiden voyage sailing from Hamburg May 14th and reaching New York May 21st.

New Jersey is said to have the greatest proportion of railroad mileage of any State in the country, or one mile of railroad to every three square miles of territory. This makes an unusual risk of forest fires set by railroads.
AN ELECTRICALLY FIRED CANNON
With a Fair Amount of Mechanical Skill the Cannon Described May be Constructed at Moderate Cost

By Stanley McClatchie

Illustrations from drawings made by the author.

The apparatus herein described will be found not only interesting from the standpoint of the scientific experimenter, but also a source of perennial Fourth of July entertainment. The writer has built several of these cannons, and can testify from intimate experience to their satisfactory operation. They will blast through pine boards and similar materials in a very formidable manner, and will produce an explosion which can be heard for nearly two miles. Notwithstanding the violent nature of the discharge, its effects will extended when pulled back by means of a string, a circuit through the dry cell and fine wire will be closed.

The form of the pattern required for making the casting, is indicated in figs. 1 and 2. In fig. 1 is shown a longitudinal cross section of the pattern embedded in the mould. It will be noted that this pattern is made one inch longer at one end than is the finished cannon. This is done for the reason that in cooling the metal will sink down in the center, necessitating the removal of about an inch of the casting at the pouring end.

Figs. 1 and 2.—Side and end views of the pattern for making the mould

In one side of the pattern a separate piece is inserted. As may be seen in fig. 2, this piece is flat and projects beyond the sides of the barrel, forming the two lugs by which the cannon is attached to its base. Great care should be exercised to see that this piece tapers properly with respect to the barrel of the pattern. As indicated in fig. 1, this taper is to amount to 1/32-inch either side of a central line drawn through the piece parallel to the axis of the barrel. The upper portion of the barrel has a similar draught. At the lower end of the pattern a short stem will be noted. This stem is to be made the exact diameter of the pipe which forms the center of the cannon. After the pattern is withdrawn, this pipe (which is to be cut an
inch longer than required) is inserted in the resulting hole for support.

Now to prepare the mould. Nail together a light box of about the dimensions indicated in fig. 1, taking care that the joints are made reasonably tight. Dip the pattern in melted paraffine several times, coating it to a depth of about $1/32$ of an inch. Insert the lower stem in the hole in the bottom of the moulding box. Prepare a thick liquid solution of plaster of paris, and pour it in. When the plaster is set, place the mould in an oven until it is thoroughly warmed. The paraffine will thus be melted from around the pattern, making possible its ready removal.

An alternative method of making this mould is to use founders' sand instead of plaster of paris. This latter process may, perhaps, prove less difficult where the proper material is obtainable. The sand used must be obtained from some brass or iron foundry, as no ordinary earth will serve the purpose properly. This sand is to be moistened to an easily workable consistency and gently packed around the pattern as it stands in place in the moulding flask. Success demands a good deal of care in getting the sand moistened to just the right point, and in packing it in with just the right amount of pressure. Too much ramming will make it impossible to withdraw the pattern clean and free, and too little will leave a bad mould. Before the pattern is removed from the sand, a number of small vent holes should be made down through the mould by inserting a piece

FIG. 3.—SIDE VIEW OF THE FINISHED CANNON, SHOWING THE METHOD OF MOUNTING AND THE BATTERY BOX

FIG. 4.—TOP VIEW OF THE FINISHED CANNON, SHOWING THE ARRANGEMENT OF THE DIFFERENT PARTS FOR IGNITING THE CHARGE
of straight wire or a hatpin. This is done to permit the escape of steam from the moist sand after the metal is run in. No matter what material is employed in from which the casting is made may be either zinc or a good grade of babbitt. This metal may be melted in an iron ladle over a very hot torch or gas burner. The flame of an ordinary gas or gasoline stove may be made to suffice by entirely surrounding the fire with bricks or clay after the manner of a brass founding furnace. A blacksmith's forge is likely to afford the simplest solution of the problem, however, if one is available. The hour or two required for the melting of the metal by the burner method may be reduced to a matter of a few minutes by the use of a forge. Considerable care should be exercised to see that the metal reaches just the right temperature before pouring. If too cold it will not run properly, and if too hot it granulates upon pouring. At the proper temperature, a pine stick inserted in the molten metal will instantly ignite. As the heating process goes on, keep testing with a bit of wood in this way. As soon as the flaming point is reached, run making the mould, several trials are likely to be necessary before success is attained. This experimenting will be comparatively simple where the sand is used. With plaster of paris it is necessary to take the moulding box completely apart each time a new trial is made. On the other hand, the use of plaster will produce a far cleaner mould, resulting in a casting which will not require finishing up to nearly the extent that sand makes necessary. A good, clear mould is the first and most important essential to a good casting, and a plaster mould is therefore preferable if successfully made.

The pipe for the barrel of the cannon should, if possible, be of brass, as this has a smoother bore than ordinary iron pipe. Gas pipe may, however, be employed if necessary. The pipe is cut to a length of 8½ inches, and with a cap fitted to one end, is inserted in the hole at the bottom of the mould and very carefully centered. It should be fixed in place with a little plaster. The metal the metal at once into the mould. A considerable period of time should be allowed for cooling, as parts will remain liquid long after the top has hardened.
The resulting casting should be reasonably clear and free from blow holes. If it is not, another attempt ought to be made, as an imperfect casting might render the cannon dangerous.

It may be suggested that it would be simpler to have the casting made at a brass foundry than to take the trouble of undertaking the work above described. This course is, however, rendered impractical by the long bore of the cannon. If this hole were drilled, it would be found to be much deeper than the length of any ordinary twist drill obtainable. In addition, the difficulties involved in cutting a hole of this size to any depth in brass, would be practically unsurmountable to anyone not possessed of a large drill press or lathe. Coring out the hole would be similarly impractical owing to the length of the core required, and the fact that it would be necessary, even were the hole successfully obtained in this way, to run through a reamer of very uncommon length. The method of casting a metal of low melting point around a pipe core as previously described, is in the end the simplest and most satisfactory method.

Having obtained a suitable casting, finish it up to the proper external dimensions, and drill a hole at the point indicated by X in figs. 3 and 4. Into this hole, tightly screw a brass bushing with an internal diameter of 1/16-inch. It is necessary that the fuse hole should be thus made, as the force of the exploding powder is sufficient to disintegrate the casting metal were it exposed at any point.

The box which forms the base of the cannon should be constructed of very heavy materials and firmly screwed together. A poorly made base will quickly go to pieces under the action of ramming and firing. The internal dimensions of this box should be just such as to admit an ordinary dry cell. The ends are finished off with thin squares of wood in order to lend a neater appearance to the work. The cannon is bolted to this box by heavy screws in the manner shown in fig. 5.

The construction of the firing mechanism may be gathered from figs. 3 and 4. The parts of the fuse wire holder are shown separately in fig. 6. This latter device consists of a brass post A, having bolted to its upper end the sheet brass part B, and mica insulation C. Soldered to the brass post, with one arm resting on the outer extremity of B, is the spring brass wire D. Another spring wire bent as indicated at E, is soldered to the cannon just in front of the fuse hole. The fuse wire is slipped between B and D, and then drawn on under E. The piece of mica C serves to insulate B from the cannon. Other materials than mica may, of course, be used for this insulation, but owing to the great heat developed at the ignition of the surrounding powder, any ordinary insulators would be gradually destroyed. The fuse wire employed should be of copper, and not larger than No. 40 gauge. The finer this wire is, the less energy it will consume in fusing and consequently, the longer the dry cell will last. No. 50 receiver wire should be employed if available. In operation a little coil of this wire is placed around the top of the brass post. When the cannon is ready for firing, one end is drawn out and slipped under the spring clips in such manner as to cross the fuse hole. Upon passing current from the dry cell through this wire, it will flash, igniting the surrounding powder and firing the cannon.

The trigger device is shown just behind the cannon in fig. 3. It consists of a flat spring V, attached at one end to a brass post and having a contact fitted to the other. A second contact point is fitted to the post Y. Upon pulling the string, which is tied to the middle of the spring, connection is made between the two contacts. The posts Y and Z may conveniently be made of brass screws, clamped to the base with nuts, and allowed to project a distance sufficient to permit the attachment of the spring and contact. The spring is soldered into a slot cut in Z, and the contact point is riveted into a hole drilled in Y. The wiring for the firing arrange-
ment is shown in fig. 7. It will be seen that when the string is pulled, a circuit is completed through the dry cell and across the fuse wire, which is attached between the brass post A and the body of the cannon.

The implements required for charging the cannon are shown in fig. 8. A is a spoon for handling the powder. This spoon is cut from a single piece of sheet brass, bent to the form indicated, and soldered. A brass rod riveted or soldered on, serves as a handle. The sheet brass should be so cut as to make the sides of the spoon measure about $\frac{3}{8}$ by $1\frac{1}{2}$ inches. B is a driving rod for ramming down the charge. It consists simply of a $\frac{1}{4}$-inch steel rod about 7 inches long, with a head attached to one end.

Ordinary black gunpowder is to be used for charging the cannon. Do not attempt to employ smokeless powder, as its explosive power is so great as to render the use of it dangerous. All powder should be kept securely sealed in a glass jar or can. To prepare the cannon for firing, stand it on end and pour in a spoonful of the charge. Then push down pieces of paper with the ramming rod until the bore is full to the muzzle; after which force the paper down with a few blows from a hammer. Now, having set the cannon in a horizontal position, fill the fuse hole with powder. Draw a length of the fine wire between the spring clips and sprinkle powder over it. Great care should be taken during this operation to see that the battery circuit is not accidentally closed. Now by retreating to a suitable distance, and pulling the string, a rousing explosion should occur.

The size of the cannon may easily be made other than that indicated, if desired. For example, $\frac{3}{8}$ or $\frac{1}{2}$-inch pipe may be employed by simply altering the general dimensions of the casting proportionately. If the experimenter does not wish to undertake the construction of the electrical firing mechanism, the cannon may be mounted upon a solid base and discharged by means of ordinary fuses. A simple expedient for accomplishing this purpose is to use ordinary cotton string dipped in kerosene. This will burn with a fairly dependable rate of speed, and is readily obtainable. There is nothing quite so fascinating, however, as to be able to step back and see the explosion occur by merely drawing the string of the electrical firing device.

A CORRECTION

In the May issue on page 574 there appeared an article entitled, "Curing Human Ills by Magnetic Waves." Unfortunately, an error was made in the diagram accompanying this article. In fact, as it was published the diagram is almost all wrong.

The coils of the Bachelet apparatus are connected to the source of current supply by means of double conductor cords which were not shown in the diagram published. Furthermore, the coils are all connected in parallel to both sides of the alternating current supply. A pilot lamp is connected across the alternating current mains.

Watch for the big, interesting, initial number of Popular Electricity and Modern Mechanics. If you are not a subscriber, you had better leave your order with the news-dealer to insure receiving a copy.
FIG. 1.—COMPLETE WIRING DIAGRAM FOR CONNECTING THE RECEIVING SET.

A GOOD RECEIVING SET

A Continuation, in the Form of More Explicit Instructions, of a Recently Published Article

By B. N. Burglund

Editor's Note.—Many readers have constructed receiving sets according to the instructions published in the article entitled "A Good Receiving Set," that appeared in the October issue of MODERN ELECTRICS. However, several points not clearly understood have been encountered by readers and numerous requests received for more explicit directions on the operation of this receiving set. Mr. B. N. Burglund has noted the points which were in doubt and accordingly wrote this article. Most of the explanations that follow refer to the text matter and diagrams that appeared in the original article, and will therefore be unintelligible unless the October issue is in the possession of the reader.

At the request of a number of readers, the author has decided to furnish more elaborate details on the construction of the wireless receiving set published in the October, 1913, issue of MODERN ELECTRICS.*

To begin with, many of the correspondents do not seem to understand what binding posts A G A and binding posts 1-2-3-4 and 5 are used for. The accompanying sketch, Fig. 1, indicates the functions these binding posts perform.

The complete set is designed for use as a wave meter as well as a testing instrument for measuring any unknown conditions, such as the inductance of a loading coil or the capacity of an extra condenser, in fact, any X-circuit which is to be compared with a standard, providing the secondary of the loose-coupler and condenser No. 2 have been calibrated with a standard wave meter. It is also necessary to determine the correct values of capacity of the condenser and the correct values of inductance of the secondary. Here we have the principal components of a wave meter, and if the secondary winding is properly spaced a very sharp wave meter is obtained. (The description for winding this secondary follows later.) For instance, connect a double slide tuning coil to binding posts 1-2-3. Ground to 2 each slide to 1 and 3. Now this tuning coil can be used as an extra loading coil or a syntonizer, and by using switches marked "Circuit Selector Receiving,"

* Copies of this issue can be secured at 15 cents each while the supply lasts.
this double slide coil can be used for a standby circuit for open or rough tuning. On position 2-2 you are receiving from one slide to ground or only as a single slide tuning coil to ground. In position 3-3 one is receiving from both slides of the tuning coil and center ground with the secondary of loose-coupler cut out. Placing the switch back on 1-1 permits of receiving from secondary of loose-coupler and using double slide tuning coil as syntonizer or loading coil, depending upon the position of sliders.

The switch marked "Aerial Selector" is only used when a loop aerial of the United type is employed. This switch controls the "off" leg of the aerial. In position 1 the off leg is connected through a single slide loading coil attached to binding posts 3-4. This acts as an extra loading coil only when a loop aerial is used. In position 2 the off leg is entirely open and is excellent for long wave tuning. On 3 both legs are connected together making a straightaway aerial as is most commonly used by the Navy and Marconi.

The "Selector Detector" switch is used for rapid changing from audion to crystal detectors. In this switch a slight mistake has been made in the drawing published. The wire leading from condenser No. 3 to right-hand pole of the switch and the wire leading from the right-hand pole of circuit selector-switch should be on the right-hand pole of the selector detector switch instead of the left as is shown by the drawing. The author finds it best to leave out Condenser No. 1 entirely and if a condenser in the aerial is needed, place it in circuit through binding posts 1-3.

The audion filament switch is self-explanatory for, as most audions have two filaments, it is necessary to provide a suitable switch. Here the author has left the center button as off position for the sake of convenience.

Always place the pole changer on O-O before changing from audion to crystal, otherwise there is danger of ruining a sensitive crystal by passing

(Continued on page 800)
THE NEW CABLE TELEGRAPHY

An Account of What is Being Done by Cable Experts in an Effort to Keep Pace with Wireless Engineers*

By Donald McNicol.

Illustrations from drawings made by the author.

If, then, a sufficiently sensitive receiving relay is employed at the distant end of the cable, it is apparent that ordinary Morse land line sounders and repeaters may be operated therefrom by means of local batteries.

The Gott arrangement, while its employment has practically the same purpose in view, has a somewhat different action from that of the Picard arrangement. Fig. 5 depicts theoretically the Gott transmitter circuits. PR is a polarized relay, the armature tongue of which of the tongue T will send to line a negative impulse. In transmitting the letter K, consisting of a dash, a dot, and a dash, the first dash would be made by a positive impulse, the dot by a negative impulse, and the second dash by a positive impulse. In the transmission of each letter, therefore, each element of the letter is made by an impulse having the opposite sign to that of the element preceding it.

It remains now to describe what has been accomplished in the way of de-

remains in contact with the right hand or left hand stop after being moved there until the current traversing the coil windings of the relay has been reversed, whereupon the tongue moves over to the opposite contact. Closing the key K places the positive terminal of the main line battery in contact with the cable. Releasing the key lever permits the discharge from the cable to find a path to ground via the windings of the polarized relay (the armature lever of T having now moved into contact with its back-stop), the result of which is that the tongue of PR is shifted to the opposite contact, and as the latter is connected with the negative terminal of the main line battery, the next forward movement developing receiving instruments capable of translating these impulses into intelligible signals.

Fig. 6 shows a theoretical view of the arrangement of the mechanism and the circuits of the Brown drum cable relay, invented by Mr. S. G. Brown, of London. This instrument resembles the siphon recorder insofar as the moving coil S, permanent magnet M, and laterally moving lever L are concerned. The operation of the relay might be described as follows: A received positive impulse passing through the suspended coil S deflects the coil to the right, which movement is, by means of two silk fibers R and R', communicated to the tree T, which in turn controls the movement of lever L, causing it to move off the insulated segment (the shaded section) of

*Continued from the May issue of Modern Electrics and Mechanics.
the drum, and into contact with the metal section D, thus closing a local circuit including a battery and the coil windings of an ordinary polarized relay PR. When an impulse of the opposite polarity is received, the suspended coil is turned to the left, resulting in the movement of lever L, to the right, or into contact with the metal section D', of the drum, which in turn closes a circuit through local battery B, and polarized relay PR'. The drum is rotated mechanically at the rate of about 150 r.p.m. It will be noted that the drum is made in three parts, consisting of two outside (the dot and dash making contacts), and a center insulated section upon which the lever point rests normally when the suspended coil is not energized by current passing through it. It will be easily understood that the local contact points of the polar relays thus operated may be employed to open and close secondary circuits which may include reading sounders, or repeater transmitters.

The continuous rotary motion of the drum aids the lever pointer to slide or "skate" to the left or right in response to the movements of the suspended coil. The friction encountered is, therefore, much less than it would be were the drum held stationary.

Owing to the light contact existing between lever point and surface of drum, the electrical resistance varies somewhat, and at times is quite high. To overcome this difficulty and in order to insure that at all times a sufficient current value will obtain in the polar relay circuits to operate those instruments properly, condensers C' and C" are connected around the drum contacts. Another advantage of the condensers is that sparking and its related ill effects are reduced to a minimum. Each condenser has a capacity of two microfarads.

On short cables and where ordinary cable transmission (Fig. 2) is employed, a 30-ohm shunt having large self-induction is connected around the winding of the suspended coil, the presence of which produces a controlling and curbing effect upon the movements of the coil, resulting in clearer definition of signals.

It might reasonably be surmised that the substitution of the drum relay in place of the siphon recorder does not give us a cable receiving instrument which by its self prolongs the length of a received impulse in such a manner that a dash may be distinguished from a dot by varying the duration of contact at the sending end. And it is true that where the ordinary methods of transmission are employed, the drum relay has no advantages over the siphon recorder. In fact, on long cables the former is not very successful, due to the varying zero line. But, where the newer methods of transmission (such as the Picard and the Gott systems) are employed, the availa-
SMALL ALTERNATING CURRENT MOTORS

Complete Working Instructions for the Building of Small Alternating Current Motors in Several Sizes*

By A. E. Watson, E. E.

Illustrations from drawings made by the author.

HAVING proved by the preliminary trials that the motor is properly constructed, the auxiliary starting devices mentioned in the first article for "splitting the phase" can next be provided. These are to consist of a simple resistance to be inserted in the starting sent a draught of about 15 amperes from the line. Without load this amount should suffice to start the motor, but under unfavorable conditions even larger currents may be insufficient. This weakness of the single-phase motor is one of its most serious defects and for many coil circuit, and a choke-coil, or reactance, for the running coils.

The normal running current of the motor will be about 7.5 amperes, and if double that value be allowed for starting, and the apportionment be made that twice as much current shall flow in the temporary starting circuit as in the other, about 12 amperes and 6 amperes, respectively, will be their actual strengths. These combined in proper regard to their phase relations will repre-

* This series began in the February issue. It is necessary to refer to the February, March, April and May issues for complete working details and drawings.

-THE EDITOR.

FIG. 21.—RESISTANCE TO BE USED IN CONNECTION WITH STARTING-COILS

applications removes it from adoption; some sort of commutator or slip-ring machine being required in its place.

The resistance of the starting-coil circuit will be only about .6 ohm, its reactance perhaps of about the same amount, and to limit the current to 12 amperes when an electromotive force of 110 volts is applied, a resistance that is devoid of self-induction and amounting to upwards of 9 ohms should be used. Some ordinary direct current motor starting-rheostat may be available, or any one of numerous constructions will be found acceptable. An essential condition is
that the resistance wire be not of iron nor wound upon an iron core, for the use of such metal would introduce an undesired magnetic effect. A construction is given in Fig. 21 that fairly well complies with the requirements. An iron rod \(\frac{3}{4} \) inch in diameter is bent at a right angle in two places, four long and five feet long without requiring a cut. If the builder lacks other means for accomplishing this winding, he can put a crank on one end of the rod, saw a slot or drill a hole in the other end in which to fasten the end of the wire, then by turning the rod in a block held in a vise and letting the wire crowd against the block as the

short, standard porcelain insulators slipped on, and the assemblage mounted on a slate or wooden base. A binding post can be provided for each terminal of the resistance wire.

One pound of No. 16 German silver wire of the 18 per cent. grade, i.e., having a resistance about 18 times that of copper, will suffice. It can be wound upon a \(\frac{1}{2} \)-inch diameter iron rod 5 winding proceeds, as much tension can be given to the wire as desired without any opportunity for bending the rod, and a tight spiral will result. When slipped from the rod, the coil should be marked off into eight equal lengths, and a length of about two inches in each place unwound. As seen from the drawing, these portions are to provide for transferring the resistance to the insulators on the
frame. The terminals should be soldered to the necks of the two binding posts.

A resistance of this sort is easily made and though of apparently fixed value is not really so, for any desired portion may be short-circuited by use of sheet copper strips inserted between the spirals. It is rugged, not easily burned out, and by slipping over it a cage made of galvanized wire netting it fully complies with insurance rules. In final position it may be at will fastened to table, wall, or ceiling.

For the reactance just the opposite properties are required, for a magnetic field is to be established in a device that, as far as possible, shall have no ohmic resistance. The winding must therefore be of copper wire, and the core of iron, and in consequence of the condition of alternating currents, must be laminated. While the resistance of the running coils may be about 1.2 ohms, and the reactance perhaps 2 ohms, with a resulting impedance of about 2.3 ohms, this will be quite insufficient to limit the starting current to the proposed 6 amperes, for a total impedance of 18.3 ohms will be necessary. In Fig. 22 a construction is shown consisting of a stack 1½ inches thick of U-shaped sheet iron wound with 2½ lbs. of No. 14 copper wire. Instead of the magnetic circuit being continuous there is an air gap of about ½ inch. This is an important provision for such a reactive coil, since otherwise the iron would be saturated with magnetism with too small a current, while the full strength of current would drive the iron through cycles of extreme hysteresis and eddy current losses, with consequent expenditure of power and diminution of the desired angle of lag. As shown, there is room for 8 layers of wire, with 43 turns per layer, giving a total of 344 turns. With 6 amperes flowing a flux of about 70,000 lines will be established, and at a frequency of 60 cycles the reactance will be 18 ohms. The resistance itself will be only .45 ohm. Combined with the impedance of the motor itself, this external amount is a little excessive, but in two ways provision is made for adjustment to fit the conditions of use—either the air gap or the number of turns of the winding may be varied.

In the lower portion of Fig. 22 is shown the sort of sheet iron required for the core, presumably of the same thickness and quality as used for the motor itself. The pieces are first to be cut to a size measuring 3½ inches x 6½ inches, then two cuts made lengthwise for dividing off a tongue. To remove this central piece by cutting across the 1 inch remaining at the bottom will not be possible with ordinary shears. A simple expedient is to clamp the sheet in a vise with the edge of the jaws just on the line, then with a sharp cold chisel and light hammer a progressive cut may be made in a very neat manner. One half of the sheets are to be made with the leg on one side shorter than on the other, and some very short pieces so cut as nearly to bridge across the top as shown. Whether still smaller filling-in pieces, measuring 1¼ inch x ⅝ inch, are provided, is a matter of choice for the builder. For appearances' sake the outer corners of the sheets may be clipped, as represented.

After cutting the desired number of sheets—about 110 if .014 inch iron is used—they should be tightly clamped together and filed to a uniform size. They can then be given a very thin coat of asphaltum varnish on one side.

A spool is to be made from fiber, consisting of two flanges of 3/16 inch stock, one 2½ inches square, the other ¾ inch wider on one side for holding a row of binding posts, both having a center hole measuring 1 7/16 inches square. The connecting member is also of fiber, about 1/32 inch thick. Only under one condition could metal be properly used in making the spool, and that is it should not be continuous, for otherwise it would amount to a single short-circuited turn of a transformer, with consequent extreme flow of induced currents. Iron would be quite inadmissible under any conditions, for eddy currents would be added to the circulating. If brass or copper is preferred, the metal can at first be continuous, then a radial saw cut made through both flanges and the neck, whereby the circular path will be completely broken. The drawing shows the use of fiber, and this is entirely satisfactory. A stick of any desired length, and measuring 1 5/16 inches square in section is to be used for an arbor and the sheet fiber bent around it, sharp corners
being readily attainable by cutting halfway through on the line of bending. The square tube should be about 4 3/8 inches long. Onto its ends should be slipped the two washers, spaced apart by two blocks 3 3/16 inches thick. The ends of the fiber are bent over and tacked, as shown. As a further precaution for holding the fiber, a strip of Manila paper may be wrapped around it and fastened with shellac. By nailing or screwing some blocks of wood up against the outside of the flanges, good additional support can be given for the winding process.

In the large flange, five holes shown by dotted lines are to be drilled for passing the copper wire; two of small size for the beginning and end, and the other three of larger size for taking a loop. In addition, five holes are to be drilled in a row for the binding posts, but of course ordinary machine screws will entirely suffice as a substitute for such conveniences. Indeed, for permanent use the screws will be more reliable.

After two layers are placed, a loop can be brought out that can later be connected to No. 2 binding post; then, after the fourth layer is placed, a second loop is provided for the next binding post; similarly after the sixth layer and the very end to the last post. The builder can as well make both flanges the same size and put part of the binding posts on the upper end, thus permitting taps from other layers. Possibly those leading from layers six, seven, and eight will be the ones most likely to be used, but for general experimental purposes the others may find some applications.

When wound and duly protected with several coats of shellac, the spool can be slipped onto the iron core, or the sheets of iron assembled in the spool until the space is tightly filled, the short top pieces fitted in place and the structure clamped onto the baseboard. Two wooden strips 3/8 inch thick separate the iron from the base at top and bottom, while two clamps held by stovebolts secure it in place, not alone from slipping but from vibration under the action of the reversing magnetism. While the bottom clamp can be of strap iron, that at the top must be of non-magnetic material, presumably brass, but thicker strips of wood will be entirely acceptable.

With both the resistance and the reactance coils made the adjustment to fit the motor can next be accomplished. If an alternating current ammeter is available, of course it will be of great assistance. Without it, the builder will have to content himself with trials involving the use of fuse wire. With sizes rated as of 5, 6, 10, and 12 amperes capacity, he should be able to reach quite satisfactory adjustments. In circuit with the starting coil and resistance, temporarily insert a short piece of the 10-ampere size. With the rotor kept stationary, close the switch and adjust the resistance until the fuse melts. Substitute a piece of the 12-ampere size and see that although the current may be kept on for several minutes, it does not "blow." The conclusion may then be safely reached that the current will be about 10 or 12 amperes. Now disconnect that circuit and put the reactance coil in proper connection with the running coil, temporarily inserting a fuse, this time one of the 5-ampere size. Adjust the air gap of the iron or the number of turns of the winding until this fuse melts. See that with the same adjust-
ment a 6-ampere fuse will hold. The current will then probably be of the desired value. Now without fuses in either circuit, or else those of liberal size, try the motor for its hoped-for self-starting qualities. Certainly there will be joy in the heart and face of the builder if the machine exhibits no hesitation. Five seconds should suffice for holding the switch in the lower position, then it should be quickly thrown over into the other or running position. If the motor starts too slowly, the amount of resistance and reactance may be reduced, but without the application of any sort of load the right angles to the vertical represents the maximum angle of lag—really a time interval—that can elapse after the electromotive force acts with its maximum value before the current reaches its maximum. The greater the reactance and the smaller the resistance, the more nearly will this extreme value be reached. In the diagram a radial line is shown at an angle of \(\beta \) from the vertical to represent particular conditions in the running coil when the external reactance is included, and before rotation has begun. The length of the line may be taken as representing the number of amperes.

![Characteristics curves indicating performance of motor](image)

Fig. 24.—Characteristics curves indicating performance of motor

It may be of interest to illustrate the starting conditions within the motor by use of a graphical diagram, as given in Fig. 23. Two lines can be drawn at right angles, to serve as axes, the vertical being a sort of origin, and representing the “phase” of the electromotive force impressed upon the two circuits. Whether maximum values of the quantities represented are indicated, or “effective” values, makes no difference to the appearance of the diagram—the angles would be the same. The line drawn at Similarly a line may be drawn at an angle of about 5° from the vertical to represent the current in the starting coil when connected with its external resistance. In consequence of its small reactance the lag is small, but to represent the required double strength of the current, the length of this line is twice that of the other. Now both these currents do not have their maximum values at the same instant, so their sum is not correctly obtained by directly adding the 6 and the \(\frac{12}{2} \) that have been proposed. The addition must be of the geometrical sort, and
this is clearly shown by the length of the diagonal resultant, and if the two sides are 6 and 12, this line will measure about 15. So if three ammeters are connected in circuit to show the three currents—one in the starting circuit, one in the running and the third in one of the supply mains—these three values or those in something of the same proportion would be indicated. If the instruments were as sensitive as oscillographs, the readings would follow the instantaneous values of the currents, but the movements would be so rapid as to be interpreted only by photographic methods. In ordinary instruments the moving parts are so cumbersome as to indicate “effective” values of the alternating currents, quite as if they were direct currents. The angle represented between these two current lines is the difference of phase, or time, between the two branches of the circuit into which the main current is “split.” If less resistance and reactance are used than those proposed, both of the current lines will be longer, therefore indicating that stronger magnetism will be set up in the machine, but the important phase difference will be reduced. At some particular values the phase difference with the corresponding currents will exert the maximum starting torque, and if required, the builder would have to experiment until he ascertained them by actual test. In practice, it is common to permit the total starting current to be three times the normal running value. In this description only twice the running value is proposed, but provision is made for arranging for other values that may be required.

Finally, it will be of interest to predict what may be expected of the motor in regard to its efficiency and output. In Fig. 24 is shown a set of representative curves for a motor of this size. A close examination will bring out some disquieting facts. One is that quite a large current is required to run the motor when entirely free from load, namely, 7.3 amperes. The saving condition, however, is that this current is quite out of step with the voltage, and that therefore the power absorbed is not 110 x 7.3 watts, but this product still further multiplied by the power-factor, so the real power is brought down to 180 watts. Still, this is larger than desirable—twice as much as would be the case with a direct current motor of the same capacity. To use more turns of wire on the stator and thereby reduce this “exciting” current, as it is called, would be to introduce undesired conditions for full load. Really the size of wire would have to be reduced, and this would reduce the power of the motor. As load is applied to the rotor, the current does not greatly increase. This is quite unlike the case of a direct current machine, for in that the current would be quite proportional to the load, so an additional peculiarity of single phase alternating current motors is illustrated, i. e., the current is nearly the same at no load as at full load, but it is the angle of lag of the current behind the phase of the voltage that shows the most change, and the importance of the amperes is not alone their numerical value but also their phase relation. The cosine of this angle is technically denoted as the “power factor.” An inspection of the curves will also bring out the fact that such a motor is of the constant speed class and quite imitates the behavior of a direct current shunt motor, for that, too, falls off in speed only slightly as the load is applied. Synchronous speed at 60 cycles and with 4 poles calls for 1800 revolutions per minute, and at no load the motor almost attains this amount, while at overload the reduction is only 100 revolutions.

