Space Shuttle Comms YOU Can Hear!

- Smooth Sailing With Radio London
- Time For A New CB Service?
- Product Parade — HOT New Sony Scanner And More!
- Double Product Spotlight: DataFile’s Probe 4.0 And MFJ’s Receiver Preselectors

Radio Privacy Bill Passes...page 12

U.S. $3.50 CAN / INT.
Discover a world of radio beyond your usual AM/FM stations: overseas shortwave, search & rescue, space shuttle communications, Coast Guard patrol. And much more. With ICOM’s new IC-PCR1000, it's easy!

Begin with a local FM station. A few mouse clicks on the dial will open up a different realm of broadcasts, like public safety (police, fire) and business band (taxi, road crews), that you can scan for activity.

Quickly, as your listening habits grow, you'll want to take on more worldwide (HF) broadcasts, like the BBC. Other exotic sounds and voices, many in English, are waiting to be explored. Let the IC-PCR1000 take you there!

Listen at home, work, school, or on the road. Because the IC-PCR1000 is small and 100% PC hardware external, you can take it anywhere — stash it away in a laptop bag. Since the radio's software interface runs on Windows®, you can listen to favorite stations in the background while working in other applications.

A journey of a thousand miles begins with the first step. To find your local authorized IC-PCR1000 dealer, visit the ICOM America website at www.icomamerica.com

Dealer Inquiries welcome. ©1997 ICOM America, Inc. 2380 116th Ave NE, Bellevue, WA 98004 • 425-454-8155.

The ICOM logo is a registered trademark of ICOM, Inc. Cellular frequencies are blocked. Unblocked versions are available only to FCC approved users. Windows is a registered trademark of Microsoft Corporation. PCR1000PC198Y

CALL 425-450-6088 FOR FREE BROCHURE

CIRCLE 82 ON READER SERVICE CARD
PCR1000

ICOM

CALL FOR MORE INFO & PRICING

Communications Receiver For Computer
- Covers 01-1300MHz
- All Mode WFM, FM, AM, SSB, CW
- Employs Band-Tracking RF Filters
- Connects to Your PC Externally

IC-R10

- Wideband, All Mode Receive
- Capability From 5MHz to 1300MHz
- Real-Time Bandscope Shows Band Conditions And Busy Frequencies
- VSC Function, Voice Scan Control
- Pauses Scan Only When Modulated Signals Are Received
- 1000 Memory Channels With 8-Character Alphanumeric Names
- Skip Function Helps Speed Up Scanning
- Many Other Features

IC-R8500

Communications Receiver
- Wideband, All Mode Receive
- Capability From 0.1 to 2000 MHz
- 1000 Memory Channels With 8-Character Alphanumeric Names
- superb high receive sensitivity Over Its Entire Range
- Many Other Features

ICF-SCI

Sony ICF-SCIPC Radio Frequency Scanner
- Total Control of Scanning from PC or Scanner
- Supplied CD-ROM Lists All Receivable Frequencies in the US
- Scans All Frequencies Allowed by the FCC from 25MHz to 1,300 MHz
- 300 Channel/AM/WFM/NFM

CALL FOR MORE INFO

$319.95

$259.95

SONY

ICF-SCIPC

CALL FOR PRICING!

Wideband, All Mode Receive Capability From 0.1 to 2000 MHz.
- 1000 Memory Channels With 8-Character Alphanumeric Names.
- Channels Can Be Grouped Into Banks With Each Bank Capable Of Holding A 10-Character Name.
- Skip Function Helps Speed Up Scanning.
- Many Other Features.

CALL FOR PRICING!

$369.95

UPs Included

SONY

ICF-SCI

(Not Computer Programmable, No CD-ROM)

$259.95

uniden

BC895XLT

Handheld "TrunkTracker"

$309.95

UPs Included

BC235XLT

$254.95

UPs Included

AOR

AR8000B

- 1-1900MHz
- AM, NFM, WFM, SSB, CW.
- Alpha-Numeric.
- Computer Programmable

Call For More Info!

$219.95

UPs Included

Vertex VX-10

- Ultra-Compact VHF or UHF FM Portable
- 40 Ch. 2-Key Keypad or 102 Ch. 16-Key Deluxe Keypad Option
- Alphanumeric Display
- CTCSS/DCS

$235.95

Call For More Info

FT -50RD

- Receive: 76-200MHz, 300-540MHz
- Transmit: 144-148MHz, 430-450MHz
- AM Aircraft Receive
- Digital Coded Squelch
- high-Speed Scanning
- 112 Memory Channels
- Much, Much More!

$249.95

UPs Included

YAESU

FT-100RD

- Call For More Info

$249.95

UPs Included

夷

World’s Smallest Dual-Band Amateur Handheld

- Wide-Band Receive From 76-999MHz, CTCSS/DCS
- Alphanumeric Display
- 500mW Power Output
- Call For More Info

$239.95

UPs Included

SANGEAN

GRUNDIG

New!

Yacht Boy 400

$169.95

UPs Included

NEW!

- 200 Channels, 10 Banks
- 13 Bands From 26-960MHz, includes CB and Aircraft.
- P/UTCSS and DPL/DCS Included.

$219.95

UPs Included

RELLE

HS200

- 200 Channels, 10 Banks.
- 13 Bands From 26-960MHz, includes CB and Aircraft.
- P/UTCSS and DPL/DCS Included.

$219.95

UPs Included

COL'S OK

SAME DAY SHIPPING

21 Garfield St. Newington, CT 06111

Web Site: www.lentinicomm.com

HOURS: M-F 10am - 6pm SAT 10am-4pm UPS Ground (48 states)

Conn Sales Info. & Tech Help 860-666-6227

CIRCLE 145 ON READER SERVICE CARD
FEATURES

American Pop Radio’s Invasion Of England 8
It’s smooth sailing for Radio London.
By Peter Hunn

Radio Privacy Bill Passes 12
The impact on scanning is questionable.
By J.T. Ward

The Call Letter Connection 14
What’s behind those call letters? Either more or less than you thought.
By Alice Brannigan

Monitoring Space Shuttle Launches 70
Complete with a list of confirmed frequencies, it’s your guide to hearing shuttle comms and more.
By RD Baker

COLUMNS

Radio Resources: Satellite Phones Coming Down To Earth 20
The Radio Connection: Fixing Speaker Hum And Grid
Caps On Old Tubes 24
Scanning The Globe: Finding The Ones That Almost Got Away, And Fixing Older Scanners 28
ScanTech: Reaching For Those Top-Of-The-Line Radios — What You Need To Know 32
CB Scene: Is It Time For A NEW CB Service? One Way To Get Short-Range, Reliable Communications For Everyone 36

DEPARTMENTS

World Band Tuning Tips: The Easy Way To Navigate International Shortwave Broadcast Bands 40
Product Spotlight: DataFile’s Probe 4.0 and MFJ’s New Receiver Preselectors 44
Computer Corner: Scanning The Races And Opto’s Microcounter 49
The Listening Post: News From Chile, Al Weiner, and Radio Tahiti Repaired 50
The Ham Column: Three Radios For The Price Of One? 58
The ACARS Downlink: Transatlantic Flights And Oceanic Clearance Decoded 60
Broadcast DXing: Broadcasting Goes Sky High With Digital Audio Broadcast Service 65
The Loose Connection: Someone’s Batty In The Belfry. Could It Be Norm? 80

ON THE COVER: The space shuttle Columbia blasts off from Cape Canaveral. Richard “RD” Baker’s “Communications Confidential” column gives you the inside scoop on hearing shuttle comms on page 70. (Photo by Larry Mulvehill)
The Drake SW-1 sets the stage for worldwide shortwave listening with ease, simplicity and clarity. The SW-1 offers superb sensitivity, selectivity and full audio. Coverage from 100 through 30000 kHz provides solid coverage of longwave, medium wave and shortwave in the AM mode (no SSB). This makes it an ideal broadcast receiver for the desk or bed stand. Tuning is a snap via the keypad, manual tuning knob, Up/Down buttons or 32 programmable memories. The LED display is positively huge for easy accurate frequency readout to 1 kHz.

Antenna input is via a 50 ohm terminal or SO-239 jack. A 1/8" mini jack is provided for use with earplug or headphones (not supplied). Includes AC wall adapter for operation from 120 VAC 60 Hz. 10.875"x4.375"x6.25" 4.7 Lbs. One year limited warranty. Proudly made in Ohio, U.S.A. A limited time offer.

Shortwave Receivers Past & Present

is your guide to over 770 shortwave and amateur communications receivers made from 1942 to 1997. This huge 473 page guide includes 108 chapters, representing every major receiver manufacturer. Here is everything you need to know as a radio collector or informed receiver buyer. Entry information includes: receiver type, date sold, photograph, size & weight, features, reviews, specifications, new & used values, variants, value rating and availability. This brand new Third Edition features 840 photos. Become an instant receiver expert!

Universal Radio, Inc.
6830 Americana Pkwy.
Reynoldsburg, Ohio
43068-4113 U.S.A.

800 431-3939 Orders & Prices
614 866-4267 Information
614 866-2339 FAX Line
dx@universal-radio.com

PORTABLES

Universal has shortwave portables from Grundig, Sony, Sangean and Icom. The gorgeous new Grundig Porsche Design is shown. $149.95 ($8 UPS).

RADIO BOOKS

- Discover DXing! By J. Zondlo
- Passport To World Band Radio 1998 New Edition!
- Worldwide Aeronautical Frequency Dir. By R. Evans

Visit Universal Radio on the Internet:
http://www.universal-radio.com

Visit Universal Radio on the Internet:
http://www.universal-radio.com

Please add $2 per title for surface shipping.
BY HAROLD ORT, N2RLL, SSB-596

One Vote Speaks Loud And Clear!

You knew it would happen. It was only a matter of time. Sure enough, H.R. 2369, "The Wireless Privacy Enhancement Act of 1997" made it through the House Commerce Committee. Now it's on to the Senate for a vote. And while it's not great news for otherwise-law-abiding American citizens, those with or without scanners, it could have been much worse. You'll recall the original wording of this ill-conceived piece of legislation penned by Rep. Billy Tauzin would have put the brakes on the scanning hobby — not just the brakes, mind you, but there would have been the force of a sudden stop, with rubber left on the scanning highway!

The re-written version of H.R. 2369 that passed was a much watered-down version of the original bill which, according to Rep. Tauzin, extends "the right to privacy in the digital age." He said, "We in government ought to do everything we can to protect that expectation of privacy. That is what this bill is about." Horsefeathers. H.R. 2369 is really more about the day-to-day business in Washington of talking money. The money that's talking this time is, of course, Tom Wheeler's Cellular Telecommunications Industry Association and other cellular industry providers.

Truth is, it's all about layers and layers of laws designed to protect cell users, and give them a "sense" of privacy in an age when Teflon seems to be the beverage of choice in Washington. So now it's OK for Uncle Newt to carry on over his cell phone, it's more about the day-to-day business in Washington of talking money. The money that's talking this time is, of course, Tom Wheeler's Cellular Telecommunications Industry Association and other cellular industry providers.

Washington, it makes sense to the politicians to push yet another law down the public's throat, but it doesn't make sense to me. But then again, a lot of things that don't make sense to you or me are perfectly clear once you drive inside the Beltway. But the fly in the ointment is that Washington really doesn't care what 'ol Empty Pockets Harold or Joe Six-Pack has to say, but you can bet your disconce that if the likes of Grove, Knieitel, Ort, Barnett, the ARRL, and the dozens of other well-meaning radio hobbyists and organizations had streets and parks named after them, seven-figure bank accounts, and connections to schemesters and insiders in Washington, there would be no H.R. 2369. There would be no ECPA. Money talks. Sad, but true.

Now, of course, in this day and age, it doesn't matter what, if any, scheming Newt, the politicians, or anyone else is doing over the cell phone, it's more important that you, that nasty scanner user heard them. And remember: We're a nation of blamers. It's our fault that Newt was overheard allegedly working a weasel deal on his cell phone. Never mind the details of any alleged schemes or how any of it impacts the rest of America, but like a whistleblower in the Defense Department, you're the one taken out to the woodshed for having the sense to know right from wrong. Is this in the spirit of our Nation? You've got to admit that all this hoopla about 2369 comes at a strange time in our Country, when values and teaching our kids right from wrong. Is this in the spirit of our Nation? You've got to admit that all this hoopla about 2369 comes at a strange time in our Country, when values and teaching our kids right from wrong. Is this in the spirit of our Nation? You've got to admit that all this hoopla about 2369 comes at a strange time in our Country, when values and teaching our kids right from wrong. Is this in the spirit of our Nation? You've got to admit that all this hoopla about 2369 comes at a strange time in our Country, when values and teaching our kids right from wrong. Is this in the spirit of our Nation? You've got to admit that all this hoopla about 2369 comes at a strange time in our Country, when values and teaching our kids right from wrong. Is this in the spirit of our Nation? You've got to admit that all this hoopla about 2369 comes at a strange time in our Country, when values and teaching our kids right from wrong. Is this in the spirit of our Nation? You've got to admit that all this hoopla about 2369 comes at a strange time in our Country, when values and teaching our kids right from wrong.

— (Continued on page 77)
Finding Unknown Frequencies Can Be Tricky Without The Xplorer

SALE $799 Limited Time Only
Save $100

The One And Only Xplorer

1. Instantly demodulate any RF carrier from 30MHz - 2GHz. Quickly determine audio quality on any analog radio and monitor that frequency.

2. Quickly determines the frequency of a radio and displays that frequency on its two line LCD display. Ideal for quick radio checks, automatically determining a radio's frequency without receiver setup time.

3. Built-in decoder instantly determines any CTCSS, DCS, or DTMF present for that frequency.

The Xplorer Features:
- 500 memories with time and date
- 1000 frequency lockouts
- Built-in PC interface
- Displays: frequency, CTCSS, DCS, DTMF, Deviation and Signal Strength
- Auto/manual hold and skip
- Sweeps 30MHz - 2GHz in <1 second

FACTORY DIRECT ORDER LINE: 800•327•5912

OPTOELECTRONICS®
5821 NE 14th Avenue • Ft. Lauderdale • FL • 33334
Telephone • 954•771•2050 Fax • 954•771•2052 Email: sales@optoelectronics.com
Specifications are subject to change without notice or obligation. Visa, MasterCard, C.O.D.
www.optoelectronics.com MADE IN U.S.A.
Letters To the Editor

Getting It Off His Chest

Dear Editor:

I have been a shortwave listener for the past 15 years and love this hobby like no other! But something is happening that's beginning to erode this wonderful hobby. Can it be the computer? Is it the hard core ham that fights lifting the CW? I wish I knew the answer.

And I have already given up on obtaining QSLs from stations. Why? I've been polite, even enclosing money for return postage. It strikes me that so many countries are beaming English to us, which proves they want us to listen to them, why then do they fail to confirm our reports? It doesn't make much sense.

I am in the very twilight years, so just cannot seem to grasp learning the Morse code. By golly, if they dropped this silly regulation, I'd sell my car to purchase a transceiver. It's certainly tempting to go to CB and do some freebanding. Can you blame me? I wish that someone would really fight this CW thing.

Just re-subscribed to Pop'Comm. "RD" Baker is doing a great job on the utilities! Wish you'd give us more info on propagation and when we can really expect to have good DXing back. I'm not writing to see this in print, just getting a few thoughts off my chest that have been bugging me for much too long.

Ralph Larson Sr., MN

Dear Editor:

I have been a shortwave listener for the past 15 years and love this hobby like no other! But something is happening that's beginning to erode this wonderful hobby. Can it be the computer? Is it the hard core ham that fights lifting the CW? I wish I knew the answer.

And I have already given up on obtaining QSLs from stations. Why? I've been polite, even enclosing money for return postage. It strikes me that so many countries are beaming English to us, which proves they want us to listen to them, why then do they fail to confirm our reports? It doesn't make much sense.

I am in the very twilight years, so just cannot seem to grasp learning the Morse code. By golly, if they dropped this silly regulation, I'd sell my car to purchase a transceiver. It's certainly tempting to go to CB and do some freebanding. Can you blame me? I wish that someone would really fight this CW thing.

Just re-subscribed to Pop'Comm. "RD" Baker is doing a great job on the utilities! Wish you'd give us more info on propagation and when we can really expect to have good DXing back. I'm not writing to see this in print, just getting a few thoughts off my chest that have been bugging me for much too long.

Ralph Larson Sr., MN

Dear Editor:

I have been a shortwave listener for the past 15 years and love this hobby like no other! But something is happening that's beginning to erode this wonderful hobby. Can it be the computer? Is it the hard core ham that fights lifting the CW? I wish I knew the answer.

And I have already given up on obtaining QSLs from stations. Why? I've been polite, even enclosing money for return postage. It strikes me that so many countries are beaming English to us, which proves they want us to listen to them, why then do they fail to confirm our reports? It doesn't make much sense.

I am in the very twilight years, so just cannot seem to grasp learning the Morse code. By golly, if they dropped this silly regulation, I'd sell my car to purchase a transceiver. It's certainly tempting to go to CB and do some freebanding. Can you blame me? I wish that someone would really fight this CW thing.

Just re-subscribed to Pop'Comm. "RD" Baker is doing a great job on the utilities! Wish you'd give us more info on propagation and when we can really expect to have good DXing back. I'm not writing to see this in print, just getting a few thoughts off my chest that have been bugging me for much too long.

Ralph Larson Sr., MN

Judging Folks As Individuals

Dear Editor:

I'm a CB radio operator and No-Code Tech, in that order. I purchased 2-meter/440-MHz equipment six years ago . . .

I think the reason ham radio operators dislike CBers is because when you listen to CB radio, quite often you will hear some exceptionally rude, crude comments and . . . obscenities and disrespect, especially toward women.

A lot of No-Code Techs, myself included, have come up from CB radio. Hams associate them ALL with the rude and crude and are afraid they will bring their horrible radio behavior to 2 meters/440 MHz. It's better and more fair to be judged as an individual, but the majority of new No-Code Techs will be labeled and remembered for the radio that they started on.

I love my radio hobby: CB, ham, scanning, and shortwave, but the CB is the first to be turned off when it gets foolish. There's so much more to enjoy.

Jim Ashe, N1IXA

Delivering The Message

Dear Editor:

The March issue of Pop'Comm is an example of why I subscribe to your publication. There is something for everyone.

I wish to make a couple of comments regarding your editorial "Life Without Radio." Radio is the greatest communication method since developed language. Radio is affordable to almost everyone, and you are 100 percent correct: this is the message we need to deliver to advance the radio hobby.

Secondly, the article about BCB monitoring is no doubt the most important article of all. It is very fitting that it is the lead item. This is where it starts — promotion of good 'ol U.S. AM radio. We desperately need to get the message out that you don't need to spend your inheritance or the family's grocery money to enjoy and participate in the radio hobby, or have a degree in electronics to be involved in the hobby.

Bravo! Pop'Comm came through again. You did good. Thank you. You are a credit to the communications hobby.

Terry Jones, SD

The March issue of Pop'Comm is an example of why I subscribe to your publication. There is something for everyone.

I love my radio hobby: CB, ham, scanning, and shortwave, but the CB is the first to be turned off when it gets foolish. There's so much more to enjoy.
The ASTATIC EchoMax 2000 is the next generation base station CB microphone with microprocessor controlled digital echo.

EchoMax 2000 features an ASTATIC exclusive we call "Slapback Echo." Slapback provides you with an entirely new range of unique sounds... ranging from a "duet" effect to the sound of an announcer at a major league baseball stadium.

EchoMax 2000 also features master gain control, heavy-duty steel construction, two digitally synthesized ETS tones, and dual relays which eliminate annoying receiver "pop."

The affordable EchoMax 2000 is made in the U.S.A. by Astatic, leaders in CB microphone technology, and comes with a one year limited warranty.

Contact your local Astatic Dealer today!
To find the Astatic Dealer nearest to you, call 1-440-593-1111.

CIRCLE 160 ON READER SERVICE CARD
American Pop Radio’s Invasion Of England

The Station That Never Really Went Away . . .

By Peter Hunn

It was a rumor that spread quickly through the school. And, despite their headmaster’s warnings, most of the teenage students just couldn’t keep quiet about it. Finally, at dismissal, kids rushed home through the snowy-wet streets of southern England and quickly discovered that the story about picking up exciting music on their radios was true!

That same 1964 afternoon, a young man, some four miles out to sea, played a record which he hoped others could hear. Soon, millions of people smiled at the thought of their new-found radio friend . . . a ship bearing cagroes of the latest pop favorites, real disc jockeys, and bouncy, Texas-made jingles brightly proclaiming: This is Big L, “Wun-der-ful Ray-dee-O Lon-don!”

Big L’s new medium wave signal added little seasonal spirit for BBC officials. They sternly reminded Parliament that such a station meant nothing wonderful for them, but rather represented a “radio pirate,” suitable for quick closure. Even so, every time someone opened a holiday package containing that era’s most trendy gift, a pocket-size transistor receiver, Radio London seemed to get bigger.

Not Europe’s First Pirate

To be fair, the “Big L” wasn’t Europe’s first pirate broadcaster. During the late 1950s, ship-based commercial radio transmitted to a mass-appeal Danish audience. Like the rest of this period’s unauthorized broadcasts, however, the patter was in a tongue other than the King’s English. Then, circa 1960, a Dutch ocean-going pirate, Radio Veronica, decided to do a few hours of pop music programming directed at Great Britain. An impressive roster of advertisers made Veronica’s cash register ring. This hit a chord with an entrepreneurial Irishman who leased an old ferryboat, rigged it for AM, and started broadcasting with the identification Radio Caroline (after President John Kennedy’s daughter). This craft was anchored in international waters, taking to the airwaves as a renegade daytimer around Easter, 1964. Soon, other UK radio adventurers joined the ranks of Caroline. While most broadcast pop music shipboard, a few, like RADIO 390 (meters/wavelength), emanated its female-targeted, easy-listening music/less-talk format from vintage anti-aircraft gun towers in the Thames River Estuary. Interestingly, the aforementioned stations modeled their presentation on American contemporary radio, at a time when stateside broadcast music outlets expended a great deal of energy trying to be first in their respective markets to spin new hit records by British groups.

On a June Sunday afternoon in 1964, local businessman and Eastland, Texas mayor, Don Pierson, noticed a newspaper article that eventually caused genuine American pop radio styling and the “Liverpool sound” to merge in the air over the Beatles’ home soil. Reading of Radio Caroline’s plans, Pierson speculated about the great potential such a project would enjoy in a mid-1960s, “pop radio-starved” English environment. He married these musings with the spectacular ratings successes of Top-40 powerhouse, KLIF in Dallas, then called Tom Danaher, a friend (and VW dealership owner) who became enthusiastic about a “KLIF London” radio ship venture. Originally envisioned as a floating, 24-hour, “delayed-broadcast relay” transmitter that would primarily air tapes of KLIF’s Dallas output, the proposal quickly took on a more robust life of its own. This required more investors and started
the proposed station's most interesting bit of gossip: some believed Ladybird
Johnson, wife of the President, invested a bit of dough in the deal.

Legally, the offshore London project was organized by a Bahamian firm, but
funding really came from Texas business interests. The entrepreneurs heard about
an $80,000 former navy minesweeper that still had some life in her. They made
a deal with officials of the Florida port where she'd been impounded, and soon
had the craft equipped with RCA's state-of-the-art 50000-watt Ampliphase AM
transmitter and (from Union Metals of Ohio) 212-foot guyed "tower" mast.
Christened Galaxy, she was registered to a Panamanian corporation owned by the
previously mentioned Lone Star Staters. Before the big transmitter, powered by
Cummins Diesel generators, could be fired up, pads of copper had to be secured
to the ship's underside so the copper attachments, not the hull, would suffer the
corrosive effects of electrical radio frequency energy and salt water.

Meanwhile, in Dallas, the PAMS company began producing jingles for the ven-
ture with the same flavorful energy keynoting many famous U.S. rockers,
like KLIF and New York's WABC. For a number of obvious marketing reasons,
including the fact that Dallas — site of the Kennedy assassination — had a
somber reputation, it was decided that the station would not air KLIF tapes. That
meant the name "KLIF London" was a "no go," and a more appropriate handle
had to be found. For a while, paperwork was printed bearing "Radio X," but
"Radio London" nomenclature rolled off the organizers' tongues as more a satis-
fying choice.

Now came the task of finding staffers who could adapt U.S. Top-40 to British
tastes. DJs were hired from various ports-of-call. Initiation included a healthy
audio dose of KLIF Dallas aircheck tapes so that the new Radio London personali-
ties better understood the format on which their programming would be based.

A few days before Christmas 1964, the whole package commenced operation
just outside of British territorial waters — so that the radio ship was inside no coun-
try's jurisdiction — at 266 meters on the "medium waves." This frequency was
close to the BBC's "proper" easy listening channel, so Brits didn't have to do
much dial twisting to receive the official American Top-40 sound of Radio
London. Big L's coverage day and night was "like a local" in much of southern
England. Ad sales were handled through a land-based London office. With an esti-
mated 12 million-plus listeners (plus additional millions on the Continent),
Radio London gained an impressive share

"Big L" personality Dave Dennis intros a record. The fact that he's able to use the turntable
indicates the photo was taken on a day when the sea was relatively calm. (Courtesy of East
Anglia Productions)

Installing an antenna on your pickup?
You don't have to drill holes...

FireStik
Stake-Hole Mounts
Fit truck bed stake-holes on early and late model trucks. Compatible with shells, tono covers and bed liners.

FireStik ANTENNA COMPANY
602-273-7151 • facts@firestik.com
http://www.firestik.com
CIRCLE 70 ON READER SERVICE CARD

Visit our web site!
www.mouser.com
FREE catalog is available on the internet, CD-ROM, or in paper!
• 70,000+ Products • 145 Suppliers
• Same Day Shipping • No Minimum Order
800-992-9943
817-483-6828 Fax: 817-483-0931
www.mouser.com catalog@mouser.com
958 North Main St, Mansfield, TX 76063
CIRCLE 73 ON READER SERVICE CARD
of commercial clients. Additionally, many non-profit organizations benefited from "Big L" air exposure, promotion, and fund raising. As her popularity skyrocketed, Radio London's name got emblazoned on everything from record albums to pantyhose. A simple, enthusiastic on-air DJ "plug" was all it took to move the merchandise to eager audience members. Most everybody was happy with this pirate and her growing number of sisters — most everyone except the English government and its quasi-related BBC. These establishments envied the young audiences lured from staid state broadcasting by the fun-loving pirates.

Also a little green at times were Radio London (and other sea faring) disk jockeys. When a gale wind tossed the broadcast ships every which way, queasy DJs were still required to stay, bucket nearby, at their control boards. No telling how many records skipped or tape cartridges flew from their racks during rough seas. When the going got unbearable, distress calls were made between songs, causing listeners to phone rescue authorities for help.

A Unique Radio Experience!

Typically, a pirate announcer would be ship-board, working various air-shifts each day for two weeks, prior to earning seven days on solid ground. And, for many DJs, the pay hovered around the $100 to $200 per week mark. Still, it was a unique experience, combining the lore of music-radio with the classic "war buddy" camaraderie associated with life in close, and sometimes perilous, situations.

Back in London, as well as the countryside, the Radio London DJ lineup enjoyed pop-star-like status. There had to be something romantic about people who voluntarily gave up the comforts of home so English kids could gain free access to the music they'd otherwise have little opportunity to enjoy. One survey showed nearly 27 million UK residents tuned to the assorted pirate stations every week. That cume (cumulative audience) sent the British Broadcasting Corp. into fits. Big ratings should have caused the BBC to make good on threats. Besides, the BBC didn't really have anything to take the pirates' place in popular culture.

Then, in 1967, the bureaucratic wind blew a storm of legislation at the technically illegal radio ships. Anyone in British jurisdiction could be arrested and imprisoned for advertising on (or having anything to do with) the pirates. With financial support dwindling — although millions. Still, rumor has it there are anything to do with) the pirates. With financial support dwindling — although the huge audience was still there — Radio London and her compatriots decided to call it a wrap. Even the Beatles' Ringo Starr marked the loss by transmitting a personalized "farewell Big L" message over the 266 station's dial spot.

On a mid-August 1967 afternoon, there was a hesitant time check, a simple closing announcement, and a poignant pause, after which "wonderful Radio London's" American-sung jingle played for the last time. Young people all over the southern UK reflected amidst the static whisper of their radios. For many, it was as though a friend had died.

In time, BBC officials admitted that people wanted some sort of pop music outlet. They even hired a handful of former pirate DJs who helped the "official" broadcast service unveil its contemporary "Radio One" channel. In fairness, this outlet, along with subsequently authorized land-based commercial radio, has developed into an excellent audio programming source now enjoyed by millions. Still, rumor has it there are British subjects (perhaps a little older now) who'd give anything to be rushing home from class in time to hear a young "Americanized" chap, in a tiny, sea-tossed studio play a "hitbound" record on "The Big L." But that's not quite the end.
Thirty Summers Later, "Big L" Sails Again

It's natural to ask a lot of questions when you're living outside your home country. My wife and I struck up a conversation with a British couple in their late 40s that lead to what, for me, was a most exciting revelation.

After admitting to shopping at almost every old book and record shop within commuting distance of Central London, I expressed disappointment in coming up empty handed. My search netted not a single souvenir of the pirate radio days.

"You mean like Caroline, 'Big L,' and those blokes broadcasting Rolling Stone records at sea?" one of our new friends wondered. "We grew up on that groovy sound, didn't we, Love?" he winked at his wife.

Then she recalled hearing something somewhere that one of the pirate stations was getting government blessings to hit the air for nostalgia's sake. This rumor turned out to be true. It was news about the return of Radio London!

"Big L," fan and publisher, East Anglia Productions, decided its favorite station had been away too long. Even the British Radio Authority agreed (a little bit) and licensed EAP to operate a shipboard AM on the old 266-meter frequency. The authorization lasted only 28 days — with just a watt of power, but it let the spirit of Radio London ride the waves once more from July 18 through August 14, 1997. Because "Big L's" original home, the Galaxy, had been sold for scrap, the motor vessel, Yeoman Rose, played that hostess to last summer's Radio London version. She was anchored off Frinton-On-Sea, and put a decent signal over the coast of Essex, North Kent, parts of Suffolk, and the Thames Estuary. Experienced DXers savored bits of the '97 broadcast in the heart of London.

The recent programming included the return of some of the station's original air staff, as well as re-broadcasts of actual '60s airchecks. Cost of the $56,000 nostalgic venture was offset by the sale of radio ads — former "Big L" advertisers only had to pay 1965 prices for their spots — personal sponsorships, Radio London T-shirts, coffee cups, and even boat trips to the ocean-going studio/transmitter.

The station was also heard at 1503 kHz over this past holiday season from a vessel tied up at London's St. Katherine's Dock. Like the 30th Reunion broadcasts, these low-power broadcasts were covered under Britain's "Restricted Service License," and are also available on the Internet. That means, no matter if you're miles away from the water, you can cruise to Radio London through East Anglia Production's neat Web site. As you steer your keyboard, imagine one of the station's best loved jingles: "It's smooth sailing with the highly successful sound of wonderful Radio London!" Check out <http://www.channel19.demon.co.uk/radiolondon/>.
Radio Privacy Bill Passes, Impact On Scanning Questionable

By J.T. Ward

Editor's Note: At press time, the Senate had not acted on H.R. 2369, and it was not scheduled for Senate action. Please check our Pop’Comm Web site at <http://www.popcomm.com> for updates as they occur.

H.R. 2369 has been forwarded to the U.S. Senate where it was scheduled to be heard in the Committee on Commerce, Science and Transportation on March 12, but it was pulled from the agenda at the request of Sen. Ernest F. Hollings, a Democrat from South Carolina. Hollings’s aide, Morrie Lane, said Hollings wanted more time to consider the bill before voting. Lane said despite the delay, he expects H.R. 2369 to reach the Senate floor soon, where he expects it to meet little, if any opposition.

Assuming that H.R. 2369 passes in the Senate and eventually becomes law, what does it mean for the scanning and shortwave hobbies? To fully understand this bill, first disregard most of the wording referring to monitoring cellular telephones. It was already illegal to monitor cellular phones before this bill passed, and the cellular frequencies are already blocked in all new scanners sold to the general public in the U.S. When it comes to monitoring cellular phones, this bill mostly duplicates existing law, although it does direct the FCC to investigate such violations independent of the Justice Department, and it increases the penalties if you’re caught listening to cellular telephone communications.

Where H.R. 2369 really breaks new ground is in extending the protections afforded cellular telephone users to the new Personal Communications Service. PCSs, as they are called, typically integrate wireless (cellular) telephone, paging, e-mail, wireless facsimile and other services into one unit.

As passed, H.R. 2369 will prohibit the manufacture or sale of scanners capable of receiving frequencies used by the new Personal Communications Services. However, while the loss of any portion of the spectrum is cause for concern, its impact will be negligible to most scanner listeners. Why? Because PCSs operate in the 900- to 9400-MHz and 1.9-GHz ranges, and all use digital transmission modes. No scanner on the market is capable of decoding these digital transmissions and converting them to understandable voice audio. Basically, they’re taking away something we don’t have. Go figure.

H.R. 2369 also makes it clearly illegal to modify even your own scanner to receive cellular or PCS frequencies. There had been some ambiguity in the existing law, and the FCC was only investigating cases where companies advertised to provide modification services. H.R. 2369 clarifies the issue.

Not so clear is H.R. 2369’s impact on private sales of existing scanners with cellular coverage. It states:

“(4) Any person who manufactures, assembles, modifies, imports, exports, sells, or distributes any electronic, mechanical, or other device or equipment, knowing or having reason to know that the device or equipment (clause concerning satellite piracy gear omitted) is intended for any receipt, interception, divulgence, publication, or utilization of any communication in violation of subsection (a), shall be fined not more than $500,000 for each violation, or imprisoned for not more than 5 years for each violation, or both. For purposes of all penalties and remedies established for violations of this paragraph, the prohibited activity established herein as it applies to each such device shall be deemed a separate violation.”

As one Pop’Comm reader pointed out in an Internet posting, if H.R. 2369 becomes law, it could have severe consequences for the innocent reseller:

“While this doesn’t exactly retroactively ban possession of radio gear capable of intercepting (cellular telephone calls), it provides extremely stiff felony level penalties for manufacturing, assembling, modifying, importing, exporting, selling, or distributing any radio receiving gear that might be construed to be intended for receipt or interception of any radio communications not on the allowed list. Thus, selling an old scanner at a Saturday morning hamfest — a scanner legally purchased from RadioShack in the era before cell phone frequencies were outlawed on scanners — could conceivably result in a $500,000 fine and a five year jail term.”

While it’s unlikely that the FCC or Justice Department will put much of an effort into prosecuting individual sales, stranger things have happened. Perhaps more at risk are folks who regularly buy and sell old radios as a way to finance their hobby. Having two or three cellular-capable scanners on display in a booth at a hamfest just may be more than the feds can ignore if the bill passes.

The scariest part of this bill, and the section that has created the most controversy, is Section 3, Paragraph A, where it changes the wording of Section 705 of the Communications Act of 1934 from “interception and divulge” to read “interception or divulge.” Until H.R. 2369, it’s been pretty much OK to listen to whatever you like (except cellular, cordless phones, and encrypted communications, of course) as long as you don’t repeat what you hear, or use it for personal gain. But by changing “and” to “or,” H.R. 2369 makes even the act of listening illegal.

Initially, it appeared that under H.R. 2369 listening to anything but AM/FM broadcast radio, television, citizens band, and amateur (ham) radio operators, aircraft and boats or ships would be illegal. However, after being inundated by telephone calls, faxes, and e-mail, Rep. Tauzin, the bill’s sponsor, recognized the problem and took steps to correct it. The bill was changed to exempt the vast
majority of communications of interest to scanner and shortwave listeners.

Just as importantly, in its report accompanying the bill, the House Commerce Committee clearly states:

"...Section 251(g) provides a number of broad exemptions for the interception by private parties of radio communications, including those that are transmitted over a system configured for ready access by the general public; b) by any station for the use of the general public, or that relates to ships, aircraft, vehicles or persons in distress; c) any governmental, law enforcement, civil defense, private land mobile, or public safety communications system that is readily accessible to the general public; d) by any station operating in the amateur, citizens band (CB); and e) by any marine or aeronautical communications system.

Because the Committee preserved the Chapter 119 exceptions in its amendment of Section 705(a) of the Communications Act, the Committee does not intend for the [Federal Communications Commission] or any other enforcement agency to investigate or fine parties for the interceptions authorized by Chapter 119.

