Proceedings of

Disneyland Hotel, Anaheim, California January 23-25, 1985

June 5, 1985
Dear RF TECHNOLOGY EXPO 85 Speaker:
Enclosed is your complimentary copy of the Proceedings from RF TECHNOLOGY EXPO 85. This 600 -page book contains copies of the 60 papers that were presented at the EXPO in January yours included). Printing the book turned out to be a time-consuming labor of love; but I'm sure you'11 agree that it has been worth the wait.

I would like to thank you again for helping us successfully launch the first RF TECH EXPO. The response to the show has been overwhelming. Exhibitors are still commenting on the quantity and quality of the attendees; and the attendees keep telling us how invaluable the sessions were. The overall feeling seems to be--let's get together again next year!

And so we will. RF TECHNOLOGY EXPO 86 will be held January 30 -February 1 at the Anaheim Hilton and Towers (just blocks from the Disneyland Hotel). 29,000 square feet of exhibit space has been set up to accommodate 150 tenfoot booths. This is twice the number of booths used at EXPO 85, but with 60 booths reserved to date, we're confident that we'll have a "full house" next year.

I will be serving as program chairman for EXPO 86. If we haven't already talked about your participation in the show, please contact me with your paper proposal (note my "Call for Papers" in the April and May issues of RF Design). Paper selections will be finalized early for EXPO 86 so that the Proceedings can be ready for distribution at the show. Proposals must be received by July 26,1985 . Speakers and papers will be announced by August 30. Speakers at EXPO 86 will receive free conference registration and a copy of the show Proceedings.

I hope I can count on your support at RF TECHNOLOGY EXPO 86. We are indebted to you for your participation at EXPO 85. Thanks again. See you at the show!

Proceedings of rfechnology exp85
Disneyland Hotel, Anaheim, California January 23-25, 1985
Components

Hybrid Varactor-Tuned Oscillator Modules: Their Practical Application in RF Communications -- Ron Patston
Surface Mounted Components -- Martin L. Barton 9
Integratad Circuits for IF Amplifiers and Damodulators 25Motorola Advanced Amplifier Concept Package -- Alan Wood
The Hybrid Power Amplifier Module for Cellular Radio Telephone Desion
-- Norman E. Dye and James P. Oakland 55
High power Class A and Class AB Transistors for UHF TV and Cellular Bas Station Applications -- Mike Mallinger 73
High Voltage UHF Power Static Induction Transistors -- Robert J. Regan
Use of SAW Technology in the RF Systems oftha 1980s -- Carl A. Erickson,
Programmable RF Signal Processors for Spread Spectrum Communication Systems -- Joseph Lattanza, F. 6. Herring, P. M. Krencik and A. F. Clerihew.91
SAW Filter Applications -- Ron D. Towns 99
SAW Stabilized Oscillators -- Thomas D'Shea and Jonathan Ladd 109
Circuite
Desion Co
Chadwick115
A Temparature Stabilized RF Power Detector -- George M. Walley 127
An Ultrafast UHF Voltage Controlled Attenuator with 35 dB of Linear 133
Desion, Characterization and Application of a GaAs Power FET -- Yatsu
Aspects of Discriminator Design -- Joseph F. Lutz 143
A Precision 6litch-Free RF Step Attenuator -- George M. Walley 155
A 900 MHz Super Amplifier -- David Miller 161
A High-Stabillty Wideband Frequency Modulator -- David L. Solt 173
Design Considerations for a 10 kH 5 lifier
An Adaptive Range-Gated Radar -- 1. J. Dilworth 197
The Extended Cascode Amplifier -- William F. Griffith 211
Receivers
Basic Recesver Design -- James Eagleson 217
A 5 implified Analysis of the Superregenerative Receiver -- Robert C.
Skar 231
A Ganeral Computer Algoritinm for Mixer Spurious Analyais -- Alan M.
Victor 243
Strong Signal Ovarload in Broadcast Receivers -- Tom Jones 255
Irensmitters
RF Operation of 450-Volt Vertical Power MOS Transistors in an Ultra-
Low-Noase UHF Transmitter Design -- Dennas Sweeney and Judd Sheats 267
A 2 6Hz Amplifier Provides Telemetry Capabality -- Josoph F. Lutz 273
An Integrated Ka-Band Power Amplifier -- Albert N. Pergande and JonathanLadd281
Class D Power Amplifier Load Impedance for Maximum Efficiency - Frederick H. Raab 287
Computer-Aided Desion
CAD Methodology for Microwave Oscillators -- Arturo Velasquez, Jose LusMedina and Arturo Serrano297
RF Desion on a Small Computer -- Jamas Eagleson 303
CIAO and DESIGN: Circuit Optimazation and Syrthesis Programs for 313
Matchang Network Design Using HP-41, HP-71 and HP-75 Computers -- Irv
Calculator- and Computer-A1ded Design Tools for the RF Enganeer --Steven L. March . 3
Mainframe Performance for RF/Microwave CAE on Personal Computers -- Ball
hilds and Chuck Holmes 349
Computer-Aided Design of Phase-Locked Loops -- Ulrich Rohde 357
Lechnioues
Mounting Considarations for RF Lou Pouer Plastic Packages -- Harry J.
Swanson . 363Using Avantek MDDAMP MMICs in Broad and Narrow Band Filter Design --
Larry C. Leighton 373
Linear Mierowava Power Amplifiar Design -- William J. Thompson and
Krishna K. Agarwal
A New Approach to PSK Demodulation -- Jon P. GrosJean 401
Performing EMI/EMC Evaluatıon of Electronic Equipment Using TEM Cells --M. L. Crawford . 407
Amateur Satellite Communications Lank -- Marlin E. Grear 421
MHz to 206 Hz -- Fred L. Walls 427
Applications of Digital Signal Processing -- Thomas 6. Callahan 435
ACSB - An Overview of Amplitude Compandored Sideband Technolooy --
James Eagleson .Electrical Characterization of Quartz Crystal Units Through Hzgh-
Performance Vector Notwork Analysis -- Kanneth M. Voelker. . .
469
Application of the Digital RF Memory to Communacation Jamming -- 473
EMC/EMI
Champagne Measurements on a Beer Budget; or FCC Required Measurementsfor Pennies -- James P. Heir. Jr. 93Line Impedance Stabilization Networks: Thaory and Use -- Mark J. NaveIntroduction to the Field of Electromagnetic Pulse -- Kendall Childers
Fundomentals of RF Destan
Striplines and Microstriplines -- K. C. Gupta 509
$H_{2} g h$ Power RF Amplifier Design -- J. J. Johnson 527
Dscillators: a Cratical System Building Block -- John Morton 551
An Introduction to SAW Devices -- Carl A. Erickson, Jr. 583

rF - EXPO PAPER

Hybrid Varactor-Tuned Oscillator Modules Their Practical Applications in RF Communications
by Ron Patston,
Applications Engineer,
Avantek, Inc.
Santa Clara, CA

Introduction

Varactor-tuned oscillators (VTOs) have been used in many types of radio frequency systems over the years. Until the advent of thinfilmhybrid technology andits useindesignat radio frequencies, however, varactor tuned oscillators, produced with conventional "discrete component" construction, have tended to be bulky and cumbersome for most system applications. Building VTOs with discrete technology also created other problems for the designer, including non-linearity, restriction to narrow bandwidths, unreliability, non-repeatability, instability over temperature, and the labor costs involved in building and tuning.

On the other hand, thinfilmhybrid VTOs offerwider bandwidths, reproducibility, high reliability, smaller size, lower cost, low power consumption, and extreme ease in incorporating them into new designs or retrofitting into existing designs.

What are Thes?

The thin film oscillators manufactured by Avantek have many features that are useful to RF system designers. The VTO-8000 series oscillators, for example, covers RFfrequencies as low as 300 MHz and up to 11 GHz . They are suitablefor operation over either narrow or wide frequency bands.

These oscillators are designed using a varactor diode as a voltage controlled capacitor in a thin film microstrip resonator to control the frequency of a negative resistance transistor oscillator. With thinfilm construction, it naturally follows that the size of these oscillators is very small in comparison with their discrete-component counterparts.

All of the VTO-8000 series oscillators are supplied in the TO-8 type package: a small, herinetic package that enhances the reliability of the product.

The basic vto circuit is fabricated using a silicon abrupt varactor diode -- which will produce voltage-vs. frequency tuning curves that are relatively non-linear, but which are quite smooth and monotonic. As an option, it may be equipped with a silicon hyper-abrupt varactor diode -- which will provide a relatively linear tuning response across a wider bandwidth (i.e. Figure 10). These oscillators also feature good noise performance (Figure ll) plus extremely fast tuning speeds and low post-tuning drift.

Application Techniques

There are many different parameters involved in selecting and properly applying varactor tuned oscillators. System designs will generally be based upon a specific subset of the oscillator's specifications whether it be low noise, linearity, fast tuning speed, temperature stability, etc., or a combination of several of these. The primary application techniques that will be covered here are; temperature compensation.
linearization, and varactor-tuned oscillator specifications as they pertain to oscillators used in phase-locked systems.

Teaperature Compensation and Stabilization

The reduction of oscillator frequency change with changes in temperature may be carried out using one or more of these three basic techniques; control of the oscillator temperature, tuning voltage temperature compensation, or the use of a phase locked 100p.

The temperature of a TO-packaged component is easily controlled by either a very small, low-power heater or by placing the component in a temperature-controlled chamber (oven).

There are commercially-available DC proportionallycontrolled heater assemblies specifically designed for use on TO8 typecans, oritis arelatively simplematter tofabricatea heater by mounting the component on a block (which provides
thermal mass), that is temperature controlled using a proportional heater
(See Figure 9).

Aelf-controlling heater may be used, which employs a material with a definitive temperature vs.
resistance characteristic. This material may be directly epoxied to the top of the T0-8 oscillator and then supplied withabias voltage. The temperature vs. resistance characteristic of the material will cause it to act as a temperature controlled heater that will provide very good temperature stability at a very low cost.

An important point to always keep in mind when using any heater approach for temperature compensation is that the temperature of the oscillator must be kept 5 to 10 degrees above the maximum expected system operating temperature. This will ensure that the oscillator will not be affected by the external temperature changes.

The primary drawback to using the heater approach is the extra power required to keep the oscillator at a higher-thanambient temperature. The advantage is the high degree of temperature stability for a relatively low cost.

The effect of temperature on the oscillator frequency may also be reduced indirectly, by varying the tuning voltage in the proper direction to bring the oscillator back to the correct frequency. Temperature compensation of the tuning network may be done using either a Positive Temperature Cofficient (PTC) or Negative Temperature Coefficient (NTC) thermistor (or network of thermistors), depending upon the actual tuning circuitry used.

Typically, VT0-8000 Series oscillators will display a negative frequency vs. temperature drift coefficient. To compensate for this, a voltage compensation network must be put. in place to offset the frequency drift. There are two simple networks which may be used: one employing a PTC thermistor, the other a NTC thermistor.

The first network is that using a PTC thermistor

PTC METMORK
$v_{0}=\left(V_{t} R_{1}\right) /\left[R_{1}+R_{2}+\left(R_{S}| | R_{T}\right)\right]$
(Figure 1.)

The second network is that using a NTC thermistor.

$$
v_{0}=v_{t}\left(R_{2}+R_{s}| | R_{T}\right) /
$$

$$
\left[R_{1}+R_{2}+\left(R_{s}| | R_{T}\right)\right]
$$

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{25}(1+\mathrm{A})(\mathrm{T}-25)
$$

Where:

MTC ME TWORK
T = Temperature in C° A = Temperature Coeff

Other types of resistance uetworks may be used in place of R_{c} depending upon personal preference. A suggestion for determining the best compensation network for the application is to hold the value of K_{1} fixed and use a curve fitting routine to find the values of R_{2} and K_{s} when the desired R_{c} is known for at least three different temperatures. When temperature compensation of the tuning voltage is used, the temperature sensing device should be wounted as close as possible to the oscillator itself. This will provide the shortest thermal time constant possible from the sensing device to the compensated oscillator.

Linearization

Linearizer circuits of various types have been used for years to improve the voltage-vs.-frequency curves of varactor tuned oscillators. In fact, a properly-designed and "tweaked" linearizer can provide virtually any degree of linearity required for a particular application. Linearizer circuits may also incorporate the additional function of shifting the tuning voltage provided by the system to one more appropriate for the oscillator itself.

There are typically two types of linearization schemes employed today: analog and digital. The use of analog linearizer is desirable when the oscillator interfaces with an analog tuning voltage, or when a linear modulation spectrum at any point in the frequency range is desired. A simple analog linearizer circuit is shown in Figure 3. The primary application for a digital linearizer is in applications where the oscillator is to be tuned by a digital computer.

amalog limearizer
(Figure 3.)

$$
\begin{aligned}
& V_{o}=V_{i}+\left(I_{2} R_{f}\right)+\left(I_{1} R_{f}\right) \\
& I_{2}=V_{i} / R_{A} \& I_{1}=I_{b}+I_{2} \\
& I_{b}=\left(V_{b}-V_{d}-V_{T H}\right) / R_{T H} \\
& \text { Also: } I_{b}=0 \text { if }\left(V_{d}+V_{T H}\right)<V_{b} \\
& \text { Therefore: } \quad V_{o}=V_{i}\left(1+2 R_{f} / R_{A}\right)+I_{b} R_{A}
\end{aligned}
$$

From this it is easily seen that V_{T} if will determine where the increase in slope will occur and $\mathrm{R}_{\mathrm{T}} \mathrm{f}$ will determine the amount of the increase in the tuning slope.

To replace $R_{T H}$ and $V_{T H}$ with a simple resistive divider use Thevenin's Theorum.

A circuit such as this:

(Figure 4.)
May be replaced by this:

(Figure 5.)
with some simple calculations:

$$
\begin{aligned}
& V=V_{s} / V_{T H} \\
& R_{1}=R_{T H} / V \\
& R_{2}=R_{T H} /(1-V)
\end{aligned}
$$

In using this type of circuit one would have the capability of introducing almost any number of changes to the slope of the tuning curve, which may all be implemented in parallel depending upon the degree of linearity required. This circuit will also provide good modulation response which will only be restricted by the frequency response of the op amp itself.

One of the most efficient linearization techniques combines an analog-to-digital converter with a PROM and an op amp.

(Figure 6.)
Using this configuration and a smal computer, the PROM may be programmed to provide linearity better than 0.5% across the full frequency spectrum of the VCO. The circuit will also provide extremely fast tuning response time, primarily limited by the settling time of the $0 p \mathrm{Amp}$.

Phase Lock

Phase-locked-loops using VCOs are becoming much more common than in the past, due to the improvements and greater avalability of divider techniques and crystnl multiplied sources. Some of the more important requirements for an oscillator to be suitablefor a phase locked applicationare:

1) Phase stablity (spectral purity)
2) Large electrical tuning range
3) Linearity of frequency vs control voltage
4) (frequently), the capability of acceptins wideband modulation

The major concern of synthesizer designers is the phase stability or, as it is commonly termed, "Phase Noise". The phase noise generated by a $V C O$ is primarily determined by; i) The circuit Q (quality factor) and 2) The Q of the varactor diode Phase noise of an oscillator will also be improved by the use of a silicon bipolar transistor rather than a gallium arsenide FET for the oscillator transistor. The VT0-8000 series features the use of silicon bipolar transistors exclusively. This means that their phase noise performance will primarily be based upon circuit Q and Diode Q.

The oscillator circuit itself is usually designed with a specific parameter in mind. In order to design a circuit with a very high Q the turing bandwidth must invariably suffer. Therefore, in order to design an oscillator circuit for optimum phase noise performance it will ultimately end up being a fairly narrow band oscillator. With this in mind the VT0-8000 series oscillators are easily modified at the factory to provide narrowband low noise performance.

The other governing parameter for good phase noise performance is the Q of the tuning varactor. The tuning varactor Q is primarily dependent on which of the two types of tuning varactors are used: the abrupt-tuning, or the hyperabrupt-tuning varactor.

The abrupt tuning diode will provide a very high Q along with a continuous monotonic tuning curveand it will also operate over a very large range of tuning voltages ($0-50 v$). As a result of its very high Q, the abrupt diode offers the best-available phase noise performance. Both silicon-abrupt and GaAs-abrupt diodes are available, and both are used in VCOs. Although the
 the silicon abrupt diode the phase noise performance of the oscillator will be poorer.

The other type of diode used extensively in the design of VCO's is the hyper-abrupt diode. The hyper-abrupt diode will provide a much more linear tuning response than the abrupt due to its linear voltage vs capacitance characteristics, this also gives the capability to cover a wider frequency range in a smaller tuning voltage ($0-20 v$). (see Figure 10). The drawback to using the hyper-abrupt tuning diode is that it has a much lower Q than an abrupt tuning diode. From observing figure 12 , it becomes obvious that in order to achieve the maximum diode Q for a low-noise oscillator, the oscillator should be tuned at the highest possible voltage (without exceeding the breakdown voltage of the diode).

As is seen in Figure 11 the phase noise difference between using the si-abrupt and the si-hyper-abrupt diode is typically about 3 dB . The si-abrupt outperforms the si-hyper-abrupt in phase noise characteristics due to the higher Q of the st-abrupt as mentioned earlier. The general theory is that the noise performance of the GaAs varactor is degraded (even though it has a higher Q) because of the surface currents created on the diode.

From the information supplied thus far it is recommended that if a very low noise oscillator is required then the best performance will be obtained when the bandwidth is kept as low as possible ($<20 \%$) and the tuning voltage is kept high as possible ($>10 \mathrm{v}$). This will provide the oscillator with the criteria to obtain the optimum in low noise performance.

Integration With T0-8 Amplifiers

For applications requiring a higher power level than is available directly from the oscillator, the T0-8-packaged varactor-tuned oscillator is easily combined with readilyavailable $T 0-8$ hybrid amplifier modules. Integrating such
oscillators and amplifiers is a simple exercise in stripline designin a 50 ohat system. Using the $\mathrm{T} 0-8$ oscillator with a number of ro-8 amplifiers makes it easy to develop a single- or multiple- output system with +10 dBm output power. These types of applications are briefly outlined below.

(Figure 7.)

Applications

The modular varactor-tuned oscillator has many applications in frequency-agile systems such as digitally-controlled receivers and active jamming transmitters. In such equipment, the oscillator is usually combined with an external linearizer similar to those mentioned earlier.

The VTO Series oscillator is also an ideal local oscillator for use in satellite earth station downconversion systems due to its small size, high reliability and the avallability of the oscillatorsinhigh volume at a very low cost.

The vTO Series oscillators have been designed with a tuning bypass capacitance which is sufficient to provide the necessary KF filtering action, yet as low as possible maxiaizedV/dT characteristics.

Used in a phase-1 ocked loop circuit (Figure 8.), a VT0 provides a receiver Lo with stability equivalent to the reference oscillator (usually crystal controlled), yet variable in discrete steps or continuously depending on the PLL configuration. An important feature of the V TOs usedin an LO application is their power vs. frequency flatness ($\pm 1.5 \mathrm{~dB}$). This assures that once a recciver mixer is biased for best dynamic range that the local oscillator drive will remain constant throughout the tuning range without complex leveling circuitry.

These oscillators are excellent candidates for the next generation of portable test equipment. Many designers have already found these oscillators ideal for use in frequency synthesifers, spectrum analyzers, sweep generators, and many other types of test equipment which require internal RF sources.

\| \#

Programhable divider

PLL
figure

dC heater
figure 9

ABRUPT vs. HYPERABRUPT
FIGURE 10

Phase moise
figure 11

Q vs. VOLTAGE
figure 12

SURFACE MOUNTED COMPONENTS

martin l.barton
 COLLINS TRANSMISSION SYSTEAS DIVISION ROCKWELL INTERNATIONAL
 dallas $T X$

INTRODUCTION

STANDARDS FOR SURFACE MOUNTED COMPONENTS (SMC'S) ARE STILL VERY huch in an embroyonic stage and application data on these new COMPONENTS IS SPARSE. THE dESIGNER faces the problem of designing WITH SHC'S OF WIDELY VARYING CHARACTERISTICS.

THIS PAPER ADDRESSES THESE DIFFERENCES AND PROVIDES SOME DESIGN CONSIDERATIONS IN THE USE OF SUCH COMPONENTS.

CHIP COMPONENTS
CHIP COMPONENTS ARE PASSIVE, LEADLESS COMPONENTS AND INCLUDES RESISTORS, CAPAPCITORS AND INDUCTORS. THESE COMPONENTS BEHAVE BASICALLY LIKE THEIR STANDARD-SIZED COUNTERPARTS BUT ARE LIMITED IN SOME PERFORMANCE CHARACTERISITIC COMPARED TO TRADITIONAL LEADED COMPONENTS:

> 1) RANGE OF VALUES 2) BREAKDOWN VOLTAGE 3) DREFR DTGSTDATTO

CHIP COMPONENTS OFFER CONSIDERABLE ADVANTAGES OVER LEADED COMPONENTS:

1) HIGHER RELIABILITY (ELIMINATION OF LEADS)
2) IMPROVED HF CHARACTERISTIC (LESS LEAD INDUCTANCE)
3) REDUCED PROPAGATION DELAYS (HIGHER DIGITAL SPEEDS)
4) LESS POWER LINE NOISE (LESS LEAD INDUCTANCE)
5) LOWER EMI (SMALLER SIZE)
6) SPACE SAVING (CAN BE MOUNTED ON BOTH SIDES OF PCB)
7) LOWER COSTS (NO LEADS TO TRIM OR FORM, NO HOLES TO DRILL \& SMALLER PCB)
8) REDUCED SHIPMENT AND STORAGE COSTS
9) MORE STANDARDIZED COMPONENT SIZES
there are also some disadvantages to using sme's:
10) LACK OF WORLD-WIDE INDUSTRY STANDARDS
11) IDENTIFICATION IS DIFFICULT (NO MARKINGS)
12) PRESENT HIGHER COST OF SEMICONDUCTORS

RESISTORS

the package configuration for resistors has been standardized into 3 BASIC STYLES:

1) FLAT RECTANGULAR "CHIP"* DOUBLE-SIDED METALIZATION 2) FLAT RECTANGULAR "CHIP" SINGLE-SIDED METALIZATION

STANDARDIZATION IN SIZE, THOUGH NOT YET COMPLETE, NOW EXISTS. THE MOST COMMONLY USED SIZE IS 3.2×1.6 MM SIZE (0.125ω). MELF TYPES ARE $6 \times 2.2 \mathrm{MM}$ OR 3.5×1.1 MM SI2E (0.25 AND 0.125 W). TOLERANCES ARE LO, 2 AND TOLERANCS ARE OBTAIND BY ACTVE TRIMNNG TO VALUE. TYPICAL FOR BRIDGING PRINTED CIRCUIT BOARD TRACES I E CROSSOVERS 2ERO-OHM RESISTORS (LESS THAN 50 MILLI-OHMS RESISTANCE) ARE available.
melf resistors are made by cropping the leads of axial-leaded CARBON RESISTORS AND METALIZING THE END CAPS FOR TERMINATIONS. these resistors are slightly lower in cost than chip resistors. COMPANIES WITHOUT THICK FILM EXPERTISE FAVOR THIS TYPE OF CONSTRUCTION. THE MAIN DRAWBACK OF THE MELF IS THE SPIRAL RESISTIVE TRACK WHICH IS INDUCTIVE AND THEREFORE LIMITS ITS USE AT HF. BELOW SOO OHMS VALUE, THE RESISTOR IS INDUCTIVE (10-15 nH) AND ABOVE 500 OHMS THE RESISTOR LOOKS CAPACITIVE (0.2 PF). IN THE US availability of melf's is Limited to a single supplier. (TRW).
CHIP RESISTORS HAVE GOOD RF CHARACTERISTICS TO 500 MHZ (APPROX 0.25 PF SHUNT CAPACITY) AND ARE ALSO MORE COMPATIBLE WITH AUTOMATIC PLACEAENT EQUIPRENT. HOWEVER, THEIR LACK OF MARKINGS FOR ELECRICAL CET MIXED THEY MUST BE POSITIVELY IDENTIFIED OR DISCARDED most cases. discarding is a Lower cost alternative.)

THE DOUBLE-SIDED CHIP (MOUNTED THICK-FILM SIDE UP) AND melf RESISTORS ARE INTENDED TO BE USED WITH A WAVE SOLDERING PROCESS. WHEN MOUNTED ON THE BACKSIDE OF A PCB THEY REQUIRE TO BE ADHESIVELY ATTACHED PRIOR TO SOLDERING WITH REFLOW SOLDERING (VAPORPHASE OR IR) IS USED THESE RESISTORS HAVE A TENDENCY TO SHIFT OFF THE SOLDER PADS (KNOWN AS "DRAWBRIDGING" OR
"TOMBSTONING") DURING THE REFLOW PROCESS. THE PROBLEM IS PRIMARILY CaUSED By THE POOR QUALITY OF THE TERMINATIONS. FOR GOOD SOLDERING yields it is essential that the terminations be clean and there be A MINIMUM OF 10 milS metalization (mil VERSION CALLS FOR THIS REQUIREMENT). ALTERNATIVELY THE RESISTORS MUST EE ADHESIVELY ATTACHED PRIOR TO REFLOW SOLDERING.

THE SINGLE-SIDED RESISTOR IS MOUNTED WITH THE THICK-FILM SIDE DOWN AND IS LESS SUSCEPTIBLE TO MOVEMENT DURING REFLOW. IT ALSO ALLOWS DISADVANTAGE ARE THE TOTALLY HIDDEN AND UNACCESIBLE TERYIMATIONS MAKING INSPECTION OF SOLDER JOINTS AND TEST ACCESS IMPRACTICAL
CURRENTLY THE ONLY MANUFACTURER OF THIS STYLE RESISTOR IS
PANASONIC (JAPAN) AND IT IS NOT AVAILABLE FOR SALE. (DALE
ELECTRONICS HAS A SINGLE-SIDED RESISTOR CHIP UNDER DEVELOPMENT.)
RESISTOR NETWORKS ARE PACKAGED IN 16 PIN SOIC CONFIGURATION AS

WELL AS IN FLAT PACKS. TCR'S ARE AS LOW AS 25 PPM WITH 2* TOLERANCE. THERMISTORS WITH NEGATIVE TCR'S AND 5/10\% TOLERANCES are available.

Variable resistors - Single and multi-turn, horizontally and VERTICALLY MOUNTING STYLES - ARE ALSO AVAILABLE. POWER DISSIPATION RANGES FROM SOmw TO O.5W AND TCR'S ARE TYPICALLY 100 TO 250 PPM.

CERAMIC CAPACITORS

CERAMIC CAPACITORS HAVE aCHIEVED WORLD-WIDE STANDARDIZATION AND ARE AVAILABLE IN THE INTERNATIONAL 3.2 X 1.6 MM RECTANGULAR SIZE FOR VALUES FROM $1 P F$ TO O. LuF. FOR MYGH DENSITY DESIGNS A SMALLER VERSION 2.0×1.3 MH IS USED. FOR BY-PASS AND COUPLING APPLICATIOS OF
there are $\&$ Classes of ceramic capapcitors:

NPO	1	то	1000pF	1 TO	20\% TOL
X7R	. 001	то	. 14 F	5 TO	20\% TOL
Y5V	. 01	то	. 14 F	20 TO	-80\% TOL
250	. 01		.22uF		

CAPACITY AND DISSIPATION FACTOR DROP WITH INCREASE OF FREOUENCY. FOR RF APPLICATIONS NPO SHOULD BE USED DUE ITS LOW DISSIPATION FACTOR AND GOOD TCR (3O PPM), X7R IS PRIMARILY USED FOR CRITICAL BY-PASS APPLICATIONS, WHILE YSV FOR LOWEST COST. THE MORE COMMON
ZSU IS NOT SUITABLE FOR OPERATION BELOW + 10 DEGREES DUE TO THE LARGE DROP IN CAPACITY (ONLY 25\% OF 25 DEGREE CENTIGRADE VALUE.)

Large values of capacitance are prone to microcracks with thermal SHOCK. IT IS ESSENTIAL TO SUBJECT CERAMIC CAPACITORS TO A PRE-HEAT AND POST-COOL CYCLE DURING THE SOLDERING PROCESS. MEASUREMENT OF INSULATION RESISTANCE AT BS DEGREES C. IS A GOOD SCREENING METHOD FOR DETECTING VOIDS. BURN-IN FOR 48 HOURS AT BS DEGREES C AND TWICE THE DC RATED VOLTAGE IS ALSO EFFECTIVE. A VOLTAGE DESTRUCT test (TYPICALLY S times yhe dc rating) is a good measure of the Quality of the dielectric layers.
a relatively unknown factor is that ceramic capacitors are MICROPHONIC AND ARE NOT SUITABLE FOR USE IN VIBRATORY ENVIRONMNENTS. (TANTALUM OR FILM CAPACITORS SHOULD BE USED INSTEAD.)

ABOVE 100 mHz OPERATION PORCELAIN CERAMIC IS USED TO REDUCE LOSSES AND IMPROVE THE DISSIPATION FACTOR. ACHIEVABLE Q^{\prime} 's RANGE FROM 200 TO 2OOO DEPENDING UPON CAPACITANCE VALUE. GENERALLY USED IN RF POWER CIRCUITS. DUE TO THEIR LIMITED USE THESE CAPACITORS ARE POWER C

TANTALUM CAPACITORS
tantalums are used for applications requiring capacitance values
above o.1uF. depending on capacitance value and voltage rating, SEVERAL DIFFERENT SIZES ARE AVAILABLE. AT PRESENT THERE NO INDUSTRY STANDARDS FOR TANTALUM CAPACITOR SIZES MAKING INTERCHANGEABILITY A PROBLEM. SIZES RANGE FROM 3.2 X 1.6 MM TO 7.3 X 4.3 MM FOR MOLDED TYPES AND 3.4 X 1.6 MM TO 8.3 X 4.2 FOR MELF STYLE. VALUES RANGE FROM 0.1 TO $100 \mathrm{uF}, 4$ TO 50 V AND 5 TO 20\% tolerances.
tantalums are polarized and are susceptible to failure when EXPOSED TO REVERSE VOLTAGE. FOR NON-POLAR APPLICATIONS 2
CAPACITORS CAN BE CONNECTED IN SERIES
 DEGREES C. THE LEAKAGE CURRENT CAN BE REDUCED AND STABILIZED BY BURN-IN.

ALUMINUM CAPACITORS

THESE CAPACITORS ARE USED IN LOW-COST (CONSUMER PRODUCT) APPLICATIONS. their life is limited due evaporation of the electrolyte with time. values and voltage ratings are similar to tantalum capacitors. available size is cylindrical $6.3 \times 5 \mathrm{~mm}$. there are currently no us sources.

METALIZED FILM CAPACITORS

metalized film capacitors have superior characteristics to CERAMIC. THERE IS NO PIEZO-ELECTRIC EFFECT AND NO FREQUENCY VERSUS VOLTAGE SENSITIVITY. THEY are also SELF-hEALING. TYPICAL SIZE IS 5.7×5.7 MM. VALUES RANGE FROM .OI TO $1.0 U F$ AND 30 TO 100 VDC.

VARIABLE CAPACITORS

VARIABLE CAPACITORS ARE AVAILABLE FROM 5 TO 30 pF IN NPO MATERIAL WITH O MIN OF 500 AT 100 MHz . TCR's RANGE FROM 200 TO SOO PPM AND SOME HAVE NEGATIVE CHARACTERISTICS. SELF-RESONANCE OCCURS ABE GDVANTAGE THAT THEY ARE COMPATIBLE WITH NORMAL CLEANING PROCESSES USED IN REFLOW SOLDERING. SIZES ARE TYPICALLY $4.5 \times 4.0 \mathrm{MM}$ OR 3.5 m diameter.

INDUCTORS
CHIP INDUCTORS ARE WOUND ON FERRITE OR CERAMIC CORES AND THE LEADS ARE SOLDERED TO METALIZED TERMINATIONS. CONSTRUCTION RESEMBLES that of standard-size component. Inductance values range from 10 nH TO 10 mH WITH 10 TO 20x TOLERANCES. MAXIMUM CURRENTS ARE A FUNCTION OF WIRE SIZE AND VARY FROM 25 TO 150 mA . Q^{\prime} a RANGE FROM 25 TO 60 AT VHF/UHF. TCR's ARE -110 TO 300 PPM. TYPICAL SIZES ARE FOR CHIP INDUCTORS AND INTERCHANGEABILITY IS A PROBLEM.

CURRENT DESIGNS ARE RELATIVELY FRAGILE DUE TO THE FINE WIRE SIZE used and the poor adhesion of the metalization to ferrite cores. (CERAMIC CORES ARE MUCH BETTER IN THIS RESPECT.) CHIP INDUCTORS
are also prone to damage from ultrasonic cleaning.
TO MINIMIZE COUPLING BETWEEN ADJACENT INDUCTORS. THE INDUCTORS SHOULD BE MOUNTED AT RIGHT ANGLES TO EACH OTHER. VALUES BELOW 200 nH ARE DIFFICULT TO MEASURE DUE TO ERRORS INTRODUCED BY THE TES FIXTURE LEAD INDUCTANCE. THE USE OF A CORRELATION STANDARD AND COMPARISON MEASUREMENTS WILL ELIMINATE THE mEASUREMENT UNCERTAINTIES.

WHERE POSSIBLE RESISTORS SHOULD BE USED IN LIEU OF INDUCTORS AS these are much more cost effective for decoupling purposes.

VARIABLE INDUCTORS ARE BECOMING AVAILALE. inductance Values range FROM 0.1 TO 10 uH AND Q^{\prime} a ARE FROM 10 TO 30. SIZE IS APPROX. 7 X 3.5 TO $10.5 \times 4.5 \mathrm{~mm}$.

RF TRANSFORMERS

miniature rf transformers are constructed with ferrite cores TOROID AND BALUN TYPES - AND MOUNTED ON A CARRIER. THE CARRIER IS TYPICALLY CERAMIC OR GLASS-EPOXY MEASURING 4 TO 6.5 MM SOUARE. TOROIDS ARE USED FOR LOW-LOSS APPLICATIONS BUT THE BALUN CORE IS LESS SUSCEPTIBLE TO PERFORMANCE DEGRADATION WHEN CONFORMALLY COATED. IT IS ALSO BENEFICIAL TO PROTECT THE WINDINGS BY PLACING SOME HEATSHRINK TUBING OVER THE BALUN CORE AND WINDINGS. THESE SMANSFORERS TEND TO BE LARGE ANDGOSTV COMPARED TO THE SMCs.

DIODES

ALL TYPES OF DIODES - SIGNAL, RECTIFIERS, ZENERS, PIN, SCHOTTKY, GENERAL PURPOSE - ARE CURRENTLY PACKAGED IN THE SOT-23 PLASTIC PACKAGE. POWER DISSIPATION IS LIMITED TO O. 2 W MAX. SINCE THE
SOT-23 IS A 3 TERMINAL PACKAGE IT WILL HOUSE 2 dIODES. SERIES. CATHODE-TO-CATHODE AND ANODE-TO-ANODE CONNECTED CONFIGURATIONS ARE available. this not a cost effective piackage for single diodes. the cylindrical melf package is less costly and can dissipate POWER UP TO 1 WATT AND IS THEREFORE MORE SUITED FOR POWER RECTIFIERS AND 2ENER VOLTAGE REGULATORS. THE 0.5 w SIZE MEASURES $3.2 \times 1.6 \mathrm{M}$ AND THE 1 W DEVICE $\mathrm{XxX} \times \mathrm{xxX}$.
LED's use the do-35 lead glass package. This allows 360 degree of light transmission. available colors are red, green and yellow.

TRANSISTORS

Small signal devices are contained in the sot-23 package. max die SIZE IS $30 x 30$ MILS. POWER DISSIPATION IS LIMITED TO 0.2ω AND max junction temperature is 150 degrees c. (varies between 125 and 175 DEGREES C. DEPENDING ON MANUFACTURER.) AN ALTERNATIVE
LO-profile package reduces clearance under the package to less than 5 MILS to facilitate adhesive attachment. The standard sot-23 has raised formed leads to ensure that cleaning under part is FEASIBLE.

SOME TRANSISTORS ARE AVAILABLE WITH REVERSED BASE-EMITTER CONNECTIONS TO SIMPLIFY LAYOUTS BUT THEIR AVAILABILITY IS GENERALLY POOR. SEVERAL DEVICE MANUFACTURERES ARE ADVOCATING THE USE OF THE "J" LEADS RATHER THAN THE "GULL WING" TYPE LEADS. SINC THE GULL WING DESIGN IS ALREADY WELL ESTABLISHED IT IS DOUBTEUL THERE WILL BE MUCH SUPPORT FOR ANOTHER PACKAGE CHANGE

MINOR MIMENSIONAL DIFFERENCES EXIST BETWEEN THE US, EUROPEAN AND asian manufacturers. provided tape and reel packaging is used THESE VARIATIONS ARE TOLERABLE AND PRESENT MO PROBLEMS HOWEVER when catridges are used these dimensional differences will result IN FEED JAMS.

POWER DEVICES UTILIZE THE SOT-89 PACKAGE WHICH HOUSE A MAX DIE SI2E OF 60×60 mil and a max power dissipation of 1 w. the package IS MOUNTED FLUSH ONTO THE PCB FOR HEAT SINKING (NOTE: DEVICE has NO RAISED LEADS). DUAL COLLECTOR CONNECTIONS FACILITATES RF Layouts. unfortunately, the sot-89 has limited sourcing. a higher POWER PACKAGE, CAPABLE OF 3 W POWER DISSIPATION, IS UNDER deVELOPMENT AT MOTOROLA. IT IS ESSENTIALLY A MODIFIED TO-220 PACKAGE (NAMED "DPAK"). THE PACKAGE WILL BE ABLE TO HOUSE a max DIE SIZE OF 115×115 MILS.

EET's

FET's are packaged in a 4 Leaded version of the solt- 23 (CALLED SOT-143). GENERAL PURPOSE, SWITCHING, AUDIO AND RF FET'a ARE SOT-143).

INTEGRATED CIRCUITS
IC'a are available in 3 different styles of plastic packages:

```
1) SMALL OUTLINE (SO)
2) PLASTIC LEADED CHIP CARRIER (PLCC) AND
3) FLAT PACK
```

THE SO PACKAGE IS 150 MIL WIDE AND IS EFEECTIVELY A "SHRUNK" DI PACKAGE USING SO MIL LEAD SPACING AND IS SUPPLIED WITH LEADS PREFORMED FOR SURFACE MOUNTING. THE CHANGE TO SURFACE MOUNTING MEANS THAT THE PCB INTERCONNECTION DENSITY CAN BE DRAMATICALLY increased as the size of the vias (holes for interconnection from ONE SIDE TO THE OTHER SIDE) CAN BE SMALLER. IN AJDITION, INTERCONNECTS DO NOT NEED TO BE ROUTED AROUND LA.zGE HOLES DRILLED FOR COMPONENT LEADS.
the so packages are available in 8 Pin (78×94 MIL die), 14 PIN (78×122 MIL DIE) AND 16 PIN (78×134 MIL DIE). AS WELL AS THE WIDE SODIED VERSIONS (300 MIL) SO-16L, SO-20, SO-24 AND SO-28. THE ASIAN SEMICONDUCTOR MANUFACTURERS USE A SLIGHTLY WIDER BODY THA THE EUROPEAN/US MANUFACTURERS. SOME MANUFACTURERS ARE ADVOCATING LEADS THAT are rolled under the device ("J" leads) to reduce the OCCUPIED REAL ESTATE AND ELIMINATION OF PROTRUDING LEADS
Facilitates feeding automatic assembly eouipment. however, solder JOINTS ARE DIFFICULT TO INSPECT AND TEST POINTS MUST BE PFOVIDED

TO ACCESS THE LEADS. STANDARD TEMPERATURE RANGE IS O TO 70 DEGREE C.BUT MANY DEVICES ARE CAPABLE OF OPERATION FROM -40 TO *8S DGREE c.operation. the package has not yet been approved by jedec.

BEYOND 20 LEADS THE PLCC IS CONSIDERED TO BE MORE COST EFFECTIVE than the so package. this souare plastic package is available in JEDEC STANDARD SIZES OF $20,28,44,52,68$ AND 84 LEAD OR 5,7,11,13 AND 17 PER SIDE. LEAD SPACING IS ALSO ON SO MIL CENTERS AND "J" LEADS ARE USED.

THE PLCC PERFORMS BETTER THAN A COMPARABLE DIP - PARTICULARLY AS LEAD COUNT INCREASES - IN LARGE PART BECAUSE OF THE DIFFERENCES IA LEAD AND CONDUCTOR LENGTH. THE LONGEST TRACE ON A G4 LEAD DIP IS ALMOST \& TIMES THAT OF THE CORRESPONMDING TRACE ON THE 64 LEAD PLCC. LONG LEADS MEANS INCREASED INDUCTANCE AND REGIMANCE PESTRICTING POWER AND GROUND CAPBILITIES LONG SIDE-TO-SIDE CONDUCTOR TRACES PESULT IN SIGNIFICANT LEAD-TO-LEAD CAPACITANCES CONDUCTOR TRACES RESULT IN SIGNIFICANT LEAD-TO-LEAD CAPACITANCES.
CLOCK RATES TO 4 GHz HAVE BEEN REALIZED.

THERHAL FACTORS
With all leaded plastic packages the main heat path is through the LEADS. SOME MANUFACTURERS ARE PROVIDING COPPER LEAD FRAME IN PLACE OF THE CONVENTIONAL ALLOY 42 FOR SOIC's. THIS LOWER THE THERMAL RESISTANCE BY APPROX. BO DEGREES C./W. E FREE AIR TEMPERATURE thermal resistance is of little use to the designer since the thermal resistance is greatly impacted by the substrate material. approximate thermal resistance values of semiconductors when MOUNTED ON A PCB ARE:

SOT-23	420 DGREES C / W
SOT-89	160
SO-8	260
SO-14	190
SO-16	180
SO-28	140

(A CERAMIC CUBSTRATE WILL IMPROVE THESE FIGURES APPROX. 25\%)
CONFORMAL COATING PROVIDES SOME IMPROVEMENT IN THERMAL
CONDUCTIVITY. REDUCING THE AIR GAP OR FILLING THE VOID BETWEEN THE DEVICE AND PCB WITH THERMAL CONDUCTIVE COMPOUND WILL ALSO LOWER the thermal resistance.

MOISTURE RESISTANCE
THERE HAS BEEN MUCH CONCERN THAT PLASTIC PACKAGES, BEING
NON-HERMETIC, HAVE INADEQUATE RELIABILITY FOR INDUSTRIAL
APPLICATIONS. THIS ISSUE IS BEING ADDRESSED BY THE SEMICONDUCTOR MANUFACTURERS AND MOST DEVICES ARE PROTECTED WITH A NITRIDE PASSIVATION LAYER OVER THE ALUMINUM DIE AND A SLICONE LAYER across the die and conductors. in addition, silicone is added to the plastic encapsulant. a Criteria being used
industrial/telecommunication applications is that the devices must pass a 2000 hour life test with dc bias at bs degrees C. AND 85*

HUMIDITY AND ALSO A 96 HOURS 120 DEGREE C. 15 PSI "PRESSURE COOKER" TEST. 'THIS ACCELERATED TEST REPRESENTS 20 YEARS OF FIELD LIFE FOR TELECOMMUNICATION EQUIPMENT.) AN ALTERNATIVE APPROACH IS to use an external conformal coating of elasto-plastic silicone
field experience indicates that when the device is operated
CONTINUOUSLY AND DISSIPATING APPROXIMATELY 100 mW OF POWER, THE INTERNAL HEAT GENERATED WILL DISSIPATE ANY MOISTURE WHICH INTERNAL HEAT GENERATED WILL OCCUR WITH CMOS (LO-CURENT/HIGH IMPEDANCE) DEVICES.

COMPONENT SOLDERABILITY

OLDERABILITY IS PROBABLY THE MOST CRITICAL ISSUE FOR SUCCESS WITH the surface mounting process. It is essential that the ERMINATIONS BE COATED WITH SNGO OR SNG3 OR BE PLATED WITH IN-LEAD alloy above gox tin content and that the terminations CONTAINING PRECIOUS METALS ARE PROTECTED FROM LEACHING BY A BARRIER LAYER.

SOLDERABILITY TESTING IS DONE BY IMMERSING THE COMPONENT FOR 20 SECONDS AT 245 degrees C. AND EVALUATING THE TERMINATIONS WITH AT Least iox magnification. 95x of the termination area must be COVERED WITH A NEW, CONTINUOUS AND SMOOTH SOLDER COATING. SUCH tests must be conducted by receiving inspection on a regular basis TO ENSURE SUPPLIER COMPLIANCE.

IN JAPAN IT IS COMMON PRACTICE TO STRESS THE COMPONENTS AND SOLDER JOINTS OF THE COMPLETED ASSEMBLY BY SUBJECTING IT TO 5 TO 10 TEMPERATURE CYCLES FROM - 20 TO + BS DEGREES C. THIS IS MUCH MORE effective in detecting weak solder joints than by visual INSPECTION.

RELIABILITY CONSIDERATIONS

to ensure good reliability the designer must "pick good parts and USE THEM RIGHT". SURFACE MOUNT TECHNOLOGY HAS INHERENTLY BETTER ELIABILITY THAY CONVENTIONAL INSERTED PCB TECHNOLOGY FOR THE FOLLOWING REASONS:

1) EACH LEADLESS COMPONENT ELIMINATES 2 INTERNAL CONNECTIONS
2) DELETION OF PLATED-THRU-HOLES IMPROVES RELIABILITY OF THE PCB
3) LEADS ON ACTIVE DEVICES ARE PREFORMED THEREBY eliminating damaged seals due to lead stresses
4). LOWER MASS OF COMPONENT IMPROVES SHOCK AND VIBRATION CHARACTERISTICS
4) VAPORPHASE REFLOW SOLDERING LIMITS TEMPERATURE EXPOSURE TO 215 DEGREES C. (SO DEGREES COOLER THAN Wave soldering)

POWER DISSIPATION SHOULD BE LIMITED TO 7OX OF MAX RATING AND JUNCTION TEMPERATURE TO A MAX. 110 DEGREES C. STRESS LEVELS IN GENERAL SHOULD NOT EXCEED SOX OF MAX RATINGS. AS WITH CONVENTIONAL devices the highest failure rate components are active devices.

COMPONENT STANDARDIZATION

Consideration must be given to component standardization when MOVING TO AUTOMATIC ASSEMBLY. THE REDUCTION IN THE NUMBER OF PARTS BY STANDARDIZATION IS ESSENTIAL 1F HAKTS ARE TU UE STUCKED PURCHASED AND MANUFACTURED IN SUFFICIENT QUANTITIES TO BE ECONOMIC.
most feeding methods of automatic placement equipment do not UTILIZE TAPE SEQUENCING (AS IS STANDARD PRACTICE WITH AUTOMATIC NUMBER OF DIFFERENT COMPONENT PART NUMBERS AS THIS REDUCES THE number of reouired tape reels, loading changeovers or setups for the machine. not using tape-sequenced component has the advantage THAT DESIGN CHNAGES ARE MORE READILY ACCOMMODATED DURING PRODUCTION RUN.

COMPONENT PACKAGING

INTEGRAL TO THE DEVELOPMENT OF SMC's IS THE PACKAGING OF THESE devices for use by automatic placement equipment. the basic requirements are:

1) LOCATE AND ORIENT THE DEVICE
2) IDENTIFY AND PROTECT THE DEVICE DURING SHIPMENT IDENTIFY AND
3) FEED THE DEVICE IN A STANDARD MANNER TO THE automatic placement equipment
the preferred system is to use tape and reel wherever possible. it has the following advantages:
4) Simplifies Kitting and storage
5) TOLERATES DIMENSIONAL VARIATION
6) ELIMINATES INADVERTENT MIXING OF DIFFERENT PARTS
7) SHORT PRODUCTION SETUP AND CHANGEOVER TIMES
8) HAS INHERENT CAPABILITY OF DELIVERING DEVICES THAT have been 100\% ELECTRICALLY VERIFIED AT THE POINT of packaging

EIA PACKAGING SPECIFICATION RS-481 IS THE US STANDARD AND INTERNATIONAL STANDARDS ARE EVOLVING. TAPE SIZES ARE 8, 12, 16, 24 AND 32 MM WIDTH AND REELS ARE $7,11.25$ AND 13 IN DIAMETER. THE REELS WILL HOLD 4000, 9000 AND 14000 PARTS ON AN B MM WIDE TAPE.

COMPONENT AVAILABILITY

COMPONENT AVAILABILITY HAS BEEN THE MAJOR REASON FOR THE SLOW ADAPTATION OF SHT IN THE US. CURRENTLY MANY USERS ARE PUT ON
allocation by the component manufacturers due to the demand OUTSTRIPPING AVAILABLE WORLD PRODUCTION CAPACITY. THIS PROBLEM IS PARTICULARLY SEVERE FOR SMALL VOLUME ORDERS. SOME SUPPLIERS ARE making available "off-the-shelf" engineering development kits to assist designers in obtaining low quantity parts. some examples ARE:

CHIP RESISTORS (PANASONIC)	120 Values from 10 OHM TO 1 MEG (24000 parts - 200 each Value)
CERAMIC CAPACITORS (MURATA-ERIE)	60 Values from 0.5 pF TO .22 uF (6S00 PARTS) NPO, X7R, 25U, YSV AVAILABLE IN 1206 OR O805 SIZE WITH OR WITHOUT NICKEL BARRIER
CHIP INDUCTORS (COILCRAFT)	64 VALUES FROM 0.01 TO 1000 uH (384 PARTS)

IT is frequently necessary to use conventional leaded components In SURFACE MOUNT DESIGNS DUE TO THE NON-AVAILABILITY OF SUITABLE EQUIVALENT SURFACE MOUNT PARTS OR FOR COST REASONS. FOR EXAMPLE, A standard dip package may not be available in an soic. it is practical and quite effective to modify the dip leads and LAP-SOLDER" THE DIP. THE SPACE UNDER THE DIP CAN ALSO BE UTILIZED TO MOUNT SEVERAL CAPACITORS AND RESISTORS. MANY SHALL LEADED COMPONENTS CAN, AS AN INTERIM MEASURE, BE ADAPTED FOR SURFACE MOUNTING IN THIS MANNER. IT IS IN GENERAL MORE EFFICIENT TO BUILD aSSEMBLIES ALL SURFACE MOUNTED RATHER THAN MIX TWO PROCESSES INSERTED WAVE SOLDERED AND SURFACEMOUNTED REFLOW SOLDERED PARTS.

ANOTHER TECHNIQUE IS TO USE LEADLESS CHIP CARRIER PACKAGES (LCC's) FOR THE ENGINEERING PROTOTYPES AND THEN REPLACE THESE WITH THE PLCC' as they become available at a future date. this is feasible SINCE THE PLCC AND LCC FOOT PRINTS ARE IDENTICAL (JEDEC STANDARD).

THE PRACTICE OF PLACING PARTS UNDER THE IC IS ALSO DONE IN IGH-DENSITY DESIGNS WHEN SPACE REQUIREMENTS NECESSITATE THIS UNORTHODOX PACKING APPROACH.

UTURE TRENDS

- DURING 1985 THE USE OF SMC.e will acielerate and BY 1990 THEY WILL REPLACE LEAD-IN-HOLE COMPONENTS as the dominant pcb packaging technology.

SMC COSTS WILL CONTINUE TO DECREASE AND PARITY WILL BE REACHED IN 1986 FOR MOST COMPONENTS.

- manual assembly will no longer be cost effective.
- the preferred smc packing method will be in tape and REEL FORMAT
- Wavesolder will continue to be used but for high

DENSITY AND HIGH LEAD COUNT DEVICES VAPORPHASE REFLOW SOLDERING WILL PREDOMINATE.

- component quality will reach levels such that INCOMING INSPECTION WILL NO LONGER BE REQUIRED.

SIZE COMPARISOI BETWEEN INSERTED AND SURFACE MOUHTED ASSEMBLY (ANI)

MELP (TRW)

SIze comparisons - resistor and ceramic capacitor

VARIABLE RESISTOR AND CAPACITOR (KYOCERA)

Various chip inductors and transformers (COIlCraft)

SIze comparisons - fixed and variable inductor
A. Ceramic Ferrite Chip Inductor

B. Toroidal Transformers (Nonpreferred) Mounted on Ceramic Carrier

C. Balun Core Transformer (Preferred) on 0.15 - and 0.25 in . Square Ceramic Carrier

SIZE COMPARISONS - TANTALUM CAPACITORS

4 SIZES OF MOLDED TANTALUM CAPACITORS (NEC)

dIOde configurations in sot-23 package

SOT-23 PACKAGE OPTION

(A)

(B)
(c)

SIZE COMPARISONS

DIP's WITH PREFORMED LEADS SURPACE MOUNTED

CONTAINER WITY TWERTYYIVE 7" REEES HOLDIMG $100,000 \mathrm{CHIP}$ COMPONENTS

CONSUMPTION FORECAST FOR SOIC AND PLCC PACKAGES

INTEXRATED CIRCIITS FOR I.F. AMPLIFIERS AND DEMOULATORS

P. E. Chadwick

Plessey Semiconductors
Manor
Swindon
Wilts
England

Although the "single chip" radio is becoming practical in certain applications, and Dick Tracey's wrist radio is not quite so far in the future, the majority of todays receivers are conventional superhets with IF amplifiers. Because these amplifiers are operating at fixed frequency and selectivity can be provided by block filters, this area has proved to be a prime candidate for integration into monolithic circuitry. Early attempts at this in small scale integration led to a number of successful designs and the SSI circuits thus produced have, in many cases, lasted as "glue" circuits in new designs over some 12 or 14 years - something of a record in terms of linear integrated circuit lifet imes.
To a great extent, commercial pressure for I.F. circuits has came from the consumer market, although some early circuits were developed for military and professional applications. This has led to a preponderance of AM and FM circuits aimed at the consumer radio market and until recently, very for communications purposes first appeared in the mid 1970's and the demands of the cordless telephone market for more the mid 1970's and the month in 1983 has boosted communication circuit sales. Circuits such as the Plessey SI6601 Fhase Locked Loop demodulator and the much copied Motorola MC3357 and its derivatives are the designers standard devices, although new requirements are appearing.

A major area of compromise is in power consumption. In order to obtain operation at 10.7 MHz the amplifying stages require to run at higher currents than for 455 K 埌 operation, and some compromise is necessary. The availability of faster IC processes allows the current consumption to decrease, but the choice of IF is still related to current consumption. For example, the plessey SL6640 running at 10.7 MHz required a typical supply of 6 mA at 6 v . This device uses a classic limiting amplifier and quadrative detector operating at 10.7 MHz . The SL6652 which includes a mixer and oscillator and runs the limiting amplifier at 455 KHz typically requires 1.4 mA at 2.5 volts. This reduction in power consumption is useful insofar as it allows circuits to be "stacked" in series across the supply, the use This is because the main selectivity of the equipment can in system cost. by using a ceramic filter, which is available relatively cheaply be oblaned "straight through" 10.7 MHz approach requires the F . filter to the multiple crystal unit with a much higher price. However, sufficient selectivity is required before frequency conversion to 455 kHz to prevent gain compression or intermodulation in the second mixer: the provision of a suitably high gain compression point and/or third order input intercept point reduces the requirements for and thus the expense of this filter.

The Phase Locked Loop demodulator as exemplified in the Plessey SL6601 has been available for some years. It offers certain distinct advantages in some applications: for example, where extreme long term stability is equipnents operating over extended temperature ranges. and in military quadrature circuit (either as an L-C cambination or as a ceramic resonator) is attractive, although certain parameters, such as the ulamate sesmator) noise ratio, are unlikely to ever reach those limits achievable with a quadrature type detector.

All circuits have certain "sensitive" parameters which are difficult to measure and/or to meet. Typical of these are AM rejection and sensitivity. AM rejection is a function of AM to PM conversion within the limiting amplifer and in order to minimise this, balanced stages are used (fig. 1). Nevertheless measurement becomes a difficulty as the following example illustrates.

A signal is applied to an FM receiver with a deviation of plus/minus 2.5 KHz . Removal of the FM and substitution of AM at 30% requires the residual FM of the generator to be less than 7.5 Hz if an accurate measurement is to be made of the commonly required 40 dB rejections.
AM to PM conversion within an IC is generally caused by asymmetry in the output level which varies with input level-see figs 2 demonstrating the effect of offset on a limiter with varying input level. It is this AM-PM
conversion which has led to the production of special low phase shift limiters for use in radar systems. The effects of operating at low collector currents such that F_{t} is falling does not appear to have any major effect, which is perhaps surprising, as a differential phase shift of 1 degree for a 5 dB input variation (which corresponds to 308 AM) will produce an output same 43 dB below a 3 kHz deviation signal. Ref 1 provides some useful indications of the phase shift with input level in low phase shift limiters operating at frequencies of approximately $1 / 20$ of F_{t}.

AM rejection is directly related to co-channel rejection and capture ratio, and the performance of wide band FM in this respect is well known. Narrow band FM (3 KHz deviation) is much worse, because the allowable phase deviation caused by the unwanted signal is obviously decreased.

From this discussion, it may be deduced that the requirements for a limiting I.F. amplifier for FM demodulation include symnetrical limiting, achieved by the use of balanced stages, and low phase shift with input posibly, inded, both of which integrated

Sensitivity is important for the receiver designer, and in all too many cases is defined as "3aB limiting" or same similar inexplicit term. The measurement of signal to noise ratio on a 100% basis is more meaningful, measurement of signal to noise ratio on a 100% basis is more meaningful,
but difficult because of the noise level involved with automatic test machines and handlers. As a result, testing to levels below 5 microvolts is not very practical, while a "2 microvolt typical" sensitivity without any tolerance is of no use to the serious design engineer - especially as
it may cost $\$ 1$ to purchase a part and $\$ 2$ to change it if the assembled equipment does not meet specification.

As previously stated, there are performance advantages in the use of an IF of 455 KHz such as very low power consumption, for which the use of a high frequency I.C. process is mandatory. At frequencies below 1 or 2 MHz , the use of PNP transistors as active loads as in Fig 3 is attractive. The high
frequency performance is limited by the difficulties of producing high frequency, high gain lateral PNP transistors in a monolithic I.C.

Cellular, military, amateur and even 900 MHz cordless telephone equipments require signal strength indication (RSSI - Received Signal Strength Indicator), and this is a feature of new circuits. The use of a radar style successive detection logarithmic amplifier has obvious applications, although if a very linear monotonic RSSI response is required, the losses of any filter section within the amplifier strip must be carefully controlled. In addition, measurements of the RSSI response must be made with care, as it is not unknown for the logarithmic curve of the I.C. to show up hitherto unsuspected errors in the attenuators of signal generako. great care must then be taken to avoid leakage. Older signal generators provided that mecharical wear has not invalidated the calibration

The use of the quadrature FM detector is almost universal, although as mentioned earlier, the Phase Locked Loop has some advantages. In narrow band FM the pLL shows little improvement in threshold extension, because adquate AM rejection, it is necessary to precede the PLL with a limiting amplifier and this means that no adjacent channel selectivity can be provided by the loop as unwanted signals will capture the limiting strip.

The quadrature detector is extremely popular for use in integrated circuit demodulators for a number of reasons, not least of which is the small number of pins required by the IC in comparison with a Foster Seeley or ratio detector - as well as the simplification and thus cost reduction of the inductive omponent.

There does however, seem to be same misconceptions with regard to the operation of a quadrature detector - fig 4. At resonance, the voltage across the quadrature capacitor is 90 degrees out of phase with the voltage across the tuned circuit, and this phase shift varies as the frequency is removed from resonance. In order that a linear is necessary for two parameters to be considered:
a) the linearity of the phase detector
b) the tuned circuit Q.

The variation in voltage with frequency offset follows a tangential form, while the phase detector (or analogue multiplier) will usually have a semisinusoidal transfer characteristic. This requires that for any given Q, frequency deviation must be small, so that distortion is minimised. However reducing Q will also reduce the available AF output and thus there degrees at the 10 or 15 degrees gives a generally satisfactory compromise between output and distortion. This suggests the use of a 0 that gives a 3 dB bandwidth of about 3 times the deviation, which is generally acceptable.

The use of a high 0 circuit damped by a resistor rather than a low 0 coil is advisable insofar as the repeatability and stability are improved. The use of a ceramic resonator generally gives higher distortion and can also give matching problems between the filter centre frequency and that of the resonator. Additionally long term frequency stability is not always improved to the extent that might be expected.

The use of a differential output as in the Plessey SL6652 (fig 5) has some advantages. Where data is transmitted as FSK, frequency errors in the system can lead to bias distortion such that data can be lost with a single ended output. Additionally, the differential output when suitably filtered provides AFC and a convenient method of adjustment of the quadrature coil is to inject a signal at the correct centre frequency and adjust the internal iffet voltage may well not be zero at zero input. The use of a single ended output device will of bouse give problens of teperatume drift asell.

It does not seem to be realised by many designers that the group delay characteristics of the IF filter can have a significant effect upon the transmission is concerned, differential group delay should be minimised.

An area of some difficulty is squelch. After some years experience, the author is finnly convinced that the perfect squelch system will be designed
by an engineer who can live in the same house in hammony with his/her parents, in laws, and grandparents without ever a cross word!

Squelch in the Phase Locked Loop decoder may be implemented by circuitry which looks for "cycle slipping" when the input signal is noisy. This method has two major drawbacks:
a) The number of cycles slipped at a $6 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ is considerably more than at $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. Thus the change in output at $10 \mathrm{~W} \mathrm{~S} / \mathrm{N}$ ratios is adequate to drive, say, a Schmitt trigger, but at high S / N ratios, the trip point is by no means as well defined
b) The front end noise when band limited by a filter is identical in form with that produced by a valid, noise modulated FM signal. Thus although only noise is present, the loop will attempt to demodulate it as a valid signal, and the squelch can therefore open on noise. Probably the best squelch method is to use the reduction in noise power above the AF band as
an indication of S/N ratio: the noise from the front end is admittedly a an indication of S / N ratio: the noise from the front end is admittedly a
valid signal, but is effectively de-emphasised, and so the HF noise is lower than would be expected. The reason that the noise is de-emphasised is that that high order sidebands of the FM signal are reduced by the filter: thus the low frequency noise components have more sidebands and effectively higher deviation than the higher frequency components. The use of carrier strength as a squelch control is again unsatisfactory because of the squelch breaking at high noise level inputs. These problems have led to the use of tone coded squelch systems (CTCSS) and one modern tactical military radio uses 5 squelch systems with majority voting!

Peferences

1. Broadband Amplifier Applications Plessey Semiconductors
2. The SL6700 Versatile Radio Integrated Circuit plessey Semiconductors
3. Chadwick, De Maw "Receiving with Plessey IC's OST April 1981
4. Digital Techniques for Advanced Radio
J. Masterton, P.A. Ransdale, I.A.W. Vance

IEE Conference on Mobile Radio Systems \& Techniques, York, Sept. 1984 P6 et seq.

2975
IEE LOndon

fig 1
Bolenced Amplifier

Squelch hysteresis is required for situations where deep fading can occur. For very low signal to noise ratios hysterisis of a few dB is adequate, with fading and squelch ratios, a larger hysterisis window gives less trouble with fading and squelch dropout. Some hysterisis is always desirable and

AM and SSB

Integrated circuits for AM and SSB reception are rather more rare. Leaving aside broadcast receivers, the $A M$ requirements are now limited to $C B$, Aircraft, military and a few other applications. The CB requirement now tends to be multimode, while the temperature range for aircraft and military equipments are generally too exacting for broadcast type IC's. In
the case of single sideband, some requirements for in channel intermodulation ratios of 60 dB are extremely difficult to meet, while the market demand is currently relatively small. The growing trend to ACSB (Amplitude Compandored Single side Band) may well change this, but again, low power requirements suggest the use of a low I.F. This is not so convenient as in the FM case, because the percentage bandwidth of the IF filter is reduced. This means that the IF filter will tend to be larger, and quite possibly more expensive.

The use of $R F$ derived, rather than $A F$ derived, $A O C$ is advantageous, as an RF input corresponding to a low audio frequency signal may well overload the receiver if the IF filter is fairly sharp. In addition, attack times of signal available for rectification in a given time. It is, however, important to ensure that the carrier for SSB demodulation does not block the ACC circuitry. Typical of such a device capable of very good AM/SSB performance is the plessey SL6700 which offers a great deal of flexibility by the "addressability" of the various internal functional blocks - see fig 6. Refs 2 and 3 provide further details on the use of this device.

An area in which some difficulty can occur is in the AOC system where the ripple from the modulation remains on the AGC line. With high impedance ACC circuits used with tubes, and the high signal voltages, cambined with the relatively insensitive remote cut off tube, the distortion introduced by this ripple was normally of manageable proportions. However in an IC with a $20 \mathrm{~dB} /$ Volt $A G C$ law, a few millivolts of ripple are capable of preventing in-channel IMD specs from being readily met. The use of an active filter in the AGC system can lead to instability unless phase compensation is used, and this is even more problematical with $A F$ derived AOC.

Historically, the IF amplifier has provided the major part of the receiver gain, but especially in SSB systers it has become practicable to use some stabich of gain at ir with the rest at Afinis eases layout and developed technology.

The use of the RSSI output from an FM strip as an AM demodulator is possible. The logarithmic distortion introduced is only very pronounced at high modulation levels, and a two or three decade anly very pronounced at reduce this distortion substantially. If the average RSSI output level is used to provide an offset, then acceptable results can be obtained for a wide range of input signals. It is however, unlikely that complications involved will prove worthwhile.

IF circuits for radar applications are somewhat different, insofar as usually either a log amp, swept gain or low phase shift limiter strips are required. Although power consumption is still an important parameter, centre frequencies of 160 MHz and higher militate against low power consumption. In addition, gains of 60 dB at such frequencies are difficult to achieve with stability, and the production of lower gain blocks is more practical. The plessey SL52l log amp first entered production in the 1960's and is still being designed into new systems in the 1980's. Its successors have pushed the upper frequency limit for a log strip to beyond 200 HHz and this will be revised further in new generations currently undergoing development. At these frequencies, the parasitics involved is conventional dual in line and $T 05$ style packages are excessive, and in to use leadless chip carrier packages. The bonding of become necessary ourids can ess difficur insorages. ise bonaing of naked chips to be impossible, or at least show little correlation with the final parameters, and the use of the chip carrier package provides both manufacturer and customer with a much higher degree of confidence. The cost of logarithmic amplifiers has now fallen to such a level that the use of a linear IF amplifier in a radar on grounds of cost can hardly be justified: even the complication of a swept gain system is unlikely to outperform the log strip, and the use of a low phase shift amplifier mects requirements for MTI, monopulse and phase encoded systems applications.

The application of direct conversion (zero I.F.) and digital techniques will doubtless lead to major charges in radio receiver design. The conventional superhet has been with us for over 60 years: technology tor its complete digitisation is a long way off. Ref 4 is an example of some of the work in this field, While Collins Padio have an HF receiver which the I.F. section uses digital processing. Despite these advances, there is still a place (at the moment) for advanced analogue signal processing, using advanced IC processes to maximise performance at minimum power consumptions.
(C) 1984 Plessay Semiconductors LaS.

spooy ${ }^{2 n!+2}+d N d \quad E[J$

MOTOROLA ADVANCED AMPLIFIER CONCEPT PACKAGE

By Alan wood
Motorola Semiconductor Products Sector.

ABSTRACT

This paper describes the philosophy and the design of a new generation of RF power transistors which, for Land Mobile products, offer a unique design concept that will simplify the external matching requirements for high power \quad alam An additional benefit is the increased efficiency that can bu obtained over a wider bandwidth. These improvements are brought about by the use of multiple matching sections inside the package. Presented here will be an analysis of the design of a doubly input/output matched part showing its advantages over a conventionally matched 8 amMHz transistor. Also described will be the performance characteristics of two RF devices, soon to be introduced by Motorola Semiconductor Product Group. They will be rated at 6owatts output power for application in mobile radiotelephones (12V operation) and base stations(24V), specifically collular, trunked and conventional BøMME systems.

INTRODUCTION
In a number of RF transmitter applications in the 8wo to 96aMHz band, e.g. paging and cellular base stations and high powar mobiles it is not uncommon for the amplifier output stage to have multiple devices in parallel. RF circuit designers would prefer to replace these complex multi-device stages with a single device or at least with fewer paralleled trangistors. Eut increasing the output power of current $8 \varnothing \square \mathrm{MHz}$ transistors does present a number of problems: largar transistor die would lower the manufacturing yields, dissipating the additional heat in the axisting package would limit the masimum operating temperatures, and the device impedances would be so low that broadband amplifier design would be extremely difficult.

High power RF transistors developed for these applications must therefore exhibit a number of degirable features namely:-
i. Power Gain. Gain should be as high as achievable using the current processing technology but not at the neglect of other important parameters, i.e. ruggedness and stability.
ii. Power Added Efficiency. High efficiency is of paramount importance in any high power amplifier application. Space requirements limit the volume that can be dedicated to power supplies and haatainking structures. Invariably this results in a less efficient device operating at higher junction temparatures and consequently lower reliability.
iii. Low Thermal Resistance. Higher output power ratings correspond tu higher concentrations of heat in a RF transistor. This is to some degree offset by a larger die size but doubling
the output power, assuming similar efficiency, will double the heat dissipation in the package. Making the package larger will not necessarily decrease the thermal resistance and will certainly compromise the performance by increasing the package parasitics.
iv. Bandwidth. Currant transmitter power amplifier designs strive to cover the full allowable operating bandwidth for their own particular application. The benefits of lower inventory and the elimination of field tuning over split band designs outweigh the added complexity in the design and the trade-offs in performance over narrow-band tuning.
v. Stability. An amplifier should be ftable over the full operating range expected in the field.
vi. Load-Pull Ruggedness. A transistor should be capable of surviving an output mis-match even when operiting at the design extremes. To achieve this degree of ruggedness does involve trade-offe in both gain and efficiency.
vii. Consigtent Performance. Ferformance and device characteristics need to be consistent not only part to part but also batch to batch if they are to be usable by any equipment manufacturer. Inconsistency will make it difficult for the product development engineer to guarantee the final performance of his design and eventually it will lead to escessive guardbanding in the component sperifications. Lower product yields when testiñ to a more stringent specification inevitably results in higher component cost.

Most of the above attributes are determined by the die performance and the inter-relationship of the die and the package. At higher frequencies, UHF and above, the package interface with the external circuit also becomes important. Device impedances are relatively low compared with the 50 ohm terminating impedances of an amplifier. For this reason minor variations in package position, grounding, and the values of external components can have a significant influence on the amplifier performance. In fact even minor variations in the position of the input/output shunt capacitors can easily cause an amplifier to exhibit lackluster performance.

Incorporating more of the impedance transformation network inside the package minimizes the effects of these variations and simplifies the task of the circuit designer. As an added benefit it makes the out-going RF testing by the transistor manufacturer easier, since it simplifies test fixture design and maintenance.

die considerations

RF transistor die design is a compromise between obtaining the best performance possible in terms of power gain, saturated output power and efficiency, while still maintaining adequate ruggedness into an output mis-match, good voltage breakdowns and long term reliability. Good die yiqlds and low production costs are also important in developing transistor die for use in Land Mobile applications.

SIMPLIFIED ‘T’ MODEL FOR TRANSISTOR DIE.

MATCHING NETWORKS

Fig. 1 is a very Eimplified T model of a transistor die in common base configuration. Common base is normally chosen instead of common emitter mode for class C amplifiers operating at gagm and above because of its higher power gain. Included in the model are the junction capacitances and the resistive losses attributed to each transistor region. The values given are typical for a bbWatt die desagned for operation at 12.5Volts.

Analysis of this model at 978 MHz gives us the equivalent series input impedance (Zin) and the equivalent series output impedance, (Zab), that when matched by a conjugate impedance source and load will operate at the rated output power level with minimun reflected power.

$$
\begin{aligned}
& \text { Zin }=0.105-j 0.022 \text { Ohms } \\
& \text { ZeL }=0.717-j 0.39 \quad \text { Ohms }
\end{aligned}
$$

Inspection of the series impedances given above indicates bandwidth is not inherently limited by the die below the cut-off frequency (ft). The series output impedance has the highest 0 but even for this large die it is still less than 1.

RF power transistors are not generally sold in chip form but are normally assembled in packages or chip carriers before they can be usefully incorporated in discrete amplifier circuits. The package provides low resistive paths for both thermal and electrical connections. It should also provide a method of mechanically attaching the device to a heatsink. Electrical connections inside the package at high frequencies have a marked

$\frac{d}{x}$

$\mathrm{Z}_{\mathrm{IN}}=0.105+\mathrm{j} 3.26$ ohms
$\mathrm{Z}_{O L}=0.72+\mathrm{j} 2.90$ ohms
MODEL FOR UN-MATCHED PACKAGED DIE.
effect on the performance of the transistor. Fig. 2 ineludes these package parasitics in the transistor model. For our purposes this model can be simplified to that given in fig. 3 The values given are typical for a non-internally matched 806 MHz package.

Analysis of this model gives the impedances at the package terminations to be :

$$
\begin{aligned}
& \operatorname{Zin}=0.105+j 3.258 \text { Ohms } \\
& 2 a L=0.717+j 2.90 \text { Ohms }
\end{aligned}
$$

These. are very low impedance levels compared to the serohm termination impedances of an amplifier and impedance transforming networks are essential if an amplifier is to meet its design goals. Without these networks the amplifier would exhibit :

* Poor input return loss. A large part of the drive will be reflected and thus not available for amplification by the transistor.
* Poor gain flatness and consequently limited bandwidth.
* Poor transfer of power to the load because of output mismatch.
* Instability under certain operating conditions. Matching networkg can be implemented externally but the package parasitic components will severely limit the useful bandwidth on high power devices. The inevitable losses associated with these external components and the sensitivity of the amplifier performance to component variation will also reduce

the attainable bandwidth in production designs. The inherent narrow bandwidth of a packaged transistor die at high frequencies was partly solved several years ago by including part of the input network inside the package. Later further improvements were made, especially in the case of mircowave power devices, by including additional sections of input matching and output matching within the device package. The added complexity of multi-section internal matching requires the use of highly skilled labor and careful attention to detail in the assembly of these transistors. Even with these measures the product yields are relatively low compared to commercial products and consequently these parts are expensive to manufacture.

Input Network

Internal input matching performs two functions. It increases the impedances to a level that can be more readily matched by external components. Secondly, using the internal feedback. inherent in the package, internal matching can be used to shape the gain- frequency response of the device. The feedback is associated with the common lead inductance and in either CE or CE configurations there will always be a small amount of common lead inductance simply due to the physical distance between the die and the grounded leads. This inductance is represented by the emitter or base die metallization, the wire-bonds from the bond pads to the lead frame and the lead-frame itself. The inductance is minimized by having several wire bonds to the die, using wide

metallization patterns on the package and having 2 or more common leads - four is normal. This is illustrated in Fig. 4.

The self and mutual coupling that exists in a double wire bonded comion base or common emitter part can be tuned to vary the gain of the transistor at a particular frequency. Using this method the 60 gain slope for the die can beflattened over a desired frequency range.

The input impedance without matehing was given earlier and is repeated heres

Zin $=9.105+j 3.258$ Ohms

Wirmbond inductance and the braze area, necessary for lead attach, are responsible for the major part of the reactive component. Using eurrent packaging techniques it would be difficult to further minimize this inductive component.

A matter of considerable importance is, however, the bandwidth over which the transistor can be operated without serious degradation in power gain and efficiency. The high Q represented by this impedance would present an insurmountable difficulty for any engineer wishing to design even a moderately broadband eircuit. Additionally the high losses associated with the shunt capacitor necessary to transform the inductive reactance would severely degrade amplifier performance. This can be demonstrated using the values given in equation above. The unmatched device Q would be:

```
0}=\mp@subsup{X}{s/Rs}{
    =3.258/0.105 = 31
```

 (1)
 Figure 5.

BANDWIDTH FOR NON INTERNALLY MATCHED INPUT

$K 4198$

FIGMEF 6. TNPAT NETWORK FOR LW-MATCHED TAANSISTOR

Typical $G s$ for high quality chip capacitors at this frequency are in the range 100-30\%. This represents a gain decrease due to losses in the capacitor of between 0.9 dB and 3dB. Typical gains for parts operating at 12.5 Volts are 5-bdB so this does represent a significant factor in circuit performance.

The series inductance internal to the package also limits the bandwidth that can be achieved with external input matching. Fig. Sis a plot of the frequency versus input USWR of the input network shown in Fig. 6. This analysis assumes ideal loss-less components. The inductive reactance of the device input impedance is resonated with a single shunt capacitor at the band center. This gives the 3de bandwidth from:

$$
B W(3 d B)=\frac{f_{0}}{G}=\frac{f_{2} R_{3}}{X_{3}}
$$

$=28 \mathrm{MHz}$

The real part of the series equivalent input impedance, Rs, is inversely proportional to the area of the transiftor, or more exactly the emitter periphery, which itself determines the saturated output power. This explains why low power transistors can easily be matched over several hundreds of megahertz whereas high power devices have limited bandwidth. The 3db bandwidth given in equation 2 is the theoretical maximum that can be achieved. Fano in his classic paper [1] analyzed the limitations of broadband matching a complex load. His work asserts that

increasing the number of sections does allow the SdE bandwidth to be transformed into a nearly rectangular bandpass characteristic but no matter how complicated the network, it is never possible to match the entire available drive over a wider frequency band.

Radical improvements in bandwidth can be achieved if the series inductance is split by including a single stage of matching inside the package. Bandpass networks offer better performance than low-pass configurations using the same number of elements but low pass impedance transforming structures have a topology that $c a n$ be easily integrated internally using the wirebonds for inductors and mos-capacitors for the shunt elements. Mos-capacitors can be fabricated using the same technology employed in the manufacture of transistor die and offer very low dissipation at UHF frequencies.

An alternative matching structure has been proposed [2] using a shunt-L element, inside the package, to resonate with the die input capacitance at mid-band. There are some raported advantages with this scheme namely, higher power gain, and improved collector efficiency. The shunt-L network also reeults in a band-pass structure with effectively zero reactance at low frequencies. This, suppresses the generation of low frequency instabilities. A major disadvantage of this matching scheme is the inability to sereen the assembled device for certain DC parameters.

Fig. 7 illustrates the advantages of anternal matching comparing. an un-matched package with a package ancorporating a single section. The input impedance measured at the device

AMSA LINANI

$\stackrel{\text { 立 }}{\mathbf{8}}$
double section input matching
terminals is still relatively low but it is now practical
to transform it to an higher impedanc externally.

A further improvement in the input impedance can be achieved by adding a more sections of input matching. Matthaei has covered in depth the design of low-pass impedance transforming networks ideally suitable for this application [6]. With 2 sections up to 90% of the input power can be matched over the available bandwidth Fig. θ illustrates the behavior of the double input matched device with frequency. Input impedance is now at a level where the external matching can be readily accomplished using a single section transmission line transformation Fig. 9.

Additional bandwidth can be obtained and the gain frequency response flattened by mis-matching the input at the 1 ow frequency end of the band. The bdB/octave gain slope of the transietor die can be used to advantage to extend the low frequency response. A less than perfect input match partially reflecting the input power is compensated for by the higher device gain at lower frequencies. They do require a degree of isolation from the driver stages to prevent the low frequency mis-match affecting the stability of these earlier stages. These networks are adequately covered in the literature[3,4] and will not be further discussed here.

The input network transforms the die impedance up from 0. 1 ohm to approximately the Bohm level. The inner section conforms closely to a typical internal match seen in existing products. The outer match requires relatively high values of inductance and, because of the common base configuration, also needs to
carry the full emitter current with low loss. The minimum number of wires that can be used is therefore limited. The inductance is achieved by closely spacing the wires and using the mutual inductance to offset the lower self inductance of the many parallel wires.

Output Network

Reference to the transistor output model given in Fig. 10 show the collector circuit can be represented by a parallel combination of shunt capacitance(Cc) and collector resistance(Rc) and the series collector lead 2 nductance(L). Qutput impedance (Zout) for this configuration is given by[8]:

$$
z=\frac{R_{s}}{1+\left(\omega_{0} C_{k} R_{c}\right)^{2}}+j\left[\omega L-\frac{\left(\omega R_{k} C_{k}\right)^{2}}{\omega C_{c}\left(1+\left(\omega R_{c} C_{c}\right)^{2}\right]}\right]
$$

If Cc is the dominant reactive term the intrinsic Q for the output network is given by:

$$
\begin{equation*}
Q=\omega R_{c} C_{c} \tag{4}
\end{equation*}
$$

If the inductive term dominates which it normally does for high power transistors, then:

$$
0=\frac{\omega L}{R_{c}}\left[1+\left(\omega R_{c} C_{c}\right)^{2}\right]
$$

The maximum available output bandwidth becomes:
B.W. $=\frac{f_{f}}{Q}$

$$
\begin{equation*}
=\frac{1}{2 \pi R_{c} C_{c}} \tag{b}
\end{equation*}
$$

if C dominates.
B. ω. $=\frac{R_{c}}{2 \pi L\left[1+\left(\omega R_{c} C_{c}\right)^{2}\right]}$
if L dominates.

The value of collector resistance, Rc, can be calculated approximately, at high frequencies bys

$$
\text { Re } \approx \frac{1}{\omega_{t} C_{e}}
$$

Therefore if L dominates :

$$
\text { B.W. }=\frac{f_{t}}{L C_{e}\left(\omega_{c}^{2}+\omega_{t}^{2}\right)}
$$

$=166 \mathrm{MHz}$.

This network could be conjugately matched for maximum power transfer but half of the power would be dissipated in the
collector resistance limiting the maximum efficiency to 50%. Additionally, perfect matching will not necessarily allow the transistor to reach its full output power capability because of current saturation effects. The internal collector resistance for a clase-C amplifier is also highly non-linear and variess over a wide range an the trangistor oscillates between saturation and cut-off during each RF cycle. In fact the shunt collector resistance is maximized during product development by the suitable selection of epitaxial resistivity and epitaxial thickness consistent with meeting the required collector breakdown voltages. High shunt collector resistance maximizess the efficiency and saturated power capability.

RF power transistors are normally operated with a collector load-line determined by assuming the maximum collector voltage swing during the device turn-off period will be twice the supply voltage. The load-line impedance can be approximated by the equation:

$$
R \mathrm{R}=\frac{(\text { Vec }- \text { Vee }(\text { sat }))^{2}}{2 \times \text { Pout }}
$$

This equation holds good for frequencies less than the eut-off frequency for the die ($f t$). If we ignore the collector resistance (Rc) the matching problem simplifies to the collector capacitance shunted by Rp. Limitations of broadband matching for this load configuration have been analytically described by Bode[5].

We can apply Bode's resistance or attenuation integral

FIGURE 12 , SERIES ATSISTANCE FOR NETNORK
AT THE WTEANAL COLGETOR NODE.

Figure 12b

BANDWIDTH FOR NON-INTERNALLY MATCHED OUTPUT

theorem to estimate the available bandwidth for the transistor die neglecting the limitations of the package inductance:

$$
\begin{equation*}
\int_{0}^{\infty} R d \omega=\frac{\pi}{2 c} \tag{16}
\end{equation*}
$$

This expression applies to any minimum reactance network including a leading parallel capacitor where the source resistance can be considered substantially infinite. Capacitance is eistimated to be 1.2 times Cobo. The multiplication factor was empirically determined by comparing measured impedance data with an optimized model of the die and the package parasitic elements and has been confirmed for a number of UHF and BagMHz transistors. Using the modified capacitance value the constant resistance integral can be rewritten as :

$$
\begin{aligned}
\int_{0}^{\infty} R d w & =1.48 \times 10^{10} \quad \text { ohm.rad/s } \\
\text { or } \int_{0}^{\infty} R d m & =2.36 \times 10^{9} \quad \text { ohminertz }
\end{aligned}
$$

Analyzing the network shown in Fig. 11 the series input resistance can be plotted for all frequencies (Fig 12). It is apparent from the graph that bandwidth is lost outside the frequency range we desire especially below 3amMz.

If the area under the curve is integrated the result should correspond to the bandwidth-resistance product calculated from the remigtance integral. It can readily be seen that by restricting the area under the curve to the operating frequency

COLLECTOR SHUNT-L MATCHING
range and loading the internal collector node with the calculated load-line impedance the ultimate bandwidth is realized. At all frequencies outside the operating band, the series resistance seen by the internal collector terminal would need to be zero. The design of a network to match the available bandwidth would be impractical but typically only a fraction of the absolute bandwidth is normally required.

The above requirement on resistive behavior at the collector can-be best met by adopting an ideal bandpass network that provides very abrupt transitions through zero resistance outside the operating range. Fractical considerations, as in the case of the input network, limit the circuit topologies that can be incorporated inside the package. The un-matched case can be improved upon by some relatively simple internal changes to the package metallization which allow the die-bonding of an additional output mos-capacitor.

Tuning out the collector-base capacitance at mid-band using a shunt-i element remarkably improves the usage of the available frequency-resistance product. This is clearly illustrated in Fig 13. The series resistance has been re-plotted for the new network show in. Fig. 14. Maximum broadband power transfer is enhanced by this type of network but more important the impedance match is improved over the operating bandwidth. Efficiency, which has a greater sensitivity than gain to reactive loading at the internal collector node, does not suffer the roll-off at lower frequencies that would be seen with an un-matched design. Fig. 15 is a comparative plot of normalized parallel reactance (ixp/Rpt)

FKGME 15, NORMOLIETO ACNCTANET AT INTEANAL COLLECTOR NODE FOA OWTAWT MATENIAG NETMORK

Figure 16.

IMPROVEMENT IN BANDWIDTH WITH OUTPUT MATCHING

for a shunt－L network and a conventional un－matched transistor．
It $c a n$ be sean that the shunt reactive component for the shunt－L match is higher at the low end of the band than in the case of the un－matched device．For a good match the reactance should be at least twice the parallel resistive component（IXp／Rpl＞2） within the operating band［7］．

Again as in the case of the input network an additional section of low－pass transformation can be included to further increase the impedances to a level which eliminates the need for an external shunt－C．Fig． 16 shows the bandwidth attainable with the network shown in Fig． 17.

External Matching Requirements

The high impedance levels present at the terminations of this package do greatly simplify the external matching requirements．The device can be matched to 50̆nms with a single section transmission line with a characteristic impedance in a range that can be readily fabricated．The photograph（Fig．19） and the circuit schematic（Fig．20）of the broadband fixture used for device evaluation illustrate the simplicity of the external matching．The elimination of the troublesome shunt capacitors close to the transistor package does simplify the production and enhance the consistency of the amplifier performance．A paper to be given in a latter session of this seminar will describe the design of an amplifier using 4 MRFB9B parts paralleled to produce 22めWatts output powar over 85ø－9¢めMHz bandwidth．This design was

SIMPLIFIED MRF898 SCHEMATIC DIAGRAM

K4217A

FIGURE 20. EXTERNAL AATCNMLS AND DC SIASING.

MRF 898
 TYPICAL BROADBAND CIRCUIT PERFORMANCE

$K 4208$

IMPEDANCE OR ADMITTANCE COORDINATES

FREQ. (MHz)	$Z_{\text {IN }}$	$Z_{\mathrm{OL}^{*}}$
800	$12.9+j 5.1$	$5.0+j 1.0$
850	$10.4+j 3.2$	$5.3+j 1.2$
900	$8.9+j 0.7$	$5.6+j 1.6$
930	$8.3-j 1.2$	$5.8+j 2.4$
960	$8.0-j 2.8$	$6.1+j 1.7$

$$
\begin{aligned}
\mathrm{P}_{0}= & 60 \text { WATTS } \\
\mathrm{V}_{\mathrm{CC}}= & 24 \mathrm{~V} \\
{ }^{*} \mathrm{Z}_{\mathrm{OL}}= & \text { Conjugate of optimum load } \\
& \begin{array}{l}
\text { impedance into which the } \\
\text { device operates at a given } \\
\text { output power, voltage and } \\
\text { frequency. }
\end{array}
\end{aligned}
$$

CONCLUSION
The design of RF power devices for high power，high frequency operation involves a number of compromises．Most of which have been outlined above．The important points are that the added integration of additional matching inside the package can have the multiple benefits of asier usage，improved performance and better testability．

Conventional single input－matched parts will continue to be used at lower power levelsbut at higher power and higher frequency innovated product design is needed if devices are to be of practical value．

The package design outlined here offers several advantages over conventional garmHz packaging：－
－SIMPLER EXTERNAL MATCHING－Higher device impedances eliminate the need for critical shunt－C capacitors and allow gingle section transmiswion line matching．
＊HIGHER EFFICIENCY－High performance die and the use of shunt－L collector matching enable high efficiency（ $\mathbf{~} \mathbf{6} \mathbf{6 \%}$ ）to be maintained over a greater bandwidth．
＊BETTER THERMAL．PERFORMANCE－Larger package and higher operating efficiencies result in lower thermal resistance．
＊WIDER BANDHIDTH－Internal matching minimizes the
effects of package parasitics
allowing broader bandwidth and a
minimum of variation in gain and efficiency across the operating band．

What of the future？Dperation in excess of 1 月⿴囗十介 ，outts output power at $96 \boxed{M H z}$ has already been demonstrated with no changes required in the external matching．In fact this package concept can be extended to products operating at both higher and lower output powers than the examples given and the design is also feasible for products in the $4 \sqrt{6}-512 \mathrm{MHz}$ land mobile band．

MRF 848
 OUTPUT POWER versus FREQUENCY

K4205

MRF 848 PERFORMANCE IN BROADBAND CIRCUIT

rapidly executed because the simple external circuitry operated first tiae with performance close to the design goals and the amplifier required a minimum of further tweaking.

PERFORMANCE

The accompanying graphs illustrate the performance of both the 12 Volt and the 24 Volt versions of these devices. Noteworthy is the flatness of the gain and efficiency response across the design bandwidth and the extension of this outside the normal frequency range of interest. For comparison Fig. 21 shows the broadband performance for the MRF846 4 6Watt device assembled in a conventional BramHz package. Efficiency at the low end of the band is greatly reduced and the input vswr at the band-edges is much higher than the MFF848. The package size and higher efficiency result in both new transistors having a thermal resistance less than 1 Watt/ ${ }^{\circ} \mathrm{C}$.

REFERENCES

[1] R. M. Fano, "Theoretical limitations on broadband matching of arbitrary impedances", J. Franklin Inst., vol 249, pp 57-83, 139-155.
[2] E. J. Colussi, "Internally Matched RF Fower Transistors", Microwave Journal, April 1978, pp 81-84
[3] D. Pitzalis Jr and R. A. Gilson, "Tables of Impedance Matching Networks Which Approximate Prescribed Attenuation versus Frequency Slopes", IEEE Trans. MTT-19, pp 3E1-386, Apr. 71.
[4] W. H. Ku and W. C. Petersen, "Optimum. Gain-Bandwidth Limitations of Transistor Amplifiers as Reactively Constrained Active Two-Port Networks", IEEE Trans. on Circuits and Systems, vol. CAS-22, No. 6, June 75, pp 523-533
[S] H. W. Bode, "Network Analysis and Faedback Amplifier Design:", New York : Van Norstrand, 1945
[6] G. L. Matthaei, "Tables of Chebyshev Impedance-Transforming Networks of Low-Pass Filter Form", Proc. IEEE., Aug. 1964, pp. 939-963.
[7] O. Pitzalis, Jr and R. A. Gilson: "Broad-band Microwave Class-C Transistor Amplifiers", IEEE Trans. MTT-21, no. 11, pp 660-668, Nov. '73
[8] R. E. Hejmanoski, et al "Broadband Combinable Power Amplification 1350-1856MHz", ECOM-AM42-1, Aug. "72

THE HYBRII POWER AMPLIFIER MODULE FOR CELLULAR RADIO TELEPHONE DESIGNS

> By Norinan E. Dye and James P. Oakland Motorola, Inc.
> Phoenix, Arizona

Intruduction

In 1977, Motorola Semiconductor began design efforts on what was to be a family of 800 MHz hybrid power amplifier inodules for use in the land-mobiletelephone industry. Conventional and trunked commercial FM radio designs at 800 MHz were scen as inajor targets, but cellular telephone was the bright star in the future - the area in which to concentrate developinent efforts. This paper highights the design, construction, performance and reliability of the module used in inany of the 800 MHz cellular mobile telephones being manufactured today.

In the last 14 years Motorola has designed, built and sold a variety of power ainplifier inodules for use in the VHF (136-174 MHz), UHF (400-512 MHz) and the 806 to 950 MHz frequency bands. The inajority of these modules have gone into VHF and UHF portable and mobile commercial FM radios manufactured both doinestically and abroad. As shown in Figure 1 however, the list of demonstrable applications for the hybrid P.A. module is not linnited. The most recent applications are, of course, the 800 MHz radio designs and in this area the use of Inodules in radio P.A. sections is becoining the industry standard. Many radio inanufacturers have abandoned conventional discrete designs in favor of the hybrid module approach for the reasons summarized in Figure 2.

The Hybrid Power Amplifier Module Page 2

The U.S. cellular inobile application in the frequency range from 825 to 845 MHz has received the most attention due to the enormous business potential represented. The MHW808A1 module shown in Figure 3 was designed specifically for this application and is compatible with the unique cellular system requirenents as they relate to the P.A. section of the radio telephone. Shown in Figure 4 is a block diagram of the module incorporated into a typical cellular radio P.A. section.

The inodule has three stages of gain with the overall gain adjustable over a full 30 dB range by controlling the supply voltage to the first stage. A complete summary of the electrical specifications and typical RF performance curves are illustrated in Figures 5 through 8. An important feature to note is the excess bandwidth capability of the module as witnessed by the 806 to 870 MHz bandwidth specification and the even more broadband characteristics shown in the typical RF performance curves. In fact, the MHW808A2, which is identical to the MHW808A1 except for a 806 to 890 MHz bandwidth specification, is sourced from the same product line. The relatively broad bandwidth of the module is the result of design not chance. Experience has shown narrowband designs to be more prone to instability under source and load mismatch conditions. Additionally, the output power versus input power curves shown in Figure 7 are for general interest and are not included to suggest gain control via RF drive adjustment. As stated above, the

The Hybrid Power Aınplifier Module
Page 3
module is designed for gain control via supply voltage adjustinent of the first gain stage. Most significantly, however, the module is designed to maintain stability (i.e., no spurious outputs) over the complete range of definable radio operating conditions which impact on the inodule in the form of varied levels of RF drive, supply voltage, gain control voltage, source and load misinatch, temperature and, especially true for the cellular application, RF output.