At the rating of one-half a horsepower the power-factor is slightly over .72, which means an angle of lag just under 45°; the efficiency at this particular load being 60 per cent. This is admittedly low, but as high as can readily be secured in a commercial motor of this size. By using a shorter air gap than the 1/32 inch specified, and having the rotor slots entirely closed over the rods, the efficiency might be brought up to 65 per cent., but the one device has mechanical disadvantages, while the other reduces the already feeble starting torque.

In a succeeding article the adaptations for operating the motor on two-phase and three-phase circuits will be considered. The result is a machine of higher efficiency and about twice the power, but for the builder who has single-phase current only, nothing simpler or on the whole more satisfactory than the construction already described is likely to be offered.
WIRELESS TELEGRAPHY

A Treatise on the Radiation, Propagation and Detection of the Electric Wave

By A. S. Blatterman

EXPERTS in radio-telegraphy are well aware that many of the scientific phenomena are imperfectly understood. Great distances have been covered, distances involving considerable fractions of the earth’s circumference, and this fact, from the scientific viewpoint is of extraordinary interest, since it brings into prominence the possible effects of diffraction, reflection, and so forth, to account for the passage and detection of the electric wave around the curvature of the earth. Also the extraordinary variation of signal strength with light and darkness has received considerable attention, but as yet no very adequate explanation.

The theory of the transmission and propagation of the electric wave seems to be intimately concerned with the nature of the earth, the conditions of the medium above the earth, atmospheric ionization, natural electrification, and the curvature of the earth itself; and apart from this the wave itself may be of more intricate nature than the ordinary Hertzian radiation which is so often taken to explain radio-telegraphic effects. Of these scientific aspects we shall speak at greater length.

With the exception of a small number of stations using the Duddell-Poulson arc generator, all the practical wireless telegraphy in the world is at present conducted with the following apparatus:

At each station there is the transmitter which comprises three elements:

1—A source of high electromotive force which may be continuous and obtained from an electric generator of direct current or high voltage battery; pulsating, as from a battery and induction coil; or alternating, direct from a special alternating current generator or generator and high tension transformer.

2—A condenser which is charged by the high-tension generating device and which is discharged by a spark gap through an inductance coil in series with the condenser.

3—An open or radiative circuit, the antenna, which is coupled to the condenser circuit, and comprises a system of elevated insulated wires and an electrical counterpoise placed near or in the earth.

At the receiving station we have also three elements:

1—An absorbing antenna by means of which the electric wave is picked up, and in which high-frequency oscillations are produced.

2—A condenser circuit containing variable capacity and inductance, which is syntonized with and coupled to the antenna circuit, and in which energy accumulates.

3—An oscillation detector which is affected by the accumulated energy of the condenser circuit, and sets in operation a recording or indicating device which makes a visible or audible signal.

Generally speaking, the radiating and absorbing antennae are the same, and are used for both purposes with sending and receiving apparatus. The functions are, however, not identical. What is required in the sending antenna is a certain height and free or insulated ends, but the receiving antenna must have not only height, but surface, though it may be laid parallel with and close to the earth and earthed at both ends; but provided it is a half-wave length in length it will still absorb considerable energy from waves arriving in its own direction.

The antenna is formed from a number of hard-drawn copper or bronze wires held aloft by poles or towers so that they form a fan-like structure; or they may be bent down on all sides like the ribs of an umbrella; or, as is the case on shipboard, they are parallel wires held horizontally and apart from one another by the masts and spars attached thereto. Marconi has constructed antennae of parallel vertical wires bent over at the top and running horizontally for a dis-
tance four or five times their height above the earth.

In long-distance stations it is usual to employ steel or wooden towers to sustain the antenna, and these structures must be well stayed to resist the wind.

Associated with the antenna is the counterpoise, which may consist of a number or network of wires held parallel to and insulated from the earth, or laid on the earth, or even buried below its surface. Its purpose is and construction must be such that its electrical capacity will be sufficient to produce a node of potential at the bottom of the antenna. At sea the metal hull of the ship is excellent.

The counterpoise is connected to the antenna through an induction coil, and in virtue of the capacity of the antenna with respect to the ground or counterpoise the whole system has a natural period of vibration. It may be compared to an elastic strip of steel held at the bottom in a vise and loaded at the top, which can be set in vibration by small blows administered to it at the proper rate.

In nearly all cases the oscillations set up in the antenna are due to impulses arising from the intermittent discharge of a condenser through a spark gap. Hence they are damped or decadent trains of oscillations separated by intervals of silence, and their group frequency is the number of condenser discharges per second. This group frequency is now usually 500 to 1,000. Each train of impulses may contain 20, 30, or 50 oscillations, each having the antenna frequency. The antenna is, therefore, set into vibration with oscillations occurring in groups of, say, 500 in a second, and each group is made up of 20, 30, or 50 alternations which run to and fro up and down the antenna.

In the most modern apparatus these high-frequency currents in the antenna are created by the nearly "dead beat" discharge of a condenser. This condenser may consist of a number of Leyden jars in multiple or series multiple, or, preferably, of glass plates interleaved with zinc or brass sheets and immersed in oil. Marconi uses large metal plates hung up on insulators in air in some of his high-power stations. At Nauen and at the Eiffel Tower stations tubular or glass plate condensers are used, and at Arlington the dielectric is compressed air at 300 pounds per square inch.

The condenser is charged by the source of high electromotive force and is discharged with or without oscillations through an inductance, part or all of which may form one coil of a two-coil air-core transformer, whose second coil is in circuit with the antenna; or else a single coil, whose turns are common to both condenser and antenna circuits.

An important element is the spark gap. In early days this consisted simply of two brass balls; but with the introduction of higher powers it was quickly discovered that an arc was established which had to be destroyed before the condenser could again charge. Numerous expedients were tried to overcome this defect. Air blasts were applied to quench the arc, and with the same purpose in view transverse magnetic fields were brought to act upon the discharge. Fleming devised a discharge with slowly revolving electrodes which was partially successful. Later on Marconi invented the high-speed studded disk discharger which produces a spark of the required character. The kind of discharge desired is one in which rapidly repeated, strong, highly damped discharges take place in the condenser circuit, and these excite prolonged trains of free oscillations in the antenna. This is only possible when any true arc in the spark gap is entirely prevented.

The effect is also obtained by the Wien or Telefunken, Peukert, and Lepel dischargers, consisting of flat, or, as sometimes in the Telefunken gap, concentrically ribbed metal plates in close proximity. With these gaps the discharges succeed each other with great regularity and at the rate of several hundred or a thousand per second, and when the condenser circuit is properly coupled to the antenna (about 20 per cent. coupling) powerful intermittent oscillations are set up in groups in the antenna, each group being feebly damped and of uniform oscillation frequency. Although nearly all the radio-telegraphy in the world is at present conducted by means of the condenser discharge method, great efforts are being made to produce high power, high frequency alternators, and the advent of such a machine will, no doubt,
Experimental Department

This department is maintained for the purpose of encouraging the experimenter to develop new ideas. Every reader is welcome to contribute to this department. Contributions should be written on one side of the paper only, using as many sheets as are necessary. Type-written contributions employing double spacing are preferable. Good sketches are not necessary, as our art department can work up rough sketches that are clear enough to illustrate the idea. Sketches must be made on separate sheets from those containing the description. Return postage must be enclosed if return of unused manuscript is desired. Three prizes of Five, Two and One-Half Dollars and One Dollar are awarded for the three best ideas published each month. Other contributions are paid for at space rates.

FIRST PRIZE
AN INSTRUMENT FOR DETERMINING HEIGHT OF AERIALS

Sometimes an amateur is confronted with the problem of determining the height of his aerial, or perhaps, the height of a building on which he wishes to erect an aerial. The instrument described below will, with the use of a table of trigonometric functions, quickly determine heights of aerials, buildings, etc. In the first part of this article the author will cover the construction; the operation of the instrument being taken up later.

CONSTRUCTION

A general view of the instrument is shown in fig. 1. The main part needed is a camera tripod, which can be usually found among the average experimenter’s possessions, although an equivalent can be substituted if necessary. A round block is cut from oak of the dimensions shown in fig. 4. On the bottom of this block two diameters are drawn at right angles to each other and at their intersection a nut, tapped to the size of the screw in the tripod head, is imbedded. The supports are shown at A in fig. 3, and are of the dimensions stated. The uprights are of brass and the block between is of oak. The uprights are clamped together in line and a 3/4-inch hole bored near the top as shown in the sketch. A hole is bored and tapped to take screw B, in one only. Holes are now bored at the bottom to admit screws to fasten to the board.

In fig. 5, A is a hardwood block 12 inches long. In this is inserted a hard rubber tube 12 inches long, and with an inside diameter of 3/4 inch. On opposite sides of this block are fastened supports as shown in fig. 3. On top and in the exact center of the block is imbedded a level. Two levels are also imbedded in the base, at right angles to each other. Four inches from each end of A, fig. 5, a line is squared around. Setting a carpenter’s gauge to one-half of the width of the block, lines are drawn crossing the others in the center of each face of the block. At the intersection of these lines, holes are bored through the block and tube, 1/32-inch in diameter. Through these holes are inserted No. 40 black enameled wires crossing each other in the center of the tube and fastened tightly in some convenient manner. This is repeated at the opposite end. When this procedure is completed, two sets of crossed wires or “hairs” four inches from each end, are obtained.

The supports are now fastened to the block which is centered on its round base, and the instrument is mounted. A typewriter knob is fastened on at A, fig. 4, and the set screw inserted in the hole at B.

A scale as shown in fig. 6, is fastened on the left-hand support. The scale must be fastened accurately; that is, the 90° mark must be at right angles to the center of the pivots or supporting rods. This scale, for the sake of convenience and to lessen the amount of calculation, is to be calibrated different from the common protractor, as shown at fig. 6. A blank celluloid scale of the same size and shape as a common protractor is first procured. A calibrated protractor is now placed over it as shown and the degree lines marked. The purpose of this scale is to read the angle at A, fig. 7, direct, without calculations. Since the sum of three angles of a triangle is equal to 180°, it is only necessary to take
the angle at B, which is always 90°, add to this the angle at C, and subtract the
95 = 85° which represents the angle at A when the angle at C is 5°. 85 is then
result from 180° to get the angle at A. Now to calibrate the scale: Opposite 5°
for example, 90 + 5 = 95 and 180 —
placed on the blank scale opposite 5 on
the calibrated one. Now again at 15°,
90 + 15 = 105 and 180 — 105 = 75°.
This is the angle at A when the angle at C is 15°. This is put on the blank scale opposite 15° and so on. No scale is needed on the instrument to show the angle at C, since one can now read the angle at A from the scale and that is all that is necessary.

A pointer of brass or other suitable metal is made as per C, fig. 2, and is fastened exactly in the center of the rectangular block as shown in fig. 1. The wood is now finished to suit the taste of the individual.

Operation

Set up the instrument at some convenient distance from the aerial. Adjust it until the two sets of crossed hairs and the top of the aerial appear to coincide. Tighten the setscrew and sight through the opposite end of the tube. Where the crossed wires appear to coincide with the ground a stake is placed. Measure from this stake to the foot of the aerial. Multiply this distance by the tangent of the angle shown on the scale. The result is the height of the aerial.

Example: Looking at fig. 9, let CB represent the aerial of unknown height. Let the instrument be set up at D. Point C is then sighted up and the setscrew tightened, after which point A is sighted and marked. Measure from A to B, in this instance say 100 feet. Now read the angle as shown by the scale, say $32^\circ 20'$. Look in a table of trigonometric functions (found in any trigonometry textbook) for tangent of angle of $32^\circ 20'$. The number .6330 is found and this is multiplied by the 100 feet. The result is 63.3 feet, the height of the aerial. In a like manner any height may be found.

Contributed by

Herbert G. Messer.

SECOND PRIZE

AN ELECTRICAL INSTRUMENT FOR DETECTING MINERAL DEPOSITS

In the accompanying illustration is shown a most useful form of exploring instrument for detecting the presence of mineral deposits and consisting of an induction balance, telephone receiver, vibrator and batteries. By means of this instrument, it is possible to locate iron, steel, nickel, cobalt, manganese, platinum, paladium, etc., in obscure places such as caves, cliffs, wells, rivers and lakes. Such an instrument can be readily made at but slight expense and will prove very interesting in actual use.

The induction balance consists of two wooden spools, W W, glued securely together at G. No. 8 thread spools will be found quite suitable. No. 22 B. & S. gauge enameled wire is then wound on in three layers on spool No. 1 in a right-hand direction, the number of turns being counted as they are wound on. After this has been accomplished, the wire is passed on to spool No. 2 and an equal number of turns are wound in the left-hand direction. It is of prime importance to have an equal number of turns on both spools.

P' and P'' designate the ends of the two coils which may be termed the primary of the induction balance. The wire P'' passes through the opening in the center of the spools. Cover the primary windings with a layer of paraffine paper and then proceed to wind No. 36 B. & S. gauge, s.c.c. wire over the primary winding of spool No. 1 in a right-hand direction. In this case as before, it is necessary to count the number of
turns and layers and when spool No. 1 is filled, the wire is passed to spool No. 2 and as many turns and layers are wound in the same direction as on spool No. 1. S' and S'' designate the ends of the two coils which may be termed the secondary of the induction balance. The wire S' passes through the opening in the center of the spools. Secondary wires S' and S'' form the receiver circuit and are connected to an 80-ohm watch-case receiver. The primary wires P' and P'' form the supply circuit and are connected in series with three dry cells, a switch and vibrator. An ordinary electric bell will give excellent results as a vibrator for this purpose if the hammer is removed from the armature. The two spools are placed in a neat tin case C, which is then filled with melted sealing wax so as to render the induction balance waterproof when lowered in water. The wires P' and P'', and S' and S'' may be 50 feet long, more or less, depending upon the depth to which the cell C is to be lowered.

In using this instrument, the switch is closed and the casing containing the windings is moved over the region to be searched. When brought in the vicinity of materials possessing magnetic qualities, a strong clicking noise will be heard in the receiver.

Contributed by

C. L. Vols.

THIRD PRIZE

A MERCURY AIR-PUMP

This instrument is very simple and easily made, yet it is capable of producing a very high vacuum. Almost any degree of vacuum can be produced and preserved, at the same time being accurately indicated.

The glass tube A is a piece of barometer tubing about 32 inches long. A glass T, which need not be of the same diameter, is connected to its upper end by a short piece of rubber tubing. To the other end of the T is connected a funnel by means of a longer piece of tubing. On this longer piece of tubing some device, such as a pinch cock, is placed to open and close it.

To make the connections the ends of the glass tubing are smeared with vaseline since the rubber tube, which must be as heavy as possible, is so small that without this lubrication it could not be forced on the glass tubing. In this way an airtight joint is sure to result.

To the lower end of the tube A is fastened a test tube having a hole B, made with a pointed flame. The lower end of A must be about an inch below B.

The whole apparatus is securely held in position on a board of the required size by some such means as is shown in fig. 2. Three or four of these will be sufficient. The vessel to be exhausted is connected and supported as shown, for otherwise the mercury will run into it.

At least one pound of mercury will be needed to operate the pump, but this need not be chemically pure or boiled to exclude air.

It is placed in the funnel and allowed to run down the tube A in drops. As soon as the mercury has covered the end of A the action is as follows:

As a drop of mercury falls down the
tube, it carries before it the air in the tube, thus leaving less air behind, which must fill the same space, and therefore become rarer. The next drop further rarefies it, and so on.

As the air inside the tube becomes less dense, the mercury rises in the tube, until it reaches a height of about 30 inches above the mercury in the test tube, beyond which point it will not rise. A scale graduated in millimeters, beginning at this point and reading down will indicate the degree of vacuum down to 1 mm., beyond which the experimenter will have to resort to calculations.

If, after the first drop the mercury level is 3 inches, or 1/10 of 30 inches, 1/10 of the air has been removed, leaving 9/10 of the air, which is therefore at 9/10 atmospheric pressure. The next drop leaves it at 9/10 of 9/10 atmospheric pressure. Supposing ten drops have passed, the pressure will be

\[
\frac{9}{10} \times \frac{9}{10} = \frac{81}{100}
\]

of an atmosphere, or \(0.348\) atmospheres. An atmosphere being 760 mm., the pressure would be 264.4 mm. This, of course, is large enough to be measured on the scale, but the method is the same as that used for low vacua.

As the mercury flows out of B it is caught in a cup and poured back into the funnel. Thus the exhaustion can be carried on to very low limits. It was with this type of pump that the first Crookes tubes were exhausted.

Contributed by

Brentford Mackey.

QUENCHED GAPS FOR SPARK COILS

Although it is usually said that quenched gaps will not give very satisfactory results in connection with spark coils, the author has been using such a gap in connection with a one-inch coil for the past four years with excellent results.

The writer has found that an electrolytic interrupter was not as efficient as a high speed mechanical interrupter or vibrator. He is now using a 110-volt direct current through ten 16-c.p. lamps as shown in the illustration. This arrangement insures a regular current of five amperes, which never varies, as would be the case if storage batteries were employed. The vibrator on the one-inch coil is of the ordinary spring vibrator type, having platinum contacts which are still in good condition despite the fact that strong current has been used on the coil for over a year.

To obtain high efficiency with a quenched gap, high frequency is required. This may be obtained by inserting a piece of paper between the leaves of the vibrator as well as tying the vibrator with rubber bands so as to give it greater elasticity. When properly adjusted, the vibrator will hum and the spark will have a high pitch. In fact, the author has been asked by many wire- less friends whether or not he was employing a high frequency rotary converter, because of the excellent tone of his spark.

The quenched gap plates, as shown in the illustration, are made from copper turned on a lathe. The author uses five gaps separated with mica. Each gap is about 1/64 inch. The plates measure 3½ inches outside diameter with a sparking surface one inch in diameter.
Four glass plates measuring 8 x 10 inches covered on both sides with tin-foil, comprise the condenser, which is shunted across the secondary of the spark coil. The writer has found the quenched gaps to work better in series than in shunt.

Experimenters will be surprised at the results obtained by connecting their sets as shown in the illustration and employing a quenched gap. The range will be considerably increased, the frequency much higher and the wave emitted will come to a fairly sharp point. Screw the end well and screw in the triangular piece D. This should be three inches thick and six or eight inches long. The other end is treated in a like manner. Make the braces E long enough to make the spreader elliptical rather than diamond shaped. Paint the entire spreader the color of its surroundings.

To get the full benefit of the truss it must be wired in this way. If side A be toward the aerial, the wires must be connected—preferably wrapped—to side B, through very small holes in side A. The ropes or wires supporting the aerial are fastened through holes in strip B to strip A.

These spreaders are light and exceedingly strong. Mine have been up over six months through the hardest kind of weather. Some mornings the wires have been covered deep with wet snow. Heavy wind storms have no effect on the aerial using such spreaders, other than making it rock and jump harmlessly.

Contributed by

Robert A. Cushman.

A NOVEL TELEGRAPH STATION ARRANGEMENT

The following is a description of a novel telegraph station arrangement.

Every operator should employ such a wiring diagram in his telegraph office, since it enables him to practice on his own apparatus without disturbing the traffic on the main line.
By using the arrangement shown in the diagram, both the regular main line apparatus as well as the practice set can be used at the same time and operated by a common battery. If the operator is practicing on his own instruments and hears his call letters on the main line sounder, he has only to throw the switch to the left and his own apparatus will then be connected to the main line circuit, ready to answer the call. After the message is received, the switch can be thrown to the right and the operator is once more ready to continue his practice without affecting the relay and sounder that are connected to the main line.

Contributed by

Bro. Avila, C. S. C.

Probably the best method for making the 1 ohm coil of small wire is to take several strands of wire, wind these in parallel and solder them to the terminals of the coil. Care should be taken that the resulting resistance is slightly greater than 1 ohm. The resistance is then measured accurately and from the equation

$$ R = \frac{1}{\frac{1}{r_1} + \frac{1}{r_2}} $$

the proper length of wire to be soldered in parallel with the others—in order to bring the resistance to 1 ohm—is obtained. These precautions are not so necessary for the other coils which consist of longer wires.

A READILY MADE OHMMETER

The following is a description of an instrument for measuring resistance.

The first step in the construction of this instrument is to make three resistance coils of 1, 10, and 100 ohms. The wire used may be about No. 28 insulated German silver. It will be a great advantage in making these coils if access can be had to a good measuring instrument so that the resistance of the coils can be accurately calibrated. If this cannot be done, the coils can be roughly calibrated from the tables of the wire manufacturer.

The resistance coils should be made of double or non-inductive windings; the two ends of the wire being fastened to the terminals and the sides of the loop wound together as a single wire.

The case measuring 18 x 7 x 4½ inches may be made of any common wood. On the upper side of the case is mounted bare German silver wire, about No. 22 gauge, running between two brass or copper blocks, spaced exactly 15 inches apart. A slider is arranged so as to run parallel to the wire, making contact with the latter only when it is pressed down. On the case are also
mounted a three-way switch, a single point switch and a reversing switch; also various binding posts for the necessary connections.

Besides the requisites mentioned above, a watch case telephone receiver and a buzzer are also necessary. The buzzer armature should be fitted with an insulated contact which is connected to the rest of the circuit by a light coiled wire, as well as a corresponding stationary contact which is also insulated.

A diagram of all the necessary connections is given in Fig. 2.

It will be seen by the reader that the instrument is simply a form of Wheatstone bridge. A scale may be placed alongside the wire to indicate the ohms. This scale may be calibrated from the formula

\[\frac{S}{X} = \frac{a}{b} \]

where \(S \) is the resistance of the standard coil used, \(X \) is the unknown resistance and \(a \) and \(b \) are the respective lengths of the wire on each side of the slider. By substituting different values for \(X \), in the formula, the ratio

\[\frac{a}{b} = \frac{a}{15-a} \]

where \(a \) and \(b \) are in inches; that is, \(a + b = 15 \).

To measure a resistance the slider is moved up and down along the slide wire until the noise in the receiver ceases. Then, if the scale has been calibrated accurately, it will read the correct number of ohms opposite the slider. When the slider balances on the middle point of the wire, \(X \) will equal 1 ohm if the 1 ohm standard coil has been used, 10 ohms for the 10-ohm standard, or 100 ohms for the 100-ohm standard.

For accurate reading the slider should have a narrow edge only presented to the wire and at right angles to it.

Contributed by

Errol B. Shand.

AN UNIQUE WIRELESS HOOK-UP

Recently, while experimenting with my set, I discovered that by using the primary of my loose-coupler as the secondary, as shown in the sketch, I could increase my wave length quite considerably and bring in stations that otherwise I was unable to hear. To bring both circuits back to resonance, two variable condensers in parallel should be connected in circuit. The sketch gives the complete hookup for a quick change and makes everything clear.

Contributed by

Stanley F. Patten.

A MAGNETIC BRAKE FOR A ROTARY GAP

High speed rotary gaps generally run a minute or two after the circuit is broken. This is very annoying, especially when some distant station is answering. The following is a description of a magnetic brake, designed by the writer, which has proven very efficient in eliminating this source of trouble.

The lever \(A \) is cut from a piece of soft iron about \(\frac{3}{8} \) inch square. The length
will depend entirely upon the height of the gap it is to be used on. In the center of the lever, drill a hole large enough for a battery screw to pass through freely. On one end of the lever fasten a small piece of rubber as shown in the drawing. The arm B holding the spring is cut from a piece of heavy sheet brass. The magnet may be procured from a 1,000-ohm telephone ringer. The rest of the work is clearly shown in the drawing.

Contributed by Ray Yates.

AN AUTOMATIC SAFETY VALVE

While performing some experiments in chemistry the author found need for a safety valve. After trying various devices, the scheme shown in the accompanying diagram was resorted to as the most satisfactory.

In the diagram, E is a cork which fits into a bottle. Through the hole of the cork is placed a glass tube opened at both ends. At the outer end of the glass tube is placed a short section of rubber tubing, C. At the other end of the rubber tube is a glass tube, A, which is sealed in at the outside end. B is a slot in the rubber tube made with a sharp pen knife.

The operation of the safety valve is quite simple. As the pressure of the gases within the flask increases, the slit...
in the rubber tube opens and allows the surplus pressure to escape.

Such a safety device as is described above may be the means of preventing serious explosions that might occur otherwise.

Contributed by

Harry Fauer.

THE ADVANTAGES OF TRADE MARK REGISTRATION

By George William Miatt.

As heretofore intimated the right to the exclusive use of trade marks has existed from time immemorial. It is and always has been recognized and sustained by the Common Law, and is not a creature of Statute. In the words of the Supreme Court of the United States: "The right to adopt and use a symbol or device to distinguish the goods or property made or sold by the person whose mark it is, to the exclusion of the use of other persons, has long been recognized by the common law and the chancery courts of England and this country. It is a property right for the violation of which damages may be recovered in an action at law, and the continued violation of it will be enjoined by a court of equity with compensation for past infringements."

Thus a trade mark may be legally recognized and sustained even though not certified as provided for under the Act of 1905, which is the Federal Law under which such marks are registered in the United States Patent Office. But there are certain practical advantages to be attained by such registration, the statute having been designed and passed with the object of systematizing and codifying trade mark practice, and simplifying and rendering more effective the remedies incident to infringement.

For instance, the owner of a trade mark not registered in the Patent Office, in case of litigation relating thereto, must prove priority of use and ownership, which is frequently a difficult thing to do, whereas a certificate of registration issued by the Patent Office is prima facie evidence of priority and ownership, and the owner of such registered trade mark does not need any other than his certificate as evidence to establish the date of his first use of the mark.

Furthermore, if the trade mark is not registered according to Statute legislation relating thereto, it does not come within the jurisdiction of the Federal Courts unless the opposing parties are citizens of different states; and obviously a decision or injunction in a State Court has no force outside of that State, whereas all suits relating to trade marks certified by the Patent Office are within the jurisdiction of the Federal Courts irrespective of residence of parties, and an injunction secured in one Federal Court will be recognized and enforced in the Federal Courts of other States.

In other words, every registered trade mark is a part and parcel of the public records of the nation, is prima facie evidence of ownership, and is enforceable throughout the United States through the medium of the Federal Courts; and the crucial test to which the mark is subject in the Patent Office before the issue of a certificate of registration thereon practically precludes the possibility of error, so that the registrant may safely exercise his rights and prerogatives without fear or favor.

Another advantage of certification of a trade mark by the United States Patent Office is the right to use the words "Registered in United States Patent Office," or the abbreviation, "Reg. U. S. Pat. Off." In fact this is not only a privilege but a necessity, since, if such notification is not used in connection with a trade mark, in case of infringement the owner of the mark can only collect damages from the date of actual notice served upon the infringer.

(Continued on page 794)
Practical Hints

This department is devoted to contributions that deal with new tools, machinery, methods of simplifying different tasks and other similar subjects of interest to the electrician and mechanic in particular, and everyone in general. Contributions to this department should not exceed 200 words. A rough sketch is desirable in instances where the idea will be rendered more comprehensible by its use. All contributions will be paid for at regular space rates on publication.

ADJUSTABLE HANGERS

A hanger of simple construction that is suitable for many purposes, such as to hang prints, papers and various articles of wearing apparel, can be made from a piece of heavy wire and two ordinary spring clothespins.

This wire is placed through the spring coil openings; the clothes-pins then being adjusted to desired positions by sliding them along the wire. The wire is bent at both ends to prevent the pins from coming off.

Contributed by B. W. Verne.

HOW TO SOFTEN PUTTY

Many amateur craftsmen have trouble with putty hardening before they are ready to use it.

There are many ways to soften putty, but after trying most of them I have found that the best way to soften it is by the use of kerosene oil.

To soften the putty take a putty knife or one as near that as possible. Cut the putty into small pieces and then draw the blade of the knife over the putty until it is pulverized.

Now the putty is ready for the oil. Drop a little kerosene oil on it and mix up the putty and kerosene. If the putty is still too hard, add more oil until it can be easily worked.

If the putty is not required for immediate use, it can be placed under water and it will then remain soft and ready for use at any future time.

Contributed by Willard Parsons.

MAKING COIL SPRINGS

In winding coil springs, take two lengths of the wire to be used and wind them on an iron rod that is a trifle smaller than the desired inside diameter of the finished spring. The two lengths are wound side by side. When the winding is completed, the two springs can be untwisted and it will be found that the convolutions are equally spaced.

Contributed by C. J. Sedlak.

TO PREVENT DIRT FROM ENTERING OIL CAN SPOUTS

When working around mills and factories where oil cups and boxes are dusty and dirty, the tip of oil can spoouts

often becomes plugged with grease and dirt.

To remedy this, solder on the spout a small piece of tin or wire shaped as
shown in the illustration. This forces obstructions away from the tip of the spout and thus permits a ready flow of oil.

Contributed by

B. W. Verne.

HANDLING LARGE PLUG GAUGES

Practically all mechanics are familiar with the subject of plug gauges for measuring the diameter of a hole. They are especially familiar with the type shown in Fig. 1, where A is the gauging end ground to the correct size for measuring a bored or reamed hole. Such gauges are sometimes made as limit plugs, in which instance part of the plug will go into the hole and the end nearest the handle will not.

The end B of the plug is the handle and, as will be readily seen, this becomes quite heavy in the larger sizes. To reduce the weight and make the large sized plug gauges easier to handle, the gauge shown in Fig. 2 is far better. It consists of a ring A which is used in the same manner as a plug gauge, and the bar B placed across the end of the ring and used as a handle. Such a plug is much lighter and may be handled more conveniently than the conventional type.

Contributed by

H. M.

A CONDENSER HINT

A very good dielectric for fixed condensers, especially desirable in the receiving wireless apparatus, may be had in photographic films. The use of photographic plates is old but the use of films is somewhat novel. Films may be easily had, they will stand the rough handling in the hands of the experimenter without puncture, are ready for use without further preparation, thin enough to insure high capacity, and have very good insulating powers.

Contributed by

J. L. C.

MAKING TERMINALS

Procure several feet of brass or copper tubing with a bore of ½ inch. Cut this into lengths ½ inch long. These pieces are then annealed in a hot fire and one end pinched together in a vice as shown in the drawing. In pinching the end together a ½-inch steel rod should be placed in the free end to prevent it from losing its shape. A 3/16-inch hole is then bored in the flat end. To remove the black crust left on by the heat, the terminals should be dipped in a solution consisting of one part nitric acid and two parts sulphuric acid.

Contributed by

Ray F. Yates.

TO REPAIR BROKEN LANTERN GLOBES

Quite frequently lantern chimneys become cracked and one or more pieces may fall off. If these are carefully replaced and a coat of white shellac applied over the cracks while the globe is still warm, it will be found that the shellac penetrates between cracks and soon sets, holding the pieces firmly together. Surplus shellac can be removed when dry.

Contributed by

B. W. Verne.
AN EASILY MADE BENCH-DRILL

The bench-drill described below was made by the author after repeatedly breaking small drills, when drilling by hand. The time and effort saved by using one of these tools more than make up for the trouble involved in building one. It was built from odds and ends I found about the house and the cost is next to nothing, with the exception of the drill which must be purchased. I used a conventional type of hand-drill costing $1.50 and accommodating...
drills from 0 to 3/16 inch. Obviously a larger drill can be used to suit the builder.

