[HI

AM/FM Radio Station Application Data and Reference Guide

for Broadcast Transmitter,
Antenna, Remote Pickup and
STL Systems

AM/FM

RADIO STATION APPLICATION DATA AND REFERENCE GUIDE

for
 BROADCAST TRANSMITTER, ANTENNA, REMOTE PICKUP

and STL SYSTEMS

6th Edition-RAD-78

Prepared by
Broadcast Systems
Front \& Cooper Streets, Camden, New Jersey, U.S.A. 08102

PRICE: FIVE DOLLARS

[^0]Data included in this book are primarily for use in filing applications with the U. S. Federal Communications Commission. However, the general information included also has world-wide application. Rules and requirements, of course, vary with individual government regulatory bodies.

Complete information on referenced equipment is included in the current RCA Radio Equipment Catalog. Copies are available on request from RCA Broadcast Systems, Camden, N. J. 08102, U. S. A.

FOREWORD

This filing information manual presents the equipment engineering data necessary to complete FCC Form 313 and Sections V-A and V-B of Forms 301 and 340. As such, it should provide a quick reference for the specific filing data required. Detailed descriptions and specifications of the complete line of broadcast equipment manufactured by RCA for AM and FM stations are contained in RCA AM and FM broadcast catalogs. RCA also offers custom tuilt equipment to meet special requirements.
A brief explanation of FCC rules is included to assist the reader in planning remote pickup and STL equipment facilities. However, reference should be made directly to the FCC rules to assure compliance and accuracy wherever necessary.

CONTENTS

Sample AM Broadcast Application (Engineering Data, FCC Forms 301, 340) 4
Sample FM Broadcast Application (Engineering Data, FCC Forms 301, 340) 5
Transmitter Power Ratings 7
Monitor Equipment 7
Remote Control Systems 8
FM Antennas
Circularly Polarized Radiator Specifications, BFC Series 11
Circularly Polarized Radiator Specifications, BFG Series 13
Circularly Polarized Radiator Specifications, BFI Series 14
Circularly Polarized Radiator Specifications, BFH Series 15
Circularly Polarized Radiator Specifications, BFB Series 16
Circularly Polarized Radiator Specifications, BFJ Series 17
Horizontal Radiation Patterns, BFB 18
Vertical Radiation Patterns, BFC Series 18
AM/FM Isolation Units 23
Deicer Cables and Power, BFC, BFG, BFH Series 24
Coaxial Transmission Line
Coaxial Line Types and Specifications 25
Rigid Coaxial Line, Power Ratings 26
Attenuation at FM Frequencies 27
Attenuation and Power Curves, Andrews 50 Ohm Air Dielectric Heliax 28
Attenuation and Power Curves, Andrews 50 Ohm Foam Heliax 29
Attenuation and Power Curves, Cablewave Air Wellflex Cable 30
Attenuation and Power Curves, Cablewave Foam Wellflex Cable 31
Auxiliary Broadcast Services
STL Frequencies, Radio Order Circuit Frequencies 32
Remote Pickup Allocations and Authorizations 33
Sample Remote Pickup or STL Application for PCL-505/C (FCC Form 313) 35
Remote Pickup and STL Application Data Table 38
Sample Remote Pickup or STL Application for RPL-3A (FCC Form 313) 39
Sample Remote Pickup Application for RPL-4A (FCC Form 313) 41
Reference Data
FM Broadcast Station Classes and Frequencies 43
Distance to Receiving Location and Depression Angles for Various FM Antenna Heights 44
FM Range Chart 45
FM Estimated Field Strength Chart 46
Maximum Power vs. Antenna Height 47
Footage Table for Broadcast Tower Heights 48
Minimum Windload Map and Table 49
dB/Efficiency Conversion Chart 50
kW/dBk Conversion Table 51

TRAN	M		$\cdots \mathrm{B}$	AT	1	
AM TRA	SMITTERS		FM	ANSM	ERS	
				No.	Rated	ut
	Rated Output	Other Type.Accepted	Type	Outputs	kW	d8k
Type	kW	kW	BTF-3E1 \& BTF-3ES 1	1	3.00	4.77
BTA-1S (Operating 250W)	. 25	-	BTF-3 plus 3E1 \& BTF-3 plus 3ES	1	6.00	7.78
	5		BTF-5E1 \& 5ESI	1	5.00	6.99
BTA-IS (Operating 500W)	. 50	-	BTF-5 plus 5E1 \&			
BTA-1S	1.0	.5/.25	BTF-5 plus 5ES1	1	10.00	10.00
BTA-IS			BTF-5E2 \& BTF-5ES2	1	5.00	6.99
BTA-5L2	5.0	1.0/.5	BTF-5 plus 5ES2 \& BTF-5 plus 5ES2	1	10.00	10.00
BTA-5SS	5.0	1.0/.5	BTF-10E1 \& BTF-10ES1	1	10.00	10.00
BTA-10L2	10.0	5.0/1.0	BTF-10 plus 10E1 \& BTF-10 plus 10ES1	1	20.00	13.01
BTA-20L2*	20.0	10.0	BTF-20E1 \& BTF-20ESI	1	20.00	13.01
			BTF-40E1 \& BTF-40ES1	1	40.00	16.02
*Parallel Systems.			BTE-15A (Solid State)	1	. 01	-20.00
All RCA AM (Medium Ware) systems.	smitters are	available as parallel	BTE-115	1	. 01	-20.00

MONITORING EQUIPMENT

AM MONITOR DATA

Description	Make	$T_{y p e}$
Frequency Monitor	RCA	BW-80
Modulation Monitor	RCA	BW-51
Modulation Monitor	RCA	BW-52
RF Amplifier*	RCA	BW-60
Phase Monitor, Analog Readout	Potomac	AM-19 (204)
Phase Monitor, Digital Readout	Potomac	AM-19-D (210)
Phase Monitor, Precision System	Potomac	PM-19

FM MONITOR DATA

Description	Make	Type
Monaural Frequency \& Modulation Monitor Monaural Modulation Monitor Monaural Frequency Monitor	RCA	BW-75A
Stereo Frequency \& Modulation Monitor SCA Frequency \& Modulation Monitor	RCA	BW-175 \dagger
RF Amplifier*	RCA	BW-176 \dagger

[^1]
TRC-15A REMOTE CONTROL SYSTEMS

(For AM/FM Transmitters)
15 metering functions; 30 control functions (15 On/Raise; 15 Off/Lower)

TRC-15AW SYSTEM
Audible Control and Audible Metering Return Over Voice Grade Telephone Line (DC continuity not required)

Quantity	Description
1	Transmitter Unit
1	Studio Unit
1	Meter**

TRC-15-AR SYSTEM
Audible Control Over Internal Subcarrier Generator and Demodulator, and Subaudible Metering Return Over Optional Internal Subcarrier Generator and Demodulator

(Choice of Control Subcarrier Frequency*)	
Quantity	Description
1	Transmitter Unit
1	Studio Unit
1	Meter**

[^2]
Channel Capability

	Minimum	Expandable
No. of Channels	10	$20 / 30$
Telemetry/Channel	1	1
Control Functions/Channel	$\mathbf{2}$	$\mathbf{2}$
Telemetry Display: Digital LED $31 / 2$-digit		

Equipment Designations

	Wire	Radio
AM Control Systems	DRS-1AW	DRS-1AR
FM Control Systems	DRS-1AW	DRS-1AR

MODEL DRS-1A DIGITAL REMOTE SYSTEM

REMOTE CONTROL SYSTEMS

(For AM/FM Transmitters)

ACCESSORIES FOR REMOTE CONTROL SYSTEMS

Description	Reference
Telemetry Subcarrier Generator	BTX-101 (Specify freq. in kHz)
Metering Insertion Unit (for AM carrier telemetry)	MIU-2
Metering Recovery Unit (for AM carrier telemetry)	MRU-1
BTX-101 Subcarrier Gentrator (program plus telemetry)	MI-561062
BTX-101 Low Pass Filter	MI-561065
Telemetry Receiver for FM	TMR-1
DC Amplifier	DCA-1
AM RF Transmission Line Sampling Kit	RFK-1
FM RF Transmission Line Sampling Kit, $31 / \mathrm{s}^{\prime \prime}$ Line	RFK-2
FM RF Transmission Line Sampling Kit, $15 /{ }^{\prime \prime}$ Line	RFK-3
Tower Light Monitor Kit (2 to 50 amps)	TLK-2
Line Voltage Kit (122 to 240 V , single phase)	LVK-3
Temperature Sensing Kit	TSK-3
Tolerance Alarm (Main Frame) TAU-3	.MI-561469A
Modules for TAU-3MI-561184A

FM ANTENNAS

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFC SERIES

Mounting Dimensions and Feed Line Locations for BFC Series Antennas

Mechanical Data, BFC Series

Antenne Type	Freq. MHz	Dimensions in Feel (Meters) ${ }^{1}$							Windload ${ }^{1}$ af $50 / 30 \mathrm{lbs} / \mathrm{ff}^{2}\left(244 / 146 \mathrm{~kg} / \mathrm{m}^{2}\right)$					
		He Top Feet Meters	$\underset{\text { Feel }}{\mathrm{He}_{\mathrm{t}}}$	Side Meters	Feet	Top Meters	$\underset{\text { Feet }}{\mathrm{H}}$	Side Meters	Less De-Icers Lbs. Kg .		With De-Icers Lbs. Kg .		With Radomes Lbs. Kg.	
BFC.1B	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	5.0 1.52 5.0 1.52 5.0 1.52 1.6 3.23	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.24 \\ & 0.24 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.0 \\ 8.0 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 2.44 \\ & 2.44 \\ & 2.44 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.52 \\ & 0.52 \end{aligned}$	$\begin{aligned} & 178 \\ & 178 \\ & 178 \\ & \hline \end{aligned}$	$\begin{aligned} & 81 \\ & 81 \\ & 81 \\ & \hline \end{aligned}$	$\begin{array}{r} 198 \\ 198 \\ 198 \\ \hline \end{array}$	$\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 332 \\ & 332 \\ & 332 \end{aligned}$	$\begin{aligned} & 151 \\ & 151 \\ & 151 \end{aligned}$
BFC-2B	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	10.6 3.23 10.0 3.05 9.5 2.90	$\begin{aligned} & \hline 6.4 \\ & 5.8 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.95 \\ & 1.77 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 19.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 5.85 \\ & 5.79 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 12.8 \\ & 11.7 \\ & 10.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.90 \\ & 3.57 \\ & 3.29 \end{aligned}$	$\begin{aligned} & 337 \\ & 327 \\ & 319 \\ & \hline \end{aligned}$	$\begin{aligned} & 153 \\ & 148 \\ & 145 \\ & \hline \end{aligned}$	$\begin{aligned} & 377 \\ & 367 \\ & 359 \\ & \hline \end{aligned}$	$\begin{aligned} & 171 \\ & 167 \\ & 163 \end{aligned}$	$\begin{aligned} & 645 \\ & 635 \\ & 627 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 293 \\ & 288 \\ & 284 \\ & \hline \end{aligned}$
BFC-3B	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	16.2 4.93 15.0 4.57 14.1 4.30	$\begin{array}{r} 11.9 \\ 10.9 \\ 9.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.63 \\ & 3.32 \\ & 3.02 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30.4 \\ & 28.9 \\ & 27.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.27 \\ & 8.81 \\ & 8.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.9 \\ & 21.8 \\ & 19.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.28 \\ & 6.64 \\ & 6.07 \\ & \hline \end{aligned}$	$\begin{array}{r} 495 \\ 475 \\ 459 \\ \hline \end{array}$	$\begin{aligned} & \hline 225 \\ & 215 \\ & 208 \\ & \hline \end{aligned}$	555 535 519	$\begin{aligned} & 252 \\ & 243 \\ & 235 \\ & \hline \end{aligned}$	$\begin{aligned} & 957 \\ & 937 \\ & 921 \\ & \hline \end{aligned}$	$\begin{array}{r} 434 \\ 425 \\ 418 \\ \hline \end{array}$
BFC-4B	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	11.7 6.61 20.0 6.10 18.6 5.67	$\begin{aligned} & 17.6 \\ & 15.9 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.36 \\ & 4.85 \\ & 4.42 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5 \\ & 38.4 \\ & 36.8 \end{aligned}$	$\begin{aligned} & 12.65 \\ & 11.70 \\ & 11.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.2 \\ & 31.8 \\ & 29.0 \end{aligned}$	$\begin{array}{r} 10.73 \\ 9.69 \\ 8.84 \\ \hline \end{array}$	$\begin{aligned} & 653 \\ & 623 \\ & 599 \\ & \hline \end{aligned}$	$\begin{aligned} & 296 \\ & 283 \\ & 272 \\ & \hline \end{aligned}$	$\begin{aligned} & 723 \\ & 703 \\ & 679 \\ & \hline \end{aligned}$	$\begin{array}{r} 328 \\ 319 \\ 308 \\ \hline \end{array}$	$\begin{aligned} & 1269 \\ & 1239 \\ & 1215 \\ & \hline \end{aligned}$	$\begin{aligned} & 576 \\ & 562 \\ & 551 \\ & \hline \end{aligned}$
BFC-5B	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	18.6 5.67 27.3 8.32 25.0 7.62 23.2 7.07	$\begin{aligned} & 23.2 \\ & 20.9 \\ & 19.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.07 \\ & 6.37 \\ & 5.79 \end{aligned}$	$\begin{aligned} & 52.7 \\ & 49.4 \\ & 46.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.06 \\ & 15.06 \\ & 14.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 46.4 \\ & 41.8 \\ & 38.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.14 \\ & 12.74 \\ & 11.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 810 \\ & 791 \\ & 763 \\ & \hline \end{aligned}$	$\begin{aligned} & 367 \\ & 359 \\ & 346 \\ & \hline \end{aligned}$	911 871 839	$\begin{aligned} & 413 \\ & 395 \\ & 381 \\ & \hline \end{aligned}$	$\begin{aligned} & 1581 \\ & 1541 \\ & 1510 \\ & \hline \end{aligned}$	$\begin{aligned} & 717 \\ & 699 \\ & 685 \\ & \hline \end{aligned}$
BFC-6B	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	32.9 10.03 30.0 9.14 27.7 8.44	$\begin{aligned} & 28.8 \\ & 25.4 \\ & 23.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.78 \\ & 7.74 \\ & 7.19 \end{aligned}$	$\begin{array}{r} 63.9 \\ 59.3 \\ 54.9 \\ \hline \end{array}$	$\begin{aligned} & 19.48 \\ & 18.07 \\ & 16.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 57.6 \\ & 50.9 \\ & 47.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17.56 \\ & 15.51 \\ & 14.39 \\ & \hline \end{aligned}$	$\begin{aligned} & 970 \\ & 920 \\ & 882 \\ & \hline \end{aligned}$	$\begin{aligned} & 440 \\ & 417 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 1090 \\ & 1040 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 494 \\ & 472 \\ & 454 \\ & \hline \end{aligned}$	$\begin{aligned} & 1874 \\ & 1824 \\ & 1784 \end{aligned}$	$\begin{aligned} & 850 \\ & 827 \\ & 809 \end{aligned}$
BFC.78	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	38.5 11.73 35.1 10.70 32.3 9.85	$\begin{aligned} & 34.3 \\ & 30.9 \\ & 28.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.45 \\ 9.42 \\ 8.56 \\ \hline \end{array}$	$\begin{array}{r} 75.0 \\ 68.7 \\ 64.2 \\ \hline \end{array}$	$\begin{aligned} & 22.86 \\ & 20.94 \\ & 19.57 \\ & \hline \end{aligned}$	$\begin{aligned} & 68.7 \\ & 61.9 \\ & 56.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.94 \\ & 18.87 \\ & 17.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1128 \\ & 1068 \\ & 1020 \\ & \hline \end{aligned}$	$\begin{aligned} & 512 \\ & 484 \\ & 463 \\ & \hline \end{aligned}$	$\begin{aligned} & 1268 \\ & 1208 \\ & 1160 \\ & \hline \end{aligned}$	575 548 526	$\begin{aligned} & 2183 \\ & 2123 \\ & 2075 \\ & \hline \end{aligned}$	$\begin{aligned} & 990 \\ & 963 \\ & 941 \end{aligned}$
BFC-8B	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	44.0 13.41 40.1 12.22 36.8 11.22	$\begin{aligned} & 40.0 \\ & 35.9 \\ & 32.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.19 \\ 10.94 \\ 9.97 \\ \hline \end{array}$	$\begin{aligned} & 86.2 \\ & 78.9 \\ & 73.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.27 \\ & 24.05 \\ & 22.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 80.0 \\ & 71.9 \\ & 65.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.38 \\ & 21.92 \\ & 19.93 \\ & \hline \end{aligned}$	$\begin{aligned} & 1308 \\ & 1238 \\ & 1182 \\ & \hline \end{aligned}$	$\begin{aligned} & 593 \\ & 562 \\ & 536 \\ & \hline \end{aligned}$	$\begin{aligned} & 1468 \\ & 1398 \\ & 1342 \end{aligned}$	666 634 609	$\begin{aligned} & 2514 \\ & 2454 \\ & 2390 \\ & \hline \end{aligned}$	$\begin{aligned} & 1140 \\ & 1113 \\ & 1084 \\ & \hline \end{aligned}$
BFC-10B	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	55.2 16.82 50.1 15.27 45.9 13.99	$\begin{aligned} & 51.1 \\ & 46.0 \\ & 41.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.58 \\ & 14.02 \\ & 12.74 \end{aligned}$	$\begin{array}{r} 108.6 \\ 98.6 \\ 91.2 \\ \hline \end{array}$	$\begin{aligned} & 33.22 \\ & 30.05 \\ & 27.80 \end{aligned}$	$\begin{array}{r} 102.2 \\ 92.0 \\ 83.7 \\ \hline \end{array}$	$\begin{aligned} & 33.22 \\ & 28.04 \\ & 25.51 \\ & \hline \end{aligned}$	$\begin{aligned} & 1625 \\ & 1535 \\ & 1483 \end{aligned}$	$\begin{aligned} & 737 \\ & 696 \\ & 673 \\ & \hline \end{aligned}$	$\begin{aligned} & 1875 \\ & 1735 \\ & 1663 \end{aligned}$	851 787 754	$\begin{aligned} & 3165 \\ & 3075 \\ & 3003 \end{aligned}$	$\begin{aligned} & 1436 \\ & 1395 \\ & 1362 \end{aligned}$
BFC.12B	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	66.4 20.24 60.1 18.32 55.0 16.76	$\begin{aligned} & \hline 62.3 \\ & 56.0 \\ & 51.0 \end{aligned}$	$\begin{aligned} & 18.99 \\ & 17.07 \\ & 15.54 \\ & \hline \end{aligned}$	$\begin{aligned} & 131.0 \\ & 119.8 \\ & 109.6 \end{aligned}$	$\begin{aligned} & 39.93 \\ & 36.58 \\ & 33: 53 \\ & \hline \end{aligned}$	$\begin{aligned} & 124.7 \\ & 112.1 \\ & 101.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.10 \\ & 34.14 \\ & 31.09 \end{aligned}$	$\begin{aligned} & 1942 \\ & 1832 \\ & 1744 \end{aligned}$	$\begin{aligned} & \hline 881 \\ & 831 \\ & 791 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2182 \\ & 2072 \\ & 1984 \\ & \hline \end{aligned}$	$\begin{aligned} & 990 \\ & 940 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3790 \\ & 3680 \\ & 3592 \\ & \hline \end{aligned}$	$\begin{aligned} & 1719 \\ & 1669 \\ & 1629 \\ & \hline \end{aligned}$
BFC.148	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{aligned} & \text { POLE MOUNT } \\ & \text { NOT } \\ & \text { RECOMMENDED } \end{aligned}$	$\begin{aligned} & 73.5 \\ & 66.1 \\ & 60.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.40 \\ & 20.15 \\ & 18.29 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { POLE } \\ \mathrm{N} \\ \text { RECOM } \end{array}$	$\begin{aligned} & \text { MOUNT } \\ & \text { OT } \\ & \text { MENDED } \end{aligned}$	$\begin{aligned} & 147.0 \\ & 132.2 \\ & 120.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.81 \\ & 40.23 \\ & 36.58 \end{aligned}$	$\begin{aligned} & 2258 \\ & 2128 \\ & 2088 \\ & \hline \end{aligned}$	$\begin{array}{r} 1024 \\ 965 \\ 947 \end{array}$	$\begin{aligned} & 2538 \\ & 2408 \\ & 2304 \\ & \hline \end{aligned}$	$\begin{aligned} & 1151 \\ & 1092 \\ & 1045 \end{aligned}$	$\begin{aligned} & 4414 \\ & 4284 \\ & 4244 \end{aligned}$	2002 1943 1925
BFC-16B	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	$\begin{aligned} & \text { POLE MOUNT } \\ & \text { NOT } \\ & \text { RECOMMENDED } \end{aligned}$	$\begin{aligned} & 84.7 \\ & 76.1 \\ & 69.1 \end{aligned}$	$\begin{aligned} & 25.82 \\ & 23.20 \\ & 21.06 \end{aligned}$	$\begin{array}{r} \text { POLE } \\ \mathrm{N} \\ \text { RECOM } \end{array}$	MOUNT OT MENDED	$\begin{aligned} & \hline 169.4 \\ & 152.3 \\ & 138.3 \end{aligned}$	51.51 46.33 42.06	$\begin{aligned} & 2575 \\ & 2425 \\ & 2205 \end{aligned}$	1168 1100 1000	$\begin{aligned} & 2895 \\ & 2745 \\ & 2625 \end{aligned}$	$\begin{aligned} & 1313 \\ & 1245 \\ & 1191 \end{aligned}$	$\begin{aligned} & 5039 \\ & 4889 \\ & 4669 \end{aligned}$	$\begin{aligned} & 2286 \\ & 2218 \\ & 2118 \end{aligned}$

