Central America’s Wars On Your Scanner!

- Scanning The Olympics
- 165 Fantastic Shortwave Frequencies
- DXing Germany
- Monitoring The Israeli Secret Service
- Listening In On America At Play
- Secrets Of WWII Submarine Communications
Actual slow motion frames from Ham MasterTapes

1. Larry, N2NY, Lee, KA2RNV
2. Lee discharges cap
3. In slow motion it's dazzling
4. Wow. Can we see it again?

You've never seen this, like this, before this!

And you can see it—in color—again and again when you own the N2NY Ham MasterTapes.

Ever see a cap discharge in slow motion? You will on Ham MasterTapes. Ham MasterTapes can perform the dozens of complicated demonstrations necessary for a beginner's understanding of Ham Radio Theory.

Finally, a step-by-step course in Ham Radio Theory is available on color videotape. The Larry Home N2NY Ham MasterTapes video course is a unique, effective teaching technique expertly produced by New York's leading professionals in studio and field videotape.

- Video Graphics highlight important details.
- Carefully worked-out demonstrations on video avoid the problem of getting complex gadgets to work on command in front of a class.
- Working examples of every ham radio component, device, or system covered in the FCC guide can be clearly understood.

The N2NY Ham MasterTapes give you a basic grasp of concepts that build theory background—not only for passing the FCC tests, but for understanding electronics.

The hobby has long needed better, clearer, high-tech teaching aids to help newcomers into our wonderful world of Ham Radio.

These six-hour tapes cover completely all the material needed to understand Novice and Tech/General Theory and operations, and include the new 200-question FCC syllabus used beginning September 1983.

Only $199.95. Order direct and specify Beta or VHS format. Call or write: Larry Home, N2NY at Ham MasterTapes
136 East 31st Street
New York, N.Y. 10016
212-673-0680.

©1983 N2NY Productions, Inc.
CIRCLE 31 ON READER SERVICE CARD
SWL HEADQUARTERS
NATIONS LEADING SHORTWAVE EQUIPMENT SUPPLIER

Designed for Serious DXing
ICOM R71
THE ULTIMATE RECEIVER

See Manufacturers Ads This Issue
For More Detailed Information

NEW

Sale Price
$699

- 100KHz-30MHz
- Keyboard entry
- 32 memories
- Remote control (optional)
- Scanning
- Pass band & notch tuning
- Memory back-up
- Wide dynamic range
- Voice synthesizer (optional)
- See ICOM's ad in this issue for more details.

KENWOOD R-2000

- 100 KHz to 30 MHz
- All mode AM/CW-SSB-FM
- 10 memories (memorizes mode)
- Memory backup
- Memory scan
- Programmable band scan
- 24-hour clock/timer
- VC-10 VHF converter 118-174 MHz $139
- RF-1500 $599.95
- R-1000 $499.95
- R-600 $399.95
- ADD $6.50 UPS

PANASONIC RF-B600

- 1.6 to 30 MHz FM/LW/MW/SW
- Micro computer multi-tuning system
- 9 memory stations, scan
- Slow/Fast rotary tuning
- 10 key direct access tuning
- Universal voltage
- RF-9 $99.95
- RF-B60 $129.95
- RF-08S $49.95
- RF-B800 $249.95
- RF-3100 $379
- ADD $4.00 UPS

G.E. WORLD MONITOR

Digital readout, wide and narrow selectivity BFO for SSB & CW.
- 3.5 - 31 MHz SW/MW/FM
- 120V/220V or battery
- RF-44A $99.95
- RF-44B $129.95
- RF-44C $179.95
- RF-44D $249.95
- RF-44E $299.95
- RF-44F $379.95

1984 WORLD RADIO TV HANDBOOK

Sale
$17.50

- The shortwave listeners' Bible
- A reference guide for the beginner and serious DXer
- 145 pages devoted entirely to listings of SW, MW, LW, and TV stations around the world
- Listings of English SW broadcasts
- An annual review of shortwave receivers
- $17.50 post paid USA book rate (add $4 Air)

Electronic Equipment Bank
516 Mill Street, N.C.
Vienna, Virginia 22180
Order Toll Free 800-368-3270
Virginia 703-938-3350

SONY ICF-2002

Introductory
Special
$229
List $249.95

Features:
- Ten memory channels + 12/24 hour quartz clock/PLL tuning for drift-free performance
- Dual conversion Super Heterodyne for high sensitivity
- SSB/AM
- ICF-4800 $199.95
- ICF-6500W $199.95
- ICF-6600 $599.95
- ICF-6700A $169.95
- AN-1 $37.95 (1AC Adapter $9.95)
- ADD $4.00 UPS

- We ship worldwide
- Prices charges not included
- Prices & specifications subject to change without notice
- Canadian Orders: VISA, MC or POSTAL MAIL ORDERS ONLY!

CIRCLE 81 ON READER SERVICE CARD

BUY FROM EEB WITH CONFIDENCE

- We are ICOM'S #1 Receiver Dealer
- Our factory authorized service center and modification department know ICOM receiver in depth.
- You get (at no charge) our double extended warranty covering your receiver parts and labor for 6 months.

EEB Options Installed

1. Mechanical filter (Replaces SSB ceramic filter) $59.00
2. FL44A 8 pole crystal filter replaces SSB ceramic filter $159. Installed $179
3. FM (Detection) 10 meter band $39.50
 installed $49.50
4. 12V DC kit $9.95 Installed $15.00
NEW!

Regency® Scanners

Communications Electronics, the world's largest distributor of radio scanners, introduces new models with special savings on all radio scanners. Chances are the police, fire and weather emergencies you'll read about in tomorrow's paper are coming through on a scanner today.

We give you excellent service because CE distributes more scanners worldwide than anyone else. Our warehouse facilities are equipped to process thousands of scanners each day. New models, installation plans and special savings are posted every week. We also export scanners to over 300 countries and military installations. Almost all items are in stock for quick shipment, so if you're a person who prefers fact to fantasy and who needs to know what's really happening around you, order your radio today from CE.

NEW! Regency® MX5000-D
List price $599.95/CE price $359.00
6-Band, 20 Channel - No-crystal scanner Search - Lockout - Priority - Scan delay - Sidetone - Solderless kit - AC/DC

The Regency Touch MX5000 provides the ease of computer control, touch-entry programming in a compact-sized scanner for use at home or on the road. Enter your favorite public service frequencies by simply touching a few pressure pads. You'll hear an "beep" tone that lets you know you've made contact.

In addition to scanning the programmed channels, the MX5000 also allows you the ability to search through as much an entire band for an active frequency. The MX5000 includes channel 1 priority, dual scan speeds, and a brightness switch for day or night operation.

NEW! Regency® Z30-D
List price $269.95/CE price $169.00
6-Band, 3 Channel - No-crystal scanner Bands: 30-50, 144-174, 440-512 MHz

Cover your choice of over 15,000 frequencies on 30 channels at the touch of your finger.

JIL SX-200-D
CE price $264.00/LOW PRICE
8-Band, 16 Channel - No-crystal scanner Quartz Crystal Scanner Bands: 26-88, 108-180, 380-514 MHz

Tune Military, F.B.I., Space Satellites, Police & Fire, D.E.A., Defense Department, airlines, Aeronaautical AM band, aero Navigation Band, Fish & Game, Immigration, Paramedics, Amateur Radio, Justice Department, State Department, plus thousands of other radio frequencies.

Regency® SX1000-D
Allow 60-120 days for delivery after receipt of order due to the high demand for this product. List price $329.95/CE price $209.00

6-Band, 3 Channel - No Crystal scanner Search - Lockout - Priority - Scan delay - Sidetone - Liquid crystal display - Digital Clock - Frequency range: 25-550 MHz

The new handheld scanner RX1000 is fully keyboard programmable for the ultimate in versatility. You can scan up to 20 channels at the same time. When you activate the priority control, you automatically override all other calls to listen to your favorite frequency. The LCD display is even siedlit for night use. A die-cast aluminum chassis makes this the most rugged and durable hand-held scanner available. There is even a backup lithium battery to maintain memory for two years. Includes wall charger, belt clip, carrying case, battery, and nicad battery. Reserve your scanner RX1000 now.

Regency® R106-D
List price $119.95/CE price $92.00
5-Band, 10 Channel - Crystal scanner - AC/DC
Frequency range: 30-50, 144-174, 440-512 MHz

Now you can enjoy computerized scanner versatility at a price that's less than some of the normally scanner bands. A versatile scanner, The Regency R-106 is built to provide maximum reception at home or on the road. Rugged cabinet protects the advanced design circuitry allowing you years of dependable listening.

Regency® R1040-D
List price $119.95/CE price $121.00
6-Band, 6 Channel - Handheld crystal scanner - AC only
Frequency range: 30-50, 144-174, 440-512 MHz

You can now enjoy computerized scanner versatility at a price that's less than some of the normally scanner bands. A versatile scanner, The Regency R-1040 lets you in on the action of police, fire, weather, and emergency calling. You'll hear them on 10 channels.

Programming the R1040 is easy. Merely touch the keyboard and enter any of over 15,000 frequencies on your choice of 10 channels.

Regency® XH650-D
List price $119.95/CE price $79.00
5-Band, 6 Channel - Handheld crystal scanner Bands: 30-50, 144-174, 450-512 MHz

Now you can turn any emergency around town, from wherever you are, the second it happens. Advanced circuitry gives you the world's smallest scanner. Our low CE price includes battery charger, AC/DC adapter, and a rubber antenna for maximum reception.

NEW! Regency® TX-650P-D
List Price $179.95/CE price $104.00

Now, Communications Electronics offers a special packaged price on the Regency TX-650 scanner assortment for only $104.00!

You get the Regency TX-650 scanner, a set of 4 AAA h-cad batteries, the MA-606 carrying case, a 26-56 MHz crystal set, and a crystal decoder/change and flexible rubber antenna for only $104.00 plus $10.00 shipping/ handling. To order this special package, use CE special order number TX-650P-D.

QUANTITY DISCOUNTS AVAILABLE
Order two scanners at the same time and deduct 1%, for three scanners deduct 2%, four scanners deduct 3%, five or six scanners deduct 4%, and six or more scanners purchased at the same time earns you a 5% discount off our super low single unit price.

Regency® Z10-D
List price $229.95/CE price $149.00
6-Band, 10 Channel - No-crystal scanner Programming RX-1000AC/DC Bands: 30-50, 140-174, 440-512 MHz

Cover your choice of over 15,000 frequencies on 10 channels.

OTHER RADIOS & ACCESSORIES

Regency® C400-D Scanner $59.00
Panasonic RF-850-D Shortwave receiver $129.00
Crystal RX-799-D Shortwave receiver $71.95
Panasonic RF-2600-D Shortwave receiver $199.00
Panasonic RF-3100-D Shortwave receiver $279.00
Panasonic RF-8600-D Shortwave receiver $185.00
Panasonic RX-630-D Shortwave receiver $259.00
Bearcat® 210LX-D Scanner $219.00
Bearcat® 560-D Scanner $79.00
Bearcat® DX1000-D Shortwave Receiver $499.00
JIL SX-400-D Scanner $339.00
JIL PS-6 12 V DC Power Supply for JIL SX-400... $38.00
SPS-5 6-D Carring case for Bearcat Five-Six $15.00
Mac-2a Covert listening case for Regency Regency $18.00
TSG-7 "Top Secret" Registry of U.S. Govt. Freq. $15.00
RF-D Radio Frequency Directory ... $10.00
ESD-5 Energy Services Directory... $10.00
ASD-1 Frequency Directory for Aircraft Band $10.00
SFP-1 Survival Radio Frequency Directory ... $10.00
TIC-5 Techniques for Intercept Communications ... $12.00
CED-6 Covert Intelligence, English $18.00
FB-1-E Frequency Directory for Eastern U.S. $12.00
V-12 V Ya Na Cadd batteries (set of four) $9.00
B-6-D 2 V Ya Na Cadd batteries $12.00
A-6-D-1 Magnet mounted antenna $35.00
A70-D Base station antenna $35.00
Microphone Shipping for all orders ordered at the same time Add $12.00 per shortwave receiver for U.P.S. shipping. Add $3.00 per shipping on all orders.

BUY WITH CONFIDENCE

To get the fastest delivery from CE of any scanner, send or phone your order directly to our Consumer Products Division. We will calculate your price using the CE prices in this ad. Michigan residents please add 4% sales tax or supply your tax code. Commercial orders are accepted from approved government agencies and most well rated firms at a 10% surcharge for net 10 billing. All sales are subject to availability, acceptability and verification. All sales on accessories are final. Prices, terms and specifications are subject to change without prior notice. All prices are in U.S. dollars. Out of stock items will be placed on backorder automatically unless CE is instructed differently. A $5.00 additional handling fee applies for all orders with a merchandise total under $50.00. Shipments are F.O.B. Ann Arbor, Michigan. No COD's. Most products that we sell have 90-day manufacturer's warranties. Some warranties on these products are available prior to purchase by writing to CE. International orders are invited with special handling in addition to shipping charges. Non-certified checks require bank clearance.

For orders to: Communications Electronics, Box 1002, Ann Arbor, Michigan 48106 U.S.A. Add $7.00 per scanner for U.P.S. ground shipping and handling in the continental U.S.A. For orders in Puerto Rico, Hawaii, Alaska, or APO/FPO delivery, shipping charges are three times continental U.S. rates. If you have a Visa or Master Card, you may call and place a credit card order. Order toll-free in the U.S. Dial 800-521-4414. In Canada, order toll-free by dialing 1800-265-4222. Outside CE at home, dial 671-0155. If you are outside the U.S. or in Michigan dial 313-973-8888. Order today.

Scanner Distribution Center* and CE logos are trademarks of Communications Electronics Inc.

* Bearcat is a federally registered trademark of Electra Communications, a Division of the Electra company.

** Regency is a federally registered trademark of Regency Electronics Inc.

Order Toll Free... call 1-800-521-4414

COMMUNICATIONS ELECTRONICS

Consumer Products Division

818 Prange Ave. Box 1002 Ann Arbor, Michigan 48106 U.S.A

Call TOLL-FREE 800-521-4414 or outside U.S.A. 313-973-8888

CIRCLE 33 ON READER SERVICE CARD

THE MONITORING MAGAZINE
FEATURES

How To Hear Central America And The Caribbean On Your Scanner
Guerrillas, G.I.'s, maneuvers, war...and more!
by Chuck Robertson, IL-141 and Dave Beausais, KB1F

Scanning In Olympic-Town
Going to the Olympics in Los Angeles this summer? Here are some frequencies you may want to monitor!
by Randy Caniglia, K6A6UH

165 Fantastic Frequencies
There's never a dull moment on these frequencies. Maybe you should check them out.
by Alice Brannigan

Deutschland DX
A summary of broadcasting from Germany (East and West).
by Gerry L. Dexter

Listening In On America At Play!
A wide variety of outdoor activities require the use of radio communications. Here's how to listen in on the behind-the-scenes action!
by Rick Maslau, KNY2GI

Secrets Of The Silent Service
Those old submarines—untangling their radio callsign mysteries.
by Tom Kneitel, K2AES

Monitoring Mossad: The Israeli Intelligence Service
You've probably heard these mystery "phonetic alphabet" stations and wondered about them! Here's the key to finding them.
by Greg Mitchell

Lightening Your Load And Other Communications Horrors
Electricity on the rampage is a lot worse than you think!
by Don Tyrrell, W8AD, Alpha Delta Communications

Product Spotlight: ICOM's HF/VHF/UHF Radios
Summary of six radios to cover your listening needs.

Books You'll Like
Some books of interest we thought we'd pass along to you.

This month's cover: Now's the time to monitor for Central American military and paramilitary communications. Photo by Larry Mulvehill, W8Z2P!

DEPARTMENTS

Beaming In.. 4
RTTY Monitoring.. 58
Survival.. 40
Broadcast Topix... 60
Mailbag... 42
Satellite View... 64
Communications Confidential.................. 44
Scanner Scene.. 66
On The Line.. 46
Pirates Den.. 68
Radar Reflections... 50
Washington Pulse... 72
Listening Post... 52
Communications Shop.................................... 75
POPCOMM Products.................................... 56

OFFICIAL STAFF
Tom Kneitel, K2AES
Editor
Anita Hipius
Associate Editor

CONTRIBUTING EDITORS
Gerry L. Dexter
Shortwave Broadcast
Joseph E. Jesson
RTTY Monitoring
R.L. Slattery
Survivalist Communications
Harry L. Helms, KR2H
Special Projects
Ron Ricketts, WA5VFA
Utility Communications
Darren Leno, WD0EWJ
Alternative Radio
Harold A. Ort, Jr.
Military Consultant
Janice Lee
Radar Detectors
Chuck Gys, N2DUP
Scanners
Jeffrey Keating, WB4KDH
Satellite TV
Gordon West, WB6NOA
Telephone Accessories
Mark J. Manucy, W3GGM
AM/FM Broadcasts
Richard A. Ross, K2MGA
Publisher
Herb Pressman, KA2UGV
Advertising Manager
Arnold Sposato, KA2TYA
Advertising Representative
Dorothy Kehrwieder
General Manager
Anthony C. Sparacino
Newsstand Sales Director
Arlene Caggiano
Accounting
Cheryl Chomiicki
Subscriber Services
PRODUCTION STAFF
Elizabeth Ryan
Art Director
Dorothy Kehrwieder
Production Manager
Gail M. Schieber
Production Assistant
Pat Le Blanc
Phototypographer
Hal Keith
Technical Illustrator

©1984 Popular Communications, Inc.
All rights reserved. No part of this publication may be reproduced in any form without permission in writing from the publisher.

POPULAR COMMUNICATIONS
JULY 1984
VOL. 2, NO. 11

6
13
52
Privacy Of Communications

There used to be a sidewalk pitchman who was an almost-permanent fixture on a certain downtown street corner when I was a kid. He hawked a little “100-in-1” gizmo that he claimed could open cans, peel potatoes, sharpen knives, chop ice, scale fish, and perform practically every other task known to humankind except the cure of warts and lumbago. He sold a lot of these things because I suspect that we Americans are strangely fascinated by “all purpose” inventions and devices. I saved up my nickels and dimes and bought one of these miraculous inventions to bring home as a boon to my family. It was graciously accepted but soon put into the special kitchen drawer which was the repository for erasable pencils, short lengths of string, half-scissors, loose Plaid stamps, bent nails, and stripped-out screws. This was the obliteration draw — the final resting place for useless trivia that served no real function but which we somehow decided to retain.

The obsesion for all-purpose things and panaceas continues to this very day, and we seem to have maintained our dislike for fully disposing of them even after they have proven themselves worthless. It’s one thing to put up with this in the form of a $1 kitchen gadget, but quite another to be faced with a 50-year-old all-purpose law which seems equally useless. I’m thinking about Section 605 of The Communications Act of 1934, the statute which addresses itself to secrecy of communications. The one-paragraph statute essentially says that communications addressed to one person shouldn’t be revealed to outsiders by non-addresses who might overhear the messages, nor can information obtained in such a manner be used to the benefit or gain of those to whom it was not addressed. Radio broadcasts and ham communications are not covered by this law, which, otherwise, covers all FCC licensees.

The basic intent of Section 605, to be sure, is most noble. Those who wrote it obviously felt that keeping it simple and broad would cover all bases and keep it an all-purpose guarantee that messages addressed to one person or company will achieve some reasonable degree of privacy. Well, you know where the road paved with good intentions leads. Section 605 turns out to be one of the most ineffective, vague, ignored, misused, and toothless statutes ever chiseled into granite. Its honorable intentions are about all it has going for it, and even a further clarification called Public Law 90-351 (intended to protect against wiretapping) is of limited assurance to the public that private messages remain private. The intelligence community, public safety agencies, and many others (with or without authorization or user knowledge) are able to monitor phone calls, and that includes the phone company itself. Furthermore, the FCC itself is not bound to the observation of 605!

When the military lost the warhead of a Titan missile in 1981 after it blew up on its launching silo in Arkansas, the national news media carried word-for-word transcripts of the radio communications as military personnel looked for the trunket. Apparently the news services didn’t think that Section 605 was in effect in that instance.

Radio and TV stations, in their news programs, have long been known to rebroadcast intercepted two-way communications gleaned from various frequencies used by public safety, CB, industrial, aero, maritime, and other channels which you’d think would be covered by Section 605. Also, it’s no startling revelation for anybody to learn that some ambulance services, ambulance chasers, private investigators, tow truck operators, burglar alarm installers, taxi dispatchers, fire insurance adjusters and others have often made use of overhead radio communications for their own gain. News reporters, too, have been known to take commercial advantage of information they’ve monitored. Not that long ago there was an instance of a fellow who brought a civil suit against a TV station because he claimed that their mobile news crew overheard information which enabled them to hang around the site of a ransom drop which resulted in scaring off the persons who had kidnapped his wife. Then there was the guy who overheard radio conversations between the offensive coordinator of the San Diego Chargers and the team’s offensive line coach on the field. He taped the conversations and turned over the tapes to a sports columnist who discussed them at length in his newspaper column. If there were any violations of Section 605 in any of the foregoing instances, you’d never know it based upon any actions brought on its behalf.

One might therefore come to the conclusion that, in a nutshell, Section 605 is an effort intended to recognize that there are questions of privacy invasion which could come into play from time to time, but that it isn’t brought into play with any regularity or consistency. When viewed in the context of
the 1980's and the state of communications technology, it seems to be fuzzy or inadequate. Undoubtedly it has been a deterrent to at least some invasion of communications privacy over the years, especially when those invasions were being considered by those who were naive or faint of heart. As time has progressed it has proven to be effective on a steadily diminishing basis, what with technological advances and the state of society these days. Today, intelligence and law enforcement agencies have found it necessary to monitor the private communications of certain elements of society. Industrial espionage is a big business. Political espionage is rampant, as is amateur bugging and wiretapping. Personal privacy on any level at all becomes a matter of degree when viewed in light of the amount of information about us stored in the computers belonging to employers, banks, credit companies, insurance companies, hospitals, schools, courts, motor vehicle bureaus, the 'phone company, and federal/state/county/local agencies.

Nevertheless, that old adage does good, Section 605, is still on the books and from the looks of things it does not seem to be particularly relevant for guaranteeing you or I substantial peace of mind regarding our privacy. On the other hand, don't think that Section 605 is totally impotent. There are some rare instances where it has come into play in the manner for which it was probably intended. About five years ago a fellow in Wisconsin was dragged into court and hit with a charge of Section 605 violation. Seems he owned a scanner and was monitoring law enforcement frequencies. From those efforts he learned that several unsavory characters were under surveillance. He then contacted those persons and advised them that they were being watched. He was convicted and received an unpleasant sentence.

For the most part, the present use of Section 605 has been applied of late in some novel ways. Last February a federal judge applied the law in a civil suit brought by a New York cable TV company against a man who was selling cable TV describers known as "pirate boxes." U.S. District Court Judge F.X. Altman's decision was similar to previous decisions rendered in similar cases in Florida and Ohio, and he also told the fellow selling the boxes that he'd have to pay damages to the cable TV company for as long as the TV people could prove he had been in business. Section 605 has also been waved around by TV companies who seek to stop home viewers from erecting microwave antennas on the roofs of their homes in order to get a free peek at MDS point-to-point pay-TV distribution transmitters. Furthermore, "605" is also run up the flagpole by suppliers of background music to stores, banks, cocktail lounges, and offices whenever they learn that an unauthorized establishment has commenced playing their soothing tunes—even though that music is usually delivered piggyback via SCA and hidden within the signal of an FM broadcast station. It's ironic that broadcast related services are the primary folks getting any mileage out of Section 605 when it was not intended to relate to broadcasters! And the FCC has generally supported these companies in their quest!

Other than its application by cable TV and other broadcast-related establishments, Section 605 seems to be really used only in an instance like the fellow in Wisconsin, or when it has been violated by someone who has been tagged with a whole string of serious criminal charges. They toss in Section 605 for good measure as they throw the book at him (some have observed that perhaps this is done when the "case" against the guy is a little weak and it's a matter of grasping for straws).

I think that part of the problem with Section 605 is that before there is any way it can be applied, someone has to step forward and file a formal and official complaint (probably with the FCC) stating that because of some specific act, their communications privacy has been trod upon. Straightaway this sounds like such a complex and time consuming exercise in red tape that there are probably few instances which would cause anybody to devote the time, effort, manpower, and resources to pursuing the matter, and then prove the claim and see it through to its conclusion in a court. Obviously cable TV and background music companies (backed by court precedents, claims of financial losses, and the ability to muster legal resources) find it viable to press such complaints. They have not been disappointed with the results.

In the instance of the fellow who told the suspects that they were under surveillance, he was probably a wise guy or a boob, or both. Anybody with an IQ of 25 would have immediately seen the lack of wisdom in such an act and then desisted. Forgetting Section 605, it certainly was a stupid thing to do in any event.

In all fairness, it does seem that communications privacy involves questions of common sense on at least an equal basis with legality. Because the law is so seldom involved in connection with the invasion of personal privacy, it's difficult to assess its true potentials based upon its spotty track record. Unfortunately, it falls into a strange classification that makes its possible usage a statute used for selective harassment very high. As a working broad and 'taters law that has any real application in the normal course of our lives, it has been of little value. It is openly ignored without any evil intent, more often that not by persons who don't know about it or who do know about it and see it as so outmoded, inadequate, broad, vague, confusing, and hard to use that it's probably not worth worrying about unless a cable TV system is the potential aggrieved party.

Yet there's no doubt that there are consid-

(Continued on page 74)

Oliver "Perry" Ferrell (1920-1984)

An Old Friend Passes

One of the DX hobby's most colorful and interesting members has passed from the scene. Oliver P. "Perry" Ferrell was fatally injured in a car accident last April 21st. Perry got started in the hobby in 1935 and over the decades his byline appeared on more than 400 articles and editorials. During WWII he did research in communications with the USAF and from 1951 to 1954 he was the Editor of our sister publication, CQ magazine. After he left CQ, Perry became the first Editor of Popular Electronics Magazine, and went on to be the Editor of Stereo Review. It was under Perry's guidance that countless novice authors got their start (myself included).

After Perry retired from the hectic world of magazine publishing he devoted his immense energies and talents to the operation of Gilfer Associates, a company he ran with his wife, Jeanne. Gilfer is well known within the DX community as suppliers of communications products, and publishers of DX books such as the Guide to RTTY Frequencies and The Confidential Frequency List, amongst others.

Perry was one of those unforgettable people who was perceived totally differently by just about everyone with whom he came in contact. To some, he could be rather inscrutable, to others he was a sage advisor who would gladly share his encyclopedic knowledge of monitoring, while others knew him as a serious researcher in radio propagation and the technical aspects of communications equipment. In the 28 years that I knew Perry, I must say that I was exposed to these and also the many other intriguing aspects of this most fascinating and complex person. No matter how one perceived Perry, there was no getting away from the fact that he was certainly a compelling presence; a brilliant and unique man whose sudden and untimely passing is a great loss.

We at Popular Communications extend our heartfelt sympathies to his family.

THE MONITORING MAGAZINE

July 1984 / POPULAR COMMUNICATIONS / 5
How To Hear Central America And The Caribbean On Your Scanner!

Guerrillas, G.I.'s, Maneuvers, War... And More!

BY CHUCK ROBERTSON, #IL-141 AND DAVE BEAUVAIS, KB1F
Without a doubt, some of the most easily-heard and intriguing VHF Low Band skip hop signals are those that come from Central America. Often hopping from country to country, these signals have frequently been heard on the 30-50 MHz VHF band. Because of their frequency range, they are sometimes difficult to hear and require a good receiver, but they can continue to be heard for a long time to come.

With the sporadic E season now upon us, "double-hop" propagation from Central America to most parts of the United States promises some very thrilling reception indeed. But even during winter and spring months, the tendency of signals between approximately 30 and 35 MHz to propagate well along a north-south path has produced some astonishing and unexpected crosstalk—sometimes referred to as "tact..."}

The Yankee/DX Connection

So what's really happening down there? Observations made during the Big Pine exercises indicated that U.S. and Honduran military personnel worked together amicably, although a language barrier sometimes led to minor problems. The U.S. military appeared to dominate the operation—at least from the standpoint of managing communications logistics; and personnel were frequently found hopping from channel to channel as they tried to keep field operations well-organized. "Headquarters" or "control" channels were manned by both Hondurans and Americans. (See Table 2 for a log of unusual Low Band frequencies carrying U.S. military traffic from Central America.)

In November 1983, with more than 5,000 American troops and 6,000 Honduran soldiers participating—and aided by strong early-winter F-layer propagation on the north-south path—tactical communications virtually saturated the bottom end of the VHF Low Band. During one particularly heavy period of war games, an English-speaking Honduran stated he was using an "AN/VRC-46 and a whip." These vehicular units have ten pre-set channels in the 30 to 76 MHz range, with an output ranging from 10 to 35 watts depending on the frequency used. (For a description of this and related field equipment, see "Get into On Uncle Sam's High Tech Electronics," POP'COMM, February, 1983, p. 8) For the most part, a 50 kHz spacing between active channels was noted in these exercises.

More joint military exercises are occurring this summer in Honduras. Maneuvers are scheduled to take place in the mountainous western region bordering El Salvador and Guatemala. The announced plan is for U.S. troops to participate, along with military forces from El Salvador, Guatemala, and Honduras, in "counterinsurgency" training, with a special emphasis on raising the profile of the Guatemalans in the region's highly-polarized military theatre.

Evidence seems to point to the fact that these exercises are less a showpiece than they are a cover for funneling U.S. military support to forces bent on overthrowing the leftist government of Nicaragua. These contrasts, as they are commonly known, figure prominently in our story as well—since someone in the region has been heard using very sophisticated, high-tech radios (employing, at various times, both digital and analog voice scramblers, as well as unscrambled Spanish), to make some very tense, terse, and seemingly under-fire transmissions monitored here in the states (as we shall see).

Our own military, by comparison, uses virtually no scrambling in its Big Pine tactical operations on these frequencies; while these mysterious, high-security, scrambled radios are precisely the type of equipment that one would expect to be included in the not-very-secret "covert aid" provided to the contras by the American Central Intelligence Agency.

In the last analysis, one of the really exciting things about this "freak" propagation from Central America is that it gives you an opportunity to hear for yourself what's really going on down there—and quite possibly, to add something entirely new to our public knowledge about clandestine guerrilla activities, which the intelligence community seems to want to keep hidden.

Some installations run communications on many frequencies simultaneously.
The evidence that contras are being supported with American-made high-tech scrambler radios which are more secure than even our own military communications links is curious in itself, having been accidentally discovered by one of the authors in the course of routine monitoring operations with a scanner—even before Popular Communications reported this fact in the September, 1983 issue ("Nicaraguan Rebels Use Yank Radios", POPCOMM, September, 1983, p. 9).

The opportunity facing us as "civilian monitors" was stated by an editor of one of the radio club journals, who wrote: "It wasn't until quite recently that it became apparent that a number of the things we have been receiving are of significant interest (other than the phenomenon of "skip"), which I have always thought of as interesting, and perhaps even of newsworthiness."

(Spectrum) Space Invaders!

When the U.S. military conducts operations in foreign countries, the Low Band frequencies employed have a good chance of turning up on your favorite local public safety or business channels. There are several reasons for this.

In the first place, the radio spectrum is shared in common by the whole earth. Every nation and every army (and every police and fire department) has no choice but to use the same frequencies. Clearly, the Low Band component of military communications is only a small part of any tactical communications system—but it's the part which Mother Nature has conspired to carry to your antenna, through various near-miracles of ionospheric propagation. So it behooves you to be thankful for her "gift from the blue," instead of fretting about the High Band and UHF stuff you can't hear!

Second, and more to the point: Band plans for frequency allocations differ in other countries, so military channels must be arranged so as to limit interference to local radio systems of the host country. There are numerous instances—some of them humorous—of bewildered stateside police and fire dispatchers doing verbal battle with strange-tongued (and even scramble-voiced) "aliens" who have mysteriously landed on "their" personal dispatch frequency!

Finally, it must be said that within the limits imposed, the American military has never been bashful about seizing new radio frequencies on an "at will" basis—with a cavalier aplomb that would land us normal radio mortals in the pokey in short order if we ever tried it! An acquaintance of ours who once served in the Army remembers "one summer tour I spent at Fort Bragg, North Carolina, when all we did was look for clear frequencies to use for Army field operations" in a skip-infested band.

Military communications (and the licensing of military radio operators, for that matter) is not under the jurisdiction of the Federal Communications Commission. Hence, ordinary FCC allocation tables are considered by military communications planners to be of an advisory nature only.

<table>
<thead>
<tr>
<th>Table 1: U.S. Government Official Channelization Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.00-30.55</td>
</tr>
<tr>
<td>32.01-32.99</td>
</tr>
<tr>
<td>34.01-34.99</td>
</tr>
<tr>
<td>36.01-36.99</td>
</tr>
<tr>
<td>38.27-38.99</td>
</tr>
<tr>
<td>40.01-41.99</td>
</tr>
<tr>
<td>46.61-46.99</td>
</tr>
<tr>
<td>49.61-49.99</td>
</tr>
</tbody>
</table>

Note: A 20 kHz spacing between channels is most common, but there are many exceptions. The 38.01-38.25 subband is set aside for radio astronomy, although there are some low power bases and mobiles operating there. The 49.70-49.90 subband is shared with short-range unlicensed communications devices, such as cordless telephones. "Talkman" communications, wireless microphones, toy walkie talkies, and remote control units.

<table>
<thead>
<tr>
<th>Table 2: Non-Standard Channels Logged With Central American U.S. Military Traffic, 1982-1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.60</td>
</tr>
<tr>
<td>30.70</td>
</tr>
<tr>
<td>30.85</td>
</tr>
<tr>
<td>30.90</td>
</tr>
<tr>
<td>31.00</td>
</tr>
<tr>
<td>31.05</td>
</tr>
<tr>
<td>31.10</td>
</tr>
<tr>
<td>31.15</td>
</tr>
<tr>
<td>31.20</td>
</tr>
<tr>
<td>31.30</td>
</tr>
<tr>
<td>31.40</td>
</tr>
<tr>
<td>31.45</td>
</tr>
<tr>
<td>31.50</td>
</tr>
<tr>
<td>31.55</td>
</tr>
<tr>
<td>31.60</td>
</tr>
<tr>
<td>31.65</td>
</tr>
<tr>
<td>31.70</td>
</tr>
<tr>
<td>31.75</td>
</tr>
<tr>
<td>31.80</td>
</tr>
</tbody>
</table>

Some Nuts And Bolts—And A Few Loose Screws!

So you've got your scanner hooked up to a good outside omni antenna—or a directional antenna pointed south—and it's puring away in "Search" mode between 29.7 MHz and 49.99 MHz. What, exactly, can you expect to hear? What's in this for you, anyway? Are they really out there?

Let's find out by taking a step-by-step tour up the band—bypassing strong local signals, of course; and for the sake of the demonstration, compressing the time line of a few years worth of monitoring down to a half-hour or so. Given those limits, what follows is a good healthy slice of the activity actually heard from Central America during the past two years, using nothing more than an array of Bearcat and Regency scanners, and very modest, garden-variety rooftop antennas.

We'll have to hop back and forth a bit to follow the traffic; but for the most part, we'll scan the band in logical order, from low end to high. Flack jackets all set? We're off!

30.00, 30.05, 30.10, 30.45, 30.55, 30.90, 31.45: Here's our starting point; aircraft, monitored during the joint Marine/Honduran maneuvers conducted near Puerto Castilla in Northern Honduras. One pilot mentions he has got permission from the Hondurans to participate in the mission. "Missions" may be war games, or they may be construction projects.

30.20, 31.70, 32.60: No sooner airborne, and already the flying is choppy! Here we encounter something known as "time division scrambling"—Spanish-speaking voices which sound like they've been recorded on magnetic tape, and the tape cut into little bits, and the bits pasted back together again in a random order! You can pick out syllables (or just phonemes), but it's hard to make sense out of the transmission.

The system works something like this: Imagine that a transmission one-half second (or 500 milliseconds) long is divided up into 5,055 slices. This means there are 100 "slices" in the complete message. But instead of stringing them together in a linear fashion (slice one, followed by slice two, followed by slice three, all the way to slice one-
atomized into tiny, instantaneous hundred-thousandthths...imagine, if you up mode of scrambling 31.96, 31.98, 32.00, 30.05, 30.40, 30.85, 30.95, 31.93, 32.35:

voice. Simplex operation on person to 100% clear voice and SSB 30.40:

tion the air channel) were noted.

30.31, 30.35, 30.39:

found these ton

grammed and the target receiver are

delay circuit with

matched with

microcomputers
each bit

security. (An excellent discussion of

microchips)

this order.

Now

interested in RTTY/CW Reception with Your Computer for Under $100?

Call Us About the New MFJ RTTY/CW Reader

Send 60¢ in Stamps for Catalog

THE MONITORING MAGAZINE
data, often rendering this high-priced security system completely worthless. Clearly, the kinks are still being worked out of the DVP mode. So what does this have to do with Central America? Let's come in for a closer look.

31.42: DVP-type scrambling—low power
31.43: DVP-type scrambling—low power
31.44: DVP-type scrambling—medium power
31.45: DVP-type scrambling—low power
31.46: DVP-type scrambling—medium power
31.47: DVP-type scrambling—low power
31.49: clear voice English—medium power

What we have here is a system known as a communications trunk: a multi-channel network which may be providing flexible, high-capacity point-to-point communications between two fixed locations, or which may be linking various widely-scattered bases together in a single unified system. Our tip-off as to the location of the trunk comes when we note that clear-voice Spanish military communications are sometimes heard on the 31.45 channel—in the midst of the DVP transmissions! Another interesting characteristic of this system is that the channels 31.44 and 31.46 are usually, but not always, keyed simultaneously. Place of origin is not known at this time—but the Spanish voice comes make Central America the main contender.

31.90 to 32.00: Yet another trunk with similar channel spacing and operating characteristics—also in DVP—can be heard between 31.90 and 32.00 MHz. On 32.00, we find a continuous carrier with a high-pitched guard tone. This channel features occasional DVP-type scrambling, alternating with normal voice communications that are clearly U.S. military in origin. Guard tones are very popular on military circuits. The Russian military likes them too, as we discovered one morning in October of 1978, when this band cracked wide open to the Soviet Union, and their tactical military communications suddenly started pouring in on household scanners all over the eastern United States!

