AN EXPERIMENTER'S
RADIO CONTROL SYSTEM
*No License *6 Channels

NEW SOLID-STATE SENSORS
FOR FIRE/THEFT SECURITY

Experts Say About:
Electronic Typewriters
Laserwriter Printer
Build a Digital Logic Probe

Novel Circuits Measure
Air Movement & Wind Speed

Stereo Tape Deck Specifications:
What They Really Mean!

Plus—Equipment Tests: Suncom's Apple/Commodore Animation
Graphics Pad Wireless Audio Whizz Device Columns: Forrest
Mims' "Electronics Notebook" Don Lancaster's "Hardware Hacker"
Glenn Hauser's "Shortwave Radio Broadcast Listings" Latest
Electronic & Computer News...and more.
Now! Tek quality and expert advice are just a free phone call away!

The industry standard in CRT performance.
Crisp, easy-to-read, bright CRT, 14kV accelerating potential, provides high writing rate and small spot size. Full size 8x10 cm display for measurement accuracy.

Display controls are flexible and easy to use. Separate intensity controls reduce blooming in alternate sweep mode. Focus tracking minimizes control adjustment and BEAM FIND eliminates confusion.

Vertical system provides measurement assurance. Flat transient response and high accuracy ensures true reproduction of your signals. Fast risetime and high bandwidth is well suited for a variety of measurement.

Perform delayed sweep measurements accurately and easily. Both sweeps can be displayed alternately making differential measurements easy and accurate (1%). An interlocking SEC/DIV control simplifies set-up.

Stable hands-off triggering. P-P AUTO detects signal peaks, then sets the trigger level for you. Display asynchronous signals using VERT MODE triggering. Independent TV field and line selection.

Front panel laid out by function for ease of use. Color coding aids the user in operation. Functions and modes are placed logically. All nomenclature is clearly labeled, and protected behind a scratchless Lexan surface.

Our direct order line gets you the industry’s leading price/performance portables... and fast answers from experts!
The 60 MHz single time base delay 2213A, the 60 MHz dual time base 2215A and the 100 MHz dual time base 2235 offer unprecedented reliability and affordability, plus the industry’s first 3-year warranty* on labor and parts, CRT included.

The cost: just $1275 for the 2213A, $1525 for the 2215A, $1750 for the 2235! Even at these low prices, there's no scrimping on performance. You have the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements. All scopes are UL Listed and CSA approved.

You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, will answer your questions and expedite delivery. Direct orders include comprehensive 3-year warranty*, operator's manual, two 10X probes, 15-day return policy and worldwide service backup.

Order toll free: 1-800-426-2200,
Ask for Rick.
In Oregon, call collect: (503) 627-9000.
Or write Tektronix, Inc.
P.O. Box 1700
Beaverton, OR 97075

Tektronix
COMMITTED TO EXCELLENCE
Where's Your ELECTRONICS Career Headed?

your move!

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers... and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Free Details Available from:

Grantham College of Engineering
10570 Humbolt Street
Los Alamitos, California 90720

Independent Home Study Can Prepare You

Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering
M-8-85
10570 Humbolt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name
Age
Address
City State Zip
FEATURES

16 Experimenter’s Radio Control System
An R/C system project you tailor to your needs. By Robert C. Frosthom

26 Portable Computers '85: One Lap Ahead, Part 2
A critical look at laptop computers. By Eric Grevstad

30 Metal Detectors For Fun & Profit, Part 2
A buyer’s guide to modern detectors. By Gerald A. Pattee

38 TVRO Satellite News
New equipment and industry happenings. By Stan Prentiss

46 Stereo Tape Deck Performance Specs
How specifications are determined. By Leonard Feldman

51 Akihabara—An Electronic Shopper’s Paradise
By David A. Wolf

56 Solid-State Sensing Modules For Teleguard
How to build circuits to enhance operation of an electronic security system. By Anthony J. Carstoi

60 The Looker
A low-cost digital logic probe construction project. By J. Daniel Gifford

PRODUCT EVALUATIONS

12 Audio Whizz Wireless Sound Transmitter
By Fred Blechman

13 Suncom Graphics Tablet
By Charles Rubenstein

DEPARTMENTS

4 Editorial
Where Have the Holes Gone? By Art Salsberg

4 Letters

5 Modern Electronics News

6 New Products

66 Electronics Notebook
Measuring the flow of air. By Forrest M. Mims III

70 Hardware Hacker
A first look at Laserwriter and more. By Don Lancaster

75 Books & Literature

76 Electronic Gadgets
Electronic typewriters and time-saver voice recorder. By Eric Grevstad

80 Communications
English-language shortwave broadcasting. By Glenn Hauser

92 Modern Electronics Mart

96 Advertisers Index
MARK IV - 15 STEP LED POWER LEVEL INDICATOR KIT

This new stereo indicator kit contains 36 4-color LED's, 15 per channel, to indicate the audio level, or put out your amplifier from 0.001 to 10V. Comes with a well designed silk screen printed plastic panel and has a selector switch to allow for a passive or active output indicator. Power supply is ±12 DC with ±6 DC output. Board, input sensitivity controls. This unit can work with any amplifier from 5W. DKN-01. Kit includes 70 pcs matched silkscreened LED's, all electronic components, PCB board and front panel.

MARK IV KIT $31.50

POWER AMP KIT

100W board input sensitivity controls. This unit can work with your amp. Power supply has put indicating. Power supply requires 12VAC or DC. It is a great for cars as well since comes with prewired circuit board, all LED's, electronic components, switches, and the silk screen printed front panel.

MODEL TY-45 $38.50

TA-1000 KIT $51.95

Power Transformer $24.95 ea.

100W CLASS A POWER AMP KIT

Dynamic Bias Class A circuit design makes this unit unique in its class. Crystal clear. 100 watts power output will satisfy the most picky fans. A perfect combination with the TA-1000 low TM stereo pre-amp.

Specifications

- Output power 100W RMS to 8Ω
- 125W RMS into 4Ω
- Frequency response 10Hz-10kHz (-3dB)
- THD less than 0.01%
- Input sensitivity 0.1V
- Power supply -40V at 5A

LOW TFM DC STEREO PRE-AMP KIT

TA-2600 incorporates brand-new DC design that gives a frequency response from 0.01Hz to 10kHz. Add Features like tone defeat and sourdness control. Will allow your own frequency to eliminate power fluctuations and noise. Specifications:

- THD/TIM less than 0.05%
- Frequency response DC to 10kHz
- Input sensitivity ±10dB
- Frequency response 20Hz-20kHz
-变压器: 100W, 60V x 2
- Power supply: 15VDC
- 0.9V Class A

Only $44.50

Transformer $24.95 ea.

DISCO LIGHT ORGAN KIT

The TY-238 Color Light Organ is designed for use at home, party, disco or commercial advertisement purposes. It gives you the moving light effect coordinated with the music. When music is added audio signal is fed into this unit, it will be divided into High, Medium and Low frequency by means of an electronic equalizer circuit and drive three groups of light bulbs. Each group of lights has an independent sensitivity control.

Besides working as a Color Light Organ, the TY-238 also can be used in "Light Chaser" mode to perform light effects for signs as follows: (1) Switch on after the other. (2) Flash all together. (3) Switch all after the other. Flashing rate can be controlled by a potentiometer. The output of this unit is 3,000 watts (110V) which is 100 watt color spot lights or 600 3 watt light bulbs. Build one of these color organs today and enjoy watching your music. Great for school projects! All electronic parts, metal case, prewired PCB and instructions come with kit.

TY-238 DISCO LIGHT ORGAN KIT $64.50

TY-41 INFRA-RED REMOTE SWITCH KIT

DIGITAL PANEL METER KIT

31/2 Digit Multi-Use Panel Meter

The TY-43 digital panel meter kit using the IC 7107 AID converter from integrated circuit is a principal component which direct drives 1.5m high 3 1/2 digit LED digital display. The unit needs very few external components and is extremely easy to assemble and produce. You can produce various kinds of digital panel meters. You can even change it into a thermometer, frequency counter, and capacitor meter (Application Circuit Diagrams are included).

Input sensitivity is DC: +19.5V full scale
Input impedance is 10^5 ohms
Operating voltage is 5-6VDC @ 150MA
Overall size: 4 x 4

TY-43 DIGITAL PANEL METER KIT $31.50

0-15 VOLT 2 AMP REGULATED POWER SUPPLY KIT

This is a professional power supply kit. Output voltage adjustable from 0-15VDC. Output current also can be limited to two range selections such as 0-200mA and 2A. An electroformed protection system also designed to give out a beefing sound and a flashing LED warning will appear when output was overload or short circuited. High stability and reliability resulting from employing a high quality voltage regulator IC. The front panel of the power supply is well designed with output terminals, on/off switch, voltage adjusting control, jumbo size meter for reading both AMPS and VOLTS. Also with a voltmeter switch as well as current limit select switch. Kit comes with refined metal case, silver color with sand brushed front panel, all electronic parts, PCB board, 3" jumbo size meter, transformer, circuit diagram and instructions.

TR-100 KIT $59.50

80W + 80W STEREO AMPLIFIER KIT

PRE-AMP + TONE CONTROLS + POWER AMP

TA-800 is an 80 watts + 80 watts stereo. The Low T.I.M. preamplifier employs a low distortion linear RIAA (LM4565) and three negative type long controls for High, Medium and Low frequency control. The rear power amplifier uses newly developed high frequency darlington hybrid type transistors (AN7373/AN7383) in a push-pull circuit. There is also on board over temperature protector to generate a delay time between the speakers and the amplifier. Large aluminum heat sink, which is mounted on board, requires no external hook up wires. The kit comes with instructions, all electronic parts, prewired board, and heat sinks. Power transformer not included. Easy to build, guaranteed to work.

TA-800 KIT $56.00

Transformer (25VCA 4A) $22.50

60W + 60W O.T.L. AMP

Steer-amplifier: Low control + power amp. All in one unit, fully assembled! Compact in size 9"x4"x2". Can be built into most cabinets. Power transformer using 2SC1567 X 4 to give a max output of 60W + 60W.

- Frequency response 20Hz-85KHz (1DB)
- Total harmonic distortion: 0.2% (1kHz, signal/noise ratio 88 dB [open loop])
- Tone control: 10kHz ±10dB (1kHz)
- Frequency range 20Hz-85kHz
- Power supply: 48V ±7.5V-Amp. Filter: Capacitor 4700V, 75V-better.

MODEL SA-4528

Part #370-0250 $39.95 ea.

1 Transformer Part #370-100 $25.50 ea.

2 Filter Capacitor 4700V 75V $6.50 ea.

STEREO MIC. AND ECHO MIXER FOR STEREO AMPLIFIER SYSTEM

The circuitry employs all integrated circuits. RIAA type echo line can be adjusted (max. 30 Micrs) Also with a microphone preamp on the board. Fully assembled.

MODEL MX205

Part #370-0360 $29.95 ea.

30VDC POWER SUPPLY KIT

LOW T.I.M. TRANSISTORS

100W + 100W

- Employ HiRes low noise I.C for pre-amp. Max output 16 V-P (non distortion) + With low hum and long lasting circuit - Low power amp with short circuit protection - Heat sink for maximum results - Tone controls 100Hz ±10dB - All components (except for J, IC and tone controls) are pre-assembled, the quality is guaranteed.

Power Transformer

100V 60Hz + 100V 60Hz

MODEL SA80DC

Part #370-0340 $65.00

POWER TRANSFORMER

LOW VOLT + 60V

Part #670-0220 $24.50

STEREOPHONIC TRANSFORMER

LOW 60V

METER KIT

TA-322 30 Watts TOTAL 15W + 15W STEER AMP KIT

This is a solid state all transistor circuitry with on board stereo pre-amp for most microphones or line input. Power output employs a heavy duty Power Hybrid IC. Four built on board controlled circuits for volume, balance, tone and bass. Power supply requires 48VCT 2.5A transformer. THD of less than 0.1% (0.0005%) 100kHz at full power (15 Watts + 15 Watts cooled down to 816)

MODEL SA-5A

Part #370-0250 $39.95 ea.

1 Transformer Part #370-100 $25.50 ea.

2 Filter Capacitor 4700V 75V $6.50 ea.

MEDIAN MAGNETIC HEAD EQUALIZER

- Standard RIAA curve for all kinds of magnetic heads - 3 stages crossover circuit for best results - Output voltage guaranteed to be visible without any calibration - Power Supply: 24V DC.

TA-42

MODEL MA-142

Part #370-370 $5.95 ea.

TRANSFORMER KIT

0-30VDC POWER SUPPLY KIT

TR-355 POWER SUPPLY KIT $14.50

24VCT Transformer (for 0-30V) $10.50

SHIPPING & HANDLING CHARGES

Minimum Order $10.00, Calif. Residents add 8.25% Sales Tax. Phone Orders Accepted on Visa or MC only. No C.O.D.'s. Prices subject to change without notice.

CIRCLE NO. 175 ON FREE INFORMATION CARD
Where Have The Holes Gone?

Get ready for a major change in your electronics repair life as more and more manufacturers turn to surface-mounted devices (SMD). These parts, with their curled connection legs, attach directly to a printed-circuit board’s foil pattern...so drilled holes for pushing through component wire leads for soldering on the opposite side aren’t needed.

"So what!" you say? So the SMD leads are spaced more closely than conventional integrated-circuit leads are. So the devices themselves can be packed more tightly on a pc board, leaving you less room to remove and install them.

In fact, you won’t be able to safely remove or install most SMDs with your present soldering equipment. You’ll require new low-watt solder irons! Think about it a moment. With SMDs mounted on board footprint pads atop the copper foil, how can you change all the solder connections into a molten state simultaneously to remove the device? It’s not as if the connections were there in the clear for you to apply a solder-iron’s removal-block tip while pulling upward on the component’s body on the other side of the board.

What you’ll need in order to work on SMDs is a clamping-like solder iron much like giant tweezers, with an L-tip on one end and an inverted-L on the other to heat up all SMD connections at once. The tips will have to be the proper dimensions, of course, but so do spin-tight tool inserts for driving different nut sizes.

Perhaps you think that holeless pc boards are just a wild dream or limited to some military applications. If you do, you’re wrong. They’re here now in electronic entertainment equipment and spreading out everywhere else. Estimates are that about 50% of components shipped within five years will be surface-mountable types. (It’s said to be at the 5% mark at this time.)

Manufacturers can’t afford not to change to surface-mounted devices for a number of competitive reasons: more electronic functions can be put into a single package, more packages can be put on a pc board, pc-board holes don’t have to be drilled, and production equipment takes up less space.

The pace to SMDs is quickening as the number of components packaged for surface mounting increases. Automated production equipment developers have already moved in with about a dozen new pick-and-place SMD machines. So have makers of reels that can hold thousands of SMDs on vinyl carrier tape for blindly fast pick-and-place work—to 6,000 parts per hour! Good luck!

Art Salberg

The Way To Go

*Please keep the emphasis on electronics in your "magazine for electronics & computer enthusiasts." It’s not that I’m uninterested in computers (I subscribe to micro magazines, have two micros, disk and tape drivers, and fiddle with BASIC, Pascal, Pilot, assembly language, and machine language) but I want broader-spectrum editorial coverage too. Now, perhaps I can go back to a Number One: Modern Electronics. Michael M. Meyers Montclair, NJ

*I just want to add my own congratulations to the many you folks must be receiving over the recent issues of your splendid magazine. Us ordinary people out here enjoy doing projects and purchase much of the equipment advertised in such technical publications. The projects authored by Anthony J. Caristi are to me by far the most useful and well thought out. He does not talk down to hobbyists, yet spells everything out as if he were anticipating snafus and wants the hobbyist like me to have the thrill of seeing something really useful come to fruition. Mims, Lancaster, Hauser, and Feldman are great too, and deserve their steadily growing fine reputations.

Porter C. Holman
New York, NY

* I was impressed with Fred Blechman’s review of the Sinclair QL computer. It was very fair. He mentions the unit he reviewed was the English version. Some changes do exist between the UK and the U.S. one.

I am one of the first to receive the U.S. model QL and would like to point out some of the changes. First, the U.S. QL comes with version 2.00 of all four application programs. With this upgrade, code has been compressed and speeded up. Secondly, SuperBasic also is the newest version. Print VERS will return the version ‘code.’ With ‘JS’ you get the ‘WHEN’ construct along with 25 extra SuperBasic keywords to help in identifying type of error during error trapping.

As of this writing I know of two companies besides Sinclair who carry QL software and hardware in the U.S., including disk drives.

Robert Woodring
Tonawanda, NY

Likes Surround Sound

* Thank you for the article in February’s Modern Electronics about the "Surround Sound" enhancer project. Articles like this is one reason why I subscribe to Modern Electronics.

M. Smith
Industry, CA

Corrections

* A True-rms Adapter (June 1985). Fig. 1: delete line connection to OFF (STB), P. 59: change col. 1 to "half cycle = Vp." Col. 1—should read "C.F. = 1/\sqrt{f}\)" and following should read "For a C.F. of 7," the error is ~1% and for a C.F. of *1 last paragraph on box—expressions should have square-root sign completed. Parts list: R1 thru R4 should be metal film; C7 thru C4 should be rated at 1 kV, 100 V, 50 V and 10 V, respectively.

4 / MODERN ELECTRONICS / August 1985
8-mm VIDEO. The 8-mm video format is heating up the VCR battle with so many new products coming up, both machines and software. Dealers are confused with three formats, none compatible with another. Sony unveiled a tiny handheld 8-mm camcorder and a longer-playing tape (2 hours, up from 1½). Kodak, in turn, introduced a stand-alone 8-mm VCR chock full of features—digital stereo sound, two-piece system for lightweight portable recording, and much more.

CB-RADIO LIVES. CB radio may not be the raging delight of the populace any longer, but it still moves along on our highways. REACT International, a volunteer emergency communications organization founded in 1962, has 1,000 teams and 15,000 members in the U.S. and Canada who monitor Citizens Band Radio Channel 9, the FCC-designated emergency call station. They also provide communications for special events, such as March of Dimes Walkathons, Chicago's Americas Marathon, and similar activities. For membership info, contact REACT Internation, P.O. Box 115, Northbrook, IL 60062.

APPLICATION-SPECIFIC IC'S. With large cell libraries and sophisticated computer-aided design and engineering machines, creating integrated circuits is not the chore it once was. As a result, a company such as Oki Semiconductor is setting up a separate business unit to support small-box designers. Oki figures that five years from now applications-specific devices will account for almost half the world market for ICs.

COLOR TV REPLACEMENT. Half the color-TV sets bought 15 years ago are still used, while four out of five purchased 10 years back are being used, according to a recent EIA Consumer Electronics Group study. Among other interesting findings: 46% of color-TV households have more than one color TV set; 12% have three or more. Impressive color-TV set longevity notwithstanding, the study reveals that about 40% of color TV receivers bought in 1984 were replacements for sets that went out of use.

SHORTER LIFE IN MEMORY-CHIP LANE. Manufacturers of memory chips could once figure many years of solid business for their designs. But movement from the new 256K-bit chips to the next level, 1-Mb, will be here by the time you can say 1987. Prices of dynamic 256 K chips are dropping fast.

MULTICHANNEL TV SOUND. More than 200 TV broadcast stations are expected to transmit TV sound in stereo by 1986. As a result, many more new TV receivers are coming equipped for reception of MTS, which also accommodates bilingual TV broadcasts. To underscore this, Zenith Electronics' 1986 line of color-TV sets includes 14 models with built-in MTS facilities.

FCC SUPPORTS SATELLITE TV DISHES. In an interesting move that has aroused the ire of many local zoning boards, the Federal Communications Commission has a proposal out to eliminate local restrictions on home satellite TV antenna dishes. It's collecting comments relating to the rule proposal.
For more information on products described, please circle the appropriate number on the Free Information Card bound into this issue or write to the manufacturer.

Appliance Controller Computer Interface

"Powerhouse" is an Apple IIe or Iic or Commodore 64 interface from X-10 (USA) Inc. that lets your computer do something really useful around your home—remotely and automatically control electrical devices. Actually a microcomputer on its own, Powerhouse has its own microprocessor, ROM and RAM, with battery backup to keep the system running for up to 100 hours in the event of a power failure.

Interfacing to your computer is via a standard RS-232C serial I/O port, using the cable supplied with the Powerhouse. On top of the Powerhouse console are eight rocker switches that allow you to instantly turn on and off up to eight appliances. $120.

CIRCLE NO. 109 ON FREE INFORMATION CARD

Deluxe Stereo Receiver

In keeping with high-end design philosophy, Yamaha's new 125-watt/channel Model R-9 AM/FM-stereo receiver offers Auto Class A amplifier and Zero Distortion Rule circuitry, wireless remote control, and video inputs with copy capability. The deluxe receiver's lineup of features include: independent three-speaker system switching; 16 AM/FM station presets; auto-search and manual up/down tuning; last-station memory; digital frequency display; an outboard accessory loop; inputs for both moving-coil and moving-magnet cartridges, a CD player, and auxiliary sources; and a 40-dB continuously variable loudness control.

The tuner section uses a microprocessor-controlled Computer Servo Lock tuning system that selects either infinite-resolution FM servo tuning or synthesized PLL tuning to assure best reception. Other tuner features include: Digital Fine Tuning; auto/local/DX switching; and a 10-segment signal-quality meter. In the audio section, an input selector accesses two tape decks, two video sources, phono, CD, or tuner. Direct dubbing from one audio tape deck to another is possible, as is direct copy from video 2 to video 1. Additionally, Yamaha has included in the R-9 simulated-stereo and dynamic noise canceller circuits. The first uses a comb-filter circuit to give mono signals depth and imaging to simulate stereo sound. The latter is designed to be used with the stereo simulator but can work equally well without it.

CIRCLE NO. 110 ON FREE INFORMATION CARD

Low-Profile Chip Clip

A low-profile chip clip made by OK Industries is designed to facilitate easy in-circuit testing of 16-pin ICs. The Model LPCC-16 chip clip requires only 0.525" of clearance. It can be used in most applications where standard chip clips are used, but is especially suited to use in tight areas, such as a fully populated card cage. The low-profile design simplifies pin location, while the padded handles prevent shorts so that ICs can be tested on a board.

The chip clip has a specially designed "locking head" that fits over
Function Generator

Beckman Industrial’s new Circuitmate Model FG2 function generator is designed to produce clean, high-quality signals in the 0.2-Hz to 2.0-MHz range. Its pushbutton switches make output frequency and function selection fast and easy. Outputs include square, triangle and sine waves, and TTL pulse (five TTL load capacity). For low-level applications, a 20-dB attenuator is included.

A duty-cycle control allows you to change the nominal 50% duty cycle of the signal to any desired value. An invert pushbutton can be used to invert or change the duty cycle without requiring adjustment of the duty cycle control. A dc offset control adds a variable dc offset voltage to the offset signal for analog applications that require bias voltage. A voltage control frequency (VCF) input is included for generating sweep signals to enable you to control the generator’s frequency with an external dc control voltage. $199.95.

CIRCLE NO. 112 ON FREE INFORMATION CARD

Modem For Apple IIs

Zoom Telephonics’ new Zoom/Modem IIe is an advanced Hayes Micromodem IIe-compatible auto-dial/auto-answer 300-baud modem board for the Apple II, II+ and IIe. It comes with DOS/ProDOS-compatible communications software on disk and over $200 in offers from Dow Jones News/Retrieval, NewsNet and Delphi. The single-slot modem is supplied with all required cables, serial connection, speaker on/off capability, second on-board telephone jack and menu-driven software that does not require a disk drive for operation.

The Zoom/Modem IIe is also available as part of the Zoom/Modem IIe Plus package, which contains advanced communications software that adds file-transfer from disk to disk over the phone lines, integrated text editing, Xmodem protocol for error-free information transfer, printer access, and automatic directory dialing. $179 for Zoom/Modem IIe; $229 for Zoom/Modem IIe Plus.

CIRCLE NO. 113 ON FREE INFORMATION CARD

Deluxe Satellite-TV Receiver

Ramsey Electronic’s new Model XR-1 satellite-TV receiver features quartz-lock frequency-synthesized tuning with microprocessor-controlled video fine tuning circuitry. It also provides a weatherproof block downconverter, matrix stereo audio, dual polarity with electronic switching, full-function wireless infrared remote controller with random-channel access, and electronic TV antenna changeover. Other features include: large LED channel display; LED bargraph display of audio frequency tuning; format reversal button; all-pushbutton operation; LED status indicators for all selected func-
With NRI training at home, you can...

Move up to a high paying

And you can start by actually building your own 16-bit IBM-compatible computer!

You can create your own bright, high paying future as an NRI trained computer service technician. The government now reports that computer service and repair is the fastest growing career field. The biggest growth in jobs between now and 1995, according to Department of Labor estimates, will occur in the computer service and repair business, where demand for trained technicians will actually double during the next 10 years! There is still plenty of room for you to get in on the action—if you get the proper training now.

Total computer systems training, only from NRI

If you really want to learn how to work on computers, you have to get inside one! And only NRI takes you inside a computer, as powerful and advanced as the Sanyo MBC-550-2. As part of your training, you'll build this Sanyo, which experts have hailed as the “most intriguing” of all the new IBM-compatibles. Computer critics say, “The Sanyo even surpasses the IBM PC in computing speed and graphics quality.”

This hands-on experience is backed up with training in programming, circuit design and peripherals. Only NRI gives you such in-depth total systems training.

The kind of understanding built only through experience

Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, rapidly building on the fundamentals of electronics until you master such advanced concepts as digital logic, microprocessor design, and computer memory.

You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab® and professional Digital Multimeter, both of which are yours to keep.

You'll assemble Sanyo's intelligent keyboard, install the power supply and disk drive, and interface the high resolution monitor—all the while performing hands-on experiments and demonstrations that...
career servicing computers.

fine tune your computer skills. And you also get over $1,000 worth of software, including WordStar and CalcStar.

Learn to service today's computers

As you train with your Sanyo, you'll gain the knowledge you need to become a computer professional. You'll learn to program in BASIC and machine language. You'll use utility programs to check out the operation of the Sanyo's 8088 microprocessor (the same chip used in the IBM PC). You'll learn how to debug programs and write your own new software.

Most importantly, you'll understand the principles common to all computers. Only a person who fully understands all the fundamentals can hope to be able to tackle all computers. NRI makes sure that you'll get the training you need to maintain, troubleshoot and service computers.

Learn at home in spare time

With NRI training, you'll learn at home on your own time. That means your preparation for a new career or part-time job doesn't have to interfere with your current job. You'll learn at your own pace, in the comfort and convenience of your own home. No classroom pressures, no rigid night school schedules. You're always backed up by the NRI staff and especially your NRI instructor, who will answer questions, give you guidance and be available for special help if you need it.

Let others worry about computers taking their jobs. With NRI training, you'll soon have computers making good paying jobs for you.

Send for free NRI catalog

Send the post-paid reply card today for NRI's 100-page catalog, that gives all the facts about computer training plus career training in Robotics, Data Communications, TV/Video Servicing and many other fields. If some other ambitious person beat you to the card, write to NRI at the address below.

NRI SCHOOLS

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, NW
Washington, DC 20016

We'll Give You Tomorrow.

IBM is a Registered Trademark of International Business Machines Corporation.

August 1985 / MODERN ELECTRONICS / 11
FM wireless transmitters like the Audio Whizz examined here have always been welcome devices for applications where it’s impractical or undesirable to run cable or wires. This wireless device is designed to accept a broad range of audio signals, from a few millivolts to a few volts, and “broadcast” them for pickup by any nearby FM radio set to the proper frequency. In this case, the desired frequency is at the low end of the standard FM broadcast band.

The transmitter, which the maker claims has a range of up to 100 ft., is packaged in a 4" × 3" × 1½" black bakelite enclosure. Supplied with it are a three-ft. audio cable with RCA phono plugs on each end and an adapter for use with a miniature phone jack. The device is powered by a single C battery (not supplied).

"List" price is $49.95 from Video Kit Manufacturing Co., Rowland Heights, CA 91748.

User Comments

Removing the enclosure’s cover, which is secured by four screws, to insert a battery into a plastic battery holder, you’ll observe a paucity of components. There’s a potted module with four leads connected to some parts: a 120K resistor, a ceramic trimmer capacitor, and the electrical connection sides of a toggle switch and a phono jack.