- Interpolate dimensions and windload for antenmas of intermediate frequency.

FM ANTENNAS
 CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFC SERIES

Electrical Data

Antenna Type	Power Gain ${ }^{1}$			Field Intensity ${ }^{2}$ mV / m	Power Rating ${ }^{3}$				
				with Redomes	without Radomes				
	Power	$d B$	Fiold		kW	dBk	kW	dBk	
BFC-18	0.46	-3.37	0.678		93.2	10	10.0	4	6.02
BFC-2B	1.0	0	1.00	137.6	20	13.01	8	9.03	
8FC-38	1.5	1.76	1.23	169.1	30	14.77	12	10.79	
BFC-4B	2.1	3.22	1.45	199.4	40	16.02	16	12.04	
BFC-58	2.7	4.31	1.64	225.5	40	16.02	20	13.01	
BFC-6B	3.2	5.05	1.79	246.1	40	16.02	24	13.80	
BFC-78	3.8	5.80	1.95	26B. 1	40	16.02	28	14.47	
BFC-8B	4.3	6.34	2.07	284.6	40	16.02	32	15.05	
BFC-108	5.5	7.40	2.35	323.1	40	16.02	40	16.02	
BFC-128	6.6	8.20	2.57	353.4	40	16.02	40	16.02	
BFC-148	7.8	8.92	2.79	383.6	40	16.02	40	16.02	
BFC-16B	8.9	9.49	2.98	409.B	40	16.02	40	16.02	

[^3]For each polarization, the field gain is equal to the square root of the power gain. The effective field in tensity in mV / m at one mile (1.604 km) for 1 kW input is equal to 137.6 times the field gain.

* Power Rating based on a $40^{\circ} \mathrm{C}$ ambient. Multiply values listed by 0.8 for $50^{\circ} \mathrm{C}$ ambient. BFC -5 and larger antennas with greater power ratings are available on special order.

Deadweight in Pounds (kg)1:	Less De-Icers	With De-Icers	With Radomes
Single Section	109 (49)	197 (89)	140 (63)
Two Sections	173 (78)	322 (146)	235 (107)
Three Sections	237 (108)	424 (215)	310 (141)
Four Sections	301 (137)	599 (272)	425 (193)
Five Sections	365 (166)	751 (341)	520 (236)
Six Sections	429 (195)	876 (397)	615 (278)
Seven Sections	493 (224)	1028 (466)	710 (322)
Eight Sections	582 (264)	1178 (534)	830 (376)
Ten Sections	710 (322)	1455 (660)	1020 (462)
Twelve Sections	838 (380)	1732 (786)	1210 (549)
Fourteen Sections	966 (438)	2009 (911)	1400 (635)
Sixteen Sections	1094 (496)	2286 (1037)	1590 (721)

[^4]
FM ANTENNAS

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFG SERIES

Mounting Dimensions and Feed Line Locations, BFG Series FM Antennas.

Pole Mounting

Side Mounting

Center Feed 8-16 Sections

- Can be made to dimension desired to bring input line in line with main vertical run.
* Antennas ordered with beam tilt and/or null fill supplied with center feed.

Antenna Type	Freq. MHz	Dimensions ${ }^{1}$ (See Drawing)							Windload ${ }^{1}$ at $50 / 30 \mathrm{lbs} / \mathrm{ft}^{2}\left(244 / 146 \mathrm{~kg} / \mathrm{m}^{2}\right)$					
		He Top	Hc Side Feet Meters		H Top Feet Meters		H Side Feet Meters		$\begin{aligned} & \text { Less De-fcers } \\ & \text { Lbs. Kg. } \\ & \hline \end{aligned}$		With De-Icers Lbs. Kg .		With Radomes Lbs. Kg .	
BFG-1A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{array}{ll} 5.0 & 1.52 \\ 5.0 & 1.52 \\ 5.0 & 1.52 \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.24 \\ & 0.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.44 \\ & 2.44 \\ & 2.44 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.52 \\ & 0.52 \\ & \hline \end{aligned}$	$\begin{aligned} & 178 \\ & 178 \\ & 178 \\ & \hline \end{aligned}$	81 81 81	$\begin{aligned} & 198 \\ & 198 \\ & 198 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$		
8FG-2A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{array}{rr} 10.6 & 3.23 \\ 10.0 & 3.05 \\ 9.5 & 2.90 \\ \hline \end{array}$	$\begin{aligned} & 6.4 \\ & 5.8 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.95 \\ & 1.77 \\ & 1.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.2 \\ & 19.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 5.85 \\ & 5.79 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.8 \\ & 11.7 \\ & 10.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.90 \\ & 3.57 \\ & 3.29 \end{aligned}$	$\begin{aligned} & 337 \\ & 327 \\ & 319 \\ & \hline \end{aligned}$	153 148 145	$\begin{aligned} & 377 \\ & 367 \\ & 359 \\ & \hline \end{aligned}$	$\begin{aligned} & 171 \\ & 167 \\ & 163 \end{aligned}$		
BFG-3A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{array}{ll} 16.2 & 4.93 \\ 15.0 & 4.57 \\ 14.1 & 4.30 \\ \hline \end{array}$	$\begin{array}{r} 11.9 \\ 10.9 \\ 9.9 \end{array}$	$\begin{aligned} & 3.63 \\ & 3.32 \\ & 3.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.4 \\ & 28.9 \end{aligned}$	$\begin{aligned} & 9.27 \\ & 8.81 \\ & 8.38 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 21.8 \\ & 19.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.28 \\ & 6.64 \\ & 6.07 \\ & \hline \end{aligned}$	$\begin{aligned} & 495 \\ & 475 \\ & 459 \\ & \hline \end{aligned}$	225 215 208	$\begin{aligned} & 555 \\ & 535 \\ & 519 \\ & \hline \end{aligned}$	$\begin{aligned} & 252 \\ & 243 \\ & 235 \\ & \hline \end{aligned}$		
BFG-4A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{array}{ll} 21.7 & 6.61 \\ 20.0 & 6.10 \\ 18.6 & 5.67 \\ \hline \end{array}$	$\begin{aligned} & 17.6 \\ & 15.9 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.36 \\ 4.85 \\ 4.42 \\ \hline \end{array}$	$\begin{aligned} & 41.5 \\ & 38.4 \\ & 36.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.65 \\ & 11.70 \\ & 11.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.2 \\ & 31.8 \\ & 29.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.73 \\ 9.69 \\ 8.84 \\ \hline \end{array}$	653 623 599	296 283 272	$\begin{aligned} & 723 \\ & 703 \\ & 679 \end{aligned}$	$\begin{aligned} & 328 \\ & 319 \\ & 308 \end{aligned}$	\leftrightarrow	$Ш \quad \infty$ - ш
BFG-5A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	18.6 5.67 27.3 8.32 25.0 7.62 23.2 7.07	$\begin{aligned} & 23.2 \\ & 20.9 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 7.07 \\ & 6.37 \\ & 5.79 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.7 \\ & 49.4 \\ & 46.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.06 \\ & 15.06 \\ & 14.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 46.4 \\ & 41.8 \\ & 38.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.14 \\ & 12.74 \\ & 11.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 810 \\ & 791 \\ & 763 \\ & \hline \end{aligned}$	367 359 346	$\begin{aligned} & 911 \\ & 871 \\ & 839 \\ & \hline \end{aligned}$	$\begin{aligned} & 413 \\ & 395 \\ & 381 \end{aligned}$		
BFG-6A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	32.9 10.28 30.0 9.14 27.7 8.44	$\begin{aligned} & 28.8 \\ & 25.4 \\ & 23.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.78 \\ & 7.74 \\ & 7.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 63.9 \\ & 59.3 \\ & 54.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.48 \\ & 18.07 \\ & 16.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 57.6 \\ & 50.9 \\ & 47.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.56 \\ & 15.51 \\ & 14.39 \\ & \hline \end{aligned}$	$\begin{aligned} & 970 \\ & 920 \\ & 882 \\ & \hline \end{aligned}$	$\begin{aligned} & 440 \\ & 417 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 1090 \\ & 1040 \\ & 1000 \end{aligned}$	$\begin{aligned} & 494 \\ & 472 \\ & 454 \end{aligned}$		\ll $>\propto$
BFG-7A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	38.5 11.73 35.1 10.70 32.3 9.85	$\begin{aligned} & 34.3 \\ & 30.9 \\ & 28.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.45 \\ 9.42 \\ 8.56 \\ \hline \end{array}$	$\begin{array}{r} 75.0 \\ 68.7 \\ 64.2 \\ \hline \end{array}$	$\begin{aligned} & 22.86 \\ & 20.94 \\ & 19.57 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68.7 \\ & 61.9 \\ & 56.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.94 \\ & 18.87 \\ & 17.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1128 \\ & 1068 \\ & 1020 \\ & \hline \end{aligned}$	$\begin{aligned} & 512 \\ & 484 \\ & 463 \\ & \hline \end{aligned}$	$\begin{aligned} & 1268 \\ & 1208 \\ & 1160 \\ & \hline \end{aligned}$	$\begin{aligned} & 575 \\ & 548 \\ & 526 \\ & \hline \end{aligned}$		
BFG-BA	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{array}{ll} 44.0 & 13.41 \\ 40.1 & 12.22 \\ 36.8 & 11.22 \\ \hline \end{array}$	$\begin{array}{r} 40.0 \\ 35.9 \\ 32.7 \\ \hline \end{array}$	$\begin{array}{r} 12.19 \\ 10.94 \\ 9.97 \\ \hline \end{array}$	$\begin{aligned} & 86.2 \\ & 78.9 \\ & 73.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.27 \\ & 24.05 \\ & 22.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 80.0 \\ & 71.9 \\ & 69.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.38 \\ & 21.92 \\ & 21.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1308 \\ & 1238 \\ & 1182 \\ & \hline \end{aligned}$	$\begin{aligned} & 593 \\ & 562 \\ & 536 \\ & \hline \end{aligned}$	$\begin{aligned} & 1468 \\ & 1398 \\ & 1342 \end{aligned}$	$\begin{aligned} & 666 \\ & 634 \\ & 609 \\ & \hline \end{aligned}$		
BFG-10A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	55.2 16.82 50.1 15.27 45.9 13.99	$\begin{aligned} & 51.1 \\ & 46.0 \\ & 41.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.58 \\ & 14.02 \\ & 12.74 \\ & \hline \end{aligned}$	$\begin{array}{r} 108.6 \\ 98.6 \\ 91.2 \\ \hline \end{array}$	$\begin{aligned} & 33.10 \\ & 30.05 \\ & 27.80 \\ & \hline \end{aligned}$	$\begin{array}{r} 102.2 \\ 92.0 \\ 83.7 \\ \hline \end{array}$	$\begin{aligned} & 31.15 \\ & 28.04 \\ & 25.51 \\ & \hline \end{aligned}$	$\begin{aligned} & 1625 \\ & 1535 \\ & 1483 \end{aligned}$	$\begin{aligned} & 737 \\ & 692 \\ & 673 \\ & \hline \end{aligned}$	$\begin{aligned} & 1875 \\ & 1735 \\ & 1663 \end{aligned}$	$\begin{aligned} & 851 \\ & 787 \\ & 754 \\ & \hline \end{aligned}$		≥ 3
BFO-12A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{array}{ll} 66.4 & 20.24 \\ 60.1 & 18.32 \\ 55.0 & 16.76 \\ \hline \end{array}$	$\begin{aligned} & 62.3 \\ & 36.0 \\ & 51.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.99 \\ & 17.07 \\ & 15.54 \\ & \hline \end{aligned}$	$\begin{aligned} & 131.0 \\ & 119.8 \\ & 109.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.92 \\ & 36.52 \\ & 33.41 \\ & \hline \end{aligned}$	$\begin{aligned} & 124.7 \\ & 112.1 \\ & 101.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.01 \\ & 34.17 \\ & 31.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 1942 \\ & 1832 \\ & 1744 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 881 \\ & 831 \\ & 791 \\ & \hline \end{aligned}$	$\begin{aligned} & 2182 \\ & 2072 \\ & 1984 \end{aligned}$	$\begin{array}{r} 990 \\ 1234 \\ 900 \end{array}$		
BFG-14A	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{gathered} \text { POLE MOUNT } \\ \text { NOT } \\ \text { RECOMMENDED } \\ \hline \end{gathered}$	$\begin{aligned} & 73.5 \\ & 66.1 \\ & 60.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.40 \\ & 20.15 \\ & 18.29 \\ & \hline \end{aligned}$	POLE RECOM		$\begin{aligned} & 147.0 \\ & 132.2 \\ & 120.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.81 \\ & 40.29 \\ & 36.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 2258 \\ & 2128 \\ & 2088 \\ & \hline \end{aligned}$	$\begin{array}{r} 1024 \\ 965 \\ 947 \\ \hline \end{array}$	$\begin{array}{r} 2538 \\ 2408 \\ 2304 \\ \hline \end{array}$	$\begin{aligned} & 1151 \\ & 1092 \\ & 1045 \\ & \hline \end{aligned}$		
BFG-16A	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	POLE MOUNT NOT RECOMMENDED	$\begin{aligned} & 84.7 \\ & 76.1 \\ & 69.1 \end{aligned}$	$\begin{aligned} & 25.82 \\ & 23.20 \\ & 21.06 \end{aligned}$		$\begin{aligned} & \text { MOUNT } \\ & \text { OT } \\ & \text { MENDED } \end{aligned}$	$\begin{aligned} & 169.4 \\ & 152.3 \\ & 138.3 \end{aligned}$	$\begin{aligned} & 51.63 \\ & 46.42 \\ & 42.15 \end{aligned}$	$\begin{aligned} & 2575 \\ & 2425 \\ & 2205 \\ & \hline \end{aligned}$	$\begin{aligned} & 1168 \\ & 1100 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2895 \\ & 2745 \\ & 2625 \\ & \hline \end{aligned}$	$\begin{aligned} & 1313 \\ & 1245 \\ & 1191 \\ & \hline \end{aligned}$		

FM ANTENNAS

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFG SERIES

Type BFG-

Antenna	Power Gain ${ }^{2}$		Power Rating ${ }^{2}$	
TYPE	Power	$d B$	$k W$	$d B k$
BFG-1	0.9	-0.45	6	7.78
BFG-2A	2.0	3.01	12	10.79
BFG-3A	3.0	4.77	18	12.55
BFG-4A	4.2	6.23	24	13.80
BFG-5A	5.4	7.32	30	14.77
BFG-6A	6.4	5.06	36	15.56
BFG.7A	7.6	8.80	40^{2}	16.02
BFG-8A	8.6	9.34	40^{2}	16.02
BFG-10A	11.0	10.41	40^{2}	16.02
BFG.12A	13.2	11.20	40^{2}	16.02
BFG-14A	15.6	11.93	40^{2}	16.02
BFG-16A	17.8	12.50	40^{2}	16.02

'Horizontal and vertical gain combined. Horizontally polarized gain may be specified at any level between 50 and 75 percent of total gain listed. Vertical power gain is then equal to the combined gain less the horizontal gain. For each polapization, the field gain is equal to the square root of the power gain. The effective field intensity at one mile (1.604 km) for 1 kW input is equal to 137.5 times the field gain.