It often pays to monitor these seemingly dead carriers. You literally never know what's going to turn up! One of the truly classic examples is the following listing:

32.60: This "dead carrier" channel was monitored for half an hour with no signs of life. Suddenly, and without warning, four voices (at least one of them female) appeared and took turns reading from a script which sounded like something straight out of the Twilight Zone!!! The phrase, "Would you record that now?" was repeated over and over, in an almost robotic, emotionless drone, with the blank space being filled by a different one-syllable word as each voice took its turn. "Would you record mode now?" "Would you record page now?" "Would you record rap now?" "Would you record jay now?" "Would you record snipes now?" "Would you record char now?" "Would you record mae now?" "Would you record void now?" "Would you record fight now?" "Would you record scrub now?" "Would you record earth now?" "Would you record force now?" "Would you record hurt now?"

After the phrase "hurt now," this channel went silent again, and remained silent for the half-hour during which the monitoring continued.

Bizarre? Creepy? Spooky? You betcha! Still get the willies listening to these droning, android voices on our reference tape! A knowledgeable source indicates that similar transmissions have been monitored in the 300 MHz military aircraft band (just now becoming available to scanner owners through the latest generation of expanded-coversage radios), where they have been linked to AWACS radar-interpret training exercises originating at various U.S. air bases. Anyone having a solid explanation for this somewhat frightening catch, please contact the authors!

30.40 (repeater output), 30.80, 31.30, 31.40, 33.65, 34.10, 37.75 (repeater output): Military operations in former Dutch protectorates, Caribbean region. Most of this activity is believed to originate in Surinam. Following a period of independence from the Netherlands, Surinam suffered a bloody military coup in February of 1982, when the National Military Council took control of the government—assassinating the prime minister, along with many of the tiny country's leadership, physicians, professors, intellectuals and other "elite" professionals, just for good measure.

A conversation monitored on 37.75 at the time of the coup indicated that sporadic fighting was still going on, and that a helicopter was needed to evacuate wounded in the midst of heavy gunfire. These were not war games! Communications from Surinam are readily identified by this nation's curious dialect—a frothy brew of pidgin Dutch, English, Spanish, French, Indonesian, Hindi, and possibly Hebrew. It's fascinating to listen to these people talk. A lot can be understood, and they often switch to straight (in fact, very clipped, proper, uppercrust, British-sounding) English. Here's what a request for a helicopter ("Buzzard") sounded like on 33.65 MHz.

Base: Zero reference your last send, over.
Kilo 26: Helicopter for Buzzard, over.
Base: Zero Roger, over.
Kilo 26: Alpha Tusk Resub Bravo. Load 21 times 5 days resub. Register so far, over.
Base: Zero Roger, over.
Kilo 26: Charlie, pick up Papa Tango Gulf 600 and Delta Tango Papa Gulf 870, over. ("Kilo" designators are used by coastal fleet vessels.)

Another "Helicopter" episode on 37.75 had a certain off-the-wall humor about it—unless it was your life that was at stake, I suppose! Here we had the spectacle of the base controller arguing with a field officer about the proper procedure to be followed, and necessary paperwork to be completed, before a helicopter could be dispatched to evacuate wounded men from combat!!! Their argument centered on the question of whether the need to evacuate took priority over the completion of a formal request through proper bureaucratic channels! (I'm just glad I wasn't the poor guy who lay there bleeding while his superiors duked it out over the radio!) The impersonal, clipped, highly proper accents of the participants made this ridiculous exchange sound like some wacko Monty Python comedy skit—though a rather grim comedy indeed. I had a mental picture of men lying in blood on the ground, while some very out-to-lunch officers sipped their chutney and debated the fine points of the application of the operation handbook!

32.25: The 10th U.S. Corps, 23rd Armament Division, motorized rifle regiment was engaged in war games against the "Transnovian" Army! (Hey...weren't they fighting the Fredonians in one of those great old Marx Brothers movies?!

32.30: Brazilian military. Portuguese language tactical communications heard. Low band military skip from this country is relatively rare, though whether from propagation difficulties or simply from sparse use of these frequencies in Brazil is not clear.

32.50: 32.45, 36.55, 40.80, 41.10, 41.90: U.S. Navy operations, Puerto Rico. Military frequencies in Puerto Rico and the U.S. Virgin Islands follow the same allocation chart as the continental United States. Propagation from the Caribbean to the mainland is generally outstanding year-round, making these operations very easy and common catches.

33.05: Chemical warfare exercises. One participant stated there was still an indication of "nerves toxins." We hope he was referring to dummy tracer gases. It's against international conventions to use the real stuff. (But this is a good illustration of the way in which potentially serious and newsworthy information can turn up on your scanner: What if they were using the real stuff? They're using it in the Middle East!

33.10: Communications from U.S. Navy ships anchored off the coast of Central America. The 62,000-ton aircraft carrier Coral Sea and several other vessels were stationed east and west of Central America at this time, to discourage Nicaragua from retaliation against Honduras for harboring contras.

33.35 (repeater output): U.S. war games in Central America. This repeater was being used to amplify and relay infantry communications from the field.

36.87 (repeater output)
33.87 (input for 36.87)
36.90 (repeater output)
33.90 (input for 36.90)
36.97 (repeater output)
33.97 (input for 36.97)

These three repeaters are a real mystery. They appear to sit idle, waiting for...what? The only reason they were discovered is that
Viking International
The Source! Compare prices!

High-Security PORTABLE Telephone Scrambler

Specifications:
- Telephone connection: integral acoustical coupler and handset
- Code protection: 8 digits = 100,000,000 combinations
- Scrambling method: Time segment rearrangement and reversal
- Sequence duration: greater than one hour
- Customer code: built-in (optional)
- Display (LCD): on/code/plain/scramble
- Dimensions: 1.5 x 7.6 x 9.6 inches
- Weight: 3.3 lbs.

$6900.00 per pair

TELEPHONE VOICE CHANGER
This one WORKS!
Slips over telephone handset. Voice characteristics are continuously variable. Uses custom LSI circuitry. Call for over the phone demo.
Now only $389

PORTABLE TELEPHONE SCRAMBLER
WHY PAY $990 a pair? OUR price is $840 a pair.

TAPE RECORDER AND TRANSMITTER DETECTOR

TELEPHONE AUTOSTART
- Start/stop recorder automatically
- Uses no batteries
- Does not load line
- Best since 1969
- Special TA210X model turns our 10 or 14 hour recorders completely on/off, saving batteries
- Beware of primitive imitations!

$635

BEWARE of look-alike imitations!

SEND FOR FULL TECHNICAL DESCRIPTION

L–O–N–G DISTANCE MICROPHONE SYSTEM

NEW!

Send for 2 page brochure

$159

VIBRATING POCKET TRANSMITTER DETECTOR

only $290!

Dimensions: 2¼" x 7/8" x 3¼"

TELEPHONE AUTOSTART

BEST sounding 10 hour recorder!
- AC/DC operation
- Digital tape counter
- Records 5 hours per side (10 hours total)
- Complete with cassette
SENSATIONAL NEW LOW PRICE!

$93

With voice activation built-in (nothing dangling outboard) – $119

only $25.95

works with TA210X

TELEPHONE AUTOSTART

BIG NEW 52-PAGE CATALOG
- $5.00 (U.S. and Canada, first class mail)
- $7.00 (all other countries, air mail)

DEALER PRICES? OF COURSE!

CA. residents add 6½% tax.

VIKING INTERNATIONAL
P.O. Box 632, Newhall, CA 91322
Phone (805) 252-1820
Telex 182836

CIRCLE 22 ON READER SERVICE CARD
fire service skip signals from all over the United States are occasionally rebroadcast over them. The U.S. fire frequency 33.90 is a perfect match for the 36.90 repeater, and is therefore relayed loud and clear. But the 33.87 and 33.97 inputs are 10 kHz off from U.S. allocations, so a bit of distortion occurs.

Based on propagation patterns and the fact that fire traffic from all parts of the continental U.S. is being repeated, it is thought that these machines are located on the northern coast of South America. One source claims that they are owned by oil companies in Venezuela. It’s equally possible that they are maintained by government or military interests—for what profit-making business would find it economically advantageous to let three repeaters sit idle?

In any event, the make for a fascinating “watch” since they’re clearly in a state of readiness and could suddenly become very active. It’s a real object lesson in the sometimes bizarre interdependency of planetary communications systems as well: rural fire departments in Maine being heard (without their slightest knowledge or inkling) clear across the continent, and on another frequency altogether, through the maverick antics of one very bored repeater somewhere in South America! What would Marshall McLuhan have said?

36.87, 45.44: Certainly one of the hottest of all DX catches. Time division scrambling, used simultaneously with frequency inversion (pitch) scrambling, to produce a very high-security field radio system. All evidence points to Nicaraguan contras engaged in their guerrilla war against the Sandinista government of Nicaragua (ref. Tom Kneitel’s “Nicaraguan Rebels Use Yank Radios,” POP’COMM, September, 1983).

According to Kneitel’s report: “A reader in Honduras...reports that 45.44 MHz has been a popular contra frequency; transmissions monitored include some using a voice scrambler.”

More than a year earlier, on June 25, 1982, during a period of intense sporadic E propagation, mysterious transmissions were heard on 45.44 MHz in Southern Illinois.

The transmissions—eerie, garbled and vaguely ominous—caused some consterna-
tion to at least one local dispatcher of the Southern Illinois Emergency Services and Disaster Agency, also operating on 45.44! He must have thought an alien invasion was in progress!!

During one series of transmissions on 45.44, the “alien” radio operator switched to clear voice mode, and urged repeatedly, in Spanish, “Basa, Basa Cielo guaraco!” This has been translated by a Spanish-speaking monitor as, approximately: “Base, Sky Base: shelter! (or, “Take shelter”). At the time of monitoring, the existence of such high-tech scrambler radios in the hands of the Nicaraguan contras, and their use of 45.44, were completely unknown. Kneitel’s article finally blew the cover off the operation, and helped to indentify a rare and spectacular DX catch indeed!

The contras have recently become notorious for their air strikes on key Nicaraguan industrial and military installations, as well as their support for invading ground troops. Contra airstrips are located in northern Costa Rica and southern Honduras. The Nicaraguan government has charged that the raids are financed and organized by the Central Intelligence Agency.

At the time of this writing, a rash of “mysterious” U.S. helicopter crashes—all but one of them attributed to non-hostile causes such as “bad weather” and “engine failure”—have resulted in the loss of several American lives. These crashes have occurred along the Honduran/Nicaraguan border, where the contras are most active. The Pentagon hotly denies that it is providing direct air support or cover to the contras.

Keep a close watch on these frequencies! Clearly, not everything worth hearing has yet been consigned to the uncrackable crackle of VVP—though we can expect to hear a lot more of it turning up where such sensitive and covert activities are or may be taking place.

Back On The Home Front

And finally, here are just a few of the state-side military channels to sharpen your ears for, now that the band is hot with summer-time sporadic E! (For more information, refer to Tom Kneitel’s Top Secret Registry of U.S. Government Radio Frequencies, an outstanding Low Band list!)

30.00: MX Missile Radio Net, Channel 48
32.29: White House to Camp David communications!
34.60: Nellis AFB and Nuclear Testing Range, Nevada (aircraft frequency)
36.05: Shoshone MX Missile Receiving Site Net, Nevada
41.10: White Sands Missile Range Recovery Net, New Mexico

Low Band skip is a vast and kaleidoscopic field of study. Clearly, we’ve just scratched the surface of the subject—limiting ourselves to one small corner of the world where strange propagation, and stranger political events, are having a daily impact on our lives and our monitoring activities.

Whatever the current name for these “joint military exercises,” America looks to have made a long-term commitment to Central America, with over 700 permanent troops assigned to maintain the airstrips, ocean piers, radar stations and other installations built during Big Pine I and II. From the huge U.S. embassy complex in Tegucigalpa, to the anti-guerrilla tactics base at Puerto Castilla, it’s clear the Yanks are dug in. And it’s clear that Central America will continue to fill your scanner with fascinating skip for months and years to come.

Curiously enough, almost nothing was heard on Low Band relating to the Grenada invasion. Central American war games continued to be heard more or less as usual—along with some powerful state-side military skip from training base known as “Long Rifle,” of which we’ll hear lots more in a subsequent article. Perhaps Low Band was avoided during the invasion of Grenada because of its well-known penchant for being heard at great distances, and the fact that the administration was decidedly media-shy during the event.

Before we drop you safe and sound back at your home QTH, we leave you with a very important reminder. While charting our Central American course, even in such a shortened form, we’ve had to gumshoe our way gingerly around hundreds of bone-crushing signals—from off-shore oil drilling rigs, Jamaican horse-bookies, Trinidadian taxi drivers, even (we kid you not) the frightfully efficient German Autobahn Police—and more beeps, squeaks, grunts, groans, squawks, squeals, and buzzes than any mere mortal should ever be forced to endure!

We hope to analyze some of the more humanly inviting of these Low Band skip signals for you in the future. In the meantime, keep your ears on! It’s comforting to know that turnabout is fair play, and that you, too, can listen to Big Brother...listening to you!

Check your flack jackets as you deplane, please. And one last request before you go: “Would you record Orwell now!!”
Scanning In Olympic-Town

Going To The Olympics This Summer? Here Are Some Frequencies You May Want To Monitor!

BY RANDY CANIGLIARO, KCA6UH

For scanner owners, Los Angeles is one of the greatest places in the world. There seems to be more communications activity in the Los Angeles area than just about anywhere else you can think of, so if you're attending the 1984 Summer Olympics, be sure to add to your enjoyment of Los Angeles by bringing along a scanner.

The public safety frequencies will be buzzing away to beat the band. Such frequencies have been available to scanner owners for some time now and if you're in doubt you can check at any communications shop and they'll probably be happy to clue you in. If you're unable to locate a scanner emporium because you're unfamiliar with Los Angeles, check in with Communications Center, 915 North Euclid, Anaheim, CA 92801 as they are a major scanner supplier in Southern California. In fact, Communications Center informs us (as we go to press), of tentative plans to establish a phone-in scanner frequency service during the Olympic Games. This would be an automatic answering machine which will provide up-to-the-minute Olympic frequency information and also give scanner owners a chance to offer their own discoveries for subsequent updates. The telephone number for this will be (714) 533-INFO—and we assume that if it is put into effect, it will be in use just prior to and during the Olympics. Hope they go ahead with this idea as it's quite clever and useful. See this month's Scanner Scene column for more information on Olympic frequencies.

One of the areas of listening you may find interesting during the games is contained in the listings provided in this issue of POP'COMM. These listings cover many hotels, airlines, colleges and universities, news media, car rental agencies, etc. This type of frequency information is not usually made available in published listings but is nonetheless worthy of your monitoring time.

For those of you who like to monitor airport communications, there should be plenty of air traffic control activity to monitor in the Los Angeles area. Listen for the Los Angeles International Airport control tower on 120.95 and 133.9 MHz, with helicopters to be monitored on 123.05 and 119.8 MHz. Ground Control at “LAX” is on 121.65 and 121.75 MHz. The Clearance Delivery channel is 121.4 MHz. The LAX Unicom frequency is 122.95, while the ATIS (Automatic Terminal Information Service) transmissions are on 133.8 and 135.65 MHz. Aircraft approaching the field communicate on 124.5, 124.9, and 128.5 MHz, while those departing operate on 124.3 and 125.2 MHz. The area FAA Flight Service Station operates on 122.2 and 122.5, while 122.0 MHz is used for aviation weather.
The Los Angeles Air Route Traffic Control Center (ID: "Los Angeles Center") controls and monitors aircraft movement in and around the Los Angeles area. You will probably be able to monitor the ground station on several frequencies (depending upon your location, since the "Center" uses many remotely situated transmitters), but you should be able to hear aircraft on most of the following frequencies (all are MHz):

119.0 132.5
121.35 132.6
124.15 132.625
124.2 132.85
124.15 133.05
125.65 133.2
125.8 133.4
125.85 133.55
126.0 134.025
126.35 134.075
126.4 134.4
127.1 134.55
127.35 134.65
127.4 134.75
127.9 135.25
128.05 135.3
128.2 135.45
128.6 135.5
132.15 135.55
132.3 135.575

Also, be sure to search through the 128.8 to 132.0 MHz band for airline communications traffic.

Major News Media Communications Stations Los Angeles Area

American Broadcasting Co.
KAC3137 462.65
KCP989 471.1625
KFY999 463.60
KM8246 173.325 (ABC Sports)
KJJ572 455.05
KRO642 455.75

Columbia Broadcasting System
KST453 31.04
KVD493 450.0875
KZH804 450.05

National Broadcasting Co.
KEH396 450.1875, 450.3875
KES328 161.73, 161.76, 170.15

Metromedia
KJT464 455.5875
KJT465 161.73, 161.76, 170.15
KMD404 170.15
KMH230 450.05, 450.55, 450.95
KMK377 463.60
KMM808 161.73, 161.76, 170.15
KVY938 450.05, 450.55

Associated Press
KFF564 151.625
KTI487 453.00
KV4234 173.225, 173.275
173.325, 173.375

John J. Meshna Jr., Inc.
19 Allerton Street • Lynn, MA 01904 • Tel: (617) 595-2275

R-390A/URR RECEIVER
World-famous R-390A military receivers are again available to the surplus market. These receivers cover the range of 0.5-32 MHz in AM, CW, MCW modes over thirty-one 1 MHz bands which read out directly on digital mechanical counters, 455 kHz final IF. The radio has 4 Collins mechanical filters allowing 2-4-8-16 kHz selectable bandwidths. There are calibration points every 100 kHz, also BFO, AGC, dial locks, 600 ohm audio output. The radios are complete less meters and covers (made for rack mount). They are checked for completeness prior to shipping. Sold as is. We can ship in two boxes via UPS. Shipping weight is 85 lbs.
R-390A $225.00
Copy of technical manual for this radio $15.00

PDR-27 NAVY RADIATION METER
Just released by the US Navy. They appear to be in excellent condition and include the fitted aluminum transit case. Batteries not furnished but are available in most electronic supply houses. 4 ranges 0.5 to 500 mR/hr. Removeable hand probe, detection of Beta and Gamma radiation. With today's world conditions and perhaps proximity to a nuke power station, it might provide a little insurance to own one of these instruments. With no facilities to check or test, we offer AS IS, visually OK Schematic provided with each. We have some accessories and offer as an option although not required for operation.
Shipping wgt. 22 lb. PDR-27 Rad Meter $50.00
PDR-27 phones $7.00
Hi Sensitivity GM tube $10.00
Low Sensitivity GM tube $5.00
Approx. 100 page Instr. Book $10.00
The above listed tubes are already installed in the meter.

PHONE ORDERS accepted on MC, VISA, or AMEX No COD's. Shpg. extra on above. Send for free 72 page catalogue jam packed w/bargains.

CIRCLE 24 ON READER SERVICE CARD
THE MONITORING MAGAZINE
Some Los Angeles Frequencies

<table>
<thead>
<tr>
<th>MHz</th>
<th>Callsign</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.80</td>
<td>KAN602</td>
<td>Skyways Airport Hotel</td>
</tr>
<tr>
<td>31.04</td>
<td>WX2853</td>
<td>Quality Inns Int'l.</td>
</tr>
<tr>
<td>31.20</td>
<td>KUV225</td>
<td>Foothill Patrol & Alarms</td>
</tr>
<tr>
<td>31.24</td>
<td>KRX840</td>
<td>Holmbes Guard & Police</td>
</tr>
<tr>
<td>35.08</td>
<td>KGB793</td>
<td>Hotel Bel Air</td>
</tr>
<tr>
<td>35.94</td>
<td>KCV566</td>
<td>Ramada Inns</td>
</tr>
<tr>
<td>46.56</td>
<td>KGR764</td>
<td>Univ. of California</td>
</tr>
<tr>
<td>150.90</td>
<td>MKM619</td>
<td>Auto Club of So. Calif.</td>
</tr>
<tr>
<td>150.92</td>
<td>MKM619</td>
<td>Auto Club of So. Calif.</td>
</tr>
<tr>
<td>150.935</td>
<td>MKM619</td>
<td>Auto Club of So. Calif.</td>
</tr>
<tr>
<td>150.95</td>
<td>MKM619</td>
<td>Auto Club of So. Calif.</td>
</tr>
<tr>
<td>150.965</td>
<td>MKM619</td>
<td>Auto Club of So. Calif.</td>
</tr>
<tr>
<td>151.685</td>
<td>MKM311</td>
<td>Pan American World Airways</td>
</tr>
<tr>
<td>151.715</td>
<td>KC920</td>
<td>Universal Guard & Patrol</td>
</tr>
<tr>
<td>151.775</td>
<td>KST628</td>
<td>Baker Protective Services</td>
</tr>
<tr>
<td>151.805</td>
<td>KBV315</td>
<td>Airport Century Inn</td>
</tr>
<tr>
<td>151.955</td>
<td>KLJ496</td>
<td>Security Service System</td>
</tr>
<tr>
<td>152.48</td>
<td>KUO687</td>
<td>Trans World Airlines</td>
</tr>
<tr>
<td>154.515</td>
<td>KMG628</td>
<td>Univ. of Calif.</td>
</tr>
<tr>
<td>154.54</td>
<td>WQL417</td>
<td>Pepperdine University</td>
</tr>
<tr>
<td>154.60</td>
<td>WSX595</td>
<td>Sheraton Plaza</td>
</tr>
<tr>
<td>154.625</td>
<td>KJH728</td>
<td>New Otani Hotel</td>
</tr>
<tr>
<td>158.46</td>
<td>WZG648</td>
<td>East Los Angeles College</td>
</tr>
<tr>
<td>173.225</td>
<td>KAS618</td>
<td>Bel Air Sands Hotel</td>
</tr>
<tr>
<td>452.525</td>
<td>MKM619</td>
<td>Times Mirror Co.</td>
</tr>
<tr>
<td>452.55</td>
<td>MKM619</td>
<td>Western Airlines</td>
</tr>
<tr>
<td>452.575</td>
<td>MKM619</td>
<td>National Patrol & Security</td>
</tr>
<tr>
<td>452.60</td>
<td>MKM619</td>
<td>District Security</td>
</tr>
<tr>
<td>453.00</td>
<td>WDE397</td>
<td>Occidental College</td>
</tr>
<tr>
<td>460.65</td>
<td>KQI455</td>
<td>Westwood Hyatt House</td>
</tr>
<tr>
<td>460.675</td>
<td>KLT459</td>
<td>Hyatt Regency House</td>
</tr>
<tr>
<td>460.70</td>
<td>KQF839</td>
<td>Holiday Inn Int'l.</td>
</tr>
<tr>
<td>460.725</td>
<td>KMB555</td>
<td>Golden Gate Airlines</td>
</tr>
<tr>
<td>460.75</td>
<td>WRF759</td>
<td>Trans World Airlines</td>
</tr>
<tr>
<td>460.775</td>
<td>KJQ675</td>
<td>Hughes Air West</td>
</tr>
<tr>
<td>460.825</td>
<td>KJG663</td>
<td>Braniff Airlines</td>
</tr>
<tr>
<td>460.85</td>
<td>KLZ490</td>
<td>Air California</td>
</tr>
<tr>
<td>460.875</td>
<td>WFX946</td>
<td>United Airlines</td>
</tr>
<tr>
<td>460.90</td>
<td>KTL709</td>
<td>Delta Airlines</td>
</tr>
<tr>
<td>461.25</td>
<td>KUP580</td>
<td>Continental Airlines</td>
</tr>
<tr>
<td>461.50</td>
<td>WQF434</td>
<td>Continental Airlines</td>
</tr>
<tr>
<td>461.75</td>
<td>WXT722</td>
<td>Singapore Airlines</td>
</tr>
<tr>
<td>462.125</td>
<td>KWP419</td>
<td>Wilshire Hyatt House</td>
</tr>
<tr>
<td>462.575</td>
<td>III418</td>
<td>Golden West Airlines</td>
</tr>
<tr>
<td>462.65</td>
<td>KAC118</td>
<td>Le Park Hotel</td>
</tr>
<tr>
<td>462.725</td>
<td>KBO048</td>
<td>Carson Private Patrol</td>
</tr>
<tr>
<td>462.80</td>
<td>KIC857</td>
<td>China Airlines</td>
</tr>
<tr>
<td>462.85</td>
<td>KSN401</td>
<td>Western Airlines</td>
</tr>
<tr>
<td>462.85</td>
<td>WXB251</td>
<td>Century Plaza Hotel</td>
</tr>
</tbody>
</table>

NEW LISTENING ADVENTURES

HEAR MORE THAN EVER BEFORE WITH THE

NEW M-600A MULTI-MODE DECODER

Simple connections to your shortwave receiver and video monitor or printer will let you monitor thousands of Morse and Radioteletype signals in Marine, Commercial, Government, Military and Press Services. Converts standard CW and RTTY plus low and high speed ASCII, non-standard shift RTTY, Bit-Inverted RTTY and TOR (Telex Over Radio -FEC & ARQ). Isolated loop MIL-188 or RS232 provided, optional parallel printer port available.

CONTACT US FOR DETAILED INFORMATION

Phone: 614 866-4267
MC & VISA Accepted

UNIVERSAL SHORTWAVE RADIO

1280 Aida Drive, Reynoldsburg, Ohio 43068

www.americanradiohistory.com
165 Fantastic Frequencies!

There’s Never A Dull Moment On These Frequencies. Maybe You Should Check Them Out.

BY ALICE BRANNIGAN

Ever sit by the ol’ receiver wondering what to listen for? Radio Moscow is rattling on with one of their boring dissertations on their latest “Five Year Plan.” The ham bands are loaded with loud locals. What with one thing or another, there just isn’t anything that catches your interest. It’s like standing there with the refrigerator door open and not being able to locate anything you really want to eat, despite a spectacular assortment of cold-cuts and leftovers. You know that feeling? Well, here’s instant aid.

We have put together an assortment of all sorts of interesting communications frequencies that can usually be relied upon to provide that needed pick-me-up for otherwise bored and finicky monitors. From within these 165 frequencies you’re guaranteed to find one or more ways to pass a few hours or days interestingly.

These are (unless otherwise noted) all voice frequencies, mostly SSB (upper sideband) and they represent frequencies used predominantly by English language communications networks—military, maritime, aero, and other odds ‘n’ ends. Although frequencies below 10 MHz are generally used at night and those above 12 MHz are more active during daylight hours, you’ll find that the large networks of stations operating on these frequencies provide listening fare that can be tuned in just about any time you’re looking for something different.

By no means does this pretend to be a completely comprehensive listing of each and every such frequency which might be listed here, but it does represent what (in my opinion) amounts to the best bets for tuning in on interesting offbeat stations. Of course, some frequencies are seasonal (such as those used by hurricane networks); likewise, some are used only under special circumstances, as in the case of frequencies indicated for search and rescue.

The next time you’re in that restless and hard-to-satisfy mood, why not take our list in hand and sit down at the master console. Tune in the first frequency and start working your way down the list, frequency-by-frequency. Some may leave you unsatisfied, it’s true, but others will certainly be just what you’re seeking. You can, in fact, check off those that especially appeal to you and go back to them from time to time. If you’ve got a programmable memory storage on your receiver you might even wish to enter some of these frequencies for quick recall in the future.

The nicest thing about these frequencies is that they are host to large numbers of stations that come and go and present a continually changing panorama of sounds and experiences. You just never know what you’re likely to hear!

<table>
<thead>
<tr>
<th>kHz</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Maritime Calling & Distress (CW only)</td>
</tr>
<tr>
<td>530</td>
<td>Low power Traveler’s Information Broadcasts</td>
</tr>
<tr>
<td>1610</td>
<td>Low power Traveler’s Information Broadcasts</td>
</tr>
<tr>
<td>2003</td>
<td>Intership (Great Lakes)</td>
</tr>
<tr>
<td>2082.5</td>
<td>Intership</td>
</tr>
<tr>
<td>2086</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>2093</td>
<td>Fishing boats</td>
</tr>
<tr>
<td>2096.5</td>
<td>Maritime</td>
</tr>
<tr>
<td>2103.5</td>
<td>US Coast Guard</td>
</tr>
<tr>
<td>2141</td>
<td>US Coast Guard aero</td>
</tr>
<tr>
<td>2142</td>
<td>Intership (Pacific coast)</td>
</tr>
<tr>
<td>2182</td>
<td>Maritime Calling & Distress</td>
</tr>
<tr>
<td>2203</td>
<td>Intership (Gulf of Mexico)</td>
</tr>
<tr>
<td>2214</td>
<td>Maritime</td>
</tr>
<tr>
<td>2261</td>
<td>US Coast Guard aero</td>
</tr>
<tr>
<td>2300</td>
<td>US Army Engineers</td>
</tr>
<tr>
<td>2350</td>
<td>US Army Engineers</td>
</tr>
<tr>
<td>2514</td>
<td>Maritime (Great Lakes)</td>
</tr>
<tr>
<td>2550</td>
<td>Maritime (Great Lakes)</td>
</tr>
<tr>
<td>2582</td>
<td>Maritime (Great Lakes)</td>
</tr>
<tr>
<td>kHz</td>
<td>Remarks</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2638</td>
<td>Intership</td>
</tr>
<tr>
<td>2667</td>
<td>US Coast Guard</td>
</tr>
<tr>
<td>2670</td>
<td>US Coast Guard</td>
</tr>
<tr>
<td>2716</td>
<td>US Navy (harbor ops)</td>
</tr>
<tr>
<td>2738</td>
<td>Intership</td>
</tr>
<tr>
<td>2782</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>2830</td>
<td>Intership (Gulf of Mexico)</td>
</tr>
<tr>
<td>2836</td>
<td>US Navy (harbor ops)</td>
</tr>
<tr>
<td>3023</td>
<td>Search & Rescue</td>
</tr>
<tr>
<td>3032</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>3050</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>3060</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>3123</td>
<td>US Coast Guard aero</td>
</tr>
<tr>
<td>3208.1</td>
<td>US Coast Guard emergency</td>
</tr>
<tr>
<td>4069.2</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>4088.4</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>4125</td>
<td>Maritime (calling)</td>
</tr>
<tr>
<td>4142.6</td>
<td>Maritime</td>
</tr>
<tr>
<td>4383.8</td>
<td>Emergency frequency (Alaska)</td>
</tr>
<tr>
<td>4385.2</td>
<td>Emergency frequency (Alaska)</td>
</tr>
<tr>
<td>4419.4</td>
<td>Maritime (calling)</td>
</tr>
<tr>
<td>4495</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>4572</td>
<td>Oil rigs</td>
</tr>
<tr>
<td>4637.5</td>
<td>Oil rigs</td>
</tr>
<tr>
<td>4643.6</td>
<td>Oil rigs</td>
</tr>
<tr>
<td>4725</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>4742</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>4746</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>4850</td>
<td>Coast Guard/Army Engineers</td>
</tr>
<tr>
<td>4872</td>
<td>N. American Air Defense (NORAD)</td>
</tr>
<tr>
<td>5211</td>
<td>Fed. Emergency Mgt. Agency</td>
</tr>
<tr>
<td>5400</td>
<td>Army Engineers</td>
</tr>
<tr>
<td>5422.5</td>
<td>US Coast Guard</td>
</tr>
<tr>
<td>5430</td>
<td>US Navy aero</td>
</tr>
<tr>
<td>5589</td>
<td>Miscellaneous air/ground</td>
</tr>
<tr>
<td>5580</td>
<td>Search & Rescue</td>
</tr>
<tr>
<td>5688</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>5692</td>
<td>USN/Coast Guard aero</td>
</tr>
<tr>
<td>5696</td>
<td>USN/Coast Guard aero</td>
</tr>
<tr>
<td>5700</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>5703</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>5861</td>
<td>Federal Aviation Admin. emergency</td>
</tr>
<tr>
<td>6147.5</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>6200.8</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>6215.5</td>
<td>Maritime (calling)</td>
</tr>
<tr>
<td>6218.6</td>
<td>Maritime</td>
</tr>
<tr>
<td>6221.6</td>
<td>Maritime</td>
</tr>
<tr>
<td>6251.9</td>
<td>Maritime</td>
</tr>
<tr>
<td>6381</td>
<td>US Coast Guard aero</td>
</tr>
<tr>
<td>6451.9</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>6455</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>6623</td>
<td>US Navy aero/ships</td>
</tr>
<tr>
<td>6627</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>6730</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>6738</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>6750</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>6753</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>6761</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>6870</td>
<td>Federal Aviation Admin.</td>
</tr>
<tr>
<td>7507</td>
<td>Hurricane network</td>
</tr>
<tr>
<td>7528.6</td>
<td>US Coast Guard emergency</td>
</tr>
<tr>
<td>8101</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>8207.6</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>8246</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>8257</td>
<td>Maritime (calling)</td>
</tr>
<tr>
<td>8291.1</td>
<td>Maritime</td>
</tr>
<tr>
<td>8294.2</td>
<td>Maritime</td>
</tr>
<tr>
<td>8364</td>
<td>Lifeboats (CW only)</td>
</tr>
<tr>
<td>8648</td>
<td>US Coast Guard aero</td>
</tr>
<tr>
<td>8780</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>8964</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>8967</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>8980</td>
<td>USCG aero</td>
</tr>
<tr>
<td>8984</td>
<td>USCG aero</td>
</tr>
<tr>
<td>8989</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>9093</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>9014</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>9023</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>9027</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>9057</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>9105</td>
<td>Royal Canadian Mounted Police</td>
</tr>
<tr>
<td>9125.6</td>
<td>US Coast Guard emergency</td>
</tr>
<tr>
<td>9380</td>
<td>Hurricane net</td>
</tr>
<tr>
<td>9753</td>
<td>N. American Air Defense (NORAD)</td>
</tr>
<tr>
<td>10493</td>
<td>Fed. Emergency Mgt. Agency</td>
</tr>
<tr>
<td>11179</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>11182</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>11195</td>
<td>USN/Coast Guard aero</td>
</tr>
<tr>
<td>11198</td>
<td>USN/Coast Guard aero</td>
</tr>
<tr>
<td>11201</td>
<td>USN/Coast Guard aero</td>
</tr>
<tr>
<td>11239</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>11243</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>11246</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>11494</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>11513.6</td>
<td>US Coast Guard emergency</td>
</tr>
<tr>
<td>12379</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>12429.2</td>
<td>Maritime</td>
</tr>
<tr>
<td>12432.3</td>
<td>Maritime</td>
</tr>
<tr>
<td>12434.5</td>
<td>Maritime</td>
</tr>
<tr>
<td>13158</td>
<td>Mississippi River</td>
</tr>
<tr>
<td>13201</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>13204</td>
<td>USAF Tactical Air Command</td>
</tr>
<tr>
<td>13210</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>13215</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>13241</td>
<td>USAF Strategic Air Command</td>
</tr>
<tr>
<td>13244</td>
<td>USAF air/ground</td>
</tr>
<tr>
<td>13254</td>
<td>Canadian military</td>
</tr>
<tr>
<td>13260</td>
<td>Hurricane net</td>
</tr>
<tr>
<td>13264</td>
<td>Miscellaneous aero</td>
</tr>
<tr>
<td>13560</td>
<td>Undcover/Mercenary use</td>
</tr>
<tr>
<td>13907</td>
<td>USAF Strategic Air Command</td>
</tr>
</tbody>
</table>

POPULAR COMMUNICATIONS

Back Issues Available

At present we have copies of all of our back issues available, commencing with the first issue (September '82). These can be ordered by mail at $1.75 each September '82 through January '84, and $1.95 February '84 on from Popular Communications, 76 North Broadway, Hicksville, NY 11801. Be sure to specify which issues you want.

AN/GSQ-151 (PSIDS) SEISMIC INTRUSION DETECTION SET

Includes:
- 47500 per set
- While supply lasts
- New - Never Used

Features:
- Detects presence of people, animals, vehicles, etc.
- Rapid deployment
- Each detector/transmitter has a different encoded pulse for precise detection and identification
- Each detector/transmitter has the corresponding number of pulses, encoded on the side for accurately implanting in total darkness
- Set contains - detector/transmitters and receiver operating on 9V transistor radio batteries
- 100 hours continuous activation
- 9-mile transmission range
- 5 position sensitivity selection on each detector/transmitter
- Good implanted above ground, buried, or placed in water
- Combat oriented magnetized MIL SPEC.

Application:
- Home/camping/border facility security - Perfect for any items of perimeter surveillance/security, where precise intrusion detection and identification is desired.

CIRCLE 38 ON READER SERVICE CARD

STANO COMPONENTS

P.O. Box 4972
San Bernardino, CA, USA. 92412
(714) A58 2589
Deutschland DX

An Inside Look At Broadcasting
In Germany (East And West)

BY GERRY L. DEXTER

Over the past three quarters of a century German broadcasting has traveled both high and low roads; high roads of great discoveries, technical and programming achievements, and low roads, that have seen some of the foulest propaganda the world has ever known.

It is difficult to talk about radio today without honoring Henrich Hertz, the German scientist who proved that electromagnetic waves could be sent and received through space, a discovery which took place in 1887. Today, when we talk about "kilo-Hertz" and "MegaHertz," we salute the man who started it all.

Germany was quick to recognize the potential of being able to send and receive messages in such a revolutionary manner. As early as 1906 a conference attended by over two dozen nations was held in Germany to assign frequency for radiotelegraphy and set up procedures for its use.

It wasn't long before an arrangement was worked out in Germany through which the Ministry of Posts built and maintained transmitting facilities while programming was provided by privately licensed companies. The first of many such groups was The Radio Hour Company of Berlin, which received a license in 1923.

In 1924 Germany made contact with Argentina over a shortwave transmitter and two years later regular shortwave broadcasting began from a transmitter at Nauen. Soon other shortwavers were on from Konigs Wusterhausen and Doberitz. A so-called "world broadcasting station" went on the air in 1929.

In 1933 the Third Reich took over all broadcasting operations in Germany and radio became entirely a propaganda tool.

Within three years, there were eight 50 kilowatt units on the air from Zeessen in order to provide coverage worldwide of the Olympic Games in Berlin. By 1939 when World War II began, the Nazi government had made it illegal for anyone to listen to radio stations from other countries and there were stiff penalties if one was caught with a radio tuned to the wrong frequency!

These were the years when Germany operated many "black" propaganda stations, when "Axis Sally" and "Lord Haw Haw" did their best to disillusion Allied efforts through their radio propaganda.

By 1943 transmitters ranging in power from 50 to 120 kilowatts were on the air from Zeessen, Oebisfeide, Munich-Ismaning, and Elmshorn to feed the Nazi line to the world.

At the end of the war the Allies suspended
all shortwave broadcasting from Germany, but only a year or so later, state operation of low-power shortwave was approved by Allied governing bodies. Northwest German Radio was one of the first to resume operations in 1947.