Therefore, the Committee does not intend for the uses of scanning receivers and receiving radios such as shortwave radios, that are consistent with the Section 251(g) exceptions, to be investigated or fined under Section 705(a)."

The inclusion of this language in the Committee report is very important. "The FCC must be sensitive to Congressional intent in interpreting the law," said Steve Mansfield, manager of legislative and public affairs for the Amateur Radio Relay League. That intent is very clear in the Committee report accompanying the bill. Mansfield continued, "This is an explicit assertion of Congressional intent, and as such, not only directs the FCC, but also may be used as 'intent' in legal proceedings," he said.

Still, some questions remain. The Chapter 119 exemptions cited above include "c) any governmental, law enforcement, civil defense, private land mobile, or public safety communications system that is readily accessible to the general public." H.R. 2369 includes a ban on scanners capable of decoding digital "protected specialized mobile radio service transmissions." Just what types of transmissions are "readily accessible," and which are not? Some communications, whether analog "scrambling" or "digitally encrypted" are clearly not meant for the general public, and monitoring of those transmissions is already illegal. But what about public safety agencies using digital transmission modes, but not encryption? Are these considered "readily accessible to the general public," or are they "protected specialized mobile radio service transmissions?" Neither H.R. 2369, nor the attached Committee report, answers these questions, and the definition included in the bill itself is somewhat obtuse on this point.

Cleveland, Ohio, for example, has recently installed a digital public safety radio system. All police, fire, and EMS communications are carried on this system, and no currently available scanner is able to monitor those communications. Will the wording in H.R. 2369, Section 2, prevent the future marketing of a scanner capable of monitoring the digital communications used by Cleveland and other municipalities? So far, no one in Tauzin's office or at the FCC has been able to offer an answer.

Imagine...

A shortwave antenna so good you won't need or want any other type of antenna system!

With the ALPHA DELTA Model DX-ULTRA Full Spectrum Dipole you don't have to imagine anymore! We designed it for "knock-your-socks-off" performance with an absolutely no-compromise attitude — with full frequency access from AM Broadcast through 30MHz!

- The DX-ULTRA design provides extremely low-noise performance for maximum sensitivity to weak DX signals.
- The wire elements' "Tapered Wing" design allows broadband operation on 1/2 wavelength and 3/4 wavelength multiples of various frequency ranges.
- The DX-ULTRA is designed with a pair of ISO-RES inductors and parallel wire elements for maximum broadband, efficient performance - no lossy narrowband traps. The difference on your S-meter can be phenomenal!
- Our exclusive Model DELTA-C Center Insulator with the built-in Model SEP ARC-PLUG® Static Electricity Protector provides effective protection for your sensitive receiver components. Connectors accept either coax or balanced line.
- Overall length of the DX-ULTRA is only 80 feet with dipole, inverted-vee, or full sloper configurations possible!
- Fully assembled - no cutting or soldering required. All components are rated for 2kW of power with all stainless-steel hardware. Can be used with a wide-range antenna tuner for commercial, military, or embassy operation.
- The DX-ULTRA is designed specifically for full spectrum shortwave performance, not just for the narrower amateur or international shortwave bands.

Alpha Delta Model DX-ULTRA, 80 ft. in length $119.95

If your space does not permit the full 80 ft. length of the DX-ULTRA, we suggest our Model DX-SWL 1/4 wave sloper (60 ft.) or our DX-SWL-5 1/4 wave sloper (40 ft.). These antennas have similar design philosophies.

At your Alpha Delta dealer or add $5.00 for shipping and handling in the continental United States. Export orders - please call for quote.

Toll-Free Order Line 888-302-8777

ALPHA DELTA COMMUNICATIONS, INC. AA

P.O. Box 620, Manchester, KY 40962 • 606-598-2029 • FAX 606-598-4413

current solutions to current problems
The Call Letter Connection

What's Behind Letters? Either More Or Less Than You Thought!

By Alice Brannigan

We received a good question from reader Dr. Vic Delmore, W2ILY, of Engineering & Sciences Co., NASA Langley Research Center, in Virginia. Vic asked a question we had never before heard, and which doesn't appear to have been addressed previously in any of the materials I have yet been able to locate. Vic points out that the United States is presently assigned the use of the call letter prefixes K, N, W, and about half of the A bloc. But he wants to know what connection those particular prefix initials have to the name of our nation. For instance, he points out that for many nations, there appears to be a logical explanation for their assignments. France has the prefix F, Great Britain has G, Italy has I, Russia has R, and so on. For the meanings of some, you need to dig a little deeper, maybe knowing the nation's name in another language: Germany has D (for Deutschland), Netherlands has PB (for Pays-Bas), etc. So what's the significance of our nation's cryptic prefixes? Let's trace down this call letter mystery.

Here's The Deal

In the early days of any technology, things tend to be informal. Early aircraft flew for a few years without the need for officially assigned tail numbers. Likewise, at the dawn of wireless, there were no formally issued call letters, or even agencies to assign such designations. For the most part, the earliest wireless stations were spark gap transmitters aboard ships, and military or commercial coastal stations intended to communicate with ships. Wireless was primarily intended as a safety system, so a vessel could send or receive distress calls, obtain weather information, and (secondarily) be used to send and receive radiograms.

In those days, the accepted practice was for ship or coastal station owners simply to concoct their own convenient wireless identifications. They often used two-letter designations that reflected the name of the vessel or location of the station, or distinctively identified the station owner.

This unofficial, haphazard, and unregulated system served its purpose, at least in the beginning. But, eventually, as wireless communications became increasingly popular around the world, call letter problems cropped up. This happened when callsign duplications began appearing, thus defeating the ability of each individual station to have a unique and distinctive identification.

Typical duplication examples included the callsign GP, being used by both the USS Lawrence and the Standard Oil Co. Barge No. 95. The identification PA...
The Scout® is the latest advancement in hand-held frequency counters; a frequency recorder that excels at finding and recording frequencies. The Scout frequency recorder is a revolutionary device that can record up to 400 unique frequencies and store them in memory.

FEATURES
- Stores 400 Frequencies in memory
- Records up to 255 hits per frequency
- 10 digit LCD display with 16 segment RF bargraph
- Reaction Tune with AR8000, ICOM R7000, R7100, R8500, R9000, ICR10, Optoelectronics New R11 Test Receiver, and the Radio Shack Pro 2005/6 with the OS456 or OS456Lite installed or the Radio Shack Pro 2035/42 with the OSS35 installed
- Download recorded frequencies to a PC using the optional OPTOLINX
- Beep and Vibrator function will alert you when a frequency has been captured
- 10MHz - 1.4GHz frequency range
- Supplied with rapid charge NiCad batteries (8 hour discharge time)
- Recall mode: View all 400 frequencies and number of hits stored in memory
- Patented Digital Auto Filter and Digital Auto Capture
- Nearfield reception: Up to 300 feet distance with 5 watt UHF transmitter

FACTORY DIRECT ORDER LINE 800•327•5912

5821 NE 14th Avenue • F.: Lauderdale, FL 33334
Visa • MasterCard • C.O.D. • Prices and Specifications are subject to change without notice
Telephone: 954•771•2050 Fax: 954•771•2052 Email: sales@optoelectronics.com

www.optoelectronics.com
MADE IN USA
meant both the Cunard Line's RMS Carpathia and also a Belgian ship, the SS Prince Albert. Callsign SD was the Marconi station on Sable Island, Newfoundland, plus the U.S. Navy's station at Culebra, Puerto Rico, as well as another coastal station at Port of Spain, Trinidad. Callsign BA identified the Marconi station at Babylon, New York, as well as the warship USS Abarenda, and another vessel, plus two other coastal stations! How was an operator to distinguish which of several stations sharing the same identification was being heard? By 1906, the system of self-assigned call signs had outlived its usefulness.

Can't We All Be Friends?

At the international radio convention held in Berlin in 1906, nations of the world proposed a uniform system of officially issued and easily recognized international designations for wireless stations. Those nations ratifying the Berlin convention received prefix assignments to be used as the system became effective in 1908. France received the FAA-FZZ block, however France also got blocks HOA-HZZ and UAA-UMZ; Great Britain, and some of its colonies and other territories received, GAA-GZZ along with BAA-BZZ, CFA-CZZ, COA-CZZ, EIA-EZZ, LSA-LZZ, OCA-OZZ, VPA-VZZ, XEA-XZZ, YAA-YZZ, and ZAA-ZZZ. Other nations and various autonomous colonial areas also received one or more prefix blocks. This included large ones, such as Canada, China, Denmark, India, South Africa, Portugal, and many smaller ones, like Chile, Romania, Siam, Dominican Republic, Peru, Egypt, New Zealand, Mexico, Colombia, Argentina, Surinam, Curacao, Morocco, Bolivia, Guatemala, Monaco, and others. Even though the U.S. had the largest number of wireless stations, we did not initially join other nations in ratifying the Berlin convention. Consequently, we were unable to obtain any of the original prefix assignments!

Wireless Grows In Popularity

Wireless drew world attention during the winter of 1909 when the British luxury liner RMS Republic was rammed by the Italian passenger liner SS Florida in heavy fog near Nantucket, Massachusetts. Though the Republic suffered severe damage, wireless operator Jack Binns continued sending distress calls until he was able to summon the steamer Baltic to the scene. The Baltic arrived in time to save 1,650 passengers from both vessels. Though six lives were lost, it was the first time wireless had been used at sea to save large numbers of lives. Wireless was recognized as a life-saving miracle, and Jack Binns was hailed as a hero. This convinced even more ship owners to install wireless equipment.

As late as 1909, the U.S. government still had not joined other nations in ratifying the Berlin convention. Vessels and coastal stations of those nations were using officially issued and registered call letters drawn from internationally assigned prefix blocks. American stations were forced to continue their risky practice of using self-assigned unofficial radio call signs.

The U.S. Acts, Finally!

At last, in the aftermath of the RMS Republic disaster, the public and the media began angrily demanding to know why American wireless stations were still forced to use an outmoded and dangerous identification method while the rest of the world had already switched to a safer international system. Who was responsible? Questions such as these invariably motivate Washington to act with deliberate speed.

Presto! The Radio Act of June 24, 1910, suddenly became a reality. This was the first radio act enacted in the U.S. following the ratification of the Berlin convention by other world nations. Included in that Act was our own nation's ratification of the Berlin convention. Following that, on July 1, 1911, the Radio Division of the U.S. Department of Commerce was established to enforce the provisions of the
RadioShack's Family 2-Way Radio

Clear Communication
Up to One Mile

Now Only $59.99 Each

RadioShack invented them and now we're breaking through the price barrier! This rugged single-channel transceiver fits in the palm of your hand and is easy to use. Perfect for camping, hiking or keeping up with the kids around the neighborhood. At this low price, get one for every member of your family!

✓ No License Needed
✓ No Airtime Fees
✓ Transmit/Battery Indicator
✓ Automatic Squelch
✓ Call Button
✓ Automatic Power Save
✓ Long Battery Life

“We're ready to fire up the grill.”

“We've almost ready.”

Price applies at participating RadioShack stores and dealers. If not available at a participating store, item can be special-ordered (subject to availability) at the advertised price. A participating store will offer a comparable value if the product is sold out. Independent RadioShack dealers and franchisees may not be participating in this ad or stock or special-order item advertised.
Radio Act. At that point, American stations were finally able to obtain their first official assignments of call letters using international prefixes.

The original U.S. prefix allocations were NAA-NZZ, WAA-WZZ, and KDA-KZZ. We were not allocated KAA-KCZ because that bloc had previously been given to Germany. Obviously, some major nations that immediately ratified the Berlin conference got first shot at the available prefix list, and were able to match them to the initials of their country’s names. When the U.S. showed up four years after the list had been well picked over by everyone else, all we could get were assorted leftovers. The prefix initials we received did not have any special tie-in for the U.S., as had been the case with some of the other nations.

Making Do

After the prefix allocations were made, NAA-NZZ was reserved by our government for use by U.S. Navy and Coast Guard stations. All three-letter K calls were first given to coastal stations on the Pacific coast and vessels plying the Atlantic Ocean and Gulf of Mexico. For a number of years, the WUA-WVZ and WXA-WZZ call blocks were reserved for U.S. Army stations. Other three-letter W calls were first allocated to Atlantic, Gulf, and Great Lakes coastal stations, and ships plying the Pacific Ocean. That practice worked smoothly until the opening of the Panama Canal. From that time on, with ships easily going from one ocean to the other, K and W call letters were assigned to vessels plying both oceans.

By 1914, all 1,144 three-letter K and W combinations available to commercial ship and coastal stations had been assigned, and it was necessary to commence issuing four-letter format call letters to ships. Note that the identification letters issued could be used for wireless call letters and/or visual (signal flag) vessel identification. Indeed, many vessels receiving call letter assignments did not have wireless aboard, and required only a means of easy visual identification.

Beginning in 1921, ships renewing their licenses and visual identifications found their old three-letter calls were being replaced by the newer four-letter ship call letter format. That’s because, as of late 1921, the discontinued three-letter format callsigns were being recycled for use in the new broadcasting service.

Broadcasters also received old three-letter callsigns once used by ships that had burned, sank, or been abandoned or scrapped. Starting in 1924, specific blocs of four-letter format call letters also began being assigned to broadcasters.

The first four-letter callsigns assigned to broadcasters in 1924 were generally confined to the series commencing with the letters KDD-KDZ, KFA-KFS, WAA-WAB, WBA-WCB, WDA-WDB, WEA-WEF, WFA, WGA, WHA, WJA, WWA, WLA, WMA, WNA, WOA, WPA, WQA, WRA, WSA, WTA, and WWA. Ships were simultaneously being assigned (different) call letters from these same, and other series. Callsign KDKA was issued to the pioneer Pittsburgh broadcaster long before the creation of the broadcast service. It’s a special case. The government had no other choice but to issue it to Westinghouse from the block being issued to ships.

As a general rule, continuing the old coastal station practice, broadcasters east of the Mississippi received (and still receive) licenses with W prefixes, while those to the west were assigned prefixes with a K. Of course, there were exceptions to this, especially with very early broadcasters such as KDKA, KYW, and WRR.

In 1927, the U.S. received the remainder of the K bloc (KAA-KCZ) prefix allocation when it was reassigned from Germany. The U.S. has also got the bloc AAA-ALZ, which had previously been assigned to Germany.

Say It With Meaning

Soon after the inception of broadcasting, the idea of giving call letters to stations that would have some special sig-

1000 Watt W. E. Equipment

KTM
Los Angeles — Santa Monica

Radio KTM desires to express its appreciation of your communication and comments. While it is practically impossible to answer in detail the thousands of letters that we receive, we want you to know that every comment and criticism that comes to KTM from our listeners is carefully read and studied.

This card will serve as your verification of reception of KTM on

Dec 15 1931

Thank you for your letter and we sincerely hope that we may number you among our regular listeners.

RADIO KTM

By W.

This California station received recycled call letters. KTM had previously been assigned to the SS Exene. (Courtesy George Saunders, Modesto, CA)
Loyal Order of Moose, while WMMN asked for call letters honoring West Virginia’s Sen. Mansfield M. Neely. Atlantic City’s WGP gave the message that it was in the World’s Greatest Playground. Not to be outdone, Miami’s WIOD plugged its hometown as the Wonderful Isle of Dreams.

But some call letter information was kept quiet. For instance, information about those old three-letter callsigns that had been recycled to broadcasters after prior ship use. Broadcast audiences were never told about such matters because they involved disasters. San Diego’s KGB (ex-KFBC, later KPOP), for example, was given a callsign previously used by the SS D.N. Luckenbach, sunk by a German submarine off the French coast in 1917. Call letters KOB had been used by the Old Dominion Line passenger steamer Princess Anne until Feb. 6, 1920. That’s when the 3,600-ton luxury coastal liner encountered a blizzard, got lost, ran aground, and broke in two on Rockaway Shoals, New York. The ship and its $500,000 cargo were a total loss. Wireless had played a vital role in the rescue of all 106 persons aboard. On April 5, 1922, its KOB call letters were reassigned to an Albuquerque broadcaster (later KKOBI) that kept them going for more than 60 years!

So the U.S. doesn’t have customized call letter prefixes initials that represent anything special, but that’s only because we were one of the last in line to sign up when they began giving them out. But we did quite well with the snips and scraps we were given. Don’t you agree?

Part of a 1921 callsign listing is from pre-broadcasting days. It shows American ship stations using three- and four-letter callsigns. (Courtesy Robert Campbell, Hillsboro, OR)

<table>
<thead>
<tr>
<th>Callsigns</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDZ</td>
</tr>
<tr>
<td>KEA</td>
</tr>
<tr>
<td>KEB</td>
</tr>
<tr>
<td>KEBB</td>
</tr>
<tr>
<td>KECC</td>
</tr>
<tr>
<td>KECD</td>
</tr>
<tr>
<td>KEEF</td>
</tr>
<tr>
<td>KEFG</td>
</tr>
<tr>
<td>KEFJ</td>
</tr>
<tr>
<td>KEGK</td>
</tr>
<tr>
<td>KEHL</td>
</tr>
<tr>
<td>KEMM</td>
</tr>
<tr>
<td>KERN</td>
</tr>
<tr>
<td>KEPK</td>
</tr>
<tr>
<td>KEQA</td>
</tr>
<tr>
<td>KEQB</td>
</tr>
<tr>
<td>KEBS</td>
</tr>
<tr>
<td>KETB</td>
</tr>
<tr>
<td>KEBU</td>
</tr>
<tr>
<td>KEXF</td>
</tr>
<tr>
<td>KEZG</td>
</tr>
<tr>
<td>KECZ</td>
</tr>
<tr>
<td>KECC</td>
</tr>
<tr>
<td>KECF</td>
</tr>
<tr>
<td>KEFC</td>
</tr>
<tr>
<td>KEFG</td>
</tr>
<tr>
<td>KEGG</td>
</tr>
</tbody>
</table>

Please pass along any old time wireless and radio photos, picture postcards, QSLs, newspaper clippings, and station listings. Our snail mail address is in care of Popular Communications. You are also invited to e-mail your comments and column suggestions to us at: <Radioville@juno.com>.

Nashville’s WSM became prominent because of its “Grand Ole Opry,” and great stars like Hank Williams (shown in photo). However, WSM audiences never knew that its famous name of a city or state. Even the name of a city or state.

Significance was awarded with KOP assigned to the Detroit Police Dept. With the popularity of that assignment, over the years the government eventually received a deluge of requests for call letter assignments designating the initials of a slogan, the owner’s name, even the name of a city or state.

In broadcasting’s first decade, to cite a few examples, the station of the Radio Corporation in Washington asked for WGN, to stand for World’s Greatest Newspaper. WCCO in Milwaukee requested its call letters to indicate the Crosby Co. WJJD, in Illinois wanted its call letters to reflect the initials of James J. Davis, then the Director of the Radio Corporation. Then the Chicago Tribune asked for WGN, to stand for World’s Greatest Newspaper. WCCO in Milwaukee requested its call letters to indicate the Crosby Co. WJJD, in Illinois wanted its call letters to reflect the initials of James J. Davis, then the Director of the

Please pass along any old time wireless and radio photos, picture postcards, QSLs, newspaper clippings, and station listings. Our snail mail address is in care of Popular Communications. You are also invited to e-mail your comments and column suggestions to us at: <Radioville@juno.com>.

Nashville’s WSM became prominent because of its “Grand Ole Opry,” and great stars like Hank Williams (shown in photo). However, WSM audiences never knew that its famous name of a city or state. Even the name of a city or state.

Significance was awarded with KOP assigned to the Detroit Police Dept. With the popularity of that assignment, over the years the government eventually received a deluge of requests for call letter assignments designating the initials of a slogan, the owner’s name, even the name of a city or state.

In broadcasting’s first decade, to cite a few examples, the station of the Radio Corporation in Washington asked for WGN, to stand for World’s Greatest Newspaper. WCCO in Milwaukee requested its call letters to indicate the Crosby Co. WJJD, in Illinois wanted its call letters to reflect the initials of James J. Davis, then the Director of the
Ten years ago satellite phone equipment could cost as much as $25,000, and airtime was around $5 a minute. About five years ago, satellite phone prices dropped to $10,000 for a stabilized antenna phone system, and airtime to about $4.75 a minute.

Today, SAT phone systems with a stabilized antenna are around $7,000, and, if you want to carry your entire setup in a briefcase that you aim toward the Equator, these little systems are available for around $6,000, with airtime dropping to about $2 a minute.

About a month from now, a little $1,500 data communicator, the GSC-100 from Magellan, will let you upload radio grams into the e-mail system from anywhere in the world using low-earth-orbit satellites to send and receive the radio calls. And, in September, Motorola turns on the low-earth-orbit Iridium system, letting that little cellular telephone space communicator do double-duty as a cellular as well as a SAT phone. It's going to get real exciting in just a few more months up in the skies!

What's Out There

One of the best-known worldwide satellite phone and data systems is operated by INMARSAT, an international consortium of 79 member countries which pioneered, and is now the world's largest provider of, mobile satellite communications. But it took massive stabilized gyro-antenna setups to stay locked onto the INMARSAT satellites from vehicles or boats. But this has changed!

INMARSAT has launched four powerful new satellites with 1.6-GHz (1600-MHz) spot-beam coverage of the world. Their service is called Mini-M, and is a new low-cost telephone service and data messaging system that takes advantage of the power of the new satellites by using smaller, less expensive satellite antenna systems here on earth or out on the ocean.

One of the most respected gyro-stabilized antenna systems for INMARSAT communications comes from KVH Industries. The KVH Tracphone 25 is an INMARSAT Mini-M system utilizing a three-axis, gyro-stabilized, circularly polarized antenna inside a white radome that constantly stays locked onto any one of the four satellites of your choice. The antenna measures only 10 inches in diameter, and can provide voice, data, and fax communications to the associated, connected equipment.

KVH offers a turn-key activation option through an agreement with Station 12, the world's largest INMARSAT service provider. KVH will pre-activate any Tracphone for Station 12 "Altus" service, saving radio operators the time and effort normally required to establish a contract connection. Any active SIM card can be utilized with the Tracphone 25 to insure security and phone call accountability. This microprocessor on a card can contain your own private phone book. You also have your own phone number — called number portability — just like your cellular phone. All calls you make from anywhere in the world will appear on a single bill you receive from the service provider. The phone can only work with a SIM card inserted, so you never need to worry about someone making phone calls on your dime!
may get several minutes of free phone calls. There are other rates available, too. For example, if you plan to run a missionary station in a remote part of the world, you can pay for a higher subscription service, with phone charges down to under $2 a minute, with slightly larger equipment. Although this sounds expensive, it's generally LESS expensive than some countries' aged-terrain land line phone service. However, you must secure permission from each country before you operate your equipment within their jurisdiction. If you're sailing out into international waters, dial to your nation. And, in five more minutes, you may get a reply that is then held in the INMARSAT-C buffer until you turn on your computer and download your incoming e-mail.

INMARSAT Mini-M and INMARSAT-C, plus the other INMARSAT satellite services, cover the globe, except for some spot areas out in the middle of the ocean. But, as with INMARSAT Mini-M, if you plan to operate in another country with these other services, you'll need permission from INMARSAT.

Closer To Home

If you only want satellite communications for voice and data throughout the U.S. and out only a couple hundred miles into the ocean, however, you may want to consider the services operated by

SAT Phone Resources

AMSC Service 954-761-7671
American Mobile Satellite Corporation 800-867-0777
AMSC SkyCell Service 800-872-6222
SEA INMARSAT-C Equipment 425-771-2182
Dual Television Satellite System 800-831-9818
KVH Antenna Stabilized Systems 401-847-3327
Litton Iridium Service 804-974-2515
Magellan ORBCOMM Systems & Equipment 909-394-5000
Motorola Iridium 800-331-6456
National Mail Order Satellite Phone Systems, Don Melcher 800-584-4114
ORBCOMM 703-406-5836
Trimble INMARSAT-C Equipment & Service 800-827-8000

“C” Service For Your Computer

INMARSAT also offers “C” service for your computer. The equipment runs about $4,500, and is available from SEA and Trimble. It doesn't offer voice capabilities, but it's extremely compact and lightweight. The transmitter is only about the size of a desk dictionary, and the antenna unit is about the size of a football. INMARSAT-C does not require a stabilized antenna for your data, fax, or e-mail communications.

The INMARSAT-C system also works on 1.6-GHz frequencies: 1626.5 MHz to 1660.5 MHz transmit; 1525.0 MHz to 1559.0 MHz receive, also capturing positioning information from the global positioning system at 1575.42 MHz. Modulation is a relatively slow 1200 symbols/second BPSK, but you are not charged for time on the air — only for the number of words and letters you are sending. The INMARSAT-C system ties into your supplied laptop computer DB-25F connector, and you can add a printer to your computer's DB-25F connector. If you already have your own GPS system, and you want to upload your position automatically, it will tie into your transceiver's NMEA 0183 Version 2.1 jack.

You compose your e-mail as you normally would on your laptop, and then direct the INMARSAT-C system to send it through one of the four stationary satellites. It's a store-and-forward system, and it typically takes about five minutes for your e-mail to finally arrive at the destination.

“Atomic Clock Controlled" Precision Time Pieces Synchronized to the US Atomic Clock — Accurate to 10 billionths of a Second!

The most accurate clock on Earth. These smart clocks tune into the radio signal emitted by the US Atomic Clock in Colorado, which deviates less than 0.00000000000000000001 second over a million year period. They synchronize themselves automatically to the exact same time daily and adjust even for daylight savings time and leap seconds. You can now have the world's most accurate time 24 hours a day to control of time or start your day. These precision ZEIT timepieces are engineered in Germany and are easy to use using the latest in radio-controlled technology. Just set the time zone and the built-in micro chip does the rest. ZEIT-accurate! precise! reliable! & fully automatic

WALL CLOCKS — ALL STYLES AVAILABLE

ZEIT Atomic Wall Clock with thermometer and hygrometer. Great for home or office — IAA. Large 12". Only $99.95 (below) Arabic numeral clock. Only $79.95 (not shown)

ZEIT Atomic Watch with SYNTIME, the world's most accurate watch with hour, minute and seconds. Watch the hands spin at 80 times its normal rate until they stop at the precise time. Shock-resistant polymer case with built-in receiver for Atomic Time Signal (water-resistant). Sets itself daily and shows date with second hand. Mineral lens, black or white dial & leather band. Only $149.95

ZEIT Atomic Dual Alarm & ZEIT Atomic PC Clock. European design with large 2 line LCD display with exact time in hours, minutes, seconds, month and date, or any two US and world times. At 8 oz even ideal for travel; includes dual alarm with night-time illumination, time zones and lithium battery backup. Super sensitive built-in receiver. 2AA bat. included. Black arch design at 5" x 4" x 2 1/2". ONLY $79. Two only $129.

ZEIT PC with serial cable and software for WIN. Also shows UTC Time in 24hr mode. Only $99

Gifts Haven't Been Easier! Atomic Clock Controlled Time: Credit Card Orders Call toll free 1-800-985-8463 24 hrs
Send checks/money orders to: ARCRON-ZEIT 1010 Jorie #324, Oak Brook, IL 60523 Fax 630-575-0220 http://www.synctime.com

CIRCLE 61 ON READER SERVICE CARD

THE MONITORING MAGAZINE

June 1998 / POPULAR COMMUNICATIONS / 21

“The antenna measures only 10 inches in diameter, and can provide voice, data, and fax communications…”
AMSC’s SkyCell service standard coverage area includes virtually all of North America, surrounding coastal waters and the Caribbean. (Courtesy SkyCell)

American Mobile Satellite Corporation (AMSC). AMSC has a satellite built by Hughes Space & Telecommunications Company with spot-beam coverage of the U.S. and all the way down to Panama. The communications ground segment, located in Reston, Virginia, is the link between SkyCell satellite telephone customers and public/cellular telephone users. A variety of phone and antenna configurations are available for AMSC service, such as marine, portable, vehicle land mobile and fixed-site systems, and gyrostabilized antennas from KVH.

AMSC offers voice mail, data at 4800 bps, call forwarding, 4800-bps facsimile, and the security of all digital uplink and downlink for voice on the satellite L-band. You can buy a new AMSC system for under $5,000, and phone rates are only $1.45 a minute. You’ll pay anywhere from $30 to $40 for your monthly service fee. Many different service providers are available to meet your expected phone call demands.

The LEOs Are Coming

What we just described as INMARSAT and AMSC satellite service is from geo-stationary satellites out 22,500 miles. It takes directional antennas to make the grade for voice, even so, voice calls are still troubled with that agonizing delay because of the 44,000-mile path the signals must travel. This makes a fast-paced phone call troublesome, and trying to interrupt the other party usually leads to phone chaos.

New constellations of low-earth-orbit satellites have been rocketed into space over the last few years, and two systems to soon be turned on for public use are Motorola’s Iridium and ORBCOMM’s Data Gram service with equipment from Magellan, the GPS folks.

What’s a data gram? The ORBCOMM system works down on the VHF frequencies just below, and just above, the amateur radio 144- to 148-MHz 2-meter band. A constellation of approximately 30 ORBCOMM satellites will constantly have one or two visible satellites anywhere on earth. The Magellan GSC-100 allows you to type in an approximately 100-word message. Then, when the GSC-100 detects a satellite in view, it automatically uploads the message to the satellite which then carries it long enough to find a ground station to download the message. This message then goes into the e-mail system. You can also receive e-mail on your data communicator, but it might be as much as a 45-minute delay waiting for the next available satellite carrying your e-mail to come up into view, and for your unit to recognize an incoming call, take that call, and prepare it for your computer to read. All this must take place in a hurry because the low-earth-orbit ORBCOMM satellites are coming up and going down in less than six minutes. Some passes may only give you two minutes of upload or download time, so, needless to say, what you send and receive on ORBCOMM will be brief message grams, rather than long e-mail text packages. I’ve operated the ORBCOMM system and it works. It took about 15 minutes for the message to finally get through, but it made it loud and clear onto another computer halfway around the world.

The GSC-100 is an approximate $1,500-box. Messaging will probably be
around a penny a character. There will also be a monthly rate of approximately $30, much like cell phones.

Motorola's Iridium System

Everybody has been talking about the Motorola Iridium system, and it's finally here. Actually, most of the Iridium satellites are already up in orbit, and some test messages have been sent and received with outstanding success. I saw a live demonstration of the Iridium system at the Miami International Boat Show, and it was quite impressive.

Motorola makes a lightweight handheld, portable communicator that combines global roaming convenience of a satellite phone with the added functionality of a regular cellular phone. It turns into a cellular phone by inserting a terrestrial radio cassette (TRC). This is a module that inserts into the compartment of the portable, allowing it to function as an analog cell phone, a digital cell phone, or even a digital PCS communicator that is compatible with your local cell phone system and its roaming capabilities.

When you are ready to hit the trail and go to an area that is so remote that there are no cell sites within 1,000 miles, it's time to slap on the satellite sender/receiver module that slips onto the back of the unit. The antenna is, well, a pretty strange-looking, goofy VHF device for accessing the satellites. While it looks strange, it worked great during our tests.

Everyone is saying the phone will probably cost around $3,000, and will work just like a regular cell phone when you have the terrestrial radio cassettes plugged in. Once you go to satellite, expect to pay about $2 for each minute of gab time, plus some sort of monthly service fee for the capabilities to call from anywhere. The big electronics giant Litton Industries has just signed aboard as the Iridium satellite/cellular phone system provider. Litton Marine Systems has signed an agreement to distribute the Iridium products and service to the marine industry. No doubt there will be other companies who will distribute this system to the land mobile industry and to emergency communicators who need to be able to call back from anywhere in the world.

Both ORBCOMM and Iridium have targeted September for their systems to be officially available to the public. That's only a few months away, and it will be interesting to see whether or not they can keep this date. I have seen both systems in operation, so it looks like they indeed have a chance to get low-earth-orbit public communications on the air.

It's going to be an exciting year for satellite phones, so stay tuned.
Last month we covered some basic speaker repairs. Now let's clean up a few loose ends.

Electrodynamic speakers are a clever bit of engineering. The early set designers were able to utilize the reactance of the field coil to improve power supply filtering. The magnetic field it generated by the passing current was put to work in the speaker. One problem remained. A small amount of "ripple," or AC voltage rode on the DC voltage across the field coil. These small AC voltages caused a like variation in the magnetic field. Since the voice coil bobbin is centered over the electrodynamic magnet pole piece, these changes in magnetic flux would induce a corresponding AC voltage across the voice coil winding. In effect, the speaker was acting like a transformer, with the field coil being the primary, and the voice coil the secondary.

The voice coil is connected to the secondary winding of the audio transformer, and the primary winding is connected to the plate of the audio output tube. Think of the audio tube as acting as a variable resistor — its resistance varies according to the input signal on its grid. It always presents a resistive load to the audio transformer primary.

"Wired the wrong way, the voltages will add, and you will be chasing the source of the hum for a long time."

Although this plate resistance is many hundreds of ohms, the voice coil sees a "reflected" impedance of very low value. In effect, the voice coil is across a low value resistor. As an AC voltage is induced into the voice coil by the ripple on the field winding, the coil will generate a current and attempt to move in a direction that generates a counter EMF of equal value. In plain English, the speaker will hum!

A Simple Solution

The solution was both simple and elegant! The designers added a second winding, with as many turns as the voice coil, right over the field magnet assembly. The "ripple" would induce an equal voltage across this winding. But, when this winding is placed in series with the voice coil so that the two voltages in effect cancel each other out, the hum is gone! You can easily get this phasing confused when working on early speakers. Wired the wrong way, the voltages will add, and you will be chasing the source of the hum for a long time. This concept may be a bit difficult for the newcomer to visualize.

"Repairing" Old Tubes

I've seen folks discard older radio tubes because of simple problems that could be easily fixed with little work. One common problem is having the metal grid caps ripped off. This tube has an extension wire soldered to the small lead emerging from the tube, making an easy job of resoldering the old grid cap back on.

At least three of the tubes on the 89 chassis had the grid caps ripped off. This tube has an extension wire soldered to the small lead emerging from the tube, making an easy job of resoldering the old grid cap back on.

Besides loose grid caps, the adhesive between the bakelite tube base and glass envelope can also fail. When you try to remove the tube, you end up with broken pin wires, or worse yet, the glass envelope in your hand with the tube base remaining in the socket. The solder connection between the tube pins and the wire tube leads is made at the very end of the tube pin.

One problem that surfaced in the model 89 cathedral was an intermittent hum. The problem was eventually traced to the 80 rectifier tube. I found that one of the plate lead wires was making intermittent connection with the tube base pin. With the connection open, the tube was providing only halfwave rectification. The filter caps were too small to handle the additional ripple, and hum resulted.
"If possible, remove tubes by grasping the bakelite base, not the glass envelope."

used a high-wattage iron and resoldered all of the tube pins, allowing the solder to wick into the work. Again, Super Glue was used to restore the bond between the glass and old adhesive.

When removing grid caps, go gently. If the grid cap connector has a tight grip, use a screwdriver blade to keep pressure on the grid cap connector, while freeing and removing the grid cap connector. If possible, remove tubes by grasping the bakelite base, not the glass envelope.

Loose Ends

Last March, we discussed reading early resistor codes: the Body-End-Dot system. Unfortunately, it has been brought to my attention that some drafting errors listed the order in wrong sequence on the diagrams. The information given in the text was correct. To keep your library of past "Radio Connection" columns current, I am including a corrected drawing in this column. Remember, the first digit is the Body color, the second digit is the End color, and the final color marking the Dot — is the decades multiplier value.

Meet Mr. Philco

An important aspect of collecting is developing an appreciation of the history behind those early companies that produced those sets in our collections. Ron Ramirez is a well-known Philco collector, and is the author of "Philco Radio 1928–1942." Ron has been interested in radios nearly all of his life, and now specializes in Philcos. He owns over 40 Philco radios spanning from 1928 to 1937.

Ron's book traces Philco's beginnings to as far back as 1892, when its early founders were involved with the Spencer Company, a maker of early carbon-arc lamps. The Spencer Company went into bankruptcy as demand for the carbon-arc lamps waned by 1899.

In 1906, the Philadelphia Storage Battery Company was formed. The core business was storage batteries for electric automobiles and mining locomotives. Many other early American radio companies shared a similar connection with the fledgling automotive industry, notably Atwater Kent and United American Bosch who originally manufactured magnets and early ignition systems.

Several chapters are devoted to the sets made by Philco between the years 1928 and 1942. Whenever possible, the sets are shown in full color plates — and the photography is excellent. In instances where the model is rare, or was unavailable for photographing, the original Philco catalog photos are used.