A circuit schematic for the module is shown in Figure 9. The three active devices feature high figure-of-inerit geometries to assure maximum stage perforinance and gold top metal for high reliability. To enhance overall module stability, all three stages operate in the common-emitter configuration. The first stage, the gain control stage, is biased for large signal class-A operation and the last two stages for class-C operation featuring threshold base bias with teinperature compensating Schottky diodes. The threshold bias sets the average emitter-base junction potential at 0.35 to 0.4 volts and is used primarily to eliminate stability problems at low levels of RF drive when the transistors are just beginning to turn on. Schottky diodes with the inherently low forward voltage characteristic are compatible with the threshold bias voltage range and provide satisfactory temperature compensation for power degradation at reduced teinperatures. In Figure 10, the benefits of threshold bias are illustrated along with a graph depicting the forward voltage versus temperature characteristic for the IN5817 Schottky diode at 50 mA forward current.

The Hybrid Power Amplifier Module

Page 4

The virtual ground concept has been employed at the emitter of the output transistor to minimize the deleterious effects of common lead impedance on RF gain associated with common-emitter operation. The emitter wirebonds are not returned directly to ground, but first to the bottom side of the first shunt capacitor at the base and at the collector, and then to ground through relatively large isolation inductances. The net effect is to isolate the first transformation loop at the base and collector from ground. As configured, a virtual ground is established at the ennitter wirebond pads on the transistor chip which, in effect, elitninates cornmon lead inductance and allows a stage gain equaling that achievable with common-base operation without sacrificing module stability.

In addition to the input and output impedance levels being 50 ohins, each interstage is also designed to be at the 50 ohin level to facilitate testing of individual stages and to provide a cascadable, gain block option. In general, lowpass Chebyshev impedance matching networks as shown in Figure 11 are used to transform the low base and collector impedance levels to the terininal or interstage level of 50 ohms. Listed in Figure 12 are the considerations for deterinining the number of matching network sections required. Consider for example, the real part of the base innpedance for the third stage transistor is approximately 0.35 ohm - a transforination ratio of nearly 140 when transformed to 50 ohins. In Figure 13 the circuit element values and corresponding passband transducer loss curves are shown for 1, 2, and 3 sections of inatching for transforming the 0.35 ohin base impedance to 50 ohins over the 800 to 900 MHz

The Hybrid Power Ainplifier Modul Page 5

operating frequency band. In this design example, both bandwidth and transforination ratio are known, fixed values. If ininimuin transducer loss in the passband was the primary criterion for selecting a circuit configuration, then the choice of two sections with a inaximuin of 0.007 dB loss would seem nost reasonable and, in fact, two sections are used in the actual design.

In Figures 14 and 15 are a listing of the various types of inductors used in the circuit realization and a photograph illustrating specific examples of each type. The prisnary factors for determining which inductor type to be used are the inductance value required and the circuit area available. At $\mathbf{3 0 0} \mathrm{MHz}$ with high transforination ratios it is not uncommon to encounter inductance values less than 1 nH . In the design example above, the first series inductor at the base of the third stage transistor ranged in value from 0.12 nH to 0.78 nH depending on the number of inatching sections used in the design. Inductance values in this range are necessarily realized by accurately controlling the height and length of a wirebond or wirebond array and, in this particular case, the wirebond array used to access the base wirebond pads on the transistor. Array heights are controlled by using glass rod forms with dianeters specified to within ± 1 mil and, more recently, with the use of sophisticated autornated wirebond equipinent.

Larger values of inductance are realized with lengths of electrically short microstrip transmission line formed on the ceramic circuit substrate. Shown in

The Hybrid Power Aimplifier Module Page 6

Figure 16 is a sketch of the inicrostrip configuration and a graph illustrating characteristic impedance and inductance per unit length as a function of line width for a coinmon ceramic material - aluminum oxide. The non-linearity of the relationship between line width and inductance per unit length can often be used to the designer's advantage in selecting an optirnum physical realization of a specific inductance value.

Although not used in the MHW808A1 design, airwound coils are also used to realize the larger inductance values. Many of the VHF and UHF designs incorporate the airwound coil.

The capacitor types used in the module realization are listed in Figure 17. in addition, a photograph illustrating examples of each type is shown in Figure 18. In general, all capacitors used for RF impedance matching purposes are MOS. The cost effectiveness and piece part control afforded by internal inanufacturing and the relatively high Q of the MOS structure are the primary reasons for this choice. MOS capacitors are currently inanufactured with capacitance values in the range from 0.5 to 750 pF using silicon dioxide as the dielectric insulator. Silicon nitride has also been used where higher values of capacitance per unit area are required to minimize capacitor plate area.

In situations where even higher capacitance values are required cerannic chip capacitors are utilized. NPO ceramic chip capacitors available in the value range

The Hybrid Power Amplifier Module
Page 7
indicated for MOS capacitors can be used for RF impedance inatching elements but are physically larger and, in general, exhibit a lower Q. However, for supply bypassing and dc blocking, which typically dictate larger capacitance values to accornmodate both a RF and a low frequency function, high dielectric constant cerainic chip capacitors are the ideal choice. For some applications, most notably the dc blocking application, high capacitance values can be simulated at a specific frequency by selecting a lower value chip capacitor that is self-resonant at the frequency of interest. Finally, in those situations where high-pass impedance inatching networks are used, series capacitors used for RF impedance matching elernents serve a dual function and also provide dc blocking. This technique is einployed at the collector of the first stage transistor in the MHW808A1 module where, not only does the series capacitor serve a dual function, but the shunt inductor is used as a RF matching network element and the means for bias insertion.

Shown in Figure 19 are the two most common approaches to bias insertion one of which is the technique discussed in the preceding paragraph regarding highpass inatching networks and the dual function of the circuit elements. The other approach, the approach used for the second and third stages in the MHW808AI design, utilizes a separate section of high impedance transınission line appropriately bypassed at the end closest to the supply voltage access terminal. The line length is generally selected to yield a high shunt impedance at the point of insertion in the circuit, but can be chosen to present a shunt inductance value capable of parallel resonating the output capacitance of the transistor involved.

The Hybrid Power Amplifier Module Page 8

Resistive elements are formed using the evaporated nichrome adhesion layer located between the ceramic substrate and the metal conductor. Nichrome is exposed by selectively etching the inetal conductor and is laser trimmed to within 1% of the desired resistance value.

To bridge the gap between design concepts and reality, a "thumb-nail" sketch of the module construction is in order. Tooled ceramic substrates purchased from an outside vendor are metallized using thin-filın techniques. Topside inetal conductor patterns are defined using photolithographic procedures and plated to final thickness. Nichrone resistors are laser trimmed to value. The substrates are laser scribed and broken into individual circuit boards and at this point are ready for subsequent assembly operations. All active devices and MOS capacitors are attached to the circuit boards using gold-silicon eutectic bonding. Other components including leads, bridges, ceramic chip capacitors and diodes are soldered to the circuit board using gold-tin solder preforms reflowed in a hydrogen furnace. The circuit board is wirebonded and at this point is a completed circuit board subassembly. The appropriate combination of circuit board subassemblies is soldered to a plated copper flange using a low temperature indium based solder and the nearly complete module is ready for initial RF testing using internally designed, fully automated RF test equipment. If the inodule passes the initial RF test, it is conformally coated and a plastic cover is attached. The module is than RF tested once again, packaged and shipped to the warehouse

The Hybrid Power Ainplifier Module Page 9

The MHWSO8AI module has recently undergone several inajor cost reduction steps. As originally designed, the first stage circuit was asseinbled on a single piece of aluminium oxide cerainic ineasuring $0.3^{\prime \prime} \times 0.65^{\prime \prime}$ and the second and third stages were build on a single piece of beryllium oxide ceramic measuring $0.6^{\prime \prime} X$ $0.65^{\prime \prime}$. The information shown in Figure 20 highlights the inajor differences between the two ceramics that impact on inodule design and cost. The choice of BeO as a substrate material for stages two and three was based solely on therinal considerations with the thermal conductivity of BeO being five to six times that of $\mathrm{Al}_{2} \mathrm{O}_{3}$. However, the limited availability and the extrenely high cost of BeO forced a redesign effort aimed at utilizing alternate assembly procedures which minimize the use of the BeO cerannic. The photograph shown in Figure 21 features the original or conventional design contrasted with the newer cost reduced design which resulted from this effort. In the cost reduced design BeO usage is limited to two sinall carriers ineasuring $0.08^{\prime \prime} \times 0.15^{\prime \prime}$ to which the active die are mounted The remaining circuitry for stages two and three is constructed on two pieces of $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic with the overall asseinbly dimensions being the saine as the conventional design. In suminary, BeO usage was reduced from 0.39 square inches to 0.024 square inches - a factor of 16.25 .

The second cost reduction feature is closely linked to the first and involves the ceramic thin-film metalization scheme. Historically, best results in metalizing BeO using thin-film processes have been achieved with an evaporated nichrome

The Hybrid Power Ainplifier Module

 Page 10adhesion layer followed by evaporated gold and then plated gold. For $\mathrm{Al}_{2} \mathrm{O}_{3}$, a less expensive inetal scheme, the components of which are evaporated nichrome, evaporated copper, plated copper, plated nickel and a gold flash plating yields very satisfactory results and allows the use of copper in place of gold as the primary conductive metal. For the inicrostrip structure the metal closest to the cerainic surface is the inost critical. Shown in Figure 22 is a sketch of the inicrostrip crosssection and a corresponding graph illustrating the normalized current density in the top and bottom side inetal as a function of penetration depth ineasured in units of skin depth. From the graph a metal thickness of four or five skin depths closely approximates the maximum penetration depth into the conductor and can be used as a specification for minimum metal thickness. The chart presented in Figure 23 lists skin depth information in microinches for copper and gold at several frequencies. For the 800 MHz module designs, four to five skin depths represents 350 to 500 microinches of thickness dependent upon the inetal chosen. This is a significant metal usage and fur ther validates the cost effectiveness of using $\mathrm{Al}_{2} \mathrm{O}_{3}$
in place of BeO.

The third, and last, cost reduction feature is the implementation of automated wirebonding. Prior to automated wirebonding, manual wirebonding using glass rod forms on critical wirebond arrays was the single most labor intensive operation in the module construction. Cominercially available equipinent was purchased and specially modifed to accommodate the complex wirebond

The Hybrid Power Amplifier Module
Page ! 1
scherne and is fully operational at this time. It is estimated the wirebond time per
inodule has been reduced from eight minutes to less than forty seconds.

All of these cost reduction features combined with offshore assembly in Motorola's Seremban, Malaysia facility have resulted in module selling prices that are extremely competitive with the pricing of discrete transistor lineups required to build the equivalent amplifier.

As always, reliability is a key issue with radio manufacturers. The radio designer must feel confident the component selections he makes will not result in unexpected reliability issues and adversely affect the salability of the end product in this case the radio telephone. Listed in Figures 24 and 25 are the reliability tests completed for both the conventional and cost reduced designs. With exception to the therinal shock testing, which is a destruct test designed to detect such problems as cerainic fracturing under extreine temperature stress, sample groups of modules were subjected to each test with before and after data recorded to identify failures. These tests were perforined under the supervision of Motorola's Reliability and Quality Assurance organization and copies of the tes conditions and verified test results are available upon request.
เ ヨหกัปை

RADIO
4. UTILITY USAGE MANAGEMENT
5. ALARM SYSTEMS

7. WILDLIFE TRACKING SYSTEMS

SXNIר NOISSIWSNVY $\forall \perp \forall O$ д 8
9. MARINE RADIO SYSTEMS

FIGURE 3 - MHW808A1

FIGURE 2

CONSIDERATIONS FOR CHOOSING HYBRID APPROACH OVER CONVENTIONAL DISCRETE DESIGN APPROACH

1. INHERENT SIZE ADVANTAGE.
2. GUARANTEED "SUB-SYSTEM" PERFORMANCE (i.e., BANDWIDTH, INPUT RETURN LOSS, GAIN, EFFICIENCY RUGGEDNESS, STABILITY, HARMONIC SUPPRESSION, DYNAMIC RANGE).
3. HIGH LEVEL OF PROVEN RELIABILITY.
4. MINIMIZE CLOSE TOLERANCE ASSEMBLY PROCEDURES COMMON TO DISCRETE DESIGNS.
5. BOTTOM-LINE COST EFFECTIVENESS.
6. REDUCE DESIGN TIME FOR RADIO POWER AMPLIFIER SECTIONS.

ELECTRICAL SPECIFICATIONS FOR MHW808A1

(CONDITIONS: PIN $=30 \mathrm{~mW}$, POUT $=7.5 \mathrm{~W}$, $\mathbf{V}_{S 1}=\mathbf{V}_{\mathbf{S} 2}=12.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CONT}} \leq 12.5 \mathrm{~V}$)

BANDWIDTH: 806 TO 870 MHz
GAIN: 24dB
MAXIMUM INPUT VSWR: 2:1
MINIMUM EFFICIENCY: 30\%
MAXIMUM HARMONIC OUTPUT: -42dBc @ 2io, -60dBc @ 3io AND HIGHER
LOAD MISMATCH STRESS: CAPABLE OF WITHSTANDING
POUT $=9 W$, V S $^{\prime}=$ V S2 $^{2}=16 \mathrm{~V}$, LOAD VSWR $=30: 1$
POWER DEGRADATION WITH TEMPERATURE: LESS THAN 1.7dB FROM $-30^{\circ} \mathrm{C}$ TO $+80^{\circ} \mathrm{C}$
(REFERENCE: 7.5W @ $+25^{\circ} \mathrm{C}$)
STABILITY: SPURIOUS OUTPUTS $\leq 70 \mathrm{dBc}$ FOR PIN $=0$ TO 30 mW , $V_{S 1}=V_{S 2}=10$ TO 16V, $V_{C O N T}=0$ TO 12.5V AND LOAD
VSWR $=4: 1$

FIGURE 4

TYPICAL APPLICATION FOR CELLULAR MOBILE RADIO

FIGURE 7

OUTPUT POWER VERSUS GAIN CONTROL VOLTAGE FOR MHW808A1

K 41030

FIGURE 6

GAIN CONTROL VOLTAGE, INPUT SWR, EFFICIENCY VERSUS FREQUENĆY FOR MHW808A1

VCONT, GAIN CONTROL VOLTAGE (VDC)

CIRCUIT SCHEMATIC FOR MHW808A1

FIGURE 8

OUTPUT POWER VERSUS INPUT POWER FOR MHW808A1

PIN, INPUT POWER (mW)

FIGURE 11

LOW-PASS CHEBYSHEV IMPEDANCE MATCHING NETWORK CONFIGURATION

TYPICAL RESPONSE FOR $\mathbf{N}=2$

FIGURE 10
THRESHOLD BIAS FOR CLASS-C OPERATION

DESIGN EXAMPLE ILLUSTRATING PASSBAND TRANSDUCER LOSS VS. NUMBER OF MATCHING SECTIONS

UNITS FOR RESISTANCE: OHMS
UNITS FOR INDUCTANCE: nH
UNITS FOR CAPACITANCE: PF

K4099
AA MOTOROLA INC.

FIGURE 12

CONSIDERATIONS FOR DETERMINING NUMBER OF MATCHING SECTIONS NEEDED

1. tRANSFORMATION RATIO (i.e., RHIGH / RLOW).
2. TRANSFORMATION BANDWIDTH OR FRACTIONAL BANDWIDTH REQUIRED.
3. ALLOWABLE PASSBAND LOSS.
4. LEVEL OF REQUIRED HARMONIC SUPPRESSION.
5. AMOUNT OF CIRCUIT AREA AVAILABLE.

FIGURE 14

INDUCTOR TYPES

1. PRECISELY FORMED WIRE BOND ARRAYS (0.1 TO 1 nH).
2. LENGTHS OF ELECTRICALLY SHORT MICROSTRIP TRANSMISSION LINE (1 TO 30 nH).
3. DISCRETE AIRWOUND COILS (1 TO 50 nH).

CAPACITOR TYPES

1. MOS (MANUFACTURED INTERNALLY). 0.5 TO 500 pF
2. NPO CERAMIC CHIP. 1 TO 500 pF
3. HIGH DIELECTRIC CONSTANT CERAMIC CHIP (USED PRIMARILY FOR INTERSTAGE BLOCKING AND SUPPLY BYPASSING). 18,000 pF

FIGURE 16
PROPERTIES OF TYPICAL MICROSTRIP CONFIGURATION

FIGURE 19

BIAS INSERTION TECHNIQUES

1. CHOKES FORMED WITH LENGTHS OF HIGH IMPEDANCE MICROSTRIP TRANSMISSION LINE:

a. $\lambda / 8<\ell<\lambda / 4$
b. $\mathbf{5 5}<\mathbf{Z}_{\mathbf{0}}<\mathbf{9 0}$ OHMS
c. CAPACITOR, C, PROVIDES LOW IMPEDANCE TO GROUND OVER OPERATING FREQUENCY RANGE.

2. IN SITUATIONS WHERE HIGH-PASS IMPEDANCE MATCHING NETWORKS ARE USED, SHUNT INDUCTORS ALSO PROVIDE A MEANS OF BIAS INSERTION.

FIGURE 18 - EXAMPLES OF CAPACITORS USED IN MODULE DESIGN

FIGURE 21 - CONVENTIONAL AND COST-REDUCED DESIGNS FOR MHW808A1

FIGURE 20

ALUMINUM OXIDE VERSUS BERYLLIUM OXIDE

ALUMINUM OXIDE BERYLLIUM OXIDE

RELATIVE DIELECTRIC CONSTANT
THERMAL
CONDUCTIVITY
METAL ADHESION STRENGTH

AVAILABILITY
cost
9.0
6.7
0.34

SATISFACTORY
POOR
SATISFACTORY
POOR
$\mathbf{\$ 0 . 1 9}$
$\mathbf{\$ 2 . 7 0}$

PER SQ. INCH

FIGURE 23

SKIN DEPTH VERSUS FREQUENCY FOR COPPER AND GOLD

	COPPER			
	212		GOLD	
150 MHz	236		μ INCHES	
450 MHz	123		136	μ INCHES
850 MHz	89		99	μ INCHES

CURRENT DENSITY WITHIN CROSS-SECTION OF MICROSTRIP CONDUCTOR

J ミ CURRENT DENSITY IN THE METAL CONDUCTOR EXPRESSED AS A FUNCTION OF X.
Jo \equiv Current density in the metal conductor at the metal/dielectric interface (X=0).
$\delta \equiv$ SKIN DEPTH $=\sqrt{\frac{2}{\omega \mu}}$

FIGURE 25

RELIABILITY TEST RESULTS

SAMPLE SIZE FAILURES

1. HIGH TEMPERATURE STORAGE LIFE
2. MOISTURE RESISTANCE
3. STEADY-STATE OPERATING LIFE
4. CYCLED OPERATING LIFE
5. TEMPERATURE CYCLING
6. THERMAL SHOCK
7. VIBRATION
8. MECHANICAL SHOCK
9. SOLDERABILITY
10. LEAD BEND
11. SMOG ATMOSPHERE, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NO}_{2}, \mathrm{SO}_{2}$

35 0
84
0
400
16
0
80
0
10
0
10
0
10
0
10
0
100
8 of each
0

FIGURE 24

RELIABILITY TESTING SUMMARY FOR HYBRIDS

1. HIGH TEMPERATURE STORAGE LIFE ($125^{\circ} \mathrm{C}, 1000$ HOURS)
2. MOISTURE RESISTANCE $\left(85^{\circ} \mathrm{C}, 85 \%\right.$ RELATIVE HUMIDITY, WITH DC BIAS APPLIED)
3. STEADY-STATE OPERATING LIFE ($100^{\circ} \mathrm{C}, 1000$ HOURS)
4. CYCLED OPERATING LIFE $\left(50^{\circ} \mathrm{C}\right.$ TO $110^{\circ} \mathrm{C}, 5000 \mathrm{CYCLES}$, 6 MINUTES PER CYCLE)
5. TEMPERATURE CYCLING, AIR TO AIR $\left(-55^{\circ} \mathrm{C}\right.$ TO $+125^{\circ} \mathrm{C}$, 10 MINUTES AT EXTREMES)
6. THERMAL SHOCK, LIQUID TO LIQUID ($0^{\circ} \mathrm{C}$ TO $+100^{\circ} \mathrm{C}$)
7. VIBRATION, VARIABLE FREQUENCY $(10,55,10 \mathrm{HZ}$ ON X, Y AND Z AXIS)
8. MECHANICAL SHOCK (500G, 1 MSEC, 3 PLANES)
9. SOLDERABILITY ($260^{\circ} \mathrm{C}, 10$ SECONDS)
10. LEAD BEND ($8 \mathrm{OZ} ., 90^{\circ}$ BEND AND RETURN)
11. SMOG ATMOSPHERE, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NO}_{2}, \mathrm{SO}_{2}(75 \%$ RELATIVE HUMIDITY, 96 HOURS)
high poner class a and class ab transistors

Prepared ty:
 michael J. mallinger
 Vice President - Marketing

HIGH PONER CIASS A AND CIASS AB TRANSISTCR

For URF TV and Cellular Base Station Applications. aUlline of presentation:
A) URF TELEVISION
I. Overview of Requirement - System Needs

I1. UHP TV Class A Performance
III. Transistor Performance Characteristics and Design Criteria
IV. Transistor Performance Achieved
V. Circuit Design Concepts and Performance Achieved
B) Celluluar base station
I. Overview of Requirement - System Needs
II. Base Station Class AB Performance
III. Transistor Performance Characteristics and Design Criteria
IV. Transistor Performance Achieved
v. Circuit Design Concept and Performance Achieved
A) LHF TEDEVISION
I. ONERVIEN OF REQUIREMENT -- SYSTEM NEEDS

The high power URF TV transmitter has the following system needs:

Operating Frequency Range: $\quad 470-860 \mathrm{NHz}$

Input Signal Levels	Frequency
Visual at - 8dB	FO
Aural - 7dB	FO +4.5 MHzz
Color Sub Carrier - 16dB	FO +3.5 MHz

All intermodulation products are measured in dB below the peak sync pulse and are specified at 60 dB down. Since this spec includes preemphasis the transistor is specified at -50 dB .

This specification set is usually referred to as the European test method and is considered to be the most stringent of the specifications for this system type.

The solid state amplifier power level desired is 100 watts. This can be used to drive a high power travelling - wave tube mplifier to 1 KW or higher. To achieve a 100 watt amplifier will require the following combination in the final stage: (Using hinary combination)

2-70 watt
4-40 watt.
8 - 20 watt
16-12 watt
32-8 watt

It should be noted that there are a number of systens which have combined 32 or more of the lower power transistors to achieve the needed power. The combining of a large number of transistors is expensive to build and to maintain. The use of a pair of transistors œould be costly if it meant downtime due to failure. A reasonable canpromise is to use an 8 -way combined unit utilizing 20 -watt transistors. This improves the initial cost and allows for "graceful degradation" should a single transistor fail.
A typical lineup would then look as follows:

The use of cambined transistors in the final stages improves the intermodulation characteristics and reduces the impact of interstage mismatch. It also allows for manufacture of subassemblies consisting of a transistor pair which are then integrated into the entire power amplifier.

The key transistor is the 20 watt power device used in the final stage. This presentation will detail the design and characteristics of the 20 watt power transistor.

II. UHF TV CLASS A PERFORMANCE

Class A transistors are used to achieve the required linearity in line with the system specs for multitone intermodulation distortion. The device is usually biased class A at the supply voltage of 24 volts and at the current necessary for full Class A operation - assuming 25 \% efficiency the 20 watt device would be biased at the $D C$ power of 80 watts which is 24 volts, 3.3 amps . The device must therefore be capable of a high dissipation at this bias condition and also withstand load mismatch under full qperation.

The device must also have a high degree of linearity at the operation point and therefore must have a 1 dB compression point approx 25% above the rated power therefore the 20 watt power device has power output in excess of 25 watts.

The high power Class A Transistor therefore incorporates all of the state-of-the-art technology in order to produce a product which has the high power output characteristics and still retains the low capacitance needed to operate at 860 MHz .
III. TRANSISTOR PERFOPMANCE CHARACTERISTICS AND DESIGN CRITERIA The operating specifications for the 20 -watt Class A transistor are as follows:

Frequency Range: $470-860 \mathrm{MHz}$
Power Output: 20 watts peak sync at IMD of -50 dB
Power Gain: 8.5dB
Load Mismatch Capability 3:1 under full operation
operating Conditions: VOC $=24$ volts, $I C=2.7 \mathrm{amps}$
D.C. Safe Operation Range (SOAR) $24 \mathrm{~V}, 3$ amps

Utilizing silicon besed technology with NPN microwave power interdigitated designs which include diffused ballasting and gold topside metalization the generic design conditions, for the total device, become:

Emitter Periphery (EP) : 6700 Mils
Base Area (BA): 1200 square Mils
Base Periphery (BO): 900 Mils
$\mathrm{EP} / \mathrm{BA}=5.8$
Chip Design:
Acrian has designed a cell structure which when cambined in a push pull package and consists of eight (8) cells on each side will provide the total required active area. This gecmetry is interdigitated and incorporates diffused ballast resistors, gold topside metal and silicon nitride surface passivation. The photo (PHOTO 1) is a closeup of the cell structure.

The final device is built into a push pull package with eight cells on each side. The product incorporates two steps of low pass match (series L shunt C) on the input. This provides a transformation of the input impedance from the chip to the
package teminals and nets an input impedance on each side of $3+j 9$ OHMS ${ }^{\circ}$. The final device is shown in the photo (PHOTO 2).

IV. TRANSISTOR PERFORMANCE ACHIEVED

The transistors constructed and evaluated have provided the following results:

FIG. 2
v. CIRCUIT DESIGN CONCEPTS AND PERFCRMANCE ACHIEVED

The transistor is a push pull device therefore the circuit employs the push pull design concept incorporating the balanced to unbalanced 1:1 transformer on the input and output. The device impedances are transformed from the package levels to 25 ohms utilizing microstrip transformers; lumped elements on fiberglass circuit board material (teflon) with a dielectric constant of 2.5 (See Photo 3). This was selected since it is readily available and is quite commonly used in the broadcast industry. If size were critical the design could be accomplished using ceramic alumina in about $1 / 4$ the total area.

A full schematic of the final circuit is as follows:

FIG. 3
This circuit is tuneable for a given channel so that it can be peaked for best IMD performance. It will cover perhaps 5 channel quite well without any returning.

Details on the circuit schematic and bill of materials are included in the Appendix.
B) CeILULIAR BASE STATION
I. OVERVIEN OF REQUIREMENT - SYSTEM NEEDS

The cellular base station requires a power amplifier capable of achieving:
Frequency Range: 850-960 MHz
Supply Voltage: 24 volts
Power Output: 45 watts ($45+$ losses)
Power Gain: 28dB
Dynamic Range: -28dB from Full Power
Load Mismatch: to 1 - after circulator
Stable into a 2 to 1 load mismatch
Projected MITF 15,000 hrs.
The cell site will consist of a large number (24 to 96) of these transmit amplifiers and therefore the total unit size and power consumption are key points to consider.

II. base station class ab performance

The base station is required to service a number of units within
the cell and must be able to autcmatically adjust the output power depending on the distance to the mobile unit. Therefore, the power output of the base unit must be adjustable over a wide range. The Bell specifications call for adjustment of power over a range of 28 dB down fram the full system spec output. Also as the density of cells increases the power output of qperation will be reduced. The ability to service a wide dynamic range dictates that the transmit power AMP be designed with transistors working Class AB. This therefore prefers the transistor to be designed common enitter.
III. transistor perpormance characteristics and desicn criteria

The transistor specs for power output of 60 watts, Class AB common emitter with 6.3 aB power gain and rugged into a 5 to 1 load mismatch indicate the complexity of the task - to this point there has been no such product. The current systems use a pair of common base power transistors each providing 35 watts of power output.
Chip Design:
To achieve this performanoe using NPN silicon bipolar transistors it was necessary to design a product with total active silicon characteristics as follows:

Enitter Periphery (EP) $5,000 \mathrm{Mils}$
Base Area (BA) 900 Square Mils
Base Periphery (EP) 700 mils
EP/BA 5.8
An interdigitated structure was selected due to the excellent history of this configuration for designs of this type as used in UHP TV and the ew band of 500-1000NHz.

The chip incorporates diffused enitter ballasting, gold topside metalization and silicon nitride passivation.

The final device consists of 2 groups of six cells on each side of the push pull device.

Package:

It was also decided to use a push pull flange mount package to allow for a simplified circuit versus using a large single ended structure which would have lower terminal impedances. The package is designed with a short series path (input to output) and therefore only required a single step on input match on the final device. Package outline drawing, Figure 7. The transistor flange is the emitter lead inductance - improving power gain. A side benefit is the much improved input return path -a capacitor across the two inputs which is much easier to implement versus chip caps to ground in the more conventional approach. The package is sealed be adhering a ceramic lid in place with an epocy preform - a commonly used tectnique in the mobile/cellular product area.

IV. TRANSISTCR PERPGRMANCE ACHIEVGD

The final transistor performance over the frequency range is as follows:

POWER OUIPUT VERSUS FREQUENCY

V. CIRCUIT DESIGN CONCEPT AND PERFORMANCE ACHIEVED

The circuit design is a conventional layout which has been successfully used to cover octave bands in this general range. The concept utilizes an input and output balanced to unbalanced transformer and microstrip matching networks. The bandwidth is quite easily covered with the full spec performance achieved without any tuning. The trinmers are to allow for minor variations in both the circuit and the transistors. The board material is teflon fiberglass with a dielectric constant of 2.5.

The characteristic impedance of each side of the device is $5+j 13$ OHNS on each half of the input. A low pass/high pass match is used to transform the impedance up to the level desired prior to the bal/unbal unit.

The final configuration performance as follows:

FIG. 5

Studies were conducted to verify the junction temperature during full operation with the results showing a junction tenip rise of less than 90 deg. cent when fully stressed.
VI. NEXT GENERATION SYSTEM PERFORMANCE

The high power transistor is used in conjunction with the lower power devices as follows:

This unit has passed the Acrian qualification procedures as set up by Acrian to simulate the bell procedure and will go thru the bell inspection shortly. It is presently undergoing tests at the labs.

PRELIMINARY
9BSE60
SCHEMATIC DIAGRAM

BOARD MATERIAL: 1/32" TEFLON - FBERCLASS
$\mathbf{C}_{11} \mathbf{C}_{2}$
\mathbf{C}_{1}
\mathbf{C}_{1}
\mathbf{C}_{5}
\mathbf{C}_{1}
$\mathbf{C}_{7,} \mathbf{C}_{1}$
$\mathbf{C}_{5}, \mathbf{C}_{12}$,

- 11.5 pF ATC "B'"
5.1pF DIALECTRIC LABS
- 10pF ATC " 8 "
- 4.7pF ATC "B"
-.3-3.5pF JOHANSON
$\begin{array}{ll}\mathrm{C}_{7}, \mathrm{C}_{7} \\ \mathrm{C}_{7}, & \mathrm{C}_{12}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{97}-1 \mu \mathrm{~F}\end{array}$
$C_{10}, C_{11}, C_{14}, C_{13}-100 \mathrm{pF}$ ATC "B"

test circuit parts list

CAPACITORS

$C_{1}, C_{6}-4.7 \mathrm{pF}$ ATC Series A
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{2} 0, \mathrm{C}_{21}-33 \mathrm{pF}$ ATC Series A
$\mathrm{C}_{4}, \mathrm{C}_{9}$ - 1.2-3.5 pF Film Dielectric Trimmer
$\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{11}, \mathrm{C}_{12}$ - 0.01 Microfarad, 50 Volt Dise Ceramic
$\mathrm{C}_{8}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{25}$ - 1 Microfarad, 50 Volt Tantalum
$\mathrm{C}_{10}, \mathrm{C}_{16}, \mathrm{C}_{27}, \mathrm{C}_{12}$ - 0.1 Microfarad, 50 Volt Disc Ceramic
C_{13} - $0.6-6 \mathrm{pF}$ Piston Trimer
$\mathrm{C}_{18}, \mathrm{C}_{24}, \mathrm{C}_{14}, \mathrm{C}_{25}$ - 10 Microfarad, 50 Volt Electrolytic
$C_{28}, C_{30}-0.001$ Microfarad, 50 Volt Disc Ceramic
C_{31} - 100 Microfarad, 50 Volt Electrolytic

RESISTORS

R_{1} - 10 OHM, s_{2} Watt Carbon Composition
$R_{2}, R_{6}=500$ OHM Pot entomet er
$R_{3}, R_{7}-4.7$ KOHM, $4 /$ Watt Carbon Film
$\mathrm{R}_{4}, \mathrm{R}_{8}$ - 1 OHM, 3 Watt, 1% Carbon Fil
Rs, Rg - 47 OHM, Watt, Carbon Film

DIODES
$\mathrm{CR}_{1}, \mathrm{CR}_{2}-1 \mathrm{~N} 4148$

TRANSISTORS
Q_{1} - ACRIAN UTv200
$\mathrm{Q}_{2}, \mathrm{Q}_{3}-\mathrm{MJE} 172$

INDUCTORS
$L_{1}, L_{2}-0.47$ Microhenry Molded Inductor
$\mathrm{L}_{3}, \mathrm{~L}_{4}$ - One turn $\# 18$ gauge wire on a 0.325 inch form

microstriplines

$R_{7}, Q_{4}-0.075 \mathrm{in} . \times 0.65 \mathrm{in}$.
$1 . \rho ? .035 \mathrm{in} . \times 1.1$ microstrip on board
$\ell_{5}, \ell_{6}=0.120$ in. $\times 0.310 \mathrm{in}$.
$\ell_{5}, \ell_{6}=\ell_{8}-0.120 \mathrm{in} . x 1.33 \mathrm{in}$.
$Q^{9} \ell^{10} .035$ in. $\times 1.1$ microtrip on board
TRANS FORMERS
$T_{1}, T_{2}, T_{3}, T_{4}-50$ онM semi-rigid coaxial cable (0.056 in. $\times 1.1 \mathrm{in}$.)
soldered to microstripline measuring $0.035 \mathrm{in} . \times 1.1 \mathrm{in}$.)
Note: All microstriplines were calculated for $1 / 32 \mathrm{in}$. dielectric teflon glass 2 oz . copper clad substrate (Er=2.575).

HIGH-VOLTAGE UHF POWER STATIC INDUCTION TRANSISTORS

by

Robert J. Regan Scott J. Butier

GTE Laboratories Incorporated
 Watham, MA D2254

Abstract

This paper describes a new family of UHF power static induction transistors (SITs). These new transistors have significant advantages with respect to output power, breakdown voltage, efficiency, and terminal impedances, compared to more conventional bipolar transistors and MOSFETs. One of these devices, a new single-ended multicell SIT, has demonstrated 180W cw output power with 6 dB gain at 225 MHz with $>70 \%$ drain efficiency while operating at 60 Vdc . Small signal measurements on single-cell SITs indicate 10 dB gain in the UHF range and a unity power gain frequency in X-band

Introduction

Present-day high-frequency electronic system designers and manufacturers are required $t 0$ deal with a number of issues which are determined by the characteristics of the transistors used in their designs. One of the most pressing problems is the conversion of line voltage power o the lower voltages required by presently used power transistors. This conversion generally equires the use of large, heavy, and costly magnetic components. Another is in the power circuit design where very low transistor terminal impedances must be accommodated by high transformation ratio impedance-matching networks. In addition, thermal considerations are very important, and transistors with the highest power conversion efficiency are desired. GTE The SIT embodies the best combination of power frequency gain, efficiency, and breakdown oltage of any semiconductor device ${ }^{\text {en Pop }}$, Thus, it is possible using SITs, to design and implement efficient, highai, high trequency power amplifiers and oscillators which are capable of operating at high dc supply voltage levels.

Background

High-voltage SITs, which operate at relatively low frequencies (100 MHz), have been reported by Kotani et al. ${ }^{3}$ High-frequency SIT performance has been reported by Kane and Frey, ${ }^{4}$ but their devices operated at low voltage and relatively low power levels. Thus, high-frequency, highpower SITs have been limited to operation at low vollages ($<50 \mathrm{~V}$), ${ }^{2}$ until the recent develophave shown good uff power sure-gaie bipolar transistors, the most commonly used UHF power transistors, all operate below 40V.

In order to achieve high-frequency and high operating voltage concurrently, the surfacegate SIT has been optimized in various designs for operating voltage levels between 60 V and 100 V with good power gain at UHF and L-band frequencies.

SIT Operation

SITs are a special class of junction field-effect transistors (JFETs), in which the current flowing vertically' ' between the source and drain is controled by the height of an electric potential energy barrier under the source. ${ }^{6}$ Such a barrier will develop when the channel is depleted of mobile charge carriers by reverse biasing the gate junction. The height of the barrier is influenced by both the gate and the drain bias potentials. The channel current in an SIT is primarily due to minority cansier. Thus, the SIT is a majority carrier device, free from the deleterious effects of the depleted cis. Since the electrons have high mobility and travel at saturated velocily by virtue of the high intrinsic breakdown fields of bulk material.

SIT Electrical Performance

SITs have been fabricated and characterized at GTE Laboratories with pitch ranging from $15 \mu \mathrm{~m}$ to $7 \mu \mathrm{~m}$. $1,7,8$ This paper presents the most recent performance obtained from $7 \mu \mathrm{~m}$ pitch devices. In order to increase the gain and reduce the interelectrode capacitance in these devices, local oxidation (LOCOS) is employed to separate the gate and source in the vertical direction. A simplified cross section of this LOCOS surface gate SIT (SGSIT) is shown in Figure 1 . while Figure 2 illustrates typical dc I-V characteristics for a multicell LOCOS SGSiT. Figure 3 shows a set of typical electrical performance data, normalized to device size, where appropriate, by using the width of the active gate.

Small signal S-parameter measurements, taken using a Hewlett-Packard HP8409 network analyzer system, have been used in conjunction with SUPER-COMPACT to establish an accurate equivalent circuit model [Figure 4(a)] for this SIT. Figure 5 compares the measured and modeled 4 GHz is id gain data. The gain calculated using the to the four measured S-parameters were determined by an optimization procedure performed using SUPER-COMPACT. The plot identified as (B) on Figure 5 indicates that the gain calculated from the optimized model correlates very well with that calculated from the measured data. Once determined to be a fairly accurate electrical representation of the device, the model was used to determine the performance down to 100 MHz and also to evaluate the influence of package parasitics on the microwave performance of the SIT chip.

Figure 1. Typical cross section of a LOCOS surface gate SIT (SGSIT)

Figure 2. SGSIT DC I-V characteristic $\left(\mathrm{W}_{\mathrm{g}}=24 \mathrm{~cm}\right)$

Blocking Voltage	BV $_{\text {DG }}$	135 V
Voltage Gain	μ	10
Transconductance	$\mathbf{g}_{\mathbf{m}}$	$50 \mathrm{mS} / \mathrm{cm}$
ON-Resistance	$\mathrm{R}_{\text {ON }}$	$100 \Omega \cdot \mathrm{~cm}$
Input Capacitance	$\mathrm{C}_{\text {SGO }}$	$3 \mathrm{pF} / \mathrm{cm}$
Output Capacitance	$\mathrm{C}_{\mathrm{DGO}}$	$2 \mathrm{pF} / \mathrm{cm}$
Unity Power Gain Frequency		$>6 \mathrm{GHz}$

Figure 3. Electrical performance Data for $7 \mu \mathrm{~m}$ pitch LOCOS SGSIT

Figure 4. SGSIT equivalent circuit model

[^0]Figre 4. SGSit equalen circuit model

Figure 5. Small signal gain vs frequency of a $7 \mu \mathrm{~m}$ pitch SGSIT

As expected, common lead inductance is the most influential package parasitic component imiting the frequency response. Although the common lead inductance in the packaged SGSIT is less than 0.1 nH , there is considerable influence on the high-frequency performance. The reactive portion of the intrinsic SGSIT equivalent circuit may be converted to a common-node configuration using a deltu- Y transformation as shown in Figure 4(b). When this is done, it is clear that a series resonan! circuit is formed in the common lead. This results in a resonance peak in the small-signal gain at about 2.5 GHz .9 At this frequency, unilateral gain is approached, however, the gain decreases rapidly above this frequency. As shown on Figure 5, the common lead parasitic impedance was reduced in steps between the optimized equivalent circuit value and zero. The resultant circuit at each step was analyzed from 100 MHz to 10 GHz using super COMPACT. In each case the low frequency gain remained about he same, whe the common lead gain frequency increased. The resonance peak irequency was dee without common-lead reactive element values. The computed unity power gain requarist contained no resoparasitics was found to be 10 GHz , and the gain-requency with all of the package parasitics nances, as expected. Additional analysis ind equivaler reme importance of the common lead removed resulted in Anor improvemens, inductance in limiting device performance.

Large-signal tests with $7 \mu \mathrm{~m}$ pitch SGSITs have been conducted at UHF frequencies for three different size devices. For example, three SGSIT cells were combined in a single striplinetype package, GTE 02-140-50 EXP, and tested under "Class B" operating conditions. As in dicated on Fig. 6, operating this device at lower drain vottage results in more linear performance with stightly higher gain but lower PSAT. In addition, overall eince (nO $=\mathbf{P}$ IP ted on this graph. It is interesting to note that 14 W , is $\equiv 85 \%$. This is very high compared to at $P_{0}=50 \mathrm{~W}$ with $V_{D D}=60 \mathrm{~V}$ and
any other UHF power transistor.

Figure 7 illustrates the pertormance of a packaged six-cell SGSIT $\left(W_{g}=12 \mathrm{~cm}\right)$ at various perating conditions (class " A " and " B "). As expected, much higher gain ($\equiv 8.5 \mathrm{~dB}$) and more inear operation sossible (curve 3), arm the atput ($>100 \mathrm{~W}$) with the same power gain. The unprecedented $180-\mathrm{W}$ performance the singered ackaged 12-cell SGSIT ($W_{5}=24 \mathrm{~cm}$), GTE 02-140-180 EXP, is shown in Figure 8 . This device consists of six chips eufectically mounted on three specially connigured metallized BeO package inserts which are mounted in place within a specially designed power package using AuTin eutectic preforms. Quartz glass rods are epoxied in place within the package to provide support for the gate and source aluminum bond wires. Up to 180 W cw was demonstrated with this device. Drain efficiency was also very high, peaking at 76% at $P_{o}-175 \mathrm{~W}$. The sur face temperature of all of the SGSIT cells in this device was monitored during this test using infrared techniques and found to be approximately $95^{\circ} \mathrm{C} \pm 5$, indicating excellent die bond and insert bond integrity and uniformity.

Conclusion

Power SGSITs fabricated with small pitch have been shown to be capable of unusually high bias voltage operation at microwave frequencies while exhibiting high efficiency and gain as well as high input and output impedances. As a new class of high-voltage microwave power tran sistor, the SIT is presently under consideration for applications such as phased array rada systems, broadcast transmitters and high scanning rate electron beam systems.

Acknowiedgment

The authors wish to acknowledge the support of Paul Haugsjaa; the important contributions to this work by Adrian Cogan, Izak Bencuya, and Fred Rock in the areas of device design and process development; the technical assistance of Anthony Varallo. Marguerite Delaney, Charles Herrick, Theresa Rubico, Steve Rose, and Maureen Sullivan; and the process engineering contributions of Emel Bulat.

This work was supported, in part, by the USAF Systems Command, WPAFB, under Conract No. F33615-82-C-1702.

References

1. A. Cogan, R. Regan, I. Bencuya, S. Butler, and F. Rock, ''High Pertormance Microwave Static Induction Transistors," IEDM, Washington, DC. December 1983, Paper 9.5
2. Y. Kajiwara et al., "A 100 W Static Induction Transistor Operating at 1 GHz ," Proceedings of 11 th Conference on Solid State Devices, Tokyo (1979).
3. M. Kotani et al., "Characteristics of High-Power and High-Breakdown-Voltage SIT with the High Maximum Frequency of Oscillation," IEEE Trans. ED. Vol. 29, p. 194 (February 1982). 4. M. Kane and R. Frey, MSN, Seplember 1984, p. 46.
4. D. Moss, "ISOFET Evolution Yields High-Power Devices," Microwaves and RF, February 1983.
5. J. Nishizawa, Editor, Semiconductor Technotogies, 1982, pp. 220-240, North-Hoiland Publishing Co.
6. A. I. Cogan and P. O. Haugsjaa, "Two-Dimensional Field and Potential Analysis in SIT," Proceedings of 38th Device Research Conference, Ithaca, NY, paper \#3A-8 (1980).
7. R. Regan, A. Cogan, I. Bencuya, S. Butler, and P. Haugsjaa, "Improved Performance of HighVoltage Microwave Power Static Induction Transistors," 14th European Microwave Conference, Liege, Belgium, September 1984.
8. J. Nishizawa, ed. Semiconductor Technologies, North Holiand Publishing Co., 1982, p. 228.
"USE DF SAK technology in the fif systems of the 1980.s"
Carl A. Erikson, Jr.

Director of Processing Operations
Andersen Laboratories, Inc.
Bloomfield, CT 06002

ABSTRACI

Todays Surface Acoustac Wave (SAW) devices are no longer a research curiosity but are derived from a ature technology, providing low cost, include delay inclers

As KF engineers understand the adoantages of this technology, more and more of them are using sal devices in such systems as channelized filter banks, compressive receivers, chirp radars, spread spectrue comenication systens, and ECM equipment.

This paper wall sumarize the current usage of SAl devices in R f systens, both comercial and military, and also provide soce insight in future trends and applications.

INTRODUCTION

SAl devices have been demonstrated to be extreaely successful in any state-of-the-art FF systess to include comercializa, allitarycza, and spacess applications. These systeas deaands for high perforaance, highly
reliable components have enhanced SAH devices. reputation, allowing then to offer viable alternatives to other technologies such as digital processing charge coupled devices, and acousto-optics. As RF engineers begin to understand the advantages of saw technology, more of thea are using saw devices in their designs of such systeas as channelized filter banks, conpressave receavers, charp radars, spread spectrum conmunication systeas and ECM equipaent.

WHAT IS A SAN DEVICE?

A SAH devace can be defrined as a passive, electro-acoustic device that allows acoustic energy to be generated, anipulated, and detected on a plezoelectric substrate. There are three basic parts to any SAM device (See figure ll. First, a highly polished piezoelectric substrate such as quartz or lithium niobate is used. The property of piezoelectricity allows several paraneters for typical substrates used in fabricating sall devices. Second, thin etallized or grooved structures need to be fabricated of the substrate's surface by standard oetallization and photolithographe techniques. These structures whach include interdigital transducers (IDT),
aultistrip couplers (MSC), reflective gratings, and waveguides are designed to perfora the basic function of the SAW device; e.g., delay line, filter, resonator, convolver, etc. Third, the patterned substrate needs to be packaged and connected to the package's terainals. The package provides the eechanical support and hermetac environaent for the SAW substrate which can be extrealy sensitive to surface contamination.

Several eajor advantages of SAW devices which FF engineers should be aware of are:

1. Conpactness - 8ecause surface acoustic waves travel on the order of $1 \hat{0}^{s}$ times slower than electromagnetic waves, significant signal delays are achieved in a short length of substrate, typically 8 alcroseconds per ascrosecond delay, over one mile of cable would be needed!
2. Ease and Versatilaty of Design - Many types of devices can be readily designed with standard CAD technaques because there is a direct correspondence between the finger placeaent and weightang technaques of the transducers (representing time-domain) and the desired output cusually frequency domainl; namely, the Fouraer transforation. See figure 2.
3. Economical - The planar processing techniques used to fabricate SAW devices and the great reproducibility in manufacturing have made thea very econonical for many aplications. Costs may be as low as 5.50 for high performance, ovenized SAW dispersive delay line. In addition, the ability to easily integrate sam substrates with hybrid substrates and coaponents has been a key in providing low cost sal oscillators, progragable ponents filters, and internally-tuned SAW devices.

APPLICAIIONS OF SAW DEVICES

Table ll lists a few of the known applications of SAW devices based on type of function of the device. For each sajor function few coments and examples wall be emtioned.

SAM DELAY LINES

The amount of separation between the anput and output transducers relates directly to the time delay of the SAll device, naely Poecara Separation/velocityonw. The anount of metal versus free surface aterial parameter changes mith temerature will affect the tien Sh Fiqure 3 is an example of a mideband $S A W$ delay line centered at 700 MHz .

Because of its temperature stability, quartz is often utalized for delay lines. Quartz substrates as long as 12 to 15 inches have been used, giving tiae delays approaching 100 aicroseconds. To increase tiae delays above this, techniques such as rounding the edges of the substrate, aultistrip couplers, and cascading substrates have been tried.

SAW FILTERS

The filter functioning is one of the larger valume applications for SAW devices. Because SAW filters can be designed with optiaized aaplitude and phase responses for most of the world's television standards, millions of devices are fabricated every year for the intermediate frequency stages of monochrome and color television receivers. Dther If filtering applications include both basic and addressable CATV converters and decoders, TV tuners and Data Modens. Filtering for video and sound modulator outputs for CATV and Satellite receivers are other bigh voluee applications. Figure 4 is typical frequency response of a SAW vestigial sideband (USB) filter.

SAW OSCILLATIRS AND RESONATORS
SAW oscillators have been developed in response to both military and commercial needs to provide compact, stable and high performance sources in the high frequency range (100 MHz to 1100 MHz). SAM delay lines or resonators are integrated with standard hybrid circuitry into highiy actual device. Because the SAW oscillators operated at fundanental frequencies in the VHF and UHF range, the need for frequency multipliers and post multiplier filtering is reduced or eliminated. Both fixed frequency and voltage controlled SAW oscillators can be fabricated.

In addition to sources, one major use of SAW oscillators is in sensors. Parameters such as temperature, force, pressure, vapor density, and magnetic fields have been "sensed". For example, under stress itension or compressionl a SAN delay line or resonator will change length. When used as the feedback element in an oscillator, this change in length relates to a phase change around the oscillator loop causing a shift in output frequency. When the outputs of two oscillators cone where the SAW is stressed and the other 15 used as a referencel are aixed together to provide an If output, a fairly linear stress sensor can be obtained lSee Figure 6). The advantages of this technique are wide dynamic range, good
signal to nolse ratio, and an IF ouptut not dependent on teaperature as signal to noise ratio, and an IF ouptut not dependent
long as the temperatures of both SAW devices track.

SAW TAPPED DELAY LINES

SAW delay lines can be used to provide coding schenes. Figure ${ }^{7}$ demonstrates how FN type codes can be formulated by switching the polarity of the transducer fingers in each bit. Fixed codes containing more than output of a 13 bit Barker code SAH device. Programable matched iliters have been ade by interfacing with hybrad switching circuits.

SAM CONYOLVERS

Frogrammable SAW correlators use monolithic SAW convolvers to provide the maximun flexibility for wavefora prograning, being optinized for PN phase coded maveforms used in spread spectrum communications and phase coded radar. Figure 9 is a schematic of a programmable 5 AN correlator. The input signal, $s(t)$, at the IF irequency (fo) is applied to one input port of a monolithic SAW convolver while a locally generated reference signal,
$r(t)$, is applied to the second input port. The output signal, $c(t)$, is the convolution of the reference whth the input signal provided that the two signals coexist within the device processing time window of ΔT. Δ^{T} relates to the length of the pickup plate as seen in figure 10 of an actual SAW convolver. Because of the nature of the SAW convolver, the output signal is at twice the frequency of the input with twice the input bandwidth and 15 compressed in time by a factor of twa. If the reference signal is the time reversed replica of the input signal, the output signal is then the desired autocorrelation of the input. Figure 11 is an example of a correlated peak of a 63 chip Bi-Phase code. Normally the pN code rences maximal sequence and a large number of codes and cones to 1000 or more chips an be generated formata to over 100 MHz can be in length at chip rales irom a fen wegatriz to over

SAW DISPERSIVE DELAY LINES

Analog pulse compression using SAW dispersive delay lines (DDL) is a conmon technique for optimizing the range, resolution, and signal to noise performance of pulsed radar. Subsystems can be configured with both expansion and compression channels. Figure 1215 a schematic of such a subsysten. An unweighted DDL is used in the expansion channel to generate the linear $F M$ (chirp) signal to be transmitted. The conjugate copposite slope) DDL is used in the compression channel to perform matched filter signal processing. Often, a weighting function to reduce sidelobes is designed into the compression DDL. Figures 13 and 14 show typical frequency responses of an expander/compressor pair while figure 1515 the systeas compressed pulse.

SAW DDLs are suited for dispersions under $100 \mu \mathrm{sec}$, wide bandwidths up to 500 MHz and center frequencies up to 1 GHz .

FUTURE TRENDS

Several major trends are extending SAW technology into new arkets. High frequency ($>400 \mathrm{MHz}$) SAW components are being developed to neet the challenges of cellular radióaj, higher Ifs and microwave require a totally integrated approach to include every part of the process, its equipment and environment.

Nen materials are being developed to optimize parameters such as temperature stability and better piezoelectric coupling for specific applications. lanc oxiders can oe sputtered on low cost substrates at high production rates. Lithium tetraboratera has a hagh SAs coupling and low temperature coefficient of delay. This material should be useful in oscillators. Berlinitecti is another material useful for oscillator because it is temperature compensated and has a piezoelectric coupling higher than quartz. In addition, the integration of SAW structures on gallium arsenideres has allowed the basic acoustic functions of delay tapping and filtering and the basic electronic functions of ampirfying sumning, weighting and aemory to be implemented in a single substrate.

The economical manufacture of SAW devices with grooved structures fe.g., reflective array compressors. resonators and buried ldi filters) in large quantities will become a great challenge for many SAW cooponent houses because of the complex fabrication process and in-process testing requirements in order to obtain the high periormance necessary in state-ot-the-irt fif systems.

CONCLUSIOR

SAW components ofier the RF engineer a viable product in the 10 MHz to 1100 MHz trequency range. Understanding the many advantages and functional applications of thas technology allows the FF engineer great design alternatives in mis atteapt to eeet the requirements of state-of-the-ar comanication and radar systens of the 80.5

81BLIOGFAFFH
(1) "Hagh Volume TV-If Filter Design Fabricataon and Applications". G Tobolka et.al., 1984 IEEE Ultrasonics Symposium Froceedings, to be published.
[2] "Wideband Radar 5ıgnal Frocessor Eased on SAW Convolvers", 1. Yao et.al., 1984 IEEE Ultrasonics Symposiun Froceedings, to be published.
[3] SfiW filters for Military and Spacecraft Applications", W. J. Tanski f. C. Meyer, and L. F. Solie, Hıcrowave Journal, February 1982, pp 53-66.
[4] "Hzgh Perforance SAW filters with Several New Technologies for Cellular Radio", M. Hakıta, et.al., 1984 IEEE Ultrasonics Symosiue Cellular Radio", M. Hakita,
[5] -Surface Acoustic Waves Bandpass Filters on 2n0/Fyrex Substrate mith Zero Teaperature Coefficient", Fh. Defranould, 1983 Ultrasonics Syaposiua, pp 341-344.
[6] "Lithiun Tetraborate - A New Teaperature Compensated Piezoelectric Substrate Material for Surface Acoustic Wave Devices", N. M. Shorrocks, et.al., 1981 IEEE Ultrasonics Proceedings, pp 337-340
[7] "Temperature Dependence of the Material and Acoustit Wave Paraneters of Eerlinite", D. S. Bailey et.al., 1983 IEEE Ultrasonics Syaposian Proceedings, pp 335-340.
[8] "GaAs SAW/MESFET Programable Tapped Delay Line", S. W. Merrit et.al., 1984 IEEE Ultrasonics Syaposiun Froceedings, to be published.

FIGURE 1

FIGURE 2
The Impulse Response, ΔT, is related to the Frequency Response by the Fourier Transform

FITURE 3
Dual Wideband SAW Delay Line
$T_{1}=1.5 \mu \mathrm{sec}, T_{2}=3.0 \mu \mathrm{sec}$ fo $=700 \mathrm{MHz}, \mathrm{BH}_{1 \mathrm{~d} 9}=180 \mathrm{HHz}$

FIGURE 5
SAW Hybrid Oscillator
taple th ditictitions of sam devices
delay limes
-qualizer, fusing, inti fader, consunuscations path length Cutens

Colop tw, Redar, CATV, Repuaters, Transponders, ECM.
OSCHLLATORS, RESONATORS
Stable sources (UHF to micromave), bocal
fop coanunicatlons and coterent fadaf, sensor s.

IAPPED DELAY LINES
Pourier transforation, acaustis iesge scannime comvolvers
Synchronizer for spread spectrum coasunicators, Fourler transforation.
digpergive pelay lines
FIGURE 4
Frequency Response of a SAH VSB Filter

FIGURE 7

Effects of strain on dual-channel SAN oscillators on LiNbO_{3} and Zn0-on-glass.
*Taken from "Bulk and Surface
 Berkeley, 1982, p9 94.

FIGURE 8
Correlated output of 13-Bit Barker coded SAW device

FIGURE 10
Monolithic SAW Convolver
showing pick-up plate, ΔT

FIGURE 12 Typical Configuration for a Pulse Expansion/Compression Subsystem

IGURE 13
Frequency Response of Unweighted Upchirp SAA ODL (Expander) $f_{0}=31.5 \mathrm{MHz}$

FIGURE 15
Compressed Pulse of the Subsystem
programmable rf signal processors for spread

spectrum communication systems

J. Lattanza, f.g. herring, p.m. krencik, a.f. Clerihew

Hazeltine Corporation

Research Laboratories
Greenlawn, N.Y, 11740
(516) 261-7000

ABSTRACT

This paper describes the results of applying surface acoustic wave (SAW) technology and custom LSI RF control circuits to the problem of implementing sors for tactical communication equipment. physical characteristics and electrical performance are described for two representative processors comprising a programmable RF correlator prising a programmable RF correlator
for the matched filter detection of spread spectrum slgnals and a bandpass transversal filter having a programmable center rrequency. Additionally. it is shown how the concept can be extended to the design of programmable HF/VHF notch filters and transversal equalizers.

INTRODUCTION

Programinable matched and transversal filters are key processors in tactical pread spectrum systems. Inese rilter for jam resistant operation and the electronic programability essential for a secure system. Small size, low cost, and operation in a military encost, and operation in a military enimposed by tactical systems.

Thls paper describes the design and performance of both a matched and a transversal fllter that weets these requirements by using a custom-designed LSI chip to provide the programmablity
or a surface acoustic wave (SAW) tapped line. This combination of blpolar LSI and SAW technology results in programmable filters with near theoretical electrical performance, and excellent reproducibility.

The matched filters described wlll meet the requirements of most airborne, vehicular, or manpack systems. The volume, power dissipation, cost, and electrical performance are superior to elther their digital correlator counterpart or to SAW analog convolvers. Additionally, the matched filter is designed to operate at carrier frequencies up to 300 MHz and is therefore capable of processing code rates up to $100 \mathrm{Mb} /$ second. These performance levels cannot, presently, be achleved by digital or CCD correlators.
Historically, programmable matched filters implemented with surface the peripheral electrontc circults as thick film hybrids, using multiple transistor chips and standard SSI integrated circuits. In large timebandwloth systems, this configuration is both large and costly since both RF switching and logic control must be provided at each tap, 1.e., one tap per unit of time-bandwidth. Parasitic ele ments, inherent in this implementation, also 11 mit the useful trequency range to lower IF frequencles. These constraints have been surmounted with
the design of a custom LSI chip. This chip provides programmable switching for 32 contiguous taps and it can be cascaded directly to permit matched time bandwidth products of over 1000 .

The performance capability provided by this design is illustrated by description of a 128-bit device operating at 80 MHz wlth a $12.8 \mathrm{mb} / \mathrm{s}$ code rate and a 256 -bit device centered at 240 MHz wI a code rate of $64 \mathrm{mb} / \mathrm{s}$. Additional parameters, for the matched fllters, are summarized in Table l. The exdemonstrate the near-theoretical
performance obtalned.
The implementation and preliminary electrical performance of a programmable transversal filter, operating as an agile bandpass filter in the 55 to 65 MHz range, is described. Description of the custom-designed presented.

$\frac{\text { PROGRAMYABLE LSI/SAW }}{\text { MATCHED FILTERS }}$

Implementation

The basic implementation of the corelator is that of an electronically programmable SAW tapped delay line having one (swltchable) tap for each chip of the input-coded word. The total length (delay) of the line is made equal to the length (time duration) of the phase-coded input sl gnal and the tap spacing is made equal to the length of one chip in the coded word. The phase at each tap (1.e.' matches the phase code of the signal and the device operates to compress the time duration of the input signal. Electronic programmability is provided by actlve circults contalned on a custom designed LSI chip. For a constant amplitude input signal, all taps are welghted equally and the only programmable function required is the phase.

Table I. PMF Parameters

Parameter	Device 1	$\begin{gathered} \text { Device } \\ 2 \end{gathered}$
Number of Taps	128	256
Tap Spacing	78.125	15.625
Code Rate	ns	ns
	12.8	$64 \mathrm{mb} / \mathrm{s}$
	Mb/s	
Code Length	$10 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$
Center	80 MHz	240 MHz
Frequency		
Rate (max)		
Waveform		
Power Dis-	2.0	4.0
slpation	watts	watts
Form Factor	$1.75{ }^{\prime \prime} \times$	$2.91{ }^{\text {2 }}$ x
	$0.75{ }^{\prime \prime} \times$	$2.3{ }^{\prime \prime} \times$
	0.1401	0.75 "
Volume	0.18	5.0
	cu in.	cu 10.

A block diagram lllustrating this scheme is shown in figure 1. The SAW line is an ST-cut quartz crystal whose metallization pattern consists of a input transducer and an array of equally spaced taps. The input trans ducer is apodized to provide the MSk waver. taps employ a split-finger configuration to minimlze reflections. The metallization pattern is obtained by photolithographic process after a 1500 Angstrom aluminum thin fllm has been Ebeam evaporated on the active surface of the crystal.

The electrical signal is coupled from the saw line by wire bonding each tap

Figure 1. Programmable SAW Matched Filter, Simplified Block Diagram
to the control circuits contained on a custom-designed LSI chip. Binary phase control (0° or 180°) is obtained by reeding each tap output through an Rr sially connected summing buses. Each RF ially connected summing buses. Each bipolar transistors and many (32) of these switches are contained on a single LSI chip. The switch condition, and thus the binary phase of the tap, is controlled by the parallel output of a shift register (SR) that has been serially loaded with the proper binary code. In practice, the parallel output of the SR is actually transferred into a holding register that controls the individual RF switches. This action permits a code change to be loaded into the SR while the SAW line is the matched filter

Custom Switch Chip
The excellent electrical performance, low volume, and low cost result from the development of a fully customiz integrated circuit, designed using 6 milcron, washed emitter, junctionisolated bipolar technology, contains

32 logic-controlled RF switches and onchip summing amplifiers. The chip permit the chips to be cascaded easily and racilitate uire bond connection to the SAW line.

The chip measures 224 mils long and 130 mils wide with $481 / 0$ pads. The physical form factor and cell layout was dictated by RF considerations associated with the interconnection of the RF Switch and the SAW iline. The interconnection lead length should be a minimum to reduce the parasitic inductance, and the interconnections should be of uniform length to reduce phase variations. The best way to achieve this is to have the RF pads along one edge of the chip racing the saw ine. other 1rips length (propagation axis) of the sau crystal to provide sultching for any number of taps.

All of these features were incorporated in the design as illustrated by the chip topography shown in the photograph of figure 2. The RF input pads, seen along the bottom edge of the chip, are on 6.6 mll centers and all the RF and logic circuits required to switch a single tap are contained within a cell 5.8 mils wide.

To simplify the interface with external circuits, both the clock and transfer inputs were designed to be TTL compatible. Data inputs are selectable as The data output from the shift register The data output from the shifed ECL. The advantages of voltage translated ECL are higher clock speeds and lower power dissipation.

The transfer function of the RF switch has a $3-\mathrm{dB}$ degradation at 304 MHz and an ON/OFF isolation of 20 dB at 250 MHz. The chip was designed to operate over a full temperature range of -55° to $+125^{\circ} \mathrm{C}$. In addition to the 32 logic-controlled RF switches, latch

Figure 4. Waveforms for 128-Bit MSK Programmable SAW Matched Filter
evidenced by the near equal response to these codes and the flatness (better than 1 dB) of the impulse responses.

Although not evident from the photograph, the baseline spurious is down by over 30 dB . Figure 4 (b) is the correlated output for a 128-bit PN MSK input waveform. The sidelobe level is 21 dB down and this is within 1 dB or the theoretical response. The measured 6 dB pulse width is 138 ns , compared to the theoretical value of 123 ns .

Figure 5 is a plot of the theoretical loss to the correlated peak of the compressed pulse over the temperature range for the quartz SAW line. The shape of this curve is a result of the parabalic temperature dependence of an ST-cut line having a zero slope temperature coefficient at $27.5^{\circ} \mathrm{C}$. The loss at the temperature extremes can be reduced, at the expense of a slightly increased mid-temperature loss, by designing the metallization mask to match an offset carrier frequency. This offset frequency results in a match (zero loss) at two temperatures symmetrically displaced from $27.5^{\circ} \mathrm{C}$. This tradeoff is shown in figure 5 for

Figure 5. Processing Gain Loss
vs Temperature
offsets of +10 and +15 kHz . The oscilloscope photographs of figure 6 emonstrate the performance achleved for a +10 kHz offset frequency design and the loss of the correlated peak at 55° and $+125^{\circ} \mathrm{C}$ is seen to approximate the curve of figure 5.

One advantage of the LSI/SAW Imple mentation is the high dynamic range that is possible as a result of the linear property of the system. Table II, below, shows the dynamic range to internal (transistor) nolse and to

Figure 4. Waveforms for 128-Blt MSK Programable SAW Matched Filter
evidenced by the near equal response to these codes and the flatness (better than 1 dB) of the impulse responses.

Although not evident from the photograph, the baseline spurlous is down by over 30 d8. Figure 4(b) is the by over 30 d8. Figure 4(b) is the
correlated output for a 128 -bit PN MS correlated output for a 128 -blt PN MSK
input waveform. The sidelobe level is 21 dB down and this is within 1 dB of the theoretical response. The measured 6 dB pulse width is 138 ns , compared to the theoretical value of 123 ns .

Figure 5 is a plot of the theoretical loss to the correlated peak of the compressed pulse over the + imperature range for the quartz Sall line. The shape of this curve is a result of the parabolic temperature dependence of an ST-cut line having a zero slope temperature coefficient at $27.5^{\circ} \mathrm{C}$. The loss at the temperature extremes can be increased midd-temperature loss, by designing the metallization mask to match an offset carrier frequency. This offset frequency results in a match (zero loss) at two temperatures symaetrlcally displaced from $27.5^{\circ} \mathrm{C}$. This tradeoff is shown in figure 5 for

Figure 5. Processing Galn Loss vs Temperature
offsets of +10 and +15 kHz . The oscilloscope photographs of flgure 6 demonstrate the performance achleved for a +10 kHz orfset frequency design and the loss of the correlated peak at -55° and $+125^{\circ} \mathrm{C}$ is seen to approximate the curve of figure 5.

One advantage of the LSI/SAW implementation is the high dynamic range that is possible as a result of the II below property of the system. Table internal (transistor) nolse and to

Table II. Measured Input-Output
Characterlstics
80 MHz PMF
Output Noise Level -79 dBm
MaxImum Output Signal (1 dB Compression)
-6 dBm
Dynamic Range to
Nolse
73 dB
Output Clock-Noise
Level
-56 dBm
Dynamic Range to
Clock-Nolse
50 dB
Insertion Loss to
$26 d B$
Correlated Peak
parasitically coupled clock nolse to be 73 and 50 dB , respectively.

The dynamic range to clock nolse is important in those applications which require a new code to be loaded during the time of an anticipated epoch (e.g. continuous code change). The measured insertion loss (expanded pulse input to compressed pulse output) of the PMF is 26 dB.

Another advantage of the 11 near propertles of the device is the absence of quantitization or sampling For an MSK waveform, the theoretical PG 1s:
$P G(d B)=10 \log \left[\left(\left(\frac{\pi^{2}}{16}\right) \cdot \frac{1}{T_{c}}\right)\left(128 T_{c}\right)\right](1)$
where T is the chlp duration and $\left(\pi^{2} / 16\right)^{c}\left(1 / T_{c}\right)$ is the nolse

Mb/s:
$P C(d B)=18.9 \mathrm{db}$
The measured processing galn at room temperature was 18.6 dB or 0.3 dB less than theoretical. The processing galn at the temperature extremes was not actually measured. However, since bot the raln lobe remalned the shape of reasonable to assume that the amplitude response of the system is the same, and that any loss in processing gain is bounded by the reduction in amplitud of the correlated peak at the tempera ture limits (0.1 and 0.3 dB).

Performance of 240 MHz PMF
The 240 MHz PMF uses 8 LSI chips to correlate a 256-bit. PN-coded, MSK Input waverorm. The code rate and tap spacing are $64 \mathrm{Mb} / \mathrm{s}$ and 15.625 ns respectively. Figure 7 is a photograph of the matched fliter. Note that the LSI circultry and other discrete components are resident on a thick Pilm and analog RF signals. is located in the center of the package. The Input to the Say tapped delay ine consists of a center-fed, cosine weighted, 7.5 i transducer that

Figure 7. Programable SAW Matched Filter, 256 Bit
launches an acoustic wave in each direction along the propagating axis or the crystal. The transducer employs a radiating aperture measures 2.54 mm .

The SAW artwork was designed and layed out using a Calma Interactive Graphics System and is pictured in rigure 8. Since this device has a high code rate which requires very close tap spacing (49.3 microns), the resulting tap density makes it impractical to cascade LSI chips in the same manner as done in the 80 MHz device. To alleviate this problem, the bidirectional property of the input transducer is used to advant age. An array of 128 active taps is located on each side of the input
cransducer. These taps are spaced correctly in the time domain to realize 256 evenly spaced chips. Dummy taps are inserted between active tap secthe two sides of the device. Fanout structures are also used to convenient iy interconnect each SAW tap to the RF input pad of the LSI chip.

The electrical performance of the matched filter is summarized in the oscillograph of rigure 9. Figure 9 (a) oscillograph or rigure 9 . Figure 9 (a) sponse of the PMF programmed for a sirect M-sequence PN code. The aidd direct M-sequence PN code. The middle
and bottom traces show the PMF impulse response for an all ones and all zeroes, 256 bit code respectively. Th flatness of the response illustrates the balance and uniformity of the LSI chip. Note that there are less than 5 inoperative taps in the 256 tap array. Any discontinuities appear at the chip to-chip interface, and improvements could be made by triming the output load resistors in each of the eight sections. Figure 9 (b) top trace illustrates the input 4 us 256 bit MSK code. The middle trace shows the compressed pulse and near sidelobe level.
The sidelobe level is 19 dB down and this is within 0.5 dB of the theore ${ }^{-}$ tical correlated response (see rigure 10). The excellent symmetry of the

Figure 8. Programmable Matched Filter. SAW Mask Layout

(s) Expended Puise Wemeforma (Impulee Renpones)

(b) Top Trisce: Input 256 MSk Codo Scene: $1 \mathrm{ma} / \mathrm{cm}$. Middhe Trace: Corrolated Output for 256 Chip MSK Inpul Scale: 1 midem Bottom Trece: Corrolstod Output-Meinlobere
Scelle: 20 nate.

Figure 9. Waveforms for 256-Chip MSK Programmable SAW/LSI Matched Filter

100

Figure 10. Theoretical 256 Chip Response
orrelated main lobe is also shown in he bottom trace of figure 9. The 6 d pulse width measures 30 ns which pares favorably to the theorellcal value of 25 ns .

The measured Insert on loss (expanded lalse input level to compressed pulse putput level) of the PMF is 30 dB . The easured processing galn at room tealperature was 21.5 dB . This compares Cavorably to the 21.98 dB theoretical value for a 256 bit MSK line. Table III summarizes additional test results for the programmable fllter.

Programmable transversal filter

As a result of the success on the design of the two PMFs, work was undertaken to extend the basic concept the design of programmable transrilters (PTF). Three thalble and these versal filers and bandreject

Table III. Test Results of 240 MHz PMF

Measure-

Characterlstic	ment
Insertion loss	30 dB
Sidelobe level	$-19 \mathrm{~dB}$
Processing gain degradation	0.48 dB
Compressed Pulse Width (6 dB)	30 ns
DIrect RF Feedthrough (below peak)	-35 dB
Clock Feedthrough	$-40 \mathrm{dBa}$
Spurtous level (below peak)	$-47 \mathrm{db}$
Input/Output Impedance	50 ohms

liters, having center requencies nder program control, and transversal equalizers which are capable or synthe lizing an arbitrary amplitude and phase characteristic. The programmable fea ture permits open loop ($\log 1 c$) contro or closed loop control as part of an adaptive processor.

Theory
Figure 11 (a) shows the basic transversal conflguration. It consists of a (SAW) delay line having $2 n+1$ welghted taps separated by a delay ine signal 19 ing each delay interval, sampled, welghted in both form the outphase (ak), anput-output relatlonshlp is

$$
\begin{equation*}
y(t)=\sum_{n=0}^{N} A_{n} x(t-n t) \tag{3}
\end{equation*}
$$

and the impulse response is
$n(t)=\sum_{n=0}^{N} A_{n} \partial(t-n t)$
(4)

Figure 11. Transversal Filter Configuration

To obtaln the frequency response of the filter, it is only necessary to take the fourler transform of $h(t)$. Thus,
$H(f)=\sum_{n=0}^{N} A_{n} e^{-j 2 \pi f n T}$
$H(f)$ is clearly periodic with perlod $f_{0}=1 / T$. If $H(f)$ is designed for a low pass response at $r=0$, then this window will be repeated at $\mathrm{f}= \pm \mathrm{f} \mathrm{O}^{\circ}$ $\pm 2{ }^{\mathrm{r}} \mathrm{o}^{\prime} \pm 3 \mathrm{f}$. . . as shown in figure ample, to have the nominal center of the filter at 60 MHz , then the possible cholces for r_{0} are
$r_{0}=\frac{60 \mathrm{MHz}}{\mathrm{n}} ; n=1,2,3 \ldots(6)$
which correspond to the following values of T .
$T=\frac{n}{60 \mathrm{MHz}} ; n=1,2 \ldots$ (7)
The value of n is then selected as the largest integer which results in only one bandpass window within the
programable range of the fllter. Thls value is given by
$\frac{r_{c}}{(B / 2)}$
(8)
where INT is the integer part of the expression
f_{c} is the center frequency

Δ_{f} is the programmable range

B is the rilter bandwidth
and for typical parameters is.
$n=$ INT $\frac{60 \mathrm{MEHz}}{10 \mathrm{MHz}+1 \mathrm{MHz} / 2}=5$ (9)
saller values of n can be used but these result in more taps than necessary. Excessive taps must be avoided since electrontc welght control is required for each tap used.
Given a partlcular bandpass characteristic, the actual tap welghts can now be found using a computer
optimization technique known as the Remez Exchange Algorithm. It is now of PTF that will result in a programable center frequency.
Let $H(f)$ denote the entire irequency response of the tapped transversal fllter (including all repetitions of the window). if the inplipled by of the pllter is multiplied by cos2mit, the bense will be
$1 / 2 H\left(r-f_{1}\right)+1 / 2 H\left(f+f_{1}\right)(10)$

Note that from equation (4), this is equivalent to multiplying A_{0} by cos $2 \pi f$, t.. Similarly, if $h(t)$ is cultiplied by $\sin 2 \pi f, t$, the resulting spectrum 1s:

1/2j H ($f-\mathrm{f}_{1}$) - 1/2j H($\left.\mathrm{r}+\mathrm{r}_{1}\right)(11)$

Now consider the implementation shown in rigure 11(c). Clearly, the frequency response of this rilter is given quen

$$
\begin{align*}
H(f)= & 1 / 2 H\left(f-f_{1}\right)+1 / 2 H\left(f+f_{1}\right) \\
& +\operatorname{sgnr}\left[1 / 2 H\left(f+f_{1}\right)\right. \\
& \left.-1 / 2 H\left(f+f_{1}\right)\right] \quad(12) \tag{12}
\end{align*}
$$

or
$H\left(r-r_{1}\right) ; r>0$
$W(f)=H\left(f+r_{1}\right) ; f<0$ (13)

For positive values of r_{1}, all positive frequency windows are shifted to the left by f_{1} and all negative frequency windows are shifted to the right. For negative values of f_{1}, the reverse will be true. Thus, the capability of shifting the window up or down in rrequency is obtalned by using two tlcal transversal fresite rilter. One branches of the composite fits by a cosine function; the second branch multiplies the welghts by a sine function. and additionally, adds a quadrature phase shift. The frequency f is the phase shirt.

Programmable Bandpass Filter
A SAW transversal, implemented as a welghted-tap tapped delay 11 ne, can be used to synthesize a bandpass fllter characterlstic having a programmable center frequency. The SAW taps are apodized to produce the desired center frequency bandpass characteristic using the Remez-Exchange algorithm. It is usually desirable to have a large number of taps (1.e., obtaln a generally rectangular bandpas obtain a generaily (requencydomaln) sidelobe level. Using 63 taps a fllter having the characteristics shown in table IV was synthesized. practicallty of a design having such a large number of taps is a result of the avallabllity of the 32-tap LSI chip described earller.

The physical configuration of the PTF is lllustrated in figure 12. There are four parallel tracks on a single SAW crystal and each track contalns 63 apodized taps. The taps on each track are binary phase welghted and summed by the two 32-tap logic controlled RF switch chips. Each track is then assigned a binary weight and the four tracks then summed. This conflgur ation Dits plus sign) quantized signal at each tap. The tap weights are then
osine-modulated in an I channel and ine-modulated in a Q channel to produce the desired frequency shift.

The computer-plotted frequency response for the design selected is shown in figure 13. This is the center freuency response and Includes the ef fects of the $4-b i t$ precision tap velghts. The effect of the finlte tap weight precision (4 bits) is to degrade the out-of-band sidelobe level as the case degradation is an out-of-band response that is 30 dB down.

Table IV. Programmable Center Frequency Transversal Fllter

Center Frequency
55 to 65 MHz
Bandwlath
1 MHz
Shape factor
1.5:1

In-band rlpple
0.5 dB

Stop-band rejection 40 dB
Number of taps 63

Figure 12. Configuration for 63-Tap Programmable SA Transversal Filter

The PTF layout was performed on a Calma GDS-II interactive graphics system, and the conflguration is shown in the photograph of the einal unit (figure 14). In this implementation, two SAW crystals were employed and each crystal contained two tracks of 63 taps . The center fed input transducer is five wavelengths and each tap consists of 2 flnger pairs. The aperture length is 200 ails, all electrodes are ind ar 103 ap works SAY crystals, (eight) LSI chlps and the Interconnections are contalned on a 2 -inch by 2 -inch thick fllm hybrld substrate.

Electrical Performance
Electrical testing performed to date $1 s$ not complete but shows promising results. The major problem is electrical leakage that results because of the high insertion loss from the input transducer to the output of the

Figure 13. 63-Tap Bandpass Fllter Response
tap. This loss is on the order of 55 $d 8$ and can be reduced by increasing the number of finger pairs in a tap or by using a lower loss plezoelectric saterlal (LiNbO 3).

The lmpulse respohse of the filter is shown in rigure 15 and is in close greement with the theoretical re ponse. The (center) frequency The high sidelobe level in figure 16 is a result of leakage, and it is planned to correct the problem before proceeding with further testing.

Conclusion
This paper has shown that a hybrid configuration based on SAW and rull custom LSI technology is a viable method of producing minlature, low cost, high performance matched filter for use in tactical spread spectrum equl pments. Near theoretical electrical performance cond and 256 taps and 128 and $64 \mathrm{Mb} / \mathrm{s}$ code and 256 taps and 12.8 and $64 \mathrm{Mb} / \mathrm{s}$ code rates, respectively.

The design concept for 1 mplementing a matched fllter can be extended to the general case of a programmable transversal fllter. These devices are

Flgure 14. Photograph of Programmable Transversal

Fllter

Figure 15. PTF Impulse Response
useful as an agile bandpass filter, a rejection or notch filter for interfernce removal, and for the purpose of mplitude and phase equalization as required to.improve intersymbol intererence or effect multipath cancellation in communication channels. The
design approach was described and theoretical and preliminary experi mental data presented for a 63-tap programmable center frequency bandpass
Pilter.

Figure 16. PTF Frequency Response

Woldreciohisony

SAM Filter Applicetions.

Not too many engineers ore deeply interested in the physics of the sah technology, more interested in the applicetione end technology benefite for the job which they have in hand for thelr own engineering problem. peper is intended to present opplleationsereme devices are designed end fabricated

SAw filtere ara uaed an resonetore, filtern and oEcillatore for wide range of different epplicetions. oscillatore for wide range of dife, non tunemble and fully charecterited. Eech of the followlng epplicetione will be character

1. IF Filters filters.
2. Filtor banke.
3. Modeme.
4. P.C.M.
5. Tolevision
6. Satellite Recelvere
7. Spread apectrum communicatione
8. Radar applications

Ae with many other thinge in engineering, compromizees and tradeoffe must be made. Mhilet gan filters have many adventages, they aleo heve probleme aesociated with them. This peper explaine the inherent probleme and some wey overcoming tham,

The Author

This paper it presented by Mr. Ron Towne who ie the SAW salee oirector te CRYSTAL TECHNOLOGY. Ron Town hea been orking in surface Weven aince 1974 and has eeen onginearing ectivity in plasiey, Signal Technology, siemen: end Cryetel Technology.

INTRODUCTION Not too many engineers ore interestad in the Phyeles of the SAM technology, more interested in the epplicetions end technology benefite for the job which they have in hand for their own engineerling problem. This paper is intended to present epplicatione of the saw technology rether than how the devices ere designed and manufactured.

BACKGRDUND SAW componente handle key functione in
entertelnment electronice and profeselonel telecommunicetionu engineering.
Besides their widespreed uee an frequency etabilizing devicee ond as bendpass filters in the VHF end UHF ranges, sAM commonent are alto employed to fmplement complex
signal-procesing functions like fast correlation of fixed or programmable elgnal formi. SAM componente come as reeonatora,

They are used in television tranemitters and recaiving
are woll es in tother aqupment and highly eophiaticated electronic surveillence receivera.

For the uner the benefite ere en follow :

* mall =ize
-xtremely high reproducibility
* euperior shape fectore
* dinear phese
* no tuning

Thesa componente ere producad on cryetal or lithium-niobate ubstrates end are noteble for thelr excellent long term tabllity end very low temperature drift.

A with many thinge in engineering, comprimiaen and tred-offe must be made. Whilst sawfilters have many dedvantages, they leo have problems eseociated with them. The englneer must be familiar ith the inherent problems and how to overcome them.

IF Filters Sem filtersere ldeal solutions to some if filter reauiremente. In moit developments, te dete, filter inmertion losses in the ronge from 15 to 30 de are more normal than the very lom lobs types which ore now being offered by 5 AW compenis. Newn understand that SAM filters ere trensversal filters mich operate in the time domeln.

me comen iesoande

The timb domein response shows thet esell es the main filtor response there ore other responses caused by electromegnetlc rodiation from the input traniducer to the output tranaducer, the bulk wove which travels acrosi the fliter faster than the surface wave, some low level isignaly caued by internal reflections ind finaliy the time echo of the eiln filter responee which hes trevelled three timee seroes the filter. There is Econnection between the ineertion loss, the spurious very ueful rule of thumb is thet the triple trav ripple. A very uneful rule of thumb is that the triple travel acho is Olice the lomertion lose plus 6 ab and for this reseon, the ing in insertion loss. It is motching the traneducers to insertion lose by impedence laually, elmple.eeries inductor ill buffice but for bro bend filtera more complex impedunce traneformer le necesefery.

The in bend emplitude ripple depends only on the omplitude of the epurious signals but the group delay verietion incresese with the deley to the afurlout ignal. The table and chert show the relationahip between the epurious eignel levelis ond the omplitude and group deley ripples.

Insertion lös	-2008	-3008	-4008	-5008	-5008
Ampl ripple	1.708	$.440 \theta$	$.170 \theta$.0508	.0208

P.P.

In most applicetions apurious suppression :o at or soce should esult in a metisfactory smeli amplitude varistion. Thls corresponde to en insertion lose of eround $20 d 8$

FRONT END FILTERS More modern deaign techniques have produced lower lose fllter whlch ere more sulted to front end Ppplicetions. Insertion loEs has been one of the chich Onginears cen expect to eee nem flltere emerglng mich nan be ued in portable redio telephones, peging recelvers end cordess telephones.

A typicel portable realo telephone opereting in the 440 to 470 MHz Freaumacy band hes an architacture mich looke like the folloming ectemetic diegram.

The receiver ie designed to operate on Eingle channel end, The receiver is designed to operate on asingle channel end
despite ita opparent simplicity, it would not be ettractive to despite ita epparent simplicityilt mould not oe attrective to
 lerge number of filtere ot lerge number of defferent frequencies which would be uneconomic. A double converaion -uperhet i f umed lnitiod, ith IF of 23.455 MHz and 455 kHz . Helical filtere have offered the narrowest banduldth of the conventional typee of tuneble filter and typlcelly four of them -re used, in two peirs, as front end filters. They would, typlcally, provide 4 MHz bandwidth and 70dicimage rejection for the firet If which, es they are not particulerly eifiective has tebe at the hign frequency of 23.455 MHz . The firat If
fllter would, typlcolly, be on igth order crymital filter fllter would, typiciliy, be on ifgth order cryetal filter
 recelver, the ececond itege of Frequency conversion la cerried out mostly to reduce power coneumption and esee the teek of eniole for provia megierejection for curious responees. epurious responees.

The use of SAW filters can bring bbout aome improvement to these pointe and the next echemetic हhowe the configuretion of - modiried receiver.

The helical filter has been raplaced by elde bend lou lose SAn filter offering frequency responee characteristice mich are not found in conventional filteri. The filter would have Bufficiently mide bendaidth to cover the complete 440 mHz to 470 MHz frequency band and, more importantiy, aufficientiy nerrom transition bandmidth to permit the use of ofombziret if. The ineertion loss wauld be oround 6 dimith 65 of of image rejection. The filter mould have 50 ohms input and output impedence and would be peckeged in to-5 can. A dremetic reduction in volume would be echileved.

A 70 MHz firet if filter could 100 be fobriceted in saw. This would be second order narrowbend saw resonator filter inich, with 25 kHz channel spacing, providee 25 of of soyecent channel rejection and at lesst 60 dB image rejection for would be around 10 de onlen woulo be deliberately incresesd From inimum in order to keep the size doen and hence the coste. A furthur $4 s$ de of edjecent chennel rejection would b provided by ceramic filter it the eecond IF, whlch could be echieved in a very compact end economicel menner at 455 kHz .

Paging receivera can aleo benefit from sam filtera. With pegera, there are lerge number of recelvers and fem channels. Nerrowbend saw resonatore can be used in dual conversion recelvers out aince lou coet le the moet importent peremeter together with low power consumption en elternate recelver erchitecture of the direct conversion type ere morthy of more consideration. The block Echematic shows how SAM could be incorporeted into peging recelver.

DATA TAANSMISSION The highest bit rate planned for
tronsmitting digitel isignele vis radio link eystems is 14 L molt/s, uhich lseufficient for 192日 telephone chonnels. By means of a 16-Etsge quadrature amplitude modulation (aAM) procese, the 308 bendwidth of the apectrum is narrowed down to 35 MMz . Helf of the spectrum shaping is performed en the moduletor end half in the demodulator eection using filtera - Ith cosine shaped dges. The filter in the modulation ection - $1=0$ compensetes the sinx/x ehaped spectrum of the digitel moduletion eignel. The high dete rate ond the 15 pesibio aak Etates make high demande on spectrum-ohaping filtore por optimum reception. Within the psseband of the pilters the magnitude of the transfer function should be undistorted and
the group delay

[^1]

Magntude of the inpulse response of apectrum-shaping Mrer tor the demodulato stage of a $140 \mathrm{Mbit} / \mathrm{s}$ digilal radio link system

The curves show e 35 MKz bendwidth SAM Pilter which ie intended to be uned in the demodulator eection of 14m mbit/a digitel redio link ystem. The tranefer Punction deviatee by only . de from port designedimpulae respon

Yet enother example of the epplicution of SAM technology to telecommunicetion engineering is the narrow-bend pectrum-shaping filter for digitol radios ith low bit rates The Le filter requires selected, bulky ond eleboretely tuned thempents. The sak, in contrast, ore fabricated on quertz, they ere small, precise and thermally stable.

Copreriber of reroubsed apectum-stexing
1ltura 2 Mit/e digital retio epstame:
ceplitar (rar)
swifilter on ambe (frant)

Optical piber eyntes promise economicel traneniesion of long-naul digitel traficet bit retes of ien to 1000 woit/e and more. these eysteme ues regeneretore blong the route to restore the megnitude, hape and timing of messege pulses which ore degraded in the pibre optic tranmisision epena. The regeneration procese is controlled by timing waveform thet is extrected from the pulat train iteelf. The task of timing extraction et the high bit retei le eccomplished by the use of - sam filter. AE well es meeting the ohort term jitter requiremente, the sam pilter hae the long termeging and thermal stability to make it aitable for use in oceen yetems which hove 20 to 25 ye日r lifetimes.

TELEVISION The Eingle biggest Example or commercial auccess of the sar technology is to be found in talevision tranemiesion and reception. Becauee SAW filters can be manufacturad in high volume using techniques elmilier to integreted circulte they ere extremely repeotetle and ufficiently lom cost to ottract the consumer electronics industry. The TV if filter incorporat the nyaulat TV Ate All these TV Eets. All these applicetions plece high demande upon the 2 pulse step signal.

amplitude response

Group dolay

When ever e TV algnal hes to be modulated onto or demodulated from e RF cerrior, two eldebende will be generated. SAM filtera con hove extremely good shepe factors mith flet passbends. Theme filtersere called veetigal midband filters and are used In the TV tranamitter and the Tv tranepoeer. The full range of tronemiseion etandarda have been made ovaliable by the EAW induetry B/G for mestern europe, 1 for Greet Britelin, L for

The edvent of cable television hes brought obout the need for channel filtere. The cable converter supplies the tv eet with chrominence, luminance end sound informetion onto. ingle UHF channel. Usuely this is either of chanmele 2,3 or $4.50 m e$ SAW fiters contaln two channel filters in one package hoving one to have a chennel filiter with eeperate Eound and vieion outputs which would silow the sound level to be controlled in the cable converter insteed of the TV IF.

Channel i
Attenuetion
and group delay

The ceble converter elwo veen enother sAW devlce, the saw resonator, es the locsl oselllator to hetrodyne the TV elgnal onto the channel. These devices ore ewell, eteble and inexpenitive. They ore eimpleto use, requiring only one trencietor to meinteln oucilletion.

SATELLITE RECEIVERS The E日tellite receiver is becoming piece of consumer electronice jumt like the VCR wes. few yeare -go. The occeptonce by the consumer is due, in port, to the price reduction of the entellite recelver over ehort period of time. Sam lf filters have become standard componenta, mostly -t 70 MHz with bendwidth of 36 MHz . This is en extremely wide band and difficult to implent using LC componente. The real sdventage of SAM in this applicetion it empll eize, rugged end very well ahielded end requires no tuning. Some ife ore ot higher frequencies, for example 134 and 619 MHz but ith the eame bandmidth of between 24 and 36 MHz .

SPREAD SPECTRUM COMMUNICATIONS Spreed epectrum moduletion le En importent communicetion techniaut end is olso one eree of communicetion technology mich has derived greet benefit from communication tochnology mhich has derived greit bencence spread-spectrum (os-ss) communicotion ystam, eperiodic code sequence (usualiy binary), with algit rate which greatly exceeds thet of the messege deta, is ueed to expend the transmitted ignal bendwidth. A recelver cen uee either on ective correletor or pesslve metched filter (E.g. SAW), motched to the code eequence, to "de-Bpread" the eignal to the originel deta bendwidth. The recelver therefore hee " proceseing gain, given approximataly by the ratio of the -presd-to-despresd banduldthe. The recelver is. metched filter which meximize: the ignal-to-nolse ratio ot the bit decifion or epoch event. The concept of epoch le shown below.

MPULSE RESPONSE OF
SAW DEVICE
auto correlation

- generation and metched filter reception of - N chip epr pectrum eequence ueing sAm devicen ie ghown. The receiver poch is deflined es the time when the received eequence exectly fille the metchad filter, the conjugete saw device. The fllter le meximizad et hown by the lerge correletion penk. In - Elmple deta tranamiasion byetom, where oete le conveyed by the presence or sbeence of egroup of PN ehlpe, the receiver oxemines the matched filter output ot ewch epoch inatelit for the presence or ebeence of corraletion peek.

The output of etransversel filter is ectublly the convolution of the input maveform with the impulae response of the filtir

$$
W(\tau)=\int_{-\infty}^{+\infty} u(t) v(\tau-t) d t
$$

where $u(t)$ it theinput maveform and v(t) ie the impulse
response of the filter. Here, τ ls the time et which the output reaponse 1 s to be messured end includes the time deley
neceseeryin practical SAK device. To echieve the
eutocorreletion function, for matched fliter, it le necessary o realize insteed the corralation integral

$$
\delta(t)=\int_{-\infty}^{+\infty} u(t) u(t-v) d t
$$

Thus, it le neceseary to conetruct afiler with in impulee
reeponee v(t) that is the time lnverse of the elgnal u(t) to be correlated or matched (excepting the orbitrary time deley). The correletion of Five-chip coded eequence, below, reeulte in compressed pulse with - width comparable to one chip.

The SAM matched filter is fabriceted, normeiy ae a pheee coded delay line. the eimplest case is where iso degree phase shift Cepresente the difforence between 1 or a (most codes considered ere biphaee). However, SAH hee the flexibility to chieve phase coding mith arbitary velues of phase wein wence rbitrary values of amplitude. A Eimple iehip bipholo. enerator and ite implementation in SAK iE ehom below

Prese cactod manoform

- -WMMMMWMND

The conventional SAM device is e linear transverael filter having one electricel input port and one electricml outport. An electrical impulse epplied to the input transducer produces

RADAR The phese coded deley line, discusted eerlier has application in redur syetems. The major difference is thet the phase code in normally continlousily swept ond not changed in discrect chips. If the optimum use it to be made of the transmitting power, the solid-Etate output ateges hove to be compresion techniques aliow high transmitting power and good terget diseriminetion the tome thme. Furthurmore, pulse compression reduces the effect of nolse mourcee by the moun of the compression gain.