The Allies had insisted that future German broadcasting be set up and controlled in such a way as to be free of all government interference. Studios and transmitter facilities were eventually handed over to newly-created state broadcasting corporations.

The new West German constitution guaranteed freedom of broadcasting but, at the same time, allowed little leeway in private broadcasting efforts.

Stations were to be public corporations charged with the duty of disseminating information objectively, comprehensively, and understandably; to assist in the formation of public opinion by covering public issues, parliament debates, and so on; and to control and criticize by keeping a watchful eye on the operations of government and the various elements making up the private sector of society.

Nonetheless, state broadcasters have great freedom of operation but they are still subject to supervision and control.

Most broadcasters operate under the direction of one or more groups which oversee their activities. These can include an Administrative Council, Broadcasting Council, or other organization made up of members of parliament, church and social leaders, educational and labor figures, and representatives from the world of the arts.

License fees provide much of the income needed for operation of the stations. The average license fee amounts to less than the cost of a subscription to a newspaper. About one-fourth of the fee goes towards operation of the radio facilities.

Many of the stations carry a small amount of advertising as well although most of it is clustered in the prime time morning periods and none is aired on Sundays or holidays.

In West Germany (the Federal Republic), there are nine state broadcasting organizations. Most have at least three program services on radio, as they are involved in producing, programming, and airing television programs as well. A state broadcaster in West Germany thus is a very large concern, with transmitters in many cities throughout the area it is supposed to serve. Any one of these state broadcasters is far, far larger than a major market AM-FM-TV station in the United States.

The state organizations also work together on mutual program projects, exchanging programs and other efforts such as the operation of a joint computer center, central program library, research and development division, testing and inspection of equipment, and a training division.

Twelve broadcasters are members of ARD (The Association of Public Broadcasting Companies), which concentrates on coordinating efforts and looking out for the interest of the broadcasters.

A few of the West German state broadcasters can be heard via shortwave although the majority of them are lost to us. Either way, here's a rundown:

Bayerischer Rundfunk (BR) Based in Munich, BR began using shortwave in 1949 and has shortwave transmitters at Ismanning, near Munich. There are many other...
Corporations and Bayerischer Rundfunk outlets on FM, AM, and TV in other cities. Shortwave is on 6 085 with ten kilowatts carrying the BR first program from 0430 GMT to a little past 2300. During other hours, programming from the Association of Public Broadcasting Corporations is featured.

Süddeutscher Rundfunk (SDR) South German Radio has a staff of over 1,700 people and operates four radio services and a TV service from its Stuttgart headquarters. Shortwave is aired from 0530 to 2305 on 6 030 with 20 kilowatts from Muhlacker.

Radio Bremen (RB) This station runs a 50 kilowatt shortwave transmitter on 6 190 from 1400 to 1700 Sundays through Fridays and 0800 to 1100 on Saturdays, all featuring the Radio Bremen first program. The station operates three program services for radio, plus television from its Bremen headquarters.

Deutschlandfunk (DLF) This is based in Cologne (Köln), the Federal Republic's capital city. It operates on longwave, medium wave, and FM from several cities and, as part of its service, beams programs to other European countries via its high power medium wave transmitters.

Hessischer Rundfunk (HR) Based in Frankfurt, this state broadcaster has four radio services on AM and FM based in a number of cities. Like Deutschlandfunk, it has no shortwave.

Norddeutscher Rundfunk (NDR) This station has three radio program services beamed over AM and FM outlets in a number of cities, with headquarters in Hamburg. Several years ago it operated on the shortwave frequency of 6 075, but no more.

Saarländerischer Rundfunk (SR) From Saarbrücken, this is another state broadcaster which has not added shortwave to its facilities. Its four program services are carried over a multi-city network on both medium wave and FM frequencies.

Südwestfunk (SWF) This is headquartered in Baden Baden with a staff of nearly 2,000 people. The station uses a 20 kilowatt transmitter at Rohrdorf on 7 265 carrying the SWF third program from 0425 (Sundays 0500) to 2300 and the ARD "Nightcap" program during other hours. As with the other state broadcasters, SWF operates AM, FM, and TV stations in a number of cities.

Westdeutscher Rundfunk (WRD) Located in Cologne, this station has four program services on AM and FM from many cities but, again, nothing on shortwave.

Deutsche Welle (DW) The Voice of Germany, charged with the Federal Republic's overseas broadcasting, is the big daddy of German broadcasting.

Deutsche Welle began regular shortwave services some thirty years ago and now operates in 34 languages to all corners of the world.

There are nine 100 kilowatt transmitters located at Jülich near Cologne (Köln) and nine 500 kilowatt units at Wachtalcht.

Outside of Germany, DW has two 250 kilowatt transmitters at the Kigali relay station in Rwanda which provide service to Africa. There are two 250 kilowatt transmitters at Sines in Portugal which DW rents from a private corporation and which are used to broadcast to Eastern Europe.

In addition, there is a complex of three 250 kilowatt rigs at Malta to service the Mediterranean, Near East, Far East, and North and South America.

The most recent addition to DW's far-flung relay facilities are the two 250 kilowatt units on the island of Antigua and a 50 kilowatt at Montserrat both in the Caribbean and both operated jointly with the BBC.

Plans are underway to add three 250 kilowatt transmitters on Sri Lanka and this addition will complete DW's powerful line-up.

A major irritant for DXers is the fact that DW will not indicate which transmitter site you've heard when it sends out QSL cards.

The Voice of Germany's huge, two-tower building in Cologne houses some 1,600 staff members. It is also the headquarters for other operations, such as the transcription service which supplies programs to foreign radio and TV stations as well as acts as a training center for journalists and technicians from other countries.

The Voice of Germany is on the air to North America daily from 0100 to 0150 and to the West Coast from 0500 to 0550 GMT.

Not Just For Germans

Broadcasting in Germany is not solely a German monopoly. The United States takes a fair-sized piece of the pie too.

It is estimated that over 25 million people per week in Eastern Europe tune in to Radio Free Europe's many services. Some seven million Russians per week are believed to listen to the broadcasts from Radio Liberty.

Radio Free Europe was founded in 1950, and the Radio Liberty Committee in 1951 (with broadcasts beginning in 1953). Originally, both received most of their operating revenues from the Central Intelligence Agency.

Connections with the CIA were broken in 1971 following the public outcry which greeted revelations that the spy shop had a monetary hand in the stations' operations.

Funding now comes through Congressional grants which are in turn delivered through the United States Board for International Broadcasting. Radio Free Europe and Radio Liberty were combined into a joint operation in 1976.

All RFE/RL transmitters are licensed by the German states from which they operate. There are six transmitters at Bilbis, six at Holzkirchen, and six more at Lampertheim.
plus other units based at Playa de Plas in Spain and Gloria in Portugal. In all, RFE/RL has access to 46 transmitters.

RFE/RL is charged with the job of encouraging a "constructive dialogue with the people of Eastern Europe and the Soviet Union by enhancing their knowledge of developments in the world at large and in their own countries." Emphasis is upon reporting on events within the target areas and events of interest to people in the target areas.

Radio Liberty broadcasts to Russia in Russian and other languages used in the Soviet Union, while Radio Free Europe beams to the Eastern bloc countries.

The Soviets may quietly tolerate the efforts of such stations as the BBC and Voice of America, but the work of RFE/RL raises red ire. Countless watts, man hours, and rubles are spent in a never-ending effort to jam the broadcasts of RFE/RL. Hundreds of transmitters are involved and according to material issued by RFE/RL, an estimated one hundred million dollars a year is spent on the jamming effort which involves a work force of about 5,000 people!

With all of that money and effort, one might wonder if RFE/RL can be heard at all. The answer to that is a definite "yes." Often as not, RFE/RL transmissions get through. Incidentally, it's not uncommon for people in Russia to leave the large cities on a weekend and drive into the country in order to hear the RFE/RL programs better.

RFE/RL headquarters are in New York City, where the program center sends out some 40 programs per day via satellite or via air shipment. The New York facilities also contain what is said to be the largest collection of material on Russia and Eastern Europe anywhere in the Western World. The collection includes privately circulated "samizdat" publications written by Russians who disagree with their government.

RFE/RL maintains news bureaus in London, Paris, and Rome and, in addition to its large staff of full time employees, has many people doing freelance work.

One of those freelancers was Georgi Markov, the Bulgarian who was the victim of the notorious umbrella murder in London in 1978 (as mentioned in "The Violent World of Shortwave," POP'COMM, May, 1984). The murder of Markov is believed to be directly connected to the work he was doing for the broadcasters.

The Voice of America has a relay station in Germany at Munich which features two 100 kilowatt transmitters (made in Czechoslovakia), plus an 8 kilowatter, one 40 kilowatt unit used for single sideband transmissions, and a 1 kilowatt transmitter for CW transmitting. There's also a longwave transmitter and two medium wave units.

The Munich relay station targets Northern Europe, the USSR, Eastern and Southeastern Europe, the Balkans, the Middle East, North, East and West Africa along with Spain, France, and Portugal.

Across The Border

Now for something completely differ-
ent—East Germany. Across the border in the German Democratic Republic, things change considerably. Broadcasting is totally controlled by the state under the GDR State Radio Committee. Everything’s done Soviet-style.

There are several home services in East Germany, including the following:

Radio DDR This has two services. DDR-1 featuring news and entertainment on a 24-hour-a-day basis is broadcast over ten medium wave and nine FM transmitters. DDR-2 runs 14 hours a day on thirteen FM transmitters.

Stimme der DDR (Voice of the DDR—Deutschland Demokratischen Republik) It is a 24-hour-a-day home service on one medium wave, four AM, ten FM and two shortwave facilities. There is a 50 kilowatt shortwave transmitter at Leipzig and a 5 kilowatt transmitter at Berlin. Leipzig is on 9 730. Berlin on 6 115 and 7 185. These also carry the programs of Radio Berlin International.

Berliner Rundfunk (Berlin Radio) This station encompasses a sizeable list of AM and FM transmitters in Berlin and other East German cities carrying a variety of programming, including the DDR-1 service.

Radio Berlin International (RBI) East Germany’s international voice. It began operations in 1955 as the “Foreign Information Department” of GDR Radio. RBI was created under that name in 1959 and now uses 11 languages to Europe, North and Latin America, Southeast Asia, Africa, and the Arab world. RBI puts out some 50 hours of programming per day in various languages. Transmitter powers range from 5 to 500 kilowatts and are located at Königswusterhausen, Nauen, and Leipzig.

RBI is very big on the QSL scene, offering a total of more than 50 different QSL cards. Their RBI DX Club heavily promotes the sending of reception reports to get all of these cards and will further grace the listener with awards once he’s sent enough reports.

Radio Berlin International broadcasts to North America in English from 0015 to 0145 and 0230 to 0315 daily.

Radio Volga This is another of the broadcasters in East Germany, but don’t expect to hear it. It’s operated by Soviet forces at Barg. There’s only one transmitter, a 200 kilowatt unit on longwave (239 kHz). According to the World Radio TV Handbook, the station will not QSL.

The Divided City

In the middle of all this is Berlin, which has its share of broadcasting activity too. We mentioned East German transmitters there, but there are others.

Radio In American Sector (RIAS) This began as a wired radio hook-up in 1946 under American control. Today it operates four FM, three medium wave, and two shortwave transmitters. One of the AM and one of the FM outlets are at Hof, near the East German border. The rest are in Berlin. The service operates around the clock in German except for a ten minute technical break in the middle of the night.

The RIAS-1 service is mostly news and information, while RIAS-2 stresses educational and cultural programs along with lengthy commentaries and analysis. Both services carry some of the other’s programming.

Transmissions on shortwave alternate between a transmitter at Munich-Ismaning and the transmitter in Berlin. The Berlin transmitter operates from 0325 to 1730 GMT.

RIAS estimates that as much as 70% of the reachable East German audience listens to the station regularly. About 18,000 letters are received each year from East German listeners.

The success of RIAS can also be seen in the way certain GDR stations slavishly copy the RIAS format.

Sender Freies Berlin (SFB) Radio Free Berlin is another of the official West German state stations, operating three program services plus television. It was founded in 1953 by the Berlin Parliament and has a staff today of just over 1,400. SFB-1 carries a popular/commercial service. SFB-2 caters to young tastes and SFB-3 is the cultural program. SFB-1 is carried over the shortwave facilities of Radio Bremen on 6 190 Sunday through Fridays from 0000 to 1400 and Saturdays from 0000 to 0800 and 1100 to 2400 GMT.

But still, the German broadcast lineup hasn’t been fully surveyed. There are still other stations to be found in West Germany.

Armed Forces Network Europe (AFN) It is operated by the United States military for its service people. The station headquarters are at Frankfurt and there’s a 150 kilowatt longwave transmitter in that city as well as low to medium power AM and FM outlets in several other cities where U.S. military bases are located.

The Canadian Forces Network (CFN) Based in Cologne and provides a similar service for the Canadian military personnel using a low power FM outlet at Lahr.

British Forces Broadcasting Service (BFBS) Provides programming to British military people. Based in Cologne, it feeds mostly low power FM outlets in several cities.

BBC Berlin Relay This station is also on low power FM frequencies and simply relays the BBC German programs.

Europe Number One A commercial service based in Saarbrücken with advertising offices in Paris and programming in French. The station uses a mammoth 2,000 kilowatt transmitter on the longwave frequency of 185 kiloHertz.

Even though only a minority of German broadcasters use shortwave, the SWL still has a number of interesting things to try to hear. While Deutsche Welle, Radio Berlin International and, to a slightly lesser extent, Radio Free Europe/Radio Liberty are easy to hear, RIAS and the state stations offer a greater challenge to the DXer.

Once logged, you can be pretty certain of getting a nice QSL—something the German broadcasters are noted (and thanked) for. Broadcasting in Germany, both East and West, is a mixed bag of programming styles and aims, including a heavy dose of propaganda. Germany is one of those places on the globe where East faces off against West and you can hear it for yourself on your shortwave receiver.
Where To Tune For Shortwave From Germany

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Station</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.955-RL/RBI</td>
<td>7.260-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>5.960-DW</td>
<td>7.265-SWF/DW</td>
<td>FRG</td>
</tr>
<tr>
<td>5.970-RFE</td>
<td>7.270-VOA</td>
<td>FRG</td>
</tr>
<tr>
<td>5.985-RFE/RL</td>
<td>7.275-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>5.995-DW</td>
<td>7.285-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.000-DW</td>
<td>7.295-DW, RL</td>
<td>FRG</td>
</tr>
<tr>
<td>6.005-RIAS</td>
<td>7.300-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>6.010-RBI</td>
<td>9.500-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>6.025-DW</td>
<td>9.505-RFE/RL</td>
<td>FRG</td>
</tr>
<tr>
<td>6.030-SDR</td>
<td>9.510-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.040-DW, RBI</td>
<td>9.520-RL</td>
<td>FRG</td>
</tr>
<tr>
<td>6.065-DW</td>
<td>9.540-RL</td>
<td>FRG</td>
</tr>
<tr>
<td>6.070-RFE</td>
<td>9.545-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.075-DW</td>
<td>9.555-RL</td>
<td>FRG</td>
</tr>
<tr>
<td>6.080-RBI</td>
<td>9.560-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>6.085-BR, DW, VOA</td>
<td>9.565-RFE/RL, DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.090-VOA</td>
<td>9.575-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.095-RL</td>
<td>9.585-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.100-DW</td>
<td>9.595-RFE</td>
<td>FRG</td>
</tr>
<tr>
<td>6.105-RFE/RL</td>
<td>9.600-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>6.115-RFE/RL,RBI</td>
<td>9.605-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.120-DW</td>
<td>9.610-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.125-RBI</td>
<td>9.615-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.130-DW</td>
<td>9.620-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>6.135-RFE</td>
<td>9.625-DW, RL</td>
<td>FRG</td>
</tr>
<tr>
<td>6.140-DW, VOA, RBI</td>
<td>9.640-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.145-DW</td>
<td>9.650-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.150-VOA</td>
<td>9.660-RL, VOA</td>
<td>FRG</td>
</tr>
<tr>
<td>6.155-DW</td>
<td>9.665-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>6.170-RL</td>
<td>9.690-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>6.185-DW</td>
<td>9.695-RFE</td>
<td>FRG</td>
</tr>
<tr>
<td>6.190-RB, SFB</td>
<td>9.700-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>7.105-DW, VOA</td>
<td>9.705-RFE</td>
<td>FRG</td>
</tr>
<tr>
<td>7.115-RFE</td>
<td>9.715-DW, RL</td>
<td>FRG</td>
</tr>
<tr>
<td>7.130-DW</td>
<td>9.725-RFE/RL</td>
<td>FRG</td>
</tr>
<tr>
<td>7.145-RFE/RL</td>
<td>9.730-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>7.150-DW</td>
<td>9.735-DW, VOA</td>
<td>FRG</td>
</tr>
<tr>
<td>7.155-RL</td>
<td>9.750-DW, RL</td>
<td>FRG</td>
</tr>
<tr>
<td>7.165-RFE</td>
<td>9.765-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>7.175-DW</td>
<td>9.770-DW, RFI</td>
<td>FRG</td>
</tr>
<tr>
<td>7.190-RL</td>
<td>11.700-RBI</td>
<td>FRG</td>
</tr>
<tr>
<td>7.200-RFE</td>
<td>11.715-DW, RFE</td>
<td>FRG</td>
</tr>
<tr>
<td>7.215-RFE</td>
<td>11.725-RFE/RL</td>
<td>FRG</td>
</tr>
<tr>
<td>7.220-RL</td>
<td>11.740-VOA</td>
<td>FRG</td>
</tr>
<tr>
<td>7.225-DW</td>
<td>11.765-DW</td>
<td>FRG</td>
</tr>
<tr>
<td>7.235-DW</td>
<td>11.770-RFE/RL</td>
<td>FRG</td>
</tr>
<tr>
<td>7.245-RFE/RL</td>
<td>11.785-DW, RFI</td>
<td>FRG</td>
</tr>
<tr>
<td>7.255-RFE/RL</td>
<td>11.795-DW, RFI</td>
<td>FRG</td>
</tr>
</tbody>
</table>

Where To Write
The German Shortwavemen

Bayerischer Rundfunk
Rundfunkturm 1
8000 München 2
FRG

Radio Bremen
Heinrich-Hertz Strasse 13
2800 Bremen 33
FRG

Sender Freies Berlin
Masurenalle 8-14
1000 Berlin 19

Süddeutscher Rundfunk
Neckerstrasse 230
7000 Stuttgart 1
FRG

Südwestfunk
Hans-Bredow Strasse
7570 Baden-Baden
FRG

Deutsche Welle/Voice of Germany
Postfach 1004 44
5000 Köln 1
FRG

RIAS
Kufsteiner Strasse 69
1000 Berlin 62

Radio Berlin International
1160 Berlin
GDR

VOA Relay Station
Voice of America
Washington, DC 20547

RFE/RL
Oettingenstrasse 67
8000 München 22
FRG

FRG = Federal Republic of Germany
GDR = German Democratic Republic

THE MONITORING MAGAZINE
July 1984 / POPULAR COMMUNICATIONS / 23
Back in February of 1983 I offered POPCOMM readers a listing of basic frequencies used by professional sports organizations. It was a rather popular topic—folks hereabouts like to follow sports and are interested in knowing what their favorite pro sports teams and participants are up to. Readers submitted lots of additional information relating to listings that I hadn’t included. So, what with the time for sports, vacations, and general recreation upon us, it seemed like a good time to gather together what we’ve gotten thus far and present an updated roundup and recap.

One thing that wasn’t included last time was information on straight do-it-yourself recreational activities, things like pleasure boating, for instance. There are many VHF maritime channels, but only some of them are used heavily by pleasure boats. The best bets for listening in on these activities are: 156.45, 156.425, 156.475, 156.525, 156.575, 156.625, and 156.925 MHz. I’ve always found that 156.425 is the busiest and most active, however anybody within 25 miles of a navigable body of water (including rivers, large lakes, the Gulf of Mexico, and the oceans) should find activity on all channels to one extent or another. Frequency 156.625 MHz is usually used for coordinating offshore power boat races, as mentioned by reader Jim Hughey of Bronx, New York.

Boats also use the CB frequencies, although different channels seem to apply for each local area. CB is especially popular on small outboard craft that stick close to shore. And don’t forget that CB is heavily used by Americans and Canadians for recreational purposes of all kinds. Channel 19 (27.185 MHz) is where to listen for folks in-transit on the highways and byways. Channel 13 (27.115 MHz) has been generally used for RV’s and off-the-road vehicle activities, although that channel has no official status for such purposes. Keep in mind, also, that CB may also be used by participants.
in motor sports of all kinds, including races.

There has also been a sharp increase in the use of hands-free FM communicators in all sorts of sports and recreational activities on the land, sea, and air. While these devices don't have an especially great range, you should be able to listen in on their communications if you are in the vicinity of their use. Check out the following frequencies: 49.83, 49.845, 49.86, 49.875, and 49.89 MHz.

While professional sports activities may well rely in whole or part upon CB or hands-free FM communicators, a great many pro activities are to be found on VHF or UHF frequencies and operating within the Business Radio Service. Especially active frequencies appear to be 151.625, 154.54, 154.57, and 154.60 MHz; if you're at a pro sports activity with your hand-held scanner and you don't know the frequency in use, try those channels. Communications at sports activities can relate to everything from security to parking, crowd control to medical aid, maintenance, and for conferences between team personnel. As reported by many readers who have attended sports functions with their scanners, it adds a whole new dimension to what's going on out there on the field of action. I've used a scanner to enhance my own enjoyment of football, baseball, and even pro wrestling! A scanner at the 1984 Summer Olympics in Los Angeles should be a boon!

All frequencies shown in our listing are in MHz, and we are still looking for any additional data you may have available to be included in future updates of this data. There are obviously many more sports and recreational activity frequencies in which didn't make it into this directory, and if you know them, please be sure to pass them along so that we can share them. What about those USFL teams? What about the many motor sports tracks and circuits we didn't get? Pass 'em along and we'll let our readers know! In the meantime, there's enough information here to get you started on listening to America at play. Have fun!

Year 'Round Sports & Recreation Monitoring Guide

<table>
<thead>
<tr>
<th>Air Shows (various)</th>
<th>122.9, 123.1, 123.3, 123.45, 123.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alesi Racing, Lemon Grove, CA</td>
<td>151.625</td>
</tr>
<tr>
<td>Amer. Motorcycle Assn.</td>
<td>151.625</td>
</tr>
<tr>
<td>Amer. Motorcyclist Assn.</td>
<td>151.925</td>
</tr>
<tr>
<td>Aqueduct Racetrack, NY</td>
<td>151.865, 154.60, 464.975</td>
</tr>
<tr>
<td>Arlington Stadium, TX</td>
<td>464.875</td>
</tr>
<tr>
<td>Atlanta Braves</td>
<td>462.575, 463.325, 467.575</td>
</tr>
<tr>
<td>Atlanta Int'l Raceway, GA</td>
<td>154.60</td>
</tr>
<tr>
<td>Atlantic City Racing Assn., NJ</td>
<td>158.46</td>
</tr>
<tr>
<td>Balloon Media Inc.</td>
<td>151.625</td>
</tr>
<tr>
<td>Balloons Aloft</td>
<td>123.3, 123.5</td>
</tr>
<tr>
<td>Belmont Park, NY</td>
<td>151.685, 151.835, 464.975</td>
</tr>
<tr>
<td>Boston Red Sox</td>
<td>463.325, 464.075</td>
</tr>
<tr>
<td>Bristol Int'l Speedway, TN</td>
<td>468.85</td>
</tr>
<tr>
<td>Buffalo Bills</td>
<td>154.60, 467.85, 467.90</td>
</tr>
<tr>
<td>Caesar's Palace, NV</td>
<td>461.775, 466.775</td>
</tr>
<tr>
<td>Calif. Rodeo Inc., Salinas, CA</td>
<td>152.42</td>
</tr>
<tr>
<td>Candlestick Park, CA</td>
<td>154.60</td>
</tr>
<tr>
<td>Champion Sparkplug Co.</td>
<td>464.55 (at auto races)</td>
</tr>
<tr>
<td>Churchill Downs, KY</td>
<td>457.575, 457.60</td>
</tr>
<tr>
<td>Cincinnati Reds</td>
<td>462.175, 467.175</td>
</tr>
<tr>
<td>Cleveland Indians</td>
<td>154.515</td>
</tr>
<tr>
<td>Cleveland Stadium, OH</td>
<td>154.57, 154.60</td>
</tr>
<tr>
<td>Craig Road Speedway, Las Vegas, NV</td>
<td>155.28</td>
</tr>
<tr>
<td>Dallas Tornado Soccer</td>
<td>464.55</td>
</tr>
<tr>
<td>Darlington Raceway, GA</td>
<td>464.50, 469.50</td>
</tr>
<tr>
<td>Del Mar Racetrack, CA</td>
<td>151.715, 151.865</td>
</tr>
<tr>
<td>Daytona Int'l Speedway, FL</td>
<td>154.515, 154.54, 464.775, 464.90, 469.775</td>
</tr>
<tr>
<td>Dover Downs Int'l Speedway, DE</td>
<td>151.895</td>
</tr>
<tr>
<td>Dragon's Breath Balloons, CO</td>
<td>151.745</td>
</tr>
<tr>
<td>Freedom Hall, Johnson City, TN</td>
<td>154.54</td>
</tr>
<tr>
<td>Funks Greyhound</td>
<td>151.805</td>
</tr>
<tr>
<td>Racing Circuit, AZ</td>
<td>132.0, 161.64</td>
</tr>
<tr>
<td>Goodyear Blimps</td>
<td>154.60</td>
</tr>
<tr>
<td>Green Mtn. Racetrack, VT</td>
<td>154.60</td>
</tr>
</tbody>
</table>
Gulfstream Park, FL
Hallett Motor Racing Circuit, OK
Hialeah Park, FL
Hollywood Turf Club, CA
Hot Air Hangups (balloons)
Hot Air Inc. (balloons)
Indianapolis Colts
Indianapolis Speedway, IN
Int'l. Amphitheatre, IL
Int'l. Motor Sports Assn., CT
Int'l. Race Drivers Club, WA
Int'l. Raceways Ltd., WA
Kansas City Chiefs
Kansas City Royals
Keeneland Racetrack, KY
Kentucky Jockey Club, Florence, KY
Ladies Pro. Golf Assn.
Las Vegas Convention Ctr., NV
Liberty Bell Racetrack, PA
Lime Rock Race Course, CT
Little Rock Mun. Auditorium, AR
Los Angeles Dodgers
Madison Square Garden, NY
Market Square Arena, IN
Martinsville Speedway, VA
Maryland Jockey Club, MD
Metro Sports Center, MN
Miami Dolphins
Mid-Continent Raceways, NE
Milwaukee Brewers
Minnesota Vikings
Monmouth Park, NJ
Motion Raceway Park, IL
NASCAR races
Nat'l. Air Racing Assn., NV
Nat'l. Football League
Nat'l. Golfers of Amer., AZ
Nat'l. Hot Rod Assn.
Nat'l. Rifle Assn.
New England Patriots
NJ Jets
NY Giants Football
NY Islanders Hockey
NY Racing Assn.
NY Rangers
Oakland Hockey Club
Old Dominion
100 Mile Track, VA
Olympia Stadium, MI
Orange Bowl, FL
Orange Raceway, CA
Pacific Racing Assn., CA
Penn Nat'l. Turf Club, PA
Philadelphia Eagles
Pimlico Racetrack, MD
Pittsburgh Steelers
Pocono Speedway, PA
Pontiac Stadium, MI
Power Boat Races (offshore)
Prof. Golf Assn.
Prof. Golf Broadcast Assn.
Race Track Security Co.
Racing Associates Inc., FL
Reading Stock Cars Inc., PA
Riverside Int'l. Speedway, CA
Road America, WI
Rockingham Park, NH
Roosevelt Raceway, NY
St. Louis Football Cardinals
San Francisco 49'ers
San Francisco Giants
Santa Anita Racetrack, CA
Saratoga Racetrack, NY
Spectrum Stadium, PA
Sports Car Club of America
Sports Car Racing Assn. of Monterey, CA
Sportsman Park, IL
Talladega Int'l. Speedway, AL
Texas Rangers Baseball
Texas Region Sports Center, TX
Texas Stadium, TX
The Omni, GA
The Thunder Raceway Unit, ME
Topps For Crowd Control, CA
Turf Paradise, AZ
United Racing Club
U.S. Auto Club
U.S. Olympic Committee
Washington Capitals
Washington Jockey Club, Renton, WA
Watkins Glen Raceway, NY
Wisconsin Auto Racing Inc., WI
Wisconsin State Fair, WI
Womens Golf Charities, TX
Womens Pro. Golf Tour
Yonkers Raceway, NY
York City Auditorium, NE
York Parachuting Center, PA

San Francisco Giants
Santa Anita Racetrack, CA
Saratoga Racetrack, NY
Spectrum Stadium, PA
Sports Car Club of America
Sports Car Racing Assn. of Monterey, CA
Sportsman Park, IL
Talladega Int'l. Speedway, AL
Texas Rangers Baseball
Texas Region Sports Center, TX
Texas Stadium, TX
The Omni, GA
The Thunder Raceway Unit, ME
Topps For Crowd Control, CA
Turf Paradise, AZ
United Racing Club
U.S. Auto Club
U.S. Olympic Committee
Washington Capitals
Washington Jockey Club, Renton, WA
Watkins Glen Raceway, NY
Wisconsin Auto Racing Inc., WI
Wisconsin State Fair, WI
Womens Golf Charities, TX
Womens Pro. Golf Tour
Yonkers Raceway, NY
York City Auditorium, NE
York Parachuting Center, PA

Hikers and backpackers can be monitored using their 49 MHz hands-free communicators.
Secrets Of The Silent Service
Those Old Submarines — Untangling Their Radio Callsign Mysteries
BY TOM KNEITEL, K2AES, EDITOR

Just as battleships have always radiated a sense of awe, submarines are surrounded by an aura of mystery and secrecy. Sleek black vessels gliding silently beneath the surface of the world's oceans, their missions have proven invaluable in wartime.

A surface warship, when overtaken or encountered by an enemy, must stand and fight unless it has sufficient speed to get away. And need not fight nor show its heels to an enemy ship. It can submerge and attempt to baffle the enemy. Its ability to surprise is one of its most important attributes.

From the first submarine in the modern navy (in 1900) and for the following 55 years (when submarines became nuclear powered), the submarine had not changed markedly — although engines became more reliable, rugged, and quiet, and better greater-capacity storage batteries were installed. Torpedoes were improved in accuracy and run with greater precision. More scientific methods of submersion were achieved and the many instruments and devices used in underwater navigation and target detection became more accurate and reliable. Underwater listening devices in subs were developed to such an extent by WWII that torpedoes could be fired using direction finders without the need to show a periscope.

Submarines have served as mine layers, transports, blockade enforcers, for preparing maps and sea charts, for sabotage and intelligence missions. Their most important function is to intercept a warship or merchant vessel, first using stealth and then invisibility to arrive at a position from which to torpedo a target vessel. That seems simple enough to state, but its accomplishment is far from easy or without considerable risk to the vessel and its officers and crew.

Before nuclear powered submarines, while traveling on the surface, submarines used diesel engines. Underwater propulsion was achieved by large electric motors on the propeller shafts. The diesel engines provided a surface speed of 13 to 20 knots (depending upon the type of submarine), although large fleet subs could travel at about 20 knots in order to accompany larger surface vessels. The underwater speed of the WWII era subs was generally limited to about 20 knots.

American WWII subs ranged in size from the small 800 ton, 253-foot experimental "M" Class vessels (SS-204 and SS-205) to the giant Narwhal Class (SS-160 to SS-168) vessels which displaced 2,730 tons (on the surface of the water, 3,960 tons when submerged) and were about 371 feet in length. Between these extremes were a number of other classes of submarines used for training, patrol, and fleet purposes — many of which distinguished themselves in battle. The USS Barb (SS-220, callsign NAMO) is generally credited with firing the most valuable 6-torpedo salvo in submarine history. That one salvo sank a Japanese escort carrier and a tanker.

The USS Nautilus (SS-168/NAJJ) assisted in the kill of the Japanese carrier Soryu in June of 1942. And two months later the Nautilus and its sister ship, the USS Argonaut (SS-166/NICT), landed Marine raiders on Makin in the Gilbert Islands. In the battle of the Philippine Sea (June 1944), the USS Albacore (SS-218) and USS Cavalla...
NIPK) were stranded with all aboard saved. The USS Sealion (SS-195/NEJL) was bombed but later destroyed by her own crew with a loss of only five men; the badly damaged USS Perch (SS-176/NAKK) had to be abandoned by her crew, who were captured and imprisoned. The USS Tang (SS-306) was destroyed by one of her own torpedoes, which boomeranged and her survivors were taken prisoners of war by the Japanese. In varying numbers, survivors of the USS Grenadier (SS-210/NEJL), USS Sculpin (SS-191/NEL5), USS Tulibee (SS-284) and USS S-44 (SS-155/NIP) were also taken as prisoners of war. The U.S. Navy's submarine service lost 374 officers and 3,131 men during WWII. The majority of submarine war losses consisted of vessels that went out to sea and never returned; they were marked "missing" with no further explanation available.

Shrouded In Secrecy

Because of the very nature of their wartime operations, there has never been an abundance of information given out to the public on certain aspects of these vessels. Radio callsigns of American submarines, for example, have followed an interesting evolution over the years, but on one has ever taken the time and trouble to go to the beginning and trace them. I went back to the first submarine of the modern navy and pieced together all of the information I could find up until the end of the diesel submarine era, gathering along the way some interesting data on various submarines of other nations before and during WWII. It wasn't easy.

The almost paranoid secrecy surrounding certain information regarding subs was carried to its ultimate by the Soviets in regard to their more than 200 submarines of the WWII era. Throughout the 1930's they had the habit of regularly renaming their subs, but by 1939 they took all of those that had been given names and replaced the names with numbers. Moreover, each time a vessel was transferred from one flotilla to another, its number and radio callsign were changed. As a result, it was impossible to get a fix on which callsign went with which sub, a brilliant security move that has kept the information hidden to this day. The very same Russian submarine might well have had a dozen different names, numbers, and callsigns!

The U.S. Navy's method of handling this was not as deliberately confusing, but it turns out to be nonetheless a rather tangled mess at times.

Every American submarine has been assigned a serial number commencing with the letters "SS" (later nuclear types used the prefix "SSN," or "SSBN" for ballistic missile types) followed by numerals. The first sub of the modern U.S. Navy was the USS Holland (SS-1), which was commissioned in 1900. By the end of WWII they had accounted for numbers up to SS-562, although some of those numbers were allocated to subs that were never actually built for one reason or another.

In addition to their "SS" serial numbers, Twelve German submarines being refueled. Did you know that several U-Boats had legal U.S. Navy callsigns? See text.

(SS-244/NBPS) sank the Japanese carriers Taiho and Shokaku and by doing so terminated the effective use of Japanese carrier aviation for the remainder of the war. Again, in the battle for Leyte Gulf (October 1944), U.S. Navy subs proved their effectiveness—the USS Dace (SS-247/NIH0C) sank the heavy cruiser Maya while the USS Darter (SS-227) sank another, the Atago. The Darter was grounded during this engagement and destroyed by U.S. forces.

The USS Barb, mentioned previously, once took part on a bold raid on Japanese soil. Volunteers from the Barb's crew paddled ashore in rubber boats to blow up a Japanese train and then, along with other submarines, went on to create havoc and destruction along enemy coastlines by gun and rocket bombardment of ports, refineries, and other targets.

Risky Business

The traditional enemies of submarines are destroyers and destroyer escorts, armed with depth charges and hedgehogs (much smaller but powerful explosive charges dropped in greater number than possible with depth charges). Submarines themselves fought other submarines, hunting them with sonar and sinking them with torpedoes. A total of 23 enemy subs went to the bottom as a result of attacks by American submarines. The USS Batfish (SS-310/ NYSD) was credited with sinking three enemy submarines in four days.

Because submarines usually operated alone and most attacks on them came when submerged, the sinking of a sub generally resulted in the loss of the entire crew. The USS Darter, the S-27 (SS-132/NINR), S-36 (SS-141/NIP), and S-39 (SS-144/ One of the world's largest submarines, the USS Narwhal, had two 6-inch guns and six torpedo tubes. 28 / POPULAR COMMUNICATIONS / July 1984 THE MONITORING MAGAZINE
Power Problems?

AEGIS® Power Conditioning Equipment. THE SOLUTION Protects From Damaging Voltage Surges, Lost Data, & Costly Down Time

SPIKE-SPIKER®
Transient Voltage Suppressors & Noise Filters
Eleven Models — All Models Rated 120V, 15A
Deluxe Power Console—2 stage transient absorber, dual
5-stage filter, common & differential mode protection, nano second response; clamping at 150V; 8 individually switched sockets; fused; main switch, 7' cord and status light: $89.95.
Quad Power Console—6-stage transient absorber, dual
5-stage filter, common & differential mode protection, pico second response; clamping at 131V; four outlets; fused, master switch, 7' cord and status light: $79.95.
Mini-H—Direct AC Plug-In, 2-stage transient absorber, dual
3-stage filter, common & differential mode protection, nano second response; clamping at 150V; two outlets and status light: $44.95.

LINE-SAVER™
Standy Uninterruptable Power System — Clean Reliable Power System —
Model LS-240—240 watts—VA capacity, increased back-up time: 11 min. full load, 27 min. ½ load, 43 min. ¼ load, 4-AC outlets, 120V, 15A; internal battery; master control switch; test switch; external fuses; detachable 6’ cord; external DC connectors for mobil use and extended hold-up time; many more exclusive features: $485.00.

Call or write for free literature. Dealer inquiries invited.

LISTEN UP!

Here’s what you’ve been looking for—an all new hard-hitting monthly magazine which gives a unique insider’s view of what’s really going on in the world of communications. POP’ COMM is your primary source of information—bigger and better than any communications magazine, with exciting coverage of scanners, shortwave broadcast & utility stations, spy stations, pirate and clandestine broadcasters, RTTY monitoring, survivalist communications systems, FCC news, wiretapping and bugging, voice scrambling/unscreaming, surveillance/undercover communications, satellite & cable TV, sophisticated telephones, & more. What you’ve been looking for all along! Take advantage of substantial savings over the newstand price by subscribing now. Don’t miss out on even one single issue of POPULAR COMMUNICATIONS—order your subscription now.

Subscribe Now & Save!