Later chapters show the tube layouts for the various Philco sets—a vital accessory when dealing with the many chassis variations of Philcos that shared the same model numbers. A "rarity" guide is also included. Since prices are so volatile and regional, the author avoids attempting to place monetary values on the radios.

The final chapter covers Philco's later history, from 1943 to present day. I can't imagine not having Ron's book on hand. I read it cover to cover the day it arrived; I just couldn't put it down until it was finished! I heartily recommend this first-class book!

Philco Radio 1928 to 1942 is published by Schiffer Publishing and may be ordered from Antique Electronic Supply, or the Antique Radio Classifieds bookstore.

See you next month. Happy collecting! Please keep the old radio stories and photos coming.
It's summer. Is it time to go fishing? We're not talking about fishing on a body of water, but an ocean of frequencies. Do your scanners have the same old frequencies programmed in every day of the year? Are you possibly scanning frequencies that are no longer being used in your area?

One idea that I subscribe to is to searching or tuning through the scanner bands periodically. You just never know what new frequencies might pop up unless you go searching for them. For instance, your local police department could add a chatter, or car-to-car channel, the fire department could start using a fireground channel, and a railroad in town may start using a new yard channel. Using your local frequency guide, you can check to see what frequencies already are being used in your area. Search around those same frequencies for new ones, especially for public safety users. For instance, if your police department uses 460.050, and it adds a chatter or car-to-car channel, there's a good chance it will be in the 460-MHz range, i.e., 460.025 to 460.550. There's always the possibility it might show up similarly in the mobile-only 465-MHz range from 465.025 to 465.550, or more discreetly in the 458-MHz mobile-only band. But if you don't go searching, you won't ever find them.

It also should be noted that new car-to-car or chatter channels can appear right under your nose without your knowing they're in use. With the scanning two-way radios that most agencies use these days, there is no need for an officer to tell another to switch to a different frequency, if they normally monitor the dispatch channel on a priority basis. He or she simply places the call on the alternate frequency, perhaps stating while calling that they are on the alternate channel, i.e., “Car 16-10 to 92-11 on F4.” Because the other two-way radios in the system are scanning, the message isn't missed and there is no need to tell the unit to switch to the other channel. And you won't ever find that new channel unless you are fishing — waiting for a nibble. So, while the weather gets warm around the nation this summer, go fishing for new frequencies and let us know what you find. With many people outdoors for the summer, it's a great time to scan and search. More general activity equals more radio activity.

Accidents like this rollover on an interstate bring out several agencies, not just police; there's fire, medical, and other agencies that come to life on a trunked system.

Tone Tip

Here's a tip I'd like to pass along to readers. If you like to monitor a local, state, or federal agency that uses digital encryption (that annoying static), you don't have to go berserk listening to all the racket every time calls are encrypted.

If you have a scanner capable of decoding CTCSS tones, try this: By programming in the correct CTCSS tone the agency uses, you will be able to hear any clear voice communications. However, if the agency transmits digital encryption, the receiver will not open, and you won't be bothered by the static.

For those who like to monitor federal agencies, here are some nationwide CTCSS tones used by federal agencies: FBI, 167.9 Hz; Drug Enforcement Agency, 156.7 Hz; Secret Service, 103.5 Hz; Federal Communications Commission, 173.8 Hz. (Note, these aren't scanner frequencies; they are the pitch of subaudible tones measured in hertz and are used to unmute receivers in two-way radio systems). Only certain scanners have optional CTCSS decoders. In addition, some computer-based add-on products are available for higher-end scanners. Check the ads in Pop'Comm for companies that sell these devices and software.

Plugged In

Tim Hurley of Schaumburg, Illinois, says he likes reading Pop'Comm each month, and has been a faithful reader for 10 years. He says he likes turning to "Scanning the Globe" first to grab some listening tips from other readers.

Tim says he enjoys monitoring local police and fire departments, but some local trunked public safety systems can best be described as a "junkyard."

Thanks for the comments, Tim. While public safety trunked radio systems on the 800-MHz band usually do give you more than you bargain for in terms of monitoring, I feel that they actually can enhance your listening. For instance, perhaps you didn't monitor your city's water
Famous for its top-gun DX receivers, Japan Radio once again pioneers with a new receiver. Only the NRD-345 offers Japan Radio performance and quality at a surprisingly affordable price.

The NRD-345 delivers hour-after-hour of listening pleasure with synchronous AM detection to help tame fading, dual IF filter bandwidths (with a third optional), and high dynamic range. Compact, light, and refined, the NRD-345 offers advanced multifunctions, 100 memory channels, and even personal computer control. The NRD-345 brings shortwave listeners an outstanding value in a high-performance receiver for under $1,000.

- Synchronous AM, AM, CW, SSB, and FAX modes.
- 0.1 to 30 MHz coverage.
- Dual IF filter bandwidths, 4 kHz and 2 kHz, with optional filter position.
- High sensitivity and wide dynamic range. The RF amplifier and first mixer in the front-end incorporate four low-noise junction-type FETs with excellent cross modulation characteristics to ensure both high sensitivity and high dynamic range.
- 100 memories that store frequency, mode, AGC time constant, ATT on/off, VFO, IF filter bandwidth, and NB status.
- Noise blanker.
- Clock/Timer.
- High/low antenna inputs.
- Memory scan.
- Personal computer control with optional RS-232C interface cable.
- One-chip DDS-IC in PLL circuit to enhance carrier-to-sideband noise ratio.
Utility before they moved with the police and fire to a trunked system. However, now you hear them — whether or not you want to. Sure, there’s not much exciting about hearing the utility workers hanging delinquent notices on front doors, but the next time the fire department has a multi-alarm fire, keep in mind that the water utility may be requested to respond to boost water pressure for firefighters at the scene. Likewise, city buses may use the same trunked system, and you can hear their dispatcher rerouting them around a fire scene. All the communications relate to the same incident. While it won’t occur on a daily basis, you will hear a lot more when there’s a major event in town. Thus, look at public safety trunking as an enhancement to your monitoring, even if you have to take all the routine and boring stuff. It will pay off over time. Patience is the key here.

Frequency Helper

Zip Tarkas of Clearwater, Florida, says he appreciates seeing Pop'Comm on the World Wide Web now. Have you checked our site at <http://www.popcomm.com>? Zip is a long-time scanner enthusiast, starting with a Bearcat 101 way back when (that was also my first programmable!).

Zip notes that his local RadioShack stores have always helped him a great deal on his scanning adventure. He says most local stores have a listing of local frequencies that is free for the asking. In fact, not only RadioShack stores, but also other scanner shops maintain a local listing of frequencies that can be obtained on a handout flyer just for requesting it. If you’re traveling, it doesn’t hurt to stop at a local shop to see whether they can help you find some exciting local frequencies.

Zip says that there are many more frequencies he likes to monitor, but he can’t identify them. He purchases Police Call Plus every year and uses it as a scanning aid. He notes that Police Call Plus is an excellent book, and that it truly makes scanning interesting. However, he wants to know how he can identify the user of newly found frequencies.

First, be sure to catch some identifier. Quite often in the public safety radio services, call signs are used, and you can cross-reference those with the listings in Police Call Plus or on a frequency CD-ROM if you have one. Look under the frequency you are monitoring and see whether the call sign — or one very similar — is shown. In some areas, base stations operated by public safety agencies identify just by the last three numbers in their call sign. For instance, an agency may identify their base station as “750” if their call sign is KLL750. You’ll have to look through all the stations licensed on that frequency to see whose call sign the identifier. Outside of that, you can try to identify stations by the locations where units are dispatched. For instance, if you hear a unit responding to an accident on Interstate 80 near Dubuque Street, that helps narrow down the possible stations.

If you look for towns located along Interstate 80 in Police Call Plus under the respective frequency. Another possibility is the names of places within the town that units are dispatched to, such as a mall or park. By tracking locations heard by a particular agency, you may be able to figure out what town you are monitoring.

Fixing Oldies

Sam Oley of Plymouth, Minnesota, sent an e-mail saying he has a Uniden Bearcat 210XLT scanner that works “good sometimes,” but he doesn’t want to part with the radio. In other words, it’s an oldie, but goody. He asked whether we could steer him to someone who can check and repair the radio. He says he really doesn’t want to get rid of the scan-
The summer '98 version of the "Spectrum" CD-ROM from Percon Corp., sells for $37.45 (includes two-day shipping) and includes a huge U.S. database of frequencies. For more information, check out their Web site at <http:11www.perconcorp.com>.

ner, but he'll have no choice if it is beyond reasonable repair.

One company we've heard about favorably over the years is G&G Communications, at 9247 Glenwood Drive, Leroy, New York 14482, phone 716-768-8151. They repair most types of scanners and will attempt to fix almost any scanner with only a few exceptions. They stock a large inventory of replacement parts for many makes and models and also usually have as many as 500 dead scanners for parts salvage. In fact, if you have a dead scanner that is beyond repair, they may be interested in buying it from you to use for parts!

G&G Communications performs repairs for a flat fee plus additional costs for parts and shipping. Also, if you are looking for used Regency (10.7-MHz IF) or Bearcat-type (10.8-MHz IF) scanner crystals, G&G stocks many different frequencies. Call or write to them for details.

It's Your Turn To Write To Us!

What are your favorite frequencies? Do you have any scanner-related questions? Do you have any listening tips worth passing along to your fellow readers? How about sending in a photo of your listening post or antenna farm? Write to Chuck Gysi, N2DUP, "Scanning the Globe," Popular Communications, Box 11, Iowa City, Iowa 52244-0011; fax to 516-681-2926; or e-mail to <SCAN911@aol.com>. Make sure you indicate in your e-mail that you are writing regarding this column.
"Why would you spend that much money on a radio?" is a question that gets asked quite often when people begin discussing the higher end of the market. It's particularly asked by scanner enthusiasts. There are perfectly good scanners out there for $200, and even top-of-the-line units can be had for around $500 or less. Why would anyone buy a $2,000 ICOM or AOR receiver?

There's an old saying that goes something like "If you have to ask, you shouldn't." There's a LOT of truth in that. If the specs on the high-end equipment don't impress you, then you will probably not see enough extra performance out of the high-end unit to justify the cost difference. Wait a while. It's very helpful if you've owned a few other receivers first, so that you will appreciate the subtleties of the higher-end units.

The higher-end units are not considered "scanners," but rather "communications receivers." There's a subtle difference here, too, but one which disappoints many who jump into a high-end unit. The radio does not act much like a scanner. The high-end ICOMs, with the exception of the recent R-8500, and possibly the earlier R-9000, make not-so-great scanners, except under computer control. What's the deal?

The deal is primarily that these receivers are built more as communications monitors, that is to say, built to squeeze every last bit of signal possible out of the sky, rather than as high-end scanner receivers. Our scanners are built to cover a wide range of frequencies and to step from channel to channel as fast as possible so that we can find the action as it happens. A communications receiver might spend its entire career on one frequency in industrial or government service. As scanners, they tend to be a bit disappointing, if not downright intolerable.

Some will not really scan in a manner that's useful for us scanner folks without computer control. If you don't believe me, see if you can find someone who owns a Yaesu FRG-9600 and spend a few minutes with the rig.

The ICOM R-7000 was the first high-end communications receiver widely available to hobbists. Some swear by it as one of the most sensitive receivers ever built, while others swear it was one of the worst scanners.

So what you're paying for in these receivers is high-end performance, not as a scanner, but as a receiver. You'll find much less overload, intermod, and other forms of interference in these receivers. And they will hold up under very strong adjacent channel situations without succumbing to the strong signal next door, but correctly processing the weaker signal that you're tuned to. No scanner in the consumer market can claim that.

Those Technical Specs Again!

For those of you into technical specifications, what you're paying for in a high-end receiver tends to be selectivity and dynamic range. (See the April '98 "ScanTech" column in Pop'Comm for definitions of these and other terms.) The sensitivity of most of our consumer scanners is just fine. It's these other specifications of selectivity, the ability to pick out just one channel on a desired frequency and not be bothered by signals on nearby frequencies; and dynamic range, the ability to maintain performance in the presence of extremely strong signals, but still process the weak ones.

A perfect example of this situation is our local precinct. It is about one mile from my house and, of course, always has a strong signal at my location. Recently, I started noticing that I was getting that channel in some very strange places, and that I was getting a desensitization problem on some other radios any time this particular frequency was transmitting. It happens that the coordinator for communications is in our scanner club. At the next meeting, in the process of bringing us all up to date on what was new, he informed us that they had increased the transmitter power and realigned the antenna to be pointing pretty much straight at my house. Oh boy. It turns out they weren't out to get me personally (though I must admit that thought crossed my mind for a few minutes), but rather to increase their signal coverage in the western part of the precinct where they'd recently made some district changes.

The high-end receivers could handle this excess power with little problem. But the regular scanners, including the good old 2006, had a lot of problems for quite a broad range of frequencies around that area, all because the receiver just didn't have the circuitry to handle the load. That's not to say that there's anything
VHF/UHF antenna. This is almost essential because the performance over these wide frequency ranges simply cannot be supported by a single antenna, no matter what the design. It’s important for you to find out about the antenna switching technique. Some receivers switch by themselves at some particular frequency; others allow the operator to switch antennas through a control on the front panel. Beyond that, some receivers also allow the VHF/UHF ranges to be divided, or at least served by multiple antennas, that can be selected manually.

Another problem with high-end receivers is that they are becoming somewhat of a rare breed. With the passage of the ECPA, manufacturers were forced to delete frequency ranges from these units. Hardest hit was ICOM, which had no easy way to delete just the particular frequencies called for, and so wound up deleting the entire 800- to 900-MHz range. Ouch. Of course, the recent introduction of the 8500 has cured this problem, but the 9000, which some say is the best all-around receiver ever made, is no longer available to consumers. That’s a bummer. There are a few floating around on the
The widely touted 8500 is ICOM's current top-of-the-line consumer receiver. It is certainly one of the most versatile receivers on the market at any price.

used market, but they still command quite a price, and are increasingly difficult to find. It seems that most owners must be recognizing what they have and are hanging on to them.

Specific Models

Here's a brief summary of some of the high-end units that you'll see floating around on the used market. Most of them have been discontinued, and so the used market is the way to get there.

* AOR AR3000

AOR has made some neat stuff over the years, and the 3000A was one of their best. It's still widely available both new and used. It has 400 channels in banks of 100 each, but you can't scan between banks without computer control. It's a very sensitive receiver and somewhat prone to overload because of this. The 3000A is also the smallest of this group, so it makes an excellent mobile unit.

* AOR AR5000

The AR5000 is being touted as their best ever, and from what little I've seen of this receiver, it could be true. This is a wideband receiver with the broadest coverage available. Sensitivity is also reported to be very good on this unit.

* ICOM R7000

This is an early receiver from ICOM. In fact, it's their first consumer-grade communications receiver from the early '80s. These do show up on the used market from time to time and make excellent receivers. For the most part, it's a terrible scanner, as it's limited to 100 memory channels. But it's a great receiver. It is interesting to note that ICOM still lists this as a current model available to authorized users only, as there is not a cellular blocked version.

* ICOM R7100 A&B

The R-7100 was a much-improved upgrade on the 7000. More memories (1,000) and a much needed revision of the scan controls make the 7100 a much better scanner. Some have argued that the 7100 might be the best bang for the buck in communications receivers, and I'm not sure I could argue with that. They still show up used on a fairly regular basis, some of them with pretty good prices.

The only thing to watch for is the “A” versus “B” models. The “B” came out after the ECPA required the cellular frequencies to be deleted, and, unfortunately, ICOM's only solution seems to have been removing the entire 800- to 900-MHz range. I don't believe the “A” is marked; the “B” model is called a 7100 B.

* ICOM R9000

The R-9000 is said to be the ultimate dream receiver. At a list price of $7,500, it should be. What makes this receiver unique is the TV screen in the middle of it, which is used not only to access the receiver's many menus and controls, but also to display a spectrum analyzer, if desired. In reality, the spectrum analyzer turns out to be not quite as useful in scanning as it might be for other purposes because it can only cover 200 kHz of spectrum at a time. However, the receiver also covers the HF portions of the spectrum, and there the analyzer really shines.

As a receiver, it is second to none in the consumer line. Dynamic range is very good; sensitivity and selectivity are right up there with it. It's built like a tank and almost as large as one. Inside, lots of shielding prevents the CRT and other computerized portions from interfering with the receiver. I've read that in some lab tests, there was a measurable noise figure generated internally, but I have certainly not been able to detect it when using the receiver.

Technically, the 9000 is still available, but only to qualified agencies, etc., in the U.S. because of its wide frequency coverage. Once in a while, a used unit appears on the market, but, more often than not, what you'll see in the used market is people advertising that they're looking for one. There were not a whole lot of them sold, and the people who have them don't seem to be anxious to get rid of them.

* ICOM R8500

The 8500 is ICOM's current "top-of-the-line" offering for consumer equipment. A wide-coverage machine, it's built with technology 10 years newer than the 9000. In fact, when ICOM introduced the 8500, they referred in the ads to R-9000 technology at an affordable price. I'm not sure how affordable $2,000 is, but it is better than the $7,500 for the 9000!

The 8500 does not include the CRT. It does, however, include just about everything else the 9000 does, and a few new tricks of its own. All the memories have alpha tags, which are not difficult to enter, and each of the 20 banks can also have an alpha tag.

As a receiver, the 8500 is on a par with the 9000. I have not been able to test them side-by-side with the same antenna, but I wouldn't want to put any bets on which one would come out ahead either. (Sounds like a good "ScanTech" project coming soon!) The sensitivity and selectivity of the 8500 are excellent, and it seems to hold its own in strong signal environments. Inside, it's well built with an all-metal chassis and lots of shielded areas.

* Yaesu FRG-9600

This radio is also discontinued, but appears from time to time on the used market, although it usually doesn't stay on sale long. I think there is as much nostalgic/collector value in this receiver as there is true demand for it as a radio. It's starting to show its age a bit.

It is one of the most sensitive receivers
The Yaesu FRG-9600 can still be found on the used market, but grab it quickly. There's as much nostalgia value in this receiver as there is actual interest in it as a receiver. It isn't worth much as a scanner, but it's a very sensitive receiver, even by today's standards. I have ever used, and probably the worst design, so it doesn't have some of the fancy features of newer radios.

In The Future

And that, unfortunately, pretty well sums up the high-end market. There just aren't a lot of contenders out there. In the future, we may see more cost-effective receivers that begin to approach or exceed the capabilities of these, as technology evolves. Or we may see more and more "consumer"-grade scanners as interest by the serious listener who buys these receivers falls away. It will be interesting to see. I hope this has helped you to understand what's in those magic boxes, and why they're so expensive. It may turn out that you decide you're much happier with the equipment you have now, and then look at all that money we've saved you. That alone should help to justify your subscription to *Popular Communications*.

Photo Opportunity

We're looking for pictures of your listening setup. If you've got a good photo of your listening post that you can spare (sorry, pictures won't be returned without an SASE), send it in! Got an opinion on how to design a good listening post? Send that in, too. And, of course, your comments and questions are always welcome at <armadillo1@aol.com> or via snail mail at 9051 Watson Rd. #309, St. Louis, MO 63126. Until next month, good listening.
Almost every packet of mail I receive from the readers of this column contains a letter that reads something like this: "I used to really love CB radio. My wife and I used it all the time to stay in touch, but now there are so many troublemakers on the air that I hardly use it anymore. I think maybe they should never have dropped the licensing requirement"

Then the letter goes on to describe some of the shocking behavior that has been heard on the air and to ask if anything can be done. The bottom line: Troublemakers have taken a wonderful hobby and messed it up.

These letters always provoke mixed reactions in me. On the one hand, I can certainly sympathize and relate to what the writer is saying. I, too, have heard simply awful stuff on the air. And it certainly seems that the troublemakers are more numerous and irritating than ever before. But then I have to remind myself that every packet of mail to this column also contains numerous letters from good, decent people who represent the very best of CBing.

My best guess is that 2 percent of the current crop of CBers cause 98 percent of the problems. There are a lot of good folks out there, but they just don't make as much noise as the malcontents.

It's important to remember, too, that it wasn't lack of licensing that caused the FCC to lose control of the CB radio service. It was the other way around. CB was already out of control — there were so many people who simply bought a CB and got on the air without a license, even when licensing was required, that the FCC saw no reason to continue a pointless exercise.

For more information on the history of CB, check out a copy of TomCat's Big CB Handbook, written by Pop 'Comm's own Tom Kneitel. Tom is, first of all, the best radio writer on the planet (in my humble opinion). And second, as the long-time editor of a couple of CB magazines, he has forgotten more about CB radio than most of us remember. If you don't already have a copy of this book, you need one.

For more information on the history of CB, check out a copy of TomCat's Big CB Handbook, written by Pop 'Comm's own Tom Kneitel. Tom is, first of all, the best radio writer on the planet (in my humble opinion). And second, as the long-time editor of a couple of CB magazines, he has forgotten more about CB radio than most of us remember. If you don't already have a copy of this book, you need one.

Getting Back To Basics

In a very real sense, CB was never intended to be a hobby; it was supposed to be a communications tool for ordinary citizens. Even today, CB Rule 1 reads: "The CB Radio Service is a private, two-way short-distance voice communications service for personal or business activities. The CB Radio Service may also be used for voice paging." That sure doesn't sound like the CB radio service that I use every day. I suppose if you define skip shooting, noisemaking, and hell-raising as "personal activities," then CB, as practiced, fits the rule. To be sure, some businesses do use CB for communications: truckers use it for over-the-road communications, and REACT and other groups provide traveler's assistance and emergency communications. But still, if you try to use CB as a reliable means of staying in touch with your family, particularly when the skip is running, it can be very trying indeed.

Now, don't get me wrong: I love CB as a hobby and enjoy ragchewing with folks on the local channels. It never ceases to amaze me that one moment I can be talking to a station a few miles away and then — WHOOOSH! — the skip rolls in. Suddenly the local station disappears, and I'm chatting with someone a few states away. There's a kind of magic to long-distance propagation that never goes away. That kind of unpredictability makes for a great hobby and a highly unreliable communications tool.

There's no mystery to why this happens. The 27-MHz CB service was created by taking the 11-meter band away from the hams. It was a ham DX band to begin with, and, as long as there is an 11-year sunspot cycle, it will continue to be a DX band. Skip will happen, no matter what the FCC says. That's why the FCC rule making it illegal to "communicate with, or attempt to communicate with any CB station more than 250 kilometers (155.3 miles) away" is a total crock. You might just as well formulate a rule that makes it illegal for it to rain on weekends. (Jock, that sounds like a winner to me! Ed.)
service, in a frequency range that doesn't provide long-range propagation. If you take away the skip, you take away many (not all) of the problems.

Bob Leef, president of CREST Communications, and Bill Continelli, a REACT member and friend, and I have been informally bouncing around concepts for "fixing" CB radio. A big tip of the hat to them — their ideas have been instrumental in developing what follows, but any errors are mine.

The Family Radio Service (FRS) could be the place to start. I've done quite a bit of experimenting with these tiny, 1/2-watt FM transceivers that operate in the skip-free 462- to 467-MHz range, and I am impressed with how well they work. They offer crystal-clear communications over distances of one to two miles, and work quite well between vehicles at distances of up to half a mile.

There are 14 channels set aside by the FCC for use by the FRS:

<table>
<thead>
<tr>
<th>FRS Channel Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

The first seven FRS channels are the same as the so-called "splinter" channels from the licensed General Mobile Radio Service (GMRS). That means FRS and GMRS share these channels. It also means that people with FRS and GMRS radios can talk to each other on these frequencies.

Many of the FRS handi-talkies offer sophisticated functions, such as so-called CTCSS (Continuous Tone Coded Squelch System) "privacy" codes. When activated, these codes do not render communications private. Instead, they mute the receiver at all times except when the proper tone code is received. So, if you don't want to hear other people's transmissions, simply have everyone in your group activate the same CTCSS code, and all other conversations will be locked out.

As currently configured, FRS radios are limited to 1/2-watt handi-talkies that have non-detachable antennas. The intent of this is to prevent interference problems by limiting the range and to prevent the use of power amplifiers or external antennas. The problem is that the range is a little too short.

So I'd like to propose some modifications to the FRS radio service to create the Class A Family Radio Service. First, the power on channels 1 through 7 should be increased to at least 2 watts and no more than 5 watts. In addition, the use of external mobile and base antennas would be
allowed. Based on the results of some experiments that co-columnist Ed Barnat and I conducted, this should increase the range between mobile units and base stations to about five to eight miles.

The power on channels 8 through 14 would remain limited to 1/2 watt, which works just fine for communications around the neighborhood, in shopping malls, at amusement parks and campgrounds, and so forth.

A 15th channel would be added, the GMRS traveler’s assistance repeater pair: 467.675 (input)/462.675 (output) with 5 watts transmit power. Use of this channel would be limited to emergency communications and traveler’s assistance only. Since this is the repeater pair most often used by REACT teams who have a GMRS repeater, this would actually assist those teams in providing emergency communications and traveler’s assistance to the general public.

Now, I can almost hear what you’re thinking. If you allow the use of external antennas (which would permit a power amplifier to be put in line) and the use of a repeater, how are you going to prevent the riffraff from raising hell and turning this new radio service into what 27-MHz CB band? I’d leave it just as it is. Sounds like a good idea to us, but it needs your support to make it happen. Let us know what you think today. It would seem the time has come to stop talking and start acting!

Some time ago, I got a very nice letter from John, the coordinator of the Wind River Modulators, a highly successful sideband club operating out of Cheyenne, the state capital of Wyoming. John invited me to come visit, and while time and money didn’t permit travel to Wyoming, it seems as if this club is very much a going concern. The club has 895 members from 50 states, plus 35 countries. Most of the members have been established through radio contacts. Club members operate on channel 23 and channels 35 to 40 on lower sideband. There are many members in the Cheyenne area, right in the downtown part of the central city.

Every night at 8:00 p.m. Mountain Time, some 15 to 20 people check into the nightly net. People use whatever numbers they want to use, along with the club name. John operates with a Cobra 148 GTL, a hand mic, and an Antron 99. John also has a Cobra 142 GTL with a Night Eagle KD104. Some of the other regular net members use Brownings, Trams, Cobras, and even some old Montgomery Ward 23-channel sidebanders.

The membership packet includes a club certificate, club patch, club directory, and 20 of the club QSL cards. The Club logo is also available. For more information about membership, send a self-addressed, stamped envelope to John or Colleen, P.O. Box 21026, Cheyenne, WY 82003.

Until next time, keep those cards, letters, and shack photos coming! Write to me here at Pop’Comm or e-mail me at <lightkeeper@sprintmail.com>.

Wind River Modulators — Sidebanding From Cheyenne

Some time ago, I got a very nice letter from John, the coordinator of the Wind River Modulators, a highly successful sideband club operating out of Cheyenne.
Plug this self-contained MFJ-462B "Multi-6" into your shortwave receiver's earphone jack. Then watch mysterious chips, whirls and buzzing sounds of RTTY, ASCII, CW and AMTOR (FEC) turn into exciting text messages as they scroll across your easy-to-read LCD display. You'll read interesting commercial, diplomatic, weather, aeronautical, maritime and amateur traffic -- traffic your friends can't read unless they have a decoder.

Eavesdrop on the World

Eavesdrop on the world's press agencies transmitting unedited late breaking news in English -- China News in Taiwan, Tanjug Press in Serbia, Iraqui News in Iraq -- all on RTTY.

Super Active Antenna

"World Radio TV Handbook" says MFJ-1024 is a "first rate easy-to-operate active antenna...quiet...excellent dynamic range...good gain...low noise...broad frequency coverage." Mounts on a sidetray from electrical noise for maximum signal, minimum noise. Covers 50 KHz to 30 MHz. Receives strong, clear signals from all over the world. 20dB attenuator reduces out-of-band interference. Pushbuttons let you select 2 antennas and 2 receivers. Dual coax and phone connectors. Use 9-18VDC or 110VAC with MFJ-1312, $129.50.

High-Gain Preselector

High-gain, high-Q receiver presellector covers 1.8-54 MHz. Boost weak signals 10 times with low noise dual gate MOSFET. Reject out-of-band signals and improve copy on CW and other modes. Two separatively tuneable filters let you peak desired signals and notch interference at the same time. You can peak, notch, low or high pass signals to eliminate heterodynes and interferences. Plugs between radio and speaker or phones. 10x2x6 in.

Easy Up Antennas Book

How to build MFJ-38 and put up inexpensive, fully tested wire antennas using readily available parts that'll bring signals in like you've never heard before.

Receive Color News Photos, Weather Maps, RTTY, ASCII, Morse Code

MFJ-1214PC

Use your computer and radio to receive and display brilliant full color FAX news photos and incredible WeFAX weather maps with all 16 gray levels. Also RTTY, ASCII and Morse code.

Animate weather maps. Display 10 global pictures simultaneously. Zoom any part of picture or map. Frequency manager lists over 900 FAX stations. Automatic picture capture and save.

Includes interface, easy-to-use menu driven software, cable, power supply, comprehensive manual, Jump-Start guide. Requires 286 or better computer with VGA monitor.

Hi-Slip Q Loop' Antenna

The MFJ-1782 Loop' is a 2699 foot heavy duty antenna system that's perfect for any QRP radio and gives you up to 600 dB of extra gain. It's very quiet and has a very narrow bandwidth that reduces receiver overload and out-of-band interference.

High-Q Passive Preselector

The MFJ-956 is a high-Q passive LC preselector that lets you boost your favorite stations while rejecting images, intermod and other phantom signals. Covers 1.5-5.5 MHz. Has preselector bypass and recessed ground points for easy installation.

Mobile Scanner Antenna

Web: http://www.mfjenterprises.com

Free MFJ Catalog

MFJ ENTERPRISES, INC.
Box 414, Miss. State, MS 37762

Technical Help: 800-647-TECH (8324)

Free 24 Hour World Band Radio Kit

MFJ-1470, $99.95

MFJ-1470B, $101.95

Free 24 Hour UTC Clocks

MFJ-107B, $49.95

MFJ-107B, $50.50

No Matter What Guarantee

What" guarantees we give a full year unconditional guarantee. That means we will repair or replace your MFJ MultiReader (at our option) no matter what for a full year.

Order what you want. We ship worldwide, our guarantee applies. Try it for 30 days. Satisfaction guaranteed.

Print it for 30 Days

Order an MFJ-462B MultiReader from MFJ and try it in your own setup -- compare it to any other product on the market regardless of price. Then if you're not amazed, simply return it within 30 days for a prompt and courteous refund (less shipping).

Order today and try it -- you'll be glad you did.

Free MFJ Catalog

Write or Call tollfree...800-647-1800

Nearest Dealer/Orders: 800-647-1800

Technical Help: 800-647-TECH (8324)
This listing is designed to help you hear more shortwave broadcasting stations. The list includes a variety of stations, including international broadcasters beaming programs to North America, others to other parts of the world, as well as local and regional shortwave stations. Many of the transmissions listed here are not in English. Your ability to receive these stations will depend on time of day, time of year, your geographic location, highly variable propagation conditions, and the receiving equipment used.

AA, FF, SS, GG, etc. are abbreviations for languages (Arabic, French, Spanish, German). Times given are in UTC, which is five hours ahead of EST, i.e. 0000 UTC equals 7 p.m. EST, 6 p.m. CST, 4 p.m. PST.