To check out the device, the battery must be inserted with correct polarities observed, the battery power switch turned on, a source of audio such as from a VCR’s audio output plugged into the transmitter’s input jack, and an FM radio or tuner turned on and set to the low part of its band, around 88 MHz.

If you cannot pick up the audio signal after searching around a bit with your FM radio’s tuning knob or if the Audio Whizz signal comes in atop a strong local station, you’ll have to retune the transmitter. To do this, use a nonmental screwdriver to turn the ceramic capacitor’s adjustment screw. (You can also use the corner of a plastic credit card.) Once adjusted for satisfactory reception on your FM radio, you can put the cover back on.

The utility of such a wireless transmitting device is obvious. For example, connecting the transmitter to the Audio OUT of a VCR in your bedroom, you can listen to the sound track via headphones attached to one of those popular personal FM receivers at your side without disturbing your bed partner with loud audio from a TV set. In another application, you could broadcast a phono record or tape from your audio system to any FM radios around the house or even use the Audio Whizz with an electret microphone. For the latter, you’ll have to short out the 120K resistor with a small jumper cable since such microphones usually generate only 5 to 10 millivolts. Should you plan to do this frequently, an external shorting switch can be added to the transmitter.

Audio Whizz had a few shortcomings. For satisfactory audio clarity it requires the use of an FM radio and headphones with good sensitivity. Moreover, its 100-ft. maximum transmitting range under the best of conditions could be a bit restrictive. Additionally, there’s a possibility of causing some interference when making a video tape from ABC’s Channel 7 if the Audio Whizz is on since the device’s second harmonic of its around-88 MHz signal is close to Channel 7’s 175.25-MHz frequency.

Aside from the foregoing, I found the Audio Whizz to be very handy.—Fred Blechman.

Inside look shows trimmer capacitor used to adjust FM frequency.
Computers

Suncom’s Graphic Tablet

Graphic tablets add another dimension to computer applications. Using a pen-like pointer on a tablet enables the operator to produce all sorts of wonderful, colorful images on a computer’s video display. Suncom’s Animation Station—a pressure-sensitive tablet with versions for Apple II, Commodore 64 and Atari 400/800 computers—is a modestly priced one that provides many interesting features, including producing different type fonts, and being able to print what’s drawn.

The Animation Station comes with a color software disk program called DesignLab, which is something like Apple Macintosh’s MacPaint. Additional software programs for other purposes are said to be available, too, such as a Shape Library, an animated movie program called Take One, a clip-art book, and others. The tablet plugs into the host computer’s joystick/game port.

An Apple computer version is priced at $99.95, while Commodore-64 and Atari models have a suggested retail price of $10 less, or $89.95. We examined all versions, which are essentially the same. Each requires one disk drive and 48K of user memory. The focus in this report is on the Atari model.

Description

The 7” × 9¼” Animation Station’s beige plastic frame houses a recessed 4¼” × 5¾” sensor pad that’s the device’s active area. Green rules form ½” × ½” grids to make it easy to position the pointer’s stylus on the pad relative to the video screen location it represents.

Measuring a uniform 1½” thick, the tablet has anti-skid cushioned feet and a built-in leg brace that can be used to raise the rear of the tablet to form a 15-degree slope. There are dual thumb-activated control button pairs on either side of the active pad for each right- or left-hand use. Bottom buttons “DO” an action, while top buttons “UN-DO” it.

The active area itself is a sandwich of protective and conductive plastic sheets that, when pressed together, create the resistive equivalent of an analog dual-paddle. The latter essentially relays an effective x, y position to the host computer. On the Atari computer, the upper left-hand edge of the tablet corresponds to the 0, 0 of a high resolution graphics screen, while the lower right-hand are the maximum coordinates 159, 191. This results in a theoretical resolution of 33-37 pixels per pad inch or 12 × 12 pixels per grid box.

Specific x,y coordinates of the stylus are displayed on the video screen’s bottom section to aid in positioning objects more accurately on the tablet drawing. When not being used, the stylus may be stored in an opening in the Station’s upper right-hand corner. A recessed slide switch at the lower right of the unit allows the Station to be used as a video game controller on Commodore and Atari computers, and to emulate a true analog joystick on Apple computer versions.

Software

The Designlab software that comes with the Station has a host of features. Unlike many other “pointing” devices, Designlab allows you to use a printer, since printer dump utilities are wisely included on the disk. This will give the user grey-scale drawings on several single-color dot-matrix printers. The program offers more than 20 different functions. As with most pointing devices, you can draw with several “brush” cursors a series of points, lines, circles, and rectangles by simply pressing the DO (bottom) button while having the stylus in contact with the pad. This same technique accesses the various other menu options, including a wide array of disk utilities that load and save 64 sector picture files, 25 sector text fonts, and 9 sector shape libraries under pad control, as well as format or list entries on your disks.

Whereas the SHAPES mode allows you to call up a wide variety of predefined (and user-defined) shapes from shape libraries, the TEXT mode allows you to choose one of several type styles while using the keyboard to write notes onto your drawings.

The WINDOW mode can cut and paste windowed areas of your drawing as easily as can the more sophisticated Apple Mac-
Paint. You can employ this function to make multiple copies or just for repositioning. SPRAY allows you to become a graffiti artist with the equivalent to an aerosol-can paint brush; SCROLL lets you "microposition" your drawing on the screen, shifting it up, down, left, right, or off. This program's ZOOM mode, unlike other similar commands, lets you see the macro-picture as well as the zoomed-in portion, move around the picture, and change to one of four available colors in this mode.

Portions of the picture are erased in both this and other modes by selecting the background color as your drawing color. Your COLOR palate allows simultaneous use of 4 different colors/hues (3 plus background) selected from 16 colors and 16 luminances. Drawing is accomplished as if in layers as far as color is concerned, so if you change a layer's color, all drawing with that color changes.

Conclusions

The Animation Stations worked fine, proving that a good computer peripheral need not be very costly. Color graphics were exceptionally good on both a video monitor and a 13" TV receiver. I even tried the Apple version on a monochrome monitor and was able to perform all functions minus seeing color variations.

Of course, the Animation Station's utility is limited to the capabilities of the host computer. Thus, diagonal lines are relegated to a series of jagged straight ones, circles to ovals, and other generally less accurate renditions than one might wish for.

For all such shortcomings, however, given the low cost of the Stations and all the nice things it permits one to do well and easily on low-cost computers, Suncom's Stations are certainly worthwhile additions to computers they're designed to work with. For many people, such a graphics tablet could well renew one's interest in their home computer.

Software Function Table

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR:</td>
<td>Erases full screen</td>
</tr>
<tr>
<td>OVAL:</td>
<td>Makes circular shape outlines</td>
</tr>
<tr>
<td>OVAL 2:</td>
<td>Makes circular discs (filled-in shapes)</td>
</tr>
<tr>
<td>BOX:</td>
<td>Makes square and rectangular outlines</td>
</tr>
<tr>
<td>BOX 2:</td>
<td>Makes square and rectangular blocks (filled-in)</td>
</tr>
<tr>
<td>SKETCH:</td>
<td>Makes a dot of color every time you press a button</td>
</tr>
<tr>
<td>DOTS:</td>
<td>Draws single, unconnected lines</td>
</tr>
<tr>
<td>LINES:</td>
<td>Draws lines that connect to the last line drawn</td>
</tr>
<tr>
<td>COLOR:</td>
<td>Changes color to one of 16 possibilities</td>
</tr>
<tr>
<td>FILL:</td>
<td>Colors in enclosed areas on screen</td>
</tr>
<tr>
<td>SPRAY:</td>
<td>Creates an aerosol-can brush technique</td>
</tr>
<tr>
<td>ZOOM:</td>
<td>Magnifies parts of the picture for greater precision</td>
</tr>
<tr>
<td>PRINTER:</td>
<td>Sends picture to a printer</td>
</tr>
<tr>
<td>DISK:</td>
<td>Formats disks, saves/loads pictures, reads directory</td>
</tr>
<tr>
<td>SHAPES:</td>
<td>Uses predefined libraries or create your own</td>
</tr>
<tr>
<td>TEXT:</td>
<td>Uses one of several Fonts to write on the picture</td>
</tr>
<tr>
<td>WINDOW:</td>
<td>Frames part of the picture for cut & paste</td>
</tr>
<tr>
<td>MIRROR (Atari):</td>
<td>Creates mirror images of shapes/text/brushes</td>
</tr>
<tr>
<td>SCROLL (Atari):</td>
<td>Moves entire drawing up-down, right-left</td>
</tr>
<tr>
<td>HELP:</td>
<td>Calls up instructions on functions</td>
</tr>
<tr>
<td>BRUSHES:</td>
<td>7 predefined shapes (one user-defined for Commodore)</td>
</tr>
<tr>
<td>"DO" Button:</td>
<td>Press bottom button to draw one of the above</td>
</tr>
<tr>
<td>"UN-DO" Button:</td>
<td>Press a top button to erase the last drawn item</td>
</tr>
</tbody>
</table>

Libraries

(For Apple Computers)

TEXT:	Standard 8, Bold 10, Bold 17, Italic 8, Large Block 17
PICTURES:	Cable Car
SHAPES:	Animals, Wild Animals, Trees, Buildings, Game pieces, Musical Instruments, Music Symbols, Potpourri, Geometric Shapes, Animation Shapes
WINDOWS:	Sample letterhead, SUNCOM Space, PQ Controller, Starfighter Apple

(For Atari Computers)

TEXT:	Bold, Italics, Script
PICTURES:	Title, Help, Shuttle, Unicorn
SHAPES:	Animals (1 & 2), Faceparts, Transportation (1 & 2), Weapons, Miscellaneous

(For Commodore-64 Computers)

TEXT:	Standard, Bold, Script, Italics
PICTURES:	Colorwatch, Micrometer, World Map, Authors
SHAPES:	Animals (1 & 2), Transportation (1 & 2), Weapons, Faceparts, Plants, Characters, Miscellaneous
WINDOWS:	Suncom

Charles Rubenstein

CIRCLE 20 ON FREE INFORMATION CARD
ARIES ZERO INSERTION FORCE SOCKETS

can actuated, true zero insert on tin plated solder tail pins, complete kit being plugged into dip sockets, including wire wrap.

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Stock No.</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It's OK oscillator to supply complete, high quality, 6SUB -CUB unplugs for bread-board work.

SUB CUB I and Sub CUB II are high quality, comparable to Sub CUB I and Sub CUB II in the world. LCD Readout Modules.

The Battery Just Wrap Tool - Battery covers for wrap countdown, about 600 boards without soldering down in 1/16". Omit heat. Can be used with any conductive drink and two of the 600 boards. With 8 pins.

IC INSERTION KIT

OK MACHINE AND TOOL

IC INSERTION (NOT A KIT) includes DIP IC extractor and zero insertion force sockets. Complete kit includes undulated constriction of surface area and binding. Over 75,000 active amateurs in over 125 countries throughout the world read and enjoy a different kind of ham magazine every month. They read CQ.

It's more than just a magazine. It's an institution.

SUBSCRIBE TODAY!
Experimenter’s Radio-Control System

A six-channel license-free remote-control system project you tailor to your needs

By Robert C. Frostholm

Most radio-control (R/C) system plans published in books and magazines are fixed in design, usually to control model airplanes, cars, boats, etc. There are no such limitations imposed on the Experimenter’s Radio-Control System presented here. This is a basic transmitter/receiver system with “open-end” outputs that you adapt to suit your particular needs. In addition to allowing you to control the usual hobby models, the system can be made to control heating/cooling systems and automatic sprinklers, implement sophisticated robotics, and even set up a digital local area network. In fact, the uses to which the system can be put are limited only by your inventiveness and knowledge of electronics.

Unlike other R/C systems you may have seen in the past, the Experimenter’s Radio-Control system has very few components, the credit for which goes to a pair of matched encoder/transmitter and receiver/decoder integrated circuits from National Semiconductor. With these two ICs and a few extra components, you can build the full system in just a few hours.

Our basic system provides six output channels. Its two digital channels provide simple on/off switching, while its four analog channels provide proportional control.

Encoder/Transmitter

A complete six-channel digital-proportional encoder and r-f transmitter on a single DIP chip makes up the heart of the transmitter. This National Semiconductor LM1871 chip (IC1 in Fig. 1) is intended for use as a low-power, license-free, nonvoice communications device for use on 27 or 49 MHz. In addition to the radiocontrol hobby, toy and industrial applications, the encoder can provide a serial input of six words for hardware, infrared and fiber-optic communications links.

Potentiometers R6 and R7 in Fig. 1 are used to set the pulse widths of the two analog channels, while switches S1 and S2 allow you to set the binary-coded pulse-position modulation for the digital channels (see Fig. 2). Thus, the two digital channel outputs (in the receiver) are determined by the number of pulses transmitted, rather than by the width of the channel.

Two timing circuits make up the transmitter’s encoder. The waveforms for these are shown in Fig. 3. Frame time is determined by the values of R5 and C9 at pin 7 of IC1; pulse time at pin 8 is determined by the values of C7 and R4. The relationships are as follows:

Frame time \(T_F = R5C9 + 0.63R4C7 \)

Modulation time \(T_M = 0.63R4C7 \)

Channel time \(T_{CH} = 0.63R3C7 \)

Frame, modulation and channel times should typically be set for 9.5, 0.5 and 0.5 ms, respectively.

Class C was chosen as the operating mode for the crystal-controlled oscillator/transmitter. Resistor R2 provides base bias current from V (regulated) pin 4 of IC1. R-f feedback in the oscillator is via series-modethird-overtone crystal XTAL1, which controls the frequency of oscillation. With this arrangement, the best alignment method would be to tune L1 for minimum supply current while observing the carrier envelope.

Receiver/Decoder

The receiver is based on National’s companion LM1872 radio-control receiver/decoder chip, a crystal-controlled superheterodyne design that offers good sensitivity and selectivity (see Fig. 4). In concert with the LM1871 transmitter, the LM1872 provides four independent information channels. The two analog channels are pulse-width modulated (PWM), while the two digital channels offer simple on/off control (see “Modulation Methods” box for more details).

Each digital channel provides sufficient power to directly drive a 100-
mA load. Instead of providing direct control, each of the LM1872's analog outputs goes to its own separate SN76604 pulse-width demodulator/servo amplifier. The SN76604 has on-chip transistors that are capable of driving a 400-mA load. This servo amplifier is unique in that it provides bidirectional output capability from a single-ended power supply.

In the Fig. 4 circuit, the r-f signal from the transmitter is demodulated and decoded by negative-edge triggering of a cascade of three binary dividers. The dividers count the number of pulses to determine the number of information channels being transmitted.
What can you do
Just about

CIE can show you how.
Computer technology, Satellite communications. Cable television, Cellular radio. Digital electronics. Robotics. Just a few of the hottest career areas in electronics. The ones everybody is talking about. The ones that are changing the way we live, the way we do business, the way we entertain ourselves. The best way to start a career in any of them? By learning the basic electronics theory and principles of how they work from CIE.

Join a leader.
Leading the world in specialized electronics training, CIE is the largest school of its kind with over 25,000 students at home and abroad. And with over 50 years of experience teaching electronics to thousands of men and women through proven methods of independent study without classroom sessions.

Learn as much as you want, when you want.
Whether you're interested in learning new skills or upgrading old ones, earning a diploma or an A.A.S. degree, CIE can match your needs with courses and programs that let you start where you want, go as far as you want from a basic beginner course all the way to CIE's Associate in Applied Science Degree in Electronics—a comprehensive program that prepares you for advanced electronics careers.

Custom training equipment helps you learn.
CIE believes in the importance of learning by
doing. So most of our courses include specialized training laboratories keyed to specific lessons for practical experience through teaching experiments. Our CIE Microprocessor, for example, comes fully assembled and ready to use to teach you how a computer CPU works through a series of experiments you perform on your own.

Are you ready?
If you're ready to do something now about your future, there's no waiting to enroll with CIE. Get all the information you need to enroll simply by calling us toll-free at 1-800-321-2155 (in Ohio, 1-800-362-2105). Or mail in the handy reply coupon or card to Cleveland Institute of Electronics, 1776 East 17th Street, Cleveland, Ohio 44114.

CIE World Headquarters
Cleveland Institute of Electronics, Inc.
1776 East 17th Street • Cleveland, Ohio 44114

☐ Please send me your CIE Off-Campus Studies Catalog, including details about the Associate Degree program. I understand there is no cost for the catalog and a CIE representative may call, but there is no obligation.

Print Name ___________________________
Address ___________________________ Apt. No. ____________
City _____________________ State _______ Zip ____________
Age ______ Area Code/Phone No. _______
Check box for G.I. Bill bulletin on Educational Benefits
☐ Veteran ☐ Active Duty
MAIL TODAY!
For the Experimenter's Radio-Control System receiver’s digital outputs to do anything useful, they must be interfaced with the so-called “real world.” Shown here are four typical examples of simple interfaces for the digital outputs of the LM1872 (IC1 in Fig. 4) at pins 7 and 9. These simple circuits—and others you might think of—can be assembled on small pieces of perforated board and housed within the receiver’s enclosure or external to it.

Circuit (A) is an example of an interface that can provide on/off control for high-power loads. Power for the load, independent of the receiver’s battery supply, is routed through the relay’s contacts. Circuit (B) provides a direct on/off signal, rather than the mechanical make/break action of circuit (A). Circuits (C) and (D) source current for medium- and relatively high-power loads, respectively. Other interfaces will suggest themselves.

You can fabricate your own pc boards, using the actual-size etching-and-drilling guides given in Fig. 6, or purchase an entire kit, which includes ready-to-use pc boards, from the source given in the Receiver Parts List.

Circuit assembly on the pc boards is a simple, straightforward procedure (see Fig. 7 for details). You simply plug each component into the indicated holes on the board, making sure to properly orient it, and solder its leads or pins to the foil pads on the underside of the board. You can use DIP sockets for the ICs if you wish, but this is not essential.

You can house the transmitter and receiver in any size boxes, preferably metal, that will comfortably accommodate them, their battery supplies, antennas and any controls and interfacing that may be required for your application.

Using the System
A 2-ft. antenna is recommended for

![Fig. 5. Timing waveforms available at various points within the receiver.](image-url)
most applications. This will give roughly a 200-ft. communicating range. If you wish to increase the range of the system, you can increase the length of the receiving antenna. Additional range can also be obtained by increasing receiver sensitivity. Decreasing input transformer L5’s turns ratio, for example, will couple more signal into the mixer, but at the expense of a lower tuned-circuit Q, due to mixer loading. Moving the primary tap on mixer transformer L3 farther from the supply side and/or decreasing the primary-to-secondary turns ratio will also increase gain. Changing L3 to a 5:1 ratio coil (the specified coil gives a 32:1 ratio) will double 49-MHz sensitivity from 6 to 12 microvolts.

The receiver’s digital outputs have significant drive capability. They are capable of sinking 100 mA with a saturation resistance of 7 ohms. Alternatively, they can source 100 mA at up to 1 volt above ground for driving grounded npn transistors and silicon controlled rectifiers (SCRs). For higher currents, the digital outputs can be summed by connecting together pins 7 and 9 of IC2.

The 455-kHz intermediate frequency was chosen for convenience. Actually, system i-f can be as low as 50 kHz or as high as 1 MHz, obtainable by changing the values of the appropriate components.

Receiver alignment is quite simple, requiring just a voltmeter capable of tracking down to about 25 mV and a

(Continued on page 89)
Portable Computers ’85: One Lap Ahead

Part 2 (Conclusion)

By Eric Grevstad

Last month, we gave you a brief history of the evolving concept of "portable" computers and then concentrated attention on the modern true portable—the stand-alone laptop you can use anywhere. In this installment, we’ll tell you about the laptops already competing for your dollars and give you some insights on new models being readied for marketing later on this year or early next year.

This Year's Candidates

Turning to today’s laptop computers, the first new portables for 1985 turned the tables on the DG/One and IBM gossip at the upper end of the market. Three portable pioneers reaffirmed their commitment to the under-$1000 category, with second-generation machines that feature flip-up LCD screens.

The most familiar is the Tandy 200 ($999), which is a Model 100 with the complaints answered. Judging 80-column LCD characters just too small for comfortable reading, Tandy stayed with its 40-column width, but doubled the vertical measure to 16 lines. Simultaneously, small improvements to the 100’s other deficiencies were made: a modem that supports tone as well as pulse dialing, handler cursor movement keys for the keyboard, and 24K RAM expandable to 72K (in three banks).

The Tandy’s Microsoft ROMware got an upgrade, too. It has more features for the terminal and word-processing programs, and a scaled-down (63 columns by 99 rows) Multiplan spreadsheet. As with the 100, there’s a socket for another 32K ROM program, though only "plain vanilla" Model 100 programs (no BASIC PEEKs or POKEs or machine-language address calls) will work on the Model 200 computer.

By contrast, the Epson Geneva/ PX-8 ($995) and NEC PC-8401A Starlet ($999) take a different ap-
Epson's Geneva/PX-8 14-lb. notebook-size computer offers an 80 × 9 LCD screen, three applications programs in ROM, standard CP/M, 32K of ROM and 64K of RAM.

Sharp's PC-5000 provides an 80 × 25 LCD screen and a well into which you drop an optional dot-matrix printer. It uses bubble-memory cartridge, instead of disk, storage.

proach, though largely in the same way. (The NEC has a 16 × 80-character display and a modem, while the Epson has an 8 × 80-character screen and no modem, but it has a microcassette for mass storage.)

More important, both have 64K RAM, CMOS Z80 processors, and the same ROM-chip software—the CP/M operating system and MicroPro's classic WordStar word processor and Calc spreadsheet. The programs, called Portable WordStar and Calc by Epson and WordStar and Calc To Go by NEC, lack some desktop features (help levels in WordStar, for instance), but generally duplicate their 25-line originals. NEC adds terminal and filer programs and sets aside a 32K RAM disk, while Epson chose Microsoft BASIC and a user-settable (up to 24K) RAM disk.

If $1000 is too much to spend for a portable, you might wait and hope for Commodore's rumored $500 or $600 entry. The home computer price busters announced a unit with a 16 × 80-character liquid crystal display (hence its name, the Commodore

Updated version of Model 100, Tandy's Model 200 retains 40-character lines for greater readability but doubles number of lines to 16.
Between myself and *Modern Electronics* staffers, we’ve used or observed operation of most of the portable computers on the market. Here are some quick impressions.

The *TRS-80 Model 100* is showing its age, we’ll grant you: a modest 8-line, 40-column display, 32K RAM maximum, and clumsy cassette tapes for mass storage. But third-party products have fixed the latter two problems, and Tandy’s price cuts have created a bargain—$599 with 24K RAM, a first-rate keyboard, a text editor, and built-in modem that make the 100 a fine note-taking and telecommunications machine. Also, this computer is compactly built, unlike later models that feature adjustable displays.

Tandy’s latest portable, the *Model 200*, corrects some shortcomings exhibited by the 100, such as having more RAM, ROM, and a 16-line display. It’s also bigger, due to its hinged display and, of course, pricier. Complain all you want about the limitations of 40-character lines: bigger characters are easier to read.

Epson’s Geneva/ PX-8 is a big improvement over its pioneer HX-20 portable. Besides a fairly legible 8 × 80-character LCD, the $995 machine offers a slow-but-useful microcassette drive, a versatile operating menu, and CP/M 2.2, BASIC, and Micropro’s full-featured Portable WordStar and Portable Calc. A drawback of this computer is that there are only two sockets for the four ROM software capsules.

Too bad, though, that the PX-8 doesn’t have a built-in modem or a parallel printer interface. Even so, the under-$1000 laptop’s on-board mass storage makes it worth a try, though its keyboard travel is a bit shallow and stiff for comfortable typing.

If you’re willing to give up BASIC, *NEC’s PC-8401A Starlet* offers similar software (plus a filer program), a full set of input/output ports that include parallel and serial interfaces, a built-in modem, and a 16-line screen. It’s a neat package, though like others of its kind not as compact as the Tandy 100 . . . nor as easy to read, tiltable display or no.

Sharp’s PC-5000 is a novel portable with its bubble memory. The unit worked nicely, though there is some question as to the future of this type of user memory. For its $1695 price you also get MS-DOS and a slew of software.

Next up in price is *Data General/One*, a $2895 package that’s also supplied with MS-DOS, word processing, and communications software . . . and a 3½" disk drive. Its 25-line × 80-column screen emulates what the conventional business computers feature. But legibility of characters on its LCD screen leaves much to be desired.

It’s $2995 price needs cutting, but otherwise the *Hewlett-Packard HP-110* has few faults: a skimpy word processor (HP’s MemoMaker) and poor success at sharing IBM PC programs (though a $150 interface card makes swapping data files easy).

Past that, HP’s is one of the best-engineered portables around: a fairly readable 16 × 80 screen, 272K of user memory, and the best menu or operating system shell I’ve seen: Personal Applications Manager (PAM), which controls everything from setting up RAM disks to keeping tabs on battery charge. Thanks to the 110’s mighty ROM and 80C38 chip, Lotus 1-2-3 loads and runs faster in your lap than on a desktop.

Fast typists will find the keyboard a bit stiff, and I found myself preferring the HP’s program menu and built-in software to its limited MS-DOS talents—which is why I call it the ultimate Model 100, rather than a laptop PC. That doesn’t make it any less desirable, though I wish I’d had Hewlett Packard’s external disk drive and the chance to try some other software.

Hands-On Impressions

Hewlett-Packard’s 9-lb. The Portable comes with three built-in software packages and an 80 × 16 LCD screen.

NEC’s Model PC-8401A offers full 64K of RAM, built-in business software, 300-baud modem, 80 × 16 LCD screen.
nitably a would-be desktop: awkward in your lap, but ready to run standard 5½-inch floppy disks. I spent a week with an early production model, which impressed me as a reasonably handy traveler, and ran about half of my MS-DOS library (flunking with graphics programs and software written specially for IBM hardware).

The keyboard was crowded by responsive, and the 16 × 80 screen’s world map, desk clock, and calculator distracted me from its incredibly noisy disk drives. But the $2595 Osborne’s slow screen response dropped half the characters I typed. Without more debugging, I doubt the 3 will pull its own in the marketplace.

And finally there’s the Grid Compass, the highest priced portable of the lot at $4995. Everything else aside (like much RAM, a 300/1200-baud modem, and so on), my reaction to it is much the same as anyone else’s: “I can see, I can see!” Any LCD screen literally pales next to an ELD, which is the computer’s hallmark.

We’ll have to wait on the newly announced portables: Morrow’s “Super Pivot” glow-in-the-dark screen and Grid Systems’ new gas-plasma-screen portable, among the offerings.

—Eric Grevstad.

Counterpoint

While I agree with Eric’s comments, there’s more to portable computers than meets the eye. In fact, what meets the eye is a major consideration.

Using the Tandy/Radio Shack Model 100 when it debuted, I was struck by the limitations of the LCD screen, the 40-column by 8-line display, the absence of on-board mass storage, and its low memory capacity. Nonetheless, it could be a handy machine, I felt, especially if there was a home or office computer system that could provide download and upload facilities. Carrying along a small portable cassette recorder would solve a need for more memory, too.

My reservations about the 100 were soon countered by more advanced portables reaching the market. Now I could use a portable that featured a full 80 characters, just like I’d see on 8½” wide paper, as well as many more lines. You know what? I have to twist and turn to read the smaller characters displayed, and even with a tilt screen, you can keep your 80-character format with current LCD screens! Tandy/Radio Shack was smart to retain only 40 characters per line.

Then came models with more RAM power, more built-in programs, and new floppy-disk provisions. Real operating systems like CP/M and MS-DOS, too. You know what, again? The machines are no longer little portables to be tucked into one’s attache case. They’re cases unto themselves. This reminds me of the evolution of portable TV receivers, which quickly became 19” screen, very heavy models, with a handle stuck on its top. Portable?

Given what I see to date, at the price, I just don’t like ’em . . . at all. Given my druthers, I’ll take a “transportable” any day and forego inputting data while on the fly. A Compaq or Zenith transportable would do just fine, thank you, or some equivalent to them. I haven’t seen George Morrow’s new Pivot or Zenith’s version of it, so comments here don’t apply. The new Tandy 200 is okay by me, with mixed emotions on 40 columns (I can read it, but what you see is not what you get).

Oh, for the good old days! Come to think of it, they’re still here since the original TRS-100 is still around at a massive discount now. So I take back my three wishes when I first worked with the 100. If I want truly portable computing and easier-to-read display, at a modest price, I’d take the 100 at this point in time.—Art Salsberg.