First build up the column and slide preferably of hardwood, although the writer made his of whitewood, which is amply strong for this purpose. Fig. 3 is a section of the column and shows the construction of the slide, but it can be made either as shown or of a bevel form. The square form was chosen for this drill as it is rather easy to build. The block A, fig. 3, should be securely fastened by long screws to the slide and bored for a 5/16-inch by 3-inch bolt with large washers on each end. All parts of the column should be glued and screwed together, especially the head and base, where the greatest strains occur. If figs. 1 and 2 are followed closely, no trouble will be experienced on this part.

Next, file or turn two washers 1 1/2 inches diameter and drill a 3/4-inch hole through each. Also drill and countersink three 1/4-inch holes and rivet these washers to head of column. Then procure a piece of 3/4-inch diameter soft steel rod and thread it for 4 inches on one end and file the other end square to readily turn it into the drill. The writer took a handwheel from an old 1-inch valve, which had a 1/2-inch hole in it. He then secured a 1/2-inch cap screw and sawed off all but 1/2-inch of the head and drove it into wheel and pinned it tight. It was then drilled and tapped 3/8-inch and it made an ideal feed for this drill. The builder can dispense with the handwheel and use the lever, but it is best to have both as it is so much easier using the wheel for feed and the lever for quick return.

Now take the hand-drill and unscrew both handles; mounting it in the frame since the rest of the drilling can be done with it.

Just above the chuck will be found a turned place which comes about right to put an extra support on the drill, thus serving to steady the drill quite a bit and taking considerable strain from the block. It is rather a hard piece to construct unless one has a good heavy vise, but is well worth the trouble of making. It is best to make it a little short from the center of drill to the bottom of the feet and then shim it up so as to get the drill perfectly vertical. It is clamped with a 1/2-inch bolt to the drill and an oil hole is drilled right through both, first taking out the spindle.

Next comes the handle which is bent up from 1/4-inch x 3/4-inch band iron and no great difficulty will be experienced with this part. A slot 1/2-inch long should be cut on each side where the screws are, as there is a sliding action here when lowering and raising drill to and from the work. If the handle is used exclusively for feed, it is best to fit a wooden handle on the end.

If the drawings are followed closely no difficulty will be encountered in constructing and using this tool. When the drill is needed for larger work it is easily dismounted and ready for use any time by screwing on the handles again. The writer has under construction an easily made vise built of soft 3/4-inch iron, which screws onto the base. At a later date this vise will be described and illustrated.

This drill is an excellent little tool for those having a good deal of small drilling and tapping to do. It will be found exceedingly handy for starting and tapping small holes. Without a vise of some sort it is rather difficult to hold small irregular pieces and for this rea-
son a vise is recommended for use in connection with the drill.

Contributed by

H. L. Dearborn.

CUTTING GLASS DISCS

The cutting of a glass disc has always presented more or less of a problem to the average experimenter, and yet it is a simple operation if the following method is employed.

Glass may be cut with an ordinary pair of stout scissors. This may seem impossible, but nevertheless it is readily accomplished, and the only requisite for success besides the scissors, is a basin of water. Hold the plate of glass, which must not be heavier than ordinary window glass, under the water and cut around the edges with a pair of scissors until the glass is of the size and shape desired. This method is not intended for halving a plate or cutting off a large piece, because the glass cut away is, as a rule, reduced to fragments. But this method is quite safe since the main part of the glass will never fracture, providing not more than half an inch or so of the edge is cut away at a time.

Contributed by

C. W. Schwartz.

LACQUERING BRASS

Properly lacquered brass lends a most pleasing appearance to any finished instrument. I have found through experience that if the lacquer is not properly applied, in time it becomes dark and chips off. This is very discouraging, for it necessitates sandpapering off the old lacquer and applying new lacquer, which will not last any longer than the first coat. All this trouble can be avoided in the first place if the lacquer is properly applied. Below is my hard-earned experience in this line.

First, the brass must be given a fine polish. While there are several ways of producing a suitable polish, I find the following very simple:

To begin with, cut from some coarse-grained wood a circle about 10 inches in diameter. Through the center put a $\frac{3}{4} \times 5$ inch bolt. Next, heat some carpenter's glue and apply a thin, even coat to the surface of the wood. Sprinkle some very fine carborundum dust on this and stand away to dry. After the coating is dry place the circle in the chuck of a lathe and, with the lathe running at high speed, hold a piece of steel against the wheel until the surface becomes quite smooth. After this, the brass may be polished without producing deep scratches in the surface. Round pieces of brass may be polished in the lathe by holding a piece of fine carborundum cloth tightly around it. After the brass is polished, avoid touching it with the fingers, as it leaves greasy spots. Next, place the brass in a clean iron vessel and heat gently. The lacquer is then applied in a thin, even coat with a camel-hair brush and the work set away in a dustless place to dry. The brass is heated for the purpose of expelling all moisture.

Contributed by

Ray F. Yates.

A SIMPLE METHOD OF REPAIRING TIRES

The little tool shown in the accompanying illustration can be used to good advantage in plugging holes in pneumatic tires.

From a piece of stiff sheet steel, cut out the design shown in the sketch. Although sheet steel is preferable, any other metal will do. Several rubber bands are fastened on the tool as shown in the illustration. As many rubber bands should be used as are necessary to equal the size of the hole to be plugged. The tool is then dipped in rubber cement and placed in the puncture. The rubber bands are unhooked from the arm and the tool removed. After the cement has dried, the plug can be trimmed and the tire is again ready for use.

Contributed by

W. J. Goreham.
HIGH FREQUENCY CURRENT APPARATUS

A Series of Articles Covering the Theory, Making and Operation of High Frequency, X-Ray and Ozone Apparatus

By Frank Brewster

CHAPTER V—HIGH FREQUENCY TRANSFORMER

Apparatus for the production of Tesla, Oudin or D'Arsonval high frequency current for electrotherapeutical purposes is not very hard to construct and requires but little material in its makeup; the prices asked for this class of instruments, however, remaining high, as usual.

For those who already have an X-ray machine of the induction coil or transformer type, the following small-sized high frequency transformer, suitable for light treatment work, will be found quite efficient and is the same as those furnished with all X-ray generators as an accessory.

The coil is of the Tesla transformer type, air-insulated, having a primary of few turns of well insulated wire wound on a fibre or glass tube, and a secondary coil of several hundred convolutions of fine silk-covered wire, each coil consisting of but one layer only.

An idea of the construction of the coil will be had from Fig. 23, where T is the regular induction coil or transformer; S G a spark gap made out of two ½-inch zinc or brass rods; C1 and C2 Leyden jar condensers of about ½ gallon capacity each, or a condenser composed of twelve 16 by 19-inch glass plates with 10 by 13-inch tinfoil on either side, may be substituted for each jar. H F is the high frequency or Tesla coil, P1 and P2 representing the terminals of the primary or outer winding, while the secondary or inner coil ends are at S1 and S2. The primary winding is formed of a stiff paper or glass tube 12 inches long and 6 inches in diameter, with a layer 10 inches long of No. 14 rubber covered wire, of about ¼-inch diameter, similar to that used for electric light wiring. The secondary coil consists of a 12-inch layer of No. 31 or 32 B & S., double silk-covered magnet wire on a fibre or paper tube 12 inches long and 4 inches in diameter.

The current charges the condensers, which discharge across the spark gap in the form of a short, fat, blue-white spark, and this action, coupled to the capacity effect of the Leyden jars and the inductance of the Tesla coil primary, causes oscillations of extraordinary high frequency to be set up and sent surging back and forth through the circuit comprising the spark gap, condensers, and Tesla primary; this circuit being termed the closed oscillating circuit.

The potential is raised to a very high value also, due to the transforming action in the Tesla coil; one coil having many more turns than the other. The
electro-magnetic action in this case takes place through the air, no iron being used as it could not reverse its magnetic polarity quick enough.

The current produced at the secondary terminals of the Tesla coil is thus a very high frequency, high potential one, but is harmless and can be handled as safely as the current from a few dry cells. The voltage may be half a million or more, but the discharge can be taken through the body without harm, as these high frequency currents usually oscillate with a frequency of a million or more cycles per second, and for this reason they only travel over the surface of any body they pass to, possessing the phenomenon technically known as the "skin effect," that is, they are surface currents.

If the output of an X-ray machine were to be taken by a person as it came from that machine—even though the potential were a million volts—the frequency would be but 60 or 120 cycles per second and the result would be instant death. On the other hand, if a suitable high frequency set is employed, it is possible to take the whole output into the body, as when using the auto-condensation couch.

Such is the nature of the electrical current made use of by those giving demonstrations and lectures, some of whom delight in mystifying the uninitiated of their audience by loudly proclaiming that they pass half a million or more volts through their body. But if they didn't lower the frequency by lengthening the spark gap, as they most always do when the committee gets near enough, any one could duplicate their little stunt.

The figures given below are for a large sized Tesla coil used by Prof. H. La V. Tinning. It is possible to produce high frequency sparks 36 inches long with this coil when excited by only a 1-kw. transformer, the secondary voltage of which does not exceed 20,000. If it is used on a high voltage X-ray machine, its potential should be lowered by cutting in sufficient primary inductance.

Looking at the sketch Fig. 24, T C is the 36-inch spark Tesla coil; C a glass plate condenser, and S G the spark gap. The primary of this coil is of 10 turns of No. 5 B. & S. spring brass wire or No. 4 aluminum wire, wound on a wooden cage 23 inches outside diameter, and 10 inches long, spacing the turns 3/4-inch apart.

The secondary drum is built up of light wood strips and then covered over with a layer or two of stiff paper or thin
fibre. On this the single layer of wire comprising the secondary coil is wound. The dimensions of the drum are 11 inches inside diameter and 48 inches long. The secondary wire is No. 24 B. & S., single cotton covered copper, wound on evenly, there being 900 to 1,000 turns in all, leaving a space between every turn equal to half the thickness of the wire.

The condenser is built up of 40 glass plates 16 by 19 inches, coated on both sides with tin or aluminum foil 10 by 13 inches in size, connecting every other foil leaf to opposite terminals; half the leaves connecting to one terminal and half to the other terminal.

The connections for this set are indicated by the diagram, Fig. 24. In operating it, the primary inductance of the regular transformer, the length of the Tesla primary spark gap, the number of condenser plates in circuit and the number of turns of Tesla primary cut in, should all be varied one after the other, until the maximum effects are attained.

A rotary spark gap will much enhance the operation of any high frequency set, as it prevents the arcing and hissing at the spark gap, due to the heating effect of the discharge. Details for the construction of a satisfactory rotary spark gap are given in the following chapter.

The large Tesla coil may be used as an Oudin Resonator, by simply changing the position of the primary coil to one end of the secondary cage, instead of at the centre, and connecting the bottom turn of the primary and bottom turn of the secondary together, as shown in Fig. 25.

A slight alteration in the dimensions of this coil produces a very good Oudin transformer. The primary coil and cage remain the same, but the secondary drum is made only 36 inches long and the same diameter as before. The secondary winding consists of about 1,000 turns of No. 26 or No. 27 B. & S., single cotton covered wire, spacing the turns so they do not touch, as explained before. The regular Oudin connections are followed, as in Fig. 25.

A commercial type of Oudin coil for heavy duty is illustrated in Fig. 26, which serves as a generator of proper current for auto-conduction, auto-condensation, etc., and is equipped with a muffled spark gap and Leyden jar condensers of about 1 gallon capacity each, these being substituted if desired by a bank of 30-35 glass plates, coated with 10 by 13-inch foil leaves on both sides, the glass being 16 by 19 inches. This

(Continued on page 784)
THE chifforobe is designed especially for one whose room lacks closet space, as it takes the place of both a clothes closet and a chiffonier. The top shelf on the left-hand side is for hats. The two small drawers underneat are for ties, collars and other small articles, while the compartment at the side of the small drawers will be found handy for brushes, etc. The remainder of the compartments on the left-hand side are to be used for drawers, wherein will be found ample room to keep quite a supply of clothes. The lower space on the right-hand side is for shoes and house slippers, while the rest of the right-hand side is for the hanging of suits and overcoats. In the illustration, the drawers are not shown in the places designated. On the right-hand side a drawing of the door is shown.

In constructing the chifforobe, first make the two ends. These, it will be noticed from the drawing, are paneled. Get out the stock for both ends at the same time to insure accuracy in securing all corresponding pieces the same length. Groove the inside of the posts and rails, to receive the panels, on a circular saw if possible; if not, use a grooving plane. For the panels, use—if it can possibly be obtained—the veneered or glued stock that is employed in the construction of doors. This will not split or warp as in the case of single thickness wood. If oak is used in the construction of the chifforobe, the cost may be cheapened by having oak simply on the outside of the panels and soft wood on the inside. The joints between the rails and the posts may be either doweled or mortised and tenoned, as the maker may choose. To make a success of this paneling be sure that all joints fit snug; try putting the sides together without glue first. After the clamps are on, be sure the piece is not "in wind."

Next make the pieces for the top and bottom and the partition in the center (see drawing, fig. A). These pieces are not paneled, but simply glued up of ½-inch stock, preferably with doweled joints. These three pieces are each 22 inches wide, and the top and bottom are each 42 inches long, with notches at the corners to receive the corner posts. The top edge should come flush with the outside edge of the rail and should be fastened in place either with round head blued screws from the outside, or nailed with 2½-inch finishing nails and the holes filled up. Be sure that the center partition fits tight in its place.

Before these pieces are put together permanently, however, supports for the drawers must be made and put in position. These might be solid ¾-inch stock, but a frame can be made that will answer the purpose just as well using ¾-inch by 3-inch stock, making them fit tightly between the posts and the center partition. Frames may be made in the same manner for the two small drawers and the adjoining compartments. A solid board must be used for the bottom of the latter. Fasten these frames to the posts with a ¾-inch dowel at each of the two corners, and, after all joints are found to be tight, the frames should be screwed or nailed to the partition. Then make the joints between the posts and the frames. At the same time screw or nail into place the top and bottom pieces, and then nail or screw the partition to the top and bottom pieces.

The next step is putting on the back. For this use ¾-inch or ½-inch pine, matched. Be sure this stock is well seasoned, or the shrinkage will make unsightly cracks. After this has been accomplished, put on the 3-inch piece at the back of the top.

The next problem to consider is the making of the doors. The grooves for the paneling should be ½ inch deep.
It is better to make the doors slightly larger than is necessary, in order that they may be fitted properly. Use double bar clamps for gluing up the doors if possible, to keep them from getting "in wind." In making the doors it is a good plan to groove the stiles the whole length, and make a tenon on the rails to fit the groove; then put 3/8-inch dowels in the end of the tenons. Be sure the glue is absolutely dry before removing the clamps. Wide enough hinges should be used in hanging the doors so that they will swing around far enough to permit the drawers to be pulled out.

The next problem is the making of the six drawers. Fig. B (see drawing) gives the general construction of the drawers and therefore no detail drawing for each one is given. About 3/4-inch stock is thick enough for the front of the drawers, and 3/8-inch or 5/16-inch pine or whitewood should be used for the sides and bottom. In place of putting pulls on the drawers, a curved piece is cut out of the top of the drawer, allowing one to take hold of the drawer front.

After the drawers have been made and fitted, clean the entire piece, sandpapering where necessary, stain, fill, and shellac or wax. Put cupboard door catches on one of the doors and a pull, also a lock, if desired, on the other. Polished steel domes may also be put on the bottom of the posts. Have made at the forge shop, out of 3/8-inch round iron, a sort of hook or support for the coat hangers. This should start 4 inches from the top, at the back, and run parallel to the top for about 18 inches, then be bent at right angles until it meets the top. It should be held in place by two screws at each end.

A TUNGSTEN LAMP RECORD

What is probably a record for a tungsten lamp has been made at the hydro-electric station at Galt, Ont., by one that hangs between the two big switchboards and burns continually for twenty-four hours, day in and day out. This 150-watt lamp was put into service when the department received its first shipment of lamps on March 14, 1912, and it has burned continually since, except when the power was off from the station. Up to April 1, the lamp has burned 17,952 hours, while the estimated life of a tungsten lamp is only from 1,000 to 1,200 hours. The lamp is still giving a good light and there are no signs of it failing.—Jack T. Gillies.

Incorporating all the attractive features of Modern Electrics and Mechanics as well as Popular Electricity, the new consolidated magazine, Popular Electricity and Modern Mechanics will be the greatest magazine of its kind to-day.
AT the meeting of the Institute of Radio Engineers, held on April 1, 1914, in Fayweather Hall, Columbia University, Past President R. H. Marriott presented a paper upon "Specifications for Steamship Radio Equipment." In this he outlined a set of requirements for radio equipment, both main and auxiliary, such as could be demanded by steamship companies from manufacturers of radio apparatus. The specifications were along the lines of the U. S. Navy 16 R 1 type, and were drawn up for an order of 125 sets of equipment (this being the amount that could reasonably be used by the largest of the American steamship combinations). These sets were to give "ample, prompt and correct radio service, for regular and distress use, and were also to be used for emergency lighting of passageways and life boats from the auxiliary power source of the emergency transmitter."

In his paper, Mr. Marriott took up the desired points in each member of the set in close detail, which this space will not permit of printing; these will be given in the "Proceedings of the Institute of Radio Engineers" in an early issue. However, some of the more interesting requirements are cited below, along with some of the matters discussed.

(A) GENERAL REQUIREMENTS:
1. Ample, prompt and correct service at all times shall be assured, both of regular and distress equipment, and of the arrangements for emergency lighting.
2. Simplicity and good workmanship, without ornamentation, are desired.
3. Strict interchangeability among similar parts of all sets shall be a feature; that is, all of the 125 sets are to be made from similar dies, jigs, templates and so on.
4. All parts of the set shall be exposed to view and accessible, wherever possible.
5. Apparatus shall retain its good condition and efficiency when used, at all seasons, between latitudes 45° N. and 45° S.
6. All parts not easily repairable on shipboard shall be furnished in duplicate or more.
7. Apparatus shall produce as little noise as possible when in operation.
8. Sets shall be self-contained so as to give a minimum amount of wiring and installation labor.
9. All parts shall be permanently marked with their electrical constants, such as K.V.A., K.W., V., L., C., etc.
10. Insulation used in various portions of the set is definitely specified.
11. Conductors in high frequency, heavy current circuits shall be silver-plated copper.
12. All contacts shall be soldered, using non-corrosive flux.
13. A tool cabinet, containing ordinary and special tools for use in shipboard repairs, and containing complete diagrams and necessary information about the set shall be furnished. The cabinet shall have a glass front, the operators' licenses being displayed behind the latter, and shall be fixed in a prominent place upon installation.
14. Auxiliary source of power is to be an Edison storage battery capable of supplying the transmitter (operating at full load) for six hours' continual sending; and it shall also be capable of supplying 500 watts for lighting purposes covering a like period. (Note: Before deciding upon the Edison storage battery as an auxiliary power source, Mr. Marriott discussed various other sources, namely: A generator driven by steam, gas or oil engines, or turned manually by members of the crew, and the usual lead storage cells. He gave the disadvantages of these as compared to the Edison battery and decided upon the latter as safest, simplest and most reliable.)

(B) TRANSMITTER:
1. Rating shall be based upon watts present in antenna.
2. Efficiency shall be rated as the ratio of watts in antenna to watts in the motor of the motor-generator.
3. The test for rating shall be carried out in an approved, specified, artificial antenna, in which the energy present shall be at least 1,200 watts at 600 metres wave length.
4. The transmitter shall be capable of continuous operation for six hours, at full load and at all wave lengths.
5. The power taken from the ship's mains shall not exceed 3 KW.

6. Transmitting couplers shall be calibrated for coupling and wave length, and the latter shall be continuously variable from 300 to 600 metres.

7. It shall be possible to change to any one of four wave lengths within 10 seconds, and to do this it shall not be necessary for the operator to leave his seat.

8. Transmitters shall also be capable of use upon 1,600 to 2,000 metres wave length.

9. The tone frequency of spark sets shall range from 800 to 1,200 cycles per second (various tones being assigned to various ships). The design of the set shall be such that a clear note shall not be obtained at just a critical point, but shall be obtainable over a wide range.

10. The sets shall operate properly when fed with any voltage between 90 and 130 volts.

11. A "series condenser" shall be supplied for operation on 300 metres wave length.

12. The power in the antenna shall be variable in five steps (preferably by a loosening of coupling) with a minimum of 50 watts. (The purpose of this arrangement is that at times—at night and in winter—the range of the set is greater than usual, and then less power shall be used. Also, in harbors and places in which full power is unnecessary for communication and in which it would be undesirable, a minimum amount of power shall be used.)

13. Specifications for the low frequency switchboard and instruments are given.

14. Power wiring shall be encased in grounded metal covering, mechanically stronger than lead.

15. Constant amplitude transmitters ("undamped"), when furnished, shall be provided with some arrangement to enable their waves to be received on ordinary receiving sets. Receiving apparatus of such a set shall be arranged for use on either damped or undamped waves.

(c) RECEIVER:

1. The tuner of the receiving set shall be provided with a spring motor for varying wave length continuously from 300 to 600 meters, and also for manual control. At the 600 meter point the motor shall retard for a short space of time.

2. The wave length at various adjustments of the tuner shall be indicated on a scale.

3. The tuner shall be capable of use up to 3,000 meters.

4. One detector, at least as sensitive as perikon and as stable as carborundum shall be provided; the set shall be arranged, however, so that some other detector may be used.

5. Variable condensers shall be of the balanced type, air dielectric.

(D) ANTENNA:

1. With each set there shall be supplied, on the basis of a six-wire antenna:

(a) Two 16-foot steel spreaders.
(b) 2000 feet of phosphor bronze (silicon) stranded wire.
(c) Proper fittings for insulators, lead-ins and so on.

2. Antenna insulators shall be of strain porcelain and shall be so arranged that if they break the antenna shall still be upheld by some metal portion and that breakage shall be such that no large pieces shall fall to the deck (that is, the insulators are to be so designed that they must break into small pieces, if at all).

3. The ground leads shall consist of 1/2-inch cable.

(E) CONTROLS:

1. Control and testing instruments shall be supplied in sufficient quantity to enable rapid and accurate inspection of the 125 equipments to be accomplished. These would include:

(a) Artificial antennae.
(b) Wave meters.
(c) Radio frequency ammeters.
(d) Wattmeters.

A long and interesting discussion followed the paper, in which representatives of steamship and radio companies, as well as Government inspectors presented their views upon the subject. With the exception of minor points, all agreed with the speaker in his requirements.

It was announced that a permanent office of the Institute had been established at 71 Broadway, New York City, to which all correspondence should be addressed in the future.

You will enjoy Popular Electricity and Modern Mechanics for it will contain just the type of articles you have been looking for. With the combined facilities of both Popular Electricity and Modern Electrics and Mechanics, it will be able to give its readers a most interesting mass of articles each month.
CHAOS OR SYSTEM IN SHOP OPERATION
A Cardinal Issue---One Leads to Absolute Failure While the Other Contributes Materially to Success.

By H. W. H. Stillwell

The well-balanced and systematic person delights in law and order wherever he may be. And in no place is this more noticeable or the results more important than in the factory. The difference in various shops is so striking that one who has never actually worked in the shop himself or has little or no knowledge of shop operation can readily see at a glance the difference in the general appearance of things. When one enters the doors of a shop where system prevails, he can readily determine, from the orderly manner in which things are kept and handled, that those in charge are men who know and appreciate the value of systematic operation.

In striking contrast with the foregoing are the conditions prevailing about the slop shop where everything is in chaos. The general order of things about such a plant is very evident in every department—even in the office—and it does not require a very keen sighted person to see that there is not much prosperity for those at the head of the business and the ultimatum is only too evident. It is very strange how many of this type are doing business in this country. As fast as one “goes to the wall,” another takes its place and carries things along in the same carefree, don’t care style until ruin, black and grim, puts an end to the proceedings and the firm is for all time blotted out and plunged into oblivion.

It takes all kinds of people to make up this world and this type is as necessary as any other to compose the great human family. It is nevertheless a pity that things should go on in such a manner when, in many cases, the prospects for the parties concerned were of the most promising and all seemed to point to success.

In these days of strenuous mental, physical and business activity, a man must be in condition to meet any obstacle and conquer it with his superior knowledge and in every way “be on the job.” In the slop shop things are never just ready for anything unexpected—the floor is never swept and when materials or tools accumulate to such an extent that they are in the way, a few well directed kicks spread them about and all is again serene. Hiding places for spoiled work abound and the vexed foreman wonders where certain pieces of work have gone which he has been inquiring after.

The shafting greets the visitor with a beseeching squeak which is echoed in the chafing of a lathe belt on the cone. Some of the belts show gaps or hurried patches across their face—premonitions of sudden partings and telltales of neglect and carelessness. Anything will do in getting the job on hand completed and patching up is a common occurrence.

In machining up work from the rough stock, twice the amount of material is placed in the planer, shaper, lathe or other machine and cut away and wasted. The workmen are lavish with oil and waste, use new files whenever obtainable, throw a broken tool under the bench and if they happen to get hold of a good one it is promptly placed in their private box or drawer and locked up, thereby depriving the company of the use of its tools by this miserly spirit of its workmen. If a planer tool is wanted for a certain size of work, a larger one is often ground down to the required size instead of the workman getting his hammer and going to the forge and making the tool as required for his job. This may also be said of the drills; a new one often being ground to suit some particular job and spoiling it forever for anything else. A 3/4-inch drill may be wanted and one of 13/16 is ground to size. Possibly some workman shortly after this incident will require a drill of 13/16 and none will be available. It is evident that no supply of drills or other tools can be kept on hand and, of course, not in sets. When inventory
In the slop shop, everything is in chaos. The general order of things about such a plant is very evident in every department—even in the office—and it does not require a very keen-sighted person to see that there is not much prosperity for those at the head of the business and the ultimatum is only too evident. Time comes around the proprietor wonders what has become of the sets of drills and the various other tools which he started off with so sanguinely and hopefully the beginning of the year.

In the machine operations, a job that should be done upon the planer is given to one of the workmen to chip by hand because the planer is in use and three or four hours are therefore consumed as compared to a half-hour which would be required if done under proper conditions. A piece of work that should be drilled in the drill press is taken to the lathe because the former is in use. Considerable time and money is wasted in doing the work. There are no proper places for tools or materials about the various departments and valuable tools are thrown about in a shameful manner, in a very short time being rendered worthless for accurate work.

In a certain shop known to the writer, there is no system regarding tools and their arrangement. In the first place there is no proper place for them to be kept, and no person to devote his time to keeping them in order and in good condition. This company spends a vast amount of money each year to supply its workmen with necessary and unnecessary tools and perhaps half of them are confiscated by unscrupulous workmen and appropriated to their own uses. With a small tool room provided with necessary shelves and racks, drawers, etc., and the paying of a man to look after the room, the greater part of this expense would be eliminated and the company would be many dollars to the good each and every year. The management of a company seldom realizes these conditions or they would put a quick stop to them. As it is, inefficiency reigns for years and the management never suspects that such lack of system prevails in its midst.

In a small town in western Pennsylvania there is a certain copper mill which is conducted much along the slop shop rules. This concern handles a great many commutators for various companies and makes them in a variety of shapes and sizes. Many mandrels and arbores are in constant use ranging from a fraction of an inch to several inches in diameter. These tools, instead of having a rack or cupboard where they could be kept according to size and in order, were thrown together in a heap on the floor. In one instance, which the writer chanced to witness personally and has never forgotten, a workman having finished with one of the arbores stood across the room, a distance of perhaps fifty feet, and threw the arbor across to the heap where it landed with great violence against another larger one and crashed down among the others with a clang. Such absolute carelessness is revolting and should merit severe censure from the foreman, or immediate dismissal.

Jealousy is very noticeable among the men in this shop and tale-bearing is constantly carried on among the workmen.

The foreman in charge of the machine shops is a man of very narrow views and one who has had very little practical experience in this line. Foremen are often to blame for conditions that exist in the rooms under their supervision and the management often do not know the actual manner in which things are handled. In the shop referred to previously, there is manifested little readiness among the workmen to assist each other. The man who knows a little more than his fellow, holds on to his knowledge.

In the slop shop, indifference and ignorance go hand in hand. In machining up work from the rough stock, twice the amount of material is placed in the planer, shaper, lathe or other machine and cut away and wasted. The workmen are lavish with oil and waste, as well as with the tools and other shop equipment.
much as a miser clings to his gold. In giving orders, the foreman seems to give them with an air of reproof. This shop is a very good place to take work and get promises for its completion, but when the completed work will be delivered is another consideration.

There are plenty of these slop shops all over the country and although they usually fail after a time, there are new ones starting up all the time and it would seem that the slop shop is probably a permanent institution and a necessary evil.

In arranging the shop, careful consideration is necessary, for the machinery and tools should be arranged with a view to the least possible handling of the material during the various operations. A good example of this arrangement can be found in many of the great steel mills through various parts of Pennsylvania; the iron comes to the mills in the form of "pigs" and is converted into steel, then rolled into rails, plates, sheets or any desired shape; the various operations being arranged in succession, the finished product coming from the opposite end of the mill from where the raw materials entered. This systematic handling of materials in the manufacturing operations causes a vast saving in time and money to the company and the running about of the various employees from machine to machine or department to department is eliminated.

In operating a machine shop economically the head of the department must be a conscientious and systematic man who will have the company's welfare at heart as well as the men's. A foreman who will conduct the business under his charge in the proper manner can easily save the company many thousands of dollars in a year and vastly improve the conditions under which the men labor.

The character of the foreman has a very marked influence upon the men under him. In a way, the men look to the foreman as an example and he should therefore try to conduct himself in the best possible manner. A foreman should realize that his workmen are entitled to his respect, and he should conduct himself in such a manner that when he moves about among his men they will feel in duty bound to show him all the courtesy usually accorded such a position. His personal habits should be such that may with profit be imitated by every man in the shop. If one of the workmen should get into trouble over a piece of work, a kind and sympathetic foreman will consider whether reprimanding is necessary and will help him out of the difficulty with well directed advice. It is too often the case that a foreman, after some little wrong on the part of his man, will reprimand him sharply or go beyond all bounds using language which should never be tolerated under any consideration and thereby losing, to a great extent, the respect of his employee. A foreman should consider what kind of language

(Continued on page 782)

The model shop, on the other hand, is an exponent of present-day efficiency. Take, for instance, the system employed in many of the great steel mills in various parts of Pennsylvania. Here the iron comes to the mills in the form of "pigs" and is converted into steel, then rolled into rails, plates, sheets or any desired shape; the various operations being arranged in succession, the finished products coming from the opposite end of the mill from where the raw material was entered.
In this issue—by the way, the last that will be published under the name of MODERN ELECTRICS AND MECHANICS—there are many articles of timely interest. To begin with, the article on the power houses in the Sierra Nevadas that are furnishing power and light to Los Angeles should prove of interest. This gigantic hydroelectric undertaking, which has recently been finished, presented a serious task to the engineers and workmen. Owing to the present-day interest in the Panama Canal, the undertaking described in our article has been somewhat overlooked, although it is a momentous triumph of modern engineering. Another similar article is that covering a few features of the Vaterland—the new monster ocean liner that will shortly make her first trip.