Moct diegram of on FM pulas comprestion rador
sak diepergive fllters ere now commonly uand in modulotion of the tranamitted elgnel and compremedon in the recelver. The reepone dse prerequibite for ond phate in the fliter pulse compreiesod pulse end thue jointly determinee the dynamic range of the terget eequibition.

SAW pulee compremilon flitere ore produced both in interalgital tranadueer (IDT) end reflective array compreseor (RAC) formet. The RAC vereion is ahorter in length end aleo exhibite a number of inherent edventeges; the input and output impedencese are independent of the filter trenefer function and eecondery effectafrom bulk wevem, diffrection end undesired reflectione core negiligible. Also, the Rac hee the facility for ephese correction metalisetion flim to be incorporated.

When iddelobe suppression $1=$ echieved by opectrel weighting in - recelver mich is othermise motched to lineer chirp, the cignal le reduced in mpilitude. The graph below showe the loss in signal ond noise when pasting through e recedver providing both pulse compreseion for ilinear-chirpinput ond idelobe suppression by means of eeries of feylor functions. As the design-sidelobe suppression is taken toward the limit of -45 dB, the aignal le attenuated more reploly then the noles. The difference in the two mounts of ettenumilion relates ofrectiy to lose of Eystem eeneltivity and le celied miemeten loes.

Susnal and noim hos, through flivers siving midelobe
restion with Teyber memhtiinu functions

Frepuency time then for ehiop zienels emplos ing lunear

To recover the mismaten lose, e non-lineer FM waveform must be considered. The Prequency-time excuralona for both linear end non lineer $F M$ ehirps are thown bove. The non-ilinear lam is derived uaing 45 di Teylor Punction. The non-ilinear ehirp ia eeen to have enlgher poctrel content et the centre of the bend by heving a chirp rate in that region. The other point hich cen be eeen is the increased eenelitivity of no-lineer chirp to doppler endft.

An exemple of aAC device peir (expender end compreseer) which have been optimised for doppler insenaitivities end mismatch lose if hown on the next page. With the pleet that has been produced, it wes posibible to horten the transmit olgnai duration through optimisation by mome 20 miero oece ot given signal/nolse ratio : with erequired duration of the compreseed pulse of 9.7 micro esece end meal compreseion gein of 14 dB , the thlt 1 FM duretion would bebetwoin oil end 7 inicr phese Lithting hat produced
phemetch losa, algnal of only 44 miero sece.

PRIME APPLICATIONS OF SAW DEVICES

SAW STABILIZED OSCILLATORS
Thomas O'Shea and Jonathan Ladd
Sawtek Inc.
Post offlce Box 18000
Orlando, Florlda 32860

LAIBORUCIION

The purpose of thls paper is to present an overviem of applicatlons for SAM stabllized oscllilators.

The number of applicatlons for SAW delay IIne and SAW resonator controlled VHF-UHF Oscillators has been growing exponentially in the last several years. The prlmary reason for thls growth is SAM stabllized oscillator ofton ellminates all multiplier stages. This not only reduces complexlty but also lmproves phase nolse. short term stabllity and rellabllity. SAW resonator and SAW delay Ilne oscillators are also more immune to mechanlcal shock than bulk wave osclllator. A SAM local osclllator can be operated at higher drive levels than bulk wave osclilators whlch means that an Intermediate amplifier ls not required to drive a mlxer.
The frequency versus temperature stabllity of a SAM controlled oscillator ls often criticlzed as not beling as good as AT cut ulk wave crystal controlled osclllators. Several means of lmproving the temperature stablilty of a SAM osclllator will be discussed in thls paper.

A later sectlon describes sub-systems utllizlng SAW osclllators and comments on the emerging fleld of SAM sensors.

OYEBLZED SAY OSCILLAIOB

This section discusses a preclsion 740 MHz ovenized saw osclllator that was developed by Savtok and described in Reference 1 for application as a fixad frequency local oscillator In the transmitter of a novigation satellite. By its nature; thls application requires high rellabllity, very good short term stablilty, good long term stablilty and yow spurious and harmonic content over all environmental conditions. Thls application also requires a preclse abllity to set the carrler frequency.

Flgure 1 shows a schematic of thls SAW resonator controlled osclllator and bufferlamplifler. A slingle-port SAM resonator was chosen as the feed back element of thls Plerce conflguration osclllator rather than a SAM delay Ilne or two-port SAW resonator. The single-port device has the lowest loss and hlghest P of these cholces and therefore, results in the best phase nolse. A second stage bufferlamplifler ls ilghtly coupled to the osclilator stage to provide a stable tio dBu output and Immunlty to load pulling. The output of 2 nd stage ls fed through an attenuator that serves as aminmum load on the amplifler and Ilmits the output lmpedance. The signal is finally fed through a low pass fliter to further llmit the osclilator harmonlcs.

It Is necessary to ovenlze an osclllator of this type In order to provide optlmum short term stabllity. However, tominlmize power consumption a component oven is used to ovenize only the SAM resonator. Thls oven malntalns the SAW resonator temperature at its turnover polnt which is a reglon of minlmum deviation (figure 2) of frequency vs. temperature. Flgure 3 summarlzes the achlevements of thls program. Most goals llsted there were achleved and several firsts were establlished, particularly in set accuracy and long term stabllity.

Figure 4 is a plot of the short term stabllity expressed as Alien's Varlance $\left[\sigma_{y}(\tau)\right]$ versus measurement averaging time for, a are routinely achieved with these unlts. Figure 5 is the singl side band phase nolse at 10 Hz to 1000 Hz from the carrler. The SSB phase nolse is $-115 \mathrm{dBc} / \mathrm{Hz}$ at 1000 Hz offset and the rolloff rate Is 30 dBc per decade. Flgure 6 is included to demonstrate the long term frequency stabllity or "aglng" of thls oscillator. The curve is logarlthmically decaying which is the characteristic of good aging. The first years aging is approximately 5 ppm.
Five year aging is extrapolated to less than 15 ppm. This performance ls belleved to be "state-of-the-art" for a high frequency SAM osclllator of thls slze and power consumption. To the author's knowledge this is the first sAM oscillator scheduled to be launched In a satellite.

YOLIAGE CONIBOLLED SAY OSCILLAIOBS

Many RF programs require that the frequency of the oscillator be Many RF programs require that the frequency of the oscilator be
veriable. The frequency deviation requirement varles from a few parts per mililion (PPM) to over one thousand PPM. The cholce parts per millon (PPM) to over one thousand PPM. The cholce between a SAW resonator or a SAM delay line as the frequency frequency puliling, osclillator phase nolse, and short term stablilty. Table i glves a comparlsion of SAM resonator voltage controlled osclllators (YCO's) and SAM delay line YCO's.
table I

COYRABISON OE BESONAIOB YCO AND DELAY LINE YCO

BESONAIOB YCO YS. DELAY LINE YCO
Offset Frequency
Phase Nolse

10 Hz
100 "
1000^{n}
10.000 n

$-55 \mathrm{dBc} / \mathrm{Hz}$	$-20 \mathrm{dBc} / \mathrm{Hz}$		
-85	n	-50	n
-105	n	-85	n
-130	n	-105	n

Shori Ierm Stabllity
$(\tau=1 \mathrm{sec}$.
1.10^{-9}
1.10^{-8}

Eragyedsy Iydids

$10-100$ PPM 100 - 2500 PPM

NOTE: Data presented ls for oscllators with center frequency between 500 MHz and 600 MHz .

Frequency pulling of the SAM oscillator is accompllshed by use of a varactor diode connected in serles with the base tunling
capacitor. The SAM resonator VCO schematic is shown in figure 7 and the SAM delay IIne VCO is shown In FIgure 8. The delay line circult is more complex due to the necessity of Impedance
matching the device as mell as achieving a 360° shitt in the
feedback loop. The resonator controlled oscillator is simpler in design because the resonator has falrly low loss and most good R ranstors have sufficlent galn to ovorcome the unmatc

For wide band tuning a hyperabrupt Junction varactor dlode is chosen as the tunling dlode. Hyperabrupt varactor dlades
chosen as the tuning diode. Hyperabrupt varactor dlodes of 12 volts. The disadvantage of usling the hyperabrupt Junction of 12 volts. The disadvantage of using the hyperabrupt Junction varactor lis the frequency response curve often is logarithmic as
shown in figure 9. lif this is undesirable to the system designer a varactor dlode with an abrupt juncliton can be used. This diode glves more llnear tunling but the capacitance change is on the order of 5:1. Therefore, the frequency shift achlevable with the abrupt dlade ls half of that achlevable wlth the hyper abrupt diode.

SAW delay IIne VCO's are belng used in wideband frequency
synthestzers and communication systems. They are also ldeal for use over very broad temperature ranges since the frequency shift due to temperature can be compensated by the cantral voltage Input. Another advantage of the delay IIne VCO is It can ofte be used as both recelver local osclllator and transmit master oscillator a radar synthestzer or commication systombecause it Is broadband and can be tuned (or "slewed") very rapldy.

SAM resonator VCO's are finding thelr way into systems where the
 requency stablity and phase nolse are paramount. (Most systems ser auband FM systems. resonator controlled vio very cost efficient.

IEGREBAIUBE COURENSAIER SAM OSCILLDIOBS

The frequency of a SAM osclllator varles with temperature, in a parabollc fashion, according to Equation 1 as
(1) $\quad f(P P M)=\left|\frac{T-T_{0}}{K}\right|^{2}$

Where To is the temperature at which the frequency of the oscillator is maximum and K is a materlal constant that ranges from 5.4 to 5.8. Figure 2 shows the frequency vs. temperature characteristics of a SAM device.

In many applicatlons the uncompensated SAW osclllator frequency drift is too much for the system to tolerate. In thls case, a component oven is often utlllzed to ralse the SAW device to o the saw emperature and thus, llmit the tempeature varlation that the saw rould experlence. however, component ovens are costly, alternotlvero and a power an controlled sim osclitator and merely apply o tunling voltage to cancel the temperature Induced frequency drift.

In some instances it is desirable to generate the tunling voltage Internally in the oscillator by using temperature sensitive devices ${ }_{2}$ such as thermistors. Another approach, suggested by Kinsman ${ }^{2}$. Is to use the temperature sensitive base emitter Junction of a blpolar transistor to generate a linear voltage versus temperature curve is shown In Flgure 10, to generate parabalic frequency dependence of the sAm device. Thls approach can be modifled to compensate oniy one portion of the temperature dependent frequency curve as detalled by these authors in references 3. In thls opproach o single varactor ls drlven by the Ilnear voltage from the temperature sensor (Figure 11) and the frequency drift ls compensated on one slde of the parabola. This approach has resulted in o frequency accuracy of ± 4 PPM on a 950 MHz hybrld osclllator.

SUB-SYSIEYS

In response to requests from system users Sawtek has begun development of sub-systems in which the SAW device is the key component. We have chosen two examples for lilustration: i) SAW resonator controlled PCM transmltter for a radiosonde, and 2) SAW sensor modules.

The radlesonde is used to provide meteorological data which is used in calculations for directing artlllery flre. The radosonde is launched on a hellum ballon and is powered by water activated battery. It provides an RF pulse encoded output of pospherlc temperature and pressure and it is radar tracked to increas round of fire. Similar systems have been ln use in the past but utilized L.C. controlled single stage transmitters. The SAW controlled unit is able to Improve the temperature versus frequency stability of this transmitter which wlll allow it to be used in the European theater.

The block diagram of this system is shown in figure 12. It conslsts of a hermetically sealed 560 MHz hybrld SAW resonator signal is then frequency tripled with a class c amplifier. The

1680 MHz output from the tripler ls then filtered by o mlcrostrip Ilne bandpass fliter to remove sub-hormonlcs and lis finally fed to a two stage power ampllfler which provides a +24 d8m signal to the antenna. A nodulator stage Inverts the trigger Input and pulses the power amplifier stage.

In addition to providing $1 / 4$ watt output, thls system suppresse harmonlcs to -40 dBc and provides an $A M$ modulation ratlo of 30 accuracy is better than temperature stabllity and set-on acguracy 15
$70^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

The sAy seDsor is an emerging technology which is belng driven by a need to develop increasingly more accurate accelerometers pressure sensors, and gas detection systems. The accelerometers ore used in inertial guldance systems of missiles. Pressure sensors are belng developed for jet engine instrumentation wher an increase in accuracy means improved efflciency. Gas sensors ansed the detection of hazardous gases.

Common to most of these sensors is the concept of the dual oscillator system which is very effectlve in ellminating emperature instability ond can be used to improve sensitivity. Referring to flgure 13. We can see how this works. In this figure lllustrating a SAV acselergmeter two SAW delay line controlled osclllators are located on opposite sides of two quartz cantalelvered beams. When the system experlences an acceleration perpendicular to the major plane of these beams one a te-compressed. undergoes a compressive force whlle the othe arlation arlat on the

The outputs of these osclllators are then fed into a mixer. The meer output is passed through a lom pass fliter (LPF) to ellminate second order mixer products and the L. O. slgnal. The Igital Indication of the acceleration By thls method two advantages are obtalned: 1) the acceleration sensitivity is doubled by virtue of the fact that the stralns are of opposite sense in each delay line, and 2) even more importantly, the requency vs. temperature drift is ellminated to the first order. The temperature drift of both osclllators is in the same drection since both delay line unlts ore made of the same substrote material. Therefore, the difference frequency observed ot the output of the mixer is independent of temperature drift.

Figure 14 is a schematic of a SAY RLeSSyIf Sodsor. This sensor agaln uses the dual osclllator concept to ellminate temperature drift. In this case, however, the SAW controlling element is a esonator. The SAW resonator (SAWR) is an alternative to the oscillator slmplicity is desired. As we can see in thls case
only one of the SAWs undergoes a pressure modulation since it is located over a thlnned portion of the crystal. The other serves as a reference for temperature stablilty. In thls case it would not be practical to fabricate a SAM on the opposite side of the membrane because of photo fabrication difflcultles and because it would expose the unlt to a possibiy corrosive test gas. This reduction in sensitivity is compensated by the use of the SAWR.

The final example is shown in figure 15. This is a saly gas
sensor. It consists of the now famlliar dual oscillator, mixer and low pass fllter. Unlike the mechanlcal sensors, however, the veloclty shift in one of the paths is obtalned by a mass loading effect assoclated with absorbtion or chemabsorbtion of agas as it passes over a thin fllm of deposited materlal which is chosen to select the desired gas. Paladlum for example has been used in hydrogen sensors. Sartek has developed delay Ilnes and resonators for these applications as well as the electronics modules for driving them.
The maln thrust today in the development of this sensor is to obtaln a rellable, discriminating thin flims that will permit etection of the desired gas only. A regeneration feature is mich wili permit multiple use of the sensor.

HYBBID SAH OSCILLAIOBS

More and more SAl osclliator designs are requiring hybrldization to meet slze and cost requirements. Hybridized SAM osclllators have the odvantage of better rellabllity, lower EMI and greater lmmunty to environmental effects since most unlts are hermetically sealed in metal enclosures. Because of the planar construction of the inductors used in the hybrids they are potentially more Immune to vibration.

Two of the applications mentioned earller, the 560 MHz RF source for the radiosonde sub-system and the entire 950 MHz tcxo have been hybrldized. Single stage SAW resonator controlled oscllators are beling considered for many applications that fal under FCC part 15 Rules. In the medical area wreless patient monltorlng systems are belng consldered. ing arlation they ore locator beacons aboard downed alrcraft. They Improve the stabllity and allow higher frequency operation of cordess sillators In RF modems in harmonlc suppression of Ireless securlty systems to mithln FCC guldellnes and to improve the rellablilty of these systems.

Figure 16 provides a summary of the typical operating characteristics of such a single stage SAM resonator controlled hybrld osclliator. The frequency range has been extended to over

1100 MHz . Spurious rejection is usually beyond the dynamlc range of the measurement system. The supply voltage can range up to 24 volts and efficiencles range from 4 - 68 for a single stage system which provided 5-10 dBm output power. The package size shown In that flgure ls for a 4 Pin-Dip which would be the least expensive version. Surface mountable flatpacks are also avallable which are smaller in slze and compatiblewith wider operating temperature ranges.

The cost of the SAM hybrid osclllator drops below ten dollars in large quantlty. The maln cost drivers of this unlt are frequency set tolerance and possibly the package if a surface mountable unlt is required.

CONCLUSION

SAM osclllator design has matured to the point of becoming the cholce of systems designers who used ta rely on bulk wave crysta or LC technology. Custom designed osclllators for commercial appllcatlons no longer require extensive development effort and therefore, thelr cost is dropping. In addition, performance is superlor to the LC osclilator. For preclse lrequency accuracy alternative to bulk crystal based osclllator/multipller systems. alternative to bulk crystal based oscillator/multor her been anhanced by SAM technology and should account for an increased demand for SAW osclllators in the future.

REFERENCES

1. T. o'shea, V. Sullivan, R. Kindell, "Preclsion L-Band SAW Osclllator for Satellite Appllcation," Proceedings 37th Annual Symposium on Frequency Control, U.S. Army ERADCOM, PP 394-404.
2. R. C. Kinsman, "Temperature Compensation of Crystals with Parabolic Tomperature Coefflclents," Proceedings 32n. Annual Symposium on Frequency Control, U.S. Army ERADCOM, fP 102-107.
J. Ladd, C. Abdallah and T. O'Shea, Mybrld SAW Osclllator and Resonator filter," Proceedings of the 1984 IEEE Ultrasonics Symposium.

Figure 2

Figure 3

precision l-aAnd	oscillator	6
shecifications	0026	actuas
preouener	740.000 ume 23.4 mpm	-0.16 mem
A.f. powen (son)	-10 ¢5m mimuи	-11.80 - mol $29^{\circ} \mathrm{C}$
smont tenm stanatity		
	-5 pen iom tor roum	4.03 pompow y
marmou'cs	--	3 mad
srumous	-te coc	(1500 net io 1800 mut)
groduency vanation c'ranct	-1 mm	$<0.2 \mathrm{~mm}$
Maxıum powen	2.5 w	2.47 w

Figure 4

$$
\text { Figure } 5
$$

Figure 6

Figure 7
SAWTEK RADIOSONDE bLOCK diagram

9

Figure 10
saw oas sensor

Figure 11
Uw hremo saw oscillaton G]

Figure 12

Figure 13

Figure 15

Figure 16

DESIGN COMPROMISES IN SINGIE LOOP FRROUFNCY SYNIHESISERS

1. INTRODUCTION

The single loop frequency synthesiser is justly popular as an approach to frequency synthesis. It has the merit of simplicity, and because of this, in monolithic integrated circuit form.

Certain perforlance parameters of the synthesiser are defined by the equipment performance. For example, a marine VhF radio frequency synthesiser has requirements for phase noise and discrete spurious outputs defined by the adjacent channel specification, and the phase noise performance may well need to be several dB better than would at first be expected. If the adjacent channel rejection is 70 dB for example, then a single sideband phase noise level in the receiver bandwidth must be more than 70dB - see Fig. 1. In fact, the translated noise level should be reduced by an amount dependant upon the performance of other areas of the equipment and these specification levels are typically determined by the ystem architect. Frequently, however, during design of a project, same practical limitations is vital at an early stage if delay and Consequent pense is to be avoided in further details on the effects of phase noise on receiver performance, see Ref. 1.

2. DIVIDERS

Single loop synthesisers using direct division as in Fig. 2 suffer from certain limitations. Fully programmable dividers are not generally available for frequencies above about 50 MHz without high power consumptions, and even CMOS dividers currently available are limited in applications at low (5volt) supply voltages and extreme temperatures. Newer devices are appearing, however, and experimental 250 M try operation has been observed.
Early synthesisers used fixed pre-scalers to divide the VCO down to a suitable frequency for the programable counter as in Fig. 3, or used mixing techniques as in Fig. 4. Indeed, a large number of CB radios use the mixing technique, but this system can suffer from spurious products anless carefully designed in choice of frequencies, input levels and articular mixers used. Ref $2,3,4,5$. In adition, the large variation susequent division ratio may give problems with 1000 dynamic performance.

Simple PLL fig 2

Use of a fixed prescaler

A major area of conflict lies in the choice of reference frequency. In synthesisers such as Fig. 3, the output frequency step size is M times the reference frequency, where M is the prescale ratio. In a systen where every channel is used, the problen is then that the reference frequency has to be decreased by a factor of M, and as a result, the bandwidth of the feedback loop must decrease. The bandwidth and damping factor of the loop filter are vitally important parameters in determining such loop characteristics as lock up time as well as the phase noise characteristics. (The effects of the widest possible loop bandwidth is required to minumise lock up time and to confer the greatest immunity to shock and vibration. However, the loop bandwidth cannot be greater than the reference frequency and so the use of a fixed prescaler is obviously somewhat limited. The alternative is the widely used "Two Modulus" or "Pulse Swallowing" prescaler system, illustrated in Fig. 5. In this method, the prescaler is able to divide by two integers N and $\mathrm{N}+1$. The two counters A and M are programmable and are clocked in parallel, the divider being set initially to the $N+1$ ratio. Wen the A counter is full, the divider is set to divide by N until the M counter is full, giving a total division ratio of MNHA. This system is limited to a minimum division ratio of $N L^{2}$ if every value of N is to be achieved (no "skipped" channels) and con with these limitations, hower a fuly programable divider is achieved and so f ref can now equal the channel spacing.

Another and more subtle limitation is in the delay times of the various components within the loop. When the circuit (Fig. 5) has counted down so that the M counter has been filled, the whole systen is reset, and quite that the M counter has been filled, the whole systen is reset, and input obviously, must achieve this in time equal to $N+1$ cycles of the input
frequency e.g. in a $\div 64 / 65$ prescaler, at $1 G \mathrm{~Hz}$, the reset of the M and A counters must be achieved in 65 cycles or in this case, $65 n \mathrm{n}$. This means that the propagation delays plus set up/release times plus reset delays must not exceed 65 nS and it is this area where trowle can often be expected, especially at temperature extremes. Although a lGHz synthesiser with a 64/65 divider only sees an input frequency of 15 MiHz for 1 GHz input, the set up/release time and delays may well easily reach 85-9ans and the system will thus fail.

If the propagation through the divider $=$ to the set up time $=$ ts
the release time $=t$
the propagation delay through the A and M counters $=$ tc
then
$f_{\text {max }}=\frac{N}{(t d+t s+t c)} \quad$ or $\quad \frac{N}{(t d+t r+t c)}$
whichever is least.

One of the areas in wich an increase in LOOP DELAY TIME can inadvertently occur is if the A and M counters trigger from a different edge to the dual modulus prescaler. This can cause a major diminution in available loop delay, as can an attempt to physically separate the divider and control circuits. Other deleterious affects have been noted, such as radiation of the divider output to the voo, producing high frequency sidebands, so practical synthesisers are best produced with little physical spacing between divider and control circuit.

The control circuit is a practical device in a number of technologies, although modern devices exclusively use CMOS to minimise power consumption. prescalers are still mainly exemplified by bipolar technology, advances in which have seen major reductions in power consumptions in recent years - for example from 65 mA at 5 v for a divide by $10 / 11$ operating at $250 \mu \mathrm{zz}$ in 1976 to 4 mA at 5 v for a $40 / 41$ operating at cill build up the A and M counters fron iscrete IC's and then add phase detectors, reset circuitry and so on, but such equipments are by now obsolete in design and extremely expensive to manufacture. Nevertheless, the lessons of tolerancing delays necessary in is now hidden inside a block of silicon.

The choice of prescaler ratio is governed by a number of factors Discussed 80 far have been minimum ratio and loop delay. However, the output frequency of the divider must be low enough for the A and M counters to function. Sumarising

1. Fin $\leqslant \mathrm{N}$ Fmax control
where N is the divider ratio
Fmax control is control circuit maximum operating frequency.
2. Fin $\leqslant \frac{N}{\text { total loop delay }}$
3. \quad min $=N^{2}-N$
where \min is the minimum divide ratio.
N is the dual modulus divider ratio.
Various values for N exist in proprietry devices. These range from $3 / 4$ to
Various values for N exist in proprietry devices. These range from $3 / 4$ to 128/129: binary values ($32 / 33$, 64/65, $128 / 129$) are popuar for ease of for thumb wheel switch programing.

Programming is a straightforward exercise for binary division and the following method is recommended.

1. The A counter should contain x bits such that $2^{x}=N$
2. If more bits are included in the A counter, these should be programed to zero.

$$
\begin{aligned}
& \text { e.g. } \begin{aligned}
N & =64 \\
A & =10 \text { bits }
\end{aligned} \\
& \text { then the } 4 \mathrm{MSB} \text { are programed to zero. }
\end{aligned}
$$

3. The M and A counters are treated as being combined so that the MSB of the M counter is the MSB of the total and LSB of the A counter is the LSB of the total.
e.g. A symthesiser operating from $430-440 \mathrm{MHz}$ in 25 KHZ steps uses a

64/65 divider, and the control circuit uses binary counters.
$\mathrm{P}=\mathrm{F} /$ Fref and Fref $=$ channel spacing $=25 \mathrm{KHz}$
$\operatorname{Mnin}=430 / .025=17200$

Minimum possible divide ratio is $N 2 N=4032$
where N is two modulus divider ratio
maximum allowable loop delay $=\frac{64}{440 \times 106}$
Total divide ratio, P, is given by
$\mathrm{P}=\mathrm{N}+\mathrm{A}$
$\mathrm{N}=64$, as a $64 / 65$ divider is used
Pmin from above is 17200
Therefore $17200=64 \mathrm{M}+\mathrm{A}$
And $M \geqslant A$
Let $A=0 \quad$ Then $M \min =\frac{17200}{64}=268.75$

- 268
and $M \max =\frac{17600}{64}=275.0$
Thus the M counter must be programable from 268 to 275 as required: the M counter must have at least 9 bits.

For a frequency of 433.975Miz
therefore $\begin{aligned} & P=433.97 / .025=1735 \\ & M=271.2343\end{aligned}$
The A counter is programed for the remainder i.e.
$0.2343 \times 64=15$
From this, the A counter is programed to 15 and the N counter to 271. The output frequency can now be checked.
$P=N M+A$
$=271 \times 64+15=17359$
and this is the required divider ratio.

The two modulus prescaler is therefore able to offer the advantages of producing a programable divider operating at a very high frequency, but consuming a fraction of the power of such a divider. This enables the reference frequency to equal the channel spacing, thus allowing maximisation of loop bandwidth with its conocmitant faster lock up time It is limited by total loop delay, maximum operating frequencies of dividers and counters, and in minimum count values, but is nevertheless a powerful tool for the synthesiser designer.
The limitation on the value of min, the minimum divide ratio can be avoided by the use of three and four modulus dividers. The use of a four modulus counter allows a very wide frequency range to be covered with one such devices are the Plessey Sp8901 and SP8906. Power consumptions typically range for 2 modulus dividers from $A \mathrm{MA}$ at 200 MHz (Plessey SPB792 typ 3) yhrough 11mA at 52 MHz (Plessey SP8716/8/9) to 25 AA at 1 CHz (Plessoy SPB703EXP) for two modulus dividers.
3. LOOP BANOWIDIH AND PHASE NOISE

As stated earlier, phase noise is a very important parameter in frequency synthesisers. Too many early synthesisers suffered from phase noise problems which manifested themselves as poor equipment perfomance in such areas as multiple signal selectivity and ultimate signal to noise ratio. The performance of the synthesiser may be degraded or improved by changing the loop bandwidth, depending upon the characteristics and parameters involved.
The general characteristics of a phase locked loop (PLL) are that for signals injected into the loop it acts as a low pass filter for signals inside the loop bandwidth, and as a high pass filter for signals outside the loop bandwidth. To analyse the performance, consider modulation of the low at very low frequencies. The output of the phase detector will be a imposed on the signal of phase such as to attenpt tenbve the moduation component of the phase detector output is not passed by the loop filter, and so the modulation is not removed by the loop. Note that the modulation is phase modulation (PM) up to the filter break point and frequency modulation (FM) thereafter. In the "in-between" range, some interesting distortion effects can occur, especially when excessive group delay exists in the loop filter

The relationship of $100 p$ filter bandwidth to phase noise is now apparent. Phase noise from the oscillator corresponding to frequencies below the filter bandwidth will be removed by the loop, while phase noise components outside the loop bandwidth will be unaffected by the loop. Under these circumstances then, the 100 output spectrum will be cleaned up by the loop. However, for frequencies inside the loop bandwidth, other factors enter. Variations in the reference frequency cause variations in output frequency from the synthesiser, and phase noise components at the reference frequency are purely the frequency domain transforms of time domain frequency instability (ref. 6,7,8). These phase noise affects are maltiplied in the loop by the divider ratio. An example (admittedly using gross instability for demonstration) is shown.

If the 430 MHz synthesiser in section 1 has an instability of +1 Hz in the 25 KHz reference frequency, this is multiplied by P.
i.e. for operation at 433 MHz
$P=433 / .025=17320$
Therefore if +1 Hz at 25 KHz gives +17.32 KHz at final frequency.
Thase noise at the reference freguency is derived fram two sources:-
a) the system standard oscillator
b) the reference chain divider

Oscillators for standards are available with very low phase noise characteristics, and -130 to $-170 \mathrm{dBc} / \mathrm{Hz}$ at 1 KHz offset covers the usual range. This phase noise is modified by the reference divider and multiplied by the division ratio as explained above. of course, phase the divider is rear noise in dividers, although various measurements have been made (pef 9) It has been suggested that TTL and CMOS dividers are better than ECI and CMOS is better at $10 \mathrm{w}(10-20 \mathrm{~Hz})$ offsets. At a 1 KHz offset. ECL levels of about $-145 \mathrm{dBc} / \mathrm{Hzand}$ CMOS levels of -155 to $-165 \mathrm{dBc} / \mathrm{Hz}$ appear usual. The explanations for the occurance of phase noise is intuitively regarded as explanations for the occurance of phase noise is intuitively regarded as would not expect CMOS to be so good as TTL insofar as the rise and fall times will be somewhat slower. Regrettably, the difficulty and cost of making meaningful measurements is an inhibiting factor: data on the phase noise performance of Gallium Arsenide dividers would be of considerable interest, especially at small frequency offsets.

From the above discussion, a phase noise floor of same $-150 \mathrm{dBc} / \mathrm{Hz}$ can be expected at the end of the reference frequency divider chain if a good frequency standard is used, while a low cost one may well be at about -130 $\mathrm{dBc} / \mathrm{Hz}$. In our 430 MHz synthesiser, a degradation at 1 KHz (if the loop is wide enough) of same 84dB will be seen, so inside the loop bandwidth, the noise performance will be limited to $-130+84=-46 \mathrm{dBc} / \mathrm{Hz}$. At lower offset frequencies, the phase noise of dividers and frequency standards is worse, so the phase noise performance is now being defined by the loop, rather than the VCO. These are worst case figures, but the ultimate signal to noise ratio of an FM receiver can clearly be seen to be easily limited at UMF by multiplied phase noise. Fortunately, the noise enhancement by
the loop is such that pre-emphasis of the modulation provides major the loop is such that pre-emphasis
improvements in signal to noise ratio. Nevertheless, it is obvious that the choice of loop bandwidth is
compronised by the ultimate signal to noise level required by the system and that such factors as reference oscillator noise level and divider noise cannot be totally disregarded. Qperation in the usual cellular radio bands at 800 or 9000 Hz makes the situation some 6 dB worse than that analysed above and the use of a psophametric audio weighting in the equipment is advisable. Sub audible tones may well need fairly high deviation if signal to noise performance is not to be severely limited on them, although modern decoders will work with a negative signal to noise ratio - Ref. 10.

In the single loop synthesiser, the phase noise in adjacent channels, which determines the adjacent channel performance, is, to a first order, unaffected by the loop and its parameters. Second order effects such as noise modulation by such loop components as high value resistors and operational amplifiers may be negated by the use of a passive low pass filter prior to the VCO. Phase noise in the oscillator will be discussed in section 4.

Even where the effects of multiplied phase noise may be ignored, such as where the reference divider chain noise is sufficiently low, certain other problems occur in the loop filter design. Many of these are associated with the phase detector employed, which in many areas has been a digital phase/frequency detector. Various types of detector have been used over the years, fram an OR gate producing a variable mark space ratio to the well known 2 D type detector. The first of these used integration of the variable mark-space ratio to produce the required output, while the latter (Fig. 6) produces minimal width pulses on both $\varnothing u$ and $\varnothing D$ when in the zero phase error condition. Unfortunately, the zero phase error state exists for a degree of phase error dependant upon the propagation delays of the gates and a phase error/output voltage characteristic such as Fig. 7 is characteristic means that the loop gain falls to mero when the phase error characteristic means that the loop gain this loads to an increase in the low frequency phase noise of the loop. This phenomena is of course related to the reference frequency of the loop, being worse at high comparison frequencies.

Although a number of approaches have been made to minimise this problem, including the provision of a leakage path across the VCO control line (Ref. ${ }^{16)}$ "fill ine better approach is to use a linear phase detector of high gain to that if the digital phase detector has a "tri-state" output for the area in which the dead zone occurs and the linear phase detector operates, then the phase detector output at comparison frequency is reduced, allowing either a wider loop bandwidth for the same comparison frequency sideband rejection, or increased rejection, or to some extent, both. The analogue phase detector may easily be given a very high gain and narrow range of operation - say a 2 degree range with a gain of 600 volts/radian, but only a limited lock range. It is however, essential to ensure that saturation of this detector, and indeed of the loop filter/amplifier is minimised, as under channel change conditions, the control line and thus the filter amplifiers can be driven hard into saturation. A long recovery time here may well make a mockery of any lock up time calculations. It is this approach which has been adopted in the N88820 series of CMOS control circuits fran Plessey with a large degree of success.

The choice of loop bandwidth is also governed by the time to change channel, and here again, compromise is often necessary. For example, a lock up time of 1 mS and a 100 p bandwidth of 100 Hz are apparently mutually incompatible. By using the two detector approach outlined above however, the loop bandwidth for the digital detector may be made much wider than the analogue detector, thus providing a form of adaptive filtering. The basic loop equation for a type 2 2nd order loop is

Dual D type phase discriminator fig 6

Transfer characteristic of phase discriminator with a charge pump

$W h=\sqrt{\frac{\mathrm{KORv}_{\mathrm{N}}}{\mathrm{Nt}}}$

 detector gain in volts/rad, $N=$ division ratio and $t_{1}=$ integrator time constant be note the 31 B bandwidth of the lop and the natural frequency wh are not identical - except for a damping factor, $D=3.02$.

It was stated earlier that noise caused by the phase detector and 100 p filter is easily filtered to avoid noise in adjacent channels. Noise inside the loop bandwidth is another matter, and the use of low noise components in loop filters (NOT a 7411) is advisable. Where possible, time constants should use large capacitors and small resistors to minimise KIBR noise. $1 / f$ noise can be a problem with operational amplifiers, and where loop bandwidth is high, slew rate is important if the dynamic loop bandwidth is to bear any relationship to the small signal case.

Tb summarise, the choice of loop bandwidth affects close in phase noise and lock up time. Mhase noise is produced by dividers, phase detectors and filters, and when multiplication ratios are high, the reference frequency phase noise can be daminant when multiplied. To minimise this effect, the loop bandwidth can be narrowed, since noise outside the loop bandwidth is deternined solely by the VC0. Typical divider phase noises of -150 or -160 $\mathrm{dBc} / \mathrm{Hz}$ can be expected, so low cost reference oscillators can dominate the noise perfomance.

4. VOLTAGE CONTROLIED OSCILLATORS

Many engineers consider vco design to be a black art, and although same art is occasionaly involved, VCO's are amenable to analysis.

In the single loop synthesiser, the phase noise perfonmance outside the loop bandwidth is dominated by the VCO, with the noise generation by

Scherer, Leeson (ref. 12) and Robins (ref. 13) have analysed oscillator phase noise performance and Scherer (ref. 14) has demonstrated the applicability of Leeson's equations and uses the equation
where $L(f)$ is the SSB phase noise at an of fset F
$F(f)$ is the Noise Figure of the amplifier in the oscillator
is Boltzmann's Constant
is the Temperature
Ps is the available signal power
fo is operating frequency
f is the offset at which the power is to be calculated
Q is working Q of the tuned circuit
C is tank capacity
is tank current peak voltage
Bo is rf output power

By inspection of eq 1 , it may be seen that the phase noise is proportional to Q^{-2} and also to (frequency offset)-2. This means that for each octav decrease in the offset frequency, the noise power will increase by 4 times or at $6 \mathrm{~dB} /$ octave. As the frequency offset decreases $1 / f$ or flicker noise becomes important: this "break" frequency can be as high as 50 MHz with GaAs devices. From eq.l, it may be determined that a low phase noise oscillator will have a large voltage swing, a high working Q and provide little output power to the load. There is of course a limit as to the level of power required, as the noise of any subsequent buffer amplifiers will degrade the oscillator.

A major compromise in the design of equipment is the choice of vCO frequency. If, for example, a 800 MHz cellular radio type of receiver is considered, some fairly straightforward calculations will serve to act as a guide. starting with the receiver paraneters, we will assune that a lod rece iver sub system parameters are involved.
(a) Synthesiser phase noise
(b) IF filter performance
(c) Co channel rejection ratio
(d) Gin compression of stages before the main IF selectivity

Of these paraneters, (c) is the least obvious in its applicability. Ref, I showed how oscillator noise was mixed onto a wanted signal by a strong obviously depends the noise is on the same frequency, the co-channel rejection. Typically, this means that a noise level within the IF passband of some $8 d B$ less than the signal is required. Thus for the 70dB rejection, oscillator noise at 78 dB is required, and 80 dB would thus be the design aim.

Conversion of this level to $\mathrm{dBc} / \mathrm{Hz}$ is not straightforward because of the non linear slope of the phase noise. However, for narrow bandwidths at large offsets, little error is obtained by approximating the phase noise slope to a straight line. This may be illustrated as follows:-

Fram equation 1, the power spectrum at an offset beyond the flicker noise knee is given by:-
$\mathrm{P}_{\mathrm{O}}=\mathrm{kf}^{-2} \quad-(2)$
where P is the noise power
K is a constant
K is a constant
f is the offset
For a frequency band bounded by $f_{\text {lower }}$ and $f_{\text {upper, }}$ the noise power is:-
$P_{t}={\underset{f}{u}}_{f_{L}}^{f_{k f}-2} \mathrm{df}={\underset{f_{L}}{ }\left[-k f^{-1}\right]}$
$=K\left(f_{L}{ }^{-1}-f_{u}{ }^{-1}\right)$

Therefore

$$
K=\frac{P_{t}}{\left(E_{L}^{-1}-f_{u}^{-1}\right)}
$$

P_{t} has been defined as the phase noise in the band $=-80 \mathrm{~dB}$
therefore

To find the phase noise in a 1 Hz bandwidth at an fset F

$$
\mathrm{P}=\mathrm{kF}-2
$$

so at 53.5 KHz

$$
\begin{aligned}
P & =\frac{2.58 \times 10^{-3}}{\left(53.5 \times 10^{3}\right)^{2}}=0.901 \times 10^{-15} \\
& =-120.5 \mathrm{dBc} / \mathrm{Hz}
\end{aligned}
$$

At 60 KHz

$$
P=-121.4 \mathrm{dBC} / \mathrm{Hz}
$$

and at 67.5 KHz

$$
\begin{aligned}
& 67.5 \mathrm{KH2} \\
& \mathrm{P}=-122.5 \mathrm{dBc} / \mathrm{Hz}
\end{aligned}
$$

If the 'break point' for $1 / \mathrm{F}$ noise is above 60 KHz , then the spectral density is determined by noise rising at F^{-3}. Similar procedures are followed:-

$$
\begin{aligned}
& P_{O}=K^{\prime} E^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-K^{\prime}}{2}\left(f_{U}{ }^{-2}-f_{L^{-2}}\right) \\
& =\frac{K^{\prime}}{2}\left(f_{L}{ }^{-2}-f_{u}{ }^{-2}\right)
\end{aligned}
$$

Using similar figures, the perfomance required is:-
$\begin{array}{ll}53.5 \mathrm{KHz} & -120 \mathrm{dBc} / \mathrm{Hz} \\ 60 \mathrm{KHz} & -121.5 \mathrm{dBc} / \mathrm{Hz}\end{array}$
$67.5 \mathrm{KHz} \quad-123 \mathrm{dBC} / \mathrm{Hz}$

The error by assuning a linear relationship is given by:-
IF bandwidth $=15 \mathrm{KHz}$
therefore noise power is $10 \log _{10} 15 \times 10^{3} \mathrm{~dB}$ greater than in a 1 Hz bandwidth
which is 41.8 dB
therefore if the noise power is $80 d B$ down on the signal,
total carrier to noise power ratio is $-121.8 \mathrm{dBc} / \mathrm{tz}$ at 60 kHz .
This in fact gives a requirement some 0.4 dB higher than previously calculated and in 120 dB is obviously negligible.

Having decided upon the level of allowable oscillator noise, it is now possible to calculate the best methods of achieving this level. using Scherer's figures from Ref. 13 for a 400 MHz oscillator which will be dowbled, using parameters of:-
$\mathrm{Q}=200$
$\mathrm{C}=23 \mathrm{p}$
$v=10 \mathrm{p}$
FKT $=\left(\frac{6 n V)^{2}}{5}\right.$ where $6 n V$ is the noise voltage and $l v$ is the (\bar{v}) input before limiting.
The noise power P at a 30 KHz of fset is, fram eq $1,-135 \mathrm{dBc} / \mathrm{Hz}$.
So far flicker noise has been ignored. Flicker noise is a low frequency phenomonen which causes problems by intermodulation with the carrier phenomonen which causes produce noise sidebands. The "break point" at which flicker noise becomes daminant varies but a UHF VCO of the type under consideration would probably have a break point at about $50-150 \mathrm{kHz}$ offset from the carrier. \quad g 1 needs some modification to include this factor and a multiplicand of

$\left(1+f_{f}\right)$

may be used, where f_{e} is the $1 / f$ noise comer frequency.
The previously calculated noise will now be degraded by about 8 dB under these conditions, (assuming $f_{e}=150 \mathrm{KHz}$) and will now be $-127 \mathrm{aBc} / \mathrm{Hz}$. This is about 5 dB inside the previously calculated requirement. Note that calculations have been made on the basis of a 30 KHz offset to allow for dowling the oscillator frequency.
Considering an oscillator with a fundamental frequency of 800 MHz , a number of problems appear. Ignoring for the time being the increased noise figure of the device, the available 0 of camponents is considerably less - for example high quality chip capacitors can offer Q's of about 200, leading to working Q of about 100. Calculating noise levels for a 60kHz offset with all other parameters constant except tank capacity which is 12 pF (hals outside the res the requir is requirements, while the 800 Ntz oscillator will not.- $\mathrm{f}_{4} \mathrm{~g}$.

5. SLMMARY

The compranises in the symthesiser design are now apparent: a narrow bandwidth is required to minimise multiplied reference noise, but a wide bandwidth is needed to minimise lock up time. A high oscillator frequency may be reguired to avoid spurious outputs and multiplier chains, while a low frequency and multiplier chain give the best performance on system phase noise and possibly power consumption. The classical way to minimise these problens is the two loop synthesiser, but cost is a determining factor effecting the compramise finally reached. Power consumption is always a probien and unfortunately is more demanding at high frequencies requirements in terms of phase noise and switching time.

Modern integrated circuits help the designer by providing better phase detectors and faster lower power dividers. Nevertheless, the single loop design, and in some cases, these compranises may limit the final equipnent performance level. The single loop synthesiser is very useful, but is not universally applicable.

REFERENCES

1. Dynanic Range, Intermodulation and Phase Noise P.E. Chadwick, Padio Communication March 1984, PP223-228
2. The SL6440 High Perfomance Integrated Circuit Mixer P.E. Chadwick, Wescon 1981, Session 24 Record, entitled "Mixers for High Performance Radio". Published by Electronic Conventions Inc. 999 N. Sepulveda Blvd, El Segundo, CA 90245.
3. High Perfonnance Integrated Circuit Mixers, P.E. Chadwick, rF Design June 1980 pp20 - 23.
4. High Performance Integrated Circuit Mixers, P.E. Chadwick Clerk Maxwell Commemorative Conference on Radio Peceivers and Associated Systens, Leeds 1981 (I.E.R.E. Conference Publication No. 50, ISEN 090374845 2).
5. Frequency.Synthesisers, Theory and Design. 2nd Edition Vadim Manassevitsch, Wiley, 1980, ISBN 0471079170.
6. Characterisation of Frequency Stability: A Transfer Function Approach and its Application to measure via Filtering of thase Nbise. J. Rutman, Trans. IEEE on Instrumentation and Measurement, Vol 22 (1974) pp 40-48.
7. Phase Noise Measurement using a High Resolution Counter with on Line Data Processing. Peregrine, Ricci. Proc 30th Annual Symposium on Frequency Control, U.S. Akmy Electronics Command Ft. Monmouth N.J
8. Phase Noise in Signal Sources. W.P. Pobins, Peter Feregrinus Ltd., London 1982 ISBN 090604876 1. pp 173-202.
9. Digital PLL Frequency Synthesisers, Theory and Design. Urich L. Rohde, pub Prentice Hall, 1983. ISBN 01322142392. pp $86-87$
10. State of the Art Signalling Devices for Mobile Radio Systems Selective Call, Tone Squelch and Digital Signalling. L.G. Litwin, Proceedings Comunications 84, IEE Conference. Publication No 235, ISEN 085296292 4, 1984./
11. AN1006, A VHF Synthesiser using the SP8906 and N88811. Plessey Seniconductors Ltd. Swindon, England.
12. A Simple Model of a Feedback Oscillator noise Spectrum D.B.Leeson, Proc IEEE Vol. 54, Rebruary 1966
13. Fhase Noise in Signal Sources, W.P. Fobins pp 47 et seq.
14. Learn About Low Noise Design. Dieter Scherer Microwaves, fpril 79 pp 116-122 May 79 pp 72 - 77.

Transmission line VCO using the line as an impedance inverter
fig 9

Transmission line VCO using a shortened $\lambda / 4$ line capacitively loaded

PAPER TITLE:
Temperature Stabilized RF Fower Detector

Mr. George M. (Mike) Walley
Lead Engineer - Technical Staff
Harris Corp. Government Satellite Comm. Division Box.93000 MS 1-1000

Melbourne, FL 32902
(305) 727-6344

ABSTRACT:

Temperature Stabilized RF Power Detector

Often in the design of high performance communications equipment a means of measuring an RF power level is needed. Consider the usual application of automatic level control of an RF signal. This application can arise from the requirement to stabilize the output power level from a modulator or from a high power amplifier stage. Input automatic gain control (AGC) is another illustration of a use for an RF power detector as a measurement device to derive a loop error signal. Most applications also have the requirement that the stabilized RF level is relatively insensitive to temperature. This article introduces a circuit topology utilizing common RF detector diodes that is inherently more temperature stable than simple envelope detectors. Included in the article is test data taken to characterize the performance of the new detector topology at different operating ambient temperatures.

Temperature Stabilized RF Fower Detector

DEFINING TME REQUIREMENTS:
Often in the design of RF communication equipment or systems the need arises for a simple RF power detector. A very common application of this class of simple power detector is as the control feedback detection element in an automatic gain control loop. In this application the RF detector will operate most of the time with an input at some specific power level. Since the function of the loop is to keep the power level at the detector input constant the detector only has to have well characterized behavior in a small operating range. Hence, this typical application usually has no requirement for a specific relationship between input power level and the output voltage level of the detector. The more stringent requirements are for repeatability, manufacturability, and temperature stability.

The repeatability problem has been approached in a number of ways. One method is to use high precision components and / or calibrated compensation networks. The overall problem is made easier if the power detector circuit is a simple, minimum component count implementation. If appropriate application of available precision components is made, the compensation of residual temperature and ageing effects is simplified. For example, temperature stable resistors, OF-AMPS and other components can be economically designed into a system. The detector diodes are a different matter entirely. No matter how much they cost they are inherently unstable in regards to their behavior at different temperatures. Any shift in their operating characteristics with temperature leads directly to a shift in the operating point of the leveling loop they are contained in.

It should be clear also that some facets of the repeatability solution yield positive results in terms of manufacturability also. If

Temperature Stabilized RF Power Detector
there is a minimal number of components in a proposed circuit this implies a simplified manufacturing process. More important, the subject of producability is tied to whether or not there are any select-and-test (SAT) elements in the design. These require a higher degree of skill and knowledge from the manufacturing personnel and slow down the process. Any adjustments necessary also lead to cost increases. The cost impact of adjustments can be reduced to a tolerable level if the adjustment procedure is simple and the adjustment itself i s easy to make and remains at a stable setpoint. This goal in itself demands temperature and time stabilization of the circuit.
DEVELDFMENT OF THE CIRCUIT:
Consider the circuit shown in figure 1.0 . This is a basic envelope detector using a fast recovery diode. A limitations of this circuit topology is the need for a relatively high level signal to overcome the threshold of the diode. Also there is no form of temperature compensation. Extending this circuit to the design shown in figure 2.Oa. helps with the threshold problem by providing the diode with DC biasing. A disadvantage of this approach is the reliance on the stability of the power supply voltages over time and temperature. Temperature induced changes in the threshold are not compensated for and can lead to significant shifts in an AGC operating point when using this detector. First order temperature compensation of the threshold shifts can be improved with the addition of diode D2 shown in figure 2.0b. Since the threshald of the detector diode is related to the forward DC bias current, the current flow can be compensated by D2. If the current changes, the forward voltage drop across D 2 moves in the opposite direction which stabilizes the voltage

Temperature Stabilized RF Power Detector
across D1. This technique has been used with AGC loops having a stability requirement of about $\pm 1.5 \mathrm{~dB}$. To hold a tighter tolerance requires a new circuit topology taking into account both power supply variations as well as temperature shifts in the diode characteristics.

The temperature effects can be reduced significantly with a
differential amplifier type of detection circuit. Shown in figure 3.0 is a circuit that will allow the use of low cost precision OP-AMPS and will still yield improved temperature stability. Temperature shifts in the DC offsets of the diodes are cancelled out and the overall output stability with temperature is a function of how closely the characteristics of the diode pair match. The operating temperature of both diodes also needs to be well matched. Adjacent location of the diodes on a printed circuit board is an easily realizable minimum requirement. The two diodes could be on the same monolithic die to provide near perfect temperature tracking. With the addition of a constant current source for providing DC bias, the effects of DC impedance changes in the diodes and power supply variation are reduced. Figure 4.0 is a schematic diagram of a complete temperature compensated RF power detector. The voltage reference is itself temperature compensated and is a relatively low cost addition to the circuit.
CIRCUIT PERFDRMANCE:
This basic circuit topology has found many applications in the design of precision RF leveling loops in the past and tas been well characterized over temperature. Figure 5.0 is a plot of the response of this basic circuit at $0^{\circ}, 25^{\circ}$, and $70^{\circ} \mathrm{C}$. As can be seen from the graph only a small shift in the output voltage of the detector takes place with changes in temperature. What this means for an AGC loop can

Temperature Stabilized RF Power Detector

be understood by looking closely at a section of the graph around a possible operating point. Figure 6.0 is an enlarged section of the graph of figure 5.0 about a hypothetical operating point of +2.0 dBm. This shows that an AGC loop using this detector could be expected to exhibit a temperature drift of only about $\pm 0.4 \mathrm{~dB}$. This is a significant improvement over the typical value of $\pm 1.5 \mathrm{~dB}$ for the simple detector of figure 2.0b. For certain applications this level of performance is still not satisfactory. For these instances one more step in the quest for temperature stability can be taken. That is to place the diode pair in a temperature controlled environment, namely a component oven. The component oven is operated at a temperature higher than the maximum operational temperature the circuit is being designed to. A component oven that will keep a pair of RF diodes at a constant 750C was developed for a past project and has found itself in several later designs. The oven is an Ovenaire part number PC2 - 82. The response of the circuit with the component oven is shown in figure 7.0. As can be seen the temperature drift to be expected in a closed loop application has dropped to about $\pm 0.1 \mathrm{~dB}$. This variation is near the limit of measurement with general purpose test equipment. The residual operating point shifts are from imperfect balance between the diode bias currents as well as offset drift in the differential amplifier.

CONCLUSIONS:

The subject of the application of temperature compensated RF power detectors was discussed. The major points to consider being the requirements for repeatability, manufacturability, and temperature stability. It was shown that for modest increases in component costs and complexity large improvements in all three areas are to be gained.

Temperature Stabilized RF Power Detector

The development of a circuit topology that is inherently more temperature stable was presented as well as test data taken from a typical implementation of that topology. The further enhancement of the circuit was discussed from the stand point of obtaining near perfect contral of output level variation with temperature. This was obtained at the cost of controlling the diode junction temperature directly. It is important to note that simply controlling the junction temperature of the diodes in a simple detector is not sufficient. This is because the other elements of the instability with temperature would then become dominant. Thus making the mere addition of the component oven of lesser value than if used with the new circuit topology.

RF
RF
Input

UC Output

Figure 1.0 Basic Envelope Detector

Figure 2.0a Basic Dtector with Bias

Figure 2.0b simple Temperature Compensation

Figure 3.0 Temperature Effects Cancellation With Differential Amplifier

Figure 6.0 Expanded Scale of Detector About +2.0 dBm

Figure 7.0 Expanded Scale Detector Response with Ovenized Detector Diodes

Figure 4.0 Complete Temperature Compensated
RF Power Detector Circuit

Figure 5.0 Characteristics of Temperature Compensated RF Power Detector
an ultra-past udf voltage controlled attenuator
wItB 35 dB of linear dmanic range
Daniel L. Gerlach
California Amplifier Inc.

ABSTRACT: The analysis of ast PIN diode voltage controlled attenuator is presented in this paper. Design Applications, D.C. and R.F. features, and mathematical derivations for the driver section have been included. compensation network is incorporated to provide system linearity over temperature.

INTRODUCTIO

There are presently several independent manufacturers of wide band voltage controlled attenuators, (VCA). The product described here is just as good, or better than most of the VCA on the warket and can be built for fraction of the cost of thin-film or hybrid vCA's.

Another benefit to the VCA described includes extreme versatility described includes extreme versatility
in selection of control voltage in selection of control voltage range. The vca runa off of positive be modified to accept negative signale.

apPLICATIOUS

The versatility of this design make: it suitable for many application. In the . laboratory it can aid in compresion point measurement of amplifiers and tranamitters. The VCA can also be used for power and gain matching of two or more amplifiers. The attenuator can be cascaded with an LNA front-end to produce a low noise voltage controlled amplifier. In the field the VCA can be used to determine receiver senaitivity by incorporating it into the transmitter. Mobile transceiver cyatem can be VCA. The unit can help of used as variable RF limiter tso protect small signal aplifiers and receivers from excessive power levels.

design features

The VCA described is basically a two section softboard design utilizing an RF (attenuator) section and a driver (linearizer) aection. The unit can be controlled by digital, analog vCA described here utilizes a modified Pi configuration to achieve a zero-to-maximum or to achieve a zero-to-maximum or
maximum-to-zero change in 2.5 maximum-to-zero change in 2.5
microseconds with less than 0.5 $d B$ overshoot. The 0 to 100\% switching speed is 3.0 microseconds. The maximum input and output vSWR is $1.6: 1$ with an insertion lose of 2.5 dB . The linearizer described utilizes an operational amplifier and two Zener diodes to achieve an overall linearity spec. of ± 1.5 an overall linearity spec. of ti.s
$d B$. All of these specifications are held over the -30 to $+60^{\circ} \mathrm{C}$ temperature range and 100 to 1000 MHz frequency range by incorporating - standard temperature compensation network into the overall deaign. The vCA utilizes only stock components that are available from most dietributors and it will fit on a l.5 x 2.5 15 P.C.B. requiremente are 5 ma .

system desicm

The system was designed using component design techniques. Both component were designed and tested separately, prior to integration. standard temperature compensation network techniques were employed and added to the vCA after integration. The temperature compensation network will be

PIGURE 1
Attenuator Section

$C_{p}=$ Package capacitance
$\mathrm{Lp}=$ Package inductance

Rs $=$ Substrate
resistance
Ri = Insulating layer resistance
$\mathrm{Ci}=$ Insulating layer capacitance

PIGURE 2
PIN Diode Equivalent Circuit
described at the end of this section.
attenuator design
The attenuator section was designed with the help of Touchstone, a microwave CAD software tool manufactured by Eesof Inc. of Westlake village, CA. The actual design is a modified Pi attenuator network incorporating 4 PIN diode: instead of the usual 3 needed in most Pi networke. The fourth diode, D4, mounted in series in the R.F. line, is used to reduce the overall parasitic package capacitance in the series arm by factor of 2 when D3 and D4 are conducting (See Figure 1). Thia reduction in package capacitance serves to reduce the insertion loss of the attenuator at frequencies below 500 MHz . A second modification included incorporating a 50 ohm chip resistor, R6 and R8, in each of the shunt arms. These resistors and output maintaining good during periods of maximum attenuation, pi.e. thunt arme conducting. A final modification offet bias voltage, vb , and

Figure 3

Typical Besponet Curve For
Attenuation ve. ${ }_{\text {Attenuator }}$

FIGURE 4 Linearizer Section

Limearizer desica

The Linearizer section shown in Pigure 4 was developed for three reasons. First, the circuit is ast, with rise and fall times
 attenuation ranges. Compare this to 5 wili-seconds for the circuits depicted in [2] and [3]. Second, the circuit is extremely versatile. By changing $\mathrm{Rl2}$ and the divider networks in the attenuator, any control voltage range can be casily obtained. And third, the circuit is compact, incorporating only 10 components in contrast with 19 and 14 for [2] and [3] respectively.

In order to maintain a linear response over the 35 dB attenuation range, the linearizer section must that is the inverse of the that is the inverse of the
exponential response of the exponential response of the
attenuator section. The zener attenuator section. The 2ener caak as by providing two breakpoints shown in the following derivation:

CASE 1: Both D5, D6 off
The input voltage to the op-amp can be calculated as the additive sum of V2 and VC, as shown below:
(1) $\quad \mathrm{V} 1=\frac{\mathrm{V} 2 \mathrm{R} 12}{\mathrm{R} 11+\mathrm{R} 12}+\frac{\mathrm{VC} R 11}{R 11+\mathrm{R} 12}$

Note that $V 2$ acts as an offet voltage and is used to set the starting value of vc which corresponda to minimum R attenuation. The value of attenuator can now be found by
using the non-inverting op-amp gain equation non-inverting below.
(2) Vattenuator $\frac{\text { R13 }+ \text { R14 }}{\text { R13 }} \mathrm{V} 1$

Equation 2 sets the initial gair of the circuit correaponding to Section 1 of Pigure 5,

CASE 2: D5 on, D6 off
In this case, since R14 is ideally equal to zero, equation 2 can be reuritten as:
(3) $\mathbf{V a t t e n u a t o r}{ }^{\prime}=\mathrm{V}$

During case 2 operation, the overall gain of the Linearize ($V_{\text {attenuator }} / \mathrm{V}$) can take on any value from zero to unity simply by choosing the correct ratio R11 and R12. Equation 3 aet he medium value gain of the circuit figure 5.

CASE 3: Both DS, D6 on.
In this final case, no further increase in vattenuator can be realized since vi is being held constant by the breakdown voltage of D6. Therefore, equations 2 and 3 become:
(4) Vattenuator" $=\mathrm{K}$ the
breakdown voltage of D6

Equation 4 corresponds to Sectio 3 of Pigure 5.

In order to select the proper values for R11-R14 and V2, a relationship between RF attenuation and To accomplish this, the circuit of Figure 1 must be built and data taken on attenuation level vs. vattenuator. The data corresponding to Figure 1 is shown in the firat two columns of Table 1 below. The next step is to add the third column shown in Table 1. The choice of values for $v e$ determines the voltage control range of the VCA (0 to 5 VDC in this case)

Attenuator Board Anelyais

We have now developed the relation between $V_{\text {attenuator }}$ and V_{c} which will be used to nolve for the unknown resistor values and voltage level. A final step is to incorporate eq. 1 into eq. 2 and put the resulting equation into the
(5) $V_{\text {attenuator }}=A[B * V 2+C * V C]$
where $A=(R 13+R 14) / R 13$
$A=(R 13+R 14) / R 13$
$B=R 12 /(R 11+R 12)$
$B=R 12 /(R 11+R 12)$
$C=R 11 /(R 11+R 12)$
and $\quad B / C=1 /(B / C)$
Using eq. 5, eq. 6 and three data points from Table 1 , the values of R11-R14 and V2 can be obtained.

practical ciecuit considerations

In reality, the zener impedance of D5 never reaches zero, therefore Equation 3 must be rewritten as shown below:
(7) Vattenuator' =
$\frac{\mathrm{R} 13+\mathrm{Z}_{\mathrm{D} 5} / / \mathrm{R} 14}{\mathrm{R} 13} \mathrm{~V} 1$
where: $Z_{\text {DS } / / R 14 ~}{ }^{-}$
The maximum Zener impedance of D5 in parallel with R14.

Usually $Z_{D 5}$ is less than 50 ohms for most zener diodes. The values of R13 and R14 should be chosen such that this 50 ohm is It is also apparent that equation 4 is in error and that because of the finite value of the impedance of D6, V attenuator never reaches of D6, Vattenuator never reaches shown as the slight positive slope shown as the slight positive slope
of Section 3 of the actual curve of Section 3 of the actual curve
in Figure 5. As with D5, the values of R11 and R12 should be chosen such that the zener impedance is less than 2% of the value of R12 (or R11 + R10, whichever is smaller). The high impedance of the non-inverting input of $U 1$ compared to the zener impedance of D6 also helps to reduce this aource of error. As Figure 5 shows, these sources of error help to smooth out the logarithimic response of the linearizer which will actually prove beneficial to the overall attenuator circuit

TEMPERATURE CORPREASATION NETWORR

The above described circuit
will provide at least 35 dB of
linear dynamic attenuation at room
temperature only. As the temperature
increases, Vattenuator drops, the increases, Vattenuator drops, the
dynamic resistance of the PIN diodes
(Rs and Ri) increases, and the verall resultant attenuation level decreases. In order to compensate for this, the temperature compensation network shown in Figure 6 was used to replace R5 in the attenuator section. Other resistors could have been replaced with this network, but this would adversely affect the linearity characteristics. The actual design equations are well known and can be found in either [4] or [5]. If the unit is to be operated under severe temperature conditions the Zener diodes can be replaced with diodes to aid in temperature compensation.

STSTEM TEST AND EVALOATION

The attenuator section was laid out on .031" OAK-601 fiberglase clad on 2 sides. The inearizer section was also laid out on OAR-601. Chip components were used throughout the RF section except the PIN diodes, which were axial lead, glass packages. No tuning in the RF section was required. The attenuation va. control voltage characteristics are shown in Figure 7. R10 can be adjusted to set the initial value of ve if required. Similarly, R13 and/or R12 can be adjusted to change the inearity of the VCA. Capacitors C4, C6 and $\mathrm{C7}$ can be adjusted to Improve the awitching speed. The circuit described operates innearily from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ with no degredation to the specifications given in the Design Features Section.

[^2]

PIGURE 6
Temperature Compensation Network

figure 7
Attenuation ve. Vc

comclosiow

The VCA design presented here exhibits very good switching characteristics and linearity over temperature. Using the design equations and schematics provided, this VCA can be built and ready for laboratory or field uae in control voltage settings. By modifying the driver section, negative control control voitage settings. Dy incorporating only off-the-shelf components, voltages can also be used. By incorporating only off-the-shelf components, of experimental and theoretical results show this design to be accurate over a wide frequency range.

Refrrmaczs: 1. Hewlett Packard Application Note 936 "High Performance PIN Attenuator for Low Cost AGC Applicatione", October 1971.
2. National Semiconductor Corporation "Linear Applications" November 1967, pg. AN30-1.
3. Jacob Millaan "Micro-Electronics Digital and Analog Circuits and Syetems, 1979, MaGraw-Hill, pg. 601
4. Stan Jaffe "Temperature Compensation Using Thermistors", Microwaves \& RF, April 1984, Pg. 101.
5. Thermometrics Catalog No. 181-D, "Technical Applications and Data", pg. A-3

Design, Characterization and Application of a

GaAs Power FET

Y. Hwang

Gould Inc. Dexcel Division
I. Introduction

Design considerations of a C-band GaAs power FET are described in section II. Fabrication process is described in section III. Section IV presents dc parameters and microwave performance of the FET. Section V covers circuit development. This includes the design and performance of a three watt IMFET by combining two FET and the development of a 21 dB gain two stage amplifier.
II. Design considerations

To design a power FET, several important factors must be considered including:

1. Proper total gate width to achieve the desired output power.
2. Obtain a sufficient power gain by reduction of gate length, source inductance and parasitic elements.
3. Maintain high drain - source breakdown voltage.

Design goal is to have a FET capable of generating two watt and good gain at 8 gHz . The device chosen to meet the goal is a single chip having 5 mm total gate width, 40 parallel gates with 4 gate bonding pads and drain bonding pads. Gate length is 0.5 micron and gate width is 125 micron per finger.

III. Device fabrication

Fabrication process of the GaAs FET is described in this section.

1. Mesa isolation: Epitaxial layer except for the channel under the gate is etched.
2. Ohmic contact: After mesa etching, the source and drain contacts are fabricated.
3. Gate recess: Prior to the gate metal evaporation, the conductive active layer is etched down to achieve a recessed gate structure.
4. Gate metallization: The gates are formed by a liftoff procedure.
5. Nitride protection: The device active region is covered with a thin layer of silicon nitride to protect the device from scratches.
6. Air bridge: Source fingers and source pads are connected by air bridge crossover.
7. Via hole/plated heatsink: Holes are etched through the substrate until the source pad is reached. These holes are then plated at the same time as the ground plane.
IV. Device evaluation
8. dc Characterization

Most dc characteristics can be obtained with a curve tracer. Fig. 1 shows the drain current Ids versus drain-to-source voltage vds characteristics of this 5 mm FET. Typical dc parameters of the FET are: Idss $=1100 \mathrm{~mA}, g m=300 \mathrm{mmho}$, and $\mathrm{VP}_{\mathrm{P}}=4 \mathrm{v}$, where Idss, gm and Vp indicate the saturated drain current, transconductance and pinch-off voltage. respectively.

2. RF performance

The purpose of $R F$ characterization is to obtain
either an equivalent circuit for the device or a set of parameters which describes the transistor operation by an equivalent circuit. In both cases, the first step is the measurement of the scattering parameters. (s-parameters) of the device under different bias conditions and in various frequency range with a network analyzer. Fig. 2 shows measured s1l and 822 from 2 to 12 GHz of this 5 mm FET. The bias is set at vas $=9 \mathrm{v}$ and Ids $=500 \mathrm{~mA}$ which is typical bias used on this device. Power gain and output power at 1 db compression point are demonstrated in Fig. 3. Two watt output power and 6 dB gain have been achieved at 1 db compression.
v. Use of the power FET

The power GaAs FET devices can be used in amplifier or oscillator circuit. s-parameter and power measurements of the FET presented in section IV are integral parts of the microwave circuit development. The circuit development effort has been concentrated on establishing the microwave circuit techniques for implementing the power FET in internally matched FET and amplifier circuit.

1. Computer aided circuit design

The results of the s-parameter measurements pre-
sented in section IV have been used in conjunction with computer optimization to generate the circuit elements of the matching networks for IMFET and a two stage amplifier. Fig. 4 shows the schematic diagram of IMFET. The input circuit consists of
three lumped inductors (LO, LL , and L2), a low impedance transmission line TRLI, and a shunt capacitor Cl. The output circuit includes lumped inductor (L3), tramsmission lines TRL2 and TRL3.
2. Experimental data

Fig. 5 shows the output power versus frequency of this IMFET without external tuning. The IMFET has a 3 watt power output at labc with a linear gain of 8 dB from 5.9 to 6.4 GHz . A unique feature of the 2 -stage amplifier is its compactness. The size of the amplifier module is 0.5 inch $X 0.5$ inch. A gain of 21 dB from 4.2 to 4.4 GHz with an output power of 1 watt has been achieved.

Fiq. 1 Drain current Ids versus drain-source voltage Vds characteristics (total gate width: 5 mm).

Fig. 3 Input/Output power response of the 5 mm FET at 8 GHz .

Fig. 4 Schematic diagram of the internally matched power FET.

Fig. 2 Measured 2-12 GHz S_{11} and S_{22} of the 5 mower FET.

Fig. 5 Output power versus frequency of the 3 watt IMFET without external tuning.

ASPECTS OF DISCRIMINATOR DESIGN

> Joseph F. Lutz

ABSTKACT

The purpose of this paper le to aumarize the various diacriminator types. The performance of two divergent through deaign exsmplea. The component values are calculated and comparison of the actusl haraware is made.

The psper beging by defining the varioum methods of demodulating an FM signal: differentiation followed by envelope detection and delay line detection. These are discussed in a conceptual framework. The pertinent equation are then developed and discuseed. The actusl design procedure is developed for a balanced alope demodulator followed by s design example in which L. R and C valuea are calculated. A calculator analysia of this circuit is presented and compared to the performance of the Lenkurt 48011 discriminator which also uses a bslanced slope demodulator.

The delay line diacriainator is daveloped and anslyzed. Design equations are developed ond design exsmple worked out. This example ia compared to the Lenkurt 57040 delay line axamined tor specification. The schematic of the sioseic als implement such s discriminator

Also discussed are the techniques for measuring the performance indeband FM discriminators used as performance monitors in long-haul microwave networka. An example is GTE Sprint.

THE FM DEMODULATION PROCESS

The purpose of a discriminator is to convert carrier frequency variation into on undiatorted baseband output. There are three basic methods to accomplish this task: 1) differentiation feedbeck-pLl tracking. In case number one the differentiation feedback-pLL tracking. In case number one, the differentiation varistiona. The envelope detector is then used to remove the modulating aignal. This is ahown mathematicelly by equations 1 and 2. Notice that

```
\(v_{f m}(t)=\cos \left[w c t \cdot f_{m}(t)\right] \quad\) ean.(1)
\(\frac{d^{v} f m(t)}{d t}=[w c \cdot m(t)]\) ain \(\left[w c t \cdot \int m(t)\right]\)
\(\frac{d^{v} f(t)}{d t}=W c \sin (\) wct \(m(t)] \cdot m(t)\left(\sin\right.\) Wct \(-\int m(t)\)
```

after differentiation the signal consiate of both AM and FM components. It ia from the varying amplitude that the envelope detector recovers the modulsting signal.

In synchronous detection a quadrature version of the received FM aignal and the FM aignal are nixed together. In ossence what is happening is that the carrier wave ia being aynchronously beat to zero frequency with only the desired modulating signal remaining at the mixer output. Higher order terma will slac be present, but they can be removed by s low pasa filter. Later detection will be eatablished. The delay line detector is asier to implement and provides much the same performance as s true aynchronous detector.

The third way that an FM signsl can be demodulated is to place an $F M$ modulator in the feedback loop of an amplifier to perform the inverse of the modulation process. This can be done with s phase locked loop (PLL). For the PLL to track the FM waveform. the control voltage to the VCO must be a replica of the modulating waverorm . This paper will primarily concentrate on He wil diecues aone of the cources of nole ben ditortion in we will discuss some of the sources of nolae sind distortion in FM demodulator

NOISE AND DISTORTION IN THE FM DEMODULATION PROCESS
A close look at equation (2) will reveal why it is necesaary to place a limiter ahead of an FM detector. Any carrier amplitude variations will show up as diatortion in the baseband output. Variations will show up as diatortion in the baseband output. into the baseband by not aufficientiy auppreasing second order and higher harmonica, AM to PM conversion and through what are known as coupled distortions. A coupled distortion will result $1 f$ there is a large if response alope or group delay variation acrosa the IF passband. In effect, what one requires ia a flat amplitude and delay characteriatic ahead of the limiter.

The most significant source of distortion in an FM demodulator is of course ite linearity reaponse. Ideally the basebanc output will be directly proportional to the deviation of the carrier frequency, (See figure la). A good measure of the nonilnearity of the reaponae curve of figure la ia to take the derivative. This ia shown in figure ib. This is known as the innearity or derivative reaponae. The atandard design goal is for the ilinearity to be within $1 *$ over the desired band of interest. The actual measured affecta of discriminator non-linearity is shown in figure 2. The linearity can be broken Into two components (as ahown in figure 2): Percent Slope and Pignal-to-noise 3 kHz the ordinate 1 a the corresponds to the loweat frequency in an FDM baseband ultiplex group. Acrose from the S/N ratio on the opposite ordinate is the noise in pupo. This is also a meate of signol-to-noise ratio or more precisely noise-torsignal ratio pwoo atands for picowatts psophometrically weighted relstive to teat tone The psophometric weighting representa the bandpass characteriatic of a 3 kHz talephone channel as defined by the ccir. teriatic of a 3 kHz talephone channel as defined by the CCIR. This unit is peculiar to the telephone industry. The total noise contributions. A state-of-the-art discriminator can be expected to function aomewhere in the neighborhood of 20 pwpo .

THE DIFFERENTIATIOM/ENVELOPE DETECTION METHOD

A block disgram of this system is shown in figure 3

Let the modulated aignal now be written as

$$
v_{f m}(t)=\cos \left(w_{c} t \rightarrow B \text { ain } w_{m t}\right) \text { egn. } 3
$$

where:
$B=\frac{\Delta F}{\omega_{m}}$, modulation Index
$\Delta F=$ peak frequency deviation

$w_{m}=$ modulating frequency

and the amplitude of $f m(t)$ has been normalized to 1 . The mathematical analysis of figure 3 shows that the proceas of differentiation tranafera the angle variation of the cosine function into an amplitude variation. The output of the differentiation is equation 4 . 4 is $v a(t) . ~ N o t i c e ~ t h a t ~ t h e ~_{\text {a }}$ aignal at this point hes both amplitude modulation and frequency modulation impressed upon it. The bandwidth of the signal va(t) has been increased by $2 \mathrm{wm}_{\mathrm{m}}$ over the bandwidth of the original FM aignal. The purpose of the envelope detector is to rectify the aignal V a(t). This process is ahown mathematically by equation 5. The second term of $v_{a}(t)$ is the original modulating signal. Not surprisingly, the amplitude of this signal le directly filter of figure 3 pasea only the modulatiog aignal. The final output of the diacriminator will be equation 6: vBB(t).

The differentiation process, if shown graphically, can add a great deal of insight to what is actually phyaicaliy happening. Consider splitting vim(t) into 2 pathe as ahown in figure 4. The R leg is passed straight through while the L leg undergoes a 900 phase shift at the carrier frequency by virtue of the delay line placed in the L leg. to ia the constant of the delay line R and the L legs are aummed together by a differential amplifier with gain Ad. As the deviated carrier awings above w, the delay line retards the phase as is shown in the left half of figure 4 . At the maximum positive frequency excursion, the value of the signal amplitude is Rmin. Likewise, as the signal is awept to its maximum negativa frequency excursion, the amplitude takes on the value $\mathrm{R}_{\mathrm{max}}$. The amplitude modulation imparted to the aignal can now be clearly seen.

After a somewhat lengthy algebraic manipulation the RMS value of the envelope can be shown to be

$$
\begin{array}{r}
V_{E R H S}=\frac{A d}{2}\left(\sqrt{1-\sin \left(\Delta W P t_{0}\right)}-\sqrt{1-\sin \left(\Delta \omega p t_{0}\right)}\right. \\
\text { egn. } ?
\end{array}
$$

A more conventional way of illustrating the same process is to use the tuned circuit slope detector of figure 5. Here differeritiation is accomplished by taking acivantage of the frequency reaponae of a tuned circuit. In this case, however, note that the frequency response is different above the center frequency compared to below the center frequency and the resultant output 2 slightly distorted

A more useful approach in wideband discriminators is the balanced slope discriminator, also known as the Travis or RoundTravis detector. A practical circuit and its frequency characteristic is shown in figure 6 . The Travis circuit usea
two tuned circuits; one tuned bove the other and below the center frequency. The circuits are tuned such that the non-linear portions of their slopes cancel each other.

As an example, assume it is deaired to have a $12 \mathrm{MHz} 1 \%$ linearity bandwidth with an IF frequency of 70 MHz .
A standard practice ia to let

$$
\delta f=3 / 2 \mathrm{BW} \text { ean. } 8
$$

where:
of = displacement of the tank resonant frequencies from the IF center frequency
$\mathrm{BW}=$ desired bandwidth (1x)
For 12 MHz BW :

$$
\delta £=3 / 2(12)=18 \mathrm{MHz}
$$

The hagh-side tank will therefore be resonant at 88 MHz and the low-side tark at 52 MHz .

Choose the low tank values first by startang with a physicaliy realizaole value of L_{L}. Choose

$L_{L}=0.4 \mathrm{uH}$

then
$i_{L}=\frac{1}{2 \pi \sqrt{L C_{L}}} \quad$ ean. 9
and
$C_{L}=23.4 \mathrm{pF}$,
$L_{L}=0.4 u H$
$£_{L}=52 \mathrm{MHz}$

In order to balance the overall characteristic, the impedance magnituce of the low-ade tank must equal the impedance of the high aide tank at 70 mHz .

$$
\left|Z_{\mathrm{L}}(70 \mathrm{mHz})\right|=216 \text { ohms }
$$

Now in deterfining the values of the high mide tank we need to soive two imultaneous equations:

Now doing a little algebra we have
$L_{H}=\left|Z_{L}\left(f_{C}\right)\right| \frac{f^{2} H-f^{2} C}{2 \varepsilon^{2} H f^{2} C} \quad$ eqn. 12
where
fC $=$ IF center frequency
$f_{H}=$ resonant frequency of high aide tank

Now in our present example we have

$f_{C}=70 \mathrm{MHz}$	$\quad\left\|Z_{L}\left(f_{C}\right)\right\|=216$ ohma
$f_{H}=88 \mathrm{MHz}$	
$f_{L}=52 \mathrm{MHz}$	

From thia it is found that

$$
\begin{aligned}
& L_{H}=0.22 \mathrm{uH} \\
& C_{H}=15 \mathrm{pF}
\end{aligned}
$$

Now R1 and R2 will be set equal to one another and their value will be determined by how much buffering the low impedance driver requires. A good choice in thia case would be 215 ohma.
Figure 7 is a calculator generated tranafer function, aleo known as an " S " curve for the values of L, C, and R just calculated. This procedure, if necesaary, can then be iterated until a the IF center frequency.

SYNCHRONOUS DETECTION
The output of an envelope detector was given by eqn. 5 in figure 3. Spectrally this output is ahown in figure 8 . As seen from figure 8 , the ability to demodulate information signals with a large bandwidth can be enhanced by increaesng wc the If frequency). eliminating the AM-FM term centered at wc, or both. The wo term can be eliminated by employing a synchronous detector. In which case:
$w m \leq 2 w_{c}-\frac{8 w_{2}+2 w_{m}}{2}$
$\omega_{w} \leq \omega_{c}-\frac{B \omega_{z}}{4}$
where $B W_{2}$ has twice the deviation of the original $F M$ aignal and is centered at 2 wc. The block diagram of a synchronous detector is ahown in figure 9.
Figure 9 also shows mathematically how the synchronoua detector eliminates the we term. The input aignal VFM(t) is aplit into two patha, one containing a differentiator, the other a 90 -degree phase-shift network. For convenience in eq. bin Wmt la written as (τ. The differentiated and phase, producing the output iven in Eq. 17. The output containa two producing the output given in Eq. 17. or baseband aignal, and a terma, the low-frequency information or baseband aignal, and a term centered at 2 wec $^{2} / 2$. Should the phase ahift be more or less than 90 degrees, the output level will be reduced by the aine of the phase shift. The low pass filter then passea only the baseband aignal to the following atages (Eq. 19).

More intuitively what the mathematica is maying ia that we generate a quadrature reference for use as a local oacillator. The mixing process now produces an output at twice the if frequency and at $D C$, but not at the original IF frequency. If the local oscillator were not aynchronous, the baseband leve would become proportional to the random phase angle of the Lo.
The probiem with the synchronous detector ia that it also requires a differentiator for operation. This differentiation can be implemented through the use of alngle and double tuned clrchita merne therefore priearily a function of the ynchronous detector is therefor benduidth of the differentiator.

Bandwidths of 40 percent can be achieved by employing a synchronoua detector implemented in delay-line form. Mixer and delay-line bandwidth now are the factors limiting the overal detector bandwidth. The deaign is aided also by the fact that a wideband delay line, 18 much easier to construct than a wijebano differentiator.

The delay-ifne detector 2 s shown in Figure 10. The anput aznal is again aplit into two patha, one pasaing through o delay network and the otner applied directly to the R port of the mixer. The delay-1ine $2 n t r o d u c e s$ constant delay of $t_{0}=T / 4$ seconds over the baridult of $\pi / 2$ at wherefore $t_{e} 2$. The group delay (Dg) of
 the network, as shown in Figure io phase linearity over the if delay lines or, preferably, an actual quarter wave line.

Thus the aignals travel along a paralled path and are equal: however, the phaat of the L port leg varies in proportion to the frequency of the moduiating algnal. The delay line acta as a frequency-to-phase converter. The output of a phase comparator should therefore yield the desired baseband output asgnal.
Looking egein at figurt 10. the output of the delay $12 n e$ (Eq. 21) is applied directly to the L port of a double-belanced mixer. The deiay line, with its linesr phase charicteriatica, ahifts the phase or - $V_{\text {FM(}}$). The inetantaneoun frequency deviation 2s bhown in Eq. 22, where Δ wp is the peak deviation. drvation 2 s enown in Eq. 22 , directly; the output, $V_{I}(t)$, is The mixer R port recezves VFM(t) directy; the output, the ixer ahown in Eq. a. art output is the product of two sinusoida in quadrature, and i-port therefore zerc. As modulation 2 a applied, the L and R porta ia therefore zerc. As modulation ate equal to $\Delta w(t) t_{0}$. where $\Delta w(t)$ is the instantaneoul deviation from the carrier frequency. It is the deviation iro the quadrature that determines the eensithiry of the detector.

The output contains two components, one at basaband and the other at $2 w$. However, the information signal. $\Delta w(t)$, is now embedded $2 n$ a arie function because the mixer $2 a$ acting as a phase detector with a tranafer function that is ainusoidal. The output term is now:

$$
\frac{k_{n} A^{2}}{2} \text { ain }(\Delta w(t) \text { to) egne. }\}
$$

over sone range of pnase deviation:
$\sin \left(\Delta w(t) t_{0}\right)=\Delta w(t) t_{0}$
ean. 28
and:

$$
\begin{array}{ll}
v_{0}(t)=\frac{K m A^{2}}{2} \Delta w(t) t_{n} & \text { eqn. } 29 \\
=\frac{K m A^{2}}{2} \Delta w p t_{0} s n w_{m} t & \text { eqn. } 30
\end{array}
$$

where:
$\Delta_{w}(t)=\Delta w p s i n w_{m} t$
$\Delta w p=$ peak frequency deviation, rads/s
The 12 nearaty of the detector 2 s now a function of the peah irequency griup-deley priduet. Linearity 2 g generelly rejulied to be leas than 1 percent. which requires thet:

$$
\text { to. } \frac{s_{24} 24}{2 \pi f p} \quad \text { if }=\begin{gathered}
\text { peak frequency } \\
\text { devistion }
\end{gathered} \quad \text { eqn. } 31
$$

This muat also be consistent with the earlier constraint (to $\mathrm{T} / 4$) imposed on the delay line for a given phase. Figure 12 shows a phase detector's deviation from linearity for s given phase. Since $\Delta w p$ is usually set at the transmatter in accordance with some level of $F M$ quieting. then, to, the group delay of tha network, is left as the primary determining factor of detector sensitivity and linearity. Delay networks can be implemented in aeveral forme. Bandpass filters provide large group delay at the expenae of bandwath. For syatems whert FM bandwidth is 40 percent, a delay line composed of constant-h low-pass filter is good and can be made ni at of 70 MHz ($t=3.57 \mathrm{~ns}$ at 70 MHz).

PERFORMANCE MEASUREMENTS

The performance of wideband discriminators as generally measured with a white noise teat aet. In this type of teat arrangemerit white gausian noise is used to modulete a test modem of isnown innearity. The white nolse level is adjualed to simulate the levela which would be encountered under live trafilc busy hour conditions. This level is called nomanal loading. A cypica. test aer up is ahown in Figure 13. By using a notch ifiter o amall band that 2 a tranamitted containa no energy. Any energy which can be measurad in that slot at the receiver is the result of distortions in the discrimanator.

Actually, it is imposaible to tell how much distortion is really due to the discriminator and how much distortion is due to tha reference modulator. For purposes of simplification we are neqligible when compared to the discriminator.

The power output of the discriminator 18 ncw adjusted 10 dB above and below the nominal loading to observe the diacriminator distortion mechenisma. As the devistion is tacked off (white power level reduced) the intermodulation distortion producte becone less and leas and the only noise in the syatem is the thermal noise. Aa the deviation is increased. the diacriminator con exhibit all orders of non linearity, $2 n c$ order. 3 rd order. 5th order, etc.
The Lenkukt 57040 delay line discriminator in used by GTE Sprint as a performance monitor in their long distance microwave radio network. The discriminstor is used to drop tha signal to monitor. Sheula the noise in that alot at anytime exceed preacribed level, an alarm as activated and automatic protection measurea are initiated.

BIBLIOGRAPHY

1. Clarke-Hess. Comnunzcations Circuits Anaiysie and Desian. Addiaon-Wealy 1971.
2. Lutz, J.F.. "Synchronoua Delay Line Detector Provides Wideband Performance". Microwaves and RF. Nov. 1982. vol. 21. No. 12. pp. 71-79.
3. Harp. M.C.. "Quantitative Data on Microwave System Degredation". Lenkurt Microwave Technicel Feport No. 41. Dec. 28. 1966°.

RMS DEV		
PER CH.	CH'N'LS	Δ f peak
200 Khz	600	3.9 Mhz
200 Khz	960	4.9 Mhz
200 Khz	1200	5.5 Mhz
140 Khz	1200	3.9 Mhz
140 Khz	1800	4.8 Mhz

Figure 2

$V_{F M}(t)=\cos \left(W_{c} t+B \sin W_{m t}\right)$
$\underset{\text { SIGNAL }}{A M-F M} V_{a}(t)=\frac{d V}{d t}=K_{D}\left(W_{c}+B W m \cos W m t\right) \cos \left(W_{c} 1+B \sin W m t\right)$ eqn 4
$V_{b}(t)=K_{D} K_{E} W_{C}+K_{D} K_{E} \Delta F \cos W_{m t}$
$+\left(K_{D} K_{E} \Delta F \cos W_{m t}\right) \cos \left(W_{C} t+B \sin W m t\right)$
thigher order AM-FM lerms
$V_{B B}{ }^{(t)=K_{D} K_{E} \Delta F \cos W m t ~}$

Where $K_{D}=$ differentiation constant
$K_{E}=$ envelope delector constant

FM DETECTION BY DIFFERENTIATION AND ENVELOPE DETECTION

DIFFERENTIATION OF THE FM SIGNAL

DIFFERENTIATION BY SLOPE DETECTION

BALANCED SLOPE DISCRIMINATOR

Figure 6

ENVELOPE DETECTOR OUTPUT SPECTRUM

$V_{F M}(t)=A \cos \left(w_{c} t+B \sin w_{m} t\right)=A \cos (r(1)) \quad 13$
$V_{R}(t)=-A K_{D}\left(w_{c}+B w_{m} \cos w_{m} t\right) \sin (r(t)) \quad 14$
$V_{L}(1)=A \cos (T(1)-\pi / 2 \quad 15$
$V_{J}(t)=V_{R}(1) \times V_{L}(t) \quad 16$
$V_{f}(t)=\frac{-A^{2} K_{D}}{2}\left(w_{c}+B w_{m} \cos w_{m}\right)[\sin (\pi / 2)+\sin (2 T(1)-\pi / 2)] \quad 17$
$V_{0}(1)=\frac{-A^{2} K_{D} w_{C}}{2}-\frac{A^{2} K_{D} B w_{m}}{2} \cos w_{m}{ }^{1}$
$v_{0}(1)=K_{1}+K_{2} \Delta w_{p} \cos w_{m} m^{\prime} \quad 19$

SYNCHRONOUS DETECTION

Figure 9

$V_{f} M^{(t)}=A \cos \left(w_{c^{1}}+B \sin w_{m}\right)$
$V_{L}(1)=A \cos \left(w_{c}{ }^{t}+B \sin w_{m}{ }^{t}+\Delta w(t) t_{0}-\pi / 2\right)$
$V_{L}(t)=A \sin \left(w_{C}{ }^{t}+B \sin w_{m} t+\Delta w(t) t_{0}\right)$
$\Delta w(t)=\Delta w_{p} \sin w_{m} t$
$v_{1}(t)=\frac{K_{m} A^{2}}{2}\left[\sin \left(\Delta w(t) t_{0}\right)+\sin \left(2 w_{c} t+2 \theta \sin w_{m} t+\Delta w(t) t_{0} t\right] \quad 2\right.$ $v_{0}(1)=\frac{K_{m} A^{2}}{2} \Delta w(1)_{0}$ 25
$v_{0}(t) \simeq \frac{x_{m} A^{2}}{2} \Delta w_{p^{\prime}} \sin ^{\sin } w_{m}$

The group delay of the network is represented by t_{0} (in seconds) when the phose frequency choracteristic is linear.

DELAY LINE CHARACTERISTIC

Linearity of a phase detector decreases dramatically with a change in phose.

PHASE DETECTOR LINEARITY

PAPER TITLE:
Precision Glitch - Free RF Step Attenuator

Mr. George M. (Mike) Walley
Lead Engineer - Technical Staff
Harris Corp. Government Satellite Comm. Division Box 93000 MS 1-1000

Melbourne, FL 32902
(305) 727-6344

ABSTRACT:

Precision - Glitch Free RF Step Attenuator
Glitch free step attenuators can be used to solve several difficult problems in both system design and test equipment applications. Embedding a standard step attenuator in the feedback loop of an AGC can yield a step attenuator with the accuracy of the original with no glitch during level switching. Circuit features that lead to enhanced capabilities with improved teaperature compensation are described at block diagram level. Examples of applications are included by way of illustration of the power of the technique.

Precision Glitch - Free RF Step Attenuator
Application of the Technique:
The increased use of computer controlled RF communications equipment has led to the need for variable attenuators controllable in the discrete steps understood by the controlling equipment. Same of these applications do not have a requirement for no interruption in the RF signal path during level switching. These applications have the luxury of using standard step attenuators driven with RF relays or FET switches. The systems that require uninterrupted fF while switching have had to rely on continuously variable attenuators with some sort of digital to analog conversion added to vield a step response. This introduces a severe problem, which is the mapping of the digital control words to the response of the attenuator. The use of matching proms and analog linearizers has had some success but is in general an inferior solution to the problem. This is because of the failure of the linearizing schemes to adequately allow for temperature and time dependencies of the attenuation element. Once calibrated does not

imply always calibrated with these schemes.

What is the possible application of this glitch free attenuator? Picture the typical satellite communications network with geographically separated ground stations. In a military environment as well as critical civilian applications it is important that communications continue at error rates above some predetermined threshold even in the presence of local rain fading conditions. Now the problem becomes one of raising the transmit power on the uplinks to a level sufficient for adequate communications performance with fading. Unfortunately all the stations are not experiencing fading at the same time. Since the satellite is primarily down link power limited and not bandwidth limited, the effect of the link overhead for

Precision Glitch - Free RF Step Attenuator

intermittent fading is to limit the number of users of a single transponder based on global worst case conditions. With some means of controlling the link power as conditions change the user overhead power can be reallocated to additional users. A pool of residual power capability could be allocated on a real time or near real time basis and still meet the requirement for error rate performance in the user community with more users for a given gystem. It should be clear that any interruption in the signal would have a tremendous adverse effect on the usefulness of the power control system. The details of the operation of this adaptive link power control system is not the point of this paper but it does point out a prime application of a glitch free RF attenuator as an uplink power controlling element.

One possible system level use for the glitch free attenuator has been described above. What about applications of a more mundane nature? The glitch free attenuator finds application in the lab and on the assembly line when it comes time to test high performance communications equipment at the limits of it's required performance specifications. For example, When testing a high performance modem it is often necessary to characterize that modems performance at signal to noise ratios where it's required to remain locked but not to perform initial acquisition at that $5 / \mathrm{N}$. The typical test set consisting of step attenuators and noise source has a weakness in this type of test scenario. That weakness is in the area of transients introduced to the signal path when the test S / N is changed. These transients can cause the modem to lose lock at a signal to noise ratio they are required to operate at. These transients constitute an unfair test and degrade the reliability of the test data. With a glitch free step attenuator it is possible to sneak up on the $5 / \mathrm{N}$ ratio so that

Precision Blitch - Free RF Step Attenuator
the modem only loses lock when it is its own fault and not due to the manner in which the test was conducted.

Description of the Circuit Topology:
The key to creating a glitch free step attenuator is controlling the transition in level with a high degree of certainty. Suppose that a conventional step attenuator is placed in the feedback loop of an AGC circuit as shown in figure 1. It can be seen that the output level is controlled as an inverse function of the attenuation setting of the step control element as the loop strives to keep the level at the input to the detector constant. While making the loop filter parameters such that the response to changes in the state of the step control element is very slow, then very little switch transient will appear at the output. The complication comes in when it is desirable for the loop to seek the new quiescent point rapidly. It becomes necessary to include a track and hold circuit to the input to the loop filter that can be commanded to "hold" just prior to changes in the state of the control element and then released after all transient behavior of the control element has abated. The improved circuit is shown in figure 2. Also shown is the addition of a differential power detector for the loop error signal generation. The circuit of figure 1 is only a programmable output level device and not a true programmable attenuator. The addition of the differential power detector allow changes in the input level to be carried through to the output independent of the action of the other leg of the loop. It is worth noting however that any fluctuations in the input power show up at the output only after having been detected and passed through the loop filter. This feedforward technique can place some restriction on the rate of change of the input power level due to the bandwidth

Precision Glitch - Free RF Step Attenuator
associated with the control loop. This is not normally a severe constraint and can be partially countered by making the feedforward input of the power detector have a higher gain than the feedback input of the detector. So far this has not been required in any system where this technique has been employed. Since the feedforward action of the loop relies on the action of the loop control elements to accurately convert the detector input level change to a corresponding loop error term this places a constraint on the linearity of both the power detector and the loop contral element. For most applications these constraints can be met with off the shelf components at relatively low cost.