Twelve Issues $14

3 GOOD NAMES TO BUY FROM US
AND 3 GOOD REASONS WHY...
QUALITY, VALUE, & SERVICE

Regency
MX3000 Scanner $179.95
210 Scanner $139.00
R-106 Scanner $88.95
C403 Scanner $54.95
MX3000 $72.50

Command Call
Model HC-200 $34.95 Each
Radar Detectors
Model RD-3000 $99.00
Model RD-4000 $137.95

Bearcat
210 XL Scanner $213.00
201 Automatic Scanning Radio $184.00
180 Scanner $152.25
5 Crystal Scanner $86.95
Five-Six Portable Scanner $119.95
100 Scanner $99.00
Ask for Our Discount Price

Spartan Supply Co., Inc.
P.O. Box 310 Hixson, TN 37343
Call Toll Free 1-800-251-3904
We accept VISA, MasterCard, C.O.D., or pre-paid orders (cashiers or certified checks: personal checks held for clearance). Add $3.25 service charge to each order. Include sufficient shipping; any overage will be refunded. All orders shipped UPS unless otherwise requested. Spartan Supply Co. is not responsible for typographical errors.

CIRCLE 66 ON READER SERVICE CARD

POPULAR COMMUNICATIONS
76 N. Broadway, Hicksville, NY 11801

Satisfaction Guaranteed. If for any reason you are not satisfied with your new issue, we will refund the cost of your subscription. No expiration date.

Name ____________________________
Address ____________________________
City ____________________________ State ________
Zip Code ____________________________

Payment Enclosed
Check ________ Money Order ________ Visa __________
Card Number ____________________________ Exp. Date__________

Add $3.25 for Handling and Shipping.

CIRCLE 4 ON READER SERVICE CARD
Submarines commissioned between 1903 and 1917 were given 3-letter callsigns as were assigned all USN ship and shore facilities, although subs had distinctive calls commencing with the letters NX, NY, and NZ. By the end of WWII, however, radio had become so widely used that the Navy was facing a shortage of 3-letter callsign combinations commencing with the letter N. At that time it was decided to issue a new type of 4-letter callsign (beginning with the letter N) to all newly commissioned naval vessels. The first such callsign issued to a submarine was NABB which was assigned to the SS-60, although it was not commissioned for active duty until about 4 years after subs with “latter” callsigns.

Like vessel names, the U.S. Navy’s callsigns are also recycled from one craft to another. The callsign NEQM at one time belonged to the USS H4 (SS-147), but only four short years after the H4 was scrapped, that callsign turned up on the USS Porpoise (SS-172). After serving the USS Aramis for many years, the callsign NARP was awarded to the sub USS Stingray (SS-186) in 1938. After the sub USS S3 (SS-107) was removed from the active list in 1937, its callsign (NIMK) was assigned to a District Patrol Vessel called the YP-40. Going back 60 years into these 4-letter ship callsigns, you can expect that almost any given callsign combination has been used by many naval vessels.

I’ve sifted through all of these various complicating factors and have attempted to sort out the relevant submarine names and callsigns. To attempt to clarify the information, I’ve also included the years of active service, the first date denoting the year the boat was placed in service, and the final date showing when it was stricken from the records. When no final date is given, it indicates that the sub was active at least until the last years (or end) of WWII. Many otherwise sound subs were scrapped in 1930 and ’31 because of international disarmament treaties. Many older subs which served in WWII (such as SS-63, SS-74 and others) had been decommissioned in 1931, but when the war broke out ten years later, these vessels were recommissioned.

Shown in parentheses after the subs’ names are any alternate or previous names by which the vessel may have also been known.

Interestingly, captured Nazi U-boats were assigned U.S. Navy callsigns from the regular series of calls, a fact not generally known.

Performance

During WWII, American submarines sank 1,256 enemy vessels including 167 combatant ships. Fifty-two U.S. submarines were lost during hostilities. Twenty-two had been awarded Presidential Unit Citations up to August 25th, 1945. The several war construction programs included 278 new subs and extended the list to SS-562. Contracts for 110 and authorizations for the final 12 were cancelled as the war began to draw to a close in 1944 and ’45. After the war, most of the older types were either scrapped or put up for sale.

Commencing with the USS Nautilus (SSN-571) in 1955, the era of the old diesel powered submarines entered a final phase. As new nuclear powered subs were commissioned, one by one, the older subs were retired until eventually they existed only in the dusty archives from which the information here was gathered. So far as is known, no previous attempt to compile and document the callsigns used by the “Silent Service” has been made.

(It should also be noted that in 1958-59, the USN launched three new diesel subs—Barbel, Blueback, and Bonefish, SS-580, SS-581, and SS-582 respectively—which are still in service.)
Inset: The U.S. Navy’s first submarine, the famous Holland. She was built in 1897 by the Holland Torpedo Boat Company, direct predecessor of the Electric Boat Company. Photo: The USS Tambor.

<table>
<thead>
<tr>
<th>SS* Name (USS)</th>
<th>Call</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HOLLAND</td>
<td>NKA</td>
<td>1900-13</td>
</tr>
<tr>
<td>2 A1 (PLUNGER)</td>
<td>NKB</td>
<td>1903-13</td>
</tr>
<tr>
<td>3 A2 (ADDEN)</td>
<td>NKC</td>
<td>1903-22</td>
</tr>
<tr>
<td>4 A3 (GRAMPUS)</td>
<td>NKC</td>
<td>1903-22</td>
</tr>
<tr>
<td>5 A4 (MOCCASIN)</td>
<td>NXD</td>
<td>1903-22</td>
</tr>
<tr>
<td>6 A5 (PIKE)</td>
<td>NKE</td>
<td>1903-22</td>
</tr>
<tr>
<td>7 A6 (PORDOPE)</td>
<td>NKF</td>
<td>1903-22</td>
</tr>
<tr>
<td>8 A7 (SHARK)</td>
<td>NKG</td>
<td>1903-22</td>
</tr>
<tr>
<td>9 A C GCTPUS</td>
<td>NKH</td>
<td>1908-20</td>
</tr>
<tr>
<td>10 B1 (VIPER)</td>
<td>NKK</td>
<td>1907-22</td>
</tr>
<tr>
<td>11 B2 (CUTTLEFISH)</td>
<td>NKL</td>
<td>1907-22</td>
</tr>
<tr>
<td>12 B3 (TARANTULA)</td>
<td>NKL</td>
<td>1907-22</td>
</tr>
<tr>
<td>13 C2 (STINGRAY)</td>
<td>NML</td>
<td>1909-20</td>
</tr>
<tr>
<td>14 C3 (TARON)</td>
<td>NMM</td>
<td>1909-20</td>
</tr>
<tr>
<td>15 C4 (BONITA)</td>
<td>NNT</td>
<td>1909-20</td>
</tr>
<tr>
<td>16 C5 (SNAPPER)</td>
<td>NNP</td>
<td>1909-20</td>
</tr>
<tr>
<td>17 D1 (MARWAL)</td>
<td>NPP</td>
<td>1909-22</td>
</tr>
<tr>
<td>18 D2 (GRAYLING)</td>
<td>NQR</td>
<td>1909-22</td>
</tr>
<tr>
<td>19 D3 (SALMON)</td>
<td>NRR</td>
<td>1910-22</td>
</tr>
<tr>
<td>20 F1 (CARP)</td>
<td>NRU</td>
<td>1912-17</td>
</tr>
<tr>
<td>21 G1 (SEAL)</td>
<td>NRV</td>
<td>1912-21</td>
</tr>
<tr>
<td>22 F2 (BARRACUDA)</td>
<td>NXX</td>
<td>1912-22</td>
</tr>
<tr>
<td>23 F3 (PICKEREL)</td>
<td>NWW</td>
<td>1912-22</td>
</tr>
<tr>
<td>24 F4 (SMACK)</td>
<td>NXX</td>
<td>1913-15</td>
</tr>
<tr>
<td>25 E1 (SKIPJACK)</td>
<td>NXX</td>
<td>1913-15</td>
</tr>
<tr>
<td>26 E2 (STURGEON)</td>
<td>NXX</td>
<td>1913-22</td>
</tr>
<tr>
<td>27 G4 (THRASHER)</td>
<td>NYY</td>
<td>1914-20</td>
</tr>
<tr>
<td>28 H1 (SEA WOLF)</td>
<td>NZZ</td>
<td>1913-19</td>
</tr>
<tr>
<td>29 H2 (NAUTILO)</td>
<td>NYY</td>
<td>1913-20</td>
</tr>
<tr>
<td>30 H3 (GARFISH)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>31 G3 (TURBOT)</td>
<td>NXY</td>
<td>1915-16</td>
</tr>
<tr>
<td>32 K1 (HADDOCK)</td>
<td>NXY</td>
<td>1915-20</td>
</tr>
<tr>
<td>33 K2 (CHALACHTOL)</td>
<td>NXY</td>
<td>1915-20</td>
</tr>
<tr>
<td>34 K3 (ORCA)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>35 K4 (WALRUS)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>36 K5 (PENGUIN)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>37 K6 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>38 K7 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>39 K8 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>40 L1 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>41 L2 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>42 L3 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>43 L4 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>44 L5 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>45 L6 (SEAL)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>46 L7 (AL7)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>47 M1 (PTY)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>48 L8 (AL8)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>49 L9 (AL9)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>50 L10 (LANT)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>51 L11 (AL1)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>52 T1 (AAI)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>53 T1 (AA1)</td>
<td>NYY</td>
<td>1914-30</td>
</tr>
<tr>
<td>54 N1 (N33)</td>
<td>NYY</td>
<td>1917-30</td>
</tr>
<tr>
<td>55 N2 (N41)</td>
<td>NYY</td>
<td>1917-30</td>
</tr>
<tr>
<td>56 N4 (N19)</td>
<td>NYY</td>
<td>1918-22</td>
</tr>
<tr>
<td>57 N5 (N21)</td>
<td>NYY</td>
<td>1918-22</td>
</tr>
<tr>
<td>58 N6 (N22)</td>
<td>NYY</td>
<td>1918-22</td>
</tr>
<tr>
<td>59 N7 (N24)</td>
<td>NYY</td>
<td>1918-22</td>
</tr>
<tr>
<td>60 T2 (AA2)</td>
<td>NYY</td>
<td>1920-30</td>
</tr>
<tr>
<td>61 T3 (AA3)</td>
<td>NYY</td>
<td>1920-30</td>
</tr>
<tr>
<td>62 D1 (NEX1)</td>
<td>NYY</td>
<td>1918-36</td>
</tr>
<tr>
<td>63 D2 (NEX2)</td>
<td>NYY</td>
<td>1918-36</td>
</tr>
<tr>
<td>64 D3 (NEX3)</td>
<td>NAMR</td>
<td>1919-19</td>
</tr>
<tr>
<td>65 D4 (NAMR)</td>
<td>NAMR</td>
<td>1919-19</td>
</tr>
<tr>
<td>SS*</td>
<td>Name (US$)</td>
<td>Call</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>231</td>
<td>HADDOCK</td>
<td>NAEC 1942-</td>
</tr>
<tr>
<td>232</td>
<td>HALLBUT</td>
<td>NAEC 1942-</td>
</tr>
<tr>
<td>233</td>
<td>HERRING</td>
<td>NAEC 1942-44</td>
</tr>
<tr>
<td>234</td>
<td>KINGFISH</td>
<td>NBUC 1942-</td>
</tr>
<tr>
<td>235</td>
<td>SHAD</td>
<td>NWOD 1942-</td>
</tr>
<tr>
<td>236</td>
<td>SILVERSIDES</td>
<td>NAHZ 1942-</td>
</tr>
<tr>
<td>237</td>
<td>SMUGGLER</td>
<td>NBUR 1942-45</td>
</tr>
<tr>
<td>238</td>
<td>WHALE</td>
<td>NUBR 1942-43</td>
</tr>
<tr>
<td>239</td>
<td>WOODY</td>
<td>NUBR 1942-43</td>
</tr>
<tr>
<td>240</td>
<td>HUYLER</td>
<td>NUBR 1942-44</td>
</tr>
<tr>
<td>241</td>
<td>BASHAW</td>
<td>NBML 1942-49</td>
</tr>
<tr>
<td>242</td>
<td>BLUEGILL</td>
<td>NBGL 1942-70</td>
</tr>
<tr>
<td>243</td>
<td>CAMEO</td>
<td>NBMA 1942-49</td>
</tr>
<tr>
<td>244</td>
<td>CAVALLA</td>
<td>NBPS 1942-69</td>
</tr>
<tr>
<td>245</td>
<td>COBIA</td>
<td>NBGQ 1942-70</td>
</tr>
<tr>
<td>246</td>
<td>COCHER</td>
<td>NBGQ 1942-49</td>
</tr>
<tr>
<td>247</td>
<td>DACE</td>
<td>NHTC 1942-55</td>
</tr>
<tr>
<td>248</td>
<td>DORADO</td>
<td>NHTC 1942-43</td>
</tr>
<tr>
<td>249</td>
<td>FLASHER</td>
<td>NIGX 1942-44</td>
</tr>
<tr>
<td>250</td>
<td>FLIER</td>
<td>NIGX 1942-44</td>
</tr>
<tr>
<td>251</td>
<td>FLOUNDER</td>
<td>NIZB 1942-</td>
</tr>
<tr>
<td>252</td>
<td>GRABLIN</td>
<td>NIKB 1942-45</td>
</tr>
<tr>
<td>253</td>
<td>GUNNEL</td>
<td>NJSU 1942-</td>
</tr>
<tr>
<td>254</td>
<td>GURNARD</td>
<td>NFAY 1942-</td>
</tr>
<tr>
<td>255</td>
<td>HADDO</td>
<td>NABN 1942-</td>
</tr>
<tr>
<td>256</td>
<td>HAKE</td>
<td>NAJU 1942-43</td>
</tr>
<tr>
<td>257</td>
<td>HARDER</td>
<td>NAJU 1942-45</td>
</tr>
<tr>
<td>258</td>
<td>HOG</td>
<td>NAJZ 1942-47</td>
</tr>
<tr>
<td>259</td>
<td>JACK</td>
<td>NBPJ 1942-</td>
</tr>
<tr>
<td>260</td>
<td>LAPON</td>
<td>NBDG 1943-</td>
</tr>
<tr>
<td>261</td>
<td>MINGO</td>
<td>NAEM 1943-</td>
</tr>
<tr>
<td>262</td>
<td>MUSKALLUNGE</td>
<td>NAOD 1943-</td>
</tr>
<tr>
<td>263</td>
<td>PADDLE</td>
<td>NAGR 1943-</td>
</tr>
<tr>
<td>264</td>
<td>PERCH</td>
<td>NAGZ 1943-</td>
</tr>
<tr>
<td>265</td>
<td>PEBO</td>
<td>NBDG 1943-</td>
</tr>
<tr>
<td>266</td>
<td>POGGY</td>
<td>NEJD 1943-40</td>
</tr>
<tr>
<td>267</td>
<td>POMPON</td>
<td>NEDV 1943-</td>
</tr>
<tr>
<td>268</td>
<td>PUFFER</td>
<td>NEDC 1943-</td>
</tr>
<tr>
<td>269</td>
<td>RASHER</td>
<td>NKBG 1943-71</td>
</tr>
<tr>
<td>270</td>
<td>RATON</td>
<td>NKGX 1943-69</td>
</tr>
<tr>
<td>271</td>
<td>RAY</td>
<td>NKF0 1943-50</td>
</tr>
<tr>
<td>272</td>
<td>REDFIN</td>
<td>NGCG 1943-70</td>
</tr>
<tr>
<td>273</td>
<td>ROGALD</td>
<td>NWLG 1943-44</td>
</tr>
<tr>
<td>274</td>
<td>ROCK</td>
<td>NWLG 1943-69</td>
</tr>
<tr>
<td>275</td>
<td>RUNNER</td>
<td>NWEM 1943-42</td>
</tr>
<tr>
<td>276</td>
<td>SAWFISH</td>
<td>NWFM 1943-42</td>
</tr>
<tr>
<td>277</td>
<td>SCAMP</td>
<td>NWGX 1943-45</td>
</tr>
<tr>
<td>278</td>
<td>SCORPION</td>
<td>NWGX 1943-45</td>
</tr>
<tr>
<td>279</td>
<td>SMELLO</td>
<td>NWGX 1943-45</td>
</tr>
<tr>
<td>280</td>
<td>STEELHEAD</td>
<td>NWKX 1943-45</td>
</tr>
<tr>
<td>281</td>
<td>SUNFISH</td>
<td>NENZ 1942-</td>
</tr>
<tr>
<td>282</td>
<td>TUNNY (SSG-282)</td>
<td>NCDI 1942-69</td>
</tr>
<tr>
<td>283</td>
<td>TINDOSA</td>
<td>NTJU 1943-</td>
</tr>
<tr>
<td>284</td>
<td>TULLIBEE</td>
<td>NWPY 1943-44</td>
</tr>
<tr>
<td>285</td>
<td>BALAC</td>
<td>NWPY 1943-44</td>
</tr>
<tr>
<td>286</td>
<td>BILLFISH</td>
<td>NWGQ 1943-</td>
</tr>
<tr>
<td>287</td>
<td>BOWFIN</td>
<td>NWLZ 1943-71</td>
</tr>
<tr>
<td>288</td>
<td>CABRILLO</td>
<td>NWXZ 1943-</td>
</tr>
<tr>
<td>289</td>
<td>CABLE</td>
<td>NAEL 1943-44</td>
</tr>
<tr>
<td>290</td>
<td>CASSIOPE</td>
<td>NAEL 1943-44</td>
</tr>
<tr>
<td>291</td>
<td>CICERO</td>
<td>NAEL 1943-44</td>
</tr>
<tr>
<td>292</td>
<td>CREVE-CIEL</td>
<td>NDXD 1943-68</td>
</tr>
<tr>
<td>293</td>
<td>DEVILFISH</td>
<td>NFXF 1944-</td>
</tr>
<tr>
<td>294</td>
<td>DRAGOMET</td>
<td>NKJN 1944-</td>
</tr>
<tr>
<td>295</td>
<td>ESCUDERO</td>
<td>NKJN 1944-45</td>
</tr>
<tr>
<td>296</td>
<td>HACKLEBACK</td>
<td>NXL 1944-45</td>
</tr>
<tr>
<td>297</td>
<td>LANCE</td>
<td>NXM 1945-</td>
</tr>
<tr>
<td>298</td>
<td>LING</td>
<td>NXLG 1945-71</td>
</tr>
<tr>
<td>299</td>
<td>LIONFISH</td>
<td>NXS 1945-44</td>
</tr>
<tr>
<td>300</td>
<td>MANTA</td>
<td>NXS 1945-67</td>
</tr>
<tr>
<td>301</td>
<td>MONDO</td>
<td>NUXA 1945-48</td>
</tr>
<tr>
<td>302</td>
<td>RONCADOR</td>
<td>NUXZ 1945-71</td>
</tr>
<tr>
<td>303</td>
<td>SABALO</td>
<td>NXYO 1945-71</td>
</tr>
<tr>
<td>304</td>
<td>SABLEFISH</td>
<td>NXYG 1945-71</td>
</tr>
<tr>
<td>305</td>
<td>SEACHEASE</td>
<td>NYHD 1945-70</td>
</tr>
<tr>
<td>306</td>
<td>SKATE</td>
<td>NYIX 1945-70</td>
</tr>
<tr>
<td>307</td>
<td>SNOOK</td>
<td>NYIX 1945-71</td>
</tr>
<tr>
<td>308</td>
<td>TILEFISH</td>
<td>NYLP 1946-60</td>
</tr>
<tr>
<td>309</td>
<td>APPOGN</td>
<td>NYOX 1946-63</td>
</tr>
<tr>
<td>310</td>
<td>ASPOG</td>
<td>NYOX 1946-63</td>
</tr>
<tr>
<td>311</td>
<td>BATFISH</td>
<td>NYOD 1946-69</td>
</tr>
<tr>
<td>312</td>
<td>ARCHERFISH</td>
<td>NYOG 1946-69</td>
</tr>
<tr>
<td>313</td>
<td>BURRFISH</td>
<td>NYOG 1946-69</td>
</tr>
<tr>
<td>314</td>
<td>PERCH</td>
<td>NQAZ 1947-71</td>
</tr>
<tr>
<td>315</td>
<td>SHARK</td>
<td>NR5 1947-45</td>
</tr>
<tr>
<td>316</td>
<td>SEA LION</td>
<td>NZIM 1947-47</td>
</tr>
<tr>
<td>317</td>
<td>BARBER</td>
<td>NZLU 1947-64</td>
</tr>
<tr>
<td>318</td>
<td>BAYA</td>
<td>NZMJ 1947-72</td>
</tr>
<tr>
<td>319</td>
<td>BECUNA</td>
<td>NZQZ 1947-73</td>
</tr>
<tr>
<td>320</td>
<td>BERGALL</td>
<td>NQRZ 1948-58</td>
</tr>
<tr>
<td>321</td>
<td>BAYS</td>
<td>NZRZ 1948-58</td>
</tr>
<tr>
<td>322</td>
<td>BLEAKFISH</td>
<td>NKAY 1948-72</td>
</tr>
<tr>
<td>323</td>
<td>CAIMAN</td>
<td>NKCC 1948-72</td>
</tr>
<tr>
<td>324</td>
<td>BLENDA</td>
<td>NKCD 1948-71</td>
</tr>
<tr>
<td>325</td>
<td>BLOWER</td>
<td>NKDA 1949-50</td>
</tr>
<tr>
<td>326</td>
<td>BLUEBACK</td>
<td>NKIB 1949-48</td>
</tr>
<tr>
<td>327</td>
<td>BOATFISH</td>
<td>NKIB 1949-48</td>
</tr>
<tr>
<td>328</td>
<td>CHAFF</td>
<td>NKDC 1949-48</td>
</tr>
<tr>
<td>329</td>
<td>CHUB</td>
<td>NJSA 1949-48</td>
</tr>
</tbody>
</table>
Monitoring Mossad: The Israeli Intelligence Service

You’ve Probably Heard These Mystery “Phonetic Alphabet” Stations And Wondered About Them!

BY GREG MITCHELL

The daring exploits of the agents of Mossad have been in the world’s headlines for years. The kidnaping of Adolf Eichmann from a street in Argentina is just one of the headlines you probably saw which credited Israel’s Intelligence Organization—the very same agency that gathered information sufficient to permit the rescue at Entebbe to successfully take place. The name of the agency may be well known, but its operations are shrouded in secrecy. The radio messages they use to communicate with their agents are in the form of letter codes, actually not at all dissimilar to the numbers code stations which are widely reported by listeners.

Inside Mossad HQ

Far beneath the streets of Tel Aviv lies the control center for civil radio communications, Merkaz Tikshoret. Above ground, it’s just a stone’s throw from the fashionable shops and restaurants of Dangoff Street, but to the tourists buying souvenirs and eating falafel are totally unaware that the array of microwave and UHF antennas atop a nearby office building are sending messages to high frequency (HF) relay transmitters throughout Israel. Those HF transmitters are heard by Mossad agents in the Middle East and around the world.

About fifteen years ago I was staying in a hotel several miles from Tel Aviv and, as usual, I had taken my shortwave receiver along with me. From out of my window I could see a large collection of HF transmitting antennas and I decided to look for their signals on my receiver. Since I was so close to them it wasn’t very difficult to locate the signals—they came blasting through. On up to twenty frequencies, up to twenty different transmissions went out—mostly on the hour and half hour. These transmissions consisted of long lists of letters of the alphabet stated in standard international phonetics (Alpha, Bravo, Charlie, etc.). The announcers were female and had the distinctive accents noted in the nation.

I thought the transmissions were military in origin. I was wrong. Several years of research revealed some of the mysteries of these communications. At this point, most of the women who served as announcers are out of jobs inasmuch as they have been replaced by an automated machine using tape cartridges.

The purpose of the messages is manifold, including civil defense within Israel, diplomatic traffic, as well as for communications with Israel’s intelligence gathering organizations. There are several organizations which cover different security areas.

Within Israel and the occupied territories, the General Security Service (Shurat Bitakhon—usually called Shabak) handles counterintelligence activities. A sister organization, Shurat Bitakhon (better known as Shin Bet) tends to other security matters. Another body, Reshud, guards against terrorist activity. Abroad, the main intelligence agency (Israel’s agency which is roughly equivalent to the American CIA) is the National Security Institute (Mossad Ha Bitakhon Leumi). A group called Agaf Mod’in (often shortened to Aman) collects military intelligence abroad. Israel is a nation that has assessed its position as requiring a great deal of intelligence data and has therefore sought to establish a good and secure series of communications channels with its operatives.

Shortwave is important to all of these agencies because, as in most nations, public telephone and Telex links are felt to be useful only for the very lowest grade diplomatic and routine intelligence traffic. Shortwave and satellite facilities would be used for more secure traffic, and in Israel’s case there are no public telephone or Telex links from Tel Aviv or some of the places where Israeli agents operate—for instance other middle East nations.

At Merkaz Tikshoret in Tel Aviv, the messages for transmission are first sent to the Cryptographic Department where they are coded into the five-letter groups. This type of cipher has been used by the Israelis for almost 20 years, but many different methods for coding into the five-letter groups are in use depending upon the security level required.

The coded message is then recorded onto a cassette. This used to be done by the female operators speaking into a microphone. They had operating positions located in a long row of sound-proof booths. Now it is done using a machine they call Bitemat (pronounced bee-tay-mat) or automatic voice. This device uses dozens of tiny tape cartridges activated by a keyboard. This provides for consistent pronunciation and timing for every message. Although such a machine is somewhat less reliable than one of the modern electronic voice synthesizers, the results are more human-sounding. The completed cassette, with the call sign followed by the messages, is taken to the Transmission Room to be played at the scheduled time. The signal passes by landline, UHF link, or microwave to a network of HF transmitters at locations throughout Israel. There are more than twenty transmitters having powers ranging from 10 to 20 kW. For transmissions within Israel and adjacent areas, AM or A3H (60% carrier suppression) are the preferred modes. Transmissions directed overseas are sent out in A3H or SSB.

Message Format

The transmission format is made up of a few minutes of the station call sign (three letters followed by the digit 1 or 2). Overseas transmissions have at least four minutes of call sign but those to within Israel and surrounding areas run the call sign for only two minutes. A typical transmission to overseas has the following format:

Call Sign (at least four minutes)
"Three messages, three messages"
"Message, message"
"Group Four Five, Group Four Five" (the recipient)
"Text, text"
Here the message is sent.
"End of message"
"Message, message"
"Group Seven Two, Group Seven Two"
"Text, text"
The second message is sent, and so on.
"End of message, end of messages, repeat, repeat"
All messages are sent again.
"End of message, end of messages, end of transmission"

The transmission format is somewhat more simple for those transmissions indicated "A" and "B" on the frequency list. These
transmissions just contain the callsign and message with no repeats, although the messages themselves tend to be longer than those designated "C" and "D".

It is especially interesting to note that something occasionally goes wrong with these transmissions. The most common problem appears to be jammed or otherwise faulty cassettes. There is also some difficulty encountered with crossstalk between transmitters and this is evidenced by being able to faintly hear another message in the background. Several times the crossstalk has been so severe that both messages come through at equal levels.

Additional Thoughts

In the March, 1984 issue of POP'COMM there was a story entitled "How About Those Mysterious Transmissions?" in which several insights into the possible origin of these so-called phonetic alphabet stations (PAS) were offered. It was pointed out that there was a story in another publication which "suggested the possibility that the transmissions came from an Eastern European embassy in Canada." In respect to such a speculation, I would remind readers that this could be a case of mimicry of such signals.

Nearly all governments spend great amounts of time and money in monitoring all of the secret radio traffic they can. This is called signals intelligence (SIGINT) and is carried out, for instance, by the National Security Agency in the USA, BROCEN for the Soviet Union (in East Germany), and by Government Communications Headquarters Composite Signals Organization (GCHQ-CSO) in Britain. This intense monitoring is carried out on a worldwide scale and in many cases there are embassy personnel as well as mobile monitors used for this purpose. This means that, even if they cannot decrypt the actual messages, the governments know the frequencies and what types of codes and message formats are used by other governments—and their worldwide direction finding facilities (supplemented by those on naval and other vessels) have left little doubt as to specific points of origin for each of the coded signals.

If a government wishes to confuse the operators of another government, one way of accomplishing the feat is by mimicry of those signals, using the same frequencies, message formats, and even codes. It has to be done with great precision in order to be convincing, however most agents in the field are on their guard to spot and recognize such spurious "messages." Of course, just because monitoring hobbists cannot figure out the meaning of coded messages they tune in on, this does not mean that such messages cannot be fully understood and even mimicked by other governments. Being able to confuse and misdirect another government's field agents is, in fact, one of the finer points of the espionage game!

Inasmuch as the average monitoring hobbiest goes, these messages are generally incomprehensible. What, then, is there of real interest in tuning in and monitoring such coded transmissions? The chances of actually decrypting such a message are miniscule, nevertheless, it is still worth carrying out a statistical analysis of when the messages occur and also watching the overall nature of the messages. For instance, note how often different "groups" are sent messages and how long those messages tend to be. Then correlate this with events in Israel, the Middle East, or other areas. You may monitor a great deal of coded traffic on a particular day, and then the next day you learn that some major international "event" took place. Eventually you'll start to get the "feel" of which messages portend such headline makers, even if you can't extract the specific details of the messages themselves. With a bit more study, you may be able to sort out such messages as they relate to specific world hotspots—Central and South America, the Middle East, Korea, Africa, Eastern Europe, Afghanistan, Southeast Asia, etc. You may be surprised to learn that many governments use computers to do exactly this as an important aid to their intelligence gathering activities. To an efficient intelligence gathering agency, practically nothing goes to waste—even coded messages which cannot be decoded! To some extent, then, the astute hobby monitor can use such information to his or her interest.

Frequency kHz | **Calls** | **Times/Target** | **Schedule Details** | **FLU** | **B** | **P8330** | **± 25 kHz**
---|---|---|---|---|---|---
2270 | RCH | A | P5090 | 6840 | CIO* | B & C
2515 | VLB | A | 7115 | ART | KPA/
2745 | YLX | A | 7445 | KPO | B & C
2952 | SYN | A | 7539 | JSR | VLB
3150 | PCD | A | 7606 | VLB | B & C (Note 1)
3415 | ART | A | 7918 | VHF | B & C (Note 2)
3930 | YLX* | A | 8330 | FLU | SYN/
4057 | FLU | B | 8425 | SMN/ | B & C moved to 8465
4270 | PCY | A | 8465 | SYN* | B & C P12950, 5642
4448 | NCJ | B | 8925 | YHF | B ± 5 kHz
4560 | YHF | A & B | 9130 | CIO/ | CIE*
4625 | VEB/ | B & C | 9325 | CIE/ | P11565
4670 | VIB* | B & C | 9325 | SYN* | ± 10 kHz
4880 | GBZ/ | B & C | 9130 | VUB* | P13921
4880 | GBZ | B | 9325 | CIO/ | CIE/ | P13921
5087 | JSR | B | 11565 | EZI | P9130 night or 17412 day
5230 | ULX | B | 12412 | KPA* | C & D
5295 | JSR | B & C | 12747 | MIO/ | P17170
5437 | ART | A | 12950 | MIO/ | C & D P8465, 5642
5642 | SYN | B & C | 13150 | MIO/ | VIB
5670 | MIW* | | | | | B & C
5760 | YHF | B & C | | | | moved to 13921
5820 | YLX | B | 13921 | CIO | C & D
6270 | JSR | B | 17170 | MIW | D

36 / POPULAR COMMUNICATIONS / July 1984

www.americanradiohistory.com
Many of the female operators have been replaced by recorded voices. This "YL" staffs a monitoring station.

17412 EZI D P11565
17595 CIO M1W *
17965 EZI D P13921
17965 CIO D MIW P12747

KEY
A = "Night" list to Near and Middle East 1600-0400 GMT
B = "Day" list to Near and Middle East 0400-1600 GMT
C = "Night" list—Overseas traffic 1645-0445 GMT
D = "Day" list—Overseas traffic 0445-1645 GMT
* = Not in current use
P = Operates in parallel with _______

Suffix To Calls
1—Test (Purposes V, P, T, C)
2—No messages

Times of Principle Services
RCH, ULX, PCD, ART, FLU, NCJ, YAF, GBZ, JSR, KPA—on most hours and half hours
VLB—on ¼ hour and ½ hour
CIO—on most ¼ hours
EZI—0600
0600
1100
1200
1515
1720
1800
1900
MIW—certain ¼ hours
SYN—on the half hour

Note 1 — also used by station 4XQ57 for Telex traffic
Note 2 — also used by station 4XQ97 for Telex traffic

HOW TO SURVIVE 1984

PROTECT YOUR PRIVACY
This palm sized system lets you know if anyone in the room is wearing a bug. With a series of lights the VL 34 even locates the source of transmission. It allows you to perform an electronic "sweep" with the same accuracy of professional systems. And it fits in your pocket to provide privacy wherever you go.

FIND OUT WHO'S LYING
The VSA gives you a simple way to detect lies. It electronically analyzes a person's voice to detect tremors that the human ear can't even hear. A simple digital readout will help you identify who's lying — who's stealing — who your enemies really are!

INSURE YOUR TELEPHONE PRIVACY
One of the world's most sophisticated telephone privacy systems, the CC 7000 RC makes your conversation indecipherable to eavesdroppers. Every tenth of a second, the computer controlled CC 7000 RC automatically changes its own privacy codes. So interception is impossible. Only the legitimate speaking parties hear clear conversation.

Send $50.00 for catalog and special report on how to protect yourself against bugging and wiretapping.

CCS Communication Control Inc.
633 Third Ave., New York, NY 10017.
Enclosed is my $50.00. Please send your literature.

Name ____________
Address ____________
Phone ____________
Zip ____________

CCS Communication Control Inc.
633 Third Ave., New York, NY 10017 212-697-8140 TX 238720
1010 Wisconsin Ave., NW, Washington, DC 20007 202-659-3432
1435 Brickell Ave., Miami, Fla 33131 305-358-4336
9465 Wilshire Blvd, Beverly Hills, Ca 90212 213-274-0256
320 N. Michigan Ave., Chicago, Ill 60601 (312) 726-0998
6161 Savoy, Houston, TX 77036 713-781-0852
62 South Audley St., London W1 01-629-0223 TX 8814709
26 Place Vendome, 75001 Paris 297-56-00 TX: CCS 215524F
Lightening Your Load
And Other
Communications Horrors

Electricity On The Rampage Is A Lot Worse Than You Think!

BY DON TYRRELL, W8AD, ALPHA DELTA COMMUNICATIONS

Undoubtedly at some time in your life you’ve been awestruck, or maybe you’ve struck it rich, or been struck by inspiration. Believe me, you don’t know what it means to be struck until you’ve come face to face with modern solid-state communications equipment that has been zapped by the effects of lightning at a distance from your location—or a static discharge. Forget about the rules of the lightning protection game you may have learned in the days of vacuum tubes, solid-state equipment (communications receivers, scanners, etc.) is different! Those old time rules were fine in their day, but they’re all out the window now! Or maybe you’re one of those intrepid souls who thinks, “I don’t need lightning protection because my antenna has never taken a lightning strike.” That outlook is valid only if you’re located on Fantasy Island.

And don’t tell me how you always disconnect your coax or ground your antenna during a storm. Mother Nature is lurking in some far off cumulo-nimbus cloud just waiting for her chance to teach you the facts of life. However, you may not really want to be one of her students. Her lesson is often delivered swiftly and without warning (or mercy), particularly since solid-state components have become the primary ingredients of modern communications gear. While solid-state devices have many obvious technical advantages over vacuum tubes, their internal junctions are far more fragile and sensitive to voltage spikes and discharges. The very origin of these spikes and discharges (called transients and surges) makes the several “excuses” mentioned above invalid. For one thing, surges can be generated by nearby lightning strikes and static build-up, but they can also cause damage and destruction to the components of your communications gear from several miles away. These sources are typically out of your sight and offer you no time to go into the grounding or disconnecting scenario. Notwithstanding the effects of lightning, similar damage can even result from static discharges produced by things such as wind-driven snow, high wind in dry climates, and clouds on a still day. Fact is that damage to your solid-state equipment is 1,000 times more likely to occur from these sources than from a direct ground-zero strike on your antenna system!

The result can well be a popped front end on your receiver, and that’s Mother Nature’s way of showing you how golden silence can be; for, indeed, you may well be cashing in your Krugerrands to pay for the repair bill in

38 / POPULAR COMMUNICATIONS / July 1984

THE MONITORING MAGAZINE
The energy from a distant lightning strike or static discharge can sweep across your antenna with a rate of rise of 10 to 20 KV/usec, a pulse peak of 5 KV, and several hundred amps of current.

The Alpha Delta Communications Transi-Trap model LT protector.

This is the Transi-Trap model R-T lightning protector.

Generation Gap

In the days of vacuum tube communications equipment, it was a good idea to use the old standby air-gap type lightning protection device. This was like an auto spark plug. One side of the gap was grounded and the other side was connected to the center conductor of your antenna cable. The reaction time of such devices was slow, but adequate to protect the vacuum tube equipment—and, to boot, they also allowed arc energy to flow on the chassis of the equipment. Many communications men do not realize that such devices hardly meet the needs of modern solid-state equipment.

A lightning stroke is quick and powerful—very quick and very powerful. Typically, it represents a rapid rise to a peak voltage of 3 to 5 KV in only 2 to 10 microseconds and it contains 500 to 20,000 (or more) Amperes. In the time it takes the old fashioned air-gap lightning protection device to cope with such a blast of energy, your sensitive and fragile solid-state components could well be dispatched to a fast (or slow) trip to their final reward in Silicon Heaven. What to do? Any time one is faced with harnessing the potent force of nature it presents a challenge. But challenges are the things which created miracles such as solid-state devices in the first place, and have also now lead to a way of adequately protecting them from transients.

Alpha Delta Communications has researched, developed, tested, and marketed lightning and static protectors specifically intended to be used with solid-state communications equipment. These units, called Transi-Traps, are made with the protection gap hermetically sealed inside a special gas isotope tube. The isotope has known breakdown characteristics and response time, thus eliminating the air path for the spark to traverse. The erratic arc-forming characteristics of the molecules of air in old style air-gap type devices have thus been totally eliminated. With the gas isotope on duty, before the transient can do any damage to your equipment, it flashes through the isotope—silently, quickly, harmlessly—safely shutting it to ground. It takes only 100 nanoseconds. A special "isolated ground" feature of the Alpha Delta Transi-Trap units keeps damaging arc-energy of the chassis and also speeds it on its way to ground.