Our mechanical readers will certainly feel that they have been well remembered in this issue. There are numerous articles of particular interest to those who read Modern Electrics and Mechanics for its mechanical features. There is the article on how to build a small cannon, another on the construction of a small drill press and several others in the Practical Hints columns. Then again, the excellent treatise by Mr. H. W. H. Stillwell covers at length the proper management of a machine shop. This last article will undoubtedly contain much food for thought for anyone connected with a machine shop. And even for the average reader, it will prove interesting reading, for system is necessary in every line of industry if the maximum success is to be attained.

The wireless features are headed by Mr. Alfred C. Pickell’s article that was heralded in the May number. In his essay on “Do Radio Ghosts Exist?” he has brought forth many new points—not alone in radio communication but also in the study of sound waves. The other wireless features would be worthy of comment if space permitted.

There are many other articles which would certainly deserve passing comment if space permitted. Many of these are short and to the point, accompanied by one or more illustrations that aid in telling the story.

It is evident, unfortunately, that some misunderstanding exists among some readers as regards the Questions and Answers department of Modern Electrics and Mechanics. Let us talk it over and make it clear just what the Questions and Answers department does. To begin with, all questions sent in that are deemed of sufficient general interest to all readers are answered in the columns of that department at the first available opportunity. It should be borne in mind that questions cannot always be answered in the first issue after they have been sent in. If immediate answers by mail are desired, a fee of 50 cents is charged to partly defray the expenses. This fee also applies to the answering of questions that do not prove of general interest to all readers.

Our next issue will be the first one of the new consolidated magazine, Popular Electricity and Modern Mechanics. This magazine is the result of the merging of Popular Electricity and the World’s Advance and Modern Electrics and Mechanics. The combined facilities of both these well-known publications will enable a larger, broader and far more interesting magazine to be published.

The first issue of Popular Electricity and Modern Mechanics will be replete with absorbing articles—the kind that you cannot stop reading until you have reached the last line. Readers of a popular turn of mind will find a collection of scenes depicting the latest inventions, discoveries and applications of science, both in the United States and throughout the world.

But we will not stop here. The electrical, mechanical and wireless features of both Popular Electricity and the World’s Advance and Modern Electrics and Mechanics will be preserved and continued in the new consolidated magazine. Indeed, with the larger size of the publication it will be possible to furnish more of this material than in the past.

We made good our numerous promises to the readers of Electrician and Mechanic and Modern Electrics. Modern Electrics and Mechanics has made many new friends and has retained practically all the old readers of both publications that were merged. The new consolidation will result in still greater success—one that will thoroughly eclipse the former one. Watch the first issue of Popular Electricity and Modern Mechanics!
50c A WEEK

This seven-volume set of electrical books—just now offered at a discount of almost 50% and on the easiest of easy payment plans—will be sent, express prepaid, for seven days' free examination; returnable at our expense. Send no money—simply fill out the coupon and we will send you the most complete and up-to-the-minute reference work of its kind ever published. You will receive this library as recognized as a standard reference work by technical schools, libraries and practical men throughout the country.

The American Technical Society's Cyclopedia of
APPLIED ELECTRICITY

Contains 3,300 pages, 7x10 inches; 2,600 illustrations, full page plates, diagrams, etc.; hundreds of valuable tables and formulas; carefully cross-indexed for quick, easy reference. The books are substantially bound in half red morocco, gold stamped, and are printed in large clear type on superfine quality paper.

Important Subjects Covered by These Great Books

Get These Books at Almost Half Price

The complete seven volumes, not a sample volume, will be sent, express prepaid, for seven days' free examination; returnable at our expense if the books do not contain the information you want. If you keep them, pay $2.00 seven days after receipt and then $2.00 a month—50c a week—until you have paid the special introductory price of $10.00. The regular price of this great Cyclopedia is $35.00. Just fill in and mail the coupon. It won't cost you a cent to examine the books. We know they'll be worth many times their cost to you. Mail the coupon now and you'll receive your books promptly.

$12.00 Consulting Membership Free

With every set is included a year's Consulting Membership, regular value $12.00, entitling you to the free advice of a staff of Electrical Engineers. This will give you practical help in handling working problems which are too specific to be taken up in detail in the Cyclopedia. There will be no limit to this service. A single problem solved for you might be worth more than the first cost of the books.

AMERICAN TECHNICAL SOCIETY
CHICAGO, U. S. A.

When writing, please mention "Modern Electrics and Mechanics."
COULD YOU BLAME HIM?
First Passenger—Sir, I fancy your mother over there has a touch of seasickness; perhaps you’d better look after her.
Second Passenger—The lady is my mother-in-law.
First Passenger—A thousand pardons.—New York American.

A TRAINING SUGGESTION

It is hard work to keep Will Getsoused in training. This pugilist is too lazy to exercise—

—unless ingenuity is employed.—Le Pele Mele.

HE PROBABLY DID
“T saw my boyhood chum to-day, the one that has become a millionaire.”
“Did he recognize you?”
“I guess so. He turned a corner when he saw me coming.”—Houston Post.

A CAUTIOUS GREETING
Pat—That McGinty is a fine fellow.
Mick—Is he?
Pat—He is, indeed. Great friend of mine. He wasn’t satisfied wid shaking wan hand.
Mick—No!
Pat—He grabbed both my hands—fine fellow—grabbed both my hands.
Mick—Yis, I suppose he thought his watch and chain would be safer that way.—Chicago Ledger.

SHE FOLLOWED INSTRUCTIONS
A teacher in a large city school sent one of her scholars to buy a pound of plums from a fruit vender on the street, and as she handed the little girl a dime she said:
“Be sure, Mary, before buying the plums to pinch one or two, just to make sure that they are ripe.”

In a little while the child returned with flushed cheeks and a triumphant look in her eyes.

Handing the teacher the bag of plums, she placed the dime on the desk and exclaimed:
“I pinched one or two as you told me, and when the man wasn’t looking I pinched a bagful.”—National Monthly.

A FOOL THERE WAS
Howard—A fool and his money are soon parted.
Mrs. Howard (clapping her hands)—Oh, John! How much are you going to give me?—Life.

HARD LUCK
First Lady—Too bad! Mrs. S. always has such abominable weather for her afternoon teas.
Second Lady—Yes; she never pours but it rains.—Tit-Bits.
Sweeney Says: "I Can Teach You the Automobile Business in Six Weeks by Actually Working on and Driving Cars."

$80 PER MONTH UP IS EARNED BY TRAINED MEN. If you drive, repair, sell cars, manage garages, or make yourself a competent mechanic, no business in the world offers greater opportunities. Millionaires like Ford rose from the ranks.

THE SWEENEY SYSTEM OF PRACTICAL INSTRUCTION has made this school one of the largest, finest, most completely equipped in the world. WE TEACH EVERY BRANCH OF THE BUSINESS—electric starters, traction engineering, trucks every morning and afternoon. THERE IS NOTHING QUITE LIKE THIS SCHOOL IN THE WORLD. It Makes Young Men Successful. Learn the opportunities before you.

WRITE TODAY For full information about this school, how you can become a successful business man, and full details about the opportunities in this business. FREE

SWEENEY AUTO SCHOOL 1205 Fifteenth St., KANSAS CITY, MO.

$250 00 A MONTH REPAIRING TIRES

Be first to enter this new big paying business in your town. Open your pocketbook. Get the dollars pouring in. Act quick. Automobile business growing fast. Each Auto Sold Means More Tires to Mend. Enormous field for tire repairing. Punctures and blowouts are common. Tires need retreading and vulcanizing. Something going wrong all the time. Thousands forced to buy new tires because they can't get old ones fixed. Think of the old bicycle days—repair shops on every corner. A fling making money a busy day and night. Autos make same proposition over again—on a ten times bigger and better. Users of Haywood Tire Plants are making big money. Johnson, Tex., writes, "I made as high as $18 profit in a day because they don't get old ones fixed. Another man who bought a plant September 13th, writes he has cleared over $3,000.00. Be the first to start. Experience unnecessary. You learn quick. Simply follow directions. Business comes fast and easy.

Repair Tires at Home Young reformer father's tires—get the money he pays a garage man. Get the neighbors to work. Auto owners—repair your own tires—save money—have obsolete tires for your own use.

Send today for catalogue explaining wonderful money making possibilities in this field.

HAYWOOD TIRE EQUIPMENT CO.
722 Capitol Ave., Indianapolis, Ind.

Learn the Auto Business

Earn a Splendid Salary

By practical experience we train you for a good position as automobile mechanic, salesman or chauffeur. $500 graduates are earning big salaries. Complete training in 4 weeks, including extensive practice in repairing and driving high powered cars. Tuition and board reasonable.

Send today for catalog M and list of graduates

Cleveland Automobile School
2340 Euclid Ave.
CLEVELAND, OHIO

Fire-Proof, Ready-Made Garage, $49.50

Genuine "Edwards," Ready-made fire-proof garages give protection from rain, snow, fire, thieves and joy riders; save big garage bills. Quickly set up any place. Direct from factory prices—$49.50 and up. Postal brings illustrated 64-page catalog.

THE EDWARDS MFG. CO. 747-757 Egleston Ave., Cincinnati, Ohio

SCHOOL OF AUTOMOBILING

Learn to drive and repair automobiles and prepare yourself for a good paying position. Our practical course enables you to qualify yourself in a short time. Day or night school. Write for free Booklet M.

NORTHWESTERN MOTOR INSTITUTE
2807 Wells St., Milwaukee.

Real Bargains for Wise Buyers

Presto-O-Lite "B" 40 hour gas tanks, 50 more, our special cut-price only $13. Motorcycle 40 hour size tanks, regular price $10, our special cut-price only $7.70. All tanks are new, filled, complete. Patent burner cleaner free. Send postal or express money order.

CUT-PRICE GAS TANK SALES CO., Milwaukee, Wis.

When writing, please mention "Modern Electrics and Mechanics."
THE NEW CABLE TELEGRAPHY

(Continued from page 738)

The new cable telegraphy is now in common use and is proving of great value in telegraphic communication. The principle of the drum relay for relaying purposes is clearly evident. Where, for instance, the Picard method is used, in which the sending end of the cable is insulated from earth during the interval between the sending out of alternate impulses, the cable will remain charged positively or negatively for a considerable time after the sending key is depressed, or released, respectively. Accordingly, inasmuch as the cable is prevented from getting rid of its charge, the lever of the receiving relay will remain in contact with the marking segment of the relay a greater length of time than it would were the cable allowed to discharge immediately upon the removal of the battery at the sending end. Naturally, in due time, the charge is dissipated; but it is found in practice that the relay pointer does not return to the insulated segment of the drum within the period necessary to register the longest dash required in forming the telegraphic code. When the sending key is released, however, a minus impulse is sent into the cable which quickly terminates the marking current and returns the relay tongue to the non-marking position. With Picard transmission, obviously the drum needs but two segments: one metallic segment for marking, and one insulating segment for spacing.

Where the Gott system of transmission is used, the three section drum is necessary, for, as previously stated, each element of a letter is made by an impulse having the opposite sign to that of the element preceding it. And it is true that with this method of transmission also, holding the sending key down (as in making a dash) keeps the cable charged, thereby prolonging the excursion of the tongue of the relay to the right or to the left on the surface of the drum. In this case, releasing the key simply permits the cable to discharge to ground at the sending end, the result of which is that the relay tongue at the distant end quickly returns to the center or non-marking segment of the drum. As the next impulse transmitted is from the opposite battery pole, the relay tongue is moved into contact with the marking segment of the relay opposite to that...
GREAT BOOKS

How To Study Law
How To Study Music
How To Become a Stenographer
How To Learn Photoplay

Take Your Choice of one or more of these interesting books, without any out-of-pocket cost or obligation. The National Education Bureau puts ambitious women in touch with the best home training available—without charge. These four schools have been investigated and found to be each the best of its kind. Send coupon today. The book is free. Find out how to get in the $3,000 class.

How To Learn Photoplay

A GOOD POSITION

with UNCLE SAM is most desirable. Life positions, pleasant surroundings, good pay, steady work, short hours, promotions. Both sexes. No political pull. Thousands of appointments yearly. Most thorough preparation returned if not appointed. Full information and questions used by the Civil Service Commission Free.

AMERICAN CIVIL SERVICE SCHOOL, WASHINGTON, D.C.

DRAFTING AND DESIGNING

EARN $125—$150 MONTHLY

We are practical and expert draftsmen ourselves, and can impart our knowledge to you. Our methods of teaching are different. We give practical, actual drafting room experience. Are you ambitious to earn more money? If so, write for description of catalog. Books and tools free to students.

BE A SIGNAL ENGINEER

BE A SIGNAL ENGINEER

SIT AT THIS TABLE AND EARN $200 A MONTH

The training for this line of work is given in the Chicago branch of the School. The course is short, lasting only a few weeks, and the pay is high. The School has a large staff of expert instructors and is well equipped with modern apparatus. The course is open to all persons, regardless of age or previous training. Applications are invited from both men and women.

Sit at this table and earn $200 a month. Learn to be a draftsman. We will show you how you can do it. We train the men who know. We will give you just the training you need in your own home during spare time. Write Today. The book is free. Find out how to get in the $3,000 class.

LEARN TO PITCH

LESSONS BY "MATTY," ED. WALSH, "DOC" O'KEANEY AND "SNIPER" RUCKER, "SMOKEY JOE" WOOD.

Taxidermy Book FREE.

When writing, please mention "Modern Electrics and Mechanics."
previously engaged; but whether this impulse is required to register a dot or a dash is, as in the former case, determined by the length of time the sending key is held down.

In view of the foregoing it is apparent that the "Cable Sounder System," as it is popularly called, is dependent upon the employment of new transmission systems and new types of receiving instruments.

It is not to be supposed that cable experts agree that no further improvement is possible. Indeed, there are at the present time many well-known electrical inventors engaged in this line of development. A list of the names of those engaged in the work would include the following gentlemen: Messrs. Taylor and Dearlove, associated with Mr. S. G. Brown; A. W. Sharman, Mr. Orling, J. E. Huertley, M. A. Turpain, and K. Gulstad.

Mr. Huertley has brought out a relay in which the moving element controlled by the suspended coil, in its movements to and fro directs an air blast upon two "hot" wires, thereby varying the electrical resistance of local circuits of which these wires form parts. Reports of the operation of this relay indicate that it is quite successful.

In the Orling receiving relay, the usual suspended coil has a bifilar semirigid suspension, the tension of which is adjustable, allowing a very limited movement only of the moving coil.

Attached to the coil and projecting away from it, there is a fine wire .001 inch in diameter. This fine wire, or rod, which is deflected to the right or the left in unison with like movements of the suspended coil, is called an "interceptor." A minute stream of acidiated water is projected downward from a jet situated above the interceptor. The .001 inch interceptor wire projects through the center of the stream; the slightest movement of the former being sufficient to deflect the stream from its directly downward path causing it to impinge upon two fine platinum contacts, thereby completing a local battery circuit which may include a reading sounder or a repeater transmitter. The acidiated water junction between the platinum contacts is of such small section that only a current of 8 or 10 milliamperes
The Rise of a Man Who Wouldn’t Stay Down

Hard work and low pay are for the man who thinks he “hasn’t a chance.” But the ambitious man trains himself for a better job—and gets it.

Only a few years ago the man whose rise we picture here was working 12 hours a day for 7 days a week. But he made up his mind to train himself for something better. He marked and mailed just such a coupon as you see below. He studied at home. His earnings increased. He was made Foreman. And now he is Chief Engineer.

This man had no advantages that you don’t have. His education was poor. His spare time was limited. And he lived a thousand miles from Scranton. But with the help of the I.C.S. he has “made good.” YOU can do the same in the line of work you like best. If you can read and write and really want to make something of yourself, the I.C.S. can help you.

Mark and mail the attached coupon. It won’t obligate you in the least—and the I.C.S. will show you how you too can rise to a high-salaried position through their simple and easy system of home instruction.

Take the First Step Toward a Good Job TODAY

INTERNATIONAL CORRESPONDENCE SCHOOLS
Box 992, Scranton, Pa.
Please explain, without further obligation on my part, how I can qualify for the position before which I have marked X.

<table>
<thead>
<tr>
<th>Electrical Engineering</th>
<th>Mechanical Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Lighting</td>
<td>Mechanical Draftsman</td>
</tr>
<tr>
<td>Electric Railways</td>
<td>Shop Foreman</td>
</tr>
<tr>
<td>Electrician</td>
<td>Concrete Construction</td>
</tr>
<tr>
<td>Electric Car Running</td>
<td>Architect</td>
</tr>
<tr>
<td>Dynamo Foreman</td>
<td>Contracting and Build’g</td>
</tr>
<tr>
<td>Wireman</td>
<td>Architectural Draftsman</td>
</tr>
<tr>
<td>Mining Engineer</td>
<td>General Illustrating</td>
</tr>
<tr>
<td>Telephone Expert</td>
<td>Chemist</td>
</tr>
<tr>
<td>Surveyor</td>
<td>Bookkeeper</td>
</tr>
<tr>
<td>Automobile Running</td>
<td>Advertising Man</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Civil Service Exams.</td>
</tr>
<tr>
<td>Poultry Raising</td>
<td>Salesmanship</td>
</tr>
</tbody>
</table>

Name ____________________________

St. and No. __________________________

City ____________________________ State __________________________

Present Occupation __________________________

When writing, please mention “Modern Electrics and Mechanics.”
LEARN TO FLY

Big two-foot Bleriot Monoplane. Latest model, knocked down, packed ready for mailing, with blue print and complete drawings for assembling, with wheels and propeller.

This Model is usually sold by dealers for $2.00. Boys all over the country are having barrels of fun with them. For good, wholesome amusement there is probably no flying device more entertaining and that will afford more fun for the boys and grown-ups than this pleasing toy. Guaranteed to fly or money refunded.

Sent prepaid on receipt of price, $1.00.

Model Flying Machine Company
815 Reliance Building
NEW YORK CITY

MAIN LINE RADIO CLUB

A recent meeting was held at the home of Mr. G. A. Pool, 143 E. Montgomery avenue, Ardmore, Pa., on March 28th, 1914, for the purpose of organizing a club on the main line of the Pennsylvania Railroad. The object of this club, known as the Main line Radio Club, is the advancement of all things pertaining to radio communication. The following officers were elected: H. Skinner, president, and G. A. Pool, secretary and treasurer.

The secretary will be pleased to hear from all who are interested in wireless telegraphy within range of Ardmore, Pa.
"Enjoy a trip to Foreign America"

12 DAY ALL EXPENSE $60.00 UP

Seeing the Wonderful Northlands and Foreign America including all essential expenses, visiting HALIFAX, NOVA SCOTIA, the land of Evangeline, and ST. JOHNS, NEWFOUNDLAND, the Norway of America.

This cruise to these foreign lands on the new steamships "STEPHANO" and "FLORIZEL" of the

Red Cross Line

will prove the most novel, delightful and health-giving vacation you ever experienced. The foreign cities of Halifax and St. Johns, with the beautiful Nova Scotia and grand Newfoundland scenery, are sights never to be forgotten.

The ships are built especially for tourists; are fitted with every modern device to insure safety and comfort.

Splendid cuisine, orchestra and sea sports. You spend 7 days at sea and 5 days in port, giving ample time for sight-seeing. No hotel bills or transfers. You live on the ship. Send now for handsome booklet.

Reduced rates for superior accommodations in May and June.

BOWRING & CO., 17 Battery Place, New York

When writing, please mention "Modern Electrics and Mechanics."
ELECTRICAL

including Mathematics, Steam and Gas Engines, Mechanical Drawing, Shop Work, and Electrical and Practical Electricity, in all branches. Students actually construct dynamo sets and wiring, and test efficiency of electrical machinery. Course, with diploma, complete.

in one year

For practical young men with limited time. 2nd year opens Sept.

782 MODERN ELECTRICS AND MECHANICS
Vol. 28. No. 6

CHAOS OR SYSTEM IN SHOP OPERATION

(Continued from page 771)

he employs among his men, for the use of
profanity not only creates an enmity
between the foreman and his workmen,
but also destroys the ambition and in
terest which the latter should manifest
in their work.

A foreman should be systematic and
wherever a standard or a certain routine
can be applied to any branch of the
work, it should be done. In the care of
tools, he should use his best judgement
and should have a toolroom of sufficient
capacity to accommodate the tools in his
charge and if the shop is not large
enough to make it necessary to employ
a man to see to the toolroom, the fore-
man should carry the keys himself and
see to it that his men return tools bor-
rrowed for their work. A checking sys-
tem is of great convenience in locating
tools when out on the various jobs and
the tools can then be charged up to the
account of the man using them. When
a foreman gives a piece of work to a
mechanic he should first consider wheth-
ether the man in question is as well fitted
for the job as some other workman, but
when he once places the work, if the
man is capable of doing it, he should
be allowed to finish it as far as possible,
as there is nothing more humiliating to
the workman than to start a job and
then have it taken from him and given

to another.

And finally, a model foreman should
endeavor to make himself so useful to
his men that they cannot well get along
without him. He should take a keen
interest in all matters pertaining to the
business and show as much interest in
the management and economical opera-
tion of the business as if his own capi-
tal were invested in the business. The
foreman should praise his men when-
ever praise is necessary and when the
workman shows that he is endeavoring
to do his very best. If the workman
should invent some process or tool
to save time and expense in manufactur-
ing, the foreman should praise him and
give it thorough trial. And if it is a success,
he should do all he can to give the man
the credit before his superior officers
and not seek to take all the honor and

POWER FOR YOU

Power from within! Strength that is more than mere
muscular strength—the strength of perfect health
within your reach through the Wheaton Electric Vibrator. Drive it
without feeling tired. You can be strong and healthy if you will.

Write for FREE BOOK on

address on letter or direct from our

DEPOSIT PENCIL POINTER 10c.

Thousands of Saniters, Teachers, Students and Busi-
nessmen have found this the finest pencil sharpener
they ever used. Will not break lead, waste pencil, nor litter floor. Has adjustable
blade of finest razor steel that cuts
like a razor. If not at your dealer's be
sent direct from our factory,

it catches the chips

114 Takesha A wens, Washington, D. C.

DEPOSIT PENCIL POINTER 10c.

Are you going deaf?

Write today for free book

and particulars of the marvelous

NEW MEARS Ear hole

8-TONE Ear plug. One sound or two.

FREE Trial of 15 days in your own home. Send on easy

income today for our great direct offer and valuable Book on Deafness FREE.

MEARS SPEECH CORRECTION CO. Dept. 149 I 42 W. 34th St., New York, N. Y.

Girls—Girls—Nothing But Girls

Classy pictures of beautiful women in natural
and amusing poses. Really delightful. They
will increase your heart deserts (if you are human).
Just the kind of pictures that you may have been looking for, fascinating
and fascinating.

MEDALS, BADGES AND CLASS PINS

From Factory to You

For College, School or Society.

Special Designs on Request.

We make Pins and Medals for some of the
largest schools and colleges in the country.

PRINT & COMPANY, 52 Harrison Ave., Jersey City, N. J.

Boy Electrician

with 71 Illustrations for making

J. C. Born, 705 S. Dearborn St., Dept. 48, Chicago, Ill.

There are many surprises in the first issue of Popular Electricity and Modern Mechanies. Do not fail to secure a copy when it comes out! It will be on the news-stands June 15th.

When writing, please mention "M. E. & M."
glory upon himself as is the case with a great many foremen these days.

Harmony is an all-important factor in the good management of the shop. There is no reason whatever why the shop where good, intelligent mechanics are employed, should not be run economically and pleasantly, and the spirit of tranquility and responsibility will infuse itself into each and every man in the employ of the company.

CLASSIFICATION OF SHIP STATIONS

The classification of vessels as given in the “Regulations for Radio Apparatus and Operators on Steamers,” edition of July 1, page 8, paragraph 7, and “Regulations Governing Radio Communication,” edition of July 1, page 5, “B,” “Ship Stations,” have recently been amended to read:

First Class.—Vessels having a continuous service.

There shall be placed in the First Class vessels which are intended to carry 25 or more passengers—

(1) If they have an average speed in service of 15 knots or more;

(2) If they have average speed in service of more than 13 knots, but only subject to the twofold condition that they have on board 200 persons or more (passengers and crew), and that, in the course of their voyage, they go a distance of more than 500 sea miles between any two consecutive ports.

Second Class.—Vessels having a service of limited duration.

There shall be placed in the Second Class all vessels which are intended to carry 25 or more passengers, if they are not, for other reasons, placed in the First Class.

Third Class.—Vessels which have no fixed periods of service.

All vessels which are placed neither in the First nor in the Second Class shall be placed in the Third Class.

The grade of operators required on vessels of each class is prescribed in the London Convention Service Regulations, Article X. A continuous watch may be maintained by one commercial second grade operator and one cargo grade operator on cargo steamers.

When forwarding Form No. 761, “Applicant’s Description of Apparatus,” there should be indicated under the heading “Class of License Desired,” the classification, in accordance with the above.

It is, of course, desirable to have as many vessels in the first class as possible. Vessels voluntarily equipped, and maintaining “Constant Service” will be entered in the first class.

23-Karat Genuine Gold.

Yes, sir, that’s what we use, when we goldstamp your name on this Genuine Black Seal Grain Leather Loose Leaf Memo Book and mail it to you for 60 cents—or 35 cents without name. It’s so small (4 1/2 x 4 1/4 in.) that you can let it snuggle right in your coat pocket. 50 detachable leaves of note paper. Everybody likes it. Everybody wants it. You ought to have one. And when you order, it is with this understanding, that if it fails to please, you may return it and get your money back immediately. Order NOW (good postpaid stamps also accepted as payment)—we can ship you one by return mail and also illustrate it to your one of our 8th annual catalogs, showing Bill folds, Coin purses, Pocket books, Smoker’s articles and Traveling necessities, etc., etc.

25c. Post-paid

U.S. Leather Goods Co. Dept. ME.
240-42-44 North Clark St.
Chicago

Like a Dip at the Sea Shore

GIVES A NEW JOY TO BATHING.

KNICKERBOCKER SPRAY-BRUSH

Clean running water through hundreds of hollow rubber teeth of the SPRAY-BRUSH makes your bath strictly sanitary, refreshing and invigorating. Better than expensive overhead showers, costs only a fraction as much. This modern appliance thoroughly massages the skin—cleansing and washing away the impurities from every pore. Improves circulation—nerve health. Makes your whole body glow. Ideal for quick morning shower and healthful “rub-down.”

The SPRAY-BRUSH is the most perfect shampoo device and is never20, for shampooing alone, soon pays for itself. Thoroughly massages the scalp and cleanses all dirt and dandruff.

MADE OF BEST INDIA RUBBER. Wear fully guaranteed. Fits any faucet. Which of these styles shall we send you: Complete Bath Spray with special Massage Brush $3.50; Combination Spray-Spray-Shampoo and Massage Brush $3.00; India rubber Shampoo-Massage Shampoo Brush, with finely nicked handle $3.00. Sold on 10 days trial, satisfaction guaranteed or money refunded. SEND ORDER TO-DAY. Illustrated folder Free.

KNICKERBOCKER MFG. CO., 466–215 V. SCHILLER ST., CHICAGO

When writing, please mention “M. E. & M.”
HIGH FREQUENCY CURRENT APPARATUS

(Continued from page 764)

The number of plates should be put in the place of each jar.

The secondary coil may comprise one layer of No. 28 B. & S., D. C. C. wire, or if heavy currents are required, use a larger wire. The drum is 32 inches long and 10 inches outside diameter, with the turns so wound that they do not touch.

The primary coil consists of 22 turns of No. 6 B. & S., hard brass wire, or stranded copper cable, wound about a cylinder 14 inches long by 20 inches outside diameter, separating the individual turns 5/8 inch apart.

In all of these coils, the primary lead connections are preferably made by means of spring clips or sliding contacts, permitting of quick variation of the number of turns in circuit.

For those desirous of making their large Tesla coil primaries of brass or copper tubing, this course is open and is just as good as a solid rod, for the reason that the high frequency current only penetrates to a depth of a few hundredths of an inch.

In building any of the transformers or high frequency coils described in this series, enameled covered wire should never be substituted for cotton or silk insulated wire, as the high inherent capacity of the enameled wire renders it unfit for such purposes. This has been learned through actual experience in building this class of apparatus by a large commercial concern.

No current-carrying part of a high frequency instrument should ever be nickel plated, for the "skin currents" will surely travel through the plating, and not the conductor under it. Since nickel is a poor electrical conductor, the logic in suppressing nickel plating for these parts is evident. Lacquered brass is just as good in appearance and twice as serviceable. Silver plate would be ideal, as silver is about the best conductor of electricity known.

All connecting leads or rods between the condensers, spark gap, or high frequency coil windings must be as direct as possible, avoiding sharp bends, and having the individual pieces of equal length; odd lengths rendering it more difficult to tune the set into resonance.
LEIMAN BROS.
Rotary Positive
High Pressure

BLOWERS
and VACUUM PUMPS
for use with oil, coal and gas burning
appliances for obtaining high heat; with
sand blasts, gas producers, milking
machines, burning out tree stumps,
automatic machinery,

VACUUM CLEANING
and every other purpose.
1 oz. to 10 lbs. pressure, 1 to 20 inches
vacuum, 2 to 338 cubic
feet per minute.

Get Catalog C6AU
This shows what our
small machines do

The machines do many
things with air which were
formerly done by hand or
mechanically.

LEIMAN BROS.
62 John St., New York

NICKEL PLATED
On Brass, Black Enameled Stands
6 inch $6.50 Delivered
8 inch 8.50
172 Summer, Boston

Runs at Any Angle 3 Speeds
Money Back if Wanted
The Popular Carleton Fan

If You Will Take Advantage of This Right Away
In addition to sending GAS ENERGY, which is the liveliest and newsiest for those
interested in gas engines, for one year, we will send you free a copy of "How to Run and
Install Gasoline Engines." GAS ENERGY covers the Stationary, Portable, Automobile,
Marine, Aeronautic, and Producer fields in a way that no other paper does. Just send 50c,
in postage or currency and we will enter your subscription for a year and mail you grately
copy of the above mentioned book.

GAS ENERGY CO., 22 Murray St., NEW YORK CITY

When writing, please mention "Modern Electrics and Mechanics."
New Type Bell Ringing Transformer

In the accompanying illustration is shown a novel type of bell ringing transformer of attractive design that has recently been placed on the market by the Packard Electric Company, of Warren, Ohio.

This transformer is unique in the matter of having a porcelain covering instead of the usual iron or wood casing. It is furnished in three colors—white, brown and blue—which renders it unusually attractive for window displays or similar purposes. Furthermore, the porcelain covering is said to possess several advantages which have caused the company to adopt it.

The transformer will stand a complete short circuit continuously without damage either to itself or connections. The core is of silicon steel and the coils are form wound and vacuum treated. The entire case is filled with insulating compound.

The transformer is suitable for operating residence door bells, buzzers and all classes of light signal work. It will also be found convenient for experimental purposes. Stock models are wound to operate on alternating current voltages ranging from 100 to 130 volts, 60 to 133 cycles.

The dimensions are as follows: Length 3½ inches, height 3½ inches, width 3 inches. The net weight is 1¾ pounds.

This transformer is sold at $2.50. Further particulars regarding this transformer as well as heavy duty bell ringing transformers for factories, schools, etc., may be obtained by addressing the Packard Electric Company as above.

A Keyless Padlock

Among the many recent hardware novelties is a padlock that may be opened by pressing the correct combination of buttons instead of using the conventional key.