Loop Contral Element
Shown in figure 3 is the simplified schematic of a voltage variable attenuator with a linear range of approximately 30 dB . The prime control elements are a pair of Watkins-Johnson WJ-G1's. The WJ-LG1 is a linearizer circuit that is specially designed to yield a linear attenuation versus voltage when used in concert with a G1 PIN diode attenuator. The linearity of the contral element is more important in this application than in the typical AGC loop due to a couple of reasons. As mentioned before, the accuracy of the feedforward of changes in the input power level is a function of the control element linearity. Also if the step attenuator is to respond to both the feedforward contral and step attenuator changes in a timely manner it is desirable to have the loop bandwidth relatively wide. The actual requirements will be different for each application. It can be shown that the loop bandwidth for a first order type loop is inversely proportional to the gain constants of the detector and contral element. Nonlinearities in the response of either element can

Precision Glitch - Free RF Step Attenuator
lead to undesirable changes in loop bandwidth dependent on the operating point of the loop. Hence the need for the linearizer in the control element. This circuit has no tuned elements and has a usable frequency range of 5 to 1000 MHz . The OP-AMP is used to convert the 0 to $\mathbf{- 1 0}$ volt contral range of the LG1 into a 0 to +10 volt contral range and provide a low impedance driver for the linearizer. If the output impedance of the driver is too high the slew rate of the control valtage is fairly dramatically limited.

Differential Power Detector

Shown in figure 4 is the simplified schematic of the differential input power detector with the track and hold switch included. If low offset DP-AMFS are used in the loop filter section and the assumption is made that the hold time is small compared to the track time there is no requirement for a hold capacitor as such. Simply disabling the input to the loop filter integrator will cause the loop filter to remain fixed at the value just prior to the onset of level switching. Once the transients on the power detector have died out the loop filter input is reenabled and the loop readjusts to the new quiescent state is an orderly manner. Careful design of the loop filter response guarantees no overshoot during the readjustment of the loop operating point and hence no glitch on the output signal level. By buying the detector diodes as lot matched pairs the D.C. offset between the two detector legs is virtually zero and the response to input power input changes is symmetrical. The diodes are D.C. grounded at the input by a relatively low impedance so that the bias current is unaffected by differing power level inputs. The use of temperature compensating valtage references for generating the bias currents for the diodes as well as the loop set point adjustment contributes to the exceptional

Frecision Glitch - Free RF Step Attenuator
temperature stability of this loop. The symmetrical arrangement of the control loop and the power detector make the question of age stability less of a concern. The net result is a glitch free step attenuator with the superior accuracy and repeatablity performance of readily available step attenuators with the smooth transition in output level normally associated with analog attenuators.

Figure 1. Basic Step Attenuator Block Diagram

Figure 2. Improved Glitch Free Step Attenuator

Figure 3. Simplified Schematic of Voltage Controlled Amplifier

Figure 4. Simplified Schematic of Differential Power Detector

ABSTRACT
$900 \mathrm{MHz}, 220$ WATT AMFLLIFIER
This high power amplifier utilizes the design advantages of the MRF. 898 to produce a high power, high efficiency broadband a high power, high officiency broadband (MFFB98) transigtors are paralleled using power dividing and combining techniques to produce a 220 watt, 900 MHz power amplifier.

The MrF898 is a state of the art device which incorporates double section input and output internal matching to achieve superior perfromance. Due to the
internal matching of the MRFB9日, simple microstrip trans- mission line
techniques are all that are required to
externally match the device. In
MFFB98 also exhibits good thermal
performance (typically leses than
C/watt) as well as high officiency
(typically 30% across the 800 MHz band).
The amplifier is driven by a thrae
tage, 60 watt amplifier which utilizes an MFF898 as it's third stage. the end result is a multistage amplifier which
produces a 220 Watt output for 2
250 mW drive across the 850 MHz to 900 MHz band.
INTRODUCT IOR.

The $800-960 \mathrm{MHz}$ band is rapidly becoming the most active area of new product development for the UHF spectrum.

Applications such as cellular telephone, paging systems, and truncking/dispatch systems are all placing new demands on the design and production of RF components and circuitry. To help meet these demands, Motorola Semiconductor's FF Land Mobile Group has recently introduced sever al new 800 MHz RF transistors into its products portfolio.

Included in this introduction are two 24 volt devices slated for base station applications. They are the MRF891 and the MRFB98 (see figures 1 \& 2). The MRF89! is a 5 watt high gain (typically $9.3 d B$) device packaged in a CSiz flange. The MRF898 employs a new design approach to UHF transistors by incorporating 2 sections of internal input and output matching. The use of such a matching scheme gives elevated input and output impedances, higher broadband efficiencies, and 1 mproved thermal performance over previous devices.

This paper describes the design, construction and performance of a 220 Watt, $850-900 \mathrm{MHz}$, multistage ampilifier which uses both the MRF891 and MFF898 as well as the MRF892. it is not the intent of this paper to demonstrate a new exotic design that will squeek a trifle mare performance out of yesterday's transistors. Instead, it is intended te show the simplicity and reliablity that may be achieved using tomorrow's technology.

FFROJECT OYERUIEW
The amplifier lineup consists of a 3 -tage amplifier driving a high power single stage output anplifier. Though the two amplifiers have been designed to onerate together, the driver amplifier also serves as a good so Watt stand alone amplifier. This is particularly usetul in lower power applications such as rellular base stations where peak power requirements are somewhat lower.

The driver amplifier provides the majority of the gain

MRF891

- CS12 PACKAGE FOR TOP SURFACE MOUNTING
for device lineup). The output amplifier 15 four MFFg98s paralleled together to produce a hagh output power.

DRIVER AMPLIFIER

```
volt,
to Watt amplifier. The amplifier specifications are shown
in Figure 4 and is shown schematacally in Figure }5
Driver Amplifier Design.
```

Each stage of the driver amplifier is designed as
an independent amplifier. Instead of designing a direct,
low impedance match between stages, the input and output
of each stage are transformed up to a 50 ohm intermediate
impedance. Although direct matching may result in fewer
components and less p.c. board real estate*, a 50 ohm
\qquad
First, each stage may be independentl: tuned and tested. This provides the designer the necessary means of determining how well each stage is functioning. During the andependent testing of each stage, collector currents should be monitored . This allows one to determane how well each stage is functioning once the stages are ccnnected
together.

[^3]

Figure 4.

TWO SEPARATE AMPLIFIERS

DRIVER AMPLIFIER (3 STAGES; MRF891, MRF892, MRF898)	
Pout $=55$ WATT	APPLICATIONS
Gain $=23 \mathrm{~dB}$ (MIN)	DRIVE OUTPUT
$V_{c c}=24 \mathrm{Vdc}$	AMPLIFIER
Eff $_{\text {ff }}=45 \%($ MIN $)$	CELLULAR BASE
Band $=850 \sim 900 \mathrm{MHz}$	STATION
	(URBAN)

OUTPUT AMPLIFIER (4 PARALLEL MRF898)

Pout $=220$ WATT
Gain $=6.0 \mathrm{~dB}$ (MIN)
$\mathrm{V}_{\mathrm{cc}}=24 \mathrm{Vdc}$
$\mathrm{Eff}_{\mathrm{ff}}=55 \%$ (MIN)
Band $=850 \sim 900 \mathrm{MHz}$

APPLICATIONS

- PAGING BASE STATION

- CELLULAR BASE STATION
(RURAL)

For e:sample, if the performance of the amplifier
is poorer than expected, and it is notaced that the 3rd stage is drawing less collector current that it did when it was andependently tested, then one may assume that there is a problem with the matching between the 2 nd and 3 ra stage.

The second advantage of a 50 ohm intermediate impedance 15 the added flexibility it provides for leveling the frequency response of the amplifier. Being able to independently tune each stage, allows the designer to adjust the frequency response of the pre-driver, or oraver stage to compensate for any gain slope that may be present in the Srd or final stage.

Low pass filter design is used throughout the circurt to achieve the desired matching. Microstrap transmission lines and chip capacitors constitute all of the watching components. Epsilam-10 (3M) p.c. board ma:erial wath its hagh dielectric constant is used to hold the physical dimensions of the microstrip transmission lines to acceptable sizes.

It should be noted that with the elevated 2 mpedances of the MRFG98 isee figure 2 for device 1 mpedanies, impedance matching can be achieved simply by using a single section of transmission lane. No other matching elements are needed. This simplicity not only reduces the design effort and cost of the amplifier, but adds to its reproducibility.

DRIVER AMPLIFIER PERFORMANCE
The driver amplifier performance is shown in Figure 6.
Figure 6.

The gain of the amplifier is greater than $23.4 d E$ and is flat within + . 2dB. The flat gain slope is accomplished simply by device matching. The amplifier efficiency is greater than 43% across the operating band. To realize this efficiency each individual stage must operate at greater than 60% efficiency. The figure shows the input USWR to be less than 1.8:1.

OUTPUT AMFLIFIER
The output amplifier consists of four MFFg98 transistors paralleled together using Wilkinson hybrid power splitting and combining techniques. The elevated impedances of the MRF898 allow for 100% of the circuit matching to be accomplished with microstrip transmission lines. The circuit is shown schematically in figure -.

OUTFUT AMFLIFIER DESIGN
The output amplifier design in separated into two general areas. The first area is the device matching and the second area is the Wilkinson hybrid matching.

A single section of transmission line 15 used to transform
the input and output device impedance to a 12.50 hm impedance needed to match into the Willinson hybrid (see Figure 8). The characteristic impedance and electrical lenoth of the matching transmission line can readily be fetermired using simple mathematical or Smith chart technaques. Computer analysis andfor line iterations may be used to fane tune the match. However, due to the simplicity of the match this

Figure 7.

OUTPUT AMPLIFIER MATCHING SCHEMATIC

Figure 8.

SINGLE DEVICE TUNING

will generally only provide slight improvements.
Once the device impedance has been transformed to 12.5 ohms, the remaining impedance matching is provided by a Wilkinson hybrid (see Figure 9). A multi-tier Wilkinson is used to first combine the devices together into pairs and then combine the pairs.

The first tier transforms the 12.5 ohm $i m p e d a n c e s ~ t o ~$ 50 ohms. This is accomplished with 2-25 ohm, $1 / 4$ wavelength transmission lines, one for each device. The two 50 ohm impedances are paralelled together to yield a combined 25 ohm impedance. This 25 ohm impedance serves as the starting point for the second tier of the Wilkinson. A 25 ohm balancing resistor is shunted between the two 25 ohm transmission lines on the lower impedance 12.5 ohm end. This resistor balances any amplitude and finsing differences that may esist between the two devices.

The second tier of the Wilkinson combines the pairs of the first tier. This tier utilizes 2-50 ohm, $1 / 4$ wavelength transmission 11 nes to transform 25 ohms te 100 ohms. The two 100 ohin impedances are then combined in parrallel to give the final hythrid impedance of 50 ohms. Again a balancing resistor $1 s$ used between the two pairs at the 25 ohm impedance end of the 50 ohm lines to smooth any amplitude and phasing differences.

The symmetry of the Wilkinson makes its design a simple

of the amplifier.

OUTPUT AMPLIFIER CONSTRUCTION
The cutput amplifier is constructed on an $8^{\prime \prime} \times 12.5^{\prime \prime}$ aluminum block attached to heat sink fins. Two types of p.e. board materials are used. The device impedance matching board 15 Epsilam-10. Epsilam-10 is used to hold the dimensions of the matching transmission lines to respectable sizes. Glass teflon board is used for the Wilkinson hybrid. With its lower dielectric constant the glass teflon board widens the high impedance 50 ohm ransmission lines to a width capable of carrying high RF power with a minımum of loss.

OUTFUT AMFLIFIER FERFORMANCE
The performance of the output amplifar is shown in Figure lo. As shown in the figure the amplifier exhibits better than 6.4dE qain across the operating band. The efficiency 15 greater than 55%, with an input USWF
of less than 1.2:1.
COMPLETE AMPLIFIER LINEUP
The friver chain combined with the output amplifier results in a 4 stage high gain, high power amplifier. The performance for the complete amplifier lineup is shown in Figures 11 \& 12 . Figure 11 shows the amplifier to have better than 29dB gain with a +.2dB gain slope. Efficiency for the four stages is greater than 39% across the band. Figure 12 shows the linearity of the amplifier at varing

COMPLETE LINE-UP

Figure 12.

COMPLETE LINE-UP

drive levela.

CONCLUSION
Ey using tomorrow's technology today, it is possible for the designer of RF power amplifiers to design-in the
simplicity and reproducibility needed to meet the demands of an ever expanding communications market. With finer line
die geometries, new packaging schemes, and additional
internal matching, the MFF991 and MRF898 are in fact
examples of tomorrow's technology.

A HIGH stability hideband frequency modulator

TABLE OF CONTENTB

1. INTRODUCTION
II. LOW FREQUENCY MODULATOR 6
III. HIGH FREQUENCY MODULATOR 12
IV. SIMULTANEOUS OPERATION OF BOTH MODULATORG 14
v. WIDEBAND FM GENERATION 18
VI. LINEARITY ANALYEIE 20
VII. TEMPERATURE STABILITY 22
VIII. COMPARISON OF ANALYTICAL AND THEDRETICAL RESULTS 22
IX. BUMMARY 25

BY DAVID L. SOLT, P. E. ELECTRONiC Engineering consultant

43 WOODHILL DRIVE
WILLOW GROVE, PA 19090
JANUARY 1, 1985

INTRODUCTION

This paper presents the design of a high stability widebarid FM modulator. This modulator was designed specifically for use in s-Band Telemetry Transmitters but, it is relevant to wide range of communication equipment. In thits application high atability is defiried as less than ± 30 parte per million (ppm) frequency variation over the temperature range of -40 to +100 degrees Centigrade. Wideband is defined all frequency deviations of ± 0.03 percent from $D C$ to 2 MHz . Different techniques for implementing the modulator are discussed, as well as the design parameters involved. A comparison of analytical results and experimental data obtained is included.

For efficient angular modulation (phase modulation or frequercy modulation) there are three criteria that must be met. Firmt, the long-term frequency stability of the carrier component portion of the modulated signal must not change in frequency during the application of modulation. Becond, the frequency or phase deviation of the carrier must be directly proportional to the amplitude of the modulating signal. Third, there can be no amplitude change of the angular modulated carrier during modulation (1).

Angular modulation is generated by the variation of any reactive element or parameter on which the phase or frequency is dependent. In frequency modulation the generator which produces the carrier is generally tuned circuit oscillator. In this case the frequency is controlled by a tuned circuit with an
output frequency determined by the relationship $w^{2}=1 /(L * C)$. The capacitor in this tuned circuit is often a varactor diode, a diode whose reversed biased junction capacitance depends on the amplitude of the reversed biasing voltage, ereating a voltage controlled oscillator (VCO). The frequency change is proportional to the amplitude of the biasing voltage (the modulating signal). In phase modulation the modulation signal is applied after the carrier generator. A phase sensitive parameter is varied where it will not affect the frequency of the carrier.

There are two methode for generating frequency modulated carriers, Indirect FM and Direct FM. When implementing Indirect FM the carrier generator is a crystal omeillator to ensure stability. The modulating eignal is applied to variable reactance circuit, apart from the crystal oscillator, which varies the phase of the carrier. Gince the derivative of phase deviation is Frequency deviation, the modulation signal is integrated and then applied to the phase modulator. Indirect FM contains intierent distortion unless the deviation ratio is very small. Because of this distortion Indirect FM is only used to generate narrowband FM. To obtain the desired frequency deviation, frequency multiplication is used.

Ir Direct $F M$ the transmitter output frequency is modulated directly by varying the instantancous frequency of the carrier generator, which can be voltage controlled oscillator (VCO). The VCO is an oscillator whose output frequency is directly proportional to the amplitude of the input signal. The principle advantage of Direct FM is the wide frequency deviations that are possible without multipliers.

The two methods of generating frequency modulation both have advantages. Indirect $F M$ can have a crystal controlled oscillator as a carrier generation which gives it extremely high frequency stability. It has several drawbacks, including a lack of DC modulation frequency response, being narrowband, and needing multiplier stages to imerease the frequency deviation to the required frequency deviation. The advantages of Direct FM are a DC modulation frequency resporise and wideband FM peneration without frequency multipliers. Unfortunately, the frequency stability of the VCO's used in Direct FM is very poor. This paper presents a design which combines Indirect and Direct Frequency Modulation, incorporating the advantages of both, to achieve a very high stability wideband frequency modulator.

The high stability wideband frequency madulator is required to meet several stringent specifications. A flat frequency response ($\pm 1 \mathrm{~dB}$) from DC to 2 MHz is desired. The modulator is required to operate over the temperature range of -40 to +100 degrees Centigrade with a frequency stability of less than 30 ppm. In addition, wide frequency deviations are required (up to 0.07 percent) with excellent linearity (better than 1 percent).

Currently, a crystal controlled oscillator is the only means to attain this high stability. However, to achieve a DC modulation frequency response a voltage controllable oscillator is needed. The solution is to use a voltage controlled crystal oscillator (VCXO). This achieves both the DC response and the high stability requirements.
II. LOW FREQUENCY MODULATDR

The vCXO must have stable amplitude and frequency characteristics. The frequency is stabilized by use of a quartz crystal in positive feedback loop of the oscillator. To achieve amplitude stability negative feedback is desirable. The oscillator chosen is a two transistor self-biasing oscillator known as the Butler oscillator. It is shown in Figure 1. The two transistors, Q1 and Qe, bias each other through R4 and receive positive feedback through the transformer coupled crystal network between their enitters. Negative feedback for amplitude stability is obtained through resistor R4.

For an oscillator to oscillate it must generate a negative real resistance that is greater than the real part of the load it is driving. The frequency of operation occurs where the oscillator's imaginary impedance sums with the load's imaginary impedance to zero. The negative resistance of an oscillator is generated by using positive feedback. This is accomplished with a low impedarice path between the emitters of Q1 and Q2. By looking at the Thevenin equivalent impedance at any point in the oscillator it cari be determined if a negative ral impedance is generated and if so, the frequency of operation. This analysis will determirie a minimum value for R4 for which the oscillator will oscillate.

For verious reasons it is desirable to operate the vcxo at as high frequency as possible. Unfortunately, quartz crystals have distortion causing anharmonic spurious responses near their

figure 1. butler oscillator
resonant frequericy. The ariharmonic spurs are due to energy
trapping modes in the piezoid. These are introduced by mechanical resonances along any of the axis in flexural, torsional, shear and extensional modes of oscillation (2). Manufacturers exercise some control over where the spurs will be and their magnitude by how they shape and mount the piezoid.

Decillator designers can maximize spur free operation by keeping in mind that coupling to these undesired modes increases an the drive to the crystal increases. The spacing of these spurs from the resonant frequency is a function of several parametere. The larger the motional capacity the mounted piezoid has, the closer the epurious responses will be to resonance. Operation of the piezoid on one of its odd-order harmonic vibration modes moves these anharmonic spurious responses closer to the resonant frequency. These constraints force utilization of the highest frequency possible for fundamental mode crystals, about 25 MHz , arid the smallest motional capacitance possible. Hence, the vcxo will operate at 25 MHz .

The motional capacitance of the crystal is determined by the conductive surface area deposited on the quartz blank for the electromechanical conriection. It is poseible to make this capacitance quite small moving the anharmonic spurs away from the resonarit frequency. However, linearity constraints require the motional capacity to be as large as possible.

The design of the oscillator makes use of the $n i g h$ of the erystal to obtain frequency stability. However, this high Q causes difficulty in modulating the vCxO. Lowering the 0 of the erystal will increase the oscillator's pulling range and mence,
the frequency deviation of the vCXO. Two tradeoffs must be considered. Decreasing the a, which can be done by increasing the motional capacity $(\mathbb{R}=R /(W * C)\}$, causes the anharmonic spurious responses to move clower to the resonant frequency. Decreasing the Q also causes the stability over temperature to deteriorate. A method of lowering the Q of the crystal without changing the frequencies of the anharmonic spurious responsen is to transformer couple the crystal to the oscillator. The impedance of the erystal is stepped down, lowering the a while not affecting its spurious frequencies. While this degrades the frequency stability of the oscillator, if care is exercised in the turns ratio, an acceptable amount of stability is retained.

The frequency of the oscillator is controlled by the impedance of the crystal network. This impedance can be varied by introducing a variable capacitor (CV) in series with the transformer coupled erystal. However, this only allows pulling the VCX0 frequency above the crystal resonant frequency. To pull above and below the desired frequency, the crystal would have to be cut with a series resonance below the desired frequency. A solution to this is to introduce an inductor (Lv) in series with the variable capacitor. This allows the imaginary part of the crystal network impedarice to be varied both positive and negative. Consequently, the erystal can be cut to operate on its series resoriant frequency. This is desired becauke best linearity is obtained when the crystal operates around its ser: es resonant frequericy (3). The variable capacitor is a varactor diode whose junction eapacity is dependent on the reverse bias applied.

The dietortion caused by the anharmonic spurs prevents modulating the vCXO above 10 KHz . Above this modulating frequency the oscillator tends to mode on one of the anharmonic spurs. A resistor can be introduced in parallel with the crystal to help reduce moding on the anharmonic spurs (4).

The frequericy domain analysis of the oscillator investigates where the resistance of the oscillator circuit is negative and at what frequency does the imaginary impedance of the oscillator go to zero. The oscillator can also be analyzed using network equations (5) or transfer gain analysis. The crystal is modeled as asies motional capacitance (C_{m}), series motional inductarice (Lm), and aseries resistance (Rs). This approximation is valid around the resonant frequency. In Ehunt with this series impedance is the case capacitance (Co). The transformer is modeled as a leakage-fres transformer with a coupling coefficient of urity. The primary inductance is Li, the secondary inductance is L2, M is the mutual inductance, and n is the turris ratio. This is a valid assumption when working with small signals and the two transformer windings are tightly wound, one on top of the other, arourid a toroid with a known permeability. The mall -ignal common-emitter transistor model is used in analyzing the oscillator. It consiste of base resistance, Rb, and a dependent current source Bulb. Here the small signal current gain is B and Ib is the transistor base currerit. The varactor diode mathematical model used is

$$
C_{V}=C_{0} /((1+(V / r)) N\}
$$

where C_{y} is the capacity of the reversed biased junction, C_{0} is the capacity of the Junction at zero volts bias. V is the
reverse bias applied, r is a constant that defines the slope of the capacitance versus voltage curve, and N is a constant, known as the law of the diode, that also defines the wlope of the curve.

In the frequency domain aralysis the crystal impedarice is defined, then the transformer coupled crystal impedance is derived and finally the other circuit components are aded to obtain the impedance for the entire crystal network. This impedance is used to determine at what frequency oscillation will occur. The following equation gives the feedback loop impedance:
$z=11 / J * w * C v)+J * w * L v$

where $X_{c}=w=L m-(1 / w * C m)$. The transformer inductance is designed to resonate with the erystal case capacitance Co and other parasitic shunt capacitances in the circuit. This improves the linearity of the oscillator. By setting the imaginary part of the impedance z equal to zero and solving for w the frequency of oscillation is obtained.

The occurrerice of negative resietance can be determined by simultaneously solving the nodal current equations of the AC equivalent circuit of the oscillator. When negative resistance is generated, the circuit becomes an oscillator (6). It is poseible to determine the value of R4 once the other circuit components have been choeren. Since R4 contributes negative feedback to the oscillator, the value determined is a minimum resistance for which oscillatior, will occur.

111. HIGH FRERUENCY MODULATOR

To obtain a modulation response above 10 KHz Indirect FM using a variable reactance phase modulator is implemented. Due to the inherent distortion of Indirect FM this is narrowband modulator. A low capacitance varactor diode is used to vary the reactance of the phase modulator. Because of the low capacitance of the varactor diode the phase modulator will not cause any loading of the vcxo. This is an important consideration in attaining high frequericy stability. A topology that utilizes a series resonant varactor and inductor was chowen. Before the carrier is applied to the tuned circuit it is divided and phase shifted. Orie part of the carrier is phase shifted 180 degrees and is applied to one end of the series tuned circuit. The second part of the carrier is applied to the other end of the tuned eircuit. This topology increases the frequency deviation sensitivity of the modulator. The frequency domain analysis investigates the arctangent of the imaginary part of the output signal divided by the real part of the output signal. This arctangent function gives the phase of the modulated carrier. The above varactor model is used to calculate the carrier phase versus the varactor biss voltage. The phase modulator schematic is shown in figure 2. Transistors 01 and 22 are used to generate the in-phase and out-of-phase signals. The modulator's output voltage (Vo) and output voltage phase (pd) are as follows:

[^4]By substituting the mathematical model for the varactor for the tuned circuit capacitance a plot of the varactor bias voltage versus carrier phase can be generated. It can be shown that the maximum phase deviation sensitivity to voltage change occurs when $1 /(L * C)=w$. That is to say, when the inductor L and the varactor capacitance C are at series resonance. Because limiter stages follow the modulator, the amplitude characteristics of the modulator are not transferred to the output and hence, are not important.

One last issue must be addressed for the phase modulator and that in the circuitry required to integrate the input modulating signal so as to have frequency modulation instead of phase modulation of the carrier. This can be accomplished by introducing a low pass filter function into the modulation input line. This is implemented with the components RS and C3 as a low pass filter with one pole. The low frequency cut-off for this filter is 1/(R5*C3). This low frequency cutoff is the lowest frequency that the modulator can be used as a frequency modulator.
IV. SIMULTANEOUS OPERATION OF BOTH MODULATDRS

If the frequency deviation sensitivities of the low frequency and high frequency modulators can be matched, a high stability narrowband modulator with a modulation frequency response from DC to several Megahertz can be obtained. To implement simultaneous operation a frequency domain analysis of the two modulators operating together was performed. Figure 3 shows the topological layout. The modulation signal Vm_{m} is divided and sent to both
modulators. It is low-pass filtered before being applied to -ither modulator. The output of the vcxo low-pass filter is

$$
e_{a}(s)=V_{m} /\left(1+s / w_{c o l}\right)
$$

where wcol is the 3 dB cut-off point of the filter. This is a simple RC filter, series resistor with shunt capacitor. The vcxo is a device where the output frequency is proportional to the input voltage. Hence,

$$
e_{b}(s)=K v * V m /\left(1+, s / w_{c o l}\right)=w_{d} /\left(1+s / w_{c o l}\right)
$$

where $K v$ is the vcxo constant in frequency change per volt. This coristant multiplied by the input voltage gives the frequency deviation of the vcxo (w_{d}). The phase of the output of the vcxo is the integral of the frequency, which in the frequency domain is the same as dividing by 5 . Therefore, the phase (p) becomes $p=w_{0} /\left\{s *\left(1+* / w_{c o l}\right)\right\}$

figure 3. simltaneous operation of both modllators

The modulation aignal also goes through a low-pase filter before being applied to the phase modulator.

$$
e_{c}(s)=V_{m} /\left(1+w_{c o z}\right)
$$

Here wcol is the cut-off frequency of the phase modulator's lowpass filter. This filter, because of its $1 / s$ characteristic, performs the integrating function needed to obtain frequency modulation from the phase modulator. The phase modulator output voltage's phase varies directiy with the amplitude of the modulating voltage. Therefore, the phase change of the carrier due to the input $c_{c}(s)$ to the phase modulator is

$$
K p * \operatorname{Vin} /\left(1+\infty / w_{c o s}=\operatorname{pu} /\left(1+E / w_{c o l}\right)\right.
$$

where Kp is the phase modulator's constant in radians per volt. The product K_{p}. Vin is equal to the phase deviation (Pd) in radians.

The output signal has a phase deviation equal to the sum of the carrier phase deviation caused by the vexo and the phase deviatior introduced by the phase modulator. This phase can be represented as

$$
\text { Pod }=w_{d} /\left\{\Sigma\left(1+E / w_{c o l}\right)\right\}+p_{d} /\left(1+s / w_{c o z}\right)
$$

The frequency deviation of the output signal is the derivative of its phase deviation. In the frequency domain this is accomplished by muitipiying the output phase deviation by e. Hence,

$$
w_{\text {od }}=w_{d} /\left(1+\varepsilon / w_{c o l}\right)+s \text { Md } /\left(1+s / w_{c o l}\right)
$$

The plotted functions for these two terms are shown in Figure 4a. It is desirous to have as the output a constant deviation insensitive to the modulating eignal's frequency. This can be accomplished by enttirig weol= weol and wd" wcol" Pd =wcol" Pd.

Physically, this involves setting the two low-pass filters to the same $3 d B$ cut-off frequency and setting the VCXI and phase modulator constant: so that the output frequency deviation contribution of each modulator in exactly the same. Substituting these values into the equation for the output signal's frequency deviation gives, $w_{\text {od }}=w_{d} /\left(1+E / w_{c o l}+E *\left(w_{d} / w_{c o l}\right) /\left(1+E / w_{c o l}\right)=w_{d}\right.$ The individual responses for the modulators and the composite response are ploted in Figure 4b. It can be seen that there is rio phase distortion in crossing over from one modulator to the other. The output frequency deviation is dependent only on the amplitude of the modulating signal and the vcxo constant. This holds true as long as the two modulator's roll-off slopes are equal. This is an important result as it implies linear time delay through the modulator and hence no distortion of a wideband modulating signal, such as pulse train.

v. WIDEBAND FM GENERATION

The previous sections have discussed generation of narrowband FM. This narrowband FM is transformed to wideband FM by frequency multiplication of the narrowband signal. When the signal is multiplied, the carrier frequency as well as the frequency deviation is multiplied. The frequency multiplication factor is determined by two parameters. They are, the final carrier frequency and the ratio of the required widebard frequency deviation to the narrowband frequency deviation obtained from the modulator.

figure 4a. individual frequency deviations versus modulating frequency

figure 4b. matched frequency deviations versus modulation frequency

The multiplication mothod implemented in the high stability wideband modulator in the Eingle stage traneistor multiplier. The transistor stage is a common emitter stage biased class-A with a large capacitance tied from emitter to ground. This capacitance keeps the emitter voltage constant, forcing any decrease in the base voltage to put the transistor in cutoff. Essentially, this is a class-c grounded emitter stage. The current in the collector circuit is a pulse with high harmonic content which resonates a tuned circuit on the collector. Multiplication up to a factor of four can be obtained with good resulte. Several stages were operated in series to provide frequency multiplication by a factor of 96 . This produces the required s Band (2.3 BHz) carrier and wideband frequency deviation.

VI. LINEARITY ANALYSIS

The linearity of the two modulators is an important paramater in producing undistorted waveforms. The linearity of the VCXD can be analyzed from the previous derivations on the oscillator circuit. Using the mathematical model for the varactor capacitance in the VCXI' impedance equation gives varactor voltage versus carrier frequency deviation. This can be programmed on a computer and simulations run to observe the effect varying individual component values has on linearity.

It can be hown that the frequency deviation (df) of the vcxo is given by the following equation:
$d f=f(11+C r+(1+(v /(b+r)) N /(1+C r)) 1 / 2-1\}$
where f is the center frequency of the oscillator, Cr is the ratio of the crystal motional capacitance to the varactor capacitance at its rest bias point b, V is the ineremental change in the varactor bias, N is the law of the diode, and r is the varactor diode mhaping parameter.

Computer simulation shows that the larger the ratio of the motional capacitance to the varactor capacitance is, the more linear the frequency change is with voltage. This capacitance ratio can be controlled in two ways. The erystal motional capacity cari be increased or the nominal varactor capacitance can be decreased. Maximum linearity occure if the transformer inductance resonates with the case capacitance of the crystal and the varactor, $C v$, and the inductor in eeries with it, Lv, resonates at the crystal series resonance frequency.

It can be shown that the phase deviation, Pd, of the phase modulator as a function of varactor voltage iss

$$
P d=-2 * \arctan (R /(-w * L+(1+U / r) N /(w \# C))\}
$$

The 1 inearity of the phase modulator with respect to voltage is maximized when the eeries resonant frequency of the varactor and inductor is at the frequency of the vCxD. By taking the first derivative of pd it can been that the phase modulator has the maximum sensitivity when the varactor and inductor of the phase modulator resonate. This allows minimum change of the varactor voltape to obtain the mecessary deviation. The varactor approximates linear device only when used over a small poriion of its operating curve. The modulator is designed to operate in this region (around 4 volts) giving the best linearity.

VII. TEMPERATURE GTABILITY

Due to the large temperature range and the transformer coupling of the crystal, the VCXO needs a temperature compensation circuit. Rather thari use a reactive component with a temperature coefficient in the vCXI frequency determining feedback loop, it was decided to inject a temperature varying voltage onto the varactor biasing voltage. This allows more flexibility to match a wide range of temperature compensation coefficients. Two approaches were considered. One uses the -2.2 mV per degree Centigrade temperature coefficient inherent in a forward biased diode junction and the second approach uses thermistor. Both circuits worked acceptably.
VIII. COMPARIEON DF ANALYTICAL AND EXPERIMENTAL DATA

The high stability wideband modulator was constructed and its operation evaluated. The main areas of interest in the comparison of experimental to aralytical data arei simultaneous aperation of the low-frequency and high-frequency modulators, wideband operation, linearity evaluation, and temperature stability.

The low-frequency modulator modulates exactly as predicted up to 12 KHz . Above this frequency the response was not flat ericugh to meet the 1 dB specification. The high-frequency modulator works well from 200 Hz to 2 MHz . However, below 5 kHz , it does
rot have a high enough phase constant to be used as efrequency modulator. The low-pass filters were added on the inputs of both modulators with the cutoff frequency set to approximately 7 KHz . The cutoff frequencies were matched within 0. 3 dB by sweping the applied modulating frequency across the crossover point and adjusting the high frequency modulator's cuttoff frequericy to match the low frequency modulator's cutoff frequency. This can be observed by receiving the modulated carrier on a calibrated receiver. Frequency response was flat ecross the band with rolloff beginning above 1 MHz . This is due to the high-a in the 90 MHz multiplier resonator and is not a function of the high frequency modulator, which is relatively flat up to 2 MHz . The modulation frequency response was consistently set to $\pm 0.5 \mathrm{dE}$

The 25 MHz modulator is capable of ± 0.03 percent deviatiori. This provided the required 750 kHz deviation required for wideband operation at 8 -Band (2.3 BHz). The multiplier's high-a filters and resonators have no amplitude modulation effects on this swing because of the riarrow perceritage bandwidth and the limiting effects of the multiplier circuits.

The linearity of the modulator begins to deteriorate above ± 0.03 percent. This is due to the nonlinear characteristics of the varactor diodec. There are two important parameters that affect linearity of the low frequency modulator. They are the ratio of the crystal motional capacitance to the varactor diode rest bias capacitance and the law of the varactor diodes. Because of the Q desired, the varactor capacitance was fixed in the 20 pF to 60 pF range. Therefore, in order to increase the erystal motiorial capacitance (CM) to varactor capacitance (CV) ratio, the
erystal motional capacity must be increased. The limiting factor on how large the motional capacity can be is the presence of anharmonious spurs. A value of 0.008 was chosen as a compromise between linearity and epurious response criteria. The law of the varactors is harder to manipulate. It can be shown that as the law approaches unity, the non-linearity disappeare. The closest device found has law of 0.826. Linearity with this device was within the one percent requirement. One other factor affects the linearity, the transformer winding ratio. This is chosen mostly by the requirements for frequency stability. For best linearity the crymtal want: to be loosely coupled to the oscillator circuit, and for best stability the crystal neede to be coupled directly to the feedbeck loop of the oscillator. By experimentation it was found that the maximum turns ratio. possible, still meeting the 30 ppm frequency stability requirement, is four.

The phase modulator contribution to non-linearity is marginal due to the high sensitivity of the modulator. Because of this high serisitivity the voltage swings on the phase modulator's varactor diode are small and the varactor non-linearity is not evident. Linearity on the order of 0.1 percent is common.

It was determined that the temperature drift of both modulator's modulating parameters are due mostly to the varactor diode' frequency modulator has the added effect of the temperature compensating voltage changing the rest bias point of the varactor
diodes. While the response does vary over temperature, it is within the required ± 1 dB flatness for both modulators.

The modulation set-up of this modulator is very simple. Once the initial component values are chosen and their tolerances set there are no other adjustments. The greatest advantege of this modulator over other implementations is that there is no assembly line set-up adjustmerits for linearity or distortion.

The vcxo is required to operate over the temperature range of -40 to +100 degrees with a frequency stability of $\pm 30 \mathrm{ppm}$ percent. The temperature instability is due to several factors, all of which could not be identified. The temperature drift is not consistant and individual temperature runs on each modulator are required. The data is then entered into a computer program which solves the resultant compensating eircuit component values. Both the diode and the thermistor compensating eircuits work as predicted. Component value tolerances of two percent are acceptable. A final temperature run is performed to verify temperature stability. Using this procedure, frequency stability is maintained better than the required ± 30 ppm.
XI. EUMMARY

The design of a high stability wideband frequency modulator

 has been presented. It provides high stability by pouedo-locking the carrier penerator oscillator to a crystal. The flat frequency responce from DC to 1 MHz is obtained by aimultancously operating a frequency modulator and phase modulator. Widebandmodulation is obtained by the use of frequency multipliers. This design solution is not unique, but it has some significant advantages over other implementations. Other designs require substantial trained technician time to make adjustments for acceptable linearity and distortion. With this design for a high stability wideband frequency modulator there are no linearity and distortion adjustments to be made. Setting frequency etability requires an extra data gathering temperature run than some designs. However, once set, the temperature stability is good. Orie important consideration in circuit design is consistent and repeatable performance. Experimental resulte have revealed that this design performs consistently with minimal trained technician time.

REFERENCES

1. Panter, P.F.: Vodulation Noiren and Egectral Analyais: McGraw Hill Book Company, New York, pp. $381,1965$.
2. Magnavox Company: Quintz Crystil Decillator Circyite Design Hindtgek! U.8. Army Electronics Laboratories, AD 460377, Ft. Monmouth, New Jereey, pp. 3, 1965.
3. Driscoll, N.M. and Healey, D.J. : Voltage Controlled Dscillators: IEEE Transactions on "Electron Devices, Aises,
4. Arakelian, R. and Driscoll, M.M. B Linear Crystal Controlled FM Source for Mobile Radio Application; IEEE Transactions on Vehicular Techrology, 2a43, 1978.
5. Frerking, M.E.1 Gryetal Qesillatoc Design and Iempereture Compenistion: Van Nostrand Reinhold Company, Now York, Pp. 5 : 177 , 1978
6. Palladino, G.J. and Richter, K. A.: End Gueseing in Oscillator Designi Microwaves, October 1970.

10 KILOWATT POWER AMPLIFIER

 SOLID-STATE, 5 TO 30 MHZ POWER AMPLIFIER"BY: Lee B. Max: Vice President Power
Amplifier Products at
Microwave Modules and Devices (MMD)
and
Orville B. Pearce; Staff Engineer at MMD

RF technology has reached the level where multi-kilowatt solid-state transmitters are not only possible, but necessary, practical, and cost effective. The paper addresses the design considerations for a solidstate, HF power amplifier to be used in a $\mathbf{1 0}$ kilowatt transmitter. The system block diagram, power amplifier architecture, the high power combiners, and the selection of transistor die and package must be addressed. The design considerations covered in the text are based not only on the 50 ohm RF output power requirement, but also on the thermal considerations, antenna VSWR, and reliability. The heart of the power amplifier is the 500 watt, 50 ohm basic building block module since the 10 kilowatt unit uses thirty-seven such modules.

- Frequency Range 1.5 to 30 MHz
- 10 Kilowatts Minimum (into 2.0:1 VSWR)
- $\mathrm{IMD}_{3}<-32 \mathrm{DBC}$
- HARMONICS: EvEN <-30DBC; ODD<-20DBC
- Operating Temperature $-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$

HF COMBINERS
PERFORMANCE OBJECTIVES

- 10 Kilowatt 2 Way Combiner
- 7 Kilowatt 4 Way Combiner
- Insertion loss .3dB Maximum
- Amplitude Balance $\pm, 2 \mathrm{~dB}$
- Liquid Cooled Difference Loads
- Isolation 20dB Minimum
- Phase Balance $\pm 4.0^{\circ}$
 SCHEPABTIC

2 - WAY 10 KILOWATI COMBINER

 SCHEMATIC

- Large Silicon Aren Large Base Area
- High Level of Emitter Ballasting
- High Breakdown Voltages
- High F_{T}
- Proper epi thickness
- Low thermal Resistance
- High Current Capability
- Very rugged
- Linear Class ab Performance
- Mechanically Reliable
- Low Parasitic Inductances
- Good Die Attach Capability
- Low thermal Resistance
- Transistor Chip Junction
- Output Transformer Ferrite
- Power loads for Isolation
- Output Combiner Ferrite
- bias Point Stability

HF SUB-MODULE
 PERFORMANCE OBJECTIVES

- Frequency Range 1.5 to 30 MHz
- 300 Watts Minimum
- Gain 14dB Minimum
- $\quad \mathrm{IMD}_{3}<-35 \mathrm{DBC}$ MAXImum
- HARMONICs Even <-30dbc Odd <-15DBC

HF MODULE
PERFORMANCE OBJECTIVES

- Frequency Range 1.5 to 30 MHz
- 500 Watts Minimum (into 2.0:1 VSWR)
- Gain 13dB Minimum
- Gain Flatness $\pm 1.5 \mathrm{DB}$
- Input \& Dutput VSWR-1.5:1 Maximum
- $\quad \mathrm{IMD}_{3} \leqslant 35 \mathrm{DBC}$
- Harmonics :Even <-30Dbc ; ODd <-20DBC

FEATURES OF MMD

"QUAD MODULE"

- 1.5:1 VSWR In and Out
- Improved Power into a Mismatched Load
- Improved Back IMD
- Improved Efficiency into a Mismatched Load
- Low even harmonic Levels
- Reduced Odd harmonic Levels

YPICAL

SUMMARY

The individual technologies of high power RF transistor chips, high power wideband combiners, low thermal resistance transistor package, and wideband high power impedance matching circuitry have all reached and wideband high power impedance matching of reliability and reproduceability With these individual pieces comfortably available, multi-kilowatt solid-state transmitters are practical and cost effective. To achieve transmitters that are reliable and manufacturable, the system design engineer must intelligently specify and select the right building blocks, so when interconnected, the amplifier system will achieve the required performance and reliability levels. The design considerations outlined here should help in both the definition of a realizable system for your individual requirements and in the selection of the right modular blocks needed to smoothly construct your deliverable system.

Dr I J Dilworth

Department of Electrical Engineering Science
University of Essex
Colchester
Essex
UK

SUMMARY

A universally adaptive range-gated radar system has been developed. In our application the system is used in conjunction with 34 and 9 GHz pulsed radars to obtain detailed information on the spatial and temporal reflectivities of particulate media in the tropophpere eg Rainfall and upper atmospheric ice crystals. However, the accurate quantative measurements produced by such a system have many potential applications.

The main area presented in this paper (and oral presentation) will be the circuitry developed for the (fast) range-gating system and an outline of the control system which allows the circuitry to be adaptably controlled via a small (and cheap) microprocessor.

The RF circuitry is designed for use at an intermediate frequency and therefore may be used in principal, on any pulsed superheterodyne bissed system.

Introduction

The purpose of the experiment is to investigate electromagnetic scattering levels at various angles from hydrometeors in the troposphere, such as rain, the melting band and upper atmospheric ice crystals.

Because of congestion in the lower microwave communications bands future terrestrial and satellite systems will be forced to use ever higher frequencies. Apart from the increasing absorbtion (and hence attenuation) with frequency of EM radiation - from gases and liquid water, there is also the problem of interference fromhydrometeor induced scattering and radio refractive index beam bending. Such interference is potentially most troublesome between co-frequency terrestrial and satellite systems as illustrated in figure (1).

The CCIR have adopted a model for the calculation of such bistatic scattering interference based upon the effective reflectivity of the common scattering volume and the effective distance through the rain This model uses the bistatic cross section of the raindrops within the common-volume between the two radio systems. The model is based upon work by CRANE in 1974 in which the rain scatter and hence bistatic crosssection was calculated using the Rayleigh approximation for spheres. The formulation of the modelling within the common volume thus uses isotropic scattering from individual scatterers. It would thus seem reasonable to investigate the validity of this rather simple formulation for use in the frequency bands currently under consideration ($20-40 \mathrm{GHz}$) for both ice, water and conglomerate particle scatters. The assumptions in need of verification were:
(i) the single-particle bistatic scattering model and
(ii) the common volume model.

Our theoretical work so far has concentrated on the former but the latter is also currently under consideration

However some measured data suggest that scattering above about 10 GHz is not Rayleigh-like. The main aim of this experiment is thus to measure various regimes of scattering and to quantitively model certain regimes in order to establish whether, at 34 GHz , a Rayleigh scattering model is ccurate enough to be used for planning and coordination purposes. For example (single raindrop) theoretical calculations at 30 GHz indicate only small differences between Rayleigh and exact calculations using Mie and Fredholm Integral formulations as shown in figure (2). The data in this figure assumes an incident vertically polarised signal and shows the
radiated power versus azimutrat angle. Note the null for the Rayleigh Model.

Expririmphal Systems

For a slant satellite link there are two possible interfering situations; one from terrestrial links and the other from satellites in near orbits. In the first case, as well as possible rain scatter interference, tropospheric radio refractive index irregularities (RRI) can cause significant problems. Scattering from the melting band and upper atmospheric ice crystals will not be important in the terrestrial case except for 'over the horizon' or 'overshoot' propagation paths, where the terrestrial link crosses and hence illuminates the fresnel zone region of the slant satellite path, in this case usually above any rainfall. Clearly, RRI effects may influence the frequency of this occurence.

For the case of adjacent satellite interferers, rain, ice, and the melting band may all contribute to scattering. Hence, for both the case of (1) scattering from terrestrial links into slant satellite paths and (2) scattering into adjacent satellite-earth paths it is necessary to investigate all three regions of the troposphere.

From the systems viewpoint, measurements approximating to likely interference angles, both in azumith and elevation, and path lengths are desirable. Such angles and paths are not necessarily those one would choose when making measurements to evaluate and improve a theoretical model of scattering which can then be more generally applied.

System Constraints

The system constraints leading to the final experimental set-up will now be outlined. The conclusion we reach is that the system and experimentalists set-up are not coterminous.
(i) Elevation angle

The Radar elevation angle to be = geasynchronous satellite elevations from the UK and ideally to be the same as currently available satellite beacons.
(ii) Bistatic scattering volume

To be well defined so that, as far as possible, there are no ambiguitifs as to the reqion and hence hydrometeors we are ohserving - 1 mplifes narrow beam antennas.

(iii) Bistatic angle

Interference into satellite earth stations from terrestrial systems can be from any azimuthal direction. The elevation angle is, however, constrained. The resultant possible scattering region is approximately a hemisphere situated below the height of the highest scatterers. For rainfall, theoretical calculations indicate that significant scattering can occur for all bistatic angles within the proposed measurement zone.
(We must take care with polarisation, however.)

(iv) Path Length

The primary constraint on this bistatic angle, however, is the path length from the scattering region to the receiver(s). The further away the receiver(s) then the smaller the bistatic angle from any particular scattering region becomes. However, if attenuating hydrometeors are present in this path the minimisation of its length is important in order not to mask the scattered signal amplitudes we are trying to measure. Reference to tables 1 and 2 shows for given rain rates how much downath attenuation results, assuming various scattering heights, and the corresponding scattered signal amplitude.

The attenuations have been calculated using the results of NORBURY and WHITE who used a short path ($2 \times 224 \mathrm{~m}$) and close spaced rain gauges (45 m). The attenuations are therefore based on average rainfall rate over the whole path.

These results are comparable with HOGG using a $30 \mathrm{GHz}, 3 \mathrm{~km}$ link in Bedford, England, where the climate conditions should be similar to our Essex site. From these results it would appear that a specific attenuation of $5 \mathrm{~dB} / \mathrm{km}$ (rain rate $20 \mathrm{~mm} / \mathrm{hr}$) will not be exceeded for more than 0.018 of the time.

The scattered signal amplitudes have been based on the plots of GUNN and EAST andisotropic re-radiation has been assumed.

Tropospheric changes

The melting band height will change between $0.5-3 \mathrm{~km}$ on a seasonal basis. It will also change over a smaller range in the short term.

Nodding of Antenna

To accommodate this we 'nod' the receive antenna in elevation. In this way we can observe all scattering regions from one antenna and receiver system. Fixed dishes of narrow beamwidth do not offer the same versatility
or data acquisition possibilities. In order to produce detectable scattered signals at the receiver we need to look at each scattering volume for " 1 sec .

In practice we look sequentially at three regions initially, one in, one above and one below the melting band. To do this the antenna must move swiftly to the next region.

Determination of Melting Layer
'3-D' time profiles of the range gated radar backscattered signals eg figure 4 show a peak of reflectivity at constant height from the melting band. Such data will be simultaneously available from the X -band (already working) and the Q band radars. We are able to use the bistatic receiver in a 'search' mode, where the dish is continually sweeping in elevation, and hence obtain similar time profiles of bistatic scattering. We revert to the sampling of 3 regions upon command from the computer system or by the operator.

Terrestrial and Q band radar

By splitting the Q band radar output and transmitting a component along a terrestrial path to the bistatic receiving site and using a range gated radar receiver we can obtain data relating to the rainfall along the path. Also by receiving the forward scattered radar pulses we get direct measurements of the path averaged attenuation. Secondly, we get information on the spatial rainfall rate along the path from the range gated radar receiver. This will furnish us with rainfall path length data which will assist in analysing the bistatic scatter signal amplitudes we simultaneously receive.

The Range Gated Radar System
A block diagram of the whole system is shown in figure (8). In order to extract sufficient quantitative data for exact modelling of the inter-
ference phenomena spatial as well as temporal data are required. The spatial data is most easily processed if it is quantised in range (and amplitude). In order to record detailed reflectivity profiles from the 9 GHz terrestrial system we employ 60 gates of 80 metres length. This produces sufficient accuracy for the 5 km path. See figure (5).

Turning now to the 34 GHz Bistatic system a unique feature of this is the ability to be able to spatially separate the scatter from the mainlobe common volume and the sidelobe to mainlobe common volume as shown in figure (6).

This is made possible by triggering the Bistatic receiver gating circuit (30 gates) by the terrestrially received 34 GHz pulse. Under certain circumstances it is possible to get more scattering from the sidelobe - mainlobe volume than the mainlobe common volume. With this system we are able to identify such situations. Since the bistatic receive dish 'nods' in elevation the intersection of the 30 gate 'gating window' needs to be moved in order to be in the correct position to coincide with the common volume. This is achieved, under software control from a shaft encoder input, by ROM based data calculated using trigonometry. This is illustrated in figure (7). In order to correct for inverse square law loss the bistatic receiver employs gain-sweeping as illustrated in Figure (9) and Table 3.

Detailed block diagrams of the transmit system and bistatic receive system are shown in figures (10) and (11) respectively. The diagrams are largely self explanatory except for the microprocessor controlled rangegating system which will now be described.

Hardware Design for Range Gating

In order to resolve spatial distances down to, say, 15 metres in the Troposhpere switching speeds of $50 \mathrm{~ns}(\sim 20-30 \mathrm{MHz})$ are required. Because the common volume in this experiment is small ie the volume in which scatter's are illuminated by the transmit beam, the scattered received power is also small. It is therefore necessary to integrate the received signal, for a period, to achieve a useable $5 / \mathrm{N}$ level. We employ a pulsed Magnetron, for the 34 GHz transmitter, with a pulse repitition frequency of 1 kHz . Calculations show that good sensitivity is achieved by using <1 second integration time. The video processing system needed for rangegating the radar is shown in figure (12). The driver hardware on the left of the diagram shapes the incoming terrestrial pulse and from this pulse provides variable switching and delay for the gating.

The main problem with this system is providing the current source driver with sufficient speed to obtain the required resolution. Two systems were tried, shown in figure (13). The final circuit realisation is shown in figure (14).

Circuit Description

Video signals at levels between $0.17 \mathrm{v}-1.8 \mathrm{v}$ are fed to the scaling voltage amplifier ($2 \mathrm{~N} 2369-2 \mathrm{~N} 2369$) to obtain a level suitable for driving the tail current source transistor. This transistor then supplies errrent, proportional to video input, to either integrator or bypass transistor. When the gate is disabled, all current flows in bypass transistor - this is held on by logic high level on GE.... control line.

The enable pulses rapidly turn off the bypass transistors and direct current through integrator transistor to charge the integrator capacitor (. 01μ). Since this current is dependent upon the video input voltage, the capacitor voltage will be an integral of this, taken over the integration time.

This integration time is chosen to be 1 sec giving approximately 1000 samples of the video waveform, of 50 ns width.

Gate voltages are read on a common line via 4066 transmission gates, one to each gate, - these are selected via the gate read multiplexer by the microprocessor control software. Resetting is achieved when the gate is accessed by applying +12 v to the common read line via paralleled 4066 gates. However, to avoid a large shunt capacitance the gate circuitry is arranged into banks of 12 gates. Each bank is selected individually by decoding the gate which is being addressed.

High impedance on the common read line is achieved by feeding this into a 3140 fet input op-amp. Adjustment of integrator gains is obtained by variable resistors in tail transistor emitter circuits. Performance of the gates are shown in figure (15).

Timing and Software Controlled Switching Systems

The drive system for the gates is shown in figure (16). This system supplies 50 ns gate enable pulses (GE...) to the high speed gate system (which can be of arbitrary length). These pulses are obtained from a 20 mHz ocillator which clocks 74 Ls 161 counters to obtain binary gate 'addresses'.

Synchronisation is derived from the terrestrially received pulse.

Both the scan delay, via a 74192, and the gate widths, can be driven under software control and hence may be changed dynamically. The sequence of operation is shown in the lower diagram in figure (16).

Terrestrial Processing

The terrestrial signal pulse is used to derive sampling pulses for reading its own level. The sampling pulses are obtained by supplying the input pulse to a comparitor with a threshold of 0.2 v ($0 / \mathrm{p}$ from $\log \mathrm{amp}$) and this gives a satisfactory sample pulse down to -80 dBm signal level.

Because the pulse width as received, is too wide and may vary with multipath effects, the initial transition of the pulse is used to trigger a simple monostable using a differentiator and Schmitt trigger gate ($22_{p^{\prime}} F-1.5 k$) thus the pulse width is determined by this time constant.

An integrator gate was employed to determine the terrestrial signal level to improve recording accuracy and to be compatable with the bistatic range gates. The integration time is therefore 1 sec and sampling pulse width 0.1us.

The threshold control on the comparitor is set up to give no triggering for a noise level coming from the \log amp - adequate sensitivity is then obtained.

CONCLUSIONS

A versatile signal processing system for a pulsed radar system has been developed. The system may be reconfigured under software control. Performance is such that resolution of the order of 15 metres are readily detectable although in this particular application long integration times appear necessary due to relatively low signal levels. The main advantage of this pulsed system over CW Bistatic systems is, although the system sensitivity is theoretically less, ability to spatially resolve received (scattered) signal amplitudes and hence detect sidelobe couplings will prove useful in improving theoretical models of scattering and hence communications systems design.

Acknowledgements

The author gratefully acknowledges the UK Science and Engineering Research Council, and the Rutherford and Appleton Laboratories for funding this work. Manifold thanks are also due to Dave Johnson who developed much of the hardware for this project.

	receive power					
Height h	$1 \mathrm{~mm} / \mathrm{hr}$	$5 \mathrm{~mm} / \mathrm{hr}$	$20 \mathrm{mnn} / \mathrm{hr}$	$1 \mathrm{~mm} / \mathrm{hr}$	$5 \mathrm{~mm} / \mathrm{hr}$	$20 \mathrm{~mm} / \mathrm{hr}$
1 km	-57.9 dBm	-47.9 dBm	-38.8 dBm	2.7 dB	5.4 dB	27 dB
2 km	-55.2 dBm	-45.2 dBm	-36.2 dBm	3.3 dB	6.5 dB	32.5 dB
3 km	-56.8 dBm	-46.8 dBm	-37.8 dBm	4.5 dB	9.0 dB	45 dB

Receive power levels include 3.7 dB feeder and duplexer loss at transmitter and 1 dB feeder loss at receiver.

table 2

Expected power levels at backscatter receiver and attenuation for rain

	receive power				attenuation			
height h	$1 \mathrm{~mm} / \mathrm{hr}$	$5 \mathrm{~mm} / \mathrm{hr}$	$20 \mathrm{~mm} / \mathrm{hr}$	$1 \mathrm{~mm} / \mathrm{hr}$	$5 \mathrm{~mm} / \mathrm{hr}$	$20 \mathrm{~mm} / \mathrm{hr}$		
1 km	-56.0 dBm	-46.0 dBm	-37.0 dBm	2.0 dB	3.0 AB	20 dB		
2 km	-62.0 dBm	-52.0 dBm	-43.0 dBm	4.0 dB	6.0 dB	40 dB		
3 km	-65.5 dBm	-55.5 dBm	-46.5 dBm	6.0 dB	9.0 dB	60 dB		
4 km	-68.0 dBm	-58.0 dBm	-49.0 dBm	8.0 dB	12.0 dB	80 dB		
5 km	-69.9 dBm	-59.9 dBm	-50.9 dBm	10.0 dB	15.0 dB	100 dB		

Receiver power levels include 3.7 dB feeder and duplexer loss at transmitter.

Solid line : Wanted signal Broken line : Interfering signal

Interference between satellite and terrestrial systems sharing the same frequency bands ($4 / 6 \mathrm{GHz}$ bands)

10 our

1. ITr. nea

1.10 cros

Path Profile

FIGURE 5

FIGURE 7 Variable Gate Window. Timed by Terrestrially Received 34 GHz Radar Pulse

ree nezing
$\underset{\text { sitis }}{\substack{\text { univer }}}$
Rehote site
fincrinchoot

FIGURE 13 Gate Drive Systems

FIGURE 14 目igh Speed Gate Syatem
high speed gate perfopmance

Pulse Drive to $\overline{G E}$
$50 \mathrm{~ns} / \mathrm{div}$
1v/div

Gate Current 100 collector R 50ns/div $0.2 \mathrm{v} / \mathrm{div}$

Capacitor Charging
Ramp ($001 \mu \mathrm{~F}$)
50 ns sampling pulse
1 sec . integ. time
$0.2 \mathrm{sec} / \mathrm{div}$
$2 \mathrm{v} / \mathrm{div}$

The Logical Capletion of the Cascode Idea as it Relates to Radio Frequency Amplifiers
 William F. ririffitl
 THE EXTENDED CASCODE AMPLIFIER

This work was first applied to mobile radio audio output at Bendix Radio Division in 1962 as a means to utilize the earliest enginearing samples of silicon trensistors, as described is : ief. 5 . In 1981 it appeared that the excessively high resist ivity of the base material exhibited by those early bipolars might not be a disadvantage in a context such as radiation hardening of power amplifiers.

About the years 1979 and 1980 the Extended cascode was experimentully upplied at R.F. since it appeared that the configuration would yield higher non-overloided output than the conventional circuits using a given bipolar device, as well as higher wide- bind gain and better distortion chirecteristics noar overload. These augaented gain and Max. output poHer were both desirable in interface amplifiers for fast digital data links using caacial cable. The gain advantage was instrumental to reulization of interfaces having imanity to digital polse interference due to proximity of other interface cables. Short links could be thus protected by use of outer coarial conductor having high magnatic permenbility as well as reasonably low conductance in virtue of the enbanced skin offect. (A given thickness of high permerbility braid contiins many more skin depths than un equal thickoness of copper at I.F. end R.F. parts of the spectrum .)

Fadio frequency application was by means of transmission line coupling trensformer bastd on several earlier succesful uses of the $1: 1$ ratio transformer of this type to configure wide - bend push-pull class B and class A amplifier modules in both the R.F. and sudio renges of frequency . (Ref. 12). The $1: 1$ ratio transformer of this type was widely used in the infancy of the "R.F.T." and "E.M.C." disciplines as a general yarpose "fix" for comson-mode coupling problens and it was subjected to cerreful analysis (Ref. 13 , for eximple) which disclosed the greater bindwidth of the "comnon mode chove $"$ connection compired with the isolatiag trinsformer connection. The device was imbedded in a push - pall amplifier module using two identical type bipolar trunsistors to produce an AC substitute for the complimentary psir ; I.e., the inputs were paralieled in anti-phsse and so were the outputs. This tightly - coupled

THE EXTENDED CASCODE AMPLIFIER Page 2

class B package is probably worthy of a detailed report in its own right since it and so obviates the use of corplimentary devices mdint may offer cost and performance inprovements at V.B.F. or microwave frequencies. It would constitute the preferred R.F. output circuit for an extended cascode amplifier. It is shown in a modified form in Fig. 5 of Ref. 5 , in which only the outputs are in parallel. As a three terminal device, the two bipolirs coupled by a "comaon mode choke $"$ can be utilized in com on emittor, common collector or compon bese modes of operation with the devices in parallel or series D.C. connection . Only the series D.C. comection ,however permits realization with a miniature transmission line trunsformer at audio and $f . F$. For higher outputs, perallel D.C. connection involves a $1: 1$ output tr insformer of higher current rating and larger size.
netail design data for an automotive radio output amplifier are given to define the component sizes somerbat, although the trinsistors used are not representative of current tupes . See Fig. 1. The output trinsistor of this 2 kett amplifier was a $2 \mathrm{ML} 227-2$ with a 0.3 ohm CUPRON positive temperature coefficient ealiter resisitor, which was typical of Bendix practise of the time. The audio output trinsformer, designed to operate at supply D.C. Voltages betreen 10. V. and 16. ∇., had nowinul primary impedance of 26 ohm when locided with a stindard 8 ohm sjeaker. The driver transformer was strikingly smaller than the typical one for the function, being a swall input unit having impedance ratio 50,000/30 and nC winding resistances of 2600 Ohm and 60 mm , respectively. Its turn ratio was $41 / 1$. Kith an output transistor of 28 dB . minimur gin, this driver had to deilver 4.2 mh . The operatine point of the fypern driver core wes kept near zero misnetisation by approvizate cancellation of the primary nc Ampere-tarns by blas current in the secondary. Sensitivity at $1 \mathrm{~K} . \mathrm{Hz}$. was $22 \mathrm{~m} . \nabla$. for 1.2 Y . into 8 ohms with 3 dR . freqencies at 33 Hz . and about 4. K. Hiz. A festure worth noting was the maximur litts output above clipping level, which renged from 4.5 W . at $1 \mathrm{~K} . \mathrm{Hz}$. to 3.7 W . at $5 \mathrm{k} . \mathrm{l} / \mathrm{z}$. The prototype uudio tmplifier incorporated local positive Voltrge shunt feedback inherently and over-all negtive Voltage feedback. (Pefis. 5 \& 11 .)

THE EXTENDED CASCODE AMPLIFIER Page 3

A $160 \mathrm{Mbit} / \mathrm{s}$. interface amplifier was realized recently by connecting a Fairchild generio bipolar chip in the cascode configuration with the "extended cascode " feature in the form of a miniature toroidal forrite-cored transmission line transformer extermally connected. Turn ratios of $4 / 1$ and tio higher values were used. In the initial approach, lumped - olement 75 ohm filters vere assembled and tested to be connected to the amplifier output, which vere designed in accordance with Refis. 7 \& 8 . The desired low - pass characteristics were realized, but subsequent examination of the performance on a $0-600 \mathrm{MHz}$. network analyzer revealed that the amplifier itself, with a single shunt capacitor across the output, actually realized the sam pass-band and band edge responses with an improved stop band performance -

The good bandwidth, extending to the transition frequency of the bipolar chip transistors, is attributable to the impedance of the output emitter junction increasing with frequency at a rate that approximately cormensates the decrease in frequency response of the input com amitter devices as detailed in Refis. 5 \& 9 . In connection with the local positive feedback inherent in the extended cascode, a general conclusion regarding the gain-sensitivity product of positive feedback schenes in integrated-hybrid active filters ajpears to be relevant; namely, that they exhibit much lower gain-sensitivity products than do negative feedback schemes . Ref. 11 is concerned with linearity improvenent attained by enclosing a positive f.b. loop witilin a negative f.b. loop.

A finil reark about this configuration appears to be as relevant today in the autonotive electronics context as it was in 1962 . Then, as now, there existed eiectronic modules behind the dashbosrd which required auxilliary DC-to-DC converters to generate 35. Volt supyly froa the nominal 12. Volt battery output. By way of contrast, the extended cascode can be designed to operate at Voltages lower than this by an order of magnitude. It is not integratible as it strands, but it yoses a chalenge to chip designers to realize an integratable circuit to replace the lumped element. Then they would bave the needed "gain cell" capoble of operating at Voltages well below the five volt level, a declared prise objective for V.L.S.I.

EXTE:IDED C $/$ SCODE AMPLIFIEH BIBLIOGRAPHY

1. Transient Padiation Effecte on the Electronics of Aircraft Systems, by J.T. Lambarsld , in I.E.E.E. Soc. Circuits \& Systems 1978 Symposium Record, PP. 119-123.

2 Controlling Secondary Breakdown in Bipolar Power Transistors, by R.J. Widlar , in 1981 I.E.E.E. International Solid-State Circuits Conference Digest, pp. $44,45 \& 258$
3. (Tutorial Re. Trensmission Line Transformers) A good review is in the article "Brocdbznd 60%. R.F. Linear Amplifier", by O. Pitzalis,Jr., Rob't. E. Yorn and R.T. Baranello, in I.E.E.E. Journal of Solid State Circuits, vol.SC-6,No. 3 , June 1971, pp. 93-103. Biblio.
4. Anelysis of the Transistor Cascode Configuration, by J.R. Janes in Flectronic Engineering, Jan. 1960 ,pp. 44-48. Blblio. Also pp. 62 for French Ianguage abstract and p. 66 for German lancuige abstract.
5. United States of America Patent No. 4,435,686, Km. F. Griffith, issue date 6 Mar., 1984 .
6. Principles of Transistor Circuits ,Ed. by R.F. Shea, Wiley, 1953, py. 207 -.
7. Fieclizuble Matched Filters for Minimal Intersymbol Interference, by L.F. Lind S.E. Nader, in I.E.E.E. 1978 Internationsl symposiun on Circuits \& systems Proceedings, pp. \$41-i46.
8. Optimum Dita Trinsmission Filters, by L.F. Lind \& Said E. Nader, in I.F.E.E. Trans. Circuits \& Syst., vol.CAS- 26 , No. 1 ,Jan. 1979 ,pp. $36-45$.
9. A Single Chip $200 \mathrm{Mb} / \mathrm{s}$. Fiber Optic Receiver Circuit, by Denis L. Fogers , in 1981 Digest of Technical Papers of I.E.E.E. Intll. Solid-stete Circuits Conference, pp. 172 - 173.
10. A 50 to $400 \mathrm{Mbit} / \mathrm{sec}$. Single Chip Fiber Optic Feceiver Circuit, by hemis L. Fogers and Albert X. Widmer and Joseph Mosley ,
11. United States of America Patent No. $2,652,458, J . M$. Miller ,assignor to The Bendix Corp.
12. U.S. Patent No. $3,100,878$, Vim. F. Griffith, 1963 .
13. The Comion Mode Choke, by Ton Herring, in E.M.C. Symposium Fecord , I. F. F.E. 1968 PP.

United States Patent (19)
(s4) EXTENDED CASCODE AMPLIFIER
[76] Leventor: Wumian P. Grtanth, 920 Jeflerroa St.,
width which usea a slep-down (of vollage) transformer
betwoen a driver stage and an outpur suage. One end of
the primary of the tranaformer in comaected 10 a driver
tranievor's collection and the other end in connecred io
the collector of a grounded-base outpu1 transiscor. The
tranformer secondary is conanected ecrous the base and
eminter of the outpul tramaitor. The trassformer wind-
canise are pheced such thas a large driver current is forceed
ingry are phaned such thas a large driver current i forcee
through a bigh impednace, ie. ite primary windias
impedence which in a multiple of the common bae
mappdace which in a muhiple of the common base
inppen impedance of che oulpul transizoor, recultias in
power guin The amplaiker is capelbe of high maximum
overfooded power oulput free of orreil-up "of the
wivelorw compared wit convensond cascode opers
tion, os well as greater power zin. By using transistorn
with hieh reisiviviy bace molerial the maplifer opera
tion is revisunt to degradecion by ioniziag radiation and
tion in resisenat io degradetion by ionizim.

FOREIGN PATENT DOCUMENTS FOREIGN PATENT DOCUMENIS
900614 \%/ISSt Ped Rep of Oermany 33/311 Primery Exeminer-Jumee B. Mullina Atuomant Agemi of From-Wenderoch, Lind a Poasck
(17$)$ abstract
Dieclooed is a cacode amplifer circuik with improved current ginin, limearixy, overtoed performance and band-

U.S. Patent Mar. 6, $1984 \quad$ Sheet 1 of $3 \quad 4,435,686$

FIG. 4

U.S. Patent Mar. 6. 1984
 Sheet 2 of 3
 4,435,686

United States Patent (19)
(II)

4,435,686 Griffith \qquad
[s4] EXTENDED CASCODE AMPLIFIER
[P0) Inventor: wullem F. Grimes. 9:0 Jefierson St
Inventor: Whlina F. Grimit. 9:0 Jefer
[21] Appl. No: 267.361
[22] Filed: May 26, 1981

[50] Refereacea Clied
FOREIGN PATENT DOCUMENTS
970614 9/1931 Fow. Rop of Germany … $330 / 31$
Prmary Examuner-James B. Mullins
Ascrsant Examiner-Gene Wan
[57$]$
ABSTRACT current gun, hoeanly, overioed performance and band.
wadth which uses a sep-down (lof valiage) framsformet wheth which ues a siep-down iof vilager raniormer the pnmary of the transiormet as cinnected to a anver trenustor's collector and the cther end is connecter to the collector of a grounded-base output transstor The emiter of the oulput iransastor The transiormer windings are phased such thas a large dnver current is furced through i high impedance. i.e. the promary winding impedance which is a muluple of the common base input empedance of the eutpur iransisior. resh mang in preerloaded power output free of "break-up" of the waveform compared wilh convenuonal cascode operation, as well as greater power gan. By using ifransistors with hush reustivity base matenal the amplifier opers tion is resslant to de gradation by ionizing

BASIC RECEIVER DESIGN

> Jim Eagleson
> IDX, Inc.

January 1985

This paper is going to cover the basics of receiver design.

It includes most parameters that should be looked at to evaluate whether a particular design will work for the intended purpose, in the likely environment, and for the desired cost.

Included in the Appendix is a simple BASIC program for use with a small computer (in this case, a TIMEX 1000). It should be readily adaptable to any machine supporting BASIC

DESIGN GOAL

The very first thing that must be discussed is not really technical at all. The designer must sit down with management and/or the customer and determine the design goal.

While this should go without saying, the success or failure of a given design may not relate to the skill of the design engineer nearly as much as it does to how well the design goal was defined before starting.

This is especially true of cost goals since most engineers will tend to over design if they are not sure how much more the unit will be required to do beyond the original goals.

The following items should be considered:

1) Bow much should the product cost?
2) What must the unit do?
3) What must the unit Nor do? (Could be as important as 2)
4) What does it fit inside or mate with?
5) What should it look like? (Military, Commercial, Consumer)
6) What kind of environment will it see? (Temperature, Humidity, Vibrations, Chemicals)
7) What kind of person will be using it? (Consumer, Industrial, Technical)
8) What level of servicing will it see?
(In-place, Local, Regional, factory Service
9) When is pre-production prototyping due?
10) Is this a preliminary or permanent design?

SPECIPICS REQUIRED

In the "what must the unit do" category, the engineer may need to make somwhat of a nuissance of himself before can get everyone who must use the end product to clearly define their specific needs.

All the same, he must know:
Voltages available and power drain allowances
Mechanical constraints - most RF circuits are layout sensitive. They are not always conveniently changed in mid-stream...especially
at VHP and above!

Output Requirements - including levels,
impedances, video response, distortion allowance,
etc.
Interconnection Requirements - including cables, connectors, teminals, etc.

Control Requirements - including external. internal, manual, automatic, trimmer and control signal levels if from other sources.

Environmental Specifications - Temperature, Bumidity, Moisture, Dust, Chemicals, Vibration, Shock.

Electrical/RF Environment - IMD, CRSS, Desense, Adjacent Channel, Co-channel Interference potentials. Power source conditioning, EMI filtering, Surge Protection, etc.
Cosmetic Constraints - While this could be placed
under Mechanical Constraints, of ten even the look under Mechanical Constraints, often even the look inside a box can be important to its effectiveness (in this case in saleability). can impact the placement of controls and connectors. Don't be fooled! Even in Military markets the look can make a difference. The look
may be different, but the requirement that it
"look right" is the same!

EXAMPLE OF PRE-DEFINITIO

Areas of concern here are:

1) The receiver must be able to handle the presence of a 1 Watt or a 10 Watt transmitter isolation and overload capability demands good)
2) The receiver is likely to see strong adjacent channel signals. This requires good selectivity.
3) The receiver will often be located near other strong broadcast transmitters. Again, requires good isolation and overload capability.
4) The entire translator will typically be designed for minisur power drain. Significant numbers will find service on solar or propane power.
5) For the reasons in 4, capability for running the unit from 13.8 or 28 Volts should be a goal.
6) Since the site will often be remote, reliability and ease of field servicing is should . Protection against lightning danag power surge damage).
7) FCC Type-Approval is required. This has definite impact on Frequency Stability, Selectivity (don't want to retransmit other than the desired station), and Gain Stability.
8) For ease of maintenance and field service, Pull Metering of Signal Level, PA Status, and VSWR should be provided.
Obviously, the translator's receiver is going to be some 50-100 the cost of the mass-produced

APPLYING DESIGN GOALS TO BASIC DESIGN

Every receiver has certain characteristics which must be looked at in relationship to its application.

These characteristics are:

1) Input Frequency (FI)

Intermediate Frequency (ies) (IF, IF1, IF2..)
3) Image Frequency (IMG)
4) Prequency Tolerance (TOL)
5) Second Order Intermodulation (IM2)
7) Third Order Intermodulation (IM3)
8) Compression Point
(Usually
Desense, Blocking (Can relate to cb imiting)
Desense, Blocking (Can relate to CP, IF or AGC depression by strong signals)
or
18) Noise Figure (NF)
11) Noise Bandwidth (dB)
12) Selectivity (B / Xdb)
13) Balf-IF and One-Third IF (IF/2, IF/3)

Related to the above characteristics:

1) Minimum Discernable Signal (MDS)
2) Tangential Signal Sensitivity (TSS)
3) Sensitivity (Xuv/ydb SNR)
(Usually established at the minimum
useful SNR for a given mode.)
4))

Intermodulation Dynamic Range (IMDR, IMDR2,IMDR3)
(Sometimes called Spurious Free Dynamic Range.)
7) External Spurious Responses

Also worth considering:

1) AGC Threshold
2) AGC Control Range
3) AGC Attack/Release/Bold Times
4) IF Limiting Threshold
(Typically ldB or 3 dB point)
5) Log/Linear Tracking
(dB/V variation in a Log IF)
6) Detector's Video Bandwidth

WO DESIGNS - TWO APPROACHES

A look at two different designs... one complex and one simple, will provide insight into how the characteritics relate 1 , the design.

The first design is for an ACSB transceiver for VHF and Mobile use.

WHAT DOES THE DESIRED OUTPUT LOOK LIKE?

The output from an ACSB receiver is communications quality audio. Thus we are looking for a fairly flat, low distortion response from 300-2700 Hertz in the audio channel with detector out put including frequencies up to 3200 hertz.

For the sake of simplicity I am going to assume that we are looking at a video response, then, of 3200 Hz or so. (Actually, with ACSB the noise bandwidth is narrower than this due to De-emphasis)

Given the above:

1) Video Response:
a) Most Audio devices would be O-K.
b) Heed at least 5 Watts AF Output for mobile.
c) Need high level speaker (which can impact the mechanical design due to size).
2) Mode Impacts:
a) If Bandpass must be 3.2 KHz . ACSB has a pilot Tone plus audio. b) If must be Linear. Some form of AGC
control must be provided to keep the RP control must be provided to keep the RF
and the IF stages in their optimum and the IF stages in their optimum
operating region. This must also keep operating region. This must also keep
signals at the detector within a $38-35$ dB dynamic range so that the ACSB processor can keep within its control range.
c) The RF AGC must have Fast Attack to limit overload prior to processing. It should also have a moderately fast release time for following of moderate
fades but long enough not to cause instabilities associated with feedback AGC systems.
d) Reguires high Adjacent Channel Selectivity. Since the whole point of ACSB is the use of 5 KHz seperated channels, selectivity is a prime design goal. If our -6ab response is going to be 3.2 KHz , it is probably a good idea to use a filter with a 1.8:1 Shape Factor (Battenuate/Bpass...6/60dB). This will give us 1.8×3.2 or 5.76 kHz bandwidth at - 60 dB. This gives us 60 dB of Adjacent Channel protection on all signals further than $\pm 2.88 \mathrm{kHz}$ from the center of the desired channel.
e) Requires tight frequency tolerance Current ACSB designs can pull in signals from $\pm 800 \mathrm{~Hz}$ or so. Thus our transmit to receive drift must stay under 800 Hz if pull-in is to be reliable. This means that each must stay within ± 400 time the other drifts up in frequency.

Furthermore, Adjacent Channe Selectivity will be affected by significant drift beyond a few hundred Hertz.

This suggests the use of Crystal Oven and/or Temperature Controlled Crystal Oscillators (TCXO).
f) AGC detection and pilot Tone processing suggest high level detection $\begin{array}{ll}\text { requiring moderate } & \text { RF/IF } \\ \text { the }\end{array}$ design of the phase locking of the pilot tone is best done at a single frequency at the second Local Oscillator/Mixer stage.

For best performance of the front End the gain in this section should be restricted to less than 20 dB . Thus the $R F$ is 20 and the IF is 100 dB .

FRONT END DESIGN

[^5]We'll fist pick a design goal for Sensitivity.
Typical Land Mobile FM equipment yields B.25uV/20dB Typical Land Mobile FM equipment yields \quad Quieting. We'll select this as our design 20 dB Quieting. We'll select this as our design goal for the ACSB
radio. Due to the processing used in ACSB, $0.25 \mathrm{uV} / 2 \mathrm{dab}$
"Quieting" occurs at an input SNR of about 7B in an ACSB system. Thus we would have a Sensitivity of $\mathbf{5 . 2 5 u V / 7 d B}$ SNR or, more coventionally, e.35uv/19dB SNR.

Also related to the application (Land Mobile) is the RF Bandwidth required. Typically a given radio will need to cover several channels within 2 MHz of each other. Thus, we will require a minimum RP Bandwidth of 2-2.5 MHz...also a good design goal for other reasons.

FRONT END BLOCR DIAGRAM

As illustrated, the Front End (or First Converter) consists of several elements:

1) Antenna Matching
 2) RF Band Pass Filtering
 3) BPF to Device Matching
 4) Device Gain

5) Device to Output Matching
6) Mixer (or Converter)
7) Mixer to IF Matching
8) Local oscillator (Multipliers, Filters)
g) L.O. to Mixer Matching

Each of these elements will have some level of impact on the performance of the Front End. Usually, however,
there will be some level of integration of these elements there will be some level of integration of these elements
into multiple function circuits. This can simply be a resonant $\mathrm{L}-\mathrm{C}$ tuned circuit tapped to match the antenna and the amplifying device, or it could be a more complex, multi-pole Band Pass Filter or a Helical Resonator.

Since the design application is ACSB, ie, Land Mobile, and since this mode is most likely to be required in markets already too crowded for wideband modes, it seems likely that Helical Resonator or Multiple Section Band Pass filtering will be used. Naturally, integration of antenna match and device match into this filter would be a design goal. Further, expanding the passband to 2.5 MHz to make alignment simpler and ensuring that the unit can be tuned to any 2 MHz segment of the $150-165 \mathrm{MHz}$ spectrum is al so a goal. Each of these factors influences the choice of filter style.

DEVICE SELECTION

Now comes the heart of Front End design. In order to see what kind of device we can use for the active gain stage, we must evaluate several things.

The first item is required Noise Figure.

NOISE FIGURE

We have established that the Sensitivity required is $0.35 \mathrm{uV} / 1$ edB SNR.

This translates to a level 10 dB below $0.35 \mathrm{uV}(-116 \mathrm{dBm})$ or -126 dBm .

t another way, the Equivalent Noise Input in the

 specified 3.2 KHz bandwidth is -126 dBm . The formula for this is:$\mathrm{Ne}=-174 \mathrm{dBm} / \mathrm{Hz}+(10 \mathrm{Log} \mathrm{Bn})+\mathrm{NF}$
Where Ne is Noise (equivalent) (dBm)
Bn is Noise Bandwidth (Hz)
NF is Noise Figure (dB)

To solve for the reguired Noise Figure, however, requires re-arrangement of the formula to:

$$
N F=N e-(-174 \mathrm{~dB} / \mathrm{Hz}+(10 \log \mathrm{Bn}))
$$

Thus for the ACSB radio:

$$
\begin{aligned}
N F & =(-126)-(-174+35)=(-126)-(-139) \\
& =139-126=13 \text { dB Noise Figure }
\end{aligned}
$$

But, in reality, we need to know the Front End Noise Figure. What we have just calculated is the total Syster Noise Figure.

IF NOISE FIGURE

First, however, we will need to determine what the IF/Detector Noise Figure is going to be.
Ty iscally, the IF Noise Figure will generally fall in the 6-13 dB region. It can be worse. It can be better.

Most Integrated circuit IF devices have noise figures in the 7-9 dB area and most IF Filters will show 3-18 dB loss, depending on kind and frequency. Thus we should see 10-19 dB overall Noise Figure in the IF with IC Amps but somewhat better results...6-16 dB Noise Figure, using common transistors or FETS.

Since for ACSB we are using a highly selective filter (3.2 KHz), we will probably use a Crystal Filter having a typical loss of 6 dB . Since we are keeping Front End gain at a minimum, an IF Noise figure in the stages after the filter should be kept in the

After Second Coversion we can use an IC gain block such as the MC1350AP since there is enough gain in front of it by the.

Thus our ACSB radio's total IF Noise Figure will be in the 10-11 dB region.

CALCULATING NOISE FIGURE

The formula for calculating Noise Figure is:
$\mathbf{F}($ system $)=\mathbf{F l}+((\mathbf{F 2}-\mathbf{1}) / \mathbf{G 1})$
Where Fl is First Stage Noise Factor (ratio, not dB) F2 is Second Stage Noise Pactor (ratio)
Gl is First Stage Gain (ratio)
and F (system) is System Noise Factor (not dB)

But, of course, we want Fl , not F (system). Thus we re-arrange the formula to:

$$
\text { P1 }=\mathbf{F}(\text { systea })-((\text { F2 }-1) / \mathbf{G 1})
$$

Now all that we need to do is to convert our previous $\mathrm{NF}($ system) and Gl from dB into ratios. We can use a chart for this or use the following relationships:

$$
\begin{aligned}
& F=18^{(N F / 1 B)} \\
& G=18^{(G / 1 B)}
\end{aligned}
$$

Where the F and G in the exponent are in $d B$ and the F and G after conversion are in power ratios.

Actually, in the example given these conversions are quite easy to do in ones head since:
$13 \mathrm{~dB}=10 \mathrm{~dB}+3 \mathrm{~dB}$ or 16 X and 2 X power.
ratio.
Similarly, 20 dB is $10 \mathrm{~dB}+10 \mathrm{~dB}$ or 10×10 or 100 times the power ratio.

By keeping ldB, $2 \mathrm{~dB}, 3 \mathrm{~dB}$, and 18 dB ratios in ones head, almost any power (or voltage/current) ratio can be estimated quite easily.

Plugging in our data in the formula for $F l$ we get:

$$
\begin{aligned}
\text { P1 }= & 20-((10-1) / 19 \theta)=20-9.09=19.91 \\
& \text { or very close to } 13 \mathrm{~dB} \text { Noise Figure. }
\end{aligned}
$$

Even if the IF had a 16 dB Noise Figure we would get:

$$
\begin{aligned}
\mathbf{F 1}= & 20-((40-1) / 190)=20-1.39=19.61 \\
& \text { which comes out to } 12.93 \mathrm{~dB} \text { Noise Figure, still } \\
& \text { very close to our } 13 \mathrm{~dB} \text { requirement! }
\end{aligned}
$$

Obviously, IF Noise Figure is not the predominant factor when moderately high gain is available in the front End. In fact, as a rule-of-thumb one can assume that if First Stage Gain (Gl) exceeds the Second Stage Noise Figure by around 10 dB , the First Stage Noise Figure will establish the System Noise Figure within a few tenths of a dB. This is insignificant at VHF frequencies and probably not frats such external hoise flutter, etc have greater impact.

NOISE VERSUS BANDWIDTH

Just in case it was not apparent from the formula previously used, Equivalent Noise Input (Ne) is directly to Bandwidth used. If one doubles the tandwidth, noise output doubles (up 3 dB).

By example, in comparing an FM receiver with an ACSB receiver, the difference in bandwidth is 18 KHz to 3.2 KHz . Plugging into our Ne formula:

$N e=-174+(10 \log 18008)+N F=-118.5 \mathrm{dBm}$ for FM $N e=-174+(10$ Log 3200$)+N f=-126.0 \mathrm{dBm}$ for ACS

put another way, the difference in Ne relates directly to Bandwidth ratios. Thus:

$$
\begin{aligned}
\text { SNR improvement } & =10 \log \mathrm{~B} 1 / \mathrm{B} 2 \\
& =10 \log 18008 / 3200 \\
& =10 \log 5.63 \\
& =7.5 \mathrm{~dB} \text { SNR Improvement }
\end{aligned}
$$

Since the SNR Improvement Threshold for FM and ACSB are both in the 16dB CNR region, theoretically ACSB should have $a, 7.5 \mathrm{~dB}$ advantage on FM, given the same Noise figure. In fact, field tests show a frequent extension of operating range using this mode though other factors modify the 10-20\%. This is largely due to the fact that ACSB has only $1 / 4$ the average power of FM .

CNR, by the way, is Carrier-to-Noise-Ratio or the SNR coming in to the detector. The actual audio SNR after detection and/or processing will be higher for these two modes, however.

INPUT LOSSES - BAND PASS FILTER

Since our Noise Figure requirement is hardly difficult to achieve with modern devices even at UHF freguencies, we have a broad selection of transistors and FETS to choose from.

Before setting our Noise Figure spec to 10-11 dB for this device, however, we must come to terms with the Antenna Matching and Band pass Filter requirements.

We have suggested that the input bandpass filter should be 2 MHz wide (perhaps 2.5 MHz to simplify tuning). It should have good out-of-band rejection since Land Mobile frequencies are very congested.

This suggests use of either a Helical Resonator, which at these frequencies would be moderately large, physically, or a Multi-Section Band pass Filter. Helical Resonators will have between $0.5-1.5 \mathrm{~dB}$ losses, typically. Multi-section $L-C$ filters will have between 1.0-6.g dB losses depending on bandwidth, component " Q ", and required

Since we only need a 13 dB Noise Figure, the filter loss is not particularly important. Like all good engineers, however, it is probably a good idea to give Noise Figure to ensure our 13 dB goal

It is likely that a reasonable filter can be made with less than a 4 dB loss. As this loss adds directly to the need a device having a 6 dB Noise Figure $(6+4=10 \mathrm{~dB})$

Since devices with 6 dB Noise Figures are readily available at VHF frequencies, we should now define other factors affecting device choice.

device limitations

All amplifiers have limits. They generate internal noise due to thermal effects. They have power limitations set by their voltage and current capability.

If an amplifier is bias for a certain power drain, it can only deliver some percentage of that power to a load. Just how much power it can deliver depends on device efficiency and matching efficiency between the device impedance and the load impedance

Class An mode of Operation. ${ }^{\text {n }}$. This is biased in the amplification is to occur down to the noise level of the device.

Unfortunately, "Class A^{*} is not the most efficient bias point we could use. We only see 5-30\% efficiencies, typically.

The problem, of course, is that the ? ower handling capability at the high end of the scale can $0: y$ be achieved by increasing the quiescent (or ide) curreir. increased device current, naturally, increases device temperature which also increases the amount of noise generated internal to the device and thus increases its Noise Figure.

So there is always some level of tradeoff between Noise figure and high level signal performance. In portable quipment, we may also have a further limitation in power drain.

BLOCKING, DESENSE, COMPRESSION POINT

Related to yower handing is what an amplifier will do in the presence of a weak desired signal and an undesired strong signal.

SECOND ORDER INTERMODULATION

When two (or more) very strong signals are present in an amplifier, at some signal level they will modulated each an amplifier, at some signal lerer producing sum and difference products. These products will occur at some level below the level of the two tones producing them. The exact level of these products (though device characteristics may modify the curve).

When the fundamental of one signal mixes with the undamental of another signal we call this Second Order Intermodulation (IM2). In fact, in one sense a mixer could be considered to be intentionally producing second order Intemodulation (FI - LO $=I F$). In this special case, however, we use a very large Local Oscillator "signal" to mix with our weak to moderate RF Input signal.

Thus, IM2 can occur when two in-band signals mix to create a signal falling on the input to the If Amplifier.

Alternately, two signals well removed from the desired RF Input signal can mix together to produce an IM2 product falling at the RP Input frequency. In most cases, however, Front End Selectivity does not al a special case would be in very broadband receivers using no preselection.

EXAMPLES:

A broadband receiver covering 508-2008 MHz.

Desired Channel:	1080 MHz
Signal $1:$	1709 MHz
Signal $2:$	780 MHz

$1799+798=2400$ мHz..................no problem.
1709-700 $=1808 \mathrm{HHz} . . .$.on desired chan.

Our ACSB receiver has an input filter which is 2.5 MHz wide at -6 dB .

Desired Channel:	155.090 MHz
Signal $1:$	160.790 MHz
Signal $2:$	150.090 MHz

 166.780
problem.

Two things are in our favor in the ACSB receiver. irst, both Signal 1 and Signal $\$ 2$ fall outside of our $R E$ and pass Filer They will most likely see 15-20 dB attenuation due to the BPF selectivity.

Furthermore, a properly designed Mixer will not pass signals coming into it at the IF frequency very well. Isolation will be in the $15-30$ di region in typical may not be true of some Bipolar or single-diode mixers designs, however.)

At any rate, Im2 is not normally a significant factor except in certain broadband designs.

THIRD ORDER INTERMODULATION

If two very strong signals are present in our RF Amplifier they will also cause Third Order Intermodulation Products (IM3). Again these products will be at a level below the revel of the distortion causing IM generating amount proportionalion the
 increase by 3 dB .

However, in the IM3 case these products fall just above the higher tone and just below the frequency of the lower tone by an amount exactly equal to the frequency difference between the two original signals. Thus two signals which fall +5 KHz and +10 KHz above our desired ACSB falling at (5 kHz below the lower tone) and at +15 KHz (5 KHz above the higher signal).

155.090155 .085155 .010155 .015
465.828465 .025

Signals will fall at 2F1-F2, 2F2-F1, 2F1 + F2, and $2 F 2+$ Fl. The additive signals obviously fall way above the usual passband of most receivers and, like IM2, can generally be ignored.

INTERCEPT POINT

The concept of Intercept Point is useful in predicting IM2 and IM3 levels. If we graph Fundamental response along with IM2 and IM3 products it becomes very apparent that the $1: 1$, $1: 2$, and $1: 3$ "curves" will ultimately meet at some point above the 1 dB Compression Point. In reality, of course, the output levels will compress beyond the CPI so that this theoretical meeting of curves can never occur.

Fundamental, IM2, and IM3

In the "real world" one may find variations in these theoretical curves and in the IM2 and IM3 Intercepts relative to the Fundamental. For general evaluation, however, assuming a common Intercept Point about 18-15 dB above the 1 dB Compression Point is appropriate.
(It would be a good idea to point out, here, that CPI may occur due to other factors if the measurements are made in a total receiver. Obviously, leakage around filters can allow strong enough signals to depress the AGC. similarly. stages of IF amplification prior to the IF filter and also the mixer stage can go into limiting...another word for "gain compression." (This latter problem is common in Automobile FM receivers.)

So we can take the published data and find the IM2 and IM3 information, if given, or we can extrapolate it from the
CPl or CP3 data (usually given). Merely add $10-15 \mathrm{~dB}$ to CPI or 7-12 dB to CP3. It is best to work with the lower level (18 or 7 dB) for conservative estimates.

Again, the same caution as before...we are interested in input, not output levels. The input CP1 or CP3 levels will be lower by the amount of the device gain.

EXAMPLE:
CP1 $=+18 \mathrm{dBm}$ (J 310 FET output)
$I P=+28 \mathrm{dBm}(C P 1+10 \mathrm{~dB}$ output)
but...
$I P($ input $)=I P-G=29-14 d B=+6 d B m$

IM2, IM3 FORMULAS

At the Intercept Point (theoretically) IM2 will be equal to the levels of the two tones producing the IM2 products. At a $1: 2$ "curve", if the level of the generating tones falls 20 dB (to -14 dBm in our J 318 case), the IM2 levels will fall 48 dB (to -34 dBm), or twice as far.

Thus:
IM2 $(\mathrm{dBm})=\mathrm{IP2}$ - 2 (IP - IM generat inc tones)
$=+6-2(+6-(-14))=+6 \quad 2$ (2B)
$=+6-40=-34 \mathrm{dBm}$
and:
IM3 $(\mathrm{dBm})=$ IP3-3(IP - IM generating tones) $=+6-3(+6-(-14))=+6-3(2 \theta)$
$=+6-6 B=-54 \mathrm{dBm}$

Abstract

The opposite is also true, of course. If the tones increase by 20 dB , the IM2 will increase by 40 dB and the IM3 will increase by 60 dB

Also clear is that signals at the high levels used in the illustration could easily be seen at a broadcast site where out it power can be in the tens of kilowatts (+60 to +80 dBm). Units designed for this kind of use had better have good Intercept Point performance or be placed in a very well shielded box with a well designed Notch Filter on the frequency of any transmitters sharing the site. It would take 74 to 94 dB of isolation to lower the transmitter levels to - 14 dBm !

INTERMODULATION DYMAMIC RANGE

Essentially Dynamic Range is the ratio between some pre-determined reference (say 12 dB SINAD) and the level of signal required to degrade the desired signal by some amount (in the SINAD case, by 6 dB).

For design purposes it is much easier to talk about IMDR , or Intermodulation Dynamic Range.

The most common definition for IMDR is the ratio between the Equivalent Noise Input level (in this case usually called the MDS or Minimum Discernable Signal level and the level of two tones required to generate 2nd Order or 3rd Order IM products at the same (MDS) level.