LCD), 32K RAM, a modem, and word-processing, spreadsheet, database, communications, and appointment software in 96K of ROM. The machine should be Commodore 64 compatible; I hope, however, that the built-in software isn’t the awful stuff from the Plus/4.

Big Disks & Backlighting

While CP/M and Commodore invade one end of the market, MS-DOS tightens its grip on the other. The DG/One and its IBM ghost rival may make 3½” microfloppies a standard, but three new portables aim for PC compatibility by running off-the-shelf 5½” disks.

The slickest is the Datavue 25, sold by Quadram Corp. ($2195 with 128K RAM and one drive). The Datavue resembles a lunchbox with a 25 × 80-character screen; like the DG/One, it’s built around Intel’s 8088, the CMOS version of the PC’s microprocessor. There’s also a PCjr-style cordless infrared keyboard.

At 14 pounds, the Datavue is better slung over your shoulder than put in your briefcase. With a nondetachable keyboard and nine fewer display lines, it would be a triplet for two 16 × 80-character models, the Osborne 3 and Morrow Pivot (each $2595). The Osborne 3 with 128K and two drives). Both models, designed by a Cali- fornia subcontractor, feature an 80C86 CPU, skinny one-third-height floppy drives, and ROM software that includes a calculator, phone dialer, and deluxe world map and desk clock. Osborne offers expansion to 512K and two drives ($3395).

Morrow, which goes up to 640K and two drives ($2795), promises superior readability, thanks to a “secret” backlighting technique, turning its LCD into bright characters on a black background. Chairman George Morrow boasts that the trick costs far less than an electro-

(Continued on page 86)
Metal Detecting For Fun & Profit
Part 2 (Conclusion)

Tips on treasure hunting and purchasing

By Gerald S. Pattee

As we pointed out last month, metal detecting—commonly referred to as "treasure hunting"—has gone through a number of stages to arrive at its present level of sophistication. Now that you know what a metal detector is and generally how it does what it does, we will tell you what to look for when planning to buy a detector. Of particular importance is the Buying Guide listing we have prepared, which will help you make comparisons between the various makes and models on dealer shelves.

Buying a Metal Detector

Metal detectors, as a glance at the Price column in the Buying Guide table will reveal, can be expensive, depending on their degree of sophistication. An average price is in the neighborhood of $400. Some 40% of the models listed in the Buying Guide cost $500 or more. With only four exceptions, you can figure you will have to lay out a minimum of $150 for one of today's sophisticated detectors, minus any options and accessories you might want. Obviously, then, metal detection is a serious hobby, and for some a business, requiring a sizeable monetary commitment.

Which make or model metal detector you ultimately decide to buy should be arrived at only after seriously considering your needs and carefully comparing features of the various offerings. Do not make the error of letting price sway you toward a model that will not meet your needs. If you plan on using a metal detector professionally, you will undoubtedly want the best there is, even if it proves to be the costliest or nearly so. On the other hand, if you want to make metal detection a hobby or to have something different to do at the beach, a less costly model may be all you need.

It can almost be said that there is a metal detector for every need. There are the general-purpose detectors most people use at the beach and in public parks for locating small items like coins and jewelry; there are others designed for deep-water (up to 200 feet) salvage work; and still others for locating large objects buried deep in the ground, like pipes and metal conduits, and tiny pocket-size models for locating small items inside walls and sampling ores. For the purposes of this article, we have limited the listings in the Buying Guide to general-purpose and submersible detectors.

If you are not yet into treasure hunting but have more than a passing interest in it, Radio Shack has three economy-priced models that might appeal to you. The low-end Catalog No. 60-3003, which sells for $19.95, is hardly in the same league with the sophisticated detectors offered by other manufacturers, but it can serve as an excellent educational toy that will keep youngsters occupied for...
Radio Shack’s low-cost discriminator detector.

Teknetics’ Model 9000 is technologically perhaps the most advanced multi-mode metal detector on the market.

Heath’s Model GD-1290 discriminator comes in money-saving kit.

Metal Detector Terminology
As with just about every other specialty area in modern electronics, the metal detector field has its own unique terminology. Much of it is characterized by letter codes that can be totally meaningless to the uninitiated. To understand a manufacturer’s descriptive product literature, you must be able to interpret these abbreviations. The following is only a partial list, but it should be sufficient to take the mystery out of the literature and to converse with other metal detector users.

ADS—Automatic detection system
AGC—Automatic ground cancel
ATI—Audio target identification
BFO—Beat-frequency oscillator
DISC—Discriminator
DS—Deep seeker
GBD—Ground-balancing discriminator
GC—Ground cancel
GCD—Ground-canceling discriminator
GEB—Ground-exclusion balance
GNC—Ground-neutralizing circuit
PI—Pulse induction
SPD—Synchronous phase discrimination
TR—Transmitter/receiver
TR-DISC—Transmitter/receiver-type discriminator
VDI—Visual discrimination indicator
VLF—Very-low frequency
VLF-TR—Very-low-frequency transmitter/receiver
VTI—Visual target identification

(Continued on page 36)
IF YOU WANT TO GET YOU HAVE TO GET INTO

Learn PC Servicing By Building Your Own NTS/HEATH HS-151 Desk-Top Computer, Circuit-By-Circuit

NTS Intronic Home Training Takes You Below The Surface
NTS gets you right down into the heart of computer circuitry. You learn how microprocessors function, how they are designed, how they operate and are used to solve problems. Your program includes a wide variety of tests and projects, as you assemble your PC. You experience the excitement of seeing your own skills grow, the security of knowing you really understand what makes a computer tick.

A Career in PC Servicing
The world of computers is constantly expanding. Applications have spread from business to manufacturing, from industry to medical and scientific fields. Computer-aided design, engineering, and production have revolutionized drafting, graphics, and prototyping. Computer sales figures point to a continuing need for service technicians as well as installation and maintenance specialists. The type of training you receive will largely determine your ability to take advantage of these opportunities ... and nothing beats the practical, down-to-earth training you get from NTS.

The NTS/HEATH 16-Bit HS-151
This desk-top PC is the most powerful and versatile ever offered in any home training program. Check the advanced features listed below:
1. 128 KB RAM user memory on board, expandable to 640 KB
2. 16-bit 8088 Microprocessor accepts advanced software, speeds word processing, also allows selection from the huge library of IBM software.
3. 5.25-inch floppy disk drive, double density, IBM formatted, stores up to 360 KB. (Expandable to dual disk drive, and optional 10.5 MB hard-disk drive.)
4. MS-DOS operating system, IBM compatibility, make a wide choice of software programs available.
5. Four open IBM-compatible slots provide for future expansion, printer, modem, etc.
6. Two video outputs for color or monochrome display monitor. Your NTS course includes a high resolution monitor displaying 80 characters by 25 lines, or graphics.
7. Editing capabilities help you insert or delete characters and lines, erase, jump or smooth scroll, etc.

Your NTS training course will teach you to program on this outstanding PC, using lessons, texts, and diagrams to make full use of its capabilities. Catalog contains complete details.

Field servicing is interesting and rewarding. Technicians may work for a service company, manufacturer, or major users.

The NTS/HEATH HS-151 PC completed, includes monitor and full-function keyboard with calculato style keypad, and typewriter format.

Learning circuitry through the construction of this equipment offers practical training for which there is no substitute. Test equipment is included.
NTS COURSES COVER MANY AREAS OF SPECIALIZATION IN ELECTRONICS:

Robotics: Build the NTS/HEATH Hero 1 Robot as you learn robotic programming. Robot is complete with arm and gripper, voice synthesizer. Robotics is becoming increasingly important in industry as almost daily news features attest.

Video Technology: Build one of the most advanced Color TV sets in America as you learn circuit diagnostics, and the use of digital test instruments. Course covers color TV, video tape recorders, computer fundamentals, solid-state devices.

Industrial and Microprocessor Technology covers circuit analysis, microprocessors and automation applications, lasers, and basic industrial robotics.

TV & Radio Servicing is a specialized course offering an excellent foundation in the use and application of both analog and digital test equipment as applied to the TV servicing field. Learn circuits, adjustments, trouble-shooting, and servicing of Color and monochrome monitors.

Digital Electronics offers the student the opportunity to get involved with computer concepts, computer technology fundamentals, and digital equipment by training on the NTS Compus-Trainer.

Basic Electronics is a course designed for those wishing to have an overview of electronics in many of its aspects including radio receivers, solid state devices, and electronic components.

NTS Intronic training programs include a variety of superb equipment, most of which is classified as field-type, making the training practical and career oriented. Texts and lessons have been tested in our Resident School in Los Angeles to assure home study students their courses of training are easy to understand. NTS, now in its 80th year, continues to be at the leading edge in Electronics home training.

* IBM is a trademark of International Business Machines Corp.
* MS is a trademark of Microsoft Corp.

If card is missing, simply write to the address shown below stating the course you are interested in. A FREE color catalog with all details will be sent to you by return mail.

NATIONAL TECHNICAL SCHOOLS
TECHNICAL TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, CA 90037
Metal Detector Buying Guide

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Search Modes*</th>
<th>Coil Size</th>
<th>Indicator</th>
<th>Controls</th>
<th>Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compass Electronics Corp., P.O. Box 366, 3700 24 Ave., Forest Grove, OR 97116 (Tel. 503-357-2111)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-80</td>
<td>$649.95</td>
<td>GB, GB DISC, Target Tone Identification (X-80 only)</td>
<td>8"</td>
<td>spkr meter</td>
<td>variable auto tuning; audio tone frequency & volume, sensitivity, discriminate controls; metered target ID</td>
<td>5 lb</td>
<td>3-section telescoping arm-rest stem; options: 1", 3", 12", 16" search heads; hip-mount platform; backlighted meter</td>
</tr>
<tr>
<td>X-70</td>
<td>$589.95</td>
<td>TR DISC, GB DISC</td>
<td></td>
<td>meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher Research Laboratory, 10051 St., Los Banos, CA 93635 (Tel. 209-826-3292)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1260-X</td>
<td>$499.95</td>
<td>VLF-DISC, VLF-all metal (motion)</td>
<td>8"</td>
<td>spkr</td>
<td>trigger mode change; dual discriminator, sensitivity, volume controls</td>
<td>4 lb</td>
<td>battery-recharge circuitry built in; auto tuning; auto ground reject; no-threshold operation</td>
</tr>
<tr>
<td>1220-X</td>
<td>$299.95</td>
<td>VLF-DISC, VLF-all metal (motion)</td>
<td>8"</td>
<td>spkr</td>
<td>discriminate, sensitivity controls</td>
<td>3.5 lb</td>
<td>toggle mode change on hand grip; auto ground rejection, auto tuning; no threshold operation</td>
</tr>
<tr>
<td>1220-X-PRO</td>
<td>359.95</td>
<td>same as 1220-X</td>
<td>8"</td>
<td>spkr</td>
<td>same as 1220-X, plus frequency shift control</td>
<td>3.8 lb</td>
<td>same as 1220-X, except mode-change switch is on panel auto ground reject; auto tuning; no-threshold operation</td>
</tr>
<tr>
<td>1210-X</td>
<td>199.95</td>
<td>VLF-DISC, VLF-all metal (motion)</td>
<td>8"</td>
<td>spkr</td>
<td>discriminate control</td>
<td>2.8 lb</td>
<td>auto ground reject; auto tuning; no-threshold operation</td>
</tr>
<tr>
<td>VLF-441</td>
<td>299.95</td>
<td>VLF-all metal</td>
<td>8"</td>
<td>spkr</td>
<td>tuner, discriminate, volume, sensitivity controls</td>
<td>4.4 lb</td>
<td>optional 11" deep-search, 3½" nugget coils</td>
</tr>
<tr>
<td>VLF-660</td>
<td>279.95</td>
<td>VLF-all metal; VLF-MAX-all metal</td>
<td>8"</td>
<td>spkr</td>
<td>tuner, ground-reject, volume, sensitivity controls</td>
<td>4.5 lb</td>
<td>optional 11" deep-search, 3½" nugget coils</td>
</tr>
<tr>
<td>VLF-660-PRO</td>
<td>299.95</td>
<td>same as VLF-660</td>
<td>8"</td>
<td>spkr</td>
<td>same as VLF-660</td>
<td>5.1 lb</td>
<td>same as VLF-660, plus body mount ultra-slow auto tune; optional 11" deep-search, 3½" nugget coils</td>
</tr>
<tr>
<td>VLF-930-D</td>
<td>179.95</td>
<td>VLF-TR DISC</td>
<td>8"</td>
<td>spkr</td>
<td>mode, retuner switch; discriminate, ground-reject, volume controls</td>
<td>3.2 lb</td>
<td></td>
</tr>
<tr>
<td>VLF-920</td>
<td>149.95</td>
<td>VLF-all metal</td>
<td>8"</td>
<td>spkr</td>
<td>retuner button, ground-reject control</td>
<td>3 lb</td>
<td>optional 11" deep-search</td>
</tr>
<tr>
<td>Garret Electronics Inc., 2814 National Dr., Garland, TX 75041 (Tel. 1-800-527-4011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL500</td>
<td>$799.95</td>
<td>Pulse DISC</td>
<td>7½"</td>
<td>phones</td>
<td>volume, detection depth, discriminate controls</td>
<td></td>
<td>designed for beach, fresh/salt water to 200-ft depth, including headphones; optional 3½", 11" search coils</td>
</tr>
<tr>
<td>XS500</td>
<td>799.95</td>
<td>same as XL500</td>
<td>7½"</td>
<td>phones</td>
<td>same as XL500</td>
<td></td>
<td>same as XL500, except designed specifically for underwater use</td>
</tr>
<tr>
<td>XL500 VLF</td>
<td>799.95</td>
<td>manually tuned VLF DISC</td>
<td>7½"</td>
<td>phones</td>
<td>function switch; elimination, volume controls</td>
<td></td>
<td>same as XS500, except designed specifically for fresh-water use</td>
</tr>
<tr>
<td>7 A.D.S.</td>
<td>599.95</td>
<td>VLF-DISC, VLF-all metal</td>
<td>7½"</td>
<td>spkr</td>
<td>master control, audio selector, ground/trash eliminator switches; audio adjust, tone controls; tuning, eliminator controls</td>
<td>5 lb</td>
<td>submersible search coil for salt/fresh water; slow scanning speed detection; automatic ground elimination; adjustable detection depth auto ground eliminator; auto threshold adjust/operate; rechargeable battery and charger; belt mount; usable to 200-ft depth with optional headphones auto ground elimination; adjustable target elimination; salt-water operation (search coil only); adjustable detection depth automatic ground elimination; arm rest; silent or threshold operation; salt-water operation (search coil only)</td>
</tr>
<tr>
<td>XL200</td>
<td>599.95</td>
<td>pulse DISC</td>
<td>7½"</td>
<td>phones</td>
<td>ground/trash-eliminator, master control switches; audio threshold, tone controls</td>
<td>3 oz</td>
<td></td>
</tr>
<tr>
<td>6 A.D.S.</td>
<td>579.95</td>
<td>VLF-DISC, VLF-all metal</td>
<td>7½"</td>
<td>spkr</td>
<td>master control, detection switches; audio threshold, ground eliminator controls</td>
<td>4 lb</td>
<td>automatic ground elimination; arm rest; silent or threshold operation; salt-water operation (search coil only)</td>
</tr>
<tr>
<td>Freedom 2</td>
<td>499.95</td>
<td>DISC</td>
<td>7½"</td>
<td>spkr</td>
<td>master control, depth-detection switches; audio threshold, ground eliminator controls</td>
<td>4 lb</td>
<td>same as 6 A.D.S., except meter is not elevated, no visual target classification on meter</td>
</tr>
<tr>
<td>5 A.D.S.</td>
<td>399.95</td>
<td>VLF-DISC, VLF-all metal</td>
<td>7½"</td>
<td>spkr</td>
<td>same as 6 A.D.S.</td>
<td>5 lb</td>
<td></td>
</tr>
<tr>
<td>4 A.D.S.</td>
<td>299.95</td>
<td>VLF, VLF-DISC</td>
<td>7½"</td>
<td>phones</td>
<td>master control switch; depth, audio threshold, tone-adjust, ground eliminate, trash eliminate controls</td>
<td>4 lb</td>
<td>submersible search coil; depth meter scale</td>
</tr>
<tr>
<td>Freedom 1</td>
<td>299.95</td>
<td>VLF-DISC</td>
<td>7½"</td>
<td>phones</td>
<td>dual trash eliminate switch; audio threshold, depth, trash eliminate controls</td>
<td>4 lb</td>
<td>automatic ground elimination; submersible search coil; electronic pinpointing</td>
</tr>
</tbody>
</table>

Price search modes: DISC, VLF -DISC, VLF -same, VLF -all, VLF -X, plus frequency shift control

36 / MODERN ELECTRONICS / August 1985
<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Search Modes*</th>
<th>Coil Size</th>
<th>Indicator</th>
<th>Controls</th>
<th>Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-2</td>
<td>199.95</td>
<td>VLF</td>
<td>7½"</td>
<td>phones</td>
<td>mode-select/retune switch; audio adjust, ground eliminate, trash eliminate controls retune, depth switches; audio level, ground/trash eliminate controls</td>
<td>3 lb</td>
<td>initial control settings; depth scale on meter; submersible search coil</td>
</tr>
<tr>
<td>AM-1</td>
<td>139.95</td>
<td>VLF</td>
<td>7½"</td>
<td>phones</td>
<td>mode-select, battery-test switches; volume, ground balance, discriminate, tuning controls</td>
<td>3 lb</td>
<td>initial control settings; depth scale on meter; submersible search coil</td>
</tr>
</tbody>
</table>

Note: Most Garret detectors can be fitted with optional search coils in different sizes

Heath Company, Benton Harbor, MI 49022 (Tel. 616-982-3496)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Search Modes*</th>
<th>Coil Size</th>
<th>Indicator</th>
<th>Controls</th>
<th>Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD-1290</td>
<td>$219.95</td>
<td>VLF-DISC, GB</td>
<td>6"</td>
<td>spkr</td>
<td>volume, discriminate, automatic volume, ground balance, discriminate, tuning controls</td>
<td>3 lb</td>
<td>build-it-yourself kit; submersible search coil</td>
</tr>
<tr>
<td>63-3002</td>
<td>$ 59.95</td>
<td>DISC</td>
<td>6"</td>
<td>spkr</td>
<td>mode-select, battery-test switches, volume, ground balance, discriminate, tuning controls</td>
<td>4 lb</td>
<td>can discriminate between desired target and unwanted junk</td>
</tr>
</tbody>
</table>

Teknetics, Inc., 300 Market Dr., Lebanon, OR 97355 (Tel. 503-451-1238)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Search Modes*</th>
<th>Coil Size</th>
<th>Indicator</th>
<th>Controls</th>
<th>Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000</td>
<td>$869.99</td>
<td>TR-DISC, GB, GB max., GB-DISC</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, target ID, display switches; tuner, volume, ground balance, discriminate controls same as 9000</td>
<td>4 lb</td>
<td>unique liquid-crystal display with coin ID, depth scales, operating mode legend; built-in battery and recharger</td>
</tr>
<tr>
<td>8500</td>
<td>679.99</td>
<td>same as 9000</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, power switches</td>
<td>4lb</td>
<td>pointer-type meter with target-ID, conductivity, depth scales</td>
</tr>
<tr>
<td>8000</td>
<td>589.99</td>
<td>same as 9000</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, target ID, display switches; tuner, volume, ground balance, discriminate controls same as 9000</td>
<td>4 lb</td>
<td>similar to 8500, except has less informative meter scales</td>
</tr>
<tr>
<td>7700</td>
<td>479.99</td>
<td>GB, GB-DISC</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, power switches</td>
<td>4 lb</td>
<td>no tuning; automatic ground adjust; automatic pinpointing; simplified meter scales</td>
</tr>
<tr>
<td>7500</td>
<td>399.99</td>
<td>same as 9000</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, power switches</td>
<td>4 lb</td>
<td>coin depth, conductivity scales</td>
</tr>
<tr>
<td>6500</td>
<td>299.99</td>
<td>GB-DISC</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, target ID, display switches; tuner, volume, ground balance, discriminate controls same as 9000</td>
<td>4 lb</td>
<td>no tuning; automatic ground adjust; automatic pinpointing; simplified meter scales</td>
</tr>
<tr>
<td>Mark I</td>
<td>699.99</td>
<td>GB-all-metal, GB-DISC</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, power switches</td>
<td>4 lb</td>
<td>target-select programming; very-deep detection; multiple meter scales</td>
</tr>
<tr>
<td>Mark III</td>
<td>499.99</td>
<td>GB-all-metal, GB-DISC</td>
<td>7¼"</td>
<td>spkr</td>
<td>mode, power switches</td>
<td>4 lb</td>
<td>ultra-slow sweep; very-deep detection; multiple meter scales</td>
</tr>
</tbody>
</table>

White's Electronics Inc., 1011 Pleasant Valley Rd., Sweet Home, OR 97386 (Tel. 503-367-6121)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Search Modes*</th>
<th>Coil Size</th>
<th>Indicator</th>
<th>Controls</th>
<th>Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000/Di</td>
<td>$679.95</td>
<td>GEB-NORM, DEG-DISC, GEB-max., TR-DISC</td>
<td>8"</td>
<td>spkr</td>
<td>power, mode switches; volume, tune, discriminate, GEB controls</td>
<td>3 lb</td>
<td>stem or hip mount; target ID/depth meter; preset controls; self-adjusting threshold; submersible search coil; trigger/meter</td>
</tr>
<tr>
<td>6000/D</td>
<td>499.95</td>
<td>same as 6000/Di</td>
<td>8"</td>
<td>spkr</td>
<td>single tune/detect/battery-check control</td>
<td>3 lb</td>
<td>stem or hip mount; target ID/depth meter; preset controls; self-adjusting threshold; submersible search coil; trigger/meter</td>
</tr>
<tr>
<td>PI 1000</td>
<td>499.95</td>
<td>pulse induction</td>
<td>10"</td>
<td>phones</td>
<td>trigger, mode switches; tune, ground-adjust, volume, GEB, discriminate controls same as 5000/D</td>
<td>3 lb</td>
<td>target switch; self-adjusting threshold; low-battery alert</td>
</tr>
<tr>
<td>5000/D</td>
<td>399.95</td>
<td>GEB-norm, GEB-DISC, TR-DISC, GEB-max</td>
<td>8"</td>
<td>spkr</td>
<td>trigger, mode switches; tune, ground-adjust, volume, GEB, discriminate controls same as 5000/D</td>
<td>3 lb</td>
<td>self-ground cancel; single-control operation; low-battery alert</td>
</tr>
<tr>
<td>4000/D</td>
<td>289.95</td>
<td>GEB, DISC</td>
<td>8"</td>
<td>spkr</td>
<td>single tune/detect/battery-check control</td>
<td>3 lb</td>
<td>pushbutton retuning; low-battery alert</td>
</tr>
<tr>
<td>3000/D</td>
<td>199.95</td>
<td>TR-DISC</td>
<td>8"</td>
<td>spkr</td>
<td>trigger, mode switches; tune, ground-adjust, volume, GEB, discriminate controls same as 5000/D</td>
<td>3 lb</td>
<td>pushbutton retuning; low-battery alert</td>
</tr>
<tr>
<td>2000/D</td>
<td>139.95</td>
<td>TR-DISC</td>
<td>8"</td>
<td>spkr</td>
<td>auto ground cancel; single-control operation; low-battery alert</td>
<td>3 lb</td>
<td>pushbutton retuning; low-battery alert</td>
</tr>
<tr>
<td>1000</td>
<td>99.95</td>
<td>TR</td>
<td>8"</td>
<td>spkr</td>
<td>auto ground cancel; single-control operation; low-battery alert</td>
<td>3 lb</td>
<td>pushbutton retuning; low-battery alert</td>
</tr>
</tbody>
</table>

Note: Most White's detectors can be fitted with optional search coils in different sizes

*Abbreviations in this column are explained in the "Metal Detector Terminology" box elsewhere in this article.

(Continued on page 96)
TVRO Satellite News

The home satellite TV beat goes on as new equipment and industry happenings continue

By Stan Prentiss

The satellite receiving industry is booming as summer installations and dealer showings set records for the continental United States. Manufacturers and distributors now estimate more than 1.3-million privately-owned television receive-only (TVRO) installations are now in operation, with sales during warmer weather exceeding the record-breaking market rate of 60,000 per month established in mid-winter.

Furthermore, the list of geosynchronous satellites on station keeps growing as new launches occur with fair regularity from the U.S. and abroad.

As with any dynamic, new industry, however, there are always tidings of gloom and jubilation. The worst occurred on March 31 with the failure of USCI as it went off the air. The good news is that consumer satellite engineering is progressing by leaps and bounds, and some excellent systems are now appearing at moderate prices that should satisfy almost all requirements, including the ever-present threats of 2° C band satellite spacing and special program audio-video "scrambling" encryption.

SPACE, the Society for Private and Commercial Earth Stations, is now actively negotiating with Home Box Office (HBO) and other would-be scramblers to make available its shows and movies if Harry Homeowner wants to pick up a $395 check for a descrambler and moderate programming and access fees. At the same time, SPACE is also upgrading dealer and technical personnel in an extensive Dealer Certification Program that includes receiver design, terrestrial interference, installations,
zoning and legal, and troubleshooting. Written tests and a final examination covering all seven required courses are part of the curriculum.

Industry Trends

Latest TVRO movements are toward smaller receptors (dishes), lower-noise LNAs (low-noise amplifiers), and higher frequency outputs from block-down converters that deliver the entire 500-MHz C or Ku satellite bands. Formerly a mere 70 MHz with a single LNA, they've risen to between 900 and 1450 MHz, many with dual LNAs for both vertical and horizontal transponder (satellite channel) polarities so several TV receivers may tune any channel on a single satellite without interaction by another. Even 6-ft.-diameter antennas with much lower-cost 80° Kelvin noise temperature LNAs instead of 120° LNAs are penetrating markets that either need less-obtrusive dishes or are satisfied with a couple of high-powered satellites and a few dozen channels, rather than the hundreds often available.

Whether mesh, perforated, or fiberglass, the same size receptor usually produces equivalent gain, although there are tradeoffs for each category. The mesh dish is often made up of sectional panels, supported by a fairly rigid frame—aluminum. The better perforated dishes come in a solid piece or large steel panels and are usually larger 8-to-12-ft. variety of receptors with holes punched through the sheathing. As for solid antennas, they may be fabricated of spun aluminum, steel, or fiberglass, with compression molding, sheet molded composition, or resin transfer molding.

Among steel and aluminum antennas, surface coatings of hot mix black zinc or electrostatically-bonded powder coatings are preferable, with as little aluminum-to-steel contact as possible since this can result in metal-deteriorating galvanic action.

Stainless steel is good, but expensive, and should have a flat matte surface to diffuse heat-creating IR/UV light waves. In fiberglass, undersurface reflecting mediums of either sprayed metal film or continuous metal foil are preferred, since “chicken wire” with large holes produces carrier phase distortion and image problems. As for wind velocity, after speeds of 30-40 mph, perforated and mesh antennas behave like any other closed surface, and probably have the tendency to retain ice and snow longer than solid receptors because of their holes. Weights are relative, depending on size.

Antenna Wrinkles

The newest wrinkles among TVRO antennas are the rectangular variety, which are claimed to easily meet the FCC’s (transmit) antenna requirements. Occupying less space vertically but more horizontally than some ordinary parabolics, these latest receptors have both specially designed feedhorns and offset (lower) feeds, and at least two manufacturers claim they’re more than adequate for both the 11.7-to-12.2-GHz Ku band as well as the 3.4-to-4.2-GHz C band. With dual feeds, they may even be able to accommodate both Ku and C band transmissions across the States and beyond with reasonable gain and narrow enough beamwidths to avoid undue carrier-to-interference problems.

Comtech Antenna Corp. of Florida has the larger of these two rectangular receptors, measuring 8-ft. high by 18-ft. wide, guaranteed to exceed all “FCC specifications for 2° spacings,” and available for both transmit and receive in AZ/EL, polar mounts or mobile configurations. Of probably greater interest to homeowners is the very new little Pico kid™ with its specially designed dual feed horn that operates equally in horizontal and vertical polarities. It can serve both Ku and C bands with the proper LNAs, meeting most if not all requirements for 2° spacing. Weighing but 39 lbs. and formed from high impact, UV-stabilized plastic, it is said to be designed to reject mild-to-moderate terrestrial microwave interference in either of the two bands. The two LNAs and their feeds serve 950- to 1450-MHz satellite receivers.