* Power Rating based on a $40^{\circ} \mathrm{C}$ ambient. Multiply values listed by 0.8 for $50^{\circ} \mathrm{C}$ ambient. BFG-7 and larger antennas with greater power ratings are available on special order.

Weight in Pounds (kg):1	Less De-Icers	With
Single Section	111 (50)	200 (91)
Two Sections		328 (149)
Three Sections	243 (110)	483 (219)
Four Sections	309 (140)	611 (277)
Five Sections	375 (170)	766 (347)
Six Sections	441 (200)	894 (406)
Seven Sections	507 (230)	1049 (476)
Eight Sections	598 (271)	1202 (545)
Ten Sections	730 (331)	1485 (674)
Twelve Sections	862 (391)	1768 (802)
Fourteen Sections	994 (451)	2051 (930)
Sixteen Sections	1126 (511)	2334 (1059)

${ }^{1}$ Weigh; includes feed system to antenne input and 13- to 18 -inch (330 to 457 mm) extension brackets for mounting.

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFI SERIES

Mechanical Data, BFI Series

		Antenna Type	Freq. MHz	Dimensions (See		- Drawing)		Windload at $50 / 30 \mathrm{lbs} / \mathrm{ft}^{2}$ ($244 / 146 / \mathrm{kg}^{3}$)	
				$\underset{\text { Feet }}{\mathrm{Hc}}$	Side Meters	$\begin{array}{r} \text { H } \end{array}$	Side Meters	Less D Lbs.	Kg.
/			88	0.8	0.24	1.25	0.52	32	15
		BFI-1C	98	0.8	0.24	1.25	0.52	32	15
ANTENMA			108	0.8	0.24	1.25	0.52	32	15
imput - t-fittimg	H_{c}		88	6.4	1.95	12.8	3.90	69	31
COWNECTOA)		BFI-2C	98	5.8	1.77	11.7	3.57	69	31
			108	5.4	1.65	10.8	3.29	69	31
			88	0.8	0.24	1.25	0.52	32	15
		BFIPIH	98	0.8	0.24	1.25	0.52	32	15
			108	0.8	0.24	1.25	0.52	32	15
			88	6.4	1.95	12.8	3.90	69	31
		BFI-2H	98	5.8	1.77	11.7	3.57	69	31
			108	5.4	1.65	10.8	3.29	69	31

Electrical Data

Antenna Type	Power Gain			Field Intensity ${ }^{1}$	Power Rating	
	Power	dB	Fiold		kW	dBk
BFI.1C	0.46	-3.37	0.68	93.2	0.5	-3
BFI-2C	1.00	0	1.00	137.5	0.5	-3
BFI-1H	0.90	-0.45	0.95	130.0	0.5	-3
BFl-2 H	1.90	3.01	1.41	194.0	0.5	-3

${ }^{1}$ For each polarization, the field gain is equal to the square root of the power gain. The effective field intensity in mV / m at one mile (1.604 km) for 1 kW input is equal to 137.5 times the field gain.

FM ANTENNAS
 CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFH SERIES

Mounting Dimensions and Feed Line Locations, BFH Series FM Antennas.

[^5]Electrical Data

Antenna Type	Power Gain ${ }^{1}$			Field Intensity"	Power Rating	
	Power	dB	Field		kW	dBk
BFH. 1	0.46	-3.37	0.678	93.2	2	3.01
BFH-2	1.0	0	1.00	137.5	4	6.02
BFH. 3	1.5	1.76	1.23	168.4	6	7.78
BFH-4	2.1	3.22	1.45	199.2	8	9.03
BFH-5	2.7	4.31	1.64	225.2	8	9.03
BFH-6	3.2	5.05	1.79	246.0	8	9.03
BFH-7	3.8	5.80	1.95	268.0	8	9.03
BFH-8	4.3	6.34	2.07	285.2	8	9.03

${ }^{1}$ Power gain in each polarization.
${ }^{2}$ For each polarization, the field gain is equal to the square root of the power gain. The effective field intensity in mV / m at one mile (1.604 km) for 1 kW input is equal to 137.6 times the field gain.

Weight in Pounds (Kg):	Less De-icers Single Section	With De-icers	With Radomes
S2(19)	$130(59)$	$57(26)$	
Two Sections	$89(40)$	$238(108)$	$119(54)$
Three Sections	$136(62)$	$373(160)$	$181(82)$
Four Sections	$183(83)$	$481(218)$	$243(110)$
Five Sections	$230(104)$	$616(279)$	$305(138)$
Six Sections	$277(126)$	$724(328)$	$367(167)$
Seven Sections	$324(147)$	$859(390)$	$429(195)$
Eight Sections	$371(168)$	$967(439)$	$491(223)$

[^6] (330- to 457 mm) extension brackets for mounting.

Mechanical Data, BFH Series

Antenna Type	Freq. MHz	Dimensions ${ }^{1}$ (See Drawing)								$\begin{gathered} \text { Windload }{ }^{1} \text { at } \\ 50 / 30 \mathrm{lbs}^{2} / \mathrm{ft}^{*}\left(244 / 146 / \mathrm{kg}^{2}\right) \end{gathered}$			
		$\underset{\text { Feet }}{\mathrm{H}_{6}}$	Top Meters	$\underset{\text { Feet }}{\substack{\mathrm{Hc}}}$	Side Meters	$\underset{\text { Feet }}{\mathrm{H}}$	Top Meters	$\underset{\text { Feet }}{\mathrm{H}}$	Side Meters	Less lbs.	e-Icers Kg .	With Lbs.	$\begin{gathered} \text { De-leers }{ }^{2} \\ \mathrm{Kg} . \end{gathered}$
BFH-1	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 1.52 \\ & 1.52 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.24 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.44 \\ & 2.44 \\ & 2.44 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.52 \\ & 0.52 \end{aligned}$	$\begin{aligned} & 116 \\ & 116 \\ & 116 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & 53 \\ & 53 \end{aligned}$	$\begin{aligned} & 139 \\ & 139 \\ & 139 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 63 \end{aligned}$
BFH-2	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{array}{r} 10.6 \\ 10.0 \\ 9.5 \end{array}$	$\begin{aligned} & 3.23 \\ & 3.05 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.8 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.95 \\ & 1.77 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 19.0 \\ & 18.0 \end{aligned}$	$\begin{array}{r} 5.85 \\ .5 .79 \\ 5.49 \\ \hline \end{array}$	$\begin{aligned} & 12.8 \\ & 11.7 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 3.90 \\ & 3.57 \\ & 3.29 \end{aligned}$	$\begin{aligned} & 220 \\ & 213 \\ & 208 \end{aligned}$	$\begin{array}{r} 100 \\ 97 \\ 94 \\ \hline \end{array}$	$\begin{aligned} & 264 \\ & 257 \\ & 252 \end{aligned}$	$\begin{aligned} & 120 \\ & 117 \\ & 114 \end{aligned}$
BFH. 3	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	$\begin{aligned} & 16.2 \\ & 15.0 \\ & 14.1 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 4.57 \\ & 4.30 \end{aligned}$	$\begin{array}{r} 11.9 \\ 10.9 \\ 9.9 \end{array}$	$\begin{aligned} & 3.63 \\ & 3.32 \\ & 3.02 \end{aligned}$	$\begin{aligned} & 30.4 \\ & 28.9 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 9.27 \\ & 8.81 \\ & 8.38 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 21.8 \\ & 19.9 \end{aligned}$	$\begin{aligned} & 7.28 \\ & 6.64 \\ & 6.07 \end{aligned}$	$\begin{aligned} & 322 \\ & 309 \\ & 299 \end{aligned}$	$\begin{aligned} & 146 \\ & 140 \\ & 136 \end{aligned}$	$\begin{aligned} & 389 \\ & 375 \\ & 364 \end{aligned}$	$\begin{aligned} & 176 \\ & 170 \\ & 165 \end{aligned}$
BFH-4	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{aligned} & \hline 21.7 \\ & 20.0 \\ & 18.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.61 \\ & 6.10 \\ & 5.67 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.6 \\ & 15.9 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.36 \\ & 4.85 \\ & 4.42 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5 \\ & 38.4 \\ & 36.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.65 \\ & 11.70 \\ & 11.22 \end{aligned}$	$\begin{aligned} & \hline 35.2 \\ & 31.8 \\ & 29.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.73 \\ 9.69 \\ 8.84 \\ \hline \end{array}$	$\begin{aligned} & 425 \\ & 405 \\ & 390 \\ & \hline \end{aligned}$	$\begin{aligned} & 193 \\ & 184 \\ & 177 \\ & \hline \end{aligned}$	$\begin{aligned} & 507 \\ & 493 \\ & 476 \\ & \hline \end{aligned}$	$\begin{aligned} & 259 \\ & 224 \\ & 216 \\ & \hline \end{aligned}$
BFH. 5	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	$\begin{aligned} & 27.3 \\ & 25.0 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 8.32 \\ & 7.62 \\ & 7.07 \end{aligned}$	$\begin{aligned} & 23.2 \\ & 20.9 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 7.07 \\ & 6.37 \\ & 5.79 \end{aligned}$	$\begin{aligned} & 52.7 \\ & 49.4 \\ & 46.1 \end{aligned}$	$\begin{aligned} & 16.06 \\ & 15.06 \\ & 14.05 \end{aligned}$	$\begin{aligned} & 46.4 \\ & 41.8 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 14.14 \\ & 12.74 \\ & 11.61 \end{aligned}$	$\begin{aligned} & 527 \\ & 515 \\ & 496 \end{aligned}$	$\begin{aligned} & 239 \\ & 234 \\ & 225 \end{aligned}$	$\begin{aligned} & 638 \\ & 610 \\ & 588 \end{aligned}$	$\begin{aligned} & 289 \\ & 277 \\ & 267 \end{aligned}$
BFH.6	$\begin{array}{r} 88 \\ 98 \\ 108 \\ \hline \end{array}$	$\begin{aligned} & 32.9 \\ & 30.0 \\ & 27.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.28 \\ 9.14 \\ 8.44 \\ \hline \end{array}$	$\begin{aligned} & 28.8 \\ & 25.4 \\ & 23.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.78 \\ & 7.74 \\ & 7.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 63.9 \\ & 59.3 \\ & 54.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.48 \\ & 18.07 \\ & 16.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 57.6 \\ & 51.9 \\ & 47.2 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 15.51 \\ & 14.39 \end{aligned}$	$\begin{aligned} & 631 \\ & 599 \\ & 574 \end{aligned}$	$\begin{aligned} & 286 \\ & 272 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & 763 \\ & 728 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 346 \\ & 330 \\ & 318 \\ & \hline \end{aligned}$
8FM. 7	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	$\begin{aligned} & 38.5 \\ & 35.1 \\ & 32.3 \end{aligned}$	$\begin{array}{r} 11.73 \\ 10.70 \\ 9.85 \\ \hline \end{array}$	$\begin{aligned} & 34.3 \\ & 30.9 \\ & 28.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.45 \\ 9.42 \\ 8.56 \\ \hline \end{array}$	$\begin{array}{r} 75.0 \\ 68.7 \\ 64.2 \\ \hline \end{array}$	$\begin{aligned} & 22.86 \\ & 20.94 \\ & 19.57 \\ & \hline \end{aligned}$	$\begin{aligned} & 68.7 \\ & 61.9 \\ & 56.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.94 \\ & 18.87 \\ & 17.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 734 \\ & 695 \\ & 663 \end{aligned}$	$\begin{aligned} & 333 \\ & 315 \\ & 301 \\ & \hline \end{aligned}$	$\begin{aligned} & 888 \\ & 846 \\ & 812 \\ & \hline \end{aligned}$	$\begin{aligned} & 403 \\ & 384 \\ & 368 \\ & \hline \end{aligned}$
BFH.8	$\begin{array}{r} 88 \\ 98 \\ 108 \end{array}$	$\begin{aligned} & 44.0 \\ & 10.1 \\ & 36.8 \end{aligned}$	$\begin{aligned} & 13.41 \\ & 12.22 \\ & 11.22 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 35.9 \\ & 32.7 \end{aligned}$	$\begin{array}{r} 12.19 \\ 10.94 \\ 9.97 \end{array}$	$\begin{aligned} & 86.2 \\ & 78.9 \\ & 73.2 \end{aligned}$	$\begin{aligned} & 26.27 \\ & 24.05 \\ & 22.31 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 71.9 \\ & 65.4 \end{aligned}$	$\begin{aligned} & 24.38 \\ & 21.92 \\ & 21.15 \end{aligned}$	$\begin{aligned} & 851 \\ & 805 \\ & 769 \end{aligned}$	$\begin{aligned} & 386 \\ & 365 \\ & 349 \end{aligned}$	$\begin{array}{r} 1028 \\ 979 \\ 940 \end{array}$	$\begin{aligned} & 466 \\ & 445 \\ & 426 \end{aligned}$

[^7]CIRCULARLY POLARIZED PANEL RADIATOR SPECIFICATIONS, BFB SERIES

ELECTRICAL SPECIFICATIONS							MECHANICAL SPECIFICATIONS										
Antomna Type	GAIN						Field Intensity ${ }^{1}$	Approx. Array Height ${ }^{3}$		Windload a $50 / 33$ PSF:				Weighr ${ }^{2}$			
	Horizontal			Vertical						Without Radome(s)		With Radome(s)		Wishout Radomen(s)		With	
	Powar	ds	Field	Power	ds	Field		FT	m	Les	KG	Los	KG	Les	KG	Les	K
BFP-1	0.46	-3.37	0.678	0.46	3.37	0.678	93.2	8	2.44	1425	647	1730	785	800	363	850	386
BFL-2	1.0	0	1.0	1.0	0	1.0	137.5	18	5.49	2835	1287	3445	1564	1500	621	1600	727
BFE-3	1.5	1.76	1.23	1.5	1.78	1.23	169.1	28	8.53	4240	1925	5155	2340	2300	1044	2450	1114
BFE-4	2.1	3.22	1.45	2.1	3.22	1.45	199.4	38	11.6	5725	2599	6945	3153	3200	1453	3400	1545
BFE-5	2.7	4.31	1.84	2.7	4.31	1.64	225.5	48	14.6	7640	3469	9160	4159	4000	1816	4250	1932
BFE-6	3.3	5.19	1.82	3.3	5.19	1.82	250.2	58	17.7	8655	3929	10485	4760	4700	2134	5000	2273
BFE-7	3.9	5.91	1.97	3.9	5.91	1.97	270.9	88	20.7	10745	4878	12880	5848	3600	2542	5950	2705
BFE-8	4.4	6.43	2.10	4.4	6.43	2.10	288.8	78	23.8	11990	5443	14430	6551	6400	2906	6800	3091
BFE-10	5.5	7.40	2.35	5.5	7.40	2.35	323.1	98	29.9	15600	7082	18650	8467	8000	3632	8500	3864
BFE-12	6.6	8.20	2.57	6.6	8.20	2.57	353.4	118	35.9	18560	8426	22220	10088	9500	4313	10100	4591
8FE-14	7.7	8.86	2.77	7.7	8.86	2.77	380.9	138	42.1	23430	10637	27700	12576	12000	5448	12700	5773
BFE-16	8.8	9.44	2.97	8.8	9.44	2.97	408.4	158	48.2	27110	12308	31990	14523	14200	6446	15000	6818

resentetive.
${ }^{3}$ See illustration, next page.

Accommodates Split-Feed System

The BFB- antenna is designed to operate with a single $3-1 / 8,4-1 / 16$ or $6-1 / 8$-inch coaxial transmission line between array input and transmitter. However, the array may be arranged to operate from two transmission lines from the transmitter so that, in the event of failure of some array component, the inoperable section can be switched out of service and operation continued, with circular polarization, from the other "half" of the array at reduced ERP until the outage is corrected. See block diagram, next page.

Power Rating Considerations

Two factors determine the power rating of a BFB- antenna array: each panel in an array has a 5 kW (rms) power-input limitation and an "equivalent peak-power" (EPP) rating of 22 kW . EPP is expressed as:
$E P P=\left(V P_{1}+V P_{2}+V P_{3} \ldots\right)^{2}$ where $P_{1}, P_{2}, P_{3} \ldots$ is the power (in watts) of each station sharing the array. For situations where all sharing stations have equal power EPP is expressed as:

$$
E P P=n^{2} P
$$

where n is the number of stations sharing and P the power of each station.

To illustrate, assume a 12 -layer array with three panels per layer or 36 panels with a power gain of 6.6 and a per-panel EPP of 22 kW Array:

$$
E P P=(36)(22)=792 \mathrm{~kW} .
$$

Thus, a 36 -panel array is rated at 792 kW EPP. The equivalent peak power of seven 100-kW ERP stations, each with 15.2 kW ($100 / 6.6$) into the array is:

$$
\text { Array } E P P=7^{2}(15.2)=745 \mathrm{~kW} \text {. }
$$

Therefore, a 12-layer, 36-panel array can handle seven 100-kW ERP stations, each with 15.2 kW of transmitter power. The rms power per panel is:

$$
P=7(15.2) / 36=2.96 \mathrm{~kW} \text { per panel. }
$$

Since the individual panel rating is $5 \mathrm{~kW}, 2.96 \mathrm{~kW}$ per panel is well within rating.