Obviously, any IM2 or IM3 products falling below the MDS level will not be heard. Any above this level will have a direct affect on the SNR of the desired signal.

MDS, has the same formula as Ne:
$\mathrm{MDS}=-174 \mathrm{dBm} / \mathrm{Hz}+(16 \mathrm{Log} \mathrm{Bn})+\mathrm{NF}$

We can estimate our Intercept Point from the CPl point of the device being used:

$\mathrm{J} 310=+10 \mathrm{dBm} \mathrm{CP}$

$=+20 \mathrm{~dB}$ IP

Since IM2 products fall of f at a 2:1 rate, the 2 nd Order IMDR will occur half way between IP2 and MDS. That is, if the IM2-creating tones are at a level half-way will be at a level just equal to the MDS level. IMDR is the $d B$ ratio required above MDS to generate IM2 tones just at

Thus:

However, we previously pointed out that one set of IM2 products falls so far outside our Input BPF that they can be gnored and the other IM2 generating signals would be列

Thus it would take two tones 81 dB above - 126 dBm to reate an audible IM2 product. This is a level of $-126+81$ or $-45 \mathrm{dBM}(1260 \mathrm{uV}) . .$. healthy set of signals not likely to occur too often at just the right frequencies for our IM2 situation (particularly when one throws in Mixer isolation).

IMDR3, on the other hand, could be much more of a problem.

Even though we have a 3:1 drop of f in IM3 products versus input signals, we do not have the selectivity working for us like we do in the IM2 case. In Land Mobile urban environments there will be many instances when signals will be spaced the correct distance apart in frequency to cause this problem.

These signals could be one channel up plus two channels up, two channels up plus four channels up, four channels up plus eight channels up (or down) from the desired channel and so forth.

Like IMDR2 we can relate IMDR3 to the Intercept Point.
2/3 Since IM3 drops of f at a 3:l rate, two tones falling $2 / 3$ of the way between Intercept Point and Minimum to the MDS level.

Thus:

$$
\begin{aligned}
\text { IMDR3 } & =2(1 P 3-\operatorname{MDS}) / 3 \\
& =2(+6-(-126) / 3=2(132) / 3 \\
& =264 / 3=88 \mathrm{~dB}
\end{aligned}
$$

One last factor should be put into the formula if we are going to get an accurate picture of actual IMDR3. Our Input Band Pass Filter has about 4 dB of insertion loss. This affects both IMDR2 and IMDR3 by 4 dB .

Thus our IMDR2 will become 85 dB and IMDR3 becomes 92 dB. This means that two signals must exceed -41 dBm(2000uv) to create IM2 and would need to exceed $-34 \mathrm{dBm}(4500 \mathrm{uV})$ to

create IM3 products which would be audible above the receiver's own noise level.

HALF-IF, ONE THIRD-IF

Half-IF and One Third-IF are related to IM2 performance. As a general rule, 2 nd and or 3 rd harmonics generated in an amplifier by a single tone will have a level about that same level

Thus a signal at half the frequency of our desired input frequency would double in the RF Amplifier creating its second harmonic on the input channel. Of course, this does not happen in normal tuned amplifiers, but could happen in very broadband amplifiers.

A special case that can happen is when a signal is removed from the Local Oscillator frequency of the receiver by one-half or one-third of the IF frequency. In other words, given a 10.7 MHz IF, any signal 5.35 or 3.5667 MHz above or below the L.O. frequency will be converted to one-half or one-third of the IF frequency by the mixer. If this signal is strong enough and IF selectivity prior to the IF Amplifier(s) is not narrow enough to reject this signal (often the case in older, double-conversion designs which used only ${ }^{455}$ kHz the mixer) will create the second or third some cases, the mixer) will create the will fall right in the middle of the IF and will interfere with desired signal.

This is not likely to occur with modern designs using selectivity immediately after the mixer (except with some active mixers, perhaps)

IMAGE FREQUENCY

Any mixing scheme will have two RF Inputs which will mix with the L.O. to create the IF frequency. One will be L.O. + IF above the L.O. and one will be L.O. - IF below the L. 0 .

EXAMPLE:

Our ACSB radio receives, say, 155.790 using an L.O. of $145.0 \theta 0$ to obtain an IF of 10.700 MHz. The Image Frequency would be 45.860 - 19.706 or 13 PF problem with our bif this frequency for some reason.

It is probably wise to check for the Image Frequency since it is so far removed from our filter passband that skirt selectivity (ultimate rejection) could see variations in simpler filters).

IF IMAGE

Once again, the double conversion radio could have a case where a signal only, say, 910 KHz away from the desired signal ($910 \mathrm{KHz}=455 \times 2$) would be converted to 9.790 MHz . If our second $I F$ is 455 KHz , the desired 10.700 MHz signal requires a 2 nd L .0 . of $10.700-.455$ or 10.245 MHz . But, $10.245 \mathrm{MHz}-9.790 \mathrm{MHz}$ also give us .455 MHz (455 KHz). obviously, the selectivity of the 10.7 MHz stage must be narrower than $2 \times 910 \mathrm{KHz}$ or 1820 KHz (assuming the IF is peaked at 10.7 and is symmetrical at plus and minus 910 KHz).

IF IMAGE

As before, however, use of a selective filter in this stage totally prevents the problem. Monolythic crystal stage totally prevents the problem. thonolythic obrystal in modern designs.

In a given case when this occurs, it can be eliminated merely by shifting the 2nd L.O. to the other side of the input si in other words, if low side injection is input signal. 14 for a 10.7 MHz input). high side being used 10.245 for a 10 mould move the IF lmage to 11.610 MHz providing that no interfering signal .. verts to this frequency, this move would cure the problem.

A word of caution, however. This cures the problem for FM or AM since the sideband relationships (upper versus lower) are unimportant in double-sideband modes. With USE or LSB one would also need to move the BFO oscillator to the opposite side of the IF passband to restore proper carrier to sideband relationships. The same is true of UHF to VHF
conversions of TV signals. Since the audio sub-carrier is above the visual carrier, use of alternate side L.O. injection to prevent IF lmage prcolems would not work!

CROSSMODULATION

(ossmodulation is a term that seems to be defined differtitiy by different people.

The original concept seems to describe the condition where one strong signal imparts its modulation to a weaker signal on the desired channel.

This, of course, is related to the Gain Compression characteristic of the amplifier and is best applied to AM systems.

Some have also used the term with reference to out-of-band signals mixing together to produce an in-band IM product. This, of course, is really IM2 or IM3.

Of course, in FM systems the IM2 or IM3 product of two unequal signals where one is much stronger than the other can also create a similar condition. FM's capture effect will suppress the weaker of the two IM sources so that it appears that only one signal is causing the problem.

This would be intermittent, however, since both signals would not be present simultaneously all the time. Then again if one was a broadcast station it or $F M$ which problem is CRSS.

SENSITIVITY

The term Sensitivity has various definitions depending on mode and/or signal-to-noise requirements. With FM systems it is usually specified as a specific level of microvolt input for a given background noise quieting.

sxample: 0.25uv / 20 dB Quieting (Communications)
 $1.35 \mathrm{uV} / 3 \mathrm{~dB}$ Quieting (FM Broadcasting)

These represent the lowest SNR levels considered "useful" to the average user for the intended purpose.

With AM, Pulse, SSB or other Amplitude Modulated modes the typical measurements are:

TSS = Tangential Signal Sensitivity
mDS = Minimum Discernable Signal
SNR = Microvolts input for a given SNR output

TSS is the level at which the envelope of the signal plus noise just doubles the level (peak-to-peak) of the noise without the signal present. This is a 6 dB peak-to-peak SNR or 8dB peak-to-peak signal + noise to RMS noise level

The TSS level represents the threshold of operation for some systems. Mainly, however, it represents convenient reference point when using an oscilloscope!

MDS is the level where the signal is just detectable in the noise. Theoretically it represents fdB SNR, but this discernment by ear or with a scope varies so much from for theoretical calculations.

SNR specifications are an attempt to present a level at which a signal just becomes useful. This can be 1 dB SNR for Morse Code, 6 dB for SSB, 12 dB SINAD on NBFM, or 20 dB on Broadcast FM.

Some references are the level at which the signal becomes "fully useful". This could be 2 QdB SNR on AM or SSB, 20 dB quieting on NBFM , or 3 gdB quieting on Broadcast FM.

As you can see, there is some level of ambiguity associated with Sensitivity specs. The key word is "standard reference"...the use of methods and reference SNR's which have "universal" acceptance.

SECOND RECEIVER DESIGN EXAMPLE

A quick look at a second receiver will show the kind of variations one finds due to application.

We wish to receive signals at 2000 MHz at minimum cost with commercial application in an amplitude modulated data transmission system with interface to a microprocessor controller.

Signal levels are in the -79 dBm to -30 dBm region.
FCC regulations on the associated transmitter allow it a $\pm 8 \mathrm{MHz}$ frequency drift and we are to receive a signal at the 2 nd Harmonic of the transmitter.

There are no FCC radiation requirements for the receiver since it is operating totally above 1000 MHz .

DESIGN IMPACTS OF SPECIFICATIONS

> Again, starting from the receiver output:

1) Video response $=500 \mathrm{KHz}$ square wave, TTL level
a) Gain must be provided to bring the detected signal level up to TTL level.
b) Requires no power devices (TTL).
c) AM signal requires $2 X$ data bandwidth. A 50 KHz square wave has required harmonics at least to $10 x$ or 5 MHz . hus, this or 1 MHz
d) Square wave response suggests a Gaussian IF response curve.
e) The allowed transmitter drift selectivity...perhaps 20 MHz rather than 10 MHz .d
2) Mode and frequency suggest:
a) The transmitter should be restricted
to minimal drift, say $\pm 3 \mathrm{MHz}$ so that
the required receiver $I \bar{F}$ will need only
$\pm 6 \mathrm{MHz}$ extra bandwidth to make up for
transmitter drift. This will help keep
sensitivity from being impacted
adversely by too wide a bandwidth.
b) The receiver should have minimal
drift and should be designed to track
the transmitter drift as much as
possible.
$\begin{aligned} & \text { c) The cheapest possible Front End } \\ & \text { should be designed since the } 2 \mathrm{GHz}\end{aligned}$
should be designed since the 2 GBz
$\begin{aligned} & \text { portion is likely to be the most } \\ & \text { expensive part of the receiver. This }\end{aligned}$
$\begin{aligned} & \text { expensive part of the receiver. This } \\ & \text { suggests use of a sub-harmonic mixer }\end{aligned}$
where the oscillator injection is at
half the desired L.O. frequency.
d) Sufficient IF gain to allow diode
detection of the weakest desired signal
is required. For our purpose an SNR of
15 dB is adequate. Thus an MDS 15 dB
below 60 dBm is required, or -75 dBm
For safety, design for MDS $=-80 \mathrm{dBm}$
(-74 dBm , TSS).
e) Signal can be subject to very rapid fading up to a 10 mS rate. Thus an A-C coupled Logarithmic Amplfier is suggested. This will ensure relatively constant $\mathbf{P}-\mathbf{P}$ voltage output for a given modulation percentage regardless of received signal level. Some A-C coupled limiting after detection may also help present a more constant signal to the TTL converter at the out put.
f) An effect High Pass Filter and/or 1060 MHz Notch Filter should be used to prevent onixer overload by the transmitter.

GAIN, NOISE FIGURE, AND PRONT END

Now we can figure out the Front End requirements.
Gain required relates to the minimum detector level required.

For a diode detector this will probably be in the 100 mV region at an impedance of around 500 ohms.

This represents a power level of :

```
P(mW)=((0.1) 2/500) * 1000=0.02 mW
```

$P(\mathrm{dBm})=10 \log 0.02=-16.9 \mathrm{dBm}$

Since our lowest level requiring detection is to be -75 dBm , the gain required is:

$$
P(\mathrm{dBm})-P(\mathrm{MDS})=(-16.9)-75=58 \mathrm{~dB}
$$

We've suggested a harmonic mixer for economy and since Eypical L.o. requirements for this kind of mixer is in the 16 dBm region, the input CPl will be about $-22 \mathrm{dBm} . . .6 \mathrm{~dB}$ lower. Thus the IM3 level will be about -12 dBr .

> Furthermore, this mixer is going to be lossy... -8 dB or so. Thus our IF gain will need to be 8 dB higher than calculated, or about $66 \mathrm{~dB}(58+8 \mathrm{~dB})$.
> Since 2 GHz is not a band where it is ikely that too many strong signals will be found in most ádications of this equifment (certainly not as high as its own transmitter!), Im3 can probably be disregarded.

IMDR3 will be:
$2 *((-12 \mathrm{dBm})-(-89 \mathrm{dBm})) / 3=45 \mathrm{~dB}$

This works out to an actual level 45 dB above -75 dBm
or -30 dBm per tone... a pretty healthy signal at 2 GHz !
For similar reasons, IM2 does not seem problematical. On the other hand, IM2 does provide us a look at 2nd Harmonic generation we should take a close look at it.

We've previously stated that IM2 products will be about 6 dB higher than harmonics levels created in a given amplifier. Since we wish to have any harmonic of the transmitter fall below our MDS level of -75 dBm , this suggests that the signal from the transmitter must be attenuated so that its level falls below:

$$
\begin{aligned}
& \text { MDS }+(\text { (IP2 }- \text { MDS }) / 2) \\
& =((-75+((-12)-(75)) / 2 \\
& =-75+31.5=-43.5 \mathrm{dBm}
\end{aligned}
$$

Thus, the total isolation from $T X$ output to RX input

 must be:
$P(t x)-(-43.5 \mathrm{dBm})$

In our design case the maximum transmitter power is 4 wats $(+36 \mathrm{dBm})$. Thus our isolation must be 36 dB -$(-43.5 \mathrm{dBm})$ or 79.5 dB .

IF FREQUENCY

The last problem is the choice of an If frequency.
This is limited by two factors: Required Bandwidth and Mixer Bandwidth.

Since we need an IF bandwidth 10-20 MHz wide to accept the modulation and allow for oscillator drift, we will need to use a frequency at least twice as high as the bandwidth. otherwise it can be difficult to filter out the if component of the detected signal and gain changes over the passband can become serious when the percentage of bandwidth to center frequency becomes too high.

Thus we need at least a 48 MHz IF and since 45 mHz is Thus we need at least a
a standard $T V$ if frequency, this seems like a good choice.

An If at 60 or 100 mHz might be better, of course, but our "cheap" mixer-only front end might not have the kind of isolation necessary to keep out strong TV or FM stations that can be on these frequencies in industrial ie, urban) areas. performance.

CONCLUSIONS

It is hoped that these sample designs and discussion of the parameters of a receiver discussion of the parameters impact performance in a given situation has aided the reader.

One can copy a previous design, over design, under design, or he can take into account all of the things the unit is supposed bal anced against cost, complexity, and need.

This can make the difference between
"acceptable" design and a good one.

BIBLIOGRAPHY

1. H. Paul Shuch, "Quiet Preamp at Work", Ham Radio Magazine, November 1984 pp 14-20 (with computer program in basic)
2. W. Richardson, "IMD and Intercept Points of Cascaded Stages", Ham Radio Magazine, November 1984 pp 28-34 (with basic computer program)
3. J. Reisert, "VHF/UHF WORLD... high dynamic range receivers". Ham Radio Magazinc, November 1984 pp 97-195 (with references)
4. J. Eagleson, "Linear Translators", Ham Radio Magazine, September 1983 (cover article)
5. J. Duncan, "BIRD CHART", Tele-Tech Corp. 1982, P.O. Box 1827, Bozeman, MT 59715
6. VARI-L Company, Application Notes, Double Balanced Mixers, 11101 East 51 st Ave, Denver, Co B8239 (ph: (303)371-156日)
7. AVANTEK, "Designing with Modular Amplifiers" 1976 ATP-1935/B-77 3175 Bower Ave.. Santa Clara, CA (408)249-6700
8. Hewlett-Packard, Ap Note 57-1, "Fundamentals of RF and Microwave Noise Figure Mcasurement". 5952-8255, July, 1983

[^6]=(0.188)(2.39)(1\mp@subsup{0}{}{-3})/(0.0254)(0.010)(0.100)(0.94)=18.8 0 c/w
Where: }\mp@subsup{\textrm{H}}{2}{}=0.188\mathrm{ inctes, K=0.94 Cal/Sec-cm- }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ (see Table A2) and
\mp@subsup{0}{3}{}}=14.1\mp@subsup{1}{}{\circ}\textrm{C}/\textrm{W}\mathrm{ . Thus;
\mp@subsup{0}{CS}{}=85.6 H32.9=23.8 0}\textrm{C}/\textrm{W}

```

This value for thermal resistence is somewhet higher then the velue calculated in the IR Scen dote. The percentage difference is 50.6 x .

In the IR Scon II, the thermal poths end the model are detaiked os in IR Scen I; thus the following thermel paths are cansidered.
1. \(\theta_{1}\), from the leod through the copper lab to the elumine substrote (cesume 45 degree spreeding)
2. \(\theta_{2}\) and \(\theta_{3}\), along the leed end through the capper tab to the substrote
3. \(\theta_{4}\), through the olumine substrate to the heet sink.

The following illustration in Figure 11 shows the thermal paths and the resulting model in detail:

\(\mathrm{CH}_{\mathrm{c}}=\mathrm{H}_{1} \mathrm{mO}_{2}+\mathrm{c}_{3} \mathrm{H}+\mathrm{o}_{4}\)

FIGURE 11 - ALUMINA/COPPER SOCKET MOUNTING THERMAL MODEL

MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,IMC. 1/85
\[
\begin{aligned}
& \left.\left.\theta_{1}=(0.072)(2.39)\left(10^{-3}\right) /(0.0254) \times 0.036\right) \times 0.072\right)(0.94)=2.0^{0} \mathrm{C} / \mathrm{w} \\
& \text { Where: } h_{1}=.072 \text { inches, } W=0.036 \text { inches, and } L=0.100 \text { incties. } \\
& \left.\left.\theta_{2}=(0.178) \times 2.39\right) \times 10^{-3}\right) /(0.0254)(0.072)(0.100)(0.94)=4.95{ }^{\circ} \mathrm{C} / \mathrm{w} \\
& \text { Where. } h_{2}=.178 \text { inches, } W=0.036 \text { inches, } L=0.100 \text { inches. } \\
& \left.\left.63=(.036) \times 2.39)\left(10^{-3}\right) /(0.0254) \times 0.100\right)(0.178) \times 0.94\right)=0.2 \quad 0 \mathrm{c} / \mathrm{W} \\
& \text { Where: } h_{3}=0.036 \text { inches, } W=0.100 \text { inches, } L=0.178 \text { inches. } \\
& \left.\left.\left.\theta_{4}=(0.028) \times 2.39 \times 10^{-3}\right) /(0.0254) \times 0.125\right)(0.250) \times 0.04\right)=2.1{ }^{0} \mathrm{c} / \mathrm{W} \\
& \text { Where: } h_{4}=0.028 \text { inches, } W=0.125 \text { inches, } L=0.250 \text { inches, } \\
& K=0.04 \mathrm{Cal} / \mathrm{Sec}-\mathrm{cm}-{ }^{\circ} \mathrm{C} \text { (see Table A2). } \\
& \text { Thus, } \theta_{C S}=2.011(4.95+0.2)+2.1=1.44+2.1=3.54^{\circ} \mathrm{C} / \mathrm{W} \text {. } \\
& \text { Tha value of the cose to hool sink thermal resistance, } \theta_{C S} \text { is somewhat lower then the } \\
& \text { value calculeted from the IR scen deta. The percentage difference is } 43.6 \pi \text {. } \\
& \text { in both ceses the percentage differences were quite high, which certainly indicates } \\
& \text { thet there are discrepencies between the madel and the IR scen dele Possible items which } \\
& \text { could contribute to this are. } \\
& \text { 1. The model is not exact enough; } \\
& \text { 2. The resolution end calibredion of the IR scan system over a broed tamperature. }
\end{aligned}
\]

MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROA, INC. 1/85

MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,NC. 1/85

\section*{APPERDIX}

Toole AI lists the IR scan results of the MRF553 PowerMecro trensistor compering two circult boord molerifels. The mounting end RF circuit techniques ere shown in F lgures \(A 1, A 2, A 3\) and \(A 4\).

table al - ir scan results for mrfs53 powermacro


FIOURE AI - CIRCUIT USINO e-10 PC BOARD

MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,IMC.


FIGURE AZ - CIRCUIT USIMO ALUMIMN COPPER SOCKET


FIQURE A3 - NLUMINA/COPPER SOCXET

MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HMRRY J. SWANSON MOIOROLA,INC. I/85


Figure A4 - Circuit Using 0 - 10 Boerd with Mo Heed Sink

In ordor to aid in heat sinking and mounting desions, o teble of thermal properties of commen meter ials is presented. Three importent thermal properties of common heet sink materials are given in Table A2. These praperties should be considered in order to properly evolude the choice of materials used in heot sinking /mounting of an RF plastic trensistor for a given application.

Thermal conduclivity is a meesure of the ablitity of a meterial of known cross sectional aree to transfer heot a given distance in a given time with a given temper ature difference. Qeneralty metols are excellent thermal conductors. Specific Heot is a meesure of the amount of heet a material can accept for a given rise in Lemperature. The scole is normalized to the heot capecity of woter ( \(\mathrm{H}_{2} \mathrm{O}=1\) ).
Mass Density is simply the mess per unit volume of a material. This perameter is important in heed sink destgn in es much as large theot sinks of dense materials are undesirsble

MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HMRRY J. SWANSON MOTOROLA,INC. 1/BS
\begin{tabular}{|c|c|c|c|}
\hline mover &  &  &  \\
\hline conem & . 0.9 & com & 1.9 \\
\hline Cortio Come & - 4 & 1.31 & 20 \\
\hline Numme & 0.4 & 07 & 2.7 \\
\hline 0 & 138 & 0.001 & 2. \\
\hline \%mom & 080 & 0.11 & 2. \\
\hline 5 & 12 & 0.12 & 1.0 \\
\hline \% & -0.0 & 0.9 & ar \\
\hline Kowe & 0.00 & 0.11 & 0 \\
\hline anmerer & \% & 0.11 & 1.7 \\
\hline  & cenz & 0.1 & 2.0 \\
\hline \[
\begin{gathered}
\text { Spory } \\
\text { Hien }
\end{gathered}
\] & 6.08 & 08 & 2. \\
\hline (pony & 0.0007 & 0.2 & 2. \\
\hline mouct lowy & 2.0038 & 02 & 20 \\
\hline amen & 0.008 & 08 & 2.0 \\
\hline moe & 1.0018 & 0 & 32 \\
\hline ramen & C.00es & 0.8 & 22 \\
\hline , &  & - & - \\
\hline
\end{tabular}


FIGURE A5 - IR SCAN MAP

MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,INC. 1/85

The IR scans were made using a Barnes rediometric scope (Model No. RM2). The trensistor's sctive areo wes \(\mathbb{R}\) measured of 6 points to atequatoly mep the junction temperature. Also, the collector heod was IR messured Immedietely offecent to the boly of the peck age to obtain the cese temperature, IL of the device (see figura A5).
Eech operoting condtition was allowed to reach stealy stale before the \(\mathbb{R}\) scen

\section*{mesurements were mate.}

The devices were decapsulated using a machine called a "Jet Etch". This machine is manufactured by:

B\& E Enterprises
628 Henger Way
Wotsonville, Colifornio 95076-2486

The jet etch mechine uses hot sulfuric ectd to decapsulate the molded device. The device can be deccopsulated so thet there is no mechenical demepe, no corrosive demege, and no loosening of the externel leads. Thus, the device is fully RF functionel.

\section*{BEFERENCES}
1. Herry J. Swenson, AN938 - Mounting Techniques For PowerMecro Iransistor, Motorola Inc., 1984.
2. Robert T. Howard, project coordindor. Ihermal Manspement Cancepts in Microelectronic Pockeging. Seetion 3, Chapter 2: "Clircuit Boord Moter iol/ Construction and Its Effect on Thermel Manapement" by Guy R. Wapner: Saction 3, Chepter 3: "The Impect of Surfece Mounted Chip Carrier Packeging on Thermal Manegement in Hytrid Mioracircults" by R.T. Bilson, M.R. Hepher, and J.P. Mc Carthy; Section 6, Chepter I: "Thermal Performance Modeling for Gulding Packing Decisions" by Edwerd A. Wilson, Ph.D. (SIlver Spring, Md: Internotlonol Society for Hybrid Microelectrics, c.1984, ISHM Technical Monogreph Series 6984-003).

RF Expo - Larry Leighton - Disk DIO - Oct., 1984

\section*{Application Note}

\section*{Using Avantek ModampTM MMICs in Broad- and Narrow-Band Filter Design}

Avantek MODAMPTM MMICs are a family of state-of-the-art silicon bipolar Monolithic Microwave Integrated Circuit Amplifiers that are available in a variety of ceramic and low cost plastic packages. They are fabricated using nitride selfalignment, ion-implantation for precise control of doping and nitride passivation for high reliability. They use series and shunt feedback and exhibit very high repeatability from amplifier to amplifier. Typical applications include narrow and broadband IF and RF amplifiers in military and commercial mobile, airborne and land based systems. The series provides basic \(\mathbf{5 0}\) ohm building blocks for the realization of simple high performance amplifier systems over the DC to \(\mathbf{3} \mathbf{~ G H z}\) frequency range. The series includes devices with up to 18 dB of gain and frequency response to 3 GHz or more in some applications. With a frequency response from DC to \(3 \mathrm{GHz}, 50\) ohm input and output matching, flat gain vs. frequency and unconditional stability, the Avantek MODAMP MMICs are a natural choice for amplifiers or other circuits such as amplifier/filters requiring either wide or narrow bandwidths.

In order to design amplifier/filter cascades of finite bandwidth using filter techniques, two important criteria must be met:
1. The source and load impedances presented to the filter must be correct for the filter design and
2. The amplifier stages must be stable at all frequencies when terminated by the filter impedances.
By simply cascading MODAMP MMICs as necessary to acheive a required gain, and by incorporating 50 ohm interstage filter networks, complete amplifiers with selected bandwidth/gain may be realized.

The two examples that will be presented here use a typical Avantek MODAMP MMIC, Model MSA-0335-21, a general purpose feedback amplifier having a \(P_{1 \mathrm{~dB}}\) of +10 dBm . Figure 1 gives the " \(\mathrm{S}^{\prime \prime}\) Parameters and shows some typical performance curves for this device. It can be seen from the curves in figure I that the device is

RF Expo - Larry Leighton - Disk DI 0 - Oct., 1984

unconditionally stable at all frequencies and presents exceptionally good input and output VSWR over the entire operating frequency range.



TYMCAL SCATTERINO PARAMETERS:

igure 1: Typical Performance Curves and Scattering Parameters - MSA-0335-21

RF Expo - Larry Leighton - Disk DIO - Oct., 1984

The first filter to be considered is a 70 MHz filter with the following specifications:
\begin{tabular}{lr} 
Center Frequency & 67.7 MHz \\
Maximum in-band ripple & 0.5 dB \\
Design Bandwidth & 36 MHz \\
Bandwidth at -15 dB & 50 MHz \\
Input/output impedance & 50 ohms
\end{tabular}

Figure \(\mathbf{2}\) shows the circuit schematic for this filter. It is a straightforward 8 pole network built entirely of discrete components. In order to accommodate component tolerance, some tuning will be required. In the prototype, this was done by spreading the turns of the inductors as necessary.


RF Expo - Larry Leighton - Disk D10 - Oct., 1984

Figure 3A shows the calculated insertion gain and figure 3B the calculated output reflection coefficient ( \(\Gamma_{\text {out }}\) ) of the filter shown in figure 2. The \(\Gamma_{\text {out }}\) is shown without amplification as well as with a MSA-0335-21 MODAMP MMIC cascaded both in front of and behind the filter. Note that the effect on \(r_{\text {out }}\) is minimal. Because data is not calculated at all irequencies, \(r_{\text {out }}\) would appear to never have an excellent match, when in fact, at some frequencies the match would be good. The perterbations in the passband are a result of the desired design ripple.


Figure 3: Calculated response characteristics of the 70 MHz filter circuit shown in Figure 2
by itself and cascaded both before and after the MODAMP MMIC.

RF Expo - Larry Leighton - Disk DIO - Oct., 1984

The next filter to be considered is a 950 to 1450 MHz circuit with these specifications:
\begin{tabular}{lr} 
Center frequency & \(\ddots\) \\
Maximum inband ripple & 1200 MHz \\
Design bandwidth & 1.0 dB \\
Bandwidth at -15 dB & 500 MHz \\
Input/output impedance & 1300 MHz \\
In & 50 Ohms
\end{tabular}

The schematic for this filter is shown in Figure 4. The intent of picking this filter for an example is to show that MODAMP MMICs can be used at any frequency within their passband with little effect on other elements in the circuit.


Figure 4: Circuit schematic for a 950 to 1450 MHz filter

Figure SA shows the calculated insertion gain of the filter shown in figure 4 , without amplification while figure SB shows the calculated overall effects on \(\mathbf{S}_{21}\) the \(950-1450 \mathrm{MHz}\) filter as used with and without the MSA-0335-21. Again, performance is compared with the straight filter, and with the MODAMP MMIC cascaded both in front of and behind the filter. Note that the maximum deviation between configurations is 0.4 dB with respect to \(S_{21}\). The filter by itself is shown to have gain when in fact it doesn't. A unilateral 50 ohm amplifier was cascaded with the filter so that the effects on \(\mathbf{S}_{\mathbf{2}}\) could be plotted convenientiy.


Figure 5: Calculated response characteristics of the \(950-1450 \mathrm{MHz}\) filter circuit shown in Figure 4
by itself and cascaded with a MSA-0335-21 MODAMP MMIC.

RF Expo - Larry Leighton - Disk D10 - Oct., 1984

Figure 6 demonstrates the abllity of the MODAMP MMIC to provide Isolation between the 950 to 1450 MHz filter and elements in front of the filter. Note that with the MODAMP MMIC in front of the filter that the system input reflection coefficient never exceeds -6 dB whereas the other configurations show 0 dB outside the passband.

The two filters were constructed and performance compared to that calculated. Performance deviation from that calculated was could easily be explained by component tolerances and lossy elements. Although the MODAMP MMIC amplifier is touted as a \(\mathbf{5 0}\) ohm broadband device, this article has demonstrated the flexibility of the device as an element of a frequency sensitive circuit providing both gain and isolation.
CADEC DISK 2 RPPLICATIONS \(090 C T\) 84 B4:00 FILE 25
900-1450 FILTER


Figure 6: Input reflection coefficient of the 950-1450 filter


\[
\begin{aligned}
& \text { F:- } 3 \\
& \text { Expanded Filter Response }
\end{aligned}
\]

70 MHZ FILTER


CADEC DISK * 2 APPLICATIONS 10 OCT 84 09:03 FILE *23
70 MHZ FILTER



Primed Circuit Board Material
.031 inches thick
\({ }^{-031} E_{r}=2.2\) inches thick
all. lines are .0286 inches wilde. ( \(50 \Omega\) )
\(L_{1}, L_{4} \sim .397\) inhere long

5要A
Exapanded lasponse
900-1450 FILTER

"扣 5
CADEC DISK * 2 APPLICATIONS
900-1450 FILTER
01 OCT 84 09:51 FILE \(\$ 25\)

521/D8
ZR= 50


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline \multirow[t]{2}{*}{Gouditious} & \multirow[t]{2}{*}{} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{} & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \multicolumn{4}{|c|}{-} & & & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{1-1}} & \multicolumn{2}{|l|}{} & & \\
\hline & & & & & & & & & & & & & \\
\hline \(\cdots\) & & \multicolumn{8}{|l|}{} & \multicolumn{4}{|l|}{} \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{E}=3775 \mathrm{MHz}^{\text {c }}\)} & \multicolumn{4}{|l|}{\(F_{0}=3950 \mathrm{MHz}\)} & \multicolumn{4}{|l|}{\(\therefore F_{1}=42000014 \%\)} \\
\hline \multirow[t]{2}{*}{Lothtac|} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\(I M S_{3}\)} & \multicolumn{2}{|l|}{Inds} & \multicolumn{2}{|l|}{\(\pm \Pi D_{3}\)} & \multicolumn{2}{|l|}{Inds} & \multicolumn{2}{|l|}{\(I n D_{3}\)} & \multicolumn{2}{|l|}{TnDs} \\
\hline & & Hin. & nax. & Hin. & nay. & Min. & nar. & Min. & mar. & ring & Mak. & \({ }^{4} 4\). & maxo \\
\hline I842923A & 4 & -37 & -35 & -52 & 47 & 37 & 34 & -51 & -48 & -40 & -34 & - \(\bar{s} \overline{2}\) & 49 \\
\hline I 842924 A & 4 & -37 & -30 & -53 & -45 & -35 & -34 & -54 & -46 & -39 & -32 & -53 & -48 \\
\hline T 842925 A & 4 & -36 & -33 & -55 & -48 & -37 & -34 & -54 & -47 & -36 & -34 & -5.3 & -49 \\
\hline \(1842926 \bar{A}\) & 4 & -38 & -3. & -56 & 50 & -39 & -35 & -57 & -60 & -40 & -37 & -5.7. & -50 \\
\hline I 843608 A & 4 & -41 & -41 & -52 & 4.6 & -4.4 & 4.1 & -47 & -42 & -37 & 34 & 48 & -43 \\
\hline I 843704 A & 4 & 41 & -36 & -5.0 & 49 & 4.1 & 35 & -49 & -48 & 43 & 35 & So. & 45 \\
\hline - & & & & & & & & & \(!\) & & & ? & \\
\hline 1843705 A & 4 & -41 & 40 & -50 & 43. & -4.2 & 41 & -49 & -46 & A4 & . 42 & Sil. & -44 \\
\hline & & & & & & & & & -- & & & & \(\cdots\) \\
\hline \multicolumn{14}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { worse } I H D_{3}=-30 \mathrm{~dB} \\
& \text { Worse } I H D_{5}=-42 \mathrm{~dB}
\end{aligned}
\]}} \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

LINEAR MICROWAVE POWER AMPLIFIER DESIGN

\section*{WILLIAM J. THOMPSON}

Dr. KRISHNA K. AGARWAL
Rockwell International
Richardson, Texas
INTRODUCTION:
This paper on linear power amplifier design covers the performance objectives and how this performance was realized. Also covered are the reasons why linearity bis circuit desion considerations, the importance of verifying the relationship considerations, the importance of verifying the relationship between experimental moasurements and computer cole petermination of the FET source and load circuit performance. Deternination of the FET source and load circuit impedances for best performance is also covered. As an described with a description of the finished circuit and its performance. The measured performance of the overall multistage amplifier is discussed.

This linear amplifier is intended to amplify a 64 symbol quadrature amplitude modulated (GAM) digital signal which has substantial amplitude modulation. Its peak signal is 7.2 dB higher than the average signal. Another possible application of this amplifier would be in single sideband (SSB) radios where the ratio of peak to average power is much higher. These signals are sensitive to both AM to AM and AM to PM distortion.

Amplifier Design Considerations:
The design objectives for the amplifier are shown in Table 1. Two versions of the amplifier were designed, one with 3 watts and another with 6 watts of output power at the 1 dB gain compression point. In the design of this amplifier the objective was to obtain the best balance between linearity, DC power consumption and cost. This is achieved by designing each stage for maximum power output at a given distortion level. A simple method the
reducing nonlinear amplifier distortion is to operate the amplifier well below its maximum power capability. This is called the back-off method of distortion reduction. The lowest distortion in a aultistage amplifier would be obtained by employing the highest power transistor available in every stage. This approach would be very expensive both in transistor cost and in DC power consumption. The lowest cost and DC power consumption in a multistage amplifier would be obtained by operating every stage at or near its maximum output power capability. The near equal distortion of every stage would tend to add and result in relatively high overall amplifier distortion. The compromise distortion reducion strater
power capability that their contribution to the distortion of the overall amplifier was balanced against the cost of further improvement. As a result of this compromise strategy, the earliest stages of the amplifier have the greatest power backoff. Other more complicated methods of distortion reduction such as feed-forward and predistortion were not employed within this amplifier but this amplifier could be used in a system employing these techniques.
When degigning for best linearity in an amplifier, it is necessary to design the individual stages considering not just gain but also power and distortion. Better results are obtained by designing the stage sourcen compression point rather than designing the stage for maximum small signal gain. Design for maximum small signal gain, results in substantially lower output maximum small signal gain, results in soint. The measured data in table 2 shows that tuning at the one dB gain compression point results in 4.25 dB more output power at the one dB gain compression point and 2.35 dB less gain than the same amplifier tuned for maximum small signal gain. At equal output powers the measured two tone third order distortion levels of the amplifier tuned at the one dB gain compression point are 6 to 16 dB lower than those of the ampifier tuned for maximum small signal gain. The cost and power consumption required to make up the lost gain with low level input stages is less than that required to raise the power capability of the high level stages. For these reasons, the individual stages in this amplifier are designed to-operate at the load and source impedances that result in maximum output power at the one dB gain compression point.

In this multistage amplifier, the last stage causes most of the amplifier distortion. The earlier stages of the amplifier are operated at progressively greater amounts of power back-off. distortion. power consumption, and cost. Table shows the amplifier levels and stage gains for the 6-watt version of the amplifier.

One of the goals in the design of this amplifier was to establish a strong correlation between computed and measured circuit performance. A good connector-interface between the automatic network analyzer (ANA) and the circuit substrate simplifies this process. Figure 1 shows the connector type used. It provides a return loss of 20 dB or better up to 12 GHz .

Bias Network Design:
The design of a bias network which delivers the DC power to the FET is important. In the passband, the bias circuit should be essentially transparent to conemetion to the FET. This requires that at the point where it connects to the RF path the bias network should present a high iepedance to the RF circuit. Figure 2 shows the construction and measured performance of the bias network. From
the FET at port 1 to the RF input at port 2 , the insertion loss in the 3.7 to 4.2 GHz amplifier passband is approximately 0.3 dB . connection. Figure 3 shows the measured passaand transmission loss from the FET to the DC connection point. A feed-through loss from the FET to the DC connection, point. A feed-through achieve substantial attenuation on the substrate itself. It is desirable to have some dissipation in the bias circuit in order to reduce the tendency towards spurious oscillations. For this reason, the bias network incorporates a resistor in the RF portion of the circuit. Figure 4 compares the calculated and measured performance of the bias network. Excellent agrement between the measured and calculated performance was obtained. A relatively small 200 MHz offset is attributed to junction discontinuity effects. which were not fully accounted for in the computer model.

Device Characterisation:
The next step in the design process is to determine the load and source impedances required for maximum FET output power at one dB gain compression. In the absence of an accurate analytic method, these impedances were determined experimentally. The opened up transistor test fixture with attached multiscrew the oulti-screw tunere is shoun in Figure 6 . This fixture holds the transistor in place by mechanical means so that it is not neceseary to solder place by mechanical means so that it is not neceasary to solder that the transistor is operating at the 1 dB-gain compression point. The tuners are adjusted for maximum power output. The fixture is then broken apart so that connectors can be attached to the FET input and output interfaces. With the tuners still attached, the input and output networks are measured on an ANA to determine the impedances presented to the FET at the desired operating point. This is done at 5 to 7 frequencies in and around the amplifier passband. The impedances measured by the ANA apply to the ends of the coaxial connectors so it is necemsary to transform these impedances to the impedances existing at the end of the substrate to which the FET had been attached. To do this, an internal program which operates as shown in figure 8 is employed. The program calculates the two port ABCD matrix of the connector equivalent circuit and then forms the inverse of the connectors ABCD matrix. Multiplying the ABCD matrix of the measured (with connector) network by the inverse of the connectors ABCD matrix effectively removes the connector from the rest of the circuit.

Matching Circuit Design (Lumped Element):
The following gives as an example the design of the gate-matching network of the NEBOO495-4 FET which has a nominal output power of 2 watts at 4.0 GHz . Figure 9 shows the measured gate-source metworks could be designed directly from the measured impedances, but much understanding can be obtained if equivalent circuits
are used in the design procedure. The gimple equivalent circuits shown in Figure 10 can provide a good approximation to the FET's input and output impedances. The first step in the design procedure is to determine the equivalent circuit that best fits the measured impedance data. Figure il-A shows the first estimate of the gate equivalent circuit and is based on the Smith chart impedance plot and previously published data. This was arrived at by using the following reasonings and rules: The this FET FET, the larger the series capacity of the gate. For series resistance would normaliy be less than that of the series capacitor, (40\% of \(\mathrm{Xc}=\) approximately 2 ohms). The very fact that the measured impedance, as plotted on Smith chart, looks more like a parallel resonant circuit than a series pesonant circuit shows that the shunt capacity must be significant so 1 pF was selected as starting value. The measured impedance passes through 50 ohms real at approximately 4.4 GHz . Using the computer to analyze the circuit of Figure il-A and viewing the computed \(R p\) and \(X_{p}\) input impedance of that circuit, the value of the series inductor was varied until the value of Rp equalled 50 ohms at 4.4 GHz . The value of the shunt capacitor was varied until the impedance was real at 4.4 GHz . This resultedin the cquivalent rircuit used to match the gate equivalent circuit to the measured gate impedances. An internal program employing aradient search method was used for this optimization; however, there are several commercial programs (S-COMPACT,EESOFT ect.) that can do the same job. Figure 12 shows the equivalent circuit after optimization.

The initial matching circuit design employs a lumped constant matching circuit to get aeel for the matching bandwidth possibilities for the circuit. Since, in theory, it is possible to match real impedances to real impedances over an infinite bandwidth, the resistive matching problem was disregarded to concentrate on the reactive match. Figure 13-A shows a singletuned matching circuit for the gate equivalence circuit. The 0.B pF capacitor at the input to the FET is sufficient to make the input impedance of the entire network real (resistive) at 4 GHz . The performance of this single-tuned circuit is tabulated in Figure 13-A. The 0.9 dB roll-off at 3.6 and 4.4 GHz was considered excessive, and it was necessary to use a double-tuned matching circuit to obtain the desired flat bandwidth. The final circuit will require the use of some distributed circuit elements. in general, the bandwioth of distributed matching circuite sa the lumped element circuit should have some bandwidth margin to account for this effect.

The classic double-tuned bandpass filter circuis consists of a series-tuned circuit connected to a shunt-tuned circuit. One design criterion for double-tuned circuit is to have a real impedance looking both ways at the junction between the series resonant circuit and the shunt resonant circuit at center
frequency. Figure 13-B shows a trial double-tuned matching circuit for this gate. The 0.8 pF shunt capacitor added to the FET equivalent circuit makes the input impedence of this circuit look like a shunt resonant circuit. The 5 nH inductor in series with the 0.32 pf capacitor represments a series-tuned circuit that is also resonant at midband. If the double-tuned circuit is to have the traditional flat topped response, then the loaded \(Q\) of the series and shunt resonant circuits must be approximately the same. The starting point for choosing the 5 nH inductor was the observation that the 3 di bandwidth of the single-tuned shunt impedance at 1.7 BHz was approximately equal to the 56.6 ohm mpedance at approximately the same as the \(Q\) of the output shunt resonant circuit. Starting with the circuit of Figure \(13-B\), the optimizer designed the circuit of Figure 14 which has the classic doubledesigned the circuit of figure 14 which has the circuit response and the desired passband flatness of 0.13 dB peak to peak over the 3.6 to 4.4 GHz range. Even though lumped constant circuits at microwave frequencies are not practical, this does demonstrate that there are no intrinsic limitations to realizing the desired circuit bandwidth.

Distributed Circuit:
The next step is to devise a microwave circuit using realizeablo distributed circuit elements to replace the series resonant circuit shown in Figure 15 . Figure 15 also showe a computer generated Smith chart with an impedance plot of this eeries resonant circuit over the 2 to 6 BHz range. Figure 16 shows an impedance plot of one of the many possible microstrip transinssion he circuit configurations that could be used to circuited etub acts like shunt-resonant circuit ihigh impedance at center frequency). The quarter wavelength long series line acts as an impedance inverter making the shunt resonant circuit look like a series resonant circuit at its input. The impedence of this circuit is substantially different from the prototype series tuned circuit at 2 and 6 GHz ; but it is a reasonable approximation to the desired impedance over the 3.6 to 4.4 GHz range. The 0.8 pf shunt capacitor can be approximated by a ehort length of low impedance line. DC bias considerations require that a blocking capacitor be placed on the input line between the FET and the input connector. This blocking capacitor can either be relatively transparent ( 10 pf) or can be smaller and become part of the matching network.

With the basic conceptual matching circuit design complete, the optimizer can be used without fear that it will fail. The final optimization was done using the measured impedances rather than the gate-equivalent circuit in order to avoid having an approximation to an approximation. Fhe 0.090 long length of the first 29.62 ohm line was predetergined as the binimu length required to accept the FET gate lead. The 1.4 pf series capacitor optimized close to this value but was forced to the
exact 1.4 pf standard value in the final optimization. The circuit of Figure 17 is both realizable and effective. Figure 18 shows the computer-generated Smith chart impedance plot of the final matching network. Referencing back to the measured gate source impedance of Figure 9 will show that a reasonably good fit has been obtained over the 3.7 to 4.2 BHz band.

Amplifier Fabrication and Results:
Figure 20 is a photograph of the completed NE800495-4 stage showing the network as designed. The bias network has negligible ffect on the matching network since it was designed to be network should be connected to a low impedance point in the matching network. The location is determined by using the computer to analyze the matching network at various points and then attaching the bias network to the lowest impedancellowest voltage point. In this particular case this point is right next to the FET gate input. Figure 22-A shows the measured passband performance of the amplifier built in accordance with the computer calculated dimensions, in the unadjusted, untuned (no chips) condition. The small signal gain has peak to peak passband nonflatness of 0.8 os over the 3.6 to 4.3 GHz band which tends to go flat at the 1 dB gain compression point. Figure 22-B shows the same amplifier tuned with chips for a \(f 1\) atter 10.2 dB peak to peak) small signal gain over the 3.7 to 4.2 BHz band. Some tuning chips are apparent on these circuits but their effect is small.

In the final amplifier the NEB00296 and the NE800495-4 stages are joined by an isolator into a single module. Figure 23 shows the modules. The three untuned modules have a worst case small signal gain non-fletness of 0.6 dB peak to peak over the 3.7 to 4.2 BHz band. With slight tuning, a peak to peak gain flatness of 0.3 dB peak to peak was obtained. Figure 24 shows the overall passband of the last two modules of the amplifier consisting of three stages.

Figure 25 is a photograph of the completed amplifier. The amplifier is intended to be mounted to heat sink to keep the FET's operating within the manufacturers specified temperature range. A PIN diode attenuator in combination with a temperature sensing control circuit compensates for temperature induced gain variations. Table 4 tabulates the overall masured performance of the amplifier. A two-tone third order distortion intercept of 49.5 dBm was measured. The system tests performed indicated adequate linearity for a 64 QAM digital system. the amplifier meets all the gain, linearity, output power and DC power objectives. The construction is simple and cost effective.

Conclusion:
In conclusion, a computer-aided design process leading to amplifiers with good passbands with a minimum of experimental

386

\section*{LINEAR AMPLIFIER DESIGN OBJECTIVES}

FREqUENCY RANGE 3.7 4.2 GHz
GAIN 45 dB MINIMUM FLAT WITHIN 2 dB PEAK-TO-PEAK GAIN FLATNESS OVER 40 MHz INCREMENTAL BANDWIDTH +/-0.25 dB

POWER OUTPUT \(3 / 6\) WATTS
LINEARITY: +47 dBm MINIMUM THIRD ORDER DISTORTION TWO TONE INTERCEPT
PROTECTED AGAINST LOSS OF GATE BIAS
PROTECTED AGAINST ACCIDENTAL POWER SUPPLY REVERSAL
D.C. POWER CONSUMPTION: 35 WATTS MAXIMUM

PROVISION FOR AUTOMATIC OUTPUT LEVEL CONTROL AND/OR TEMPERATURE COMPENSATED GAIN (BUILT IN PIN DIODE ATTENUATOR)

TABLE 1

\section*{ACHIEVED LINEAR POWER AMPLIFIER PERFORMANCE}
\begin{tabular}{lc} 
POWER OUTPUT & 38.0 dBW \\
GAIN & 50 dB \\
& \\
THIRD ORDER INTERCEPT & +49.5 dBm \\
& \\
POWER CONSUMPTION & \\
\(\quad 3\) AMPS AT & +9.5 V DC \\
0.05 AMPS AT & -12.0 V DC
\end{tabular}

TABLE 4


CONNECTOR IVTERFACE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IM3742-3 AT } \\
& V D=9 \mathrm{~V} \text { ID }=1.0 \mathrm{~A}
\end{aligned}
\] & SMALL SIGNAL GAIN & POWER OUTPUT AT 1 dB GAIN COMPRESSION & \multicolumn{4}{|l|}{TWO TONE THIRD ORDER OISTORTION LEVELS (DBC) AT DIFFERENT OUTPUT POWER LEVELS (dBm)} \\
\hline & & & 31.9d8m & 30.2 dBm & 26.8 dBm \({ }^{1}\) & 24.8 dBm \\
\hline TUNE FOR MAX POWER OUTPUT AT 1.0 dB GAIN COMPRESSION & 11.5 & +36.5 & 32 & 36 & 45 & 50.0 \\
\hline TUNE FOR MAXIMUM SMALL SIGNAL GAIN & 13.85 & +32.25 & 16 & 22 & 36.5 & 44.0 \\
\hline DIFFERENCE dB & -2.35 & +4.25 & 16.0 & 14.0 & 8.5 & 6.0 \\
\hline
\end{tabular}

CONCLUSION
4.25 dB MORE POWER IS MORE IMPORTANT THAN 2.35 dB LESS GAIN

TABLE 2

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\frac{\text { STAGE }}{\text { FET TYPE }}
\] & \[
\begin{gathered}
\frac{\# 1}{\pi} \\
\text { NE } 69489
\end{gathered}
\] & \[
\begin{gathered}
\# 2 \\
\text { NE800196 }
\end{gathered}
\] & \[
\begin{gathered}
\# 3 \\
\text { NE800296 }
\end{gathered}
\] & \[
\begin{gathered}
\# 4 \\
\text { NE800495 }
\end{gathered}
\] & \[
\begin{gathered}
\# 5 \\
\text { IM3742-6 }
\end{gathered}
\] \\
\hline STAGE GAIN & 12 dB & 11 dB & 11 dB & 9 dB & 11 dB \\
\hline OPERATING OUTPUT POWER & +1 dBm & +12 dBm & +18 dBm & +27 dBm & +38 dBm \\
\hline OUTPUT POWER AT 1 dB COMP & +18 dBm & +26 dBm & +28 dBm & +32 dBm & +38 dBm \\
\hline POWER BACKOFF & 17 dB & 14 dB & 10 dB & 5 dB & 0 dB \\
\hline DRAIN VOLTAGE & 7 V & 9 V & 9 V & 9 V & 9 V \\
\hline DRAIN CURREN \({ }^{-}\) & 30 mA & 150 mA & 235 mA & 470 mA & 2.0 Amp \\
\hline OC POWER WATTS & 0.21 W & 1.35 W & 2.11 W & 4.23 W & 18 W \\
\hline
\end{tabular}


CALCULATED AND MEASURED BIAS NETWORK- THRU TRANSMISSION \(\left(S_{21}\right)\)

FIGURE 6


CONNECTOR EquivLENT CIRCUIT

as measured network


OPERATION OF PEOGRAM FTX33

FIGURE 8

\[
\text { FIGURE } 10
\]

NE800495-4 GATE SOURCE IMPED ENCE (MEASURED)

FIGURE 9


NE 800495-4 GATE MATCHING DESIGN


SMITH/POLAR CHART REFLECTION COEF/MAGNITUDE DF DUTER CIRCLE = 1 RESISTANCE VARIAELE \(=\) ZIN(R) REACTANCE VARIABLE \(=\) ZIN(I)


SMITH/FDLAR CHART REFLECTION COEF/MAGNITUDE OF OUTER CIRCLE -
FESISTANCE VAFIAELE= ZIN(F) REACTANCE VARI'AELE= ZIN(I)
SMITH CHART NOMINAL IMF'EDENCE \(=50\)


FIGURE 16


FINAL NE800495-4 GATE MATCHING NETWORK BUILT ON 0.025" THICK \(E_{R}=10.2\)

FIGURE 17

SMITH/FOLAR CHART REFLECTION CDEF/MAGNITUDE OF DUTER CIRCLE = 1 RESISTANCE VARIABLE = IIN(R) REACTANCE VARIABLE= ZIN(I) SMITH CHART NOMINAL IMFEDENCE 50


FINAL NE 800495-4 GATE MATCHING NETWORK

FIGURE 18




\(\mathrm{I}_{5} \cdot 2.0 \mathrm{~A}\) \(I_{4}=477 \mathrm{ma}\) \(\bar{T}_{3}=280 \mathrm{ma}\) \(e+37 d 6 \mathrm{ma}\)
\[
1+7 \mathrm{~d} 6 \mathrm{~m}
\]

FIG. 24