In the more conventional satellite receive-only dishes, General Instrument Corp. (Canadian Div.), offers 8- and 10-ft. mesh antennas with ribs and rims precision-formed from tempered aluminum extrusions for excellent surface accuracy and high efficiency. Pre-galvanized steel forms with polar mount for these units and spherical bearings allow friction-free horizon-to-horizon travel, all fully adjustable for azimuth, elevation, and declination.

Janiel is another distributor of products with solid and perforated antennas from Alcoa Aluminum and receivers from General Corp. of Japan. Its small antennas have 25% perforation and consist of 6 panels—all UPS shippable. Big antennas are made of 40-thousandths steel with baked-on powder coatings and up to 42-dB gains and high efficiencies. The company also introduced a brand new rack-and-pinion mount with metal screw (worm) and transmission and gears that’s driven by a 36-Vdc motor using but 1.5-2.8 amps of current. A highly accurate inclinometer, built especially for this mount, caps the package.
Uniden Corp. of America showcased a host of new satellite antenna products. Among them was its UST-110 antenna, a 10-ft. 7-in. diameter design that can be shipped by UPS and takes only about 1 1/2 hours to assemble. The model uses expanded aluminum mesh panels and 18 extruded aluminum arms. A five-step, baked-on painting process gives it a weather-resistant coating. It's designed for the proposed 2° satellite spacing.

The Newest Feeds

Chapparral has both a new Sierra receiver and special plastic antenna mount accommodating both its Ku and C band feeds without further sighting or special support arrangement. Boman Industries is manufacturing a brand new, one-piece **dual** feed for both C and Ku spectrum that aligns as a single unit. Seavey Engineering offers a pair of prime focus feeds for standard or deep dishes with polarity rotations for all transponders in either 3-wire pulse or 2-wire dc types. And Gillaspie Communications has a new GCI-100 C band Polarizer™ that's said to deliver 10° K better noise-temperature performance than the competition. Meanwhile, Uniden brought out new block downconverters to complement its equally new home satellite TV receivers, led by top-of-line UST 7000, which features programmable antenna control that handles up to 81 satellite positions in memory.

Much of the foregoing was introduced and exhibited at midyear meetings of the Society for Private and Commercial Earth Stations (SPACE) and Satellite Television Technology, Inc. (STTI). Almost a traveling road show, such meetings are held at least four times a year, primarily in Las Vegas, Nevada, and Nashville, Tenn., with other sites such as Dallas, TX and Tulsa, OK in between. SPACE has become a force and spokesman for the home satellite industry and is working hard on such rights as viewing, zoning, and training, as well as battling signal-scrambling threats, supporting a two-year moratorium on scrambling introduced in the House of Representatives in late March by Rep. Judd Gregg of New Hampshire.

Signal Scrambling

Like it or not, sound and sight scrambling has already begun its move as specialized movieland programs encipher outputs for public pay TV. Furthermore, since the system is addressable with a unique 56-bit key for each descrambler, the degree of difficulty in pirating access is said to be 72,057,590,000,000,000 possible key combinations, or 72,057,590 x 10^9 permutations or trial-and-error search possibilities.

Uniden’s top-of-line model UST-7000 downconversion satellite TV receiver features infrared handheld remote control, programmable antenna position control, stereo capabilities and dynamic noise reduction.

Designed and built by satellite and microwave giant M/A-COM and its Linkabit™, Inc. division, VideoCipher™ uses a Data Encryption Standard (DES) algorithm of the National Bureau of Standards, reportedly producing a descrambled signal equal to or better than the plain-language original even in relatively noisy environments. System applications are CATV, SMATV, satellite DBS, and private networks, with up to 56 tiers of independent programming that can be altered on command, depending on system operation and/or customer billing intervals.

Video has sync removed and a portion inverted, plus the centering of 3.58-MHz color burst at some non-standard line position, while audio is transmitted as a pair of digital channels during horizontal blanking. The audio is encrypted and combined with error coding bits for extremely high security and quality.

There are actually three VideoCipher versions available, with VideoCipher IV, a modification of VideoCipher II, scheduled for reliable cable and terrestrial consumer applications. Most of our information, however, concerns VideoCipher II.

It transmits secure address and control information to the various descramblers as part of the video signal, providing complete control at points of origination. Organized in related program categories, descramblers will respond up to 56 independent tiers and can pass only programs specifically authorized. Individually addressed control messages may be received at the rate of 250,000 per hour, along with a 56-bit...
authorization word and a monthly access key. A 56-bit program mask word is also sent, and if the mask and descrambler's authorizations have common 1s digits, program viewing is permitted.

The service is further broken down into DBS (direct broadcast service) commands and CATV commands, so that all DBS channels may be activated by separate program masks, while another 56-bit program mask controls descramblers for separate service elements on each CATV channel, independent of DBS.

Addressing and control data transmits as 63 kilobits during the nominal 11-microsecond horizontal blanking interval in the form of multilevel key structures. Each subscriber has a special unit address with certain keys, while secure retention of critical descrambler information stored in non-volatile memory, permits rapid restoration of service after interruptions or power outages.

Each descrambler is preloaded with its X-Y coordinates based on your local post office zip code. If descramblers are not affected by up to 32 imposed and independent blackout regions, they then permit the showing of scheduled programs, all else being in order.

You may also receive personal messages such as electronic birthday cards, personal stock exchange quotations, etc., and view up to 256 pages of text information per channel. These may show program guides, headline news, sports, and so forth, and even notices of unauthorized ongoing or coming events. While all this percolates, the descrambler keeps track of your available credit for impulse purchasing of programs, which may either be increased or decreased, depending on how the account is handled. Then there's infrared remote control that will permit impulse pay-per-view selections as well as on-screen program displays for ratings, cost, and your present line of credit, in addition to second language programming.

<table>
<thead>
<tr>
<th>Satellite Name</th>
<th>Locations °W. Longitude</th>
<th>Band (GHz)</th>
<th>Date Launched</th>
<th># of Xpdrs/ BW (MHZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATCOM V</td>
<td>143°</td>
<td>4/6</td>
<td>Oct. 1982</td>
<td>24/36</td>
</tr>
<tr>
<td>SATCOM I-R</td>
<td>139°</td>
<td>4/6</td>
<td>Apr. 1983</td>
<td>24/36</td>
</tr>
<tr>
<td>GALAXY I</td>
<td>134°</td>
<td>4/6</td>
<td>June 1983</td>
<td>24/36</td>
</tr>
<tr>
<td>SATCOM III-R</td>
<td>131°</td>
<td>4/4</td>
<td>Nov. 1981</td>
<td>24/36</td>
</tr>
<tr>
<td>COMSTAR IV</td>
<td>127°</td>
<td>4/6</td>
<td>Feb. 1981</td>
<td>24/36</td>
</tr>
<tr>
<td>SPACENET I</td>
<td>120°</td>
<td>4/6; 12/14</td>
<td>May 1984</td>
<td>12/36; & 6/72</td>
</tr>
<tr>
<td>WESTAR V</td>
<td>122.5°</td>
<td>4/6</td>
<td>June 1982</td>
<td>24/36</td>
</tr>
<tr>
<td>SBS IV</td>
<td>101° (temp.)</td>
<td>12/14</td>
<td>Sept. 1984</td>
<td>10/43</td>
</tr>
<tr>
<td>SBS I</td>
<td>99°</td>
<td>12/14</td>
<td>Nov. 1980</td>
<td>10/43</td>
</tr>
<tr>
<td>WESTAR IV</td>
<td>99°</td>
<td>4/6</td>
<td>Feb. 1982</td>
<td>24/36</td>
</tr>
<tr>
<td>SBS II</td>
<td>97°</td>
<td>12/14</td>
<td>Oct. 1981</td>
<td>10/43</td>
</tr>
<tr>
<td>TELSTAR 301</td>
<td>96°</td>
<td>12/14</td>
<td>July 1983</td>
<td>24/36</td>
</tr>
<tr>
<td>SBS III</td>
<td>95°</td>
<td>12/14</td>
<td>Nov. 1982</td>
<td>10/43</td>
</tr>
<tr>
<td>GALAXY III</td>
<td>93.5°</td>
<td>4/6</td>
<td>Sept. 1984</td>
<td>24/36</td>
</tr>
<tr>
<td>WESTAR III</td>
<td>91°</td>
<td>4/6</td>
<td>Aug. 1979</td>
<td>12/36</td>
</tr>
<tr>
<td>TELSTAR 302</td>
<td>86°</td>
<td>4/6</td>
<td>Sept. 1984</td>
<td>24/36</td>
</tr>
<tr>
<td>SATCOM IV</td>
<td>84°</td>
<td>4/6</td>
<td>Jan. 1982</td>
<td>24/36</td>
</tr>
<tr>
<td>WESTAR II</td>
<td>79°</td>
<td>4/6</td>
<td>June 1974</td>
<td>12/36</td>
</tr>
<tr>
<td>COMSTAR III & D2</td>
<td>76°</td>
<td>4/6</td>
<td>Sept. 1978</td>
<td>24/36; & Sept. 1976</td>
</tr>
<tr>
<td>GALAXY II</td>
<td>74°</td>
<td>4/6</td>
<td>Sept. 1983</td>
<td>24/36</td>
</tr>
<tr>
<td>SATCOM II-R</td>
<td>72°</td>
<td>4/6</td>
<td>Sept. 1983</td>
<td>24/36</td>
</tr>
<tr>
<td>SPACENET II</td>
<td>69°</td>
<td>4/6; 12/14</td>
<td>Nov. 1984</td>
<td>12/36; & 6/72</td>
</tr>
<tr>
<td>WESTAR I</td>
<td>retired (8/83)</td>
<td>4/6</td>
<td>April 1974</td>
<td>12/36</td>
</tr>
<tr>
<td>SATCOM I</td>
<td>retired (5/84)</td>
<td>4/6</td>
<td>Dec. 1975</td>
<td>24/36</td>
</tr>
<tr>
<td>COMSTAR D1</td>
<td>retired (9/84)</td>
<td>4/6</td>
<td>July 1976</td>
<td>24/36</td>
</tr>
<tr>
<td>SATCOM II</td>
<td>retired (2/85)</td>
<td>4/6</td>
<td>March 1976</td>
<td>24/36</td>
</tr>
</tbody>
</table>

*In Orbit as of February 5, 1985

SATCOM: RCA American Communications, Inc.
WESTAR: Western Union Telegraph Co.
SBS: Satellite Business Systems
GALAXY: Hughes Communications Galaxy, Inc.
COMSTAR: owned—Comsat General Corp.
operated—American Telephone & Telegraph Co.
TELSTAR: American Telephone & Telegraph Co.
SPACENET: GTE Spacenet Corp.
A Great Gift Idea
DON'T LET THE ELECTRONICS REVOLUTION PASS YOU OR A FRIEND BY!
SUBSCRIBE TO

MODERN ELECTRONICS

Now you can reach out every month and learn about the latest innovations in consumer electronics and personal computers—what's new, how products and circuits work, and what leading authorities think of them.

*Stereo *Video *Home & Car Electronics *Test Instruments *Circuitry & Devices *Servicing *Personal Computers *Communications *Construction Projects

In every issue, authors lucidly explain how exciting, new electronics ideas are applied...issue forthright buying counsel...present complete plans to build electronic devices to enhance products, even unique ones that are not yet being sold in the marketplace.

Feature articles, tutorials, and construction projects are the hallmarks of MODERN ELECTRONICS, the new monthly magazine for electronics and computer enthusiasts. Covering the entire spectrum of these fields, you'll gather insights in every important area to help you make buying decisions for work and play purposes...improve performance of your present equipment...increase your electronics competence...and add to your practical and intellectual knowledge of electronics and computers.

To be sure you get this valuable information delivered to you regularly, and share the experiences of our writers and editors—Forrest Mims, Len Feldman, Stan Prentiss, Charles Rubenstein, Glenn Hauser, and many others—you can subscribe to MODERN ELECTRONICS today. As a Charter Subscriber, you'll save 45% off the newsstand price when you buy a one-year subscription for only $12.97. Or save 51% when you subscribe for two years at $22.97.

Just fill out the coupon and mail with your check, money order, or credit card information (Visa or MasterCard) to enter your Charter Subscription. Do it today to ensure earliest delivery!

MODERN ELECTRONICS 76 North Broadway, Hicksville, NY 11801

Please send me Modern Electronics for ☐ 2 Years ☐ 1 Year

Name ____________________________
Street ____________________________
City _____________________________ State __________ Zip _______________________

2 Years (24 issues) $22.97 ☐
1 Year (12 issues) $12.97 ☐

Charge My Order To: Payment Enclosed ☐
☐ MasterCard ☐ VISA

My account number is: ____________ ____________ ____________ ____________

CALL TODAY FOR YOUR FREE COPY OF CATALOG #10!

MCM ELECTRONICS 858 E. Congress Park Drive Centerville, Ohio 45459 513-434-0031

CALL TOLL FREE 1-800-543-4330
(IN OHIO CALL 1-800-762-4315)
(IN HAWAII OR ALASKA 1-800-858-1849)

CIRCLE 85 ON FREE INFORMATION CARD
If you're interested in buying a good-quality stereo tape deck or service such equipment, you'll want to know how well a model should perform when it's brand new. To do this you can check out the manufacturer's published performance specifications for the deck. Chances are that the figures were derived from a measurement standard recognized by the Electronic Industries Association (interim standard No. IS-12-CP). Thus, most of the better tape decks have their performance attributes defined with the same reference points, so that you can make comparisons meaningful.

There are 13 separate performance parameters that are considered primary specifications for a tape deck that both records and plays back. All must be published by any manufacturer who wants to conform to the EIA standard. Furthermore, there are some 11 additional performance characteristics that are considered to be of secondary importance. These may or may not be reported, as each manufacturer sees fit. In this discussion we'll examine only primary specs and how they are measured.

(For a listing of secondary specifications with a brief description of what they mean, see "Secondary Specs.")

Here are details on what these specifications mean and the methods used to obtain these specifications.

Record/Play Frequency Response

Frequency response—the ability of an audio component to reproduce all audio frequencies at correct relative amplitudes—is, of course, a primary specification to be measured. In the case of a tape recorder, however, the level at which a recording is made has...
a lot to do with the way the measured frequency response will appear.

When you try to record very high levels of high frequencies onto magnetic tape—particularly onto cassette tapes—the tape tends to become "saturated." This causes response at those high frequencies to be lowered or attenuated instead of remaining constant or flat. To avoid this problem, the measurement standard allows us to test the frequency response of cassette decks at -25 dB below "reference level." This is rationalized by observing that high frequencies in music are seldom as great in amplitude as low and mid-frequencies are.)

But what is "reference level"? To begin with, it is not the level at which a given cassette deck's recording level meters read "0 dB." The 0-dB meter readings on most recorders are arbitrary, and not the same from one model to another. Magnetization level can be described in absolute terms, however, by a quantity called nanowebers-per-meter (abbreviated as nWb/m). For cassette recorders, the reference level has been established as 400 nWb/m. As long as all manufacturers regard that level as the reference level and back down to -25 dB from that point when measuring record/playback frequency response, consumers will get a fair comparison of the frequency-response capabilities of one recorder against those of another. Ideally, a manufacturer should furnish a graph, or curve of frequency response, such as that shown in Fig. 1.

If such a curve is not supplied, the manufacturer may state the response in verbal terms, such as:

R/P Response, using XYZ Type Q Tape: 35 Hz to 15 kHz, +0 dB, -3 dB

Notice that the tape type and brand used in making the measurement must be stated, as must the plus and minus deviation from flat or uniform response throughout the frequency range be stated.

More Tape-Recorder Specifications

In addition to the primary specifications described in detail, a manufacturer of home tape recorders has the option of supplying as many as 14 additional specifications, several of which represent multiple sets of information. Many of these additional specifications are self-explanatory, and are simply listed below without any details concerning them. A few may seem strange to you if you are not very familiar with tape recorder technology, and these are briefly defined.

Secondary Specifications

1. Tape Speed Error.
2. Fast Forward and Fast Rewind times.
4. Headphone Output Level.
5. Loudspeaker Output Level (if built-in speaker is present).
6. Line Output Impedance (helpful in matching with other components).
7. Record/Playback Channel Separation and Cross-talk (for stereo units).
8. Maximum Line Input Level.
10. Erasure (completeness of erasure of tape, stated in dB)

In addition to the above secondary specifications, the following additional performance specifications are listed and described in the new tape measurement standard: Indicator Response Time and MPX Attenuation.

While many audio tape recorders now employ fast-acting electronic recording level indicators such as LEDs or fluorescent bar graphs, others continue to use mechanical level meters. Regardless of the type of metering system used, it is worthwhile to know just how quickly the meters or indicators respond to an actual change of signal level.

A complex toneburst signal is used to determine the ballistics of the metering system and duration of the tone burst required to cause the meter system to read "0 dB" when a signal level of +2 dB is applied to the system. This is considered to be the indicator response time of the metering system. If quoted at all in a manufacturer's published specifications, it is to be given in milliseconds.

In a somewhat similar way, it is possible to measure the indicator decay time: the time it takes for the indicator to recede from its steady state reading by 20 dB. The test of this decay time is done by steadily increasing the interval between one-second-long tone bursts and observing the meter reading. When it reaches -20 dB just prior to the beginning of the ensuring tone burst, the time between tone bursts is listed as the decay time of the particular indicator or metering system.

Another secondary specification having to do with the tape deck's metering system is called Indicator Calibration Error. Specified in dB, it is the greatest deviation observed between the actual input level and the meter reading from nominal 0 dB recording level down to a -10 dB recording level.

The last of the optionally reportable secondary specifications that a tape deck manufacturer may want to list is called: MPX Attenuation.

If a tape recorder has an MPX (multiplex) filter in its circuitry to eliminate the 19-kHz pilot signal present in FM-stereo transmissions, it will attenuate any 19-kHz input to the recorder. Thus, any filter that does a good job of attenuating 19 kHz is also likely to attenuate (albeit to a lesser degree) other wanted audio frequencies. A statement of the MPX Attenuation characteristics of a recorder having such a filter should therefore include the amount of attenuation that will take place for 15-kHz signals as well as for 19-kHz signals when the filter is turned on.
You may have noticed that some specifications discussed require that the manufacturer list the brand and type of tape used to make the measurement that determined the specification. When it comes to tape recorders, the tape you use in them can influence the performance of the recorder fully as much as (if not more than) the recorder’s circuitry. To begin with, there are differences between tapes made by one manufacturer and those made by another. Beyond that, there are also basic or generic types of audio tape.

The International Electrotechnical Commission (IEC), a world standard-making body of scientists, has divided audio tape into four basic types. They are numbered, appropriately: Types I, II, III and IV. Furthermore, the IEC has selected certain batches of tapes, made by specific manufacturers, as the “reference” tapes for these four types.

Type I tape is basically a tape that uses ferric-oxide magnetic particles as the magnetic medium. Such tapes require a specific amount of high-frequency “bias” applied to them during recording. They also require frequency tailoring known as equalization during playback. The equalization is defined as a time constant, in this case 120 microseconds. The time constant defines the rate at which high frequencies are rolled off or attenuated by the playback electronics, thereby compensating for a rising response at high frequencies during recording.

While the amount of equalization is fixed for each tape type, the amount of bias will vary slightly even within one tape category. That’s why some tape recorders have no vernier bias controls in addition to the basic switch positions for each tape type. But if a recorder has only fixed bias settings, those settings are supposed to be optimized for the standard “batches” which the IEC selected as “reference” tapes for each tape type. Tape manufacturers, in turn, are supposed to make their tapes so that they, too, will operate optimally when bias is set for the “standard” tapes. Of course, some variation can be expected, even from one batch to the next and between different tape manufacturers.

That’s why serious recording enthusiasts who own tape recorders that only have fixed tape selector switches try to find out what tape a manufacturer used when calibrating his products. The “officially recognized” IEC reference tape for Type I tape was made by BASF, as was the “reference” for Type II tape.

Type II tape uses either chromium dioxide particles or cobalt-treated ferric oxide particles. Tapes using either of these magnetic particles require a higher bias than does tape using ferric-oxide particles. Type II tapes are generally preferred by serious recordists for their somewhat better frequency response.
characteristics and for their slightly superior signal-to-noise ratio capabilities.

Type III tape is no longer used very much for cassette tape. It is known as Ferri-Chrome tape and is made by applying two separate layers of magnetizing material: ferric oxide and chromium dioxide. The idea, originally, was to make a tape that exhibited the best characteristics of both Types I and II. In recent years, however, most makers of cassette tape recorders have not bothered to include a separate tape selector switch position for Ferri-Chrome tape. Therefore, very few manufacturers continue to make this type of tape. The IEC recognizes a particular batch of Type III tape made by Sony Corp. as the "official" reference tape for this tape type.

Type IV tape employs pure metal-particle magnetization material and is the most expensive recording tape available. In return for that extra cost, however, the user of metal particle cassette tape enjoys a much better high-frequency response, especially for program material where treble-recorded content is fairly loud. With the other types of tape, recording treble tones at high levels tends to "saturate" the tape. As a result, such high levels of high frequencies don't sound right when played back. Metal-particle tape is especially useful when you need a tape that can handle wider dynamic range recording chores. Type IV tape requires a much higher recording bias level than do any of the other three types, however, although its standard equalization setting during playback is the same as that of Type II tape: 70 microseconds. Thus, metal-particle tape should not be used on a tape deck that does not have a specific switch setting for metal tape.

Regardless of whether you use Type I, II, III or IV tape with your cassette recorder, you should choose a high-quality tape if you intend to record music for future listening. Within each of these categories are a great many brands and grades of tapes. The lowest grades are suitable only for recording of speech or for dictating notes to be transcribed later. Some are not even suitable for that low-fi purpose. Ideally, choose the tape your tape deck manufacturer recommends. If the tape deck manufacturer doesn't tell you which tape is best for his machine, choose a tape, or tapes made by one of the leading manufacturers of cassette tape. These include such well known brands as BASF, FUJI, Maxell, Memorex, PD Magnetics, Sony, TDK, and 3M (Scotch), among others. If the manufacturer of a tape deck offers a tape under its own name (such as JVC, Denon, Nakamichi and TEAC, to name a few) such tape will be a good choice, too. More often than not, these manufacturers are simply buying the tape from one of the above makers who are labeling it with their brand names.

0.82% for 3rd and 0.32% for 2nd harmonic distortion.

Maximum Recorded Level

Maximum recorded level is defined in the Standard as that level at which playback of the recorded test tone yields a third-harmonic distortion level of 3%. That level of distortion is regarded as the highest that anyone would want to tolerate during playback of a recorded tape. In my lab, I can use the plot of Fig. 3A to determine how much above reference level the recording level can be pushed before that 3% distortion point. I simply move the electronic "cursor" on my display to the level at which the

Fig. 3. Numbers at top of each graph show third-order (left) and second-order (right) distortion at reference (0 dB = 400 nWb/m) recording level.

<table>
<thead>
<tr>
<th>D3</th>
<th>L 0.82%</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>-20 -15 -10 -5 0 +5 +10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>10dB/D L-41.7dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D2</th>
<th>L 0.32%</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>-20 -15 -10 -5 0 +5 +10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>10dB/D L-49.8dB</td>
</tr>
</tbody>
</table>
Distortion readout comes close to the 3% mark. Figure 4 shows the appearance of the graph after the cursor has been moved—in this instance to a level that’s +4.0 dB above the reference level established earlier. A statement by the manufacturer regarding maximum recording level would take the following form:

Maximum Recording Level, using X tape, at 1000 Hz, Y dB referred to 400 nVb/meter.

Recording Level Readings

A mentioned earlier, recording level meters or indicators on tape decks aren’t always calibrated to the same reference level. One deck’s “0 dB” point may not equal the “0-dB” point of another deck. Still, to use a tape deck intelligently, given some of the other specifications we’ve already discussed, it would be extremely useful to know what your deck’s meters (or indicators) read when you are at maximum recording level. That way, you could avoid exceeding that maximum recording level and always get recordings that are not overly distorted. Of course, this specification can be measured at the same time that Maximum Recording level is being checked. The equipment tester or manufacturer simply has to observe the reading on the deck’s own level indicators (meters, LEDs or whatever) and note those readings when Maximum Recording Level (MRL) is reached. This specification should be reported as follows:

Indicator Reading for MRL: Y dB using ABC type Q Tape.

Weighted Peak Flutter

This specification is often called wow-and-flutter. One of the sometimes audible defects in any tape deck is waivering of tape speed. This gives rise to a sort of undulating pitch. Rapid fluctuations in pitch are described as wow (because of the wow-wow-wow sound caused by erratic tape speed) while rapid fluctuations of tape speed are called—appropriately enough—flutter.

Special test instruments are used to measure these speed fluctuations in a general tape deck, and the results are expressed as a percentage. The measurement is made several times on a given deck and, in general terms, the highest level of flutter observed during each measurement is recorded. The several values observed in this way are then averaged and the result is reported as the Weighted Peak Flutter. The graph of Fig. 5 goes a step further since it not only reports a single, overall wow-and-flutter figure, but also plots the frequencies of the wow or the flutter.

Wow is generally considered to consist of fluctuations in tape speed

(Continued on page 86)
Every special interest has its “capital.” Beer lovers may think of Milwaukee. Art lovers may consider Paris as the center of their universe. Today’s consumer electronics enthusiasts must certainly consider modern Tokyo as their Mecca. In your lifetime, if you are fortunate enough to find yourself in Tokyo for business or pleasure, you must make a pilgrimage to a most wonderful place, Akihabara. For this is where the most modern electronic equipment may be found.

The famous name, Akihabara, should rolls off the tongue very quickly, like “abracadabra” since no syllables are stressed; in Japanese, every one has equal weight. Akihabara got its start as a locus of electronics shopping right after World War II. Much of Tokyo had been bombed during the war, of course, so the first electronics merchants literally set up tents to sell military surplus. As Japan began developing its infant electronics industry, surplus electronic components began to appear.

It is curious to note that many of the shops in Akihabara are owned by Chinese immigrants to Japan. Eventually, as Japan was rebuilt, tents gave way to multistory buildings. As Japan’s economy recovered, Akihabara merchants began offering finished products along with the component parts.

Without a doubt, the best way to reach Akihabara from wherever you are staying is by the Japan National Railway (Yamanote Line). Japan boasts of having the most efficient rail system in the world. Take the time to plan your route in advance (not at the station) and you will have no problem negotiating the city. If you travel during morning or evening rush hour, be sure and allow plenty of extra transit time. Each station sign is in both English and Japanese. Should you be sightseeing without a local guide and feel lost, write your desired destination on a piece of paper. Most Japanese have a good command of written English, but have little chance to practice the spoken language. Be sure and take your passport along with you, too.

From Akihabara Station, head in a generally northerly direction toward
Most items for sale are out in the open, where prospective buyers have an opportunity to examine before buying.

the boulevard named Chuo Dori. There are two mandatory stops in your first visit: Yamagiwa Department Store and Kakuta Musen. Stop by the Yamagiwa on the south side of Chuo Dori. (The Yamagiwa on the north side of the street is an annex selling duty-free items mainly to tourists, and you're not the average tourist, now!)

Yamagiwa started as a lighting store, and they have not forsaken their roots. There are several floors of lamps and electrical appliances. Make your way up the narrow escalators to the real “goodies.” You will find VCRs in every color of the rainbow, display case after display case of the latest in personal stereos, calculators, watches, shortwave receivers, tape recorders, etc. Several soundrooms house the latest and loudest audio equipment with every brand name represented, even esoteric “imported” audio gear (from the U.S.) with names like Macintosh.

Every piece of equipment is marked with neat, colorful, hand-lettered signs showing the value in yen. After a fashion, you can perform the necessary exchange-rate conversions in your head. If you are interested in making a purchase, make a note of the item and its asking price. Do some comparison shopping. There are, literally, scores of shops, all selling much of the same heavily-discounted merchandise. It is fair to play one shop off against the other for a better deal!

Your other mandatory visit is across the street and a few doors to the east of the Yamagiwa annex. Kakuta Musen is among the oldest of the stores in the area. Its ground floor has more conventional consumer-oriented radios, tape recorders and small electronics than you could

A salesman placed down his ticket book just long enough to pose. Notice the tape decks, TV receivers and refrigerators.