<table>
<thead>
<tr>
<th>UTC</th>
<th>Freq.</th>
<th>Station/Country</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>5012</td>
<td>Radio Cristal, Santo Domingo, Dominican Rep.</td>
<td>SS</td>
</tr>
<tr>
<td>0000</td>
<td>6055</td>
<td>Radio Exterior de Espana</td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>7325</td>
<td>Radio Austria Int’l</td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>7495</td>
<td>Kol Israel</td>
<td>Hebrew</td>
</tr>
<tr>
<td>0000</td>
<td>9615</td>
<td>Radio Cultura, Sao Paulo, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0000</td>
<td>9630</td>
<td>Radio Aparecida, Aparecida, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0000</td>
<td>9745</td>
<td>HJCB, Ecuador</td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>4755</td>
<td>Radio Educacao, Campo Grande, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0030</td>
<td>5770</td>
<td>Radio Miskut, Puerto Cabezas, Nicaragua</td>
<td>SS</td>
</tr>
<tr>
<td>0030</td>
<td>5890</td>
<td>Radio MI, Tegucigalpa, Honduras</td>
<td>SS</td>
</tr>
<tr>
<td>0030</td>
<td>5905</td>
<td>Radio Vilmus, Lithuania</td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>7375</td>
<td>Radio Bulgaria</td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>9685</td>
<td>Voice of Islamic Republic of Iran</td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>9955</td>
<td>WRMI, Florida</td>
<td>EE/SS</td>
</tr>
<tr>
<td>0050</td>
<td>6010</td>
<td>RAI, Italy</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>4870</td>
<td>La Voz del Uparo, Macas, Ecuador</td>
<td>SS</td>
</tr>
<tr>
<td>0100</td>
<td>4885</td>
<td>Radio Clube do Para, Belem, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0100</td>
<td>4915</td>
<td>Radio Anhanguera, Goias, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0100</td>
<td>4985</td>
<td>Radio Brazil Central, Goiana, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0100</td>
<td>5260</td>
<td>Kazakh Radio, Kazakhstan</td>
<td>KK</td>
</tr>
<tr>
<td>0100</td>
<td>5905</td>
<td>West Coast Radio Ireland</td>
<td>via Germany</td>
</tr>
<tr>
<td>0100</td>
<td>5949</td>
<td>Voice of Guyana</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>6200</td>
<td>Radio Prague, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>7115</td>
<td>Radio Yugoslavia</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>11710</td>
<td>RAE, Buenos Aires, Argentina</td>
<td>SS</td>
</tr>
<tr>
<td>0100</td>
<td>11890</td>
<td>Radio Japan</td>
<td>via Sri Lanka</td>
</tr>
<tr>
<td>0100</td>
<td>59300</td>
<td>Radio Slovakia Int’l</td>
<td></td>
</tr>
<tr>
<td>0130</td>
<td>4800</td>
<td>R. Buenos Nuevas, San Sebastian, Guatemala</td>
<td></td>
</tr>
<tr>
<td>0130</td>
<td>5895</td>
<td>Voice of Greece</td>
<td>Greek unid</td>
</tr>
<tr>
<td>0130</td>
<td>7220</td>
<td>Radio Free Europe</td>
<td></td>
</tr>
<tr>
<td>0130</td>
<td>9495</td>
<td>Radio Austria Int’l</td>
<td></td>
</tr>
<tr>
<td>0130</td>
<td>9820</td>
<td>Radio Havana Cuba</td>
<td></td>
</tr>
<tr>
<td>0130</td>
<td>9905</td>
<td>Swiss Radio Kuwait</td>
<td></td>
</tr>
<tr>
<td>0200</td>
<td>4820</td>
<td>Radio Tachira, San Cristobal, Venezuela</td>
<td>SS</td>
</tr>
<tr>
<td>0200</td>
<td>5045</td>
<td>Radio Cultura do Para, Belem, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0200</td>
<td>9605</td>
<td>Vatican Radio</td>
<td></td>
</tr>
<tr>
<td>0200</td>
<td>9840</td>
<td>Radio Budapest, Hungary</td>
<td></td>
</tr>
<tr>
<td>0200</td>
<td>11620</td>
<td>All India Radio</td>
<td></td>
</tr>
<tr>
<td>0200</td>
<td>11675</td>
<td>Radio Kuwait</td>
<td>AA</td>
</tr>
<tr>
<td>0230</td>
<td>6155</td>
<td>Radio Romania Int’l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UTC</th>
<th>Freq.</th>
<th>Station/Country</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0230</td>
<td>7280</td>
<td>Radio Sweden</td>
<td></td>
</tr>
<tr>
<td>0300</td>
<td>4775</td>
<td>Radio Liberal, Belem, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0300</td>
<td>4980</td>
<td>Ecos del Torbes, Venezuela</td>
<td>SS</td>
</tr>
<tr>
<td>0300</td>
<td>6265</td>
<td>Radio Zambia</td>
<td></td>
</tr>
<tr>
<td>0300</td>
<td>7100</td>
<td>Voice of Russia</td>
<td></td>
</tr>
<tr>
<td>0300</td>
<td>7520</td>
<td>Radio Norway Int’l</td>
<td></td>
</tr>
<tr>
<td>0300</td>
<td>9535</td>
<td>Deutsche Welle, Germany</td>
<td></td>
</tr>
<tr>
<td>0300</td>
<td>9575</td>
<td>Voice of America</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>17675</td>
<td>Radio New Zealand Int’l</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>3210</td>
<td>Radio Exterior de Espana</td>
<td>SS, via Costa Rica</td>
</tr>
<tr>
<td>0330</td>
<td>3300</td>
<td>Radio Cultural, Guatemala City, Guatemala</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>4800</td>
<td>Radio Lesotho</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>5905</td>
<td>Voice of Vietnam</td>
<td>via Russia</td>
</tr>
<tr>
<td>0330</td>
<td>6000</td>
<td>Radio Havana Cuba</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>6010</td>
<td>Radio Budapest, Hungary</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>7160</td>
<td>Radio Tirana, Albania</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>7200</td>
<td>Radio Omdarman, Sudan</td>
<td></td>
</tr>
<tr>
<td>0330</td>
<td>7215</td>
<td>Trans World Radio via South Africa</td>
<td>AA vern</td>
</tr>
<tr>
<td>0330</td>
<td>9690</td>
<td>China Radio Int’l</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>4919</td>
<td>Radio Quito, Ecuador</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>4950</td>
<td>Radio Nacional, Angola</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>5915</td>
<td>Radio Ukraine Int’l</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>5944</td>
<td>Channel Africa, South Africa</td>
<td>AA</td>
</tr>
<tr>
<td>0400</td>
<td>5960</td>
<td>Radio Monte Carlo, Monaco</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>5980</td>
<td>Voice of Turkey</td>
<td>via Turkey via Canada</td>
</tr>
<tr>
<td>0400</td>
<td>6085</td>
<td>Bayernscher Rundfunk, Germany</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>6135</td>
<td>Swiss Radio Int’l</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>7300</td>
<td>Voice of Turkey</td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>9570</td>
<td>Radio Portugal Int’l</td>
<td></td>
</tr>
<tr>
<td>0430</td>
<td>4770</td>
<td>Radio Nigeria, Kaduna</td>
<td></td>
</tr>
<tr>
<td>0430</td>
<td>4914</td>
<td>Radio Cora, Lima, Peru</td>
<td></td>
</tr>
<tr>
<td>0430</td>
<td>9525</td>
<td>Channel Africa, South Africa</td>
<td>FF via Fr.</td>
</tr>
<tr>
<td>0430</td>
<td>9730</td>
<td>China Radio Int’l</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>4820</td>
<td>La Voz Evangelica, Tegucigalpa, Honduras</td>
<td>SS</td>
</tr>
<tr>
<td>0500</td>
<td>5077</td>
<td>Caracol, Colombia</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>5100</td>
<td>Radio Liberia International</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>5882</td>
<td>Vatican Radio</td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>Freq.</td>
<td>Station/Country</td>
<td>Notes</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>0500</td>
<td>5910</td>
<td>Radio Vlaanderen Int’l, Belgium</td>
<td>DD</td>
</tr>
<tr>
<td>0500</td>
<td>6250</td>
<td>Radio Nacional, Equatorial Guinea</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>7375</td>
<td>Radio Bulgaria</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>9765</td>
<td>Channel Africa, South Africa</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>9975</td>
<td>KOVOH, California</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>11905</td>
<td>Radio New Zealand Int’l</td>
<td></td>
</tr>
<tr>
<td>0530</td>
<td>3366</td>
<td>Ghana Broadcasting Corp.</td>
<td></td>
</tr>
<tr>
<td>0530</td>
<td>7250</td>
<td>Radio Rossi, Russia</td>
<td>RR</td>
</tr>
<tr>
<td>0600</td>
<td>6010</td>
<td>Radio Mil, Mexico City, Mexico</td>
<td>SS</td>
</tr>
<tr>
<td>0600</td>
<td>6015</td>
<td>Radio Austria Int’l</td>
<td>GG, via Canada</td>
</tr>
<tr>
<td>0600</td>
<td>7255</td>
<td>Voice of Nigeria</td>
<td>EE/vern</td>
</tr>
<tr>
<td>0600</td>
<td>9810</td>
<td>Radio Kiribati</td>
<td></td>
</tr>
<tr>
<td>0700</td>
<td>4960</td>
<td>Radio Vanuatu</td>
<td></td>
</tr>
<tr>
<td>0700</td>
<td>5020</td>
<td>Solomon Islands Broadcasting Service</td>
<td></td>
</tr>
<tr>
<td>0700</td>
<td>6175</td>
<td>BBC, England</td>
<td>via US</td>
</tr>
<tr>
<td>0700</td>
<td>6575</td>
<td>Radio Pyongyang, North Korea</td>
<td>RR</td>
</tr>
<tr>
<td>0700</td>
<td>7280</td>
<td>Radio France International</td>
<td>FF</td>
</tr>
<tr>
<td>0700</td>
<td>9365</td>
<td>HCJB, Ecuador</td>
<td></td>
</tr>
<tr>
<td>0800</td>
<td>4825</td>
<td>Radio Canciao Nova, Cachoeira Paulista, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>0800</td>
<td>4890</td>
<td>BBC, Papua New Guinea</td>
<td></td>
</tr>
<tr>
<td>0800</td>
<td>4940</td>
<td>Radio Amazonas, P. Ayacucho, Venezuela</td>
<td>SS</td>
</tr>
<tr>
<td>0800</td>
<td>5860</td>
<td>HCJB, Ecuador</td>
<td></td>
</tr>
<tr>
<td>0900</td>
<td>13670</td>
<td>Radio Korea Int’l, S. Korea</td>
<td></td>
</tr>
<tr>
<td>0845</td>
<td>7120</td>
<td>IRRS, Italy</td>
<td></td>
</tr>
<tr>
<td>0900</td>
<td>4832</td>
<td>Radio Reloj, San Jose, Costa Rica</td>
<td>SS</td>
</tr>
<tr>
<td>0900</td>
<td>6160</td>
<td>Deutsche Welle, Germany</td>
<td>via Antigua</td>
</tr>
<tr>
<td>0900</td>
<td>9700</td>
<td>Radio New Zealand Int’l</td>
<td></td>
</tr>
<tr>
<td>0900</td>
<td>9905</td>
<td>Voice of Russia</td>
<td></td>
</tr>
<tr>
<td>0920</td>
<td>6150</td>
<td>KNLS, Alaska</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>4790</td>
<td>Radio Atlantis, Iquitos, Peru</td>
<td>SS</td>
</tr>
<tr>
<td>1000</td>
<td>9740</td>
<td>BBC, England</td>
<td>via Singapore</td>
</tr>
<tr>
<td>1030</td>
<td>7185</td>
<td>Croatian Radio, Croatia</td>
<td>JJ</td>
</tr>
<tr>
<td>1100</td>
<td>6520</td>
<td>Radio Pyongyang, North Korea</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>7285</td>
<td>Radio Thailand</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>9370</td>
<td>KSDA, Guam</td>
<td>non-EE</td>
</tr>
<tr>
<td>1100</td>
<td>9580</td>
<td>Radio Australia</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>9650</td>
<td>Radio Korea Int’l, S. Korea</td>
<td>EE/KK</td>
</tr>
<tr>
<td>1130</td>
<td>5055</td>
<td>Faro del Caribe, San Jose, Costa Rica</td>
<td>SS</td>
</tr>
<tr>
<td>1130</td>
<td>9505</td>
<td>Radio Prague, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>1130</td>
<td>9710</td>
<td>Radio Australia</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>4753</td>
<td>RRI, Ujung Pandang, Indonesia</td>
<td>II</td>
</tr>
<tr>
<td>1200</td>
<td>4835</td>
<td>Radio Tezululutan, Coban, Guatemala</td>
<td>SS</td>
</tr>
<tr>
<td>1200</td>
<td>6020</td>
<td>Radio Australia</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>6150</td>
<td>AWR, Costa Rica</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>9715</td>
<td>Radio Tashkent, Uzbekistan</td>
<td>EE, other</td>
</tr>
<tr>
<td>1200</td>
<td>11600</td>
<td>Radio France International</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>12085</td>
<td>Voice of Mongolia</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>17715</td>
<td>Radio Exterior de Espana</td>
<td>SS</td>
</tr>
<tr>
<td>1230</td>
<td>9725</td>
<td>AWR, Costa Rica</td>
<td>SS</td>
</tr>
<tr>
<td>1230</td>
<td>9810</td>
<td>Radio Thailand</td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>11650</td>
<td>Radio Sweden</td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>15540</td>
<td>Radio France International</td>
<td>via Gabon</td>
</tr>
<tr>
<td>1230</td>
<td>15630</td>
<td>Voice of Greece</td>
<td>Greek</td>
</tr>
<tr>
<td>1239</td>
<td>7125</td>
<td>Radio Japan/NHK</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>11815</td>
<td>Polish Radio</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>15445</td>
<td>Radio Nacional, Brazil</td>
<td></td>
</tr>
<tr>
<td>1315</td>
<td>13680</td>
<td>Radio Vlaanderen Int’l, Belgium</td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td>13800</td>
<td>Radio Denmark</td>
<td>DD, via Norway</td>
</tr>
<tr>
<td>1400</td>
<td>9530</td>
<td>Radio Thailand</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>11990</td>
<td>Radio Jordan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UTC</th>
<th>Freq.</th>
<th>Station/Country</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>12120</td>
<td>Voice of Hope via Georgia Republic</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>13580</td>
<td>Radio Prague, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>13635</td>
<td>Swiss Radio Int’l</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>13675</td>
<td>UAE Radio, Dubai</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>15615</td>
<td>Kol Israel</td>
<td>Hebrew</td>
</tr>
<tr>
<td>1430</td>
<td>9535</td>
<td>China Radio Int’l</td>
<td></td>
</tr>
<tr>
<td>1430</td>
<td>11695</td>
<td>Voice of Russia</td>
<td></td>
</tr>
<tr>
<td>1430</td>
<td>11935</td>
<td>Radio Canada Int’l</td>
<td></td>
</tr>
<tr>
<td>1430</td>
<td>11965</td>
<td>Broad. Svc of Kingdom of Saudi Arabia</td>
<td>AA</td>
</tr>
<tr>
<td>1500</td>
<td>7240</td>
<td>Radio Japan NHK</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>11760</td>
<td>Radio Republik Indonesia</td>
<td>II</td>
</tr>
<tr>
<td>1500</td>
<td>11785</td>
<td>Radio Finland Int’l</td>
<td>Finnish</td>
</tr>
<tr>
<td>1500</td>
<td>11890</td>
<td>Radio Oman</td>
<td>AA</td>
</tr>
<tr>
<td>1600</td>
<td>9485</td>
<td>Radio France International</td>
<td></td>
</tr>
<tr>
<td>1620</td>
<td>11900</td>
<td>Radio Finland Int’l</td>
<td></td>
</tr>
<tr>
<td>1630</td>
<td>11905</td>
<td>RAI, Italy</td>
<td>GG</td>
</tr>
<tr>
<td>1700</td>
<td>11715</td>
<td>Radio Exterior de Espana</td>
<td>AA</td>
</tr>
<tr>
<td>1700</td>
<td>11845</td>
<td>BBC, England</td>
<td>via Cyprus</td>
</tr>
<tr>
<td>1700</td>
<td>12050</td>
<td>Radio Cairo, Egypt</td>
<td>AA</td>
</tr>
<tr>
<td>1700</td>
<td>13765</td>
<td>Vatican Radio</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>15435</td>
<td>Radio Jamahiriya, Libya</td>
<td>AA</td>
</tr>
<tr>
<td>1730</td>
<td>9590</td>
<td>Radio Denmark</td>
<td>DD, via Norway</td>
</tr>
<tr>
<td>1730</td>
<td>11570</td>
<td>Radio Pakistan</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>9200</td>
<td>Radio Omdurman, Sudan</td>
<td>AA</td>
</tr>
<tr>
<td>1800</td>
<td>9500</td>
<td>Trans World Radio, Swaziland</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>9510</td>
<td>BBC, England</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>9780</td>
<td>Republic of Yemen Radio</td>
<td>AA</td>
</tr>
<tr>
<td>1830</td>
<td>15240</td>
<td>Channel Africa, South Africa</td>
<td>FF</td>
</tr>
<tr>
<td>1900</td>
<td>9555</td>
<td>Broad. Svc of Kingdom of Saudi Arabia</td>
<td>AA</td>
</tr>
<tr>
<td>1900</td>
<td>9705</td>
<td>Radio Mexico Int’l</td>
<td>SS</td>
</tr>
<tr>
<td>1900</td>
<td>9965</td>
<td>Radio Norway Int’l</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>11835</td>
<td>BBC, England</td>
<td>via Ascension PP</td>
</tr>
<tr>
<td>1900</td>
<td>15200</td>
<td>Radio Portugal Int’l</td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td>9022</td>
<td>Voice of Islamic Republic of Iran</td>
<td>via Madagascar</td>
</tr>
<tr>
<td>1930</td>
<td>9605</td>
<td>Radio Netherlands</td>
<td>via Swahili</td>
</tr>
<tr>
<td>1930</td>
<td>11734</td>
<td>Radio Tanzania, Zanzibar</td>
<td>Greek</td>
</tr>
<tr>
<td>1920</td>
<td>12015</td>
<td>HCJB, Ecuador</td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td>17705</td>
<td>Voice of Greece</td>
<td>Greek</td>
</tr>
<tr>
<td>1945</td>
<td>9465</td>
<td>WMIL, Pennsylvania</td>
<td>SSB</td>
</tr>
<tr>
<td>1945</td>
<td>15050</td>
<td>RFPI, Costa Rica</td>
<td>AA</td>
</tr>
<tr>
<td>2000</td>
<td>7210</td>
<td>Qatar Broadcasting Service</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>9400</td>
<td>WGTG, Georgia</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>17830</td>
<td>BBC, England</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>6095</td>
<td>Polish Radio</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>7285</td>
<td>Polish Radio</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>9580</td>
<td>Africa Number One, Gabon</td>
<td>FF</td>
</tr>
<tr>
<td>2030</td>
<td>9850</td>
<td>Radio Cairo, Egypt</td>
<td>AA</td>
</tr>
<tr>
<td>2030</td>
<td>11945</td>
<td>Radio Canada Int’l</td>
<td>FF</td>
</tr>
<tr>
<td>2030</td>
<td>15485</td>
<td>Voice of Greece</td>
<td>Greek</td>
</tr>
<tr>
<td>2100</td>
<td>11785</td>
<td>Radio Iraq Int’l</td>
<td>AA, irregular</td>
</tr>
<tr>
<td>2130</td>
<td>9615</td>
<td>Deutsche Welle, Germany</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>5810</td>
<td>Radio Taipei Int’l, Rep. of China</td>
<td>via WYFR</td>
</tr>
<tr>
<td>2200</td>
<td>7520</td>
<td>Radio Moldova, Moldavia</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>9700</td>
<td>Radio Bulgaria</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>9985</td>
<td>Radio Taipei Int’l, Rep. of China</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>11925</td>
<td>Radio Bandirantes, Sao Paulo, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>2200</td>
<td>13820</td>
<td>Radio Marti, Washington, D.C.</td>
<td>SS to Cuba</td>
</tr>
<tr>
<td>2300</td>
<td>5955</td>
<td>Radio Romania Int’l</td>
<td></td>
</tr>
<tr>
<td>2300</td>
<td>9855</td>
<td>Radio Kuwait</td>
<td></td>
</tr>
<tr>
<td>2330</td>
<td>11615</td>
<td>HCJB, Ecuador</td>
<td>PP</td>
</tr>
<tr>
<td>2330</td>
<td>11780</td>
<td>Radio Nacional Amazonia, Brazil</td>
<td>PP</td>
</tr>
<tr>
<td>2330</td>
<td>11785</td>
<td>Deutsche Welle, Germany</td>
<td>GG</td>
</tr>
</tbody>
</table>
Sony Electronics, Inc., Announces Two New Scanners

Sony has re-entered the scanner market with two new handheld scanners, the ICF-SC1PC and the ICF-SC1C. Each is a PLL synthesized triple conversion superhet circuitry scanner with 300 memory channels in 10 banks, covering 25 to 1300 MHz (less cellular). Features include one-button access to nine public service bands using pre-programmed “service scanning” (police, aircraft, fire/emergency, weather, marine, FM broadcast, and TV audio); Intelligent Active Memory System which memorizes a frequency which has been active for five seconds or longer, and scans all frequencies in the Intelligent Memory database; a variety of programming and scanning options; direct manual tuning; three-way power operation (four “AA” optional batteries, car battery with optional car battery cord, or AC power, with supplied adaptor); and backlight LCD.

The ICF-SC1PC, which has a suggested retail price of $429.95, includes a CD-ROM database with over three million records, a computer interface cable, and software. The user can tailor searches Sony’s new handheld 300-channel scanner ICF-SC1PC is computer interfaceable and includes an extensive CD-ROM frequency database, and interface cable.

Sony’s SC1 PC scanner, while not PC interfaceable, includes the basic features of the SC1PC and is available for a suggested retail price of $329.95. For a fax-by-demand sheet on the scanners from SONY, call 1-800-222-SONY (7669), or for more information, visit their Web site at <http://www.sony.com>.

New Cobra TURBO Power Inverters

Cobra Electronics has announced a new line of TURBO power inverters that allow users to operate a wide range of products while away from standard power outlets. The inverters convert 12-Vdc battery power into 115 Vac. Simply plug the inverter into a vehicle. and create custom files for easy access to favorite listening areas.

There are also some well known CWRTTY Decoders but then there is CODE-3. It's up to you to make the choice, but it will be easy once you see CODE-3. CODE-3 has an exclusive auto-classification module that tells you what you're listening to and automatically sets you up to start decoding. No other decoder can do this on ALL the modes listed below and most expensive decoders have no means of identifying ANY received signal. Why spend more money for other decoders with FEWER features? CODE-3 works on an IBM compatible computer with MS-DOS with at least 640kb of RAM, and a CGA monitor. CODE-3 includes software, a complete audio to digital FSK converter with built-in 115V ac power supply, and a RS-232 cable, ready to use.

CODE-3 is the most sophisticated decoder available for ANY amount of money.

PROFESSIONAL CODE DECODER

<table>
<thead>
<tr>
<th>Power Inverters</th>
<th>REG. PRICE</th>
<th>CODE-3</th>
<th>DEDICATED TO THE SCANNING AND SHORTWAVE ENTUSIAST, WE ARE MORE THAN JUST SOFTWARE!</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWINPLEX</td>
<td>$329.95</td>
<td>$429.95</td>
<td>The ONLY Commercially Available Computer Control Program for the Universal M-7000 & M-8000. Also, AEA's PK-232 and the MFJ-1278. Let CODE-CAT PRO show you FOREVER from remembering all those buttons and keys, CODE-CAT PRO does it all. Simple "PULL-DOWN" menus control all functions. Fully editable test text, 20 programmed modes, and much more.</td>
</tr>
<tr>
<td>GOLDF VHF/SW DECODER</td>
<td>$245.00</td>
<td>$425.00</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
<tr>
<td>HOKA CODE-3 USA Version</td>
<td>$595.00 + S & H</td>
<td>HOKA CODE-3 USA Version</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
</tbody>
</table>

By Harold Ort and R.L. Slattery

Sony Electronics, Inc., Announces Two New Scanners

Sony has re-entered the scanner market with two new handheld scanners, the ICF-SC1PC and the ICF-SC1C. Each is a PLL synthesized triple conversion superhet circuitry scanner with 300 memory channels in 10 banks, covering 25 to 1300 MHz (less cellular). Features include one-button access to nine public service bands using pre-programmed “service scanning” (police, aircraft, fire/emergency, weather, marine, FM broadcast, and TV audio); Intelligent Active Memory System which memorizes a frequency which has been active for five seconds or longer, and scans all frequencies in the Intelligent Memory database; a variety of programming and scanning options; direct manual tuning; three-way power operation (four “AA” optional batteries, car battery with optional car battery cord, or AC power, with supplied adaptor); and backlight LCD.

The ICF-SC1PC, which has a suggested retail price of $429.95, includes a CD-ROM database with over three million records, a computer interface cable, and software. The user can tailor searches Sony’s new handheld 300-channel scanner ICF-SC1PC is computer interfaceable and includes an extensive CD-ROM frequency database, and interface cable.

Sony’s SC1 PC scanner, while not PC interfaceable, includes the basic features of the SC1PC and is available for a suggested retail price of $329.95. For a fax-by-demand sheet on the scanners from SONY, call 1-800-222-SONY (7669), or for more information, visit their Web site at <http://www.sony.com>.

New Cobra TURBO Power Inverters

Cobra Electronics has announced a new line of TURBO power inverters that allow users to operate a wide range of products while away from standard power outlets. The inverters convert 12-Vdc battery power into 115 Vac. Simply plug the inverter into a vehicle.

DEDICATED TO THE SCANNING AND SHORTWAVE ENTUSIAST, WE ARE MORE THAN JUST SOFTWARE!

HOKA CODE-3 USA Version

Many radio amateurs and SWLs are puzzled! Just what are those strange signals you can hear but not identify on the Short Wave Bands? A few of them such as CW, RTTY, Packet and Amor you’ll know—but what about all the other signals?

There are some well known CWRTTY Decoders but then there is CODE-3. It's up to you to make the choice, but it will be easy once you see CODE-3. CODE-3 has an exclusive auto-classification module that tells you what you're listening to and automatically sets you up to start decoding. No other decoder can do this on ALL the modes listed below and most expensive decoders have no means of identifying ANY received signal. Why spend more money for other decoders with FEWER features? CODE-3 works on an IBM compatible computer with MS-DOS with at least 640kb of RAM, and a CGA monitor. CODE-3 includes software, a complete audio to digital FSK converter with built-in 115V ac power supply, and a RS-232 cable, ready to use.

CODE-3 is the most sophisticated decoder available for ANY amount of money.

EXTRA OPTIONS

TWINPLEX	$329.95	$429.95	The ONLY Commercially Available Computer Control Program for the Universal M-7000 & M-8000. Also, AEA's PK-232 and the MFJ-1278. Let CODE-CAT PRO show you FOREVER from remembering all those buttons and keys, CODE-CAT PRO does it all. Simple "PULL-DOWN" menus control all functions. Fully editable test text, 20 programmed modes, and much more.
GOLDF VHF/SW DECODER	$245.00	$425.00	Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options
HOKA CODE-3 USA Version	$595.00 + S & H	**HOKA CODE-3 USA Version**	Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options

PROFESSIONAL CODE DECODER

<table>
<thead>
<tr>
<th>Power Inverters</th>
<th>REG. PRICE</th>
<th>CODE-3</th>
<th>DEDICATED TO THE SCANNING AND SHORTWAVE ENTUSIAST, WE ARE MORE THAN JUST SOFTWARE!</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWINPLEX</td>
<td>$329.95</td>
<td>$429.95</td>
<td>The ONLY Commercially Available Computer Control Program for the Universal M-7000 & M-8000. Also, AEA's PK-232 and the MFJ-1278. Let CODE-CAT PRO show you FOREVER from remembering all those buttons and keys, CODE-CAT PRO does it all. Simple "PULL-DOWN" menus control all functions. Fully editable test text, 20 programmed modes, and much more.</td>
</tr>
<tr>
<td>GOLDF VHF/SW DECODER</td>
<td>$245.00</td>
<td>$425.00</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
<tr>
<td>HOKA CODE-3 USA Version</td>
<td>$595.00 + S & H</td>
<td>HOKA CODE-3 USA Version</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
</tbody>
</table>

PROFESSIONAL CODE DECODER

<table>
<thead>
<tr>
<th>Power Inverters</th>
<th>REG. PRICE</th>
<th>CODE-3</th>
<th>DEDICATED TO THE SCANNING AND SHORTWAVE ENTUSIAST, WE ARE MORE THAN JUST SOFTWARE!</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWINPLEX</td>
<td>$329.95</td>
<td>$429.95</td>
<td>The ONLY Commercially Available Computer Control Program for the Universal M-7000 & M-8000. Also, AEA's PK-232 and the MFJ-1278. Let CODE-CAT PRO show you FOREVER from remembering all those buttons and keys, CODE-CAT PRO does it all. Simple "PULL-DOWN" menus control all functions. Fully editable test text, 20 programmed modes, and much more.</td>
</tr>
<tr>
<td>GOLDF VHF/SW DECODER</td>
<td>$245.00</td>
<td>$425.00</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
<tr>
<td>HOKA CODE-3 USA Version</td>
<td>$595.00 + S & H</td>
<td>HOKA CODE-3 USA Version</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
</tbody>
</table>

PROFESSIONAL CODE DECODER

<table>
<thead>
<tr>
<th>Power Inverters</th>
<th>REG. PRICE</th>
<th>CODE-3</th>
<th>DEDICATED TO THE SCANNING AND SHORTWAVE ENTUSIAST, WE ARE MORE THAN JUST SOFTWARE!</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWINPLEX</td>
<td>$329.95</td>
<td>$429.95</td>
<td>The ONLY Commercially Available Computer Control Program for the Universal M-7000 & M-8000. Also, AEA's PK-232 and the MFJ-1278. Let CODE-CAT PRO show you FOREVER from remembering all those buttons and keys, CODE-CAT PRO does it all. Simple "PULL-DOWN" menus control all functions. Fully editable test text, 20 programmed modes, and much more.</td>
</tr>
<tr>
<td>GOLDF VHF/SW DECODER</td>
<td>$245.00</td>
<td>$425.00</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
<tr>
<td>HOKA CODE-3 USA Version</td>
<td>$595.00 + S & H</td>
<td>HOKA CODE-3 USA Version</td>
<td>Includes: ALL Modes, Plus Oscilloscope*, ASCII Storage, Auto Classify*, and PACTOR II Options</td>
</tr>
</tbody>
</table>
Cobra Electronics has four TURBO power inverters, each designed for specific applications:

- **The Executive** — Model P-2, with a suggested retail price of $79.95, is ideal for laptop computer and cell phone chargers. Cobra calls it "the world’s smallest inverter for the mobile businessperson."

- **The Traveler** — Model P-4, with a suggested retail of $89.95, is designed for on-the-go families who need to power entertainment products such as TVs, VCRs, and video games.

- **The Tradesman** — Model P-6, with a suggested retail of $339.95, is for those who need to fire up power tools or small appliances from a remote location. It features fan cooling and standard remote on/off capability.

- **The Road Warrior** — Model P-8, with a suggested retail of $559.95, allows truckers or RV owners to power anything, even microwaves and hair dryers.

Cobra Electronics Corporation is headquartered at 6500 West Cortland Street, Chicago, IL 60707. Phone 773-889-8870 or fax them at 773-794-1930.

VLF Radio!

"The Sounds Of Longwave"

The lowest radio frequency to which most people will ever tune is 530 kHz on their AM radio dial. The cassette tape "VLF Radio!" goes beyond this barrier with sound samples from virtually every type of signal that can be heard on long-wave and below.

This 60-minute cassette provides narration by Kevin Carey, WB2QMY, and actual recordings of ships at sea, non-directional beacons, European broadcasters, experimental lowers, military radio-teletype stations, WWVB, 10-14 kHz Omega and natural radio. Many of these signals are considered "endangered species" and have been preserved here for their historical value. Included with the tape are reference notes, a long-wave spectrum chart, and a listener logsheet. "VLF Radio!" is designed to serve as an introduction for the newcomer or as a reference tool for the seasoned DXer. Tapes are available for $11.95 each postpaid with U.S. funds from Kevin Carey, PO. Box 56, West Bloomfield, NY 14585. Orders are shipped within two days by first class mail. Dealer inquiries are invited. Kevin can also be reached via e-mail at <kcarey@mdsroc.com>.
DataFile of St. Louis has once again upgraded their popular Probe software for the Optoscan 456 and 535 products. As usual, the resulting product offers many enhancements for the seasoned Probe user, while maintaining the simplicity that Probe has become known for — great news if you’re just getting started.

If you’re new to computer-controlled scanning, Probe is probably one of the easiest software systems to configure and use with your scanner. It runs on any old DOS computer, although it also runs just fine in a window under Windows 95. With just a few minutes in the manual’s “Quick Start” section and a few key-presses, you can be up and scanning. Then, as you get more comfortable and begin to read the rest of the manual, you start to uncover some very powerful settings. Probe preconfigures most of these so that you don’t need to mess with them to get up and running, but at the same time, you don’t get the full power of the software without understanding what it’s capable of doing. It’s truly a program that can grow with you.

How It Works

Probe stores files on your hard disk in “Groups.” You can have up to 4,000 group files. When you’re scanning, you will be scanning one, and only one, group, but having 3,999 extras preprogrammed can’t hurt. In reality, I know a lot of people who only have one group programmed, which may be plenty. But it’s nice to have expansion capabilities. It’s also fun to exchange group files with other users. There are some available for download on the Internet that tend to be of some use to everyone. Things like Maritime, air bands, and common ham radio frequencies have been preconfigured and can be downloaded and scanned right away. For further info on these, see the PRO-2006 Web site (which is maintained by Steve...
of sources as well as its own format. Most run out of capacity anytime soon. If you could store, you shouldn't.

Hancock, a Probe user, not the company) at <http://home.pud.net/~pro2006/>.

Entering Data

Once you've selected the group file that you want to work with, you're ready to begin entering data. Probe provides 99 banks in each group, and up to 1,000 frequencies per bank. If you do the math, that's up to 99,000 frequencies that you could potentially be scanning at once, and if you multiply that by the 4,000 groups that you could have stored, you shouldn't run out of capacity anytime soon.

Probe will import data from a variety of sources as well as its own format. Most of the major CD collections of FCC data are supported, including ScannerBase, Betty Bearcat, Mr. Scanner and Percon.

While you can import this data as a good resource for finding what's around you, and as a starting point, you'll pretty quickly find yourself wanting to set up your own files with just the stuff you scan on a daily basis. Don't worry, it's easy to have both. Just create another group file!

Of course, good scanning sense and your time to type frequencies in will dictate that you really don't want to scan that many channels at once. The real power in having 99 banks is how you can divide your scanning interests: a few police frequencies here, a few fire frequencies there, and some other stuff scattered in various banks.

In version 3.0, a feature called HyperBanks allowed you to attach a set of banks to a function key. By pressing that key, those banks would be loaded. One of version 4.0's cool new features is that now, in addition to switching banks on and off, HyperBanks can also switch any of about 54 settings at the same time. So you could configure one HyperBank to load police and fire freqs, and log that up to a certain file. You could then configure another hyperbank to load police and ambulance frequencies, but log them to a different log file and turn on the priority function. It is truly a way to expedite a whole host of changes in a very short time. With a little preparation, you can be prepared for almost any scanning situation at the press of a button.

Improved Priority Function

Speaking of priority, Probe has added an improvement here, too. Probe's priority function was always a bit different, but once you figured out how it works, it's pretty cool, and very functional. The priority function allows you to designate a priority bank. This, of course, has to be one of the banks that you are scanning. You also designate how often you want this priority bank checked in terms of frequencies scanned. The higher the number, the less often Probe will go back and check this bank for activity.

As an example, suppose you designate bank as your priority bank, and tell it to check every 50 frequencies. The program will scan everything in your other active banks, counting as it goes until 50 frequencies have been scanned. Then, it stops where it's at and goes to check the priority bank, regardless of how many frequencies you have in that bank. Once the priority bank has been checked, and assuming no activity was found, scanning resumes where it left off. When 50 more frequencies have been scanned, it checks priority again. By increasing or decreasing this number, you can dramatically affect how often the frequencies in the priority bank are being checked, and as a result, how much emphasis is on them in your scanning routine. It truly allows you to focus on key frequencies while still scanning other frequencies.

In version 4.0, there is a new "active priority" feature. Under the priority system in Probe 3.0, when the scanner was stopped on an active frequency, the priority frequencies were not being checked. In version 4.0, you can designate one "priority check" frequency that...
experimentation to find the ideal settings gets quite a bit of control. It takes some one frequency can be checked as often as the audio of the active frequency. This does. You'll hear a slight interruption to is sampled, while another frequency is active, much like a conventional scanner does. You'll hear a slight interruption to the audio of the active frequency. This one frequency can be checked as often as you like. The setting range for this runs into the fractions of a second, so you can get quite a bit of control. It takes some experimentation to find the ideal settings for the frequencies that are important to you, but you'll be repaid with an improvement in the continuity of conversations.

Unmatched Tone Control

Probe has always offered excellent CTCSS and DCS tone squelch controls. You can use tones both to help identify who is transmitting and, in a true tone squelch mode, so only those transmissions with the appropriate tone are monitored. Its abilities in this regard are quite extraordinary. If a user with a particular tone transmits and the scanner stops on that frequency, Probe will check if it has a user with that tone in the bank. If it does, it will display that user's information on the screen. After the transmission is complete, if another user with a different tone transmits, it will display the information for that user, just like you'd expect. And you can also lock out individual tones and users if you prefer. In version 4.0, you can also tell Probe to unsquelch only if there is no tone. You can also set tone parameters in the manual tuning mode if you like.

Information Please

One of the things that has always set Probe apart and contributes greatly to the ease of use is its database features. The data worksheet is integrated right into the main program so it is always only a few keystrokes away. There are lots of neat functions available here, probably more than we can tell you about. These include free editing of any record in the database, sorting and finding data in a number of ways, and the ability to configure columns in any order you wish for both display-on-screen and printed reports. You can also copy and move banks from one group to another, or within the same group.

New in version 4.0 is a "compare" function. This handy feature allows you to compare the contents of one group file to another. The way it works at first glance is a bit confusing, but once you've used it a couple of times you'll appreciate the flexibility this new feature offers.

You access the extra options from the frequency viewer by pressing F10. Then, you select a group that you wish to copy/compare the data FROM. You can select just a single bank, or the entire database for that group, or you can opt for just the marked or unmarked records. The records are copied from that group into the currently active group, in bank 00.

Bank 00 has been around for a long time, but most Probe users probably didn't know about it. You can't scan 00, but you can use it to store information, either on a permanent or temporary basis. I'm not sure why you'd want to store stuff there permanently, but as a temporary work space, it can make life easier.

As the records are brought into bank 00, duplicates of any frequency in the current database will be marked (it's helpful to unmark any records you might have had marked, so that you'll be looking at just the results of the comparison). Marked records represent frequencies that are already in the database somewhere else. Unmarked records represent frequencies that are new. From here, you have a lot of options.

There is a command to just delete the marked records. That will leave you with only new stuff in bank 00 that you can then go back and assign to banks as appropriate. Or, you might elect to change the index (sort) so that records are shown in frequency order. Marked records will still be the duplicates, but they will appear right next to the record that they duplicate. This way, you can look through and decide on a case-by-case basis what to keep and what to delete. You can even reassign banks as you go, so that the new records you decide to keep will replace the ones that you are deleting in the correct bank. Of course, all of this requires a bit of time to sort through, but it makes central "master" databases possible, and it makes exchanging groups with friends that much easier. You'll like this feature after you use it once or twice. Or, in typical Probe style, you can just ignore that it's there and keep on scanning.

Also related to data operations is a new export function. Probe now supports the UDFDBF format in export operations. Probe has always been able to import records in this format, which come from all sorts of sources including most of the popular FCC database collections. Now, files can be exported in this format also for use with other software.

Wait, There's More!

Version 4.0 also offers a custom delay function. Each frequency can now have its own delay setting if you choose. Of course, you can still have a delay all, and delay flagged settings too. However, if you assign a custom delay to a frequency, it will override the delay all and delay flagged times. This will prove a useful feature for certain applications where additional delay time is warranted.

Once again, hats off to Datafile for a superior product. It retains its ease of use for those just beginning, while continuing to offer superb control over the scanning process for those who choose to dig a little deeper. And, even with the new features, Probe will still run on virtually any DOS computer, making a dedicated system both desirable and affordable.

Datafile Probe Software

Probe Version 4.0, $129.95 plus s/h
Contact: Datafile, Inc.,
P.O. Box 20111, St. Louis, MO 63123
E-mail at <datafiles@aol.com>.

Owners of previous versions should contact Datafile to find out about special upgrade offers.

MFJ-1046 And MFJ-1048 Passive Receiver Preselectors

By Peter Bertini

There are many receiver accessories available to enhance your shortwave listening: active antennas, audio filters, and better sounding external speakers are common in SWL shacks. We all like gadgets and gizmos, but, how about a good receiver preselector? MFJ's recently announced preselectors caught our attention in some recent Pop Comm ads, so we decided to learn a bit more about the MFJ-1046 and MFJ-1048.