```

Jon P. GrosJean
CONSULTING ENGINEERS
Mulmit mock Roa
MCN sox 110
SOUTH WOODGTOCK. CT 00207

```
    203.974.2039

A NW APPROACH TO PSK DEMODITATION

Introduction
ransmission of rata using phase-shift-keved (PSK) modulation offers the possibility of lower data error rates for a given sipnal-to-noise ratio than either \(A M\) or FSK modulation without the disadvantage of the large occupied bandwidth of FSK systems. (1) If crystal sontrol of frequencies is desired, it is also much easier to generate AM or two phase PSK signals than FSK signals.
Unfortunately, demodulation of PSK sienals is not very simple and the phase ambiguity problem alwavs exists. or \(180^{\circ}\) it is easy for a phase-10cker-100p demodulat to: lock on to the \(180^{\circ}\) phase and to produce is for the phase when the complement of this is desired. This problem can he resolved in the dipital portion of the receiver but this can increase acquisition times and thus reduce the effective data rate as well as increase the complexity of the digital portions of the modem. In nolled systems where many remote units are accessed bv a central transmitter such as in CATY data transmission sustems, the cost and acquisition time become critical, so a simple PSK receiver would he even more advantapeous in these cases

Current PSK Demodulators
The mafority of PSK demodulators use a phase-locked-loop to lock on to the carrier, and a separate jn-bhase fetector to do the demodulation. In its simplest form, we could have the arrangement in fipure 1 .


\section*{figure 1}

Infortunately, when the carrier changes phase \(180^{\circ}\), the loop will follow it at a rate depending on the lood bandwidth. For example, if the loop is second order with
dampinp factor of 1 , it will chanpe from a nhase error of to one of \(90^{\circ}\) with a 180 depree indut phase change in \(\omega_{n} t=.3\) where \(W_{n i s}\) the loop natiral frearency in ranians per second. (2)Thus, if the data rate were 38,000 RPS and the loop had to he able to demodilate as many as 8 hits or 210 uS , we would need to make \(\omega_{n} t=.1\). This pives:
\[
\begin{aligned}
& \omega_{n}^{t}=210 \times 1 \\
& f_{n}=756 \mathrm{Ht}
\end{aligned}
\]

If the loop bandwidth were this small, the acq̣uisition time would be very lon for any appreciable frequency error. The would be very lonp for any apprechable freque
\[
T p=\frac{(\Delta \omega)^{2}}{2 z \omega_{n}^{3}}
\]
\[
\begin{aligned}
\partial & =\text { loop damping factor } \\
\Delta \omega & =\text { frequency error } \\
\omega_{n} & =\text { loop natural frequency }
\end{aligned}
\]
\[
\text { If } \begin{aligned}
\Delta f & =1.4 \mathrm{KHz} \quad z=.7 \\
\omega_{n} & =476 \\
T p & =512 \mathrm{mS}
\end{aligned}
\]

This is about \(\frac{1}{2}\) second, so unless long pull-in times can be tolerated, something must be done to make it more useful.

Almost all current approaches to PSK demodulation avoid this problem bv changing the input phase changes to some multiple of 360 degrees. In a 2 phase system. this means doubling the phase shift. The simplest form uses a frequency doubler at the input, locks the VCn to \(2 \times F\) in, and then divides the output by?. Unfortunately, the outdut phase is ambiguous, and digital signal pnocessinf, is needed to resolve this.(2) This also reauires additional time and uses up data slots.

Three other types of loops, the remodulator, inverse
modulator, and Costas loop operate by changine the signal applied to the VCO so that it is in the form of \(\sin 2\left(\theta_{i}-\theta_{0}\right)\) instead of \(\sin \left(\theta_{i}-\theta_{0}\right)\) where \(\theta_{i}\) is the input phase and \(\Theta\) is the oscillator phase. The most popular of these and hesiest to understand is the Costas loop shown in firure 3

figure 3

The third miltiplier or nhase detector, pna, simnly
inverts the phase of the von control sipnal when the data changes phase. Thus, the VCO control voltape remains constant with 180 degree changes in the input sipnal. Note also that the P,PF is now inside the loop and mist be included in the loop calculations unless its cutoff frenuency is approximately 10 times the loop handoideh. In svatems haviag relativelv low data rates and ranin acquisition. this is usually not the case. A more detailed descriotion of the operation of these PSK demodulators is given in references 2,3 , and 4.

\section*{Polled Systems}

Polled systems are systems in which remote receivertransmitters each have an identification or adrress and are polled by a central unit. An example of this misht be in a CATV system where homes have security or meter reading devices installed. Each one would receive a sipnal addressed to it and would send back a message when requested. Since those available for data are limited and PSR or AM (OOK) modulation are more desirable.(5) PSK is often used in the return path hecause the signal-to-noise ratio is often poor and the variation in received levels requires limiting in the receiver.

Important characteristics or requirements of this tvpe of system are:

> 1. rapid acquisition
> 2. short messages
> 3. good interference reiection

The rapid acquisition requires either a relatively large loop bandwidth or a small VCO frequency error. However, since these inits must be low cost, it mist be assumen that the frequency error will be \(.005 \%\) at best at each end, so at 14 MHz , this comes out to be 1400 Hz . This is quite large, so the loop bandwidth must be larpe.
The short messages almost preclude using some sunchronizing sequence in the fipital sections of the PSK receiver because it would preatly increase the response time of a large number of units.
Good interference rejection is reauired for two reasons: If there are many data channels occunpving, for examnle one TV channel, they might all be active. If the data rate were 38,0 BPS, the occupied hand at 10 NHz and an
 PSK demodulator is very susceptible, to spurious sionals from the filtering from the adaces more difficult. Thus the ability of the PLL to reject spurious sipnals makes the receiver desipn simpler and reduces the possibility of errors.

\section*{The New Way}

A new approach to demodulating 2 nhase PSK sipnals starts with a simple technique: Disconnect the Vrin from the loop when the phase changes 180 denrees. This, of course, puts some limits on the type of message which can he sent such as the maximum length of time \(180^{\circ}\) can exist, but since most polled systems are tailored to do a specific task, the dipital designer can set up the software to avoid the ilmitations. The basic system is shom in figure


The reference phase is the phase the loop first locks on to. Synchronization requires only the transmission of a start pulse long enough for the loop to lock. After locking, all data pulses are correct, and it is relatively easy for the system to democulate data pulses where the lin \({ }^{\circ}\) state lasts for ten \(0^{\circ}\) states. If synchronization is lost for some reason, it can be re-acquired by removinp and re-applvinp, the carrier or by sending a lonp reference pulse. Adfitionally, once locked, the demodulator appears to have much better spurious signal rejection than the Costas Loon. Measurements indicate that the rejection is enuivalent to 15 to 20 dr more IF selectivity. Additionallv, the loop itself remains simnle, and only \(F(s)\) is the lood filter.

A schematic diagram of a 4.5 MHz PSK demodulator is shorm in figure 5. The PLI. section consists of IC1, 72 , \(n 3\) and associated comnonents. Q3 and \(n 1\) form the VCN and 0 ?
Ol Q1 is used as used the incoming pulses. Tl is used to shift the phase of the incominf Then 12 of Try are apnroximately \(n\) volts When a carrier is acmuired, annroximately \(\quad\) pin of IC? poes more positive and nin \(\}\) ? more nerative. pin 6 of If? poes more positive and nin in more nos,ative.
When a 18 data pulse occurrs, the opposite happens. Ir, When a 180 data pulse occurrs, the opposite happens. a dual comparator, is biased so that pin foes hieh when data pulses are received. nulv data pulses anpear at pin 1 , and these are used to turn off 11 as well as for the data out signal. Taveforms for a single data pulse are shown in fioure 6.

This loop works well as shown but will sometimes have a longer than normal acouisition time if a carrier occurrs when the VCO is 180 der,rees from where it should he to lock. This causes the gate to open and several heat yycles occurr before lock is achieved. A solution to this s to prevent the gate (01) from operating until the loop data is necessary. (It should be noted that the carrier output pin in figure 5 also contains data pulses.) If we let:
\[
\begin{aligned}
& C=\text { carrier } \\
& n=\text { data } \\
& C D=\text { carrier and data }
\end{aligned}
\]

In figure 5, the output from \(\operatorname{Din} 7\) of IC 3 is CD , and from in l, it is D. Vsing logic gates, it is relativelv easy to produce a signal containing only \(c\). This is shown in Eigure 7

figure 7
\(\bar{r}\) can now be delayed to produce a \(D\) sipnal which cannot occurr until C, has been present long enough for the 1000 to lock. Figure 8 shows the arranpement used uning a CD4On1BE. quad NOR gate. Note that the output of the 4 th NOR gate is labelad \(D\) for quiet data. When no signal is being received and the receiver has a high pain limiter. both \(C n\) and \(n\) will be noisy, but hq has no oratnut until lock is achieved. Thus, it is noise-free data. Another advantage of this arrangement is the signal labeled \(C+\tau\) across C.1. This is a very convenient point for triggering an oscilloscone to observe a received sional. Without this, it is very difficult to see how the receiver is working because all the signals have noise levels as large as signals until the loop locks. Da occurrs too late and varies in position depending on the data message. A summary of the received signals is show in fipure \(a\)

Now that \(\overline{\mathrm{C}}+\tau\) is available, it can be used to change the loop bandwidth so acquisition is faster and longer data pulses can be received. Figure 10 shows a block diagram of one possible implementation. in the FM mode. The internal FM detector is uged for the loop phase detector by driving the detcor input with the vco instead of a quadrature the detector input with the
coil. (6) For this phase detector. Kd \(=3.8 \mathrm{~V} / \mathrm{radian}\). The VCO is the same as the one in fipure 5 , and a Cn 4066 F CMOS gate is used instead of a JFFT. The parameters for the loop are:
\[
\begin{aligned}
& \mathrm{Kom} 577 \times 10^{3} \mathrm{rad} / \mathrm{sec} / \mathrm{V} \\
& \text { KdKo= } 2.2 \times 1 \mathrm{n}^{8}
\end{aligned}
\]

For \(\mathrm{Tp}=1 \mathrm{mS}\) (pull in time), the frequency error can be 155 KHz .

The S042P IC shown is a halanced mixer in which the lower transistors cam be made into an oscillator. It is used to keep the IC VCO locked to 4.5 MHz when no sipnal is being received. Its lood gain is low, and when a carrier \(\frac{1 s}{c}+\chi\) receiven, it is disconnected from the main loop by the uilding a crystal voin with enough range renuired for the system.

The PSK demodulator was designed for a \(38,0 \cap 0\) RPS data rate. The lock up time, \(\tau\), is 1 ms , and the maximum 180 time is over 2 mS corresponding to 76 bit times. ield testing on CATV systems indicates that the overall system bit-error-rate is less than 1 in \(10^{8}\)

\section*{References}
. Garner, William J. "Bit Error Prohabilities Relate to Data Link S/N" Microwaves. Nov. 1978 pr 101-1ก
2. Gardner, Floyd Y. "Phaselock Techniques" Second Firition John Miley fo Sons 1979
3. Steber, Mark J PSK Demodulation Techniques Provide Lowest 'Probability of Frror" Microwave Systems News June 1984 pr. 150-176
4. Steher, Mark J. " Inderstanding PSK Demodulation Techniques" Microwaves \&\% RF, March 1984 pp. 137-145
5. GrosJean, Jon P. " Selection of an nptimum Modulation Scheme For CATV "nata Transmission" NCTA 1982 Convention Technical Papers Pp . 69-71
6. GrosJean. Jon P. " Phase Locked Loons Using Oradrature netector Integrated Circuits"
Consmer Flectronics Feh. 1976 TFE. Transactions on
"ol. \(22 \mathrm{pp} .95-98\)


FIGURE 6



Figure 10

\section*{Performing EMI/EMC Evaluation of Electronic Equipment Using TEM Cells}

\section*{M. L. Crawford \\ National Bureau of Standards Boulder, Colorado 80303}

\section*{Abstract}

This paper summarizes the basic physical and electrical properties which influence the design, operation and use of a transverse electromagnetic (TEM) cell. Guidelines are given for using a TEM cell for both radiated susceptibility and emissions measurements of electric components and equipment. The paper describes the test setups and outlines the test procedures, step by step, indicating precautions to observe to improve the repeatability and the limitations inherent in using TEM cells. Examples of some applications are then given.

Key words: electromagnetic compatibility measurements; radiated susceptibility and emissions; TEM cells.

\section*{1. Introduction}

The use of electrical and electronic devices is having an increasing impact upon 20th century life. The broad use of such devices can be seen in nearly every aspect of life, from processing and development of raw materials to their use as consumer products. With this explosion in high technology has come the significant challenge of ensuring reliability. Nearly all types of electronic or electromechanical equipment emit and/or are susceptible to electromagnetic (EM) radiation. Compatible operation of such equipment in the presence of \(E M\) interference (EMI) is dependent on the ability to accurately measure and characterize its EM compatibility (EMC) profile and then to effectively control it, and/or to shield against it.

A number of techniques have been developed to measure levels of EM emanations or to determine the susceptibility or immunity of equipment to EMI. These measurements are typically made either on open-field sites where residual noise levels are low or inside shielded enclosures where electrical isolation or shielding is obtained. Presumably, open-field sites provide both a reference and a perturbation free environment in which actual operating conditions of the equipment can be simulated. However, open-field sites do not provide isolation from the environment and hence can only be used under special circumstances. If shielded enclosures are used, serious measurement errors (i.e.., as large as \(\pm 40\) dB [1]) can occur. These errors are due to the high conductivity and reflectivity of the enclosure walls which set up standing waves which interfere with the signal being measured and/or cause large gradients in a susceptibility test field. In addition, the radiating or receiving characteristics of the antennas used in making measurements inside shielded enclosures are altered by the close proximity to the equipment under test (EUT) and the confining metalic enclosure.

Another limitation inherent in using antennas for EMC/EMI tests is their limited bandwidth. Even so-called broadband antennas with reasonably flat amplitude response typically do not have a linear phase response versus frequency. Hence they are useful primarily for frequency domain measurements and have very limited application for transient impulsive EMI testing and evaluation. In addition, for accurate measurements, the separation distance between the antenna and the EUT should be sufficiently large to ensure far-field conditions. This is not always possible, especially in confined chambers or enclosures or at low frequencies.

Some of these limitations and problems can be eliminated or minimized by the use of a TEM cell. A cut-away view of a TEM cell is shown in figure 1 . The cell is essentially a 50 ohm triplate transmission line with the sides closed in to provide electrical isolation from the surrounding environment. The line is tapered at each end to maintain a 50 ohm impedance all the way to standard 50 ohm connectors at the two ports of the cell. One of the ports is usually terminated with a 50 ohm load, while the other port is connected to either a rf source or a receiver depending on whether the cell is used for radiated susceptibility or
emission testing. The cell then serves as the transducer for either establishing the test field between its center and outer conductors or for detecting the radiated fields from the EUT, thus eliminating the use of antennas.

To support a TEM mode, the cell is necessarily a two-conductor system with the region between the inner and outer conductors (either upper or lower sections) used as the test zone. Typically, however, the EUT is placed inside the cell in the lower section centered either near the floor or midway between the center plate and the floor as shown in figure 1.

The TEM cell has shown considerable potential for performing EMC evaluation and calibration of electrically small equipment and devices [2]. They are portable, simple to build [3], useful for broadband swept frequency measurements, and capable of providing test field strengths simulating planar fields from a few \(\mu \mathrm{V} / \mathrm{m}\) to a few hundred \(\mathrm{V} / \mathrm{m}\). They have proven to be useful for EMC evaluation for electronic components [4] in the frequency range from a few kHz to a few hundred MHz. Cost to build a TEM cell is typically much lower than that for conventional facilities such as anechoic chambers and shielded enclosures.

This paper summarizes some of the basic TEM cell properties and design. It discusses TEM cell EMI/EMC measurement procedures and outlines the steps necessary to obtain meaningful, repeatable results. Some applications are suggested and limitations of its use are given. It is important to note that TEM cells are intended primarily for use in diagnostic testing to determine, for example, frequencies at which the EUT is susceptible, or, frequencies at which the EUT emits radiations. Test results also should give some indication of how EMI is coupled into or from the EUT, and the relative improvement in EMC characteristics that may result from efforts to improve an EUT's immunity or to reduce its emissions. It is not intended for use, (except under some limited conditions), in determing EIJT susceptibility to absolute field levels or the absolute amplitude of the EUT's radiated emissions, particularly if the EUT includes long wiring harnesses that must be exposed, polarization matcher, to the test field.

\section*{2. TEM Cell Properties and Design}

TEM cells have been designed with different cross sections depending upon their intended use. A square cross section is used to maximize the test area at
a sacrifice of test field uniformity. Increasing the width to height ratio improves the test field uniformity but with reduced vertical test area for the same upper useful test frequency.

The design of a rectangular TEM cell is shown in figure 2. Figure 3 gives the pertinent dimensional relationship for constructing 50 ohw TEM cells of various cross sections. The characteristic impedance, \(z_{0}\), of a rectangular TEM cell is given approximately as [5]
\[
\begin{equation*}
z_{0}=\frac{120 \pi}{4\left[\frac{a}{b}+\frac{2}{\pi} \ln \left(\sinh \frac{\pi g}{2 b}\right)\right]-\frac{\Delta C}{\varepsilon_{0}}} \tag{1}
\end{equation*}
\]
where the cell parameters \(a, b\), and \(g\), all in meters are indicated in figures 2 and 3. \(\Delta C\) is the fringe capacitance between the edges of the center plate and the side walls of the TEM cell. Under practical conditions, \(a / b>1, \Delta C / \varepsilon_{0}\) is negligible.

The TEM cells at the Mational Bureau of Standards were designed using expression 1 to obtain, to a first order approximation, matched 50 a transmission lines. A time domain reflectometer was then used to measure the distributed impedance of a particular TEM cell and to make necessary adjustments to obtain 50 ohms along the length of the cell's transmission line. Typical voltage standing wave ratios (VSWR) as measured at the cell's ports should be less than \(1.2 / 1.0\) for single TEM mode propagation through the cell.

The electric field distribution inside an empty TEM cell operating in a TEM mode can be determined from Jacobian elliptical functions [6]. Numerical results for the electric field in two typical symmetric cells are given in figures 4 and 5 in terms of \(x\) - and \(y\)-components and for amplitude and polarization angle. These results have been normalized with respect to \(V / b\) where \(V\) is the voltage across the center plate to the outer wall, and \(b\) is as defined earlier. \(V / \mathrm{b}\) represents the electric field at the center of the test zone ( \(x=0, y=b / 2\) ) and can be obtained in volts from the expression:
\[
\begin{equation*}
v=\left(P_{n} Z_{0}\right)^{1 / 2} \tag{2}
\end{equation*}
\]
where \(P_{n}\) is the net power in watts flowing through the cell, and \(Z_{0}\) is the characteristic impedance in ohms given in (1).

The application of TEM cells for EMC testing has some obvious limitations. The most significant is the restriction on the upper useful frequency caused by multimodes and resonances \([6,7,8]\) given in figure 6 . The volume avallable for test purposes is inversely proportional to this upper frequency limit. The frequencies, \(f_{c m n}\), given for the first few modes can be determined using figure 7. The first order re onant frequencies, fres mn , associated with these modes can be found from the following expression:
\[
\begin{equation*}
\text { fres }_{m n}=\sqrt{\left(f c_{m n}\right)^{2}+\left(\frac{c}{2 \ell}\right)^{2}} \tag{3}
\end{equation*}
\]
where \(c\) is the wave propagation velocity \(\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}\right)\), \(l\) is the resonant length of the cell and \(m\) and \(n\) are integers corresponding to the particular waveguide mode. Note that the resonant length of the cell is dependent upan the particular mode and the cross sectional geometry of the cell. For the \(\mathrm{TE}_{01}\) mode in a square cross section cell, it corresponds approximately with the total length of the cell. For the \(T E_{10}\) mode, however, it is only slightly longer than the cell's main body length, \(L\), for the first resonance. It is also important to note (i) that the influence of the first order TE modes does not become significant until approaching their resonant frequencies; and (ii) since the septum (center conductor) of the cell is centered symmetrically, the odd order TE modes are not excited in an empty cell. Placing an EUT inside the cell, however will excite these modes. Thus, the recommended upper frequencies exceed the multimode cutoff frequency of the first higher-order mode ( \(\mathrm{TE}_{01}\) ) but are less than this mode's resonant frequency.

Efforts have been made to extend the use of TEM cells to frequencies above cutoff \([8,9]\). The use of rf absorber helps to lower the Q of the cell and suppresses resonance effects associated with multimodes. However it also has some effect on the fundamental TEM mode. Thus, care must be exercised when considering the placement of absorbing materials inside a TEM cell.

Another limitation closely related to the upper useful frequency restriction is the need to keep the size of the EUT small relative to the test volume. A reasonable criteria that has been established is to limit the EUT size to less than \(L / 3 \times 2 w / 3 \times b / 3\). These dimensions are considered a maximum to prevent excessive impedance loading and test-field perturbation when inserting the EUT into the cell. EUT's that exceed the \(1 / 3\) linear dimension criterion can be
tested in the cell, bearing in mind that excessive loading reduces accuracy in determining the test field. Placing the EUT in the cell tends to short out the test field in the region between the plates, increasing the vertically polarized test field. The error can be partially corrected by measuring the field in the region above and below the EUT with miniature E-field probes and making appropriate corrections or by using a technique outlined in Appendix A of NBS Tech Note 1013 [4].

\section*{3. Performing Radiated Susceptibility Tests}

As alluded to in the introduction, the TEM cell was developed as an alternative to the conventional shielded enclosure for EMC/EMI testing of electronic equipment. The main purpose of radiated susceptibility testing is to determine if and how EM energy is coupled into the EUT to cause possible degradation to the equipment's performance. Thus a criterion for what constitutes degradation (susceptibility) of the EUT and how this is translated into measurable parameters is normally established first by the user.

The following steps are suggested as a systematic approach for making the radiated susceptibility evaluation [10].

\section*{Step 1. Place the EUT inside the cell.}

The first step is to place the EUT in a TEM cell, centered in the lower half space below the septum. The first position (position A) as shown in figure 8a is near the floor but insulated from the floor with approximately 2 cm of foam dielectric. Plastic foams with dielectric constants of 1.04 and 1.08 are readily avallable, are almost invisible electrically, and make good supporting material. If grounding of the equipment case is desired, the EUT would then be placed on the floor. This position (position A) is used to minimize exposure of the EUT's input/output leads to the test field as explained in step 2. Another common EUT position (position B) for testing, as shown in figure 8 b , is midway between the septum and the floor. Again, the EUT is supported on a low dielectric foam material. This position increases the exposure of leads to the test field because an increased portion of the lead is oriented polarization matched with the cell's vertically polarized E-field. A comparison of the test results to be taken later for both positions \(A\) and \(B\) should give some indication of how energy is coupled into the EUT. After placing the EUT in positions \(A\) and

B, the EUT may be reoriented as desired, relative to the cell's field polarization. Typically, the first orientation is with the EUT lying flat as in normal use. Care must be taken to record the placement location and how this is done so that it can be repeated if necessary. It may be helpful to mark the bottom of the cell with a uniform array of scribe marks to assist in determining placement locations precisely.

\section*{Step 2. Access the EUT as required for operation and performance monitoring.}

The EUT input/output and ac power cables should approximate those anticipated for use. Cables should be the same length if possible, be terminated into their equivalent operational impedances so as to simulate the EUT in its operational configuration, and be carefully routed inside the cell to minimize field perturbation. Dielectric guides or holders may be installed in the cell to assure repeatability of the placement location of the cables. These may be placed on the floor to allow the cables to be covered with conductive tape (minimum exposure) and/or on dielectric standoffs to provide coupling of the test field to the leads. If required, any excess portion of the EUT's leads (wiring harness) may be carefully colled and covered with conductive tape on the floor of the cell. When the leads are bundled together, it may be helpful to twist the input/output monitor leads as separate conductor pairs or use shielded cables to minimize cross coupling between them. It may also be necessary to space the windings in the coil to avoid introducing resonances associated with the coil inductance and distributed capacitance. If braided rf shielding is used, it should be placed in electrical contact with the cell floor, and not in contact with the case of the EUT unless a common ground between the EUT and cell is required. Grounding the two together will influence the results of the susceptibility measurements. The input and output leads, after being connected to the appropriate feedthroughs for accessing and operating the EUT, should also be filtered to prevent rf leakage from the cell, otherwise the shielding integrity of the measurement system will suffer. Care must be exercised in selecting these filters so they do not significantly affect the measured results. The monitor leads used for sensing and telemetering the performance of the EUT may require special high-resistance lines made of carbon-impregnated plastic or fiber optic lines to prevent perturbation of, or interaction with, the

Test environment. Dc signals or signals with frequency components below 1 kHz may be monitored via the high-resistance lines. Radio frequency signals should be monitored via fiber optic lines.

If the monitor signal is at a frequency or frequencies sufficiently different from the susceptibility test frequency or frequencies, metallic leads may be used with appropriate filtering (high-pass, low-pass, band-pass, etc.) at the bulkhead. Such leads, however, will cause some perturbation of the test field; thus, their placement location must be carefully defined for future reference. Note that a separate, shielded filter compartment should be provided on the outside of the cell for housing the filters, as shown in figures 8a and 8 b .

Step 3. Connect the measurement system as shown in figures 9 and \(\mathbf{1 0 .}\)
Figures 9 and 10 show the block diagrams of systems using the TEM cell for susceptibility measurements. These figures are used for frequencies from approximately 10 MHz to the recommended upper frequency for the particular cell used. At frequencies below 10 MHz , the dual directional coupler and power meters are replaced by a voltage monitor tee and rf voltmeters. Figure 9 is a diagram of essentially a discrete (manually operated) system or can be used for swept frequency testing. Figure 10 is is a diagram of a system for automated testing under computer control which allows the test field level in the cell to be carefully controlled and progressively increased over selected frequency ranges and intervals wile monitoring the EUT performance. If degradation occurs as determined from a pre-established threshold limit and as evidenced by the EUT monitors, the computer can respond interactively with the EUT, thus 1 imiting the test field level and preventing damage to the EUT. The computer can also be used to store the raw data, process the data incorporating correction factors as needed and output the results to printers or plotters according to the software instructions and format.

\section*{Step 4. Initialize the measurement system.}

This includes zeroing the appropriate instrumentation and measuring the residual offset values of the EUT monitors with the rf source turned off and the Eut turned on in the desired operation mode. These values are then recorded for future reference.

\section*{Step 5. Establish the test field and detenine the EUT's response.}

After initialization of the measurement system, the rf source is then turned on at the desired test frequency, modulation rate, test wave form, etc., and its output level is increased gradually until the maximum required test level is reached or the EUT response monitors indicate vulnerability. Care must be exercised to ensure that sufficient time is spent at each frequency and field level to allow the EUT to respond. The EUT's susceptibility profile is then determined for each position ( \(A\) or \(B\) as shown in figure 8 a and 8 b ) and orientation. It may be necessary to test all three orthogonal orientations of the EUT inside the cell. This is required if all surfaces of the EUT to be tested are to be polarization matched to the TEM field of the cell.

If the test frequency is below 10 MHz , the electric field level in \(\mathrm{V} / \mathrm{m}\) generated inside the cell is determined by the rf voltmeter reading, \(V_{r f}\) in volts, in accordance with \(V_{r f} / b\), where \(b\) is the separation in meters between the septum and the floor. When the test frequency is 10 MHz or above, where the electric length of the cell is significant, the electric field level is determined by \(V / b\), where \(V\) is given in (2) and the net power may be determined by
\[
\begin{equation*}
P_{n}=C_{f} \rho_{i}-C_{r} P_{r} \text { (watts), } \tag{4}
\end{equation*}
\]
with \(C_{f}\) and \(C_{r}\) as the respective forward and reverse coupling ratios of a calibrated bi-directional coupler, and \(P_{i}\) and \(P_{r}\) as the indicated incident and reflected coupler sidearm power readings in watts. Note that the absolute level of the test E-field inside the cell is a function of the location of the EUT in the test zone. An appropriate correction can be made based upon the particular cell's cross section from the data given in figures 4 or 5 . Note also, as already mentioned earlier, that the size of the EUT relative to the test volume can influence the determination of the amplitude of the test field.

If the objective of the measurement program is simply to reduce the vulnerability of the EUT to EMI without the additional requirement of determining worst-case susceptibility as a function of absolute exposure field level, one EUT orientation with input/output lead configuration may be tested in one particular operational mode under a pre-selected susceptibility test-field waveform and level. Similar tests may then be duplicated at the same test position with the
same lead configuration and test-field waveform and level, after the corrective measures such as providing additional shielding, etc. are made to the EUT. These testing results are then compared to determine the degree of improvement.

Sometimes, it is desirable to monitor the field distribution inside the cell using small calibrated electric and/or magnetic probes, while an EUT is in position. If this is the case, one must be careful in interpreting these monitored results, because the results are a combination of the incident TEM field launched inside the cell and the scattered fields from the EUT and its leads in the near-field. The field so monitored can be quite different from the unperturbed test field, leading to potentially erroneous conclusions. Whenever possible, it is preferable to mount the field monitoring probes in the other half space of the cell in the mirror image location of the EUT.

\section*{4. Performing Radiated Emission Tests}

Electronic or electromechanical equipment or components may emit energy which interferes or interacts with the normal operation of either the system and/or other receptors. To ensure the electromagnetic compatibility (EMC) of such systems, it is important to determine the amplitude levels of these emanations and to characterize their waveform, polarization, etc. This is apparent since equipment performance degradation or failure is often dependent upon the interfering signal waveform and amplitude.

A TEM cell is especially useful for emitted signal waveform characterization because of its characteristics as a TEM transducer which permits detection of the signal with little or no distortion in the signal waveform. TEM cells are reciprocal devices (i.e., can receive or detect radiated fields from equipment as well as establishing fields for testing). Thus, energy radiated from an EUT placed inside the cell will couple vid the TEM mode to the cell's ports.

Two procedures have been developed for performing radiated emissions measurements using a TEM cell. The first only provides information for determining the equivalent, free-space radiated electric field strength for a single orientation of the EUT inside the TEM cell. The details for performing these measurements are contained in NBS Technical Note 1013 [4]. The second procedure is more complicated but yields (assuming necessary conditions are met)
significantly more complete detailed results. For example, detalled radiation patterns and total power radiated by the EUT in free space can be computed. Complete details for performing these measurements are contained in NBS Technical Note 1059 [11].

\section*{Steps 1 and 2. Place the EUT in the cell and access it as required for} operation.

The first procedure outlined in NBS Technical Note 1013 consists of placing the EUT inside the TEM cell in the desired orientation and test configurations. The procedures outlined in steps 1 and 2 for susceptibility measurements apply and should be followed as steps 1 and 2 for emissions testing.

\section*{Step 3. Connect the measurement system as shown in the figures 11 or 12.}

Energy emitted from the EUT is coupled via the TEM mode of the cell to a spectrum analyzer, receiver or oscilloscope connected to one port of the cell. The other cell port is terminated in a 50 ohm load.

\section*{Step 4. Turn the EUT on and measure and record the detected enissions.}

The voltage measured at the port of the cell can then be used to determine the equivalent free-space radiated field as follows: The equivalent free-space radiated field, \(E_{R}\), at a distance, \(d\), from the EUT is then given approximately as:
\[
\begin{equation*}
E_{R}=\frac{6.2 \mathrm{bV} V_{R}}{d \lambda \tilde{E} \cos \theta} \sqrt{G} \quad \text { (volts/meter) } \tag{5}
\end{equation*}
\]
where \(b\) is as defined earlier, \(V_{R}\) is the RMS voltage amplitude in volts measured at one end of the cell, \(\lambda\) is the wavelength of the radiated signal in meters, \(\tilde{E}\) is the normalized electric field inside the cell relative to the field strength at the center of the cell test region, \(\cos \theta\) corresponds to the polarization match between the radiated field from the EUT and the TEM field of the cell, and \(G\) is the gain of the EUT as a radiator. Limitations on the upper frequency range and size of the EUT are similar to those that apply for susceptibility testing, (i.e., the EUT is assumed to be electrically small).

If the time domaln analysis or emanation characteristics are required, use the block diagram shown in figure 12 with the oscilloscope either connected directly to the cell measurement port, or with the oscilloscope connected to the predetection or postdetection outputs of the receiving instrument. The second arrangement using a receiver with the oscilloscope provides greater measurement sensitivity. In either arrangement the oscilloscope must be synchronized with either the periodic detected signal from the cell or with an EllT-monitored periodic signal represented by the dashed line from the EUT. The measurement results can then be recorded by photographing the oscilloscope display. If the emanation is random, the oscilloscope cannot he synchronized properly and the detected signal must be either: 1) recorded with a video disk or tape recorder and played back frame by frame to analyze the emanation; or 2) analyzed statistically using amplitude probability distribution analyzers, etc.

Similar tests can be made for different orientations of the EUT in the cell. for different arrangements of the EUT's leads, and/or for different EUT operating modes as required to evaluate various test conditions.

The second procedure outlined in NBS Technical Note 1059 can be explained briefly as follows: Since the EUT must of necessity be electrically small, (to avoid multimoding and excessive loading of the cell), it can be modeled as equivalent short electric and magnetic dipole sources. These dipole sources may then be combined vectorially to form a composite equivalent source consisting of three orthogonal electric and three orthogonal magnetic dipoles as shown in figure 13.

When an unknown source object (EUT) is placed at the center of a TEM cell, its emisstion couples into the fundamental TEM mode and propagates toward the two ports of the cell. With a hybrid junction inserted into a loop connecting the cell output as shown in figure 14, it is possible to measure the sum and difference of the powers and the relative phase between the sum and difference outputs. This way of measuring the relative phase is very advantageous because it avoids the complication of having to establish an absolute phase reference physically connected to the EUT. Systematic measurements of the powers and relative phases at six different EUT orientations are sufficlent to determine the amplitude and phases of the unknown equivalent component dipole moments as depicted in figure 13. From these data the corresponding detailed radiation pattern and total power radiated by the unknown source in free space can then be computed.

Details for specifying the six different EUT orientations and the analytical expressions used to calculate the above values of power and phase are contained in NBS Technical Note 1059.

\section*{5. Examples of Some TEM Cell Applications}

\section*{A number of applications have been identified for using TEM cells. Initial} work involved the development of a cell for use to establish high level fields for biological effects research [12]. Since then a number of cells have been designed and are in current use as exposure chambers. Early in the development of the TEM cell, it was realized that its broadband frequency response characteristics made it a prime candidate for use in TEMPEST testing of EUT [13] and as an EM pulse (EMP) simulator [14]. The largest known TEM cell in existence ( \(3 \mathrm{~m} \times 20 \mathrm{~m} \times 24 \mathrm{~m}\) ) is located at Sandia Labs, in Albuquerque, New Mexico, and it is used as a dual purpose facility for both EMP testing and CW susceptibility testing of whole DOD weapon systems. The National Bureau of Standards (NBS) recognized the TEM cell's potential for use as a calibration standard for establishing standard TEM fields for use, in calibrating electrically small probes and rf hazard meters. Considerable development and analysis work was done at NBS to carefully evaluate various TEM cells for this use [2,15]. TEM cells are also used extensively for radiated susceptibility testing of components by the Aatomotive industry. The Society of Aumotive Engineers (SAE) has adopted the use of TEM cells for evaluating the susceptibility of automotive vehicle components in the frequency range 14 kHz to 200 MHz [16]. In addition, one motor vehicle manufacturer has constructed a very large cell with a test region \(2 \mathrm{~m} \times 5 \mathrm{~m}\) \(\times 7 \mathrm{~m}\) for whole vehicle testing [17]. Another large cell, \(2.8 \mathrm{~m} \times 2.8 \mathrm{~m} \times 5.6 \mathrm{~m}\), is in use at ATsT Information Systems for measuring both susceptibtlity and emissions of communication equipment \([18,19]\). Considerable work was done to evaluate and compare the use of this cell to similar measurements performed on a 3 -meter open-field site and in an anechoic chamber. More recently, \(2 \mathrm{~m} \times 2 \mathrm{~m} \times 4 \mathrm{~m}\) TEM cells have been evaluated and proposed for use by the Electronics Industries Association (EIA) to measure TV/VCR immunity to EMI [20,21]. Finally, a recent application is the use of a pair of cells, one on top of the other, with a common aperture cut between them, to evaluate the shielding effectiveness of matertals [22].

\section*{6. References}
[1] W.R. Free and C.W. Stuckey, "Electromagnetic interference methodology communication equipment," Final Report ECOM-0189-F, October 1969.
[2] M.L. Crawford, "Generation of standard EM fields using TEM transmission cells," IEEE Trans. on EMC, Vol. EMC-16, No. 4, November 1974.
[3] W.F. Decker, W.A. Wilson, and M.L. Crawford, "Construction of a large transverse electromagnetic cell," NBS Tech. Note 1011, February 1979.
[4] M.L. Crawford and J.L. Workman, "Using a TEM cell for EMC measurements of electronic equipment," NBS Tech. Note 1013, Revised July 1981.
[5] J.C. Tippet and D.C. Chang, "Radiation characteristics of dipole sources located inside a rectangular, coaxial transmission line," NBSIR 75-829, January 1976.
[6] J.C. Tippet, "Modal characteristics of rectangular coaxial transmission line. Thesis submitted June 1978 for degree of Doctor of Philosophy to University of Colorado, Electrical Engineering Dept., Boulder, Colorado.
[7] C.M. Weil, W.T. Joines, and J.B. Kinn, "Frequency range of large-scale TEM mode rectangular strip lines," Microwave Journal, November 1981, pp. 93113.
[8] D.A. Hill, "Bandwidth limitations of TEM cells due to resonances," J. Microwave Power, Vol. 18, No. 2, pp. 181-195, 1983.
[9] M.L. Crawford, J.L. Workman, and C.L. Thomas, "Expanding the bandwidth of TEM cells for EMC measurements," IEEE Trans. on EMC, Vol. EMC-20, No. 3, pp. 368-375, August 1978.
[10] M.L. Crawford, "Improving the repeatability of EM susceptibility measurements of electronic components when using TEM cells," SAE Technical Paper Series 830607, SAE International Congress and Exposition, Detroit, Michigan, Feb. 28 - Mar. 4, 1983.
[11] M.T. Ma and G.H. Koepke, "A method to quantify the radiation characteristics of an unknown interference source," NBS Tech Note 1059, October 1982.
[12] G.A. Skaggs, "High frequency exposure chamber for radiobiological research," NLR Memo, Rep. 2218, Feb. 1971.
[13] M.L. Crawford, "Measurement of electromagnetic radiation from electronic equipment using TEM transmission cells," NBS IR 73-306, Feb. 1973.
[14] N. Pollard, "A broadband electromagnetic environments simulator (EMES)," IEEE 1977 Inter. Symp. on EMC., Seattle, Washington, August 2-4, 1977.
[15] M.L. Crawford, "Generation of standard EM fields for calibration of power density meters, 20 kHz to 1000 MHz . NBSIR 75-804, Jan. 1975, 40 pages.
[16] Society of Automotive Engineers (SAE) Recommended Practice, Electromagnetic susceptibility procedures for vehicle components (except aircraft) -SAE sll13 June 84.
[17] G.F.E. Vrooman, An indoor 60 Hz to 40 GHz facility for total vehicle EMC testing," SAE technical paper series No. 831001 SAE passenger car meeting, Dearborn, MI., June 6-9, 1983.
[18] D.N. Heirman," Automated Immunity Measurements," 6th EMC Symp \& Tech Expo. Zurich, Mar 5-7, 1985.
[19] M.L. Crawford, "Comparison of open-field, anechoic chamber and TEM cell facilities/techniques for performing electromagnetic radiated emission measurements," IEEE 1983 Inter. Symp. on EMC, Arlington, VA; Aug. 23-15,
1983. 1983.
[20] G.C. Hermeling, "Method for immunity measurements on home entertainment productes using the 2 meter TEM cell," IEEE 1983 Inter. Symp. on EMC. Arlington, VA. Aug. 23-25, 1983.
[21] EIA Interim Standard No. 32 (proposed), "Immunity of television receivers and video cassette recorders (VCR's) to direct radiation from radio transmissions, 0.5 to 30 MHz ," revised Sept. 6, 1984.
[22] A.N. Faught, Jr.. J.T. Dowell, and R.D. Scheps, "Shielding material insertion loss measurements using a dual TEM cell system," IEEE 1983 Inter. Symp. on EMC, Arlington, VA, Aug. 23-25, 1983.


Pigure 1. Cut-away view of TEM cell showing placement of EUT:


Figure 2. Design for rectanzular TEM transmission cell.


Figure 1. Cut-away view of TEM cell showing placement of EUT.


Figure 2. Design for rectangular TEM transmission cell.


Cross section of a TEM cell.


Figure 3. TEM cell design curves showing ratio of cell outer conductor and center conductor dimensions for given characteristic impedances.

Table 1.
z-ccrponent of the electric fiold in a square


Table 3.
Magnitude of tbe olectric ileld it \(\quad\) square

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Floor & 0.128 & 0.793 & 0.680 & 0.530 & 0.219 & 0.000 \\
\hline b/5 & 0.053 & 0.12:- & 0.747 & 0.605 & 0.420 & 0.307 \\
\hline 2b/3 & 0.935 & 0.924 & 0.816 & 0.217 & 0.72: & 0.010 \\
\hline 3b/5 & 1.049 & 1.000 & 1.096 & 1.157 & 1.218 & 1.237 \\
\hline \(4 \mathrm{~b} / 5\) & 1.153 & 1.189 & 1.321 & 1.033 & 2.154 & 2.215 \\
\hline sept & 1.196 & 1.245 & 1.431 & 1.986 & 6.040 & 3.003 \\
\hline  & enter & \(1 / 5\) & \(28 / 5\) & 3e/5 & \(42 / 5\) & rell \\
\hline
\end{tabular}

Table 4.
Polarisnition angle of the electric field in degred in equery, meotric TiM oell.


Figure 4. Distribution of the components of the nornalized electric-ifeld ingide a square, symetrical T 페 cell, \(\mathrm{b} / \mathrm{a}=1, \mathrm{w} / \mathrm{a}=0.83\).

Table 1.
y-conponent of the electric field in equaro y-component of cell. (fis. 9, amb, 0.83 m )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fogr & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline b/5 & 0.000 & 0.060 & 0.129 & 0.201 & 0.278 & 0.307 \\
\hline 2b/5 & 0.000 & 0.101 & 0.245 & 0.422 & 0.600 & 0.680 \\
\hline 3b/5 & 0.000 & 0.127 & 0.314 & 0.620 & 1.029 & 1.23: \\
\hline 4b/5 & 0.000 & 0.090 & \(0.24 \%\) & 0.647 & 1.604 & 2.215 \\
\hline septu & 0.000 & \(0.0 n 0\) & 0.000 & 0.000 & 0.000 & 3.003 \\
\hline  &  & a/5 & 2a/5 & 3a/3 & \(4 \times / 5\) & rall \\
\hline
\end{tabular}

Table 2.
y-ccopoeent of the electric field in a square



Teble 3.
Magnitude of tbe electric ileld in a aquare ymetric TH oell. (2ic. 9, ant \(=0.83 \mathrm{a}\) )


Table 4.
Poleriertion angle of the electric field iv perra in a suare, fynetric TMi cell.


Figure 4. Distribution of the components of the normalized electric-field inside a square, symetrical TEM cell, b/a \(=1, \mathrm{w} / \mathrm{a}=0.83\).

Table 5.
\(x\)-componant of the electric field in a rectangular symetric TH cell. (1ig. 10, 0.6a - b, - 0.72 a )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Floor & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline b/s & 0.000 & 0.024 & 0.00: & 0.143 & 0.220 & 0.249 \\
\hline 2b/5 & 0.000 & 0.040 & 0.121 & 0.284 & 0.462 & 0.31 \% \\
\hline \(3 \mathrm{~b} / 5\) & 0.000 & 0.043 & 0.141 & 0.410 & 0.763 & 0.817 \\
\hline \(4 b / 5\) & 0.000 & 0.028 & 0.101 & 0.440 & 1.247 & 1.112 \\
\hline sopt & 0.000 & 0.001 & 0.000 & 0.000 & 1.969 & 1.334 \\
\hline  & cent & 2/5 & \(22 / 5\) & \(32 / 5\) & \(44^{4} 5\) & well \\
\hline
\end{tabular}

Table 6.
\(y\)-component of the electric field in a rectangular gymatric TEU cell. (1ig. 10, \(9.6 a=b, w=0.72 \mathrm{a}\) )


Table 8.
Polarization aagle of the olectric ifeli in degrees in rectangilar, symetric THM coll.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Flour & 90.00 & 90.00 & 90.00 & 90.00 & 90.00 & - \\
\hline b/s & 90.00 & 84. 58 & 35.03 & 78.80 & 01.76 & 00.00 \\
\hline 2b/3 & 90.00 & 18.66 & 82.70 & 70.61 & 45.12 & 00.00 \\
\hline 3b/5 & 90.00 & 3:. 60 & 82.20 & 07.20 & 30.15 & 00.00 \\
\hline 4b/5 & 90.00 & 88.4t & 84.82 & 71.43 & 29.30 & 00.00 \\
\hline Septum & .310.001 & 90.00 & 90.00 & 90.00 & 90.00 & 00.00 \\
\hline antar TH cel & ntor & m/5 & 2a/5 & 3a/5 & 4n/5 & - 111 \\
\hline
\end{tabular}

Figure 5. Distribution of the components of the normalized electric-field inside a rectangular, symetrical TEM cell, \(b / a=0.6, w / a=0.72\).


Figure 7. Normalized cut-off frequency versus \(w / a\) for inst order modes in rectangular strip line with \(b / a=1.0,0.67\), and 0.5 .


Figure 8a. EUT near floor of TEM cell for minimum exposure of leads to test field.


Figure 8b. EUT centered in test zone midway between septum and floor.

Figure 8. Placement of EUT ingide TEM cell showing routing of leads.


Figure 11. Block diagram of measurement system for frequency domain analysis of radiated emissions from EUT using a TEM cell.


Figure 12. Block diagram of measurement system for time domain analysis of radiated emissions from EUT using a TEM cell. (Attenuator required for hard line sync of some EUT.)


Figure 13. Unknown electrically small source representation in terms of three orthogonal electric and magnetic dipoles.


Figure 14. Block diagram of radiated emission measurement system using TEM cell for complete pattern and total radiated power determination.

\section*{amateur satellite corrunication links}

\section*{Presented by}

Marlin E. Greer
Electrical Progran Coordinator
Murray State University

\section*{Co-authors}

William Call
Associate Professor
Murray State University
Ken McGary
Engineer
General Dynamics

Anateur radio operators through the AMSAT organization have placed a series of satellites in orbit. These orbital vehicles have increased in capability and sophistication through the Phase I, Phase II and Phase III progressions. The AMSAT-OSCAR 10 ( \(10-10\) ), formerly designated Phase IIIB, is placed in a highly elliptical, inclined orbit. The orbit was intended to have an eccentricity of 0.685 associated with an apogee of 36000 km above the northern hemisphere and a perigee of 1500 km and to have an inclination of 57 degrees. This Molniya style orbit allows a single satellite to service the entire globe and permits northern hemisphere "hams", who comprise \(\mathbf{9 0}\) percent of the potential uaers, to make contacts and carry out propagation experiments for up to fifteen hours a day on favorable passes. The actual orbital parameters turned out to be a . 609 eccentricity, a 35600 km apogee, a 3800 km perigee and a 25.6 degree inclination which caused a mor reduction in the desirability of the availability pattern. The satellite's position can be tracked with a personal computer using updated Keplerian orbital elements.

Phase III uses an inverting linear translator called a transponder that is a high gain, relatively wide bandwidth AGC amplifier and frequency translator. The \(70 \mathrm{~cm} / 2 \mathrm{~m}\) transponder, designated mode \(B\), has a 150 kHz bandwidth and operates over an uplink range of \(435.025-435.175 \mathrm{KHz}\) and a down link range f 145.975-145.825 MHz. The inversion of the transponder causes a low end 435.04 MHz transmission to become a high end 145.96 MHz reception and upper side band uplinks change to a lower side band downlinks requiring the reinserted carrier to be on the opposite side of the 3 kHz passband at the receiver. Inversion has the advantage that Doppler shifts on the up and down links will partially cancel. Mixing the ground based transmission with a
local oscillator ( \(L O\) ) that is above the uplink frequency and filtering to the difference produces the inversion. For example, a 435 MHz low-end incoming signal mixed with a 581 MHz LO produces an upper-end 146 MHz two-meter output. A 435.003 rHz upper side band input is transposed to a 145.997 rHz lower side band at the output.

The antenna interface on the satellite includes a high-gain apogee and an omnidirectional perigee antenna on the transmission link to help minimize signal strength cycles.

The particular satellite ground station being described takes advantage of an existing ten-meter system. Adapting the rig to A0-10, Mode B requirements entails the use of a \(10 \mathrm{~m} / 70 \mathrm{~cm}\) transmitting converter (transverter) on the uplink. The tranverter samples the output of the ten meter exciter since a low level input is required. The VHF/UHF converter used is a linear translator and provides a three-fourthe watt output for a one-half watt input. This -2.9 dBW level SSB signal is increased in two stages. The power amplifier provides 18 dB of power gain, with a resulting signal level of 32 watts. A further increase is obtained by the gain of the antenna which consists of a multi-element Yagi-Uda parasitic array rated at again of 12 dBd . This is equivalent to 14.15 dBi . If the coax line loss is assumed to be 2 dB , the net radiated power comes to 27 dBW which is equal to 500 watts.

A minimum of about 60 watts EIRP (effective isotropic radiated power) is needed to establish a dependable uplink. However, the ground based transmitter should not radiate more than 500 watts ( +27 dBW ) EIRP, otherwise desensing of the satellite transponder can occur through AGC action.

The returning 2 m signal from the satellite is also received by a multielement parasitic array. The signal is then amplified by a low-noise system and translated to 10 m by the receiving converter.

On board computer-controlled pulses to an electromagnet that works against the earth's magnetic field is used to mantain a satellite spin of approximately one revolution per second in order to stabilize the craft. The side effect is a periodic pulsation of the transmitted signal amplitude when received by a dipole called spin modulation. The use of linear antennas creates signal fades of an annoying degree. Circularly polarized antennas of the proper sense minimize this effect and allow communication with little disturbance. A0-10 transmits a circularly polarized signal with a clock-wise (right-hand) sense. However, due to the existence of Faraday rotation of signals in the 100 MHz to 1 GHz range it is advisable to provide for either polarization since cross polarization can result in as much as 30 dB attenuation. We plan to do additional study on the effects of Faraday rotation on this type of satellite orbit.

Cross-coupled Yagi antennas were used with remote controlled coaxial relays to permit selection of vertical, horizontal or clockwise or counterclockwise circular polarization. Two helical antennas, one wound for RHCP, the other for LHCP, could have also been used but these would not have allowed for horizontal or vertical polarization.

In order to impedance match the \(\mathbf{2 0 - 2 5}\) ohm of a dipole with parasitic elements to the 52 ohm feedline, the gama approach was used. As an unsplit dipole is center-grounded and driven off-center, the impedance increases, but also becomes more inductively reactive, as the tap point is moved out on the element. The positive reactance is cancelled by an adjustable series capacitor placed in the drive line. Since matching is also influenced by gamma rod length and diameter and by gamma-rod-to-driven-elenent spacing, the actual tapping point and capacitance setting was determined by adjusting for minimum reflection using a directional coupler.

The cross-coupling of these two 52 ohm systems creates two problems: 1) the impedance would be reduced to 26 ohas if directly paralleled and 2) circular polarization requires a 90 degree phase adjustment between the two lines to correspond to the 90 degree geometry of the vertical and horizontal elements.

The impedance of each line is brought to the target level of 100 ohas by using a quarter-wave transformer which is a narrow band technique. The impedance looking into a loaded \(\lambda / 4\) section is:
\[
z_{i}=20^{2} / z_{L}
\]
where 20 is the impedance of the quarter-wave section. The length of a quarterwave section is determined by the \(\lambda=c / f\) relationship where \(c\) is the speed of light in the medium. Coax cables have published velocity factors permitting determination of their electromagentic wave propogation velocities. For example, a quarter-wave length for RG8/V is given by \(66\left(3 \times 10^{8}\right) / 4\) \(\left(145.9 \times 10^{6}\right)\) at the \(2 e\) center frequency of 145.9 MHz . This length is 0.339 m . With this matching arrangement there will be no standing waves on the primary feeder line but there is a mismatch between the quarter-wave element and the load and hence the transformer section has significant standing waves. This energy loss can be tolerated because of the short length of the matching section. Using coax with a characteristic impedance of 73 ohms on the quarter-section causes a 52 ohm load to be transformed to 102 ohms.

To meet the \(\mathbf{9 0}\) degree phasing requirement, the two near 100 ohm antenna lines are connected together by a quarter-wave section of near-100 ohm coax ( 93 ohm ). By driving the interconnected system at either end of the 93 ohm quarter-wave interconnect, either side can have a 90 degree delay inserted allowing both RKCP and LHCP.

Impedance matches were verified by directional coupler techniques. Measured VSWR's were well under 1.2:1. This compares to the worst-case mismatch in the system of \(1.1: 1\) between the 93 ohm quarter-wave section and the 102 ohm impedance looking into the 73 ohe transformer.
\[
\text { VSWR }=20 / 2 L \text { or } 2 L / 20
\]

Circularity was verified by monitoring calibrated reception with the completed cross-coupled antenna in the presence of a rotating polarization test signed. This field was created by turning a transmitting linear dipole antenna. The completed receiving antenna had accurate circularity to within about 2 dB . When operating the antenna in the linear mode, a loss of about 20 dB is noted when the transwitting and receiving antennas are \(90^{\circ}\) apart in polarization. We had to install the antenna with a non-metallic support mast to obtain this accuracy. A metallic support mast in-line with one section's elements causes about 10 dB of loss to that sense, resulting in an elliptical rather than circular polarization.

The system is designed such that polarization can be under manual or computer control. Push button manual instructions are debounced and digitized using monostable strobe to \(D\)-type latches. The drives from the manual switches or from software to the VMOS relay controllers are multiplexed by a data selector. The D/A, A/D computer interface card and a clock card allows for polarization studies by automatic recording of timed signal strength records associated with the various polarization modes and the orbital tracking program permits automatic antenna positioning through the interface board.


Figure 1: Phase III Functional Diagram

A. KLM 42045018c 70 cm . Antenna
B. KLM 14415016C 2M. Antenna
C. Hamtronics LP 43070 cm .30 Watt Amplifier
D. Hamtronics XV4 UHF Transmitting Converter ( 10 m to 70 cm )
E. Antenna Relay and Phasing Harnesses
F. Microwave Modules MMc 144 Receiving Converter (2m to 10 m )
G. HF Exciter
H. HF Receiver
1. Disk Drive
J. Microcomputer
K. Analog/Digital Board
L. Power Supply (12v, 12a)

Figure 2: Satellite Ground Station


Figure 2: Block Diagram of a Linear Transponder


Figure 3: oSCAR Bandplan


Relay Switching
\begin{tabular}{|c|c|c|c|}
\hline Mode & RL1 & RL2 & RL3 \\
\hline HOR. & 1 & 1 & 1 \\
\hline VERT. & 1 & 1 & 4 \\
\hline RHCP (CW) & 2 & 2 & 2 \\
\hline LHCP (CCW) & 2 & 2 & 3 \\
\hline
\end{tabular}

\section*{Notes}
1. Lengths of 50 ohm/ 52 ohm cable uncritical; lengths of phasing/matching sections are \(\lambda / 4\).
2. Switching shown for RHCP.
3. 52 ohm coax is RC8/U, velocity factor of 0.66 .
4. 73 ohm coax is RG59/U, velocity factor of 0.66
4. 73 ohm coax is RG59/U, velocity factor of 0.66 .
5. 93 ohm coax is RG62/V, velocity factor of 0.86 .
5. 53 ohm coax is RG62 V , velocity factor of 0.86 .
6. 50 ohm hardine is foam dielectric, velocity factor of 0.81 .

Figure 5: Crossed-Yagi Feed Arrangement


Pigure 6: Phase Controllex

\section*{Wecise Phase Noise Measurements of Oscillators land Other Devices from 1 MHz to 20 GHz \\ Time and Frequency Division \\ National Bureau of Standards \\ Boulder, Colorado 80303}

Abstract
In this talk the commonly used measures of phase nolse are briefly defined and their relationships explained. Techniques for making precise measurements of phase noise in oscillators, multipliers, dividers, amplifiers, and other components are discussed. Particular attention is given to methods of calibration which permit accuracies of 1 or or better to be achieved. Common pitfalls to avoid are also covered. It is sho that the double balanced mixer approach is the most versatile of these techniques. Phase noise rloors (precisions) in excess of -170 dB relativer to 1 radian per hertz are achievable 1 MHz to the GHz range. The disadvantage for precise sourc below miz the need for a reference source of comparable or better performance. This limitation does not apply to the measurement of amplifiers, multipilers, dividers, etc. Other techniques avoid this requirement by using a delay line or cavity to generate a pseudo reference generally with some sacrifice in noise floor near the carrier. Analogues of these techniques are used for carrier frequencies from a few Hz to \(10^{15} \mathrm{~Hz}\).
I. Introduction

The output of an oscillator can be expressed as
\[
v(t)=\left[v_{0}+\varepsilon(t)\right] \sin \left(2 \pi v_{0} t+(t)\right)
\]

Where \(V_{0}\) is the nominal peak output voltage, and \(v_{0}\) is the nomina frequency of the oscillator. The time variations of amplitude have been incorporated into \(\varepsilon(t)\) and the time varlations of the actual frequency, \(v(t)\), have been incorporated into \(\downarrow(t)\). The actual frequency can now be written as \(v(t)=v_{0}+\frac{d[g(t)]}{2 d t}\)

The fractional frequency deviation is defined as
\[
y(t)=\frac{v(t)-v_{0}}{v_{0}}=\frac{d[0(t)]}{2 \pi v_{0} d t}
\]
tWork of the U.S. Covernment; not subject to U.S. copyright.

Power spectral analysis of the output signal \(v(t)\) combines the power in the carrier \(v_{0}\) with the power in \(\varepsilon(t)\) and \(\phi(t)\) and therefore is not a good method to characterize \(\varepsilon(t)\) or \((t)\).

Since in many precision sources understanding the variations in \(\phi(t)\) or \(y(t)\) are of primary importance, we will confine the following discussion to frequency-domain measures of \(y(t)\), neglecting \(\varepsilon(t)\) except in
cases where it sets limits on the measurement of \(y(t)\). The amplitude fluctuations, \(\varepsilon(t)\), can be reduced using limiters whereas \(\phi(t)\) can be reduced in some cases by the use of narrow band filters.
Spectral (fourier) analysis of \(y(t)\) is often expressed in terms of \(S_{\phi}(f)\), the spectral density of phase fluctustions in units of radians squared per Hz bandwidth at Fourier frequency ( \(f\) ) from the carrier \(v_{0}\) or \(\mathrm{S}_{\mathrm{y}}(\mathrm{f}\), the at Fourier frequency f from the carrier \(v_{0}[1]\). These are related as
\[
s_{\phi}(f)=\frac{v_{0}^{2}}{f^{2}} \quad s_{y}(f) \quad \operatorname{rad}^{2} / \mathrm{Hz} \quad 0<f<\infty
\]

It should be noted that these are single-sided spectral density measures containing the phase or frequency fluctuations from both sides of the carrier.
Other measures sometimes encountered are \(\mathcal{d}(f), d B C / H z\), and \(S_{\Delta v}(f)\). These are related by [1,2]
\[
\begin{aligned}
& S_{\Delta v}(f)=v_{0}^{2} S_{y}(f) \quad \mathrm{Hz}^{2} / \mathrm{Hz} \\
& \mathcal{L}(f)=(1 / 2) S_{\phi}(f) \quad r_{1}<|f|<\infty \\
& r o r f_{1} \quad S_{\phi}(f) d f<1 \mathrm{rad}^{2}
\end{aligned}
\]
\(\mathrm{dBC} / \mathrm{Hz}=10 \log \mathscr{L}(\mathrm{f})\)
\(\mathcal{L}(f)\) and \(\mathrm{dBC} / \mathrm{Hz}\) are single sideband measures of phase noise which are not defined for large phase excursions and are therefore measurement system dependent. Because of this an IEEE subcomittee on frequency stability recomended the use of \(S_{f}(f)\) which is well defined independent of the phase excursion [1]. This distinction is becoming increasingly important the phase excurstons are large compared to 1 radian. Single sideband the phase excursions are large compared phase nolse can now be specifled as ( \(1 /\) as, \((f)\).

The above measures provide the most powerful (and detailed) analysis for evaluating types and levels or fundamental noise and spectral density structure in precision oscillators and signal handling equipment as it allows one to examine Individual Fourier components (or detalled and one often needs an analysis of the long-term ayerage performance.
11. Methods of Measuring Phase Noise

Figure 1 shous the block diagram for a typlal scheme used to measure the phase nolse of a precision source using a double balanced mixer and a reference source. Fig. 2 illustrates a similar teghnique for measuring only the added phase noise of multipliers, dividers, ampliriers, and passive components. The output voltage of the mixer as a function or phase deviation, \(\Delta \phi\), between the two inputs is nomally given by
\[
v_{\text {out }}=K \cos \Delta \phi
\]
(6
Near quadrature this can be approximated by
\[
v_{\text {out }}=k_{d} \delta \phi, \text { where } \delta \equiv\left[\Delta-\frac{2 n-1}{(2)} \pi\right]<.1
\]
where \(n\) is the integer to make \(60-0\). The phase to voltage conversion ratio sensitivity, \(K_{d}\) is dependent on the rrequency, the drive level, and impedane of input ing and the If termination of the mixer [7] including the mecter and including the mixer and amplitude nrise from the If amplifiers is given by
\[
s_{\phi}(r) \cdot\left(\frac{v_{n}}{G(r) K_{d}}\right)^{2} \frac{1}{B W}
\]
where \(V_{n}\) is the RMS noise voltage at Fourler frequency \(f\) from the carrier measured arter IF gain \(\mathrm{G}(\mathrm{f})\) in a noise bandwidth BW. Obviously BW must be small compared to \(r\). This is very important where \(S_{\phi}(f)\) is changing rapidly with r , e.g. S (f) often varies as \(\mathrm{f}^{-3}\) near the carrier. In Fig. 1, the output of the second amplifler following the mixer contains
contributions from the phase nolse of the oscillators, the mixers, and the post amplifiers for Fourier frequencies much larger than the phase-lock post amplifiers. for Fourier irequencies much larger than the phase-lock
loop bandwidth. In Figure? the phase nolse of the oscillator cancels out to a high degree (often more than 20 dB ). Termination of the mixer If port with 50 ohms maximizes the IF bandwidth, however, termination with reactive loads can reduce the mlxer nolse by -6 dB , and increase \(\mathrm{K}_{\mathrm{d}}\) by 3 to 6 dB as shown in Fig. 3. [3] Accurate determination of \(K_{d}\) can be achleved by allowing the two oscillators to slowly beat and measuring the slope of the zero crossing in volts/radian with an oscilloscope or other recording device. The time axis is easily calibrated since one beat
period equals \(2 \pi\) radians. Estimates of \(K_{d}\) obtained from measurements or the peak to peak output voltage sometimes introduce errors as large as 6 best), on the spectrum analyzer used to measure \(v\) with the level
recording device used to leasure \(k\) the accuracy \(n\) or ( \(r\) ) can be recording device used to measure \(K_{d}\), the accuracy or \(S^{\circ}(r)\) can be made indender is necessary to assure that the spectrum analyzer is not some care is necessary to assure that the pine frequency and its saturated by spurious signals such as the ine irequency and its
multiples. Sometimes aliasing in the spectrum analyzer is a problem. Typical best performance is shown in Fig. 4. This measurement system exceeds the performance of almost all avallable oscillators from 0.1 MHz to 10 GHz and is generally the technique of first choice because of its versatility and simplicity. The use or specialized mixers with multiple diodes per leg increases the phase to voltage conversion sensitivity, \(K_{d}\) and therefore reduces the contribution of If amplifier noise [4] as shown in Fig. 4. The resolution of the above systems can be greatly enhanced (typlcally 20 dB ) using correlation techniques to separate the phase noise from the device under test from the nolse in the mixer and IF amplifier [4].
For example consider the scheme illustrated in Figure 5. At the output of each double balanced mixer there is a signal which is proportional to the phase differelan the tuen the phase difference, \(\Delta \phi\), between the two oscillators and a nolse term, input of each bandpass filter are
\[
\begin{align*}
& v_{1}(B P \text { filter input })=G_{1} \Delta \theta(t)+c_{1} v_{N}(t) \\
& v_{2}(B P \text { filter input })=G_{2} \Delta \theta(t)+C_{2} v_{N 2}(t)
\end{align*}
\]
where \(\mathbf{V}_{\mathrm{M}}(\mathrm{t})\) and \(\mathrm{V}_{\mathrm{N}}(\mathrm{t})\) are substantially uncorrelated. Each bandpass filter
\(V_{1}\left(B P\right.\) filter output) \(=G_{1}\left[S_{\phi}(f)\right]^{1 / 2} B_{1}{ }^{1 / 2} \cos [2 \pi f t+\phi(t)]\)
\(+C_{1}\left[S_{V N 1}(r)\right]^{1 / 2} B_{1}{ }^{1 / 2} \cos \left[2 \pi f t+n_{1}(t)\right]\)
\(v_{2}(B P\) fllter output \()=C_{2}\left[S_{6}(f)\right]^{1 / 2} B_{2}^{1 / 2} \cos [2 \pi f t+\psi(t)]\)
\(+C_{2}\left[S_{V N 2}(f)\right]^{1 / 2} B_{2}^{1 / 2} \cos \left[2 \pi f t+n_{1}(t)\right]\)
where \(B_{1}\) and \(B_{2}\) are the equivalent nolse bandwidths of rilters 1 and 2 respectlvely. Both channels are bandpass piltered in order to help
eliminate aliasing and dynamic range problems. The phases \(\#(t), n_{1}(t)\) and \(n_{2}(t)\) take on all values between 0 and \(2 \pi\) with equal ilkelihood. Whey these two voltages are multiplled together and low pass filtered only one therm has finite average value. The output voltage is
\(v_{\text {out }}^{2}=1 / 2 G_{1} G_{2} S_{\phi}(f) B_{1}{ }^{1 / 2} B_{2}{ }^{1 / 2}+D_{1}\langle\cos [7(t)]\rangle\)
(11
\(\left.+D_{2} \cos \left[\phi(t)-n_{2}(t)\right]\right\rangle+D_{3}\left\langle\cos \left[n_{1}(t)-n_{2}(t)\right]\right\rangle\) so that \(S_{\phi}(r)\) is
\[
s_{\phi}(f)=\frac{(2) v_{N}^{2}}{G_{1} G_{2} \sqrt{B_{1} B_{2}}}
\]

For times le-g corianes to \(B_{1}{ }^{-1 / 2} B_{2}-1 / 2\) the noise terms \(D_{1}, D_{2}\) and \(D_{3}\) tend For times lerg corines to \(\mathrm{B}_{1}\), associated with harme : is of 60 Hz plekup, de offset drifts, and associated with harmic.initislier. Also if the isolation amplifiers have input current noise then they will pump current through the source resistance. The resulting nolse voltage wlll appear coherently on both channels and can't be distingulshed rom real phase nolsplitude and one oscillators. One half of the nolse power appears in amplitude and one half in phase modulation.
Ooviously the simple single frequency correlator used in this illustration an be replace by fast digital system which simultaneously computes the typical correlated phase now a reduction in nolse floor of order 20 dB over the noise floor of a single channel (See Fig. 4). The great power of this lloor of a single channel (See Fis. an an carrler frequency where one can obtain double balanced mixers. The primary limitations come from the banduldth and nonlinearities in the cross correlator.

Another method of determining \(S_{\text {保 }}(f)\) uses phase modulation of the reference osclilator by a known amount. The ratio of the reference phase modulation to the rest of the spectrum then can be used for a relative cailioted a This approach can be very useful for measurements which are repeated great many times.
It is sometimes convenient to use a high- \(Q\) resonance directly as a It is sometimes convenient to use a high-Q
irequency discriminator as shown in Fig. 6.
The oscillator is typically tuned \(1 / 2\) linewidth ( \(v_{0} / 20\) ) away from line center yielding a detected signal of the form
\[
v_{\text {out }}=G(f) k Q d y(f)[v+\varepsilon(t)]
\]

Note that thls approach mixes irequency fluctuations between the Note that ted signal. By using amplitude control (e.g. by processing to normalize the data), one can reduce the effect of amplitude nolse. [5] The measured nolse at the detector is then related to the oscillator reference cavity phase fluctuation by
\[
s_{0}(t)=\left(\frac{v_{0} v_{N}}{v_{0} q_{N} G(t)}\right)^{2} \quad \frac{1}{B W}
\]

This approach has the liaitations that \(\Delta v\) must be small compared to the

Inewidth of the cavity, and removing the effect of residual amplitude nolse is difficult; however, no reference source is needed.

Differentlal techniques can be used to measure the inherent frequency (phase) rluctuations of two High-Q resonators as shown in Fig. 7 [6]. The (phase) voltage is of the form \(V_{\text {out }}=2 Q K_{d} d y(f)\). The phase noise spectrum of the resonators is then obtalned using equation 4.
\[
s_{\phi}(f)=\left(\frac{v_{0} v_{N}}{2 Q r K_{d}}\right)^{2} \quad \frac{1}{B W}
\]

The phase nolse in the source can cancel out by 20 to 40 d depending on the similarity of resonate frequencies Q's and the transmission propertio of the two resonators. This approach was ilrst used to demonstrate that the inherent frequency stabllity of precision quartz resonators ex.
a still different approach uses a delay line to make a pseudo reference a still different approach uses a ding wig. 8 .
The mixer output is of the form
\[
v_{\text {out }}=2 \pi t_{d} K_{d} v_{o} d y
\]
and the oscillator phase nolse is given by
\[
S_{0}(f)=\left(\frac{v_{n}}{2 \pi T_{d} G(f) K_{d}}\right)^{2} \frac{1}{B W} \quad i<\frac{1}{\tau_{d}}
\]

This approach is often used at microwave irequencles when only one osclliator is avallable. However the phase nolse close to the carrler becomes virtually unresolvable for a finite delay line. For example if \(\mathrm{f}=1 \mathrm{~Hz}\) and \(\mathrm{T}_{\mathrm{g}}=500 \mathrm{~ns}\), then, \(\left(2 \mathrm{ff} \mathrm{T}_{\mathrm{d}}\right)^{2}-10\). The nolse floor of this technique is 10 ds higher at \({ }^{2}\). method and it decreases as \(1 / f^{2}\). The nolse floor can abe reduced

The use of frequency multipliers (or alviders) between the oscillators and The use of frequency multipliers (or dividers) between the oscilators and
the double balanced mixer increases (decreases) the phase noise level [11] the
\[
s_{\bullet}(f)-\left(\frac{v_{2}}{v_{1}}\right)^{2} \quad s_{v_{1}}(f)
\]

Figure 4 shows the nolse of a speclalized 5 to 25 MHz multiplier referred
to the 5 MHz input. A potential problem with the use of the multiplier approach comes from exceeding the dynamic range of the mixer. Once the phase excursion. \(\Delta \phi\), exceeds about 0.1 radian, nonlinearities start to become important and at \(\Delta \phi-1\) radian, the measurement is no longer valid [11].

\section*{References}
1. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr., W. L. Smith R. L. Sydnor, R. F. C Vessot, G. M. Winkler, Characterization of Frequency Stability, Proc. IEEE Trans. on I \& M 20, 105-1 20 (1971).
2. J. H. Shoar, D. Halford, and A. S. Risley, Frequency Stability available
3. F. L. Walls, and S. R. Steln, Accurate Measurements of Spectral Density of Phase Noise in Devices, Proc. of 31st SFC, 335-343. (1977). (National Technical Information Service, Sills Building, 5825 Port Royal Road, Springfield, VA 22161).
4. F. L. Walls, S. R. Stein, J. E. Gray, and D. J. Glaze, Design Considerations in State-or-the-Art Signal Processing and Phase Noise Measurement Systems, Proc. 30th Ann. SFC, 269-274 (1976). (National Technical Inforeation Springfield, va 22161 )
5. R. L.. Barger, M. S. Soren, and J. L. Hall, Frequency Stabilization or a cw Dye Laser, Appl. Phys. Lett. 22, 573 (1973).
6. F. L. Walls and A. E. Walnuright, Measurement of the Short-Term Stability of Quartz Crystal Resonators and the Implications ror Crystal Oscillator Design and Applications, IEEE Trans. on I \& M 24, 15-20 (1975).
7. A. S. Risley, J. H. Shoaf, and J. R. Ashley, Frequency Stabilization of \(X\)-Band Sources for use in Frequency Synthesis into the Infrared, IEEE Trans. on I \& M, 23, 187-195 (1974).
8. J. R. Ashley, T. A. Barley, and G. J. Rast, The Measurement of Noise In Microwave Transmitters, IEEE Trans. on Microwave Theory and Techniques, Special Issue on Low Noise Technology, (1977).
9. A. L. Lance, W. D. Seal, F. G. Mendoza, and N. W. Hudson, Automating Phase Noise Measurements in the Frequency Domain, Proc. 31 st Ann. Symp. on Freq. Control, 347-358 (1977).
10. A. L. Lance and W. D. Seal, Phase Nolse and AM Noise Measurements in the Frequency Domain at Millimeter Wave Frequencles, from Infrared and Millimeter Waves, Ken Button Ed., Academic Press, NY 1985.
11. F. L. Walls and A. DeMarchi, RF Spectrum of a Signal After Frequency Multiplication Mensureaent and Comparison with simple Calculation. IEE Trans. on I \& M 24, 210-217 (1975).

\section*{Figure Captions}

Fig. 1. Precision phase measurement system using a spectrum analyzer. Calibration requires a recording device to measure the slope at the zero crossing. The accuracy is better than 0.2 dB from dc to \(0.1 \mathrm{v}_{\mathrm{o}}\) Fourler frequency offset from the carrier \(\mathrm{V}_{0}\). Carrier frequencies from a few \(\mathrm{H}_{2}\) Fig. 2. Precision phase measurement system reaturing self calibration to 0.2 dB accuracy from dc to 0.1 Vourier frequency offset from carrier. multipllers, dividers, frequency synthesizers, as well as passive components. [3]

Fig. 3. Double-balanced mixer phase sensitivity at 5 MHz as a function of Fourler frequency for various output terminations. The curves on the left were obtained with 10 mw drive while those on the right were obtained with 2 mH drive. The data demonstrate a clear choice between constant. out low sensitivity or much higher, but frequency dependent sensitivity. [3]

Fig. 4.
Curve A. The noise floor \(S_{\phi}(f)\) (resolution) of typleal double balanced mixer systems (e.g. Fig. I and Fig. 2) at carrier irequencie from 1 to 100 MHz . Similar performance possible to 20 GHz . [4]
Curve B. The noise floor, \(S_{\phi}(r)\), for a high level mixer. [4]
Curve C. The correlated component of \(S_{\phi}(f)\) between two channels using
Curve D. The equivalent noise floor \(S_{\phi}(f)\) of a 5 to 25 MHz frequency
Curve E. Approximat

Fig. 5. Correlation phase noise measurement system.
Fig. 6. High-Q resonance used as a frequency discriminator.
Fig. 7. Differential cavity frequency discriminator.
Fig. 8. Delay line frequency discriminator


Fig 2




rig 6



Fig 8


\section*{TABLE OF CONTENTS}

\section*{PPLICATIONS OF DIGITAL SIGNAL PROCESSING}

\section*{by}

Tom Callaghan

\section*{WATEINS-JOHNSON COMPANY \\ -JOH NON \\ 700 Ouince Orchard Roed Gaitheraburg, Maryland 20878}
INTRODUCTION ..... 1
dIGITAL SIGNAL PROCESSING OVERVIEW ..... 2
The Input Signal ..... 2
Quantization ..... 2
6
Digital Processor ..... 8
Parallel Structures ..... 9
10
Sequential Structures ..... 11
Information Extraction ..... 11
DIGITAL FILTERS ..... 11 ..... 11
Signal Flow Notation
Signal Flow Notation
Difference Equation ..... 11
13
2-Transform ..... 13
U Unit Step
14
of Exponential ..... 14
Of Delay Of Recursive Difference Equation.
IIR Filters1416
FIR Filters ..... 18
19
IIR and FIR Designs
20
THE FAST FOURIER TRANSFORM
Decimation in Time ..... 21
26 ..... 26
26
Advantages of DIT Algorithm
Advantages of DIT Algorithm Bit Reversal Mapping ..... 26
29
DIT vs. DIF Algorithms ..... 32
32
Other Algorithms Windows For Use With FFT's ..... 32
32
34
Triangle34
Hamming ....... ..... 34
34
34
Final Notes on the FFT ..... 34
WHY USE DSP ..... 36
CONCLUSION ..... 37
REFERENCES ..... 37

\section*{TABLE OF CONTENTS (Cont'd)}

LIST OF FIGURES


LIST OF TABLES
Table Title Page
Systems Resulting in a 5\% Interpolation Error 1 ..... 4
Systems Resulting in a \(0.2 \%\) Interpolation Error 1\(\begin{array}{r}5 \\ 8 \\ \hline\end{array}\)
Digital Output Word of A/DDFT vs. FFT Timing19
26

\section*{INTRODUCTION}

When one first looks into digital signal processing, (DSP), one finds that the it erature and textbooks abound with numerous theories and mathematical equations. Many of these concepts are difficult to understand when first encount ered, the reasons being that DSP is a new area to many; and there is no base knowledge upon which to build. Therefore, it is the purpose of this paper to provide that base. The paper will treat DSP in a practical manner, comparing it with analog applications whenever possible. The paper will include enough of the theory to maintain accuracy and understanding, but shall attempt to keep towards the applications side of DSP.

The paper starts with the input signal itself and discusses how the signal is sampled including filter considerations and sampling rates. Next, the paper covers how the sampled signal is quantized, or analog/digital converted. This section includes different quantization ules, dynamic range, is is discussed An overview of digital processors is presented, including aigital processor suited for signal processing parallel versus sequential structures, and some of the more useful functions for DSP.

Next, the paper covers two of the more common applications of DSP; namely, digital filters and Fast Fourier Transforms (FFT). In this part of the paper, two types of filters are discussed: the infinite impulse response (IIR) filter and the finite impulse response (FIR) are discussed: the infinite impulse response (int
filter. In the discussion on FFT's, iwo different algorithms are presented, the base 2 decimation in time and the base 2 decimation in frequency. The use of window functions for FFT's is also
covered. Finally, the paper concludes with the advantages of using digital signal processing over analog techniques.

\section*{digital signal processing overview}

All aspects of DSP fall into three main categories:
1. Conversion of the input signal
2. The digital processor
3. Information extraction

\section*{The Input Signal}

The input signal, which is analog in nature, can be classified as a continuous time, entinuous amplitude signal. To be of a form useful to a digital processor, the signal must be converted to a discrete time, discrete amplitude signal.

\section*{Sampling}

Sampling is the process by which the continuous time, continuous amplitude signal is converted to a discrete time, continuous amplitude signal. This is done by periodically taking minute time chunks out of the analog signal. The output of a sampler is a series of pulses whose minute time chunks out of the analog signal. The output can be represented by multiplying the input signal by a pulse train of uniform amplitude and equal spacing, see Pigure 1.


Pigure 1. Characteristic Signals In Sampling

The pulse spacing, \(T\), that is the sampling frequency, \(1 / T\), cannot be arbitrarily chosen. According to the Sampling Theorem, "If a continuous time function contains only frequency components below \(F\) cycles per second, 2 F samples per second surlice to represent perfectly and permit perfect recovery." The reason for this is more readily seen in the frequency domain.

Referring to Pigure 2, one can see that one of the byproducts of sampling is the duplication of the signal every \(\mathbf{F s}\), or the sample frequency. If the sample frequeney is kept bove or equal to 2F, Figure \(\mathbf{m b}\), the sampled frequency spectrum produces no overlap; and the
original signal can be retrieved. If the sample frequency drops below 2 F , the sample frequency spectrum starts to overlap. Any of the frequencies whose spectra are contained ind ind over about Fs/2 and into the actual frequency band, as indicated in Figure 2c. This foldover of frequency is called aliasing.

(a) BEFORE SAMPLING

(b) AFTER SAMPLING, Fs \(22 F\)

(c) AFTER SAMPLING, \(\mathrm{F}_{3}<2 F\)

\section*{Pigure 2. Prequency Domain}

Examples of frequency aliasing are witnessed daily by many unknowing observers. or example, in the old "Westerns", the stage coach rides out of town; and its wheels appear to speed up, stop, and then go backwards. The backwards revolution is caused by the movie camera not taking sufficient frames per second of the wheel to dep shown in a movie, revolution. Another example is when a television or computer is not updating the screen fast with black bars across the screen. Again, the moves car second while the television scans a enough. In this case, the camera

The sampling theory is all well and good on paper, but in reality it is difficult to emove all unwanted frequencies above the frequency of interest. The med The filter, however, has two disadvantages: it alters the signal of interest and, unless it has very steep skirts, has two disadvantages: encies are passed. A second solution is to sample at a faster rate than 2F. Here again, how much faster is open to debate. Sample too fast and one puts an undue burden on the digital processor.

Another consideration in determining sampling frequency is interpolation errors. Since one is dealing in discrete time, it is not known what has happened to the input signal between samples. Naturally, the faster the sample rate the more information known about the signal. When processing is finished, it may be desired to convert back to an analeg iosmooth, or conversion is usually done with

So now does one select the sample rate? Gardenhire in[1] presents a good approach to the problem. In his work, the sampling rate is based upon the amount of interpolation error tolerable from the output fiuter given a specified input Given a certain characteristic. The input rate is given for a \(5 \%\) error in Table 1 and a \(0.2 \%\) error in Table \(\mathbf{2}\).

Table 1. Systems Resulting in a 5\% Interpolation Rrror [1]

Normalized sample frequency ( \(\mathrm{F}_{\mathrm{g}} / \mathrm{f}_{1}\) )
\begin{tabular}{lcccccc} 
Interpolation Method & \(m=1\) & \(m=2\) & \(m=3\) & \(m=4\) & \(m=5\) & \(m=\) \\
& & & & & & \\
Wiener Optimum Filter & 640 & 11 & 5.1 & 3.8 & 2.6 & 2.0 \\
& & & 16 & 8.3 & 5.5 & 5.5 \\
Butterworth \(n=4\) \\
\(n=3\) \\
\(n=2\) & - & 18 & 9.2 & 6.7 & 6.7 & 6.5 \\
& \(1.2 \times 10^{3}\) & 29 & 17.0 & 11 & 11 & 11 \\
RC Filter \(n=1\) & \(1.2 \times 10^{4}\) & 220 & 130 & 91 & 91 & 91 \\
2 Point and Linear & & & & & & \\
Interpolation & 640 & 13 & 8.3 & 5.9 & 5.9 & 5.9 \\
3 Point Linear Interp. & 640 & 12 & 6.2 & 5.2 & - & 4.0 \\
4 Point Linear Interp. & 640 & 12 & 5.7 & 4.3 & - & 3.3
\end{tabular}

In these two tables, the filter methods employ analog interpolation after D/A conversion. The 2,3, or 4 point linear interpolation methods are done via a computer; and the conversion. The 2, out or is still in a digital format. It is interesting to note how the sample rate approaches the output is still in a digital format. theoretical rate of 2 F as the order of tries to follow the input signal more closely with a sample rate increases drastically shows the non-idealized filter frequency response for various valves of m .

For communications applications, however, one is dealing primarily with input filters whose order does approach infinity. The output filters are also optimized, or of Butterworth types. For these reasons a sample rate in the range of 2 to 5 times \(F\) should prove satisfactory.

\section*{Table 2. Systems Resulting in a 0.2\% Interpolation Error [1]}

Normalized sample frequency ( \(\mathrm{F}_{\mathbf{s}} / \mathrm{f}_{\mathbf{1}}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Interpolation Method & \(\mathrm{m}=1\) & \(\mathrm{m}=2\) & \(\mathrm{m}=3\) & \(\mathrm{m}=4\) & \(\mathrm{m}=5\) & \(\mathrm{m}=\) \\
\hline Wiener Optimum Filter & 4. \(1 \times 10^{5}\) & 93 & 19 & 10 & 3.4 & 2.0 \\
\hline Butterworth Filter, \(\mathrm{n}=4\) & - & 290 & 61 & 26 & 26 & 26 \\
\hline Buterworlh & - & 430 & 100 & 46 & 46 & 46 \\
\hline \(\mathrm{n}=2\) & - & \(1.1 \times 10^{3}\) & 300 & 160 & 160 & 160 \\
\hline Linear Phase Filter & - & \(1.5 \times 10^{3}\) & 6.10 & 400 & 400 & 400 \\
\hline RC Filter, \(n=1\) & - & \(2.0 \times 10^{3}\) & 850 & 540 & 540 & 540 \\
\hline 2 Point Linear Interp. & \(4.1 \times 10^{5}\) & 120 & 42 & 29 & 29 & 29 \\
\hline 3 Point Linear Interp. & \(4.1 \times 10^{5}\) & 105 & 25 & 17 & - & 12 \\
\hline 4 Point Linear Interp. & \(4.1 \times 10^{5}\) & 100 & 21 & 13 & - & 7.8 \\
\hline
\end{tabular}

Another error that appears during sampling is known as aperture error. This error is caused by the sample pulses taking a small amount of tine to capture the analog signal. During this time, the input voltage can change drastically as the signal goes through zero. This is indicated in Pigure 1 by the triangular shapes of some of the sampled
\[
\epsilon=\frac{\Delta V}{V_{F S}}=\begin{gathered}
2 \pi r \text {, where } V_{F S} \text { is the full scale voltage and } \tau \text { is the duration of the } \\
\text { puls }
\end{gathered}
\]

Expressed another way, the acceptable pulse duration can be calculated as
\(\tau=(2 \pi \times F \times 2 \pi)^{-1}\) where \(n\) is the number of bits of resolution of the A/D converter
for an A/D converter with a 1 LSB error (the 1LSB error is explained in the next section). For instance, if the input frequency is 10 kHz and eight bits of resolution are used, the allowable pulse duration \(=63.5 \mathrm{~ns}\).

To alleviate aperture error, a track and hold amplifier can be inserted before the A/D converter. This device's output will follow the input signal while its track digital level is ative. When the track input switches, the output is held at its current level and will not vary over the duration of the pulse.

\section*{quantization}

After the discrete time, continuous amplitude signal is obtained, it must then be converted to a discrete time, discrete amplitude signal for the digital processor. This process is formally called quantization, but it is more commonly known as analog to digital (A/D) conversion. A quantizer takes a specific amplitude range and divides it into a series of discrete steps, Q. A digital number is then assigned to each Q.

The number of bits in the digital word determines the number of steps that can be achieved. For \(n\) bits, the number of steps would be 2 n . Each step Q , or for each change of 1 LSB, would be
\(Q=V_{F S} / 2^{n}\), where \(V_{F S}\) is the full scale magnitude of the allowable input voltage.
If the input signal falls between steps then the digital number assigned to it depends on whether the quantizer rounds the samples or truncates them.

Pigure fa shows the quantizer characteristics with rounding. As its name implies, the quantizer rounds off the analog input to the nearest quantizer level, \(Q\). In truncation, Pigre it, the signal is represented by the highest \(Q\) level that is not greater theror from the original signal would be \(\pm 1 / 2\) LSB for rounding and a 0 or +1 LSB for truncation. An error of \(\pm 1 / 2\) LSB yields a mean error of zero, whereas a 1 LSB error yields a mean error of \(+1 / 2\) LSB. For this reason, rounding is preferred in most practical considerations.


Pigure 4. Quantizer Characteristica

How the digital word is represented is another area of consideration. Binary epresentation the digital word is represent negative numbers. Again, for most practical representation varies widely for positive and negative numbers. Again, for most practical considerations, two's complement representation is chosen because most processors use this type of representation. Also, for other appleat 0 t \(V_{\text {FS }}\) or \(-V_{F S} / 2\) to \(+V_{F S} / 2\), as well as other列 representation.

Finally, once the quantizer or \(\mathrm{A} / \mathrm{D}\) converter is chosen, the number of bits of resolution must be decided. It is important to point out here that wh. le a large number of bits will represent an anolog signal more accurately, they will not represent a cleaner analog signal. will represent an anolog signal more accurately, they wise that is some small portion of that in every analog signal, there exists the smaller the step size in the quantizer. The smaller the signal. With more the more the digital word is affected by noise, so that the lower significant bits only serve to give a good representation of this noise.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\begin{array}{ll}\text { Table 3a } & \begin{array}{l}\text { Digital Word for } \\ \text { Bipolar Inputs, } \pm \mathrm{V}_{\mathrm{PS}} / 2\end{array} \\ & \mathrm{~V}_{\mathrm{FS}}=10 \mathrm{~V}\end{array}\)} & Table 3b & Digital Word for Unipolar Inputs, \(V_{F S}=10 \mathrm{~V}\) \\
\hline INPUT & OUTPUT & INPUT & OUTPUT \\
\hline & MSB LSB & & MSB LSB \\
\hline -5V & 10000000 & 0.000 & 00000000 \\
\hline -4.961 & 10000001 & 0.039 & 00000001 \\
\hline -4.922 & 10000010 & 0.078 & 00000010 \\
\hline - & - & . & . \\
\hline - & - & - & - \\
\hline -0.078 & 11111110 & 5.000 & 10000000 \\
\hline -0.039 & 11111111 & 5.000 & 10000000 \\
\hline 0.000 & 00000000 & . & - \\
\hline 0.039 & 00000001 & & \\
\hline . & . & 9.961 & 11111111 \\
\hline - & - & & \\
\hline 4.922 & 01111110 & & \\
\hline 4.961 & 01111111 & & \\
\hline
\end{tabular}

Rather, it would be better to base the number of bits of resolution on the dynamic range desired in the system. A formula that relates the number of bits of resolution, \(n\), to dynamic range is

Range \((\mathrm{dB})=\left|-20 \log \left(2^{n}\right)\right|\)
or rewriting to solve for n
\(n=\) Range (dB) / 6

There also exists a certain amount of quantization noise due to the \(\pm 1 / 2\) LSB error. To allow for this, it can be shown that [2] another way of expressing dynamic range is as a signal to noise ratio
\[
S N R=6 n-1.24 d B
\]

\section*{Digital Processor}

A digital processor refers to any form of hardware and/or software that has been built and/or programmed to perform signal processing algorithms on the data output from the sampler/quantizer. This definition encompasses a broad range of computing power. For the purposes of this paper, we shall concentrate on those processor architectures that lend themselves to signal processing and on the basic structures used in determining the processor(s) configuration.

Basically a digital processor should be modular in design; i.e., the processor, by itself, is capable of such rudimentary tasks as addition, subtraction, multiplication, memory transfers, and I/O transfers. Additional support such as direct interface to A/D and D/A converters, and the capability of working with blocks of data would also be helpful. Although it is not expected to have all of these capabilities, the processor should still perform whateve capabilities it does have without outside support. In this way, when a simple task needs to be can be added one module is used. As the task becomes more complicated, processor mod le themselves readily to this modularity. Each application can be broken down into several themselves readily to this modularity. Each application can be brok
smaller algorithms which can be further decomposed into simpler tasks.

Multiple processors can be implemented using two basic approaches, a parallel structure or a sequential structure. A parallel structure is defined by Tewksbury, et al, in 5 as being the concurrent execution of several functional operations using a number of distine tructure \(n\) the algorithm in a single functional module One could an the functional operations of the could have several modules, but one module cannot begin pross urii thequential sure it finished.

\section*{Parallel Structures}

A parallel structure is shown in Figure 5. Each processor receives its data from a shared input source. Each processor then sends its processed data to a shared output. Using this type of structure, the functional operation speed can be increased by dividing the data processing over a greater number of processing modules. However, there is a point of diminishing returns for additional processors due to the increased complexity of the control structure.


Figure 5. Parallel Processor Structure

Another advantage of a parallel structure is that each processor module can be composed of an efficient functional unit with limited capabilities. This does, however, deviate from the strict definition of modularity and also does allow fewer common tasks, such as multiplication, to be handled by processors especially designed for the functional task. general purpose processors
 processing speed can be increased for the structure by allowing each processor to handie the tasks for which it is best suited.

One of the disadvantages of parallel structures is that their control structures can be quite complex. Since each module is operating at a different throughput, timing of all the functions becomes another critical area. For both of these reasons, hardware design and consequently, programming become difficult.

\section*{Sequential Structures}

A sequential processor is shown in Pigure 6. The first processor in the sequence receives the incoming data. The first processor performs its assigned tasks on the data and passes along this new data to the next stage. The process continues as each processor performs its specific tasks until the final data output is reached. It is not necessary that each processor work on all the incoming data. It could just pass some of the data through to the next stage. The next stage's processor, however, would wait until it received all of the data from the previous stage before it started processing.


Pigure 6. Sequential Processor Structure

The added delay caused by each stage waiting for the previous stage to finish processing is one of the sequential structures disadvantages. This same delay also produces one of the advantages; it simplifies controller design. The controller does not have to keep track of data that is earmarked for a particular stage. At each stage, all of the data is passed along a
once. A simpler controller allows more efficient, more straightforward hardware designs. Consequently, sequential structures are easier to program.

\section*{Parallel vs Sequential}

Ultimately, the choice between parallel or sequential structuring depends greatly on how well a particular signal processing algorithm lends itself to one or the other. Indeed, some algorithms may incorporate both. Anorer is a trade a consideration, then the less expensive easier hardware designs of the sequential processo would be preferred.

\section*{Information Extraction}

The final end product of any form of signal processing, analog or digital, is the extraction of information from the input signal. The information can be a breakdown of the signal into its frequency components for signal analysis. The information could also be the altering of the signal's spectrum as in filt ering. It can be the intelligence content of the signa as in detection.

Whatever the reason for signal processing, the end product is as varied as the system designers who try to make use of it. This paper will now continue with two of the more common applications of digital signal processing: Filters and Fast Fourier Transforms

\section*{DIGTTAL PLLTERS}

\section*{Signal Plow Notation}

By the very nature of digital signal processing, one is limited to only three types of operations in a processor. These are shown in Pigure 7a. The common form of gain or multiplication, summation, and delay for DSP is in signal flow graph notation as illustrated in Pigure 7b

\section*{Difference Equations}

In analog systems, filters are designed by using differential equations. The filter transfer function \(\mathbf{H}(\mathrm{t}\) ), such as
\[
x(t) \rightarrow H(t) \rightarrow y(t)=X(t) * H(t)
\]
is defined in terms of differential equation of \(y\) and \(x\). For digital systems, these equations are there exist two forms most commonly used to describe eplaced with difference equations. There exist form.

GAIN OR
MULTIPLICATION

\(\times 10\)


DELAY


\section*{Pigure 7. Three Basie DSP Operations}

The recursive equation is given as
\(y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)-\sum_{j=1}^{M} b_{j} y(n T-j T)\), where \(T\) is the sample interval.
This form is called recursive because the current out put, \(\mathrm{y}(\mathrm{nT})\), is not only a function of present and past inputs \(x(n T-j T)\), but also a function of all past outputs, \(y(n T-i T)\). The recursive difference equation is used to describe an IIR filt er. The reason why shall be shown later in the section on IIR filters.

The non-recursive equation is given as
\(y(n T)=\sum_{i=0}^{N} a_{i} \times(n T-i T)\).
For these equations the output \(y(\mathrm{nT})\) is defined only in terms of the current and past inputs. Non-recursive difference equations are used to describe FIR filters. More on this is provided in the FIR filter section.

\section*{2 Transform}

The Laplace transform is used to simplify the design of analog filters. The differential equations that describe the filters may be solved using algebraic techniques afte differential equations that descrike the the Z transform allows the use of algebraic techniques they have been transformed.
for solving difference equations.

The Z transform, \(\mathrm{X}(\mathrm{z})\), of a series, \(\mathrm{x}(\mathrm{nT})\) is given as
\(X(z)=\sum_{n=-\infty}^{\infty} x(n T) z^{-n}, \quad\) two sided or bilateral
\(X(z)=\sum_{n=0}^{\infty} x(n T) z^{-n}, \quad\) one sided transform.
For most applications in linear, time invariant digital filters, only the one sided transform wor most applications in the two sided transform finds use in image and video processing where there may be two, three or more dimensions and functions that are defined for values of \(n 0\).

By way of example, it would be helpful to transform some of the discrete By way of example, it wound
counterparts of analog functions as shown below:

Unit impulse, or unit sample function \(\delta(n T)\)
\(\begin{array}{ll}\delta(n T) & =\begin{array}{ll}1 & n=0 \\ 0 & n<0\end{array} \\ z\{\delta(n T)\} & =\sum_{n=0}^{\infty} \delta(n T) z^{-n}\end{array}\)
\(=\delta(0) z^{-0}+\delta(T) z^{-1}+\delta(2 T) z^{-2}+\ldots\)
\(=1+0+0+\)
\(=1\)

Unit Step \(u(n T)\)
\(u(n T)=1\), for \(n \quad 0\)
\(z u(n T) \quad=\sum_{n=0}^{\infty} u(n T) z^{-n}\)
\(=z^{-0}+z^{-1}+z^{-2}+\ldots\)
\(\mathrm{zu} u(\mathrm{nT})=\frac{\mathrm{z}}{\mathrm{z}-1},|\mathrm{z}|>1\)

\section*{Exponential \(\mathbf{K a n}^{\boldsymbol{n}}\)}
\[
\begin{aligned}
Z\left\{K a^{n}\right\} & =\sum_{n=0}^{\infty} K a^{n} z^{-n}=K \sum_{n=0}^{\infty}\left(a^{-1} z\right)^{-n} \\
& =K\left(a^{-1} z\right)^{0}+K\left(a^{-1} z\right)^{-1}+K\left(a^{-1} z\right)^{-2}+\ldots \\
Z\{K a n\} \quad & =\frac{K z}{z-1},|z|>1
\end{aligned}
\]

Delay
\(y(n T)=X(n T-T)\)
\(z\{y(n T)\}=z\{x(n T-T)\}=\sum_{n=0}^{\infty} x(n T-T) z^{-n}\)
\(Y(z)=X(-T) z^{0}+X(0) z^{-1}+X(1) z^{-2}\)
since \(\quad X(n T)=0\) for \(n<0, x(-T)=0\)
then factoring by \(\mathrm{z}^{-1}\), the equation becomes
\(\mathbf{Y}(\mathrm{z})\)
\(=z^{-1}\left(x(0) z^{0} x(1) z^{-1}+x(2) z^{-1}+\ldots\right)\)
\(=z^{-1} X(z)\)
thus \(z^{-1}\) can represent a \(T\) delay of the function \(x(n T)\)

The two difference filter equations will next be transformed

\section*{Recursive}
\(y(n T)\) \(\sum_{i=0}^{N} a_{i} x(n T-i T)-\sum_{j=1}^{M} b_{j} y(n T-j T)\)
\(z\{y(n T)\}=z\left\{\sum_{i=0}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{M} b_{j} y(n T-j T)\right\}\)
since these equations are by definition linear, the above becomes
\(Y(z) \quad=\sum_{i=0}^{N} a_{i} Z\{(n T-i T)\}-\sum_{j=1}^{M} b_{j} Z\{y(n T-j T)\}\)
which was just solved, thus
\(\mathbf{Y}(\mathbf{z})\)
\[
=\sum_{i=0}^{N} a_{i} z^{-i} X(z)-\sum_{j=1}^{M} b_{j} z^{-j} Y(z)
\]
rearranging the terms yields
\[
\frac{\sum_{i=0}^{N} a_{i} z^{-i}}{1+\sum_{j=0}^{M} b_{i} z--j}=\frac{Y(z)}{X(z)}=H(z), \text { where } b_{0}=1
\]

\section*{Non-recursive}
\(y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)\)
\(z y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)\)
\(Y(z) \quad=\sum_{i=0}^{N} a_{i} Z x(n T-i T)\)
\(Y(z) \quad=\sum_{i=0}^{N} a_{i} z^{-i} X(z)\)
\(\sum_{i=0}^{N} a_{i} z^{-i}=\frac{Y(z)}{X(z)}=H(z)\)

\section*{IR Pilters}

In the previous section it was shown that the general equation for IIR filters was the recursive form. This is because, just like their analog counterparts, discrete filters are described by their response to classic input functions. The most typical of these functions is the impulse function or unit sample function for discrete. The response of a recursive filter, or IIR filter, to the unit sample function is given below.
\[
\text { Let } \begin{aligned}
& x(n T)= \delta(n T) \\
& h(n T)= 0, n<0 \\
& h(n T)= \sum_{i=0}^{N} a_{i} x(n T-i T)-\sum_{j=1}^{M} b_{j} h(n T-j T) \\
& \text { letting } M=N=1 \text { for a first order equation, } \\
& \\
& h(n T)= a_{0} \times(n T)+a_{1} \times(n T-T)+\left(-b_{1}\right) h(n T-T) \\
& h(0)= a_{0} \times(0)+a_{1} \times(-T)+\left(-b_{1}\right) h(-T)=a_{0} \\
& h(T)= a_{0} \times(T)+a_{1} \times(0)+\left(-b_{1}\right) h(0)=\left(-b_{1}\right) a_{0}+a_{1} \\
& h(2 T)= a_{0} \times(2 T)+a_{1} \times(T)+\left(-b_{1}\right) h(T)=a_{0}\left(-b_{1}\right)^{2}+a_{1}\left(-b_{1}\right) \\
& \cdot \\
& \\
& h(N T)= a_{0} \times(N T)+a_{1} \times(N T-T)+\left(-b_{1}\right) h(N T-T)=a_{0}\left(-b_{1}\right)^{N}+a_{1}\left(-b_{1}\right) \\
& h(n) \quad=\left[a_{0}\left(-b_{1}\right)^{n}+a_{1}\left(-b_{1}\right) n-1\right] u(n)
\end{aligned}
\]

The response \(h(n)\) to an excitation \(x(n)=(n)\) goes to infinity as \(n\). Thus the recursive difference equation has an infinite impulse response and hence its name of IIR.

A signal now graph for a general IIR filter is shown in Pigure 8. This form is known as the direct form 1. Its implementation however, is very inefficient. It can be shown 4 that another equivalent form of the direct form 1 is that shown in Pigure 9. This equivalent form is known as the direct form 2.

Note that in both Figures 8 and \(9 \mathrm{~N}=\mathrm{M}\). For this configuration the order of the filter can be given as either \(M\) or \(N\). If \(N \neq M\) then the order of the filter would be whichever is reater. To obtain maximum efficiency, there should be as many delay stages as the order of fiter. In Pigure 8 , there are \(\mathrm{M}+\mathrm{N}\) delay stages, or 2 N . Whereas, in Figure 9 , the delay stages were reduced to \(N\)

Through various mathematical manipulations, the IIR filter may be configured in many forms. Each form will yield a slightly different now graph; however, all forms are equivalent and produce the same type of filtering.
\(y(n T)=O_{O} \times(n T)+O_{1} x(n T-T)+O_{2} \times(n T-2 T)+\cdots+O_{N} \times(n T-N T)+\) \(b_{1} y(n T-T)+b_{2} y(n T-2 T)+\cdots+D_{M} y(n T-M T)\)


Pigure 8. Direct Porm I IIR Pilter
\[
\begin{aligned}
& D(n T)=x(n T)+D_{1} p(n T-T)+\cdots+p(n T-M T) \\
& y(n T)=o_{o} p(n T)+o_{1} p(n T-T)+\cdots+p(n T-N T)
\end{aligned}
\]


Pigure 9. Direet Form II IIR Pilter

\section*{PIR Filters}

FIR filters are represented by non-recursive difference equations. Their name FIR filters are represented
results from the fact that a unit sample input produces a finite impulse response. For instance
\begin{tabular}{rl} 
let \(x(n T)\) & \(=\delta(n T)\) \\
\(h(n T)\) & \(=0, n<0\) \\
\(h(n T)\) & \(=\sum_{i=0}^{1} a_{i} \times(n T-i T)\), letting \(N=1\) \\
\(h(n T)\) & \(=a_{0} \times(n T)+a_{1} \times(n T-T)\) \\
\(h(0)\) & \(=a_{0} \times(0)+a_{1} \times(-T)=a_{0}\) \\
\(h(T)\) & \(=a_{0} \times(T)+a_{1} \times(0)=a_{1}\) \\
\(h(2 T)\) & \(=a_{0} \times(2 T)+a_{1} \times(T)=0\) \\
&. \\
\(h(N T)\) & \(=0\)
\end{tabular}

Thus, for a first order difference equation, an FIR filter only has an output for two sample Thus, 10.
\(h(n)=\sum_{i=0}^{N-1} a_{i} x(n T-T), \quad \begin{aligned} & \text { the upper value of } i \text { is changed } \\ & \text { to } N-1 \text { so that } h(n) \text { is defined over } N \text { samples }\end{aligned}\)
\(y(n T)=0_{0} \times(n T)+0_{1} \times(n T-T)+\cdots+0_{N-1} \times(n T-(N-1) T)\)


Figure 10. General Porm of PlR Pilter
As in חR filters, the order of the filter ( \(\mathrm{N}-1\) ) determines the number of delay stages used.

\section*{IR and PIR Designs}

The final step before going to hardware is choosing the filter coefficients \(a_{i}\) and \(b_{j}\). The values of these filter coefficients determine the type of filter; i.e., lowpass, bandpass, highpass.

The actual coefficient calculations are somewhat involved. For some applications, one only need to put the filter specifications into the proper computer program. The details of which will not be presented in this paper, but references will be listed at the end of
Some other considerations during the hardware implementation are as follows (8):
1. Choose filter structure.
2. Choose between fixed point and floating point arithmetic (floating point allows greater dynamic range but could have greater inherent noise).
3. Choose between serial and parallel processing.
4. Choose arithmetic devices.

As in many of the previous design structures, the filter structure is basically a Af As in mares. For instance, if linear phase is desired, then the FIR filter is trade off of desired performances. For instance, if linear phase is desired, then the FIR filter is one's only choice. If one desires to implement an existing analog filter, and firter coefficients. be designed using existing transforms Other trade offs are listed in Table 4.

\section*{Table 4. Digital Filter Trade Offs [2]}
\begin{tabular}{lll} 
& IIR & FIR \\
Coefficient sensitivity & HIGH & LOW \\
Data word size growth & HIGH & SLIGHT, only in adder \\
Number of multiplications & LEAST & MOST \\
Required memory & LEAST & MOST \\
Ease of design & MODERATE & EASY \\
Filter control complexity & MODERATE & EASY \\
Linear phase & NO & YES \\
Stability & DIFFICULT & UNCONDITIONALLY \\
Adaptive possible & NO & YES
\end{tabular}

\section*{THE PAST POURIER TRANSFORM}

One of the most common uses of DSP is frequency domain analysis. The wide spread use of this analysis tool has only recently been made available to small processors through advances in power and speed of the processors and by the Fast Fourier Transform, or FFT. The FFT is a very efficient means of calculating the discrete Fourier Transform, or DFT. The DFT is the discrete form of the Fourier Transform. The Fourier Transform is a means of transforining time-based signals into their frequency based components.

Recall that the Fourier transform, \(\mathrm{C}(\mathrm{f})\), of a continuous time function, \(\mathrm{x}(\mathrm{T})\), is given as
\[
C(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2} f t d t
\]

Notice its similarities to the DFT of a finite duration sequence, \(x(n T)\), over the interval 0 n N-1
\[
C(k F)=\sum_{n=0}^{N-1} x(n T) e^{-j 2 \pi k F n T}, \quad k=0,1, \ldots, N-1
\]
where T is the sample interval and F is the resulting frequency interval.

To simplify notation, kF and nT are replaced by just \(k\) and \(n\), resp. and the substitutions are made of \(F=1 / N T\) and \(W=\exp (-j 2 \pi / N)\)
\[
C(k)=\sum_{n=0}^{N-1} x(n) w^{n k}
\]

It shall be shown later that W is periodic in N . To show this periodicity, W is of ten written as \(W_{N}\).

To show how much computation time the FFT is saving, we must first see what it takes to solve the DFT. The direct evaluation of the complex DFT can be expanded as
\[
\begin{aligned}
C(0)= & \operatorname{Re}\{x(0)\} \cdot \operatorname{Re}\left\{\left(W_{N}\right)\right\}-\operatorname{Im}\{x(0)\} \cdot \operatorname{Im}\left\{W_{N}^{0} 0\right\} \\
& +j\left[\operatorname{Re}\{x(0)\} \cdot \operatorname{Im}\left\{W_{N}^{0} 0\right\}+\operatorname{Im}\{x(0)\} \cdot \operatorname{Re}\left\{W_{N}^{0}\right\}\right] \\
& +\cdots+\cdots \cdot \operatorname{Im}\left\{W_{N}^{(N-1) 0}\right\} \\
+ & \operatorname{Re}\{x(N-1)\} \cdot \operatorname{Re}\left\{W_{N}{ }^{(N-1) 0}\right\}-\operatorname{Im}\{x(N-1)\} \cdot(N-1) 0 \\
& +j\left[\operatorname{Re}\{x(N-1)\} \cdot \operatorname{Im}\left\{W_{N}^{(N-1) 0}\right\}+\operatorname{Im}\{x(N-1)\} \cdot \operatorname{Re}\left\{W_{N}^{(N)}\right\}\right.
\end{aligned}
\]

\[
\begin{aligned}
& \left.+\cdots \cdot+\operatorname{Re}^{(N-1)(N-1)}\right\}-\operatorname{Im}\{x(N-1)\} \cdot \operatorname{Re}\left\{W_{N}{ }^{(N-1 m}\left\{W_{N}^{(N-1)(N-1)}\right\}\right. \\
& +j\left[\operatorname{Re}\{x(N-1)\} * \operatorname{Im}\left\{W_{N}^{(N-1)(N-1)}\right\}+\operatorname{Im}\{x(N-1)\} \cdot \operatorname{Re}\left\{W_{N}^{(N-1)}\right\}\right]
\end{aligned}
\]

As can be seen, the direct evaluation of the DFT can get rather messy. For each k; there are four real multipliers for each value of \(n\), with \(N\) values of \(n\) this comes to 4 N multipliers. Since there are \(N\) values of \(k\), the total number of real multipliers comes to \(4 N^{2}\). For each \(k\); there there are \(N\) values of \(k\), the total number of real multipliers comes to \(4 N\). For each \(k\); there is \(N(4 N-2)\). Put another way, the DFT takes \(N^{2}\) complex multiplications and \(N(N-1)\) complex additions to perform. By using the FFT, it will be shown that these calculations can be reduced to \(\mathrm{N} \log _{2}(\mathrm{~N})\) each for multiplication and addition.

To simplify the notations, for the rest of the FFT discussions it will be assumed that \(\mathrm{N}=8\), although it should be easy enough for the reader to expand the discussions to large values of N . Now with \(\mathrm{N}=8\), the time index n can take on value from \(0 \quad \mathrm{n} 7\) and likewise for the frequency index \(k, 0\), k . Thus both of these indices can be represented as three bi binary words. Rewriting \(n, k\), and the DFT equations as
\[
n=2^{2} n_{2}+2^{1} n_{1}+2^{0} n_{0}
\]
\[
\begin{array}{ll}
\text { OR } & n=4 n_{2}+2 n_{1}+n_{0} \\
& k=4 k_{2}+2 k_{1}+k_{0}
\end{array}
\]
\[
C\left(k_{2}, k_{1}, k_{0}\right)=\sum_{n_{2}}^{1} \sum_{n_{1}}^{1} \sum_{n_{0}}^{1} \quad x\left(n_{2}, n_{1}, n_{0}\right) w^{\left(4 n_{2}+2 n_{1}+n_{0}\right)\left(4 k_{2}+2 k_{1}+k_{0}\right)}
\]

To reduce the DFT equation further, either the time index \(n\) or the frequency index \(k\) can be factored. In doing so, there is a division or "decimation in time" or a decimation in frequency".

\section*{Decimation in Time (DIT)}

The decimation in time (DIT) algorithm starts by factoring the time index \(n\) of the above DFT equation.
\(C\left(k_{2}, k_{1}, k_{0}\right)=\sum_{n_{2}=0}^{1} \sum_{n_{1}=0}^{1} \sum_{n_{0}=0}^{1} x\left(n_{2}, n_{1}, n_{0}\right) w^{4 n_{2}\left(4 k_{2}+2 k_{1}+k_{0}\right)} \ldots\).
It is here where \(W^{l}\) s periodicity in N begins to be exploited. Remember that \(W=\exp (-\mathrm{j} 2 \pi / \mathrm{N})=\exp (-\mathrm{j} 2 \pi / 8)\). Whk can be represented by a vector on a unit circle in the s-plane as

Since \(N=8\), there are eight possible vectors


Now, it should be clear how \(W\) is periodic in \(N\). For \(N=8, w^{8}=W^{0}, w^{9}=w^{1}\), etc. Since \(W^{0}=1\) and any integer multiple of 8 will yield \(W^{8 n k}=1\) thus
\[
\begin{aligned}
& w^{2 n_{2}\left(4 k_{2}+2 k_{1}+k_{0}\right)}=w^{16 n_{2} k_{2}} w^{8 n_{2} k_{1}} w^{4 n_{2} k_{0}}=w^{4 n_{2} k_{0}} \\
& \left.w^{2 n_{1}\left(4 k_{2}+2 k_{1}+k_{0}\right.}\right)=w^{8 n_{1} k_{2}} w^{2 n_{1}\left(2 k_{1}+k_{0}\right)}=w^{2 n_{1}\left(2 k_{1}+k_{0}\right)}
\end{aligned}
\]
so that
\[
C\left(k_{2}, k_{1}, k_{0}\right)=\sum_{n_{2}}^{1} \sum_{n_{1}}^{1} \sum_{n_{0}}^{1} x\left(n_{2}, n_{1}, n_{0}\right) w^{4 n_{2} k_{0}} w^{2 n_{1}\left(2 k_{1}+k_{0}\right)} w^{n}\left(4 k_{2}+2 k_{1}+k_{0}\right)
\]

The inner summation can be represented as a separate equation by replacing \(n_{2}\) by \(k_{0}\) in \(x\left(n_{2}\right.\) \(n_{1}, n_{0}\) ) and summing over \(n_{2}\)
\[
x_{1}\left(k_{0}, n_{1}, n_{0}\right)=\sum_{n_{2}=0}^{1} x\left(n_{2}, n_{1}, n_{0}\right) w^{4 n_{2} k_{0}}
\]
\[
\begin{aligned}
& \text { The next summation can be similarly rewritten in } k_{1} \text { and } n_{1} \text { as } \\
& \left.\qquad X_{2}\left(k_{0}, k_{1}, n_{0}\right)=\sum_{n_{1}=0}^{1} X_{1}\left(k_{0}, n_{1}, n_{0}\right) w \begin{array}{l}
\text { a }
\end{array}\right)
\end{aligned}
\]
and finally
\[
X_{3}\left(k_{0}, k_{1}, k_{2}\right)=\sum_{n_{0}=0}^{1} X_{2}\left(k_{0}, k_{1}, n_{0}\right) w^{n_{0}\left(4 k_{2}+2 k_{1}+k_{0}\right)}
\]

The DFT can now be expressed as
\[
C\left(k_{2}, k_{1}, k_{0}\right)=X_{3}\left(k_{0}, k_{1}, k_{2}\right) .
\]

Note that three sets of equations were developed, \(X_{i}, i=1,2,3\). This is because \(N=8\). If \(N\) were arger then the number equations would be equal to \(\log 2(N), N\) is assumed to be a power of 2 Also note that the ordering of the binary digits (bits) is reversed between the final result, C(k2 \(\mathbf{k}_{1}, \mathrm{~K}_{0}\) ) and the last equation \(\mathrm{X}_{3}\left(\mathbf{k}_{0}, \mathbf{k}_{1}, \mathrm{k}_{2}\right)\). This reversed is known as bit reversal mapping and shall be further discussed later.

\section*{Expending the three equations}

STAGE 1
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{X}_{1}\) & \multicolumn{2}{|l|}{\[
\sum_{n_{2}=0}^{1} x\left(n_{2}, n_{1}, n_{0}\right) w
\]} \\
\hline \(\mathrm{X}_{1}(0,0,0)=\mathrm{X}(0,0,0)\) & + & \(\mathrm{X}(1,0,0) \mathrm{w}^{4 *}{ }^{*} 0\) \\
\hline \(\mathrm{X}_{1}(0,0,1)=\mathrm{X}(0,0,1)\) & + & \(x(1,0,1) W^{4 * 1 *}\) \\
\hline \(\mathrm{X}_{1}(0,1,0)=\mathrm{X}(0,1,0)\) & + & \(x(1,1,0) W^{4 * 1} 0\) \\
\hline \(\mathrm{X}_{1}(0,1,1)=\mathrm{X}(0,1,1)\) & + & \(X(1,1,1) W^{4 * 1 *}\) \\
\hline \(\mathrm{X}_{1}(1,0,0)=\mathrm{X}(0,0,0)\) & + & \(x(1,0,0) W^{4 * 1 *}\) \\
\hline \(\mathrm{X}_{1}(1,0,1)=\mathrm{X}(0,0,1)\) & + & \(x(1,0,1) W^{4 * 1 *}\) \\
\hline \(\mathrm{X}_{1}(1,1,0)=\mathrm{X}(0,1,0)\) & + & \(x(1,1,0) w^{4 * 1} 1\) \\
\hline \(\mathrm{X}_{1}(1,1,1)=\mathrm{X}(0,1,1)\) & + & \(X(1,1,1) W^{4 * 1}{ }^{*}\) \\
\hline
\end{tabular}

8 complex additions, 8 complex multiplications

In these equations only two powers of \(W\) are used, \(W^{0}\) and \(W^{4}\). Relating to the periodicity of \(N\), \(W^{4}\) is nothing more than the negative of \(W^{0}\), that in \(W^{4}=W^{0}\). The above equations can be more easily written in their signal flow graph notation. To remove some of the clutter of the graph a special notation known as the butterfly is used.


As can be seen, the top right node is the sum of the two left nodes and the bottom right node is he difference of the two left nodes. With that in mind, compare there flow graphs with the preceding equations, using the fact that \(W^{4}=-W^{0}\)



STAGE 2
\[
x_{2}\left(k_{0}, k_{1}, n_{0}\right)=\sum_{n_{1}=0}^{1} x_{1}\left(k_{0}, n_{1}, n_{0}\right) w^{2 n_{1}\left(2 k_{1},+k_{0}\right)}
\]
\(\mathrm{X}_{2}(0,0,0)=\mathrm{X}_{1}(0,0,0)+\mathrm{X}_{1}(0,1,0) w^{2 * 1(0+0}\)
\(x_{2}(0,0,1)=x_{1}(0,0,1)+x_{1}(0,1,1) w^{2 *} 1(0+0)\)
\(x_{2}(0,1,0)=x_{1}(0,0,0)+x_{1}(0,1,0) w^{2 \cdot 1(2+0)}\)
\(x_{2}(0,1,1)=x_{1}(0,0,1)+x_{1}(0,1,1) w^{2 *} 1(2+0)\)
\(x_{2}(1,0,0)=X_{1}(1,0,0)+X_{1}(1,1,0) w^{2 *} 1(0+1)\)
\(x_{2}(1,0,1)=x_{1}(1,0,1)+x_{1}(1,1,1) w^{2 *} 1(0+1)\)
\(X_{2}(1,1,0)=x_{1}(1,0,0)+x_{1}(1,1,0) w^{2 * 1(2+1)}\)
\(x_{2}(1,1,1)=x_{1}(1,0,1)+x_{1}(1,1,1) w^{2 * 1(2+1)}\)
8 complex additions, 8 complex multiplications
\[
\begin{array}{ll}
\text { powers of } W: & w^{0}, w^{2}, w^{4}, w^{6} \\
\text { equalities }: & w^{4}=-w^{0}, w^{6}=-w^{4}
\end{array}
\]

\section*{Signal Flow Graphs}




STAGE 3
\(x_{3}\left(k_{0}, k_{1}, k_{2}\right)=\sum_{n_{1}=0}^{1} x_{2}\left(k_{0}, k_{1}, n_{0}\right) w^{n_{0}\left(4 k_{2}+2 k_{1}+k_{0}\right)}\)
\(X_{3}(0,0,0)=X_{2}(0,0,0)+X_{2}(0,0,1) w^{(0+0+0)}\)
\(X_{3}(0,0,1)=X_{2}(0,0,0)+X_{2}(0,0,1) w^{(4+0+0)}\)
\(X_{3}(0,1,0)=X 2(0,1,0)+X_{2}(0,1,1) w^{(0+2+0)}\)
\(X_{3}(0,1,1)=X 2(0,1,0)+X_{2}(0,1,1) W^{(4+2+0)}\)
\(X_{3}(1,0,0)=X 2(1,0,0)+\quad X_{2}(1,0,1) w^{(0+0+1)}\)
\(X_{3}(1,0,1)=X 2(1,0,0)+X_{2}(1,0,1) W^{(4+0+1)}\)
\(X_{3}(1,1,0)=X 2(1,1,0)+X_{2}(1,1,1) W^{(0+2+1)}\)
\(X_{3}(1,1,1)=X 2(1,1,0)+X_{2}(1,1,1) W^{(4+2+1)}\)
8 complex additions, 8 complex multiplications
\[
\begin{array}{ll}
\text { powers of } w: & w^{0}, w^{1}, w^{2}, w^{3}, w^{4}, w^{5}, w^{6}, w^{7} \\
\text { equalities : } & w^{7}=-w^{3}, w^{6}=-w^{2}, w^{5}=-w^{1}, w^{4}=-w^{0}
\end{array}
\]

\section*{Signal Flow Graphs}



\section*{Advantages of DIT Algorithm}

One may note, that for each stage of the FFT the results could be placed back into the same location that the input data came from. For example \(X_{i}+1(0,0,0)\) could be put into \(\mathbf{X}_{\mathbf{j}}(0,0,0)\). This is what is known as an in place calculation. The advantage of an in place gorithm is that, except for a few meinory locations to store int ermediate result, only enough meinory as data, one set of memory for data and an equivalent set for results.

By using the DIT algorithm, the calculations to perform the DFT are greatly reduced. For each stage it only took 8 complex multiplications and 8 complex additions. There perations were required in hereas the DFT is \(\mathrm{N}^{2}\). Tmble 5 shows some representive common values of N .

Table 5. DFT vs. PFT Timing
\begin{tabular}{rrr}
N & \(\mathrm{N}^{2}\) & \(\mathrm{~N} \log _{2} \mathrm{~N}\) \\
32 & 1024 & 160 \\
64 & 4096 & 384 \\
512 & 262144 & 4608 \\
1024 & 1048576 & 10240 \\
2048 & 4194304 & 22528
\end{tabular}

\section*{Bit Reversal Mapping}

One disadvantage of the DIT algorithm is that the data arrays get shuffled during calculation operations. Even though the calculations are performed in place, the order of the

As seen earlier, the output frequency array, \(C(k)\), was equal to the last stage output array, \(X_{3}\left(k_{0}, k_{1}, k_{2}\right)\) by the mapping equation of:
\[
C(k)=C\left(k_{2}, k_{1}, k_{0}\right)=X_{3}\left(k_{0}, k_{1}, k_{2}\right), \text { where } k=4 k_{2}+2 k_{1}+k_{0}
\]

The only difference in the indices is that ordering of the \(k\) bits has been reversed. Thus, to restore the data ordering of the array, reverse the ordering of the bits and map the data back into its proper location in the frequency array \(\mathrm{C}(\mathrm{k})\).
\[
\begin{aligned}
& X(n)=X\left(4_{n_{2}}+2_{n_{1}}+n_{0}\right) \Rightarrow X\left(n_{2}, n_{1}, n_{0}\right) \longrightarrow X X_{3}\left(k_{0}, k_{1}, k_{2}\right) \\
& \Rightarrow C\left(k_{2}, k_{1}, k_{0}\right)=C\left(4 k_{2}+2 k_{1}+k_{0}\right)=C(k) \\
& X(0) \Longrightarrow X(0,0,0) \rightarrow X_{3}(0,0,0) \Longrightarrow C(0,0,0)=C(0) \\
& X(1) \Rightarrow X(0,0,1) \rightarrow X_{3}(0,0,1) \Rightarrow C(1,0,0)=C(4) \\
& X(2) \Rightarrow X(0,1,0) \rightarrow X_{3}(0,1,0) \Rightarrow C(0,1,0) \simeq C(2) \\
& X(3) \Rightarrow X(0,1,1) \rightarrow X_{3}(0,1,1) \Rightarrow C(1,1,0)=C(6) \\
& X(4) \Rightarrow X(1,0,0) \rightarrow X_{3}(1,0,0) \Rightarrow C(0,0,1)=C(1) \\
& X(5) \Rightarrow X(1,0,1) \rightarrow X_{3}(1,0,1) \Rightarrow C(1,0,1)=C(5) \\
& X(6) \Rightarrow X(1,1,0) \rightarrow X_{3}(1,1,0) \Rightarrow C(0,1,1)=C(3) \\
& X(7) \Rightarrow X(1,1,1) \rightarrow X_{3}(1,1,1) \Rightarrow C(1,1,1)=C(7)
\end{aligned}
\]

The above sets of equations are trying to show that \(X(n)\) is mapped, ( \(\Rightarrow\) ), into \(X\left(n_{2}, n_{1}, n_{0}\right)\). The results of the calculation from \(X\) end up in \(X_{3}\left(k_{0}, k_{1}, k_{2}\right)\). Then \(X_{3}\) is mapped back into \(\mathrm{C}\left(\mathrm{k}_{2}, \mathrm{k}_{1}, \mathrm{k}_{0}\right)\) which yields \(\mathrm{C}(\mathrm{k})\). Because of the syminetry of the DIT algorithm, it does not matter if the bit reversed mapping is done before to the time input array so that the frequency comes out in order, or after to reorder the frequency array. Figure 11 shows the entire flow diagram for the DIT FFT where the input array has been bit reverse mapped, and the output \(C(k)\) is in order.


Pigure 11. Decimation in Time, PFT

\section*{Decimation in Frequency (DIF)}

The decimation in frequency (DIF) algorithm follows exactly as the DIT algorithm, except that the frequency indices (and hence its name) are factored. Starting with the original DFT equation
\(C(k)=C\left(k_{2}, k_{1}, k_{0}\right)=\sum_{n_{2}=0}^{1} \sum_{n_{1}=0}^{1} \sum_{n_{0}=0}^{1} \quad x\left(n_{2}, n_{1}, n_{0}\right) w^{\left(4 n_{2}+2 n_{1}+n_{0}\right)}\)
Reordering the equations to get the desired factor:
\(C\left(k_{2}, k_{1}, k_{0}\right)=\sum_{n_{0}=0}^{1} \sum_{n_{1}=0}^{1} \sum_{n_{2}=0}^{1} x\left(n_{2}, n_{1}, n_{0}\right) w^{k_{0}\left(4 n_{2}+2 n_{1}+n_{0}\right)} w^{2 k_{1}\left(2 n_{1}+n_{0}\right)}\)
so that
\[
\begin{aligned}
& x_{1}\left(k_{0}, n_{1}, n_{0}\right)=\sum_{n_{2}=0}^{1} X\left(n_{2}, n_{1}, n_{0}\right) w^{k_{0}\left(4 n_{2}+2 n_{1}+n_{0}\right)} \\
& x_{2}\left(k_{0}, k_{1}, n_{0}\right)=\sum_{n_{1}=0}^{1} x_{1}\left(k_{0}, n_{1}, n_{0}\right) w^{2 k_{1}\left(2 n_{1}+n_{0}\right)} \\
& x_{3}\left(0, k_{1}, k_{2}\right)=\sum_{n_{0}=0}^{1} x_{2}\left(k_{0}, k_{1}, n_{0}\right) w^{4 k_{2} N_{0}} \\
& C\left(k_{2}, k_{1}, k_{0}\right)=X_{3}\left(k_{0}, k_{1}, k_{2}\right)
\end{aligned}
\]

STAGE 1
\begin{tabular}{lll}
\(X_{1}(0,0,0)=X(0,0,0)\) & & \(+X(1,0,0)\) \\
\(X_{1}(0,0,1)=X(0,0,1)\) & \(+X(1,0,1)\) \\
\(X_{1}(0,1,0)=X(0,1,0)\) & \(+X(1,1,0)\) \\
\(X(0,1,1)=X(0,1,1)\) & \(+X(1,1,1)\) \\
\(X_{1}(1,0,0)=X(0,0,0) W^{1(0+0+0)}\) & \(+X(1,0,0) W^{1(4+0+0)}=[X(0,0,0)-X(1,0,0)] w^{0}\) \\
\(X_{1}(1,0,1)=X(0,0,1) W^{1(0+0+1)}\) & \(+X(1,0,1) W^{1(4+0+1)}=[X(0,0,1)-X(1,0,1)] w^{1}\) \\
\(X_{1}(1,1,0)=X(0,1,0) W^{1(0+2+0)}\) & \(+X(1,1,0) W^{1(4+2+0)}=[X(0,1,0)-X(1,1,0)] w^{2}\) \\
\(X_{1}(1,1,1)=X(0,1,1) W^{1(0+2+1)}\) & \(+X(1,1,1) W^{1(4+2+1)}=[X(0,1,1)-X(1,1,1)] w^{3}\)
\end{tabular}

\(x(0)=\)
\(x(1)=\)
\(x(2)=\)
\(x(3)=\)
\(x(4)=\)
\(x(5)=\)
\(x(6)=\)
\(X(7)=\)


Pigure 12. Deeimation in Prequency, PPT

\section*{DIT vs. DIF Algorithms}

Mathematically, there is very little difference between the DIT and the DIF algorithm; both algorithms require the same \(\mathrm{Nlog}_{2} \mathrm{~N}\) operations to complete, both are done in place, and both require bit reversal mapping to either the input or output. The advantage of the DIF algorithm is that its complex multiplication is done alt ave tine is the har the multiplication to befinished. During this same time the next pairs processor is waiting for the multiplication to be finished. During this same time, the next pairs of data can be retrieved to start the next operation.

\section*{Other Algorithms}

There are many other algorithms that can be used to compute the FFT. They are all basically modifications of the same theme, reducing an N point DFT into smaller and smaller sequences. The DIT and DIF do this by successively halving the N point DFT. For this reason, they are known as radix 2 algorithms. Other algorithms are based on a radix 4, where the N point DFT is reduced by \(1 / 4\) for each pass. Other algorithms work when \(N\) is any integer at all. These are referred to as prime factor algorithms. Still other algorithms use double memory by storing the output of each pass in a different location than the input, thus saving memory access time.

In the final analysis, the choice of algorithm comes down to the hardware design. How much meinory can be made available? How complicated does one want or is able to make the control structure? How fast or slow is the support hardware; i.e., memories, multipliers, accumulators?

\section*{Windows For Use With PFTz}

When using the Fourier Transform, the input signal is defined over time from - \(\infty\) to \(+\infty\) and it is assumed that the signal is continuous and periodic. When using the Discrete Fourier Transform, the input signal is also assumed to be continuous and periodic; however, the input signal cannot be defined over infinity and must in fact be defined over a time interval NT. The sampling over this interval can be thought of as the application of a rectangular window to the continuous data as shown in Figure 14

The rectangular window tends to corrupt the data, especially if NT is not some integer multiple of the input signal. If one recalls, after sampling, the input signal is assumed to be periodic, so the rectangular window can be placed next to itself over time. When this happens, sharp discontinuities result as shown in Figure 15. These discontinuities produce happens, sharp discontrectra in the frequency domain, referred to as spectral leakage.

Another way of looking at this phenomenon is to think of sampling as multiplying the continuous time signal by a rectangular pulse to produce the finite duration sequence for processing. As is well known, multiplication in the time domain is the same as convolation in the frequency domain. This process is illustrated in Pigure 16.


\(\mathrm{N}=\) number of somples
\(T\) = somple interval

Pigure 13. Windowing Effeet
of Sampling
time domain



NT \(2 N T\)
- ime domain
\(A \sin \omega t\)
\(A A M A, \rightarrow\)
Figure 14. NT As Non-Integer Multiple of Signal
fre quencr domain


Pigure 15. Speetra Distortion Caused By Rectangular Window

To correct for this spectral leakage, a window weighting function is first applied to the timing data. Many useful window functions exist. Harris in [9] presents a good overall tutorial of many of these functions. Only three window functions will be examined here:
\[
\begin{array}{ll}
\text { 1. } & \text { Triangle } \\
\text { 2. } & \text { Hamming } \\
\text { 3. } & \text { Blackman Harris }
\end{array}
\]

A sample FFT done with each of these windows appears at the end of this section.

\section*{Triangle}

The triangle window is by far the easiest to calculate on any processor. The function is given as:
\[
w_{T}(n) \begin{cases}=\frac{n}{N / 2} & 0 \leq n<N / 2 \\ =\frac{N-n}{N / 2} & N / 2 \leq n<N-1\end{cases}
\]

The spectral improvement, however, over the rectangle is slight and yields only an approximate 0 dB drop in the sidelobes. Also, because the input signal now contains only half of its origina energy, there is a 6 dB loss in spectral magnitude.

\section*{Hamming}

The hamming window function is described by the equation
\[
W_{H}(n)=25 / 46-(1-25 / 46) \times \cos (2 n / N),
\]
\[
n=0,1,2, \ldots N-1
\]

This window has the advantage of attenuating sidelobes by 40 dB while keeping losses at 5.3 dB .

\section*{Blackman-Harris, Three Term}

The Blackman-Harris window is defined as
\(w(n)=0.42323-0.49755 \cos (2 n / N)+0.07922 \cos (4 n / N)\)
This function attenuates sidelobes by 67 dB with a window loss of 7.5 dB .

\section*{Final Notes On The PFT}

Each sample, \(n\), is often referred to as a bin. The magnitude of the complex outpu \(\mathrm{X}(\mathrm{n})\) represents the spectral amplitude of the components of that bin. If a frequency componen alls between bins, its energy is smeared over many bins. Again, this is known as spectral eakage.


The frequency step is given as \(F=1 /(N T)=f s / N\) where \(f s\) is the sample frequency. The frequency component for the bins is simply

BIN " \(\times\) F, i.e., for \(n=0,1,2, \ldots 7\)
\(X(0)\), de component
\(X(1)\), frequency component at \(F\)
\(\mathrm{X}(2)\), frequency component at 2 F
-
\(\dot{X}(7)\), frequency component at 7 F

Also note that when applying windows, a frequency smearing occurs. Without a window, frequency components need only be separated by a single bin to be recognized as weparate frequencies. With a window function applied, this minimum bin distance widens. For separate frequencies. the minimum bin spacing is as follows:
\begin{tabular}{lll} 
Triangle & \(=\) & 1.33 \\
Hamming & \(=\) & 1.36 \\
Blackman-Harris & \(=\) & 1.7
\end{tabular}

\section*{WHY USE DSP}

The number one force driving the push into DSP is cost. Using FFT's, signal analysis can now be performed at a substantially lower cost than encountered when using swep banks of analog filters. Once digitized, the power of analysis begins. Algorithms are being developed that can determine the type of modulation being used, phase detection, direction finding and digital demodulation.

The number one force preventing the acceptance of DSP is also cost. The cost of a couple of op-amps, some resistors and capacitors for a simple two pole active analog filter is only a few dollars, compared to a few hundred dollars for digital multipliers, memories and support processing for a digital filter. Of course, if the processor can be time-shared among many modules, the cost factor depreciates. For one two-pole filter, there is a big difference in cost; for a hundred two-pole filters, the analog version increases one hundred fold, whereas the digital increase is negligable. The digital version uses the same hardware plus a few other components to muliplex the data and processor.

Another consideration in DSP is the stability of digital parts. Once coefficients are computed for a filter, they will not drift over time nor change with temperature. This allows sharp cutoffs in filters to be realized using digital processing. Furthermore, provided the hardware is set up properly, a simple change in software will turn an FFT unit into a bandpass IIR filter. Another change will result in a lowpass filter. Thus digital components are very
versatile.

Perhaps the greatest advantage of DSP is performance. A digital signal monitor can achieve a much finer resolution at a faster scan rate than analog version. The cutoff frequency of filters can be more precisely tuned and show a steeper roll-off than analog filters.

Finally, many communications are being done in a digital format; for example, Tl standards of the Bell system. With this digital format, analog signal processing becomes the standards of the Bell system. With this digital format, analog signal processing ece mignal processing will be made simpler and more powerful via DSP.

\section*{CONCLUSION}

Digital signal processing is not an easy topic to comprehend. It combines theories of both the analog and the digital disciplines. Many times it requires several readings of the same concept, presen by several authors, before the concept can take hold. To ease understanding, one should reme
1) Input Signal
2) Digital Processor
3) Information Extraction

The input signal must be sampled and quantized before it can be fed to the digital processor. The digital processor can only perform the operations of addition, multiplication and delay (storage) on the signal data. The end result of the digital processor is to extract information from the signal or modify it in some way.

\section*{REPERENCES}

GENERAL
1 L. W. Gardenhire, Selecting Sampling Rates, Instrumentation Society of America, April 1964.
2 Willard Bucklen, Dr. John Eldon, Louis Schirm, and Fred Williams, "Designers Guide to DSP," EDN, Magazine.
Part 1, "Understanding the Fundamentals Eases Signal Processing Task," March 18, 1981.

Part 2, "Single Chip Digital Multipliers Form Basic DSP Building Blocks," April 1, 1981.

Part 3, "Digital Processing Facilitates Signal Analysis," April 15, 1981.
Part 4, "DAC's and Multifunction Chips Enhance Your DSP Options," April 29, 1981.

Part 5, "Digital Correlators Illustrate DSP Trends," May 13, 1981.
3 L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1975

4 A. V. Oppenheim and R. Shafer, Digital Signal Processing, Prentice Hall, 1975

5 S. K. Tewksbury, R. B. Kieburt2, J. S. Thompson, and S.P. Verma, "Tutorials on Signal Processing for Communications, Part II, Digital Signal Processing Architecture," IEEE Communications Society Magazine, January 1978.

6 Electronic Design, Magazine, Hayden Publishers, Vol. 32, No. 10, May 17, 1984, entire issue.
7 Fred Mintzer, "Parallel and Cascade Microprocessor Implementations for DSP, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, IEEE Transactions

8 Andreas Antoniou, Digital Filters: Analysis and Design, McGraw-Hill, 1979
9 Fredric J. Harris, "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform:, Proceedings of the lEEE, Vol. 66, No. 1, January 1978.
0 Robert Ramirez, "The Fast Fourier Transform's Errors are Predictable Therefore Manageable," Electronics Magazine, McGraw-Hill, June 13, 1974.

\section*{digital fllter programs}
a) See references 3 and 8 .
b) "Programs for Digital Signal Processing," New York: IEEE Press, 1979.

\section*{HARDWARE FOR DSP}

See references 3, 6, and 8

\section*{ACSB - AN OVERVIEW OF AMPLITUDE COMPANDORED SIDEBAND TECHNOLOGY}

\author{
James Eagleson \\ IDX, Inc.
}

\section*{January 1985}

Early voice communications by radio was accomplished by Amplitude Modulating the Carrier Wave. This was the simplest and most obvious way to put audio information on a radio wave.

Later, Frequency Modulation was proposed as a
potentially superior method of audio transmission and
Armstrong and others developed practical FM systems.
In the l940's and even into the 50's one could find AM communications throughout the radio spectrum. The LA Police Department, for example, could be monitored just above the AM Broadcast Band and World War II "Walkie-Talkies" were on a
variety of Medium Wave, Short Wave, and even low vhF frequencies... predominately using AM.

About this time there was the opening of the Low and High VHF frequencies for Land Mobile. After theoretical and actual studies of various modes available, Buesing(l) and others determined that FM was the most effective mode for the VHF mobile environment. For a given carrier power, FM had better signal-to-noise performance, mobile and provided hands-

\section*{FM VERSUS AM VERSUS SSB}

Using the technology of that day there was an obvious advantage of FM over either SSB or AM. For example, AM required one-and-one-half times the power of FM due to the stabilities we are just now able to achieve at these frequencies. The capture effect of FM provided superior quieting performance... an AM transmitter would need to be many times more powerful for equal performance at moderate signal levels.

Sideband, of course, had a 6-9 dB advantage over either AM or FM at very weak signal levels, but lost any advantage once the signal reached FM's SNR enhancement threshold. The predominate means of achieving SSB's advantage at low SNR is the elimination of the carrier present in both FM and AM coupled with elimination of one sideband which allows a much narrower

Unfortunately, SSB requires very tight frequency stability, a slow AGC making flutter control at VHF impossible, and was much less convenient to generate with the technology of the \(40^{\prime}\) s and 50 's.

\section*{THE BIG CRUNCH}

What few envisioned was that VHF and UHF Land Mobile would become so popular, even vital to American Businesses. It did not take very long to completely fill all of the 50 KHz channels on VHF requiring opening of UHF frequencies and spacings. In fact, in much of Europe the channels are now 12.5 KHz spaced!

\section*{SOME PROPOSED SOLUTIONS}

There has come a recognition in the Land Mobile industry that we have a real problem here.
Many solutions have been proposed including Spread
Spectrum, Cellular and Trunking radio systems, even
Single-sideband FM...a technique requiring half the spectrum
for performance equivalent to normal FM. Each of these has
its good points and bad points. its good points and bad points.

A more recent proposal was to take a second look at SSB on VHF. The result: Amplitude Compandored Sideband (ACSB).

The term ACSB was first used in a paper by Dr. Bruce Lusignan in a report prepared for the FCC's UHF TASR FORCE study of Spectrum Efficient Technologies. (2)

In essence, Dr. Lusignan, Dr. Fred Cleveland and others prepared SSB equipment to study what, if anything, could be done to make Single Sideband, well known for its
spectrum efficiency, compatible with the needs of VHF and UHF Land Mobile users. While SSB can be placed at 5 KHz channel spacings (three to five times as efficient as FM), the elimination of mobile flutter, improvement of signal-to-noise ratio, hands-free operation, squelch, and tone signalling capabilities of FM are all features that Land Mobile users have come to expect. Providing equivalent performance in these areas using \(S S B\) is much more difficult!

\section*{DIFFICULT BUT NOT IMPOSSIBLE}

The Lusignan study concluded that all of the desired characteristics of FM for Land Mobile service could be achieved using ACSB... a much processed form of SSB. To be sure, these conclusions did not go unchallenged by the competition and were published in IEEE Spectrum with an unprecedented "disclaimer" by the FCC TASK FORCE. On the equal number of suggested ansuers were brought forth by various members of the communications industry (3).

There is a long way to go before ACSB radios will achieve the same level of sophistication that 30 years of FM development has brought to that mode. Then again, current ACSB radios outperform FM for several applications and certainly outperforms the FM equipment of \(20-30\) years ago. While it is not the purpose of this paper to argue issues (which seem to follow any new technology), believe that given no political the communications needs of valueable resource to meet many of the communicat for some of the industry

\section*{WHAT IS AMPLITUDE COMPANDORED SIDEBAND?}

In actuality, this is a difficult question to answer ACSB is developing in many forms to meet the needs of many

In essence, ACSB has four or five key elements:
```