Specifications

Frequency Range ..88-108 MHz
Panel Bandwidth (Adjustable) \qquad
Power Input Rating (per panel) 5 kW rms; 22 kW EPP

ELECTRICAL SPECIFICATIONS								MECHANICAL SPECIFICATIONS										
Antenna Type	Power Input Rating kW	GAIN						Field ${ }^{1}$ Intensity	Approx. Array Height		WINDLOAD AT 50/30 PSF'				WEIGHT ${ }^{\text {d }}$			
		Horizontal			Vertical						Without Radomes		With Radomes		Without Radomes		With Radomes	
		Power	dB	Fiold	Power	dB	Fiold		$f f$.	M	Ibs.	kg	Ibs.	kg	Ibs.	kg	lbs.	kg
BFJ-1	10	. 46	-3.37	0.678	. 46	-3.37	0.678	93.3	7	2.13	705	320	775	352	610	277	650	295
BFJ-2	20	1.0	0	1.0	1.0	0	1.0	137.6	17	5.18	1410	640	1550	703	1220	553	1300	590
BFJ-3	30	1.5	1.76	1.23	1.5	1.76	1.23	169.2	27	8.23	2115	959	2325	1055	1830	830	1950	885
BFJ-4	40	2.1	3.22	1.45	2.1	3.22	1.45	199.5	37	11.28	2820	1279	3100	1406	2440	1107	2600	1179
BFJ-5	45	2.7	4.31	1.64	2.7	4.31	1.64	225.7	47	14.33	3525	1599	3875	1758	3050	1383	3250	1474
BFJ-6	45	3.3	5.19	1.82	3.3	5.19	1.82	250.4	57	17.37	4230	1919	4650	2109	3660	1660	3900	1769
BFJ-8	45	4.4	6.43	2.10	4.4	6.43	2.10	289.0	77	23.47	5640	2558	6200	2812	4880	2214	5200	2359
BFJ-10	45	5.5	7.40	2.35	5.5	7.40	2.35	323.4	97	29.57	7050	3198	7750	3515	6100	2767	6500	2948
BFJ-12	45	6.6	8.20	2.57	6.6	8.20	2.57	353.6	117	35.66	8460	3837	9300	4218	7320	3320	7800	3538

Effective free-space field intensity at one mile (1.609 kM) in millivol:s per meter for 1 kW antenna input power for either equivalent horizontaly polarized component of equivalen verrically polarized component.
Weights and windloads are calculated for three panels per layer on a triangular cross section towe

CENTEA OF RADATIONTEMM

SPLIT FEED SYSTEM

VERTICAL RADIATION PATTERNS, BFC SERIES

 broadcast stations using a Type BFB- Panel Antenna.

VERTICAL RADIATION PATTERNS, BFC SERIES

Antenna Type*	No, of Sections	Pattern Number	Power Gain**		$\mathbf{A}^{\text {Beam }}$	$B^{\text {a }}$	c*	$\begin{gathered} \text { Ist Null } \\ \text { D\% } \\ \hline \end{gathered}$	2nd Null E\%
BFC.1B	1	61667-DRW	. 46		0	84	-	5.0	-
BFC-2B	2	61667.ERW	1.0		0	30	-	0	-
BFC-3B	3	3-0.0	1.5		0	19.5	41.5	0	0
BFC-4B	4	61667-FRW	2.1		0	14.5	30.0	0	0
BFC-4B	4	4-0.10	2.1		0	14.5	30.0	10.0	0
BFC-4B	4	4-0.15	2.0		0	14.3	30.0	15.0	0
BFC-4B	4	4-1-10	2.0		1	15.7	30.0	10.0	2.0
BFC-5B	5	5-0-0	2.7		0	11.5	37.0	0	0
BFC-6B	6	6-0-0	3.2		0	9.6	19.5	0	0
BFC-6B	6	6-0.10	3.1		0	9.6	19.0	10.0	5.0
BFC-6B	6	6-0-12.5	3.14		0	9.8	19.0	12.0	6.0
BFC- 8 B	6	6-0.15	2.95		0	9.7	19.0	15.0	7.5
BFC.6B	6	6-05-11.5	3.1		0.5	10.3	19.0	11.0	4.5
BFC- $\mathrm{B}^{\text {B }}$	6	6-1.12-4	3.1		1.0	11.0	19.0	12.0	4.0
BFC.7B	7	7-0.0	3.8		0	8.2	16.5	0	0
BFC-8B	8	$8-0.0$	4.3	$\stackrel{0}{8}$	0	7.2	14.5	0	0
BFC-8B	8	8 8-0.5	4.3	8	0	7.2	14.5	5.0	3.0
BFC-8B	8	8-0.10	4.1		0	7.3	14.5	10.0	7.5
BFC.8B	8	8-0.15.5-11	3.95	.	0	7.5	14.0	15.0	11.0
BFC.8B	8	8-0.5-00	4.28	-	0.5	8.0	14.5	0	0
BFC.8B	8	8-0.75-00	4.22	※	0.75	8.2	14.5	0	0
BFC.8B	8	8-1.0-00	4.18	d	1.0	8.6	14.5	0	0
8FC-8B	8	8-0.5-10-6	4.1	-	0.5	7.9	14.5	10.0	6.0
BFC-8B	8	8-0.75-10-5.5	4.1		0.75	8.3	14.5	10.0	5.5
BFC-8B	8	8-1.0-10	4.1	O	1.0	8.6	140	10.0	6.5
BFC.8B	8	8-1.0-15	3.9	등	1.0	9.0	14.0	15.0	6.5
BFC-10B	10	$10-0.0$	5.5	$\stackrel{ \pm}{6}$		5.8	11.5	${ }^{0}$	
BFC.108	10	10-0-10-8.5-5.5	5.19	8	0	6.0	11.5	10.0	8.5
BFC.10B	10	10-0.5-0	5.44		0.5	6.4	11.5	0	0
BFC.10B	10	10-0.75-0	5.36	. 0	0.75	6.8	11.5	0	0
BFC.108	10	10-1.0-0	5.26	-	1.0	7.1	11.5	${ }^{0}$	0 70
BFC.10B	10	10-0.5-10-7	5.21	-	0.5	6.6	11.5	10.0	7.0
BFC-12B	12	12-0.0	6.6	2	0	4.8	9.6	0	0
BFC-12B	12	12-0.10-4	6.37		0	4.9	9.5	10.5	5.0
BFC.12B	12	12-0.5-0	6.48	.	0.5	5.5	9.5	0	0
BFC.12B	12	12-0.75-0	6.36	$\stackrel{\text { t }}{0}$	0.75	5.8	9.6	0	0
BFC-12B	12	12.1-0	6.19	$\stackrel{ }{>}$	1.0	6.1	9.6	${ }^{0}$	0
BFC.12B	12	12-0.3-6.5	6.50	\pm	0.3	5.1	9.7	6.5	0
BFC.12B	12	12-0.4-20-6	5.7	\pm	0.4	5.5	9.3	20.0	6.0
BFC-12B	12	12-0.5-11-6.4	6.3		0.5	5.4	10.0	11.0	6.5
BFC-12B	12	12-0.6-15-9	5.93		0.6	5.8	10.0	15.0	9.0
BFC.12B	12	12.1-10	6.0 6.0	年	1.0	6.2	9.6	10.0 13.0	${ }^{0} 6$
BFC.12B	12	12-1-13-6.5.7	6.0 5.78	¢	1.0 1.0	6.3 6.5	9.9 10.0	13.0 16.5	6.5 8.5
BFC.12B BFC.12B	12	12-1-17-9-9 $12-1.5-12$	5.78 5.53	$\stackrel{\square}{0}$	1.0 1.5	6.5 7.3	10.0 9.8	16.5 12.0	8.5 0
BFC-14B	14	14.0.0	7.8	$\stackrel{\square}{\circ}$	0	4.1	8.2	0	0
BFC-14B	14	14.0.10.6	7.52		0	4.2	8.2	10.0	6.0
BFC-14B	14	140.15	7.1		0	4.2	8.0	15.5	9.0
BFC-14B	14	140.5-0	7.64		0.5	4.7	8.2	0	0
BFC.14B	14	140.75-0	7.45		0.75	5.0	8.2	0	0
BFC-14B	14	14-1.000	7.19		1.0	5.5	8.2	${ }^{0}$	
BFC-14B	14	14-0.5-15	7.3 6.35		0.5	4.8	8.2 7.9	15.0 20.0	2.5
BFC-14B	14	14-0.5-20	6.35		0.5	5.2	7.9	20.0	7.5
BFC-14B	14	14-0.75-14	7.1		0.75	5.3	8.0	14.0	3.5 6.0
BFC.14B	14	14-1-10-6	7.2		1.0	5.4	8.4	10.0	6.0
BFC.16B	16	16-0.0	8.9		0	3.6	7.2	0	0
BFC.16B	16	16-0-10-7-3	8.46		0	3.6	7.1	10.5	7.0
BFC.16B	16	16-0.15-10-4	8.25		0	3.7	7.0	15.0	10.0
BFC.16B	16	16-0.25-0	8.85		0.25	4.0	7.1	2.0	2.0
BFC-16B	16	16-0.5-0	8.69		0.5	4.2	7.0	0	0
BFC-16B	16	16-0.75-0	8.41		0.75	4.6	7.2	0	0
BFC-16B	16	16-1.0-0	8.09		1.0	4.8	7.2	0 150	0
BFC-16B	16	16-0.75-15-3	8.1		0.75	4.7	7.1	15.0	3.0
BFC.16B	16	16-0.75-29	7.3		0.75	4.4	7.6	29.0	8.5

*Patterns listed apply to BFB, BFC, BFG, BFH and BFI antennes.
**Gain of main lobe.

VERTICAL RADIATION PATTERNS, BFC SERIES

FM ANTENNAS
 VERTICAL RADIATION PATTERNS, BFC SERIES

FM ANTENNAS

VERTICAL RADIATION PATTERNS, BFC SERIES

BFC-16 Pattern Number $16-0-0.5-0$

BFC-14 Pattern Number 14-0-18-10

BFC-16 Pattern Number 16-0.75-15-3

FM ANTENNAS
 AM/FM ISOLATION UNIT

Type BAF-15A (10kW)

Mechanical Specifications

VSWR	1.08 or better
Maximum Power FM	. 10 kW
Maximum Tower Base Voltage AM	. 10 kV Peak
Internal Capacitance at AM	130 PF
Insertion Loss0.1 dB max.
2nd Harmonic Rejection	. 70 dB
4th Harmonic Rejection	. 50 dB
6th Harmonic Rejection	. 30 dB
Arc Gap Setting at Factory	. 0.08 inches

Type BAF-16A (40 kW)

Mechanical Specifications

Maximum Power FM ... 40 kW	
Maximum Tower Base Voltage AM	14 kV Peak
Internal Capacitance at AM	130 PF
Insertion Loss	0.1 dB max.
2nd Harmonic Rejection	80 dB
4th Harmonic Rejection	.60 dB
th Harmonic Rejection	40 dB
Arc Gap Setting at Factory	0.08 inches

COAXIAL TRANSMISSION LINE

COAXIAL LINE TYPES AND SPECIFICATIONS

Nominal Diameter	Recommended Service	Coupling Device	$\begin{aligned} & \text { Pressure } \\ & \text { Tight } \end{aligned}$	Power $1 \mathrm{MHz}^{1}$	$\begin{aligned} & \text { Rating } \\ & 100 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { Effi- } \\ \text { ciency } \end{gathered}$	$\begin{aligned} & \text { Weight } \\ & \text { per } 100 \mathrm{Ft} \\ & \text { Lbs } / \mathrm{kg} \end{aligned}$	Type Number	Catalog Reference ${ }^{2}$
RIGID 50-0HM IMPEDANCE-TEFLON INSULATED									
	FM, VHF-TV	Unflanged	No	28.5			115/52	M1-561565	RA. 5011
31/8"	AM, FM, TV	Universal	Yes	94		2	$280 / 127$	M1-277910	RA. 5011
$31 / 8^{\prime \prime}$	AM, FM, VHF-TV	Unflanged	No	94	3	3	2301104	M1-27791K	RA. 5011
31/8"	FM, TV	Bolt Flange	Yes	94	\bigcirc	0	270/122	MI-19089	TR. 2301
61/8"	FM, VHF-TV	Unflanged	No			\&	625/284	MI-561579	RA. 5011
4-1/16"	FM, TV	Universal	Yes		¢	∞		MI-561673E	
4-1/16"	FM, VHF-TV	Unflanged	No					M1-561673K	

RIGID 51.5 OHM IMPEDANCE-STEATITE AND TEFLON INSULATED**

SEMI-RIGID 50-OHM IMPEDANCE-POLYETHYLENE INSULATED HELIAX—ANDREW CORP.

1/2' ${ }^{\prime \prime}$	AM, FM	Continuous ${ }^{3}$	Yes	2.5		n	24/11	HJ450	RA. 5011
7/8"	AM, FM	Continuous ${ }^{3}$	Yes	11.0	®	$\stackrel{\sim}{2}$	54/25	HJ5-50	RA. 5011
15/8' ${ }^{\prime \prime}$	AM, FM	Continuous ${ }^{3}$	Yes	36.25	\leq	$\frac{2}{3}$	104/47	HJ7-50	RA. 5011
$3^{\prime \prime}$	AM, FM	Continuous ${ }^{3}$	Yes	80.0	\checkmark	0	178/81	HJ8-50	RA. 5011
$4^{\prime \prime}$	AM, FM	Continuous ${ }^{3}$	Yes	122.5	\%	\&	250/114	HJ11-50	RA. 5011
$5^{\prime \prime}$	AM, FM	Continuous ${ }^{3}$	Yes	1.91.25	$\stackrel{\sim}{0}$	$\stackrel{\sim}{0}$	330/151	HJ9-50	RA. 5011

SEMI-RIGID 50-OHM IMPEDANCE-FOAM INSULATED HELIAX—ANDREW CORP.

3/8'	AM, FM	Continuous ${ }^{3}$	No		\%	む	$11 / 5$	FHJ2.50	RA. 5011
1/8"	AM, FM	Continuous ${ }^{3}$	No	4.75	\geq	2	16/7	LDF4-50	RA. 5011
$7 / 81$	AM, FM	Continuous ${ }^{3}$	No	11.0	3	3	33/15	LDF5-50	RA. 5011
$158^{\prime \prime}$	AM, FM	Continuous ${ }^{3}$	No	36.25	$\begin{gathered} \ddot{\sim} \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	140/64	FHJ7-50	RA. 5011

[^8]
COAXIAL TRANSMISSION LINE

RIGID COAXIAL LINE SPECIFICATIONS

Attenuation and Power Curves for Andrews 50-Ohm Air Dielectric Heliax at Unity VSWR

Attenuation and Power Curves for Andrews 50-Ohm Foam Heliax at Unity VSWR

Attenuation and Power Curves for Cablewave Air Wellflex Cable

Attenuation and Power Curves for Cablewave Foam Wellflex Cable

Foam Wellflex Cable Attenuation

Foam Wellflex Average Power Rating corrugated copper/50 ohm/Foam polyethylene dielectric

AUXILIARY BROADCAST SERVICES

FCC rules provide for the use of radio transmitting apparatus to supply a uxiliary services in connection with AM and FM broadcasting. These include:

Remote Pickup Mobile Stations, which may be used for relaying aural broadcast program material.

Remote Pickup Base Stations, used principally to provide communication with remote mobile stations, and for other uses under special circumstances. Equipment, frequency assignments, technical operation and channel availability are identical with those for the mobile stations. Base stations, however, are permanently installed at a fixed location and do not normally carry program material.

Studio-to-Transmitter Links, which are available to the licensees of AM and FM broadcast stations and are used to relay programs from the studio to the transmitter of the station. The licensee of both an AM and FM station may use the same STL for both stations. The STL may also be used to provide communication between studio and transmitter when no programs are being transmitted, or if multiplexing is employed, may be used for communication during program transmission.

Radio Order Circuits, which are authorized for use over remote pickup base stations for two-way communication
between the studio and transmitter of a broadeast station which has a radio STL. Radio order circuits are licensed for unlimited time operation, but their use is secondary to other needs for the same frequencies.

FM Inter-City Relay Stations, which are authorized only when suitable common carrier facilities are not available. Radio or wire lines may be used. Frequencies are the same as those used for broadcast STL's. Directional antennas are required, and they may be operated by remote control.

The brief explanations of FCC rules contained in this data book are intended to assist the reader in planning remote pickup and STL equipment, and should not be considered authoritative for every purpose. Reference should be made to the full text of Part 4 of the FCC rules to assure accuracy when necessary. Outside U.S.A., local rules should prevail.

Special Note: All transmitters marketed after August 31, 1977 shall be type accepted by the FCC for use under Auxiliary Broadcast Services.

STL AND INTERCITY RELAY FREQUENCIES

(Emission: 430-F-3; Frequency in MHz)

947.0	949.5
947.5	950.0
948.0	950.0
948.5	951.0
949.0	951.5

RADIO ORDER CIRCUIT FREQUENCIES

Group	Frequency	Type Emission
1	26.07	20-A-3 or
	26.11	$20-\mathrm{F}-3$

AUXILIARY BROADCAST SERVICES REMOTE PICKUP ALLOCATIONS AND AUTHORIZATIONS

The following groups of frequencies are allocated for assignment to remote pickup broadcast stations. A licensee may have one or more frequencies assigned for operation in the same area, but is limited within each "division" to assignments from a single "group".