The ham-radio sales floor of Kakuta Musen, one of the oldest shops in Akihabara. Other floors are just as crowded.
dream possible. The next several floors contain computers, video games, electronic components, radio-control models and ham radio gear. The components are sold primarily from bins, as they used to be sold in the U.S. Very little merchandise is blister-packaged. There are small plastic dishes in which you may collect just the part necessary for your project. Many times, an entire section is dedicated to the products of one manufacturer.

If you can’t find the right part at Kakuta, there are several large, multi-floored complexes of booths specializing in particular types of components. Don’t let the austerity of the booths fool you. Some of the proprietors of these booths are very wealthy. The top two floors of Kakuta house the radio-controlled models and ham radio departments. The prices of this equipment are the lowest I’ve ever seen! Before making a purchase, make sure that your newfound bargain is compatible with U.S. line voltage (115 Vac) and frequency assignments. Japan’s line voltage is 100 Vac and the broadcast bands are a little different.

Okay, you’ve visited the two landmarks in Akihabara, and made your way off the street, away from the bulk of the tourists. If you find something you really like, I encourage you to do some comparison shopping. Find out who has the lowest price and try a little bargaining. The Japanese are polite but skillful negotiators. Depending on the shop and the salesperson, you might end up saving a little more, especially if you pay in cash (expect to pay a 3 to 4% premium if you use a credit card).

Since you will be taking your treasure out of the country, show your passport, so that the Japanese federal tax will be subtracted from the selling price. The salesperson will attach a form to your passport that will be collected as you leave Japan. A successful deal is always concluded with smiles, a bow and, maybe, a handshake. Save your receipts to make the U.S. Customs check as trouble-free as possible. Even the most well-organized person will have a little trouble filling out the customs declaration form after the all-night flight from Tokyo.

If you are a camera buff, as many electronics enthusiasts are, you must travel across town to Yodobashi Camera in the Shinjuku area. Yodobashi has become so well-known, that it is now a stop on many sightseeing tours. Prices are definitely higher than they were just a few years ago. Frequently you will find similar prices on basic camera bodies in the U.S., but Yodobashi can’t be beat for prices on lenses and other accessories. I would even suggest making Yodobashi your first stop so that you can document your travels with photos taken with your new camera!

You now have a head start on your own shopping adventure in the most exciting collection of electronics specialty shops in the world—Akihabara. Even the most jaded electronics professional will marvel at what he will find. Like other visitors, you will wish you had brought more money and had more room in your luggage.

Need A Storage Scope?

The Model 601 Scope Memory converts your oscilloscope into a storage scope. With the Scope Memory you can capture & display transients, pulses and low frequency signals. Stores both analog & digital signals in a single sweep.

Features include a 1.4 MHZ sample rate, 2K memory, pre and post trigger capabilities.

Price $515 Plus Shipping

SIBEX INC.

2340 State Road 580 • Suite 241
Clearwater, Florida 33751
(813) 797-9589
CIRCLE 93 ON FREE INFORMATION CARD
Solid-State Sensing Modules For Teleguard

Low-cost circuits you build to enhance the operation of the Teleguard security system

By Anthony J. Caristi

If you built the Teleguard security system described in the May and June issues, you will almost certainly want to build and use the solid-state sensing modules described here with it. The modules presented here have been specifically designed to be used with Teleguard to enhance system operation.

The sensing circuits will respond to such parameters as temperature, light and the presence of fluid (specifically water) to detect fire, thieves, water seepage, and heating system and refrigeration failure. Each circuit is low in cost, easy to build from readily available components, and provides state-of-the-art protection.

Teleguard's Sensing Circuit

In Fig. 1 is shown a simplified schematic diagram of the sensing circuit and controlling oscillator inside Teleguard that uses the normally open protective circuit connected between terminals A and C of terminal strip TS1. With the external sensing switch open, the logic-0 fed to pin 4 of IC1 holds the voltage at this point to zero by the inverting action of IC2A. This prevents IC1 from oscillating and maintains Teleguard in its standby mode. When the sensing switch closes, 3.9 volts appears at pin 4 of IC1, allowing oscillation to occur and Teleguard to dial out its stored telephone number.

Control of Teleguard can be accomplished with ordinary passive switches, thermostats, etc. However,
a more reliable—if not more elegant—way to do this is to use solid-state circuitry to control the logic level at terminal A of TSI.

When triggering of Teleguard is to occur, the sensing modules described below will control the logic level by shorting terminal A to ground through a switching transistor. When the circuit is in standby, the transistor will be cut off, allowing terminal A to rise to logic 1 by means of pull-up resistor R28 in Teleguard’s circuitry. To power the sensing modules, it is necessary to provide a source of dc power. This can be obtained from Teleguard itself, rather than from a separate supply. The Parts List for Teleguard specified a four-contact terminal strip for TSI, though in implementing the circuit only three contacts were used (labeled A, B and C). The fourth contact, which we identify as D, can be used to provide 7.5 volts dc to the sensing modules. Simply connect a wire from the positive end of C4 to the unused lug on TSI. Thereafter, whenever you run wires from Teleguard to the sensor modules, simply include an extra one for the power line.

Since Teleguard’s input sensing circuit has a high impedance, you should use two-conductor shielded cable to make connections between it and any sensing modules that are more than about 2 feet away. Connect the shield to terminal C. Also, since Teleguard’s ground connection is not isolated from the telephone line, be sure to use an insulated shielded wire so that terminal C does not become accidentally grounded to anything else.

Light-Activated Sensing Modules

A latching-type light-activated sensing module is shown schematically in Fig. 2. This module will cause Teleguard to transmit an emergency call to the preprogrammed telephone number when light to photocell PCI is interrupted for even a fraction of a second. When this occurs, the logic level fed to terminal A on Teleguard’s terminal strip is set to transmit and will remain so even if the light beam to PCI is restored.

A practical application of the Fig. 2 circuit would be to sense the passage of an intruder through a doorway or a passageway. The sensing module would be located on one side of the doorway or passageway, the light source on the other side and aimed so that it illuminates the sensitive surface of PCI. An unauthorized person passing through the protected portal will then break the beam and trigger the circuit.

Operation of the circuit in Fig. 2 is as follows: IC1A and IC1B NOR gates are wired in a bistable (latching) multivibrator configuration. This circuit can assume either of two logic states, depending upon the last logic-1 level placed on either of the input terminals at pin 1 of IC1A or pin 6 of IC1B.

When the circuit is in standby and light is directed onto PCI, the voltage at pin 1 of IC1A is near zero (logic 0). Similarly, the voltage at pin 6 of IC1B is also at logic 0, the result of the open contacts of reset switch SI and R2. You preset the logic state of the output terminal at pin 4 of IC1B after power is applied to the circuit when you press and release momentary-action switch SI. This sets the circuit to its inactive mode. At this point, pin 4 of IC1B is at logic 0, cutting off Q1 and putting Teleguard in its standby mode.

As long as light falls on PCI, the circuit will be armed and in standby. Interrupting the light beam causes pin 4 of IC1B to go to logic 1, turning on Q1 and activating Teleguard. Should the light beam be restored, pin 4’s logic level will remain high and Teleguard will continue to transmit its emergency call. Only when SI is operated will the circuit return to standby and cancel the call.

A simple modification can reverse the Fig. 2 circuit’s operation such that it holds Teleguard in standby with no light falling on PCI and triggers it when light is detected. To obtain this method of operation, simply connect R3 to pin 3 of IC1A instead of to pin 4 of IC1B. This operating scheme is possible because the outputs of the latch circuit at pins 3 and 4 are always at opposite logic states. To put the modified circuit in the standby mode, you simply press and release SI as before.

A nonlatching light-activated sensing module is shown schematically in

Fig. 3. This nonlatching light-activated sensing module is designed to monitor a normally closed and dark room, such as a storeroom or a vault.

NOTES:
1. All resistors ±W, 10%.
2. All resistors 10V.
Fig. 3. With this circuit, the transmit signal is produced by Teleguard only when light falls on PCI. Should PCI go dark after some light has been detected, the transmit signal will be canceled and Teleguard will return to standby. With the circuit shown, light must continuously fall on PCI for at least 30 seconds for Teleguard to dial out its stored telephone number and the call to be answered.

A practical application of the Fig. 3 circuit is protection of a normally closed and dark room. Should a thief break in and turn on a light, the transmit signal will trigger Teleguard into making its telephone call.

A common 555 timer, connected as a monostable (one-shot) multivibrator is used in the Fig. 3 circuit. The pin-2 trigger input of IC1 is held to about 7 volts when PCI is dark. This inhibits IC1 from operating and maintains the pin-3 output at 0 volt. It also keeps Q1 in cutoff and places a logic 1 on terminal A of TS1.

When light strikes PCI, IC1 is triggered into operation with a one-shot period of about 1 second. Since IC1 is a retriggerable multivibrator, light continuing to fall on PCI causes the pin-3 output to remain at about 7 volts. This forward-biases Q1 and shorts terminal A of TS1 to ground to initiate the telephone call.

Since the Fig. 3 circuit is nonlatching, the emergency call will be made only if light shines on PCI long enough for Teleguard to outpulse the number. If desired, you can increase the time constant of the circuit to about 45 seconds by changing the value of C2 to 47 microfarads. This will assure that at least one telephone call will be made by Teleguard should light strike PCI, even if only momentarily.

Temperature-Activated Sensing Modules

Monitoring the temperature of your home or office—or a refrigeration system—is a practical way to alert you that an emergency exists in your absence. With temperature used as the sensing parameter, you can have Teleguard detect fire and heating system, refrigeration, air-conditioning or freezer failure. You could even use such a detector in a greenhouse to warn you when delicate plants might be ruined by a killing frost.

At the heart of the temperature-sensing modules shown schematically in Figs. 4 and 5 is a low-cost specialized IC that reacts to changes in temperature. This precisely calibrated IC can be used to set the desired temperature switching point, using a simple dc voltage measurement between pins 3 and 4 of the LM3911N used for IC1 in both circuits.

Since a heat emergency, such as a fire, requires opposite logic from a sensor designed for heating system failure, two slightly different circuits are required to monitor the two different conditions. The Fig. 4 circuit will cause Teleguard to transmit its emergency call when a rise in temperature is detected and would be used to protect against fire or refrigeration failure. The Fig. 5 circuit, on the other hand, detects a fall in temperature and can be used to alert you when a heating system fails or when there is a threat of frost. Both circuits are provided with potentiometer controls (R1) to let you set the switching point to that temperature that is correct for your application.

The circuits in Figs. 4 and 5 operate in much the same manner. Sensor IC1 contains a 6.8-volt reference circuit, an operational amplifier and a switching transistor. The last con-
ducts when temperature rises above the trigger point set by R1. The temperature at which the on-chip transistor turns on is defined by a simple equation that relates voltage to degrees centigrade.

The output transistor in IC1 serves as a switching control for terminal A on Teleguard for any application that requires the emergency call to be transmitted when temperature rises in the monitored area. The circuit for this mode of operation is shown in Fig. 4. If you wish the system to respond to a fall in temperature, an additional transistor external to IC1 (Q1) must be used to invert the output signal.

The voltage between pins 3 and 4 at which IC1 switches can easily be calculated for the desired temperature in °C as follows: volts = 2.73 + (0.01 x °C). If you do not know the °C equivalent for any temperature expressed in °F, simply convert as follows: °C = [5(°F - 32)]/9.

Suppose you wanted to build a sensor that will alert you when a fire breaks out. You would use the Fig. 4 circuit. Now assume you want Teleguard to make its call when the temperature in the protected area rises above 105 °F (40.6 °C). Using the voltage formula, you would determine that 3.14 volts would be required between pins 3 and 4 of IC1. Should you wish to be alerted in the event of a heating system failure, you would use the Fig. 5 circuit and set the circuit to trigger at, say, 50 °F (10 °C), which requires a potential between pins 3 and 4 of IC1 of 2.83 volts.

Connect the temperature-sensing module to Teleguard using terminals A, C and D of TS1 (do not use terminal B). Connect a dc voltmeter between terminals 3 (negative) and 4 (positive) of IC1. Apply power to Teleguard and adjust R1 for the desired voltage. Use a fairly accurate (20,000 ohms/volt or greater) voltmeter when making this measurement to ensure that switchover temperature is as accurate as possible.

Fluid-Activated Sensing Module

Water seepage as the result of a heavy rainfall or spring thaw can cause a lot of damage if it is not caught in time to take remedial action. Using a solid-state fluid detector to trigger Teleguard is an ideal way to guard against water damage. Such a sensor is shown schematically in Fig. 6.

At the heart of the Fig. 6 circuit is a low-cost LM1830N IC that can detect the presence or absence of a conductive fluid bridging two metallic probes connected to its input. Any conductive fluid can be detected with this arrangement.

Inside the LM1830N used for IC1 in the Fig. 6 circuit is an oscillator, a detector and an on-chip output transistor. This circuitry triggers on when the resistance between the probes is greater than the built-in reference resistor. Since the normal condition for the Fig. 6 circuit is an absence of fluid, the on-chip transistor normally conducts. Therefore, pin 12 of IC1 will be at ground potential and Q1 will be off.

When a fluid bridges the probes, the potential at pin 12 of IC1 rises to the 7.5-volt supply level and forward-biases Q1, shorting terminal A on Teleguard to ground and causing Teleguard to start the dialing sequence.

Note in Fig. 6 that one of the sensing probes is connected to circuit common (ground) and is not isolated from the telephone line. Under no circumstances should either probe be allowed to contact any conductive object. To prevent this from happening, mount the probes on an insulated base, such as perforated board, to maintain good isolation between them. Secure the assembly so that the probes touch nothing but the fluid being monitored.

In Summary

Once you have installed your Teleguard security system, you will find that it requires very little attention. Your only real concern will be to periodically check to make sure that the OK LED is on. The security provided by the system will give you peace of mind that your home and/or business is protected from intruders, fire, water damage, etc.—even while you are away. You will also discover that the solid-state sensing modules described here greatly expand upon the type of monitoring provided by the usual switch- and tape-type sensors used in other surveillance systems. In fact, if you wish, you can supplement the solid-state sensors with those passive sensors to achieve both local-area and full-perimeter monitoring with Teleguard.
The Looker

A low-cost digital logic probe you build

By J. Daniel Gifford

Though everyone regularly acknowledges that a digital logic probe is a very useful tool to have around any electronics bench, many people still don't own one. This is surprising since a logic probe offers a fast, powerful way to check out digital circuits and devices with easy-to-use go/no-go indicators.

If you don't yet have a logic probe, here is a low-cost project that will give you a good taste of what it can do for you in tracing digital circuits and isolating defects. I call this probe the "Looker" because it lets you "look into" a circuit.

When completed, this probe offers good, professional performance. It uses the universal 30%/70% thresholds, has a high 2-megohm input impedance, 3.5-to-16-volt supply range, and low standby current of about 1.5 mA at 15 V. It easily handles multi-family logic, such as CMOS and TTL devices. If the probe has any shortcomings it is in its limited input-frequency response, which is up to 800 Hz. Also, the shortest pulse handled is 300 ns. However, a simple design option extends these specifications, though trading away other advantages.

The finished probe shouldn't cost you more than $20 and could cost much less. At the higher price there's a probe case kit available.

Circuit Description

At the heart of the Looker (Fig. 1) are two ICs, a TLC274 quad CMOS operational amplifier (IC1) and a CD4001B quad CMOS NOR gate (IC2). Though the TLC274 is a pin-for-pin replacement for the common LM234 quad op amp, it offers vastly improved performance, most notably very low supply current and very high input impedance (10¹² ohms).

Only three of the four op amps in the TLC274 are used. The fourth must be disabled by tying its inputs to ground. The first op amp, IC1A, is used as a voltage follower to decouple the input from the rest of the probe circuit. The output of IC1A is always equal, within a few millivolts, to the input voltage. Resistors R2 and R3 bias the input at about 50% of the supply voltage when no signal is applied to the probe tip. Diodes D1 and D2 protect the input against over- and under-voltages, and resistor R1 limits input current to a safe level.

The other two op amps in IC1 are used as an offset comparator string, with the inverting (–) inputs of IC1B connected to the junctions between R5 and R6 and of IC1C to the junction between R6 and R7. The values of R5, R6 and R7 were chosen so that comparator IC1B switches on when input voltage rises past 70% of supply voltage, and comparator IC1C switches on when input voltage drops below 30% of the supply. HI/LO visual indication is provided by LED2 (red), driven by IC1B, and LED1 (green), driven by IC1C.

A low-pass filter, composed of R4 and C1, deliver the switching signal from the output of IC1A to the inverting inputs of IC1B and IC1C. The filter keeps the HI and LO LEDs from flashing or lighting up at input frequencies beyond about 15 Hz.

To detect fast pulses that might not
Fig. 1. Note in this overall schematic diagram of the Looker digital logic probe that only three of the four operational amplifiers in IC1 are used. The fourth op amp is disabled by having its inputs grounded. Also, IC2C and IC2D are tied together in parallel to form a high-current buffer/driver for LED3.

The circuit also contains a pulse stretcher consisting of IC2 and PULSE indicator LED3 (yellow). Two of the NOR gates (IC2A and IC2B) are used as a positive edge-triggered monostable multivibrator with an output period of about 0.01 second. The other two gates are wired together as a high current buffer/driver, with their inputs connected to the monostable’s output and their outputs driving LED3. The input of the monostable is connected directly to the output of IC1A. A brief positive or negative pulse at the probe tip will cause LED3 to flash, while a pulse train at the input will continually retrigger the monostable and hold LED3 on at a steady brightness.

Like all logic probes, the Looker is powered by the circuit it is testing via a cable terminated in a pair of alligator clips. Diode D3 is inserted into the

PARTS LIST

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>Capacitors</th>
<th>Resistors</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1,D2—1N914 or 1N4148</td>
<td>C1—1-µF, 35-volt dipped tantalum</td>
<td>R2—330 ohms</td>
<td>Global Specialties No. CTP-1 probe case kit with perforated board and test leads/clips (available from Global dealers locally or from some mail-order houses); printed-circuit or perforated board and solder posts; gold-contact, low-profile 14-pin DIP IC sockets (2); one red, one black alligator test clips with attached leads; rubber cement; ¼"-wide clear tape or clear spray acrylic; hookup wire; solder; etc.</td>
</tr>
<tr>
<td>D3—1N34A germanium</td>
<td>C2—0.1-µF, 50-volt Mylar</td>
<td>R11—4.7 megohms</td>
<td></td>
</tr>
<tr>
<td>signal diode D1,D2</td>
<td>C3—2200-pF, 50-volt Mylar</td>
<td>R9—330 ohms</td>
<td></td>
</tr>
<tr>
<td>D1—1N914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
- IC1 = TLC274
- IC2 = CD4001B
positive supply lead to protect the probe against damage from reversed connections. A germanium diode is used here, rather than a silicon diode, because of its lower voltage drop—0.3 vs. 0.7 volt for silicon. The lower voltage drop means less interference with the probe’s thresholds at lower supply voltages. (The R5/R6/R7 resistor divider string is also offset upwards slightly to compensate for the unavoidable drop across D3 and to give true 30%/70% thresholds.) Capacitor C2 filters out transients and stray frequencies that may interfere with the Looker’s operation.

Construction

For a professional appearance, as well as comfortable handling, the Looker is best built into a molded-plastic housing designed specifically for probes. In this case, the No. CTP-1, logic probe kit from Global Specialties is ideal (Fig. 2). The kit is composed of the two shell halves, perfboard, tip holder and tip (replacement tips are available), LED support and lead set with preattached clips and molded strain relief. If you make your own case, follow the general layout shown in the photos.

As mentioned earlier, with only one design change you can extend the Looker’s frequency range to about 3.5 MHz, pulse sensing to about 100 ns, and voltage range to 18 volts. You do this by replacing the CMOS TLC274 with a pin-for-pin-compatible JFET-input TL084. However, there’s a penalty to be paid. The TL084 will cause the Looker to draw more standby current (about 10 mA at 15 volts). More importantly, it will not permit full operation when connected to a power source that delivers less than 6 volts.

The TL084 version will indicate HI logic levels as well as frequencies and pulses at the 5-volt level, but because the JFET voltage follower cannot swing its output below the LO threshold at 5 volts, it cannot indicate LO logic levels correctly. If you’re willing to accept these shortcomings to obtain a greatly extended frequency range, the TL084 version may be the better choice.

A second design option, suitable only for very-low-performance use, is to use the original LM324 quad op amp in place of the TLC274. The

(Continued on page 90)
Better FM Reception From Your Clock Radio. The FM antenna in most clock radios consists of a piece of wire wrapped tightly around the power cord, but not electrically connected to it, as pictured. Its purpose is to pick up FM signals through the power cord and the house wiring. This is adequate for nearby FM stations, but not for fringe areas.

Fortunately, it is easy to add an external antenna. Just remove the wire that wraps around the power cord, noting where it was connected to the circuit board. Then connect your new antenna line to the circuit board in the same place, as illustrated.

As an antenna, try a piece of wire about 30" long. Start with it oriented straight up and down, but experiment to find the position that gives the strongest signal. Although 30" is the correct length for a quarter-wave vertical antenna at 98 MHz, a longer wire antenna may work better under some conditions. Alternatively, you can use a telescoping antenna from a junked portable radio or TV set.

—Michael A. Covington, Athens, GA
There are various applications for devices that detect the movement of air. This month's column will discuss some of them and describe two simple devices you can build to measure the movement of air. One device is a cup anemometer patterned after those meteorologists use to measure windspeed. The other is a hot-wire anemometer capable of detecting minute movements of air.

Applications for Air Movement Sensors

The most obvious application for devices that detect the movement of air is the measurement of windspeed. A closely related application is the measurement of the speed of a vehicle or aircraft. Air-speed indicators are also used to measure the velocity of air in a wind tunnel.

Air-movement detectors and sensors are sometimes used to monitor the blower in a heating or cooling system. The detector triggers a warning signal or shuts down the system when the air flow falls below a preset level. This same principle can be used to monitor the air flow in a clean-room environment.

Air-flow detectors can be used to count objects on an assembly line or detect the edge of a nearby object. This application is accomplished by directing a jet of air toward the sensor. Objects passing between the jet and the sensor block the flow of air and actuate the sensor.

Finally, air-flow detectors have many uses in science and medicine. They can be used to monitor respiration and the flow of oxygen. Air-pressure switches can be used by disabled people to trigger electrical circuits and to operate computers. The operator simply puffs into (or sips from) a plastic tube to close the switch.

Hot-Wire Anemometer

The electrical resistance of a conductor changes with temperature. For example, a platinum wire that has a resistance of 2 ohms at 0 degree C has a resistance of 2.5 ohms at 100 degrees C. In this case, the temperature coefficient of the wire is 0.002/degree C (0.5 ohm/2 ohm/100).

Air flowing past a heated wire tends to cool the wire, thereby lowering its resistance. By monitoring the resistance of the heated wire and taking the temperature of the surrounding air into account, it's possible to measure the speed of the air past the wire. A sensor designed for this specific purpose is commonly called a hot-wire anemometer.

Hot-wire anemometers can be used to measure very small changes in air movement. Since the active surface area of the device can be quite small, hot-wire anemometers are very useful for accurately portraying the flow of air and the turbulence around wind tunnel models. They can even be used to detect the movement of air created by the vibrating wings of a small insect.

Among the materials best suited for making hot wire-anemometers are tungsten, platinum and an alloy of platinum and iridium. Tungsten has a higher temperature coefficient of resistance than platinum (0.004/degree C). When heated, however, tungsten tends to oxidize much more rapidly than platinum.

Figure 1 shows one kind of commercial hot-wire anemometer. Notice that the active area of the probe is determined by the plating applied to either end of the tungsten wire. In recent years the sensing element of this basic probe has in many cases been replaced by a tiny quartz rod coated with a thin film of platinum. This sensor, which is called a hot-film anemometer, responds more quickly to variations in air flow, since a much smaller mass of metal is heated and cooled.

It's easy to experiment with hot-wire anemometry, since an ordinary flashlight bulb makes an effective hot wire sensor. All that's necessary is to remove the glass envelope from the bulb and monitor the current flowing through the filament. A change in the air flowing past the heated filament will change the resistance of the filament and, hence, the current flowing through it.

Of course the current flowing through the filament of the exposed light bulb must be much lower than that applied when the unbroken bulb functions as a light generator. Otherwise, the filament will quickly burn up. Figure 2 shows a simple circuit I've devised that both applies a safe current and permits the monitoring of the current through the filament for this purpose.

In operation, a 7805 voltage regulator supplies a constant voltage that is applied to an incandescent flashlight lamp in series with 50-ohm, 5-watt resistor R1. Variations in the air flowing past the filament cause fluctuations in the resistance.
of the filament and, hence, the current through both the filament and \(R1 \).

The filament of \(L1 \) and \(R1 \) form a voltage divider. As the resistance of \(L1 \) changes in response to the air flow past its heated filament, the voltage applied to the inverting input of the 741 op amp varies accordingly. The 741 amplifies the voltage fluctuations and sends them to a voltmeter.

Potentiometer \(R5 \) controls the gain of the op amp \([\text{gain} = -(R5/R2)]\). Potentiometer \(R4 \) permits the output of the 741 to be zeroed when a measurement session is begun. Note: Unless the battery leads are short, it's important to bypass all power-supply connections with 0.1-microfarad capacitors. Connect the capacitors close to the two ICs.

A common PR13 flashlight bulb can be used for \(L1 \). Unless you want to use a lamp socket, solder a pair of insulated wire leads to \(L1 \). You must use care when removing the glass envelope from the lamp, because of the hazard presented by the sharp glass and the possibility of breaking the fragile filament. I wrap several layers of masking tape around the envelope, squeezing the tape at the top of the bulb so that no glass is visible. Then I place the taped envelope between the jaws of a C-clamp or a vise and very slowly tighten until the bulb's glass envelope pops. If the tape is pressed around the entire envelope, all the broken glass will usually lift away with the tape. With needle-nose pliers, I carefully remove any small shards of glass protruding from the metal base of the bulb.

Caution: A flashlight bulb may propel glass fragments a considerable distance if it is broken without appropriate protection. Therefore, it's imperative that you wear safety glasses or a face shield when breaking a flashlight bulb. Avoid using pliers or a hammer to break a bulb, since the filament may be damaged, and sharp shards of glass will fly all over the place.

The chief drawback of the circuit in Fig. 2 is the high current required by the 7805/R1/L1 combination (about 250 milliamperes). While this is only about half the current required by a 6-volt lan-

It's important to note that when the gain of the circuit in Fig. 2 is made very high, setting the output to 0 by means of \(R4 \) can be very difficult, since \(L1 \) is so sensitive. You might want to try placing a small cover or container over \(L1 \) while adjusting \(R4 \). Also, you can simplify calibration by operating the circuit at lower sensitivity levels.

Because \(L1 \)'s filament is very fragile, you may want to devise a housing to protect it. A length of plastic tubing placed over the metal socket is one possibility. Holes can be cut in the plastic to permit the flow of air. The filament should be kept dry, since even a small drop of water will cause the filament to be quickly destroyed if the circuit is activated.

The hot wire anemometer in Fig. 2 is much too sensitive to monitor more than the gentlest breeze. But it can be used to detect drafts sneaking into a house.

![Fig. 2. A basic hot-wire anemometer circuit.](image-url)
A dc motor functions as a generator when its shaft is rotated by an external force. Therefore, a dc motor can be used to make a very simple anemometer. I once applied this principle to make a miniature anemometer that measured the air speed of a wind tunnel. The wind tunnel, which was strapped onto the passenger side of a car, was used to test a miniature guided rocket. The anemometer was made by attaching a small balsa cone to the shaft of a dc motor. Four blades fashioned from the lid of a tin can were inserted into the balsa to form a propeller.

There are many ways to fashion a cup anemometer based on this principle. Figure 3 shows construction details of a simple cup anemometer that I recently assembled. The two cups are halves from split ping-pong balls. They are attached with 4-40 hardware to the ends of a 6" x 6" hollow aluminum tube (available from hobby shops).

The ends of the tube are flattened with pliers and then drilled to receive the mounting screws. The center of the tube is flattened at a 90 degree angle to the flattened ends and drilled. The solder lug from a pin jack is bent at a right angle and secured to the center of the tube with 4-40 hardware. The receptacle end of the pin jack is then pressed onto the shaft of a small dc motor.