All of the different models offered in the Transi-Trap series can be used with all receivers and scanners, however various models can also be used with different types of transmitters. The models available are:

- **Model LT:** UHF "T" type, will handle 200 watt transmitters thru 148 MHz
- **Model HT:** UHF "T" type, will handle 2 kW transmitters thru 148 MHz
- **Model R-T:** UHF connectors, will handle 200 watt transmitters thru 500 MHz
- **Model HV:** UHF connectors, will handle 2 kW transmitters thru 500 MHz
- **Model R-T/N:** N connectors, will handle 200 watt transmitters thru 1 GHz
- **Model HV/N:** N connectors, will handle 2 kW transmitters thru 1 GHz
- **Models R-T/BNC and HV/BNC are similar to the R-T/N and HV/N but have BNC type connectors.**

These units have been thoroughly tested by independent labs and are in use by government and military installations around the world. It should be pointed out that Alpha Delta Transi-Trap devices are designed to reduce the hazards of lightning-induced surges. There are no claims that they will protect from a direct lightning hit, because there is no standard by which to describe one. Some hits can generate more than 100,000 amperes, causing extensive structural damage, some with far less amperage may be satisfactorily bypassed. Nevertheless, keep in mind that a direct stroke can cause fire or damage.

It is also worth noting that semiconductors are known to become damaged by transients entering electronic equipment via the route of power lines. This could be caused by switches, AC motors, surges from power company brown-outs and poor regulation, and even the effects of fluorescent lighting. If you had the chance to see a graph print out of the hash that is pouring out of an AC wall socket under the guise of "pure" electrical energy, you'd hardly dare plug anything into it that wasn't fully protected.

Alpha Delta has therefore addressed its attention to this problem with the development of MACC Master AC Control Consoles. The MACC units, in a typical application, are now in use in "house" by a major computer manufacturer to protect their own vital systems from AC related damage. This was after extensive testing of all devices available in any price range. The surge protected AC models are:

- **Model MACC:** 8 outlets and master switch control
- **Model MACC-4:** same as MACC but with 4 outlets
- **Model ACTT:** wall socket direct plug-in with 2 outlets

We at Alpha Delta are proud of these products and will be pleased to send you additional information so that you can get an even better understanding of the factors involved in protecting your valuable electronic equipment from damage. Write to me and I'll pass it along to you. My address is Don Tyrell, W8AD, Alpha Delta Communications, P.O. Box 571, Centerville, OH 45459, or just mark number 100 on the reader service card in this issue of POPCOMM.
ESTABLISHING SURVIVALIST COMMUNICATIONS SYSTEMS

The logistics of communications has always faced those who are conducting their operations "in the field." Those attempting to establish survival systems should certainly view matters of equipment supply, replacement, maintenance, and repair with the utmost seriousness. Since much of the field communications equipment used today by survival groups comes from the battlefields in Southeast Asia, I believe it might be especially valuable to discuss how this gear performs and check out its high and low points, its problems and advantages.

According to Lt. Gen. Charles R. Meyer, U.S. Army (Ret), one of the Army's top communications experts during the war in Southeast Asia (and as mentioned in his Dept. of Defense report entitled "Vietnam Studies: Division Level Communications 1962-1973"). "...slight differences between identical parts which come from being produced by different manufacturers add to the problem" of supply and repair in general.

Spare parts, he said, were one of the main logistical headaches. Many different approaches to resolving the problem were tried. Some units tried to beat the supply problem by having their men scour the supply depots to locate parts and major items of equipment and requisition them on the spot. Other units tried to make the existing system work and found that they could manage, although other units found that it worked for them only if modified. This system was explained fully in Army Training Manual TM 38-750, and whether it was taken as the absolute gospel or only as a general guideline, the American forces in Southeast Asia did manage to keep their communications equipment going.

The so-called "closed loop" support system was established to control the flow of critical components or assemblies to and from the respective commands in hope of supporting prescribed levels of equipment readiness. Supply, retrograde, overhaul, and resupply were given special attention to ensure that critical items were quickly overhauled and rebuilt and then quickly returned to the supply system. This system allowed units to exchange critical items directly. The system was generally successful with radar and teletypewriter equipment but less so with radio gear because replacement items were not available for direct exchange. One innovation that made the system more efficient was the jiffy bag, a cushioned paper bag in which small modules and components could be shipped for repair and returned safely and quickly.

Problems in the receipt, issue, and distribution of communications equipment and repair parts grew from the lack of knowledge at supply depots. Most people who worked at the depots were not versed in the increasing sophistication and technical makeup of equipment and components and the volume of communications supply.

Tactical units in Vietnam received power for their communications equipment from fixed plant generators, portable generators, and batteries. Civilian contractors operated fixed generators at some of the base camps. Portable generators were used extensively and were important in division communications. They were usually 3, 5, or 10 kW. When air conditioning was necessary for the efficient operation of some communications equipment, the 10 kW generators were used not only for powering signal equipment but the signals sections at base camps and other sites had to provide power for many other purposes such as perimeter lights. On smaller landing zones, "signal" often became synonymous with the responsibility for providing all electrical power at the location.

Commands had to emphasize maintenance if the generators were to survive under heavy and constant use. Heat, wind, and sand were constant enemies, and inadequately trained and improperly supervised operators often compounded the maintenance problem. Operators were frequently trained in the operation and maintenance of the motor but not the generator or they were trained to operate the system but not to maintain it. As a result, most units placed generators high on their list of problems.

Batteries were used in every vehicle, every tactical telephone, every switchboard, most tactical radios, and in every generator of 5 kW and above. The climate in Vietnam was the enemy of batteries of all kinds. In the heat and humidity, the wet-cell battery reached its boiling point quickly and stopped working. Operators had to service cables, battery boxes, electrolytes, and connectors more frequently than normal to prolong battery life. Dry-cell batteries were also not immune for Vietnam's temperatures. They had to be kept in a cool, dry place. The suggestion that batteries be stored under refrigeration was usually ignored because any available refrigerated space was used for perishable foods and medical supplies. Dry-cell batteries were often stored in any available container, for example a steel case which changed temperature drastically from day to night. This storage method gave many units batteries that operated for only a fraction of the normal time.

One of the heaviest users of the dry, zinc and carbon oxide batteries (BA 386) was the AN/PRC-25/77 manpack radio employed by most tactical units. As secure transmission became more common, the usage requirements of these batteries, which had to be used in both the radio and the scrambler, increased significantly. To increase dry-cell battery life, the magnesium battery (BA-4386) was developed and first used in early 1968. The magnesium battery lasted almost twice as long as the zinc and carbon oxide battery and it did not have to be refrigerated. The magnesium batteries, however, generated a hydrogen gas which in a closed container built up and caused the batteries to explode and burn. Storing the
These VRC-12 AN/PRC-25 squad radios replaced the Vide tactical devices were tactical units, erators were nonesium battery and some became magnesium that squads but communicate with tween squad and areas, to version 25/77 From 1965 to ensure that available on the year about available on the radio was considerably smaller, lighter, and more efficient than the older PRC-6 and could communicate with the VRC-12 and PRC-25/77 radios as well as with the PRC-6. It was used primarily within and between squads but could be used by larger units for other kinds of tactical missions. The squad radio was issued in early 1967 and by late that year was available to all tactical maneuver units. Units using the new radio varied in their opinion of it. Most would trade it for the AN/PRC-25/77 whenever possible for greater range and reliability. They consid- ered the squad radio most effective in relatively static positions such as perimeter de- fense. The AN/PRC-4 transmitters, today, are available on the military surplus market for about $35 in top condition. The accommodating AN/PRR-9 receivers have been less plentiful in the surplus marketplace.

The AN/PRC-25, a short-range 30 to 76 MHz FM radio, was modular and was transistorized except for a power amplifier tube. The radio was used in three basic configurations, manpack (PRC-25), vehicular (VRC-53), and manpack/vehicular (GRC-125). The first PRC-25's in Southeast Asia (mid-1965) were intended for advisors. With their initial distribution came the first new equipment training (NET) from the Electronics Command to begin instruction on the operation and maintenance of the VRC-12 and the PRC-25. The AN/PRC-77 set was an improved version of the PRC-25. All solid-state design made it more reliable. It also needed less power and could be used for secure voice communications. The PRC-77 was basically a manpack radio but could also be used in the three basic configurations, manpack (PRC-77), manpack/vehicular (GRC-160), and vehicular (VRC-64). The PRC-77 was compatible with the VRC-12 and PRC-25 families, with the ARC-54 aircraft radio set, and with the PRT-4/PRR-9 squad radio. The PRC-77 was organic to battalion-size units and was issued through platoon level. On today's surplus market, you'll pay about $350 for one of these sets in good condition but $600 for one in new condition.

The radio sets AN/VRC-12 and VRC-43 through VRC-49, commonly called the AN/VRC-12 series, were the new vehicular communication system used extensively by combat units. These FM radio sets (30 to 76 MHz) replaced the AN/GRC-3 through GRC-8 series. The new sets consisted of various combinations of two basic units, the RT-246/GRC transceiver and an auxiliary R-442/VRC receiver. An alternate trans- ceiver used was called the RT-524. The RT-246 could select one of ten frequencies preset by the operator, but on the RT-542 each frequency had to be set manually. The RT-542 had a loudspeaker built into the space occupied by push buttons on the RT-246. The RT-524 was developed for use in vehicles where the operator could reach the panel easily; the RT-246 was designed for use in tracked vehicles where the operator could not reach the panel. In Viet- nam this equipment was often removed from vehicles for use in bases such as for- ward tactical command posts. In most cases, major tactical units were issued the VRC-12 family of radios just before or shortly after their deployment to Vietnam during 1965 and 1966.

The high frequency (HF) communications system within a divisional area of operations was used almost entirely for RTTY operation. The AN/GRC-46 (1500 kHz to 20 MHz) or the AN/VSC-1 (2 to 30 MHz) equipment gave the maneuver battalions their only means of secure printed communications. At brigade and division levels, RTTY for the most part provided only a backup for multi- channel secure teletypewriter circuits. The GRC-19 was replaced in 1966-67 by the newer HF SSB radio AN/GRC-106 (2 to 30 MHz) with its newer RTTY configuration, the half-duplex AN/GRC-142 (AN/VSC-2) and the full-duplex AN/GRC-122.

The AN/MRC-69 was a frequency di- vision multiplex radio relay carrier terminal set which could provide 24 telephone channels and 12 teletypewriter channels. It was nor- mally used at division and brigade levels as a dual radio carrier terminal providing two 12-channel systems. The set was the back- bone of the divisions' multichannel systems. It was available in many equipment combi- nations (in addition to the basic MRC 69) such as the single terminal MRC-73, the CW/voice terminal MCC-6, and the radio repeater MRC-54.

The airborne and airborne divisions needed a lighter, more mobile system. With the organization of the 1st Air Cavalry Divi- sion, a trend toward lighter systems began and resulted in the MRC-111 and MRC-112. Although they could be transported by heli- copter easily, they offered only 4 channels. These were followed by the AN/GRC-163 (30 to 76 MHz) lightweight 4-channel single terminal radio consisting of the VRC-47 and a TCC-70 multiplexer. The GRC-163 had a communications range of 50 miles and pro- vided multichannel communications be- tween brigade and battalion where lines were not tactically feasible. The GRC-163 was designed for use in airborne operations and was compatible with the VRC-12 and PRC-25 series of radios. Unlike the larger MRC-69 and MRC-112, the set was small enough to be airlifted in assault helicopters. Kits were also available for installing it in a quarter-ton truck or trailer. GRC-163's were first shipped to Vietnam in January 1968 and were accompanied by a two-man team from the Electronics Command. Another four-man team was sent to Vietnam in Au- gust 1968 to train personnel in the installa- tion, operation, and maintenance of the equipment.

The VRC-64 was often installed in armored vehicles. This was a version of the PRC-77.
A Wrongwire Antenna

I have taken the pedestal portion of a cordless telephone unit and plan to use it as a low power broadcast transmitter. It has an internal frequency adjustment which I used to lower the transmitting frequency from 1653 kHz to 1620 kHz. The addition of an external longwire antenna (152 feet in length) has tested out with excellent coverage for about five miles. It was a relatively inexpensive way of achieving the broadcast antenna.

While the FCC does permit unlicensed low-power broadcasting under certain technical restrictions (Part 15 of the Rules), your antenna is far too long to meet those restrictions. Your use of the base portion of a cordless telephone is clever; however, if you want to keep it legal you'll probably have to disconnect the longwire and make do with the original internal antenna designed to be used with the pedestal transmitter. — Editor

A Look Back

I truly enjoy the POP'COMM stories about the events and stations that stand out in radio's history. I feel these articles alone are worth the price of my subscription; everything else is a bonus. That's like getting another magazine free. Being one of the "older generation," I'm wondering what feedback about the historical articles you've received from the sharp youngsters who are such an important element of our hobby. It would be interesting to know how they feel.

Larry G. Seabury
Flushing, NY

The information in POP'COMM has run concerning the historic aspects of broadcasting and communications is universally popular and has consistently drawn mail asking for more of the same. Today's sharp youngsters are creating tomorrow's history and appear to be keenly interested in knowing from whence this dynamic hobby came.

— Editor

Hit The Decks

I would be interested in hearing from any Popular Communications reader who might be interested in corresponding with me via cassette tape. I enjoy listening to discussions about various radio hobbies in addition to current events. I also like to discuss World War II history, UFO's, and outdoor activities. My main radio interests include DXing foreign shortwave broadcasters, marine radio, military communications, ham, CB, SSB, and scanner radio. Let's talk turkey!

Robert Pastrick
P.O. Box 183
Conway, PA 15027

How 'bout it readers? Here's an interesting way to share your hobby interests and experiences. — Editor

Will It Still Transmit?

Our survival training group recently received a donation of some older communications equipment from an area resident. Included were a pair of transceivers marked "Johnson Personal Messenger." There are receive crystals installed but no transmitting crystals and we don't know where they might be obtained. Some communications shops carry or can order CB crystals but none have this rig in their books.

Matt Olafsson
Boise, ID

These were relatively popular ten or more years ago and I can't imagine why they can't track them down in their records. No matter, they use the same transmitting crystals as a number of other rigs, including the Emerson 31P59, Fanon Masco "Rough Rider," Hallicrafters CB-6, Heath GRS-65A, and GRS-21A, Olson RA-638, and J. C. Penney Penncrest 10, to name just a few. If you can get those working they're quite good, although the technology isn't quite state-of-the-art. — Editor

The KATT Was In the Barn

In your February issue you had an article called the Outlaw Callbook and I can add a little information. The East Bay area of San Francisco was a hotbed of pirate broadcasting activity in the mid-1960's. The classic pirate was KATT, which operated from the Montclair district of Oakland about 1962-63. I believe it operated on 870 kHz and was closed down because someone who wanted to hear WWL in New Orleans complained to the FCC. KATT was operated by a student at Skyline High School. In 1964-65 it was succeeded by KWLS operated by BARN (Bay Area Radio Network). BARN was made up of high school students from neighboring Piedmont and Richmond, as well as the original KATT operator. There were actually 4 or 5 transmitters in BARN, all operating in two hour shifts on 880 kHz. The intent was to make it seem as if they were running different programs from the same station (in order to throw FCC monitors off the track). One of the stations got busted when it had to remain on the air for six hours after two of the other BARN stations broke down. The last disc the station spun before the FCC pulled the switch was "Catch Us If You Can" by The Dave Clark Five!

George Wood, SMIIIN
Sweden Calling DX'ers
Radio Sweden
Stockholm, Sweden

Skip It

Last September you ran a story on rebel communications in El Salvador. You didn't mention anything about frequencies used by the government forces which are fighting the rebels. I'm interested in hearing those communications.

Alberto Contrera
Encino, CA

The best information I have available shows the National Guard using 151.475 and 155.30 MHz with the callsign HUMG, but you'd have to be located pretty close in to hear those communications. Some officers also have private and personal two-way communications setups so that they can communicate with their families at home directly from the combat areas. These communications are in the 2-Meter ham band using linear amplifiers. Of course, there are many VHF low band frequencies also in use via communications equipment supplied by our government and you can probably hear these transmissions. Check out the story in this issue for some of the frequencies that have been monitored hereabouts. — Editor

Doing It With Frequency

I have noticed and enjoyed the frequency and signal code profile information on the various state police and patrol agencies. Please advise which agencies have been included in past issues and if those issues are still available.

John P. Johnson
Eau Claire, WI

These state law enforcement agencies have been covered thusfar: Missouri (April 84), Montana (March 84), Utah (June 84), Indiana (August 83), Pennsylvania (July 83), Ohio (May 83), South Carolina (April 83), and Georgia (January 83). In addition, the San Francisco Police Department was profiled in the December 1982 issue, with the New York City Police in September of '83 and New York City Fire Department in November of '82. All of these issues (as well as any other back issues) are available from the Popular Communications' Circulation Department, 76 North Broadway, Hicksville, NY 11801. The issues from September 1982 through January 1984 are available for $1.75 each, and all issues from February 1984 at $1.95 each. — Editor
ICOM Announces:
Six HF/VHF/UHF Radios

IC-751 HF Transceiver

ICOM announces an advanced, high-performing HF transceiver with general coverage receiver, the IC-751. The IC-751 features a new generation of technology and computer control. ICOM's new CPU with internal battery memory backup provides many advanced features, such as 32 memories with memory storage of mode and frequency, and the scanning capability to cover large segments of the spectrum very slowly or to scan the memories by selected mode. The IC-751 provides instantaneous, silent, band selection and has a unique 3-speed tuning system. Other features included are full break-in keying, passband tuning, notch filter, RIT and XIT with separate readout, FM built-in as standard, a very steepsided FL44 side band filter, continuously adjustable noise blanker levels, dual VHF operation, and all mode squelch. An easy-to-read two color fluorescent readout showing the frequency in white and the control functions in red, for low eye fatigue and high visibility in all ambient light conditions is standard. The IC-751 is equipped standard for operation from 12 volts DC, and there is an optional internal AC power supply. The IC-751 has an advanced receiver design that provides true competition-grade performance.

IC-120

The IC-120 is a 1.2 GigaHertz FM mobile transceiver, covering 1260 to 1300 MHz. This unit is styled similarly and has features similar to the IC-25A/H series of 2-meter transceivers, and has many common features. Duplex split is variable, but is initiated at 20 MHz when the unit is first turned on. Duplex up and down as well as scanning features are offered. Power output is 1 watt.

ICOM is the first to offer the hams a full-featured mobile transceiver for this mostly unused band.

IC-471A

The IC-471A is a base station transceiver for 430-450 MHz. It features 10 watt output, 32 full function memories, and built-in subaudible tone selectable from the main tuning dial.

ICOM systems accessories work with the IC-471A. Also, this unit features ICOM'S new two-color display, showing frequency digits in white and control functions in red for easy visibility in all lighting conditions. With the IC-471A, it is possible to scan all frequencies, memories, or modes.

IC-271A

ICOM announces a new base station transceiver for 2 meters, the IC-271A. The IC-271A covers the entire 2-meter ham band, and features FM/upper sideband/lower sideband and CW modes. The IC-271A has a 25 watt output standard, with an optional built-in power supply. It has 32 full function memories. Built-in subaudible tones selectable from the main tuning dial provide ease of operation. Frequencies, modes, tones, and offset may be written into each memory. Scanning is possible with the IC-271A, either the whole band, memories, or selected modes may be scanned. The IC-271A features ICOM'S new high contrast, two-color display, showing frequency digits in white and control functions in red.

IC-RP1210 Repeater

To complement ICOM's entry into the 1.2 GigaHertz band with its IC-120 mobile transceiver, ICOM is announcing the inclusion of a 1.2 GigaHertz repeater in the equipment line. This repeater will have a power output of 10 watts, CTSCC capability, IDER and DTMF control. The RP1210 is synthesized to be complementary to the IC-120 transceiver, and has a duplex split of 20 MHz.

IC-RP3010 Repeater

This ICOM RP3010 repeater is designed for use in the 440 MHz Amateur band. It offers 10 watts of output power, CTSCC capability, IDER and DTMF control. The 440 MHz repeater is of very high quality and rugged construction and is designed to work over a wide temperature range. The ICOM 440 MHz repeater is crystal controlled.

This information was extracted from manufacturer's literature.
My recent request for listeners equipped with direction-finding loop antennas to participate in a coordinated effort to locate various numbers stations is beginning to pay off. In this month’s Listening Reports, you’ll note bearings included for several loggings (particularly those submitted by Ron Ricketts of Texas). In direction-finding, a bearing of 90 degrees is due east, 180 degrees is due south, 270 degrees is due west, and 0 degrees/360 degrees is due north. Ron is located near Fort Worth, Texas, and you can get a rough idea of where some of these stations may be located by referring to a map and extending the bearing. Note that the locations vary, even for stations on the same frequency. More loggings along this line, especially a simultaneous logging by two or more listeners, could identify all the different transmitter sites used by these stations.

Who Is “AME3”???

For several columns, listeners have been reporting a station identifying itself as “AME3” in both CW and RTTY on various frequencies, usually calling “UMA7.” UMA7 is a call assigned to the Soviet Union, while AME3 belongs to the allocations for Spain. However, the reception times for “AME3” and the traffic to a Soviet station make it unlikely that AME3 is actually licensed to or even located in Spain. Ron Ricketts writes that he believes that AME3 is aboard a Soviet or Soviet-sponsored vessel in the Caribbean. He has noted that AME3 operates on several frequencies only 2 to 3 kHz away from frequencies used by four-digit Spanish number stations. Several times Ron has heard AME3 begin an RTTY transmission immediately when a numbers transmission on a nearby frequency ceased. Have any of you observed unusual activity with AME3 or gotten a bearing on it?

Numbers Activity in Europe

Recently I received a letter from a listener in England who keeps track of numbers stations that can be heard there. Since eavesdropping on non-broadcast transmissions in England is subject to various legal restrictions, our correspondent wishes not to be identified. Here is a list of numbers stations recently heard in England by frequency, type, language, sex of announcer, and time in GMT:

- 3217 Five-digit German female 1809
- 3229 Five-digit German female 2236
- 3258 Five-digit German female 2204
- 3369 Five-digit German female 2213
- 3372 Five-digit German female 2037
- 3384 3/2 German female 2134
- 3564 Five-digit English male 1833
- 3819 Eight-digit German female 2100
- 3819 Five-digit German female 2217
- 4010 Five-digit German female 2105
- 4399 3/2 German female 2223
- 4791 Five-digit German female 2118
- 4990 3/2 German female 2120
- 5089 3/2 German female 2226
- 5225 3/2 German female 1846
- 5692 3/2 German female 2116
- 5733 Five-digit German female 2216
- 5769 Five-digit German female 2044
- 5773 3/2 German female 2212
- 5821 Five-digit German female 1106
- 5910 Phonetics German female 2209
- 6203 Five-digit German female 2231
- 6235 3/2 German female 2208
- 6355 3/2 German female 2227
- 6453 Five-digit German female 0717
- 6825 Five-digit German female 2220
- 6852 Five-digit German female 0814
- 6860 3/2 German female 0816
- 7374 3/2 German female 1815
- 7403 3/2 German female 1206
- 7410 3/2 German female 1505
- 7531 Five-digit German male 1940
- 8079 3/2 English female 2124
- 8119 3/2 English female 2111
- 8315 3/2 German female 2225
- 9244 Five-digit German male 0820
- 9326 Phonetics English female 2018
- 9435 3/2 English female 2108
- 9450 Five-digit English female 2114

Our thanks to our English reader for these loggings!

References And Assistance

Each month I get several requests for help in locating various stations and their locations. If you’re seriously interested in keeping track of the various activities discussed in this column each month, a set of reference guides is essential.

The basic reference guide is a copy of the latest edition of the World Radio TV Handbook. Even if you don’t actively tune shortwave broadcasts, you’ll find a current edition valuable.

An equivalent reference for utility stations is also important. A good one is The SPEEDX Reference Guide to the Utilities, published by SPEEDX (P.O. Box E, Lake Elsinore, CA 922330). It’s available from them for $14.00 First Class mail. Another important reference is the Guide To Utility Frequencies available from CRB Research, P.O. Box 56, Commmack, NY 11725 ($12.95 plus $1 postage).

It’s also important to belong to a club that covers the activities you’re interested in. Three I can heartily endorse are the American Shortwave Listeners Club (ASWLC, 16182 Ballad Lane, Huntington Beach, CA 92649), the Association of Clandestine Enthusiasts (ACE, P.O. Box 13225, D.T. Station, Minneapolis, MN 55414), and the Longwave Club of America (LWCA, 45 Wildflower Road, Levittown, PA 19057). All three of these clubs will be happy to send you a sample bulletin for $1.00 along with full membership details. These clubs offer an ideal way to get the latest DX information quickly and make contact with your fellow radio hobbyists.

Listening Reports

Here are this month’s Listening Reports. Your reports are welcome here; submit them in the form you see used in this column. Include enough details to make your reports useful to other POPCOM fans or that means including languages, sex of the announcers, etc. Send your reports to
Communications Confidential, Popular Communications, 76 North Broadway, Hicksville, NY 11801. And now to this month's reports . . .

16: GBR. Rugby, England, transmitting second pulses in CW 0856, long dash at 0900 and into RTTY (Tom Adams, WI). It was a 3-digit German numbers station with female announcer 2234, was in SSB. Two days later, a four-digit German numbers station with a female announcer in SSB was heard at 0209 (George Osier, NY). Five-digit Spanish numbers station followed by male counting to 100, then "whabbing" and second pulses until 0313, when there was an RTTY like sound. At 0316 there was two-way traffic in Spanish by two men in SSB, followed at 0330 by another count to 100. (Thad Adams, OH).

5178: Five-letter groups in CW ending 0258 with "TTHP TTH ZDP."

5178: Five-letter groups 0199, used only letters A, D, G, I, M, N, R, T, and U, and W, and ended 0926 with "AR AR AR VA VA VA" (Robert Margolis, IL). This has been a very active frequency for four-digit Spanish numbers stations for several years. (Editor).

5178: Five-digit Spanish numbers station with female announcer 0310, bearing 114 degrees. (Ron Ricketts, TX) Where the transmitter somehow in southern Florida, northern Cuba, or Puerto Rico. (Editor) Later reception at 0124, parallel at 5418 kHz; bearing was 133 degrees. (Ronnickets, TX).

6251: AME3 sending RTY test slip in RTTY 0625/8050/75. (Ronnickets, TX).

6251: "Alpha Whiskey," "Hotel,，“ and "Romeo" in SSB around 0800 discussing tracking what seemed to be airborne objects. (Ken Navace, Jr., CA) From some of the conversations you quoted, Ken, it sounds like you heard a military training exercise. (Editor).

6271: Five-letter groups from the international phonetic alphabet read by woman 0405. (Robert Zendlof, FL).

6508: Five-digit Spanish numbers station with female announcer 0600. (George Primavera, NJ).

6683: Air Force One working Andrews AFB in SSB 0125 via satellite communications network. (Thomas Cerf, IL).

6768: Five-digit Spanish numbers station with female announcer 0508, very strong signal. Station loomed at 78 degrees! Jim Thornton, TN. Such a bearing would place the transmitter somewhere in northern Virginia, Washington, D.C., or southern Maryland. But five-digit stations are supposed to be from Cuba . . . aren't they?? (Editor).

6768: Five-digit Spanish numbers station with female announcer 0505, bearing 118 degrees. (Ron Ricketts, TX). Note similar bearing on 5812 kHz. (Editor).

6768: Five-digit Spanish numbers station with female announcer 0502, bearing 118 degrees. (Ron Ricketts, TX). Note similar bearing on 5812 kHz. (Editor).

6768: "CUT" CW groups 0330, only 4 and 6 left. Uncut. (Ronnickets, TX).

6916: Five-digit Spanish numbers groups read rapidly by female 0127, was in SSB. Seemed to be live and in contact with a Spanish speaking male. Variable times per group. (P.E. Quickness, NY). Yes, a few "live" numbers stations can be heard. (Editor).

7430: Five-digit Spanish numbers station with MALE announcer 0017, bearing about 4 degrees. (Ron Ricketts, TX).

7527: Five-digit Spanish numbers station with female announcer 0300, bearing 120 degrees. (Ron Ricketts, TX).

7527: Five-digit German numbers station with female announcer 0310, each group was repeated twice and sounded live. (Ronnickets, TX).

7850: ZAA, Tirana, Albania, testing in RTTY with RYs and French (Robert Margolis, IL). (Editor).

8306: AME3 testing in RTTY with marker "AME3 2/4/6/8/17 QW RG 12 GKRYRVYYVRY AME3 2/4/6/8 17/RG RG 12 SGS7GSGSSG 425/100 at 0213. (Robert Margolis, IL).

8417: Five-digit Spanish numbers station with female announcer 0920, bearing was 134 degrees. (Ron Ricketts, TX).

8441: "UMA7 UMA7 UMA7 DE AME3 AME3 AME3 13RG 13RG 13RG" repeated in CW 0310. (Mark Mercer, NJ). Another lodging of this month's big mystery station. (Editor).

8873: Five-character groups in modulated CW 0204, very strong—sounded like groundwave! (Ron Ricketts, TX) Modulated CW is tone keyed by sent. It can be easily worked without a BFO and is frequently used by CW numbers stations. (Editor).

9014: "Gumrunner" USAF tactical call heard in SSB 2001. (David Hardy, VA).

9078: Five-digit Spanish numbers station with female announcer 1131, weak signal (Dave Bush, OH) Same heard at 0014. (David Hardy, VA) Similar heard on 9075 kHz at 0000. Complete message repeated at 0121.5. (Larry Gunther, NE).

9326: Five-letter groups in English read by female 2245, was in SSB. (George Primavera, NJ).

10780: AF7E7, Cape Canaveral, FL, in communication with "Agar 25" (tracking and ranging aircraft) the day before a Space Shuttle launch. They also tried 9132 and 9637 kHz. (Tom Landwardo, NY).

11152: Coded traffic in CW 2015, mixed numbers and letters: only digits 5, 6, and used letters J, K, O, and P were not used. Off at 2207 with no sign off. (Robert Margolis, IL).

11493: "BRAXDABXENET" repeated in CW several times 2338. (Robert Margolis, IL).

11532: Five-digit Spanish numbers station with female announcer 2315, was in SSB. (Robert Margolis, IL). Similar station in AM 1430, bearing was 94 degrees. (Ron Ricketts, TX) Later noted at 2339 AM in parallel to 9074 kHz, bearing this time was 126 degrees! (Ron Ricketts, TX) So apparently numbers station of different transmitter sites use same/similar frequencies. Or is this a portable/mobile transmitter of some sort, as a ship? (Editor).

12848: HLO, Seoul, South Korea, QSO marker in CW 2015. (Gary Linnoff, WA).

13400: Five-digit Spanish numbers station with female announcer 2134. (Robert Margolis, IL).

13412: RVKUMULIK" repeated in CW 1759. (Robert Margolis, IL).

15350: "RMU NT" repeated in CW for one minute 1903, followed by two five-letter groups. (Robert Margolis, IL).

14411: Four-character CW groups 0320, only possible identification was "AGH" sent twice in middle of transmission. (Michael Hanna, NY).

14546: Four-digit Spanish numbers station with female announcer 2109, bearing was logged at 79 degrees. (Ron Ricketts, TX).

15030: Station in Spanish apparently broadcasting in 1910 loud signal and Chicago mentioned several times. The calling CQ was closest/far of four read by a woman. At the conclusion, the station transmitter was turned off and on for the next ten minutes. (Robert Margolis, IL).

15045: "Skybldg" broadcast in SSB and 2200. (Paul LeVinus, NY) These are coded messages to SAC bombers aloft. (Editor).

15650: Five-letter groups in RTTY 1224. (Robert Margolis, IL).

170485: WWD, La Jolla, CA, in SSB 1654 working ship at sea. (Robert Margolis, IL).

22313: CWJ, Cerrito, Uruguay, QSO marker in CW 2314. (Gary Bledsoe, FL).

22387: JCT, Choshi, Japan, CJ marker in CW 2237. (Gary Bledsoe, FL).

22390: FUF, Fort-de-France, Martinique. V marker in CW 1433. (Gary Bledsoe, FL).

22399: JCT, Choshi, Japan, V-CQ marker in CW 2320. (Gary Bledsoe, FL).

22408: FUC, Fort-de-France, Martinique. V marker in CW 2320. (Gary Bledsoe, FL).

22417: "ICAO" marker in CW 2320. (Gary Bledsoe, FL).

22440: QRM, Pointe-a-Pitre, Martinique. V marker in CW 2320. (Gary Bledsoe, FL).

22463: LRC, Great Britain, CW marker in CW 2315. (Gary Bledsoe, FL).

22464: LRC, Great Britain, CW marker in CW 2315. (Gary Bledsoe, FL).

22443: YUR, Rijeka, Yugoslavia, V marker in CW 1339. (Gary Bledsoe, FL).

22534: ZB, Australia, NZ marker, QSO marker in CW 1347. (Gary Bledsoe, FL).

22545: FUM, Papewte, Tahiti, V marker in CW 2301. (Gary Bledsoe, FL).

22567: HEC, Berne, Switzerland, "HEC QRV" marker repeated in CW 1554. (Gary Bledsoe, FL).

PC
Quieting Your Cordless – Those Add-On Kits Work!

The new 46 MHz/49 MHz cordless telephones are still a couple of months away, and there may be many of you who presently own a 1.7 MHz/49 MHz cordless telephone and are quite pleased with its operation. However, you may be only partially pleased with its operation, because sometimes it works and sometimes it doesn’t.

Let’s look at those times it doesn’t work to see what might be causing all of the interference on your 1.7 MHz/49 MHz set-up.

Most of the racket occurs on the cordless handset. As you walk around your house or office, anything and everything seems to interrupt reception. However, the person on the other end of the circuit hears almost no interference. This is because you are trying to receive signals off of the AC power lines with your cordless handset. The 49 MHz talk-back link is usually interference-free.

What creates interference on the AC power lines to your cordless handset? Here’s just a partial list of the worst offenders:

- Fluorescent light “chopper” circuits
- Lamp dimmer circuits
- Office and home computers
- Electronic calculators and automatic dialers
- Refrigerators, air conditioners, and fans
- Electric razors, mixers, and food processors
- Automotive battery chargers
- Power tools

All of these devices just mentioned generate electromagnetic pulses that are fed back into your AC power lines. If your cordless base transponder is plugged into the same AC power feed as these devices, chances are the interference will be transferred into your 1.7 MHz link. Remember, this half of your cordless telephone set-up uses your AC power lines as its antenna.

One way to easily overcome this problem is to plug your base transponder into a receptacle that is the immediate area where you plan to use your cordless phone. This gives you maximum field strength to the transmitted signal that will help mask out the weaker static on the line. If you usually use your cordless telephone while in the garage, put the transponder in the garage. Although you may have to run some new telephone lines to your new set-up, you’ll generally achieve a quieter connection.

If you work in the garage but your transponder is 300 feet away at the other end of the house, chances are the reception will be noisy. Your cordless handset is picking up the local noises rather than the distant telephone signal. You can witness this yourself, just walk toward your base transponder and you’ll hear the reception improve.

While modifying your cordless telephone base transponder may or may not be legal, many manufacturers have long-wire antenna kits that get you away from the AC power lines. This generally works well because you are now isolating your base transponder transmitting system from your house wiring.

Another type of interference is encountered when there is another cordless telephone on the same frequency. Does your handset now and then give a quick squawk or two with no one on the line? If this is the case, chances are you are encountering interference from another system on the same frequency. Pushing down your handset telescopic antenna won’t cure this problem. Within your handset is a separate antenna for receive—a loop stick antenna. You are simply picking up stray signals from other cordless phones.

If you can figure out whose phone it is, convince them to change the location of their transponder to minimize interference. Have them coil up their transponder power...
A new publication devoted to clandestine stations and programs, The Clandestine Confidential Newsletter is designed to keep you up to date on this intriguing aspect of short-wave listening and DXing.

C-C-N will be published six times a year, beginning with the February, 1984 issue. It will contain the latest frequency and schedule information, monitoring data, background information, addresses, and features on new and old stations.

C-C-N will serve as a continuing updater to the new book Clandestine Confidential, being published by Universal Electronics.

Subscriptions to C-C-N are $10.00 per year in North America, $13.00 overseas, payable in cash, check or money order.

To subscribe, send your remittance to: C-C-N, Gerry L. Dexter, RR4 Box 110, Lake Geneva, WI 53147, U.S.A.

cord in a tight circle to minimize long-distance radiation. Remember, you are picking up their signals on a common AC power line. When all else fails with same-channel interference, consider changing channels.

If you find that the party on the telephone is hearing two conversations, you can sometimes minimize this by lowering the base transponder telescopic whip. This will decrease the amount of range from a distant handset while probably not significantly decreasing the reception range to your nearby handset. Sometimes moving your own base transponder to a new AC outlet and phone jack will help.

The best thing that you can do to help minimize interference is to experiment with new locations of your base transponder or homemade antenna systems. Be careful when modifying your base transponder transmitted signal because there are high voltages where it's now connected. If you do go for one of those new long-wire antenna kits, make sure your transponder is turned off before making the modification. Always be sure to use insulated wire, too. No sense burning down your house for just a little extra range.

When all else fails, sell your present 1.7 MHz/49 MHz system to a neighbor you don't like and buy yourself one of the new 46 MHz/49 MHz systems that don't use the AC power lines as an antenna. Here you'll find the quiet reception that you really want while placing and receiving cordless telephone calls.

USA-CA

Order one or two today and start collecting counties for one of amateur radio's most prized awards, USA-CA.

$1.25

CIRCLE 72 ON READER SERVICE CARD

THE MONITORING MAGAZINE

July 1984 / POPULAR COMMUNICATIONS / 49

www.americanradiohistory.com
Radar Reflections

More Radar Detectors Disappearing

It looks like radar detectors have been a hot item in Burlington, Vermont. More than 50 detectors have been stolen from cars there and police expect the count to rise before they get a handle on the thefts, Burlington police Lt. James Scott said.

Two juveniles were apprehended for stealing radar detectors, but the thefts have continued, Scott remarked.

If the car doors are locked, thieves break into the cars by using a screwdriver to pry back a car window until it shatters, he elaborated. They then snip a wire and remove the electronic device.

Scott said many people are doing the stealing and police do not have any leads on the thieves.