In the accompanying illustration is shown one of these locks in which may be seen the numbered buttons that actuate the mechanism. To open the lock it is only necessary to place the fingers on the correct buttons and slightly press them, causing the lock to fly open. It is said that a person who does not know the combination cannot possibly open the lock, since it will open only when the correct buttons have been pressed.

These locks are furnished with eight buttons numbered from 1 to 8. Every padlock is furnished with a different combination and the manufacturers state that over 40,000 combinations are possible from these eight buttons. This insures each purchaser receiving a lock with a combination that has not been duplicated. The locks are made of solid brass and bronze, and do not contain any iron or steel that might rust and deteriorate when exposed to the weather.
ELECTRICIANS!
You need a screw-driver that will combine perfect insulation with convenience and strength.

Starrett
Electricians’ Pocket Screw-Driver

is made especially for electricians. It has four blades of different widths carried in a magazine handle. This handle is hardened rubber, giving perfect insulation. The screw-driver will stand for good, long, hard service. You need it. Send for Catalog 20 W. It shows other tools you need.

Starrett tools are sold at all good hardware stores

The L. S. Starrett Co.,
Athol, Mass.

GROBET SWISS FILES
Are the standard of excellence in files, and have been for over 100 years. We send postpaid as an introduction 48 files especially adapted for tool makers and machinists on receipt of $3.00. This is a chance to get a set of files you will appreciate and will get future orders.

MONTGOMERY & CO.,
103 Fulton St.,
New York City

A STORY BOOK FREE
Very interesting and instructive to those wanting the very best edge tools made. A postal adressed to Black & Co., 18 Brown's Ave., Rochester, N. Y., solo makers for more than thirty years of the famous D. R. Barlow tools, will bring it with their catalogue. (In writing, mention this magazine.)

The Crescent Universal Wood Worker
is giving such absolute satisfaction that you could not help but be pleased with it. If you want a substantial, durable, convenient combination wood worker, get our catalog telling all about it, and describing our lines of hand saws, saw tables, shapers, jointers, borers, planers and machners, planers, disk-grinders, variety wood workers’ hand saw blades.

THE CRESCENT MACHINE CO.,
45 Columbia Street,
Lockport, N. Y.

BRASS GEARS
Out by an entirely new process. The most accurate made and at prices that cannot be equalled by others. Every gear has a hub, center painted shiny back, edges turned true, highest grade red brass, and much heavier than others. We carry the largest stock in the world, and every year listed is always shipped on date of order.

CHASE FOR CATALOG

CHICAGO STOCK BEAR WORKS
18 So. Fifth Ave.
Chicago

Big and little screws—all sizes, for any kind of job—taken care of by this one tool! Four screw-driver blades—½", ½", ½" and 3/8", carried in magazine in handle. Saves buying and carrying extra drivers.

"YANKEE" TOOLS
Make Better Mechanics

Right and left Ratchet; and rigid.

"YANKEE" Magazine
Ratchet Screw-driver No. 65
With six-inch shank, $1.10
With one-inch shank, .95

Your dealer can supply you.

Write for "Yankee Tool Book" for mechanics and householders; "Yankee Tools in the Garage" for motorists.

NORTH BROS. MFG. CO., Philadelphia
For further particulars, address the Edwards Mfg. Company, 747-797 Eggleston avenue, Cincinnati, Ohio.

New Model Loose Coupler

In the accompanying illustration is shown the latest model loose-coupler manufactured by J. F. Arnold, 243 East 118th Street, New York City, N. Y.

AN IMPROVED FORM OF LOOSE COUPLER

This loose-coupler tunes up to three thousand metres. The primary housing is of hard rubber, while the woodwork is all of hand-rubbed mahogany. The secondary is wound with green silk-covered wire and has 11 taps connected to the switch. One of the good features of this loose-coupler is that the secondary slides very readily and never sticks. Any number of turns of the primary winding may be secured by means of the double-handle switch mounted at the side of the primary housing.

In designing and manufacturing this loose-coupler, every effort has been made to secure the highest efficiency. The insulation is perfect. The windings are correctly proportioned and wound on specially treated tubes that will not shrink. All connections are soldered. The primary switches do away with sliders, poor contacts and short circuits. The switches are of knife-edge pattern to insure the best possible contact. A flexible cable from the rear of the secondary is used to connect that winding to the binding posts; the slide rods serving only in their mechanical functions.

This latest loose-coupler is furnished in either nickel or lacquered brass finish. The price is $15.00.

Aside from the foregoing-mentioned instrument, Mr. J. F. Arnold manufactures other models at $7.00 and $9.00, as well as a large line of receiving and transmitting apparatus. Full particulars concerning the loose-coupler and other wireless instruments can be secured by addressing inquiries as above, enclosing a two-cent stamp to insure reply.

AN UNIQUE POWER PLANT

The Ford Motor Company has placed contracts for a gas engine-electric power plant that will be not only one of the largest in the country but in many respects absolutely unique. The company has appropriated in the neighborhood of a million dollars for the project, which will put into effect plans that Mr. Henry Ford has long had in mind for utilizing the waste heat of the ordinary producer gas engine.

Four 6,000 h.p. Hamilton-Gray gas engines of novel design will drive the same number of Crocker-Wheeler 3,750 kw., 250 volt, 80 r. p. m. engine type, direct current generators. These will be the largest capacities on record for generators of this type. A plan view of each engine will be similar to a cross compound steam engine, with two cylinders in tandem on each side. One pair of cylinders will be operated by producer gas and the other by steam. The steam will be generated from the water used in the water jacket of the gas engine, further heated by the exhaust gases and by waste heat from the producer gas plant. This water or steam will be used as the feed water for the boiler which supplies the steam engine cylinders. A heavy flywheel will equalize the characteristics of the gas and steam driven elements of the engine. Each of the generators will have a normal rating of 3,750 kw.

These generators are designed for much higher efficiency than ordinarily found in commercial practice. Full load efficiencies will be not less than 94 1/2 per cent. By these means and by the utilization of energy usually lost in waste heat, it is proposed to make the new Ford power plant the most economical in the country in respect to cost of production per kilowatt hour.

The armatures will be of split construction which is necessitated by clearance requirements through tunnels and bridges in shipment from Ampere to Detroit, and the generators will be finally assembled at the Ford plant.

In trying to find uses for blight-killed chestnut it has been found that it cannot be utilized for crating stone; quarry owners say that chestnut wood leaves an indelible stain on the marble or granite.
The "RED DEVIL" Family

IS A VERY LARGE ONE
OVER 3000 MEMBERS—GET ACQUAINTED
Here are two of them

NO. 1124
5" and
6½"
Sizes

This tool is Bonded, or insulated for two years' service. It is a handsome, thin nose model, and will go into many places that the large, bulky pliers will not get into. Your dealer has it—or if not, we will send a sample on receipt of 60 cents, post paid.

NO. 542
Convenient
6½" Size

The most powerful taper made. Hand banded cutting edges. If your dealer can't supply we will send one sample on receipt of 75 cents.

You'll never find "Red Devil" on a poor tool. Send for Booklet.

SMITH & HEMENWAY CO.
165-7 CHAMBERS ST. NEW YORK

When You Need Anything Electrical

LOOK OUT!
FOR THE
ELECTRICAL TRUST!

Save 1/3

LARGE ILLUSTRATED CATALOGUE No. 11G WITH 11,000 BARGAINS SENT FREE. ASK FOR IT.

Independent Electrical Supply Company
H. H. KABAT, President
59 Warren Street NEW YORK

When writing, please mention "Modern Electrics and Mechanics."
RECENT NOVEL PATENTS

1,093,286. ELECTROLYTIC-CLEANING ELECTRODE.
THOMAS APPLING, Philadelphia, Pa. Filed June 24, 1912. Serial No. 775,465. (Cl. 204—7.)

1. As an article of manufacture, a unit consisting of an electro-positive electrolytic cleaning element and insulating material attached thereto for supporting said element in and electrically separating the same from a metallic container of electrolytic solution.

1,093,488. SAW-GUIDE. GEORGE WASHINGTON MOORE, Florence Logging Camp, Schuylkill county, Wash. Filed Oct. 8, 1911. Serial No. 662,617. (Cl. 148—168.)

1. A supporting bar for saw guides having an upturned knife edge at one end and depending knife edges at opposite sides and on the lower surface thereof and adjacent to the first knife edge.

1,092,398. HIGH-TENSION DISCHARGE APPARATUS.
GERMON D. ROUSE, Cleveland, Ohio. Filed May 11, 1912. Serial No. 770,908. (Cl. 250—35.)

In a high tension discharge apparatus, the combination with a main circuit provided with means for connection to a supply current and including an induction coil and a circuit controller, of a condenser connected to the main circuit at one side of said circuit controller, the primary winding of a high frequency coil connected to the main circuit at the other side of said circuit controller and to the condenser, and the secondary winding of the high frequency coil having one end connected to the primary winding thereof and terminating in a single end for connection to a therapeutic instrument, substantially as described.

1,092,700. MEANS FOR DESTROYING AIR-CRAFT.
JOSBAUD A. STRUBMANN, Philadelphia, Pa. Filed May 19, 1912. Serial No. 768,515. (Cl. 244—1.)

1. For destroying air-craft when the destroyer is in free flight, the combination with a flying machine, of a bomb far below said machine, suspended freely therefrom by a readily fixed connection, and provided with a contact device in position to cause explosion of the bomb when the latter is drawn vertically upward against the said air-craft which deflects that portion of the connection between said machine and bomb by relative lateral movement of the connection and air-craft.

1,092,453. DEVICE FOR AMPLIFYING VARIATIONS IN ELECTRICAL CURRENTS.

1. In a telephone repeater, a plurality of pieces of magnetic material, means for normally subjecting certain of said pieces to steady magnetizing forces of low intensity, and others of said pieces to steady magnetizing forces of relatively high intensity, means for impressing magnetizing forces of variable intensities on said pieces and causing by such variable forces an increase in length of certain of said pieces and a decrease in length of other of said pieces, and means for connecting said pieces to each other, to a support and to a variable resistance element, whereby variations in the intensity of magnetizing force cause a variation in said variable resistance element.

1,092,145. LEVER-VISE. CURTIS HAXE, Warwick, Conn., assignor to The Carter & Innes Machine Company, Winchester, Conn., a Corporation of Connecticut. Filed Apr. 21, 1912. Serial No. 762,498. (Cl. 81—36.)

1. A lever vise having a fixed jaw, a jaw movable toward and from the fixed jaw, an eccentric, a handle for turning the eccentric, and a pair of jointed toggle levers the outer end of one toggle lever being connected with the movable jaw and the outer end of the other toggle lever being connected with the eccentric.
Inventors! Send for these Remarkable FREE BOOKS Today

Complete and full information about patents, everything the inventor or manufacturer should know, has been included in these books. Never before has such an inexhaustible fund of valuable information been at the inventor's disposal. Regardless of the fact that the compilation of this information cost us thousands of dollars, we will send to all interested persons any or all of these books, entirely without charge or obligation.

"Millions In Patents"

This volume, 100 pages, tells the story of the romance of invention. The brain of the inventor is the magician that has made the ancient fairy tales come true. Millions have been paid for a book, fortunes have come from a toy. Read "Millions In Patents," and you will realize that this country and all the nations of the world are ready to enrich you beyond your wildest dreams if you can contribute one useful or amusing thing.

"What Is a Trademark?"

It is not an exaggeration to say that billions of dollars have been made out of trademarks, labels and copyrights. He who can fashion a trademark or design a label which will make a product stand out above all similar products is indispensably a genius for whose brains the world offers almost unlimited money.

"Foreign Patents"

A good invention is bought not by one country but by the world. "Foreign Patents" shows you how the inventor may be paid by other countries and other peoples, as well as by this nation, for his ideas and his inventions. It explains how we, through our representatives in the capitals of the world, maintain for your benefit an endless chain of opportunities which, if you take advantage of them, will girdle the earth and make of your product an agent that may bring back to you rich rewards.

"Inventions Needed"

This book, 196 pages, lays before you a description of the active and profitable field of invention. It tells you the inventions the world needs today, how the devices manufacturers are looking for their business, the ideas for which the public will pay big money. It gives great men's ideas of the most important things needed in inventions now. Science is the key to wealth, and this key can be turned best by the inventor. This book tells you why.

"How to Get Your Patent and Your Money"

The man who invents needs the co-operation of the man who invests. This book, 132 pages, is a guide to the inventor. It describes, according to the teachings of our experience and the lessons of men made rich by patents, how the inventor may secure money, the right amount of money, for the device which his brain has constructed. If you have invented something and desire to learn what it will cost you to get your patent and what you must do to find your market, read this book.

"Special Bulletin of Patent Buyers"

This bulletin, 22 pages, contains copies of hundreds of letters from wealthy men who are seeking to purchase patents. Next to the idea of the invention itself, the most valuable thing to the inventor is a hint of where there is a man ready to buy the invention or to finance the inventor so that his device can be readily marketed. We act as intermediary without one cent of charge, between the man who invents and the man who invests.

We Secure Reliable Patents, Trade Marks, Copyrights, On Most Liberal Terms Ever Offered

Send Model or Sketch and description of your invention for Free Search of the United States Patents

Rejected and Difficult Cases are Our Specialty

RANDOLPH & CO.
130 F St., N. W., Washington, D. C.

Gentlemen: Please send me without obligation on my part, the books indicated on margin of this coupon. (Write on margin of coupon, names of books desired).

NAME.

ADDRESS.

CITY.

STATE.

When writing, please mention "Modern Electrics and Mechanics."
1. The combination with two springs of a spring ring having overlapping ends, one terminal of the ring connected to an end of one of the springs, and the other terminal of the ring connected to the end of another spring, so that when any vibration or shock is transmitted to the springs, the spring ring will be caused to be convoluted, thereby decreasing the diameter of the ring.

2. A bench vise comprising a base having a horizontally disposed tubular body portion, a sleeve rotatably mounted therein and provided at one end with a jaw portion abutting one end of said body and at the other end with a threaded extension projecting beyond the said body, a collar slidably keyed to said extension, the adjacent faces of said collar and said body being formed with interlocking clutch faces, a nut threaded upon said extension and adapted to control said collar, a second jaw, provided with a stem slidably keyed within the said sleeve, and a screw for adjusting the last mentioned jaw, substantially as described.

3. The combination, with a gyroscope compass, of a sub-compass comprising a principal card and a secondary card geared thereto to move at a greater speed, and means comprising a synchronizing device controlled by the gyroscope compass for driving the principal card of the sub-compass in a definite relation to the movement of the gyroscope compass.
INVENTORS

There is always a demand for YOUR good INVENTIONS.
Consult me before you apply for Patents in this or any other Country.
Your invention will receive my personal attention.
YOU are entitled to the best service and the strongest claims, why not get both?
Send me sketch or model of your invention and I will advise you without charge as to its Patentability, Practicability, and possible commercial value.

Write for CARD which will entitle You to advice by mail FREE

ARThUR PHelps-MArR
Solicitor of Patents and Electrical Engineer
106-110 Fulton St., New York

PATENTS
TRADEMARKS AND COPYRIGHTS

Secured or Fee Returned
Send model or sketch and description of your invention for free search at the U. S. Patent Office Records.
OUR BOOKS mailed free to any address. Send for these books: the finest publications ever issued for free distribution.
HOW TO OBTAIN A PATENT. Our Illustrated 80 Page Guide Book is an invaluable book of reference for inventors and 100 mechanical movements illustrated and described.
FORTUNES IN PATENTS. Tells how to invent for profit and gives history of successful inventions.

WHAT TO INVENT. Contains a valuable list of New Ideas Wanted. Also information regarding prizes offered for inventions, among which is a Prize of One Million Dollars offered for one invention and $10,000 for others.
PATENTS THAT PAY. Contains letters from successful clients. List of Patent Buyers. Also endorsements from prominent inventors, manufacturers, senators, congressmen, governors, etc.

We advertise our clients' inventions free in a list of Sunday newspapers with two million circulation and in the World's Progress. Send copy free.
Electrical Caessa a Specialty. We have secured many important electrical patents.

Victor J. Evans & Co.
Victor Bldg., 724 9th St., N. W., WASHINGTON, D. C.

WANTED-IDEAS
Manufacturers are constantly writing me for new ideas protected by OWEN PATENTS. Send for my free literature and read their wants.
FREE! Three finest patent books published! 72-page guide "Successful Patents," "Steps to Success" (containing list of over 200 inventions wanted); tells the plain truth about prices, reward offers, etc. and "Patent Promotion" (tells how to sell your rights; chief causes of failure, etc.). All sent free upon request.

Very highest references. I help my clients sell their patents or dispose of their applications. Advice free. No obligation incurred by writing me. Free manufacturing facilities. I secure patent or no fee. No charge for report as to patentability, practicability, etc.

RICHARD B. OWEN, 82 Owen Bldg., Washington, D. C.

PATENT YOUR INVENTION
Send sketch for free export search and report as to patentability. Books on inventions and patents, and book of references from congressmen, manufacturers, bankers and inventors sent free.

JOHN S. DUFFIE & CO.
806 F St., N. W., Washington, D. C.

Official Drawings Free
Patents procured or fee returned. Expert services. Send sketch for free search.

THE PATENT EXCHANGE
Jorden Building, Washington, D. C.

When writing, please mention "Modern Electrics and Mechanics."
THE ADVANTAGES OF TRADE-MARK REGISTRATION

(Continued from page 756)

Corporations, as well as individuals, have the right of registration under the Statute; and the right is not restricted to citizens or residents provided the foreign individual or corporation owning the trade mark has a business establishment situated in the jurisdiction of the United States, or is a resident or corporation of any foreign country which affords, by treaty, similar rights to those enjoyed by citizens of the United States.

The coveted certificate of United States registration, when granted, remains in force for twenty years, and may be renewed before expiration for like periods of twenty years, so that there is practically no limit to its perpetuity—and the older it is the better as a rule.

But a condition precedent to registration is that by the owner "in lawful trade," either in commerce among the several United States, in commerce with foreign nations, or in commerce with the Indian Tribes—the latter being thus distinguished as neither alien nor domestic, but of sufficient importance to merit special recognition in a commercial sense. Obviously, also, the mere intent to use is not sufficient, and neither person nor corporation can; enact the dog in the manger by pre-empting without use a desirable mark to the exclusion of others in the same line of trade—although as a matter of fact a merely nominal use is sufficient to sustain ownership.

MARVELOUS ESCAPE FROM ELECTROCUTION

What is probably an unprecedented occurrence is presented by the recent escape from death of Clarence W. White, of Niagara Falls, N. Y., through whose body a current of 12,000 volts passed accidentally.

White is 23 years old and is employed at the National Carbon Company Works in the foregoing-mentioned city. It was while dusting off a switchboard at the plant that he accidently came in contact with the current and was instantly knocked to a sitting position on the floor. His most serious injury was a badly burned hand.
22 Handbooks of Practical Information

When the boss asks a puzzling question—when an unusual piece of work comes along—THEN it pays to be able to put your finger on the exact rule, formula, or bit of information that holds the key to the situation. For it’s at these critical moments that the boss finds out who is “onto his job”—who is in line for promotion.

No books in existence contain as much information in so small a space as these I.C.S. Handbooks. One book is devoted to each trade or profession. They contain all the rules, formulas, and other data that you’ve got to have right off the bat. They are thoroughly indexed—any desired information can be located instantly. They have been compiled from the “Easy to Learn, Remember, and Apply Home-Study Courses” of the International Correspondence Schools. Every fact and formula is clearly stated. They are indispensable helps to quicker and better work. Bound in silk cloth they retail regularly for $1.25 each.

Special Offer

For a limited time we will sell these regular $1.25 Handbooks, durably bound in silk cloth in a convenient pocket size, at a price for each Handbook of only:

50c

When writing, please mention “Modern Electrics and Mechanics.”
WIRELESS TELEGRAPHY
(Continued from page 746)

prove a formidable rival to existing methods.*

In the sending antenna we have powerful high frequency currents in the base and high potentials at the upper free end. Even in small stations the current at the base or earthed end of the antenna may be 5 or 10 amperes, and in large stations may reach a value of 50 or 100 amperes, and is sufficient to raise to incandescence quite large rods of arc-light carbon.

There is, therefore, a considerable expenditure of power on the antenna. Part of this goes into heating the antenna conductors, but a large proportion is radiated. Nevertheless, the overall efficiency, generator to aerial, of the ordinary spark set is at present probably not more than 20 or 25 per cent., though the Telefunken company, using a quenched spark instrument, claims to have attained efficiencies of 75 per cent. This high figure is not reached by rotating quenched gaps, like that invented by Marconi.

Of the energy radiated only a very small proportion reaches a given receiving antenna. The received current is usually reckoned in micro-amperes, or at best, in fractions of milliamperes. If the receiving antenna is properly tuned to a closed condenser circuit inductively coupled to it, the energy absorbed by the antenna is transferred and accumulated in the condenser circuit.

In this last we now have feeble currents circulating which imitate in mode of variation the currents in the radiating or sending antenna. To detect them it is now most usual to employ a sensitive telephone receiver in connection with some form of current rectifier, or else a current operated detector like the Marconi magnetic detector, which is placed in the condenser circuit.

If we merely connect a telephone receiver across the condenser circuit there will be no audible response, because the frequency of the current oscillations is too great to affect a telephone receiver.

*The ingenious methods of Goldschmidt of utilizing the properties of the polyphase induction motor to increase frequency have been developed recently by a German company and promise success in the matter of obtaining undamped waves.
You May Be Another Edison

In you may be undeveloped electrical talent which will make you another electrical wizard—another Edison to startle the world with your inventions. Perhaps all you need is the thorough, practical electrical education this school gives you. You need the opportunity to let your talents develop under the instruction of thoroughly practical teachers.

You want to master electricity. You want the splendid positions offered in the electrical world, the high salaries and the splendid opportunities for advancement. Then find out how this school helps you attain your ambitions.

This is a Real School that Really Teaches You

One year from the time you enter this school you will be a practical electrician, able to fill one of the many high-pay positions in the electrical field or go into business for yourself. You will be able to wire a house for electricity, you will have a complete knowledge of motor wiring and armature winding, you will be able to install and wire complete switchboards; you will have full knowledge of power-plant operation and power transmission. And in addition to all this you will have complete knowledge of telephone work from the simple installation of the instrument to the complete installation of the switchboard.

Complete One Year Course

All this you learn in one school year. You can do it because of the instructors at this school and the complete equipment of motors, generators, switchboards and all other electrical apparatus. There is nothing in the line of electrical apparatus we do not have. Students may enter at any time.

Free Employment Aids

There is a constant demand for our graduates—a demand far greater than we are able to supply. We seldom have difficulty in finding a satisfactory position for any competent graduate. Many of our graduates earn $150 a month upon leaving the school.

Write Today for Catalog

If you are thinking of taking an Electrical Course you should have our catalog before deciding on any school—all about the subjects taught and why we can teach you if you like electricity and have only the ability to read and write English. Write for the catalog today—N-O-W. Send the coupon.

School of Engineering of Milwaukee

Chartered by the State of Wisconsin

181-189 Michigan St.
Milwaukee, Wis.

"The Electrical School that Graduates Experts"

Some of the important positions in our departments are filled by graduates from your school.

COMMONWEALTH POWER CO.

School of Engineering of Milwaukee,
181-189 Michigan Street,
Milwaukee, Wis.

Gentlemen: Please send me the illustrated booklet and full information about what your school will do for me. I am especially interested in

[Checkboxes for Electrical Wiring, Telephone Installation, Motor, Work and Armature Winding, Mechanical and Electrical Drafting, Electrical Engineering, Electrical Testing and Motor Work, Day or Evening, Trade or Evening.]

Name. Address.

P. O. Blake.
If, however, we insert some device which will act like a valve, the oscillations in each group will be rectified and add to one another so that intermittent gushes of current corresponding to the group frequency of the transmitter will pass through the telephone and produce a shrill note. If the groups are interrupted at the sending station by a Morse key the receiving operator hears long or short musical sounds which he interprets into the letters of the telegraphic alphabet.

Among the rectifiers in general use are the valve or glow lamp detector, invented by Fleming, and its modifications; the electrolytic detector and the crystal detectors, the first of which, carborundum, was discovered by Dimwood, and others by Pickard and Pierce. Thus, for instance, a copper point pressed against a flat surface of molybdenite is a good rectifier. Another detector is the galena-graphite detector. Also a gold point pressing against an artificial surface of ferric disulphide (iron pyrites) is very sensitive. Other crystals are copper pyrites, zine, boronite, etc.

In spite of much valuable work done by Pierce, Pickard, and others, the action of these so-called crystal rectifiers is not fully understood. It appears not to be thermoelectric, since the rectified current is opposite in direction to that obtained by heating the junction.

One of the practical difficulties yet to be overcome is the invention of a suitable calling instrument which is free from the effects of atmospheric strays. At present the operators have to sit with the telephones on their heads waiting for the arrival of a call, and this is special and skilled work which cannot be deputed to any one else. Lately both the Marconi and Telefunken companies have introduced call instruments in which a signal equivalent to a prolonged dash in the Morse code deflects a galvanometer, which in turn closes a battery bell circuit. We believe the Telefunken instrument which is normally adjusted to respond to a prolonged signal enduring 10 seconds and causing a total galvanometer deflection of 3 millimeters, to be quite free from the effects of atmospheric static. Another desirable apparatus is a relay which is simple and yet sensitive to print the messages on a paper tape.
When You Have Things to Fasten to Brick, Stone or Concrete—

The Perfect Fastener

The illustrations on either side of this announcement show ordinary Bolts and Screws fitted into U. S. EXPANSION SHIELDS. The center cuts at top and bottom show U. S. Shields as they are inserted in Walls of Brick, Stone, Concrete or Other Masonry. When the bolt or screw is turned into the Shield a positive inside lateral expansion occurs and the fastening is there to stay.

U. S. Expansion Shields are Adjustable!

The Wedge-Nut principle characterizes all U. S. Expansion Shields which permit of the Expansion being increased and fastenings “taken up” or retightened after heavy vibration or excessive strain may have worked them loose. This is not possible with other and NON-ADJUSTABLE types of Expansion Shields.

Made in All Sizes—To Meet All Requirements

U. S. EXPANSION SHIELDS are made in a wide range of styles and sizes to meet the varying requirements of all those having fastenings or attachments to make to Brick, Stone, Concrete or Masonry.

Tell Us Your Requirements—We'll Send Samples

U. S. Expansion Bolt Co.

Hudson Terminal Bldg., NEW YORK

When writing, please mention “Modern Electrics and Mechanica.”
The Einthoven galvanometer is effective but seems to be more elaborate than necessary.

Dr. Kapp and Mr. Von Kramer have invented an alternating current resonance relay which is sensitive, and can be operated on a current of about 1/5 milliampere at a frequency of about 100; but this does not quite satisfy the demands of general use. What is desired is a relay sensitive to currents of frequency 50 to 500 or 1,000 and of strength about 1/10 microampere.

(To be continued in the July issue of Popular Electricity and Modern Mechanics.)

A GOOD RECEIVING SET

(Continued from page 736)

the full current from the audion battery through it.

Three binding posts are provided for telephones. The center binding post is connected as per Fig. 1.

The author strongly advises even longer sliding rods for the secondary of the loose coupler than the drawing shows, as on using the audion even very faint distant stations tune best with the secondary as remote from the primary as possible. When using the crystal, tighter coupling is required and the further away the secondary is moved from the primary, the more accurate is the condenser reading on the No. 2 condenser. When employing the crystal detector, place the telephones in the left and middle binding posts, for best results, but for the audion connect the telephones on the two outside binding posts. Otherwise the audion battery is not in series with the receivers.

DIRECTIONS FOR USING THE AUDION

After the set is completed as per diagrams, connect to the aerial; if same is of the loop type, connect to A A, or if a single straightaway aerial, to top binding post marked A, and of course the ground to G. Place a jumper from binding posts 1 to 3. To operate, begin by placing circuit selector on 1-1 and selector detector switch on A A. The telephones are connected to T T. The 6 volt audion (storage) battery is
SEND ME $10. IF YOU DARE!

Other electrical and mechanical workers and artisans in various crafts have done so; why not you? Here’s the proposition: I own outright, free and clear, with perfect titles, several thousand acres of well-located land possessing productive soil in the best part of the Famous Fruit Belt of Western Michigan. This I will sell you at prices of $20 to $30 per acre, according to location, on terms as easy as $10 down and $5 to $10 per month, with the understanding written right in the agreement that, you have till Dec. 1st, 1914, in which to inspect the lands I select for you, and, if, after inspection, you want neither my selection nor anything else out of several thousand acres to make your own selection from, THAT ALL MONEY PAID ON THE PURCHASE PRICE WILL BE REFUNDED. There are no strings tied to this offer which means what it says: YOUR MONEY BACK IF YOU WANT IT. If you do not want the land, someone else will recognize the splendid chance offered to get a fine farm home at a profit. Every year the price advances and it is good enough for me to hold it if it does not sell.

I have accurate and comprehensive descriptive matter which will be sent you free on receipt of your name and address. I will treat you liberally as well as honorably—in proof of which I have not foreclosed a mortgage nor dispossessed a purchaser in 16 years, the length of time I have been in this work. Write today for printed matter and map.

Address:

FRANK A. THOMAS
 Resident Manager for S. S. THORPE
CADILLAC, MICHIGAN

100% Annual Income for Life
is the unusual opportunity that is open to a few investors in our BEARING PECAN ORCHARDS.

A few 5 and 10 acre Pecan groves containing five and six year old trees which five years from to-day should return you from 30% to 50% annually and increase each year thereafter, and which ten years from to-day should yield you 100% and over annually and continue during your lifetime and that of your children and your great grandchildren. Far better than Life Insurance.

THIS IS A GILT EDGED INVESTMENT.—Absolutely safe and unusually profitable. It will yield a good income NOW.

IMMEDIATE ACTION is necessary if you want to share in these bearing orchards.

Particulars of Our Monthly Installment Plan, showing how you can purchase a Pecan Orchard on small monthly payments, earning 8 per cent, at the start, with principal doubling in value in 5 years and providing for a permanent life income is given in our pamphlet, “FORTUNES IN PECANS,” sent on request.

St. Andrews Bay Nursery & Orchard Co.
2108 Trinity Building
111 BROADWAY, NEW YORK

When writing, please mention “Modern Electrics and Mechanics.”
Is the Game Worth While?

That question is asked commercial wireless operators a hundred times a year. Nearly every young man in the country wants to know the TRUTH about the life of the professional wireless man—the opportunities, the good times, the hardships. For the first time this question is answered by an authority, an operator who has been long in the service, who knows the business from start to finish and knows how to weave a word picture of the actual life of the wireless man as seen from the inside.

In the April Issue of

The Wireless Age

The third article on "How to Conduct a Radio Club"—the series that made them all sit up and take notice—and twenty other rattling good features are included in this issue.

Send 25 cents for a 3 months' trial subscription.

The Wireless Age 450 Fourth Ave., N. Y.