Use care when slicing the ping-pong balls in half. I used a sharp hobby knife and wore heavy gloves. Ping-pong balls are tough, so you must be careful.

To test the anemometer, I used a length of flexible metal strap (available in hardware stores) to secure the motor to one end of a sturdy aluminum rod. I then mounted the rod to the side mirror on the passenger side of a pickup truck and connected the motor's leads to a voltmeter. My son Eric then drove the truck at vari-
ous speeds on a still day, while I recorded voltage readings.

Figure 4 is a graph that shows the ac and dc readings Eric and I obtained during the test session. The cups begin to rotate when the wind speed reaches 3 to 4 mph. The speed at which your anemometer begins to rotate and the slope of the calibration curve is dependent upon the motor you use. The output from the motor is reasonably linear. This corresponds nicely with results I obtained with the wind tunnel anemometer described above.

During the tests, I noted some fluctuations of the voltage output at certain speeds. When this occurred, the voltage reading would jump back and forth over a range of a few tens of millivolts. Therefore, I recorded what appeared to be the average voltage.

The anemometer in Fig. 3 can be improved by adding another pair of cups. In its present configuration, the cups don't always turn when the wind is below 10 mph unless they are perpendicular to the oncoming wind. The motor must be protected from rain should this anemometer be installed outdoors. One possibility would be to install a split ping-pong ball over the top of the motor. It could be mounted to the 4-40 hardware that holds the pin jack in place. The split ball should rotate with the cups and keep rain from entering the top of the motor.

Going Further

You can find much more information about devices that detect and measure the flow of air at any good library. An excellent article on hot-wire anemometry is "Hot Wire and Hot Film Anemometry" by Eric Nelson (Sensors, September 1984, Pp. 17 through 22).

The Sharper Image (680 Davis St., San Francisco, CA and other stores in Houston, Denver and Los Angeles) sells the TurboMeter™, a compact anemometer with a shrouded fan and a digital readout. This unit, which measures winds up to 100 mph, sells for $79 (plus $3.50 postage). The TurboMeter and other anemometers are sold also by Edmund Scientific (101 E. Gloucester Pike, Barrington, NJ 08007).

For more information about Honeywell's ultra-sensitive air pressure switch, see "The Forrest Mims Circuit Scrapbook" (McGraw-Hill, 1983, Pp. 138-140). Included in this reference are experimental circuits that permit disabled people to control external devices by puffing into or sipping from a plastic tube. Also included is an experimental respiration detector circuit. The wind tunnel anemometer mentioned above is also described in this book (Pp. 133 to 134).
Getting computer and peripheral schematics, a first look at the Laserwriter, innermost secrets of power supply design, methods of video sync separation and combination.

By Don Lancaster

There's been a lot of reader feedback on the low-pressure pneumatics we looked at a few columns back. It seems that a lot of other hobbyists in wildly different fields also have dibs on air pressure as a substitute for electromechanical stuff. For instance, a piano player is nothing but a bunch of low-pressure pneumatics, and there are lots of enthusiasts around who rebuild or restore these instruments. There's an outfit called, of all things, the Player Piano Company. In its catalog, you will find all sorts of low-pressure pneumatic goodies and ideas.

Great stuff.

Seems the largest of the radio-controlled model planes are also going pneumatic for such things as landing-gear controls. Byron Originals is one open system. These systems tend to run at much higher pressures than you can handle with one of those 25 cent EGR valves. Since the EGR valve is really intended for vacuum use, when you reverse it for low-pressure robotics, the valve will “crack” around 11 psi or so. The model-plane people often run their equipment at 100 psi.

A very few model-railroad people also use medium-pressure air for such things as turnout switches and roundhouse doors that slowly and smoothly open. One company involved with these products is Del-Aire Products. This time, the pressure is up to around 50 psi, mostly because they insist on the tiniest cylinders possible. For instance, at 5 psi, you can get 5 pounds of force with a cylinder that is 1 inch square. Go to 50 psi, and you only need an area of .01 square inch. This can be done with a square cylinder only .33 inch on a side.

On to this month's goodies...

Where do I get a schematic for a computer or printer?

The first and most obvious place to look is in the technical or repair manuals for the microcomputer or printer in which you are interested. Normally, the technical staff is well hidden, and you get charged extra to access this information.

Some computer stores do not want you to know these manuals even exist because they cut dearly into their service profits. The trick is to call the manufacturer directly. Should they try to shuttle you off on a local dealer, tell them you are from Littlefield, Arizona, or some similar “non-urban” area. If that fails to get results, get on a modem line or a club SIG and holler for help.

As examples, Apple has its Ile Technical Reference Manual (#A2L0005) and separately available pair of Iic Technical Reference Manuals (#A2L4030). Getting hold of these has loosened up bunches, and they should now be available at most technical bookstores, newly reprinted by Addison Wesley.

One of the best-kept secrets around is the Sams series of Computerfacts. These are similar to the older Photofacts that are essential for radio and television repair. A typical Computerfact packet contains a complete, large and well-organized schematic, disassembly instructions, parts lists, troubleshooting guides, the whole bit.

There are 43 of these packets available so far. As typical ferinstances, the Apple Ile version is #8920 and the original Imagewriter printer is #8941. The brand-new Imagewriter II packet is in the works and should be available by the time you read this. Cost is around $20 each.

Sadly, there is not an Apple III packet available. I sure have gotten a lot of help line calls from orphaned III people, who are desperately clawing at anything at all they can get their hands on. The Macintosh packet is not yet ready.

What's the real word on the Laserwriter?

I've had mine for only a week or so. But, my, oh my, what a machine!

Kiddies, the price of typesetting with full graphics has just dropped below a dollar a page. Not one red cent more.

Where to even begin.

The Laserwriter sets any size type you like, mixed with any style of graphics in any size you can imagine in any configuration. You can easily do such things as homecoming posters and sidewalk-to-sidewalk centennial banners. Signs of any size and shape are trivial. There's even a neat Postscript procedure that will automatically chop up the sign or poster into as many 8½"×11" pieces required. Later, you tape the pages back together to get up to whatever size you need.

It is trivially easy to move, spin, repeat or stretch an image every which way. You can have any shade of gray you want, and even four colors with repeated passes are possible. Variable size and slant text along a circular or even an arbitrary path is easily done.

One thing not well known (guess why?) is that Applewriter on an Apple Ile does as good, if not better, a job than the Mac-
Intosh does in driving the *Laserwriter,* including graphics so fancy that they are not available out of any of the common Mac programs.

We'll note in passing that *MacPaint* has no way to handle the high-resolution alphabets, *MacWrite* isn't good at larger or integrated graphics, and *MacDraw* is a cruel joke at best.

HIRES dumps or any other bit-mapped graphics are done by converting them to hex ASCII character pairs that are easily handled by *Applewriter* and its *WPL* supervisory language.

The *Appletalk* network stuff is also not needed. In fact, it can severely limit what you can do with the *Laserwriter.* Among other things, it excludes you from using the so-called *Diablo* emulation mode.

And yes, I'll put my money where my mouth is.

I have five *Laserwriter* images created with *Applewriter* on a *Ile.* I'll be glad to send you free copies of them. I'll also gladly give you a free *Sams* book to anyone who can show me any way at all to do these on a Mac that is even remotely as cheap, as easy, as powerful, and as convenient as using *Applewriter* on a *Ile.*

Figure 1 shows a typical image. This was done on a *Ile* under *Applewriter.* Once you know exactly what you are doing and have built up a library of goodies, this complex an image should take you around 10 minutes to program and 17 seconds to print. Materials cost is under four cents for a single color, and under seven for two.

One neat thing that is not at all obvious is that it does not matter what order you put the image onto the *Laserwriter*'s bitmap. You are free to, say, do your backgrounds first, artwork second, your headlines third, and your fine print last. More importantly, you do a form letter by putting the letter in the printer and changing only the name and address for each repeated pass. A *Ile,* again with *Applewriter,* can process hundreds, or even thousands, of letters at a whack.

Watching customized form letters quietly pour out of a machine at an eight-copy-per-minute rate is a joy to behold. Yes, I have automatic software for both form letters and envelopes—call or write.

There are some problems though. The quality is not quite what a print house would call "typeset," since the resolution is "only" 300 dots per inch. A printer might call this "tabloid" quality. One way to beat this is to work double or triple size and then photo-reduce the result.

Another way is to find one of the many "real" typesetting machines that speak the same *Postscript* language the *Laserwriter* does. Once you have exactly what you want, the same software on the same machine can give you good typeset quality, say to 2400 dpi and beyond.

A second obvious problem is that there is no way to tractor feed anything, so things like envelopes, labels, or business cards have to be hand fed. And hand feeding requires custom programming.

Turning to nit picking, the laser engine itself shows some truly bizarre human engineering. You need continuous access to all four sides and the top of the printer, including the ability to simultaneously observe status lights at both the front and the back of the machine. An unreachable and often-used selector switch requires that you add a shaft extender before you can even put a knob on it, let alone use it.

The paper tray is far too shallow to the point of being a joke. An unnecessary "U" turn in the paper path adds to the...
jam potential and limits paper weight, but accomplishes nothing else useful. And while ridiculously quieter than most other printers, a laminar fan redesign could make the silence totally eerie.

That eight-pages-per-minute rating is the absolute maximum speed on repeat copies, and then only after you custom flip a magic “prefeed” software switch that ups the wear and tear on the laser engine. It is very easy for a complex image to take several minutes or more to finally get any output. Nonetheless, the print speed is impressive—awosome, even.

Print quality is surprisingly good on a very wide range of different papers. Gray images tend to blotch a little on high-rag papers. Giant black areas aren’t quite solid either, but they are certainly usable. You aren’t supposed to use thermal “raised print” letterheads, but I suspect you can get away with it by always changing back to an older cleaning pad while you use them.

Yet another problem is that the Diablo emulation mode, like everyone else’s, just flat out does not emulate a Diablo printer. I found out how to fix this so that you can easily do a true wall-to-wall microjustification and proportionally space in this mode. Pick up details by calling the Synergistics telephone number in the box and asking about the patches and utility package I have available.

And one thing that is absolutely infuriating. The toner cartridges are not the same as the stock Canon photocopier cartridges. In fact, through the use of special Torx “tamperproof” screws, missing notches, brackets that are slightly different, etc., they went to an awful lot of trouble to make darn sure you would not casually interchange the two. Thus, printer cartridges will cost you more and will be harder to get, particularly in colors. The toner cartridges also look like they will be more than a little tricky to refill on your own.

How do you design a power supply filter capacitor?

It never ceases to amaze me how many people do not know how to design a filter capacitor for a power supply. Thanks to an obscure and little known magic rule, the process takes all of five seconds and can easily be done in your head without pencil or paper.

Let’s review.

Figure 2 shows the three most common power supply arrangements used today. These are the half wave, the full-wave center tapped, and the full wave bridge circuits. Also shown is how to spec the secondary voltage you need for a given dc output voltage, and vice-versa.

Practically all power supplies today use capacitor input filters and allow fairly high values of ripple voltage. The ripple is then taken out and the output voltage is dropped by a integrated-circuit voltage regulator that follows the “brute force” supply.

Now for the rule. Check out Fig. 3. A 10,000 microfarad capacitor gives you 1 volt of ripple for 1 ampere of current. Just scale from there. A 1000-microfarad capacitor will give you 1 volt of ripple for 100 mils of current; 2500 microfarads should be a safe value for 1 volt ripple at 250 mils; and so on.

All you have to remember, then, is the “10k rule.” There are two minor gotaches, however: The rule works only at 60 Hertz, but you can scale from there; and you have to double the rule for half-wave supplies.

Just why does the 10k rule work? Nor-

Fig. 4. This is the approximate waveform across an 8300-microfarad filter capacitor in a full-wave 60-Hz, 1-ampere supply. To simplify scaling, figure an even 10,000 microfarads.

Fig. 5. A typical data monitor composite-video signal.
Fig. 6. This simple sync stripper extracts sync pulses from composite video.

Fig. 7. Either of these two simple circuits can be used to combine sync, video and color burst signals into a single composite-video signal.

How do I strip video sync signals?

Thanks to all the bargain video monitors and orphaned microcomputers on sale these days, there’s been an awful lot of help line requests for either combining sync and video signals or else taking them back apart again.

If the video dots and the synchronizing signals are together on one wire, this is called “composite video.” If the video dots are one one wire and the synchronizing signals are on one or more separate wires, this is called “split sync.”

Needless to say, you need a sync stripper to get from composite video to split sync and a sync combiner to get from split sync to composite video. Which you need...
depends on which bargain parts you happen to be using.

If you are interested in only black-and-white video directly cabled to a monitor, sync stripping or combination is no big deal. It's only when you need noise-free over-the-air transmission, color or gray-scale that things get messy.

Figure 5 shows a "typical" combined video signal. Normally, the signal is 1 volt high. Sync pulses are at 0 volt, with the horizontal sync pulses being around five microseconds wide, and the vertical sync pulses being a fancy waveform that lasts around 200 microseconds. Video black is around 0.25 volt, and full white is at 1 volt. Gray is between white and black.

The time between horizontal sync pulses is usually around 63 microseconds (15.735 kHz) for standard video, but can be much less for high-resolution monitors that run at higher sweep frequencies. The vertical sync pulse rate is usually 16.7 milliseconds (59.95 or 60 Hz). The time between vertical pulses is called a field.

Sometimes, two fields are interlaced into a single frame. Interlace does not work well with dot-matrix characters; so most micro uses of video do not involve the interlace technique.

Should color be used, there is a color burst tacked onto the back porch of the horizontal sync pulse. This is an 8-cycle burst of 3.579545 MHz that is used to synchronize the color circuits of the display or monitor if it is using NTSC (never the same color) stock video.

NTSC video is limited in bandwidth and color resolution, so you cannot normally get more than 40 dot-matrix characters across a color TV screen. To beat this limit, fancy monitors use RGB video in which individual signals are sent directly to the red, green, and blue guns. Each gun then behaves as if it is really receiving high-bandwidth B&W video. Only at the screen is the color sorted out.

Figure 6 shows a simple sync stripper that will split the sync pulse from a composite-video signal. The transistor and input coupling capacitor act as a "leaky dc restorer" and only the very sync tips get highly amplified. The output Schmitt trigger then further cleans up the signal and inverts it to positive-going sync.

Note that the value of the bias resistor on the transistor is much higher than normal. You want the transistor to amplify only the negative-most sync tips. This resistor's value can be adjusted for the best operation.

Note also that you can use the other Schmitt triggers in the quad package to separate the vertical from the horizontal sync. Just how you do this depends on what polarity signals you want, but the key is to stall half a horizontal time and then check for a high level. If high, you have vertical sync.

Much more information on simple video interface appears in my *TV Typeewriter Cookbook* (Sams #21313).

Combining sync is just about as easy as stripping sync. Usually, you will have a video signal, a horizontal sync signal, a vertical sync signal, and an optional color burst on separate lines, and you want to merge them into a single output line.

Figure 7 shows two circuits for doing this. The first uses a single CMOS analog switch to combine everything. This one may be slightly low in bandwidth and is black-and-white only, but is sure is simple. The second is the sync combiner used in later versions of the Apple IIe.

If you have to get fancier, Motorola is now second sourcing some very interesting and very complicated integrated circuits that do all sorts of neat video things "by the rules." Be sure to check out their MC1374, MC1377, TDA3301, TDA3303, TDA3330, and TDA3333 in particular.
The latest technical books and literature in the electronics and computer field.

Guide To Local Area Networks by TJ Byers. (Prentice-Hall; 182 pages; $14.95 soft cover, $24.95 hard cover.)

What is a local area network (LAN)? Who needs or can benefit by it? How is one set up? If you (or your employer) have more than one microcomputer in a given location and would like them to link together to communicate with each other and/or to share hardware and software resources, this book will provide the answers to these and many more questions. Written to help the businessman who has decided to join the computer revolution (and to entice those who have not yet made the commitment), this book will step you through the ins and outs of local area networking. It assumes no prior knowledge of LANs and, thus, starts from square one by introducing at the outset the concept of networking. Written in a brisk style, it gets right down to cases, stepping quickly through each topic and introducing each successive thought only after prior groundwork has been set.

This is a relatively nontechnical overview of local area networking, but it does manage to impart quite a bit of technical detail, though without dry prose and cluttering theories. The major value of this book is that it provides practical guidance on which you can base intelligent decisions. Not only does it tell you what types of LANs are available and their weak and strong points, it also gives an extensive listing of LAN vendors.

Tricks Of The Burglar Alarm Trade. (Mentor Publications; soft cover; 91 pages; $14.95.)

Most books about burglar alarms go heavy on electronics theory and construction and pay only lip service to the practical considerations of sensor selection and system installation. This large-format (8 1/2" x 11") book addresses the weak areas in such books and, therefore, should be considered in addition to them. It focusses on sensor selection to suit various needs and conditions, installation procedures, and the special tools required to do the job. Detailed instructions are provided for applying window foil, installing locks, running wiring from sensors to the control unit, and more—all from the professional's point of view.

Virtually every type of sensor is described, along with its strong and weak points. Additionally, the book gives details on how to run hidden wiring. An important topic is coverage of a common weakness (and how to eliminate it) of typical alarm systems that make them vulnerable to bypassing. Since this book is meant for the nontechnical installer, very basic instructions for using a meter and troubleshooting a system are provided.

The book is heavily illustrated with informative drawings that both support and clarify information given in the text. Type is apparently set by a near-letter-quality dot-matrix printer, which is not as classy as that of typical books, though it is still easily readable.

NEW LITERATURE

Video Accessories Catalog. This new 38-page catalog from RCA is printed in full color and provides illustrations and explanations of nearly 180 products for use with VCRs, video cameras and TV receivers. The listed accessories are designed to simplify installation, improve operation, expand usage and protect video equipment. New entries include updated VCR cases, video camera cases, stereo microphones, broadcast stereo adapters, accessory kits, replacement and extension cables for RCA's "Dimensia" system, as well as numerous hardware items. For a free copy of Form No. 1J7674, write to: RCA Distributor and Special Products Div., Deptford, NJ 08096, Attn.: Sales Promotion Services.

Test Instrument Catalog. Nineteen new products are featured in Leader Instrument's new 1985 catalog. The 80-page catalog details complete features, specifications and applications on more than 100 products in the Leader line. Among the new products highlighted are a 35-MHz two-channel oscilloscope and an economically priced 100-MHz three-channel dual-time-base scope. Other new products include a programmable video generator system designed for testing monochrome and color CRT monitors normally associated with computer systems and workstations and a new line of signal and sweep generators. For a free copy of the catalog, write to: Leader Instruments Corp., 389 Oser Ave., Hauppauge, NY 11788.

Holding Device/Work Positioner Catalog. Holding devices/work positioners, presses, and accessories are the subjects of a new 12-page, two-color catalog (No. 182) from PanaVise. The fully illustrated catalog breaks down the company's products by phases. Each of the four phases keynotes the selection of heads, bases, base mounts and accessories recommended for different needs. A "roadmap" inside the front cover shows the number of different combinations that are available. Products listed and described are for all types of hobbies, though there are a number that are of specific interest to the electronic hobbyist and technician. Among these are circuit board holders that serve as "third hands" and a new "Chassis Mount" that handles large items weighing up to 100 lbs. For a copy of Catalog No. 182, write to: PanaVise Products Inc., 2850 E. 29 St., Long Beach, CA 90806.

Printed Circuit Manual/Catalog. Bishop Graphics' No. 107A Printed Circuit Technical Manual & Catalog contains a wealth of pc-board design and drafting techniques, tips, reference tables, charts and practical theories in an easy-to-follow, fully illustrated format. Listed and fully described are the company's full line artwork patterns for creating artwork masters, detailed specifications and prices on a wide selection of new Bishop patterns designed to increase pc-board design efficiency, and more than 20,000 printed circuit aids. For a free copy of publication No. 107A, write to: Bishop Graphics, Inc., 5388 Sterling Center Dr., P.O. Box 5007, Westlake Village, CA 91359.
Two Electronic Typewriters & a Time-Saver Voice Recorder

By Eric Grevstad

Since this won't see print till late midsummer, I could almost call this a back-to-school column, reviewing useful gadgets for returning students. More generally, this month's products illustrate an issue common to all high-tech items: that of innovation versus usefulness, a gadget's gee-whiz appeal compared to its day-to-day value.

In this case, I could state the issue as efficiency in reproducing words. I examined two portable typewriters that put sophisticated functions into lap-sized packages, but lack the print quality of full-size electrics like Smith-Coronas or Selectrics. I also tried a tape recorder that lets you listen to lectures at double speed, without turning the speaker into Professor Alvin of Chipmunk College.

Almost Word Processors

Both the Sharp PA-1000 Intellilwriter and Canon Typestar 5 are battery-powered, lightweight typewriters (four D cells apiece; eight and six pounds, respectively) that use thermal-transfer printing. Like the cheap thermal printers sold with home computers some years ago, thermal transfer units have a dot-matrix printhead with heated pins. However, instead of forming an image on tacky silver-coated paper, transfer pins melt waxy ink from a ribbon onto plain paper.

Compared to regular typewriters or dot-matrix printers, transfer units are much quieter. For instance, the Canon's only sound is the whir of its carriage return and paper advance, though the Sharp emits a stiff squeak at the beginning and end of each line as the printhead moves toward and away from the ribbon. Their disadvantage is that nonimpact printing doesn't make an impression on textured bond paper; the smoother and thinner your stationery, the better.

Both typewriters can work in the normal way, printing a character as soon as you press a key and moving to the next line when you press the return key. But both work best with lines instead of characters—letting you type an entire line, changing a word or fixing mistakes, before putting it on paper. The previous line is printed as you begin the next, either by pressing RETURN or by computer-style word wrap (starting a new line automatically as you end a word and type a space or hyphen near the right margin).

To let you see a line before it's printed, each unit has an LCD screen (with a dial to adjust contrast). The Typestar 5 scrolls text through a 15-character display; the Sharp shows a superior 70 characters of text plus 10 of system information, such as a constantly updated number to show the cursor position.

Neither portable qualifies as a word processor (no search functions or block moves or anything like that) but both have cursor arrow and delete keys for backing up and changing text, and relocate keys to jump to where you were before backing up.

Besides regular text in single, 1½, or double line spacing, both typewriters let you switch to bold double-width or underlined characters, or center a line. The Sharp can make lines flush with the right margin, too, and its command keys make options easier—Code-P for boldface and Code-I for underlining, compared to pressing the MODE and RETURN keys and cursor arrows to change the Canon's tiny LCD format menu. It can also handle fast typing; more than moderate speeds make the Canon beep and lock up in protest.

Better Text, Stock Phrases

Against the Sharp's bigger LCD and ease of use, the Canon offers a lower price—$249.95 versus $349.95—and some advantages when it comes to putting words on paper. The Typestar's KB key switches between two keyboards, giving extra characters ranging from square brackets and French accents to the British pound and paragraph signs. Better yet, one of the MODE functions switches to a second typeface, the proportionally spaced Cubic PS. This is a slim, elegant alternative to both units' regular fonts, which are spaced in 1/8-inch increments whether the character's a skinny i or a wide m. (See samples reproduced.)

And the Canon's printhead, with its 32- by 26-pin matrix, delivers far better quality; excellent on smooth, lightweight paper; decent even on heavier stock such as copier paper. The Sharp's printouts (16 by 10 matrix) look passable on thin paper, frankly bad on anything else.

Finally, if you don't mind the extra cost ($329.95), Canon has an upscale competitor among its models (not tested here). Called the Typestar 6, it comes with only one typeface, but a cartridge slot that lets you choose among half a dozen others, from 1/2-inch and italic to three different proportional fonts ($30 apiece). And it has a wider 32-character LCD.

The Typestar 6 also shares a feature with the PA-1000: the ability to store up to 26 frequently used words or phrases in memory, so pressing one key plus "A" can type your return address and one key plus "B" types "Sincerely yours" automatically. Canon allows a total of 2000 characters to be stored; Sharp allows
The Canon Typestar 5, in addition to regular and underlined Courier 10 type, offers the same font in double-width letters like these.

There’s also Cubic PS, a proportionally spaced and fancier font, suitable for business letters or for Modern Electronics manuscripts.

It, too, can appear in double-width characters. See?

Canon Typestar’s 32 x 26-pin matrix printhead delivers far better print quality (left) than does Sharp Intellirwriter’s printhead (right). Canon’s quality is excellent on smooth, lightweight paper, and is decent even on heavier paper.

2200, including a 27th memory space. Thus, a whole document can be created and saved for later printing. The function works like a charm, though it’s no fun to edit a two-page letter or report for only 70 characters at a time. Conclusions: The small, “smart” typewriters aren’t smart enough to justify their rather inmodest prices. Some are better (and costlier) than others, but us guys always wind up too frustrated when you can’t go all the way. And that, sadly, is the case here.

Easy Listening

This month’s other product comes from JS&A (One JS&A Plaza, Northbrook, IL 60062, 312-564-7000), where Joseph Sugarman remains the king of witty, wordy ads about little-known products and the trials of the mail-order business. Sugarman’s “Products That Think” catalogs have veered heavily toward health and fitness items lately, but my favorite headline is still the one about JS&A’s first impression of the Magic Stat programmable thermostat: “Magic Baloney It has no digital readout, an ugly case, and a stupid name. It almost made us sick.”

My first reaction to JS&A’s Time Cruncher was less violent but still skeptical, because $239 will buy not one but eight voice recorders at Radio Shack. But if you listen to many lectures, your time might be worth crunching.

Besides playing tapes at normal speed (or 80-percent speed if you’re learning a language or taking notes), the JS&A recorder lets you accelerate up to double speed, hearing a tape in half the time. The trick to keeping such talk intelligible is an adjustable pitch control; slide the speed lever alone and your lecturer turns into a chipmunk, but move the pitch lever into alignment and he sounds like himself.

Well, almost. Even at normal speed, switching on the variable speed control produces a slightly filtered sound; at high speed, voices are surprisingly understandable, but not always recognizable. I found a particularly dull member of a conference panel to be intelligible at double speed, but lost most of his colleagues at the one and three-quarters mark. (As for music, don’t even try it.)

Even so, the Cruncher can save considerable time—and tape. Pushing a switch halves the recording speed from the standard 1 1/3 inches to 1 1/8 inches per second (though it disables auto stop at the end of tapes). Another switch, once you’ve recorded sides A and B and flipped the cassette to side A again, minutely shifts the recording head to accommodate four tracks instead of two.

This means that you can buy a one-hour cassette, record four hours’ worth of material on it (if you’re vigilant about turning it over), and listen to them in two hours. That may be pushing your luck; traces of other tracks showed up as background noise when I listened at moderate volume, but the 1/8 speed worked fine when I settled for two tracks.