Division	Group	Frequancies	Type Emission	Shared	Remarks
1	A	$\begin{aligned} & 1606 \mathrm{kHz}^{1} \\ & 1622 \mathrm{kHz}^{2} \mathrm{kHz} \\ & 1646 \end{aligned}$	10-A.3	No No No	
2	D	$\begin{aligned} & 25.87 \mathrm{MHz}^{2} \\ & 26.15 \mathrm{MHz}^{26.25} \mathrm{MHz} \\ & 26.35 \mathrm{MHz} \end{aligned}$	20-A.3/20-F.3	No No No No	
2	E	$\begin{aligned} & 25.91 \mathrm{MHz}^{2} \\ & 26.17 \mathrm{MHz}^{26.27} \mathrm{MHz} \\ & 26.37 \mathrm{MHz} \end{aligned}$	20-A-3/20-F-3	No No No No	
2	F	$\begin{aligned} & 25.95 \mathrm{MHz}^{2} \\ & 26.19 \mathrm{MHz}^{26.29 \mathrm{MHz}} \\ & 26.39 \mathrm{MHz} \end{aligned}$	20-A.3/20-F.3	No No No No	
2	G	$\begin{aligned} & 25.99 \mathrm{MHz}^{2} \\ & 26.21 \mathrm{MHz}^{26.31} \mathrm{MHz} \\ & 26.41 \mathrm{MHz} \end{aligned}$	20-A.3/20-F.3	No No No No	
2	H	$26.03 \mathrm{MHz}^{2}$ 26.23 MHz 26.33 MHz 26.43 MHz	20-A-3/20-F-3	No No No No	
3	1	$\begin{aligned} & 26.07 \mathrm{MHz}^{2} \\ & 26.11 \mathrm{MHz}^{26.45 \mathrm{MHz}} \end{aligned}$	20-A-3/20-F-3	No No No	When used for radio order circuits such use is secondary to all other permissible uses.
3	J	$\begin{aligned} & 26.09 \mathrm{MHz}^{2} \\ & 26.13 \mathrm{MHz} \\ & 26.47 \mathrm{MHz} \end{aligned}$	20-A-3/20-F-3	No No No	
4	K	$\begin{aligned} & 152.87 \mathrm{MHz}^{3}{ }^{8} \\ & 152.93 \mathrm{MHz}^{8} \\ & 152.99 \mathrm{MHz}^{2} \\ & 153.05 \mathrm{MHz} \\ & 153.11 \mathrm{MHz}^{2} \\ & 153.17 \mathrm{MHz}^{153.23} \mathrm{MHz} \\ & 153.29 \mathrm{MHz}^{2} \\ & 153.35 \mathrm{MHz} \end{aligned}$	30-A-3/60-F. 3	Yes Yes	Shared with Industrial Radio Services which have first priority on the frequencies.
	K2	$\begin{aligned} & 161.64 \mathrm{MHz}^{5} \&^{8} \\ & 161.67 \mathrm{MHz}^{8} \\ & 161.70 \mathrm{MHz}^{2} \\ & 161.73 \mathrm{MHz}^{2} 161.76 \mathrm{MHz}^{2} \end{aligned}$	$30-A \cdot 3 / 30-F-3$	Yes Yes Yes Yes Yes	
$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 166.25 \mathrm{MHz}^{4} \\ & 170.15 \mathrm{MHz}^{4} \end{aligned}$	$\begin{aligned} & 25-A-3 / 25-F-3 \\ & 25-A-3 / 25-F-3 \end{aligned}$	No No	
6	N_{1}	450.05 MHz 450.15 MHz 450.25 MHz 450.35 MHz 450.45 MHz 450.55 MHz 455.05 MHz 455.15 MHz $455.25 \mathrm{MHz}^{2}$ 455.35 MHz 455.45 MHz 455.55 MHz	50-A-3/50-F.3	No No	Program 2: Cues Program \& Cues

Division	Group	Frequencies	Type Emission	Shared	Remarks
6	$\mathrm{N}:$	450.0875 MHz 450.1125 MHz 450.1875 MHz 450.2125 MHz 450.2875 MHz 450.3125 MHz 450.3875 MHz 450.4125 MHz 450.4875 MHz	50-A.3/50-F.3	No No	Comm., Program Materials \& Cues Comm,, Program Moterials \& Cues Comm., Program Materials \& Cues Comm., Program Materials \& Cues Comm., Program Materials \& Cues
		450.5125 MHz 450.5875 MHz 450.6125 MHz 455.0875 MHz 455.1125 MHz 455.1875 MHz 455.2125 MHz 455.2875 MHz 455.3125 MHz 455.3875 MHz 455.4125 MHz 455.4875 MHz 455.5125 MHz 455.5875 MHz 455.6125 MHz	50-A.3/50-F-3	No No	Comm., Program Materials \& Cues Comm., Pragrom Materials \& Cues
7	P	$450.01 \mathrm{MHz}^{6}$ 450.02 MHz 450.98 MHz 450.99 MHz 455.01 MHz 455.02 MHz 455.98 MHz 455.99 MHz	10-A.3/10-F.3		Tone Signalling OPR. Comm., TSL Tone Signalling OPR. Comm., TSL
8	R	$450.650 \mathrm{MHz}^{7}$ 450.700 MHz 450.750 MHz 450.800 MHz 450.850 MHz 455.650 MHz 455.700 MHz 455.750 MHz 455.800 MHz 455.850 MHz	50-A-3/50-F. 3		Program Pragram Program Pragram Pragram Program Pragram Program Pragram Program
8	S	$\begin{aligned} & 450.925 \mathrm{MHz}^{7} \\ & \text { 455.925 } \mathrm{MHz}^{2} \end{aligned}$	100-A-3/100-F. 3		Special Wideband Pragram Material Special Wideband Pragram Material

${ }^{1}$ Subiect to the condition that no harmful interference is caused to the reception of standard broadcast stations.
subiect to the condition that no harmful interference is caused to the reception of broadcasting stations.
s Subiect to the condition that no harmful interference is caused to stations operating in accordance with the Table of Frequency Allocations set forth in Part 2 of FCC Rules and Regulations.

- Ooeration on the frequencies 166.25 MHz and 170.15 MHz is not authorized (1) within the area bounded on the west by the Mississipoi River, on the north by the darallal of latitude $\quad 37^{\circ} 30^{\prime} \mathrm{N}$., and on the east and south bu that arc of the circle with center at Sorinafield. Ill., and radius equal to the airline distance between Soringfield, III., and Mantgomery, Alabama, subtended

150 miles of New York City; and (III) in Alaska or outside the continental United States; and is subject to the condition that continental inited harmful inferference is caused to government radio stations no harmful inferference
in the band $162-174 \mathrm{MHz}$.
sThese frequencies mav not be used by remote pickup stations in Puerto Rico or the Virgin Islands.
The use of these frequencies is limited to operational communications, including tone and signalling transmissions.
The use of thece frequencies is limited to the transmission of prooram material and cues and orders immediately necessary proaram
thereto.
*Freauencies in Group K_{1} and K_{2} will not be licensed to network entities. Frequencies in Group K_{1} will not be authorized to new stations for use on board aircraft.

USES AUTHORIZED FOR BROADCAST REMOTE PICKUP

Broadcasters may use remote pickup stations at their discretion and the choice does not depend on whether or not wire lines are available.
Remote pickup broadcast stations may be used for:
(A) Transmission of AM, FM, or the aural portion of TV program material originating outside a regular studio. (Normally only Mobile stations are used)
(B) Orders and related communications directly concerning such transmissions.
(Both Base and Mobile stations may be so used)
They may not be used to provide mobile telephone systems to station personnel.
(C) Emergency program or order circuits from studios in the event of failure of regular wire circuits.
(Both Base and Mobile stations may be so used)
They may not be so used on a regular basis.
(D) Coordination of the activities of portable or mobile stations.
(E) Two-way communication between the studio and transmitter of a broadcast station which has a radio STL. (Base stations only)
(F) Mobile communications in connection with adjustment and maintenance of antenna system, or in connection with field intensity surveys. (Both Base and Mobile stations may be so used) Authorized only under STA.
(G) In Alaska, Hawaii, Puerto Rico and Virgin Islands for Intercity Relay and STL.
(Both Base and Mobile stations may be so used)
(H) Low power broadcast auxiliary stations such as: cue and control signal transmitters and wireless microphones.

This somple form contoins information for both the Model PCL-505 MonSTL APPLICATION (FCC FORM 313)
aural STL and Model PCL-505/C Composite Stareo STL. Bracketed [] information opplies only to the Model PCL-505/C Composite Stereo STL.

1 For amplitude modulation television (A5), give maximum antenna input power during synchronizing pulses. If particulars are not fully described above, such as aural and visual carrier frequencies for television and type of emission. etc., supply this information here:
${ }^{2}$ Use emission symbols listed in Part 2 of Commisaion's Rules.
${ }^{3}$ Communication bandwidth is the actual bandwidth of the emission plus twice the frequency tolerance. (See appropriate service rules for permissible bandwidth.)

| 4. Location of proposed transmitter | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (a) For stations with fixed location | State | (h) Receiving point (See Instruction G) |
| City | County | City |
| Street and number (or other description of location) | | |

[^9]SAMPLE REMOTE PICKUP OR STL APPLICATION (FCC FORM ${ }^{313)}$

This sample form contains information for both the Model PCL-505 Mon aural STL and Model PCL-505/C Composite Stereo STL. Bracketed [] information applies only to the Madel PCL-505/C Composite Stereo STL.

THE APPLICANT hereby waives any claim to the use of any particular frequency or of the ether as against the regulatory power of the United States because of the previous use of the same, whether by license or otherwise, and requests an authoriza tion in accordance with this application. (See Section 304 of the Communications Act of 1934.) THE APPLICANT represents that this application is not filed for the purpose of impeding, obstructing, or delaying determination on any other application with which it may be in conflict. THE APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations, and that all the exhibits are a material part hereof and are incorporated herein as if set out in full in the application.

CERTIFICATION

I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belicf, and are made in good faith.

Signed and dated this \qquad day of \qquad . 19 \qquad (NAME OF APPLICANT)

The following information will assist in completing Section 3 (Facilities Requested) of FCC Form 313 for the-Model PCL-505 Aural STL.

MODEL RPL-3A FOR 148-174 MHz

Notes: 1. When the RPL-3A is to be used with the Model AMP-3A RF Power Amplifier, use information shown in parentheses ().
2. Designator selection depends upon operating channel (See FCC 74.402).

Notes: 1. When the RPL-3A is to be used with the Model AMP-3A RF Power Amplifier, use informotion shown in porentheses ().
2. Designotor selection depends upon operoting chonnel (See FCC 74.402).

BROADCAST APPLICATION (Form 313)		Print Pago 2				
		amiting opporews proposod to bo in frollo				
(a) Des cription (including manutacturer end type number, if eny)		Manufacturer Moseley Associates, Inc.	$\left\|\begin{array}{\|c}\text { Type No. } \\ \text { RPL } \\ \text { R. } \\ (+ \text { AMP- } \\ \text { AMA }\end{array}\right\|$			
Is a directional antenna system to be used? . . . YES \square NO \square preferably in terms of free-space field in millivolts per meter for 1 kilowatt at 1 mile.						
		Tuber:				
Direction of radiation of the main lobe of the tranamitting antenna indegrees, measured in a clockwise direction with true north as zeroazimuth. (If more than one antenna is used, give direction for azimuth		Make various	Type2N4259 or equiv.	Number		
		Later radio otoge.				
		Tubes				
(b) Supply the following for ineed installations only:		${ }_{\text {Make }}^{\text {Mat }}$ or equiv.	$\begin{aligned} & \begin{array}{l} \text { Type2N5946 } \\ (\mathrm{JO}-3040) \end{array} \\ & \hline \end{aligned}$	${ }^{\text {Number }} 1$		
$\begin{aligned} & \text { Overall height to top } \\ & \text { of apporting atructure, } \\ & \text { including all appurtenance } \end{aligned}$	(Veraill heiligh above mean sea					
		Nomat totan plate current in lat tradio tase $1.6 \mathrm{amps}(4 \mathrm{amps})$	$\left\|\begin{array}{c} \text { Palation vitato } \\ (11.5 \\ (13.5 \mathrm{VDC} \end{array}\right\|$			
Description and height of supporting tructure now existent and that to be erected.) Attach a No.Nignificant portionsetch of vertical plan, ahowing heights of		7. Froquency ond modulation For what percemitage of modulation or swing it tho tran milter detimedp $\pm 5 \mathrm{kHz}=100 \%$ modulation				
		What to the Euaranteed frequency tolerence in percemt?0.00025%				
		Describe means incorporated in the tran mitter for maintaining the irequency tolerence steted bove. crystal temperature compensated				
(c) Is supporting structure to be used in common for the antenna system of another class of station? yes No \square Cless of station(s) Call lettera		What external means will be employed by the applicant to insure that the assioned frequency is ma by the Commitelion's Rules?				

THE APPLICANT hereby waives any claim to the use of any particular frequency or of the ether as against the regulatory power of the United States because of the previous use of the same, whether by license or otherwise, and requests an authoriza tion in accordance with this application. (See Section 304 of the Communications Act of 1934.) THE APPLICANT represents that this application is not filed for the purpose of impeding, obstructing, or delaying determination on any other application with which it may be in conflict. THE APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations, and that all the exhibits are a material part hereof and are incorporated hercin as if set out in full in the application.

CERTIFICATION

I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belicf, and are made in good faith.

Signed and dated this \qquad day of \qquad . 19 \qquad
(NAME OF APPLICANT)
WILLFUL FALSE STATEMENTSMADE
ON THIS FORM ARE PUNISHABLE BY
FINEAND IMPRISONMENT. U.S. CODE,
TITLE 18 SECTION 1001 .

By (SIGNATURE)

Title
Exhibits fumished as required by this form:

Exhibit No.	Para. No. of Form	Name of officer or employee (1) by whon, or (2) under whose direction exhibit was prepared (show which)	Officinl title

Notes: 1. When the RPL-4A is to be used with the Model AMP-4A RF Power Amplifier, use information shown in parenthese ().
2. Designator selection depends upon operating channel (See FCC 74.402).

t For amplitude modulation television (A5), glve maximum entenns input power during synchronizing pulses. If particulars are not fully describud above, such as aural and viaual carrier frequencles for television and type of emisaion, etc., supply this information here:

2Use emberion symbols listed in Part 2 of Commi sion's Rule
3 Communicetion bandwidth is the actual bendwidth of the emission plus twice the frequency tolerance. (See appropriate servlce rulea for permissible bandwidth.)
4. Locotion of proposed tronsmitier

MODEL RPL-4A FOR 450-470 MHz

Notes: 1. When the RPL-4A is to be used with the Model AMP.4A RF Power Amplifier, use informotion shown in porenthese ().
2. Designotor selection depends upon operoting channel (See FCC 74.402).

THE APPLICANT hereby waives any claim to the use of any particular frequency or of the ether as against the regulatory power of the United States because of the previous use of the same, whether by license or otherwise, and requests an authoriza tion in accordance with this application. (See Section 304 of the Communications Act of 1934.) THE. APPLICANT represents that this application is not filed for the purpose of impeding, obstructing, or delaying determination on any other application with which it may be in conflict. THE APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations, and that all the exhibits are a material part hereof and are incorporated hercin as if set out in full in the application.

CERTIFICATION

I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belicf, and are made in good faith.

Signed and dated this \qquad day of \qquad .19 \qquad

WILLFUL FALSESTATEMENTS MADE ON THIS FORM ARE PUNISHABLE BY FINE AND IMPRISONMENT. U.S. CODE, TITLE 18 SECTION 1001.		By	
Exhibits fumished as required by this form			
Exhiblt No.	Para. No. of Form	Name of officer or employee (1) by whorr or (2) under whase direction exhibit was prepared (Ehow which)	Officinl title

REFERENCE DATA
FM BROADCAST STATION CLASSES \& FREQUENCIES

Channel No.	Frequency	For Class	Channel No.	Frequency	For Class
201	88.1 MHz	\dagger	251 *	98.1 MHz	B-C
202	88.3 MHz	\dagger	252*	98.3 MHz	A
203	88.5 MHz	\dagger	253*	98.5 MHz	B-C
204	88.7 MHz	\dagger	254*	98.7 MHz	B-C
205	88.9 MHz	\dagger	255*	98.9 MHz	B-C
206	89.1 MHz	\dagger	256*	99.1 MHz	B-C
207	89.3 MHz	\dagger	257*	99.3 MHz	A
208	89.5 MHz	\dagger	258*	99.5 MHz	B-C
209	89.7 MHz	\dagger	259*	99.7 MHz	B-C
210	89.9 MHz	\dagger	260*	99.9 MHz	B-C
211	90.1 MHz	\dagger	261*	100.1 MHz	A
212	90.3 MHz	\dagger	262*	100.3 MHz	B-C
213	90.5 MHz	\dagger	263*	100.5 MHz	B-C
214	90.7 MHz	\dagger	264*	100.7 MHz	B-C
215	90.9 MHz	\dagger	265*	100.9 MHz	A
216	91.1 MHz	\dagger	266*	101.1 MHz	B-C
217	91.3 MHz	\dagger	267*	101.3 MHz	B-C
218	91.5 MHz	\dagger	268*	101.5 MHz	B-C
219	91.7 MHz	\dagger	269*	101.7 MHz	A
220	91.9 MHz	\dagger	270*	101.9 MHz	B-C
221	92.1 MHz	A	271*	102.1 MHz	B-C
222	92.3 MHz	B-C	272*	102.3 MHz	A
223	92.5 MHz	B-C	273*	102.5 MHz	B-C
224	92.7 MHz	A	274*	102.7 MHz	B-C
225	92.9 MHz	B-C	275*	102.9 MHz	B-C
226	93.1 MHz	B-C	276*	103.1 MHz	A
227	93.3 MHz	B-C	277*	103.3 MHz	B-C
228	93.5 MHz	A	278*	103.5 MHz	B-C
229	93.7 MHz	B-C	279*	103.7 MHz	B-C
230	93.9 MHz	B-C	280*	103.9 MHz	A
231	94.1 MHz	B-C	281*	104.1 MHz	B-C
232	94.3 MHz	A	282*	104.3 MHz	B-C
233	94.5 MHz	B-C	283*	104.5 MHz	B-C
234	94.7 M Hz	B-C	284*	104.7 MHz	B-C
235	94.9 M Hz	B-C	285*	104.9 MHz	A
236	95.1 M Hz	B-C	286*	105.1 MHz	B-C
237	95.3 MHz	A	287*	105.3 MHz	B-C
238	95.5 MHz	B-C	288*	105.5 MHz	A
239	95.7 MHz	B-C	289*	105.7 MHz	B-C
240	95.9 MHz	A	290*	105.9 MHz	B-C
241	96.1 MHz	B-C	291*	106.1 MHz	$B-C$
242	96.3 MHz	B-C	292*	106.3 MHz	A
243	96.5 MHz	B-C	293*	106.5 MHz	B-C
244	96.7 MHz	A	294*	106.7 MHz	B-C
245	96.9 MHz	B-C	295*	106.9 MHz	B-C
246	97.1 MHz	B-C	296*	107.1 MHz	A
247	97.3 MHz	B-C	297*	107.3 MHz	B-C
248	97.5 MHz	B.C	298*	107.5 MHz	B-C
$249{ }^{\circ}$	97.7 MHz	A	299**	107.7 MHz	B-C
250	97.9 MHz	B-C	300*	107.9 MHz	B-C

[^10]H-Height in feet to Electrical center of antenna
D_{b}-Distance to horizon $=\sqrt{2 \mathrm{H}}$ (4/3 earth radius)
A_{h}-Depression angle to horizon $=\frac{.0216 \mathrm{H}}{D_{h}}$

The relationship $D=.0109 \mathrm{H}$
gives approximate distances to intercept at various depression angles.