1) Amplitude Compandoring
2) Spectrum Equalization
3) Transmitted Level Reference
4) Translitted Prequency Reference
5) Positive Acting Squelch
```

In most systems the last three of these are built up around some form of Pilot Tone or Carrier. Two forms of Pilot Tone are used: Above Band and In-Band (TAB and TIB)

Let's take a look at each element in turn.

\section*{AMPLITUDE COMPANDORING}

To those working in the telephone industry, amplitude compandoring is not new at all. Most long-line transmissions have been using this technique for some years now.

In that linear amplifiers have a limited peak power capability, ultilization of a "common carrier" for multiple signals is limited by the power level and number of those signals.

In order to add more signals to the system, the level of each signal must be reduced accordingly. At some point this reduction will degrade the signal-to-noise ratio of each of the signals to an unacceptable level.

For example, given a line amplifier with an output capability of \(10 \theta \mathrm{~mW}\) and ten signals of 1 mW each. The Peak Envelope Power (PEP) of those ten signals would be \(N 2\) or 10 \(=100 \mathrm{~mW}\). Thus we can only use ten signals with this amplifier regardless of the bandwidth available or the number of signals desired. (I'm making a simplified case here in tha
other factors change the formula in the real world). PEP


Assuming that the amplifier has a 60 dB Dynamic Range, that is 60 dB PEP output level to amplifier noise output level, each signal would be 20 dB down from the PEP limits of the amplifier which is 40 dB up from the amplifier's noise floor. Adding any additional signals would begin to degrade the desired 40 dB signal-to-noise ratio for each signal because we would need to lower the level of each

However, if we were to compress each signal at 2:1 input to output ratio, the dynamics of each signal would then be to output ratio, the dynamics to only 20 dB . Given that each signal maintained the reduced to only 20dB. Given (limp), our PEP for the system would remain the same (100 mW) but the lowest level portions of each signal would clear the amplifier's noise floor by about 28 dB .

Compressed \(1 \mathrm{mw} /\) Signal


If we then reduce each signal's level by 20 dB , we will still maintain all desired audio above the amplifier's noise floor but will be able to add 10 times as many signals to the ystem (100 signals) while keeping Now the amplifier. In actuality, a reduction of capability of the amplifier. yielding a 3 times expansion in be number of signals (to 30 instead of 10 ) for the same PEP out put.

\section*{Compressed 0.1 mb/Signal}

PEP

- 60 dureverturmwnutats

AMP NOISE
In reality, of course, several other factors enter into the formula when loading becomes this high. Intermodulation the formula when loading becomes this limiting factors in addition to amplifier dynamic range.

\section*{EXPANSION}

We have one other problem remaining in our simplified example.

Compression is fine, but...
We left our signal with all audio down to 40 dB or so compressed into 20 dB of dynamics. This is fine in a broadcast studio or a quiet location but anywhere else we will have objectionable background noise... especially in a mobile
environment. These noises and reverberations are annoying, even distracting.

This is clearly unacceptable in the commercial communications marketplace though it might be beneficial on an already noisey Shortwave communications circuit.

We have another option, however. If we set up an amplifier on the receiving end of the circuit with the exact opposite transfer function, that is 2 dB of output for every 1 dB of input change, we will then restore the 20 dB dynamics of the incoming signal to its original whe the signal is at reference coming in, it will be words, When the signal is at is it drops to -20 dB coming in, it will drop to -40 dB going out of the Expansion Amplifier.

So now we have achieved our goal of increasing the number of signals put on a given circuit while maintaining our desired signal-to-noise dynamic range. Fidelity depends largely on the accuracy with which the compressor and expandor amplifiers do their job. That this should be acceptable for
communications circuits can be seen by its use in the more critical Dolby and dBX Hi Fidelity recording systems. It is also used on almost all telephone long-line circuits. (4)

ACSB uses the technique for a slightly different purpose, however. Here we are trying to improve a poor signal-to-noise mobile radio circuit rather than trying to maintain an already fairly good signal-to-noise ratio (as is the case in Telco and Hi Fi systems).

Therefore we come to utilization of another technique which also is not new but is used in a slightly different manner... Spectrum Equalization.

\section*{SPECTRUM EQUALIZATION}

Early in the development of FM it was discovered that due to the wide receiver bandwidth required and the nature of the detector used, high frequency baseband noise was quite pronounced on weaker signals. In fact, most FM squelch circuits look for the reduction of this noise with the increasing strength of a signal as their reference point in determining whether to let audio go to the speaker.

It was also noted that both human speech and music tend to concentrate most energy in the lower portion of the audio range. The energy above \(10 \beta \mathrm{~Hz}\) falls off rapidly compared to the audio in the \(100-700 \mathrm{~Hz}\) region (5).

It was apparent, then, that one could boost the high frequency response of one's modulation without causing overmodulation since levels at these frequencies would not be nearly as high as they are at lower frequencies. turn, meant that you could reduce the high frequency response for and thus improve dhe overall system signal-to-noise ratio by several dB.
We, of course, call this process "pre-emphasis" and
"de-emphasis" and it is used in all communications and broadcast FM circuits.

For reasons that are not clear, this technique was never appplied to SSB. Perhaps it was because SSB has such a narrow bandwidth so that the noise generated in the receiver is much softer" sounding than the wideband "White noise" coming out of a non de-emphasized FM receiver. Additionally, the 1.5-3 dB advantage offered by de-emphasis in a 3 KHz SSB circuit is hardly as dramatic an improvement as the 10-12 dB noise bandwidth reduction it has in a \(15-20 \mathrm{KHz}\) circuit.

In any case, it is not generally used with normal SSB.
On the other hand, when we are talking about VHF SSB using \({ }^{4: 1}\) amplitude compandoring (in the case of ACSB) '

Expanded four times this imprejement becomes 6-12 dB on moderate level signals and also reduces susceptibility to impulse noise considerably ( 6 ).

It also helps remove any above channel interference from the audio channel (assuming upper sideband transmission) and of signals at poor signal-to-noise ratios (7).

\section*{PILOT TONE OR CARRIER}

While it is easy to see how amplitude compandoring helps on a telephone line where signals are all about the same level and circuit gain remains nearly constant, the VHF mobile environment is much more severe. We find widely different signal levels and the desired signal level also fluctuates wildly.

Common SSB AGC circuits cannot handle these fluctuations. (8)

The solution is to provide a transmitted reference level with which the receiver can determine the proper audio levels independant of the path loss variations due to multipath cancellations and enhancements.

One can transmit full carrier with the sideband signal, but this is wasteful of energy. Transmitting a reduced carrier (say -10 db ) is less wasteful but is not the ideal solution since it must be processed at IP frequencies... not generally considered the most economical approach.

This approach does allow totally synchronous carrier "re-insertion" by various means, however. (9)

Tone above-band as used by Dr. Lusignan and others places a 3.1 KHz tone just above the audio range (which is Low pass Filtered at 2.5 KHz or so). This reference tone is accurately generated by fre

The tone can be processed at baseband frequencies for both AGC purposes ( 3 KHz is high enough to provide a good fade ate to carrier frequency ratiol, and as part of a possible.

Tone in-band and Transparent Tone in-band have also been explored as alternatives to tone above-band. This is to get rid of the problem of working on the edge of the receiver filters has significant phase shift, of course, and there is also the problem of having the pilot drift outside the passband of the filter making signal lock up difficult.

Additionally, it has been found that at UHF frequencies in particular (and less so at VHF), the correlation between fades at the bottom edge of the passband and the top edge is
much less than the correlation of fades at the middle of the passband relative to either edge. On HF this is called "selective fading". Tone in-band reduces the de-correlation.

Transparent Tone in-band takes another step. The audio above the chosen Pilot Tone is selected out and mixed to shift it up about 300 Hz in the spectrum so that the Pilot can then be placed in the gap that is left. This prevents placing a hole" in the middle of the audio spectrum when the pilot tone is filtered out upon reception such as occurs with normal tone in-band techniques (10).

The shifted audio is then re-shifted to its original spectrum to provide normal audio.

Another advantage of Tone in-band (or TIB) techniques is that the tone selected can be the lower of the two tones used that the tone selected can be the Thus our tone can serve a dual purpose.

\section*{aUTOMATIC GAIN CONTROL}

Whether carrier, tone above-band, or tone in-band, the pilot Tone provides a fixed, constant reference for AGC control. One problem of normal \(S S B\) is that with no carrier resent, there is no way to provide an AGC intelig the signal has faded.

The usual approach is to make the AGC have as fast an attack time as possible, but to have a relatively slow release time. Thus a sudden loud signal will be brought under control quickly (typically under 5 mS with audio derived AGC's and perhaps 2 ms with IF derived systems). The gain will then stay at this level for at least 400 mS and sometimes as much as 2 seconds before full receiver gain is restored.

Another common approach uses a long decay time constant say 3-5 seconds, but has a secondary detector which constantly looks for the presence of audio. If no audio is detected for more than 100 to 500 milliseconds (depending on the time constant chosen), this detector turns on a switch which discharges the main AGC time constant capacitor untir either the audio signal is once again detected or full receiver gain is re-established.

This "hang" AGC produces very little gain change while someone is talking unless 1) he pauses for more than the reset period, or 2) the signal fades for more than the reset period, or 3) the signal goes away. This prevents the moderate to heavy integration of desired signal with background noise or interference common to simpler AGC's without having pulses can time constant that is so long that strong noise pulses can totally blank out the desired signal while the AGC recovers. Weriod. 200 milliseconds rather than \(2-3\) seconds!

Unfortunately, neither system just described can handle the flutter rates experienced at VHF.

\section*{CARRIER DERIVED AGC}

It became evident early on in VHF experimentation that It became evident early on in
no ENVELOPR DERIVED AGC IS ADEQUATE AT VHF for mobile.

While the fade rates at low Band \((30-50 \mathrm{MHz})\) could be handed with fairly conventional Carrier or Pilot Tone derived AGC's, High Band and UHF systems needed something faster.

Certainly carrier derived systems are moderately fast compared to standard envelope detection as normally used on HF SSB systems. Even older AM AGC's were able to use time constants on the ordation of the modulation envelope.

Pilot Tone or Carrier based AGC's in VHF SSB experiments are able to achieve fade correction rates to somewh
\(5-15 \mathrm{~Hz}\) without too much complexity or instability.

The problem is mainly one of separating the pilot or carrier from the modulation. If any of the modulation is seen audio output signal causing distortion or signal reduction.

One could use an If filter at the Pilot frequency (whether carrier or tone pilot doesn't matter), but most designers feel that this is not economical. The cost of another, very narrow If filter is far more expensive than any form of baseband (audio/video) processing...especially if one looks towards Large Scale Integration of the circuitry into chip form in the future. A few cents in an LSI chip is more attractive than tens of dollars for a filter.

This also explains one reason that merely transmitting SSBRC, or Single Sideband with Reduced Carrier is not as desireable as TIB or TAB Audio pilot Tones, when tuned in correctly thus making baseband processing of the AGC (and Phase Locking, for that matter) impossible.

\section*{fBAGC VERSUS PFAGC}

Use of SSB at VHF brought back another technique that is not totally new but is finding new application.

We are all familiar with Feed Back AGC/(PBAGC) where a detected level reference is filtered to eliminate modulation components then sent back to the input to set the RF and IF stages to a gain that won't overload the detector and will keep the output audio relatively constant.

As previously mentioned, it does have a speed limitation even when acting only on the carrier due to the propagation delay through the RF and IF stages and AGC detector/filter before the control voltage is sent back to the the control stages. Using baseband techniques at least, the
speed seems to become unstable in the \(5-15 \mathrm{~Hz}\) region.

Feed Forward AGC(PFAGC), on the other hand, has been successfully used to control fiutter even at UHF frequencies where flutter rates approach 109-308 Hzl

This technique was actually developed for AM UHF systems and essentially low passes the audio output of an AM detector at a frequency below the lowest modulation frequency being transmitted. It is presumed that any output lower than the lowest frequency transmitted is being caused by signal level variation coming into the receiver, not transmitted audio.

This signal is then passed forward to a variable audio amplifier whose gain is controlled by the PFAGC voltage so that the detected modulation audio passing through the amplifier is increased or decreased in inverse proportion to the PFAGC voltage. If the FFAGC voltage goes up (inalcatiog increased input signal strength), the audio gain is reduced accordingly. If the fFAGC voltage goes down, the audio gain is increased to compensate.

Additionally, since the controlled stage follows the AGC detector, the detected modulation audio can be delayed to compensate for the FFAGC filter phase delay so that
control voltage and audio signal arrive at the same moment. control voltage and audio signal arrive at the same moment. This in much greater speed.

Futhermore, since we are dealing with a pilot carrier rather than an AM envelope detected signal (which includes the modulation component), the bandpassed Pilot Tone can actually work about two times faster than the low pass variety used previously in AM systems.

British studies at 457 MHz using both AM and SSB systems show very good results using this system.

\section*{SELECTIVE FADING CORRELATION}

One last item to be consider is the effect of Carrier, TIB, and TAB derived AGC systems relative to selective fading.

In that the fading of VHF and, particularly, UHF signals is largely due to Dopper differences between direct, in front, and following reflections relative to a vehicle's motion, fading at the carrier frequency will occur at a siferent the than fading at the frequency of the modulation sideband. With FM the sideband components can be

6-8 kHz removed from the carrier and \(12-16 \mathrm{kHz}\) removed from each other. There is a great deal of de-correlation of fades separated this widely in frequency.

With SSB the maximum frequency difference from carrier to highest sideband component will be equal to the modulating frequency...typically about 3 KHz . The de-correlation between fades separated by 3 KHz are relatively minor at VHF but can be significant at UHF.

Obviously, either Carrier derived or Tone Above-Band (TAB) AGC systems will have more de-correlation between audio channel fading and the pilot channel than Tone In-Band (TIB) systems but this is not too significant at VHF.

On the other hand, TAB systems will have another problem (and, depending on techniques used, carrier systems as well). Since the tone is at the side of the IF filter phase variations normal to the edges of (If carrier is used with its create further \(A G C\) anomalies. (If carrier is used whe carrier will be in the center of the filter.)

AGC SUMMARY (11)
1) Peed back AGC (PBAGC) is useful to establish gain control of \(R F\) and \(I F\) stages but is limit insufficient by itself for VHF fade rates.
2) Feed Forward AGC (PFAGC) is easily implemented in Audio pilot AGC systems and provides good AGC control at frequencies with adequate control even at UHF frequencies.
3) Carrier derived AGC must be processed at If frequencies and is therefore not the favored approach.
4) Tone In-Band (TIB) provides the best selective fading correlation but requires filtering out part of the audio spectrum to eliminate the tone.
5) Tone Above-band (TAB) provides reasonable correlation with selective fading at VHF but has less correlation at UHF. It also has problems associated with being located at the edge of a selective filter.
6) Transparent Tone In-Band (TTIB) shifts a portion of the audio spectrum \(200-300 \mathrm{~Hz}\) upward, inserts the pilot tone in the gap, then re-assembles the original spectrum upon reception. This is a more complicated system to implement reception. techniques.

\section*{PREQUENCY TUNING}

One of the main arguments in the early days of Land Mobile against use of SSB (and brought up again in recen Mobile imathat it requires extreme frequency accuracy".
of course, this is true. Any SSB technique needs tuning precision measured in tens of Hz if natural sounding audio acceptable to commercial users is to be achieved.

Several things have modified the practicality of VHF SSB over the years. It is not at all unusual to maintain VHF oscillator accuracies within a few hundred hertz. circuitry accuracies are possible with stateof recently developed.

Then, again, "a few hundred Hertz" is not adequate for VHF SSB reception, but it provides accuracy close enough for use of a second technique that is now definitely

While the Phase-Locked Loop is not new, development to cost effective utilization in the commercial marketplace had to wait for the CB Radio boom of the early 70's. Prior to this almost all use was in mitems. equipment, neither of whict and had sufficient CB Radio was much more cost-cokers in Japan and the US in volume to interest using the new IC technologies profit!

We even have handheld, synthesized Walkie-Talkies and Monitor receivers that are in the \(\$ 300\) price ran of the synthesizer alone not too many years ago.
obviously, then, by using carrier or pilot tones we can create a PLL that will easily pull in a signal that is already within a few hundred Hertz and lock it we are smart in our the original can reduce or eliminate much of the Doppler frequency shifting present on mobile signals at VHF and UHF.

Several problems remain, however. Some means of identifying the desired carrier from among several possible co-channel stations would be useful. Attention to loop design to minimize phase noise and sideband generation must be used if adjacent channel selectivity is to be maintained. Loop design trade-offs must be balanced between fast lock up, tight frequency control, phase noise/sideband considerations, and pull-in range.

The references yield several papers on these topics that will go into these areas in more detail (12).

Most current systems are able to pull in signals as much as plus and minus 800 Hertz from the receiver's frequency.
region. STI radios ensure lock up by transmitting only the ilot carrier at full output for about 100 milliseconds before the audio channel of the transmitter is activated.

\section*{THEORETICAL PERPORMANCE DIPFERENCES - SSB/PM}

In theory, \(F M\) provides 20 dB Quieting and about 24 dB SNR at a Carrier-to-Noise Ratio (CNR) input of about 12 dB . This will vary with modurth bot is an adequate model for comparative purposes.

Given a receiver with a sensitivity of -117 dBm (about \(0.3 \mathrm{uV})\) for 20 dB quieting, we have a noise floor of -129 dBm (i2 dB lower).

Bandwidth for most VHF SSB systems, on the other hand, require 3.2 KHz . This is a 10 Log \((18 \mathrm{KHz} / 3.2 \mathrm{KHz}) \mathrm{dB}\) improvement in noise floor, about 7.5 dB or -136.5 dBm . f . the CNR and SNR for non-compandored SSB at an \(\quad\) (CNR=SNR for -117 dBm (.3uv) wi
non-compandored SSB).

The same bandwidth factor would apply to any external noises entering the receiver. The sactor of 7.5 dB reduce the incoming noise by a factor pulses somewhat Unfortunately, it al of this improvement is lost. Additionally, FM, so that part of a limited state, will rapidly depress the AM (pulse) components well below the desired modulation.

Use of Amplitude Compandoring on the SSB signal provides about a 4:1 effective improvement in SNR for a given CNR at levels at least 10 dB above the noise. Some improvement in SNR is evident down to about 5 dB CNR...making ACSB useful somewhat below FM's threshold. In our example, then, 4: compandored ACSB would yield an effective SNR with an input CNR of 18 dB equivalent to "Full Quieting" (greater than 48-5 dB).

However, expansion does not really improve SNR....a tone in the receiver would still have only 18 dB SNR while present. What the expandor does is to change the gain proportionate to the signal level so that gos away when the modulation goes "hear" the noise since it goes away when the modulation goes away. The SNR as long as the incoming CNR is better than 8-10 dB a the noise (that is, the incoming signal has only moderate noise riding in on it).

\section*{DATA COMMUNICATIONS}
of course, this brings up another important problem with ACSB...data communications. In that the actual CNR under
ield conditions typically falls into the 5-20 dB area, use of made ous techniques quite adequate using FM equipment will be marginal using ACSB.

However, PSK, OPSK and other techniques have been implemented to provide data transfer with good speed and accuracy. One technique called Rectangular Spectrum Modulation (or RSM) provides for a 10-6 bit error rate at an SNR of 11.2 dB in 2500 Hz bandwidth. Baud rate is 2400 baud. This was developed for the Skylink Land Mobile Satellite system.

\section*{OTHER COMPARISIONS - PM/ACSB}

ACSB radios tend to be somewhat quieter than \(F M\) radios when used at poor signal-to-noise conditions (though similar effects could be had using compandoring with FM except for the oise bursting common on that mode under weak signal conditions).

Range of an ACSB radio, all other conditions equal should show up to 1.5 to 2 times the range of \(F M\). However, without Noise Blanking and because the average power of ACS is 6 dB lower than FM , this is not generally seen in mobile applications. Some report \(10-20\) of range increase under many operating conditions but this is variable.

FM, on the other hand, should see about 3-6 dB advantage when using DTMF or FSK data systems due to its actual SNR (compandoring does not work on tones, obviously). Then agai ACSB with PSK-based data systems should
FSK-based systems if designed properly.

FM, it is generally conceded, has better "transparency" than ACSB. Both systems, however, have about the same "clarity" with ACSB slightly better in this regard at poor SNR conditions and FM "sounding better" at higher SNR levels.

The best one can say is that the systems sound different. Everything else seems to be a matter of taste, not effectiveness.

USER COMMENTS

Several users of \(A C S B\) have done direct comparisons with their FM systems.

One Rochester, New York user (in STI's home town), finds the ACSB system "equal to or better" than the FM system. He notes that it has better range

A user in Santa Cruz, California says that his ACSB repeater has superior range with acceptable quality in this
difficult, hilly service area.
A participant (guest) in some of the FCC testing between \(A C S B\) and \(F M\) in the Washington, D.C. area reported that the ACSB would still be readable after driving into an area where the FM receiver would completely fade to "White noise". This was using the same antenna for both receivers.

Furthermore the FM signal would have considerable "chop" driving fast through this area where the ACSB signal became a bit "fuzzy" or "distorted" but was perfectly readable.

The same observer was somewhat surprized when the FCC report on these tests came out as less than enthusiastic about the performance of ACSBI

Then again, another experimenter with ACSB at Cal Poly concluded that \(F M\) was clearly superior in almost all cases. I have not been able to follow up on this report or whether conclusion, however.

It is well established that "FM sounds better" when A/B testing is done. This is largely due to its "transparency" and typically wider frequency response since many ACSB radios cut of frequencies above 2506 Hz .

On the other hand, most prefer ACSB under weak signal conditions even though FM sounds better at moderate to high SNR conditions.
E.F. Johnson, long in the FM Land Mobile business, has suggested that many customers prefer their ACSB based Mobile Telephone performance to FM-based systems. One would presume that it is the lack of signal loss noise bursts and the generally quieter background (FM frequently has residual high frequency hiss) that prompts this evaluation set directly on tolerant
his ear!

Conclusion? FM has a place. ACSB has a place. Each has something to offer.

\section*{OTHER APPLICATIONS OF ACSB TECHNIQUES}

> As previously mentioned, some systems are well suited for ACSB technigues either by bandwidth requirements or SNR threshold requirements or both.

Quite a number of satellite communications systems have witched to SSB techniques which are close enough in implementation to be considered ACSB. They have compandoring frequency equalization, a pilot reference, and so forth.

California Microwave has converted to SSB techniques for their satellite transponders and actually loads many channels with noise to simulate fully loaded transponder conditions. So far they haven't been able to fully utilize all of the

ATT Long Lines continues to replace much of their land based microwave system with SSB based equipment.

MCI recently converted their Southwestern system to SSB.

\section*{SEYLINR}

An interesting proposal with wide implications is that recently approved for experimental development by the FCC as proposed by skylink, Inc.

This system uses a HELAPS transponder (High Efficiency Linear Amplifier by Parametric Synthesis) to provide DC to R conversion efficiencies in the 35-458 range instead of the usual 1日-15\% associated with multiple signal linear amplifiers. Thus, the spacecraft DC lapreciate the savings about 2.5 KW to only 630 Watts. One can appreciate the savings in power budget this has on a solar powered satellite.

We've already discussed the spectrum savings over an FM satellite system, which is 5 or 6 to 1 but the power budget aver com to an FM stem is also a factor of 1-6 dB depending on the characteristic of the FM system used.

Further, the ground station requirements are very reasonable...we are talking about \({ }^{6}\) dBi omni-directional 14 dBi antennas with a 1 Watt Portable system.

As illustrated, the transponders on board this Space Craft will each support up to 50 channels at 5 KHz spacings in each 150 KHz transponder channel. The Space Craft will have 16 of these transponders, half of which are Left Hand Circular and half of which are Right Hand Circular polarization (LHCP, RHCP). A total spectrum of 4 MHz , then, will support \(50 \times 16\) channels or a total of 800 channels. Obviously, the use or NBFM in the system would increase the spectrum requirement at least four-fold.

Utilization will be a mix of ACSB Voice Channels, Linear Predictive Coding (LPC) Secure Voice Channels using RSM modulation, one 2400 Baud Data Channel, or N times \(2400 / \mathrm{N}\) Baud TDMA Data Channels.

Concerning SSB Skylink says, "The use of SSB has many advantages...in SCPC satellite networks."
"..channel density will be six times that of cellular NBFM"
"SSB requires only one tenth the average satellite transponder power for link performance comparable to NBFM."
"The lack of a "threshold phenomenon".. is a distinct advantage..rapid fading just below the SSB's characteristic graceful degradation"
"Yet another advantage of SSB is..reuse of the same linear channel for both inbound and outbound links"

Concerning their basic system design they say,
- Skylink proposes to provide the nation's first Thin-Route/Mobile Satellite Network providing mobile, portable, pervices in Rural/Remote Areas."
" The Geographically diverse and frequently mobile rural market has been difficult, expensive, or impossible to serve using terrestrial technology better suited for urban markets."
" Conventional satellite systems requiring large, expensive earth terminals provide little or such systo high capacity needs of inter-urban networks."

A close study of the application made by Skylink to the FCC to establish a Developmental Land Mobile satellite Service in the 800 MHz region clearly shows that the practicality of such a system depends very much on the spectrum and transponder efficiencies to be had only through ACSB, RSM, and other narrowband techniques.

\section*{Sumary}

ACSB technology has much to offer designers of VHF and UHF communications networks.

Many earlier reasons for not using SSB on VHF and UHF have been made obsolete by various older and newer technologies when conscientiously applied to the problem.

For multi-channel and/or weak signal (long range) applications, ACSB has several advantages over NBFM. It provides very attractive spectrum savings and range extension through threshold extension.

If ACSB is allowed free access to the marketplace by FCC action to make its status marketplace by FCC action to make its status permanent rather than developmental, it is problems establish itself as an answer to sing the Land Mobile industry. It will, in fact, open up new areas such as proposed by skylink.

For the RF and Analog engineer (and even the digital engineer), ACSB provides numerous systems and applications challenges that require unique and creative solutions

\section*{ACSB NOTES:}
1. Buesing biblio \$15
2. FCC UHF TASK FORCE biblio 1
3. Lusignan, Bruce IERE Spectrum biblio 2, 38
4. Application notes - NE 570
5. Fred Cleveland - West Coast VBF/UBF Convention 1979
6. Ray Wells - biblio \(\$ 6\)
7. Ap notes - NE 579 Signetics
8. AGC biblio \(19,20,21,22\)
9. Ray Wells - biblio 6
10. Mc Geehan biblio 22
11. biblio (19-22
12. biblio \(\ddagger 4,13,38\)
13. biblio 32

\section*{ACSB BIBLIOGRAPGY}
1) Federal Communications Commission UHF Task Force Report "Spectrum-Efficient Technology for Voice Communications" February 1978 Office of Plans and Policy NTIS, 5285 Port Royal Road Springfield, VA 22161
2) Lusignan, Bruce Single Sideband Transmission for Land Mobile Radio IEEE Spectrum - July 1978
3) P.R. Docket 80-440 FCC, Washington, D.C.
4) McGeehan and Sladen Elimination of False Locking in Long Loop Phase-Locked Receivers IEE in Long Loop Phase-Locked Re
0990-6778/82/1000-239100.75
5) McGeehan Design and Characterization of a Phase-Locked VHF Mobile Receiver IERE Conference Civil Land Mobile Radio London, England November 1975. pp 37-46
6) R. Wells "SSB for VHF Mobile radios at 5 KHz Channel Spacings" IERE Conference Radio Receivers, Associated Systems London, England 1978, pp 29-36
7) J.R. Ball and D. Holmes "An SSB with Pilot Receiver for Mobile Radio" Proceeding IERE Clerk Maxwell Commemorative Conf. Radio Receivers, Associated Systems Leeds, England July 1981, pp 429-435
8) W. Gosling, J.P. McGeehan, and P.G. Holland "Receivers for the Wolfson Single Sideband VHF Land Mobile Radio system" Radio Electronics Engineering Vol. 49, pp 321-325, 1979
9) "A Digital Technique for Temperature Compensation of Crystal Oscillations" Rec. and Assoc. Systems. Proc. of Conf. Radio IERE, London, 1978 (see also 17)
10) B.N. Biswas and P. Banerjee, "Range Extension of a Phase-Locked Loop", IEEE Trans. Commun., Volume COM-21, pp 293-296, 1973

11）J．P．McGeehan，G．Lightfoot，A．Lymer，and W．Gosling＂Optimisation of the Wolfson SSB Radio Receiver Proceedings－July 1981，pp 4il－428

12）F．M．Gardener Phaselock Techniques New York： Wiley， 1979 （Standard Reference on PLLs）
13）J．P．McGeehan＂Comparative Adjacent－Channel Selectivity Performance of Phase－Locked Pilot－tone SSB Mobile Radio Receivers with Particular Reference to the Long－，Short－，and Split－Loop Configurations＂IEE Proceedings，Vol 129，Pt．F， No．6，December 1982

14）Magnuski，H．＂Improving Spectrum Utilization 14）Magnuski，H．＂mobile Mobile commication＂26th Annual Conf IEEE Vehicular Technology Group pp 1B5－110，March IEEE
1976

15）Buesing，R．T．MModulation Methods and Channel Separation in the Land Mobile Service＂IEEE Trans． Vehic．Tech．，Vol VTl9，p 187，May 1976

16）Rawling，A．J．，McGeehan，J．P．，and Gosling，W． ＂Forward Feeding AGC with Extended Signal Delays Proc．of Conf．＂Radio Receivers and Assoc． systems＂IERE，London， 1978 Warwich，G．A．， Gosling，W．，and Prescott，A．J．
17）Warwich et al＂Digital Compensation Technique in Crystals Yields Ultrastability＂Electronics， in Crystals 19，51，No．19，pp 67－68，Sept．14， 1978

18）Gosling，W．and Weston，D．＂A Quasi－Synchronous VHF SSB System＂Proc．of Conf． Quasi－Synchronous VHF SSB System＂Proc．of Conf．
Civil Land Mobile Radio， 1975 IERE，London， 1975

19）McGeehan，J．P．and Bateman，A．J． Theoretical and Experimental Investigation of Feedforward Signal Regeneration as a Means in Pilot－based SSB Mobile Radio Systems＂IEEE Transactions on Vehicular Tech．Vol VT－32，No． 1．Feb 1983 BE18－9505／83／626日－618601．0日 1983 IEEE
26）McGeehan，J．P．\(\quad\) and Bur rows，\(\quad\) D．F．
＂Performance Limits of Feedforward AGC in Mobile
Radio Receivers＂Proc．IEE，part F，no 6 ，pp ＂Performance Limits of Feedicwarart F，no 6，pp 385－392， 1981
\begin{tabular}{llll} 
21）K．W．Leland and & N．R．Sollenberger \\
＂Impairment & Mechanisms & for & SSB Mobile
\end{tabular}

Doppler／fading Correction＂Bell System tech．J．， vol 59，pp 1923－1942，1986

22）J．P．McGeehan，D．F．Burrows，and A．J． Bateman，＂The use of Transparent Tone－in band（TTB）and Feedorwand Mobile communications FFSR）in Sroc Elec．Eng．Conf Systems＂Proc．
Communications 82 pp Inst．
l2l－126，
Elec．
1982

23）J．P．McGeehaan and A．J．lBateman Subjective performance of Amplitude Companding in SSB Mobile Radio Systems＂Electron．Lett．，vol 17．pp 859－86B，Oct． 1981

24）H．Magnuski and w．Firestone＂Comparison of SSB and FM for VHF Mobile Strength＂Proc．IRE vol 44，pp 1834－1848
25）W．B．Bruene＂Distortion Reducing Means for W．B．Bruene＂Distortion Reduc．IREく vol 44 pp 1760－1765．Dec． 1956

26）Belrose，J．＂On SSB Radio Communications．＂ QEX，July，pp．3－4．

27）Bishop，D．Mobile Satellite Experiment Tests ACSB Data Techniques．＂Mobile Radio Technology June 1984，p． 43.

28）Childs，F．＂ACSB－－Filling the Gaps Between FM Channels．＂Mobile Radio Technology，January／ February 1983，pp 68－66．

29）Daniel，J．Additional Channels for RCCs． Telecourier，June 1983，p． 12.
38）Daniel，J．＂New Channels．＂Two Way Radio Dealer，July 1983.
31）Fahnestock，J．＂MRT Previews STI ACSB Handhelds．＂Mobile Radio Technology，March 1984， p． 2 B
32）Haller，R．and H．Van Deursen，Amplitude Compandored Sideband Compared to Conventional Freguency Modulation Eor－VHF Mobile OST Technical Memorandum，FCC／OST TMष̄3－7，October 1983.

33）Mang，B．＂ACSB：Solution for Spectrum

Starvation." Radio Communications Report, July 15, 1982.
34) Manz, B. "SSB Technology Fights its Way into the Land-Mo
35) Snyder, B. What ACSB Means to You." Business Radio Action, June 1982, pp. 13-17. (Volume XVIII no. 3)
36) Technical Services Dept., Stevens Engineering Associates, Inc., "ACSB Presents New Challenge to FM Service Technícians." Mobile Radio Technology, February 1984, p. 28.
37) Woodward, G., C. Hutchinson and P. Rinaldo, eds. The Radio Amateur's Handbook (61st edition). Newington: The American Radio Relay League, Inc., 1984
38) "The Problem of Speech Pulling and its Implications for the Design of Phase-Locked SSB Radio Systems" Proceedings-Inst. Elec. Engineering, Volume 128, part F. no. 6, pp 361-369, 1981

\section*{}

Kenneth M. Voelker, Product Manager
\[
\begin{aligned}
& \text { Hewlett-Paokard Compeny } \\
& \text { P.0. Box } 69 \\
& \text { Maryav11e, Weahington, } 98270
\end{aligned}
\]

\section*{ABSTRACT}

Measurement of the oleotrical parimotors of quartz cryatal unite is simplor and more accurat 1ntroduoed inetrimantation. \& 200 NHz veotor notwork anelyzer and oompanion s-parametor tast set an rapldy doteraine the equivaleat ol roult veluea orystal units. Internal callibration firmare, Which compenaites the offocts of both toat Pixturing and residual inatrueant orrors, akea

Por yoars, the abllity of quartz oryatal manufuoturers to bulld products with precisoly
oontrolled characteristios has rivalled or axoeeded their abllity to eeasure then. Won-atandard toatine techniques and Inadequate teat inatrumentation have aiven these devicoa a
raputation for being nearly imposaible to raporationice cocuratoly. Cryatal manuractur usors alike can attest to the difficultion of obtaining corrolation betwoen masurcmenta nade by vendor and cuatomer, or even among locations within the same company.

Historically, whon higheat acouracy was of the network analyzer fanlly, including vector voltheters, galn/phase metory, ilipodance analyzors and network analyzors. Pundacantaliy capable of required egrest deal of test encineering expertise to inplement a complate solution. Complox teat rixturing, hundreds of individual oalioration and esagurasent points, and a monumental date roductio -infimel accursoy.
Recent developments in tast inatruestation have produodd prosuota that are not only more aocurate, but which oand do agreat dalal of data or no operitor intervention. One such product is the reoently introduced Hewlett-Paokard 35771 200 HHz Veotor Motwork Analyzor. With propar imploentation, ita anpabilitios for shad-alon cryatal measurecont apual or oxcead those This papar will reviow the eabentials or both oryatal paracotric masurcanta and network analyala, and will give praction hiota fo

The Measurement Problea - Crystal Parametors
Propar charmotorization of a quartz oryatal resonator involves finding, as a dinimu, the loctrical paracotors listed in Thble I. The fir equivelent oiroult of Figure 1.
```

C1 motional oapecitano
C1 EOtional oapacitanoe
L1 cotionel induotanoe
fo sor1es resonant frequesoy
fo sorles resonant frequasoy (rone froquony

```

Table 1: Required Elcotrical Parmatera for Quartz Crystal Units
accurate deteratination of these velues aselsta dealgn onginears by enabling then to olosely onditions. Repeatable meesurgeent resulte sliow the orystal sanufacturor to precisoly dasoribe the charactoristios of his product to oustomers. All of thase pary-dependant conplex inpedinoe of the oryatal unit. Several important ahthementical roletionahipa are involrad, which will be reviowed


Figure 1: Resonator Lepedance Variationa with Frequency

Motioral Parameters LI, C1 and Ril
As suggeated by the equivalent circuit, the erystal unit exhloits a sorios resonance at a frequency
\[
\begin{equation*}
r_{3}=\frac{1}{\sqrt{4 r^{2} \mathrm{LICl}}} \tag{1}
\end{equation*}
\]

As shown in figure 1, is is identifiable (to a 1rst approximition) as the (requency of einimun
impedance and zero reactance (zero phase angle). at 13 , the inductive and oapacitive motional
reactances cancel and the only signipicant
coaponent to the impedance is R1, uhioh can be read coaponent to the imperd.
L1, the motional inductance, is directiy
related to the rate of change of reactance with
\[
\begin{equation*}
L 1=\frac{1}{4 \pi} \frac{d X}{d f} \tag{2}
\end{equation*}
\]

Finaliy, C , the motional capacitance, is
\[
\begin{equation*}
c 1=\frac{1}{L_{1}\left(2 \pi(3)^{2}\right.} \tag{3}
\end{equation*}
\]
Shunt Capacitance Co
while the equivalent oircult for a oryatal
resonator assunes a shunt capacitance co, the
proceding discussion has ignored its influence.
especially in cases where resonant frequancy is 10 m
and/or a is high (or where sccuracy is not a
primary concern). Co causes the following:
1. Creation of a parallod resonance often
requency of zero phese, but with impedance at a
maximul value. Thls occurs at a trequency of
\[
S D=\frac{1}{2 \pi} \sqrt{\frac{1}{L 1 C 1}+\frac{1}{L 1 C_{0}}}
\]
2. Spreading of oritical prequencies The ddition of a paralled reactance complicates the

\(\rightarrow--1\)
o the frequencles of zaro phage ( fr ), elnimu iapedance (fo) and serles resonance (fs) colno ide
In fact, fs (critical for calculating R1,
Li and (1) no longer corrosponds to any identiriable point on the lapedance plot.
A further difriculty arises fron the fact that any stray capacitance in the measurenent sotup or test instruantation will appear in paralleo wit
Co, adding diractiy to it. Without the proper soesuresent, calloration and data manipulation techniques, this causos a twofold problem: 1) the shunt capacitances will change the apparent
values of all crystal parameters, and 2) this valuos of all crystal paramoters, and 2 ) th1s
influence will vary drameticelly as a function of
 neasurements parformed at difforent locations often correlate poorly.
Co can be calculated froe the Lepedance of the crystal unit at a frequency a fou percent away
from resonance. at auch frequencies, the tmpedance of the motional are (Li, C1 and R1) will be hlah anough to have negligibl. offect on the overall
\[
c_{0}=\frac{1}{2=8 x_{0}}
\]
(5)
\(\triangle\) later section of this paper will present aeans for deterasining co analytically from the serles resonance lapedance plot.
\(\frac{\text { Resonator } 9}{\text { Soveral }}\)
sethods aro avallable for finding the calculate crystal resonator, the staplest being to obtained, using equationa such as
\[
\begin{align*}
\theta & =\frac{1}{2 \pi \ell_{3} C 1 R 1}  \tag{6}\\
\text { or } \quad & \theta \tag{7}
\end{align*}
\]

Another widely used technique deteraines \(Q\) froe the rate of change of phase with frequency (phase "slope"). In the vicinity of fs,
\[
\begin{equation*}
\theta=\frac{\tau r}{360} \frac{d \theta}{d \ell} \tag{8}
\end{equation*}
\]

Fortunatoly, many network analyzars include the ablitity to easure phase slope dreothy group dolay, equation to
\[
\begin{equation*}
Q=-t_{8}=t \tag{9}
\end{equation*}
\]
where
\[
\begin{equation*}
t \varepsilon=-\frac{d \theta}{360 d t} \tag{10}
\end{equation*}
\]
igure 2: Crystal Impedance near Sorlos Resonance,
Showing Influence of C

\section*{The Measurement Solution - Netvork Analysis}

A state-of-the-art network analyzer can perfors all of those monaureents with ease and
accuracy. A network analyzor is a complote, solfaccuracy. a network analyzer is a colplete, self-
contained stimulua-response test syaten, as shown contalned stimulua-rasponse test syaten, as shown in the block diagran of rigure a. It perfores known atiaulus and characterizing the responso. To aid In understanding the functions or antwork analyzer, its three key blocks are now discussed more detall.


Figure 3: Funotional Block Diagran,
\(\frac{\text { The Source }}{}\) evice under test furnishes sinewave energy to the device under test, and deternines the measurement
frequency. The following oharacteristics are very fresirable:

Frequency synthesis The operating frequency of the scurce should be derived from and looked to a stable reforenoe oscillator. This is especially devices whose paramoters ohange radically with very mall frequency changes. A suitable synthesizer would include its own TCYO raferenoe and be settable in Frequency increments of 001 hz or ver Erequency sueep Most devices, will be nensur of frequencies, so the source must have the ability to sweep. For eany synthesizers, his is an unvelcone complication, as thel requencies cas steps. The resulting transients tend to cause "ringing" in hi-Q devices, and a time dolay at each rrequency must be provided to allow the measured data to settle to a stable value. ynthesizer used in the Howlett-Packard 3577A discontinuities, and provides a quick, smooth "analog-11ke" sweop.
Idjustable amplitude Output level must bo variable over a range surfioient to sooonemdate the
devices to be tested. Good souroc rlatness (i.e. onstant output voltage) as a function of frequency is also desireable, but with proper measurement setup and today's computerized error-corre

\section*{The Recelver} reorent portion of the notwork amalysis systen, quantifying the reapons of the test device to the stimulus. Although every network analyzer will have at least one speed up the neasuroment task. The key tochnical requiroeents for this runctional block include: Voctor measurements a najor distinction
veen network anelyzers and other types of between network analyzers and other types of anslyzers is their mitude. A suitable recelver eust be able to easure both the real and imginary coaponents of its input signal.

Narrouband reasponse a narrowband receiver optinizes dynamio range, allowing the measurament wider ranges of impedance. Each decade docrense in receiver bandwidth lowers the noise floor by 10 dB (although at the expense of measurement time). Most network analyzers provide a selection of bandwidths, raneing froe as narrow 251 Hortz, rapidly responding bandwidths of a kilohertz or
more. Source tracking Because the frequency of the input signal is constantly sweeping, the tuned frequency of the recoiver must also sweep. Use of the sane synthesized local oscillator for both source and receiver ensbles then to track perfectly.
ata provided by the recaivers will rarely be in a for convenient for interpreting the weasurement. Instend, Esthematical operations on the date will be necessary, as woll as a mean
for graphically preaenting the rosults. The for graphically praaenting the rosutions.
display section hand es these functions. Conputation Even the most basio measurenents can require complox manipulation of the raw data. Phase, for example, is obtalned by dividing the lagginary portioa of the received signal by the those eeasurements that are inherently ratios (gain, for example) require the simultanecus handiling of deta froe two (or sore) receivers or nemory registers.
Graph
such as a CRT should be used to plot the resulte nominally with frequency on the horizontal axis and the measured value on the vertical. A more usaful at onoe, or alght implement more complicated displays such as polar plots, Salth charts, etc.

\section*{Network Measurements}

The following sections will discuss teris and echniques comion to network analysis measurements

\section*{S-Paramears}
aribing the ohere exist for mathematically coscribing the oharacteristics of an eloctrical
ano perametors, whioh variously define networks

In teras of port-to-port iapedance, oonductance, oto. Those fanliar with these parameters will recall, however, that they can be beasured only ports apen or shorted. Beceuse torninations of this sort are inoompatible with most RF devices a different set of paraneters is used, called s- ("scattering") parameters.


311 b1 Input raflection coofficient

S21 \(\left.\frac{b 2}{a 1}\right|_{\mathrm{a} 2}=0^{\text {Forward gain }}\)
\({ }^{12} \frac{\mathrm{bl}}{\mathrm{a}^{2}} \|_{\mathrm{a} 1}=0^{\text {Reverse gain }}\)
\(\left.\frac{b 2}{a^{2}}\right|_{\mathrm{a} 1}=0^{\text {Output reflection coefricien }}\)
rable 2: Scattering Parameters, Definitions

As show in Table 2, s-parameters are defined In torus of power transferred to or proa a nder conditions of proper source and load and thoir requisite conditions easily furnished by network analyzer, the results themselves pwovide aluable network data with no further calculation 11, for example, is siaply input reflection hese reasons, s-parameters are natural choice or use in making network measuresents, and are used as the starting point charaoterizing quartz rystals.
Basic Transfor Function Measurements
Figure shows the necessary connections detween a typioal two port test device and a state-of-the-art network anelyzer such as the HewlettPackard 3577A. In accordanee with the definition aput and output signals to the device under test uust be measured. Yo is measured by connecting the device output directly to the input of receiver \(B\), hilch also furnishes a 50 ohm termination. Vi 19 erived row en (receiver R) with a aignal identical to that supplied to the test device.


Figure 4: Test Satup and Display for Transfor Function Moasurement

In the course of an actual measurenent, recelvers \(R\) and \(B\) each produce two voltage values (one real, one inaginary) for each of 400 frequency
points across the display screen, For a transfer function measurement, the analyzer must caloulate and display "B/R" at each point, in accordance with the above definition. Because the values for bot \(B\) and \(R\) are complex, the quantity \(B / R\) has both a analyzer can display as shown in Figure 4 .

Use of the anslyzer's roference input (receiver R) to monitor the actual signal that is supplied to the test device makes it unnecessary to assume a perfectly fist source. Nount to \(\pm 1 \mathrm{~dB}\) or more.
Reflection and Impedance Measurements
As useful as transfer function measurements are, crystal electrical parameters are more easily turn, based on reflection measuroments.

Reflections occur whenever there is an iapedance misuatch betveen a source and ita load. the inoident power is not abscrbed by the load, but is reflected back toward the source. The vector ratio of reflected to incident power for a test orricient, or sil.

The addition of a direotional coupler to the ast setup as shown in Figure 5 aliows the analyzer to soparately measure incident (receiver R) and rerlected (receiver A) power. 511 is then calculated as the ratio \(\mathrm{A} / \mathrm{R}\). Reflection aeasuresenta require only one connection to the
analyzer satup, and characterize alngle device port. For this reason, they are sometimes referred to as "single port" measurements.


Figure 5: Test Setup for Reflection or
The equation
\[
\begin{equation*}
z=z_{0} \frac{1+s 11}{1-s 11} \tag{11}
\end{equation*}
\]
\[
\begin{aligned}
S 11 & =1 / R \\
\mathrm{Z}_{0} & =\text { yyat }
\end{aligned}
\]

Zo : syatee characteristic iepedance
converts any Sil vector to \(\begin{aligned} & \text { anlque velue of } \\ & \text { and }\end{aligned}\) apiex impedance. The Hewlett-Packard 3577A will perform this onlculation automationliy, displaying urther, the lepadance can be shown in either agnitude/phase foreat, slmplifying the search for lapodence maxies and ainian, or in real/imaginary foreat, separately showing the resistive and eactive coaponents of the impedance.
reflection coefricient rolates to the range of from lopedances that are measurabile. As the lapedance of the unknown becones very different from the harseteristic inpedance of the network analyzer 11 approaches a value of unity. Exanining the the calculated value of 2 will be very sensitive to ainute variations in S 11 such as are caused by noise, atc. As a rule or thumb, roasonably stabl range of about \(\pm 2\) orders of magnitude around the characteristic Iapedance of the measurenent systen This range is quite sultable for the crystal
measurements describod herein.


Figure 6: The Cryatal as a One Port Device

\section*{Practical Moasurement Techniques}

Test Setup
As was
fren
requency-depentrated at the outset, the unit is frequency-dopendant itepeqance of a crysts parameters. Impedance is readily cbtained by treating the crystal as a single port network, easuring its rerlection coernerent (Sif) and shows a suitable measurement setup.

It should be noted that crystals can also be easured as two port networks, as shown in Figure 7. This provides certain sdditional information bout the crystal, most notably the crystal-todata will be the need to make four s-parameter eeasurements instesd of one, as well as the neod


Figure 7: The Crystal as a Two Port Device
The romalning sections of this paper will slve practical guldance for making crysta S-Parameter Test Set The various items shown in Figure 5 as being ad Junct to the network analyzer oay be obtained in a single unit called an
s-parameter test set. This convenient accessory, s-parameter test set. This convenient accessory, test, integrates the RF spiltters, directional couplers, terainations and other devices required for a complete set of s-paraneter eeasurements. be needed to interface the crystal unit to the analyzer or test set. The physical adaption of connector types 1s, however, only part of the problea.

Repeatability is a major concern. With proper calbration, the parasitic mpedances presented by provided they recain constant from measurement to eoasurement. Within 1leits, it is more benoficla to insure the stability of theac values than to attompt to minialize thes. A solid mechanical compatiolid an in satisfying this raquirement and consideration. The calibration process socond consideration. The califoration process torninations be applied directly to the crystal sooket. Soee usors will want to construct these in
actual orystal cans, while those with the most stringent accuracy requiresents will have to adapt
direotly to their secondary or tertiary iapodance standards.

Measurement Calforation
is accurate al a matwork amalyzar my be, most of the factore influenolng overall measuremont Consider a device oaneoted to the analyzer. through cooxial oables. The messurament reaults will include the attenuation and phase shift of the cables superimposed on the tranafor function of the test device. Most maesuremante require not only cables, but alac power aplittors, directional
couplers and test fixtures. These othar dovio oan 1atroduce inmertion loses of 10 dB or more and rlatnesis arrore excoeding 1 da. A modern network anelyzer will indude soen ceane for modelline moasuring and ramoving these arrora ouilt-in onlioration routines, sotivated by front panel comands. The thres tore arror model used for reflection eossuremonts requires the user to supply standard open, short and r1fty ohm has been mensured and stored, this data is used to anthemeticesily ocrrect further ceesuresents. The physioal point at whion the oslibration
 gaina, losses und phase anglos are diaplayed roliative to the velues that exist at thia point.
Errors that ocour inside the roferance plane, such Errors that ocour laside the referance plane, such aa fixture parasitios, no loger affect the reference plane ia measured as if there were no intervening rixtures, dovicas or cables.

Pleure 8 illustrates the banofits of oseazurament onlibration has ocourred, and the referance pla remaina at the instrument' in laput terainals. The socompanying plot show how the oryatal': parallel reaonance Praquancy hail boen "pulled" (lowered) by the parasitio impedancea or the rixture.

Pigure \(8(0)\) shows the offect of oalibrating at the fixture sooket 1tself. The rixture 18 now the crystal'a resonant characteriatica.


Fisure 8: Effocts of Calloration on Crystal Inpedance Measurement
```