Both preselectors cover from 1.6 to 33 MHz in six bandswitched, overlapping tuning ranges, and both models share the following specifications. The preselector is used between your receiver and antenna to provide reduction of strong out-of-band signals. This is a "passive" device.
The MFJ-1046 and MFJ-1048 preselectors. Either unit is ideal for use with an SWL receiver, but the MFJ-1048 also incorporates RF sensing for automatic by-passing when used with a transceiver.

It does not amplify signals, or require a power source to operate as a preselector.

The MFJ-1048 does require a source of 12 volts, which is used for the automatic bypass relays. The '1048 model is for use after ham transceivers with a maximum rating of 200 watts. The '1048 "senses" when you are transmitting and automatically switches to the bypass mode. Loss of 12 volts causes the unit to "failsafe" in the bypass mode.

Bands covered are 1.6 to 2.8 MHz, 2.4 to 4.3 MHz, 4.0 to 7.0 MHz, 6.4 to 11.5 MHz, 10.5 to 19 MHz, and 18 to 33 MHz. A smooth 7:1 vernier reduction tuning drive is used. The unit is handsomely housed in a black 7 1/2 x 2 1/2 x 3 1/4 inch cabinet with stylish white silk-screened lettering and dial scales. The cabinet is well-shielded aluminum, not plastic. Besides the bandswitch and tuning knob, there is a push-button bypass switch on the front panel. The RF connectors are SO-239s — not cheap RCA style jacks.

Why You Need One

Well, I could go on and on about this interesting product, but first let's take a look at why you might need an MFJ-1046 in your listening post. Unless you're a "receiver techie," you have probably wondered about some of those technical receiver specs tossed about without explanation. Heck, those MFJ ads for the '1046 read like patent medicine claims. But will it do what it promises? And, what exactly is it promising to do?

First, no preselector made will improve the dynamic range (strong signal handling ability) of your radio. This must be "engineered" in the receiver frontend — no onboard accessory will improve it. But a preselector will greatly reduce or eliminate those strong out-of-band signals that can cause problems. It doesn't make your frontend "stronger," but instead reduces the levels of unwanted signals, so they won't overload the set's frontend mixer.

Receiver Weaknesses

Several months ago I reviewed the Lowe SRX100 shortwave receiver (an excellent value). But, like many receivers in its price class ($200 to $400), the SRX100 receiver frontend is "wide-open" across the spectrum from 100 kHz to 30 MHz. While the SRX100 has good RF handling properties, the lack of preselection can cause problems. Imagine such a receiver hooked to a longwire antenna under good band conditions, and the vast number of very strong signals being delivered to the antenna jack. These radios are especially prone to what is known as "Second-Order Intermodulation" problems.

In-Band Problems

Higher class receivers, such as the JRC-345, use several frontend-bandpass filters that are automatically selected across the frequency range. But, the MFJ-1046 virtually eliminates any second-order IMD problems.
tuning range of the receiver. These filters can eliminate second-order IMD problems, but the radios are still prone to third-order IMD when over loaded by strong in-band signals.

To make this clearer, let’s imagine a couple of very strong 49-meter signals; one at 5.90 MHz and the other at 6.10 MHz overloading your receiver mixer. You’re trying to hear a weak signal on 5.7 MHz. Using the third-order formula \((2A + B = X) \) shows that one of the undesired third-order products falls on 5.7 MHz. You have a problem. Don’t let the math scare you, this is simple algebra! \((2 \times 0.9 MHz) - 0.1 MHz = 5.7 MHz \).

Now, let’s put the MFJ-1046 (or the 1048) in line, and tune it to 5.7 MHz. Chances are the unwanted third-order interference is completely gone, and that weak 5.7-MHz broadcaster is now in the clear! My bench analysis shows that with the MFJ-1046 tuned to 5.7 MHz, the 6.3-MHz signal is reduced by 14 dB and the 5.9-MHz signal by 6 dB. But wait, here’s the real kicker! For each 3 dB reduction of a signal producing a third-order IMD product, the unwanted product is reduced by 9 dB! Wow! Again, the MFJ-1046 delivers the goods.

Noise, Noise, And More Noise!

Sometimes receiver overload shows as “noise” and not as phantom signals. Hundreds of very strong stations hitting on your frontend can make a band sound very “noisy” — almost like hash. The S-meter stays at S6 or S7 across the band, and you blame “atmospheric” noise as being the problem. Kickin’ in a good pre-selector will often greatly reduce this noise if it results from overloading, allowing weak signals to be heard.

The MFJ-1046 Design

For the “techies,” here’s the inside scoop on this preselector’s design. The circuit is simply a 200-pF air variable, with several bands switched inductor values for each tuning range, used in a series resonant circuit. At resonance, the series resonant circuit provides a very low impedance path between the antenna and receiver. A broadband balun steps the antenna impedance down to a low value, magnifying the effect of the series resonant circuit. Another ferrite balun steps the impedance back up to 50 ohms for a good match to the receiver input.

Bench Analysis Results

I have a fairly complete electronics lab, so I made some graphs of the preselector performance. Maximum rejection (also called “stop band”) runs about 30 dB up to about 40 MHz. One weakness was found. The preselector has very poor VHF rejection: signals at 100 MHz are only down several dB. Many modern upconversion receivers have 45-MHz IFs, with VCOs running in the 45- to 75-MHz range. This places the image for these receivers between 90 and 120 MHz; it would have been a plus if the MFJ-1046 offered some added rejection over this range. A parallel 27-uH choke and 4.7-pF capacitor in series with the antenna jack would have done the job.

Other gripes are equally trivial. I would have liked the device to cover down to 530 kHz, and it would be nice to have a switch-in 10- or 20-dB attenuator on board. There’s ample front panel space to add this mod if you’re technically inclined.

Insertion losses varied from 4 or 5 dB on the lowest ranges, to under .8 dB on the highest. This is acceptable and in accord with the atmospheric noise levels at those frequencies. In other words, 5 dB of loss at 2 MHz is not important since most receiver noise figures are usually several dB better than needed at these frequencies. Likewise, the .8-dB insertion at 30 MHz is also acceptable and probably as good as could be hoped for with a preselector.

On The Air

I evaluated the MFJ-1046 on several shortwave and amateur bands. Its selectivity on 160 meters is very impressive — hams plagued by broadcast station overload on this band will love the 1046. One caveat: the MFJ-1046 is a receiver preselector, it must never be placed in line with a transceiver or transmitter! The MFJ-1048 model will handle up to 200 watts and has an automatic bypass circuit for use on CB, HF marine, or ham sets. The controls are well placed, operation is intuitive, and the dial markings are easy to read. The tuning is silky smooth. The dial scale calibration is adequate.

Conclusion

The MFJ-1046 and 1048 are decent products and values which can improve receiver performance for those who need it. Whether you have $200, or a few thousand dollars invested in your SW receiver, overload can be a very real problem when using good efficient outside long-wire or dipole antennas.

I’ve decided to buy my review unit. After all, if you can’t hear them, you can’t log them.

MFJ Passive Receiver Preselectors

MFJ-1046 $99.95
*MFJ-1048 $119.95
Contact: MFJ Enterprises, Inc., Box 494, Mississippi State, MS 39762
Phone/Fax: 601-323-6551; Tech: 601-323-0549
*Handles up to 200 watts
Scanning The Races, And Checking Out Opto's Microcounter

Scanning a race from home is easy if you point your browser over to http://www.jeffgordon.com and click on the link for listening to audio from radios at the current racetrack. I fired up my home PC before the start of the Daytona 500 in January, and, via the Web, listened to scanner audio from the racetrack while watching the television coverage. At times, I found that listening to the drivers and pit crews was more interesting than hearing what the TV announcers had to say, and there were no commercials! The servers that stream this audio have a limited number of connections, so try to connect prior to the start of a race.

ICOM's new PC-controlled radio, the IC-PCR1000, delivers wide range performance in a small and easily transported package. Check out their Web site at http://www.icomamerica.com. I recently began a new job which has me travelling via plane and staying in hotels most of the time. The job requires me to carry a notebook PC with me at all times, so a computer-controlled radio was a logical way to bring my monitoring hobby along.

I've carried along my other radios, such as the AR8000 and its external interface, and PRO-2035 with OS535 board installed, but I was looking for something that would take up less room in my suitcase and offer a lot of capability. The PCR1000 certainly is easy to pack, and thus far, in about a week of usage on the road, seems to have capabilities that are most limited by the type of antenna used, and functions supported in software. I've found some good information on the PCR1000 at http://www.mindspring.com/~jtsmith/index.htm, and a cool software application written for the PCR1000 is located at http://wave.home.mindspring.com/pcr1000.html.

ScanCat software supports the PCR1000, and it's hoped that ICOM will release the interface and command set specifications to software developers in order to promote the development of support for this radio in new and existing radio control applications.

"The IC-PCR1000 delivers wide range performance in a small and easily transported package."

The Magic application I reviewed in February has also been updated to read and write the MCH files used by the ICOM PCR1000. Go to http://www.scan.cat for information on Magic and ScanCat software.

Optoelectron's Microcounter has proved to be a very useful and covert tool for discovering frequencies. I've been using mine almost non-stop since I got it, and as a result know the frequency used by nearly every airline gate attendant, hotel staff, and handheld radio user I've come into contact with while wearing this miniature counter housed inside a pager case. It's true that the counter lacks a computer interface and has limited memories (three), but it does what it was designed to do well, and at only $99! You can find out more about it on Opto's Web site at http://www.optoelectronics.com. I'd also recommend this to a frequent traveler, as it's small and lightweight, and uses regular AA batteries.

It's In The Mail

Many mailing lists related to the monitoring and amateur radio hobbies are hosted by http://www.qth.net. To get more information and to sign up for a list, point your browser to the Web site. Once you've found a list that seems interesting to you, you can subscribe to the list. Then, via e-mail, you'll receive information sent to the list, and will also receive information on how you may post messages to the list that will be seen by all of its subscribers. If you wish to get the messages in a digest format, all grouped together instead of individual messages, then instead subscribe to the digest version of the list. Please save the information that's mailed to you when joining for use when you need to unsubscribe or make a change to your subscription. There may also be some rules for posting to the list, and you should read these as well as a couple of days worth of messages prior to posting for the first time.

In general, there are some rules that are common among all mailing lists. These include not TYPING IN ALL CAPITAL LETTERS as this is perceived to be shouting! Sending attachments such as files and graphics along with a posting is also not allowed on most lists. Lists typically have a topic and require postings to be related to that topic. If you begin your message by saying, "I know this isn't on topic, but ..." then you should not be sending it to the list. An example of this would be sending a message concerning computer viruses to a list about scanners. Yes, it's true that everyone reading your message is using a computer of some sort, and the virus information may be handy to them, but it's off topic for a scanning list and should not be sent. When sending a reply to a previous message, some folks include parts of the orig-
The Listening Post

WHAT'S HAPPENING: INTERNATIONAL SHORTWAVE BROADCASTING BANDS

New Chilean Broadcaster On The Air, And Al Weiner Coming To Airwaves From Maine!

The new Chilean broadcaster we alerted you to a few months ago is now on the air and conducting initial tests as we write this month's column. Voz Cristiana's first broadcasts are taking place on 21551, variable, and are being heard quite widely airing up-tempo Christian music generally between the hours of 1400 and 2000.

The station operates from the transmitting facilities formerly owned by La Voz de Chile, which gave up its shortwave efforts several years ago. There are eight 100-kW transmitters at this location near Santiago which will be put into play, so expect several frequencies to be used once everything is up and running (probably by now). Broadcasts in Spanish and Portuguese will be aimed at audiences throughout Central and South America and the Caribbean. The address is Casilla 490, Santiago 3, Chile.

Voz Cristiana is owned by Christian Vision, which also operates Radio Christian Voice on shortwave from Zambia (0400 to 0600 on 6065 and 1600 to 2000 on 3330). The Chilean station plans to produce most of its programs at studios in Miami and satellite-feed them to the transmitters in Chile.

Alan Weiner, who, over a period of several years, has sought to own and operate a shortwave station (most notably with the ill-fated Radio Newyork International), has been given the go-ahead by the FCC to put a 50-kW station on the air from his farm near Monticello, Maine. The station will operate using the call letters WBCQ and

Radio Broadcast Schedule

Programmazione Radiofonica

Short Wave Transmissions on 1000 kHz from 10 October 1997 to 28 October 1997 - Transmission on 1000 kHz from 28 October 1997 to 29 November 1997

Program: Italiano, Radio International

Programma Italiano, Radio International

Programme: Italiano, Radio International

Ora Italiana/Italian time: UTC+1

NATIONAL BROADCASTING COMMISSION

PAPUA NEW GUINEA

This standard card from NBC Papua New Guinea shows the sites of all the PNG broadcasters, several of which are currently off the air. (Ron Cole, California reports several PNG receptions in this month's listing). (Thanks: Andy Johns, TX)

 Several years ago Jeff White of WRMI operated Radio Discovery in the Dominican Republic. (Thanks: Andy Johns, TX)
Reports say that all three of its regular channels are silent. It's impossible to say whether this one is gone for good or not. Even under the best of circumstances this one was never heard well in North America. It also appears that all short-wave operations by the government of Laos have stopped, at least for the time being. And people are also wondering about Radio Damascus (Syria). It's not being heard on its usual frequencies: 9950, 12085, and 13610.

You should be hearing Radio Yugoslavia with stronger signals before long. The station has set up an agreement for it to be relayed by China Radio International (including to the west coast of North America). In addition, it expects to hire time on a private U.S. broadcaster.

Star Radio has resumed its operations from Liberia, after the government there ordered it closed briefly. Broadcasts air on 3400 between 0500 and 0800 and on 5880 from 1700 to 2100 (the former is your best bet).

Remember that we always welcome your informational input. Log reports should be listed by country. Please double space between items, and tag each one with your last name and state abbreviation. Besides your loggings, we're always in need of such things as info about station address changes or QSL policies, photographs of shortwave stations or personalities, photos of you and your shack (or, if you're the shy type, of just your shack), spare/sample QSL cards, station brochures, schedules, and any other informative or illustrative items you care to share. Thanks so much for your continued interest and support!

AUGUSTA - Radio Liberal Belem, 4774.44 at 1015 with SS talks by man and woman, radio drama, rancheros, SS ballads. (Alexander, PA) 0318. (Delfratte, PA) 1727 in GG. (Foss, AK) 13680 at 1318 with ID, talk on European currency. (Northrup, MO) 0300 with Mideast type music, Portuguese news. (Wood, SC) 0341 with history on liberation of Albania. (Wood, SC) 0318. (Delfratte, PA) 0247 with news. (Miller, WA) 9710 at 1135. (Delfratte, PA) 11835 at 1952. (Ziegner, MA) 11915 at 2021. (Jeffery, NY) 0912 with news. (Barton, AZ) BBC relay, 5975 at 0400 with “Newsdesk.” (Jeffery, NY) ALBANIA — Radio Tirana, 7160 at 0245 with Albanian-related news. (Wood, SC) 0341 with history on liberation of Albania. (Delfratte, PA) 0247 with news. (Miller, WA) ANGOLA — Radio Nacional de Angola, 0300 with Middle Eastern music, Portuguese and Afro pops, ID heard at 0403, 0405. Weak. (Alexander, PA) ARGENTINA — RAIE, 11710 at 2301 with sports in SS. (Miller, WA) 15820 USB, unidentified, possibly an Argentine feeder at 2310. (Alexander, PA) (Several local Argentine stations are relayed in SSB here at various times — Editor) AUSTRALIA — Radio Australia, 6020 at 1241. Off suddenly at 1253. (Jeffery, NY) 1251 with pops. (Miller, WA) 9580 at 1100 with news. (Ziegner, MA) 1300. (Harris, TN) 0958. Mixing with BBC. (Barton, AZ) 1220 and 9710 at 1135. (Delfratte, PA) AUSTRIA — Radio Austria Intl’, 6015 (via Canada) at 0610 in GG. (Barton, AZ) 7325 at 0011, 9495 at 0150 and 13730 at 1650. (Delfratte, PA) 1727 in GG. (Foss, AK) BELGIUM — Radio Vlaanderen Intl’. 13680 at 1318 with ID, talk on European currency. (Northrup, MO) BOLIVIA — Radio Tropico, presumed, 4549.44 at 1015 with SS talks by man and woman, radio drama, rancheros, SS ballads. (Alexander, PA) BOTSWANA — Voice of America relay, 9775 at 0418. Also 9885 at 0335. (Jeffery, NY) 0318. (Delfratte, PA) BRAZIL — Radio Liberal Belem, 4774.44 at 0300 in PP with pops, announcements, ID. (Alexander, PA) Radio Brasil, 4785 at 0224 with pops. (Miller, WA) RADIO CANACAO NOVA, Cachoeira Paulista, 4825 at 0221 with religious programs in PP. (Miller, WA) Radio Gaucha, Porto Alegre, 11915 at 1045 in PP. (Miller, WA) Radio

intends to offer discounted time to “free broadcasters.” It may be on the air as early as late summer.

Meantime, keep an ear on 11910 for tests from another new U.S. station, WWBS in Macon, Georgia.

It seems the Voice of Nigeria is making another attempt to get its 19-meter operation back into service again. Back in better days this provided regular reception in North America during our afternoons. Then it crashed. Years later, they made a sputtering attempt to revive it, but that came to nothing. Now, years after that, it is back with a rather extensive schedule, although so far we haven’t marked the boundaries. Check 15120 and see if they’re still there. It’s in English, French, and perhaps others, as well. The address is PMB 4003 Falamo Post Office, Ikiy, Lagos, Nigeria. Studios, however, are in the “new” capital, Abuja.

Hold your breath and hope! It just may be that Radio Tahiti is not breathing its last after all! Several DXers report hearing the station at renewed strength lately — and back on its nominal 15170 (rather than 15167), which indicates repairs must have been made. If the transmitter has been repaired — or maybe even replaced — that’s the opposite of what we understood was to happen: that the transmitter was going to be allowed to die, and then that would be it for Tahiti on shortwave. Check 15170 during the evenings.

The Voice of the Mediterranean, which used to be aired over Deutsche Welle’s now-defunct Malta relay, has been airing over an RAI transmitter in Italy on 9660. The current schedule is Monday through Saturday from 0630 to 0730 in English and Arabic.

Apparently the Cambodian government station is no longer on the air.
SS at 0500. (Miller, WA)

COLOMBIA - Caracol Colombia, 5077 in MO) Radio France Int'l, via China, 11600 at (Delfratte, PA) 11965 at 1430, 12055 at 1325, at 0350 with story and CC language lesson.

2041. (Harris, TN) BBC via Canada on 9515 CANADA - Radio Canada Int'l, 11855 at 0525. (Moser, IL) 0210 with ID. (Delfratte, PA) 7530 at 2236. (Wood, SC)

Bulgaria — Radio Bulgaria, 7375 at 0525. (Moser, IL) 0210 with ID. (Delfratte, PA) 7530 at 2236. (Wood, SC)

CANADA — Radio Canada Int'l. 11855 at 1450 with “This Morning.” (Jeffery, NY) 11935 at 1435. (Northrup, MO) 11945 at 2041. (Northrup, TN) BBC via Canada on 9515 at 1530. (Jeffery, NY)

CHINA — China Radio Int'l, 12006 at 1430, 12055 at 1325, 12065 at 1320 all in CC or similar. (Northrup, MO) Radio France Int'l. via China, 11600 at 1210 to Asia. (Silvi, OH)

COLOMBIA — Caracol Colombia, 5077 in SS at 0500. (Miller, WA)

COSTA RICA — Adventist World Radio, 6150 at 1215 with ID, listener letters. 9725 at 1228 with religious program.(Delfrattte, PA) RFPI, 7385 at 0432. (Delfratte, PA) Faro del Caribe, 5055 at 1237 in SS. (Miller, WA)

Cuba — Radio Havana Cuba. 6000 at 0328 with IS, ID, news and features. 9820 at 0339 with DX program, 9830 SSB at 0600 with ID. news. (Jeffery, NY) 9820 at 0144 with DX shows. (Delfratte, PA) 0132. (Wilden, IN)

CYPRUS — Cyprus Broadcasting Corporation (tentative), 6180 USB at 2215 in Greek for the Cypriot community in the UK. Closed at 2245 (Schwartz, WI) (weekends only. uses BBC relay facility.—Editor) BBC relay. 9760 at 2215 in Greek. (Ziegner, MA) 11845 at 1712 in RR. (Foss, AK)

CZECHOSLOVAKIA — Radio Prague, 6200 at 0127 with letters program. 9505 at 1130 with news. (Delfrattte, PA)

DENMARK — Radio Denmarn, 9595 at 1732. 9965 at 1930 to 1955. (Ziegner, MA) 13800 at 1330 with ID. (Delfrattte, PA)(All in Danish, all relaved via Norwegian.—Editor)

ECUADOR — HCBJ, 9745 at 0030. (Jeffery, NY) 11615 at 2345. (Miller, WA) 12015 at 1924 with DX Party Line. (Wood, SC) Radio Quito, 4919 at 0543 in SS. (Miller, WA) La Voz del Upano, Macas. 4870 at 0119 to 0136 close. Irregular. Alternating man/woman talks, brief breaks with Ecuadorian music. (Alexander, PA)

EGYPT — Radio Cairo, 9850 at 2008 in AA with drama or play. (Mosel, IL) 12050 at 1657 in AA with singing, chimes at 1659 and news in AA. (Foss, AK)

ENGLAND — BBC, 6175 via VOA-Delano, 0701 with news. (Jeffery, NY) 9515 via Canada) at 1600. (Mosel, IL) 1826. (Miller, WA) 12095 at 1642 with soccer. (Foss, AK) 17830 at 0005. Back after several weeks. EE music program, obituaries at 0032. Weak and then covered by Okeechobee/WYFR’s 0100 sign on. (Alexander, PA)

HAWAI'I — KWHR, 17510 at 2348 with revival music. (Barton, AZ)

HONDURAS — Radio MiHRMX, 5890 at 0035 to past 0430 with SS religious programming. Reactivated. (Alexander, PA) La Voz Evangelica. 4820 at 0505 in SS. (Miller, WA) Radio Internacional. San Pedro Sula with SS programs at 0228. (Miller, WA)

HUNGARY — Radio Budapest, 9840 at 0035 with talks. (Delfrattte, PA)

INDIA — All India Radio, 4860 at 0028 with sub-continental music, time pips at 0030. (Alexander, PA) 7250 at 0130 with ID, frequency/time info. (Schwartz, WI) 11620 at 0200 with film music, headlines in unidentified language. (Paszkiewicz, WI) 1700 in EE. (Miller, WA) AIR Thrivanchittapuram, 5010 at 0059 with Hindu music. (Miller, WA) 0019 sign on with IS, sub-continental music. (Alexander, PA) AIR, Chennai. 4920 at 1522 with Hindu music. (Miller, WA) AIR, Hyderabad. 4800 at 1536 with EE news. (Miller, WA) AIR, Kuresong, 4895 at 0110

Another colorful, classy card from the Voice of Greece. (Thanks: Andy Johns)
with sub-continental music. (Alexander, PA)

INDONESIA — Radio Republik Indonesia, Ujung Pandang, 4753 in ll at 1529. (Miller, WA) RRI Jakarta, 15150 at 0059 with news in ll. (Miller, WA)

IRAN — VORI, 9685 at 0057 to 0107 fade. EE news and comment. (Ziegner, MA)

IRELAND — West Coast Radio Ireland (via Germany) 5905 from 0100-0200. (Wood, SC) This is aired Thursday only and continues to be a financially shaky proposition — Editor

ISRAEL — Kol Israel, 7495 at 0001 in Hebrew. (Schwartz, WI) 9435 at 1732 in HH. (Foss, AK) 15615 at 1414 in HH. (Moser, IL)

ITALY — Italian Radio Relay Service (IRRS). 3985 at 0630 in suppressed carrier USB. “The World In Review” from UN Radio. Also 7120 (new) at 0845 in suppressed carrier USB. Ex-7125. Into EE at 0900. Mostly continuous light U.S. pops. (Alexander, PA) RAI, 11905 at 1630 in GG. (Miller, WA)

JAPAN — NHK Radio Japan, 7240 at 1556. (Miller, WA) Radio Tampa, 3925 at 1452 and 9595 in JJ at 1350. (Barton, AZ)

KIRIBATI — Radio Kiribati, 9810 at 0551 in unidentified language. (Miller, WA)

KUWAIT — Radio Kuwait, 9855 at 2320 in AA and ID. (Delfratte, PA) 11675 at 0200 in AA. (Miller, WA)

LESOTHO — Radio Lesotho, 4800 heard at 0237 sign on but severe QRM from Buenas Nuevas in Guatemala until they go off at 0330. (Silvi, OH)

LIBYA — Radio Jamahiriya, 15435 at 1700 in AA. (Ziegner, MA)

MADAGASCAR — Radio Netherlands relay to East Africa, 9605 at 1939. (Harris, TN)

MALAYSIA — Radio Malaysia, Kajang, 4845 at 1550 with Tamil music. (Miller, WA)

MEXICO — Radio Mil, 6010 in SS at 1249. (Moser, IL)

MOLDova — Radio Moldova, 7520 at 2200 with news. (Wood, SC)

MONGOLIA — Voice of Mungolga, 12085 at 1149 in probable CC. Into EE at 1200. (Ziegner, MA)

MOROCCO — Voice of America relay, 17895 at 1603. (Delfratte, PA)

NAMIBIA — Namibian Broadcasting Corp., 3270.06, 0220 with U.S. pops. // to 3289.92 with sub-continental music. (Alexander, PA)

NETHERLANDS — Radio Netherlands, 9605 heard at 1838. (Miller, WA) RAI, 13700 in JJ at 1423. (Moser, IL)

NEW ZEALAND — Radio New Zealand Intl, 11905 at 0510 with cricket. (Delfratte, PA) at 0458 sign on. IS, ID, into news, special weather bulletin for the Cook Islands, easy listening music. 17675 heard at 0324 with sports. (Jeffery, NY)

NICARAGUA — Radio Miskut, 5770 at 0030 in SS with pops. sound effects, sirens. Suppressed carrier USB. Sign off time varies. (Alexander, PA)

NIGERIA — Voice of Nigeria, 7255 at 0533 with Nigerian news. (Jeffery, NY) 0617 with mailbug. (Schwartz, WI)

Radio Nigeria, Kaduna, 4770 at 0438 with religious program. (Miller, WA)

NORTH KOREA — Radio Pyongyang, 6519.97 at 1125 in JJ. Parallel 6020/7580. (Alexander, PA) 6575 at 0701 with sign on in RR. (Barton, AZ) 13760 at 0557 in SS. (Paszkiewicz, WI)

NOWAY — Radio Norway Int'l, 7520 at 0301 with news in NN. (Barton, AZ) 9965 at 1900. (Ziegner, MA)

OMAN — Radio Oman (presumed), on 11890 at 1520 in AA. Gone by 1530. (Barton, AZ)

PAKISTAN — Radio Pakistan, 11570 at 1724 in unidentified language. (Miller, WA)

PAPUA NEW GUINEA — NBC, Port...
Morseby, 4890 with news at 0800. (Cole, CA) Radio Moronin, Lae, 3220 with news at 0800. (Cole, CA) Radio Madang, Madang, 3260 with news at 0800. (Cole, CA) Radio Southern Highlands, Mendi, 3275 with news at 0800. (Cole, CA) Radio Manus, Lorengau, 3315 at 0804 with news. (Cole, CA) Radio North Solomons, Kieta, 3325 at 0800 with news. (Cole, CA) Radio East New Britain, Rabaul, 3385 at 0803 with news. (Cole, CA) Radio New Ireland, Kavieng, 3905 at 0800 with news. (Cole, CA)

PERU — Radio Cusco, Cusco, 6203.73 at 1940 to 1950 close. (Harris, TN) 15200 at 1940 in PP. (Moser, IL) 2051. (Delfratte, PA) 15240 at 1854 in FF. (Moser, IL) 1238 to 1300 off. (Wilden, IN) 1430. (Delfratte, PA) 15450 heard at 0106. (Jeffery, NY)

PORTUGAL — Radio Portugal, 9570 at 0448 with “Music From Portugal.” (Delfrate, PA) 15200 at 1940 in PP. (Moser, IL) 2051. (Miller, WA) Voice of Russia (Khabarovsk) 6145 at 1332 in CC. (Miller, WA) 7100 at 0300. (Wilden, IN) 7105 at 0235. (Moser, IL) 9905 (new) at 0845. News at 0900. (Alexander, PA) 11695 at 1430 with news. (Alexander, PA) 11650 heard at 2115, but not at 2030 to 2100 checks so either didn’t fade in until after 2100 or signed on late. (Alexander, PA)

POLAND — Polish Radio, 6095 at 2030 to 2125 close. News, commentary, light music. Parallel 7285 and 6035 both weak. Also on new 5125 at 2115, but not at 2030 to 2100 checks so either didn’t fade in until after 2100 or signed on late. (Cole, CA) Radio Frecuencia San Ignacio, 5676.99 to close with national anthem. (Alexander, PA) Ondas del Rio Mayo, 6811.61, in SS to 0330 from “Rocky.” ID. (Alexander, PA) Radio San Francisco Solano, 4750.03v, pre-

SAUDI ARABIA — Broadcasting Service of Saudi Arabia, 9575 at 1842. (Moser, IL) 11730 at 1823 with religious program. (Miller, WA) 11885 at 1707 in RR. (Foss, AK) 11965 at 1700 in probable Korean. Then into unidenti-

SOUTH AFRICA — Channel Africa, 6675 at 0526 with “Dateline Africa.” Into unidentified language at 0530. (Jeffery, NY) 0512. (Moser, IL) 0526 with “Dateline Africa.” Into unidentified language; pops. (Miller, WA) BBC via Novosibirsk, 9480 at 1038 in GG. Classical music, ID. (Jeffery, NY)

SOUTH KOREA — Radio Korea Int’l, 9650 at 1100 in probable Korean. Then into EE. (Ziegner, MA)

SPAIN — Radio Exterior de Espana, 3210 (via Costa Rica) in SS at 0338. (Moser, WA) 6005 at 0013. (Delfrate, PA) 0523. (Moser, IL) 11715 in AA at 1700. (Ziegner, MA) 11815 via Costa Rica at 1951. (Harris, TN) 11885 at 1707 in RR. (Foss, AK)

SRI LANKA — Radio Japan relay, 11890 at 0103. (Paszekiewicz, Wl) Voice of America relay, 11705 at 0205. (Paszekiewicz, Wl)

SWEDEN — Radio Sweden, 7280 at 0230 with news, features. (Wood, SC) 11650 heard at 1238 to 1300 off. (Wilden, IN) 1430. (Moser, IL)

SWAZILAND — Trans World Radio, 9500 at 1823 with religious program. (Miller, WA)

SWITZERLAND — Swiss Radio Int’l, 6135 at 0407. (Delfrate, PA) 9905 at 0130. (Wilden, IN) 13635 at 1405. (Moser, IL)

We Have Scanners with 800MHz Coverage!

ICOM R9000, R8500, PCR1000, R100, R10, R1
Yupiteru MVT-9000, MVT-7100, MVT-8000
AOE AR-5000, AR-5000+3, AR-3000, AR-8000
OPTOELECTRONICS Xplorer, R11 (Nearfield Receivers)
WINRADIO WR-1000i, WR-3000DSP
New Icom R-10 Wide Range Receiver

ATLANTIC HAM RADIO LTD
(416) 636-3636 ahr@interlog.com
368 Wilson Ave
Downsview, ON
Canada M3H 1S9

54 / POPULAR COMMUNICATIONS / June 1998

THE MONITORING MAGAZINE
Thanks to each one of you!

IN and Stokes Schwartz, Madison, WI.

Gladstone, MO; Sue Wilden, Columbus.

Sharpsville, Foss, Talkeetna, AK; Tom Delfratte, Park, IL; Howard Moser, Lincolnshire, Phoenix, AZ; Elmer Wallesen, LaGrange.

Ron Cole, San Diego, CA; Dave Jeffery, Issaquah, WA; Tricia Ziegner, Westford, MA.

Now, a mighty roar of approval for the folks who came through for you this time: Sheryl Paszkiewicz, Manitowoc, WI; Lee Silvi, Mentor, OH; Michael Miller, Issaquah, WA; Tricia Ziegner, Westford, MA; Brian Alexander, Mechanicsburg, PA; Joe Kenneth Wood, N. Augusta, SC; Ron Cole, San Diego, CA; Dave Jeffery, Niagara Falls, NY; Rick Barton, Phoenix, AZ; Elmer Wallesen, LaGrange Park, IL; Howard Moser, Lincolnshire, IL; Paul Harris, Columbia, TN; Marty Foss, Talkavanna, AK; Tom Delfratte, Sharpville, PA; Mark Northrup, Gladstone, MO; Sue Wilden, Columbus, IN and Stokes Schwartz, Madison, WI.

Until next month, good listening! ■
What's wrong, Bucko? Your wallet a little on the flat side? Your ham radio wish list running way ahead of your resources? Don't worry. At least you're not alone. After all, most hams don't have unlimited bank accounts! Besides, if you're a newcomer, the vast array of “megabuck” transceivers can be overwhelming. Don't be discouraged, though. There's a way to get on the air without breaking the bank.

A handheld FM rig will get you off to a good start, and its versatility will pay off in more than just dollars! Hams call them HTs, handie-talkies, walkie-talkies, or bricks. And countless amateurs select pocket-sized handheld VHF/UHF FM transceivers as their first rigs. Handheld transceivers save money over buying separate mobile and base units, and they work fine for FM simplex, repeater or packet operation. That's a lot of versatility for such a small package!

No currently available units offer SSB or CW, or coverage of bands below 2 meters, so you'll be limited to FM simplex, repeater voice operation, and packet. Most VHF and UHF operation is on FM, however, so there's plenty of activity in your area: In the U.S. there are more than 6,000 repeaters on 2 meters, 1,600 on 440 MHz, 4,100 on 440 MHz and 200 on 1.2 GHz. There are even FM repeaters that are linked to 10 meters, opening up the possibility of long-distance contacts.

Single-band handheld transceivers cover 6 meters, 2 meters, 220 and 440 MHz, and 1.2 GHz. Multiband rigs may include 2 meters and 220 MHz, or 2 meters and 440 MHz.

Radio To Go!

If you've attended a hamfest, you've seen plenty of people walking around with handheld rigs. They conveniently hang from your belt or slip into your shirt pocket. It's great to keep your radio nearby, whether you're in the living room, in your backyard, or out for a walk. Handheld transceivers can be used to talk to the ground crew while you're working atop a backyard radio tower, or on the roof, or to keep in touch with friends as you browse at a flea market.

To get the most from portable operating, be sure that your battery's charged, and keep a spare on hand. The “rubber duckie” antennas supplied with most handheld transceivers are adequate, but you can substitute a telescoping whip for increased performance.

On The Road

A handheld rig can become a mobile unit if you have a cigarette-lighter power adapter and a magnetic-mount or trunk-lip mount antenna. Using VHF/UHF FM, you can ask for directions, call for help (for yourself or another motorist), exchange information on road conditions or enjoy a pleasant chat during your daily commute. A lonesome road through unfamiliar terrain is safer if you're able to contact other hams.

If you use a handheld transceiver in your car, be sure both sides of the power cable are fused. The manufacturer may offer a power adapter with this feature, or you can make the cable yourself. Secure the radio so it doesn’t fly off the console during quick maneuvers or conk you in the head if you have to stop quickly. Keep it shielded from direct sunlight, but mount it near your line of sight. Better yet, get to know your rig well enough so you don’t need to look at it to make adjustments while driving. And don’t leave your rig inside your car on a hot summer day.

In The Shack

Do you enjoy traffic handling? Do you like to chat with friends while cooking dinner or watching The X-Files? Then bring your handheld into the house, connect it to a 12-volt power supply and you're all set. You can mount a high-gain transceivers may not put out enough audio to be heard clearly. This can be remedied by connecting an extension speaker with a built-in 12-volt audio amplifier to boost the sound level.

If you use your handheld transceiver in your car, be sure both sides of the power cable are fused. The manufacturer may offer a power adapter with this feature, or you can make the cable yourself. Secure the radio so it doesn’t fly off the console during quick maneuvers or conk you in the head if you have to stop quickly. Keep it shielded from direct sunlight, but mount it near your line of sight. Better yet, get to know your rig well enough so you don’t need to look at it to make adjustments while driving. And don’t leave your rig inside your car on a hot summer day.
antenna on your roof, tower, or inside the attic. Plop a mobile mag-mount antenna on top of the refrigerator or a cookie sheet. In urban areas, almost any antenna will get you on the air!