My college lecture-hall days are over, but I’ll be sorry to give the Time Cruncher back. I’ve held it at the ready while watching TV, but never caught a fast-talking Federal Express commercial that I could record and then hear at double speed. ME
International Shortwave Broadcast Listings

Programs in English Audible in North America

By Glenn Hauser

Reception Quality:
Quality ratings are a rough subjective comparative guide only.
A = Strong and reliable
B = Regular
C = Occasional/unreliable
D = Seldom

General notes:
(+) = one hour later after DST
NAE = Not all English
R = Radio
V = Voice
v = Varies/variable

Time Conversion:
Subtract 2½ hours for NDT, 3 ADT, 3½
NST, 4 AST/EDT, 5 EST/CDT, 6 CST/
MDT, 7 MST/PDT, 8 PST/ADT, 9 AST/
YST, 10 HST

Afghanistan R. Afghanistan
1900-1930 C 11805, 9665
Alaska KNLS
0700-0930 C 11850
Albania R. Tirana
2200-2230 B 9480
0000-0030 A 9760, 7065
0130-0200 A 9760, 7120
0230-0300 A 9760, 7120
0330-0400 A 7300, 6200

Algeria R. Algiers
2000-2030 C 17745, 15160, 9640, 9510

Argentina RAE
1200-1300 C 15345
0100-0200 C 11710, 9690
0400-0500 C 11710, 9690

Australia R. Australia
2100-0100 C 17795, 15160
0100-0200 C 17710
0200-0730 C 17795
0300-0700 C 15320
0600-0840 C 11910
0730-0930 B 11720
0800-1600 B 9580
1100-fade C 5995
1200-fade C 6060

R. Australia International
1230-1255 B 15320 (Sun 1200-)
0130-0155 B 6000, 9635

0330-0355 B 5945, 6000 (Sun 0305-)
0430-0455 B 6000, 9635

Belgium BRT
1800+1820 C 15590 Sun
2100+2155 C 11980, 5895
0030-0125 B 5910, 9925
0800-0855 C 9880 Mon-Fri
0910-0930 C 9880 Sat
1300-1355 C 15590 Mon-Sat

Brasil R. Nacional, Brasilia
1750-1850 C 15155
0200-0300 B 11745 (time v)

Bulgaria R. Sofia
0630+0700 C 9700
1830+1900 C 11720, 9700
2030+2100 B 11720, 9700
2130+2230 A 11720, 9700
2300+2400 A 11720, 9700
0800+0900 C 11720

Cameroon R. Nationale
0530-0540 C 4795, 4850, 5010
2100-2115 C 9745 (sometimes 2045-)

Canada CFRX Toronto
24 hours C 6070

CFCX, Montreal
24 hours C 6005

R. Canada International
0615-0630, B 11960, 11825, 9760, 6140
0645-0700 Mon-Fri
1200+1225 A 9650, 11955, 15440,
17820 Mon-Fri
1300+1600 A 17820, 11955, Sun
1537-1545 A 15325, 17820 = not Sun
1645-1700 A 17820, 15325
1800-1830 A 17820, 15260
(Sat/Sun-1900)
1900-1930 A 17875, 15325, 11945,
9555, 7130
(Sat/Sun-2000)
1900-1930 A 17820, 15260 Mon-Fri
2000-2030 A 17875, 17820, 15325,
11945 Mon-Fri
2130-2200 A 17820, 15150, 11945
(Sat/Sun also 17875, 15325)
2200-2230 A 9755, 5960
2200-2300 A 15325, 11960 Mon-Fri
2300-2330 A 11710, 9755
2330+2400 A 9755, 5960 (except Sat)

0000+0030 A 9755, 5960
(Sun/Mon-0100)
0100-0130 A 17820, 15190, 11940
0100+0200 A 9755, 5960 Tue-Sat
0200+0230 A 9755, 5960 Tue-Sat
0300+0330 A 9755, 5960

CBC Northern Quebec SW Svc NAE
1058+1259 C 6065, 9625
1300+2300 B 11720, 9625
2300+0509 C 6195, 9625

China R. Beijing
1100-1155 B 11860
1200-1255 B 11860, 11655, 9535
1300-1355 B 9730, 9550
1400-1455 B 9730, 9550
0000-0055 C 15520, 15385
0300-0355 C 15520
0400-0455 C 15385, 17795

Cuba R. Habana Cuba
2010-2140 B 17855
2050-2140 B 17750, 15300
0100-0600 C 11725
0100-0450 A 6140
0330-0600 B 6090?
0630-0800 B 9525 or 11725

Czechoslovakia R. Prague
0100-0155 B 11990, 9740, 9540, 7345,
0300-0355 5930

Ecuador HCJB, V of Andes
1200-1430 B 11740
1200-1530 A 17890, 15115
1900-2000 B 21477½, 17790, 15295
2130-2200 B 17790, 15295
0030-0130 A 11910
0030-0200 A 15155
0030-0700 A 9745
0200-0700 A 6095
0500-0700 A 11910
0645-0830 B 9870, 9655 (Sat/Sun
0700-)
0700-1000 B 9745
0700-1100 B 11925, 6130

Egypt R. Cairo
1215-1330 C 17675
2115-2245 C 9805
0200-0330 B 9475, 9675

Finland R. Finland
1100+1130 C 15400, 17800
1200+1230 C 15400, 17800

80 / MODERN ELECTRONICS / August 1985
1300 + 1330 C 15400, 17800 (Sun -1400)
1400 + 1430 C 15400, 17785

France R. France Internationale
1600-1655 C 17620, 17795, 11705
0315-0330, A 11995, 9800, 9550, 9535,
0345-0355 7135
0415-0430, A 9800, 9790, 9550, 7135
0445-0455

Germany East R. Berlin Int'l
2215 + 2300 B 6125
2315 + 2400 C 9730, 11975
0000 + 0045 C 9730, 11975
0130 + 0215 C 9730, 11975
0230 + 0315 C 9560, 9620, 11970
0200 + 0245 B 6125
0530 + 0615 C 9690, 11970

Germany West Deutsche Welle
0930-1020 A 9650
1230-1315 B 17800
2100-2150 C 9765
0100-0150 A 6040, 6085, 6145, 9545,
9565, 11785
0430-0515 B 7150
0500-0550 A 5960, 6130, 9545, 9690,
11705

Ghana GBC-2
0530-fade C 3366

Greece V of Greece
1240-1250 C 17565 (not Sun)
1540-1550 C 17565, 15630 (not Sun)
2335-2345 B 7395, 9860 (not Sat)
0130-0140 B 7395, 9420, 9905 (not
Sun)
0340-0350 B 7395, 9420, 9905 (not
Sun)

Guatemala TGNR, R. Cultural
0330-0430 B 3300

Guinea R. Guinea
1830-1930 C 15310v (Sun irregular)

Guyana GBC-2
0730-fade C 5950

Haiti 4VEH
2300 + 2330 B 4930

Honduras HRVC
0300-0400 B 4820 Mon

Hungary R. Budapest
2000 + 2030 C 11910, 9835
0030 + 0100 C 12000 Tue-Sat

India All India Radio
1330-1500 C 9545, 11810, 15335
1845-2230 C 11620, 9665
2000-2230 C 9910

Indonesia V of Indonesia/RRI
1500-1600 C 11790
RRI Yogyakarta
1130-1137 C 5046.3

Iran V of Islamic Republic
1930-2030 D 9022, 9770 or 11930

Iraq R. Baghdad International
2030 + 2130 C 9610

Israel Kol Israel
0400 + 0415 B 9815, 9440 1/2, 9009
1700 + 1715 C 13720, 11585, 9920
1900 + 1930 C 15585, 12025, 11655
2130 + 2200 B 9440
2300 + 2330 A 11655, 9815, 9440
0000 + 0025 A 11655, 9815, 9440
0100 + 0125 A 9815, 9440, 7410

Italy RAI
0100-0120 B 9575, 11800

Korea North R. P'yongyang
1100-1250 B 9977, 9745
2300-2450 C 15230, 9745

Korea South R. Korea
0815-0830 C 9570
0845-0900 C 9570
0915-0930 C 7275
1015-1030 C 7275
1045-1100 C 7275
1100-1200 C 15575, 7275
1215-1230 C 7275
1245-1300 C 11805, 7275
1345-1400 C 15575
1400-1500 C 15575, 9750, 9570
1445-1500 C 11805, 7275
1600-1700 C 11810, 9870
1715-1730 C 15575
1745-1800 C 15575
0100 + 0130 C 9835 except Mon
B
0200 + 0230 C 11910 daily
B
0300 + 0312 C 9520 Tue/Sat
B
0300 + 0330 C 6110, 6025 Mon
B
2200-2300 C 15575, 7550
2345-2400 C 15575, 7550
0145-0245 C 15575, 11810
0330-0430 C 15575, 11820, 9570

Libya R. Jamaheriyah
2130 + 2300 B 11815 (time varies)

Luxembourg RTL
2300 + 0100 B 6900

Malaysia V of Malaysia
0555-0825 C 15295, 12350, 9750

Monaco TWR Monte Carlo
0625 + 0720 B 7160
0731 + 0910 B 9495 (Sat/Sun-0940,
Sun-1000)

Mongolia R. Ulan Bator (not Sun)
1200-1235 D 9615, 12015 (freqs. v)
1255-1330 D 15305, 7235 (freqs. v)
1445-1520 D 9615, 12015 (freqs. v)
1940-2015 D 15305, 7235 (freqs. v)

Netherlands R. Netherlands
0430-0525 C 11720, 9895
0730-0825 B 9770, 9630
1030-1125 A 9650, 6020
1130-1225 C 17575, 17605, 15560
1430-1525 C 17605, 17575, 15560,
11740
1630-1725 C 9515
1830-1925 B 21685, 17605
2030-2125 C 11740, 11730, 9775, 9540
0130-0225 B 9895, 6020
0230-0325 A 9590, 6165
0530-0625 A 9715, 6165

Netherlands Antilles TWR
1110 = 1242 A 11815 (Sat-1405,
Sun-1337)
0400-0455 A 9535, 800 (not daily, time
and language v)

New Zealand RNZ International
2345-0145 C 17705, 15150
0345-0730 C 15150, 11780
1030-1215 C 11780, 9600

Nicaragua V of Nicaragua
0100-0200 A 6015 irregular
0400-0500 A 6015 irregular

R Zinica, Bluefields
1700-1800 C 6121 weekdays
<table>
<thead>
<tr>
<th>Region</th>
<th>Time</th>
<th>Frequency</th>
<th>Call Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>0455-0800</td>
<td>C 7255, 11770</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>0500-0600</td>
<td>C 15119v</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>0200-0355</td>
<td>C 7270, 7125</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>0200-0355</td>
<td>C 7270, 7145</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>1600-1630</td>
<td>C 15190 Mon-Fri</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>1100-1330</td>
<td>C 11940, 11810, 9570, 9400-0430</td>
<td>9510, 6155, 5990</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1700-2100</td>
<td>C 11855 or 11840</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>1300-1556</td>
<td>C 21535, 15220, 9585</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100-2156</td>
<td>B 11900, 9585</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0200-0256</td>
<td>B 9615, 6010, 5980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0300-0426</td>
<td>C 9585, 7270, 5980, 4990, 3230</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2200 + 2300</td>
<td>C 7105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000-0100</td>
<td>A 9630, 11880</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0500-0600</td>
<td>A 9630, 6125</td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1030-1130</td>
<td>C 11835, 15120, 17850</td>
<td></td>
</tr>
<tr>
<td>Suriname</td>
<td>1810-1815</td>
<td>B 17755 (via Brasil)</td>
<td>Mon/Wed/Fri</td>
</tr>
<tr>
<td>Sweden</td>
<td>1400-1430</td>
<td>C 15345</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2300-2330</td>
<td>C 11705, 9695</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0230-0300</td>
<td>C 11705, 9695, 17840 = SSB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0330-0400</td>
<td>C 11705</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>0630-0700</td>
<td>C 9535, 6165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0830-0900</td>
<td>C 9560, 15305, 15570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-1030</td>
<td>C 9560, 15305, 15570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200-1230</td>
<td>C 12030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1330-1400</td>
<td>C 11955, 15570, 15585, 17785, 17830</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1530-1600</td>
<td>C 17570, 17830, 21770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1830-1900</td>
<td>C 11955, 9885</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100-2130</td>
<td>B 9885, 12035, 15570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0200-02300</td>
<td>A 6135, 9735, 9885, 11925, 12035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0400-0430</td>
<td>A 6135, 9725, 12035, 15305</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0530-0545</td>
<td>B 17755 (via Brasil)</td>
<td>Mon/Wed/Fri</td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0600-0630</td>
<td>A 9000-0915, 1100-1330 (W)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0730-0900</td>
<td>B 2200-0330 (S)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0830-0900</td>
<td>A 2000-0730 (W)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0930-1030</td>
<td>A 0900-0915, 1100-1330 (W)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1030-1130</td>
<td>B 0400-0430, 0445-0515, 0600-0630 (A)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1130-1230</td>
<td>B 0545-0730</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1230-1330</td>
<td>B 0300-0545 (A)(a)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1330-1430</td>
<td>B 2300-0330</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1430-1530</td>
<td>B 0200-2430</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1530-1630</td>
<td>A 1100-1330 (S)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1630-1730</td>
<td>A 0430-0915 (W)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1730-1830</td>
<td>A 0030-0330 (K)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1830-1930</td>
<td>A 2200-2430 (S)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1930-2030</td>
<td>C 0030-0230 (C)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>2030-2130</td>
<td>B 0300-0430, 0445-0515, 0545-0815 (A)(a)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>2130-2230</td>
<td>C 0545-0915</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>2230-2330</td>
<td>C 0900-1745 (F) / (f)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>2330-2430</td>
<td>B 2200-0330, Tu/F</td>
<td>2130-2200</td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>2430-0130</td>
<td>A 2300-0230 (A)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0130-0230</td>
<td>C 0900-1615 (F)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0230-0330</td>
<td>A 1100-1330 (W)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0330-0430</td>
<td>A 1600-1709 (Sat/Sun)</td>
<td>1500-1745 (S)</td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0430-0530</td>
<td>B Tu/F 2130-2200 (A)(f)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0530-0630</td>
<td>A 0600-0915 (A)(a)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0630-0730</td>
<td>C 0600-0915</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0730-0830</td>
<td>C Tu/F 2130-2200 (f)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0830-0930</td>
<td>C 0300-2430 (Sat/Sun only during 0730-0900)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>0930-1030</td>
<td>B 0300-2315 (as above)</td>
<td>C</td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1030-1130</td>
<td>C 1100-1330</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1130-1230</td>
<td>A 1600-1709 (Sat/Sun)</td>
<td>1500-1745 (S)</td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1230-1330</td>
<td>A 2000-2330 (A)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1330-1430</td>
<td>A Tu/F 2130-2200 (A)(f)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1430-1530</td>
<td>C 0715-1130, 1430-2000 (A)(a)</td>
<td></td>
</tr>
<tr>
<td>UKOGBANI</td>
<td>1530-1630</td>
<td>C 0600-0730, 0900-1745</td>
<td></td>
</tr>
</tbody>
</table>
17790 C 0600-1445
17880 B 1600-1745 (A) (a)
17885 B 1400-1600 (A)
18080 C 1500-1530, 1700-1745 (a)
21470 C 0900-1615
21550 C 1100-1330
21660 B 1030-1745 (A) (a)
21710 C 0900-1745
25650 D 1100-1330
(A) Ascension; (C) Cyprus; (F) Singapore; (K) Greenville; (S) Sackville; (W) Antigua relays; (a) includes African alternative; (f) Falklands programme; no indicator = UK site. These codes apply to only UKOGBANI listings.

United Nations
1830-1840 A 21710, 18782.5 =
LSB,15650 = LSB,
15360, 15120, 10454 =
LSB Fri
1900-1935 A as above, Mon-Fri
2100-2145 A 17730, 15120 Fri
0215-0230 B 11780, 10869 =
USB,10454 = LSB Sat
0545-0600 B 11740, 9540 Sat
0710-0715 B 9565, 7651 = USB,
6873 = USB Sat
0815-0830 B 11825, 11740, 9680 Sat
1000-1030 B 15250, 9565, 8110 = LSB
Sat

USA AFRTS
0900-1100 B 9590, 9530
0900-1300 A 6030
1000-1700 B 11805
1000-1800 B 9700
1100-1700 A 15330
1100-0100 B 15430
1300-0200 A 15330
1700-2300 B 15345
1800-0700 B 17765
2200-0430 C 21570
2300-0700 B 11790
0100-0700 A 6030
0430-0700 C 15330

WRNO Worldwide, New Orleans NAE
1500-1700 A 11965
1700-2200 A 15420
2200-2400 A 11890
0000-0300 A 7355
0300-0500 A 6185
0500-1100 A 6185 Sun
1100-1330 A 9715 Sun
1330-1500 A 11965

Voice of America
0300-0430 B 11720
0300-0500 B 6035, 11835
0300-0600 C 9550
0300-0700 B 6140, 7170, 7200
0400-0700 B 11925, 15205, 9770
0500-0700 A 9670, 7170, 5995
0500-0800 B 6040
0600-0800 B 6080, 6125, 9530, 9540,
9550, 11915
1100-1330 C 11715
1100-1400 C 6110
1100-1500 C 9760, 7230, 15425, 15160
1300-1700 C 9760, 15205
1500-2200 C 9700
1600-1800 B 15600
1600-2200 A 15410
1600-2300 A 17870, 17800, 17785,
15580, 15445
1700-1800 A 21840, 21590, 21545,
17640 (first Sun)
1700-2200 B 9760, 11760, 15205
1800-2300 B 21485
2000-2300 C 17715
2200-2215 A 17775, 15160, 11740
Mon-Fri
0000-0200 A 11740
0000-0400 A 5995, 6130, 9455, 9650,
11582½ = SSB, 11675,
15205, 15375, 17730,
5747¼ = SSB

Uruguay SODRE
2330-2400, D 15273v, 9620
0030-0100,
0130-0200,
0230-0300

USSR R. Moscow World Service
1100-2200 B 11840 (Cuba)
1100-2200 B 15135
2100-2200 B 9490
0300-0400 A 9610, 9600 = (Cuba)
0400-0500 B 9765

R. Moscow North American Service
2200 + 2300 A 15425, 15240, 12065,
B 12060, 12050, 11850,
C 11780, 11770, 11750,
11735, 11710, 9880,
9820, 9720, 9685, 9610
2300 + 2400 A as above, except add
B 9765; drop 11850, 11780,
C 9880; add 9530 at 2330
0300-0100 A as above, except add
B 9600 (Cuba)
1000 + 0200 A as above, except drop
9685; add 9700 at 0130
0200 + 0300 A 15425, 15240, 12060,
B 12050, 11770, 11750,
C 11735, 11710, 9765,
9720, 9700, 9610, 9600,
9530

R. Kiev
2330 + 2400 B 9800, 11720, 11790,
11960, 13605, 15180
0200 + 0230 C 9820, 11720, 11790,
13505, 15180

R. Vilnius
2200 + 2230 C 15180, 13605, 11960,
11790, 11720, 9800

R. Tashkent
1200-1230, C 15115, 11785, 9715,
1330-1400 9650, 7340

Vatican Vatican Radio
2045-2100 C 9625, 11700, 11760,
11520
2205-2225 C 11830, 9615, 6015
0050-0110 A 11845, 9605, 6015
0200-0215 C 7125, 9650, 11865
0500 + 0520 B 6185, 9645

Vietnam V of Vietnam
1100-1130 C 9840, 12035
1330-1400 C 15012, 10040

Yugoslavia R. Yugoslavia
2215 + 2130 B 9620

August 1985 / MODERN ELECTRONICS / 83
tions; full channel memory that stores all channel information, including audio format, frequency and fine-tune offset; and convenience ac outlet on rear panel. A crystal-controlled r-f modulator for output on channel 3 or 4 is built in.

1-f input is 440 to 940 MHz at 75 ohms, while i-f bandwidth is 27 MHz. The XR-1 measures 11 3/4 "W x 10"D x 3 1/4 "H and weighs 7 lb.

CIRCLE NO. 114 ON FREE INFORMATION CARD

Automatic Cleaner For Soldering Tips

Elvo Electronics' "clean-o-point" appliance is a soldering iron tip cleaning aid that is claimed to provide a better quality cleaning action than other tip cleaners. Designed for bench use, clean-o-point contains a motorized pair of sponge rollers that wipe tin-alloy, liquid and residue off the soldering tip and deposits them in a receptacle designed exclusively to retain used solder. Since the heating element of the soldering iron does not contact the damp sponge rollers, the soldering tip retains an even temperature. $44.50.

CIRCLE NO. 115 ON FREE INFORMATION CARD

Hand Nibbling Tool

The Model K-88 hand nibbling tool from Davle Tech cuts sheet metal like a punch and die for making templates, cutouts for radio chassis and panels, and making model parts. The easy-to-use tool produces no strain or distortion to the original form. It cuts mild steel up to 0.023 " (0.6-mm) or soft aluminum sheet up to 1/16 " (1.6-mm) thick. Replacement cutting blades, No. K-881, are available.

CIRCLE NO. 117 ON FREE INFORMATION CARD

7-Band Equalizer/Ampifier

Panasonic has a new car audio seven-band combination graphic equalizer/booster that measures a slim 1" in telephone frequencies. The new antenna provides 3 dB of gain. It offers a "Quick-Grip" trunk lip mount that permits fast, simple installation with no hole drilling required and completely concealed connecting cable. Because the antenna is designed to provide superior omnidirectional performance when mounted on the lip of a trunk lid, it requires no ground plane. It also permits the shortest possible run to the cellular transceiver, using the furnished RG-58/U cable.

CIRCLE NO. 116 ON FREE INFORMATION CARD
height. The Model CY-SG60 is thin enough to fit snugly into the dash-
board of many US-manufactured cars when teamed with the
company's compact-chassis car audio units. Dual inputs allow the
CY-SG60 to be connected to car audio units with preamplifier out-
puts as well as to units with speaker-only outputs.

Rated maximum output power is 50 watts, with less than 1% THD at
12 watts per channel. A tone-defeat/attenuator switch reduces volume
by 20 dB to mute sound without changing volume control setting. A remote
power switch feature permits the CY-SG60 to be automatically turned on
with the main car audio unit. The seven frequency control sliders, tone-
defeat/attenuator switch and fader knob are all illuminated in soft
orange. $119.95.

CIRCLE NO. 118 ON FREE INFORMATION CARD

Remote-Control Transmitter Tester

Philips ECG's new Model RCT 5501 tester verifies all remote-control
transmitting functions for both infrared and ultrasonic units used by
TV receivers, videocassette recorders and cable converters. The
compact, self-contained tester also provides a rapid determination of the
transmitter's useful operating range.

Designed around highly sensitive hybrid circuitry, the RCT 5501 is rug-
ged, lightweight and powered by a single 9-volt transistor battery. A

built-in battery-test function is featured. The tester measures less than
5" long by 3" wide by less than 1" thick and weighs just over 4 ounces.

CIRCLE NO. 119 ON FREE INFORMATION CARD

900-MHz Scanner Converter

A new converter for scanner radios that covers the 900-MHz land mobile
band, the Model CVR-900, is available from Hamtronics. It provides
coverage of new services now being assigned or proposed for the 880-to-
996-MHz range, including such additional land mobile services as police
and fire departments; government and nongovernment fixed stations;
industrial, scientific and medical services; and the proposed 902-to-928-
MHz amateur band. Also included are proposed new cellular telephone
and paging services and existing and new broadcast studio-to-transmitter
communications links.

The CVR-900 converts all frequen-
cies in the 880-to-960-MHz band down to the 430-to-510-MHz uhf
band. To make the conversion in dial frequency on your scanner or other
uhf receiver, you simply subtract 450.000 MHz from the frequency
you want to listen to. The converter is equipped with Motorola type con-
nectors for simple installation in the coaxial line between antenna and
scanner/receiver. Dc power for the converter is supplied by many scans-
ers, though if you wish, you can power it from an optional ac adapter.

$88 + $3 S&H.

CIRCLE NO. 120 ON FREE INFORMATION CARD

LEARN PROGRAMMING

Learn How Easy It Is
To Make A Computer
Do What You Want!

Now you can train at home in your spare time and
in just a few short weeks be ready to program.
This is a complete 'hands-on' training course writ-
ten in 'user-friendly' language so even beginners
with no previous experience can make rapid prog-
ress. You'll learn to program in BASIC, the most com-
monly used computer language.

Learn It All!!

Even with no previous experience, whether or not you have
your own computer, our independent study program shows
you step-by-step how to program in BASIC. You learn
computer applications and operation too, with personal
counseling by phone, in person or by mail whenever you
request it.

IBM, Apple, Commodore, TRS and More!

All BASIC Programming is similar. So once you learn our
easy system, you'll understand how to use and program on
almost any brand of personal computer. Send today for free
lacts and color brochure - a complete information package.

ICS Computer Training, Dept. DLD75
Scranton, Pennsylvania 18515

Free information how I can learn all about computing at home in my spare time. I understand I am under no obligation and no salesman will visit me.

Name ____________________________ Age ____________________________
Address ____________________________
City State Zip ____________________________
Phone No. ____________________________

FREE INFORMATION CARD

August 1985 / MODERN ELECTRONICS / 85
luminescent display, but solves the problem of LCD legibility in any lighting conditions.

The glow-in-the-dark screen, which apparently consists of a reverse-video LCD (all other pixels darkened, leaving light characters) backlit by a plain electroluminescent panel, is attracting wide attention. Not only are companies such as Zenith reportedly buying Morrow’s technology, but it should produce a major market contender in a 25-line, fully IBM-compatible super-Pivot due this summer for $2995.

Unconfirmed Rumors

Besides the phantom IBM, two other important portables are expected between this writing and your reading. One is Kaypro’s DG/One imitation, dubbed the Kaypro 2000 in an early spec sheet: a 25 × 80-character LCD display from Japan’s Citizen, a 3 1/2” disk drive, 256K of RAM, and the PC’s 8088 processor and 8087 math co-processor— all in an 11-lb. package priced at an impressive $1995, or $1500 below a comparably equipped Data General. Reportedly, the keyboard will be detachable. There’s already a Tandy 2000 and a WordStar 2000, but this expected new “2000” low-priced clone might be a bargain in keeping with the original Kaypro II’s market thrust.

The other newcomer might prove even more important, the fourth landmark laptop (or the first of the hybrid notebook/XT machines I mentioned at the beginning). It’s reportedly coming from Zenith, called the PAL (Portable Advanced Laptop) or Satellite, and said to have a 16 × 80-character display and 32K of RAM. Those specifications don’t sound impressive (though memory might be expandable to 416K), but the Zenith is rumored to use the high-speed ROMs discussed earlier and have a bundle of high-class software in them. Zenith declined to comment on this when I phoned, and rumors also surfaced that the design, created by giant Mitsui, was shelved.

Such power, though, pre-loaded into a $2000 Zenith, might hold its own against the notebook-sized “Flat Mac” expected from the Apple MacIntosh team in 1986. There’s already a Japanese portable, the Ampere, with Mac’s 68000 CPU and the scientific language APL in ROM, and Hewlett-Packard has put AT&T’s multitasking Unix operating system into ROM for its new 68000-based transportable, the Integral. Plainly, there’s no limit to ROM’s possibilities.

In fact, if portables haven’t yet replaced desktop computers, it’s clear we can’t blame their software or compatibility. We can’t point a finger at their mass storage or communications abilities, either, and we’re no longer able to complain about high prices. All we have left to blame are their LCD screens, and we shouldn’t be able to blame them too much longer.

Stereo Tape Deck (from page 50)

that occur at a rate of 10 Hz or less, while flutter consists of speed fluctuations that occur at a rate of between 10 Hz and 200 Hz. The frequency range included in the graph of Fig. 5 extends from 0.5 to 200 Hz.

Line and Microphone Input Sensitivities

These specifications, usually given in millivolts, simply tell the user how large an input signal must be applied to the line or microphone inputs to produce a tape recording at reference level (a magnetization level of 400 nWb/m). Unlike the other specifications discussed so far, the input sensitivity specifications are not an indication of performance quality. They are merely needed for proper interfacing between the recorder and the signal sources.

Microphone Maximum Input

Since microphone output levels vary greatly, depending upon the type of microphone used, those manufacturers who want to comply with the new tape measurement specifications are required to state just how much input voltage their recorders can handle via its microphone inputs before severe clipping or 5% distortion of the recorded signal occurs. This maximum is stated in millivolts.

Line Output

The last primary specification that manufacturers are supposed to supply in order to meet the requirements of the EIA Standard is called Line Output. It is a statement of the voltage level that will be present at the line (high-level) output terminals of the recorder when a tape that was recorded at reference magnetization level is played back. Line output level is stated in volts.

The well-defined primary specifications that manufacturers of home tape recorders are being asked to state in their published specifications sheets are, perhaps, more than many tape deck manufacturers have been accustomed to supplying. Nevertheless, makers of high-quality tape recorders are expected to supply all of this data to their prospective customers, and many offer even more detailed information about their products. Having standard methods of measuring and reporting the performance of a tape deck should make it easier for prospective purchasers to pick the right recorder to suit their specific requirements and to compare the performance of one machine against another.
general-purpose oscilloscope with a minimum bandwidth of 1 MHz.

The alignment procedure is as follows. Adjust the slug in L6 while using an oscilloscope to monitor the local oscillator signal at pin 2 of IC2. As you adjust L6, you will note that signal amplitude increases, reaches a peak and then abruptly falls off. For proper alignment, adjust the coil’s slug in the opposite direction from the drop-off point, just below peak.

To adjust L3, L4 and L5, use the r-f signal from the transmitter. Before proceeding to adjust these coils, however, it is necessary to defeat the age by temporarily grounding pin 16 of IC2. Use the amplitude of the i-f signal at pin 15 to guide in alignment. It is sometimes advantageous to monitor this signal on the unused output of L4 to prevent the i-f from shifting as you touch pin 15.