Grand Ridge, Illinois Retains Its Reputation For Trapping Speeders

Grand Ridge lived up to its reputation as a speed trap last year. Relative to its population, Grand Ridge took in more than twice as much money in traffic ticket payments than any other city in LaSalle County in 1983, statistics released by LaSalle County Circuit Clerk Dale Stockley show.

Traffic violation payments equal to $43 each for each of the village's 684 people were collected by the municipal police force from Dec. 1, 1982 through Nov. 30, 1983. That translates into a figure of $29,479 for traffic violations.

After Grand Ridge, the next ten cities and their respective per capita dollar figures are: Cedar Point, $43; Tonica, $10; Utica, $8; Shedd, $7; Marseilles, $6; Mendota, $6; Peru, $4; La Salle, $4; Leland, $4; and Ottawa, $4.

Grand Ridge Police Department head Sgt. Harold Carroll said his force writes a heavy volume of tickets because so many people refuse to recognize Grand Ridge as a town and the speed zone as legitimate.

Carroll said he doesn't mind that reputation: "in fact, he rather enjoys it. "The reputation helps us slow the traffic down," he noted.

Virginia Troopers Adopt Sporty Look

State police call them "non-conventional" patrol cars, but motorists stopped for speeding or other violations may have more colorful terms for the sporty, unmarked cars used by some troopers.

Trooper E. R. Slayton, who has patrolled in a sleek white Mustang with black trim, said the reaction of drivers he has stopped is "mosty shock."

"You've had a few say this is getting awful sneaky," he said. "You catch people unaware. In a police car, as soon as you go around them, they start obeying the traffic laws."

This year, state police troopers are driving Ford Mustang GTs and Chevrolet Camaro Sport Coupes.

Each of the state's seven police districts has one of the sporty cars, and they are moved about the state frequently so drivers won't learn to spot them.

While the state police's 1,036 other petrol vehicles handle a variety of duties, the sport cars stick to cruising the highways for traffic violators seven days a week.

State police have been patrolling in unmarked cars since 1957. In past years, the standard unmarked car was a drab black economy sedan.

Marked and standard unmarked patrol cars rely on radar to trap speeders, but the sports cars just follow a motorist and pace the speed.

Delaware Town Caught In Its Own Speed Trap

Fenwick Island, Delaware, is one of those municipalities you might drive right on through without even realizing it. Until it's too late. Too late is when the wail of a police siren announces you've just become another victim of that bane of interstate motorists; a small town speed trap.

At the southeastern tip of Delaware, Fenwick Island has profited nicely from its location along which is a shortcut to Ocean City, Maryland.

Hundreds of drivers get nailed that way every summer, and the town is so confident of the bounty that $40,000 in anticipated revenue from traffic fines is built into its annual budget of $272,000.

But because one victim finally decided to fight back, Fenwick Island is experiencing what it's like to get nailed.

Abraham Korotki, an attorney from Towsion, Maryland, was on his way to some fun in the sun at Ocean City when he got nailed. Not only was he not speeding, Korotki protested, but he was already in Maryland, not Delaware, when the Fenwick Island patrol car stopped him. Worse yet, he said, the policeman pointed a gun at his passenger.

That was in 1976, but Korotki was a persistent fighter. Rung by rung, he argued his way up the judicial ladder until a federal jury recently awarded him $100,000 in punitive damages, plus $10,000 for legal fees.

Now Fenwick Island is seeking a reversal, with attorney James Phillips claiming the amount of the judgment "may well exceed the town's assets."

"There's not much here," says Phillips. "Just a small building that houses the town hall, the alderman's court and the police department, plus a couple of patrol cars."

But Korotki rejects the notion that the vindication he spent almost eight years fighting for would mean financial ruin for the town. "Fenwick Island is one of the richest communities around," Korotki argues. "The land values of those ocean-front properties are skyrocketing. The last house sold there just went for $500,000, and there's not a citizen of that town who isn't sitting on at least $100,000 worth of real estate."

Nor does Korotki buy the legal argument, currently before a federal judge, that a municipality like Fenwick Island can not be held liable for punitive damages in a civil case.
because that would place an unfair burden on its taxpayers.

"What’s unfair about it?” he asked. "They voted in the mayor, the city council and those so-called aldermen who decide the fate of out-of-state motorists.

"They all new it was a racket when they were benefiting from it. Why should they be let off the hook now?"

Korotki pointed out that his long legal fight involved 15 court appearances, and that his case was upheld at every stage of the judicial process until it reached the federal jury, which awarded him the damages.

"The idea that a judge can modify, reduce or take away what the jury awarded is wrong,” he said, "because it undermines the very purpose of trial by peers."

But if the federal judge does set aside the award, Korotki says he’s prepared to carry his fight to the Supreme Court.

"I’ve already run the length of the football field with this thing," he noted. "To take it to the Supreme Court would just be another five years."

Call For “Fair Play” Fails In Ticket Case

The county executive wasn’t in court for speeding recently, but Erin McGee was, and her only defense was an appeal for fair play as she pointed out the discrepancies in the way police handled her case and his. It didn’t get her case dismissed, but it did help reduce the fine.

Ms. McGee of Crofton, Maryland was stopped and ticketed for traveling 22 mph over the speed limit. A few hours later, County Executive O. James Lighthizer was stopped at the same radar trap by the same officer and received only a warning, although he was clocked at 26 mph over the speed limit.

Lighthizer’s warning didn’t carry a fine; McGee’s ticket carried a maximum $50 fine.

District Court Judge Donald M. Lownim reduced her fine to $15 and one point on her license.

While Ms. McGee was relieved at paying only $15, she still maintains that justice wasn’t dished out equally to the county executive.

"It’s better than $50,” she said, “but I still think it’s unfair—because he got off.”

Fuzzbuster® Bait Lead To Fuzz Bust!

The Covington, Kentucky, police went fishing recently for thieves and hooked three suspects. The bait was a radar detector, namely a Fuzzbuster®.

For several weeks, Covington has been suffering a rash of radar detector thefts from cars. To catch the perpetrators, police have been parking an unmarked detective car with a radar detector in it, then watching and waiting.

"Three people broke out the window in our nice new car,” Lt. Tom Henry said. Police arrested three Covington men and charged each with receiving stolen property over $100 and theft over $100, both felonies. The men also were charged with criminal mischief, a misdemeanor.

Henry said the baited car technique is one that doesn’t work without a little luck. "Everything has to jell,” he said. "You have to have it there. The people that want it have to be there. The weather has to be good. Traffic has to be down. There’s a lot of ifs."

Chief Orders Radar Units Out Of Cars To Avoid “Speed Trap” Image

"I do not want Williamson, West Virginia to get a bad name or a reputation for being a speed trap for motorists.” Williamson Police Chief W.C. "Jolly" Smith said that was the reason "I ordered radar units removed” from the city’s police cruisers.

The police chief said he had received some complaints from Williamson merchants that the issuance of speeding tickets was not helping the business segment of the city.

"Some of these police officers may be overdoing it a bit in their issuing of speeding tickets,” Smith said. His order to pull the radar from cruisers came following an incident in which political candidate Ethel Pollis was clocked at 37 mph in a 25 mph zone.

The radar units were placed atop some filing cabinets in the police station but Smith gave assurances that the radar would be used on weekends to spot check vehicles.

After receiving the ticket, Ms. Pollis denied speeding and said, "I wonder if I’m being harassed?"

Chief Smith denied any harassment. But the chief admitted he was concerned that Williamson might acquire a reputation as a speed trap.

Dane Floors Judge With Speeding Excuse

A Danish visitor whose car was clocked by Minnesota State Patrol radar at 132 miles per hour told the court that he was used to driving on the autobahns of Europe, where there is no speed limit.

Hans Erik Ribberholt also explained through an interpreter that he didn’t stop because fog was so heavy he was unaware that his car was being pursued.

Trooper Keith Williamson said the 30 mile chase on Interstate 94 began after another patrolman’s radar showed Ribberholt’s Mercedes Benz was traveling over 90 miles per hour. The trooper was unsuccessful in overtaking the car, so he radioed for help. Williamson got into the chase and clocked the Ribberholt car at 132 mph.

In court, the Dane was asked if he had floored the accelerator. He said he hadn’t added that the car was capable of about 145 mph. Ribberholt said he also owns a Ferrari, which has been clocked in Europe at as high as 160 mph.

Judge Paul Ballard listened to Ribberholt’s explanation and explained to the man that he had exceeded the U.S. legal speed limit of 55 mph by 77 mph. The judge then proceeded to fine Ribberholt $330.
LISTENING POST
WHAT'S HAPPENING: INTERNATIONAL SHORTWAVE BROADCASTING BANDS

We are, forgive the expression, “jammed” with letters and reports this month, so it is almost a good thing that we don’t have a lot of new station activity to pass on this time.

We can tell you, however, that the new Radio France International relay station is on the air from French Guiana. Currently only one of the transmitters is in use and is being heard quite regularly and very strong on 15.180 from around 2200 to 0100 GMT. Broadcasts are to Latin America in French, Spanish, and Portuguese but no identifications specifying French Guiana have been heard here. Thus you may have to guess at whether you have the station based on schedule, strength, and language used. Reception reports go to Radio France International, B.P. 9516, Paris Cedex 16, France.

Get set for ANARCON-84, this year’s convention of the Association of North American Radio Clubs. It’ll be held from July 20-22 at the Ramada Renaissance Hotel in Toronto, Canada. The event includes exhibits, a wine and cheese reception, numerous talks by well known DXers (including one on “Planning a DXpedition”), a seminar by Bob Grove of Grove Enterprises, the famous Handicapped Aid Program and tours of Station CRFX and Toronto Harbor, and the traditional Saturday night banquet and International Broadcaster’s Forum featuring a number of international broadcasting stars.

It’s three full days of fun and interesting activities and we strongly recommend you attend if at all possible. For a convention kit and registration form write to The ANARC Convention Committee, Box 232, Postal Station “Z,” Toronto, Ontario M5N 224 Canada.

Sally MacKenzie informs us of another meeting of Southern California Area DXers (SCADS). This meeting is from 9 a.m. to 4 p.m. July 21 at the Village View School in Huntington Beach, California. Many international broadcasters attending the Summer Olympics will be there, as will DXers from near and far. For more information, send an SASE to SCADS, 3809 Rose Avenue, Long Beach, CA 90807-4334.

There’s a new club getting organized. It’s the New York DX Association and it’s a bit unusual in that its focus is to specialize in the problem of DXing from a large city, i.e. reception, antenna and landlord problems. Sample bulletins may be had for 25 cents or two IRCs from The New York DX Association, 4103 Fort Hamilton Parkway, Brooklyn, NY 11219, attention Greg Baker. Questions about the club can be phoned to (212) 853-1429 between 2300-0200 GMT. And, a DX Hotline can be reached at (212) 981-4866.

Stephen C. Behrendt of Lincoln, Nebraska wonders about QSLs from Radio Clarin in the Dominican Republic. So do a lot of people. Stephen. Some seem to get replies with no trouble while others must wait literally years. Like so many other such cases we can’t suggest much more than just “keep trying.” It might help to send your report to the attention of the station’s star announcer, Rudy Espinal, but we don’t guarantee anything! As for the noise problem you mention, it sounds like power line noise so you might want to check with your local electric utility.

R. E. Larson, Senior, in Hector, Minnesota notes that shortwave listening is the cure for that wintertime condition known as cabin fever. R. E. uses an FRG-7700 and, in addition to SWBC, monitors the hams, river, air, and cruise ship traffic.

Another FRG-7700 is in the shack of Thomas Daly of Panama, New York who was active in the mid-1960s and is now back at the dials again.

Stephen Clement of Sonora, California wants the address of SPEEDX. SPEEDX can be reached at P.O. Box E, Lake Elsinore, California 92330.

Gerald R. Brookman of Kenai, Alaska uses a Kenwood R-600 with a 75 foot long wire. He wonders if anyone can identify a station he hears on 2,850 between 0800 and 0900, believed to be in Russian. Gerald would be happy to send a cassette of his reception to anyone who’d like to take a crack at getting an ID. His address is P.O. Box 4663, Kenai, Alaska 99611.

This fabulous shack belongs to John R. Tow in Pinson, Alabama.
Listening Reports

Here’s what’s on. All times are GMT.

Albania Radio Tirane, 7.065 at 0003 with news by woman. (Wright, MA) 7.120 at 0230 in English with news at 0236. (McDonough, PA) 7.065 at 0115 in English with politics and music. (Helfin, VA)

Antigua Deutsche Welle Radio in Spanish at 0300 to Latin America at 11.785. Also in English to North America on 9.540 (Ethnic, HI)

Australia Radio Australia on 11.910 at 0710, 11.790 at 1500. (Noak, NY) 6.115 at 1130-1145 believed teamed to Asia. (Patrick, PA)

ABC Brisbane on 4.920 with domestic service at 0830. (Brock, WI)

VNG time station at 0945-0960 on 4.500. (Bonn, WI)

Austria Austrian Radio on 9.545 at 0126 with music and “Report from Austria” at 0345 and English service sign off. (Daly, NY)

Belgium Brussels Calling, BRT on 5.910 at 0022 with news by man. (Wright, MA) At 0030 with “Radio World”. (Paszkiewicz, WI)

Benin Contonou, 4.870 all French with news of West Africa until 0610 then into music. (Bonn, WI)

Botswana Radio Botswana, 4.965 on 0355 sign on with interval signal, anthem, man with frequency, local and religious program. (Hickerson, AR)

Brazil Radio Brazil on 15.290 to 0230 on English to North America. (Patrick, PA)

Radio Inconfidencia, Belo Horizonte, 15.190 with a variety of music from samba to soul, only occasional talk in Portuguese. Local evenings. (Eaton, AL)

Bulgaria Radio Sofia, 11.720 at 0234 in Spanish. (Wight, MA) 9.660 at 2130. (Simons, OH)

Cameroun Radio National, Yaounde, 1900 on 7.945 in French with old French music, ID, news in French. (Wood, Saudi Arabia) Occasionally in the clear in English from 2045 to 2115 with French around 2120. (Tow, AL)

Canada Radio Canada International, at 1324 on 9.575 in French. (Patrick, PA) 9.560 in English at 0032. (Wight, PA)

Chile Radio Nacional on 15.150 fading out by around 0230. Usually a lot of local pop music but occasional has “futbol.” (Eaton, AL) 15.410 and 7.570 with some 50’s and 60’s rock music from 0100 to 0200 in Spanish. (Tow, AL)

China Radio Beijing in Hindi at 1545 on 7.620, at 1600 on 4.875 and 7.570 with some 50’s and 60’s rock music from 0100 to 0200 in Spanish. (Wight, PA)

Radio Aurora in English at 0000, 8.160, 10.595. (Collins, AR)

Republic of China / Taiwan Voice of Free China via WYFP on 5.965 or at 0210 with music of China. Interference from South Africa and Romania. (Wight, MA) At 0337 in Chinese. (Daly, NY) Good at 0200 on 15.225 (McDonough, PA)

Clandestine Voice of Sicily, CID, 11.100 with light pop music around 1900. (Eaton, AL) Varies at 11.101.5 and there’s considerable confusion at present as to which service this is. (Editor)

Bahrain Radio, 9.584 at 0400 in Turkish with interval signal and sign on. into news. (Wood, Saudi Arabia)

Voice of the Islamic Revolution in Iraq, from Iran, on 7.230 at 1800 in Arabic. Frequency usually carries Voice of Islamic Republic of Saudi Arabia, in Russian at 1700 on 7.700. (Wood, Saudi Arabia) in English at 0000, 8.160, 10.595. (Collins, AR)

Voice of the Broad Masses of Eirena on 6.305 at 1545 in Eirena with interviews. Free of jamming. (Wood, Saudi Arabia)

Voice of the Sudanese Popular Revolution on 17.940 at 1825-1655 in Arabic. (Hickerson, AR)

Voice of the Libyan People, heard at 11.370 at 1850-1915 in Arabic, with identification at 1900. (Hickerson, AR)

Colombia Le Voz de Hula, Neville, heard at 0830. (Duckworth, CO) Radio Impacto, Costa Rica usually here but occasionally would be unaware of any Nicaraguan here which might cause interference as you mention. (Editor)

Costa Rica TICF on 5.055 at 0315 to 0355 sign off with national anthem. There was also some religious talk and music. (Wight, MA)

Costa Rica Radio Havana on 11.760 at 0510 promoting the Sandinistas. (Wight, MA) On 0590 at 0230 with world news, AR (Daly, NY)

Czechoslovakia Radio Prague. English talk on U.S. interference in Nicaraguan internal affairs at 0540 on

Radio Korea

The attractive QSL of Radio Korea, sent in by Jerry Collins of North Pole, Alaska.

6.055, and at 0100 on 5.930 with ID, schedule in English. (Helfin, VA)

Ecuador HCB on 21.477, at 21.455 with “DX Party Line” on a Monday. (Freeman, FL) 7.945 at 0400 with ID and “Look at Latin America.” (Daly, NY) 6.130 with DX Party Line at 0945. (Helfin, VA)

CRE Radiodifusora del Ecuador from Guayaquil on 4.655 in Spanish at 0300 with music, news, interviews. News at 0300 sponsored by Banco Continental. (Behrendt, NE)

Egypt Radio Cairo on 9.475 at 0250 with “Mohamed, Prophet of Islam” to 0300, then Arabic music, news headlines at 0315. English sign off at 0250. (Daly, NY) At 0230 with news in English. (Helfin, VA)

England BBC on 5.975 at 0125 with news items. 9.590 at 2354 with program on recent WARC Conference. (Wright, MA) On 3.915 at 0715. (Bonn, WI)

Falkland Islands Falkland Islands Broadcasting Service with British Top 40 program from 0245 to 0400 sign on off at 2380. (Tow, AL)

Finland Radio Finland on 17.800 with “Sunday Best” at 13.00-13.30, 15.00-15.30, 19.30-19.50. (Behrendt, NE) 1430 on 15.400. (Simons, OH)

France Radio France International at 0415 on 9.545 with news in English. (Helfin, VA)

French Guiana Radio France International testing its new relay station in different languages on 9.790 and 15.180 from 2200 to 2300, closing in French. (Tow, AL)

Greece The Voice of Greece on 9.420 and 9.865 at 0310 in Greek with local music. (Daly, NY)

Greenland Gronlands Radio, 3.999 at 1024 to 1055 with country western music, woman announcer, interval signal, identification by man, into pop music. (Hickerson, AR)

Guyana Guyana Broadcasting Corporation, 5.950 at 1000 with news in English. (Helfin, VA)

Hungary Radio Budapest, 9.520 at 0300 with English to North America after sign on. (Daly, NY)

India All India Radio, Madras station listed. 1300 on 7.235 in South Indian language. ID, film music, commercials. (Wood, Saudi Arabia) AR Delhi on 10.335 at 1520 to 1540 in English with time pip and ID at 1530. (Hickerson, AR) On 15.320 from 1000 to 1100 with news, features, Indian music. (Collins, AR)

International Waters Voice of Peace, 6.240 at 0305 to 0340 with pop music, English ID, local time as 5.90. announced medium wave parallel at 1540 kHz. (Hickerson, AR)

Iraq Radio Baghdad, 9.610 at 2215 in English with Arabic music, address, schedule, and sign off. (Paszkiewicz, WI)

Israel Radio Haifa, 15.075 on 15.400 Arabic with identification, choral patriotic music. (Wood, Saudi Arabia)

Israel Kol Israel, 7.410 at 0230 with Spanish to Latin America. (Daly, NY) 7.410, 9.815, and 11.655 at 0000, 0100, and 0200. (Simons, OH) Home service in presumed Hebrew after 0500 on 11.100. (Eaton, AL)

Ivory Coast Abidjan in French on 4.940 at 0645. (Bonn, WI)

Japan NISB at 0906 on 6.055, at 1138 on 5.950. (Duckworth, OH)

Far East Network with the “Charlie Tuna Show” at 0300 on 15.260 (Unrath, HI)

Radio Japan on 17.400 in English, 0200-0230, then Spanish. (Collins, AK)

Kenya Voice of Kenya on 4.934 at 0400 in Swahili, parallel to 4.915. (Wood, Saudi Arabia)

THE MONITORING MAGAZINE

July 1984 / POPULAR COMMUNICATIONS / 53
Mike Garrison of El Cajon, California with son Dave and his Hammarlund HQ-145 and Kenwood R-2000 receivers.

Lightning Protectors

Transi-Trap™

R-T, HV

Mark II Series

(Also available with **N** type connectors)

Ceramic gas tube protectors are super-fast-firing, feature unique Arc-Plug™ cartridge and isolated ground. Sooh impedance 200-watt models are most sensitive, best for **RCVR's** and **XVL's**. Models R-T and HV offer special low loss performance through 500 MHz.

<table>
<thead>
<tr>
<th>Model</th>
<th>MACC</th>
<th>MACC Surge Protected</th>
<th>Master Control Console</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT (200 W)</td>
<td>$19.95</td>
<td>$24.95</td>
<td>To order direct from Alpha Delta dealer. For order direct in U.S. MasterCard and VISA accepted.</td>
</tr>
<tr>
<td>HT (200 W)</td>
<td>$24.95</td>
<td>$29.95</td>
<td>To order direct from Alpha Delta dealer. For order direct in U.S. MasterCard and VISA accepted.</td>
</tr>
<tr>
<td>HV (2 kW)</td>
<td>$32.95</td>
<td>$37.95</td>
<td>To order direct from Alpha Delta dealer. For order direct in U.S. MasterCard and VISA accepted.</td>
</tr>
</tbody>
</table>

For Antenna and AC Lines

Model MACC Master AC Control Console

($79.95)

125 VAC, 15 A, 1875 watts total rating. Rugged 3-stage 2000 A lightning clipper, tested to IEEE pulse standards.
DON'T MISS OUT ON A SINGLE ISSUE OF

Everyone interested in amateur radio needs his own copy of CQ.
To read, to save, to refer to. Order your subscription now.

Fill out the coupon below. (Please print)

CQ
The Radio Amateur's Journal
76 North Broadway, Hicksville, NY 11801

Please send me CQ for □ Life □ 3 Years □ 2 Years □ 1 Year
This is a □ Renewal □ New Subscription Starting With _________ Issue.

Rates (check one)

<table>
<thead>
<tr>
<th>USA</th>
<th>VE/XE</th>
<th>Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 3 Years</td>
<td>□ $42</td>
<td>□ $48</td>
</tr>
<tr>
<td>□ 2 Years</td>
<td>□ $29</td>
<td>□ $33</td>
</tr>
<tr>
<td>□ 1 Year</td>
<td>□ $16</td>
<td>□ $18</td>
</tr>
</tbody>
</table>

Paid by: □ Check □ Money Order
□ VISA □ MasterCard

Account Number

Name

Street

City State or Country Zip

Sincere thanks and a tip of the hat to:
John R. Tow, Pinson, Alabama; Gary Hickerson, Ft. Smith, Arkansas; Dick Eaton, Mulga, Alabama; George W. Hefflin, Manassas, Virginia; Dr. Richard E. Wood, Abha, Saudi Arabia; Jerry Collins, North Pole, Alaska; Donald R. Unruh, Ewa Beach, Hawaii; Tom Lima, Sr., Saugus, Massachusetts; John Higl, Anchorage, Alaska; Daryl E. Duckworth, Loveland, Colorado; Joe Simons, Sherwood, Ohio; Thomas Daly, Parnona, New York; Peter Bonk, Madison, Wisconsin; Sheryl Paszkiewicz, Manitowoc, Wisconsin; Jim Lonsdale, Phoenix, Arizona; Joe Wright, Boston, Massachusetts; Pat McDonough, Pittsburgh, Pennsylvania; Randy Noak, Crownpoint, Indiana; Rick Freeman, Orlando, Florida; Stephen Behrendt, Lincoln, Nebraska; Richard Pastrick, Conway, Pennsylvania.

See you next month. Till then, good listening!
Free Tool And Instrument Catalog

Contact East is offering a free 1984 electronic tool and test instrument catalog, featuring over 5,000 quality technical products for assembling, testing, and repairing electronic equipment. This is an excellent buying guide for engineers, technicians, and researchers.

Products include precision hand tools, test instruments, tool kits, soldering supplies, plus a new, full selection of static control products. All products are fully illustrated with photographs, detailed descriptions, and pricing to allow for easy ordering by phone or mail. Most orders are shipped within 24 hours and carry a 100% satisfaction guarantee.

The Contact East 1984 Catalog is available free from Contact East, 7 Cypress Drive, PO Box 160, Burlington, MA 01803 (617) 272-5051.

Programmable 10-Channel Scanner

Regency Electronics, Inc., (Indianapolis) now offers a 10-channel programmable scanner with advanced features— including a little extra help during programming. The Regency Z10 is available for $229.95 (suggest U.S. resale) at participating Regency Electronics dealers.

The Regency Z10 covers six complete VHF and UHF frequency bands for access to thousands of police, fire, public service, business, commercial, and amateur radio frequencies and channels. Selected frequencies from any band are easy to program into the scanner's memory. The Z10 can scan the frequencies in its memory or search the bands for whoever happens to be there.

The Z10 can scan its 10 channels in 2/3 of a second. Searching its three VHF bands, it can cover 1 MHz (200 frequencies in 5 kHz increments) in about 17 seconds; on its three UHF bands, it can search 1 MHz (80 channels in 12.5 kHz increments) in about 6 seconds. An automatic priority control checks any selected channel every two seconds, and switches instantly if it's active.

Programming the Regency Z10 is made easier by a series of plain-language messages that appear on its display. These prompts identify the action that's in progress or required next. Individual channels are programmed by using the numeric keypad to enter a desired frequency, or by identifying a desired frequency when searching. A special circuit saves these entries in memory for up to a week (should power fail or if the unit is transported or temporarily stored). It does so without batteries (the usual method of memory protection) to avoid problems associated with battery failure from neglect.

The Z10 can pick up most transmissions in the low VHF (30-50 MHz), VHF two-meter amateur (144-148 MHz), high VHF (148-174 MHz), UHF 3/4-meter amateur (440-450 MHz), standard UHF (450-470 MHz) and extended UHF (470-512 MHz) bands. Its telescoping antenna is electronically optimized for each band, and an antenna jack is provided for an optional external antenna.

A channel lockout excludes selected channels from being scanned, a useful feature when interest is in monitoring some limited number of channels or when a selected channel becomes only occasionally of interest. Scanners in newsrooms, for example, often exclude fire department tactical channels except during major fires.

A scan delay feature helps keep on top both sides of a conversation on channels where calls are usually met by replies. With scan delay selected, the Z10 waits for about two seconds at the end of a transmission (in case there's a reply) before it resumes scanning; without scan delay, scanning resumes in about six tenths of a second.

When searching, the Z10 delays four seconds after a transmission before resuming its search. This not only allows time to listen for a reply, it also provides enough time to select the frequency for programming into one of the ten scanner channel memories—or simply to note the frequency on paper.

The human factors in the design of the Regency Z10 are quite apparent. Its easily-readable (vacuum fluorescent) display boasts big digits and a choice of two brightness levels. Sliding volume and squelch controls are not only easy to position accurately, they're also easy to read with a glance. Its audio amplifier delivers a full 1 Watt at less than 10% distortion, and a jack for an external speaker is provided. The keyboard and display are each angled for easy legibility.

Dual power supplies are built-in to permit plug-in AC operation at home or DC operation in a car or other vehicle (where not prohibited by law).

The Regency Z10 is UL listed and FCC certified (Part 15, Subpart C). It measures 10 3/4 inches wide by 2 7/8 inches high by 8 3/8 inches deep.

For additional information, contact Regency Electronics, Inc., 7707 Records St., Indianapolis, IN 46226-9986, or circle number 102 on the reader service card.

Two-Way Equipment

An entirely new line of digital radios for business, regional airline, and military aircraft, Collins Pro Line II, has been introduced by the Collins General Aviation Division of Rockwell International.

New Collins Pro Line II products introduced include the VHF-21/22 VHF Comms, VIR-32 Nav, DME-41/42 DME's, plus CTL-22 Comm Control, CTL-32 Nav Control, IND-42 DME Indicator, CTL-62ADF Control, and CTL-92 Transponder Control.

This advanced line brings far more information than ever before possible to the cockpit, through extensive use of microprocessors and advanced digital technology. New Pro Line II features include greatly increased frequency storage, display of DME station identifier, three-channel DME, frequency confirmation, and comprehensive cockpit self-test.
The Collins CTL-22 Comm Control offers six-frequency memory storage capability, in addition to the active and preset frequencies. Remote selection of storage frequencies and transfer of preset to active are also available. Innovative design of the CTL-22 allows tuning of 50 kHz channels without going through the 25 kHz channels, with each 25 kHz channel easily available whenever desired.

Like the Pro Line II comm control, the CTL-32 Nav Control provides active and preset frequency display. Four additional pilot-selectable frequencies are also provided in memory.

The CTL-62 ADF Control provides variable rate, two-knob tuning for pilot convenience. This new control also offers four memory-stored frequencies.

Designed for VHF airborne AM voice communications, the Pro Line II VHF-21/22 Comm Transceivers are available with a frequency range of 118 000 to 135 975 (extendable to 136 975 when authorized), or 118 000 to 151 975 MHz. The new VHF-21 will directly replace a Collins VHF-20, while the VHF-22 is recommended for installation where interchangeability is not required.

Collins Pro Line II comm controls operate either with the new CTL-22, or with conventional Pro Line controls. When installed with the new control, 11 wires between radio and control can be eliminated in a typical installation due to serial tuning.

Features of the new comms include frequency confirmation via digital feedback. A message is sent back to the electronic control to assure the pilot that the newly-selected frequency has been accepted by the radio. Advanced speech processing provides superior audio quality for receiving and transmitting. New capture effect squelch and automatic gain control provide excellent reception regardless of altitude or distance.

The Collins VIR-32 Nav Receiver provides all VOR/ILS functions, and can directly replace the current VIR-30A VHF Nav Receiver. A number of mount-strapping options are available to allow aircraft operators to use a single version of the VIR-32 for various applications. Special filtering for rotary wing aircraft is an installation option, for example, that allows installation of the same radio in mixed fleets.

The single-channel Collins DME-41 is a direct digital replacement for the current Pro Line DME-40. The new DME-42 offers exclusive three-channel capability for operator flexibility and navigation information capability. The new DME-42 also provides instant display of distance, ground speed, and time-to-station for any of the three DME stations. High reliability is possible through reduced parts count and new heat-dissipating package design. Digital design of both new DMEs also offers increased self-diagnostic capability. DME diagnostic information is displayed on the digital DME indicator.

For more information, contact Collins Div., Rockwell International, 400 Collins Rd., N.E., Cedar Rapids, IA 52498.

TEN-TEC Acquires Bassett HF/VHF Antenna Line

TEN-TEC, Inc., the amateur/commercial radio transceiver manufacturer of Sevierville, Tennessee, announced acquisition of the Bassett antenna line. The new TEN-TEC Antenna line includes both multiband fixed station and single band mobile antennas.

The fixed station trapped dipole antennas are offered in 13 models of two, three, four, and five band systems covering 10 through 75 meters. All models use helium filled traps and baluns, stainless steel hardware and "Copperweld" wire. Each model operates as a fundamental broadside dipole, band change is automatic, and no tuner is required to achieve VSWR of 1.5:1 or less. Power ratings are 2 KW PEP.

The single band mobile whip antennas feature helical inductors sealed in helium filled lower sections with stainless steel top whips. Models are available for all bands from 2 through 75 meters. Average weight is 6 oz., yet they remain vertical and resonant at all highway speeds and are impervious to weather. Power ratings are 750 watts PEP.

Accessories include a single-hole 1/2" fiberglass Mobile Deck Mount and a non-inductive 5-band switchable Mobile Matcher to match 3-30 MHz mobile antennas to 50 ohm coax. The Balun, which features a heli-um field high efficiency air core rated to 5 KW PEP, is also available separately, as are the helium traps for 30 meters.

The new acquisition also permits TEN-TEC to supply custom commercial mobile and fixed station antennas.

For complete information, write TEN-TEC, Inc., Sevierville, TN 37862, or circle number 104 on the reader service card.

The Clandestine Confidential Newsletter

A new publication devoted to clandestine stations and programs, The Clandestine Confidential Newsletter is designed to keep you up to date on this intriguing aspect of shortwave listening and DXing.

C-C-N will be published six times a year, beginning with the February, 1984 issue. It will contain the latest frequency and schedule information, monitoring data, background information, addresses, and features on new and old stations.

C-C-N will serve as a continuing update to the new book Clandestine Confidential, being published by Universal Electronics.

Subscriptions to C-C-N are $10.00 per year in North America, $13.00 overseas, payable in cash, check or money order.

To subscribe, send your remittance to:

C-C-N,
Gerry L. Dexter,
RR4 Box 110,
Lake Geneva, WI 53147, U.S.A.

POPULAR COMMUNICATIONS

Back Issues Available

At present we have copies of all of our back issues available, commencing with the first issue (September '82). These can be ordered by mail at $1.75 each September '82 through January '84; and $1.95 February '84 on from Popular Communications, 76 North Broadway, Hicksville, NY 11801. Be sure to specify which issues you want.

THE MONITORING MAGAZINE
July 1984 / POPULAR COMMUNICATIONS / 57
A recent book on RTTY crossed my desk—"RTTY Today" by Dave Ingram. "RTTY Today" is a comprehensive introduction to the fascinating hobby of RTTY. It covers the basics of the operating parameters and the concepts of RTTY, RTTY homebrew demodulators that can easily be built, detailed discussion of specific terminals, and finally a compiled guide to RTTY action on short-waves. The pictorials and photographs present on almost all pages adds a nice touch.

This book is highly recommended for the POP'COMM readers interested in and shopping for an RTTY system. In fact, most of the available RTTY gear is discussed, some briefly by a few paragraphs and others detailed over several pages. Microlog ATR6800, Hal DS 3100 ASR, Hal CT 220, Hal CWB 6850 portable system, Hal ARQ 1000 Amtor terminal, DGM SRT 3000 Send-Receive terminal, Info-Tech M600A, Kantronics mini reader, AEA MBA, Macrotronics terminal, MFJ 1224, and many other RTTY systems are outlined.

Amtor was recently approved (January, 1983) for amateur radio by the FCC and features RTTY character error detection and correction. Amtor is quite similar to the commercial Sitor system used by sea-going vessels to communicate error free (over 90%) with land based point-to-point stations. Using a constant ratio code having a 7-digit character always comprised of three zeros and four ones, errors can easily be detected by continually verifying this ratio.

Standard 170 Hz shifts are used. This means that a standard demodulator can be used but a code conversion must be made to recognize the constant ratio code instead of the "normal" Baudot or ASCII code. "RTTY Today" expands upon these basics. Chapter 8 guides the reader through checked frequencies used for commercial transmission. Keep in mind, however, that checked RTTY frequency lists today become obsolete tomorrow and the initial discouragement is due to the hobbyist attempting to receive RTTY from obsolete RTTY listings. For example, TASS transmission from Havana Cuba has stopped, but this listing is still present in "RTTY Today." It is still not known.

This is the HAL Teletreader, a very useful device for those who wish to explore a wide variety of RTTY formats.

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Mode</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>8140</td>
<td>100/425N</td>
<td>Groups of 5 digit numbers sent by Station WBZ-839 (0109)</td>
</tr>
<tr>
<td>9889</td>
<td>100/425R</td>
<td>KAWN SMNT50 W/Wx broadcast. 1st half partly coded and 2nd half totally coded. (2nd half consisted of 3 and 5 digit groups) (2000)</td>
</tr>
<tr>
<td>16440</td>
<td>100/850N</td>
<td>WBC-971 W/Coded and Uncoded Wx (2013)</td>
</tr>
<tr>
<td>14825</td>
<td>67/425N</td>
<td>ADN-39 (Berlin, GDR) W/World Nx in EE (2029)</td>
</tr>
<tr>
<td>16185</td>
<td>67/425N</td>
<td>AFP (Moscow, USSR) W/World Nx in EE (2043)</td>
</tr>
<tr>
<td>18090</td>
<td>67/425R</td>
<td>KAC RVRYRVYR KAC (Repeated) at 2055 into Coded 5 digit codes w/ some 4 and 6 digit codes built in (2051)</td>
</tr>
<tr>
<td>18550</td>
<td>100/425N</td>
<td>NBA - Balboa Naval Radio, Canal Zone W/DE NBA testing 1234567890 then RY's at 1639</td>
</tr>
<tr>
<td>18204</td>
<td>100/425N</td>
<td>APT - APT Repeated 6 times the "05" repeated several times. Repeated over and over at 1627</td>
</tr>
<tr>
<td>18763</td>
<td>100/425N</td>
<td>WBC748 W/Groups of 5-digit numbers and several groups of 4-digit letter groups at 1644</td>
</tr>
<tr>
<td>19616</td>
<td>100/425N</td>
<td>NBA - Balboa Naval Radio, Canal Zone W/DE NBA testing 1234567890 then RY's at 1653</td>
</tr>
<tr>
<td>16136</td>
<td>67/425N</td>
<td>ZCZC - W(RCC) La Habana Cuba testing to ITT World Com. New York 1234567899, then ZCZC and into repeated RY's at 1457</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Mode</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>10139.1</td>
<td>50/425N</td>
<td>TNL 96 - Brazzaville Air</td>
</tr>
<tr>
<td>19015.2</td>
<td>50/850R</td>
<td>PW233 - Brazil Navy</td>
</tr>
<tr>
<td>18189.9</td>
<td>50/170N</td>
<td>Interpol - QTH?</td>
</tr>
<tr>
<td>14390.5</td>
<td>50/VAR R</td>
<td>KAC Woods Hole?</td>
</tr>
<tr>
<td>17490.1</td>
<td>50/425N</td>
<td>YBU - QTH?</td>
</tr>
<tr>
<td>7438.9</td>
<td>75/425N</td>
<td>QSN4 - QTH?</td>
</tr>
<tr>
<td>14893.8</td>
<td>100/425R</td>
<td>3 x 3</td>
</tr>
</tbody>
</table>

Table 2
when, if ever, this Cuban transmitter will resume TASS operations. The Prensa Latina transmissions continue to be active at the 14901.0 kHz frequency. RTTY Today is available at most of the dealers or direct from Universal Electronics for $1.75 for shipping and handling.

Also from Universal, the introduction of a computer bulletin board devoted to the communications enthusiast will help promote the hobby of RTTY DXing. This board, known as UBIX, is free to the hobbyist and a password will be given to applicants. A free guide will be sent upon request and SASE. Send to: Universal Electronics, Inc., 4555 Groves Road, Suite 3, Columbus, Ohio 43232. Ask also for the free “Listening to Radioteletype” guide.