	D_{b}	A_{B}	Depression Angle																			
			$0.5{ }^{\circ}$	1°	$1.5{ }^{\circ}$	$2{ }^{\text {- }}$	$2.5{ }^{\circ}$	3°	$3.5{ }^{\circ}$	4°	$4.5{ }^{\circ}$	5°	6°	$7{ }^{\circ}$	8°	$9{ }^{\circ}$	10°	11°	12°	13°	14°	15°
200	20.0	. 216	4.6	2.21	1.45	1.07	0.86	0.71	0.61	0.54	0.48	0.43	0.36	0.31	0.27	0.24	0.22	0.20	0.18	0.17	0.15	0.14
300	24.5	. 268	7.2	3.35	2.18	1.64	1.30	1.07	0.92	0.80	0.71	0.64	0.55	0.46	0.41	0.37	0.33	0.30	0.27	0.25	0.23	0.21
400	28.3	. 304	9.9	4.49	2.90	2.18	1.75	1.42	1.24	1.06	0.94	0.86	0.73	0.62	0.54	0.49	0.46	0.40	0.36	0.33	0.31	0.29
500	31.6	. 343	12.6	5.60	3.65	2.72	2.16	1.82	1.55	1.36	1.21	1.09	0.92	0.78	0.68	0.61	0.55	0.50	0.45	0.42	0.39	0.36
600	34.6	. 375	16.0	6.81	4.8	3.61	2.64	2.15	1.86	1.63	1.42	1.31	1.09	0.92	0.81	0.73	0.65	0.59	0.54	0.50	0.46	0.43
700	37.4	. 405	19.9	7.98	5.2	3.87	3.08	2.54	2.16	1.90	1.68	1.50	1.25	1.06	0.94	0.83	0.74	0.68	0.62	0.57	0.53	0.50
800	40.0	. 435	24.2	9.2	5.9	4.49	3.52	2.89	2.50	2.17	1.90	1.75	1.45	1.22	1.05	0.97	0.86	0.78	0.72	0.67	0.61	0.58
900	42.4	. 452	29.5	10.5	6.7	5.05	3.98	3.28	2.80	2.45	2.13	1.96	1.62	1.36	1.19	1.09	0.97	0.88	0.81	0.75	0.69	0.65
1000	45.0	. 487	36.2	11.6	7.4	5.51	4.39	3.65	3.10	2.70	2.39	2.15	1.79	1.52	1.32	1.18	1.08	0.98	0.90	0.83	0.77	0.72
1200	49.0	. 530	-	14.1	9.0	6.75	5.32	4.39	3.77	3.19	2.85	2.61	2.15	1.81	1.59	1.44	1.29	1.18	1.08	1.00	0.92	0.87
1400	53.0	. 577	-	16.7	10.4	7.66	6.12	5.13	4.33	3.77	3.35	3.00	2.48	2.11	1.85	1.63	1.45	1.36	1.24	1.15	1.06	1.00
1600	56.6	. 620	-	19.4	12.0	9.10	7.10	5.85	5.02	4.35	3.80	3.40	2.84	2.40	2.13	1.91	1.72	1.55	1.44	1.32	1.23	1.16
1800	60.0	. 650	-	22.3	13.6	10.25	8.00	6.60	5.65	4.90	4.30	3.90	3.19	2.69	2.39	2.15	1.94	1.75	1.62	1.48	1.38	1.30
2000	63.2	. 683	-	25.4	15.4	11.25	8.89	7.30	6.25	5.45	4.80	4.30	3.60	3.04	2.68	2.38	2.13	2.00	1.83	1.70	1.56	1.46
5000	100.0	1.080	-	-	42.9	29.5	22.80	18.75	15.85	13.75	12.10	10.90	9.01	7.75	6.73	6.00	5.40	4.90	4.50	4.15	3.84	3.60

REFERENCE DATA

FM RANGE CHART

The ground wave signal range chart, shown on the following page, is intended to be used for determining approximate coverage of FM broadcast stations operating in the $88-108 \mathrm{MHz}$ band. The effect of transmitting antenna height and radiated power on field strength is indicated, and field strength vs. distance from the transmitting antenna is also shown.

To find the approximate radius of an area within a given field strength contour, proceed as follows:

1. Determine field strength in $\mu \mathrm{V} / \mathrm{m}$ required and find this figure along extreme right-hand vertical column.
2. Follow the diagonal line corresponding to required field strength until it intersects with the vertical line representing radiated power.
3. From this point, lay a ruler or straight edge across the chart and along the vertical line corresponding to antenna height, read distance in miles to the $\mu \mathrm{V} / \mathrm{m}$ contour selected.

The chart may also be used to find the value of radiated power required to cover a given area.

For example:
Find radiated power required to produce $1000 \mu \mathrm{~V} / \mathrm{m}$ signal at a distance of 30 miles with an antenna 500 feet high.

1. From the 500 foot mark on the "antenna height" scale, follow the vertical line upwards and locate the 30 mile point.
2. Lay a ruler or straight-edge across the chart from this point, taking care that the ruler is parallel with the bottom edge of the chart.
3. Mark the point where the ruler intersects with the diagonal line representing $1000 \mu \mathrm{~V} / \mathrm{m}$ and then from this point, place the ruler vertically on the chart and read approximately 30 kW radiated power on the scale at the upper right of the chart.

REFERENCE DATA

FM ESTIMATED FIELD STRENGTH CHART

FM CHANNELS
ESTIMATED FIELD STRENGTH EXCEEDED AT 50 PERCENT
CF THE POTENTIAL RECEIVER LOCATIONS FOR AT LEAST 50 PERCENT
OF THE TIME AT A RECEIVING ANTENNA HEIGHT OF 30 FEET
*Field Strength (F) in Decibels Above One Microvalt Per Meter for One Kilowatt Radiated Power.

FCC Par. 73.333, Figure 1 (Ed. 8/76)

SMPIE,LOS ANGELES TOFOCUS ON PRODUCTION AND POST PRODUCTION

This month's 121 st Conference of the SMPTE will take on a decidedly international flavor and reflect the growing importance of television and electronics.

WHEN THOUSANDS OF Socicty engineers gather at the Century Plaza in Los Angeles later this month for the 121st Conference of the SMPTE, they will indulge in one of the largest and most comprehensive programs ever put together by this organization. Those members who have attended these conferences regularly will find some significant changes that reflect the way the motion picture and television industries themselves are changing.

Of the 91 papers scheduled for presentation, more than half will relate directly to television and electronics, reflecting the growing role that these technologies are playing in Hollywood as well as the rest of the country. Moreover, the growing importance of the international television and film industries is reflected by the great number
of papers authored by representatives from Japan, Germany, England, Belgium, France, and other countries. A panel discussion scheduled for Wednesday morning (October 24) will feature a report on the state of the television and film industries in the People's Republic of China.

The broadening of the industry into consumer and industrial markets will also be reflected in sessions devoted to these two growing areas.

With more than 150 exhibitors scheduled to appear in Los Angeles, the increased importance of the Society's membership to manufacturers is reflected. The exhibits will add an important dimension to papers presented as delegates will be able to adjourn from the papers to the exhibit floors and find practical representations of the latest

[^11]
List Of SMPTE Exhibitors

Booth\# Exhibitor
Santa Monica Room (section A)

101-103	Convergence
104,105	Canon
106,107	NEC
108	Rank Cintel
109	Rank Precision
110	Chrosziel/Film-Technic
$111-113$	Matthews
114	Strand Century
116	Cinema Products
$124-126$	Oxberry
127	Listec
128,129	Multi-Track
130,131	General Electric

Los Angeles Room (Section B)
201-204 3M Co.
205,206 Bosch Fernseh
207,208 Lenco
209-211 Fujinon
212,213 Ampex
214,215 Vital
216 Agfa-Gevaert
217 JVC
219 Ampex
225-227 TeleMation
230-237 Philips
238,239 Tektronix
240,241 Grass Valley
242,243 Datatron
244 Fuji
continued on page 108
the terrain roughness factor exceeds 50 meters the predicted coverage will be reduced.

The effective radiated power in kilowatts is entered, followed by pressing key C . The ERP is the power delivered to the antenna multiplied by the antenna gain relative to a half-wave dipole. Section 73.684 (c) specifies details including consideration of depression angles.

Next the field strength is specified and the calculator determines the distance. Enter $\mathrm{dBu} / \mathrm{m}$ and press key E or enter mV / m and press key D . The mV / m value will be converted to $\mathrm{dBu} / \mathrm{m}$ followed by the calculation of the distance in miles. The field strengths designated for various grades of service are shown in Figure 2. These field strengths are the value occuring at a receiving antenna height of 30 feet. The field strength should be exceeded at 50 per cent of the locations, 50 per cent of the time at the distance calculated.

The curve-fit equation was developed for the area of the field strength charts between 0 and $80 \mathrm{dBu} / \mathrm{m} / \mathrm{kW}$ on the left hand vertical axis. Therefore, following key D or E the calculator will stop and indicate an error display condition if the $\mathrm{dBu} / \mathrm{m} / \mathrm{kW}$ value is outside this region. Calculations may be resumed by pressing R/S (TI-59) or pressing E twice (HP-67/97) and a distance answer will be obtained. In this case the answer should be checked against the field intensity chart to insure accuracy. Most predictions of a practical nature will fall in the 0 and $80 \mathrm{dBu} / \mathrm{m} / \mathrm{kW}$ region and the error warning will not occur.

A discussion of the accuracy of the calculator results must cover several aspects. Since the basic intent is to duplicate the FCC field intensity charts, the coverage predictions will be no more accurate than the FCC techniques. The basic concern here is not the accuracy of the FCC techniques, but how accurately the calculator programs duplicate the FCC result.

To analyze the accuracy, 100 test points were selected to evenly cover the most used area of the field strength charts. These points are at intersections of specific mileage curves so that interpolation is not required. See Figure 3 for typical test point locations. When one kilowatt ERP is used, the $\mathrm{dBu} / \mathrm{m}$ values of each test point should yield the corresponding mileage. The percent error of computed distance for each point was used to construct the histograms of Figure 4. These histograms allow an estimate of the probability of achieving a specified accuracy. For instance, for Chs. 7-13,97 per cent of the points have less than 3.5 per cent error.
The 100 test points also allow identification of the areas of the chart where the curve-fit equation has greatest er-
ror. For instance, the FM and TV Ch. 2-6 error distribution shows four points grouped around five percent error. Three of these are at 5000 feet antenna height and 10,30 , and 40 miles distance, which is a little-used area. The fourth point is 4.6 percent error at 1600 feet antenna height and 10 miles. The TV Ch. 7-13 error distribution shows three points with greater than 3.5 percent error. The largest error of 5.6 percent occurs at 2400 feet and 20 miles. At 140 feet and 50 miles the error is 4.5 percent and at 1200 feet and 14 miles the error is 4 percent. The technique of
least squares curve fit reduces slightly the curvature and smoothes out the 20 -mile line on the $\mathrm{Ch} .7-13$ chart.

These approximations of the FCC coverage prediction techniques may not have suitable accuracy for formal submission to the Commission, but their ease and speed are very useful. Tradeoff studies of changes in power of antenna height are now much quicker and the difficulties of interpolation between mileage curves are eliminated. The convenience of performing predictions with only a calculator and magnetic cards is refreshing.

BM/E

Broadcast media teams must be ready at a moment's notice. With Christie's integrated system; the REFLEX 20 Charger and sempiternal ni-cad battery packs, there is virtually no wait. Recharge? The fastest in the industry. 12 to 20 minutes and you're completely charged
Because of the revolutionary "burping" system the batteries remain cool, their cycle life is extended up to 10 times that of conventional ni-cads and 50 times that of other rechargeable batteries.
The Christie System ... reliable, effective and $90-97 \%$ efficient

50 years experience plus reFLEX 20 makes you: CHRISTIE-READY.

3410 WEST GTH STREET. DEPT. V LOS ANGELES, CALIFORNIA 90043 (213) 750-1151 TWX 910-321-3867 Write for valuable new information or call toll free (800) $421 \cdot 2058$

It's easy to make lightweight lights. The trick is to make them strong as well as light. Lowel uses a great deal of high-strength aircraft aluminum. It's not only $1 / 3$ the weight of common steel, but stronger and more resilient. That's one reason our equipment is so remarkably rugged yet light... with an exceptional watt-to-weight ratio.
Besides being lighter lights, they're also brighter lights. This is because of unique reflectors. Years of research and testing have resulted in designs like our double parabolic and patented guli-wing configurations. Reflectors with special embossed surfaces for optimum intensities and smooth beam patterns. You'll be glad we make high performance, durable, lightweight systems-all the way to the location and back.
For equipment see an authorized Lowel dealer. For brochures contact us. Lowel-Light Manufacturing Inc. 421 West 54th St., N.Y., N.Y. 10019 (212)245-6744. West Coast: 3407 W. Olive Ave., Burbank,Ca. $91505(213) 846-7740$

FCC 50,50

tenna site to determine the average terrain. Enter the height above average terrain in feet and press calculator key A.

For the current practice of no terrain roughness correction simply press calculator key B. The programs, however, have the option of adjusting the coverage distance for the terrain shape by use of the terrain roughness correction technique in sections 73.684 (h), (i), (j), (k), and (l). Inputs to the formula in FCC 73.684 (1) are frequency in mHz and terrain roughness factor in meters.

For FM the frequency is entered and keys 2nd, C (TI-59) or f,c (HP-67/97) are pressed. For TV the channel number is entered and keys $2 n d$, A or f, a are pressed. The calculator program will automatically use the visual carrier frequency of the channel selected. The terrain roughness factor is defined in 73.684 (h) as 'the difference, in meters, between elevations exceeded by all points on the profile for 10 percent and 90 percent, respectively, of the'' path between six and 31 miles from the transmitter. This is illustrated by FCC 73.699 , Figure 10 d . The terrain roughness factor is entered and keys $2 \mathrm{nd}, \mathrm{B}$ or f, b are pressed. When

FM And TV Coverage Predictions Using Programable Calculators

The FCC FM and TV field intensity charts can be approximated by the equation described below
$\mathrm{D}=$ distance in miles
HAT = transmitting antenna height in feet $y=$ field strength in dBu/m for one kilowatt $x=1 n(H A T)$
$\mathrm{a}_{\mathrm{ij}}=$ constant coefficients
D $=e^{z}$
$z=a_{11}+a_{12} x+a_{13} x^{2}+a_{14} x^{3}+a_{15} x^{4}+$
$\left[a_{21}+a_{22} x+a_{23} x^{2}+a_{24} x^{3}+a_{25} x^{4}\right] y+$
$\left[a_{31}+a_{32} x+a_{33} x^{2}+a_{34} x^{3}+a_{35} x^{4}\right] y^{2}+$
$\left[a_{41}+a_{42} x+a_{43} x^{2}+a_{44} x^{3}+a_{45} x^{4}\right] y^{3}+$
$\left[a_{51}+a_{52} x+a_{55} x^{2}+a_{54} x^{3}+a_{55} x^{4}\right] y^{4}$
Coefficients for FM and TV Ch. 2-6 $(50,50)$

3.68	5.368×10^{-1}	-9.454×10^{-2}	6.257×10^{-3}	0
1.1654	-7.2486×10^{-1}	1.6038×10^{-1}	-1.5565×10^{-2}	5.6445×10^{-4}
-9.2989×10^{-2}	5.5882×10^{-2}	-1.2486×10^{-2}	1.2408×10^{-3}	-4.6425×10^{-5}
1.8513×10^{-3}	-1.1238×10^{-3}	2.5306×10^{-4}	-2.534×10^{-5}	9.565×10^{-7}
-1.1158×10^{-5}	$6.8286 \times 10^{-6}-1.5485 \times 10^{-6}$	1.5598×10^{-7}	-5.9243×10^{-9}	
Coefficients for TV Ch. $7-13(50,50)$				

$-1.0853 \times 10^{-1} \quad 2.8637 \quad-6.3275 \times 10^{-1} \quad 6.2572 \times 10^{-2}-2.250 \times 10^{-3}$
$3.027 \times 10^{-1}-1.3214 \times 10^{-1} \quad 1.0406 \times 10^{-2} \quad 8.1064 \times 10^{-4}-8.4713 \times 10^{-5}$
$-2.3076 \times 10^{-2} \quad 8.53 \times 10^{-3}-5.6669 \times 10^{-4}-6.6569 \times 10^{-5} \quad 6.0401 \times 10^{-6}$
$1.8218 \times 10^{-4} \quad 3.8694 \times 10^{-6}-3.0194 \times 10^{-5} 5.7564 \times 10^{-6}-2.9646 \times 10^{-7}$
$2.3293 \times 10^{-7}-8.6776 \times 10^{-7} 3.8419 \times 10^{-7}-5.6377 \times 10^{-8} 2.6497 \times 10^{-9}$
FCC Grades Of TV Service

	Channels $2-6$	Channels $7-13$
Principal	$74 \mathrm{dBu} / \mathrm{m}_{\mathrm{I}}$	$77 \mathrm{dBu} / \mathrm{m}$
Community	$68 \mathrm{dBu} / \mathrm{m}$	$71 \mathrm{dBu} / \mathrm{m}$
Grade A	$47 \mathrm{dBu} / \mathrm{m}$	$56 \mathrm{dBu} / \mathrm{m}$
Grade B		

FM Grades Of Service

	FCC	CCIR Rec. $412-1$	
		Mono	Stereo
Principal			
Community	$3.16 \mathrm{mV} / \mathrm{m}$	$3 \mathrm{mV} / \mathrm{m}$	$5 \mathrm{mV} / \mathrm{m}$
Urban Areas	$1 \mathrm{mV} / \mathrm{m}$	$1 \mathrm{mV} / \mathrm{m}$	$2 \mathrm{mV} / \mathrm{m}$
Rural Areas	$.05 \mathrm{mV} / \mathrm{m}$	$.25 \mathrm{mV} / \mathrm{m}$	$.5 \mathrm{mV} / \mathrm{m}$

The calculator program is based on a long equation that approximates the information on the FCC field intensity charts. See Figure 3 for a typical chart. These empirical curves show the relationship between field strength, antenna height, and distance. Least squares curve-fit techniques are commonly used to develop mathematical expressions for the relationship between two variables. An extension of these techniques was used to develop the equation shown in Figure 1 to approximately compute distance for a given field strength and antenna height. Since the FM and low band TV 50,50 field intensity charts are identical, one equation serves for both. The curve-fit equations for low band and high band have identical forms but different sets of 25 constant coefficients.

The curve-fit equation is much too complex to evaluate by hand. Therefore, some type of automatic calculations must be used. The hand-held programmable calculators, TI-59 and HP-67/97, have the appropriate capability, including program storage on magnetic cards. The program listings for these calculators are too long to be
printed here but will be available for a limited time free of charge from Harris Broadcast Products. (See Editor's Note with this article.) A program listing in BASIC is also available for those with personal computers. These programs are based on FCC sections 73.313 and 73.684, 'Prediction of Coverage."