It's A Digital World

Standard AX.25 or TCP/IP packet radio operation on FM will work fine with your handheld transceiver. You can use it in the field or in your car with a laptop computer, or in your shack with a desktop PC or terminal. All you need is a source of power (a battery or a power supply) and a cable to connect your rig to your TNC. Almost every type of handheld radio has been used for packet, so it shouldn't be difficult to get information on how to wire the mic and speaker connections.

Hunting Foxes

Participating in hidden transmitter hunts without a handheld transceiver is inconceivable! You need to cruise around in a vehicle sniffing for bearings and to find the perfect frequency. Older models cost less and are easy to find at hamfests and flea markets, but may be crystal-controlled, put out less power, and lack fancier features. It's also difficult to find battery packs and accessories for older types.

Modern units are computer-controlled with dozens of features, put out more power than mobile rigs of a decade ago, and may include more than one band. These miniature FM stations can last longer than it takes you to learn how to use all of their buttons and knobs!

The best strategy in selecting a rig is to talk to others. Ask to try out their radios, browse through used-equipment classified ads, and haunt local hamfests. Sooner or later, you'll locate the perfect all-purpose handheld rig. Good luck!

Send your photos, comments, and questions to me at *Popular Communications*, 25 Newbridge Road, Hicksville, NY 11801 or via e-mail to <popularcom@aol.com>.

How Much Will It Cost?

You can invest $75 to $600 for a handheld VHF/UHF FM transceiver. It all depends on features, whether you buy new or used, single- or multiband, and other variables. Older models cost less and are easier to find at hamfests and flea markets, but may be crystal-controlled, put out less power, and lack fancier features. It's also difficult to find battery packs and accessories for older types.

Modern units are computer-controlled with dozens of features, put out more power than mobile rigs of a decade ago, and may include more than one band. These miniature FM stations can last longer than it takes you to learn how to use all of their buttons and knobs!

The best strategy in selecting a rig is to talk to others. Ask to try out their radios, browse through used-equipment classified ads, and haunt local hamfests. Sooner or later, you'll locate the perfect all-purpose handheld rig. Good luck!

Send your photos, comments, and questions to me at *Popular Communications*, 25 Newbridge Road, Hicksville, NY 11801 or via e-mail to <popularcom@aol.com>.

ACCESS TO THE AIRWAVES

By Allan H. Weiner

As Told to Anita McCormick

Allen H. Weiner has always believed that the airwaves are free and rightfully belong to the people. The hardships that Weiner endured to bring Radio New York International and other pirate stations into being are legendary. The FCC's illegal seizure of his radio ship the MN Sarah in 1987 made headlines around the world. On the wave, the FCC has targeted Weiner and done everything in its power to destroy his life. In spite of this, Weiner has persevered and continues to work towards a future when the airwaves are open to all who choose to use them, and the world becomes a better place because of the free transmission of knowledge. 1997, 5 1/2 x 8 1/2, 264 pp., soft cover. $22.90 Postpaid.

PIRATE RADIO OPERATORS

By Andrew Yoder and Earl T. Gray

Pirate radio is one of the Communication Age's most fascinating developments! For the first time, there's a handbook and manual that fully explains the intricacies of this burgeoning pastime. Yoder has devoted his energies to pirate radio for years, and now he shares his practical expertise with the world. Complete with numerous photographs and illustrations that provide workable designs and schematics for all pirate radio buffs, this is the finest how-to book ever published on this subject. 1997, 5 1/2 x 8 1/2, 376 pp., illustrated, soft cover. $24.90 Postpaid.

If you order any of the above titles you will receive our huge Main Catalog FREE. Or, you can order it for $5.00.

OR TO SCANNERS!

New PROBE V4.0

- "Will blow you away if you are a serious scanner user." - Popular Communications
- "PROBE is tops" - National Scanning Report
- "You'll want to check out PROBE..." - Monitoring Times
- "The best software product for the Opto 546c/535 boards" - AOSC Journal
- "PROBE is by far the best" - CARMA News

Save $$$ On Sale!!!!

$99.95 + $7.95 S/H. MC/Visa/Check/Money Order. Write for details. DATAFILES@AOL.com

PC HF Facsimile 8.0

For Windows $179.95

SSC's best selling Fax and Telex decoding system now runs under Windows. Connect our new Windows FSK demodulator between your PC and SSB to receive weather fax, NAVTEX, Amtor, ASCII, Sitor, FEC and Morse code. Receive weather and radio telex while your PC runs other software. The product includes demodulator, software, manual, frequency list and broadcast schedule. SSC also makes mods and software to receive weather satellites and SSTV. Call or write for our complete radio products catalog. Visa and Mastercard Welcome

Software Systems Consulting

615 S. El Camino Real
San Clemente, CA 92672
Tel: 714/498-5784
Fax: 714/498-0568
http://www.ssccorp.com

THE MONITORING MAGAZINE

June 1998 / POPULAR COMMUNICATIONS / 59
Welcome to another “ACARS Downlink” column. This month, we focus on transatlantic flights, requests for oceanic clearance and the North Atlantic Track system that airlines use to traverse the North Atlantic. This is followed by a short explanation of some of the Technical Element Identifier codes you will encounter.

Request For Oceanic Clearance (British Airways)

1. **G-AWNA B1 2 5332 BA0296**
 /PIKCLXS.-YQX/0454 M084F330

2. **G-AWNA B1 3 5350 BA0296**
 /PIKCLXS.-YQX/0454 M084F330

 B1 = Request for Oceanic Clearance Message Label
 /PIKCLXS = Address of Station to which request is made (PIK = Prestwick)
 YQX = Point at which oceanic clearance is required : Gander, NFLD, Canada
 /0454 = Believe this is the planned UTC time at Gander
 M084 = Mach 0.84 (planned cruising speed at Gander)
 F330 = planned flight level (FL330) at Gander

When the original message was not acknowledged, it was retransmitted. Note the Block Sequence Identifier is “2” for the first message and “3” for the second. BA0296 can’t seem to wait more than 18 seconds for a ground uplink response.

In a previous column, we examined the use of BA’s B1 Message Label - Request for Oceanic Clearance. After reviewing some of my past ACARS catches, I found several that related to North Atlantic Track Requests. I have included an explanation of the Track system and a simple Track assignment.

In all the examples below, the addressee designator is Gander (YQXXRAC). Next follows the starting location for the Track request. It may be a waypoint (DOTTY), a VOR beacon (YAY), or a geographical coordinate (50N 50W). This is followed by planned arrival time for the location expressed in UTC time. Next follows the planned speed expressed as a Mach number (M084 = Mach 0.84). Next, the planned Flight Level is given (F350 = Flight Level 350 or 35,000 feet). Some of the messages also contain a ReMarks field.

1. **G-AWNF B1 3 5603 BA0296**
 /YQXXRAC.-N50W050/0437 M084F350

2. **G-AWNL B1 8 5435 BA0088**
 /YQXXRAC.-YAY/0132 M080F350-RMK/NBT W350
 (Remarks/ Next Best Track “W” with FL 350)

3. **G-BNWO B1 4 1252 BA0298**
 /YQXXRAC.-DOTTY/0049 M080F350-RMK/REQ W NBT X NBL FL330
 (Remarks/ Request (Track) “W,” Next Best Track is “X,” Next Best Level is FL 330)

4. **G-BNLV B1 6 4734 BA0268**
 /YQXXRAC.-YYT/1025 M085F370

5. **G-AWNO B1 8 0740 BA0088**
 /YQXXRAC.-N49W050/0217 M084F330

6. **G-BNWS B1 7 5834 BA0298**
 /YQXXRAC.-YQX/0036 M080F350-RMK/TEXT
 (Remarks/ Request (Track) “W” and FL 350)

7. **G-AWNE B1 0 1258 CA0296**
 /YQXXRAC.-N51W050/0435 M084F370-RMK/TEXT
 (Remarks/ Request (Track) “W,” Next Best Level is FL 350)

8. **G-BNWS B1 17 5834 BA0298**
 /YQXXRAC.-YQX/0036 M080F350-RMK/TEXT
 (Remarks/ Request (Track) “W,” Next Best Level is FL 350)

CYMON is a waypoint of the coast of Newfoundland, but I am unsure of the meaning of “8410.” In only one of the above examples is the actual requested track stated. I would assume that when the flight plan is filed, it would contain the requested track for the flight.

North Atlantic Track System

The North Atlantic Track system consists of approximately six parallel tracks active from entry points on the coast of the UK and Ireland to exit points on the Canadian coast and vice versa. Westbound (Europe to America) flights are made mostly by day, while eastbound (America to Europe) are usually made afternoons and evenings.

The tracks are selected twice daily by computer to avoid strong headwinds when flying from Europe to North America, and to follow the best tailwinds when travelling in the opposite direction to Europe.

Eastbound tracks are usually designated with the letters A, B, C, D, E, and F. Westbound tracks are U, V, W, X, Y, and Z. The following is an example of Track X on a particular day:

Track X: COLOR (waypoint) 47N/50W 49N/40W 51N/30W 52N/20W 52N/15W CRK (Cork)

The track an aircraft requests depends on the departure time and destination of the flight. Pilots usually look for the shortest and fastest route. It is usually the most economical in terms of fuel consumption.

Airlines tend to schedule departures to similar destinations at much the same time. Since all big jet aircraft prefer to operate at flight levels within the narrow 11,000-foot band from 28,000 to 39,000 feet, congestion over the North Atlantic can easily result.
The pilot programs the INS (Inertial Navigation System) for the first nine waypoints along the route. The North Atlantic Tracks do not follow Great Circle routings, but use best time paths for wind conditions. When progressing from one position to another along the Track, however, the INS routes the aircraft along a Great Circle (the shortest distance between two points) and the compass continually changes heading as the aircraft maintains the Great Circle path. Similar track systems exist in the high Arctic for northern polar routes as well.

Although the example below is a few years old, it will give you an idea of track assignment. Tracks A through E (Europe to North America) appear first. This was a RTTY transmission from Santa Maria Air, a station that was part of the AFTN (Aeronautical Fixed Telecommunications Network). Note that multiple Flight Levels may be available for each track.

SMA007 130011
FF KJFKSWRN KJFKBAWX BGSFYNYX KMIAEALX
CYZZWNAT KZBWQZX
130010 EGGXZOZX
(NAT-1/1 TRACKS FLS 310/370 INCLUSIVE APRIL 13/1130Z TO APRIL 13/1900Z
PART ONE OF ONE PARTS
A 55/10 56/20 56/30 56/40 55/50 OYSTR KLAMM
EAST LEVLS NIL
WEST LVLS 310 330 350 370
EUR RTS WEST 3
NAR NA200 NA204-
B ACKIL 55/20 55/30 55/40 53/50 YAY
EAST LVLS NIL
WEST LVLS 310 330 350 370
EUR RTS WEST 3
NAR NA162 NA168-
C 53/15 54/20 54/30 54/40 52/50 DOTTY
EAST LVLS NIL
WEST LVLS 310 330 350 370
EUR RTS WEST 3 VIA SNN
NAR NA156 NA154
D 52/15 53/20 53/30 53/40 51/50 SG
EAST LVLS NIL
WEST LVLS 310 330 350 370
EUR RTS WEST 3 VIA CRK
NAR NA148 NA146-
E 51/15 52/20 52/30 52/40 50/50 YQX
EAST LVLS NIL
WEST LVLS 310 330 350 370
EUR RTS WEST 3
NAR NA122 NA132-
REMARKS
1. GREENLAND CORRIDOR NOT ACTIVE
2. R99 IN EFFECT FOR EUR/CAR TRAFFIC
3. DATUM LINE TRACK ALPHA
END OF PART ONE OF ONE PARTS)

(NAT-1/2 TRACKS FLS 330/390 INCLUSIVE APRIL 14/0100Z TO APRIL 14/0800Z
PART ONE OF ONE PART
U YHO PORGY 58/50 57/40 56/30 66/20
EAST LEVLS 330 350 370 390
WEST LVLS NIL
EUR RTS WEST NIL
NAR NA271 NA277 NA281-
V YYR SCROD 56/50 56/40 55/30 55/20 55/10 BEL
EAST LEVLS 330 350 370 390
WEST LVLS NIL
EUR RTS WEST NIL
NAR NA221 NA231-
W YYT 48/50 50/40 52/30 53/20 53/15 SNN
EAST LEVLS 330 359 370 390
WEST LVLS NIL
EUR RTS WEST NIL
NAR NA83 NA89-
X COLOR 47/50 49/40 51/30 52/20 52/15 CRK
EAST LEVLS 330 350 370 390
WEST LVLS NIL
EUR RTS WEST NIL
NAT NA43 NA51-
Y BANCS 46/50 48/40 50/30 51/20 51/15 TIV
EAST LEVLS 330 350 370 390
WEST LVLS NIL
EUR RTS WEST NIL
NAR NA23 NA31-
Z POGGO 43/60 45/50 47/40 49/30 50/20 50/15
50/08 LND
EAST LEVLS 330 350 370 390
WEST LVLS NIL
EUR RTS WEST NIL
NAR NA11-
REMARKS
1. DATUM LINE TRACK WHISKEY
2. GREENLAND CORRIDOR NOT ACTIVE
3. R99 IN EFFECT FOR CAR/EUR TRAFFIC
END OF PART TWO OF TWO PARTS)

TEI Codes

Many of the two-letter codes found in ACARS messages are actually two-character TEI Codes defined by ARINC and also used by other service providers (SITA, Air Canada, etc.).

Consider the following example:

2 .N767DA 80 3 3145 DL0087
3CO2 POSSX 0087/07 EDDF/KCVG .N767DA
AEP
F1 DL0087/AN .N767DA/OV YSO 2226 F390
DS KCVG /FB 0391/TA MS45/WV 219062
SK BROKEN /TB SMOOTH /CZ M0.840

THE MONITORING MAGAZINE
June 1998 / POPULAR COMMUNICATIONS / 61
Assigned TEI Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Est. time approach clearance (four numeric characters—GTM hhmm)</td>
</tr>
<tr>
<td>AD</td>
<td>Aerodrome of concern or arrival (three or four alpha characters)</td>
</tr>
<tr>
<td>ATA/ATA</td>
<td>three alpha characters</td>
</tr>
<tr>
<td>IC</td>
<td>four alpha characters</td>
</tr>
<tr>
<td>AL</td>
<td>Altitude or flight level (four, five, or six alphanumeric characters)</td>
</tr>
<tr>
<td>AN</td>
<td>Aircraft number (up to seven alphanumeric characters)</td>
</tr>
<tr>
<td>AP</td>
<td>Aircraft located at an airport (three/four alpha characters corresponding to airport designator codes)</td>
</tr>
<tr>
<td>AR</td>
<td>Arrival runway (variable alphanumeric characters)</td>
</tr>
<tr>
<td>AU</td>
<td>Auxiliary power unit (APU) (variable alphanumeric characters)</td>
</tr>
<tr>
<td>BF</td>
<td>Boarded fuel (up to six numeric characters; fuel to be expressed in hundreds of pounds, other units to be identified)</td>
</tr>
<tr>
<td>CL</td>
<td>Cruising level (four or five alphanumeric characters)</td>
</tr>
<tr>
<td>DA</td>
<td>Aerodrome of departure (three or four alpha characters)</td>
</tr>
<tr>
<td>DP</td>
<td>Dew point (two numeric characters—degrees Celsius) (Downlink only)</td>
</tr>
<tr>
<td>DS</td>
<td>Destination station (three or four alpha characters and, optionally, a space character and four numeric characters—aerodrome of departure and, optionally, UTC hhmm)</td>
</tr>
<tr>
<td>FL</td>
<td>Flight identification (up to seven alphanumeric characters)</td>
</tr>
<tr>
<td>FD</td>
<td>Fuel over destination (up to six numeric characters; fuel to be expressed in hundreds of pounds; other units to be identified)</td>
</tr>
<tr>
<td>NR</td>
<td>Number of landings (up to two numeric characters followed by the alpha character “F” or “T.” The numeric characters indicate the number of landings, and the alpha character indicates the type of landing. “F” = full stops and “T” = touch and go)</td>
</tr>
<tr>
<td>NP</td>
<td>Next report point (variable number of alphanumeric characters)</td>
</tr>
<tr>
<td>OF</td>
<td>Time off (four numeric characters—UTC hhmm)</td>
</tr>
<tr>
<td>ON</td>
<td>Time on (four numeric characters—UTC hhmm)</td>
</tr>
<tr>
<td>OS</td>
<td>Other supplementary information (variable alphanumeric characters)</td>
</tr>
<tr>
<td>DV</td>
<td>Identification of aircraft being diverted from landing at original destination to another location (variable alphanumeric characters)</td>
</tr>
<tr>
<td>ED</td>
<td>Estimated time of departure (three or four alpha characters, space character, and four numeric characters—aerodrome of departure and UTC hhmm)</td>
</tr>
<tr>
<td>AT/A/ATA</td>
<td>three alpha characters</td>
</tr>
<tr>
<td>IC</td>
<td>four alpha characters</td>
</tr>
<tr>
<td>EN</td>
<td>Endurance (four numeric characters—fuel endurance in hours and minutes, hhmm)</td>
</tr>
<tr>
<td>EO</td>
<td>Estimated time over (variable number of alphanumeric characters, space character, and four numeric characters—location and UTC hhmm)</td>
</tr>
<tr>
<td>FB</td>
<td>Fuel on board (up to six numeric characters, fuel to be expressed in hundreds of pounds; other units to be identified)</td>
</tr>
<tr>
<td>FC</td>
<td>Estimated further clearance (four numeric characters—UTC hhmm)</td>
</tr>
<tr>
<td>FD</td>
<td>Fuel over destination (up to six numeric characters; fuel to be expressed in hundreds of pounds, other units to be identified)</td>
</tr>
<tr>
<td>FL</td>
<td>Flight identification (up to seven alphanumeric characters)</td>
</tr>
<tr>
<td>GL</td>
<td>Approximate geographic location of aircraft (three/four alpha characters—airport or city designator code)</td>
</tr>
<tr>
<td>HD</td>
<td>Aircraft heading (three numeric characters—aircraft heading to the closest 10 degrees, true)</td>
</tr>
<tr>
<td>IC</td>
<td>Aircraft icng (variable alphanumeric characters)</td>
</tr>
<tr>
<td>IN</td>
<td>Time in (four numeric characters—UTC hhmm)</td>
</tr>
<tr>
<td>LA</td>
<td>Identification of officer landing aircraft (one numeric character)</td>
</tr>
<tr>
<td>LR</td>
<td>Identification landing category (one numeric character)</td>
</tr>
<tr>
<td>MA</td>
<td>Message assurance (three numeric characters and one alpha character—sequence number and function, nnn) Where nnn is a sequence number, 000-999, and a is an alpha character indicating the function of the text element: A = User Request for delivery indication</td>
</tr>
<tr>
<td>1</td>
<td>User Request for delivery indication and link acknowledgement</td>
</tr>
<tr>
<td>L</td>
<td>DSP identification of link acknowledgement</td>
</tr>
<tr>
<td>S</td>
<td>DSP identification of message receipt</td>
</tr>
<tr>
<td>X</td>
<td>DSP response for unsupported MA function</td>
</tr>
<tr>
<td>F</td>
<td>DSP identification for untransmittable message</td>
</tr>
<tr>
<td>G</td>
<td>originator’s go-ahead response</td>
</tr>
<tr>
<td>L</td>
<td>return link acknowledgment</td>
</tr>
<tr>
<td>O</td>
<td>origination message</td>
</tr>
<tr>
<td>U</td>
<td>user’s acknowledgment</td>
</tr>
<tr>
<td>MN</td>
<td>Maintenance (variable alphanumeric characters)</td>
</tr>
<tr>
<td>NL</td>
<td>Number of landings (up to two numeric characters followed by the alpha character “F” or “T.” The numeric characters indicate the number of landings, and the alpha character indicates the type of landing. “F” = full stops and “T” = touch and go)</td>
</tr>
</tbody>
</table>

Please note that there are other two-letter codes that have been assigned by individual airlines as well. In other words, this is not a complete list.

ARINC SPECIFICATION 620 - Page 46

APPENDIX B

SECTION B.1

TEI (Technical Element Identifier) CODES

A TEI is a two-character code that uniquely identifies a text element type contained in SMT. TEIs have been assigned for those text elements most commonly used in the air-ground operations environment.

An effort has been made to assign codes that conform to existing international and U.S. domestic standards and to use...
OT = Time out (four numeric characters—UTC hhmm)
OV = Present location (variable number of alphanumeric characters, space character, four numeric characters, space character, and an alpha character with three numeric characters—location, UTC hhmm, and altitude or flight level)
 - Character “A” plus three numeric characters = altitude to nearest 100 feet
 - Character “F” plus three numeric characters = flight level to nearest 100 feet
 - Character “M” plus four numeric characters = altitude to nearest 10 meters
PB = Number of persons on board (variable alphanumeric characters—ATA/IATA; variable numerics—ICAO)
PD = Point of departure (three alpha characters—station of origin for this flight segment)
QN = Altimeter setting (two numeric characters, period character, and two numeric characters—value to set altimeter in inches xx.xx; if millibars are used as the reference, the character “M” is suffixed to the value)
RD = Departure runway (variable alphanumeric characters)
RF = Request flight level (variable alphanumeric characters)
RI = Return in time (four numeric characters—UTC hhmm)
RM = Remarks (variable alphanumeric characters)
RO = Return on time (four numeric characters—UTC hhmm)
RT = Route information (variable alphanumeric characters)
SA = Alternative aerodrome (three character sequence(s)—ATA/IATA; variable numerics—ICAO)
 Where more than one alternative is given, the character “M” is suffixed to the value
SI = Special communication addressing instruction (variable alphanumeric characters)
 Where SI is used as the reference, the character “M” is suffixed to the value
SK = Sky conditions (variable alphanumeric characters)
SL = SELCAL code (four alpha characters)
SP = Significant point (variable alphanumeric characters)
TA = Static air temperature (two alpha characters and two numeric characters)
MSxx = temperature in degrees below zero, Celsius (xx C)
PSxx = temperature in degrees above zero, Celsius (xx C)
 Where xx is two numeric characters.
TB = Turbulence (variable alphanumeric characters)
TM = Surface air temperature (two alpha characters and two numeric characters)
MSxx = temperature in degrees below zero, Celsius (xx C)
PSxx = temperature in degrees above zero, Celsius (xx C)
 Where xx is two numeric characters.
TO = Time over (variable number of alphanumeric characters, space character, and four numeric characters—location and UTC hhmm)
TP = Transmission Path—Indicate to the DSP the preferred media to use for message delivery. Only one value should be used; valid values are: ‘VHF,’ ‘SAT,’ and ‘HFD.’
VR = Runway visual range (up to three numeric characters—visual range in 30- to 60-meter increments for ranges to 800 meters; three numeric characters—visual range in 100-meter increments for ranges greater than 800 meters)
WV = Wind information (six numeric characters with the first three characters indicating wind direction to the nearest 10 degrees, true, and the second three characters indicating wind speed to the nearest knot). This text element may contain a weather-related position report if the weather observation was taken at a position other than the aircraft’s present position.
 If a weather-related position report is included, the six numeric characters are followed by a space character and a variable number of alphanumeric characters that describe the position of observation. (The present position of the aircraft is reported by using the TEI “OV.”)
WI = Weather (variable alphanumeric characters providing weather information or processing information for which there is no assigned TEI)
ZW = Zero fuel weight (variable alphanumeric characters)

The book you've been waiting for...

Amateur Radio Equipment Buyer's Guide

This information-packed book is your most reliable, unbiased source for detailed information on practically every piece of Amateur Radio equipment and every accessory item currently offered for sale in the United States. From the biggest HF transceiver to Ham computer software, it's in the CQ Amateur Radio Equipment Buyer's Guide, complete with specs and prices. There are over 2100 product listings (3100 including transceiver accessories!).

The CQ Amateur Radio Equipment Buyer's Guide also includes the most comprehensive directory anywhere of Ham product manufacturers and dealers in the USA, complete with phone numbers, FAX numbers, Web sites, and e-mail addresses. Dealer and Manufacturer listings include major products manufactured or sold, and service and repair policies, where applicable, with 475 dealers and manufacturers listed. These listings alone are worth their weight in gold.

The CQ Amateur Radio Equipment Buyer's Guide is jam-packed with solid information and great reading. In addition to being an incredible source of insight into the current state of Ham Radio technology, it will continue to be a reliable Ham equipment reference source for many years to come.

For Fastest Service call 1-800-853-9797 or FAX 516-681-2926
CQ Communications, Inc. 25 Newbridge Road, Hicksville, NY 11801

The Monitoring Magazine

June 1998 / Popular Communications / 63
mnemonic values that are of maximum use when human interpretation and manual processing are required by the recipient. Be sure to check out the "Assigned TEI Codes" in this column for a complete reference and understanding of the text element of these messages.

SECTION B.2 RULES FOR SMI/TEI APPLICATION (ARINC Document)

TEIs and the text elements identified by the TEIs are referred to as structured text. A text element follows its TEI and is separated from the TEI by a single space character as shown in the following example:

TA MS29

Where TA identifies the text element as the static air temperature, and the text element MS29 indicates that the static air temperature is 29 below zero, Celsius. Text that is not part of a message's structured text is "free text" and immediately follows the last line of the structured text portion of the text field. The start of the "free text" portion of SMT is indicated by a dash character ("-")-space character sequence that is used as a "free text" identifier. This identifier appears at the start of the first line of "free text." That is, it immediately follows the Carriage Return-Line Feed sequence that ends the last line of structured text.

The "free text" identifier is, in turn, followed by a space character that separates the "free text" identifier from the first character of "free text." The "free text" identifier appears only at the start of the first line of "free text." When the "free text" occupies more than one line, the "free text" identifier should not appear at the start of the second and subsequent lines of text.

The rules listed in this section apply to the use of standard message identifiers and text element identifiers in standard messages. Note: The ATA/IATA Five-bit Coded Character Set (Alphabet No. 2) uses "CARRET" and "LINE FEED" to refer to the Carriage Return and Line Feed control characters. The ATA/IATA Seven-bit Code for Information Interchange (Alphabet No. 5) uses CR and LF to refer to these characters. In this manual, CR and LF are used to refer to the Carriage Return and Line Feed control characters in both alphabets. The dash character is the FIGS "A" character in Alphabet No. 2.

1. Each message must contain an SMI. A message may not contain more than one SMI unless it is a Possible Duplicate Message (PDM) being (delivered) retransmitted by the service provider's ground/ground network. In this case, the SMI code PDM is inserted in line 3 of the message by the delivering service provider. The original SMI code would follow on line 4 and all other lines would be shifted down by one after this.

2. An SMI must be an approved three-character code and must be on a line by itself at the first part of the message text. All SMI codes presently approved for use with datalink are listed in Appendix C.

3. SMT text received by the datalink service provider from a ground user for transmission to an aircraft must include either an AN (aircraft registration mark) text element or an Fl (flight identification) text element.

4. Structured text begins on the line immediately after the SMI line, and each line of structured text must be ended with a <CR><LF> sequence.

5. A TEI and its text element must be separated from each other by a single space; thus, the TEI and its text element must be on the same line. That is, they cannot be separated by a <CR><LF> sequence. This requirement also means that each line of structured text must begin with a TEI. (See, however, item 11 below.)

6. A line of text may contain several structured text elements; i.e., TEIs and their accompanying text elements. Structured text elements must be separated from each other by the solidus character (/) without any intervening spaces as shown in the following example:

 FI XXI10/AN N69740/DA IAH/OT 1936/FL 00000/FL 0268<CR><LF>

7. In the forming of messages, TEIs need not appear in any fixed order with the following exceptions:

 a. In messages that have the flight identification or the aircraft number or both as mandatory text elements, the TEIs for these elements must appear immediately after the <CR><LF> sequence that ends the line containing the SMI.

 b. When present, the following TEIs must appear at the beginning of a line of structured text. That is, these TEIs must immediately follow a <CR><LF> sequence.

 c. When present, the following TEI must appear at the end of a structured text: i.e., The TEI must follow the AN/FI sequence.

8. The start of "free text" is indicated by the dash character ("-") followed by a space character. The dash character must be at the beginning of the first line of text and free text should start two spaces after the dash character. The dash character is not repeated at the beginning of subsequent lines of text.

9. When present, the "free text" portion of a message follows the <CR><LF> sequence that ends the last line of structured text. The "free text" portion must be located immediately before and be terminated by the end-of-text character.

10. Structured data elements identified by TEIs may be mandatory or optional for an SMI as defined for an SMT; however, the order and composition of data items within a data element should be standardized for each SMT.

11. If the number of characters in a text element for a TEI causes the standard line length allowed by the communications environment to be exceeded and the text element to be broken by a <CR><LF> sequence, the TEI must be repeated after the <CR><LF> sequence. The repeated TEI is followed by a space character and the remainder of the text element.

12. The use of the TP TEI is optional; however, when used in conjunction with the GL TEI, the ground station's media must match that specified by the TP TEI. While it is implied that message texts identified by certain SMIs will always contain specific TEIs, no fixed SMTs have been agreed to at present. In general, it is intended that data processing be accomplished at the TEI level, not the SMI level.

Remember, your questions on ACARS monitoring are always welcome. Until next time, Happy Landings.
Broadcasting Goes Sky High

An exciting new satellite digital audio broadcast service called WorldSpace is being launched with the objective of providing universal access to high quality "digital audio" broadcasts and a diverse selection of news and entertainment programming for the developing world. WorldSpace says, "Through powerful L-band (1452-1492 MHz) satellites with traveling wave tube amplifiers and onboard baseband processing, WorldSpace will be able to provide direct-to-person reception through small, portable receivers."

The WorldSpace receiver will be capable of receiving over 100 channels, transmitted by three geosynchronous satellites, AfriStar, AsiaStar, and AmeriStar, to be launched by late 1998, and covering Africa, the Middle East, Asia, Latin America, and the Caribbean. Ghana Broadcasting, Radio Sud in Senegal, Bloomberg business radio, and the RCN network in Colombia have already signed up to join the service. In addition, a number of channels will be reserved for educational or public service programs.

The WorldSpace portable satellite receiver will initially sell for around $200, but the price is expected to drop below $100 once mass production is in full gear, making it more accessible to target audiences in developing nations. Hitachi, Matsushita, Sanyo, and JVC will produce and market the digital receivers.

While the U.S. and Canada are still struggling with in-band digital broadcasting standards, L-band satellite services are favored by many nations for the introduction of digital broadcasting.

Another new satellite network is providing an international audience with access to talk radio. The Hispanic Radio Network has launched a news and talk program off of the PanAmSat 5 satellite, covering all of the Americas. Mundo 2000, a weekly Spanish-language program featuring the latest news in health care, the environment, and technology, includes a live call-in talk segment with a toll-free number through which listeners in Argentina, Bolivia, Chile, Colombia, Costa Rica, the Dominican Republic, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, Uruguay, and the U.S. will be able to join in on the discussion. The program originates from National Public Radio studios in Washington, DC, and airs every Tuesday, 7 to 8 p.m., Eastern time. Mundo 2000 information and transcripts can be found at <http://www.mundo2000.com> at the Hispanic Radio Network World Wide Web site.

Radio News/Talk

More news of new satellite networks: "Beat Radio" replaces Radio Aahs children’s programming over most of the former Aahs stations, including KKYD 1340 in Denver, WJDM 1660 Elizabeth, NJ, and WWTC 1280 Minneapolis. The notorious Alan Freed, a crusader for micropower FM, provides the service via satellite from Minneapolis. Beat Radio grew out of Freed’s popular microbroadcasts on 97.7 in Minneapolis.

Meanwhile, Radio Disney continues to expand with KMKY “Mickey” 1310 Oakland, CA, WHIM 1450 West Warwick, RI, and WRDM 1550 Bloomfield, CT, among many stations across the country joining the network. Former Aahs affiliate KKYD 1520 is also now carrying Disney. Other stations on the “We’re all ears!” network include WDWD 590 in Atlanta, KZTN 710 in Los Angeles, KKDZ 1250 in Seattle, and WPZE 1260 in Boston. By the way, those vintage KDIA call letters, formerly on 1310 and long associated with classic R&B in Oakland, are now on 1640 in Vallejo, CA, ex-KXBT.

Spanish tops the ratings news. In Los Angeles, it’s Spanish language “Ten-Q” KLYE 107.5 in first place, followed by hip-hop KPW “Power 106” and the former alternative rocker turned Spanish KSCA 101.9 FM. And Univision is celebrating as channel 23 beat all the major TV networks in south Florida, a first for the U.S. Spanish network. In Atlanta, news/talk WSB 750 and urban contemporary WVEE “V” 103.3 are in a tight battle for the number one position, with hit radio WSTR “Star” 94.1 a close third.

In the nation’s capital, urban contemporary music dominates with urban hit radio WPDC-FM 95.5 number one. Urban WKYS “Kiss” 93.9 and urban adult contemporary WHUR 96.3 are close behind, placing second and third. And WBZ Newsradio 1030 continues to hold the lead in Boston, but with talk radio WRKO 680 moving into second place and pushing contemporary hit radio WXKS “Kiss” 107.9 into third.