Place the transmitter at a sufficient distance from the receiver so that the measured voltage on pin 15 of IC2 is less than 400 mV (less than 50 mV if you are monitoring L4’s secondary). Adjust L5, L3 and L4 for maximum signal strength. Repeat adjusting these coils until you observe no further increase in amplitude.

Applications Suggestions

The Experimenter’s Radio-Control System described here consists of a basic encoder/transmitter and receiver/decoder sans interfacing to the outside world. Since this is conceptually an experimenter’s R/C system, we have left applications implementation to your ingenuity.

The system described is excellent for remote radio control of the usual model airplanes, boats, cars, etc. By adding some very minor interface circuitry at the decoder outputs of IC3 and IC4, it is possible to remotely control lights, appliances, heating systems, automatic sprinkler systems and much more. For such applications, no modification of the transmitter is necessary.

Motor Drive Notes

For applications in which motors are used, the receiver and drive motors are powered by the same battery. Because of high current drain, alkaline cells are preferred. An alkaline C cell can deliver 400 mA, a D cell 700 mA, for 10 continuous hours. Comparable carbon-zinc cells will last only one or two hours.

Since dc motors generate wide-spectrum noise, this can have an adverse effect on the receiver’s r-f and i-f sections. Also, high peak-current demands by a motor under heavy load can affect battery terminal voltage. This can be critical as cell voltage drops toward its end-of-life 0.9-volt level. Fortunately, sensitive circuit elements in the receiver are referenced to the supply line, and the LM1872 has good common-mode rejection characteristics.

Most notable problems will occur with very inexpensive motors in which a metal stamping is used for commutator brushes. The brushes have very light, single-point contacts that cause a great deal of arcing and, hence, electrical noise. If a motor is located several inches from the receiver, you may have to use a noise-suppression network like that shown here. In projects where space considerations force close proximity between motor and receiver, use low-noise motors with wire or carbon brushes. Various types of small dc servo motors are available from local hobby dealers and mail-order houses.

For more ambitious—and knowledgeable—experimenters, other applications might include simple robot control; complex robot control (tie the transmitter into a personal computer and program the floorplan of your home, for example); conversion of video games to eliminate the cable attached to the joysticks; a carrier-current digital local-area network (FSK or on/off carrier modulation) communications link using local house ac wiring; remote temperature monitoring with associated heater/air-conditioning control; etc.

Some simple interfaces to help you get started are given in circuits A through D in the “Interfacing to the Outside World” box. If your primary interest is to adapt the system for motor drive (as needed for model airplanes, boats and cars), important information is given in the “Motor Drive Notes” box.

Whichever way you decide to use the Experimenter’s Radio-Control System, you will find it both highly flexible and eminently adaptable.
LM324 will operate from 5 to 18 volts, but has a very-low input impedance and a maximum frequency response under 50 kHz.

If either the TL084 or LM324 are used, the values of R1 and R6 must be changed to 100,000 and 47,000 ohms, respectively. No other changes are necessary, and all three devices have identical pinouts.

Since space on the kit’s perfboard is limited, it’s necessary that you carefully follow the layout shown in Fig. 3. Use low-profile gold-contact sockets for the two ICs. Sockets will allow you to exchange ICs easily in the event you change your mind about the op amp you wish to use.

All resisters are 1/4-watt, 5% tolerance carbon-film types—avoid carbon-composition devices here. Tantalum and Mylar are specified for the capacitors, as much for their small size as for their performance characteristics. Other types can be substituted for C1 and C2, space permitting, but only a Mylar or polystyrene capacitor should be used for timing capacitor C3.

Connections from the probe tip holder to R1, R1 to the voltage follower input, and the voltage follower output to the input of IC2A at pin 1 should be at least 22-gauge wire to ensure a low-impedance path for high frequencies. The supply bus wires should also be at least 22 gauge, but the rest of the connections are not critical and may even be made with wire wrap.

One tricky part of building the Looker is properly positioning the three LEDs. They must be raised above the perfboard and angled to fit into the three holes in the top half of the case. The kit includes a support that was useful for aligning the LEDs but was discarded from the prototype as it tended to interfere with assembly of the two case halves.

The only other tricky part of building the Looker is properly applying the two case labels shown in Fig. 4.

These can be cut from the page or photocopied on a good-quality plain-paper copier and cut from the copier sheet. (The copier method is recommended, since there will be no bleed-through from backside images, let you use color bond paper, and allows room for mistakes).

Use either rubber cement or a artist’s stick adhesive (Glue Stic, UHU, etc.) to fix the labels in place. Also, to protect the labels from smearing and/or wearing away, it’s a very good idea to cover them with a strip of 1/4" clear tape or spray several thin coats of clear acrylic over them.

Using the Probe

The Looker can be used to test any circuit or device with a minimum supply of 3.5 volts (6 volts for the TL084; 5 volts with the LM324) and a maximum supply of 16 volts (18 volts with the other two ICs). Since the Looker is partly or wholly CMOS, performance varies with the supply voltage (one of CMOS’s quirks). For this reason, the Looker will respond to a maximum frequency of 800 kHz at 15 volts, 500 kHz at 10 volts, and 150 kHz at 5 volts. Pulse sensing is correspondingly voltage related, but the HI and LO indicators operate the same regardless of supply voltage.

The Looker can be used to test almost any logic family, including regular and LS TTL, CMOS, NMOS and even PMOS and ECL, if the supply voltage is within range of the probe. With regard to the last, it is important that you first use a voltmeter to measure the supply voltage of the circuit to be tested to make certain that it is within the supply range of the probe. Be especially alert for negative voltages; application of a voltage that is lower than the probe’s supply ground can damage the instrument.

Once the supply voltage is determined to be safe, connect the probe’s power leads to the most positive and most negative supply rails in the circuit being tested. Unless unavoidable, the power leads should not be more than about 6" from the test area. If necessary, a pair of mini-hooks, such as Radio Shack’s No. 270-334, can be added to the alligator clips to facilitate hookup on crowded circuit boards.

Before touching the probe tip to any test point, touch it briefly to the two supply clips to confirm proper operation. You should obtain a indication from the positive clip, a LO from the negative clip. If you obtain neither indication, you have a bad or reversed connection. This test should always be repeated each time the clips are moved; it takes only a moment and it may save you from damaging the probe, the circuit or both.

Once the probe is connected and tested, all you need do is touch the tip to any point in the circuit to see what’s happening there. Be careful to avoid shorting together IC pins and other closely spaced component leads. Most probes, like the Looker,
have very high input impedance and will disturb the circuit under test only minimally, if at all.

Although you can't determine frequency with a logic probe, you can trace a waveform through a circuit to see where it goes, disappears or goes awry. A common indication is to have the probe indicate all Hi or all Lo conditions for every point in a circuit or pins on an IC. This means that the circuit or IC is lacking a ground or positive supply voltage.

There are seven basic responses a probe can give. With a schematic diagram or other documentation and a little practice, you'll soon learn to interpret them:

1. **No indication at all**—the point being tested is dead or is at a voltage level between the two thresholds (see 7 below).

2. **Steady HI indication**—the point under test is at a voltage level greater than 70% of the supply (logic-1 for most circuits).

3. **Steady LO indication**—the point under test is at a voltage level less than 30% of the supply (logic-0 for most circuits).

4. **Steady HI with flashing PULSE indication**—the presence of a negative pulse or pulses at that point.

5. **Steady LO with flashing PULSE indication**—the presence of a positive pulse or pulses at that point.

[Note: The probe point must be held firmly against the test point to eliminate the chance of false pulse indications. Many probes—including the Looker—may flash the PULSE indicator when the tip is touched to or removed from the test point.]

6. **Steady PULSE indication**—the presence of a frequency between 0 Hz and maximum range of the probe at that point. The presence of a steady HI or LO simultaneously may mean a frequency that's slightly out of range for the probe, a frequency with a strong dc component, a very high or very low duty cycle, or a waveform with its amplitude biased toward one end of the supply.

7. **Flickering PULSE indication**—may indicate a frequency that's out of range of a voltage that's between the thresholds. This shouldn't be interpreted as a valid state. Use a voltmeter or frequency counter to check.

Conclusions

If you've never used a logic probe before, you will be surprised how quickly and easily it can give a comprehensive look at the operation of a digital circuit. With a schematic diagram or a timing chart of a circuit and a logic pulser for signal injection, you will find that a logic probe is particularly useful in design/experiment work as well as for troubleshooting.
AFFORDABLE ROBOTS
Computational (and logic-controlled) battery robot kits that teach the basic principles of robotics and electronics. Pre-assembled to learn hardware and mechanical-drive systems that can be controlled by microprocessor. Basic hand tools required for assembly.

PIPER MOUSE
SOUND SENSOR
Supersonic Robot controlled by a sound sensor. Whistle commands turning step and go.
$39.95

MEMOCON-CRAWLER PROGRAMMABLE
Memory controlled through keyboard for forward, right, left, pause, buzzer and right. With RAM, 32 x 6 bit memory.
$69.95

OPTIONAL INTERFACE
Apple-Commodore 64
IBM (Specify) $39.95

CIRCULAR REMOTE CONTROL
Super Robot mysteriously rolls left, right, forward, or round and round by hand-held remote control.
$64.95

LINE TRACER INFRA-RED SENSOR
Guided by infra-red light sensor. Robot automatically follows any line drawn on white paper.
$37.95

CIRCLE 0 FOR FREE INFORMATION CARD

SUPER LONG PLAY TAPE RECORDERS
10 Hour Model — $95.00
14 Hour Model — $159.00
Modified Panasonic, Slimline, high quality AC DC recorders. Proven for 7 continuous hours of quality recording & playback for each side of cassette for a total of 10 or 14 hours depending on model. Built-in talkback, English voice controls, digital counter, etc. TDK DC 180.

PHONE RECORDING ADAPTER
Records calls automatically. All Solid state. Connects to your telephone. No jacks and tape recorder. Stamps recording on phone bill. $24.95

PHONE ACTIVATED CONTROL SWITCH
Solid state Self contained. Adjustable sensitivities of voice. Activates control of remote. $24.95

CIRCLE 94 ON FREE INFORMATION CARD

MODERN ELECTRONICS MARKET
 Classified Commercial Rates: 90¢ per word, 15-word minimum ($13.50) prepaid. Word count includes name and address. First word only is set holdface caps at no charge. Add 20% for additional holdface words.

Mall Display Rates: 1" x 1 col., $120; 2" x 1 col., $230; 3" x 1 col., $330. Prepayment discount 5% for 6 issues; 10% for 12 issues prepaid at once.

(Mall advertisers with PO Box addresses must supply permanent address and telephone number. Copy is subject to publisher approval.)

Mailing Information: Copy must be received by the publisher by the 20th of the third month preceding the cover date. Send Advertising material with check or money order to: Modern Electronics, Classified Department, 76 North Broadway, Hicksville, NY 11801.

VIDEO

ZENITH SSSAVI MANUAL. Original manual used by technicians. Theory of scrambling, schematics, parts list. For UHF and cable. For speedy delivery send $15.00 cash or money order. BAY STATE ELECTRONICS, PO Box 263, Accord, MA 02018.

HOME Satellite Handbook has everything you need to know about Satellite Television. $10.00, SV Box 422, Seaford, New York 11783.

SINE WAVE PATENT SECRETS completely explains how their box works including authorization control; $6.00. S/W problem manual explains trouble shooting hookup; $4.00. Both, $8.00. Signal, Box 2512-M, Culver City, CA 90231.

PANASONIC ZENITH GE Sylvania Quasar Magnavox RCA Sharp Hitachi Philco Sanyo Sony Samsung Sampo MGA Toshiba Goldstar Exact original parts for TV and VCR. Call now 800-874-1765 NY only.

SATELLITE TELEVISION, Everyone's Guide. $2.50 Money back guarantee. SAT/FLORIDA, 2910 SE 19 Avenue, Gainesville, FL 32601.

UNIQUE Satellite TV Manual for dealers/hobbyists. Includes step-by-step instructions for system installation & tuning, purchasing, marketing, complete list of distributors & equipment plus more. Rush $19.95 to SATELLITE COM. NETWORK, 204 W. 20th St., New York, NY 10011

CABLE TV Secrets - the outlaw publication the Cable Companies tried to ban. HBO, Movie Channel, Showtime, Descriptions, Converters, etc. Suppliers list included. $8.95. Cable Facts, Box 711-ME, Pataskala, Ohio 43062.

CABLE and Subscription TV secret manual. Build your own descramblers, converters - HBO, Showtime, Movie Channel, UHF. Latest theory, schematics, instructions, suppliers list. Send $8.95 to CABLETRONICS, Box 30502ME, Bethesda, MD 20814.

BUILD Your Own Satellite TV Receiving System And Save! Instruction manuals, schematics, circuit boards, parts kits! Send stamped envelope for complete product listing: XAN-DI, Box 25647, Dept. 30D, Tempe, AZ 85282.

MODERN ELECTRONICS 76 North Broadway, Hicksville, NY 11801

Name ____________________________
City ____________________________
State ____________________________ Zip ________

Order Form Please print in block letters.

CIRCLE 51 ON FREE INFORMATION CARD

92 / MODERN ELECTRONICS / August 1985
WE HAVE QUALITY PARTS, DISCOUNT PRICES AND FAST SHIPPING!

TRANSFORMERS
- 120 volt primaries
- 1.5 VOLT @ 750 MA $3.00
- 1.5 VOLT @ 550 MA $2.50
- 1.5 VOLT @ 450 MA $2.00
- 1.5 VOLT @ 350 MA $1.50
- 1.5 VOLT @ 250 MA $1.00
- 1.5 VOLT @ 150 MA $0.50
- 1.5 VOLT @ 50 MA $0.25
- 1.5 VOLT @ 5 MA $0.05

WALL TRANSFORMER
- ALL ARE 115 VAC PLUG IN
- 4 VAC @ 70 MA $2.00
- 6 VAC @ 500 MA $3.50
- 6 VAC @ 1250 MA $5.00
- 12 VAC @ 500 MA $5.00
- 12 VAC @ 250 MA $3.00
- 12 VAC @ 125 MA $2.50
- 17 VAC @ 500 MA $4.00
- 24 VAC @ 250 MA $2.50
- 24 VAC @ 125 MA $2.00

SPRING LEVER TERMINALS
- TWO COLOR CODED TERMINALS
- 22/4 OR 22/2 GA WIRE
- GREAT FOR SPEAKER ENCLOSURES OR POWER SUPPLIES
- $1.00 EACH
- $10.00 FOR 100

T1 SWITCHING POWER SUPPLY
- TI-T1331A-2
- COMPACT 12 VDC REGULATED SWITCHING POWER SUPPLY DESIGNED TO POWER TEXAS INSTRUMENTS COMPUTER EQUIPMENT
- INPUT: 115VAC / 60Hz 10A
- OUTPUT: +5VDC 1A / +12VDC 1A
- WEIGHT: 2.1 Pounds
- SIZE: 4" x 4" x 1.00
- $55.00 EACH

FREE!
SEND FOR FREE 1985 48 PAGE CATALOG

13.8 VOLT REGULATED POWER SUPPLY
- THESE ARE SOLID STATE FULLY REGULATED
- 13.8 VOLT POWER SUPPLIES
- ALL FEATURE 100% SOLID STATE CONSTRUCTION, FUSE PROTECTION, 1 SECOND INDICATOR
- 2 AMP CONSTANT 4 AMP SURGE
- LISTED $18.00 EACH

DC CONVERTER
- 1.5VDC / 350MA
- 2.5VDC / 250MA
- 3.5VDC / 150MA
- 4.5VDC / 100MA
- $5.00 EACH
- $45.00 FOR 10

KEY ASSEMBLY
- 5 KEY $1.00 EACH
- 56 KEY $5.50 EACH
- CONTAINS 5-sINGLE POLY NORMALLY OPEN SWITCHES MEASURES 3/4" X 2 1/4" X 5/8"
- ARMROK X RIS-G4
- $1.50 EACH
- $10.00 FOR 10

TRANSISTORS
- 2N706 4 F/0.01 $1.00
- 2N2222A 3 F/0.01 $1.00
- 2N2222 1 F/0.01 $1.00
- 2N7011 2 F/0.01 $1.00
- 2N2907 3 F/0.01 $1.00

P.A. SPEAKERS
- 8" P.A. SPEAKERS
- C.T.S. MODEL BS1079 $5.00 EACH
- 5 OHM FERROTYT MAGNET CASE
- 8 SPEAKERS $35.00
- POWER RATING 15 WATTS MAX
- BRIDGED TO MATCH TRANSFORMER

TOLL FREE ORDERS ONLY
1-800-523-0203
(ORDER ONLY)
(11) 800-358-6666
ALASKA, HAWAII
ORDER BY PHONE
(213) 380-8000

ALL ELECTRONICS CORPORATION
905 S. VERMONT AVE., P.O. BOX 20406
LOS ANGELES, CA 90069
6226 SEPULVEDA BLVD., VAN NUYS, CA 91411

CIRCLE 50 ON FREE INFORMATION CARD
ABSOLUTE Ile/IIC RESET To the "old" monitor ROM. Don Lancaster puts you back in total control. Capture routines, source code, detailed instructions, bonus book, $19.95. SYNERGETICS, Box 809-ME, Thatcher, AZ 85552. VISA/AMC. (602) 428-4073.

CONTROL your world with your computer! Control up to 48 devices easily. Complete plans, schematics, programs $9.95. SASE for more information. B&W Electronics, 3621 Lowden, Kalamazoo, MI 49008.

AWH TOOLKITS Eight Diskette side crammed full of APPLETWRTM goodies: patches - source code - microjustify - proportional space - disassembly script - manual - self-promoting glossaries - bonus book - more than $39.90 for either DOS 3.3e or ProDOS 2.0 versions. SYNERGETICS, Box 809-ME. Thatcher, AZ 85552. VISA/AMC. (602) 428-4074.

APPLEOWNERS: Hard-sided carrying cases for Macintosh $100, Macintosh and external drive $130, and IIc $100. Send check or money order, or MC/VISA accepted. Justin Case Manufacturing Corp., 334 Main Street, Port Washington, NY 11050 (or telephone 516-683-2299).

ELECTRONICS

ELECTRONIC HOBBYIST: You can become a part of our information network, share your ideas, and have access to unique and fascinating projects. Send $1.00 and be a part of the network today. T&K Specialty, 6888 Kent Dr., Baker, LA 70714.

"BIONIC" EARS. HEARS LEAVES FALL FROM QUARTER MILE. AUTOMATIC LEVEL CONTROL FM WIRELESS MICROPHONE. COMPLETE INFORMATIONAL PLANS PACKAGE. BOARD, MOVABLE PARTS FROM DOJO SHACK. $7.95 PLUS $1.50 SHIPPING. DIRIO CORP., BOX 212, LOWELL, NC 28098.

SAVE ON POWER COSTS. Innovative solid state device converts two 12 volt batteries into regenerating energy system. Run lights, radios, TV's, motors indefinitely. Like having your own power plant. Build it! Info $2 refundable with order. JGC Associates, Post- Tel Center, 2210 Wilshire Blvd., Suite 87B-8, Santa Monica, CA 90403-5784.

BUILD your own solid state laser! Easy plans only $5.00. H.A.S. Technologies, Box 81201, Corpus Christi, Texas 78412.

PICTURE Flyer lists quality electronic surplus at low prices. Since 1970. Send for the last 3 issues. Star-Iconex, Box 663, McMinnville, OR 97128.

ELECTRONIC CATALOG. Over 4,500 items. Parts & components. Everything needed by the hobbyist or technician. $2.00 postage & handling (U.S. Only). refundable with first $15.00 order. T&K Electronics, Dept. M, 472 East Main St., Patchogue, NY 11772. (516) 289-2520.

COMMUNICATIONS

"SCANNERS/SHORTWAVE" Regency, Bearcat, Sony, Kenwood, Icom, Yaesu, Panasoninc, Antennas, CB's, MFI, MUCH MORE, True Discount Prices AND FREE SHIPPING to 48 States. Big 25 Page Picture Catalog $1.00 (REFUNDABLE). Galaxy Electronics, Box 1202, Akron, Ohio 44309. (216-376-2402) 9-5 PM EST. WE PRE-TEST!!

CB RADIO MODIFICATIONS! Increase channels, range, privacy. Conversion hardware, books, plans, kits, repairs. Catalog $2. CBCI, Box 31500ME, Phoenix, AZ 85046.

COMMUNICATIONS plans, kits, books. 1750 Meter transceivers, AM/FM broadcast transmitters, ham/CB amplifiers, surveillance bugs, much more! Catalog $1.00. PANCOM, Box 130-ME8, Paradise, CA 95969.

MISCELLANEOUS

CORRESPONDENCE to Asia for lasting relationship. Free Information, AAWS-ME, Box 2777; Orcutt, CA 93455-0777 Tel. No. 805-937-5230.

ASIAN LADIES want correspondence for friendship, marriage. SUNSHINE INTERNATIONAL, Dept. TR, Box 260, North Hollywood, CA 91603.

CASES: Carrying. Shipping, Special-purpose. Stock... Custom. For more information, contact Justin Case Manufacturing Corp., 334 Main Street, Port Washington, NY 11050.
Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Resistance</th>
<th>Tolerance</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000Ω</td>
<td>1000Ω</td>
<td>±0.1%</td>
<td>Ohmite</td>
</tr>
<tr>
<td>1kΩ</td>
<td>1000Ω</td>
<td>±0.1%</td>
<td>Ohmite</td>
</tr>
<tr>
<td>22kΩ</td>
<td>22000Ω</td>
<td>±0.1%</td>
<td>Ohmite</td>
</tr>
<tr>
<td>100kΩ</td>
<td>100000Ω</td>
<td>±0.1%</td>
<td>Ohmite</td>
</tr>
<tr>
<td>1MΩ</td>
<td>1000000Ω</td>
<td>±0.1%</td>
<td>Ohmite</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Value</th>
<th>Capacitance</th>
<th>Tolerance</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>100pF</td>
<td>100pF</td>
<td>±10%</td>
<td>Panasoni</td>
</tr>
<tr>
<td>1nF</td>
<td>1000pF</td>
<td>±10%</td>
<td>Panasoni</td>
</tr>
<tr>
<td>10nF</td>
<td>10000pF</td>
<td>±10%</td>
<td>Panasoni</td>
</tr>
<tr>
<td>100nF</td>
<td>100000pF</td>
<td>±10%</td>
<td>Panasoni</td>
</tr>
<tr>
<td>1μF</td>
<td>1000nF</td>
<td>±10%</td>
<td>Panasoni</td>
</tr>
</tbody>
</table>

Transistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPN</td>
<td>NPN Transistor</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>PNP</td>
<td>PNP Transistor</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>JFET</td>
<td>JFET Transistor</td>
<td>Texas Instruments</td>
</tr>
</tbody>
</table>

Connectors

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP</td>
<td>DIP Connector</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>EDIP</td>
<td>EDIP Connector</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>JMB</td>
<td>JMB Connector</td>
<td>Texas Instruments</td>
</tr>
</tbody>
</table>

Service Charges

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>10%</td>
</tr>
<tr>
<td>5-9</td>
<td>15%</td>
</tr>
<tr>
<td>10+</td>
<td>20%</td>
</tr>
</tbody>
</table>

Note: Discounts apply to orders of $500 or more. Please contact customer service for full details.
Whether or not a meter is supplied appears to depend upon the manufacturer’s philosophy. With one exception, all manufacturers whose products appear in the Buying Guide table offer some type of metering on most of their products. Fisher, the exception, does not. This is not to say that Fisher’s metal detectors are inferior to the others; they are not.

The information supplied in the Buying Guide table is necessarily limited. However, it should be sufficient to launch any preliminary comparisons. If you wish much more detailed information, you are urged to call or write to the various manufacturers and request their latest catalogs and/or descriptive brochures. If possible, before making a final decision, you should visit dealers who handle metal locators for hands-on comparisons.

Options and Accessories

As the metal-detection industry has matured, product manufacturers have heeded the requests of equipment users by making available optional items that can greatly enhance the operation of the basic detector. Hot on the list of options are different-size search coils. While not all models permit substitution of different coils (those that do not are usually indicated in the catalogs), most general-purpose ones do. With a series of different-size search coils, you can tackle a wide range of search tasks that would not otherwise be possible with the standard 6” to 8” coil supplied.

Another useful option that manufacturers offer are conversion kits that allow you to dismount the electronics package from the stem and transfer it to your waist, shoulder or neck. This way, you can use either the standard cane-like stem or one of the new arm-rest stems for the search coil and, thus, reduce fatigue.

Nickel-cadmium (NiCd) battery packs and rechargers are also high-interest optional accessories with most detector models, as are protective plastic covers for delicate search coils and rigid cases and zipper pouches for the detectors.

In Closing

This summer and fall, you can add a lot of fun to your outdoor activities by getting involved in metal detection. When you dig up your first ring or coin, the treasure-hunting bug might just bite deep enough to keep you at it and make you want to come back for more early next spring. You might want to visit a library to learn about treasure hunting areas aside from local beaches. For U.S. treasure guide information, write to Carson Enterprises, Deming, NM 88031; for worldwide treasure maps, Treasure, Box 1355, LaCrosse, WI 54601. Good hunting.
A unique, limited edition, of strikingly beautiful desk and table lamps, crafted from rare, old, genuine radio transmitting tubes.

In the pioneer broadcasting days of the 1920’s and 1930’s, these tubes powered the commercial and amateur radio transmitters that linked the nation and the world. Today, these same tubes are considered by many to be some of the most beautiful industrial artifacts ever created.

For many years, the A.B.C. Guild has collected whatever quantities of these old tubes that were available. Each is carefully inspected, cleaned, and painstakingly surface-restored. The bases are constructed of solid acrylic and polished to a jewel-like clear lustre which compliment the clean, sweeping lines of the glass tube. The final result is a functional lamp of great beauty as well as a valuable genuine collectible from a long-gone age.

The Classic Tube Lamp in your home or office becomes an attractive heirloom with inherent investment potential. The “high-tech” design of both the tube and the attractive acrylic base is in keeping with today’s design trends and makes the lamp a unique, decorative focal point of any room.

For the hobbyist, ham, computer enthusiast, or anyone with ties to the electronic industry, these lamps have an extra meaning and importance. For the homeowner or decorator who seeks accessories of classical beauty, they make a one-of-a-kind impact wherever they are used and must be seen to be truly appreciated.

The available quantity of each of the lamp styles is extremely limited. Each lamp is numbered as one of a limited edition series and comes with individual certification papers that summarize the history, manufacturer, and establish authenticity of the tube in your lamp.

A MAGNIFICENT FUNCTIONAL ACCESSORY ANYWHERE!
- In the home,
- Reception office, conference room, private office,
- Recreation room,
- Workshop, den, hobby room.

This is the ideal, unusual gift, award, or retirement presentation.

GUARANTEE
If not completely satisfied—your money refunded in full!
ICOM introduces the IC-R71A 100KHz to 30MHz superior-grade general coverage HF receiver with innovative features including keyboard frequency entry and wireless remote control (optional).

This easy-to-use and versatile receiver is ideal for anyone wanting to listen in to worldwide communications. With 32 programmable memory channels, SSB/AM/RTTY/CW/FM (opt.), dual VFO's, scanning, selectable AGC and noise blanker, the IC-R71A's versatility is unmatched by any other commercial grade unit in its price range.

Keyboard Entry. ICOM introduces a unique feature to shortwave receivers...direct keyboard entry for simplified operation. Precise frequencies can be easily selected by pushing the digit keys in sequence of frequency. The frequency will be automatically entered without changing the main tuning control.

Superior Receiver Performance. Passband tuning wide dynamic range (100dB), a deep IF notch filter, adjustable AGC (Automatic Gain Control) and a noise blanker provide easy-to-adjust clear reception even in the presence of strong interference or high noise levels. A preamplifier allows improved reception of weak signals.

32 Tunable Memories. Thirty-two tunable memories, more than any other general coverage receiver on the market, offer instant recall of your favorite frequencies. Each memory stores frequency, VFO and operating mode, and is backed by an internal lithium memory battery.

Options. FM, RC-11 wireless remote controller, synthesized voice frequency readout, IC-CK10 DC adapter for 12 volt operation, MB-11 mobile mounting bracket, two CW filters, FL32-500Hz and FL63-250Hz, and high-grade 455KHz crystal filter, FL44A.