With some user aids, including display confirmation of input data and printer instructions, the HP-67/97 program uses nearly all the calculator memory. Two magnetic cards (four sides) are required for the 224 program steps and 22 storage registers used. The TI-59/PC-100 program occupies both sides of one magnetic card and includes alphanumeric printed codes to identify the printed values. The program without printer operation can probably be condensed to fit a TI-58, but the manual entry without magnetic cards seems prohibitive.

Entry of data into the calculator is easy. The antenna height is the height of the radiation center of the antenna above the average terrain. Sections 73.684 (d), (e), (f) and (g) specify the technique to be used on the elevations between two and 10 miles from the an-

Comrex Corporation Manufactures

Wireless Microphones:

Our 450 MHz system is THE ENG broadcast standard.

Cue Systems:

The ideal way to direct ENG field personnel. This 1 watt IFB system allows ENG crew to hear both program and instructions in one pocket receiver.

TV Aural Monitors:

Rugged pocket receivers fixtuned to your TV channel for live off-air cueing. From 50500 MHz .

Low
 Frequency Extenders:

A new category of broadcast equipment. Broadcast quality on a standard dial telephone line. If you broadcast news, sports, weather, farm, stock market, religious, or special interest programs, THIS IS A MUST-KNOW!

For further information. call or write:

18 Years In Broadcasting PO Box 269 60 Union Avenue Sudbury. Massachusetts 01776 TEL: (617) 443-8811 IWX 710 347-1049

Circle 158 on Reader Service Card
problem. Once the tape guides are factory set and sealed they normally require no readjustment unless some part affecting tape height or tension has been replaced but not properly adjusted or positioned. We recommend that you leave all guides alone and look to the transport for more obvious problems affecting the tape path.

If it is necessary to alter the tape path, we use the monoscope segment of the standard Sony alignment tape. Monoscope contains no burst or chroma information which may present a false indication during your tape path setup.

Sony's alignment tape label advises against the use of the tape for the path adjustment. We have no knowledge of any better guide for these adjustments. We have used this tape repeatedly for path adjustment and find it very satisfactory.

Tape guides and interchange

Problems we have found with defective guides and how they affect the playback RF envelope are as follows:

- Breathing or Flutter. The RF envelope varies in amplitude as the tape moves through the tape path. The upper and lower tape guide flanges may become grooved or cut by the tape's edge when the machine is continually used over a long period of time. To cure this problem, rotate the existing guides to a previously unused area. Adhesive or oxide may accumulate on guide surfaces and should be removed since it can cause tape to move erratically and squeal.
- Loose Guides. The entire guide post assembly may become loose at the point where it attaches to the chassis. This allows the guide sufficient side movement to cause fluctuation in the RF envelope during playback.
- Non-Linearity of RF Envelope. In addition to guide wear problems, other assemblies common to the tape path can cause the RF envelope to become distorted and nonlinear in its overall appearance. The tension regulator arm which affects skew or back tension is subject to bearing failure and can cause the tension regulator arm to move to a position not parallel to the head drum. This causes the tape to ride up or down, depending on which bearing has failed. The tape then enters the head drum assembly at an improper angle, causing the RF envelope to appear distorted as though a guide were improperly adjusted.

Interchange: skew

Thus far we have only discussed interchange problems affecting tracking. Mechanical interchange, as it relates to tape tension, is almost as important.

The proper back tension on the tape and its standardization from machine to machine will affect the playback. If back tension is not the same on all record or playback decks, the tape may be stretched while recording due to unusually high skew tension. If this same tape is played back on a normally adjusted machine, it can cause insert editing problems. Tape tension should always be uniform.

The manufacturer's procedures should be followed to set proper skew tension. A calibration instrument such as the Tentelometer can also be used.

Since it is impossible to cover every adjustment that needs to be performed to optimize your machine's performance, we have attempted to bring to your attention some of the major problem areas in helical editing equipment. We hope you find our suggestions a helpful guideline when troubleshooting your equipment to localize machine failures.

BM/E

FiDelipac cartridges stay loose after thousands of passes.

Somebody else's get uptight after a couple of hundred.

To measure the life of somebody else's tape cartridges, a stopwatch is usually adequate. To do the same for a factory loaded Fidelipac cartridge, you'll probably need a calendar.
That's because we build a minimum of friction points into Fidelipac cartridges to minimize tape wear. Preselect only the finest quality lubricated tape. And precisely load and splice each cartridge using our own specially designed equipment.

Which leaves you a clear choice the next time you order cartridges. Get uptight. Or get Fidelipac.

COVERAGE PREDICTIONS USING PROGRAMMABLE CALCULATORS

FM and TV broadcast coverage can now be accurately estimated using a new equation that approximates the FCC 50,50 curves.

By E.C. Westenhaver

Editor's note: The program listings referred to in this article are far 100 lengthy to be published here. Harris Corp. assures us, however, that the complete listings for any of the calculators mentioned or BASIC language listings for readers using personal computers can he ohtained free of charge by writing to Harris Corp., Transmitter Product Development, P.O. Box 4290, Quincy, Ill. 62301.
E.C. Westenhaver is employed by the Harris Corporation in its transmitter product development section.

POWERFUL HAND-HELD programmable calculators such as the TI-59 and HP67/97 and a new equation which curve fits the FCC field strength charts now allow for accurate estimation of FM and TV coverage with a few simple keystrokes. Consider, for instance, an FM station with an antenna height of 640 feet and 27.5 kW ERP. The following sequence will give the distance to the $1 \mathrm{mV} / \mathrm{m}$ contour. Enter 640, press key A , press key B, enter 27.5 , press key C , enter 1 , and press key D. Seventeen seconds later the calculator will indicate 31.5 miles. Compare this to the traditional methods using sliding scales and interpolation on the field strength charts.

Location of 100 test points, FM and TV Ch. 2-6

REFERENCE DATA

FCC Par. 73.333, Figure 3 (Ed. 9/72)

FOOTAGE TABLE FOR BROADCAST TOWER HEIGHTS

550 kHz TO 1070 kHz					1080 kHz TO 1600 kHz				
kHz	METERS	1 wave	$1 / 2$ WAVE	1/4 WAVE	kHz	METERS	1 wave	1/2 WAVE	$1 / 4$ Wave
550	545	1787.6	893.8	446.8	1080	277.8	911.1	455.5	227.7
560	536	1758.0	879.0	439.5	1090	275.2	902.6	451.3	225.6
570	526	1725.3	862.6	431.3	1100	272.7	894.4	447.2	223.6
580	517	1695.7	847.8	423.9	1110	270.3	886.5	443.2	221.6
590	509	1669.5	834.7	417.3	1120	267.9	879.0	439.5	219.7
600	500	1640.0	820.0	410.0	1130	265.5	870.8	435.4	217.7
610	492	1612.7	806.3	403.1	1140	263.2	862.6	431.3	215.6
620	484	1587.5	799.7	396.8	1150	260.9	855.7	427.8	213.9
630	476	1561.2	780.6	390.3	1160	258.6	847.8	423.9	211.9
640	469	1546.3	773.1	386.5	1170	256.4	840.9	420.4	210.2
650	462	1515.3	757.6	378.8	1180	254.2	834.7	417.3	208.6
660	455	1492.4	746.2	373.1	1190	252.1	826.8	413.4	206.7
670	448	1469.4	734.7	367.3	1200	250.0	820:0	410.0	205.0
680	441	1446.4	723.2	361.1	1210	247.9	813.1	406.5	203.2
690	435	1426.8	713.4	356.2	1220	245.9	806.3	403.1	201.5
700	429	1407.1	703.5	351.2	1230	243.9	799.1	399.5	199.7
710	423	1387.4	693.7	346.8	1240	241.9	793.7	396.8	198.4
720	417	1367.7	683.8	341.9	1250	240.0	787.2	393.6	196.8
730	411	1348.0	674.0	337.0	1260	238.1	780.9	390.4	195.2
740	405	1328.4	664.2	332.1	1270	236.2	774.7	387.3	193.6
750	400	1312.0	656.0	328.0	1280	234.4	768.8	384.4	192.2
760	395	1295.6	647.8	323.4	1290	232.6	762.9	381.4	190.7
770	390	1279.2	639.6	319.8	1300	230.8	757.0	378.5	189.2
780	385	1262.8	631.4	315.7	1310	229.0	751.1	375.5	187.7
790	380	1246.4	623.2	311.6	1320	227.3	746.2	373.1	186.5
800	375	1230.0	615.0	307.5	1330	225.6	739.9	369.9	184.9
810	370	1213.6	606.8	303.4	1340	223.9	734.7	367.3	183.6
820	366	1200.4	600.2	300.1	1350	222.2	728.8	364.4	182.2
830	361	1184.0	592.0	296.0	1360	220.6	723.2	361.1	180.5
840	357	1170.9	585.4	292.7	1370	219.0	718.3	359.1	179.5
850	353	1157.8	578.9	289.4	1380	217.4	713.4	356.2	178.1
860	349	1144.7	572.3	286.1	1390	215.8	707.8	353.1	176.5
870	345	1131.6	565.8	282.9	1400	214.3	703.5	351.2	175.6
880	341	1118.4	559.2	279.6	1410	212.8	696.9	348.4	174.2
890	337	1105.3	552.6	276.3	1420	211.3	693.7	346.8	173.4
900	333	1092.2	546.1	273.0	1430	209.8	688.1	344.0	172.0
910	330	1082.4	541.2	270.6	1440	208.3	683.8	341.9	170.9
920	326	1069.2	534.6	267.3	1450	206.9	678.6	339.3	169.6
930	323	1059.4	529.7	264.8	1460	205.5	674.0	337.0	168.5
940	319	1046.3	523.1	261.5	1470	204.1	669.4	334.7	167.3
950	316	1036.4	518.2	259.1	1480	202.7	664.2	332.1	166.5
960	313	1026.6	513.3	256.6	1490	201.3	660.2	330.1	165.0
970	309	1013.5	506.7	253.3	1500	200.0	656.0	328.0	164.0
980	306	1003.6	501.8	250.9	1510	198.7	651.7	325.8	162.9
990	303	993.8	496.9	248.4	1520	197.4	647.8	323.4	161.7
1000	300	984.0	492.0	246.0	1530	196.1	643.2	321.6	160.8
1010	297	974.1	487.5	243.7	1540	194.8	639.6	319.8	159.9
1020	294.1	964.6	482.3	241.1	1550	193.5	634.6	317.3	158.6
1030	291.3	955.3	477.6	238.8	1560	192.3	631.4	315.7	157.8
1040	288.5	946.2	473.1	236.5	1570	191.1	626.8	313.4	156.7
1050	285.7	937.1	468.5	234.2	1580	189.9	623.2	311.6	155.8
1060	283.0	928.2	464.1	232.0	1590	188.7	618.9	309.4	154.7
1070	280.4	919.7	459.8	229.9	1600	187.5	615.0	307.5	153.7

Location of wind loading zones based on 50 year mean recurrence interval chart from distribution of extreme winds in the United States by H. C. S. Thom published in the proceedings of the American Society of Civil Engineers. April 1960.

Conversion Table, kW vs. dBk

kW	dBk	kW	d8k	kW	dBk								
0.5	-3.01	8.2	9.14	15.9	12.01	23.6	13.73	31.3	14.96	39.0	15.91	46.7	16.69
0.6	-2.22	8.3	9.19	16.0	12.04	23.7	13.75	31.4	14.97	39.1	15.92	46.8	16.70
0.7	-1.55	8.4	9.24	16.1	12.07	23.8	13.77	31.5	14.98	39.2	15.93	46.9	16.71
0.8	-0.97	8.5	9.29	16.2	12.10	23.9	13.78	31.6	15.00	39.3	15.94	47.0	16.72
0.9	-0.46	8.6	9.34	16.3	12.12	24.0	13.80	31.7	15.01	39.4	15.95	47.1	16.73
1.0	0.00	8.7	9.40	16.4	12.15	24.1	13.82	31.8	15.02	39.5	15.97	47.2	16.74
1.1	0.41	8.8	9.44	16.5	12.17	24.2	13.84	31.9	15.04	39.6	15.98	47.3	16.75
1.2	0.79	8.9	9.49	16.6	12.20	24.3	13.86	32.0	15.05	39.7	15.99	47.4	16.76
1.3	1.14	9.0	9.54	16.7	12.23	24.4	13.87	32.1	15.07	39.8	16.00	47.5	16.77
1.4	1.46	9.1	9.59	16.8	12.25	24.5	13.89	32.2	15.08	39.9	16.01	47.6	16.78
1.5	1.76	9.2	9.64	16.9	12.28	24.6	13.91	32.3	15.09	40.0	16.02	47.7	16.79
1.6	2.04	9.3	9.68	17.0	12.30	24.7	13.93	32.4	15.11	40.1	16.03	47.8	16.79
1.7	2.30	9.4	9.73	17.1	12.33	24.8	13.94	32.5	15.12	40.2	16.04	47.9	16.80
1.8	2.55	9.5	9.78	17.2	12.36	24.9	13.96	32.6	15.13	40.3	16.05	48.0	16.81
1.9	2.79	9.6	9.82	17.3	12.38	25.0	13.98	32.7	15.15	40.4	16.06	48.1	16.82
2.0	3.01	9.7	9.87	17.4	12.41	25.1	14.00	32.8	15.16	40.5	16.07	48.2	16.83
2.1	3.22	9.8	9.91	17.5	12.43	25.2	14.01	32.9	15.17	40.6	16.09	48.3	16.84
2.2	3.42	9.9	9.96	17.6	12.46	25.3	14.03	33.0	15.19	40.7	16.10	48.4	16.85
2.3	3.62	10.0	10.00	17.7	12.48	25.4	14.05	33.1	15.20	40.8	16.11	48.5	16.86
2.4	3.80	10.1	10.04	17.8	12.50	25.5	14.07	33.2	15.21	40.9	16.12	48.6	16.87
2.5	3.98	10.2	10.09	17.9	12.53	25.6	14.08	33.3	15.22	41.0	16.13	48.7	16.88
2.6	4.15	10.3	10.13	18.0	12.55	25.7	14.10	33.4	15.24	41.1	16.14	48.8	16.88
2.7	4.31	10.4	10.17	18.1	12.58	25.8	14.12	33.5	15.25	41.2	16.15	48.9	16.89
2.8	4.47	10.5	10.21	18.2	12.60	25.9	14.13	33.6	15.26	41.3	16.16	49.0	16.90
2.9	4.62	10.6	10.25	18.3	12.62	26.0	14.15	33.7	15.28	41.4	16.17	49.1	16.91
3.0	4.77	10.7	10.29	18.4	12.65	26.1	14.17	33.8	15.29	41.5	16.18	49.2	16.92
3.1	4.91	10.8	10.33	18.5	12.67	26.2	14.18	33.9	15.30	41.6	16.19	49.3	16.93
3.2	5.05	10.9	10.37	18.6	12.70	26.3	14.20	34.0	15.31	41.7	16.20	49.4	16.94
3.3	5.19	11.0	10.41	18.7	12.72	26.4	14.22	34.1	15.33	41.8	16.21	49.5	16.95
3.4	5.31	11.1	10.45	18.8	12.74	26.5	14.23	34.2	15.34	41.9	16.22	49.6	16.95
3.5	5.44	11.2	10.49	18.9	12.76	26.6	14.25	34.3	15.35	42.0	16.23	49.7	16.96
3.6	5.56	11.3	10.53	19.0	12.79	26.7	14.27	34.4	15.37	42.1	16.24	49.8	16.97
3.7	5.68	11.4	10.57	19.1	12.81	26.8	14.28	34.5	15.38	42.2	16.25	49.9	16.98
3.8	5.80	11.5	10.61	19.2	12.83	26.9	14.30	34.6	15.39	42.3	16.26	50.0	16.99
3.9	5.91	11.6	10.64	19.3	12.86	27.0	14.31	34.7	15.40	42.4	16.27	50.1	17.00
4.0	6.02	11.7	10.68	19.4	12.88	27.1	14.33	34.8	15.42	42.5	16.28	50.2	17.01
4.1	6.13	11.8	10.72	19.5	12.90	27.2	14.35	34.9	15.43	42.6	16.29	50.3	17.02
4.2	6.23	11.9	10.76	19.6	12.92	27.3	14.36	35.0	15.44	42.7	16.30	50.4	17.02
4.3	6.33	12.0	10.79	19.7	12.94	27.4	14.38	35.1	15.45	42.8	16.31	50.5	17.03
4.4	6.43	12.1	10.83	19.8	12.97	27.5	14.39	35.2	15.47	42.9	16.32	50.6	17.04
4.5	6.53	12.2	10.86	19.9	12.99	27.6	14.41	35.3	15.48	43.0	16.33	50.7	17.05
4.6	6.63	12.3	10.90	20.0	13.01	27.7	14.42	35.4	15.49	43.1	16.34	50.8	17.06
4.7	6.72	12.4	10.93	20.1	13.03	27.8	14.44	35.5	15.50	43.2	16.35	50.9	17.07
4.8	6.81	12.5	10.97	20.2	13.05	27.9	14.46	35.6	15.51	43.3	16.36	51.0	17.08
4.9	6.90	12.6	11.00	20.3	13.07	28.0	14.47	35.7	15.53	43.4	16.37	51.1	17.08
5.0	6.99	12.7	11.04	20.4	13.10	28.1	14.49	35.8	15.54	43.5	16.38	51.2	17.09
5.1	7.08	12.8	11.07	20.5	13.12	28.2	14.50	35.9	15.55	43.6	16.39	51.3	17.10
5.2	7.16	12.9	11.11	20.6	13.14	28.3	14.52	36.0	15.56	43.7	16.40	51.4	17.11
5.3	7.24	13.0	11.14	20.7	13.16	28.4	14.53	36.1	15.58	43.8	16.41	51.5	17.12
5.4	7.32	13.1	11.17	20.8	13.18	28.5	14.55	36.2	15.59	43.9	16.42	51.6	17.13
5.5	7.40	13.2	11.21	20.9	13.20	28.6	14.56	36.3	15.60	44.0	16.43	51.7	17.13
5.6	7.48	13.3	11.24	21.0	13.22	28.7	14.58	36.4	15.61	44.1	16.44	51.8	17.14
5.7	7.56	13.4	11.27	21.1	13.24	28.8	14.59	36.5	15.62	44.2	16.45	51.9	17.15
5.8	7.63	13.5	11.30	21.2	13.26	28.9	14.61	36.6	15.63	44.3	16.46	52.0	17.16
5.9	7.71	13.6	11.34	21.3	13.28	29.0	14.62	36.7	15.65	44.4	16.47	52.1	17.17
6.0	7.78	13.7	11.37	21.4	13.30	29.1	14.64	36.8	15.66	44.5	16.48	52.2	17.18
6.1	7.85	13.8	11.40	21.5	13.32	29.2	14.65	36.9	15.67	44.6	16.49	52.3	17.19
6.2	7.92	13.9	11.43	21.6	13.34	29.3	14.67	37.0	15.68	44.7	16.50	52.4	17.19
6.3	7.99	14.0	11.46	21.7	13.36	29.4	14.68	37.1	15.69	44.8	16.51	52.5	17.20
6.4	8.06	14.1	11.49	21.8	13.38	29.5	14.70	37.2	15.71	44.9	16.52	52.6	17.21
6.5	8.13	14.2	11.52	21.9	13.40	29.6	14.71	37.3	15.72	45.0	16.53	52.7	17.22
6.6	8.20	14.3	11.55	22.0	13.42	29.7	14.73	37.4	15.73	45.1	16.54	52.8	17.23
6.7	8.26	14.4	11.58	22.1	13.44	29.8	14.74	37.5	15.74	45.2	16.55	52.9	17.23
6.8	8.33	14.5	11.61	22.2	13.46	29.9	14.76	37.6	15.75	45.3	16.56	53.0	17.24
6.9	8.39	14.6	11.64	22.3	13.48	30.0	14.77	37.7	15.76	45.4	16.57	53.1	17.25
7.0	8.45	14.7	11.67	22.4	13.50	30.1	14.79	37.8	15.77	45.5	16.58	53.2	17.26
7.1	8.51	14.8	11.70	22.5	13.52	30.2	14.80	37.9	15.79	45.6	16.59	53.3	17.27
7.2	8.57	14.9	11.73	22.6	13.54	30.3	14.81	38.0	15.80	45.7	16.60	53.4	17.28
7.3	8.63	15.0	11.76	22.7	13.56	30.4	14.83	38.1	15.81	45.8	16.61	53.5	17.28
7.4	8.69	15.1	11.79	22.8	13.58	30.5	14.84	38.2	15.82	45.9	16.62	53.6	17.29
7.5	8.75	15.2	11.82	22.9	13.60	30.6	14.86	38.3	15.83	46.0	16.63	53.7	17.30
7.6	8.81	15.3	11.85	23.0	13.62	30.7	14.87	38.4	15.84	46.1	16.64	53.8	17.31
7.7	8.86	15.4	11.88	23.1	13.64	30.8	14.89	38.5	15.85	46.2	16.65	53.9	17,32
7.8	8.92	15.5	11.90	23.2	13.65	30.9	14.90	38.6	15.87	46.3	16.66	54.0	17.32
7.9	8.98	15.6	11.93	23.3	13.67	31.0	14.91	38.7	15.88	46.4	16.67	54.1	17.33
8.0	9.03	15.7	11.96	23.4	13.69	31.1	14.93	38.8	15.89	46.5	16.67	54.2	17.34
8.1	9.08	15.8	11.99	23.5	13.71	31.2	14.94	38.9	15.90	46.6	16.68	54.3	17.35