When writing, please mention "M. E. & M."

connected through a rheostat, preferably the well-known circular type. It is necessary to make sure that all the resistance is cut in when starting. The pole changer is thrown to the left. The audion battery switch is placed on about 4 or 5. Now gradually bring one of the audion filaments up to normal incandescence or about the same heat or color as a carbon lamp would glow on full current. The operator should then hear a loud hissing sound in the receivers. If this sound is missing, start over again, this time reversing the storage battery wires (both filaments cannot be used on the same polarity) and gradually bring filament up to normal heat again. A somewhat purple or blue glow around the heated filament and a hissing noise in the receivers will then be experienced. If these indications are not present, increase or decrease the audion battery until these characteristics appear. They are absolutely essential to the best working of the audion. Reverse the pole changer if necessary, but if the set is wired right, the position to the left is correct. Now bring the filament up to the heat where the audion battery works at the minimum number of cells, the best results are obtained—i.e., so the hissing is just audible. Next, if a normal large aerial is being used, place the primary switch marked 1 on button 12 and switch No. 2 on button 30. Secondary switch is all cut in or on button 15. Pull the secondary all out or leave about ½ inch between primary and secondary. Adjust variable condenser No. 3 on maximum, secondary condenser No. 2 on the first quarter and the set is then receptive for about 600 meter wave lengths; by manipulating the primary switches the maximum results can be obtained. If the operator is close to a large commercial station, he should watch out for trouble. The audion is liable to instantly fade or rather "polarize." If this happens, it must be de-polarized before it can be again rendered sensitive. This is best done by moistening the tips of the fingers and touching the two small binding posts that wires marked D and E are connected to leading into the box

(Continued on page 816)
Send for Our New Manual of Wireless Telegraphy C1

It contains 104 pages and tells how to erect and maintain wireless telegraph stations. Shows a number of diagrams. Has the Morse and Continental Telegraph Codes. Illustrates the best instruments to use; tells what they are for and how to use them. Do not wait until some other time, but sit down now and send your name and address, and get one. It costs you nothing.

Send for Our New Catalog C26

It is pocket size, contains 212 pages, with over 1,000 illustrations, and describes in plain, clear language all about Bells, Push Buttons, Batteries, Telephone and Telegraph Material, Electric Toys, Burglar and Fire Alarm Conivances, Electric Call Bells, Electric Alarm Clocks, Medical Batteries, Motor Boat Horns, Electrically Heated Apparatus, Battery Connectors, Switches, Battery Gauges, Wireless Telegraph Instruments, Ignition Supplies, etc.

It Means Money Saved to You to have our Manual and our Catalog when you want to buy

Two Books Every Wireless Operator Should Have
AMATEURS' WIRELESS HANDY BOOK Price $0.25
LESSONS IN WIRELESS TELEGRAPHY Price 0.25

Manhattan Electrical Supply Co.
NEW YORK CHICAGO ST. LOUIS SAN FRANCISCO
17 Park Place 114 S. 5th Ave. 1106 Pine St. 604 Mission St.

When writing, please mention "Modern Electrics and Mechanics."
Kites and Model Aeroplanes

There has just been published an instructive work entitled "Kitecraft and Kite Tournaments*" which should find an important place among the practical, how-to-make literature of the younger generation.

This work treats in a comprehensible and reliable manner on the making and flying of kites of all kinds. Plain surface kites, box kites, combination plain surface and box kites and others are described. An entire chapter is devoted to the decoration of kites, while several chapters are given over to messengers, moving devices, suspended figures and appliances, balloons and parachutes, reels and other kite-flying accessories.

The rear portion of the book covers the making and flying of model aeroplanes and gliders. The general design of model aeroplanes, propellers, rubber band motors, reduction gearing and other topics are included.

The last two chapters of the work cover tournaments—discussing how such competitions may be organized and conducted for kites and model aeroplanes. "Kitecraft and Kite Tournaments*" will be found most interesting by all boys desirous of making and flying kites and model aeroplanes. It will also prove a valuable addition to the library of school teachers and instructors.

A Handbook on Electric Vehicles

With the already large and constantly increasing number of electric vehicles now in use for both pleasure and commercial purposes, the recent work entitled "The Electric Vehicle Handbook"* is indeed opportune.

This handy reference work contains useful and practical information for anyone having to do with electric vehicles, he driver, owner, repairman, or employee in a garage where such machines are stored and their batteries recharged.

A good portion of the book is devoted to the care of storage batteries, covering in detail the various makes employed in electric vehicles, how they are charged, repaired and other information of importance in this connection. Quite a few pages are devoted to the various arrangements for charging storage cells, such as mercury rectifiers, motor-generator sets, etc. Then follow descriptions on the different parts of the vehicles—tires, motors, controllers, axles, countershafts, differential gearing, steering gear, brakes, bearings, and the usual accessories. Each subject is gone into thoroughly and such information given as may enable the reader to effect repairs. The remainder of the book is devoted to a list of associations and publications identified with the development of the electric vehicle, as well as important data on the costs of operating such machines of different capacities.

This work can be recommended without hesitation to anyone interested in electric vehicles. Especially is this true with those coming in daily contact with machines of this kind, since the work is a practical one and intended primarily for them.

Motion Pictures

In a work entitled "Motion Picture Making and Exhibiting,"* another valuable volume has been added to cinematograph literature.

This book opens with the principles and history of motion picture photography. The remaining first half of the work covers the making of motion picture films, describing the cameras, manufacturing of the film stock, the development of the negative, printing the positive, tinting films and waterproof and fireproof films. In a chapter that follows the actual taking of a motion picture is discussed. Among the subjects mentioned are: The classification of films, illumination of the studios, the producer, the players, taking studio pictures, yard pictures, taking topical films, pictures in the field and trick pictures. Another entire chapter is devoted to the scenario—how it is written, the correct form, and how it may be sold.

The second portion of the work covers the motion picture theatre. Among the topics discussed are: Starting a theatre, the airdrome, the program, advertising the show, the ticket office and profitable side lines. An entire chapter is devoted to describing the projecting machine and its operation, as well as the care of film. The wiring of the operating booth and theatre is also discussed. Valuable information, regarding specifications and ordinances governing motion picture theatres and ventilation requirements, is given in another chapter. The final pages deal with colored pictures, talking pictures, stereoscopic pictures and the principal methods of coloring.

Not only will anyone intimately connected with the motion picture industry find this work of great interest, but even the layman desirous of securing a general knowledge of the subject will find it entertaining reading.

The Untrained Man

The Trained Man

Your Future Depends On Yourself

A few years hence, then what? Will you still be an untrained, underpaid laborer, or will you be a specialist in your chosen line of work where you can earn more in one day than the untrained man earns in a week?

Your future depends upon yourself. You must decide now. To hesitate, to put it off, or to be undecided means that you must plod the hard road of disappointment, poverty, and failure. To mark and mail the attached coupon is the first step to promotion and success.

The only way to keep out of the dollar-a-day class is to get the special training that will command the attention and a better salary from the man higher up. The International Correspondence Schools have shown to thousands the way to positions of power and increased salaries. They can do the same for you.

Your future is before you. Are you interested enough in it to learn how the I. C. S. can fit you for a real big job? No matter where you live, how little you earn, or what your previous education has been, the I. C. S. have a way of helping you. For over 21 years the I. C. S. have been helping young men to increase their earnings and to rise to positions that insure a better income.

The 400 or more letters that are sent to us every month reporting increased salaries, prove our ability to help you.

Choose a high-salaried future and

Mark and Mail the Coupon NOW.

When writing, please mention "Modern Electrics and Mechanics"
THE ENERGY OF THE FUTURE

(Continued from page 727)

able mirrors which reflect the rays in such a manner that they always fall vertically upon the glass covers.

Many attempts have been made to utilize the energy of the tides. So many and so signal have been the failures that many prognosticate that these are beyond the powers of man. So far these attempts made have been to use the power in a direct manner and although the energy stored there by nature is far in excess of any demand man will ever make upon it, it is as yet questionable whether it will ever be put into direct use. It is some years since a plan to compress air by tidal action was patented in Boston, Mass. It is not as yet generally known whether the invention has been put into practical use. It appears probable, however, that such a system or a modification of it will take a large place in future economy of energy.

The principle of this system involves the compression of air using the tides to obtain a practically constant head of water and a continuous supply which suffers no interference by change of the seasons. Fig. 3 shows a transverse sectional view of the necessary construction in the tidal hydraulic air compressor. Two shafts are driven down preferably through a dam or other concrete work so that the direction of the tunnel R is transverse with the direction of the ebb and flow of the tides. At the top of one of these shafts is an iron or concrete structure fitted with strong gates. As shown in fig. 4, these gates are opened and shut automatically by the water itself: When the tide is flowing in the direction indicated by the arrow the gate a is opened whilst gate b is shut tight. The head tank contains the compressor head, which consists of heavy wood and iron work carrying a number of intake or suction pipes. This is constructed in such a manner that the head adjusts itself to the varying depths of water and the pipes are maintained at a constant depth below the surface. The intake pipes are situated vertically above the compressor shaft which may be constructed of steel surrounded with concrete, as shown in fig. 3. In this way the chamber R is rendered air-tight when the system is in operation.
Memphis, Tenn., to Superior, Wis.

825 miles with a 1 kw., 20,000 volt Transformer—a Thordarson, of course. Good instruments mean better wireless. The Thordarson Wireless Transformer is built in 3 standard types, 5,000, 10,000 and 20,000 volts—special windings to order. Connects direct to A. C. mains—equipped with flexible impedance.

Write for Details

Thordarson Electric Mfg. Co.
509 So. Jefferson St., Chicago

A 13200 Volt Transformer for $9.
30,000 Turns of Wire on This Transformer

Do you realize that to meet the government requirements you must use a small condenser?

How will you get full power out of a small condenser?
The answer is: "Use high-voltage transformers." In other words, Packard transformers. The above transformer is almost a 1/2 kw., for it can be used with 4 amperes primary. Order to-day.

The Packard Electric Co.
540 Dana Ave., WARREN, OHIO

TRANSFORMERS
FOR REAL WORK
Just the thing for your laboratory to provide low-voltage current for small motors, lamps, experiments, etc. Not affected by short-circuit. No parts to wear out requiring renewal—Will last for ever.

FRAASA TYPE SC.
Transformers are built in capacities of 30, 50 and 100 watts. Secondary voltages 15 and 25 with 2 1/2 or 5 volt taps. Illustration shows transformer removed from steel case.

WRITE FOR BULLETIN SC 141.
Fraasa Engineering Company, NORWOOD, OHIO.

Low Voltage Transformers
Highest efficiency and durability
For operating electrical and mechanical devices. Work successfully on 110 to 125 volts.

Special Bell Types for ringing door bells, annunciators, bell- easers, etc. Better than batteries at lower operating expense.

Write today for free descriptive circular. Dealers wanted.

O. J. GOETTMANN, Manufacturer
125 East Ohio St., N. S., Pittsburgh, Pa.

$2.00 SAMPLE

CAMPBELL ELECTRIC CO.
LYNN, MASS.

Enclosed find $2.00 for which send "SAMPLE" BELL TRANSFORMER, to ring one or two bells at a time, operate door openers, etc., from the alternating electric light circuit of—Volts—Cycles.

NAME______________________
ADDRESS____________________

When writing, please mention "Modern Electrics and Mechanics."
As the tide ebbs and flows the water enters the head tank and thence travels round and down the intake pipes and compressor shaft into the chamber R and up the tail race shaft U into the open sea. It tends to produce a vacuum in falling through the intake pipes and in order to prevent this, outside air is drawn in with the water and carried down the shaft. It is set free only when the descending water is shattered on the disperser or abutment D. The liberated air accumulates in the pocket of the chamber R from which it is drawn off through the pipe P. The pressure at which the air leaves the chamber equals the back pressure or weight of water in the uptake shaft. In this way the plant may be constructed to deliver air at a specified pressure. A shaft of 230 feet will deliver air at 100 lbs. gauge pressure; 460 feet deep will give 200 lbs. pressure. With regard to the head of water—height of tide—from which the developed horsepower is calculated, there are certain localities more favorable than others; the physical features of land and sea unite to produce great differences. If one assumes an average tide of 10 feet with a volume of water of 1,000 cubic feet per second, one compressor alone will develop 1,140 horsepower. The quantity of compressed air delivered will depend upon the pressure of the air. There is much in favor of this scheme not only as a prospective source of energy, but as one which may well be put into present operation. The following points are worthy of notice: 1—The scheme is not confined to the installation of one compressor, but is equally well adaptable to the employment of a battery of compressors. In this way a saving on first cost per horsepower is gained. 2—By making the chamber R sufficiently large, enough air can be stored to maintain the supply during the time when the tides are at their lowest. 3—The production of compressed air proceeds alternately in increasing and diminishing quantities but always is continuous. 4—The first cost, in some instances excessive due to provision of breakwaters where locations are in exposed spots, is soon repaid since the system calls for no machinery and practically no supervision by a staff of operatives.
Learn Wireless At the ONLY School in New England Specializing in Wireless Telegraphy.

Our instructors have seen SERVICE with the U. S. Government, Fessenden and Marconi Wireless Tel. Companies. Therefore we assure you of a PRACTICAL day or evening course. Full information promptly given upon request. DON'T FORGET our special summer course.

EASTERN RADIO INSTITUTE, 899A Boylston Street, BOSTON, MASS.

TELEGRAPHY

Special summer rates in all branches. Absolute satisfaction guaranteed to all. Ideal school rooms, perfect surroundings. Largest Telegraph School in the East. Beware of the school looking for your money and not looking for or getting YOUR GOOD WILL. Call, Write or Phone Rox. 2266J.

New England School Telegraphy
32 Warren St., Roxbury, Boston

LEARN WIRELESS TELEGRAPHY

The demand for competent men is increasing daily in the wireless field. We prepare students both male and female to take the government examination in the shortest possible time. Our students are with the Telefunken and Marconi Wireless Companies. Call or write at your earliest convenience for circular.

DAY AND EVENING CLASSES
BARRETT'S WIRELESS SCHOOL
CENTRAL UNION GAS CO. BUILDING
819-27 Courtlandt Ave.
Tel. 1107 Melrose. New York City.

MARCONI OPERATORS SEE THE WORLD

WINTER CRUISES

Young men of good character can secure positions as wireless operators on board ships equipped with Marconi apparatus which sail from our home ports to foreign countries. The work is light and fascinating and there is a constant increase in salaries while you are seeing all parts of the world. We will accept a limited number of young men to train for these positions. Next class of twelve organizes on the first of next month.

MARCONI WIRELESS TRAINING SCHOOL, 1120 Prospect Street, CLEVELAND, OHIO

Summer Course in Wireless

Day and Evening—Engineering—Operating

Study in New York this summer. Live in Y. M. C. A. dormitories. Swimming pool, gymnasium, ball lectures, outings, bowling and many other features. Also other classes. Complete catalogue free. Two complete power transmitting stations—large laboratory.

Reserve your place early.

Y. M. C. A. TELEGRAPH SCHOOL
143 East 86th St.
New York.

Models, Railways and Locomotives

Edited by Henry Greenly

The only paper in the world solely devoted to mechanical models
Send 5 cents for specimen copy to
MODEL RAILWAYS PRESS,
Haston Road, WATFORD, ENGLAND

Subscription, $1.25 per annum postpaid
American Agents, Spen & Chamberlain, 123 G. Liberty St., New York

LEARN TELEGRAPHY FREE

We teach you by mail, Wireless, Commercial and Railroad Telegraphy. Our course costs you nothing. Write to-day for free booklet containing full details.

BROOKLYN TELEGRAPH SCHOOL
W. U. Telegraph Bldg. 313 Fulton St., Brooklyn, N. Y.
Largest Telegraph School in the U. S.
Thus may be harnessed to the use of humanity the enormous energy of the tides. There is nothing more regular than their ebb and flow. Neither cloudy days nor prolonged drought affects them and whilst the energy thus obtained is in the form of compressed air, the immediate adoption of the system would ease the demand of industry upon the present fuel resources. None can doubt that success will reward the wit and ingenuity of man in this direction. In closing, let us quote F. R. Soddy, in his work "Matter and Energy": "The world is great enough and rich enough to supply human aspirations and ambitions beyond all present dreams. But the human intellect must keep pace in its development with the expanding vision of natural abundance."

THE WIRELESS STATION ABOARD S. S. IMPERATOR

By Maurice E. Pelgrims

PROGRESS is the watchword of the 20th Century. After the Republic and Titanic disasters, wireless telegraphy proved to be a very important part of the modern ocean steamer’s equipment. More recently, when the Uranium liner Volturno was afire in mid-Atlantic and sent out the distress signals, ten great liners answered her plea for help, thus saving the lives of a great number of the passengers.

The Hamburg-American Line when putting the latest of the Atlantic greyhounds into service did not forget the wireless part in the least. As are all other things on board the gigantic ship, the radio outfit is also of the latest design. It is not the usual ship station but a station as powerful as any of our coastal stations that has been installed on the Imperator. It has three different outfits, each having its individual aerial. The power equipment consists of a motor-generator furnishing 500 cycle current at 1,500 r. p. m., the direct current being supplied by the ship’s generator. The important parts of the set lead to a marble base switchboard from which they can be regulated at the operator’s will. There is also a special arrangement of switches permitting of the adjustment of the set to any wavelength desired. An air-cooled spark gap and an ammeter are also mounted on the board. The transformer, condensers, oscillation transformer and aerial inductance coil are placed inside of the operating desk leaving the upper part of the desk free for the two smaller sets. The antenna used by the larger set is of the “T” type, 670 feet long and supported by the two masts at a height of 240 feet. This set insures constant communication with either of the continents, i.e., Europe or America. During one trip it has worked with the Norddeich station in Germany up to a distance of more than 2,000 nautical miles, and at the same time its signals were being received at the Sayville (Long Island) Telefunken station.

The receiving apparatus can work on a wavelength varying from 300 to 5,000 meters and has a device to protect it from static.

The second station, intended for shorter distance work, operates about 350 miles in daytime and about 700 miles by night. It has a motor-generator for furnishing alternating current to a 1½ kw. transformer and is connected up similar to the stations used on other liners. The receiving apparatus is the same as that used with the larger set, but has no static preventer.

The third outfit is the so-called auxiliary set and is only used when the two other sets are out of order or when working with a nearby high powered station. It consists of an induction coil using storage cells for the source of power. The accumulators are able to work the induction coil for about six hours. The two last sets have individual aerials consisting of a single wire going from the wireless cabin to one of the masts. A wavemeter, which permits the operators to adjust either of the sets to any wavelength desired, is included as a part of the wireless equipment of the Imperator.
DUCK'S BIG WIRELESS and Electrical Catalog

which you may deduct from your first order of $1.00. Great cost of catalog and low prices prohibit distribution except to those really interested. Most elaborate catalog of its kind published. Catalog contains more valuable information on wireless and electricity than many text books. Contains 126 pages wireless inets, and raw material for making insts., numerous diagrams, books, etc. 15 pages telegraph insts., 42 pages motors and dynamos. 150 pages flashlights, lamps, lighting plants, ammeters, guns, railways, books and general electrical supplies. THE J. J. DUCK CO., 432-434 St. Clair St., Toledo, Ohio

THE WIRELESS LOG

Contains 128 pages foreword, log the Log. Also instructions, general hints and technical abbreviations. Bound, 6 x 9. Price, post. paid, $0.25

WHY NOT keep a record of the messages received and sent by your wireless station? Wouldn't you enjoy having a record of the work performed by your apparatus that could be referred to later? If so, the means you have been waiting for are now available and presented by

THE WIRELESS LOG

This book has been prepared for the use of wireless amateurs. It is not intended for the entry of all messages received and sent by an amateur wireless station, but is intended for the keeping of a permanent record of the number of messages received and sent, the distances covered, the exact time, and other facts worthy of recording for future reference. This book is to the amateur wireless station what the Log is to the Commercial and Government stations. It is bound in cloth and will stand rough usage. It contains 128 pages for keeping the Log as well as instructions regarding the entry of the records, general hints and the technical abbreviations adapted for amateur operators.

No amateur station is complete without a Log Book for keeping a record of its work. ORDER YOUR COPY TO-DAY. Price $0.25

MODERN PUBLISHING COMPANY, 52 UNION SQUARE NEW YORK CITY

When writing, please mention "Modern Electrics and Mechanic."
Wireless Telegraph Contest

The Wireless Station and Laboratory contest is a regular monthly feature. The best photograph submitted each month is awarded a first prize of Three Dollars; second best, Two Dollars; third best, One Dollar.

The description of a station should not exceed 250 words. Write on one side of the paper only, using as many separate sheets as are necessary. Descriptions should be written in ink—not pencil. Typewritten descriptions using double spacing are preferable to any. It is advisable to send two prints of the photograph whenever possible—one toned dark and the other light—in order to permit of choosing the one best adapted for reproduction. Prints should be sharp and distinct.

This competition is open to all, irrespective of whether they are subscribers or not.

FIRST PRIZE

In the accompanying illustration may be seen the wireless station recently installed in the West Des Moines High School.

The sending set consists of a ½ kw. West, Bar Harbor, Mich., Ames, Ia., and many other stations.

In connection with this wireless set we have our own motor generator equipment for furnishing 3 kw. of alternating current.

In conjunction with this wireless sta-

![Wireless Station Recently Installed in the West Des Moines High School, Consisting of a One-Half Kilowatt Transmitting Set and Efficient Receiving Apparatus](image)

transformer, a Murdock rotary gap, a 1 kw. oscillation transformer, "Boston" key, Murdock moulded condenser and Clapp-Eastham antenna switch.

The receiving set is entirely of Murdock make with three extra detectors.

The aerial consists of six wires 200 feet long and 102 feet high. The wires are No. 10 copper.

We have been heard about 350 miles and have received from Arlington, Key

tion, a wireless association has been organized with a membership of 58.—Geo. Le Vine, Des Moines, Ia.

SECOND PRIZE

Herewith is a photograph of my wireless station.

The aerial is of the inverted L type, 90 feet long, 50 feet high, and consists
BRANDES’
“Trans-Atlantic Type”
Wireless Receivers

For professional use. Used by operators on land and sea. Very popular on Trans-atlantic steamers.

Complete with hard rubber covered headbands, six-foot green silk cord; wound to 2,800 ohms. NINE DOL-
LARS.

Send stamp for literature on all types.

C. BRANDES, Inc., 3 Liberty St., New York
Wireless Receiver Specialists

Agents:
Pacific Coast—Aylsworth Agencies, 149 New Montgomery St., San Francisco.
Australia—G. C. Hamilton, Ltd., 177 Elizabeth St., Sydney, N. S. W.

BARGAINS
We overstocked, and want to clean up the following strictly new, first-class material:
Elektoty Miniature Railways, 33½% off.
Best made, nicest looking and running six volt, third rail material. Always sells at list price. Pamphlet on request.
Tantalum Bulbs, 25¢ each
6 volt, 4 c.p.—Miniature Candelabra, or Edison Base.
Flash Lights—Shaw Coat Pocket type, usually $1.50. Now complete with Bulb and Battery, 65¢ each
Medical Coils
A good, strong coil, with handles and box for cell, with switch. Cheap, but good and strong (cells not included).
Coil for one dry cell............ 50¢
Coil for two dry cells.......... 65¢
Metal Telephones—Sold Everywhere at $2.00—Our Price $1.65 each
Enamel Wire, No. 22, 45¢ 1 lb.; No. 24, 46c 1 lb.; No. 26, 63¢ 1 lb.
No. 14 Aluminum Wire for aerials, 50¢ 1 lb.
Send us inquiries for any wireless or electrical goods you need this month. We will quote attractive prices.

J. ELLIOTT SHAW CO.
632 Arch Street Philadelphia

EXPERIMENTERS—
ATTENTION
Buy wire direct from manufacturer and wind your own wireless and other coils. We have a small stock of old formula wire which we offer at following prices:

<table>
<thead>
<tr>
<th>No.</th>
<th>Per lb.</th>
<th>No.</th>
<th>Per lb.</th>
<th>No.</th>
<th>Per lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>22c</td>
<td>15</td>
<td>22c</td>
<td>16</td>
<td>22c</td>
</tr>
<tr>
<td>17</td>
<td>23</td>
<td>18</td>
<td>23</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>21</td>
<td>25</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>27</td>
<td>24</td>
<td>28</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>26</td>
<td>30</td>
<td>27</td>
<td>31</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>29</td>
<td>35</td>
<td>30</td>
<td>38</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>32</td>
<td>48</td>
<td>33</td>
<td>55</td>
<td>34</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>65</td>
<td>36</td>
<td>75</td>
<td>37</td>
<td>95</td>
</tr>
<tr>
<td>38</td>
<td>1.05</td>
<td>39-1.40</td>
<td>40-2.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cash with order and no order taken for less than $1.00. Add postage.

We make high grade Enamelled Cotton and Silk Covered Magnet Wire.

AMERICAN ENAMELED MAGNET WIRE COMPANY
Muskegon Michigan
of four wires spaced evenly on 10-foot spreaders.

The sending apparatus consists of:

THE WIRELESS STATION OF RAYMOND S. BAKER, OF GLOVERSVILLE, N. Y.

One-half inch spark coil, glass-plate condenser, zinc spark gap, and wireless key. The coil is used with an electrolytic interrupter on 110 V., A. C.

The receiving set is mounted on a cypress cabinet and consists of: Loose coupler, loading coil, fixed condenser, galena detector, pair of 2,000-ohm phones, and a buzzer test.

The aerial switch may be seen on the right hand side of the cabinet.

With this set I have had very good results, receiving as far south as NAW, Cuba, 1,700 miles; and north as far as Maine. All apparatus is home-made with the exception of the coil, phones and key.

—Raymond S. Baker, Gloversville, N. Y.

THIRD PRIZE

In the accompanying illustration may be seen my wireless apparatus which has

TRANSMITTING AND RECEIVING APPARATUS OF LEONARD BOHAC, OF CEDAR RAPIDS, IOWA

all been home-made, with the exception of the telephone receivers and the two keys.
Transmitting Sets
Receiving Sets
Transformers
Condensors
Spark Gaps
Oscillation Transformers
Wave Meters
Tuners
Keys

THE BLITZEN TRANSFORMER
1/4 K.W. $15.00 3/4 K.W. $22.00 1 K.W. $36.00

If it's wireless, we manufacture it in the CLAPP-EASTHAM shops, the CLAPP-EASTHAM way; a little better than the best.

The most complete wireless catalog in America, also a catalog of parts and materials for the construction of apparatus, sent for 4¢ stamps.

CLAPP-EASTHAM CO.
143 Main Street,
Cambridge, Mass.

RESISTANCES
FOR WIRELESS
TELEGRAPH AND TELEPHONE

And for all other purposes. Connect your induction coil or transformer on any lighting or power circuit. Cheapest and best made units for 110 volts, 3/4 amperes 56 cents. Send for catalogue.

DUBILIERS ELEC. CO., Inc.
60 Fifth Ave., New York, N. Y.
Have you seen the Dubilier Electric Radiator for Heating? Sells for $6.00

New Halcun Detector
Holds five separate crystals, Cat Whisker Type, molded composition rubber base,nickel-plated.

PRICES
With receiving condenser in base $2.50
Without receiving condenser in base $2.00

HALLER CUNNINGHAM ELECTRIC CO.
420 Market Street, San Francisco, California.

When writing, please mention "Modern Electrics and Mechanics"
The sending set comprises a 2-inch coil, a ½-inch coil—the latter being used for short distance work—plate glass variable sending condenser, rotary gap, helix, and key. I also have a hot wire ammeter which may be seen above the loose coupler but is not in the circuit.

The receiving set consists of a 2,000-meter loose coupler with fixed condenser in its base; variable condenser, loading coil, 2,000-ohm phones, and electrolytic, carborundum and silicon detectors. My aerial consists of four wires on 8-foot spreaders. It is 60 feet high and 65 feet long, and of the inverted L type.

Many of my instruments were made from directions given in Modern Electrics and Mechanics.—Leonard Bohac, Cedar Rapids, Ia.

A GOOD RECEIVING SET

(Continued from page 802)

A loud click will then be heard in the receivers and the audion is again in proper condition. When the audion is working properly, there should be a faint bluish or pinkish glow around the plate or D, especially near that part of the plate that is close to the hot filament. A new or “raw” audion will not be as sensitive as a seasoned or old one. Just before the filament burns out, the audion is at its best. Using a standard perikon detector, the author has found by actual test that in this condition an audion is ten times as sensitive as the perikon. It will normally average from five to seven times as sensitive as the very best of crystals, perikon and galena included. Always shut off the audion while transmitting because it prolongs the life of the filaments. In switching from one filament to the other, reverse the storage heating battery. It is not necessary to reverse the audion battery. Of course, never leave the audion battery switch on 2 buttons at once, as the cells under these buttons are short-circuited. Always, when through, bring battery switches to zero and pole changer to 0-0.

SECONDARY OF LOOSE COUPLER WAVE METER

The secondary is the most important part of this piece of apparatus. If it is
$20 A COMPLETE WIRELESS STATION

Great for the MOTOR BOAT,
Great for THE CAMP,
Great for THE HOME.

This station is complete in every way and you could not get a similar set from any firm in the world for less than double the amount we ask. The outfit consists of a 3 inch coil, a 12 flat plate condenser, Our “Don’t Jar Out” Detector, Our light tone buzzer and switch that tells if your detector is working. One double slide silk wire wound tuner of long wave station capacity, Tubular fixed condenser, Helix of large capacity, Wireless key, D.p.d T Switch, and complete head phone set of 2 receivers each wound with 1000 ohms, 1 double headband and 6 feet silk covered cord.

Send stamp for our bulletin “G” of wonderful values.

NICHOLS ELECTRIC CO.
1-3 W. B’way, N. Y. (New Address).

SEND FOR FREE INFORMATION ABOUT
The New Slider
Also new LONG WAVE TUNERS for reading Arlington.

Address:
John V. Purcell,
Tennytown Station.
Washington, D. C.

LATEST MODEL LOOSE COUPLER
Size 16" x 6": tunes up to 3,000 meters. Primary housing, hard rubber; woodwork, hand rubbed mahogany; secondary, green silk covered wire; has 11 taps with cable connection; slides easy. Biggest value for the money offered by anyone. Price, $15.00.

Other Models at $7 and $9
Send 2c. stamp to-day for my literature.

J. F. ARNOLD
- 243 E. 118th St., N. Y.

CARDBOARD TUBING
IN SIZES SUITABLE FOR TUNING COILS, LOOSE COUPLERS, TESLA COILS, Etc., SPECIAL SIZE 26" x 8" Dia.
Send 2c. stamp for price list
BEETLE & MACLEAN
21 BROMFIELD ST., BOSTON, MASS.

THE NEW R. J. 5 DE FOREST AUDION DETECTOR
Licensed for private, amateur or experimental use only. The only amateur Audion Detector manufactured under the patents of Dr. Lee de Forest.

Incomparably Superior to Any Other Known Type of Detector

Renewal Audion bulbs may be secured from dealers, in exchange for old or broken ones, for $3.50 and $5.00 each. All bulbs are tested before shipment, but the “X” grade, or $5.00 bulbs, are tested for the maximum possible sensitiveness. With the Audion you can easily increase your range from 50 to 100 per cent.