WRKO 680 has been trying to attract...
Seeking Permits to Construct New AM Stations

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>So. Lake Tahoe</td>
<td>1400 kHz</td>
</tr>
<tr>
<td>NV</td>
<td>Sparks</td>
<td>1400 kHz</td>
</tr>
</tbody>
</table>

Seeking Permits to Construct New FM Stations

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>93.3 MHz</td>
</tr>
<tr>
<td>AL</td>
<td>Selma</td>
<td>89.7 MHz</td>
</tr>
<tr>
<td>CA</td>
<td>Garberville</td>
<td>89.1 MHz</td>
</tr>
<tr>
<td>CA</td>
<td>Greenfield</td>
<td>89.9 MHz</td>
</tr>
<tr>
<td>CA</td>
<td>Hayfork</td>
<td>89.3</td>
</tr>
<tr>
<td>CA</td>
<td>Lompoc</td>
<td>90.5 MHz</td>
</tr>
<tr>
<td>CA</td>
<td>McKinleyville</td>
<td>89.3 MHz</td>
</tr>
<tr>
<td>CA</td>
<td>Shasta Lake City</td>
<td>107.1 MHz</td>
</tr>
<tr>
<td>CO</td>
<td>Colona</td>
<td>89.7 MHz</td>
</tr>
<tr>
<td>CO</td>
<td>Grand Junction</td>
<td>100.7 MHz</td>
</tr>
<tr>
<td>CO</td>
<td>Loveland</td>
<td>89.7 MHz</td>
</tr>
<tr>
<td>CO</td>
<td>Sterling</td>
<td>90.7 MHz</td>
</tr>
<tr>
<td>Co</td>
<td>Vail</td>
<td>88.5 MHz</td>
</tr>
<tr>
<td>FL</td>
<td>Coconut Creek</td>
<td>88.7 MHz</td>
</tr>
<tr>
<td>FL</td>
<td>Sebring</td>
<td>88.3 MHz</td>
</tr>
<tr>
<td>GA</td>
<td>Cuthbert</td>
<td>100.7 MHz</td>
</tr>
<tr>
<td>GA</td>
<td>Montezuma</td>
<td>95.1 MHz</td>
</tr>
<tr>
<td>GA</td>
<td>Talking Rock</td>
<td>100.0 MHz</td>
</tr>
<tr>
<td>ID</td>
<td>McCall</td>
<td>106.7 MHz</td>
</tr>
<tr>
<td>IL</td>
<td>Cairo</td>
<td>88.5 MHz</td>
</tr>
<tr>
<td>IL</td>
<td>Crete</td>
<td>88.1 MHz</td>
</tr>
<tr>
<td>IL</td>
<td>Effingham</td>
<td>89.5 MHz</td>
</tr>
<tr>
<td>IL</td>
<td>Greenup</td>
<td>89.3 MHz</td>
</tr>
<tr>
<td>IL</td>
<td>White Hall</td>
<td>88.3 MHz</td>
</tr>
<tr>
<td>UN</td>
<td>Lebanon</td>
<td>91.1 MHz</td>
</tr>
<tr>
<td>IN</td>
<td>Michigan City</td>
<td>88.5 MHz</td>
</tr>
<tr>
<td>IN</td>
<td>Rochester</td>
<td>88.5 MHz</td>
</tr>
<tr>
<td>KS</td>
<td>Emporia</td>
<td>90.7 MHz</td>
</tr>
<tr>
<td>KY</td>
<td>Ashland</td>
<td>91.1 MHz</td>
</tr>
<tr>
<td>KY</td>
<td>Jackson</td>
<td>89.3 MHz</td>
</tr>
<tr>
<td>LA</td>
<td>Atlanta</td>
<td>106.5 MHz</td>
</tr>
<tr>
<td>LA</td>
<td>Grand Isle</td>
<td>104.5 MHz</td>
</tr>
<tr>
<td>MI</td>
<td>Burton</td>
<td>89.7 MHz</td>
</tr>
<tr>
<td>MI</td>
<td>Gladstone</td>
<td>105.5 MHz</td>
</tr>
<tr>
<td>MI</td>
<td>Harrisville</td>
<td>89.7 MHz</td>
</tr>
<tr>
<td>MI</td>
<td>Mackinaw City</td>
<td>88.5 MHz</td>
</tr>
<tr>
<td>MI</td>
<td>Rose Twp.</td>
<td>89.7 MHz</td>
</tr>
<tr>
<td>MI</td>
<td>Traverse City</td>
<td>91.5 MHz</td>
</tr>
<tr>
<td>MN</td>
<td>Bemidji</td>
<td>95.5 MHz</td>
</tr>
<tr>
<td>MN</td>
<td>New Ulm</td>
<td>88.3 MHz</td>
</tr>
<tr>
<td>MN</td>
<td>Nisswa</td>
<td>93.3 MHz</td>
</tr>
<tr>
<td>MN</td>
<td>Pillager</td>
<td>95.9 MHz</td>
</tr>
<tr>
<td>MO</td>
<td>La Monte</td>
<td>97.1 MHz</td>
</tr>
<tr>
<td>MO</td>
<td>Owensville</td>
<td>95.3 MHz</td>
</tr>
<tr>
<td>MO</td>
<td>Shell Knob</td>
<td>97.7 MHz</td>
</tr>
<tr>
<td>MO</td>
<td>Vienna</td>
<td>90.9 MHz</td>
</tr>
<tr>
<td>MS</td>
<td>Kosciusko</td>
<td>103.3 MHz</td>
</tr>
<tr>
<td>MS</td>
<td>Naylor</td>
<td>99.9 MHz</td>
</tr>
<tr>
<td>MT</td>
<td>Baker</td>
<td>100.5 MHz</td>
</tr>
<tr>
<td>MT</td>
<td>Hamilton</td>
<td>98.1 MHz</td>
</tr>
<tr>
<td>MT</td>
<td>Superior</td>
<td>107.5 MHz</td>
</tr>
<tr>
<td>NE</td>
<td>Imperial</td>
<td>102.9 MHz</td>
</tr>
<tr>
<td>NE</td>
<td>Wilber</td>
<td>89.9 MHz</td>
</tr>
<tr>
<td>NJ</td>
<td>Port Republic</td>
<td>88.3 MHz</td>
</tr>
<tr>
<td>NM</td>
<td>Alamogordo</td>
<td>107.9 MHz</td>
</tr>
<tr>
<td>NM</td>
<td>Cloudcroft</td>
<td>97.9 MHz</td>
</tr>
<tr>
<td>NM</td>
<td>Gallup</td>
<td>101.5 MHz</td>
</tr>
<tr>
<td>NV</td>
<td>Beatty</td>
<td>100.3 MHz</td>
</tr>
</tbody>
</table>

Granted Permits to Construct New FM Stations

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Hotevilla</td>
<td>89.1 MHz</td>
</tr>
<tr>
<td>GA</td>
<td>Donalsonville</td>
<td>107.5 MHz</td>
</tr>
<tr>
<td>IL</td>
<td>Pittsfield</td>
<td>91.7 MHz</td>
</tr>
<tr>
<td>LA</td>
<td>Jonesville</td>
<td>105.1 MHz</td>
</tr>
<tr>
<td>MN</td>
<td>Deer River</td>
<td>105.5 MHz</td>
</tr>
<tr>
<td>MT</td>
<td>Plains</td>
<td>91.5 MHz</td>
</tr>
<tr>
<td>TX</td>
<td>Brownwood</td>
<td>91.7 MHz</td>
</tr>
<tr>
<td>TX</td>
<td>Kerriville</td>
<td>91.1 MHz</td>
</tr>
<tr>
<td>TX</td>
<td>Markham</td>
<td>92.5 MHz</td>
</tr>
<tr>
<td>TX</td>
<td>Plainview</td>
<td>90.5 MHz</td>
</tr>
<tr>
<td>TX</td>
<td>Zapata</td>
<td>93.5 MHz</td>
</tr>
<tr>
<td>WI</td>
<td>Sister Bay</td>
<td>89.7 MHz</td>
</tr>
<tr>
<td>WV</td>
<td>Hurricane</td>
<td>91.5 MHz</td>
</tr>
<tr>
<td>WV</td>
<td>Hurricane</td>
<td>91.5 MHz</td>
</tr>
<tr>
<td>WV</td>
<td>Laramie</td>
<td>90.9 MHz</td>
</tr>
<tr>
<td>WV</td>
<td>Thermopolis</td>
<td>98.3 MHz</td>
</tr>
<tr>
<td>WV</td>
<td>Thermopolis</td>
<td>101.7 MHz</td>
</tr>
</tbody>
</table>

Requesting Changed AM Facilities

<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Frequency</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLSQ</td>
<td>Laughlin, NV</td>
<td>870 kHz</td>
<td>Seeks chg. community, freq., power</td>
</tr>
<tr>
<td>KQYX</td>
<td>Joplin, MO</td>
<td>1560 kHz</td>
<td>Seeks reduced power</td>
</tr>
<tr>
<td>WBBO</td>
<td>Harrisburg, PA</td>
<td>1230 kHz</td>
<td>Seeks reduced power</td>
</tr>
<tr>
<td>WOFR</td>
<td>Washington CH, 1250 kHz</td>
<td>Seeks chg. community, power</td>
<td></td>
</tr>
</tbody>
</table>

Changed AM Facilities

WJLT 1060 kHz Increased power to 40 kW

Requesting Changed FM Frequencies

<table>
<thead>
<tr>
<th>Station</th>
<th>Frequency</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTAO</td>
<td>Taos, NM</td>
<td>101.5 MHz</td>
</tr>
<tr>
<td>WGZO</td>
<td>Parris Isl., SC</td>
<td>92.1 MHz</td>
</tr>
</tbody>
</table>

New AM Call Letters Issued

KAVT Fresno, CA
KAXW Merced, CA
KAXY Waco, TX
KAZJ Seattle, WA
younger listeners to AM talk radio, and it’s apparently working, as indicated by the ratings. Local personalities Darlene McCarthy, formerly of WHDH-TV 7 and WLVI TV 56 news, and Mark Parenteau, from rocker WBCN 104.1, have joined the outrageous talk host Jeff Katz in the morning drive time slot. Katz’s reputation precedes him as his on-air remarks resulted in his departure amid controversy in Hartford and Sacramento. In the short time that Katz has been on WRKO, complaints have already been pouring in from community leaders.

And finally, this news item from the Big Apple. Something big is happening in New York City. That was the promotional line as modern rocker WNSR 105.1 became adult contemporary “Big 105” WBIX, with Danny Bonaduce of The Partridge Family fame the new host of the morning drive time show.

Loggings

For DXers Patrick Martin in Oregon and Pete Taylor in Washington, Argentina and Alabama will be more difficult catches with a new X-bander on the air in the Pacific northwest; Mark Connelly (in Massachusetts) and I (in New Hampshire) work France during transmitter-site dawn enhancement; clandestine political broadcasts related to conflicts between Algeria...
The WorldSpace Satellite Radio.

and Morocco move to 1548 kHz; and Steven Hildebrand is hearing a mysterious beacon in Chicago. All in this month's selection of log reports.

603 FRANCE, R. Bleue, Lyon-Tramoyes, at 0601 UTC, HUGE with French male vocal version of Arlo Guthrie/Willie Nelson tune "City of New Orleans." (Connelly) R. Bleue is a national network broadcasting adult standards music in France.

603 unID, until about 1200 UTC, mixing with Korea, possibly Mongolia. There is a minority language station at Ulanhot, NM province that does run Mongolian programming. I may try a tentative taped report to them. (Martin)

675 BRUNEI, Serasa, tentative, with beautiful Malay pop music and woman in Malay, closing news at 1545 UTC; going to try a taped report to them. (Martin)

1206 FRANCE, R. Bleue, Bordeaux, heard at 0644 UTC, French talk, female vocal; fair, and 2323 UTC over a weak 1205 het. (Connelly)

1242 FRANCE, R. Bleue, Marseille, at 2325 UTC, old-fashioned French male vocal. This was easy with local WBUR-1240 phase-nulled to the dirt. (Connelly)

1548 ALGERIA, National Radio of the Democratic Saharahui Arabic Republic, moved from 1544 kHz. At the beginning of 1998 has begun to be impeded by Morocco with a bubble jammer. Programming is in Arabic 0700-0800 and 1800-0000, and in Spanish 0000-0100 UTC, very irregular. (Juan Antonio Arranz via Mark Connelly)

1557 FRANCE, R. Bleue. Nice, at 0620 UTC with nostalgia parallel 945 and 1206, in heavy interference from WQEW-1560. Hit also noted on 1377, but with too much interference from St. Pierre-1375 and domestics on 1380 to be readable. All signals from France lost by 0630. (Conti)

1620 KRIZ, Renton, WA, is now on the air with R&B. Very strong here, a bit stronger than KDIA-1640, 10 dB over S9 or better. Don't know if they are running 1 kW or 10 kW. There goes Alabama. Glad I heard them when I did. (Martin) Noted parallel 1420, with dual KRIZ/KZIZ IDs; I'm certainly glad I already logged Argentina and Alabama! (Taylor)

1740 unID, a fairly strong beacon, its IDs as "ISIHHT," gives me a maximum signal reading of 5 on the 10-scale of my DX-398. Seems to be using FSK modulation. Maybe it's an out-of-band MEDFER? Any help as to the identity and/or location of this beacon would be greatly appreciated. (Hildebrand)

And correcting an error in the April "Broadcast DXing" column, the logging of "KNRK FM" by Bryan Clark of New Zealand via Cumbre DX should have been listed at 25950 kHz, not 1540. The logging was erroneously listed in the final edit in reference to KFXX 1540. Anyway, the KNRK 94.7 shortwave relay is supposed to be for their helicopter traffic reporter to be able to monitor the station while flying high over Portland, Oregon.

QSL Information

846 ITALY, RAI - No data QSL card, QuiRAI magazine, Italia '98 calendar, and reception report form, received in 51 days for a report in English and two IRCs. Address: RAI-International, Radio Roma, Centro Corrispondenza, Casella Postale 320, 00100 Roma, Italy. (Conti)

1620 KRIZ - All reception reports should be sent to Chris Bennett-GM of KRIZ-KZIZ, at 2600 South Jackson, Seattle WA 98144. (Martin)

1620 WPHG - Nice oversized QSL card. Station is 10 kW days and 1 kW nights, gospel music. Address: 805 North Main Street, Atmore AL 36502. (Martin)

1670 TIS - Midlothian, Texas, operated by the Midlothian Fire Department. Address: David Schroldt, Fire Chief, Midlothian Fire Dept., 104 West Ave. E., Midlothian, TX 76065. (Martin)

1670.5 JAPAN - Low power lighthouse weather station operating in the AM mode, with 50 watts of power; a full detailed card with a beautiful photo of an aerial view of the southern tip of Hokkaido at Ekimo. These stations broadcast repeated weather conditions in
the area around the lighthouse, at 20 to 50 watts. (Martin)

1700 WCMQ — Miami Springs, FL, “I spoke to the CE at WCMQ. He is flooded with reports from all over the world, at least 50 plus. He will be answering the reports within a month or so, as soon as he gets some QSLs printed.” (Martin)

Reader Mail

Norman Temple writes, “I’m looking for a book that lists radio stations overseas that broadcast in English, together with their addresses and music formats. Would you know of such a book and where I might obtain it?”

The World Radio TV Handbook (WRTH) provides complete information, including postal and e-mail addresses, phone numbers, contacts, Web sites, and English broadcast hours for a majority of AM and FM stations around the world. The WRTH is available from most major bookstores and from some distributors that advertise in Pop’Comm, such as Universal Radio.

The Internet is another valuable resource for radio station information, from specific broadcaster Web sites to station and format listings. Try entering “radio stations” or “broadcasting” into your search engine to get started. Or use the Web site listings in the WRTH to get more details on formats and programs in English, or live audio from particular stations of interest. Most stations that broadcast over the Internet will provide a link for downloading free Real Audio software so you can listen to their programs.

Longtime broadcast and scanner enthusiast Rick Schleif enjoys following call letter changes and trends, and he collects radio jingles. Rick wonders what ever happened to the WAKY call letters that used to belong to the top 40 rocker on 790 in Louisville, Kentucky, during the ’70s?

According to the National Radio Club’s AM Radio Log, the WAKY call letters belong to 1540 in Greensburg, KY. And Dr. Bruce Elving’s FM Atlas lists WAKY-FM on 102.7 in Springfield, KY. Another set of “wacky” calls, WAQY, can be found on 102.1, coincidentally in Springfield, MA.

Thanks to this month’s contributors: Mark Connelly, Bob Gilbert, Steven Hildebrand, Patrick Martin, Judith Pryor (WorldSpace), Rick Schleif, Pete Taylor, and Norman Temple. 73

How I Got Started

Congratulations To Jose Ferrer Of Georgia!

Jose Ferrer in the Peach State at his well-equipped monitoring post.

P opular Communications invites you to submit in about 150 words how you got started in the communications hobby. Entries should be typewritten, or otherwise easily readable. If possible, your photo (no Polaroids, please) should be included.

Each month, we’ll select one entry and publish it here. Submit your entry only once; we’ll keep it on file. All submissions become the property of Popular Communications, and none will be acknowledged or returned. Entries will be selected taking into consideration the story they relate, and if it is especially interesting, unusual, or even humorous. We reserve the right to edit all submitted material for length and grammar, and to improve style.

The person whose entry is selected will receive a one-year gift subscription (or one-year subscription extension) to Popular Communications. Address all entries to: “How I Got Started,” Popular Communications, 25 Newbridge Road, Hicksville, NY 11801-2909 or e-mail your entry to <popularcom@aol.com>, letting us know if you’re sending photos to accompany your story.

Our June Winner

Jose is a physical therapist in the Peach State. He says, “I got started listening to my first shortwave radio way back in ’95. It was a RadioShack DX-375 which had good sensitivity on world band. I first hoped to hear the station in the Philippines, where I am from. By accident I saw Pop’Comm showing the times and frequencies of every country, including the Philippine’s FEBC.

I didn’t rush to buy a new receiver. I earned some money and ended up buying a YB 400, RadioShack PRO-2040, PRO-51 and two handheld CBs. It wasn’t in my plans to buy a scanner, but I passed by the store and heard a customer buying one. He said you can monitor what’s happening in your neighborhood. The rest was history. I’m very happy now. I listen to the radio more than I watch TV, except my wife sometimes gets irritated with the static and fading when I listen to shortwave.”

Well, Jose, thanks so much for your story. You’ll be receiving a free one-year subscription to Pop’Comm this summer. And please tell your wife that perhaps you’ll invest in a pair of headphones!”
The question "can I hear the space shuttle on HF?" is a frequent flyer here. The answer these days is "no, not directly." However, what we can hear are some of the interesting behind-the-scenes traffic working Cape Radio in support of these launches.

But first, a little background. Cape Canaveral Air Force Station (AFS) is the home of Cape Radio. The facility is run by a private contractor who operates and maintains all the HF radios for the Eastern Test Range (ETR), which is the official designation for the facility at Cape Canaveral AFS. The facility is actually located across the Banana River from the Canaveral AFS. The facility is actually the home of Cape Radio. The facility is run by a private contractor who operates and maintains all the HF radios for the Eastern Test Range (ETR), which is the official designation for the facility at Cape Canaveral AFS. The facility is actually located across the Banana River from the Kennedy Space Center (KSC) and is not affiliated with NASA in any way. However ETR, better known as Cape Radio, does support, all shuttle launches and unmanned launch vehicles. They provide range safety, telemetry, radar, command destruct, communications and optical tracking for all launches from the Cape. The amount of HF radio capability at their disposal has been described as "staggering." They have eight HF transmitters that have an output of 45 kW, six transmitters with 30 kW capability, and eight transmitters of 10 kW capability. During Operation Desert Storm, Cape Radio played a key role in support of ground troops and cargo aircraft. During this time, for a period of about two months, Cape Radio provided radio phone patches to home for the deployed troops. Ascension and Antigua are a part of the ETR net and can also be heard infrequently working Cape Radio.

There are two nets on HF for every shuttle launch. The first is Safety of Flight (SOF) designated the two SRB recovery ships: MN Freedom Star (callsign FRG-7, adding it to the shack and leaving him free to do a bit more tuning around on other bands. Alan has heard a couple of new RCCs on 5680 recently. These were both located in Estonia. Tallinn Rescue now joins Riga Rescue Radio for a daily radio check, and another station

Recovering The Solid Rocket Boosters

The second net which is active every launch is controlled by "BRD" or the Booster Recovery Director. The two Solid Rocket Boosters (SRBs) carried aloft by the shuttle are the largest solid propellant motors ever flown and the first designed for reuse. After a shuttle is launched, the SRBs are jettisoned at two minutes, seven seconds into the flight. At six minutes and 44 seconds after liftoff, the spent SRBs, each weighing about 165,000 lb, have slowed their descent speed to about 62 mph, and splashdown takes place in a predetermined area. They are retrieved from the Atlantic Ocean by special recovery vessels and returned for refurbishment and eventual reuse on future shuttle flights. The BRD net coordinates the two SRB recovery ships: M/V Liberty Star (callsign WRPH) and M/V Freedom Star (callsign KRFB).

These two nets can make use of any of the hundred or so frequencies available to the ETR. However, early listening to ETR primary frequency 10780.0 kHz, as early as 10 or 12 hours before scheduled launch time, will reward the listener with Cape Radio giving the working frequencies for both nets as the assets check in. If you miss this, then it’s a hit and miss affair. To help, Table 1 is a list of known frequencies used by ETR/Cape Radio.

Shuttle Rebroadcasts From Goddard

One last way to catch shuttle action is by monitoring comms via the Goddard Amateur Radio Club in Greenbelt, Maryland. "WA3NAN" retransmits the air-to-ground Space Shuttle communications for all non-classified shuttle missions on the following: 3860 kHz (LSB); 7185 kHz (LSB); 14295 kHz (USB); 21395 kHz (USB); and 28650 kHz (USB), plus or minus 5 kHz for interference. Those on the Internet can check this URL for scheduled missions: <http://www.ksc.nasa.gov/shuttle/countdown/countdown.html>.

Reader Mail

Tim Tyler (MI) forwarded some information on closure of Coast Guard Air Station (CGAS) Brooklyn. The air station (AirSta) at Floyd Bennett Field and CGAS Cape May were to be closed May 18, and their operations combined at a new air station to be established at the Department of Transportation-owned Atlantic City airport and opened by early June. AirSta Atlantic City will "forward base" some helicopters with the New York Air National Guard rescue wing at Francis S. Gabreski Airport during peak boating season.

Alan Gale (UK) has rejuvenated and reinstalled his 21-year-old modified Yaesu FRG-7, adding it to the shack and leaving him free to do a bit more tuning around on other bands. Alan has heard a couple of new RCCs on 5680 recently. These were both located in Estonia. Tallinn Rescue now joins Riga Rescue Radio for a daily radio check, and another station
Seems carrying a spent solid rocket booster (SRB) from the STS-87 launch is the solid rocket booster recovery ship Liberty Star. (Photo courtesy NASA)

IDing itself as “Kuresaare Rescue” (believed to be MRSC Kuresaare) has also been heard. Alan feels that under the GMDSS plan we could see a few more starting to arrive, since quite a few more are planned for various European countries during the next 12 months. Alan also notes that Swedish helos now seem to be using “Hotel” prefix instead of “Yankee.”

Looking back through his logs, he notes that “Quebec” prefixes have also been used. Last, Alan notes that many German Pollution Report aircraft use calls in the PCXXX range. Only one has been heard so far this year using PC026. Looks like they start at 01 and just issue identifiers in sequence from here throughout the rest of the year.

We have lots of first-time check-ins this month. Jack Ambush (NC) checks in with a numbers log: Jack uses a DX-394 for his listening pleasure. Also checking in for the first time is Eugene Paradis (ME), whose shack includes an ICOM 701.

Fellow Buckeye Dennis Helder (OH) is interested in what can be heard on utility frequencies. Also checking in for the first time is Eugene Paradis (ME), whose shack includes an ICOM 701.

We have lots of first-time check-ins this month. Jack Ambush (NC) checks in with a numbers log: Jack uses a DX-394 for his listening pleasure. Also checking in for the first time is Eugene Paradis (ME), whose shack includes an ICOM 701.

We have lots of first-time check-ins this month. Jack Ambush (NC) checks in with a numbers log: Jack uses a DX-394 for his listening pleasure. Also checking in for the first time is Eugene Paradis (ME), whose shack includes an ICOM 701.

Abbreviations Used For Intercepts

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Amplitude Modulation mode</td>
</tr>
<tr>
<td>BC</td>
<td>Broadcast</td>
</tr>
<tr>
<td>CW</td>
<td>Morse Code mode</td>
</tr>
<tr>
<td>EE</td>
<td>English</td>
</tr>
<tr>
<td>GG</td>
<td>German</td>
</tr>
<tr>
<td>ID</td>
<td>Identification/led/location</td>
</tr>
<tr>
<td>LSB</td>
<td>Lower Sideband mode</td>
</tr>
<tr>
<td>OM</td>
<td>Male operator</td>
</tr>
<tr>
<td>PP</td>
<td>Portuguese</td>
</tr>
<tr>
<td>SS</td>
<td>Spanish</td>
</tr>
<tr>
<td>HC</td>
<td>Traffic</td>
</tr>
<tr>
<td>UBB</td>
<td>Upper Sideband mode</td>
</tr>
<tr>
<td>w/</td>
<td>With</td>
</tr>
<tr>
<td>wx</td>
<td>Weather report/forecast</td>
</tr>
<tr>
<td>YL</td>
<td>Female operator</td>
</tr>
<tr>
<td>4F</td>
<td>4-figure coded groups (i.e. 5739)</td>
</tr>
<tr>
<td>5F</td>
<td>5-figure coded groups</td>
</tr>
<tr>
<td>5L</td>
<td>5-letter coded groups (i.e. IGXRX)</td>
</tr>
</tbody>
</table>

seen carrying a spent solid rocket booster (SRB) from the STS-87 launch is the solid rocket booster recovery ship Liberty Star. (Photo courtesy NASA)
Here's the neat shack of Eugene Paradis (KAILW, Maine) featuring an ICOM 70, AOR AR-8000, ICOM 701 transceiver, and a PRO-2035 scanner.

555 555 313 313 313 05 (repeated a number of times) 42 05 over over 69026 (repeated) 555 555 313 313 313 05 (repeated a number)

C3 - Gold id'd as ARQ but wouldn't synch.

4724: GROWLER wkg RINGBACK w/2215. (TY)

4665: YUEE, MIW2 Mossad best in USB at WX in EE in USB at 1310. (TY)

4663: Tashkent Volmet, Uzbekistan, w/avian USB. (DW)

USB wkg various Texas CAP units. Both in WOOD 44, WILD WOOD 22, WILD WOOD CAP unit 22 monitored at 0141 wkg WILD 0000. "Hello all stations, hello all sta-

5450: RAF Volmet at 0250 to 0315 w/ wx conditions & forecasts, mentioned "Heathrow" & w/ID @0305 as "RAF VOLMET," then did the same wx all over again. (GD)

5510: Cuban CW net monitored at 1650, one station audible w/peculiar "tremolo" on carrier. Noted same station on 6570 previous night at 0400. (AWH)

5529: Iberia Madrid, E at 2301 in USB w/unid aircraft. (AB)

5550: New York Radio at 0050 in USB wkg REACH Victor 9. American 55. enrt to San Juan and LL 78. (SW)

5598: New York ATC at 0416 in USB wkg El Al 205 w/session ck GJ-RW. (RK) NY Radio at 0331 in USB wkg REACH Victor w/flight levels. (SW)

5630: YL/EE Mossad stn in USB at 0319 rting SYN28P14F533. (TS)

5680: One Alpha Sierra wk wkg Kinloss Rescue (G) at 1331; Gotland Rescue (S) in r/check w/Tallinn Rescue (EST) at 1303, then Riga Rescue Radio at 1204. Kuresare Rescue (EST) in r/check w/Glontal at 1307. Rafair 7L22 clg Kinloss, landing Koskide! Swedish Air Rescue clg Hotel 99 & 96 at 1214. Aircraft 92 in r/check w/Koksidje Rescue (BEL) at 1224. Westland 80 in r/check w/Kinloss at 1236. Bodo Rescue (NOR) wk Sabre 33 in EE at 1324. Karup Rescue (DNK) in r/check w/Glucksburg Rescue (D) at 1336. Swedish Air Rescue wk Hotel 94 at 1312. Tallinn Rescue (EST) in r/check w/Riga Rescue at 1310. Kinloss Rescue wk SMG38 in training exercise "Yellow Scorpio" at 1215. XF clg Kinloss re passing a message to "Mother at Faslane Ops" (Scotland). Kinloss. All in USB. (AG)

5687: DHM91, German Air Force Muenster, D at 1422 in USB w/unid a/c. (AB)

5693: NOI, AirSta Detroit, Mi, at 1845 in USB wkg CG 6565 for wx. (MT)

5696: North Bend Air.0023 clg 6523 USCG Group Charleston at 0419 clg 6508, USCG HH-65A. NMW. USCG Group Astoria at 0534 w/MIB. "Hello all stations, hello all sta-

tions. This is Coast Guard Group Astoria" and into offshore wx. This is the 2670 kHz. MIB, obviously on the wrong frequency. No signal noted on 2670. Terminated at 0538 in mid-

5700: HABITAT: PATWING 10, NAS Whidbey Island, WA heard at 0233 in USB wkg HO ref to "CRATT" & WYOC. (DW)

5714: ARCHITECT, RAF Upavon, G at 1332 in USB w/Celebrity broadcast. (AB)

5875: North Korean YL nbr stn (R Pyongyang) in powerful AM at 1400 // 4770Hz. (TY)

6159: Mexico? SS military in USB at 1630 w/"955" wk "345" who answered only on CW. Some blocks of CW machine 5FGs sent by placing mic in front of some kind of code oscillator. (AWH)

6200: NRPI, USCGC Laurel (WLB-291) at 0258 in USB clg unid cutter. CMSLANT adv they up on 5223.0. (Ed.)

6207: Unid CW monitored at 1415, "LEO" hand keying SLG's to another inaudible station, "ORA LEO BT GR nn BT" before each block. (AWH)

6215: North Korean YL nbr stn (R Pyongyang) in AM at 1400. Similar but non-parallel Korean nbr stn heard on 4770 // 5875Hz. (TY)

6376: WCC, Chatham Radio at 0907 w/CW wheel. (SW)

6485: Lincolnshire Poacher lady passes 5FGs in USB at 2200 // 5422 // 8464kHz. (TY)

6493.5: LYL. Klaipeda Radio, LTU at 2206
At 0543 RAID 66 clg NORDIC CONTROL 6739: Hickam GHFS, Hi. USA at 0550 in 6697: RENTAL (poss E-6B TACAMO) at 6683: EXECUTIVE 2207 in USB w/ EAM broadcast. (Ed.) 6679: Hong Kong Volmet w/ avian WX in EE time also, daily lately in fact. (AWH)

voice scrambling. (AWH) babbler station. This freq noted previously w/ 6530.8: Unid Cuban stn at 1650 in USB on CW w /nav wngs. (AR)

<table>
<thead>
<tr>
<th>Freq</th>
<th>Mission</th>
<th>Use</th>
<th>UTC</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2622.0</td>
<td>Booster Recovery</td>
<td>STS-63</td>
<td>0521</td>
<td></td>
</tr>
<tr>
<td>2622.0</td>
<td>Booster Recovery</td>
<td>STS-76</td>
<td>0523</td>
<td></td>
</tr>
<tr>
<td>2764.0</td>
<td>Range Safety</td>
<td>STS-63</td>
<td>0411</td>
<td></td>
</tr>
<tr>
<td>2764.0</td>
<td>Range Safety</td>
<td>STS-67</td>
<td>0225</td>
<td></td>
</tr>
<tr>
<td>2764.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0755</td>
<td></td>
</tr>
<tr>
<td>2836.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>0653</td>
<td></td>
</tr>
<tr>
<td>3041.0</td>
<td>Range Safety</td>
<td>STS-63</td>
<td>0659</td>
<td></td>
</tr>
<tr>
<td>3120.0</td>
<td>Range Safety</td>
<td>STS-65</td>
<td>0426</td>
<td></td>
</tr>
<tr>
<td>3120.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0575</td>
<td></td>
</tr>
<tr>
<td>3187.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>0653</td>
<td></td>
</tr>
<tr>
<td>3187.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>1108</td>
<td></td>
</tr>
<tr>
<td>3365.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0734</td>
<td></td>
</tr>
<tr>
<td>3385.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0731</td>
<td></td>
</tr>
<tr>
<td>3385.2</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>1329</td>
<td></td>
</tr>
<tr>
<td>3386.1</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>1449</td>
<td></td>
</tr>
<tr>
<td>3452.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0653</td>
<td></td>
</tr>
<tr>
<td>4502.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0949</td>
<td></td>
</tr>
<tr>
<td>4902.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0705</td>
<td></td>
</tr>
<tr>
<td>5011.0</td>
<td>Range Safety</td>
<td>STS-68</td>
<td>0006</td>
<td></td>
</tr>
<tr>
<td>5180.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>0310</td>
<td>Attempt #2</td>
</tr>
<tr>
<td>5180.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>2339</td>
<td></td>
</tr>
<tr>
<td>5180.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>0731</td>
<td></td>
</tr>
<tr>
<td>5180.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>0459</td>
<td></td>
</tr>
<tr>
<td>5180.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>1814</td>
<td></td>
</tr>
<tr>
<td>5180.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>1037</td>
<td></td>
</tr>
<tr>
<td>5246.0</td>
<td>Booster Recovery</td>
<td>STS-68</td>
<td>2310</td>
<td></td>
</tr>
<tr>
<td>5711.0</td>
<td>Booster Recovery</td>
<td>STS-69</td>
<td>1951</td>
<td></td>
</tr>
<tr>
<td>5711.0</td>
<td>Booster Recovery</td>
<td>STS-69</td>
<td>2018.75</td>
<td>Attempt #2</td>
</tr>
</tbody>
</table>

Table 1. Frequencies Used For Past Shuttle Launches

in CW w/Nav wngs. (AB) 6530.9: Unid Cuban stn at 1650 in USB on w/open voice ckt w/ usual crackle/hum like a babbler station. This freq noted previously w/ voice scrambling. (AWH) 6589: The "6589" voice net, Cuba at 1420 in USB, w/ ESTACA (USTACA?) clg ZAMORA, ROMANA, for sig checks. 5688 active at time also, daily lately in fact. (AWH) 6604: New York Volmet at 0015 including volcano ash report from Monserrat, at 0020 Gander volmet. (SW) 6679: Hong Kong Volmet w/ avian WX in EE in USB at 0920/0828/13282 kHz. (TY) 6683: EXECUTIVE 1 FOXROT, a/c w/ member of U.S. Presidents family aboard, at 0024 in USB wkg Andrews Presidential w/ pp traffic. (Ed.) 6697: RENTAL (poss E-6B TACAMO) at 2207 in USB w/ EAM broadcast. (Ed.) 6739: Hickam GHFS, Hi, USA at 0550 in USB wkg REACH 5251 w/ pp to "Command Post." (MT) 6761: RAID 66 monitored at 0130 in USB clg REACH 4067 (not hdr), app wants some gas. At 0543 RAID 66 clg NORDIC CONTROL no joy. (Ed.) 6797: Cuban YL/SS numbers station at 0549. Had bad hum on signal which went off right after the YL ended the msg. Carrier off a few seconds later. (TS) 6806: Unid 1655-1719 in FEC relay of MNM marine wks until rather abrupt w/ out ID. (AWH) Looks like someone patched the wrong circuit like the 5696 log above — Ed. 6826: YL/SS numbers stn at 0334 in AM w/ 5FG. (DB) (Cuban so called "Attention" stn — Ed.) 6829.5: THF, unid, poss Australian Military, heard at 1349 in USB, w/ Tango Hotel Foxrot wkg Bravo Alpha 2 passing location in Australia. (Ed.) 6840: EZI, Mossad, ISR at 1800 in AM, Id EZI1. (AB) 6845: VJJ, RFDS Charleston, Qld, Australia monitored at 0900 in USB closing down for the evening. (IJ) 6854: Cuban CW cut numbers stn at 0323 w/ 5FGs. (TS) 6860: YL/EE in AM at 0300 r piracy 818 818 818 0000. (TS) 6867.8: Cuba (presumed), unid RTTY 50/500, at 1850 sporadic blocks of RYR alternating w/ idle periods, at 1905 sent seven lines of 5FGs w/ blank line after the fifth. Related activity on 5307, idle until 1917 when into RTTY 50/500R, sent several lines of RYR, then pulled plug at 1921. Possibly related was a tx on 9094 sending 10/00/00 reversals but nothing else, pulled plug around the same time. Presumed Cuban military or intelligence. (AWH) 6869: The Russian Man Numbers Station at 0205 in AM, YL/EE 5FGs (x2). Missed signon. QRT at 0225 w/ 632.632.125 125 00000. (DW) Same at 0206. (TS) 6876.5: U.S. military w/ DSP wkg H2V heard at 1500 in USB, Pacific time zone location, also data in same format used by spock P7X, "we need the same information at 0700 & 1700 every day" & advice to be careful what is sent over HF since it isn’t secure. Also discussions of using SATCOM when HF doesn’t work. (AWH) 6945: Unid at 1500 in CW w/ 62 62 33 33 966 + 5FG. (AB) 6959: Lincolnshire Poacher numbers stn at 2040 in USB, YL/EE w/ 5FG. (DB) 6984: SNN299, MFA Warsaw, POL at 1440 in POL-ARQ 100bd Msgs. (AB) 7003: SAM 375, USAF C-20H tail 92-0375 monitored at 2126 in USB wkg Andrews VIP w/p SAM Command re departed 2115z vd/DV plus 5. (MT) 7337: Lincolnshire Poacher, CYP heard at 2245 in USB, just caught the end of the transmission. (AB)
0607: Used deeper voice which had bad hum
7472: Cuban YUSS numbers stn in AM at
on the same frequency. Also noted on 5091
7540: YUEE, JSR2 Mossad bcst in USB at
USS Thunderbolt (PC-12) class submarine tender, w/HF testing; N/A, URT-23 (xmitter model) #1; NEXS, USS Oliver Hazard Perry-class frigate w/test on
NJJC, USS Clark (FFG-11) at 0836. (HOO)
8375: New Star Broadcasting heard. CC/YL, w/SFG’s in AM at 1430. Similar but non-
parallel transmission heard simultaneously on 8300, 9725, 11430, 13750, 15388 kHz. (TY)
8399.5: UHFI, SST Neritina at 2014 in RTTY 50/170, Russian-flagged Medium
Seiner & Tuna Catcher w/RYY/DE to UWF,
Kaliningrad Radio, then sends tcf for TR Tol’ko Bereg & SST Melongena. ship lost
logged 12/94. (HOO)
8403: WPE, Caboclo (V-19) monitored at
2245 in RTTY 75/850, Brazilian Navy Imperial
Marine-class 911 DWT patrol
boat w/RYY/SGDG/DE to PWF33, Natal
Naval. (Ed.)
8433: Global Radio’s new Barbados station
at 0944. (HOO)
8457: MKL, RAF Edinburgh monitored at
2014 in ARQ 100/390 w/texts.
8483: Unid Diplo at 1537 in ARQ 100/390
WOODY wkg N2P at 0232 in USB
beta idle, VERY strong. (AWH)
9000: Helsinki Radio wkg Baltiyskiy 111
(UDCO) for pp in USB at 1004. (HOO)
9006: Continental 67 at 1427 in USB clg
“New York” on “8846”...oops! (Ed.)
8843: San Francisco (CSP-1/2 MWARA) at
0346 in USB w/unid fit w/ATC request for
new FL. (MT)
8861: Dakar Radio wkg Air France 31 in USB
at 1533. (HOO)
9000: Cuban Babbler, 1545 to 1830ish, idle
wham, crackle, no tcf noted, DSB w/out carrier.
Probable “last week of month” maintenance
check. 5688 active same time. Suspicious
carrier on 5708 also, but no audio noted. (AWH)
9122.5: WUG: U.S. Army Corps of Engineers
(USACE) Net Control Station, Vicksburg,
Mississippi 151/7 USB wpp 8640 kHz.
USACE Cincinnati, WUG4: USACE New
York, WUK3: USACE Wilmington, WUC3: USACE
New Orleans, WUC6: USACE Mobile, WUC2:
USACE Charleston, WUC4: USACE Savannah,
WUJ1: Unid USACE NW district, WUJ2: USACE
Seattle, WUJ3: USACE NW District HQ, Omaha,
WUK4: USACE Los Angeles, WUKS: USACE
Jacksonville, WUJ4: Unid USACE. (DW)
9130: EZI, Mossad, ISR at 1600 in USB, Id
EZI & SGL/6840 kHz. (AB)
9319: Cuba? Unid at 2103 in 81-81, 81/500, beta idle. VERY strong. (AWH)
9263: Cherry Ripa lady passes SFG’s in USB
at 2200 / 15616 / 12056 kHz. (TY)
9847: Unid Diplo at 1537 in ARQ 100/390
3120. Then QSY to Z175 (9016). (DW)
BIGHUEY 12 (EC-135) wkg WESTERN
SKY for check of radars. This was followed by
a chirping noise, then squawking, beeps, &
a buzzing noise. WESTERN SKY reported
that all radars were alpha one at 0129. (RK)
Both in USB mode.
8971: KING 01 at 0217 wkg BLUESTAR
(reportedly P-3/ASW Op’s Center, NAS
Roosey Roads, PR) w/status msg. At 0434
DEMON 802 wkg WESTERN SKY (poss
PAC area ASW op’s center), reporting on
station 0400z, VSA holds his flight following
radio guard), next contact off stn time 0830z.
(Ed.) WOODY wkg N2P at 0131 in USB w/report of oil slick & debris at 20-35N/80-
25W. (RK) All in USB.
8983: Coast Guard 2139 at 2000 w/pp to
Miami Op’s re search for Cuban vsl believed
defecting to U.S. w/11 POB. (DH) CG 6024
at 2015 reporting flight ops normal to CAM-
SLANT. (MF) CAMSPAC Pt Reyes wkg CG
1702 re “Strange lights & flare sightings at
710N, 163’ W (off Alaskan coast). Later hrd
Commsa Kodiak wkg 1702, who reported
rescuing five people from sinking tuna boat.
0300-0625. (RK) All in USB.
8987: MKL. RAF Edinburgh monitored at
2200 in CW. (DW)
8989: Two KC-130 radionen at 1925 in USB
chit-chatting while enrt Panama, discussed
how to work w/LOBO. (MF) (LOBO is
Southern Command/SOUTHCOM, Air Op’s
Center, Howard AFB — Ed.)
9024: MacDill at 1942 in USB w/pp for SPAR
84 to DSN#567-4XXX. (MF)
9007: Aircraft 325 monitored at 1751 in USB
wkg Trenton Military for selcall check: FM-
EJ. (DW)
9016: NIGHTWATCH 01 wkg SKYLIGHT
w/radio checks at 2310 in USB. (SW)
9023: OKIE SAM, NORAD SE Sector Link-
116, Tyndall AFB, FL at 1548 in USB wkg
BANDSAW JULIET (E-3 AWAC’s) w/QSY
to NORAD SatCom. (Ed.)
9025: Unid 19005 at 1623 in USB wkg
SCOTT (AFB) re FURIOUS thru Offutt, adv
stand by & will try Croughton. At 1650 Offutt
wkg Andrews for radio ck. (Ed.)
9122.5: WUG: U.S. Army Corps of Engineers
(USACE) Net Control Station, Vicksburg,
Mississippi 151/7 USB wpp 8640 kHz.
USACE Cincinnati, WUC3: USACE New
York, WUK3: USACE Wilmington, WUC3: USACE
New Orleans, WUC6: USACE Mobile, WUC2:
USACE Charleston, WUC4: USACE Savannah,
WUJ1: Unid USACE NW district, WUJ2: USACE
Seattle, WUJ3: USACE NW District HQ, Omaha,
WUK4: USACE Los Angeles, WUKS: USACE
Jacksonville, WUJ4: Unid USACE. (DW)
9130: EZI, Mossad, ISR at 1600 in USB, Id
EZI & SGL/6840 kHz. (AB)
9319: Cuba? Unid at 2103 in 81-81, 81/500, beta idle. VERY strong. (AWH)
9263: Cherry Ripa lady passes SFG’s in USB
at 2200 / 15616 / 12056 kHz. (TY)
9847: Unid Diplo at 1537 in ARQ 100/390
 flagged research ship, w/TG's via Moscow heard at 2351 in RTTY 50/170, Russian -

12562: UKSY, NIS Akademik Boris Petrov crew wages list from Km Kedrov in ARQ at cargo vsl wkg UAT Moscow w/tfc in EE for

12497: MN "Sompa" (ESAF), Estonian gen

USB w/YL in RR. (I.1)

 nbr stns heard on 10223. 9547kHz in AM at

USB, Id 79727 & 5FG // 13375 kHz. (AB)

OK) att to call the 558. (Ed.)