Reference Data
Conversion Table, kW vs. dBk

kW	dBk	kW	dBk	kW	dBk	kW	d8k	kW	dBk	kW	dBk	kW	dBk
54.4	17.36	62.3	17.94	70.1	18.46	77.9	18.92	85.6	19.32	93.3	19.70	300	24.77
54.5	17.36	62.4	17.94	70.2	18.46	78.0	18.92	85.7	19.33	93.4	19.70	316	25.00
54.6	17.37	62.5	17.95	70.3	18.47	78.1	18.93	85.8	19.33	93.5	19.71	320	25.05
54.7	17.38	62.6	17.96	70.4	18.48	78.2	18.93	85.9	19.34	93.6	19.71	340	25.31
54.8	17.39	62.7	17.97	70.5	18.48	78.3	18.94	86.0	19.34	93.7	19.72	360	25.56
54.9	17.40	62.8	17.97	70.6	18.49	78.4	18.94	86.1	19.35	93.8	19.72	380	25.80
55.0	17.40	62.9	17.99	70.7	18.49	78.5	18.95	86.2	19.36	93.9	19.73	400	26.02
55.1	17.41	63.0	17.99	70.8	18.50	78.6	18.95	86.3	19.36	94.0	19.73	420	26.23
55.2	17.42	63.1	18.00	70.9	18.51	78.7	18.96	86.4	19.37	94.1	19.74	440	26.43
55.3	17.43	63.2	18.01	71.0	18.51	78.8	18.97	86.5	19.37	94.2	19.74	460	26.63
55.4	17.44	63.3	18.01	71.1	18.52	78.9	18.97	86.6	19.38	94.3	19.75	480	26.81
55.5	17.44	63.4	18.02	71.2	18.52	79.0	18.98	86.7	19.38	94.4	19.75	500	26.99
55.6	17.45	63.5	18.03	71.3	18.53	79.1	18.98	86.8	18.39	94.5	19.75	520	27.16
55.7	17.46	63.6	18.03	71.4	18.54	79.2	18.99	86.9	19.39	94.6	19.76	540	27.32
55.8	17.47	63.7	18.04	71.5	18.54	79.3	18.99	87.0	19.40	94.7	19.76	560	27.48
55.9	17.47	63.8	18.05	71.6	18.55	79.4	19.00	87.1	19.40	94.8	19.77	580	27.63
56.0	17.48	63.9	18.06	71.7	18.56	79.5	19.00	87.2	19.41	94.9	19.77	600	27.78
56.1	17.49	64.0	18.06	71.8	18.56	79.6	19.01	87.3	19.41	95.0	19.78	620	27.92
56.2	17.50	64.1	18.07	71.9	18.57	79.7	19.01	87.4	19.42	95.1	19.78	640	28.06
56.3	17.51	64.2	18.08	72.0	18.57	79.8	19.02	87.5	19.42	95.2	19.79	660	28.19
56.4	17.51	64.3	18.08	72.1	18.58	79.9	19.03	87.6	19.43	95.3	19.79	680	28.32
56.5	17.52	64.4	18.09	72.2	18.59	80.0	19.03	87.7	19.43	95.4	19.80	700	28.45
56.6	17.53	64.5	18.10	72.3	18.59	80.1	19.04	87.8	19.43	95.5	19.80	720	28.57
56.7	17.54	64.6	18.10	72.4	18.60	80.2	19.04	87.9	19.44	95.6	19.80	740	28.69
56.8	17.54	64.7	18.11	72.5	18.60	80.3	19.05	88.0	19.44	95.7	19.81	760	28.81
56.9	17.55	64.8	18.12	72.6	18.61	80.4	19.05	88.1	19.45	95.8	19.81	780	28.92
57.0	17.56	64.9	18.12	72.7	18.62	80.5	19.06	88.2	19.45	95.9	19.82	800	29.03
57.1	17.57	65.0	18.13	72.8	18.62	80.6	19.06	88.3	19.46	96.0	19.82	820	29.14
57.2	17.57	65.1	18.14	72.9	18.63	80.7	19.07	88.4	19.46	96.1	19.83	840	29.24
57.3	17.58	65.2	18.14	73.0	18.63	80.8	19.07	88.5	19.47	96.2	19.83	860	29.34
57.4	17.59	65.3	18.15	73.1	18.64	80.9	19.08	88.6	19.47	96.3	19.84	880	29.44
57.5	17.60	65.4	18.16	73.2	18.65	81.0	19.08	88.7	19.48	96.4	19.84	900	29.54
57.6	17.60	65.5	18.16	73.3	18.65	81.1	19.09	88.8	19.48	96.5	19.85	920	29.64
57.7	17.61	65.6	18.17	73.4	18.66	81.2	19.10	88.9	19.49	96.6	19.85	940	29.73
57.8	17.62	65.7	18.18	73.5	18.66	81.3	19.10	89.0	19.49	96.7	19.85	960	29.82
57.9	17.63	65.8	18.18	73.6	18.67	81.4	19.11	89.1	19.50	96.8	19.86	980	29.91
58.0	17.63	65.9	18.19	73.7	18.67	81.5	19.11	89.2	19.50	96.9	19.86	1000	30.00
58.1	17.64	66.0	18.20	73.8	18.68	81.6	19.12	89.3	19.51	97.0	19.87	1100	30.41
58.2	17.65	66.1	18.20	73.9	18.69	81.7	19.12	89.4	19.51	97.1	19.87	1200	30.79
58.3	17.66	66.2	18.21	74.0	18.69	81.8	19.13	89.5	19.52	97.2	19.88	1300	31.14
58.4	17.66	66.3	18.22	74.1	18.70	81.9	19.13	89.6	19.52	97.3	19.88	1400	31.46
58.5	17.67	66.4	18.22	74.2	18.70	82.0	19.14	89.7	19.53	97.4	19.89	1500	31.76
58.6	17.68	66.5	18.23	74.3	18.71	82.1	19.14	89.8	19.53	97.5	19.89	1600	32.04
58.7	17.69	66.6	18.23	74.4	18.72	82.2	19.15	89.9	19.54	97.6	19.89	1700	32.30
58.8	17.69	66.7	18.24	74.5	18.72	82.3	19.15	90.0	19.54	97.7	19.90	1800	32.55
58.9	17.70	66.8	18.25	74.6	18.73	82.4	19.16	90.1	19.55	97.8	19.90	1900	32.79
59.0	17.71	66.9	18.25	74.7	18.73	82.5	19.16	90.2	19.55	97.9	19.91	2000	33.01
59.1	17.72	67.0	18.26	74.8	18.74	82.6	19.17	90.3	19.56	98.0	19.91	2100	33.22
59.2	17.72	67.1	18.27	74.9	18.74	82.7	19.18	90.4	19.56	98.1	19.92	2200	33.42
59.3	17.73	67.2	18.27	75.0	18.75	82.8	19.18	90.5	19.57	98.2	19.92	2300	33.62
59.4	17.74	67.3	18.28	75.1	18.76	82.9	19.19	90.6	19.57	98.3	19.93	2400	33.80
59.5	17.75	67.4	18.29	75.2	18.76	83.0	19.19	90.7	19.58	98.4	19.93	2500	33.98
59.6	17.75	67.5	18.29	75.3	18.77	83.1	19.20	90.8	19.58	98.5	19.93	2600	34.15
59.7	17.76	67.6	18.30	75.4	18.77	83.2	19.20	90.9	19.59	98.6	19.94	2700	34.31
59.8	17.77	67.7	18.31	75.5	18.78	83.3	19.21	91.0	19.59	98.7	19.94	2800	34.47
59.9	17.77	67.8	18.31	75.6	18.79	83.4	19.21	91.1	19.60	98.8	19.95	2900	34.62
60.0	17.78	67.9	18.32	75.7	18.79	83.5	19.22	91.2 .	19.60	98.9	19.95	3000	34.77
60.1	17.79	68.0	18.33	75.8	18.80	83.6	19.22	91.3	19.60	99.0	19.96	3100	34.91
60.2	17.80	68.1	18.33	75.9	18.80	83.7	19.23	91.4	19.61	99.1	19.96	3200	35.05
60.3	17.80	68.2	18.34	76.0	18.81	83.8	19.23	91.5	19.61	99.2	19.97	3300	35.19
	17.81		18.34	76.1	18.81	83.9	19.24	91.6	19.62	99.3	19.97	3400	35.31
60.5	17.82	68.4	18.35	76.2	18.82	84.0	19.24	91.7	19.62	99.4	19.97	3500	35.44
60.6	17.82	68.5	18.36	76.3	18.83	84.1	19.25	91.8	19.63	99.5	19.98	3600	35.56
60.7	17.83	68.6	18.36	76.4	18.83	84.2	19.25	91.9	19.63	99.6	19.98	3700	35.68
60.8	17.84	68.7	18.37	76.5	18.84	84.3	19.26	92.0	19.64	99.7	19.99	3800	35.80
60.9	17.85	68.8	18.38	76.6	18.84	84.4	19.26	92.1	19.64	99.8	19.99	3900	35.91
61.0	17.85	68.9	18.38	76.7	18.85	84.5	19.27	92.2	19.65	99.9	20.00	4000	36.02
61.1	17.86	69.0	18.39	76.8	18.85	84.6	19.27	92.3	19.65	100	20.00	4100	36.13
61.2	17.87	69.1	18.39	76.9	18.86	84.7	19.28	92.4	19.66	120	20.79	4200	36.23
61.3	17.87	69.2	18.40	77.0	18.86	84.8	19.28	92.5	19.66	140	21.46	4300	36.33
61.4	17.88	69.3	18.41	77.1	18.87	84.9	19.29	92.6	19.67	160	22.04	4400	36.43
61.5	17.89	69.4	18.41	77.2	18.88	85.0	19.29	92.7	19.67	180	22.55	4500	36.53
61.6	17.90	69.5	18.42	77.3	18.88	85.1	19.30	92.8	19.68	200	23.01	4600	36.63
61.8	17.90	69.6	18.43	77.4	18.89	85.2	19.30	92.9	19.68	220	23.42	4700	36.72
61.9	17.91	69.7	18.43	77.5	18.89	85.3	19.31	93.0	19.68	240	23.80	4800	36.81
62.0	17.92	69.8	18.44	77.6	18.90	85.4	19.31	93.1	19.69	260	24.15	4900	36.90
62.1	17.92	69.9	18.44	77.7	18.90	85.5	19.32	93.2	19.69	280	24.47	5000	36.99
62.2	17.93	70.0	18.45	77.8	18.91								

Regional Offices

ATLANTA, GA. 30341
RCA Building
3395 N.E. Expressway 404-455-3400

AUSTIN, TEX. 78731
3409 Executive Center Drive
Suite 213
512-345-2224/5

BIRMINGHAM, AL 35215
2244 Center Point Road
Suite 203
205-854-3096

BOSTON AREA:
Wellesley, Mass. 02181
40 Willam Street
Wellesley Office Park
617-237-6050

CAMDEN, N. J. 08102
Front \& Cooper Streets
Bldg. 2-2
609-338-3000

CHARLOTTE, NC 28209
5200 Park Road
Suite 125
704-525-4870

CHICAGO AREA:
120 West Eastman Street
Suite 303
Arlington Heighis, IL 60004
312-255-2202

CINCINNATI, OH. 45231
11430 Hamillon Avenue 513-825-1550

DALLAS, TEX. 75247
8700 Stemmons Freeway 214-638-6820

DENVER, COLO. 80211 2695 Alcott Street
Suite 231-S
303-433-8484

DETROIT AREA:
Southfield, Mich. 48075
24333 Southfield Rd.
Suite 209
313-569-5880
HOLLYWOOD, CALIF. 90028
Suite 531
6363 Sunset Blvd.
213-468-4084
INDIANAPOLIS, IND. 46205
2511 East 46th Street
Suite Q-1
317-546-4003
KANSAS CITY AREA:
Overland Park, Kans. 66207
5750 West 95th Street
Suite 111
913-642-3185, 6, 7
MINNEAPOLIS, MINN 55416
4601 Excelsior Blvd.
Suite 305
612-920-6395
NEW YORK, N. Y. 10036
3rd Floor
1133 Ave. of the Americas
212-598-5900
WISCONSIN
Gratton, WI 53024
Grafton State Bank Building
Suite 403
101 Falls Road
414-377-8430

PITTSBURGH AREA
McMurray, Pa. 15317
761 N. Washington Road
Nationwide Office Bldg.
412-941-5570

SAN FRANCISCO AREA:
Burlingame, Calif. 94010
Suite 305
330 Primrose Road
415-343-2741

SEATTLE, WASH. 98109
1818 Westlake Avenue, North
Suite 222
206-285-2375

ST. LOUIS AREA:
St. Charles, Mo. 63301
Noah's Ark
Suite 340
314-946-7755

SYRACUSE, NY 13203
731 James Street
Room 200
315-478-4195

WASHINGTON, D. C. AREA:
Arlington, Va. 22209
1901 N. Moore Street
703-558-4233

WEST PALM BEACH, FLORIDA
Palm Beach Gardens, Fla. 33410
3900 RCA Blvd.
305-662-1100

[^0]: CHANGES IN DESIGN-In order to make improvements in design and to effect economies in manufacture, RCA reserves the right to change the design of its products at any time, and in accordance with its sole judgment, while adhering in good faith to the intent of the Information contained herein.

[^1]: *Required when monitors are located at other than transmitter site.
 \dagger Not FCC Type Approved at this printing; filing for type approval will be made.

[^2]: *When ordering, specify desired cantral subcarrier frequency. Custam systems can be supplied with any specified subcarrier frequency fram 26 ta 185 kHz . Standard systems are available with optianal frequencies of $26,41,67,110,135,185 \mathrm{kHz}$. Can also be supplied far use with external subcarrier.
 **This item ta be installed in Studia Unit.

[^3]: 'Power gain in each polarization.

[^4]: 'Weight includes feed system to antenna input connection and 13 -to-18-inch (330 to 457 mm) extension brackets for mounting.

 De-lcer power: 750 watts per bay, nominal. May be wired for 208 or 240 V service.

[^5]: *Can be made to dimension desired to bring input line in line with main vertical run.

[^6]: Weight includes elements, feed system to ontenna input and 13-10 18 -inch

[^7]: ${ }^{1}$ Interpolate dimensions and windload for antennas of intermediate frequencies.
 ${ }^{2}$ De-lcer power: 750 watt per bay, nominal. May be wired for 208 or 240 V service.

[^8]: In KW at 100% modulation, unity VSWR.
 ${ }^{2}$ Available at any RCA Broadeast field Office or Transmission Line Marketing, RCA Eldg. 2-5, Camden, N. J. 08102.
 ${ }^{3}$ Altachable connectors available.

[^9]: (All previous editions of this form are cancelled.)

[^10]: †For slasses of noncommercia! educational stations and their definition, refer to FCC Rules and Regulations, Paragraph 73.504.

 * In Hawaii, the band $98-108 \mathrm{MHz}$ is allocated for non-broadcast use, and the frequencies $98.1 \cdot 107.9 \mathrm{MHz}$ will not be assigned in Hawaii for use by FM broadcast stations.

[^11]: With nearly two years of one-inch vidcotape technology under its belt, the SMPTE will cover advances in on-line and off-line editing approaches