The beauty of such a bulletin board is to leave messages to other UBIX users (electronic mail), read features of interest, check on sale items, learn about upcoming radio events, and read the SWL DX tips left by other users. UBIX presents a fast method of exchanging new RTTY schedule information.

The system is available from 8:30 p.m. to 9:00 a.m. Eastern time. A standard ASCII protocol of 300 baud, 8 bit, no parity, and one stop bit will allow a computer and modem to communicate with the UBIX system. Check with your local computer shop to purchase a suitable computer communications package. My favorite is either ASCII EXPRESS—THE PROFESSIONAL, CROSSTALK XVI, or IBM'S DATA COMMUNICATIONS MANAGER. A simple, low-cost terminal and modem will also work. I found the bulletin loaded with good DX tips and it is an ideal forum to exchange your latest loggings. By pooling together hobbyists with specific interests, a club is then formed with members around the country. Many bulletin boards receive calls from England and other European countries. An effective means of locating RTTY broadcasts can be had by agreeing upon a certain time to record S-meter readings and typing in and comparing information on the bulletin board. Well, it looks like this bulletin board is an all-around super communicating medium. Used RTTY equipment can also be found and a want list of used RTTY gear can be added.

Discussing used RTTY demodulators, I spent hours aligning my surplus Frederick 1202 demodulator and discovering how extremely fragile cup core inductors can be! A word to the wise—if older equipment seems to have drifted over time, correct the frequency by adding stable polystyrene capacitors; do not adjust the ferrite core on the cup or pot core inductor. Usually the bandpass and mark/space filters are carefully preset at the factory with an audio sweep alignment generator. Even if you are familiar with alignment techniques, these older inductors can be difficult to set. Thank goodness most of the newer demodulators use active filters and require a simple potentiometer adjustment.

The best policy on new demodulators is to completely leave all filter adjustments alone. Used demodulators can be found at local hamfests and can be a bargain if the unit can be set up with a receiver and actually tested over typical operating conditions. Pay attention to its performance with weak and fading signals. If any coils or filters are misadjusted, the mark and space indicator lamps will glow with uneven brightness assuming the proper shift is selected. The frequency shift keyed (FSK) signal is tuned by adjusting the receiver's tuning knob to maximize the brightness of the mark indicator. Selecting various shifts, one shift setting will cause the space indicator to flicker with approximately the same brightness. Make sure this test is done with a known RTTY signal such as the AFP (15908.0 kHz) signal at a reliable 425 Hz shift. This test is useful only with dual matched filter demodulators. Single filter units will only have one indicator and general overall performance is the only clue to a reliable used demodulator. I have had good luck finding the popular but older Hal ST6 demodulators at hamfests.

The ST6 matches the performance of the newest RTTY demodulators minus the "bells and whistles" of the newer integrated Hal demodulator/terminal units.

A new RTTY tuning indicator has been introduced—the Blinky by Time Kit (P.O. Box 22277, Cleveland, Ohio). The Blinky consists of a small housing of 2" × 3" × 5.5" with several LED's mounted behind a filter. The LED's represent particular frequencies, 1.2, 1.5, 1.7, 1.9, and 2.1 kHz. Each frequency has a corresponding temperature stabilized and sharply tuned active filter. The filter's output drives its respective LED's. Your receiver's audio output is paralleled with the Blinky's input. Mark is then tuned while watching the 2100 Hz LED flash corresponding to the shift frequency. A quick reading frequency indicator is the function of Blinky. The frequencies displayed were selected due to the dual RTTY and SSTV (slow scan TV) tuning needs. This will not replace the optimum oscilloscope display, but, for the money, works quite well as an RTTY tuning aid.

A compilation of RTTY articles from the RTTY Journal 1953-1980, 73 Magazine 1967-1980, Ham Radio 1969-1979, QST 1965-1977, and QM 1960-1971 is published by RTTY Journal, P.O. Box RY, Cardiff-by-the-Sea, CA 92007. Also subtitled "Everything you always wanted to know about RTTY but didn't know where to find it," you will find this is a reference list by magazine, date, and RTTY article title. Write to the above address to obtain current pricing.

Armed with this list, specific articles of interest can then be ordered. The RTTY Journal is devoted to HAM RTTY and related articles for the RTTY DXer.

Don Saunders from New Jersey has sent in his current loggings, as listed in Table 1, and Ed Flynn's loggings are listed in Table 2. Thanks for your interest.
This column will give readers a view of the current happenings on the AM and FM broadcast bands. Call letter changes, new stations, stations operating for the first time at night, power increases, and other FCC changes are some of the items you will be in tune with through this column. Your input is also welcome. Send us the latest DX you have heard, pictures and other stories of interest to you (send to address at the end of this column).

All around America people who frequent the AM broadcast band have one or several stations to which they attach a certain fondness. A small station I grew up with was WFOY in St. Augustine, Florida. This station came on the air in 1936 with 250 watts on 1210 kHz. Today the station is on 1240 kHz with a kilowatt and a 3 kilowatt FM. The building housing the station is made from oyster shells and the walls are 14 inches thick! It is located adjacent to the Fountain of Youth gardens off Magnolia Drive and the call letters at one time stood for Wonderful Fountain Of Youth! The tower, adjacent to the studios, is in the salt marsh bordering the North River, which is part of the intracoastal waterway. This system has been a pattern for many antenna designers over the years.

The salt marsh makes this kilowatt sound like much more—it's been heard in Australia! In the early days of WFOY they employed former navy radiomen as engineers in order to get the news via shortwave by copying the CW transmissions of the news service.

WFOY has been a CBS radio affiliate for most of its 48 years. New owners will be taking over this year as a result of the death of the previous owner, Pat Bernhard. They plan to continue the strong local image the station has maintained over the years.

The face of radio is changing rapidly across America. During the 70's, FM stations passed AM stations in having the majority of the listeners. The trend continued into the 80's and AM stations have been changing formats like crazy in an effort to turn the tide. One of the formats the AMers have swung to has been talk, news, and sports. It seems the vast majority of the 50 kw full-time stations have gone to these formats in some combination. Give the dial a twist at night! The big question remains—will the changes attract the listeners back to the AM band? Some also hope that the new AM Stereo will help return listeners.

ABC's flagship station in New York City, WABC, was Top 40 for over 20 years and at one point had more listeners than any other station in the nation. The ratings started to fall and today WABC is talk and sports. Many tears were shed when "77 Music Radio" was no more. Probably more stations have been patterned after WABC than any

Note the legend of intense and good! There was very little interference 40 years ago!
other station in history. Right now, longtime
rival WNBC is trying to take up the music
slack on AM radio and seems to be doing a
good job broadcasting in AM Stereo.
How far can a kilowatt be heard? A good
example, especially at night, is WGTO in
Cypress Gardens, Florida. This station is 50
kilometers during the day on 540 kHz. They
came on the air in 1955 and the call letters
stood for Gulf to Ocean (and also Gainesville to
Okeechobee). Using only one kilowatt at
night, they cover an amazing part of Florida.
Next time you're visiting Disney World, lis-
ten for them. The format is country music.
Now, switching to FM for a moment—did
you know that WRNO in New Orleans will
be broadcasting all summer from the
World's Fair? If you get a chance, stop
by and see them. They are on shortwave as
well as FM Stereo. The FCC recently gave
WRNO permission to increase their antenna
to just over 1000 feet with an ERP of 27.5
kw. We hope to have a story on this "World's
Fair Station" in the fall... stay tuned!
As we get into the summer, AM DXing be-
comes restricted due to static. However, if
you are planning a vacation, here is a way to
double your pleasure! Plan your route
ahead using a White's Radio Log or Vane
Jones' North American Radio-TV Station
Guide. Figure out what stations you will be
able to hear (log) as you travel. This can
bring your totals up despite the static.
If you're like me and dried up the dial
where you live, this is the only time new sta-
tions can be logged in any quantity. When
traveling non-stop, the new digital dials
make frequency ID very easy, so it is just a
matter of getting the station ID. I list the sta-
tions I expect to hear ahead of the trip in
groups, numerically and by sections of high-
way. Then when the station is heard, a
checkmark is all that is needed. The perma-
nent logging is done when I get back home
or during stopovers. Be sure to have a guide
with you because no matter how carefully
you plan, it will be necessary to refer to a
guide when there is a question and especial-
ly for nighttime DXing in an unfamiliar area.
By grouping the stations into sections of
highway, it makes it easier to remember
which go where. Make each group num-
bered by frequency so that it will be easy to
keep the car on the road! Don't try to
remember call letters since they may not be
the same as shown in the guide and it is hard
even to keep track of just the frequency. If
you miss a station, make a mental note of
the frequency and check it every ten min-
utes or so until you are out of range.
Another way to check for the elusive sta-
tions is to set a pushbutton or maybe more to
find the stations you're really after. This is
where the digital radio really shines. Digital
Dxing makes DXing much more fun and
much less frustrating because the question
of frequency is removed from the multitude
of variables involved in finding the station in
question. I test drove a new digital car radio
the other day and was able to hear WABC and
WNBC in New York. Baltimore (where I
located) is 180 miles from New York.

Communicate with electricity from the sun.

Channel Guard
Adjustable Transmitter
Low-pass filters & antenna
Tuner for CB & Ham use.
Eliminates TV interference founder.
Versatile! Receives FM
150 watts non-tunable $25
150 watts non-tunable $15
MC & VISA
TELCO PRODUCTS CORP.
25 Lumber Road, Roslyn, NY 11576

Channel Guard XL-1000
Adjustable Transmitter
Low-pass filters & antenna
Tuner for CB & Ham use.
Eliminates TV interference. Functions as
an effective antenna tuner. 100 db. rejection of
spurious RF above 40 MHz, has VARIABLE input
impedance-50-70A. Handles up to 1 Kw (SSB).
Negligible insertion loss; Compact. Instructions
$35

POLICE IDENTIFICATION GUIDE!
The First (and only) Guide to
The ID Game: Photos, Drawings and Text
show how to:
- Figure speed and circumstances by
 skid marks, ID people, cars, tires,
houses, bullet wounds and markings, drugs, hazardous materials
 and so on...
- Motor Vehicles: Location of VIN
 numbers, motorcycle ID's, all state registration info,
 driver's license info (with photos) boat ID details...
- Full color pill/drug guide for those
 things lying about, first aid guide, emergency
 situation guide, even Spanish/English phrases for emer-
 gencies!! By Police, For Police-
 New and Very Complete!!
- We didn't write it, but we love it!!
 On the scene, in court, on the spot!

ORDER TODAY BY MAIL OR TOLL FREE TELEPHONE!!
VISA, MC ORDERS ONLY: 800-345-8112 in PA 800-662-2444 or mail
TOTAL + $4.00 postage to Auburn-Wolfe Co. Box 623, Holmes, PA 19043 Dept 100

* CAN YOU? *
Electronically listen thru any wall?
See in the dark cheaply? Read thru an
envelope with a $1.00 chemical?
Obtain UNLISTED phone numbers?
Open virtually any lock or safe in
seconds? Tail anyone? Ditch a tail?
Beat the lie detector? Run a driver's
license or motor vehicle check? Trace
anyone, anywhere? Save 30%-500%
on surveillance? Get birth, death
and real property records? Beat private
detectives at their own game?
Scramble any conversation? Defeat
bug and recorder detectors?
HOW TO GET ANYTHING ON
ANYBODY. By Lee Lapin...
An encyclopedia of CIA type tricks.
"The most dangerous book ever pub-
lished" NBC Newscastr. "One hell of
a book, for the first time anyone can
access intelligence secrets." Nat News
Service. "An A to Z handbook on all
phases of undercover operations. A
must for PI's, cops, agents..." Popular
Communications. "This book lives up
to its name... Key CIA type manual..." Police Times.

$30.00 and well worth every cent!!!

CONFIDENTIAL!!!
"A thorough mastery of the materials
herein will let you handle all normal
police duties including major crim-
inal investigations."
Search a car—Find drugs
Search a home—Act in court
Collect evidence—Prepare a case
Run legals—Checks—Question anyone
Trick confessions—Analyze crimes

THE LAW ENFORCEMENT
HANDBOOK
"On initial contact...this statement
implies you are not out to 'get' him...
If you feel any misgivings about
using trickery...Remember that courts
ever the years have ruled...Are ad-
missible as long as the tricks em-
ployed are not likely to have...
Never reveal all you know, you will
need ammunition for...Consider
searching these areas...On stopping
the suspect vehicle...You may be able
to search without a warrant...Here's
how..." A Must In Every Globe
Compartment!! Know your Rights!
$26!

CIRCLE 56 ON READER SERVICE CARD
CIRCLE 96 ON READER SERVICE CARD

THE MONITORING MAGAZINE
July 1984 / POPULAR COMMUNICATIONS / 61

www.americanradiohistory.com
WNBC is 20 kHz from 10 kw WCBM (680) in Baltimore and WABC is 20 kHz from 1 kw WBMD (750), which was about four or five miles from where I was driving. This is how I test drive a new car! The radio passed all of my tests. There was no chatter from the local stations and I was able to easily listen to and identify the New York stations. Now I could consider the other qualities of the car!

Past experience has shown that a top notch radio will receive the 50 kw New York stations in Baltimore. However, there are other areas of the country where 50 kw will travel much more or less depending on the conductivity of the earth. The conductivity is how well a radio signal will travel over the surface of the earth (See our map to check your area). The higher the number, the better the conductivity. Sea water is the best at 5,000. The highest over land in the U.S. is about 30, dropping to a 1 in New England. 5 on Long Island. What this chart will tell you is a 250 watt station in the middle of Kansas or N. Dakota may have a greater range than a 50 kw station in New York City. So, getting back to our summer DXing via the auto, range will depend on the part of the country you are traveling through and the power of the station. Here’s how to compensate. Save the city stations for logging while traveling through their cities. Catch them at traffic lights or other stops. On the highway pick up the ones to the right or left of your location as you travel (on a map). Have the stations listed up to about 40 miles either side of the highways you plan to travel for up to 5 kw AM stations and FM stations other than 3 kw class A. The AM's 5 kw and above and most FM's over 50 kw will be good for over 40 miles. These distances are for the East Coast with a conductivity of eight or less, so double the mileage for areas where the conductivity is more than eight. Over a total salt water path, a 250 watt station may be heard several hundred miles loud and clear.

Catch the 3 kw and less FM's as you pass through their towns or just put them on your "catch as catch can" list. The 10 watt FM's, if you catch them on the air, will have to be within about five miles of your location. These are all very general guidelines.

One other thing to watch for are the roadside AM stations that give travel information. These stations are usually announced via signs on the highway and all normally just above or just below the AM band. Send me info on the TIS (Travelers' Information Stations) that you hear and we'll pass it along to the rest of the readers.

If you can hook a cassette recorder to your radio it might help you with some hard to identify stations if you record them while on the road. Sometimes playing a tape back in a quiet room will make ID easier. Headphones also help, however, I do not recommend headphones while driving, though they might be useful if you are riding "shotgun." That brings up another bit of advice I would like to leave with you; unless you are traveling alone, please be considerate of your passengers. They may not enjoy DXing as you do!

Well, now the rest is up to you and I expect to hear about this terrific vacation via the mail. I'll tell you about some of mine as I am traveling into an area with 15+ conductivity for the first time in my life!

This is a new column in POPCOMM and we want reader input. Send me your DX and other news and views. Please send along sharp-contrast photocopies of your better QSLs. Any questions you want answered should include an SASE. Please use the mails for correspondence and do not telephone since my answering service is on strike! The address is: Mark Manucy, P. O. Box 5624, Baltimore, MD 21210-0624.
Station Updates

Call Letter Changes

<table>
<thead>
<tr>
<th>Call Letter</th>
<th>New City</th>
<th>Old City</th>
</tr>
</thead>
<tbody>
<tr>
<td>WKKO</td>
<td>Cocoa, FL</td>
<td>to WJZX</td>
</tr>
<tr>
<td>KTMC</td>
<td>Minneapolis, MN</td>
<td>to KTWN</td>
</tr>
<tr>
<td>KBBL</td>
<td>Lubbock, TX</td>
<td>to KFMX</td>
</tr>
<tr>
<td>WUNI</td>
<td>Mobile, AL</td>
<td>to WMLL</td>
</tr>
<tr>
<td>WAYE</td>
<td>Baltimore, MD</td>
<td>to WBGR</td>
</tr>
<tr>
<td>WTCX</td>
<td>Bay City, MI</td>
<td>to WXOX</td>
</tr>
<tr>
<td>WTWN</td>
<td>Grand Rapids, MI</td>
<td>to WLAV</td>
</tr>
<tr>
<td>KSD</td>
<td>St. Louis, MO</td>
<td>to KUSA</td>
</tr>
<tr>
<td>WFEC</td>
<td>Harrisburg, PA</td>
<td>to WHGB</td>
</tr>
<tr>
<td>WSNF</td>
<td>Philadelphia, PA</td>
<td>to WPGR</td>
</tr>
<tr>
<td>WSNF-FM</td>
<td>Philadelphia, PA</td>
<td>to WSNI</td>
</tr>
<tr>
<td>WBOI</td>
<td>Bolivar, TN</td>
<td>to WJDS</td>
</tr>
<tr>
<td>WYNT</td>
<td>Colonial Hts., VA</td>
<td>to WPVA</td>
</tr>
<tr>
<td>WPBH</td>
<td>Middlefield, CT</td>
<td>to WPXT</td>
</tr>
<tr>
<td>WOOK</td>
<td>Washington, DC</td>
<td>to WJLEY</td>
</tr>
<tr>
<td>KBWJ</td>
<td>Payette, ID</td>
<td>to KQPD</td>
</tr>
<tr>
<td>KSRW</td>
<td>Russell, KS</td>
<td>to KCAY</td>
</tr>
<tr>
<td>WZFR</td>
<td>Grand Rapids, MI</td>
<td>to WLHT</td>
</tr>
<tr>
<td>KFMT</td>
<td>Pendleton, OR</td>
<td>to KWHT</td>
</tr>
<tr>
<td>KSUL</td>
<td>Keene, TX</td>
<td>to KJCR</td>
</tr>
<tr>
<td>WVRS</td>
<td>Waterbury, VT</td>
<td>to WTJ</td>
</tr>
<tr>
<td>WLVE</td>
<td>Baraboo, WI</td>
<td>to WNLT</td>
</tr>
<tr>
<td>KWYF</td>
<td>Salinas, CA</td>
<td>to KOTM-FM</td>
</tr>
</tbody>
</table>

New Stations

- Imperial, NC: 1560 kW, 5 kW-1 kW CH
- W. Fargo, ND: 660 kW-1 kW CH
- Priceville, AL: 510 kW, 2.5 kW-1 kW Ch
- Olyphant, PA: 750 kW, 2.5 kW D
- Redding, FL: 91.9 kW, 4.8 kW-1434 ft
- Las Vegas, NV: 90.5 kW, 100 kW-1269 ft
- Cave Junction, OR: 102.7 kW, 100 kW-1976 ft
- Casper, WY: 103.7 kW, 58 kW-1929 ft

Power Changes

- KVMA Magnolia, AR: to 100 kW (102.9 kW)
- KCBN Waterloo, IA: 1301 ft (105.7 kW)
- WMYK Elizabeth City, NJ: 100 kW antenna to 1240 ft
- WJHJ Baltimore, MD: to 25 kw antenna to 200 ft (88.1 kW)
- WJST Pt. St. Joe, FL: 93.7 kW moves from 93.5 to 9.5 to 100 kw at 520 ft
- KATL Houston, TX: increases night to 5 kw (1010 kW)
- WVCH Charlottesville, VA: 2.5 kw (1260 kW)
- WAVE Baltimore, MD: 5 kw (860 kW (WBGR))
- WANN Annapolis, MD: 50 kw (1190 kW)
- WRNO see text

Abbreviations:

- w = watt
- D = day
- N = night
- ft = feet (antenna height)
- K = kilowatt
- kHz = kiloHertz
- DA = directional antenna
- DA-D = directional antenna daytime only
- DA-1 = directional antenna same pattern day and night
- DA-N = directional antenna nighttime only
- DA-2 = directional antenna different pattern day and night and/or power
- CH = power used during critical hours which are until two hours after sunrise and starting two hours before sunset
- ERP = Effective Radiated Power is used with FM stations to show the power radiating from their antenna

Example of vacation “trip tik”

This sample will show a portion of my trip through Alabama. While overnighing near Huntsville, I will try for nearby cities of Decatur, Athens, Huntsville, Moulton plus nearby Tennessee. I will be using a small loop with an ICOR-70 and will also try to pull in stations in Florence, Sheffield, Muscle Shoals, Tusculum, Russellville, and others. After leaving Huntsville and proceeding south on I-65 toward Birmingham and then onto I-59, my chart will look something like this:

I-65 Huntsville to Birmingham

<table>
<thead>
<tr>
<th>City</th>
<th>CK</th>
<th>Frequency</th>
<th>kw-pwr/ft</th>
<th>Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cullman</td>
<td>1340</td>
<td>1</td>
<td>kWUL</td>
<td></td>
</tr>
<tr>
<td>1460</td>
<td>5</td>
<td>kWFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92 1</td>
<td>3</td>
<td>WKLN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 1</td>
<td>87/330</td>
<td>WMFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>5</td>
<td>WJBY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>5</td>
<td>WGAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1350</td>
<td>5</td>
<td>WEXP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 9</td>
<td>3.5</td>
<td>WQEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 7</td>
<td>97/1000’</td>
<td>WQEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1570</td>
<td>2.5</td>
<td>WCLG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97 7</td>
<td>1/480’</td>
<td>WKLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1240</td>
<td>1</td>
<td>WADF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1360</td>
<td>1</td>
<td>WWBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 5</td>
<td>39/140’</td>
<td>WWBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>5</td>
<td>WSGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>690</td>
<td>50</td>
<td>WVOK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To add to the interest of the trip, I will set my push buttons on leaving Huntsville for the frequencies of 690, 850, 1000, 1070, and 1550 to see the difference of the high power stations coverage in northern Alabama.

DOUBLE YOUR RANGE

Metz Tuned Base-Loaded Whips

Replace Your Telescopic Whip With The Metz System. Metz Whips Plug Into Your External Antenna Connector. Right angle SO 239 supplied. For scanners use Radio Shack 278-208 adapter. Bracket supplied for outdoor mounting:

- Two Models: Scan 1 covers 30 MHz to 512 MHz
- One model: 1 covers 50 kHz to 54 MHz
- All stainless steel—won't corrode
- Tuned coils offer 3 dB gain over telescopic whips
- Every coil tested and serialized
- No external power required
- Whip only 54" tall
- Antenna may be mounted mobile with accessory $25.00 magnetic mount
- Cannot be damaged by lightning

**Metz stainless steel antennas are used worldwide by Mariners, Police, Business, and Commercial Radio users. It was the Ham Radio operators who discovered the phenomenal range increase when used on Ham worldwide and VHF equipment. Well-known radio expert Gordon West, WB6NOA, gives the Metz whips his highest rating: "They equal the range of active antenna systems at one-third cost, and when you replace your telescopic whip with the Metz, you'll really hear the difference!" $59.95 from Metz Communication Corp., corner Rt. 11 & 11C, Laconia, NH 03246 Phone Orders Only: 800-258-4680 (Visa/MasterCard/C.O.D.) Technical Info: 603-528-2590

Amateur antennas for 2 Meter & 440 MHz also available

Please send all reader inquiries directly.

THE MONITORING MAGAZINE
The SPACE and STTI satellite trade shows held recently in Las Vegas, Nevada demonstrated that the home TVRO explosion is hotter than ever before. Nearly 300 booths of earth station gear were present at each event, with prices on LNAs and motorized actuators at their lowest ever. Don Berg, Marketing President of Channel Master, predicted that sales of TVRO equipment will exceed more than $1.2 billion dollars in 1984. With more than 200,000 home earth stations systems already sold in 1983, it is expected that an additional 400,000 systems will be sold in 1984. By the end of 1984, there will be 700,000 home earth stations in operation throughout North America. Experts are now saying that a total of 10 to 15 million earth stations will be in the field by 1990.

One of the most significant developments noted at the recent conventions was the entry—in a big way—of the Japanese into the home earth station marketplace. Many readers will remember the CB radio boom in the 1970's. Once the Japanese, Koreans, and Taiwanese became active in manufacturing units, the American marketplace was literally flooded with inexpensive CB radios. Suddenly everyone was buying them. With the entry of the Far Eastern manufacturers into the TVRO marketplace, we may find that history once again is repeating itself.

The largest manufacturer of two-way radio equipment in the world has embarked on a satellite manufacturing endeavor that will have far ranging implications for the home earth station industry. The Uniden Corporation has announced its entry into the field of satellite television and communications and has appointed Guy Davis (formerly of Intersat) to head the company's new Satellite Technology Group for the United States and Canada.

When he announced Uniden's entry into the TVRO marketplace, Chairman of the Board William Rozell emphasized that the Uniden Corporation of America, through its affiliation with Uniden Corporation of Japan, is bringing over two decades of consumer electronics manufacturing and marketing expertise to the satellite television industry. Uniden, one of the major forces in telephone, land mobile, marine, and personal communications hardware, released its new line of earth station receivers and antennas at the Las Vegas shows.

"Satellite television reception is coming out of its infancy, poised for explosive growth," said Mr. Rozell concerning his company's entry into a new and challenging field. "Uniden's proven management experience, product development and manufacturing capability, marketing and advertising background, and reputation for quality and reliability are unchallenged in this field, positioning Uniden to become the premiere provider of satellite television broadcasting and communications technology.

Uniden already has its share of some of the world's most distinguished microwave engineers at its disposal. The Uniden Satellite Technology group is headed by Dr. Yoshihiro Konishi, an internationally respected engineer and pioneer in 4 GHz (C-Band) and 12 GHz (Ku-Band) television broadcasting, holds more than 175 different patents on electronic design. Dr. Konishi was involved in the development of Japan's DBS satellite system, which currently consists of a single Ku-band satellite with two transponders for the transmission of entertainment programs throughout the Japanese islands. Dr. Konishi joined Uniden after a remarkable career at NHK-TV, the Japanese Television Broadcasting Corpora-
tion. At Uniden he oversees one of the largest engineering staffs available in the satellite industry.

Joining Dr. Konishi in Japan is John W. Lane, serving as senior advisor. Mr. Lane is the former chief executive officer of Midland International, the Kansas City based importer of Far Eastern electronics that cornered a substantial share of the CB radio marketplace back in the 1970's.

Under the brand name Unisat, Uniden is now marketing a complete line of C-Band (4 GHz) TVRO (television receive only) equipment, consisting of the UST-1000 or upgraded UST-3000 receiver, a low-noise amplifier (LNA), an antenna and a feed horn (polarizer), and in August will introduce another upgraded C-Band (4 GHz) receiver, the UST-5000.

"But more than offering quality products," stated Mr. Davis, "we at Uniden Satellite Technology Group intend to bring to this industry the sophistication to which it has not been previously accustomed. We will be marketing a breadth of satellite receiving systems with the highest engineered reliability, and backed by a large brand name that consumers can rely on, as well as complete schematics, manuals, and service centers. We plan to educate the consumer to look beyond just price and recognize the long-term quality and value of our satellite products and services."

Uniden, aware of the developing market in the U.S. and Canada for 12 GHz earth stations capable of receiving Ku-band DBS services, will start in October of this year to offer a complete package for the higher frequencies as well. Uniden will be competing with Alcoa/NEC (Nippon Electric Company) and General Instruments for a share of the DBS terminal marketplace.

Another surprise entry into the earth station receiver market was the Electra Company—manufacturers of the Bearcat line of VHF and UHF scanners. The new Bearcat GSR 2001 satellite receiver features block downconversion, allowing the easy installation of more than two independently-tuning receivers at a single location.

With manufacturers like Uniden and Electra entering the TVRO marketplace, we expect that a higher standard of performance along with increased professionalism in service to be the new standards for the industry. This can only be good news to the TVRO owner of the mid-1980's.

The twin March Las Vegas shows previewed a new lower pricing structure for low noise amplifiers. Some LNA manufacturers are finally being able to turn out very low noise temperature units in quantity and at prices never seen before. Several new companies manufacturing low cost motorized dish actuator systems were also present at the show. With the dramatic price drops seen here, along with further reductions in receiver prices with the entry of increased competition from Japan, we expect that, by 1985, the cost of a typical home earth station will drop to around the price now paid for a full featured video cassette recorder.

Guide To RTTY Frequencies 2nd ed.
Details on 5500 RTTY stations/frequencies in two lists. "Real" press schedules, inside information on new RTTY techniques, etc. 192 pages, paperback, $9.95. Order #G205

Radio Handbook, 22nd ed.
by Bill Orr, W6SAI

The Radio Publications Group—The "Bill Orr Series"

These easy reading classics belong in the library of any active ham. Loaded with practical how-to-information, with tables, charts, and formulas arranged for handy reference.

Beam Antenna Handbook, 200 pages, paperback. $7.95. Order #R143

Wire Antennas, 192 pages, paperback. $7.95. Order #R144

Antenna Handbook, 192 pages, paperback. $7.95. Order #R145

Cubical Quad Antennas, 112 pages, paperback. $6.95. Order #R146

VHF Handbook, 336 pages, paperback, $11.95. Order #R147

World Radio TV Handbook, 1984
The world's only complete directory of international broadcasting and TV stations—the established, authoritative guide endorsed by the world's leading broadcasting organizations. A comprehensive country-by-country listing of short, medium, and long-wave stations revised and updated to reflect actual conditions. Also includes special features on shortwave receiver test reports and DX clubs and their programs. 608 pages, paperback, $17.50. Order #B097.

Covert Intelligence:
Electronic Eavesdropping Manual
Illustrated guide to using hidden transmitters and telephone taps for intelligence gathering, covering both theory and application. Detailed text enhanced by many graphs, charts, schematics, illustrations, field tests of equipment. Paperback, $8.95. Order #C191.

The Final Exam
by Dick Bash, KA7HP
Amateur radio license exam manuals proven highly successful in helping hams pass the FCC tests. Material for the books was obtained by interviewing actual applicants for the exams and collecting and researching the questions they had on the exams.

General Class, 123 pages, paperback. $9.95. Order #B153

Advanced Class, 108 pages, paperback, $9.95. Order #B154

Extra Class, 108 pages, paperback, $9.95. Order #B155

Novice Class, 104 pages, paperback, $9.95. Order #B163.

Order Date:
Name ____________________________
Street ____________________________
City __________________ State ______ Zip ______

Order Total
Shipping Charge
Grand Total

Check □ MasterCard □ VISA
Card No ____________________________ Expires ______

Signature required on all charge orders.
I channels.

The activity to generate perhaps the most communications this summer will be the Summer Olympic Games to be staged all around Southern California. Because the Games are not being held in one particular area around Los Angeles, special telephone, information, and radio networks have been installed to handle the expected overload.

Motorola Inc., one of the sponsors of the Games, has enlisted 3,000 pagers, 2,000 walkie-talkies, and 400 to 500 mobile radios to help coordinate the various activities over the five counties the Games will be held. A cellular telephone system also is in the process of being set up in the Los Angeles basin and will increase the region’s capacity for mobile telephones from about 4,000 to more than 50,000. Motorola will make 200 cellular mobile telephones available for coordination and will set up a system of 50 to 60 cells to handle the volume of calls to be placed.

The volume of radio communications is expected to be so great for the Olympics that the Federal Communications Commission has set aside two unused bands of frequencies for the exclusive use of the Los Angeles Olympic organizing Committee and ABC-TV, which will carry live coverage of the Games. The two bands to be used are 482-488 MHz and 500-506 MHz. Presumably 482-485 and 500-503 MHz will be used for repeater outputs and 485-488 and 503-506 will be used for repeater inputs. For the record, frequencies in the 470-494 MHz band were used during the 1980 Winter Olympics in Lake Placid, NY.

The Los Angeles Olympic Organizing Committee also has set up a regionwide paging system on 929.7875 MHz and the U.S. Olympic Committee has been authorized to use 457.525 and 457.600 MHz for portable communications in operating the Games. But there will be plenty of other channels in use by various agencies during the Games. Don’t forget to tune in on public safety agencies such as the Los Angeles County Sheriff’s Office on 39 MHz and other units such as ambulances. Even the FBI expects to have an extensive network of agents at the Games to prevent any possible terrorist activities. Although some of the FBI’s communications may be on the routine 163 and 167 MHz channels, expect a majority of their traffic to be scrambled using Digital Voice Protection (DVP) on special channels dedicated just to the Olympic detail. A safe guess would be that those DVP communications would be on 170 MHz channels. If you hear any activity, or even procure a rare QSL card from the Olympics, let us know here at Scanner Scene.

The two other communications-related events to be held this summer are the Democratic National Convention in San Francisco and the Republican National Convention in Dallas. Whenever you bring together big-name political figures, media types, dignitaries and government agents, you’re bound to hear lots on a scanner.

The news media that will be covering the two conventions have allocated frequencies among themselves so that one network doesn’t wind up operating on the same frequency as a local TV station. Most news media activity will occur on 161.64-161.76 MHz and the 450-451 and 455-456 MHz bands. You’ll also find some activity on the 173 MHz relay press frequencies of 173.225, 173.275, 173.325, and 173.375 MHz. In fact, the Democratic National Committee was heard using one of the 173 MHz channels during their last convention in New York City in 1980.

It also would be wise to keep an ear on low-power and itinerant business band channels such as 151.625, 154.570, and 154.600 MHz. Almost anybody could pop up on those channels, including 464.500, 464.550, 469.500, and 469.550 MHz. You also might want to tune in the mobile telephone and radio common carrier channels in the 152 and 454 MHz bands. You never know who you may hear placing a telephone call.

Various public safety agencies also will be helping out with coverage at the conventions. In fact, a total of 23 separate security task forces will be employed for the Democrats’ convention in San Francisco. You’ll hear activity on police channels, as well as business band channels possibly employed by various security companies called upon to help maintain order.

Mailbag

Ron Mesheid of Orlando, Florida, writes in to say he enjoys Scanner Scene and uses a Bearcat 300 with a Hamtronics 800 MHz converter and a Radio Shack tri-band antenna. Ron sends along some frequencies, including details on the new Orange County, Florida, Fire Department’s 800 MHz system.

Orange County Fire Department
859.4375 Tact 1—Central dispatch, all zones
860.4375 Tact 2—Fire marshal and department personnel
858.4375 Tact 3—East side and working engine channel
857.4375 Tact 4—South and west side working engine channel
856.4375 Tact 5—Northwest working engine channel

Hand-held scanners such as the Bearcat 100 are the best way to monitor political conventions if you can get close enough.

If you plan to monitor the Olympic Games, a scanner that can operate on AC from home or motel room or DC from the car, such as the Bearcat 210XLT, is the best bet.
Orange County Sheriff's Department
460.025 Ch. 1—Northwest
460.125 Ch. 2—West side
460.275 Ch. 3—East side
460.475 Ch. 4—South side
460.300 Ch. 5—Detectives and special events
460.175 Ch. 6—Teleprinter countywide
460.350 Ch. 7—Car to car

Orlando Police
460.050 Ch. 1—Teleprinter citywide
460.100 Ch. 2—Northeast
460.400 Ch. 3—Southeast
460.450 Ch. 4—Citywide/special events
460.425 Ch. 5—Citywide/surveillance and special events
460.075 Ch. 6—Reserved, not in use

City of Orlando Fire Department
453.050 Ch. 1—Central dispatch
453.150 Ch. 2—Working engines
453.250 Ch. 3—Executive personnel
453.350 Ch. 4—Cross band with county fire major fires

Orlando International Airport
120.150 Air controller—35 miles out
125.550 Final approach—15 miles out
124.300 Tower
121.800 Ground control
121.250 Recorded pilots information
453.300 Airport police
453.100 Maintenance
453.850 Airport operations
460.600 Airport Fire Department
453.525 Emergency

Orange Executive Airport
121.100 Flight landing—northeast
119.400 Flight landing—southwest
118.600 Tower
121.700 Ground control

Miscellaneous
154.665
154.680
154.695
154.920 Florida Highway Patrol
155.370 Intrastate police frequency (state, city, county)
154.430 Intrastate fire frequency (state, city, county)

C.M. Reed of Coraopolis, Pennsylvania, reports he has been monitoring the National Oceanic and Atmospheric Administration on 163.275 MHz. He reports hearing two stations passing meteorological data such as wind speed, visibility, and barometric pressure. Apparently the information is being passed on to the National Weather Service forecast office at Greater Pittsburgh Airport. Transmissions are made generally ten minutes before the hour every hour, but can occur at any time.

What about you? What are you listening to on your receiving gear? Do you need help trying to identify a certain station? Maybe our readers can help. Why not send along a picture of your communications setup as well? We'd like to hear from you here at POP'COMM. Write to: Chuck Gysi, N2DUP, Scanner Scene, Popular Communications, 76 N Broadway, Hicksville, NY 11801.

The NRD-515 offers more features and performance than any other receiver in its class. Exceptional selectivity and stability make this an excellent radio for RTTY and FAX reception. Designed for the serious DXer who demands the best!
According to Sweden Calling DXers, British officials are searching for the location of Britain's first unlicensed pirate TV station. The station, calling itself Telstar, usually makes one transmission a week in a Birmingham suburb. After BBC 2 signs off for the evening, Telstar occupies the vacant channel and airs pop music videos of groups like Duran Duran, and movies such as Kramer vs. Kramer and the Exorcist II. So far, the station has shown moral restraint, showing no pornographic or excessively violent films. And while British Telecom engineers work to locate the source of the illegal transmissions, Telstar's audience estimated somewhere near 5,000 viewers, will continue to enjoy this alternative programming.

Across The Dial

KFAT was heard by Kirk Allen of Oklahoma broadcasting on 7433 kHz after 0250 GMT. This station programs country music for its audience. Listeners can receive a QSL by sending a detailed reception report to PO Box 5074, Hilo, HI 96720.

KQRP was heard by Grant Lochmiller of Iowa on 1935 kHz after 2000 GMT, on 15050 kHz after 2000 GMT by John Santosooso of Florida, and on 7395 kHz after 0700 GMT by Fred Roberts in Ohio. This station sure gets around. KQRP broadcasts rock and roll music over their 30 watt transmitters.

KQSB, an innovative pirate that is always trying something different, recently broadcast on two frequencies in parallel—11600 and 15050 kHz after 1900 GMT. John Santosooso tuned this transmission and noted the Hilo, Hawaii address mentioned for reception reports.