Price $25.00
For Sale by Dealers Everywhere
Manufactured by the
Radio Telephone & Telegraph Company
309 Broadway, NEW YORK

When writing, please mention “Modern Electrics and Mechanics.”
not made according to directions, it is more than probable that all of the good work has been done for nothing. The author has tried every conceivable winding and the one here described works by far the best. The ends are of hard rubber as per drawing. The tube is built up according to previous directions and the winding is rather peculiar. It consists of 15 taps and each tap contains 6 turns. The wire is No. 30 with two wires in parallel and a strong white linen thread wound between each turn. This method of winding reduces capacity between turns to a minimum and allows the required capacity to be placed where it belongs, namely, in condenser No. 2. If a reliable variable plate condenser is used for No. 2 and No. 3, with 15 taps and these condensers a very high efficiency loose coupler will be obtained for wave lengths up to 1,000 meters. If higher than this is required, it is strongly advised to build an extra secondary containing four times this number of turns and using the same capacity. This brings the set up to the wave lengths employed by the big transcontinental stations.

Very strong reasons have previously been stated for using an air dielectric variable condenser for the stopping condenser No. 3 and this certainly proves its merits.

In a recent trip across the Pacific Ocean, the author tried out some extreme long distance receiving with a set identical with the one here described, and was in constant touch with the Marconi San Francisco station for over 4,000 miles. On one occasion San Francisco was picked up very faintly but loud enough to make positive identification just two and one-half hours out after leaving Yokohama, Japan. This was at night in the month of September. On a very recent trip down on the Pacific Coast to the Panama Canal, "press" was copied from the Marconi San Francisco station, a distance of over 2,000 miles through heavy static. Different secondaries were tried and the one here described proved the best. It allowed looser coupling and in fact, with the audion, most of the time the looser coupling possible with the set was used.
USE THE BEST

Made by J. H. BUNNELL & CO., Electrical Mfrs.
32 PARK PLACE (Broadway Block) NEW YORK
Sold By All Live Dealers
Send for our New Manual of Instruction and Wireless Catalog No. 84-W.

Can You Tune Out Unwanted Stations?

If you have trouble in tuning out unwanted stations you should get this new receiving transformer. One wireless operator, who has had several years' experience writes in part: "Your tuning transformer gives excellent results. It beats anything that I ever worked." It's yours for only $10.00. Send 2c stamp for circular.

COLBY'S TELEGRAPH SCHOOL, Auburn, N. Y.

The Experimenters'

The best advertisement for the Amco Loose Coupler are the hundreds of well satisfied customers who have declared it is THE MOST SERVICEABLE AND EFFICIENT LOOSE COUPLER ON THE MARKET

There are more of these instruments in service today than all other loose couplers put together. The design of this instrument is a step forward in the wireless art and has met with the praise of many experts. Bare wire primary. Green silk secondary. Mahogany finished woodwork. PRICE $6.00. Other models $4.00 $8.00 and $12.00.

Supply House

SEND 4c. IN STAMPS FOR THE NEW AMCO CATALOG

We manufacture the largest line of reliable wireless apparatus in the country. Over 100 Wireless Instruments and 300 Parts, with which you can build your own Instruments at small cost, are shown in our catalogue. Also, Storage Cells, Rectifiers, Transformers, Motors, Dynamo's, Steam Engines, Books, Tools, Model Aeroplanes, Electric Bicycle Lamps, Flashlights and Supplies.

ADAMS-MORGAN CO.
Box 72d
Upper Montclair, N. J.

WE WISH TO ANNOUNCE THE NEW SAUNDERS NAVY TYPE TUNER $18.00 FINISHED IN GENUINE MAHOGANY AND POLISHED HARD RUBBER Send for free descriptive circular GEO. S. SAUNDERS AND CO., 168 Washington St. BOSTON, MASS. 11 Devonshire St.

WIRELESS RECEIVERS

Double German Silver Headband 2000 Ohms, by mail, $5.90 this month only.

HOT WIRE AMMETERS

"CONTINENTAL" Best make all over the world 0-3 to 0-5 amp., by mail, this month only, $4.95 All literature sent free with order, otherwise 2c. stamps requested and credited on first order.

COSMOS ELECTRIC CO., 136 W. LIBERTY ST., NEW YORK CITY

When writing, please mention "Modern Electrics and Mechanics"
MAKE YOUR BIKE A
Motorcycle
at a small cost by using our Attachable outfit.
FITS ANY BICYCLE. Easily attached. No special
tools required. Write today for bargain list and
FREE BOOK describing the SHAW Bicycle
Motor Attachment. Motorcycles, all makes, new and second hand, $35 and up.
SHAW MANUFACTURING CO.
Dept. 36
- Galesburg, Kansas

Get Acquainted
With the new sport, motorizing for everybody. Learn more about the fascinating little cycle-car, cosy, comfortable, fast and low-priced. Read

CYCLECAR & MOTORETTE
Journal of the Popular-Priced
Motor Car
Issued monthly, 10 cents a copy; $1 a year;
an interesting, beautifully printed and liberally illustrated publication. Subscribe now.
Cyclecar and Motorette
Emigrant Savings Bank Bldg.
New York City

KEITH'S
BIG $2. OFFER
FOR THE
HOMEBuILDER
ARTISTIC ideas, unique plans and practical Homebuilder helps, to be found in the 80-page monthly numbers of KEITH'S MAGAZINE (established 14 years), the recognized authority on Planning, Building and Interior Decorating. Homes of Moderate Cost. You will want this excellent Homebuilder's Magazine, each issue contains 6 to 10 House Plans. Subscription $2 a year; copies at news stands.
OUR BIG OFFER—To each subscriber sending $2 we will mail postpaid, any one of KEITH'S FAMOUS DOLLAR PLANBOOKS.
100 Plans of bungalows,
104 _- " Cottages.
135 " costing below $5000.
150 _- " over $5000.
50 Garages, 40 Duplexes and Plate.

LOOSE COUPLER PARTS
mahogany base varnished and polished, 500.; 5 rods and pieces of primary, 500.; knob turned pieces for secondary, 750.; support for rod, 150.; Primary enamel windings finished, $1.50; Secondary windings silk with tops, 1.25; switch for knob and bushings, 500.; contact points for primary, 50.; each, 2 guide rods for secondary with binding posts, 500.; bushings for rods, 250.; slider rod and slider, 500.; binding posts, 250.; All goods over $1.50 sent postpaid any part of the world.
Send money order.
G. S. CROWTHER, 1414 Franklin St., Victoria, B. C.

When writing, please mention "M. E. & M."

To lead the current from the secondary into the circuit selector switch, use some flexible cord. Do not use sliders on the brass rods. Make the secondary slide very loose and free, because it will be found that the degree of coupling is very essential to fine tuning and if the secondary sticks or works hard, it is rather difficult to properly adjust. By building a slider wire bridge across the telephone circuit as shown in one of the illustrations, the set becomes a very accurate decimeter and distance measurer.

A thin hard rubber plate 3/4 by 1 inch is screwed across the front of the box and over this is mounted a slider, such as is sold by any wireless supply house, on 3/4 by 3/4 inch brass rod which reaches the whole length of the case. The slider contact rests on a very fine resistance wire and is hooked up to the telephones the same as a potentiometer. This variable shunt is placed across the phones and is calibrated by means of a Wheatstone bridge. Now, by placing the condenser at the maximum position where a signal comes in loudest, then adjusting the bridge until the signal fades out completely, and afterwards noting this on cross-section paper, very accurate resonance curves can be plotted and from them the log decrement can be very easily figured by previously published formulae.

If the experimenter has access to an electrical laboratory where the sensitiveness of his receivers can be measured, then it becomes quite an easy matter to measure the incoming energy of a distant station in watts, volts or amperes.

In conclusion, the author wishes to state that if instructions are minutely followed, a receiving set, wave meter and decimeter can very easily be made whose accuracy is fine enough for ordinary laboratory work, providing a good wave meter and accurate Wheatstone bridge are used to calibrate the set. It is very nearly impossible to state what the inductance and capacity of the different windings are going to be before they are finished, and then each receiving set must be calibrated with a standard. The values in this article have been those of the writer's set and may not be duplicated.
Something New in Transmitting Sets

A NEW PANEL TYPE COMPACT SET OF HIGH EFFICIENCY

EFFICIENCY IS WHAT COUNTS IN WIRELESS APPARATUS AND WE HAVE DESIGNED AND BUILT EACH SEPARATE INSTRUMENT WITH THIS PARTICULAR POINT IN VIEW.

TAKE ADVANTAGE OF OUR EXPERIENCE AND GET THE BEST. OUR STRONG POINT IS NOT PRICE, BUT IT IS QUALITY. WE SELL YOU THE BEST THAT CAN BE HAD AND AT A FAIR PRICE.

This new panel transmitting set comprises a complete and up-to-date combination of instruments, properly mounted and arranged on a polished marble panel, and connected up, ready for use. In this type of set, the efficiency is much higher, as the apparatus is mounted close together, and all leads are very short and heavy.

The apparatus included, consists of the following:—Closed core type H transformer, transmitting condenser, oscillation helix, rotary spark gap, anchor gap, aerial switch, key, ammeter, voltmeter, and hot-wire milli-ammeter for aerial circuit. The transformer is variable in power, and the condenser capacity may also be varied, direct from the front of the panel. The speed of the rotary gap may be varied, allowing different spark frequencies to be used. Together with our new panel receiving set, this makes an ideal outfit. Our new catalog has been delayed, but will be ready for absolute delivery on April 15. Send 10c in stamps for one now.

IMPORTANT Owing to our rapidly growing business, we are fitting up an entirely new and very modern plant directly across the street from our present location, where we will make a specialty of filling your orders direct from stock the same day we receive them. Note change of address, and send all correspondence to our new place at No. 124 North Sheridan Ave., Pittsburgh, Pa.

EDGCOMB-PYLE WIRELESS MFG. CO.
124 No. SHERIDAN AVE.
PITTSBURGH, PA.

When writing, please mention "Modern Electrics and Mechanics."
Questions and Answers

Questions and queries pertaining to electrical and mechanical subjects and of general interest to all readers, will be answered in this department. Name and full address of the sender should accompany all inquiries. Questions that are not deemed by the editor to be of general interest, will not be published and no answers will be given by mail.

DEBEG SYSTEM.

(78) A. G. A., Buckingham, Quebec, Can., asks:
Q. 1.—Is the name Debeg used by the Sayville station in addressing the press dispatches the name of a wireless company or system?
A. 1.—It is the name given to the German Marconi Co. known as the Deutsche Betriebs Gesellschaft für Drahtlose Telegraphie, m. b. h.
Q. 2.—Where can I get information on the "Logarithmic Decrement"?
A. 2.—See article on this subject in the September, 1912, Electrician and Mechanic, by H. B. Richmond.
Q. 3.—What is the power of Brooklyn Navy Yard?
A. 3.—5 KW. ———

GUNNERY.

(79) F. F., Brooklyn, N. Y., asks:
Q. 1.—What is meant by a 12-inch gun, a .38 or .50 "caliber" firearm?
A. 1.—The measurement pertains to the diameter of the bore, being 12", .38", or .50", in the three cases, respectively.

ROTARY VS. STATIONARY GAPS.

(80) Walter Baird, Meadville, Pa., asks:
Q. 1.—Will you please tell me why it is that I can get a greater radiation current in my aerial when I use a stationary gap than when I use a rotary gap?
A. 1.—There may be several reasons for this. When you were using the stationary gap the energy may have been going out over a broad range of wavelengths, but on the rotary gap the set was probably better tuned, which is one of the advantages secured by using a rotary gap; the energy emitted being only a single wavelength. Thus, while the energy in the antenna may appear to be less with the rotary gap, it is more efficiently radiated than with the stationary gap, giving you a longer range. Also, the antenna current is reduced. There is also the additional feature that the rotary gap may be running at too high a speed so that the condenser cannot properly charge, but it is probably the former reason that causes the lower reading.
Q. 2.—Why is it that the transformer takes more current with the stationary gap than with the rotary gap?
A. 2.—The answer to this question is similar to Q. 1. The effective radiation is greater with the rotary gap so that while the set is requiring less input the effective output is increased. The over-all efficiency being increased the primary input is decreased.
Q. 3.—Is it true that the wavelength of a T aerial is one-half of what it would be if the aerial were connected in L?
A. 3.—As a general proposition this is far from being true. It depends on the relation of the top length to the lead-in length. The wavelength of a T aerial is somewhat less than it would be for the same aerial connected in inverted L. Just how much less depends on the particular aerial. The T aerial is the less directive of the two.

INDUCTANCE FORMULAE.

(81) F. C. B., Saylesville, R. I., asks:
Q. 1.—Will you please have the kindness to explain how the inductance of a helix may be calculated? I have tried several different formulæ and come out each time with vastly different results.
A. 1.—When empirical formulæ are used it is very necessary to carefully consider the units of measurement used. This is probably where your error comes. It would take too long to explain the many formulæ used, but you will find a seven-page article on this subject in the February, 1913, Electrician and Mechanic. A formula which gives very satisfactory results is as follows:
L = 1 × (3.1416 D n)²
Where
L = inductance in centimeters
I = length of helix in centimeters
D = diameter of helix in centimeters.
n = number of turns per centimeter.
Q. 2.—Another thing I have not been able to understand is the formula for wavelength. When I use a stationary gap I need a different value of capacity than when I use a rotary gap. Yet the wavelength does not appear to decrease when the capacity is cut down for the rotary gap.
A. 2.—You are perfectly correct in your assumptions, but you probably introduce an error in the inductance which you have not considered. When you changed from the stationary gap you probably changed the length of your leads, or the distance on the gap over which the current has to pass before discharging was increased. This would increase the inductance and the net result is probably that the wavelength has remained the same. It takes but a very small change in the length of a lead to effect a wide change when oper-
How to Install Electric Light and Motor Wiring

Just what you want to know about wiring as it is done today will be found explained in a practical way in Kirchgaesser's pocket edition (1914) "Electric Light and Motor Wiring." The clear descriptions and instructions are supplemented by 150 illustrations and diagrams. This book tells just how to proceed in wiring for lighting and motor equipments. It does not consist of a series of "Don'ts" nor is it a reprint of the National Electrical Code.

Tells How in Plain English

Clear understandable language is used throughout, the ability of the author in this respect being particularly noteworthy. He makes it easy for you. He had the reader in mind at all times when preparing the book.

Even the size was made special—it is a real pocket book 3¾" wide by 5½" high. You can carry it without inconvenience. It is always of value, which is not the case with the book on the shelf.

If you are an electrician, contractor, electrical engineer, steam engineer, student, architect, central station man or in any way interested in electrical work you will find the book of service to you. See what others say about it.

You always have it with you when you need it.

A Few of the Subjects Treated

Service Entrance Wiring Connections.
Old and new (1914) tables of allowable carrying capacities.
Open Work Wiring, How to Install, what the requirements and restrictions are, etc.
Moulding Wiring (Wooden and Metal), How to install, what the requirements and restrictions are, etc.
Concealed Wiring, How to Install, what the requirements and restrictions are, etc.
Cord and Plug Wiring, How to Install, what the requirements and restrictions are, etc.
Armored Conductor Wiring, How to Install, how to ground conductors, why grounding is necessary.
What the commonly used electrical fittings are and how they are used.
How to install fixtures.
How to plan wiring installations.
Sign Wiring.
Generator and alternator installations.
Switchboard Connections.
Starting a direct current generator.
Starting an alternating current generator.
Connections for ground detector lamps.
Motors and their installation.
Motor starters and complete wiring connections.
Motor speed regulators and complete wiring connections.
What to do before starting a motor the first time.
Connections for alternating current motors.
Calculation of wire needed for direct and alternating current motor installations.
Examples of wiring calculations for lighting systems.
Transformers, connections and installation.
How to build a transformer house.

INTRODUCTORY PRICE, $1.00

A price so low that no one can afford to be without it, even if only remotely interested in electrical work. Sign and mail the coupon to-day—the book will be forwarded promptly, prepaid.

Electroforce Publishing Co.
13 Stroh Building, Milwaukee, Wis.

When writing, please mention "Modern Electrics and Mechanics."
The Mignon Studios of Dancing
2628-2630 Broadway, NEW YORK
Bet. 99th and 100th Sts. Tel. 1396 and 533 Riverside

Most exclusive and enjoyable method of learning all the
MODERN DANCES
Under the personal supervision of expert and refined lady and gentleman instructors.

TERMS—3 private lessons, $5.
7 private lessons, $10.
Private Classes, Special Rates.
RESULTS GUARANTEED
Use of Hall can be had for DANCES and PARTIES. $10.00 per night, with music.

FREE!!
Hand some one photogravure Art Posters in Sepia Brown on heavy white stock 19 x 10 with one year's subscription to the
Baseball Magazine
$1.50 per year—Canadian $2.00
Published the year round. On sale 10th of the month. 16c per copy at all News Dealers.
Sample Copy Sent FREE on Request

Send us 25c. (stamps or coin) and we will mail you prepaid one of these Art Posters and a Sample Copy. If, after reading sample copy, you decide to subscribe, you need only send $1.25 additional for a year's subscription. WRITE AT ONCE. This offer may be withdrawn without notice.

B. B. Magazine Co., 70 5th Ave., N. Y.
Gentlemen: Enclosed find 25c. for which send me art poster and sample copy of B. B. Magazine, with the understanding if I subscribe for one year, I need only send $1.25 additional.

Name.................................. Street..........................
City.................................. State..........................

When writing, please mention "M. E. & M."

HIGH VOLTAGE
(82) P. W. R., Scranton, Pa., writes:
Q. 1.—He has been proposing to make a 50,000-volt transformer, but has been told by a presumably reliable authority that a better method is to employ an inductance in series with two condensers; that the difficulty of insulating the latter is much less than with the transformer. Could we give some directions?
A. 1.—It is true that very high voltages can be produced by properly connecting an inductance with a capacity, but for any particular voltage the adjustment is close, and to know just what the voltage becomes is difficult. When you alter any one item of the whole equipment, the "resonant" condition may entirely disappear. What has been suggested to you is described in Tesla's small book entitled, "Experiments with High Frequency Alternating Currents." This is certainly worth your reading, but we feel sure you will decide that the apparatus and adaptations do not fit your requirements.

RADIO APPARATUS
(83) Doan Washburne, Plainfield, N. J., asks:
Q. 1.—Where can I get a description of the construction and operation of a tickle detector?
A. 1.—The December, 1913, Electrician and Mechanic contained an article on this subject by Mr. P. J. O'Gara.
Q. 2.—What back number contains a description of how to make a loose-coupled receiving set?
A. 2.—The February, 1910, Electrician and Mechanic contains an article on the construction of an entire receiving set, including a loose-coupled receiving transformer.

HE COULDN'T
The Artist—I want you to pose for my picture, "The Prodigal Son."
The Tramp—Can't do it.
The Artist—Why not?
The Tramp—Veal doesn't agree with me.—London Illustrated Bits.

Statement of the ownership, management, circulation, etc. of MODERN ELECTRICS AND MECHANICS: Published monthly at New York, N. Y.; Editor A. C. Lescauboura, 32 Union Square, New York; Managing Editor, None; Business Manager, O. J. Ridenour, 32 Union Square, New York; Publisher, Modern Publishing Company, 32 Union Square, New York; Owners, Modern Publishing Company, 32 Union Square, New York; O. J. Ridenour, 32 Union Square, New York. Known bondholders, mortgagees, and other security holders, holding $1,000 or more of the total amount of bonds, mortgages or other securities: None.

MODERN PUBLISHING COMPANY.
(Signed) ORLAND J. Ridenour, Business Manager.
Sworn to and subscribed before me this 13th day of March, 1914.
HARRY S. WALLENSTEIN, Notary Public, N. Y. County, No. 6911.
(My commission expires March 30th, 1915.)
BUSINESS OPPORTUNITIES

FREE FOR SIX MONTHS—MY SPECIAL OFFER to introduce my magazine "INVESTING FOR PROFIT." It is worth $10 a copy to any one who has been poorer while the rich richer. It demonstrates the D.E.A.L. earning power of money, and shows how any one, no matter how poor, can acquire riches. "INVESTING FOR PROFIT" is the only progressive financial journal published that shows how $100 grows to $2,200. Write NOW and I will send it six months free. H. L. Barber, 412-20 W. Jackson Blvd., Chicago.

(8)★

SPARE TIME—NO CANVASSING, REPORT information, news, names, etc., to us. We have established markets. Particulars for stamp. "Nisco," HDF, Cincinnati.

(7)★

START A MAIL ORDER BUSINESS OF YOUR OWN. Small capital. Spare time. 87 plans. Send for particulars. Dept. N, Mutual Opportunities Exchange, Buffalo, N. Y.

(10)★

LEARN HOW TO BUILD UP A PERMANENT paying business selling "Quikernlighting" cleaner for the hands; every automobilist, garage hand and machinist are prospects; a demonstration means a sale; we furnish samples free; exclusive territory; repeat orders will be taken. Write for free sample. Joliet Novelty Co., Joliet, III.

(6)

(6)

(6)

BUILD A BUSINESS OF YOUR OWN. GET away from wage slavery. We have over ten thousand best formulas and ingredients, bound; sent postpaid for $8.00. Any one is worth price asked for all "Get out of the rut! Say, I will." Circular of lies sent for the asking. Cleveland Technical Supply Co., 10217 Hampden Ave., Cleveland, Ohio.

SELL HERBS BY MAIL. NEW IDEA INSTRUCTION book worth dollars, only 10c. Indiana Herb Gardens, Box M, Hammond, Ind.

(1)

THE BEST MAIL ORDER PROPOSITION ON EARTH. Particulars free. Luther Gordon Co., Northwestern Bldg., Chicago.

(7)★

BREED MINK. BIG RETURNS. PARTICULARS, stamp. George Norton, Pleasantville, N. Y.

WELDING

WELDING PLANTS THAT ARE SAFE. COMPLETE with tanks and material ready to operate, $75.00. Other models from $50.00 up. Also sold on monthly payment plans. Address M. E. M., Berco Welding Apparatus Co., Omaha, Neb.

MACHINERY

INVENTORS: WE MANUFACTURE METAL ARTICLES, ANY KINDS OF MACHINERY, TOOLS, AND DIES. ELECTRICITY, LATHES, AND MACHINE WORK. WE PAY ROYALTIES ON PATENTS. Write for a free prospectus. The Edison Mfg. Co., 333 Main St., Troy, N. Y.

WRI

AUTOMOBILES

USE AN AIR-FRICATION 1914 MODEL "C." INCREASES power and economy of motor one-half. ABSOLUTELY imposible to choke or load. USES distillate, gasoline or half kerosine with finest results. STARTS easy in coldest weather. WE fit all motors, guaranteing definite results or refund money. EXCLUSIVE county rights. Liberal exchange on other carburetors. The Air-Friction Carburetor Co., Dayton, Ohio.

(7)★

AGENTS—SALARY OR COMMISSION. GREATEST SELLER YET. EVERY user pen and ink buys on sight. 200 to 500 per cent. profit. One agent's sales $200 in six days; another $50 in two hours. Monroe Mfg. Co., X 38, La Crosse, Wis.

(7)★

DO YOU WANT THIS BOOK WHICH TELLS you how to operate, all details about kinds of electrical apparatus, from generators and motors to lamps and bells? Only $1.50 postpaid. "Electricians' Operation and Maintenance Manual," by Henry C. Honsman and Victor H. Tousley, 16mo., full leather, and that full of the right kind of information, which cannot be got anywhere else. Published by the leading as well as the experienced man. Modern Publishing Co., 32 Union Square, New York.

(7)★

(7)★

AGENTS

FIFTY CENTS (IN QUANTITIES) BUYS A full size compressed air clothes washer; patented Jan. 30, 1910. Send 20c for sample and cub at $1.50. Weighs two pounds. Thoroughly cleans tub of clothes in three minutes. Washday now a pleasure. Mr. Marrick earned $90 first three weeks, A Kansas boy earned $55.40 outside school hours in one month. Send for catalog to-day and get your county rights. No charge for territory. Windell 6, 306 Oak St., Leipsic, O.

AGENTS: LEARN HOW TO BUILD UP A PERMANENT paying business selling "Quikernlighting" cleaner for the hands; every automobilist, garage hand and machinist are prospects; a demonstration means a sale; we furnish samples free; exclusive territory; repeat orders; we will help you. Write for free sample. Joliet Novelty Co., Joliet, Ill.

$5.00 PER WEEK AND UP. HOW FAR UP depends on you. Enormous sums are being made by Oxygenator Salesmen—one base made $21,000 in three years; another $6,000 in one year; another $4,000 in six months. Western Oxygenator Co., Beatrice, Neb.

(7)★

AGENTS—SALARY OR COMMISSION. GREATEST SELLER YET. EVERY user pen and ink buys on sight. 200 to 500 per cent. profit. One agent's sales $200 in six days; another $50 in two hours. Monroe Mfg. Co., X 38, La Crosse, Wis.

(7)★

MODERN ELECTRICS AND MECHANICS

CLASSIFIED DEPARTMENT

You will find it a good investment to use these columns.

Advertisements in this department 10 cents a word; no display of any kind. Payments in advance, by currency, check, money order or stamps. Count 7 words per line.

5% discount for 6 insertions 10% discount for 12 insertions within one year.

One of the most profitable high grade classified mediums in the United States. Try it out.

Advertisements for the July issue must be in our hands not later than June 1st.
INSTRUCTION

BRIEFHAND, A COMBINATION OF LONG-hand and shorthand, enables you to write as fast as the telegrapher. $1.00. 20c (stamps) self-teaching manual containing 9,000 illustrations and complete instructions. Saves time and money spent at school. Premier Briefhand School, Dept. E, Peabody, Mass. (10)

FREE TUITION BY MAIL—CIVIL SERVICE mechanical drawing, stationary engineering, electric wiring; agriculture, poultry, normal, bookkeeping, shorthand and typewriting courses. For free tuition, apply Carnegie College, Rogers, Ohio. (7)

HELP WANTED

$5 DAILY EASILY EARNED AT HOME SPARE time. No capital needed. Free instruction booklet tells you how to make $5 daily. Patterson & Co., Dept. N, Brooklyn, Ky. (9)

I WILL START YOU EARNING $4 DAILY AT HOME in spare time. Writing for mirrors; no capital; free instructive booklet, giving plans of operation. G. F. Redmond, Dept. A. U., Boston, Mass. (4)

THOUSANDS OF GOVERNMENT POSITIONS open to men and women over 18. $60 month. Vacations. Short hours. Write immediately for free list of positions now available. Franklin Institute, Dept. G808, Rochester, N. Y. (7)

MAGIC

FREE ILLUSTRATED BOOK ON HYPNOTISM and other occult sciences to all who send their address. Write today and learn how to influence and control others. M. D. Betts, Sia. 147, Jackson, Michigan. (7)

STAMPS, COINS, ETC.

78 VARIETIES UNUSED HAITI, INCLUDING inverted surcharges, $4.50. Immaculate stamp. California Stamp Exchange, Ontario, Cal.

PHOTOGRAPHY, CAMERAS & SUPPLIES

KODAKS, GAFLEX CAMERAS, LENSES Everything photographic; get bargain list. You can save money by sending your order to Willoughby, Broadway and 11th St., New York. (8)

THE BEST COINS COST LESS WRITE FOR SPECIAL prices on Quality Kodak Finishing. Shop, Box 628, Portsmouth, Ohio. (8)

WE BUY, SELL AND EXCHANGE BARGAINS in antiques, binoculars, cameras, etc. Bargain list sent. Kahn & Son, Opticians, 54 John St., New York. Established 82 years. (8)

HAVE YOU A CAMERA? WRITE FOR SAMPLES of our magazines, American Photography and Popular Photography, which tell you how to make better pictures and earn money. F. M. Fraprie, 624 Pigeon Rd., Bozeman, Mont.

ENLARGEMENTS FOR AMATEURS AND tourists. The better kind, 8 x 10 size, 28c. Other sizes from 2c. Send for descriptive price list. Wilkes-Barre Photo Enlarging Co., P. O. Box 288, Wilkes-Barre, Pa. (8)

BOOKS, ETC.

SECOND-HAND BOOKS: HALF PRICES ON every conceivable subject; new 85c per cent. discount; books bought; catalogues free. Foyle, 181 Charing Cross Road, London, England. (31)

FREE CATALOG OF REAL FASCINATING books on white slavery, etc. For mail order only. D. Williams Publishing Co., 721 North Dearborn St., Chicago. (7)

HUNDRED WAYS OF KISSING GIRLS AND other things; something real good. Price 85c. J. M. Sheridan, 417 East 151st St., New York City. (7)

YOUR LIBRARY IS NOT COMPLETE WITHOUT a complete Bond Volume, No. 4 of Modern Electrics, containing 858 pages, with over 1,000 illustrations and 1,300 questions and answers on topics of vital importance to you. Elegantly bound in blue cloth; gold stamped. Our supply is limited, so order to-day while you think of it and you will not be disappointed. Price $8.00; 40c extra for extra mail in U. S.; 75c extra in Canada. Modern Publishing Co., 39 Union Square, New York, N. Y. (7)

BOOKS ABOUT ELEVATORS—BEST PUBLISHED. Morse, 19 Union Pl., Yonkers, N. Y. (7)

FASCINATING BOOKS: SAMPLES AND CATALOGUE. 10c. Taylor Brothers, X1298 Clifton, Chicago. (7)

This electrical dictionary will just fit in your vest pocket. Carry it around with you while you are at work. "Handy Vest Pocket Electrical Dictionary," by Wm. L. Wilson, M.E., contains upwards of 4,800 words, terms and phrases employed in the electrical profession with their definitions given in the most comprehensive manner. Full leather cover, 50c postpaid. Modern Publishing Co., 39 Union Square, New York. (7)

PRINTING AND ENGRAVING

100 GOOD ENVELOPES, 40¢; BUSINESS cards, 37¢; 60 visiting cards, 29c. Printing postpaid. 15-year mail service. Amity Specialty Press, Card Dept., Amityville, N. Y. (8)

YOUR NAME PRINTED ON 100 FINEST quality cards, 50c. Address, 15c extra. Plain, Script or in English. Samples. Owen Dick, Dept. M, Kennore, N. Y. (8)

"U" NEED PRINTING

1,000 Letter-Heads or Envelopes, $2.50; 5,000 or more, $1.75. Blackledge Press, 1808 Reed St., Philadelphia, Pa. (8)

600 BUSINESS CARDS PRINTED TO YOUR ORDER, 75¢. Geo. Birt, Russell Ave., Indianapolis, Ind. (8)

GUMMED LABELS, 5,000, $1.00. 1 x 3 inches. Catalogue free. Helmus Company, Hoboken, N. J. (8)

REAL ESTATE

FOR SALE: 60 ACRES OF FINE LAND. On Grand Island, N. Y., fronting on the beautiful Niagara River, right across from Buffalo; suitable for a large grade development, bungalow plots, gentlemen's estate or farming; nearly 600 feet shore front with riparian rights; price, $800 per acre; worth $500; liberal terms will be made with responsible parties; house and barns near shore. Address W. H. Northrop, Grand Island, Erie County, New York. (7)

WANTED

FIREARMS WANTED, BUY OR EXCHANGE as sorted. Stephen Van Rensselaer, Wadsworth, N. Y. (7)

PATENTS

FREE—LIST OF PERSONS WHO WANT to buy patents, prizes offered by manufacturers and lists needed inventions. Randolph & Co., 647 F St., Washington, D. C.

IDEAS WANTED—MANUFACTURERS are writing for patents procured through me. Three books with list 200 inventions wanted sent free. Advice free. I get patent or no fee. R. B. Owen, 44 Owen Bldg., Washington, D. C.