CENTER, (back-up DIACC, Oklahoma City, wkg OMAHA 558 w/posn, then SERVICE

THE MONITORING MAGAZINE

1120. (HOOD)

12225: Unid Russian Telecom at 0540 in USB w/YL w/的风险. (DY)

11279: Alma Ata Volmet, Russia, w/avian

11270: Russian Man, RUS at 0020 in AM w/ld

1126: VICTOR 1 & VICTOR 2 at 1953 in USB discussing radio strengths, mentioned Ch.4-5078/Ch.13-13218. (MF)

11232: RAYMOND 24, Tinker AFB, OK at 1724 wkg SENTRY 60, USAF AWACS re tanker was airborne at 1630. UN03 at 1745 wkg Trenton Military. (DW)

11270: Russian Man, RUS at 0020 in AM w/YL

1125 wkg McClellan, QSYed to

11200: ICER 21 wkg McClellan, QSYed to 11175 but no joy there 2210 in USB. (RK)

13289: U.S. tuna fishing at 0555 in USB w/2 OMs talking about sending e-mail Msgs. (IJ)

13555: YL/EE, w/3+2FG's in AM at 1100 // 14406kHz. (TY)

13650: Spanish numbers station at 0303 in AM. SS/EE operator w/5FG's. (SW)

13880: MKK, RAF London, England at 2000 in VFT 50 Baud all channels w/RYIRYI &

Quick Brown Fox Tests. (LI)

1403. Possible malfunctioning? Unable to find out a parallel freq. Next day this stn transmits usual 3+2FG's at 1300 // 7547kHz. (TY)

11140: Spook stn heard at 1321, "Boris Badanov," EE/OM w/5FGs 2x, autovoice slavic accent, strong, fluttery. Playback rate varied a bit, but not voice pitch. 1401 "613 248 0 0 0 0." (AWH)

11175: Romeo Sierra 781 at 2134 wkg

MacDill w/rtpt ppto unk location. (CB) (Navy P-3 of VR-61, NAS Whidbey Island, WA - Ed.) MacDill w/pp at 1930 in USB for SPAR 84, interrupted by Offutt EAM. (MF) YANKEE 60 (P-3, VP-92, NAS S. Weymouth, MA) wkg Yankee Ops re arr time via MacDill at 2015. (RK)

11126: Warner Robbins at 2017 in USB conducting scan test w/AIRCRAFT-0029. (MF)

11220: Russian Man, RUS at 0020 in AM w/ld 615. Messages 76941 & 71051. (AB)

11279: Alma Ata Volmet, Russia, w/avian

WX in RR at 0515. (TY)

11297: Rostov Volmet at 1125, Kiev Volmet at 1120, both Russia, w/avian WX in RR in USB. (TY)

11494: HAMMER, U.S. Customs Domestic

Air Interdiction Coordination Center (DAIICC), March AFB. CA at 2018 in USB wkg OMAHA 558 w/posn. then SERVICE CENTER, (back-up DIACC, Oklahoma City, OK) at to call the 558. (Ed.)

11545: Lincolnshire Poacher. CYP at 1500 in USB. Id 79727 & 5FG // 13375 kHz. (AB)

11565: YL/EE, EZ12 Mossad best in USB at 1530 // 13533 kHz. (TY)

12221: YL/EE, w/3+2FG's in AM heard at 1200 // 13906 kHz. Similar but non-parallel nbr stns heard on 10223. 9547kHz in AM at same time. (TY)

12225: Unid Russian Telecom at 0540 in USB w/YL w/rrc. (IJ)

12497: M/N "Samba" (ESAF), Estonian gen
cargo vsl wkg UAT Moscow w/flc in EE for crew wages list from Km Kedrov in ARQ at 1130. (HOOD)

12562: UKSY, NIS Akademik Boris Petrov heard at 2351 in RTTY 50/170. Russian
flagged research ship, w/TG's via Moscow Radio. (Ed.)

12748: IRM, Roma Medico Radio. at 1204 w/CW Marker. (AB)

13200: ICER 21 wkg McClellan, QSYed to 11175 but no joy there 2210 in USB. (RK)

13289: U.S. tuna fishing at 0555 in USB w/2 OMs talking about sending e-mail Msgs. (IJ)

13555: YL/EE, w/3+2FG's in AM at 1100 // 14406kHz. (TY)

13650: Spanish numbers station at 0303 in AM. SS/EE operator w/5FG's. (SW)

13880: MKK, RAF London, England at 2000 in VFT 50 Baud all channels w/RYIRYI &

Quick Brown Fox Tests. (LI)

13927: NNNOCOA, USS Arleigh Burke (DDG-51) at 2240 in USB wkg AFA2AG, USAF Mars w/crew pp's. (DW)

14352: Russian FAPSI, Lourdes, Cuba at 1825 in RTTY 75/500 w/RYIRY to KAC then into 5LG's on link 00128. (Ed.)

14396: S: NNN0UVV. Private USN MARS, S. Calif. heard at 1815 in USB wkg KGD34: Nat'l Coordination Center, Arlington, VA then NNNNOXU: Private USN MARS, Oregon. (DW)

14425: Spook "Martian Man" at 1330 in AM w/EW weird, squeaky OM auto voice slowly repeating "482 482 462 00000." strong, fluttery. Sounds like same station previously noted on 13375. (AWH)

14452: HMF57, KCNA Pyongyang, N. Korea at 0755 in RTTY 50/500 w/RYIRY. (IJ)

14487: Call up tune (Lincolnshire Poacher) at 1400 in USB then w/5FGs to 1447. (CT)

14585.7: France? One end of Tchad ckt active

...to summon help for an injured motorists, an elderly woman trapped in a fire, a trucker stranded in a blizzard, a drowning child!

As a REACT volunteer CB radio monitor you may be the only communications life-line for someone in serious trouble. You relay messages from those desperate for help to police or other emergency services.

Your REACT Team will also use CB and other radio services to provide safety communications for events like parades, marathons and even balloon races.

The fellowship with other REACT members at Team meetings and annual conventions is an added bonus.

Volunteer. Join Today!

Add a New, Exciting Challenge to Your Life. Help Save Lives and Property!

REACT. International, Inc.
Tel (316) 263-2100
FAX (316) 263-2118
P.O. Box 998, Wichita, KS 67201
today, ARQ-E 300/400, but too weak to copy. 16305.75 on simultaneously. No tfc on either. (AWH)
14670: CHU, CAN at 2244 in USB wtf time signals/announcements. (AB)
14666: 6020 heard at 1950 in USB reporting flight Op’s & posn to ATLASS. (MF/USCG Helo — Ed.)
14834: Cuba? Probable Russian intelligence monitored at 1636 in RTTY 75/500, off before decoder booted. Carriers on 7947 and 14787 also. (AWH)
14878: AAA0USA U.S. Army MARs FL. Lewis at 1648 in PACKET 300/170 wkg AAA6USA, U.S. Army MARs FL. Sam Houston relaying msg from ABM4USH. U.S. Army MARs Republic of Korea. (DW)
14922: DZPG, Serbia MFA at 1345 in FFC-A 144/400, on-line XYXY crypto msg w/clear headers, some CW fills. (AWH)
14966: RWM, Moscow time signal station, RUS heard at 1710 in CW w/CQ & time signals. (AB)
15016: Andrews at 2006 in USB wpp for CW-159 to unid loc. (MF)
15034: Trenon Military 1735 USB wfviation wx. Signed down w/id at 1736. (DW)
15094: STICKLER wkg NIGHTWATCH 01 monitored at 2307 in USB w/EAM traffic on ZULU-235. (JJ) (Note this is a new Zulu designator — Ed.)
15120: Radio Rivadavia Argentina program feed heard at 0340 in USB w/Music, Adds & ZULU -235. (JJ)
15147: VN76/77 250 kW in USB wkg vsl P3HF5 for Rh’ tfc in mixed wx. //13089/8764//. (DW)
15150: 5BA, Nicosia Radio, CYP at 1100 in USB w/CW marker. (AB)
15171: UFN, Novorossyisk Radio, RUS at 1705 in CW marker. (AB)
15184: NMN, USCG CAMSLANT, Chesapeake, VA at 1741 in USB w/offshore w/x. //3089/8764/. (JJ)
15193: SVN68, Athens Radio, GR at 1725 in USB w/CW CQ QSX. (AB)
15196: CTP, NATO Oeiras, POR at 1700 w/CW marker. (AB)
15197: SBA, Nicosia Radio, CYP at 1010 in CW w/WWV. (AB)
15191: UFN, Novorossiisk Radio, RUS at 1705 in CW marker. (AB)
15134: NMN, USCG CAMSLANT, Chesapeake, VA at 1741 in USB w/offshore w/x. //3089/8764/. (JJ)
15173: SVN68, Athens Radio, GR at 1725 in USB w/CW P3HF5 for RT/tfc in mixed EE. (Ed.)
15174: SVN62, Athens Radio, GR at 1610 in USB w/Voice mirror. (AB)
15175: RFIJ, French Forces, Dakar, SEN at 1849 in ARQ-E 192/400 w/control/dec voe on circuit “AFL.” (Ed.)
15139: Warship Sierra, Tengm Force Patrol Boat, at 0735 in USB w/2 OMs in EE & Tengm, made several references about the captain & would come up on this freq again tomorrow. (U) (that’s certainly a rare log! — Ed.)
15197: Offutt GHFS, Omaha (Elk Horn), NE at 1815 in USB w/CGV. (MF)
18018: ARCHITECT RAF Strike Command at 1736 in USB w/11030 color (or colour - hi!)

78 / POPULAR COMMUNICATIONS / June 1998
THE MONITORING MAGAZINE
Tuning In
(from page 4)

local police frequencies and hear a drug deal going down? Right from wrong teaches you to report what you’ve heard to the police. Young Johnny expects nothing less from his father. But today — and largely because of the way the system works — his father is more likely to do a loud “cover up cough” over the radio conversation, and move on to the next channel in frustration, never telling a soul.

And at this stage in the 2369 game, it’s certainly a moot point to raise hell with Tauzin; although, in my opinion, all too many folks in the hobby community are now cuddling up close to Billy like they’ve been lifelong friends sipping a brew down in the Bayous; you know what I mean — folks who didn’t know the name Billy Tauzin from Ron Paul until just recently. Ron Paul? Who’s he, you ask? Ron Paul (Rep. Texas) cast the one dissenting vote against H.R. 2369.

The Voice Of Reason — AND The People

Out of it all comes the voice of one person, a lone voice of reason calling out amid an overwhelming majority of “yes” people. You know the other 414 voices well. They’re clones of some of the folks in your office, school, club meetings, and, yes, would you believe in D.C. politics, whose heads are perched atop this invisible spring-loaded mechanism that keeps nodding “yes, yes, yes,” to those with deep pockets around them. Not Ron Paul, though. No sir, he stood his ground — and ours too.

Paul’s press secretary, Michael Sullivan, told me that Ron looked at four things when voting against 2369; first, “...the fact that the Constitution strictly limits what the federal government can and can’t do — there’s no provision for making crimes out of eavesdropping — that’s a matter for the states.”

Second, he said, “Then there’s the more economic, pragmatic view...it seems to be a case of the government circumventing a better option — encrypting.”

Third, “There’s the problem of pure law enforcement. In this case, the possession of particular equipment could be illegal; in effect, a person has to prove they’re doing nothing illegal — much like you’re guilty until proven innocent,” he said.

And fourth, he said, “There are those people who don’t care about someone eavesdropping on their call — for whatever reasons, don’t really care if folks are listening — but this forces people who don’t care about privacy, or who utilize other methods of privacy...to pay for the cost of ensuring privacy for others.”

Now, think about those four basic statements for a moment. It’s what we in the radio community have been saying all along as far back as the ’80s. Our hats off to Mr. Paul for having the common sense and insight that his fellow Representatives did not.

But now, it’s a done deal as 2369 goes forward to the Senate, where it will undoubtedly be met with eventual solid support — although, at this writing, it’s my understanding that Tauzin has no supporters — yet. But as the snowball gains momentum, watch those politicians nod. After all, what upstanding U.S. Senator would dare not stand behind the privacy issue? How would they tell their constituents they voted against cell phone privacy? Are you out of your mind? Of course Senator DoGood will vote for cell phone privacy. (In fact, the chief of his campaign fund-raising team is a big believer in cellular phone privacy).

Even though the 2369 battle was lost, and the war was won, there’s still, perhaps, good news in this pile of political slime. Maybe now that the issue of cell phone privacy has been raised, the bill has passed the House, and is all but assured of eventually passing through the Senate, it will no longer be an issue worthy of our elected representatives. It’s on to more important issues in Washington — issues and agendas that only the donors and Wheeler-dealers understand.

The nagging question remains, however: Do we leave well enough alone, as this watered-down version heads into the Senate, or do we put on our gloves for Round Two, knowing that if 2369 fails muster there, the bill goes back to the House, and could emerge next year with yet another coating of Teflon that’s hot to the touch?

Computer Corner
(from page 49)

Radio Manager for Windows supports the Uniden TrunkTracker 895XLT scanner in its current release. This shareware program offers a modest registration cost and many features, including support for multiple radios, the Opto Scout, and Opto Xplorer. The new TrunkTracker support features include uploading and downloading frequencies, IDs, lockout lists, channel names, and scan lists into the radio. Use of the software allows enhanced logging, searching, and alarm functions above and beyond what using the radio without a computer allows. Details on Radio Manager for Windows can be found at <http://www.interplaza.com/bensware/rm.htm>.

Updates

I wrote about version 2.0 of Precision Mapping last June, and recently I bought the new Precision Mapping Streets, Version 3.0 of this CD-ROM-based mapping program. The new version has many improvements and comes with a GPS interface for connection to many GPSs for use as a moving map display. I’ve found that carrying a single CD-ROM on trips is great for searching and locating addresses, and displaying a map that I can mark the locations and routes of interest.

If you have something related to computers and radios that you’d like to see covered here, please drop me a line at either the Pop’Comm HQ address, or via e-mail at <griffined@sprynet.com>.

CBC INTERNATIONAL INC., Box 31500A, Phoenix, AZ 85064.

CABLE DESCRAMBLER! Build for $12 with seven RadioShack parts. Instructions S.F. A.T.S., Box 369-U74, P. Salerno, FL 33470.

VIF AERO SCANNER GUIDE: Kneitel's Air-Scan, sixth edition. Great new edition of the comprehensive and popular USA/CANADA/VIF aero band directory ever published: Civilian, Military, Private Airports, Helisports & Seaplane Bases. Control Towers, ARTCC, Weather, Approach/Departure, FSS, Ground Control, ATIS, Unicorns, National & Air National Guard freqs., etc. Many listings for airport security, fire/rescue, airline ground services & more beyond the aero band. One "must have" guide to tens of thousands of aero related monitor frequencies! Only $18.95, plus $5 s/h ($56 to Canada) from CRB Research, P.O. Box 56, Commack, NY 11725. VISA/MC accepted. Phone orders: (516) 543-9169. (NYS res. add $2.04 tax.)

SCANNER MODIFICATION HANDBOOK VOL.1 by Bill Cheek. The famous original 160-page book. Performance improvement modifications. Simple step-by-step instructions, many photos. Primarily PRO-2004 & PRO-2005, some for PRO-34, BC-200/205XL, BC-705XL, BC-705XL. Speed up scanning rate, disable "beep," increase number of channels, improve squelch action, add an S-meter, interface with shortwave receivers, etc. Make the PRO-2004 & 205/6 into a 6,400-channel scanner, put 3,200 channels into the PRO-34! Plus, cellular frequency management, operating hints, emergency power supplies, scanners & the law, lots more! Only $18.95, plus $5.00 s/h (Canada $56). Residents of NY State add $2.36 tax. Big 220 page VOL. 2 with more mods for PRO-2004/5/6, PRO-34, PRO-2022, BC-705/90XL, BC-200/205XL, also available, $18.95 plus $5.00 s/h (Canada $56). NY State residents include $2.36 tax. NEW! The Ultimate Scammer, VOL. 3. Giant 240-page edition. Many more mods! Pick up where the first two books ended. $29.95 plus $5 s/h (Canada $63), residents of NY add $2.36 tax. Order from CRB Research Books, Inc., P.O. Box 56, Commack, NY 11725. VISA/MC welcome. Tel: (516) 543-9169.

WANTED: CB RADIO EQUIPMENT. I'm looking for all types of old/vintage CB radios, amps, manuals, magazines, mics, etc. PLEASE CALL anytime. WALTER 818-297-7249.

CABLE TV DESCRAMBLER: Build your own. Complete plans, Parts list, Diagrams, Circuit board. Schematics. Send $5 to A. Gray, P.O. Box 1223-E Station 28, Route 6, Halifax, NS B3L-4P3.

For Sale: To highest bidder. Delivery upon demise. Equipment used in producing "Old CB Shack" column can be retained until I can sell or donate it due to terminal illness. It comes from the oldest CB business (part of a commercial two-way radio business) in the USA and the longest continuous CB operation Sales and Service. Radios consist of many units dating back to 1960. Some have been restored per the magazine articles, others need restoration. Some are so rare that they are most likely the only ones still in existence. ONE UNIT IS so rare (with authentication by Edgar Johnson himself who tried to buy it from me) that I guarantee that it is unequalled. The Johnson Co only built 250 of them including a special box. It is the Gold Award Messenger III. This unit and misc is plated with 24k pure gold. This radio has never been fully out of its box. Sale also includes a 100 percent full set of Sam's CB series radio manuals, plus full factory set of service manuals from the Johnson Co., Polytronics and others. Also, schematics gleaned from many other sources (customers, trade magazines, etc.). Also included are various original items of test equipment for CB radiating back to the 60's. The higher will place a 20 percent deposit with payment in full delivery in approx two years or less. An itemized list and some pictures will be provided to seriou bidders upon payment of $250 fee. I am not interested in mailing stuff all over the US to curious people! Sale is all or none. All items will be boxed and shipped by UPS (appropriate bidder at the appropriate time). Company COD cash unless other arrangements have been made. Inspection can be arranged by appointment. Contact Don Patrick at 3701 Old Jerny Lind Rd., Ft. Smith, AR (501) 646-6141. SERIOUS BIDDERS ONLY!

Sherwood SD-5K8 filter for 5645 kHz IF for Drake SPR-4 wanted. Fax: +49.5923.5761 (Germany).

MILITARY RADIOS: Easily made battery adapters for military radios & other electronics. Get POWER UP! Big new 96-page manual of instructions, diagrams. Use readily available commercial batteries in PRC-6, 8, 9, 10, 15, 25, 28, 77, -74, -77, 9-9, -9, APRIT-4, RT-77, URC-68, more; also mine detectors, night scopes, radars, field telephones, etc. Only $14.95, plus $5 s/h (Canada). NY State residents add $1.53 tax. CRB Research Books, Box 56-PC, Commack, NY 11725. VISA/MC accepted. Phone (516) 543-9169.

FOR SALE: SONY CRV-V21 visual World hand receiver with built-in printer. One year old, rarely used. Price as of 1991 $5,000. YOURS FOR $1500. Call Yasin Abdel. (808) 841-7193 or write to 963 Robello Lane #46, Honolulu, Hawaii, 96817.

START YOUR OWN COMMERCIAL RADIO STATION WITH ONLY $5000 OR LESS! Yes it is possible & legal. Part 15 of FCC rules allows low power AM radio stations to operated without a license! Cover an entire town & bill $1500 a month!! Has been done!! Order the newsletter bookilet that tells you all you need to know to get started for $29.99. Send check or money order payable to WCTD AM 1620, 4 Canal St., Westerly RI 02891 or call 401-348-9222 for information.

CB and 10 METER equipment: Ranger, Galaxy, Mirage, Super Star, and Much More! Send 3 stamps to EDS, P.O. Box 343, Howell, NJ 07731.
Wanted: Non-Linear type analog meter 20-60 dB. (S-meter) 3-4 inches width by 1" high. P.O. Box 14034 Palm Desert, CA 92255.

DIY TOOLS for the serious radio listener: Quantum Loops, Q-Stecks, more. Stamps for catalog. Radio Plus & Electronics, 3635 Chastain Way, Pensacola, FL 32504, (904) 431-3635.

DRAKE SW8, MINT CONDITION, MANUAL $495.00. SONY FX10-200 NEW BOXED ALL LITERATURE $275. KENWOOD R-300 MINT, $95.00. CALL JERRY, 954-720-1972.

FREE DISK CATALOG! Electronics, IBM Shareware and CD-ROMS. MOM 'N' POP'S SOFTWARE. P.O. Box 13003-313, Springfield, FL 34409-0111. 1-352-688-9108.

WANTED: Square four blade socket power connectors or power cords for old type Bearcat III or IV scanners. Gary Jones, P.O. Box 467, Buckingham Lake, OHi 43008.

WANTED: Photographs of roof mounted antennas!! Condos & apartments Ok. Making Waves. P.O. Box 14034, Palm Desert, CA 92255.

1997 WUN UTILITY FREQUENCY GUIDE CD-ROM from the new WUN UTE News Club. Contains over 10,000 lists of utility stations from 1995/97. Also all past WUN newsletters, WAV files of digital modes and shortwave sounds, freeware text string search program and MUCH MORE. U.S. $16.95 mailed anywhere. If you're a utility/digital modes fan, this CD is for you. IBM/PC friendly. Mail money order or Visa, MasterCard. Discover or American Express required information and clear mailing address to "WUN," P.O. Box 4222, Youngstown, OH 44515-4222 (USA); or FAX orders to 330-799-5766.

CABLE TV DESCABLERS! ANYONE CAN BUILD IN EASY SEVEN EASY STEPS WITH RADIO SHACK PARTS. PLANS/KITS FROM $5.00 PLUS FREE BONUS! 1-800-818-9103.

SPORADIC WAVES: If you like SSB, CB, then our newsletter you must see! Free sample issue for all who asks. C/O Kenich Herzog, PO Box 751, Cheyser, MA 01011.

PROC-74R Military radio - 2 to 18 MHz USB 25 watt transmitter, outstanding receiver, unit powered by 12 volts DC manual, spare modules and spare parts available-serious inquiries only at FAX 512-857-0066.

Trunktracker Owners! Get our new booklet "Understanding Trunktracker." Easy to read and understand, it helps explain how to set up and get the most from your radio. Completely illustrated to make operation a snap. $14 includes s/h. ACS Press, 9051 Watson Rd., #309, St. Louis, MO 63126.

DRAKE FS-4 400, synthez. wanted as well as Drake SW-4A receiver (with 1 kHz vernier) & AL-4 Loop Antenna and Drake SRR-1 in good condition. Fax: 449.5923.5761 (Germany).

WANTED: ANY INFORMATION, BOOKS AND DOCUMENTATION ON HF UNICOM. (Germany).

FREE DISK CATALOG! Electronics, IBM Shareware and CD-ROMS. MOM 'N' POP'S SOFTWARE. P.O. Box 13003-313, Springfield, FL 34409-0111. 1-352-688-9108.

WANTED: NORWOOD XLP 4-track tape recorder. Must be in good working condition. Contact RLN, P.O. Box 238, Chicopepe, MA 01014-0238.

LEARN MORE CODE IN 4 HOURS! Taught the military method. Send $9.95 to: J.L. Steiger, 375 Hillsdale, Seven Hills, OH 44131.

GE SUPERADIO III with up to four SCS bands is the DXer's choice. AM modified included. Low as $85. 800-944-0630.

POOR RECEPTION ON YOUR AM RADIO? Our signal booster will help. Guaranteed! Version 170 tunes 530-1700 kHz, $48 + $5.50 s/h. If not satisfied within 30 days, we'll refund your money, less s/h charge. PALA ELECTRONICS-5, P.O. Box 1376, Milwaukee, WI 53201-1376. 414-671-5203.

FREE CABLE DESCABLERS FROM $99.00. TEST DEVICES FROM $15.00. CALL US WITH YOUR QUESTIONS. 1-800-449-9189. NO FLORIDA SALES.

ANYONE IMPLYING THEFT OF SERVICE WILL BE DENIED ASSISTANCE.

MULTIPLE WANTED: Square four blade socket power connectors or power cords for old type Bearcat III or IV scanners. Gary Jones, P.O. Box 467, Buckingham Lake, OH 43008.

WANTED: NORWOOD XLP 4-track tape recorder. Must be in good working condition. Contact RLN, P.O. Box 238, Chicopepe, MA 01014-0238.

FREE DISK CATALOG! Electronics, IBM Shareware and CD-ROMS. MOM 'N' POP'S SOFTWARE. P.O. Box 13003-313, Springfield, FL 34409-0111. 1-352-688-9108.

WANTED: Any information, books and documentation on HF UNICOM. (Germany).

FREE CABLE DESBABLERS FROM $99.00. TEST DEVICES FROM $15.00. CALL US WITH YOUR QUESTIONS. 1-800-449-9189. NO FLORIDA SALES.

ANYONE IMPLYING THEFT OF SERVICE WILL BE DENIED ASSISTANCE.

MULTIPLE FREE CABLE DESCABLERS! ANYONE CAN BUILD IN EASY SEVEN EASY STEPS WITH RADIO SHACK PARTS. PLANS/KITS FROM $5.00 PLUS FREE BONUS! 1-800-818-9103.

SPORADIC WAVES: If you like SSB, CB, then our newsletter you must see! Free sample issue for all who asks. C/O Kenich Herzog, PO Box 751, Chiesta, MA 01011.

CABLE TV DESCABLERS! ANYONE CAN BUILD IN EASY SEVEN EASY STEPS WITH RADIO SHACK PARTS. PLANS/KITS FROM $5.00 PLUS FREE BONUS! 1-800-818-9103.

SPORADIC WAVES: If you like SSB, CB, then our newsletter you must see! Free sample issue for all who asks. C/O Kenich Herzog, PO Box 751, Chiesta, MA 01011.

I have often gone unannounced to visit Norm, and I have more than once found him in a predicament — often a dangerous one — usually one that he couldn’t get out of by himself. Several times, I have found him in a situation which would become life-threatening if someone hadn’t happened along.

The most memorable incident happened the day I arrived unannounced to borrow back my ice chest one Friday evening before a Labor Day weekend. I had planned a family picnic, and didn’t want to pay higher convenience store prices for anything I could take along.

Months earlier, I had lent Norm the chest so he could defrost the refrigerator in his apartment. To know Norm was to know that impatience would find him with an ice pick in his hand within five minutes of beginning the hot-water method. Norm’s friends also were not surprised to learn that it was on the second or third poke that he released all the fridge’s freon into the ozone layer.

To maintain his innocence when telling the building superintendent “the thing just stopped working,” Norm carefully twisted the punctured line until the puncture was hidden from view. The super twisted the punctured line until the puncture was hidden from view. The superstore prices for anything I could take along had planned a family picnic, and didn’t even attempt to adjust the antenna, and now the door to the apartment by the trap door is open and I can’t get down. Go to my apartment and get my pants and help me get down. I’ve been up here all day.” The note wasn’t signed.

I got Norm’s pants, and as I left his room I saw an ARRL pin on his bureau. I thought it might come in handy. When I reached the trap door, I could hear cartoon soundtracks coming from the open door of the apartment. Inside was the youngster who had trusted Norm when we installed the antenna a year before. I fastened the pin to my lapel and knocked on the door.

“Young man,” I said, pointing to the ARRL pin, “I’m on a very important mission, and an agent needs your help. Can you help us?”

“Sure,” the boy said. “Is Norm stuck up in the attic again? I’ll get the stepladder from the stairway.”

When he returned with the ladder, I gave him a dollar and told him his country appreciated his patriotism.

“Sure, mister,” he told me, “but last time I brought a ladder for Norm he gave me a five!”

“Just put it on my account,” a voice from the ceiling said. The young Capitalist took a five from my hand and closed the door. I was always glad I’d never befriended that Phelps guy on Mission Impossible.
The ultra-compact size of the VX-1R Dual-Band is the first thing you notice as you cradle it in your palm. But the high-tech features make this radio one you must have now! Simple combinations, using seven buttons and one knob, control this marvel of engineering. One soft key touch, and wide receive VHF/UHF --76-999 MHz RX (except cellular); 144-148, 430-450 MHz TX, or AM/FM Broadcast, Aircraft, Police, Fire—even TV, spring to life! Touch again for Yaesu-exclusives, SmartSearch™ and ARTSTM, or Priority Channel Alarm.

Built-in CTCSS and DCS Encode/Decode for 2m/440 amateur bands, CTCSS/DCS Tone Search, and Dual Watch, are included along with 291 Memory Channels in 9 banks with 500 mW power output. Backlit LCD Display shows 6-character alphanumeric capability; backlit keypad makes operation easy in dim light. And, although the VX-1R is the world’s smallest dual-band HT, you get over 19 hours* of use from just a 1 hour recharge from its long-lasting lithium ion battery! Big features, small size—the most satisfying combination in the world! See it at your Yaesu dealer today!

For the latest Yaesu news; hottest products, visit us on the Internet! http://www.yaesu.com

©1998 Yaesu USA, 17210 Edwards Road, Cerritos, CA 90703, (562) 404-2700 Specifications subject to change without notice. Specifications guaranteed only within amateur bands. So me accessories and/or options are standard in certain areas. Check with your local Yaesu dealer for specific details.

*Smallest HT as of Jan. 1998
Got Opto?
Now is the time to get it!

Xplorer
$799
SAVE $100

Receivers

Xplorer Test Receiver:
- 60MHz - 2GHz
- Two line LCD frequency display
- Decode CTCSS, DCS, and DTMF
- 500 memories
- 1000 frequency lookup
- Built-in PC interface
- Capture 5 watt UHF signal from 800 feet

R11 Test Receiver:
- 30MHz - 2GHz wide band receiver
- Built-in speaker for instant audio demodulation
- LED frequency range indication display
- Reaction Tuning with Scout
- Capture 5 watt UHF signal from 500 feet
- 1000 frequency lookup

OS456/535
$175
SAVE $24

Optolinx
$109

PC Control

OS456 / OSS5:
Computer control scanning interface board for the popular RadioShack Pro 2005/6 and Pro-2055/42.

Optolinx Universal Interface:
PC interface for downloading frequencies from Scout to a PC, or computer control of ICOM R7000, R7100, R8500, R9000, R10 and also the AOR AF6000. Use built-in data base circuit for use with Trunkers® software. (Trunkers® software not included with Optolinx)

Scout Frequency Recorder
- 16kHz - 2GHz
- Stores 400 frequencies in memory
- Reaction Tuning: ICOM R7000, R7100, R8500, R9000, R10, and AOR AF6000
- 10 digit LCD with signal strength bargraph
- Vocoder anti-snooper scan mode

Cub, M1, 3000APlus:
Handheld frequency counters, all incorporating patented Digital Filter and Digital Auto Capture. All counters come with initial accuracy of +/- 1ppm. High-impedance amplifiers standard on M1 and 3000APlus. Cell for additional features on all three counters.

Factory Direct Order Line
800•327•5912

While on the job or just having fun, take along an Optoelectronics product and experience an entire world of wireless communications.

If you need to calibrate a radio oscillator or just find frequencies around town, you will always be prepared with an Optoelectronics product. Experience the performance of Test Receivers, Frequency Counters, and Computer Control interfaces as so many professional technicians and hobbyists alike have relied upon to get the job done.