New Wave Radio INTL is still active in the 40-meter band on or near 7395 kHz, usually after 0600 GMT. This station continues to tell listeners to send reports to the Association of Clandestine radio enthusiasts, but ACRE is still not sure what to do with them. Until further notice, you may not have much luck getting a QSL through this address. ACRE has been printing the names and addresses of people who have sent reception reports in their bulletin, hoping that NWRU will verify reports this way.

A relatively new pirate, Radio Ganymede, was heard on 6900 kHz by Kirk Allen after 0000 GMT. The station gave a loop number for phone calls, but suddenly signed off shortly thereafter.

Ohio DXer George Zeller heard Radio USA on 7410 kHz past 2100 GMT after hearing a report of them given by another pirate. Samurai Radio on 6225 kHz.

The Crystal Ship is back after a brief absence from the airwaves. Paul Walkendorf heard "The Poot" and "The Radical," TCS's two interesting personalities, during a transmission on 7420 kHz after 0230 GMT. Mike Goetsch also heard this station, but on 14797 kHz after 1930 GMT.

The Voice of Laryngitis seems to have found a home on 15050 kHz. John Santosooso heard them here after 1930 GMT. However, the VOL is also right at home on 7430 kHz where several DXers, including Dan Miller of Wisconsin, heard them after 0000 GMT. Those who have heard the Voice of Laryngitis often describe the programming as very well produced and exceptionally humorous. Unlike some pirates that try to be funny, this one actually succeeds.

I had the opportunity to hear Radio Free Insanity near 7430 kHz recently after 0200 GMT. The station was playing almost exclusively Beatles music and was on the air for quite some time. The thing that impressed me most about this station was the strength of its signal. Other listeners from around the country also report very strong reception of this pirate.

KPRC Jammed

For several weeks now, KPRC has been intentionally jammed on its 1616 kHz frequency by a station using low sideband. DXer Scott McClellan reports that the jamming station’s announcer uses a fake oriental accent and makes sarcastic and rude remarks concerning KPRC. Also, he frequently belches! A caller to KPRC was put on the air and asked the jammer how much power he was using, to which came the reply, "40,000 watts." Scott says that the jammer was strong, but not that strong.

Letters From Pirates

I was recently contacted by a pirate calling itself Tangerine Radio. Although still in the planning stages, by the time you read this the station may be on the air. Frequencies to keep a lazy ear to include 7474 kHz, and 25992 kHz on weekends.

Also received through the mail was a letter from the Scorpion, a personality on WCFR-Chicago Free Radio. WCFR goes back several years, but hasn’t been heard in quite a while. But all of this is to change soon. The Scorpion says WCFR has made several successful test transmissions, and that listeners should keep an eye on 7300 kHz, 14400 kHz, and 21600 kHz, between 0000-0600 GMT on weekends.

WCFR will program mainly "oldies but goodies," or songs from the 1950-1960's era. Broadcast tapes from listeners and readers will be considered for airplay, and should be sent with an SASE to WCFR, 2226 S. Gunderson, Berwyn, IL 60402. Cassette or reel-to-reel recordings will be accepted.

Where To Hear Them

It has been several months since the last time I reviewed the basic "pirate DXing" strategies in this column. Let’s go over them again for those who may be new to this aspect of the hobby.

Most pirates operate somewhere between 7350 and 7440 kHz. Other frequency ranges to keep close watch include 6900-7000 kHz, 6200-6300 kHz, 3200-3500 kHz, 1600-1620 kHz, and lately, 14700-15100 kHz. These ranges have been especially active in the past and probably will
continue to be for quite some time. Notice that many of these frequencies are just above or below the amateur radio bands. This is because most pirates use slightly modified ham radio equipment.

Most pirates are NOT ham operators, and they are very careful to avoid frequencies allocated to the Amateur Radio Service.

You will find that most pirates operate during Friday and Saturday evenings, between 0200 and 0600 GMT, although not exclusively. Take note of frequencies and times listed in The Pirates Den and use them to keep on top of where and when the action is happening. It will take time and some effort before you hear a pirate, but persistence always pays. Every weekend, pirate stations are on the air just waiting to be heard by you. It's just a matter of being at the right frequency at the right time.

A useful tool for the pirate DXer is The ACE, a monthly bulletin dedicated to pirate, clandestine, and spy-numbers activity in the United States and abroad, published by the Association of Clandestine radio Enthusiasts. For more information, send a large SASE or $1.00 for information and a sample issue of The ACE to: A`C'E, PO Box 452, Moorhead, MN 56560. It is certainly worth your time to check out this club, which is a member of ANARC. Please mention you heard about A`C'E in this issue of POP'COMM.

Mail Drops

Almost every DXer who searches for pirate stations, upon hearing one, would like to receive a QSL card for their efforts. This is done by sending a detailed reception report to the address a station gives over the air, almost always a post office box.

Mail drops are usually run by a person who has access to the pirate using the address. He or she is able to provide a free service to SWLs and DXers by forwarding their mail to the pirate, making it possible for the listener to receive a QSL card or any other collectibles the station may send to listeners.

But doesn't the FCC say that it's illegal to aid a pirate broadcaster in any way? The answer to that question could only be yes, it is illegal to aid pirates. However, all mail drop operators I have talked to feel that they are not aiding pirates, but rather the SWL community. After all, if a pirate wants to know if his signal is getting out, a simple logging check of any one of the many fine SWL club bulletins will provide that kind of information. It is not essential to the operation of a pirate radio station to receive letters from listeners, but many of us sure enjoy getting those pirate QSLs.

I'm sure there are many who would disagree with me and say that mail drops are indeed a way out of aiding an illegal broadcaster. The question, however, has never been tested in court. One would think a way to get at pirates would be through their mail drops, but the FCC apparently has some reservations about prosecuting people who forward letters for SWLs.

This is not the case in England. The well-known 32 Victoria Road, Salisbury, Wilts, address was visited by authorities late last year inquiring about Radio Avalanche, one of the address users. The visit was enough to intimidate the owner of the address, and enough to frighten the other address users so that it was agreed shortly afterward to close 32 Victoria Road to pirate mail. While several of these pirates are looking for a new "accommodation address," the British government will seriously consider legislation which would make it blatantly illegal for anyone to forward mail to unlicensed broadcasters. If or when this law comes into effect, it is likely that many of these British "Free Radio" pirates will seek an accommodation address in another European country. A law banning accommodation addresses in England would be of little consequence to the pirate, but simply a minor nuisance.

Here in the United States, there has never been any FCC harassment or action taken against the people who send your mail to pirates. This is not to say that such action could not be implemented in the future, but it seems rather unlikely. For the time being at least, it appears that your pirate reception reports will arrive at their destinations, and that your QSLs will be forthcoming.

In Conclusion...

The AM Press/Exchange is a publication dedicated completely and passionately to the AM mode of communication. If you are a ham or just have a basic interest in AM, send a large SASE for information to: The AM Press/Exchange, Dept. PC, Rt. 1, Box 281, Woodlawn, TN 37191.

H'A'R'K is a club dedicated to the enhancement of legal FCC Part 15 broadcasting. For more information, write H'A'R'K, attn: Mr. Arnold Timm, Dept. PC, 2308 Garfield #304, Minneapolis, MN 55405.

If you haven't heard by now, Gerry Dexter's Clandestine Confidential newsletter is a very good bi-monthly source of information on worldwide clandestine broadcasting activity. For information, send a large SASE to Gerry Dexter, RR 4, Box 110, Lake Geneva, WI 53147.

Thanks for tuning in this month. If you have any information you would like to contribute to this column, including loggings, insight, Xerox copies of QSL cards or pennants, etc., please write me at The Pirates Den, c/o Popular Communications magazine, 76 N. Broadway, Hixville, NY 11801. Good DXing!
The 10th Edition of Gerd Klawitter's book *Time Signal Stations* has recently been issued (in the past this book was published under the name of *List of Time Signal Stations*). This is a bilingual (English and German) publication containing 82 pages and listing a great wealth of information on Standard Frequency and Time Radio Stations throughout the world—callsigns, frequencies, schedules, transmission characteristics, QSLing policies, etc. This covers all such stations known to be operating between 20 kHz and 170 MHz. The book costs $4 from Wolfgang Scheunemann Verlag, Verlagsbuchhandlung, Bonner Strasse 328, 5000 Koln 51, West Germany.

The QSL Address Book, by Gerry L. Dexter, is a new 104-page book which (in its 4th Edition) continues the tradition of providing a goldmine of information for those who are into seeking QSL cards. Not only does Dexter offer the latest mailing addresses, but he also "grades" each station for its willingness and reliability to provide QSLs! Text material at the beginning of the book tells how to write a report for maximum QSL return and offers many useful hints from this well-known veteran DX chaser (Dexter has verified 225 countries which is one of the top scores in the world). This book is $6.95 from Giler Associates Inc., P.O. Box 239, Park Ridge, NJ 07656.

Techniques For Harassment (How The Underdog Gets Justice), by Victor Santoro is one of the most unusual books to come along in quite a while. In today's society there exists a large "gray area" of justice where the average good guy gets it from all sides and seemingly has no way of getting satisfaction—no, getting justice—no, retribution—no, getting revenge! Many wrongs done to the average person fall short of being criminal, so no help in setting the record straight can be expected from the police. Others are of such a nature that it simply isn't practical or economically feasible to seek legal retribution. In this book, Santoro outlines a virtual encyclopedia of simple, improvised "dirty tricks" the underdog might use to display his unhappiness at getting done-in, thereby reducing his target (tormentor) to a quivering mass of jelly. No legal or moral assessments are made, and the book cautions the reader that it is offered for "entertainment purposes only." It's $7.95 plus $1 postage, from CRB Research, P.O. Box 56, Commack, NY 11725.

The Shortwave Book is a really useful collection of monitoring articles from different authors. Topics include buying a receiver, features on specific broadcasters, jamming, audience research, getting started in short-wave listening. Authors whose works are included are the likes of George Wood, Tom Kneitel, the BBC's Graham Myton, and others well known in the field. This book is $9.99 (+ $1.50 postage) from Miller Publishing, 424 West Jefferson St., Media, PA 19063. This company has also issued a new book on *Netherlands World Broadcasting*, as well as one called *Tune In World: A Lis-
May We Recommend . . .

The American SWL Club, 16182 Ballad Lane, Huntington Beach, CA 92649. This club has been operating since 1959. It publishes an excellent 60 page monthly DX publication covering shortwave and broadcast band DX, utility stations, QSL reports, and more. The club cosponsors three annual DX meetings per year held in southern California. Dues in North America are $16 per year (includes First Class Mailing of monthly publication). Students (located in North America and 16 years old or younger) can join for $13 per year. A sample bulletin is available from the club for $1 (in North America).

SPEEDX, P.O. Box E, Lake Elsinore, CA 92330. This group offers several grades of membership based upon the amount of participation in the organization's publication which, coincidentally, is called SPEEDX! The publication runs 60 pages per month and is chock full of news and information, frequency listings, skeds, and other information on shortwave stations, including utilities. The publication even includes a technical section. The group also offers a number of excellent reference publications and DXing aids. Annual membership in North America is $16 (includes First Class Mailing of publication). A sample copy of SPEEDX is available from the group at $1 (to anywhere in North America).

The Longwave Club of America, 45 Wildflower Rd., Levittown, PA 19057. Here's a club for those rugged enthusiasts interested in knowing what's happening below 540 kHz! Their monthly publication, The Lowdown, not only covers listings of stations operating between 10 and 540 kHz, but also has interesting coverage of the 1750 Meter (no license) low power communications band as conducted by Ken Cornell (W2IMB)—well known "Lowfer" authority. Membership includes mailing of the publication by First Class Mail and costs $10 per year (anywhere in the world).

When writing to the above, please mention that you saw it in POP! COMM!

The new Sony ICF-2002 is here! From one of America's largest Sony SWL dealers.

REG $249.95
INTRODUCTORY SPECIAL $224.95
Plus $3.00 UPS

AVAILABLE NOW!

SONY

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN1</td>
<td>$79.95 + ($3 UPS)</td>
</tr>
<tr>
<td>ICR4000</td>
<td>$69.95 + ($2 UPS)</td>
</tr>
<tr>
<td>ICF8000</td>
<td>$69.95 + ($10 UPS)</td>
</tr>
<tr>
<td>AC7W</td>
<td>$12.00 + ($2 UPS)</td>
</tr>
<tr>
<td>AC16W</td>
<td>$14.00 + ($2 UPS)</td>
</tr>
<tr>
<td>DCC127</td>
<td>$29.50 + ($2 UPS)</td>
</tr>
<tr>
<td>AG120</td>
<td>$11.00 + ($2 UPS)</td>
</tr>
</tbody>
</table>

PANASONIC

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF9</td>
<td>$87.00 + ($2 UPS)</td>
</tr>
<tr>
<td>RF850</td>
<td>$129.00 + ($2 UPS)</td>
</tr>
<tr>
<td>RF8300</td>
<td>$219.00 + ($3 UPS)</td>
</tr>
</tbody>
</table>

ICOM

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICR71</td>
<td>$739.00 + ($9 UPS)</td>
</tr>
<tr>
<td>DX1000</td>
<td>$529.00 + ($3 UPS)</td>
</tr>
</tbody>
</table>

AMECO

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLF2 Preamp</td>
<td>$57.95 + ($3 UPS)</td>
</tr>
<tr>
<td>EAVESDROPPER</td>
<td>$59.95 + ($3 UPS)</td>
</tr>
</tbody>
</table>

MFJ

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020</td>
<td>$78.95 + ($2 UPS)</td>
</tr>
<tr>
<td>7520</td>
<td>$89.95 + ($2 UPS)</td>
</tr>
<tr>
<td>304</td>
<td>$79.95 + ($2 UPS)</td>
</tr>
<tr>
<td>308</td>
<td>$96.95 + ($2 UPS)</td>
</tr>
</tbody>
</table>

Shipping charges in parenthesis are for continental U.S. only. International orders write for pro forma invoice. Illinois residents please add 7% sales tax.

Phone: (312) 848-6777

SPECTRONICS

1009 GARFIELD ST. OAK PARK, IL 60304

Spectronics Proudly Sponsors "Radio Earth" which can be heard at 03:00 GMT on 6.185 MHz seven days a week.

THE MONITORING MAGAZINE

CIRCLE 77 ON READER SERVICE CARD

71
New Experimental Stations

The Commission took these actions:
KO2XAF, Mississippi State University, airborne, within 20 mile radius of Bryan Field, MS. Station to operate on 1750 MHz to demonstrate video capability in connection with MSU/GELAC Caproni Aircraft.
KM2XMF, Northern Telecom, Inc., Richardson, TX and 50 mile radius. Station to operate in 870-890 and 825-845 MHz bands to develop a competitive and efficient cellular service per report and order of Docket 18262.
KM2XMG, Northern Telecom, Inc., Plano, TX and 50 mile radius. Station to operate in bands as stated in above license for the same purpose.
KO2XBM, Pathcom, Inc., Harbor City, CA and 1 mile radius. Station to operate in 870-890 and 825-845 MHz bands to develop equipment for use in cellular radio service.
KO2XBI, The Pennsylvania State University, McAleves Fort, PA. Station to operate on 49.80 and 49.92 MHz for high resolution measurement and analysis of winds in the troposphere and lower stratosphere.
KO2XBN, Quintron Corp., Quincy, Illinois and 25 mile radius. KO2XBO, Quintron Corp., Quincy, Illinois and 25 mile radius. KO2XBP, Quintron Corp., Quincy, Illinois and 25 mile radius. The above stations to operate in 870-890 and 825-845 MHz bands to develop cellular base transmitters, receivers, and control equipment.
KO2XBL, Raytheon Service Company, Bedford, MA. Station to operate on various and discrete frequency bands from 138-17700 MHz to measure the radiation characteristics of microwave antennas being developed.

Limited Spectrum Occupancy Study

The Limited Spectrum Occupancy Study, prepared by the FCC's Field Operations Bureau as part of the Commission's data-gathering process to enable it to make an informed decision on the petition (RM-3975) by the Los Angeles County Sheriff's Department for additional spectrum, is available. The Sheriff's Department requested additional spectrum on the grounds that the allocation is insufficient and/or unsuitable to meet current and future requirements. The study, which will be incorporated into the record of RM-3975, has been published in two volumes. The first volume contains the body of the report. Volume II contains a listing of all the sample occupancies (in percent) by monitoring locations, frequency, day of the week and half-hour sampling period.

Copies of the report may be obtained from International Transcription Services, Room 246, 1919 M St. N.W., Washington, DC 20554; (202) 296-7322.

FCC Amends Rules Pertaining to Licensing In Various Radio Services

In line with its ongoing deregulation program, the Commission amended its rules regarding commercial radio operator licenses and the requirements for such licenses in various services.

In April 1983, the Commission issued a Notice of Proposed Rulemaking requesting comments on the following proposed changes in Rule Parts 13, 21, 73, 74, 78, 90, 94, and 95:

- The modification and, in certain instances, elimination of Commission Rules that require licensed commercial radio operators in the broadcast and broadcast-related auxiliary services.
- The elimination of rules that permit only licensed commercial radio operators to perform duties in the Private Land Mobile and Fixed, Personal, Domestic Public Fixed, and Cable Television Relay Services.
- The issuance of General Radiotelephone Operator licenses for a lifetime term.
- Extension of the renewal grace period from one year to five years for commercial radio operator licenses that would continue to require renewal.
- Abolishment of the restrictive endorsement placed on commercial radio operator licenses held by blind persons.
- Elimination of the requirement that the holder of a Third Class Radiotelegraph Operator Permit repeat the Morse code test when applying for a second class license after one year has elapsed.
- The abolishment of the Aircraft Radiotelegraph Endorsement.

After analyzing the comments and taking into consideration recent legislation enacted by Congress relating to the Private Land Mobile and Fixed Services, the Commission adopted most of the proposals as set forth in the Notice. However, it modified its proposed rule changes regarding elimination of the requirement for licensed commercial radio operators in the Private Radio Services and took certain additional actions related to those changes and to the proposal to issue General Radiotelephone Operator licenses for a lifetime term.

With regard to the proposals concerning the Private Land Mobile Radio Service, Private Operational-Fixed Microwave Service, and the Personal Radio Services, the Commission modified its proposed rule changes to emphasize that the installation, service, or maintenance of transmitter equipment should be performed by qualified technicians certified by organizations or committees representative of users in the Private Land Mobile and Fixed Services.

The FCC said that, pursuant to Section 10 of Public Law 98-214, it endorses and encourages organizations or committees representative of users in the Land Mobile and Fixed Services to establish industry certification programs for technicians. It will, in the near future, be issuing a public notice indicating organizations that have expressed an interest to the Commission in establishing such certification programs. To be placed on this list, appropriate organizations should contact one of the individuals listed below.

It further stated that it would issue a special one-time diploma-type lifetime General Radiotelephone Operator License Certificate to existing General Radiotelephone and Radiotelephone First and Second Class Operator License holders. This special license certificate will be issued for a one-year period with further details to be announced later.

The Committee adopted the remaining rule changes as originally proposed in the Notice. The rule changes concerning the elimination of the requirement that only General Radiotelephone Operator License holders perform certain duties on transmitter equipment in the Private Radio Services (Rule parts 90, 94, and 95) will be effective until 180 days after publication of the Report and Order in the Federal Register in order to allow appropriate organizations sufficient time to establish technician certification programs. The other rule changes to Parts 13, 21, 73, 74, and 78 will be effective 30 days after publication of the Report and Order in the Federal Register.

Request For Reinstatement Of Application Denied

The FCC denied the request of The Guardian Alarm Company of Michigan for reinstatement of its application for an 800 MHz Specialized Mobile Radio System (SMRS) in Southfield, MI, near Detroit. The application had been dismissed by the staff for being late-filed, arriving at the Gettysburg licensing division April 20, 1983, five days after it was due.

On February 23, 1983, the Commission issued a public notice specifying the pro-
cruedures to be followed by applicants for 800 MHz frequencies in the Detroit, MI, and Cleveland, OH areas. It indicated that applications such as Guardian's should be submitted to the Private Radio Bureau's Licensing Division in Gettysburg, PA by April 15. Guardian submitted an amended application to the Office of the Secretary of the Commission in Washington, DC, on April 15. It was forwarded to Gettysburg, arriving there April 20.

On June 17, 1983, Guardian asked the bureau to reinstate its application on the basis that submission to the Office of the Secretary constituted a timely filing. The bureau denied this request.

On August 16, 1983, Guardian asked the Commission to renew that decision, again contending that submission of its application to the Secretary constituted a constructive receipt of the application by all branches of the Commission.

The FCC said Guardian failed to present any unique or compelling reason to justify its failure to conform to the Commission's rules, which require filing with the licensing division, and the explicit terms of two public notices giving filing instructions.

Flight Test Stations In 2310-2390 MHz Band Proposed

In response to a petition by The Aerospace and Flight Test Radio Coordinating Council (AFTRCC), the FCC has proposed amending Parts 2 and 87 to permit the operation of non-military flight test telemetry airborne stations (flight test telemetry stations) in the 2310-2390 MHz band.

The Commission also clarified its rules governing such operations.

Flight test telemetry stations are used to transmit diagnostic test data during the research and development phases of manned and unmanned aircraft, missiles, booster rockets, and other expendable vehicles or their major components. In this country, government agencies and non-government FCC licensees are authorized to use flight test telemetry frequencies in the 1350-1355 MHz band on a shared coordinated basis. AFTRCC is recognized by the FCC as the frequency coordinating advisory committee for non-government flight test telemetry station assignments.

The 1350-1355 MHz band was allocated for flight test telemetry operations in 1958. As the number and complexity of flight tests have increased, the 1350-1355 MHz band has become congested. In 1979 the WARC approved the use of the 2310-2390 MHz band by flight test telemetry stations that operate in the United States and its possessions. The Commission's rules have been amended to provide for this allocation.

In addition to proposing use of the 2310-2390 MHz band for flight test telemetry stations, the Commission proposed:

- Eliminating the rules specifying certain telemetry frequencies for assignment to manned flight test telemetry operations and others for assignment to unmanned flight test telemetry operations
- Limiting the maximum power output for flight test telemetry transmitters to 25 watts
- Permitting wider channel bandwidths to accommodate the greater amount of data required from advanced flight test vehicles
- Permitting telemetering operations associated with flight test telemetry to share the telemetry channels.

Inquiry On Future Public Safety Requirements

The FCC began an inquiry leading toward development of a plan to ensure that current and future spectrum requirements of state and local public safety authorities are accommodated in allocations of the electromagnetic spectrum. As a first step toward developing the plan, this inquiry solicits comments from public safety authorities and the public which will enable the Commission to perform a study to identify the spectrum telecommunication requirements of public safety authorities and the need for contiguous spectrum on a national basis.

Specifically, the Commission asked for comments on the problems of existing public safety communications systems; the anticipated growth of these systems; possible new applications of radio; whether new operational configurations result in requirements for additional communications capacity; and how these needs can best be met.

The Commission said that several events have led to its conclusion that the time has come to reexamine the communications needs of public safety entities and the efficacy of its existing spectrum management policies to meet those needs:

- The Private Radio Bureau released a report in which substantial land mobile spectrum shortages and a continued increase in public safety stations were projected
- A petition filed by the Los Angeles County Sheriff's Department requesting additional frequencies for public safety use due to currently existing spectrum shortages in some areas of the country
- The Authorization bill for the Commission for FY 1984 and 1985 (Public Law 98-214) amends the Communications Act to provide for expenditure of funds during those years to establish a plan to ensure that the needs of public safety entities will be accommodated in the agency's spectrum allocation proceedings.

The Commission said that its inquiry is an initial step towards meeting the requirements of Section 9(a) of the Authorization Act (PL 98-214). Other requirements of Section 9 will be addressed by the Commission as it proceeds to establish a plan to ensure that public safety needs are taken into account in spectrum allocation matters.

Reimbursement Of Costs For Volunteer-Administered Amateur Radio Exams?

The FCC proposed amending its rules to implement Public Law 98-214, approved last December 8, which amended the Communications Act to provide for reimbursement of out-of-pocket expenses incurred by volunteer examiners (VEs) or volunteer examiner coordinators (VECs) in connection with the preparation, processing, or administration of examinations for amateur station operator licenses above the Novice class.

Specifically, the FCC proposed that:

- The total allowable cost to be reimbursed per examinee may not exceed $4.00, which can be adjusted each January for changes in the Department of Labor Consumer Price Index.
- The amount of reimbursement from any examinee for any examination or series of examinations related to a single application may not exceed the published maximum
- VEs or VECs maintain records of the out-of-pocket expenses and reimbursements and certify to the FCC annually that all reimbursed expenses were necessarily and properly incurred
- The VEs and VECs make arrangements among themselves for collection and distribution of the reimbursements

The Commission noted that it would continue to administer some examinations in its field offices and at a few remote points this year until such time as the volunteer program is in place. Pointing out that it wanted to implement the volunteer program as soon as possible, the FCC said it would allow 30 days for comments on its proposals, with replies due 15 days thereafter.

NEW TV CONVERTER BOOK

This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the Sine-wave, Gated Pulse, SSAVI system, plus the methods used by most cable companies. Includes circuit schematics, theory, and tips to help you get the best TV reception. Order your copy today, only $12.95 plus $2.00 for first class P & H. Arizona residents please add 6% sales tax. No charge card or COD orders accepted. Foreign orders please remit in U.S. funds and add $5.00 for air mail postage.

CIRCLE 41 ON READER SERVICE CARD
To preserve your copies of POPULAR COMMUNICATIONS

A choice of handsome and durable library cases-or binders-for your copies of POPULAR COMMUNICATIONS. Both styles bound in dark blue library fabric stamped in gold leaf.

Cases: Each case hold 12 issues. Price per case $5.95; three for $17.00; six for $30.00, postpaid.

Binders: Each binder holds 12 issues. Issues open flat. Price per binder $7.50; three for $21.75; six for $42.00, postpaid.

(Canadian and foreign requests should also include an additional $2.50 per item for shipping costs.)

To: Jesse Jones Industries (Since 1843)
P.O. Box 5120, Dept. P-Com, Philadelphia, PA 19141

I enclose my check or money order for $. Please send me ___ POPULAR COMMUNICATIONS
□ Files □ Binders Please allow approximately 4 weeks for delivery

(Please Print)

Name
Address
City
State
Zip

74 / POPULAR COMMUNICATIONS / July 1984

THE MONITORING MAGAZINE
ELECTRONIC SPYING is the name of the game. It's also the title of a startling book which reveals the closely guarded methods & equipment used by professionals & amateurs who eavesdrop on homes & businesses with (sometimes) legal & (usually) illegal bugs & wiretaps. Written in non-technical language everyone can easily understand, ELECTRONIC SPYING has photos & illustrations to help you clearly understand exactly how they do it & where they get the equipment (much of it expensive & easily available). Leaves nothing to the imagination! Latest techniques covered & offers an in-depth wealth of information on the ever-expanding electronic invasion & what's available from other resources. This book is used by law enforcement agencies as a reference manual. Only $7.95 (plus $1.00 postage) per copy from CRB Research, P.O. Box 56, Commack, NY 11725.

NEW TOP SECRET REGISTRY OF U.S. GOVT' FREQUENCIES by Tom Kneitel. Yes, it's finally here! The NEW 5th Edition is now 168 pages BIG in large 8½ x 11 format (same page size as POPCOM). Latest federal scanner frequency listings for FBI, FCC, Border Patrol, ATF, Immigration, Secret Service, CIA, Customs, Coast Guard, Armed Forces, and much more. Tens of thousands of call signs, frequencies, locations. The ultimate scanner directory also reveals many HF listings plus complete historic roster of all federal land stations authorized in 1923 (60 years ago). New 5th Edition auto $16.95 prepaid by Book Mart, or add $2 for First Class Mail. Wanting? Order your copy now! CRB Research, P.O. Box 56, Commack, NY 11725.

SIDEBAND OPERATORS! Join the largest/nursest operator of medium to low power shortwave radios. Services include all accessories and transit case, $85. Frank Moreland, 3748 Yo- semite, San Diego, CA 92109.

DANGER: Microwave and ELF Health Hazards: Send $2.00 for catalogue of books and sample Newsletter. Negeye Laboratories, Penobscot, WY 26415.

CLANDESTINE CONFIDENTIAL keeps you up to date on the latest in clandestine broadcasting. 6 issues per year $10.00 in the U.S., $13 foreign. For additional stamped long (#10) envelope for free details and application (no obligation) SSB Network, P.O. Box 908, Smithtown, NY 11787.

RF-204/U RF INTERFERENCE DETECTOR. Locates hidden sources of RF such as bugs (see January Popular Communications) for $49.00 plus handling. Send self-addressed stamped long (#10) envelope to: Manufacturer, 91-244/79 Ridgewood, Box 110, Lake Geneva, WI 53147.

CB RADIO MODIFICATIONS! Increase channels, range, privacy. Conversion hardware, books, plans, kits, repairs. Catalog $2 CBCI, Box 31500PC, Phoenix, AZ 85046.

LOWEST PRICES ON BEARCAT, REGENCY SCAN- NERS: Trade-ins, Used Scanners, covert cloner, Decranelers, Accessories. Free catalog! Spotlight Communications, Box 3047, Greenville, SC 29634-3037.

PHOTOVOLTAIC POWER SYSTEMS (solar electri- city)—stand alone or standby power for your communications system. Lightweight, rugged, construction for decades of reliable power when and where you need it! Catalog $2 (refundable), contact Current Alternatives, P.O. Box 160P, Northfield, VT 05663.

THE BOOTLEGGERS BIBLE, $12.95 and other CB Radio Books, kits, Modifications, Catalog $1.00 refun- dable! APS, POB 263PC, Newport, RI 02840 (401) 846-5627.

THE MONT ROV AND OAK CABLE CONVERTERS, Decoders, Catalog $1.00 Refundable With Purchase APS, POB 263PC, Newport, RI 02840 (401) 846-5627.

THE BOOTLEGGER'S BIBLE, $12.95 and other CB Radio Books, kits, Modifications, Catalog $1.00 refund-able! APS, POB 263PC, Newport, RI 02840 (401) 846-5627.

NEW JERROLD AND OAK CABLE CONVERTERS, Decoders, Catalog $1.00 Refundable With Purchase APS, POB 263PC, Newport, RI 02840 (401) 846-5627.

FREE Attention Shortwave Listeners
Finally, a professional newsletter for the seri- ous listener. For free sample copy send $3.00 US coins or stamps (70c Canadian) or IRCs overseas to cover postage and handling to:

Miller Publishing—242 West Jefferson St., Suite B Media, PA 19063

Please send all reader inquiries directly.

Telephones & Accessories

AT LOWEST PRICES
- Cordless Phones
- Memory Phones
- Answerers
- Dials
- Hardware
- Speaker Phones
- Call Diverters
- Feature Phones

Send for Complete Catalog

UNIQUE COMMUNICATIONS, INC.
181 E. Longview, P.O. Box 5234
Monett, MO 65708
(417) 226-6996

CIRCLE 65 ON READER SERVICE CARD
LOCALIZED SCANNER FREQUENCY DIRECTORY.

Finally, a frequency book for your local area—no sever-
states or half things just for your city and is cross-referenced three different ways for easy
use. Currently available in the following cities: Cincin-
na/Dayton, Columbus, Toledo, Cleveland; Ft.
Wayne/Lima, Chicago, Detroit/Windsor; Buffalo/
Louisville/Lexington, Tampa/St. Pete; Orlando/Day-
tona Beach; Oklahoma City/Lawton; Kansas City; Dal-
las/Ft. Worth; Los Angeles; and Hawaii/Guam. Spe-
city when ordering Send $9.95 Check or Money Order
plus $1.00 First Class Mail to: Executonal Services Co.
Dept. B, P.O. Box 61, Dayton, Ohio 45404

TIMEX AND T199/4A SWL Log, Satelller Tracker and other programs. $5.95 each. CW/RTTY for timex/2X
SASE for information. Kentronics, Box 586, Vernon,
AL 35592

MILITARY COMMUNICATIONS RADIOS. CPRC-26
Maripao Radio, nicely compact, transceives 42-54
MHz (6 meters) on 4 bands, with battery box on-
handset. Oner crystal: $22.50 apiece. $42.50/pair.
ARC-510 Backpack Radio (Canadian version of U.S.
PRC-118), transceives 38-54 MHz (6 meters) FM with
battery box, antenna, handheld: $39.50 apiece.
$77.50/pair. R 108 Receiver: 20 MHz FM. $27.50
mint. ARC-27 Aircraft Guard Receiver. 220-250
MHz simplex channel: $12.50/mint. 45 Day
Replacement Guarantee Schematics included. Add $5/unit shipp-
ing. Baytronics, Dept. PC, Box 591, Sandusky, OH
44870

EARN $800 + WEEK! Get your “F.C.C. General Radio-
edi设备 license” — fast, inexpensive! Electronics
Home Study. Free details. Command, D-125, Box
2223, San Francisco, CA 94126

FCC COMMERCIAL GENERAL RADIO TELEPHONE
LICENSE CORRESPONDENCE COURSE. 60 individ-
ual lessons only $89.50. Payment plan available. Results
guaranteed! Send for details. American Technical
Institute, Box 201, Cedar Mountain, NC 28718

FREQUENCY FILE and many other programs for the
Timex and T199/4A computers CW/RTTY for the
Timex. SASE for information. Kentronics, Box 586,
Vernon, Alabama 35592

FREQUENCY RESEARCH SERVICE for scanner op-
tors. What is that unknown station? Send SASE for in-
formation. Communications, Box 997, Las Vegas,
Nevada 89125

NORTH AMERICAN RADIOS TV STATION GUIDE
book listing all US/Canadian/Mexican/West Indies
AM/FM/TV broadcasters according to location/fre-
cuency/callsign plus TV network affiliation, AM station
day/nite power, schedule data, etc. Painstakingly com-
plete, accurate, up-to-date. The ultimate broadcast sta-
tion directory. Only $9.95 (plus $1 postage) from CRB
Research, P.O. Box 56, Comback, NY 11725

FREE VIETNAM CATALOG: Combat radio tapes, T Shirts, flags, more! Enclose 20¢ stamp (no stamp-
catalog) to Bien Hoa Productions, Box 56, Dept.
C.F. Cypress, CA 72702

ENJOY SATELLITE TELEVISION — Save money with
easy, guaranteed, do-it-yourself antenna plans kits
Electronic knowledge not necessary. Send $1.00 for cata-
log. GFI, 37, 9108, Moette, MA 58907

ATTENTION HAMS and SWL's. Beat the over-priced
antenna market. Antennas, kits, and 6061 T6 058 wall
 tubing in popular sizes. Wize, Antenna Dimensions,
P.O. Box 340, Germantown, NY 27019

BUGGING DEVICES: Power packed electronic surveil-
ance FM transmitters. Famly of fourteen, covering
distance from 50m to 3.000m. Offer Sheet Air Charges
$2.00 Asian, Box 1504 CPO, Tokyo, Japan 100-91
The Bearcat® DX1000 makes tuning in London as easy as dialing a phone.

Direct access keyboard tuning brings a new level of simplicity to shortwave radio. With the Bearcat® DX 1000, dialing in the BBC in London is as easy as dialing a telephone. And you can switch from the BBC to Peruvian Huayno music from Radio Andina instantly. Without bandswitching.

Featuring the innovative microprocessor digital technology made famous by Bearcat scanner radios, the DX 1000 covers 10 kHz to 30 MHz continuously, with PLL synthesized accuracy. But as easy as it is to tune, it has all the features even the most sophisticated "DXer" could want. 10 memory channels let you store favorite stations for instant recall—or for faster "band-scanning" during key openings. The digital display measures frequencies to 1 kHz, or at the touch of a button, doubles as a two time zone, 24-hour digital quartz clock. A built-in timer wakes you to your favorite shortwave station. Or, it can be programmed to activate peripheral equipment like a tape recorder to record up to five different broadcasts—any frequency, any mode—while you are asleep or at work.

The DX 1000 also includes independent selectivity selection to help you separate high-powered stations on adjacent frequencies. Plus a noise blanking system that stops Russian pulse radar interference.

There's never been an easier way to hear what the world has to say. With the Bearcat DX 1000 shortwave radio, you have direct access to the world.

For the name of your nearest retailer dial toll-free... 1-800-SCANNER.

Frequency Range: 10 kHz to 30 MHz continuously. Tuning: Direct keyboard entry; selectable 3 or 24 kHz per revolution knob tuning, or manual step tuning in selectable 1-99 kHz steps. Sensitivity: 10 μV AM, 0.5 μV CW/SSB/FM, 16-30 MHz. Image and IF Rejection: 70 dB or more.

Memory: 10 frequency capacity.

Frequency Stability: Better than 100 Hz after warm-up.

Bearcat® DX 1000 shortwave radio.

Direct Access To The World.

Electra Company, Division of Mascot Corp. of Indiana
360 East County Line Road
Cumberton, Indiana 46229
ICOM IC-751
The New Standard of Comparison

The IC-751 is the most advanced amateur HF transceiver available on the market today... the new standard of comparison.

Receiver. ICOM's 100kHz-30MHz general coverage receiver with a specially designed DFM (Direct Feed Mixer) utilizes FETS in the receiver front end which gives extremely low intermodulation distortion, 219dBm intercept point, and a high dynamic range, 105dB. With cascaded filters, the IC-751 is virtually immune to overload. The FL-44 8-pole crystal in the third IF is standard and provides exceptional receiver selectivity.

Transmitter. An extremely low-noise PLL and conservative transmitter design give extremely low distortion products (-38dBm, third order) for a crystal clear transmit signal. A microphone tone control is provided to personalize the set to your particular voice.

32 Memories. An ultra versatile memory system allows storage of frequency and mode in each of the 32 memories. Data may be transferred from VFO to memory or from memory to VFO.

Standard Features. FM, FL-44A, 455KHz high-grade SSB filter, SSB and FM squelch, built-in marker unit, convenient large controls, a new high-visibility fluorescent display and HM-12 Hand Mic.

Options and Accessories. Voice synthesizer, high stability master reference crystal, a wide range of CW filters, an external IC-PS15 or PS30 power supply, an internal IC-PS35 power supply, CT-10 computer interface unit, RC-10 keyboard frequency controller, IC-2KL solid-state linear amplifier (160-15 meters), IC-AT500 automatic antenna tuner, IC-SP3 external speaker and IC-SM6 desk mic.

IC-PS30 System Power Supply. The IC-PS30 25 Amp Switching Power Supply consolidates your power requirements by supplying up to four pieces of ICOM equipment, eliminating the need for independent AC power supplies for each. The IC-PS30 is designed to match all of ICOM's amateur equipment.