FOR HONEST ADVICE AND REAL PATENTS, low cost, consider John Q. Seifert, Patent Attorney, 50 Church St., New York.

INVENTIONS SOLD ON COMMISSION. PATENTS, models free. German Amer. Syndicate, 801-3 Milwaukee Ave., Chicago.

MOTION PICTURE PLAYS

WRITE MOVING PICTURE PLAYS; $60 EACH; all or spare time; no correspondence course. Details free. Atlast Publishing Co., 688, Cincinnati Ohio.

PICTURES AND POST CARDS

BETTER THAN "SEPTEMBER MORN!" TWO new pictures by same painter. These and "September Morn," silver quarter. Photo Artist, Box 592, Minneapolis, Minn.

FOR MEN, THREE HANDSOME POST-CARDS, the kind you want but seldom get. 10c: 8 for 50c (sealed). La Due Co., St. Paul, Minn.

LOOK — 100 PHOTOGRAPHIC POSTCARDS from any size negative, $2 postpaid; 1,000 cards, $15; titled free. Essex Photo, Box 1805, Boston.

TELEGRAPHY

TELEGRAPHY—MORSE AND WIRELESS—Railway accounting (station agency) taught quickly. Railroad and Western Union Wires and complete Marconi wireless station in school. Oldest and largest school. Guaranteed course, 90 per cent. Placement secured. Catalogue free. Dodge's Institute, Sixth St., Valparaiso, Ind.

WIRELESS, COMMERCIAL AND RAILROAD telegraphy taught free by mail. Send for details. Brooklyn Telegraph School, W. U. Telegraph Bldg., 15 Fulton St., Brooklyn, N. Y.

TELEGRAPHERS' WORKING CONDITIONS—wage schedule, explained free. Pelmar School of Telegraphy, Madison, Wis.

"HOW TO MAKE WIRELESS INSTRUMENTS," by 20 Wireless Experts, containing 69 pages and 75 illustrations, written expressly for wireless amateurs, and is a book that you cannot afford to be without. Price, 90c postpaid. Delmar Publishing Co., 182 Union Square, New York City.
WIRELESS

GET OUR NEW RECEIVING TRANSFORMER and increase the efficiency of your station. See ad. on another page. Colby's Telegraph School, Auburn, N. Y.

WIRELESS MAP—NEW REVISED EDITION. Needed in all stations. Shows everything wireless, price with scale, $1.00. Order now and get free copy of list of agents wanted. B. Francis Dashiell, Irvington, Md.

IMPREGNATED PAPER PULP TUBES, unequalled for making wireless instruments; other raw materials. Send for price list. Schenectady Wireless Supply Co., Schenectady, N. Y.

STRANDED PHOSPHOR BRONZE—1/8 CENT foot Sample. 5 cents. 951 Putnam Ave., Brooklyn, N. Y.

JUST OFF THE PRESS—BOLD VOLUME No. 6 of Modern Electrics; contains more real information than is found in $50.00 worth of electrical books. 3,000 pages; 1,000 illustrations; 1,000 questions and answers. A veritable encyclopedia on electricity. If you are a student of electricity or desire to keep in touch with the electrical progress of the world you can't afford to be without this wonderful collection of data on invention, illustrations and writings of leading authors from every part of the world. Positively only 39 sets left. Orders will be filled as received and money returned when supply is exhausted. Price, $3.00, postpaid, extra by mail in U. S.; 90c extra in Canada. Modern Publishing Co., 32 Union Square, New York, N. Y.

GALENA AND SILICON USERS—SPECIAL contact wire. Your crystal detector is not complete without it. Six inches at the ridiculous price of two dimes. Buy it, try it, and you'll recommend it. Berkeley Radio Laboratories, 2001 Alston Way, Berkeley, Cal.

MECHANICS

WIREMEN'S TOOLS

USE OUR INSULATION REMOVING POCKET tool, no knife needed; postpaid $1.50. Wireman's Tool Works, 2102 West 165th St., Cleveland, O.

SALESMEN WANTED

SAFETY SELF-FILLING PEN PROPOSITION. Laughlin, Detroit.

TYPEWRITERS

REMINGTON TYPEWRITER, $9.50. FACTORY rebuilt Underwoods, Olivets, etc., at wholesale. Satisfaction wanted. Harwood Sales Company, Box E., 904 Madison St., Brooklyn, N. Y.

"CONSTRUCTION OF INDUCTION COILS AND Transformers" is a valuable book, containing 100 pages and 73 illustrations, by H. W. Secor. You cannot afford to be without this book, which is the latest work on the construction of induction coils and transformers. $0.50, postpaid. Modern Publishing Co., 32 Union Square, New York.

BOAT BUILDING FOR AMATEURS. By A. H. Newell. This book will tell you how to build all manner of small boats, such as punts, skiffs, canoes, row and sail boats; only $1.00, postpaid to any address in the U. S. Modern Publishing Co., 33 Union Square, New York City.

MISCELLANEOUS

KEYLESS DOOR LOCKS PLACED ON ANY door without tools. Pocket size nickel-plated sample 26 cents, postpaid. 50 cents each. Hoosier Novelty Co., Indianapolis, Indiana.

INDIAN BASKETS AND RELICS. PRICE free. Gilham, Highland Springs, Cal.

INVISIBLE INK FORMULA, 10c SILVER. J. D. Mullford, 419 Merriman Ave., Syracuse, N. Y.

MECHANICS TOOLS

DRILL SQUARE HOLES WITH SQUARE HOLE Drill at one operation in wood, metal or marble. Fits any brace, drill press or lathe. Sizes 1/4 inch to 1/2 inch in sixteenths. $1 per set of Drill and Guide, delivered anywhere. Barnett Tool Co., 1638 Hyde St., San Francisco, Cal.

EXCHANGE

WANTED: 35 x 41/2 KODAK; STORAGE BATTERY or audion detector, for 18 quoted gap plates; 1/8-inch aluminum rotary gap wheel; 1 pair of loud coupler coils, having 6 taps off secondary; flashlight: 4-ohm telegraph set; 1 standard motor 1/10 b. p. h., having 1 burr and field coil; 1 pair of 1500 ohm, pedestal base. H. Littleton, E. Pleasant St., Springfield, Ohio.

WILL EXCHANGE: ONE TWO-SLIDE TUNER; cost $5; one large 100-ampere, 600-volt S. P. D. T. lightning switch, cost $3; one Marconi set of 2000-ohm receivers with split head band and double silk cord, cost $5.75; one pair superior head set, 200 ohms, cost $5; one Commercial detector stand with minerals, cost $3.75; 1-inch spark coil, costing only $1.75, and one vacuum massage machine, cost $5. Would like high-grade folding pocket camera, or what have you. Write to Joseph A. Beavers, Glen Gardner, N. J.

FOR EXCHANGE: ONE BRAND-NEW 3/4 INCH Rhung koffler, just the thing for wireless. 20 cents, and Gieselr tube experiments. I would like a pair of phones (3000 ohms) or a dynamo that has an output of 15 v. 8. A. J. Varga, 161 Walton St., Newark, N. J.

HAVE FOR EXCHANGE: ONE HOME-MADE loose coupler, slider on the primary and a 10-point switch for secondary; one small medical coil. Want 1 lb. D. C. wire No. 28 and 3/4 lb. silk covered wire No. 29. Also 8 inches of tubing, 6 inches in diameter, and 6 inches of tubing 3/4 inches in diameter, and some large electrose knobs. Clayton C. Shan- graw, 8 River View Ave., Danvers, Mass.

HAVE FOR EXCHANGE THE FOLLOWING: Wallace valve detector, also perikon, galena and fer- ron detector.全域 tuning coil complete electric railway outfit, cost $90; also have many more wireless instru- ments, both sending and receiving, which I will trade. I want any high-grade instruments, for receiving only. C. B. Weed, 184 Cold Spring St., New Haven, Conn.

HAVE FOR EXCHANGE: A COMPLETE 1-KW. transmitting set, in good condition, valued at $86. Will consider a transmitting set of smaller capacity and value, or a Walling detector, in good con- dition, or an audio audion cabinet. H. V. Abernethy, 182 Midland Ave., Columbus, Ohio.

WISH TO EXCHANGE A COMPLETE COURSE in telegraphy, taking up railway and commercial work, including key, sounder and audible transmitter, for a complete wireless receiving set. Carl Anderson, R. P. D. 110, Holden, Mass.
WANTED: 4 x 5 PLATE DEVELOPING TANK OR SIMPLEX PLATE HOLDERS; WILL EXCHANGE DOUBLE SLIDE TUNER AND DETECTOR; HAVE ALSO FIRE ALARM ATTACHMENT; WILL EXCHANGE FOR LEAD BATTERY MOTOR. HENRY KIENZLE, 450 EAST 85TH ST., NEW YORK CITY.

FOR EXCHANGE: ONE 6-60 "VESTA" STORAGE BATTERY, WHICH IS BUT ONE WEEK OLD AND STILL RETAINS ITS FIRST CHARGE, COST $15, FOR LOOSE COUPLER OF EQUAL VALUE, OR USING PRIMARY SWITCH CONDUCTORS. REASON FOR TRADING, HOME HAS JUST BEEN WIRING FOR CITY CURRENT. ALSO OPEN CORE TRANSFORMER, ABOUT 5/8 K.W., IN POCKET SIZE, OR "DYNAMO" FOCUSING CAMERA OR 110-VOLT D.C. 1/4 HP. MOTOR. TO EXCHANGE FOR LEAD BATTERY DETECTOR, ALSO A 22 LONG STEVENS RIFLE FOR BOSTON OR OTHER KEY, SUITABLE FOR 1 KW. OR VARIABLE CONDENSER OF CLAPP EASTHAM OR MURDOCK MAKE. ROY SHively, 553 SOUTH 26TH AVE., OMAHA, NEBR.

HERE IS THE BOOK YOU ARE LOOKING FOR, WRITTEN IN PLAIN ENGLISH SO IT CAN BE EASILY MASTERED BY YOU WHETHER YOU ARE AN EXPERIMENTER OR AN ELECTRICAL ENGINEER. "PRACTICAL ARMATURE AND MAGNET WINDING," BY HENRY C. HORSTMANN AND VICTOR H. Tousley, 10mo., pocket size, leather cover. PRICE $1.50. THIS BOOK IS THE MOST COMPLETE TEXTBOOK, EITHER IN CONSTRUCTING OR OPERATING DETECTORS, MODERN PUBLISHING CO., 11 UNION SQ., EAST, NEW YORK.

WILL EXCHANGE STEBENS "FAVORITE" 83 CAL. RIFLE AND A GOOD PUNCHING BAG WORK, $30 FOR WIRELESS OR ELECTRICAL APPARATUS. GORDON CALLARD, BANCROFT, MICH.

HAVE FOR EXCHANGE: ONE 110-V., A.C., 60-CYCLE MOTOR, WHICH MAKES 8000 R.P.M. WITH A ROTARY WHEEL ON,. ONE 110-V., D.C. MOTOR, WHICH MAKES 3000 R.P.M. BOTH MOTORS ARE PRACTICALLY NEW. ONE $2.50 PERKIN DETECTOR WITH CRYSTAL, COMPLETE, CRYSTAL LICENSED FOR WIRELESS, AND A SECOND DETECTOR WHICH IS NEW. ALSO HAVE A DOUBLE SLIDE TUNING COIL (MFG.) 1500 METERS, AND AN AUDION DETECTOR, COMPLETE. WILL EXCHANGE ANY OF THE ABOVE FOR ANY WIRELESS OR ELECTRICAL INSTRUMENTS, ACCORDING TO VALUE: VARIABLE CONDENSERS, ELECTRICAL BOOKS OR ORNAMENTAL INSTRUMENTS. ADDRESS HAROLD C. MILFORD, OYSTER BAY, LONG ISLAND, N. Y.

WILL EXCHANGE AUDION DETECTOR, 60-VOLT BATTERY, 8-VOLT BATTERY, LOOSE COUPLER, TUNING COIL, TRANSFORMER, LOOSE RECEIVER, 2000 OHMS, EIGHT SWITCHES, TELEGRAPH SET 5 OHMS, TWO WIRELESS KEYS, VARIABLE PLATE CONDENSER, TWO JUSTRON TRANSFORMERS, LARGE CONDENSER, VOLTMETER, 30 Volts. WHAT HAVE YOU? CHAS. FUCCHI, 179 18TH ST., JERSEY CITY, N. J.

IT IS IMPORTANT THAT ALL INTERESTED IN WIRELESS SHOULD JOIN THE WIRELESS ASSOCIATION OF AMERICA, WHICH IS HELPFUL TO THE INDUSTRY IN MANY WAYS IN THE WIRELESS INDUSTRY. FOR FULL PARTICULARS, ADDRESS WIRELESS ASSOCIATION OF AMERICA, 11 UNION SQ., EAST, NEW YORK.

I HAVE A 1000-OHM PHONE WITH LEATHER-COVERED HEAD BAND AND CORD, $3; ONE LOOSE COUPLER, $4.50; ONE TYPE S DYNAMO, $8.70; ONE JUNIOR DYNAMO, $2.95; ONE POTENTIOMETER, $1.50; ONE ELECTROLYTIC DETECTOR, $1.50; AND 1 1/2-KW. SERIAL SWITCH, TO TRADE FOR BLITZEN RECEIVING TRANSFORMER. I ALSO HAVE A FINE HELIX WORTH $2,50 TO TRADE FOR MURDOCK OR OTHER GOOD LOADING INDUCTANCE. GEO. STORER, 2249 GLENWOOD AVE., TOLEDO, OHIO.

FOUR SPLITDORF AUTO COILS, 1 IN.; PRIMARY AND SECONDARY OF 1-IN. DYNAMO. TO TRADE FOR LEAD DETECTOR, JUNIOR CONDENSER. WANT A 22 CALIBRE REVOLVER OR MOTORCYCLE SUPPLIES. WRITE WHAT YOU HAVE. F. GREY DALY, ANAMOSA, IOWA.

FOR EXCHANGE: ONE KNAPP TYPE S DYNAMO MOTOR, 6-IN. DYNAMO, WHEEL AND SPINDLE, WHEEL AND SPINDLE, BUFFING WHEEL AND AXLE, SILVER SILVER PLATE, AN 8-BAR TELEPHONE MAGNETO, ONE PAIR OF GOOD BOXING GLOVES, USED BUT LITTLE, TWO ELECTRIC LIGHTS, ONE SNAP SWITCH, SIX-OHM RECEIVER. WILL EXCHANGE FOR A 1/4 OR 2 INCH SPARK COIL OR OTHER WIRELESS GOODS. ALLAN LAWSON, 217 ROCKWELL ST., WINTED, CONN.

HAVE TO EXCHANGE A BICYCLE WORTH $20 AND BASEBALL BAT WORTH $50 AND BURNING OUTFIT WORTH $25, IN EXCHANGE FOR SOME ELECTRICAL APPARATUS. I HAVE A NEW HEAD LAMP AND NEW TIRES AND NEW BELL. ARTHUR ROGERS, 110 FLORENCE ST., EAST EVELLE, MICH.
AN ELECTRICAL TESTING OUTFIT, ALMOST NEW, comprising 1-D’Arsenal galvanometer, worth $8; slide-wire bridge, $3.50; wet battery, bar and horse-shoe magnets, compass 3½ lb. copper wire, Nos. 18 and 20 iron wire, 10 ohm coils of 1 iron filings; total value, $13.50. Would like to exchange for good leather suit case worth about $10, or other useful electrical article. Clarence Mason, 168 Shawmut ave., New Bedford, Mass.

WILL EXCHANGE TWO 18,800 VOLT, CLOSED core transformers, sending condenser, about .045 mf.; large marble-size gap; Morse recorder, double circuit; Stator and rotor windings; 22 ft. a.c. fan motors; small d.c. motor, and small gasoline stationary engine, about ½ h.p. Want prism binoculars, steel duck boats, canned high grade firearms, what have you? F. Schiller, 220 Elm St., Utica, N. Y.

LEARN TO FLY—BIG TWO-FOOT BLERIOT Monoplane. Latest model, knocked down, packed, ready for mailing, with blue print and complete drawings for assembling, with wheels and propeller. This model is usually sold by dealers for $25.00, $35.00 all over the country are having barrels of fun with them. For, good, wholesome amusement, there is probably no flying device more entertaining and that will suit more for boys and grown-ups than this pleasing toy. Guaranteed to fly or money refunded. Sent prepaid with the following: $5.00 Machine Company, 590 Reliance Bidg., New York City.

WISH TO EXCHANGE “SPAUDLING” 18-INCH pear shaped single end punching bag, a ladies’ size tennis racket of standard make and one racket, “Spaulding” make, men’s size, and a good double tennis racket (net new), with a good pair of netted glasses of standard make. G. H. Clemmons, Storm Lake, Ia.

WHAT WILL YOU OFFER FOR THE FOLLOWING, in good condition: ½ kw. transformer coil, leyden jars, rotating variable oscillation transformer, Tesla coil, loose coupler, two rotary variable condensers, two detectors, tuning coil and a pair of 2000 ohm phones. Also have a 30 ohm relay, Geissler tube and a wireless book. First offer takes them. Arthur Haske, Clerger, Bergen County, N. J.

WANTED—2000 OR $500 OHM PHONES, complete; two-inch spark coil; auditors; hot wire motor; rotary variable oscillation transformer, Tesla coil, loose coupler, two rotary variable condensers, two detectors, tuning coil and a pair of 2000 ohm phones. Also have a 30 ohm relay, Geissler tube and a wireless book. First offer takes them. Arthur Haske, Clerger, Bergen County, N. J.

BOOKS, AS A RULE, ARE FILLED UP WITH technical terms of very little use to the experimenter, but here is a book which is concise, plain and understandable. Send your order at once for your copy of Simplest Transmitters by Caryl Haas, $2.50, 106 illustrations, 12mo cloth, $1.80 cloth, $1.25 paper. Price $1.00 postpaid. Modern Publishing Co., 22 Union Sq., New York, N. Y.

HAVE A 22 CAL. STEVENS TAKE-DOWN rifle, 32 cal. pistol, five-shot, and galena detector. Will give galena and silicon crystals with detector. Want loose coupler or sending and receiving condenser. A. Rust, 609 Quay St., Pittsburgh, Pa.

HAVE GOOD AMATEUR LOOSE COUPLER; half-inch spark coil; one complete receiver, receiving set; half-inch complete transmitter set with step-down transformer; receiving condenser. Want head sets or any good first-class goods. E. R. Hough, Johnstown, N. Y.

HAVE A 500-WATT TRANSFORMER TO WORK on 110 to 10 volts; a drawing table with adjustable iron base, and a lot of electric lighting fittings. Will give Galvronic desk lamp and electric desk lamp, and also a lot of 10 volt, 16 c.p. small tungsten lamps, wanted 10 photo lens. H. Gosen, 28211 N. 11th St., Philadelphia, Pa.

ANY ONE HAVING A SAIL FOR CANOE, spars for same, and suitable side boards, and who wishes to exchange them for wireless or electrical goods, send letter, by writing to J. S. Wright, Jr., Greenport, Suffolk Co., Long Island, N. Y.

WANTED—A PAIR OF BRANDES SUPER TYPE, 2000 ohm phones. Sylvan Turner, 2818 Crockett St., Greenville, Texas.

THE PROCESS OF TRANSMITTING WIRELESS messages through the air over long distances by the aid of electricity is to countless thousands of people only a mysterious fairy tale, but here is a book for you, Mr. Nicegander, which contains nothing but cold facts. “Operators’ Wireless Telegraph and Telephone Handbook,” by Victor H. Laughter. 15mo, 300 pages, full illustrations, a complete collection of all the information he desires. Price $1.00 postpaid. Modern Publishing Co., 22 Union Sq., East, New York.

WILL TRADE $3 CALIBER, 5 SHOT HAMMER- less revolver for good 5½ rotary variable condenser. Also have set of boxing gloves, loo-mop, 28 G. bil- leter rifle, stamp collection, Locke adding machine, 7 ft. Bristol no. 14 (tested), and 80 lbs. LCD. Type teletypewriter, detector, fixed condenser, coherer and de- coherer. Whatever you have, write to J. Eugene Ayer, No. Franklin, Conn.

WANTED—AN OFFER FOR A MODEL 8 REMINGTON typewriter and an 8 h.p. gasoline marine en- gine. State what you have in the wireless line and I will send full particulars. Standard wireless receiving and sending apparatus preferred; also lends anten- nium aerial wire and electro-aerial insulators. Ben T. Elkins, St. Cloud, Fla.

WILL EXCHANGE NEW 6 VOLT, 100 A.H. storage battery, 76 watt, 15 volt d.c. charging dynamo, small motor; all wiring; 1½ hp. water motor, gas lighting jump spark coil, telegraph re- lay and modern telephone transmitters for first-class high power binoculars with case, or with high grade anastigmat lens and fast shutter, 6 in. to 10 in. vibrating spark coil, ½ to 1 h.p. water- cooled engine. J. A. Gordon, 408 North St., La Fayette, Ind.

MERRICK MOTORCYCLE ENGINE OF 1½ H.P. A1 condition, complete with all electrical, brake and pulley. Want Wheatstone bridge, 1 in. coil or wireless apparatus of standard makes. E. N. Harman, 108 Elm St., Geneva, N. Y.

WILL EXCHANGE, x 6 POLING EASTMAN kodak with folding tripod, four double plate holders, focus cloth, carrying case and full outfit for developing and printing, cost $20, excellent condition, and one 80 ohm coil, 1½ new, cost $1.50. Desire a pair of H. or Brandes 2000 ohm head receivers or any other standard make and a good variable condenser. Walter Greenleaf, care of Postal Telegraph Co., Fremont, Nebr.

WILL EXCHANGE A BUNNELL 150 OHM MAIN line relay with box over coils capable of fine adjustment, for 400 good variable condenser. 2000 ohm phones. Have other apparatus. Write me. Roy worth $5. Carl G. Howard, 183 S. Pine St., New- ark, Ohio.

BOAT BUILDING FOR AMATEURS. By Adrian Neilsen, C.E. This book will tell you how to build all manner of small boats, such as punts, skiffs, canoes, row and sail boats; only $1.00 postpaid to any address in the U. S. Modern Publishing Co., 22 Union Sq., East, New York City.

I HAVE A 1½-IN. SPARK COIL, COST $8, and head set of receivers, 2000 ohm, cost $5, which will exchange for a 22 caliber repeating rifle, which must be in good condition. J. S. Wright, Jr., Greenport, Long Island, Suffolk Co., N. Y.

WANTED—WIRELESS INSTRUMENTS IN EXCHANGE for the following: A Red Head spark plug, price $1, the Hustler motor with fan, and electric chair (home-made), which can be taken apart; also 1⁄8 in. brass, etc. Drayton McMillan, Box 194, Bamberg, S. C.

WANTED—A 1918 OR 1913 MOTORCYCLE with a twin cylinder engine and magneto ignition in good working order, in exchange for a H.P. up- right, 4 cycle water-cooled gas-engine. One 1908 model hammerers Savage repeating rifle (almost new) and 28×7x2½ Premontre junior F. P. kodak with portrait attachment, leather carrying case, shoulder strap, tripod and complete developing and printing. Francis C. H. Bennett, 1287 Dartington Ave., Beaver Falls, Pa.
WILL EXCHANGE A NEW BROWNIE camera No. 3 with Ender, and a double acting model steam engine, slightly used, in excellent condition, for shacking, or small electric loudspeakers. Walter Bay, 114th St., College Point, N. Y.

I HAVE AN ELECTROLYTIC DETECTOR, 70 ohm phone and cord and Potentiometer, for which I will trade for a 100 A ground switch or about 50 feet of number 12 and wire or what have you? Robert Sandifer, El Dorado, Kansas.

YOUR LIBRARY IS NOT COMPLETE WITH- out a copy of Bound Volume No. 4 of Modern Electrics, containing 858 pages, with over 1,600 illustrations and articles on topics of vital importance to you. Elegantly bound in black cloth; gold stamped. Our supply is limited, so ordered without delay, and you will not be disappointed. Price $2.00; 40c extra by mail in U. S.; 75c extra in Canada. Modern Publishing Co., 33 Union Sq., East, New York City.

I HAVE AN OPEN CORE ONE-HALF K.W. transformer, a heavy, well-crafted key, a receiving transformer, 3,000 ohm Brandeis head phones, four tele-funklen Leyden jars, three slide tuning coils, a rotary spark gap, and twenty-four insulators. What have you? Louis Rosenbaum, 237 2nd St., New York.

WILL EXCHANGE SMALL 110 VOLT D. C. or 60 cycle A. C. power motor for a good 10 am- peres key or for an antenna relay or repair up to 10amps, for use on 110 V. line. Motor is in good condition and suitable for a radio lamp. Chester Fuss, Little Valley, N. Y.

WANTED—ONE H. P. 110 VOLT 60 CYCLE A. C. motor, jeweler's or small bench lathe, also a good typewriter; will give large induction coil or wireless goods in exchange. V. B. S., 87 Brown Ave., Rosendale, Mass.

BOUND VOLUME No. 9 of "MODERN ELECTRICITY" is now ready, which contains 748 pages, over 1,000 illustrations and writings of 500 authors, 660 articles of unusual interest, with 6,082 questions and answers. Bound handsomely in black cloth; gold-stamped. $1.50; $.30 extra by mail. Modern Publishing Co., 88 Union Sq., East, New York City.

I HAVE AN ARC LIGHT IN GOOD CONDITION, I would like to exchange for 1 kw coil or what have you? Chas. F. Metzler, 830 E. 85th St., New York City.

OUR 80-PAGE BOOK, "THE WIRELESS TELEPH- one," will be found invaluable to those interested in this science, and new sizes by which this book contains 57 illustrations and is considered a masterpiece. Send $0.35 in stamps, coin or M. to Modern Publishing Co., 88 Union Sq., East, New York City.

TOY TRANSFORMER WANTED—110 VOLTS alternating to any voltage from 1 to 94. Will exchange 180 ohm telegraph relay, condensers, W. A. Talmage, 41 Albion Street, Waterbury, Conn.

WOULDN'T LIKE TO EXCHANGE FOLLOWING for any thing electrical, or wireless: 5 ohm tele- graph relay, high tension condenser, boat home made; primary condenser, home made, 1/4 inch spark coil, 1,000 ohm receiver, 100 mechanical machines, 3 8 electrical machines, and stamp collecting valued at $15.00. Will sell separately. Eugene Treuhaft, 1401 Bryant Ave., Bronx, N. Y. City.

WANTED—BLITZEN VARIABLE CONDENSER and Audion bulb. Will exchange the following: one inch spark coil, 211,4 B. D. C. motor and one horizontal motor. All in good working condition. What have you? John Brilla, 140 Nectarine St., Philadelphia, Pa.

"CONSTRUCTION OF INDUCTION COILS AND Transformers" is a valuable book, containing 100 pages and 72 illustrations, by H. W. Secor. You cannot afford to be without this book, which is the latest and work on construction of coils and transformers. $0.35 postpaid. Modern Publishing Co., 88 Union Square, New York.

HAVE FOR EXCHANGE ONE LOOSE COUPL- er, a one-inch coil and answer, a 60 B. D. C. motor and one horizontal motor. All in good working condition. What have you? John Brilla, 140 Nectarine St., Philadelphia, Pa.

BOOKS: "CRAYON PORTRAiture" by Pre- vost's "How to Illustrate," Palmer's "Penmanship Budget, Occult books, etc., Feodometer, Med. coil, Elect- tattoo machine, and other things. Want cheap camera or a small telescope $5 power or over. Robt. C. Knox, R 1, Box 23 A, Waycross, Georgia.

TO EXCHANGE—ONE LE. No. 48 RUGE RUBBER cover for D. C. battery motor. I also have two 75 ohm Mosco wireless receivers, 1 spidover spark coil, and a 110 volt D. C. motor without windings. About 6-inch spark coil on "dock's or Brande's," also loose coupler or anything in the wireless line. Raymond Bowen, 217 W. 21st St., Chicago.

THIS ELECTRICAL DICTIONARY WILL JUST fit in your very pocket. Carry it around with you while you are at work. "Handy Vest Pocket Electrical Dictionary," by Wm. L. Webber, $0.75. Contains 4,000 words, terms and phrases employed in the electrical profession with their definitions given in the most compact form. 96c postpaid. Modern Publishing Co., 88 Union Sq., East, New York City.

WILL EXCHANGE FOR WIRELESS RECEIVING apparatus to the value of about $5, the following magazines: 37 copies American Boy, 2 copies of an electrical magazine, 2 copies of a mechanical magazine, 7 copies Top-Notch and 28 copies Modern Electrics, from Nov., 1911, to date; all in good condition. Worth $40, a good article. Howard O'Day, 1706 Warwick Ave., Baltimore, Md.

I HAVE A 3-FOOT NEIMPOR MONOPLANE and five boys in boys interest in an airplane and marine engine or what have you? Chas. F. Metzler, 830 E. 85th St., New York City.

FOR EXCHANGE—I HAVE ABOUT $85 worth of electrical apparatus that I would like to exchange for a rotary printing press, about 7 x 11. My outfit contains one-inch spark coil, 6 v. a. & K. & & D. dynamo-motor and many other valuable things. J. Frederick Fleming, 164 Cherry St., Cambridge, Mass.

"HOW TO MAKE WIRELESS INSTRUMENTS," by 20 Wireless Experts, containing 90 pages and 75 illustrations, written expressly for wireless amateurs, and is a book that you cannot afford to be without. $0.35. Modern Publishing Co., 88 Union Sq., East, New York City.

HAVE A SAMSON MOTORCYCLE HORN, four-bar magneto, small motor and Edison primary battery, type RR, complete. Will take in exchange an anvil, better and an electrolyt on which have been bought or home made. W. H. Hobbler, 88 Florence Ave., Bellevue, Pa.

HAVE SEVERAL TWO AND THREE SLIDE tuners, brand new; also other wireless instruments. What have you to exchange? John Van Syke, 155 West 80th St., New York City.

BOAT BUILDING FOR AMATEURS. By Adrian Neilsen, C.E. This book will tell you how to build all manner of small boats, canoes, row and sail boats; only $1.00 postpaid to any address in the U. S. Modern Publishing Co., 88 Union Sq., East, New York City.
My Boy!
Here's Your Chance

It's more than a chance—you can make it a certainty because it depends entirely upon yourself. It's your opportunity to rise to one of the countless positions open to the trained man and obtain a trained man's salary.

The man who sits in his private office and "hires and fires" and lays out your work, was no more qualified to fill that position a few years ago than you are to-day. He saw his chance and made the most of it. He obtained his training and knowledge by study. You can do the same—the American School will help you.

You don't want to remain in the "time-clock and dinner-pail" class all your life—don't be satisfied with just a common job at small pay. Show the boys at the shop that you have it in you to advance—you owe it to yourself and to your family.

Don't be afraid to mail the coupon, you won't be bothered by agents or collectors. Like all strictly educational institutions the American School depends, for growth, upon reputation and the success of its students.

Don't let a little thing like filling in and mailing a coupon stand between you and success, congenial work and more pay. Accept your chance today.

WE HELP MEN HELP THEMSELVES

American School of Correspondence, Chicago, U.S.A.

When writing, please mention "Modern Electrics and Mechanics."