General Measurement Sequence
The following procedure incorporatea the
forescing information into a insle, uniried
test sequence. Wh11e based on a Howlett-Paokard
Set, the basio prinolples are applicable to any
network analyzer.
the anmiyzer requires four front pengel selections:
impedance (onlculated from sil)
by seleating usor-dofined
DISPLAY FUMCT display ilmear menitude (in ohma)
FREQUENCY solect a center frequency equal
to fa and a swesp span equal to
to approximetely }5\textrm{fs}/\textrm{Q
soloct a source amplitude sultable
for the device under test.
2. Callorate Seleat "One Port Full Cal"
and rol1,
3.
following instrument parameters should noxt be
and no130 imeunity.
impedance reminum, choosing a swoep span that
covers the resion between about minus twenty and
the final sweep paramera have been chosen.
Display Scale: while display scaling
the measured data, an expanded nortical scalion of
ald in visumily doteruining frequencies or minimum
impedance, zero phase and other characteristics.
Resolution Bandwidth: noise variations
of the measured data can be reduced by selecting a
narrower recelver bandwidth. This will neceseltate
a proportionally slower sweep time.
Averaging: nolse can be statiatically
reducod by avoragi
4. Removal of Co The display now plots the
pin-to-pin impedance or the erystal unit in the
vicinity of serles resonance. As was previously
mentioned, the presence of shunt cap,clance Co can
rolative to Cl. This will obscure the correct
value for fa and motional oomponentas L1, Cl and R1,
and cause the rrequencies of sories resonance,
unequal.
When this occurs, the shunt reactance of co
aust be mathematically recovod froa the Lepodance
plot bofore the motional couponents are measured.
The 3577n's internal computational capabilities,
allow it to simultaneously
A. Returning to the inatrueent's IMPUT
sonu, inatruct the instrument to diaplay the

```
following "User-Defined Input":

\section*{}

Thoving a parallel tion oalculates the offect of complox a parallel iapodance, rapresented by iapedance, caloulated by function FH .
initial value of the DEFTME MuTH menu, enter an ad just its imaginary (reactive) portion, using the keypad or knob. As \(\mathrm{K3}\) approaches the actual value of XCo, ir and fewill bogin to move toward ach other. When they coincide, co can be
oalculated from
\[
\text { Co }=\frac{1}{2 \pi r \times 0}
\]

For certain hi-Q and low requenoy oryatals, For certain hi-q and low requenoy oryatals,
ir and rew will initiolly coincide, and the aboye ir and trewill initially coincide, and the aboy
steps will not be necesamp. For these cases, steps reactance or co will have to be measured separately, at a frequency away froe resonance. fir and fr are equal, they are also equal to fs, the the series resonant frequency. By moving ths display marker to thia frequency, R1 can be read directly froe the screen. Selecting display Functiow a "Iaginary" displays the reaotive portion or the iapedanoe, used to caloulate Li. phase slope to be measured for \(Q\) calculations. C1, Co and rp can then be deterrined eathematically using equationa previoualy shown.

\section*{Concluations} techniques is beyond the soope of this work, eupirical rindings are quite encourasing. obtainable for component values, as well ma fou parts in \(10^{8}\) for frequency values. With traceable calibration standards, these aeasurements will correlate quite well froo location to location, In addition, they will also be surficiently accurate processes, such as those used in high volume eanufacturing situationa.

Precise quartz oryatal eoasuresents are no longer limited to metrology laboratories and olaborate, computer-controlled test setups, thanks
to the capablitien of modern network analyzers. stand-alone inatruent such as the Hewlett-Packar 3577 A brings these eeasurements to all portions of the sanufecturing process, from the RLD bench to rinal Qa.
R.F. Expo*Disneyland Hotel*Anaheim*California*Jaruary 23-25, 1985

> of the
> Digital RF Mamory
> to

Application

Comunication Janaming

\section*{William J. Schneiden}
formerly
Communication System Engineer ASAS Project
Communications Research Section Jet Propulsion Laboratory Pagadena, California

This work was sponsored by
Paradigm Technologies
2680 Monterey Road
San Marino, California
818 7992780
R.F. Expo*Disneyland. Hotel *AnahoimmCalifornia*January 23-25, 1985

> Application
> of the
> Digital RF Momory
> to
> Communication Jamming
> Part I
> Military Communications

Introduction
The purpose of this paper is to describe the potential impact of Digital RF Memory technology on communicationg jamaing. The first step in doing this is to establish the background, and then to follow the somewhat see-saw course of Communication ve ECM vs ECCM.

It is first nocessary to state say what Army communications is made of today and then to show how those communication 1 inks are vulnernable to certain jamining techniques. Next it is necessary to set out the or going developmerits in Army communications those developments which will lead to jam resistance communications.

Having discussed the background of present ard future communications systems is set it if appropriate to attempt to how how even these advanced syetems might be vulnerable to the replica jamming as implemented using Digital RF Memories. This ast step will bring us to the discussion of the DRFM its implementation and properties.

Before proceeding a disclaimer of sorts is required. One of the first thinge one discovers when investigating military communications is the fact that the Army and DOD have a great number of developments in process. The systems mentioned here are representative of those which have been described in the open literature. There ar othme advanced developments which cannot be discussed here. There is therefore a substantial possibility of omission even though a substantial effort has bean made to make thie presentation complete.

\section*{Army Battle field Communication}

This paper deals with Army battle field communications. Because of the complexity and the variability of the topic and the limited time available for this dimcussion, it is necessary to narrow the discussion to particular hypothetical situation. (Forward hypothetical situatiori a Brigade, located riear the for (Formard Line Own Troops), has a raquirament to communicate with a comated some distance behind the FLOT. These communications will include reports of various observations arid the receipt of orders.

The Brigade will have with it radios from the Division inventory. These radios are smaller, lighter, and more reliable then their predecessors but are basicaliy the same as the last 20 years. They operate on the same frequencies, HF, UHF, and UHF. The primary mode of communication is voice reports.

There have bean some advances in technology, recent developments in HF have resulted in means of measuring and preme of the newer MF radios incorporate automatic antenna matching so that operation with relatively short whip antennas is practical, factor greatly effecting mobility.

There have emerged new genoration of HF modems which allow digital transmission over HF radio despite the variations in amplitude and group delay across the typical HF channel. Even so the rates ar not high, 1200 bps being about the best that can be done.

VHF radios, 30 to 80 MHz , and UHF radios, 200 to 400 MHz , now offor \(x\)-Mode data transmission to 16 kbps . This capability allows the transmiseion of digitized voice. since only digital radios now offer secure communications.

In addition to single channel radios, those carrying a single fuli duplex channel, the Army has developed ATACS, the Army Tactical Communication system. This system provides
dial/DTMF telephon service to areas quite nes to the FLot and in theory would allow communication from those forward areas in theory wouldallow communication from those forward areas version of Ma Bell is implemented by VHF/LHF multi-channel radios carrying broad band TDM signals betwern switching centers. Typical parameters of equipment are summarized in Table 1.
Typical Military Radio Equipment
Table 1
R. F. ExponDisneyland Hotel \#Anaheim*California*January 23-25, 1985
single channel radios are much preferred aince their simplicity of operation allow them to be owner operated. The owner operated concept refers to a radio so simple to operate and so reliable that communication to be established without the aid of signal Brigade personnel. Thiseliminates a requirement for a available.

Hypothetical Situation
In this situation communication link between the Brigade ractical Operations Center (BTOC) a forward arma command poit 5 4 m behind the FLOT and the DTOC located 60 km behind the FLOT. We will now explore what is necessary to jam this link.

The Division area of influence is shown in figure 1. The actual dimenisions of the area will vary with the geographical situation but an area 100 by 100 km will provide reasonable basis for dimeuseion
R.F. Expo\#Disneyland Hotel*Anaheim\#California\#January 23-25, 1985

R.F. Expo\#Disneyland Hotel \#Anaheim\#California*January 23-25, 1985

The parameters for each links distances, Line Of Sight (LOS) ath lass and and propagation delay times are given in Table 1. The initial calculations assume that VHF radios operating at midband with omni aritennas are used and that LOS is available.


\section*{The Barrage Jamnaer}

For the purpose of the base line situation, a barrage jammer is presumed to be employed. This jammer is a set-on receiver, haise tramsinitter type. This Jamming techniques invalves a four step procems
Intercept
\begin{tabular}{l} 
Search the band of interest for signals of \\
opportunity.
\end{tabular} opportunity.

\section*{naly yis}
determine content of the int
Set-On
Tune the Jamming transmitter to the intercept frequency.
Noise Transmisetion
Transmit on the intercept frequency with noise modulation.
In the intercept mode the receiver is tuned acroses the band in a search for communication links, this may be done manually or automatically and will take erveral meconds. When a target is discovered the jamming transmitter will be tuned to that frequency and noise transmiseion bequn.

Jamming will be discontinued periodically for 'lookthroughs' to verify that the link is still covered. Mast VHF radios have the capability of off-setting transmissions up to 15 kHz from the chanmel center to avoid narrow band jammers.

These factors, plus the possibility of equipment drifts, make it necessary for the jammer to transmit a noise spectrum wider than the communication spectrum. The required jammer band width may be determined as shown in Table 3.
Jammer Noise Band Width Calculations
Table 3
Communication Band Width
Link Offset Capability
Equipment Drift Allowance \(+1 /\)


Jammer Band Width
Jammer Disadvantage

The Jammer must maintain a cufficient J/s (Jamming power to signal power) ratio over the channel to disrupt communication. The required J/8 will vary with the type of transmission and with the modulation. For the example \(5 / 8\) of at least 10 dB over the 25 kHz of a digital link will be considered to be sufficient.

Bince the 25 kHz communication channel may be any where in the 65 kHz band the jemmer must have a noise band with of 55 kHz . This gives the jammer a band width disadvantage of about 4 \(A B\) compared to the communication transmitter.

Replica Jammer Application..... The DRFM has a lot to offer in this initial situation.

Look through time....gince it is aimply a mamory device the set on time is equal to the duration of the wave form stored the iristruction pulse width. The operating band width of the DRFM can easily cover the UHF band, reducing the look through time from seconds to microseconds. The initial through time from seconds to microseconds. The initial received would be jammed with out manual analyeis.

Band Width Disadvantage..... One outstanding feature of the DRFM is frequency accuracy. In the case of a binary FSK signal the spectrum width is determined by the chip frequency and the deviation. A DRFM can stor a portion of the transmission containing the FSK frequencies and then retransmit optionally adoing noise modulation. The result is - spectrum very similar to the original spectrum in width and modulation. This application is iliustrated in Figure 2.

The ability to create jamming signal having the game band width as the communication signal essentially iliminates the band width disadvantige. If longer instruction pulses are stored the DRFM will capture entire code sequences, words or packets of information.


The required jammer power output can now be approximated:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{1 ( 1 coc} \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{вtoc} & \multicolumn{4}{|l|}{commurication signal power} & \(d\) \\
\hline & & & & & & \\
\hline 1 & & Comm & Transmitter & +44 & & \\
\hline 1 & & Comm & Rx Ant. Gain & & & \\
\hline 1 & & Path & Loss & -71 & & \\
\hline 1 & & Comm & Tx Ant Gain & & dbi & \\
\hline 1 & & & & & & \\
\hline 1 & & & & -- & --- & \\
\hline 1 & & & & -27 & dom & \\
\hline
\end{tabular}

BTOC communication signal power received by the Jammer


Jammer transmitter power necestary to provide \(10 \mathrm{~dB} \mathrm{~J} / 8\) at DTDC communication receiver
\begin{tabular}{|c|c|}
\hline Jam Pwr at DTDC & -17 dbm \\
\hline Comm Ant. Gain & - dBi \\
\hline Path Lose & -(-72 db) \\
\hline Jamomer Ant gain & - dbi \\
\hline BW Disadvantage & -(-3 db ) \\
\hline Jammer Pwr & +58 dbm \\
\hline
\end{tabular}

It appaars as though it would be quite simple to jam such a communication link. Clearly some ECCM is will be required to maintain communications.

ECCM Techniques
Directional Antennas.......Directional transmit and receive antennas would be an excellent ECCM technique. There use would jammer signal power.
R.F. Expo\#Disneyland Hotel*Anaheim*California*January 23-25, 1985

A problem arises because of the size of directional antennas at UHF and because of the time required for alignment of trarismit an receive antennas. Where directional antennas ure used they are desiopied as a compromise between signal improvement and alignment, 30 degrees 3 dB beam with a 10 to 12 dB gain is typical.

It is quite possible that the jammer will also use directional antennas. If so this would diminish the advantage gained by directional communication antenias.

Interference Cancellation Equipment.....Interforence ancellation equipment (ICE), uses the signalif from two antennas arid balances them in phase and amplitude to create a notch for signals of a particular frequency and angle of incidence. The accuracy of the balance require for various null depths is shown in Table III.
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \multicolumn{4}{|c|}{\multirow[t]{4}{*}{Null Depth as a Function of Phase and Amplitude Balance Table 5}} \\
\hline \multirow[t]{4}{*}{i} & & & & \\
\hline 1 & Nul1 & Depth & Amplitude & \\
\hline 1 & & dB & error dB & -rror Deg \\
\hline , & & & & \\
\hline , & & 20 & 1.7 & 11.4 \\
\hline 1 & & 25 & 1. & 6.4 \\
\hline , & & 30 & . 55 & 3.6 \\
\hline 1 & & 35 & . 3 & 2. \\
\hline 1 & & 40 & . 17 & 1.1 \\
\hline
\end{tabular}

The equipment is separate and functionally independent of the radio. Typical equipment uses a two step operationi 1) tune oo the transmittor frequency and 2) (with transmitter off) Null out the strongest signal present in the pass band. The total aperation probably takes less than 0.5 seconds.

These devices claim to provide up to a 40 dB null. In view of the .17 dB or 1.1 degree nulling requirement is seems optimistic to expect this level of performance routinaly. A nuli of 20 dB is more reasonable. Use of the ICE capable of a 20 dB null would require an increase in janmer power of about 20 db , from 320 watt to 32,000 watts.

Frequency Hopping....... One long existing means of ECCM is to morely change link frequencies if the link is Jammed; moving the link "out from under" the jammer. Frequency hopping carries this technique to the logical extreme by subsequently moving the link to a series of prearranged frequencies distributed over some portion of the band.
R.F. ExponDisneyland Hotel*Anaheim*California\#January 23-25, 1985

The value of frequency hopping is dependent on the speed at which it is accomplished. To be of value it must be substantialiy frequency hoping ystem are generally classified jammer. Frequency hopping syste
\begin{tabular}{lrl} 
Designation & Hop Rate & Dwell Time \\
Slow (SFH) & 100 hops/sec & 10,000 microsec \\
Fast (FFH) & 1000 hops/sec & 1,000 microsec.
\end{tabular}

Since the look through and tune time of barrage is typically several seconds even a SFH is a very effective ECCM.

A frequency hopping communication link can be attacked using a barrage jammer if the jammer nolse band is expanded to cover all link frequencies. The jammer must elther know all of the frequencies in the sequence and designate spot noise jammers to each of them or it must assume that the jammer can appear any where and jam all posesible channels all of the time. The jammer power requirement increases in proportions

\section*{Jammer power increase \(=10 *\) Log (number of frequencies)}

If it is assumed that the communication link can appar any where in the VHF band, the corresponding band width disadvantage to the jammer would bel

\section*{\(10 * \log (88000-30000) / 25)=47.6 \mathrm{~dB}\),}
binging the jammer power requirement to 103 dBm (20 MW). This may be possitie but there are at least two problems, 1) such jammer would block all UMF communication, friend and foe and 2) the jammer would be target for an anti-radiation missile. Replica Jammer Application

Multi-Frequency Spot Noisc.....Using a DRFM it is possitie to receive and stor a Eample of each frequency used by the communication link. A jamming signal comprised of those tored frequencies could be read from memory continuously and transmitted by single transmitter: adding noise modulation if desirable. This mode of operation is indicated in Figure 6.
The each DRFM output cycles is a collection of replicas of the communciation link frequencies time multiplexed ogether. The DRFM eycle time is less then the hop dwell so thit jamming is present part of the dwell time on each hop ven though Narrow tand noise may be added to the DRFM transmission.


The effect of being able transmit on the precise frequencies that will be use by the frequency hopper is to reduce jammer band width disadvantage and transmitter power.
Band width disadvantage \(=18 \mathrm{log}\left(\begin{array}{l}\text { (number } \\ \text { of }\end{array}\right.\) frequencies)
= 10*Log(10a) - 20 dB
Bringing the Jammer power requirement to 32. kW. Note that Bringing the Jammer power requirement to thing time required for the ICE syen precudes the combination of ICE and Hop.

A second possible application of the replica jammer is by frequency intercept and replica generation.

In the hypothetical situation the transit time for the communication link is 239 microseconds while that for the jammer communication transmitter to jammer plus jammer to communication receiver is 366 microseconds. If the frequency dwell time is greater than 127 Microseconds plus the DRFM response time it will be possible for the Jammer to keep up with the frequency hopping communication link, and respond with a jaming pulse exactly on frequency. This reduces the band width disadvantage to dB.

Because of path lerigth differances the commurication gets from ETOC to DTOC before the Jamming signal. Until the Jamening ignal arrives, the commurication link is jam free. If the hopper is fast enough it can change frequencies to
FE, abandoning F1, before the Fi Jammer signal arrives. In FE, abandoning F1, before the Fi jammer signal arrives. In this case an \(\mathrm{a}_{\mathrm{kHz}} \mathrm{kHop}\) rate would be required.

\section*{Developmental Systems}

The ECCM techniques mentioried above are currently available as MIL qualified equipment. of the systemin now in development as MIL qualified equipment. of the

Spread Epactrum
In spread spectrum, each bit of a digital transmission is represented by binary code of length \(n\). The receiver is responsive only to predetermined set of binary codes and rejects others by the processing gain of 20"Log \((n)\). Spread spectrum has the disadvantage of requiring \(n\) times the band width of the simple binary phase shift system transmitting the same data rate. Transmission of a 16 kbps data over such a system would provide an additional margin against jamming equal to the would provide an additio
processing gain of 24 dB .

\section*{Replica Jamming Application}

Phase Coherent Storage.....The DRFM has an application agairist spread spectrum eignalm because it has the ability to store arid reproduce the entire code word including the phase modulation content. The retransmitted signal will contain the phase code sequences which match the recelver the introduction of bit error or loss of synchronization.

\section*{Conclusion}

Each of the ECCM measures considered can be considered to add to the power requirements for effective Jamming. Taken together, a communication system which incorporat d combination of ECCM techniques would create jam proof communication link at least one beyond the capability of conventional barrage jammer.

Application of the DRFM can reduce the effectiveness of many of
belowi

These are summarized in Table 6
R.F. Expo\#Disneylarid Hotel*Anaheim*California*January 23-25, 1985
Impact of DRFM on Jammer Power Requirement: Table 6
Factor \begin{tabular}{c} 
Impact On Jammer Power \\
Barrage \\
DRFM
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Baseline Jammer Power (Determined by Path Loss) & 55 d8m & 55 dBm \\
\hline Band width Disadvantage (Set on accuracy) & dB & - \\
\hline Directional Antennas & 22 dBi & 22 dBi \\
\hline (Counter by Jammer Ant) & -11 dBi & -11 dBi \\
\hline Frequency Hopping (100 Freq in UHF band) & 46 dB & 20 \\
\hline Gpread Spectrum (20 bit code) & 23 dB & 0 \\
\hline Jammer Power Required (re Comm Power) & 150 dBm & 86 \\
\hline
\end{tabular}

Without the DRFM communication Jamming is probably doomed by the advent of combined Frequency Hopping and Spread Spectrum communication links. The impact of the DRFM is clearly to make communication not only possible but practical for the foreseeable future.
R.F. Expo\#Disneyland Hotel*Anaheim*Califormia\#January 23-25, 1985

Part II
Digital RF Memory Implementation
DRFM Implementation
The DRFM is implemented for radar ECM is shown in Figure 1. Conversion of the RF signal to inphase and quadrature base band signals is accomplished by GIFM (quadrature IF mixer) These signal are digitized by the A/D converters and stored in from the MEMORY converting back to analon in the \(D / A\) converter, from the MEMORY converting back to analog in the D/A Converter, equalizing and filtering the resulting signal in the EQLR/FLTR. band signals. These signali are then up converted using the quadrature phase modulator GPM to recover a replica of the RF signal. Up conversion and down conversion are accomplished relative to the local oscillator LO.


Aralog to Digital Conversion
Dre of the important questions that arises in DRFM
discussions is the impact of Analog to Digital conversion discussions is the impact of Arialog to Digital conversion speed and quaritization levels on system performance. There are a number of options in the \(A / D\) and \(D / A\) conversion but the most papular option is comprised of a quadrature dawricoriversion 1 bit A/D. The popularity of this combiration is a result of cost effectiveness. It provides the requency and phase accuracy required for acceptance by modern spread spectrum receivers and at the same the waveforms in this coriverter are illustrated in Figure 4.


\section*{Spurious Responser}

The one bit \(A / D\) conversion process is functionally equivalent to a hard limiter followed by a sample and hold. The result of hard limiting is that while phase and frequency data are retained all amplitude data is lost. The hard limiting gerierates odd harmonics corresponding to square wave harmonics. These harmonics iritermodulate with the sampling clock to generate multiple spuricus resparises. The Fourier transform \(G(f)\) for the cutput of the quadrature 1 bit DRFM is given by the relationships
\(G(f)=\operatorname{Sin}(p i * f s / f c) /(p i \# f s / f c) * \operatorname{Sum}_{n=-i n f}^{n=+i n f}\{F i(n \# f s-m * f c) j 3\)

Where \(n=1,3,5, \ldots ;+/-m=1,2,3, \ldots, f s\) is base band signal where \(n=1,3,5, \ldots ; \quad+/-m=1,2,3, \ldots ;\) fs is base band signal transform.

The phase relationships in quadrature system cause the ucceseive odd harmonics to alternate above and blow the Lo as successive odd har
R.F. Expo*Disneyland Hotel*Ariaheim*California*January 23-25, 1985

\section*{Frequency Accuracy}

The effect of alising between base band signil and sample clock on the steady state DRFM response are confined to these intermedulation products. The alising cause a "edge jitter appearance to the I and \(Q\) converter waveforms but contrary to intuition there is rio resultant error ip steady state frequericy.

Phase Accuracy
90. The phase quantization levels of the quadrature DRFM are 0, 90, 180 and 270 degrees. Applying the common approximations i) the phase errors are uniformly distributed arid 2)have a peak value of- 45 degrees. The RMS phase error is theris
\(E(p h)=45 /\) SQR \((3)=26\) degrees, rms
Dutput Spectrum
The typical frequericy spectrum of the DRFM response is shown in figure 5.


\section*{Performarice}

The performance parameters of a DRFM vary as a function of the implimentation. Typical DRFM parameters for an bit quadrature system are given in Table 5 below.
R.F. Expo*Disrieyland Hettel*Araheim*California*Jariuary 23-25, 1985


\section*{Conclusions}

\footnotetext{
The energing ECCM techniques available to communication ystem designers will make today's barrage jammers obsolete in system designers will make today's barrage jammers obsolete in The Digital RF Memory with its very short memory access trequer, irequercepts performance improvements in communication jamming.
}

\section*{Champacne heasurehents on a beer blocet}

Jim wair
Engineering, Redio Syatom Technology (RST)
aSEE Plodder, Celifornia State Univeraity, Sacramento

\section*{AUTHOR'S FORE WORO}
(es, Itoo have been triple-integralad by the beat of the hi-falutin' technical journels. Doggoned if ican figure what all that Groek meane in the real world either. I neither spologize for nor regret my choice of presenting the concepts in this article in a form deciphorable by any compatent Histary major.
A. abstract

All ff comenication devices aust be tested to met FCC loaknge and apurious anission lialts. This paper will ancm hom to construct laboratory and field measurement devices to teat thase limite uaing both in-house ("homo-bram") and inexpenaive comercial inatrumentation. Construction detaile of an fCC-approved far-field outdoor range will be shown.

\section*{B. general coments}

In the beginning was the apark gap transeittor, and in the ensuing hullabaloo about its interference with braadcaat soception was bogat the vecuun tube trenemitter, and with ite accompanying unmanted aecond harmonic output mas begat the pl-notwork filter, and with ite excellent performence wae begot the requirament that all our olectromegnotic mittere (whether they be diaguleod ee local oscllletors, clocks, or trua trancmittors) be purgod of my and elt The botto line is that the foderal government (in the corpus of the federel Comunications Comiselion - FCC) has made domende upon the deeigners of iff equipmont to competently design and then teat that designed equipment to make sure that it will not interfere with other ueera of the Rf apectrum

Now, this is mitten for those of you who believe that frf is a rather aimple dincipline aurrounded by alethore of complex aubtleties. For those of you who belisve that RF is a deep, dark art preaided over by the high priesti of black megic, I suggeot that you dip your tooe in my humble brand of simplistic dosign and meacurement. And, for those of you who cling to the bolief that RF is a design ort at the fringe of ecience, I invite your indulgence for a row moments.
For those of un who profese the fif discipline, the end resulte of our offorts ie ane of two effectes our designa ill haat or thoy will comunicate. In elther case the besic proceso is the same - wa generate Rf powar and allow it to radiate inta. dielectric. In the firat effort the thermal diesipation into bone or tiesue to the desired effect, and in the eecond, wope that at the ond of i long tranemisaion path, there is onough energy left to decode some tranemitted intelligencs. ("Leverne and Shirley" notwithatanding.)

No metter whether we are deeigning diathermy mechines or doep apace date links, we have ane common problemi how to koep the algnel- I generate for MY Job to keep from mesaing up the machine you genei ate for your customar. Thie is you have chosen for your informetion 11nk.
clasaic exaple of unmanted interference veed to happen men e passenger docided to play a little fh radio music and board an alrcreft. Take, for exemple, en alreraft approaching Los Angeles mere the pllot is navigating to Lax by mosane of the radionavigation stetion on 113.6 mHz . The passenger decides to ture in "Rockin' Radio \(103^{\prime \prime}\) on frequency 102.9 Miz on his personal FH redio that he alwaye kuepe in his briefcese. What he is reelly doing is tuning the local decillator of that FM radio 10.7 Mth (the If frequency) above his dealied receive frequency. Unfortunately, in

 crazy, the autopilot nearly performod en inverted anep coll tryin what wo lovingly refer to as a "character building eituation".

The feds thought that thie man't a particularly gaod idea, so some yeare ago the FCC and the electronice industry sat down and cme with some pretty good rules and ragulations concerning how much unmented radistion could be anitted by a radio device. If the radio dovice was a receiver, then the regulation required "certification", hareas tranomitter mas el ther "type accoptod" or "type approved". This paper mill not treat type approvel becense this Maryland for them to teat in their facility. Certification and type acceptence, though, la done in the mamifecturer's labs and only the reaulto are sent to the FCC Lebs for their perusal. It is certirication and type scceptence that will be the focus of this paper.

\section*{c. A brief overview of the situation}

The fCC rules provide : fairly clear delineation of the type and atyle of teat that muet be performed on my partjcular piece of equipment. There have been booke written telling juat how and why certain teate are performod It is nor the intent of this paper to shom otep-by-atep procedures for these various teste. Inetead, this paper will shom how to obtain or build certoin pleces of teat equipent and leboretory apoaratue that are common to almost ell fCC teato.

\section*{1. cerlification}

This procedure is usually dictated for devices that aren't aupposed to radiste, or are only mupposed to radiate ainiecule emounts of power. The FCC regulation that covers certification ie part 15 of the FCC rules (47 CFR part 15), and even the title "Incidental and Restricted Redistion Devices" gives some Ides of the scope of thie chapter.

In this part, you will find the requirements for masurment of aparhetorodyne recelvere, wroles ierophonea, cordless talephones, and other low pomerod devicee. In addition to part 15, fCC rules part 2 is the gulde to how your redio hat to be marked, hom ang, gen you can advertize it for sele, and unat kinda of deta muet be mbinitted for a certification request

\section*{2. type acceptance}

This procadure is eeme for trenemittore -- devices that are INTENDED to be radiatora. The type accoptenc
 regulations are designed to insure that a trensaittor does not ape

The pertinent eection of the FCC regulatione regerding the technical specifications that your tranemitter has to meat is really dotermined by the particular service for mish your tranemitter is intended. for exemple, if ou are designing a texicob radio, your trensmitter has ta meet the spocifications of part 90 . Part
cortification, part 2 of the FCC rules give the guidelines on format of the raported data, how to mark the trensmitter, end other "howeokeoping" type rules \((5)\).
3. site certificailion

Either of the two teating procedures, certification and type acceptence, will require the uee of site for for-field teating. Beaically, this is nothing more then an open-field "pasture" type of test, where the device to be tested is placed a known eccurate diatance amay frome calibrated receiver and calibrated antenna, and the levels of apurious emissions from the dovice are measured on the calibrated setup.

The real problem comes in when this far-field "range" is firet solected, es eeveral fairly critical teata muat be made on the unterme range itaelf before any new equipmant measuremente can be made. Not only that, but the
 accoptance teating

\section*{o. equippent meedeo, both lab and far-field measumeiments}

First of ell, I started this paper with the titie implying that you could do these measurements on a ehoeatring. I may have mieled you, but only elightly. If you eant one plece of equipment to ath that apecialized in making fCC wesauremente, you can bet that the bill for a almple certification alli run upwarde of \(\$ 1300\) and \(4 p\) to \(\$ 3 k\) to \(\$ 6 \mathrm{~K}\) fo moderately complex transceiver. Those wore setimates I recelved in 1976 for a 00011 oirc

The bill for equipment to set up your own lab will be somowhere betmen \(\$ 2 \mathrm{~K}\) and \(\$ 3 \mathrm{~K}\), depending upon how good a acrounger you ere. Thie is roughly the semo mount you mould heve to pay for an outaide leb'e testa, but ance you have purchesed the equipment, subeequent teate are literally done for peenlee morth of expendsbles.

\section*{1. PURCHASEO EQUIPMENT}

There are a fow pieces of "atore-boughten" lab gear that are sbsolutely easential to this procese; almost averything slese con be done "hombrew" style. Here is a liot of the equipment that you mill need to buy and the spproximate cost thereof
-. Spectrum enolyzer. The frequency range need only 90 up to 1000 MHz for recaivera (or twice the l.O. frequency, Whichever is grester), but for trmsiltters, you need to be sble to search the spectrum up to the 10th hermonic of the output frequoncy. By using a comunications recaiver (aee \(c\), below), the anslyzer only neede a low frequency reaponae of 30 MHz , but for fast and sure searching of the low frequencies, ausponee down to 0.5 miz le preforred. These anslyzers ahom up on the ueed equipment or so for a pretty nice piece of equipment. It's not going to be en HP 8558 , but for \(\$ 2 \mathrm{~K}\) you couldn't oven buy the line cord for that reecal.
b. Signal Generator. No doubt about it, the ueed hip 608 is avillable, relativaly chesp ( \(\$ 500-800\) for a culibrated unit), and reliable unto the leat glow of ite 20 -odd tubes. The best thing sbout this old boat anchor 18 that ite calibrated attenuator is so accurate that you can uae it as a standerd by wich to messure oll manner and form of aignal levels. In particular, you can messurs the absolute atrongth of - aignal on your epectrum anolyzar to en accuracy of ab or so, and in this game, that to eccurscy enough.
c. Comminicationa Receiver. A good genersl coverage receiver with an 5 -meter is a sort of a luxury that you ought to have if you posiibly can afford one. While it is not an AbsoLuie necessity (the epectrum maiyzer con be proses into eorvice), it mikes ilfe a moie bunch eesier. You can usually find them in the "used hem equipment" atoree for lesa then \(\$ 100\), or you can splurge on one of the new nifty digital readout rectivers for \(\$ 300\) or so from the "Hobby Shack" store.
d. Power Meter. The old IP \(\$ 30\) is avallable on the ourplua market for lase than \(\$ 200\) with bolometer mount, or for lees than \(\$ 50\) if you mant to try to rig up your own thermistors. HP431's are on the marke for leas then \(\$ 300\) with mount, and a. s more atable over temperature then the older 430 eeries. It it posisible to make your own powar metur, but even the older HPB will 90 down to -20 dBm , and that 15 a ree
trick on the nomebrew bench.
. Frequency Counter. with the edvent of digital circuits, the price of frequency counters hee follen to the point that even anew 1 CHz counter, with readout to 1 Hz , temperature compensated crystal timebase, and eccuracy 10 times better then required io avallable from beveral sources for lese then \(\$ 200\). It will probably not benefit you to shop this item used or eurplue as the new breed has not been eround long enough to have made it to the surplus market.
F. A cource of 110 vac power other then the commercial power lines. The point being, if you une commorcial power for the far-field teats, the cable to your equipment from the mall sockst hee to be bortify you have to use i line filter, and all thie has to remin in sosolutely conat ant from the time you
 \(200-400^{\prime}\) extension cord isn't ell that inexpensiva. Yau can elwaye use the generator when you go caping, too.
9. Miacellaneoura: Pade (fixed attenuatore), coax cable, connectors, amell bite and plecese the wrole lo ahould come to lees then \(\$ 50\).

\section*{2. HOHEBREW EQUIPMENT}
 you will need for both the lab and far-field testat
a. The first thing to homebrem is a far-field eite for the tests. The Fede soy that the site should be level, with rict derk soil, and with ehort-clipped grese in all directions. What I've eattied for is a olte that hae is constent slops, soil that won't grow rocks, and with native waede es far as the eye cen sob. Actually, the aite ts the emergency runoff ares of the local airport, and if you cen telk the alrport menager into lotting you use an unued portion of your local airport, you coulan't sak for a mors perfact eite. Firat, you will probebly pay no rent. Second, the site will probably atay meeda and grase so long se the ilipport remins. Third, the only interforence will bo the occesional takooff end lemding of a privite airplane; the aite is guaranteed to be free of most electromgnotic sources atrictly because of the protibition of entemma around on alrport. EMPHASIZE to the airport mernger that you are ruming some very SHORt teats that will involve very small amounte of powar and that your antemas will be up for - vary 5HoRl period of time and that you mill be glad to monstor the local airport frequency end diecontinue your teate as soon as the mord "EMERGENCY" is uttered. Truat mo, tear down the masts, leave the prototype, and interrupt anything that is heppening if that megic mord io aald. (See Figure 1.)
b. Antenne maste and mounta. This is the first homemade plece of geer to be made, and really the enaleat techicically (although the manual lebor is somewhat atrenuous). A douglas fir 4x4, 16 feet in length, is a comen buildimp tieber and is a reletively cheap ( \(\$ 15\) ) component of the ant misa mounting aystes. The rules eay you hava to pot your test and raference entenne ayotoma 3 metera molit (some procedures call for 100 metar saparation) and 4 meters shove the ground, 0016 foot masta elll provide good margin. If you can plene or cheve the base of your \(4 \times 4\) into a round form fector, it will fit quite nicely into e \(3^{1 / 2^{n}}\) plece of PVC pipe atuck into a concrate bese in the ground. The \(4 \times 4\) masts efould neve "shear cute" mede in the base of the mat on the off chence that an alrcraft loeses power during one of your teats and crastes into the antenna range. The \(4 \times 4\) 's will sheur off ot the athear cute, and will not unduly damage the aircroft or peseengers. Ory end then varnish the \(4 \times 4\) thoroughly to ensure that the mast will be as much an insulator as posaible. (Seo Figure 2.)

You will 01 eo have to make two mineme mounte out of plywood. One of the mounte is meent to eit on the top of the 4 metor "equipmont under teat" mest, end the other ona is a aleove thet will have to go from woter above the ground to 4 metera mbove the ground. Thie oleave is pulied up and down the apect rum malyzer" mat with mexed twine and ceranic pullays mounted at the top of the mater mast. Both the dipole and loop antennae (see below) festen to the mounta with plastic cable clompe and nylon acrewa and nuts. To the extent posible, festen the plywood together with glue; use neile only so a meene of

\section*{World Radio HIfitory}
koeping the glue joint tight until it driee, or uae clempe. You do not want any motal in the enterna structure at all, excopt the entemna, balun, and coexiel cable.

The aleove mount will only have one cable clemp holding the enterne onto the mount, se this antemne will have to rotste from horizontal to vertical polarization (and everywhere in betweon) in ordor to maximize my epurious mission. The equipment mount ahould have 2 clamps in order to maintain a horizontal antanna at all timea.
c. The test entennas are the crux of the homebraw part of this sotup. The far-field test massuroments are confined to two major portione of the spectrum: 0.1-25 miz, and 25-1000 miz.
1. The frequency range \(25-1000\) miz is concerned with the E-field mousuremente froe \(12-0.3\) meters mavelength. This apectrum can be mosaured with dipole anternas and coaxiol bsluns. The dipole eupporte are add from plain old PVC thinwall water pipe and PVC rittinge. (Point of information -- gat the white pipe. The black pipe io made eo mith carbon black, end io a fairly good conductor.) The antemne steined gleas mindom worke. If you use the 1 cm mide tape, it will fit quite nicely on " \(1 / 2\) inch" mater pipe. (See Figure 3.) The belun to be used batmoen the algnal source/apectruan anolyzer end the dipole plpa. (See Figure 3.) The balun to be wed between the signal source/apectrum anelyzer lind the dipole from RC5B coaxial cable, have moseured losees in the range . 1 to . S de, and have proven to be mosolutely rlawleat in operation. (Soe Figure 4.)

It so turne out that 4 baluns will cover the frequency range \(20-1000 \mathrm{mlz}\), so four separate PVC anterna mounte mors rabricsted, and esch one marked with permenent marker with e calculated resonant frequency in Mogehortz, evary 5 miz. The lowast frequancy anterna (covering 25-65 miz.) in quite long, and the horizontel portion of the dipole was given oupport with monofilament fisting line lashed to the varticel meat. Smell holen drilled in the PVC pipe allowed ue to fasten the monofilment to the pipe.

The coppar tape is fairly chesp, so inatead of having a dipole with adjuateble arme, the dipole is rigged with - full length of copper tape, and then mill lengthe of tupe are razor-bladed off each end of the dipole to tune it to e particuler frequancy. The actual practice is that the device you ere going to teat is probed vary carefully in the laboratory, with a non-resonant "whip" type of entenne, or a very amell loop made from coaxial ceble, either of which ia placed VERY clome ( \(<10 \mathrm{~cm}\) ) from the device. If it is : tranemitter that you are teating, then the output of the device into a 50 orm lond 10 also obearved on the apectrum analyzer. With these two measuromenta, you will have almost cortainly identified any apurious emisitiona from the device, and you will have. ary good idea on the for-field tests mhat frequencies you should be most concerned with.
of course, the rules asy that ALL frequencios muat be exemined, so you ahould not just clip the entemnas to the resonent frequenciee you have identified in the clono-field exeminations, but arasonable otep from one antenna resonant froquancy to mothor is quite justirisbile -a eoy, in stopa of 5 miz et
lower frequencies and 20 miz at the upper limits of your search. When you approach one of your pre-identified spurious frequencies, THEN you cen etert eplitting haire.
2. The frequency range 0.1-25 miz may be done with a loap antenna, if you prefor. Hosesuremente below \(18 \mathrm{~m} / \mathrm{z}\) wuST be done with a loap. The problem is that the loope you can buy today are both clumey to use end expenaive. The clumainosa comes froe the fact that internel ferrite or iron core tranaformare are used to metch the high-impedance loop to the 50 of input of most receivers end/or spectrum enalyzera, and I etrongly euspect thet this is where the coot comes from, oleo.

The mamer is to build your own loap for these massurements. The only emall probloe that the buildor of homobrow loop has to denl with to the convertion of the fairly high loap impedence to the 50 ohme of the enalyzer. Fortunatoly, eolid atate electronice comes to the reacue.

Once egain, the loop eupport is mide of \(1 / 2^{\prime \prime}\) PVC water pipe and plestic rittings. A loop mede of RGB

top of the loop to make e balanced, shiclded, one turn loop anterna. (See Figure S.) The center conductor of the loop is fed to balenced tranaistor differentiol amplifier, and eso ohe output port is fed from an enitter follower in turn fed from ane collector of the diff ap. (See Figure 6.)

What you have at thia point is an uncalibrated loop, which really doenn't do you much good. What you do at this point ia RENT ecsibrated loap and use your spectrua analyzer or comminicationa receivar and calibrated pade to apot-calibrate your loap against the known loop at asveral placen in the 0.1-2s miz. epectrum. What do you une for aignal mourcee? The calibration procedure is to plece the two loope at the aume dietance ebove the ground, one esch on one of the 4 moter masts, "point" them in the semp direction, then uee amall SPDT awitch to eslect one or the other of the loops, and then tune in a algnal on the frequency where you ment ealibretion point. "Signels" may be from any source you chooee -- broadcast atations, ham atations, CB atations, overaese broadcast, or any other source that io trenemitting on the frequency; if the owitching la done fast enough, you will not get any error from feding or etmospheric offects. Switch select betwoen the two untemas end read the difference in de on the apectrin anslyzer, or place pacde in the atronger of the two anternas in the cass of the
 anten by trill 9940 ateed. known 1009 and you're SIILL \(\$ 940\) aheed.
d. The rules aleo sey that you have to test your redio over tomperature. Most requiroments are to test from -30 to +50 degrees Centigrade. The claseic way to run the teeperature \(u p\) and domis in avery well ineuleted tempersture chember with liquid \(C 02\) in cylinders to run the tomperature down and a resiative hoating oloment to run the temperature up.

There are a fow things that I disilike about using commercial chembers. The chmber iteelf (even on the used markat) it a couple of \(\$ \mathrm{~K}\), the liquid CO2 is not cheap, the cold velve alwaya henga up at the wrong time, and the temperature control requires constent fiddiling (excuse mo, fine tuning) to keep the teaperature where you went it.

Bulld a 2-chamber box out of thick plywood, with regular home-type inaulation covering all the malle, and a small hole in the top of the chmber that is fitted with a cork and a \(\$ 5\) mercury thermometer. The partition between the top and the bottom of this box has amall murfin fan bolted so that you con puah the air from the bottom of this box 4 into the top, with a switch mounted so that you cen tuzn the fam on and off it will. The bottom chamber of this box is insulated equally as woll se the top; opening the hinged front door of this box exposes the intorior of both chmbors. The botton chember is slow fitted with alight bulb sockot that la wired so that it can be turned on and off roo outaide the bax. orill a fow 2 cm (1") holes in the door and buy onough corke to fill those holes. Run your coax, power cableo, etc. through holee drilled in the corks, and then aeel the gep betwoen cork holea and cables with RIV or silicone evelient. (See Figure B.)

If you mant cold, go down to your local deiry and buy enough dry ice (solid coz) to fill the bottom chmber of the box. Put your device under test into the top chamber and run the fen until the thermometer registers the cold tomperature you want. Hodulate the fan owitch to mintain your dosired rormarsture for an hour per kilogran of coas). Remor, cold air ainke, so your thereonetar probe ought to be aitting at the oeso vertical loval es your dovice undar teat. I honestly don't knom how cold this cheber will get, the asm vertical lovel es your device under test. I honestly don't know how cold this chomber will get, (mercury froezes at -40 degress). When you are getting up from -30 to temperaturen around +10 or 30 , you mercury froazoe at -40 degrees).
will have to romove almost all of the ary ice to meke the chember mio enough. Even without the fan, if the bottom chmber is elmoat full of dry ice, the chmber will take Dars to come back to roon tomperature with the fen off.

If you mant hot, leave the fen run continuously and modulate the on-off duty cycle of the light bulb The bigger the light bulb, the reater it will get hot -.- just remambor that this is a woocen box end you mould prefor not to charcoal your new radio inside the box. I have Nor forgotten the sitch on the hot alde, but I have asked for and gotten \(\rightarrow 70\) degreen C mith a 100 mett bulb. If you mant to keep the bulb from cracking, remove it before you put the dry ice in for the cold teat.

Where are efen refinements that I mould like to make in this setup some day men I get the timet quite a few aemiconductor companiee will sall an integrated circuit temperature controller, and it would probably save me ab many hours in switch-flicking time no it might cost to make. One dramback to this homebrew chamber is that the fan bearinge do not like very cold or very hot temperatures, and the fan life is no more than a few mundred hours. Fortunately, the "hobby thack" atores all have these fans for efem bucks, so replecement once eyear or so isn't all that painful. It is also possible to subatitute one of the now digital voltmater temperature scceseory probes for the glaes thermometer, and attach the probe to the largest thermel mase of your radio. This mould be superior to the morcury thermometer, with the additional edventage that the digital probe to not likely to freeze.
- The rules sleo atate that you muat uee some sort of equipment tebles for the for field testo, and that the equipment table that supporte the radio that you are testing muat have a rotatable surface. This is so that you cen rotate the redio at espurious output for meximum reading.

I have made two tables. One is made from redwood \(2 \times 4\) with a atandard herdboard door as e table surfece I use redwood for the framing because it is very 1 ight weight and hae very ifttle moisture content, and thence a poor reflector of radio maves. The hardboard door to also a non-speculer ourface, is hollom, and is reletively light weight. This teble te ueed to hold the spectrum anelyzer, the aignal generator, and any other amall test equipment. Of couree, all jointa are glued, not nailed.
The second table ie made from redwood with o plywood teble top. Into this plywood is drilled a 1 mole ho and a socond plywood top 10 also drilled and a \(1^{\prime \prime}\) dowel glved into the hols. The dowel is aanded so that top is then drilled with emall holes very close to the odge on all 4 eides. Haxed timine ("lecing corde is tiod into these small holes and the free end is run over to the equipee. texte. in this eing cord) table is played like a puppet by the test ongineer. In eatter of fact, the thole proceedinge are pith ike a Punch and Judy show; the teble to being rotated by atringe, the enterne to being reised and lowered by etringe, and the teat antemna polarization is being rotated by etrings. (See figure 9.)

\section*{E. an abbreviated descripition of a site certification procedure}

In merch, 1901, I begen the construction of our permenent far-field teat alte at the Nevade County alrpark (better knom as Grass Valley Intentional Airpatch). Hy firat stop was the county airport authority for a check of the airport maeter plen. When the plen ahowed the west end of the eirport as a meeda-and-rocka runoff area will into the year 2000, I begen my conetruction by obtaining an informel approval of my plane from the airport manager. I mphasize -- once you do these teate, you probebly don't mant to do them egein for a while; it does not matter what oite you choose as long as it is not plemned for a ahopping center next year.

Since our procedure called for a 3 meter antenna separation (almost all procedures these days ora uaing 3 metera, and even the old 30 meter documente cen be modified to the 3 meter apecification). I chose the flatteat aite with the gullies, trees, fencea, and buildings en fer sway as I could get them. If you are so fortunate as to heve o pasture that you can use to put up permanent masta, that is fine, but on airport property, we needed to leave practically no upright obetacles of any kind. (See Figure 10.)

A hole 20 ma 1 meter in diameter and 1 meter doep was oug and a PVC sleeva, capped on the bottom with one arain hole drilled, was cast into concrete poured into this hole. The apen end of the PVC pipe was left about 2 cm above the While the concrate was atill liquid, the PVC and the pipe ses inder in ecrap \(4 \times 4\), rounded on the odges to fit into the PVC bleeve, was placed into concrete with the facing outaide malls of the pipes ebout, 3 meterond PVC sleeve mas then identicelly cast into anternie mounta and the entenne thickneas, so that the then allowed to dry for seek. (see Figure 11, )


During that weak, made the masts, the anterna mounte, the anternas, and the equipment tebles. If you heve beon ucceseful in your electronic equipment scrounging, you may with to purchase e power sam; what takes hours by hand tokuas seconds with a good radial arm sem.

That week was aleo apent in calibrating the spectrum analyzer and if genorator that would be veed to make the elt ettenustion teste. The FCC doesn't really care who does the calibration, but whoever does it neede to be ebls to trace the ultimate calibration to the Nationsl Bureau of Standerds. In our caes, we had just aent the aignal generator outeren gonerator referenced to e power moter that has juat been calibrated by a atendard battery that mas compared to a Nas
source.

We were thus ready to perform the teste to calibrate and oubmit messuremente for our site attonuation and site approvel so we made a few elementery celculations. The equation for the loas betwoen two enternas is fairly aimple: \(A=20 \log D+20 \log f-G-G b+C e-20 \log (1+5)-27.56\) (d8)
where \(D\) is the dietance in metere betmeen the two enternas, if is the frequency being tested in Megaterti, \(\mathrm{G}_{\mathrm{a}}\) to the
 comecting the eignal generator to one antenne, \(r\) ia the ground reflectivity se a decimal fraction, and \(A\) is the atternuation between these two enternas in dB.

Ground reflection veriea from ebout \(60 \%\) ( \(r=0.6\) ) for super rich soil with a lot of carbon content and tall weede to 998 ( \(\mathrm{r}=0.99\) ) for herdpen soil just ehort of iron ore. The average seeme to be around \(70-80 \%\). This entire eite certification procedure really boile dom to ecurve fit of your particular oite to find e value of r that fite you this same location.

You will notice that the cable lose from the apectrum enalyzer to the teat antemna was not factored into this equation. This is because during these testa, the cable from the spectrum analyzer is disconnected from ite antenme and connected directly to the algnal generator to find the dB difference between direct and redieted conduction. Yo should note two thinge: one, the cable thus uead on the epectrum enalyzer becomee part of the calibrated equipment list for thia antema range, and two, the measurement is not an absolute measurement, but a differential measurement th

Now, given dipolea ( \(G=2.15\) d日), 3 meter renge, and a \(75 \%\) reflectivity coefficiont ( \(r=0.75\) ), this equation reduces to:
\(A=20 \log f-27.2 d \theta\)
Knowing the order of magnitude of what we were looking for mada the calibration of the range a two hour job. After 11 was seld end done, wo found that the value of reflectivity for our particular renge mas 738 for beet curve fit, and at that value, whed leas than 1 dB veriation between our measured graph of attenuation versua frequency and a etraight line theoretical graph uaing the ebove equations. (See Figure 12.)

If we had noticed elarge error at one frequency or group of related frequencies, would have been forced to either select another alte or to find out the source of the orror. In this part of the world, it is not at all uncomon to be digging efoundation for a houas and find large boulders with high mineral content (goldf !1) or discarded metel tools from the lent century.

There is no stendard form for submiasion of these teate, nor to there eny formal reply to you of the ACCEPTANCE of your measuramenta. However, if there is something wrong with the way you did a test, or aome question, then you wil omeone olse's geq a letter from the Fede. There lis also a division betwoen a site that you plen on uing to certin atrictly yours for your own oquipmont. Quite honestly, if my resulte came out within a do or so of theoretical, and If I had my equipment recently calibrated, \(1^{\prime \prime} \mathrm{d}\) go atheod immediately with my equipment teating and preaume the accoptance of my measurements.

One more word and we will leave the subject of the site qualification. That is, the engineer that made the testa oode to be qualified too. There are no formal requirements for education, experience, or background, but you got the feeling telking to thees folks that they would rather take the dete from a NOE (non-degreed enginear) that had a first phone, amateur advenced, and twenty yeare in the EMI business rather then a newly minted EE PHd with only book-learning for sxperisico. You neod to put in to the application a listing of your credentiole and experionce, and trust \(m\), it is difficult in the extrem to "enow" the engineere at rcc leurel Labs.
f. an abareviated description of a certification / type acceptance test

With the far-field aite coosuromente ploted, the raport mitten and mailed, and the aite thus calibrated, the firat type eccoptance and certification teote were echeduled on new design, the RSI-571 eircraft bend transceiver. Thie tranacelvier conniatod of both a recaiver and a tranemitter, so both certification (part 15) and type accoptanco mere required (part 87).
The lab teate for receiver certification involve the measuroment of the amount of local oecillator fundemantal and harmonice boing emitted from the antemne end chaosis, ee well ae the lovele of any other oacillators, 1.F. elgnal loaknge, or othor spurious generators. Part 15 specifiee cortsin IEEE and EIA stendard teate that mill be ecceptod,
 (Radio Technical Comaieoion for Aaroneutics) procedure that le a
that, too is an eccepteble may of testing the spurious emienions.

FCC regulation 15.63 definee the limite of epurioue rediation, end it in to your adventage to memeure the etrangth of
 emieaion is such that it mould not peas the field tait, why bothor going over and gatting your boote muddy? Hinti the socond harmonic atrength of on entenne jack redisted eignol will alwaye be much leas then calculated because tho anterne uesd at the device under tent is resonent at the fundementel, and therafore enti-resonent at the second harmonic. If you "sniff" around the case in the lab ueing a ehort mipip or mall loop and rind radiation not coning from the entenna, then the cace or input/output wires are conducting the trach out into the world, and it it almost imposelble to tell what the teat will como out like when you do - for-fiold meesurement. Fortunately ( 1 eay it maes good dealgn -- others any the blind pig picked up another acorn) our dealgn was somo 15 de bolow the limit, and it almply becme - metter of going over to the airport and making the teate. (See Figure 13.)

FCC part 87 10 the bible for aircraft band tranamittere, and part 87 te quite detailed in the teste required, the resulte required, and the mothod required to got those reeulta. The far-field teate required are very eimilar to those required for recoivera, and ase matter of fact, were done at the same time that the receivar portion of tranecsiver mae tosted. No uee putting thoes poles up a second time if you don't have to. Agein, the second harmonic of the trmemitter mill be mech lees then you expect due to the antann colebrate our new product.

\section*{G. SONE FIMNL CONENIS}

I cennot emphasize too etrongly that references 1 and 2 are a teke-the-nouice-by-the-hend kind of raforence mork, and I ceme thil mole oubject elmont oeay to learn.
 work telling you thow and what they are going to examine. There is no excues for not heving these in your library if you are doing FCC work.
do hope that my brand of ailepliatic hend-waving hee not offended those of you who domand rigorous equatione for vary atep of your dealgn, but 1 mould rather hope that you will take what 1 have to eay and beof it up as you require.

If the device that you are certifying is meent to be powarad from the AC line inetasd of an sutamotive or aircraf attery system, then there are cartain "conductod" teate that you must porfore to ahow how much radiation you are moping back into the mall eocket. Again, reforence 1 whowe the maufacture of nome extremely simple test equipment to perfore these conducted teste.
1 ehould like to dodicate this peper to the memory of an old friend, now a eilent key. Wes, Wrysp, me my firet escher in this ort, my firat contect with the monderful world of Rf, and the firat one to take thit geaky 15 yoor

-30-
fIGURE 1
rediation teat alte at en elrport poses certain non-atandard hazards to parsons conducting tests.
\(\qquad\)
A \(4 \times 4\) mast fits into the pVC pipe ounk into concrete to make a very


IUURE 6 (see schematic)
flicule 7 (see greph)
FIGURE 8 (sen drawing)

FIGURE 3
A plece of PVC water pipe, ofow pleatic fittings, and som copper plastic fittings, and some copper lapo mill and rellable entenne.

IGURE \(s\)
A 1000 enterns mounted on the mat is used for probing the low Prequency apectrum.
FIGUPIE 4 (see graph)


IGura
tre rotatable teble is mede from thin plywood, dowaling, and atringe are uead to turn the table.

figure 13
The RST-572 oircraft bend
traneceiver undergoing a type seceptence and cortification far
field test on the FCC approved site.

igure 10
An enial viom of the callibrated site. Note the dirt "emergency runoffy oree at the meat end of the runmay.


FICURE 11 (soo drming)
Ficure 12 (eeo graph)



FIGURE 6


World Radio मision



Figure 8 ONE pOSSIble layout of a thermal environmental chamber.

figure 11 OUtline orawing of a typical radiation test site

fegeral communications commission
WAStuNGTOW. O.C. 2005
GRANT OF EQUIPMENT AUTHORIZATION
type acceptance and certif igarion


\section*{NOT TRANSFERABLE}

FCG DEENTIFIEA BSV8YCRST571
Neme of Groule Radio Syatemis Technology, Inc. COPY
mennecimer Radio Syeteme Technology, Inc. (USA)

Equipment Class: Communications Transceiver
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Note(s) & Rule(s) Part Number (s) & \begin{tabular}{l}
Frequency \\
Range (MHz)
\end{tabular} & Input Hates & Output Watts & \begin{tabular}{l}
Frequency \\
Tolerance
\end{tabular} & Eatssion \\
\hline & 15,87 & 108-136 & - & 3 & . 002 & 643 \\
\hline
\end{tabular}
*81-1988
PMI:8jf
PMI:
\(\mathrm{G}-3\)

\section*{Figure 14. The end result of certification and type acceptance TESTING}

\section*{Line Impedance Stabilization Networks: Tineory and Use}

\section*{by Mark Nave}

Don White Consultants, Inc.
Gainesville, Virginia 22065

\section*{Abstract}

This paper analyzes conducted emissions and some of the primary tools for their measurement. Emphasis is placed on the Line Impedance Stabilization Network (LISN). The input impedance and filtering implications of LISN use for different types of conducted emissions is examined to aid in its practical application.

Key Words: LISN, Conducted Emissions

\section*{Introduction}

The use of Line Impedance Stabilization Networks (LISN's) to measure the effects of filters on conducted emissions (CE) is specified in most major specs, including FCC, VDE, CISPR, MIL-STD-461 and others. While real-life conducted emissions measurements and filter performance may vary considerably from test conditions, some common reference and testing standard is necessary. LISN's allow test facilities to obtain results with greater consistency and repeatability. This paper discusses methods for analyzing common-mode and differential-mode oise and examines the effects of the LISN on CE measurements.
Conducted emissions are an important, but often misconceived electromagnetic interference Conducted emissions are an important, but often misconceived eiectromagnetic interference (EMI) phenomenon. In addition to conducted interference, power leads can act as antennas, radiating due to CE or receiving noise from the electrica! ambient. Proper filtering of the leads to and from the equipment is essential to control this phenomenon. A filter's effec tiveness is dependent on an impedance mismatch to both the source (power mains) and load impedances. Figure 1 shows the statistical distribution of mains impedance with its approximate 40 dB variation. Also depicted is the variation of impedance with frequency and the \(-50 \Omega\) centroid behavior of the mean.

\section*{Noise Types}

There are three basic noise types present on power buses: Differential Mode (DM) and Common Mode (CM) Types I and II. Differential-mode noise is the simplest kind of noise. It occurs between the leads of the intentional current path (phase-neutral or phase-phase), as depicted in Figure 2a Typical sources of differential-mode noise are switching uransients and motors.

Common-mode Type I noise occurs when the noise source is between safely ground and Common-mode Type I the phases, including neutral, as illustrated in Figure 2 c . Common-mode Type il noise occurs
when the noise source is between earth ground and all phases, including neutral, and safery ground wire. CM Type II is depicted in Figure 2d.

\section*{LISN's: Theory and Use}

\section*{Measurement Variation}

Figure 1 illustrates the approximate 40 dB variation of the mains impedance which can result in up to a 40 dB variation in the measured value of the CE. This effect can be understood by analyzing the interaction of the bus and the source under the assumption that the noise fre quency is in the constant ( \(50 \Omega\) ) region. Let the bus impedance ( \(Z_{6}\) ) vary by a ratio \(\chi_{0} 0.1<x<10\), so that \(Z_{\star}=x 50 \Omega\). The measured voltage, \(V_{m}\), is the result of voltage division across the internal impedance of the source, \(Z^{\prime}\), and the bus impedance, \(Z_{\text {b }}\). The expected measured voltage ( \(x=1\) ) is
\[
v_{m}=\frac{50}{50+Z^{\prime}}
\]

The voltage measured under varying bus impedance ( \(x \neq 1\) ) is:
\[
v^{\prime}=\frac{x^{50}}{x^{50}+Z^{\prime}}
\]

The normalized variation of the measured voltage then becomes
\[
\frac{V_{m}^{\prime}}{V_{m}}=\frac{x 50+x Z^{\prime}}{x^{50}+Z^{\prime}} .
\]

For a low impedance noise source, as \(Z^{\prime}\) becomes small with respect to \(50 \Omega\), the normalized variation approaches unity. This means that the varying bus impedance has little effect on the measured voltage. However, for a high impedance source, as \(Z^{\prime}\) becomes large with respect to 508 the normalized variation approaches \(x\). The worst case variation, then, is
\[
\frac{x_{n}}{x_{1}}=\frac{10}{0.1}=100, \text { or } 40 \mathrm{~dB} .
\]

Such a wide variation in measurements renders the data virtually useless! For this very reason, the LISN for ac mains was developed.

\section*{Schematic Concep}

A LISN's purpose is to provide a stabilized impedance to conducted emissions without in erfering with the normal power flow required by the Equipment Under Test (EUT). A concepual schematic of the generator, LISN and load is shown in Figure 3a.

At the power line frequency Ip , the LISN shown in Figure 3 b provides a low impedance path from the power source to the load impedance \(Z\), and a high impedance path (virtual open circuit) from the load to ground. At the noise frequency, \(\mathrm{fn}(\mathrm{fn} \gg \mathrm{fp}\) ), the LISN provides a high impedance path from the power source to the load, and it provides an impedance approaching 50 ohms at high frequencies from the load to ground. The high impedance, low frequency im
pedance is provided by a capacitor to ground. The \(50 \Omega\) impedance to ground ("R" in Figure 4) is actually the input impedance of the spectrum analyzer or EMI meter used to measure the noise. All LISN output ports must be terminated in a \(50 \Omega\) impedance. either by meter input impedance or by a \(50 \Omega\) dummy load. Figure 3 c shows this, whereby the LISN provides a stable impedance to the load and eliminates the effects of the varying mains impedance at noise frequencies.

\section*{Analytic Verification}

The high frequency ( \(>1 \mathrm{MHz}\) ) asymptote can be easily derived using the simplified schematic of Figure 4 , where \(\mathrm{R}_{\mathrm{m}}\) is the mains impedance. R is the \(50 \Omega\) impedance of the EMI receiver. and \(L_{1}, C_{1}\) and \(C_{2}\) are the LISN components. Using the ladder network method of analysis, set \(I_{0}=1\). Therefore,
\[
V_{0}=R_{m} .
\]

Then,
\[
l_{L}=I_{0}+I_{\mathrm{e}}=1+V_{0}\left(j \omega C_{1}\right)
\]

Therefore.
\[
\begin{gather*}
V_{1}=V_{0}+j \omega L_{1}\left(I_{L}\right)=R_{m}+j \omega L_{1}-R_{m} \omega^{2} L_{1} C_{1}  \tag{3}\\
I_{1 m}=I_{L}+\frac{V_{1 m}}{R+\frac{1}{j \omega C_{2}}}=1+V_{0}\left(j \omega C_{1}\right)+\frac{V_{1 n}\left(j \omega C_{2}\right)}{1+j \omega R C_{2}} \tag{4}
\end{gather*}
\]
so
\[
\begin{equation*}
Z_{1 n}=\frac{V_{c n}}{I_{1 m}}=\frac{V_{1 n}}{1+V_{0}\left(j \omega C_{1}\right)+V_{1 n} \frac{\left(j \omega C_{2}\right)}{1+i \omega R C_{2}}} \tag{5}
\end{equation*}
\]

Since only frequencies above 1 MHz are of interest.
\[
Z_{1 m}=\frac{V_{t a}}{1+j \omega R_{-} C_{1}+\frac{V_{t m}}{50}} .
\]

Substituting (3) gives
\[
\begin{equation*}
Z=50 \frac{\left[-\omega^{2} R_{-} L_{1} C_{1}+R_{m}+j \omega L_{1}\right]}{\left[-\omega^{2} R_{m} L_{1} C_{1}+R_{m}+50+j \omega L_{1}+j \omega 50 R_{m} C_{1}\right]} . \tag{7}
\end{equation*}
\]

Plugging in the values for \(R, C_{1}, C_{2}, L_{1}\) gives
\[
Z=50 \cdot \frac{-\omega^{2}\left(250 \times 10^{-12}\right)+R_{-}+\mathrm{j} \omega\left(5 \times 10^{-6}\right)}{-\omega^{2}\left(250 \times 10^{-12}\right)+R_{m}+50+\mathrm{j} \omega 5 \times 10^{-6}+\mathrm{j} \omega\left(250 \times 10^{-6}\right)} .
\]

For this example, at \(\mid \mathrm{MHz}\) and above, the \(\omega^{2}\) terms clearly dominate, so for \(>1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{m}}-50 \Omega\).

\section*{LISN's in Practice}

Although the simplified diagram in Figure 3 illustrates the conceptual operation of a LISN, several details of practical LISN operation should be addressed.

\section*{Single Phase Test Set Up}

In order to provide impedance stabilization for both DM and CM, the LISN is connected between phase to ground and neutral to ground. Figure 5 shows a practical single phase test set-up. Figure 5 a is drawn to emphasize the effects of a LISN on CM Type I noise. At high requencies the inductor is a virtual open circuit while the capacitor is a virtual short circuit. The high frequency equivalent circuit is shown in Figure 5 . The impedance of the two LISN's combine in parallel to present a \(25 \Omega\) impedance to the noise source.

With DM noise, the situation is altogether different. Figure 5 c shows the single phase set up redrawn to emphasize the effects of a LISN on DM noise. Under the high frequency assump tions, the equivalent circuit shown in Figure Sd results. For DM noise, the LISN's combine in series to present a \(100 \Omega\) impedance to the noise source. Use of the \(50 \Omega\) LISN has caused an unexpected impedance when used in a practical circuit, and the situation becomes worse with a three phase circuit.

\section*{LISN's on a Wye Bus}

Use of the LISN on a three phase Wye bus requires four LISN's-one for each phase and neutral. Both CM and DM noise types exist on the three phase Wye bus. Figure 6a illustrates he test set-up for a Wye configuration with phase-to-phase DM noise sources, and Figure 66 illustrates the high frequency equivalent circuit with the internal impedance \(Z\) ' of the noise source. From Figure 6 b it can be shown that as the internal impedance \(\mathbb{Z}^{\prime}\) of the noise source becomes very small ( \(Z^{*} \ll 50 \Omega\) ), the LISN's impact diminishes, and the noise sources short thermselves out. As \(Z^{\prime}\) becomes very large ( \(Z^{\prime} \gg 50 \Omega\) ), the effect of the LISN's dominates, and the impedance seen by the noise source is \(100 \Omega\)
Figure 6 c shows the Wye bus with phase-10-neutral noise sources; Figure 6 d shows the high frequency equivalent circuit with the internal impedance \(Z^{\prime}\) of the noise sources. As \(Z^{\prime}\) becomes large \(\left(Z^{\prime} \gg 50 \Omega\right)\) the impedance seen by the noise source is the series combination of the phase large ( \(Z^{>} \gg 50 \Omega\) ) the impedance seen by the noise sourc \(Z^{\prime} \ll 50 \Omega\) ), the impedance seen by the and neutral impedances, \(100 \Omega\). As 2 becomes smam ( \(Z \ll s\),

Common-mode noise types remain to be considered. Figures \(6 e\) and 6 f show the Wye bus with CM Type! noise sources and the high frequency equivalent circuit, respectively. As ap parent from Figure \(6 f\), the high frequency impedance seen by the noise source is about 13 .. CM Type II noise is rarely a problem with conducted emissions. CM Type II problems manifest themselves as conducted susceptibility problems. This is because all five lines are bundied ogether in a cable above the ground plane, thus defining a loop area into which B fields are coupled. Figure 7 shows the loop area and the induced loop voltage. By reducing the loop area lowering the cable), the induced voltage (proportional to the lAF product) will be reduced.

\section*{LISN's on a Delta Bus}

Conducted emissions on a Delta power bus are virtually the same as in the case of the Wye bus for DM noise. Figure 8a shows a Delta power bus with LISN's and DM noise sources. The situation is exactly analogous to the phase-lo-phase DA noise analysis for the Wye bus.

Common-mode noise analysis for the Delta bus is considerably different than for the Wye bus because the Delta bus is isolated from ground and because of the parasitic coupling from bus to ground. If the parasitic capacitance is first neglected to gain insight into the basic interaction of the LISN's, inspection reveals that the high frequency impedance seen by the noise source is about 17 Ohms. The parasitic capacitance modifies this by increasing the effective value of Cl (refer to Figure 4a). This in turn causes the effective input impedance of the LISN to approach its asymptotic value at a faster rate. This is evident by inspection of equation (7). This variation is further limited by transmission line effects at higher frequencies. The exact effec would vary as the value of the parasitic capacitance and frequency, and could only be determin ed on a case by case basis after considerable analysis. The result, however, would be a squaring up of the impedance versus frequency characteristic.

\section*{Measurement Techniques Using LISN'S}

The most common method of measuring the value of the conducted emissions with a LISN is with an EMI meter or a spectrum analyzer. Either of these will give the sum of the CM and DM emissions. Although this is usually the method called for in specifications, it provides no information as to whether the emissions are CM or DM! Filter design topologies are quite dif ferent for CM and DM, so a method is necessary to discern the two.

Another method for measuring CE is with a current probe. The current probe makes it possible to differentiate between CM and DM. The theory is that the sum of the instantaneous currents at a point on a transmission line equals zero. Proper selection of the lines to sum (to put inside the current probe) will allow use of this principle. The application is to to sum cancel our to use the probe so that the DM currents sum to zero and twice the CM current is

The LISN may also be used for susceptibility testing. If the impedance of the power mains is too low, injecting a signal of a given level may prove difficult because of the loading effect on the signal generator. This condition may be alleviated by using the LISN in the same configuration as that used for testing. except that the singal is injected into the LISN "output" port (now used as an input).

\section*{Summary}

The effect of varying mains impedance was analyzed and found to have potentially catastrpohic results on CE measurements. In an effort to ensure repeatable measurements, a LISN was introduced to provide a stabilized mains impedance at higher frequencies. The high frequency impedance of the LISN was analytically derived to verify its value and frequency dofrequency impedance of the LISN was analytically derived tormance. Different noise types on different bus types with LISN's were then analyzed to determine the mains impedance that the LISN presented to the noise source


Figure 1-Absolute Mains Impedance (CM or DM) ol Power Nelworks


Figure 2
Figure 2-Noise Types

c) Simplified schematic at the noise Irequency

Lad
Figure 3-Conceptual Diagrams ol LISN's

(Mains Side)
(Load Side)
a) Simplified schematic of an LISN

b) Simplified schemalic for calcuialing \(Z\),

Figure 4-Functional Schematic ol LISN

b) CM Type i high frequency equivalent circuit

d) \(C M\) type I high trequency equivalent circuit

Figure 5-Practical Single Phase Test Ser-up


Power Source
LISN's Load with DM Noise Source a) Wye bus LISN set-up with phase-to-phase DM noise sources

b) High frequency equivalent circuit for \(D M\) noise



LISN's Noise Source
d) High frequency equivalent circuit tor phase-to-neutral DM noise sources

f) High Irequancy equivalent circuit for CM type I

Figure 6-LISN's Use on a Wye Bus

a) Well-defined common-mode loop area


Figure 7-Common Mode Type II Coupling

b) Simplitied high frequency schematic for CM noise on a delta bus

Figure 8-LISN's Use on a Della Bus

b) Configuration to measure DM current

Figure 9-Difterentiating Between DM and CM Currents

By: Kendall Childers
Senior Scientist
Chomerics, Inc.
Woburn, Ma. 01888

\section*{INTRODUCTION}

There are electromagnetic disturbances associated with the detonation of chemical explosives, therefore it was no sur prise that there were electromagnetic disturbances associated with nuclear explosives. What was a surprise was the extent of the geographical coverage, the bandwidth of the energy spectrum and the amplitude of some of the disturbances. The nuclear induced disturbance is called Nuclea Electromagnetic Pulse (NEMP) or simply Electromagnetic Pulse (EMP).
EMP is caused by electrons ejected from materials by gammarays and X-rays emitted from the nuclear explosions. EMP goes by a variety of aliases; High altitude EMP Generated EMP (SGEMP), Internal EMP (IEMP), etc. The names identify the source of the EMP and are a "shorthand" used to indicate the characteristics of the EMP of interest. This paper will deal exclusively with HEMP, the most serious threat to telecommunication systems.

\section*{GENERATION OF HEMP}

When the gamma-rays from an exo-atmospheric nuclear explosion descend to an altitude of about 40 km , the air density becomes sufficiently dense that there are significant interactions. By the time that the gamma-ray penetrate to an altitude of osphere. The primary interpletely absorbed in the atmosphere. The primary interaction, compton collision, The ejected electrons are turned by the earth's magnetic field (similar to the deflection [turning] of the electron beam in a TV tube by the yoke.) The process of accelerating (deflecting) charged particles generates electromagnetic radiation.

The HEMP area of coverage is determined by the area of the spherical cap enclosed by the tangent drawn from the point of the explosion to the surface of the earth. An easy set of numbers to remember is: HEMP from a nuclear explosion at an altitude of 300 miles above the surface of the earth will illuminate a 3,000 mile diameter region on the surface of the earth.

The gamma-rays from a nuclear explosion are emitted in a burst with a duration of around 10 nanoseconds. Therefore, HEMP is a pulse. The risetime of the pulse is related to the duration of the burst of gamma-rays, a few to around 10 nanoseconds. The decay of the pulse is caused by very complicated processes, the discussion of which is beyo the scope of this paper, which result in pulse lengths from about \(1 / 10 t h\) to about one microsecond. The irequencies of interest when one is dealing with pulses are determined by taking the Fourier transform of the pal megaip and 100 megahertz.

The degree of deflection of the ejected electrons by the earth's magnetic field depends on the direction of the electron trajectory compared to the direction of the earth's magnetic field. If the directions are perpendicular, deflection is maximized; if they are parallel deflection is minimized. The amount of electromagneti radiation is related to the degree of deflection, the larger the deflection the greater the radiation. The gammarays travel radially outward from the explosion, and the electrons are ejected "primarily in the forward direction", i.e., radially outward from the explosion. The declina tion of the earth's magnetic field means that (in the northern hemisphere) north of the explosion there the region where the eject in that direction there will be earth's magnet there will be a region south of the no HEMP. Likewise there will be a region pouth of cular to the earth's magnetic field - in that direction the EMP to the earth maximum possible, usually characterized by a peak electric field strength of 50,000 volts/meter. In other directions HEMP will have intermediate amplitudes.

The precise characteristics of HEMP depend on the size of the nuclear explosion and the geometric relationship between the position of the explosion, the observer and the earth. Since it is not possible to specify a unique set of parameters, a composite "worst case" waveform is used The "worst case" threat retains the nastiest characteristics of the various forms of HEMP, namely; the faste risetime - less than 10 nanoseconds, the maximum peak electric field strength - about 50,000 volts/meter, and the longest pulse duration - about case" HEMP is described tric field strength a double exponential (ref. 1):
\[
E(t)=E 0\left[e^{-t / t 1}-e^{-t / t 2}\right]
\]
where: \(E(t)=\) electric fleld strength as a function of time
Eo : related to peak electric field strength about 52,500 volts/meter
\(t=t 1 \mathrm{me}\)
: related to pulse width, about 250 nanoseconds
t2 : related to rise time, about 2 nanoseconds
HEMP is a plane wave with a wave impedance of 377 ohms therefore the corresponding magnetic field strength is given by:
\(H(t)=E(t) / 377\)
The peak "worst case" magnetic field strength 1 s about 133 amps/meter.

The energy density in HEMP is small, about 1 joule/square meter but the power density is large, about 7 megawatts/ square meter. Whereas a significant power is incident on incident only on truly large (many - many square meter) structures.

One of the advantages of describing HEMP with a double exponential is that the Fourier transform is trivial. The transform is constant from zero hertz up to a frequency of \(20 \mathrm{~dB} /\) decade up 10 k 1 ohertz wher of \(1 /(2 \pi \mathrm{t} 2)=76\) megahertz where \(1 t\) starts to roll off at \(40 \mathrm{~dB} / \mathrm{dec} a \mathrm{de}\).

\section*{HEMP COUPLING INTO SYSTEMS AND HEMP PROTECTION TECHNIQUES}

The coupling of HEMP energy into systems is essentially an EMI/EMC problem, described by Maxwell's equations. It depends on the characteristics of HEMP and the details of the geometry of the system. We have taken care of the characteristics of HEMP by using the "worst case". The detalls of the geometry of the system are qenerally a which , sion With few realistic analytic solutions complicated three dimensional computer calculations or measurements are re quired. Measurements are out of the question with very large systems. Therefore, as with EMI/EMC problems, plified problems are considered to "understand" the principles of HEMP coupling, measurements are performed on
small systems and detalled calculations are performed only when absolutely required. The results of estimates and calculations are that typical values of HEMP energies coupled into large systems are about 1 megajoule in dc power systems and about 10 megajoules in ac power systems such as the by energy required to do puised current injection tests. The junction is about 10 microjoules and integrated circuit to destroy a microwave diode can be as lower required microjoule. These energies should be contrasted with vacu tubes and (electro-mechanical) relays which can survive up to about one joule. This means that an enormous amount of shielding is required to protect modern circuitry.

The recommended procedure for protecting modern systems is to use Faraday cage inside of Faraday cage inside Faraday cage ... until surficient shielding is accomplished that the system survives (Ref. 2). The Faraday cage inside Faraday cage scenario requires single point grounding between neighboring cages, separation of signal and power cables between cages, shielding of cables between cages and "terminal protection" where the cables penetrate the cages. The key feature of this scenario is that the shielding is distributed, no single shield is required to provide an inordinate amount of shielding.
HEMP shielding considerations are similar to those required for EMI/EMC. They can be divided into low frequency, high frequency, gasket and cable effects. Low frequency shielding is described by quasistatic shielding. First order high frequency shielding is described by exponential absorption (skin depth effects) but is usually dominated by leakage through seams. The gasket issue, for properly gasketed seams, is survivability. HEMP coupling into systems via cables usually dominates these other mechanisms.

The quasistatic requirement is that the wave length associated with the highest frequency of interest is much longer than the relevant dimensions of the enclosure. The quasistatic analysis determines surface charge and current distributions that the quasistatic fields induce on the enclosure, then determines the interior fields due to these charge and current distributions. It is unlikely that quasistatic electric field shielding will be a problem. it is likely that quasistatic magnetic rield shielding 1ng effectiveness becomes very small at low rrequencies For example, the quasistatic shielding provided by a 1.3
meter (50") diameter, 4.8 millimeter ( \(3 / 16^{\prime \prime}\) ) wall thickness cylinder is nowhere less than 250 dB for the electric field but is less than 50 dB for all frequencies less than 1 kilohertz. Another shielding issue is leakage through apertures, which is included in the low frequency region because the theory has been worked out for apertures that have dimensions small compared to the wave length the highest frequency of interest. The leakage flelds fall of as the third power of the ratio of the radius of (Ref 3 and 4) This means that apertures must be small and that sensitive equipment cannot be located near apertures.

High frequency shielding depends on the exponential absorption of electromagnetic energy in enclosure walls For most enclosures the exponential absorption is so large that shielding is actually dominated by second order effects, 1.e., shield 1mperfections at seams and seals. effects, 1.e., Sh1eld imperfections at seams and sea must be considered. Induced currents at resonant frequencies may be large enough that even with enormous shielding, sufficient energy may diffuse through the shield to cause damage.

Gasket issues are two fold, first what happens during HEMP excitation and second does the gasket survive exposure to HEMP? Shielding during HEMP exposure will probably be at least as good as it was before the HEMP exposure. The key issue is HEMP survivability; does the gasket retain its EMI/EMC sealing characteristics after HEMP? To evaluate the survivability of EMI/EMC gaskets, we have devised a HEMP simulation scenario. We calculate the HEMP-1nduced currents in a microwave communications relay system consisting of a tower connected to a shind that the EMI/EMC a wave guit survive a damped sinewave current pulse gasket must surf a frequency of 1.3 megahertz and a damping time constant of 750 nanoseconds. Our laboratory tests are current injection tests; we drive this damped sinewave current pulse through test gaskets. We find that conductive elastomer EMI/EMC gaskets containing silver coated inert particles fall the test and those that contain silver plated metallic particles, particularly when the particles are irregularly shaped, survive currents significantly larger than any realistic threat.

Though HEMP couples into short cables, usually magnetic field coupling into loops, the most serious coupling is
into long cables. Current is driven in long cables by the longitudinal component of the incident electric field. In the case of shielded cables, the current is driven on derived from HEMP can ind large transients in cables, e.g. open circuit voltages of \(7,000,000\) volts and short circuit currents of 14,000 amperes in overhead cables (power lines) (Ref. i). HEMP coupling from cables into systems is controlled with terminal protection devices, similar to lightning arrestors. Risetimes associated with HEMP can be shorter than 10 nanoseconds and risetimes associated with lightning are 100 to 200 nanoseconds. HEMP terminal protection devices do not have to carry as much current as lightning arrestors, but they must act significantly faster. HEMP terminal
protection devices are gas switches, metal oxide varistors (MOV's), conventional EMI/EMC filters, optical couplers and isolation transformers with back-to-back diodes.

\section*{CONCLUSION}

HEMP is a severe electromagnetic disturbance caused by nuclear explosions above the earth's atmosphere. It is characterized by extensive geographical coverage, an extremely wideband energy spectrum and a very large amplitude The amount of energy coupled into systems can be very large compared to the energy required to damage modern straight forward extensions of standard EMI/EMC techniques.

\section*{REFERENCES}
1. R. Sherman et al, "EMP Engineering and Design Principles", Bell Telephone Laboratories, Inc., 1975
2. J. Miletta et al, "Defense Switched Network Design Practices for Protection Against High-Altitude Electromagnetic Pulse", HDL-SR-82-2, Harry Diamond Laboratories, Adelph1, MD, 1982
3. L. Ricketts et al, "EMP Radiation and Protective Techniques", John Wiley and Sons, 1976
4. ITT Research Institute, "EMP Design Guidelines for Naval Ship Systems", NSWC/WOL/TR 75-193, 1975

BIBLIOGRAPHY:
1. Sandia Laboratories, "Electromagnetic Pulse Handbook for Missiles and Aircraft in Flight - EMP Interaction 1-1", AFWL TR-73-68, 1973
2. K, Lee et al, "EMP Interaction: Principles, Techniques and Reference Data - EMP Interaction 2-1", AFWL-TR-80_

FUNDAMENTALS OF RF DESIGN: PART II

A session of four papers presented January 23 and 24, 1985, at rfechnology \(\exp _{85}\)

Disneyland Hotel Anaheim, California

\section*{INTRODUCTION}

These four papers comprise the second half of a one-day course entitled "Fundamentals of RF Design," presented on two consecutive days - January 23 and 24, 1985 - at RF TECHNOLOGY EXPO 85, a technical conference sponsored by RF Design Magazine.

The papers are collected in this form as an aid to conference attendees actually present at the January 23 and 24 afternoon sessions. They will also be reproduced as part of the "Proceedings" of RF TECHNOLOGY EXPO 85, to be published after the event.
1. "Striplines and Microstriplines Design" by K.C. Gupta, Professor, University of Colorado
2. "High Power Solid State Circuit Design"'
by J.H. Johnson, President, Microwave Modules and Devices
3. 'Oscillators: A Critical Systems Building Block"' by John Morton, Engineering Manager, Microsonics Inc.
4. "And Introduction to SAW Devices: Design, Fabrication, Testing, Uses, and Future Trends" by Carl A. Erikson, Jr., Director of Processing Operations, Andersen Laboratories

\section*{STRIPLINES AND MICROSTRIPLINES}

Stripline and microstripline are two planar transmission lines used extensively in printed microwave circuits and microwave integrated circuits. This tutorial discussion presents basic features of these lines and the design information needed for their use in RF circuits.

The basic configurations of these lines are shown in Fig. 1 . The main advantage of these lines is their planar nature which results in ease of fabrication by photolithography and chemical etching processes (starting from commercially available metal clad dielectric substances).
* Notes for short course on 'Fundamentals of RF Design" at RF Technology Expo 85 at Disneyland Hotel, Anaheim, California, January 23-25, 1985

\section*{1. STRIPLINES}

Stripline (also known as triplate line) is a three conductor TEM mode transmission line with the cross-sectional configuration as shown in Fig. 1(a). It consists of a central strip with its width much greater than its thickness ( \(W \gg t\) ) and two ground planes which extend considerably in transverse x-direction. The space between the ground planes is filled by a dielectric medium and the central strip is embedded in this dielectric. A practical embodiment of this configuration is shown in Fig. 2. Two laminates \(A\) and \(B\) (each of height \(b / 2\) ) are used . The lower laminate \(A\) is completely metallized on the bottom surface and has a metallic strip of the required width \(W\) on the other side. The laminate B has metallization on the top surface and is clear of any metal underneath. The two laminates are screwed (or clamped) together to yield the stripline. As thickness of the strip is very small (typically 1.4 mil) any air gap existing after pressing the two laminates together may be ignored.

The mode of propagation along a stripline is transverse electromagnetic (TEM). The ground planes are at zero potential. The electric and magnetic field lines are sketched in Fig. 3(a) and (b) respectively. Field lines are concentrated near the central strip and as one moves in the mid-plane away from the strip (along \(x\)-axis) the fields decay rapidly. This feature allows the substrate and the ground planes to be terminated in the transverse direction without ciffecting the transmission characteristics of the line.

The stripline geometry may be approximated by a parallel plate transmis. sion line structure shown in Fig. 4. Boundaries denoted by MW are hypothetical open circuit walls (or magnetic walls) and E-field does not extend outside these boundaries. \(W_{e}\) is the effective width of the strip chosen such that
energies stored in E-fields of Figs. 3(a) and 4 are equal. In terms of the geometry of this parallel plate model of the stripline, the capacitance per unit length of the stripline may be written as
\[
\begin{equation*}
c=2 \epsilon_{0} \epsilon_{r} W_{e} /(b / 2)=4 \epsilon_{0} \epsilon_{r} W_{e} / b \tag{1}
\end{equation*}
\]
and the characteristic impedance of the line may be written as
\[
\begin{aligned}
z_{0}= & \sqrt{L / C}=\frac{1}{{ }_{{ }_{p}} c}=\frac{\sqrt{\mu_{0} \epsilon_{0}} \sqrt{\epsilon_{r}}}{C}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}} \frac{1}{4 \sqrt{\epsilon_{r}}} \frac{b}{W_{e}}} \\
& =\frac{30 \pi}{\sqrt{\epsilon_{r}}} \mathrm{~b} / \mathrm{W}_{\mathrm{e}}
\end{aligned}
\]

Fringing field evaluation is needed inorder to evaluate \(W_{e}\) to be used in Eqs. (1) and (2). The fringing field calculations are easier for the case when the thickness of the central strip \(t\) approaches zero. For this thin strip case, Cohn* has used the conformal mapping technique to derive the total capacitance (the parallel plate capacitance plus the fringing capacitance) which leads to the following expression for the characteristic impedance of stripline:
\[
\begin{equation*}
z_{0} \quad \sqrt{\epsilon_{r}}=30 \pi k^{\prime}(k) / k(k) \text { ohm } \tag{3}
\end{equation*}
\]
where \(k\) is a geometrical parameter given by
* Cohn, S.B., "Characteristic impedance of a sheilded strip transmission line," IRE Transactions Microwave Theory Tech. Vol. MTT-2, July 1954, pp 52-55.
\[
\begin{equation*}
k=\tanh \left(\frac{\pi W}{2 b}\right) \tag{4}
\end{equation*}
\]
\(K\) represents the complete elliptical function of the first kind and \(K^{\prime}\) is its complementary function. We have
\[
\begin{equation*}
k(k)=\int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \phi} d \text {, and } k^{\prime}(k)=k\left(\sqrt{1-k^{2}}\right) \tag{5}
\end{equation*}
\]

It is not necessary to evaluate the integral in (5) numerically since simple and accurate ( 8 parts per million) expressions are available for the ratio \(K(k) / K^{\prime}(k)\). We have
\[
\frac{k(k)}{k^{\prime}(k)}=\{\begin{array}{ll}
\left\{\frac{1}{\pi} \ln \left(2 \frac{1+\sqrt{k^{\prime}}}{1-\sqrt{k^{\prime}}}\right\}\right. \tag{6}
\end{array} \underbrace{-1} \text { for } 0 \leqslant k \leqslant 1 / \sqrt{2}
\]
where \(k^{\prime}=\overline{k-k^{2}}\)
Relation (3) yields the impedance of the stripline for a given geometry. However, in circuit design problems it is desirable to have formulas which yield the width of the line for a given impedance. This synthesis equation is obtained by manipulating (3), (4) and (6) and may be written as:
\[
\begin{equation*}
w / b=\frac{2}{\pi} \tanh ^{-1} k \tag{7}
\end{equation*}
\]
where
with \(a=Z_{0} \sqrt{\epsilon_{r}} /(30 \pi)\).
Above results are rigorously valid when strip thicknesst \(=0\). Analysis and synthesis of striplines with thick strips are more complicated. Several approximate formulas are available. An expression with accuracy better than 0.5 percent, for \(W /(b-t)<20\), (given by Wheeler*) is as follows:
\[
z_{0} \quad \sqrt{\epsilon_{r}}=30 \ln \left\{1+\frac{4}{\pi} \frac{b-t}{W^{\prime}}\left[\frac{8}{\pi} \frac{b-t}{W^{\prime}}+\sqrt{\left.\left(\frac{8}{\pi} \frac{b-t}{W^{\prime}}\right)^{2}+6.27\right)}\right]\right\}_{(9)}
\]
where
\[
\begin{align*}
& \frac{W^{\prime}}{b-t}=\frac{W}{b-t}+\frac{\Delta W}{b-t}, \text { and } \\
& \frac{\Delta W^{\prime}}{b-t}=\frac{x}{\pi(1-x)} \quad\left\{1-\frac{1}{2} \ln \left[\left(\frac{x}{2-x}\right)^{2}+\left(\frac{0.0796 x}{W / b+1 . \operatorname{lx}}\right)^{m}\right]\right\} \tag{10}
\end{align*}
\]
in which
\[
\begin{equation*}
m=2\left\{1+\frac{2}{3} \frac{x}{1-x}\right\}^{-1} \text { and } x=t / b \tag{11}
\end{equation*}
\]
* Wheeler, H.A., "Transmission line properties of a stripline between paralle1 planes," IEEE Trans. Microwave Theory Tech., Vol. MTT-26, Nov. 1978, pp 866-876.

Equation (9) may be rearranged to yield \(W / b\) for a given \(Z_{0}\) as follows:
\[
\begin{align*}
& W / b=\frac{W_{0}}{b}-\frac{\Delta W}{b} \text { where } \\
& \frac{W_{0}}{b}=\frac{8(1-x)}{\pi} \frac{\sqrt{e^{A}+0.568}}{e^{A}-1}, A=z_{0} \sqrt{E_{r}} / 30 \tag{12}
\end{align*}
\]
and
\[
\begin{equation*}
\frac{\Delta W}{b}=\frac{x}{\pi}\left\{1-\frac{1}{2} \ln \left[\left(\frac{x}{1-x}\right)^{2}+\left(\frac{0.0796 x}{W_{0} / b-0.26 x}\right)^{m}\right]\right\} \tag{13}
\end{equation*}
\]

The quantities \(m\) and \(x\) are as defined in 11.

Comparing the values of \(Z_{0}\) obtained from (10) with those obtained from (3) for \(t \neq 0\); we note that impedance values decrease when \(t\) is increased. If we design a line for \(Z_{0}=50\) using (3) (say for \(b=0.12\) inch and \(E_{r}=2.5\) ), values of \(Z_{0}\) for \(t=0.0007\) inch ( \(1 / 2 \mathrm{oz}\). copper) and for \(t=0.0014\) inch ( 1 02. copper) are 49.28 and 48.69 ohms respectively.

Variation of stripilne impedance ( \(Z_{0} \sqrt{\epsilon_{r}}\) ) with \(W / b\) is represented graphically in Fig. 5.

Losses in Striplines

As for other types of transmission lines, the attenuation in striplines originates from conductor and dielectric losses, i.e.,
\[
\begin{equation*}
\alpha=\alpha_{c}+\alpha_{d} \tag{14}
\end{equation*}
\]
where \(\alpha_{c}\) is the attenuation because of conductor losses and \(\alpha_{d}\) is the attenuation because of dielectric losses.

\section*{Conductor Losses. At microwave frequencies, current flow in conductors} is governed by the skin effect. For a semi-infinite conducting medium, the current density distribution may be expressed as
\[
\begin{equation*}
J=J_{0} e^{-\gamma y} \tag{15}
\end{equation*}
\]
where \(y\) denotes the distance inside the conducting medium (normal to the surface) and \(y\) is the propagation constant for plane wave in the conducting medium \((\gamma=\sqrt{j \omega \mu(\sigma+j \omega \in)})\). Linear density* of the surface current \(J_{s}\) is obtained as:
\[
\begin{equation*}
J_{s}=\int_{0}^{\infty} J d y=J_{0} / \gamma \tag{16}
\end{equation*}
\]

Surface impedance is defined as the ratio of tangent electric field to \(J_{s}\) and is given by
\[
\begin{align*}
& Z_{s}=R_{s}+j x_{s}=E_{t a n} / J_{s}=\frac{J_{0} / \sigma}{J_{s}}=\frac{y}{\sigma}=\sqrt{\frac{j \omega \cdot \alpha}{\sigma}} \\
& =\sqrt{\frac{\omega \mu}{2 \sigma}}+j \sqrt{\frac{\omega \mu}{2 \sigma}} \tag{17}
\end{align*}
\]

Thus

\footnotetext{
* Total current per meter on the surface perpendicular to the current flow.
}
\[
\begin{equation*}
R_{S}=x_{S}=\frac{1}{\sigma_{\Delta}} \tag{18}
\end{equation*}
\]
where \(\Delta\) is the skin depth given by \(\Delta=\sqrt{2 /(w i \mu} \bar{\sigma})\) - Power loss per unit area of the plane conductor can now be written as \(J_{s}{ }^{2} R_{s}\), where \(R_{s}\) is the surface resistance evaluated above and \(J_{s}\) is the linear current density or current per meter width (effective value) flowing in the conductor. Surface reactance \(x_{s}\) may be written as \(\omega L_{i}\) where the inductance \(L_{i}\) is attributable to the skin effect, i.e., inductance \(L_{i}\) is produced by the magnetic field inside the conductor.

We note that \(R_{s}\) and \(x_{s}\) are numerically equal for a plane conductor. They are also equal for a conductor of any arbitrary shape if the radii of curvature and the thicknesses of conductors are much greater than the skin depth. This equivalence is helpful in calculating stripline losses because calculation of \(L_{i}\) can be carried out relatively easily by using Wheeler's incremental inductance rule.* According to this rule, \(L_{i}\) can be found from the external inductance \(L\) per unit length for the configuration (in our case the stripline geometry). \(L_{i}\) is obtained as the incrementalninward displacement of all metallic walls due to skin effect. The amount of displacement is equal to half the skin depth \(\Delta\). For example, we can apply the Wheeler's incremental inductance rule to parallel plate waveguide with magnetic walls (Fig. 6). Displacement of the two conducting walls is also shown in Fig. 6. With the walls recessed, \(L+L_{i}=\mu_{0}(h+\Delta) / W\) where \(L\) is inductances of the structure (given by \(L=\mu_{0} h / W\) ). Therefore, \(L_{i}=\mu_{0} \Delta / W b^{\prime}\), and
*Wheeler, H.A., "Formulas for the skin effect," Proc. IRE Vol. 30, 1942, pp 412-424.
\[
\begin{equation*}
R_{S}=x_{s}=\omega L_{i}=\omega \omega_{0} \Delta / W \text { ohm/meter } \tag{19}
\end{equation*}
\]

Therefore the power loss in conductors of the parallel plate line is given by
\[
\begin{equation*}
P_{c}=|I|^{2} R_{s}=|I|^{2} \Delta \mu_{0} \Delta / W \tag{20}
\end{equation*}
\]

Now we can write \(\alpha_{c}\) which is defined as ratio of the power loss in conductors to twice the power transmitted
\[
\begin{align*}
& \alpha_{c}=\frac{\rho_{c}}{2 P(3)}=\frac{|I|^{2} \omega_{0} \Delta / W}{2|I|^{2} Z_{0}}=\frac{\omega \omega_{0} \Delta}{2 w \sqrt{\frac{\mu_{0}}{\epsilon_{0} \epsilon_{r}}} \frac{h}{W}} \\
& =\omega \sqrt{\mu_{0} \epsilon_{0} \epsilon_{r}} \frac{\Delta}{2 h} \quad \text { neper } / m \tag{21}
\end{align*}
\]

The above example illustrates the use of Wheeler's incremental inductance rule for calculating attenuation constant of a parallel plate line. The same procedure can be used for any other TEM mode line. A general expression for \(\alpha_{c}\) of any TEM mode line may be written as
\[
\begin{equation*}
\alpha_{c}=\frac{R_{s}}{2 Z_{0}}=\frac{\omega L_{i}}{2 Z_{0}}=\frac{\omega}{2 Z_{0}} \sum_{m} \frac{\partial L}{\partial n_{n}} \frac{\Delta_{m}}{2} \tag{22}
\end{equation*}
\]
where \(m\) is the number of conductor surfaces (two for parallel plate line), \(n\) is the distance in the direction of inward normal to the surface and \(\Delta_{m}\) is the skin depth of the \(m\)-th surface (different surfaces may have different \(\sigma\) and hence different skin depths). The inductance \(L\) may be expressed in terms of \(Z_{0}\) as

\section*{\(L=Z_{0} / \omega_{p}\), and therefore}
\[
\begin{equation*}
\frac{\partial L}{\partial n}=\frac{1}{v_{p}} \frac{\partial z_{o}}{\partial n} \tag{23}
\end{equation*}
\]

Thus (22) can be expressed in terms of \(Z_{0}\) as
\[
\begin{equation*}
\alpha_{c}=\frac{\omega}{2 z_{0} r} \sum_{m} \frac{\partial z_{0}}{\partial \eta_{m}} \Delta_{m} / 2 \tag{24}
\end{equation*}
\]

Thus, if we have an explicit expression for \(Z\), in terms of various dimensions of a line, \(\alpha_{c}\) may be computed in a straightforward manner by using (24). For calculating \(o_{c}\) for a stripline, expression for \(Z_{0}\) given by (9) for the case \(t \neq 0\) can be used. Since conductor losses depend critically on the thickness of the control strip, expressions for \(t=0\) case should not be used for calculating losses. This observation is equally valid for the case of microstripline discussed later, as well as for other planar transmission lines not discussed here.

For calculating \(\alpha_{c}\) for stripline, surmation in (24) is to be carried over various conducting surfaces (total six) shown in Fig. 7.* Although \(\partial Z_{0} / \partial \mathrm{b}, \partial Z_{0} / \partial t\), and \(\partial Z_{0} / \partial w\) may be obtained explicitly by differentiating (9), it is perhaps easier to find \(\partial z_{0} / \partial b \Delta_{n}\) etc. by computing \(Z_{0}\) twice, once for nerimivalues of \(b\) and then for ground plane spacing \(b+\Delta_{g}\) (as indicated in fig. 7). In fact, \(\sum_{m} \frac{\partial z_{0}}{\partial n_{m}} \Delta_{m} / 2\) itself may be obtained by computing \(Z_{0}\) twice, once for nominal dimensions and second time for dimensions

\footnotetext{
* \(\Delta_{5}\) and \(\Delta_{0}\) are skin depths for strip conductor and ground plane
respectively.
}
with all the conducting surfaces recessed inwards by half the skin depth. This approach is well suited for implementation in a CAD package.

Dielectric Losses. The dielectric loss in a stripline (or for that matter in any other homogeneously filled TEM mode line) is directly proportional to the loss tangent, tan \(\delta\) of the dielectric medium.

Starting from the expression for propagation constant
\[
(\boldsymbol{X}=\sqrt{(G+j \iota d)(R+j \omega l)}),
\]
one can derive \(\alpha_{d}\) by putting \(R=0\) and simplifying. We get
\[
\begin{equation*}
\alpha_{d}=G Z_{0} / 2 \tag{25}
\end{equation*}
\]

The transmission line conductance \(G\) is related to the capacitance \(C\) by
\[
G=\omega(\tan \delta) C \text {, where } \tan \delta=\omega \in / \sigma
\]
and since
\[
\begin{equation*}
z_{0}=1 /\left(v_{p} c\right) \tag{27}
\end{equation*}
\]
we can write \(\alpha_{d}\) as
\[
\begin{equation*}
\alpha_{d}=\frac{G Z_{0}}{2}=\frac{1}{2} u(\tan \delta) C \frac{1}{\nu_{p} c}=\pi(\tan \delta) \sqrt{\epsilon_{r}} / \lambda_{0} \text { neper } s / m \tag{28}
\end{equation*}
\]
where \(\lambda_{0}\) is the free space wavelength.

Attenuation constants \(\alpha_{c}\) and \(\alpha_{d}\) are more often expressed in dBs which involves a multiplication by \(20 \log _{10}\) e., i.e., a factor 8.68. Thus
\[
\begin{equation*}
\alpha_{d}=\frac{27.3 \sqrt{\epsilon_{r}}}{\lambda_{0}} \tan \delta \mathrm{~dB} / \mathrm{m} \tag{29}
\end{equation*}
\]

It may be noted that because of \(\frac{1}{\lambda_{0}}\) factor, \(\alpha_{d}\) is directly proportional to frequency. On the other hand the frequency variation of the conductor loss \(\alpha_{c}\) (given by 24) is contained in \(\omega \Delta_{m}\). Since the skin depth \(\Delta=\sqrt{2 /(\omega \bar{\omega} \sigma)}\) is inversely proportional to the square root of frequency, \(\alpha_{c}\) increases only as square root of frequency. When typical numerical values are compised, the dielectric loss in general, is very small compared to the conductor loss of microwave frequencies. But at millimeter wavelengths, the dielectric loss becomes comparable to the conductor loss because of the different frequency variations of the two losses.

\section*{11. MICROSTRIP LINES}

Microstrip line consists of a single dielectric substrate with ground plane metallization on one side and a strip of width \(W\) on the other surface. A cross-sectional view is shown in Fig. 8. The top ground plane of the stripline configuration and the upper half of the dielectric laminate are not present in this case. This gives rise to the following distinguishing features of the microstriplines when compared with the striplines discussed earlier.
a) There is an easy access to the top surface of microstripline which makes it very convenient to mount discrete (active or passive) devices and to make minor adjustments after the circuit has been fabricated.
b) Because of the open nature of the structure, care has to be taken to minimize the radiation loss or interference due to the nearby conductors. In order to ensure that the microstripline fields are confined near the strip, use of higher dielectric constant substrates becomes necessary. This is advantageous from miniaturization point of view, since higher \(\boldsymbol{E}_{r}\) reduces the guided wavelength and hence the circuit dimensions.
c) Since the electromagnetic fields extend in the space (above the strip), the microstrip configuration is a mixed dielectric transmission structure. This makes the analysis and design more complicated.

\section*{Effective dielectric constant}

The concept of effective dielectric is useful for transmission lines with more than one type of dielectrics filling the cross-section. The effective dielectric constant \(\epsilon_{r e}\) is defined such that if the transmission line crosssection is filled up uniformly with a material with \(\epsilon=\epsilon_{0} \epsilon_{\text {re }}\), the resulting structure will have the same phase velocity as the transmission line with composite dielectric media. Thus
\[
\begin{equation*}
\epsilon r e=\left(c / v_{p}\right)^{2} \tag{30}
\end{equation*}
\]

To illustrate the concept of \(\epsilon_{\text {re }}\), let us consider a parallel-plate line partially filled with a dielectric as shown in Fig. g. Out of the width w, a section \(n W\) is filled with dielectric. \(x\) is a fraction less than unity and may be called filling fraction. Phase velocity for this parallel plate line may be obtained by calculating \(L\) and \(C\) and using \(v_{p}=1 / \sqrt{L C}\). The inductance \(L\)
does not depend on the dielectric filling* and is given \(L=\omega_{0} h / W\). The capacitance \(C\) can be considered a parallel combination of two capacitances. We get
\[
\begin{equation*}
c=\epsilon_{0} \epsilon_{r} \frac{x W}{h}+\epsilon_{0} \frac{(1-x) W}{h}=\epsilon_{0} \frac{W}{h}\left\{x \epsilon_{r}+1-x\right\} \tag{31}
\end{equation*}
\]

The phase velocity \(v_{p}\) may be derived as
\[
\begin{align*}
v_{p} & =1 / \sqrt{L C}=1 / \sqrt{\left[\frac{\mu \nu_{0}^{h}}{W^{\prime}} \cdot \epsilon_{0} \frac{W}{h}\left[1+x\left(\epsilon_{r}-1\right)\right]\right\}} \\
& =c / \sqrt{1+x\left(\epsilon_{r}-1\right)}=c / \sqrt{\epsilon_{r e}} \tag{32}
\end{align*}
\]
which yields the value of effectie dielectric constant \(\in\) re as
\[
\begin{equation*}
\epsilon_{r e}=1+x\left(\epsilon_{r}-1\right) \tag{33}
\end{equation*}
\]

We note that when \(x \rightarrow 0, \epsilon_{r e} \rightarrow 1\) and when \(x \rightarrow 1, \epsilon_{r e}=\epsilon_{r}\). Thus the value of \(\epsilon_{r e}\) varies between 1 and \(\epsilon_{r}\) depending upon the value of the filling fraction \(x\). For \(x=0.05, \epsilon_{r e}=\left(\epsilon_{r}+1\right) / 2\), i.e., the average of the two dielectric constant values \(\epsilon_{r}\) and 1 . An alternative expression for \(\epsilon_{r e}\) can be written in terms of characteristic impedance \(Z_{0}\) of the line. We have
\[
\begin{equation*}
\epsilon_{r e}=\left(c / v_{p}\right)^{2}=\left\{\left(1 / \sqrt{L C_{0}}\right) /(1 / \sqrt{L C})\right\}^{2}=c / c_{0} \tag{34}
\end{equation*}
\]

\footnotetext{
* For non-magnetic dielectrics
}
\(C_{0}\) is the capacitance for a transmission line of the same configuration but with the dielectric replaced by air. Since \(Z_{0}=\sqrt{\bar{L} \bar{C}}\), (34) may be rewritten in terms of \(Z_{0}\) as
\[
\begin{equation*}
\epsilon_{r e}=\frac{L}{z_{0}^{2}} \cdot z_{o d}^{2} / L=\left(z_{o a} / z_{0}\right)^{2} \tag{35}
\end{equation*}
\]
where \(Z_{o d}\) is the characteristic impedance of the transmission line with dielectric medium replaced by air. It may be noted that, since we are dealing with non-magnet ic dielectric materials the inductance \(L\) remains unchanged when the dielectric is replaced by air.

The concept of effective dielectric constant as applied to the microstripline is illustrated in Fig. 10. Because of the more complicated geometry of a microstrip line, calcuation of \(\epsilon_{r e}\) is not as simple as for paralelplate waveguide discussed above. Electrostatic calculation of two capacitances \(C\) and \(C_{0}\) are needed. In practice, a quasi-empirical expression suggested by Schneider* is used extensively for the design \({ }_{\wedge}\) microstrip circuits. According to this formula
\[
\begin{equation*}
\epsilon_{r e}=\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-1}{2}(1+10 \mathrm{~h} / \mathrm{W})^{-1 / 2} \tag{36}
\end{equation*}
\]

It is instructive to look at the variations of \(\epsilon_{\text {re }}\) with microstrip geometry. Typical distributions of electric and magnetic field lines in a microstrip structure are shown in Fig. 11. The electric field lines extend in the air region also, and this causes \(\epsilon_{r e}\) to be less than the substrate \(\epsilon_{r}\). The
* Schneider, M.V.. "Microstrip lines for microwave integrated circuits," Bell System Tech. J., V. \(01.48,1969\) pp 1421-1444.
relative amount of E-field in the air region decreases when the strip-width \(W\) is increased. In the limit when \(W / h\) becomes very large, the microstrip line converges to a parallel plate line and \(\epsilon_{r e}\) should tend to \({ }_{F} r\) itself. In the limit \(h / W \rightarrow 0,(36)\) also yields \(\epsilon_{r e}=\epsilon_{r}\). The other limit of \(\epsilon_{r}\) is reached when the line widths are very small \((W / h \rightarrow 0)\). For this case, (36) yields \(\epsilon_{r e}=\left(\epsilon_{r}+1\right) / 2\). Physically, this is interpreted by observing that when \(W / h \rightarrow 0\), the geometry reduces to that of a thin wire placed on a semi-infinite dielectric slab as shown in Fig. 12. This may also be viewed as a coaxial line configuration with outer conductor at an infinite distance. It can be shown that for a coaxial line half-filled with a dielectric as shown in fig. 12, effective dielectric constant is the average value of \(\epsilon_{r}\) and 1 , which agrees with (36) in the limit \(W / h \rightarrow 0\). Thus it may be concluded that \(\epsilon_{\text {re }}\) for a microstrip line varies from \(\left(\epsilon_{r}+1\right) / 2\) when \(W\) is small (i.e., for high values of \(Z_{0}\) ) to \(\epsilon_{r}\) when \(W\) is large (or when \(Z_{0}\) has a very small value). In typical cases \(\epsilon_{r e}\) for a 50 ohm line on a polystyrene substrate \(\left(\epsilon_{r}=2.50, h\right.\) \(=1 / 16 \mathrm{inch})\) is 2.078, while that for a 50 ohm line on alumina \(\left(\epsilon_{r}=9.8, h=\right.\) 0.025 inch), the value of \(\epsilon_{r e}\) is 6.606 .

Relation (36) is used extensively for calculating \(\epsilon_{\text {re }}\). However, Owens,* found that a modified form yields more accurate results ( \(\pm 0.25\) percent). This formula is
\[
\begin{equation*}
\epsilon_{r e}=\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-1}{2}(1+10 h / W)^{-0.555} \tag{37}
\end{equation*}
\]

\footnotetext{
* Owens, R.P., "Accurate analytical determination of quasistatic micro-
strip line parameters," Radio Electronic Engineer, Vol. 46, No. 7, July 1976, pp 360-364.
}

The ratio of free space wavelength to the wavelength along a microstripline is given by \(\sqrt{\epsilon_{\text {re }}}\). This ratio is plotted in Fig. 13 as a function of \(\mathrm{W} / \mathrm{h}\) for different values of the substance dielectric constant.

\section*{Characteristic Impedance of Microstrip Lines}

As for the case of \(\epsilon_{r e}\), calculations of \(Z_{0}\) for microstrip circuit design are also carried out by using quasi-empirical closed-form relations. A set of fairly accurate ( \(\pm 1\) percent) and simple expressions for \(Z_{0}\) in terms of \(W, h\), and \(\epsilon_{r}\) is as follows* for narrow strips ( \(W / h\) less than 3.3):
\[
\begin{align*}
Z_{0}= & \frac{119.9}{\sqrt{2\left(\epsilon_{r}+1\right)}}\left[\ln \left\{4 \frac{h}{w}+\sqrt{16(h / W)^{2}+2}\right\}\right. \\
& \left.-\frac{1}{2}\left(\frac{\epsilon_{r}-1}{\epsilon_{r}+1}\right)\left(\ln \frac{\pi}{2}+\frac{2}{\epsilon_{r}} \ln \frac{4}{\pi}\right)\right] \tag{38}
\end{align*}
\]

For wide strips ( \(\mathrm{W} / \mathrm{h}\) greater than 3.3):
\[
\begin{align*}
Z_{0}= & \frac{119.9}{2 \sqrt{\epsilon_{r}}}\left[\frac{W}{2 h}+\frac{\ln 4}{\pi}+\frac{\ln \left(e \pi^{2} / 16\right)}{2 \pi}\left(\frac{\epsilon_{r}-1}{\epsilon_{r}^{2}}\right)\right. \\
& +\frac{\epsilon_{r}+1}{2 \epsilon_{r}}\left\{\ln \frac{\pi e}{2}+\ln \left(\frac{W}{2 h}+0.94\right)^{!}\right]-1 \tag{39}
\end{align*}
\]

\footnotetext{
* Edwards, T.C., Foundations for microstrip circuit design, New York: John Wiley \& Sones, i'981, p 45.
}
where ' \(e\) ' is the exponential base: \(e=2.7182818\). Formulas for synthesis (calculation of \(\mathrm{W} / \mathrm{h}\) for given \(Z_{0}\) and \(\epsilon_{r}\) ) are as follows: For narrow strips (when \(z_{0}>\left\{44-2\left(e_{r}\right\} \quad\right.\) ohms):
\[
\begin{equation*}
\frac{W}{h}=\left\{\frac{\exp A}{8}-\frac{1}{4 \exp A}\right\}^{-1} \tag{40}
\end{equation*}
\]
where \(A=\frac{\left.Z_{0} \sqrt{2\left(\epsilon_{r}+1\right.}\right)}{119.9}+\frac{1}{2}\left(\frac{\epsilon_{r}-1}{\epsilon_{r}+1}\right)\left(\ln \frac{\pi}{2}+\frac{1}{\epsilon_{r}} \ln \frac{4}{\pi}\right) . \quad\) For wide
strips (when \(Z_{0}<\left\{44-2 \epsilon_{r}\right\}\) ohms)
\[
\begin{align*}
\frac{W}{h}= & \frac{2}{\pi}\{(B-1)-\ln (2 B-1)\}+\frac{\left(\epsilon^{-1}\right.}{\pi \epsilon_{r}}\{\ln (B-1) \\
& \left.+0.293-\frac{0.517}{\epsilon_{r}}\right\} \text { where } B=59.95 \pi^{2} /\left(Z_{i} \sqrt{\epsilon_{r}}\right) \tag{41}
\end{align*}
\]

Recently Whee ler* has derived an expression which holds for narrow as well as wide strips. This expression has slightly poorer accuracy than those given above, but may be easily programmed on hand held calculators. These are:
\[
\frac{w}{h}=8 \frac{\left\{\left[\exp \left(\frac{Z_{0} \sqrt{\epsilon_{r}+1}}{42.4}\right)-1\right] \frac{\left.7+4 / \epsilon_{r}+\left(1+1 / \epsilon_{r}\right) / 0.81\right\}^{1 / 2}}{11}\right.}{\exp \left\{\left(\frac{Z_{0} \sqrt{\epsilon_{r}+1}}{42.4}\right)\right\}-1} \text { (42) }
\]

\footnotetext{
* Wheeler, H.A., "Transmission line properties of a strip on a dielectric sheet on a plane," IEEE Trans. Microw. Theory Tech., Vol. MTT-25, p 631-647 (1977).
}

For analysis, this expression may be rewritten as
\[
\begin{align*}
Z_{0}= & \frac{42.4}{\sqrt{\epsilon_{r}+I}} \ln \left\{1+\left(\frac{4 h}{W}\right)\left[\left(\frac{14+8 / \epsilon_{r}}{11}\right)\left(\frac{4 h}{W}\right)\right.\right. \\
& +\sqrt{\left(\frac{14+8 / \epsilon_{r}}{11}\right)^{2}\left(\frac{4 h}{W}\right)^{2}+\frac{1+1 / \epsilon_{r}}{2} \pi^{2}} \tag{43}
\end{align*}
\]

In the above results for microstrip design, the strip thickness \(t\) has been assumed to be negligible. However, when \(t / h \leqslant 0.005\), the agreement between experimental results and calculated results for \(t=0\) is found to be very good. For larger values of \(t\), formulas for finite strip thickness are needed. A set of simple and accurate formulas for finite \(t\) are as given be low:*
\[
Z_{0}= \begin{cases}\frac{60}{\sqrt{\epsilon_{r}}} \ln \left\{\frac{8 h}{W_{t}}+0.25 \frac{W_{t}}{h}\right\} & W / h \leq 1  \tag{44}\\ \frac{376.7}{\sqrt{\epsilon_{\text {re }}}}\left\{\frac{W_{t}}{h}+1.393+0.667 \ln \left(\frac{W_{t}}{h}+1.444\right)\right\}-14\end{cases}
\]
* l.J. Bahl and R. Garg, "Simple and accurate formulas for microstrip with finite strip thickness," Proc. IEEE, Vol. 65, Nov. 1967, pp 1611-1612.
where \(\frac{W_{\dagger}}{h}=w / h+\Delta w / h\) with
\[
\frac{\Delta w}{h}= \begin{cases}\frac{1.25}{\pi} \frac{t}{h}\left(1+\ln \frac{4 \pi W}{t}\right) & (w / h \leqslant 1 / 2 \pi)  \tag{41}\\ \frac{1.25}{\pi} \frac{t}{h}\left(1+\ln \frac{2 h}{t}\right) & (w / h \geqslant 1 / 2 \pi)\end{cases}
\]

Effective dielectric constant \(\epsilon_{r e}\) for thick microstrip is given by
\[
\begin{equation*}
t_{r e}=\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-1}{2} F(w / h)-G(w / h, t / h) \tag{47}
\end{equation*}
\]
in which the functions \(F\) and \(G\) are given by
\[
\begin{equation*}
F\left(\frac{W}{h}\right)=(1+10 \mathrm{~h} / \mathrm{W})^{-1 / 2} \text { and } G=\frac{\epsilon_{r}-1}{4.6} \frac{t / \mathrm{h}}{\sqrt{W / h}} \tag{48}
\end{equation*}
\]

Variation of microstrip impedance with \(\mathrm{W} / \mathrm{h}\) is shown in Fig. 14.

Losses in Microstrips
Conductor losses in microstrip lines also may be calculated by using Wheeler's incremental inductance rule discussed earlier in connection with stripline losses. Equation (24) can be applied for microstrips also, recessions in various walls being taken as shown in Fig. 15. Symbols \(\Delta_{g}\) and \(\Delta_{s}\) denote skin depths for the ground plane conductor and strip conductor respectively. It may be noted that the air gap resulting from the upward recession of the bottom surface of the strip conductor is accounted while modifying \(h\) since inductance calculations do not depend upon the presence of dielectric.

\section*{Oielectric Losses}

Oielectric loss in a TEM mode with uniform dielectric filling is given by (28). For a line with composite dielectric (such as a microstrip line), the concept of effect tan \(\delta\) is introduced. We can write
\[
\begin{equation*}
(\tan \delta)_{e}=\frac{\sigma e}{\omega \epsilon_{r e} \epsilon_{0}} \tag{49}
\end{equation*}
\]
where \(\sigma_{e}\) is the effective conductivity of the dielectric medium, given by
\[
\begin{equation*}
\sigma_{e}=x \sigma+(1-x) \sigma_{0} \tag{50}
\end{equation*}
\]
where \(x\) is the filling fraction, similar to that used for dielectric constant in (33). In (50) \(\sigma\) is the conductivity of the dielectric substrate that \(\sigma_{0}\) is the conductivity of the air above the substrate. Since the air is almost lossless, \(\sigma_{0} \simeq 0\) and
\[
\begin{equation*}
\sigma_{e}=x \sigma \tag{51}
\end{equation*}
\]

Also \(\epsilon_{r e}=x \epsilon_{r}+(1-x)\)
\[
\begin{equation*}
\text { or } x=\left(\epsilon_{r e}-1\right) /\left(\epsilon_{r}-1\right) \tag{52}
\end{equation*}
\]

Using the above definitions, attenuation caused by dielectric losses given by (28), may be modified for composite dielectric transmission lines as
\[
\alpha_{d}=\frac{\omega}{2} \sqrt{\mu_{0} \epsilon_{0} \epsilon_{r e}}(\tan \delta)_{e}=\frac{\omega}{2} \sqrt{\mu_{0} \epsilon_{0} \epsilon_{r e}}-\frac{\tau_{e}}{u^{\prime} \epsilon_{0} \epsilon_{r e}}
\]
\[
\begin{equation*}
=\frac{\omega}{2} \sqrt{\mu_{0} \epsilon_{0}} \frac{1}{\sqrt{\epsilon_{r e}}} \times \frac{\sigma}{\omega \epsilon_{0} \epsilon_{r}} \cdot \epsilon_{r} \tag{53}
\end{equation*}
\]
\(=\Pi(\tan \delta) \sqrt{\epsilon_{r}} / \lambda_{0} \cdot \sqrt{\epsilon_{r} / \epsilon_{r e}} \cdot \frac{\epsilon_{r e}-1}{\epsilon_{r}-1}\) neper \(/ m\)
\[
=27.3(\tan \delta) \cdot \frac{1}{\lambda_{0}} \frac{\epsilon_{r}}{\sqrt{\epsilon_{r e}}} \cdot \frac{\epsilon_{r e}-1}{\epsilon_{r}-1} \mathrm{~dB} / \mathrm{m}
\]

Dielectric losses become significant only at very high frequencies (e.g. millimeter waves) or when semiconductor substrates are used.

\section*{Dispersion in Microstrip Lines}

All TEM mode lines are capable of propagating higher order modes at higher frequencies. However, in case of the microstrip line composite dielectric configuration causes the dominant mode itself to be slightly non-TEM. This can be shown by studying the transverse field distribution of \(E\) and \(H\) field and applying boundary conditions at dielectric-air interface.

The distribution of the electric field lines (shown in Fig. 11) indicates that \(E-l i n e s\) approach the dielectric-air interface obliquely, and thus both \(x\) and \(y\) directed transverse components of the electric field are present.*

\footnotetext{
* Coordinate system shown in Fig. 16.
}

Since the tangential component (x-directed) of E-field must be continuous at air-dielectric interface, the tangential component of the electrical flux density \(D\) becomes discontinuous, i.e..
\[
\begin{equation*}
D_{x} / \text { air } \neq D_{x} / \text { diel } \tag{54}
\end{equation*}
\]

Using Maxwell's equation for \(\nabla \times H\), we can write
\[
\begin{equation*}
(\nabla \times H)_{\times / a i r} \neq(\nabla \times H)_{\times / d i e l} \tag{55}
\end{equation*}
\]

If \(\mathrm{H}_{2}\) is zero (i.e., if the mode is pure TEM), (3.49) yields
\[
\begin{equation*}
\ni H_{y} / \partial z / a \text { ir } \neq \partial H_{y} / \partial z / \text { diel } \tag{56}
\end{equation*}
\]
or at the interface
\[
\begin{equation*}
H_{y} / \text { air } \neq H_{y / d i e l} \tag{57}
\end{equation*}
\]

Inequality in (57) violates the field matching conditions for the normal component of magnetic field. Thus, it may be concluded that \(H_{z}\) should be a non-zero quantity for inequality in (55) and consequently the continuity of the tangential component of E-field at dielectric-air interface to be satisfied. The above argument leads to the conclusion that a pure TEM mode cannot be supported by a microstrip line. However, since the major portion of the electric field lines is concentrated below the strip, the electric flux crossing the dielectric-air boundary is small. Therefore, the deviation from TEM mode is small and may be ignored for most of the circuit design applica-
tions. The microstrip design formulas discussed earlier are based on this approximation.

The non-TEM nature of microstrip modes causes the microstrip lines to exhibit dispersion, When the frequency of a signal exciting a microstrip line is (say) doubled, the phase constant \(\beta\left(=2 \pi / \lambda_{g}\right)\) is not exactly doubled. Several transmission line structures and waveguides exhibit thisbehavior, and are known as dispersive lines or waveguides. Oispersive behavior of microstrip lines may be studied by carrying out a detailed hybrid-mode full-wave analysis* of microstrip line as a wave guiding structure. There are several methods available for such an analysis, but these become too complicated to be incorporated in a CAD program for microstrip circuits. Therefore, for CAD purposes, the dispersive nature of the microstripline is modelled approximately by considering a parallel-plate waveguide model** of the microstrip line, and considering the width and (re of this parallel-plate waveguide model to vary with frequency.

Measurements on microstrips*** show that the effective dielectric constant \(\epsilon_{e}(f)\) is a function of frequency varying from \(\epsilon_{r e}\) in quasistatic limit to \(\mathcal{E}_{r}\) at very high frequencies. The following formula is suggested for \(10 \leqslant \epsilon_{r}<12\)

\footnotetext{
* K.C. Gupta, "Microstrip Lines and Slot Lines," Dedham (MA) Artech House, 1979, Chap. 4.
** Kompa, G., and Mehran, R., "Planar waveguide model for calculating microstrip components," Electron. Lett., Vol. 11, 1975, pp 459-460.
*** Edwards, T.C. and Owens, R.P., "2-18 GHz dispersion measurements on 10-100 ohm microstrip lines on sapphire," IEEE Trans. MTT-24, No. 8, August 1976, pp 505-513.
}
\[
\begin{equation*}
\epsilon_{e}(f)=\epsilon_{r}-\left(\epsilon_{r}-\epsilon_{r e}\right) /\left\{1+\left(\frac{h}{z_{0}}\right)^{1.33}\left(0.43 f^{2}-0.009 f^{3}\right)\right. \tag{58}
\end{equation*}
\]
where \(h\) is in millimeters and \(f\) is in gigahertz . It may be noted that dispersion effect given by (58) is significant only at \(x\)-band (and higher) frequencies where alumina substrates ( \(\epsilon_{r} \approx 10\) ) are widely used. Corresponding measurement results and closed-form formulas are not available for other dielectric constant substrates.

In addition to variation of phase velocity with frequency, characteristic impedance of the microstrip line also varies with frequency. Using a paral-lel-plate waveguide model, we can write
\[
\begin{equation*}
z_{0}(f)=\frac{n h}{W_{e}(f)} \sqrt{\epsilon_{e}(f)} \tag{59}
\end{equation*}
\]
where \(\eta\) is the wave impedance of free-space and \(W_{e}(f)\) is the frequency dependent effective width of the microstrip line. According to Owen*
\[
\begin{equation*}
W_{e}(f)=W+\frac{W_{e}-W}{1+\left(f / f_{p}\right)^{2}} \tag{60}
\end{equation*}
\]
where \(W_{e}\) is the quasistatic value of the effective width given by
\[
\begin{equation*}
w_{e}=\frac{\eta h}{z_{o} \sqrt{\epsilon_{r e}}} \tag{61}
\end{equation*}
\]
and \(f_{p}\) is the cut-off frequency of next higher order mode given by
* Owen, R.P., "Predicted frequency dependence of microstrip characteristic impedance using the planar waveguide model, Electron. Lett., vol. 12, 1976, pp 269-270.
\[
\begin{equation*}
f_{p}=\frac{c}{2 W_{e} \sqrt{\epsilon_{r e}}} \tag{62}
\end{equation*}
\]

It may be noted the frequency variation of \(Z_{0}\) depends upon \(W_{e}(f)\) as well as \(\epsilon_{e}(f)\). However the effect of \(W_{e}(f)\) dominates and \(Z_{0}\) decreases as the frequency increases. For a 50 ohm line on alumina substrate the change is about 10 percent over the 0 to 16 GHz range.

\section*{SELECTED BIBLIOGRAPHY}
1. Harlan Howe, Jr., "Stripline circuit design," Artech House, 1974.
2. K.C. Gupta et al, "Microstrip Lines and slot lines," Artech House, 1979.
3. K.C. Gupta et al, "CAD of Microwave Circuits," Artech House, 1981, Chap. 3 on "Characterization of transmission structures," pp 47-90.
4. T.C. Edwards, "Foundations for microstrip circuit design," John Wiley and Sons, 1981 .

\section*{16, :}
```

ig. 1(a) A siripline
ig. 2(a) Uross-section o a stripline
ig. 2(b) Tractical embuliment o: a stripline conriguration
if.3 islectrical and ummetic "tsld listributions in a
striplire
{ig.4 A parallel olate model or stripline c"nimeman:ion
*iE. 5 va!iation o! Z,'tr with y%/b %or a stripli"e
if. G(a) arallel plaie trarsuission line
if. f(b) Incremental displacevenr 0."walls
ig. 7 Increnental Aisolacement oi walls u: calcirlaving
conductor losses in a siriplime
ig. Cross-seciinnal viry or a microstripline
ig. , A pa:alle] plate line withmized lielectric fllinf
is, 10 Concept or e"ective dielent:ic consia:T ((t,G) :m
applied to a microstripline

```

```

 ricuos!riplire
    ```




```

 colimprat!os:
    ```



Fig. 1
(a) A stripline
(b) A microstripline


Fig. 2
(a) Cross-section of a stripline


Fig. 3 Electrical and maqnetic field distributions in a in a strinline


Fig. 4 A parallel plate model of stripline configuration


Fig. 5 Variation of \(z_{o} \sqrt{\epsilon}_{x}\) with \(W / b\) for a stripline

(a) Parallel plate transmission line
(b) Incremental displacement of walls

Fig. 6 Wheeler's incremental inductance rule

ric. 7 Incremental displacement of walls for calculating conductor losses in a stripline


Fiq. 8
Cross-sectional view of a microstribline


Fiq. 9 A parallel plate with mixed dielectric fillinq


Fig. 10 Concept of effective dielectric constant (íre) as applied to a microstripline


Fig. 11 Distributions of electric and magnetic fields in a microstripline


Fig. 12 Geometry of microstripline in the limit \(W / h \rightarrow 0\)


Fig. 13 Ratio of \(\lambda_{\rho}\) to \(\lambda_{m}\) (wavelength along the microstripiine) \({ }^{m}\) a function of \(\mathrm{w} / \mathrm{h}\)



Fig. 15 Wheeler's incremental rule applied to a microstrip configuration


Fig. 16 A typical fringing E-field line in a microstrip configuration

Fig. 14 Variation of microstrip impedance with w/h

HIGH POWER SOLID STATE CIRCUIT DESICN

HIGH POWER SOLID STATE CIRCUIT DESIGN

\section*{by:}
J. H. Johnson



The intent of this session is to present a practical approach to RF circuit design for high power applications. With the instrumentation available today very accurate transistor characterization is possible. Combine this data with properly selected transistor, good CAD and sound circuit design techniques and all the mystery that once surrounded such designs is gone. But, of course, every good engineer knows the most fundamental law. "If anything can go wrong it will". With this in mind, I would like to bring to your attention a new set of fundamental proverbs for RF Design:
- If you ever see an oscillation in your design model, all production models will oscillate -
It is critically important that every possible oscillation under all possible load, drive and supply voltage conditions be identified and eliminated.
- The transistor selected is never rugged enough -

In order to meet difficult performance standards, the circuit designer often sacrifices device ruggedness. Design ruggedness must be made the number one priority if you are to avoid unexplained failure, production yield problems and field failure caused by a slowly degrading load impedance.
- All design margin will go away in production -

Design with as much margin as possible. In many cases, adding an additional stage for gain will save many times its cost in production headaches.
- The transliftor will always run too hot -

Thermal problems are the least understood of all the design problems an RF engineer faces. A direct measurement of the junction
temperature under real operating conditions should be the final test.
- If one of a combined group of output transistors blows they will all blow -

Combine transistors using techniques that provide the necessary isolation to avoid secondary destruction.
- The parasitic inducance you are forced to live with is always too much -

Keep all parasitic inductances as small as possible so that you can maintain control over the circuit in production. The parasitics are most likely to change with time.
- The transistor manufacturer will never be able to make the same device in production -
Use transistors that are industry standards and being manufactured in volume. Avoid moving too close to the state-of-the-art.

It is interesting and even fun to look at what can go wrong in a high power circuit; but, with good engineering design all of the common problem areas can be controlled.

\section*{TRANSISTOR SELECTION}

One of the most important aspects of a good manufacturable circuit is the proper selection of the power transistors. The primary considerations are as follows:
- Power Output - Remember that the transistor thermal resistance, your system thermal resistance, and the permissible junction temperature determine the maximum power output. The manufacturers rated power out and even the saturated power out may be good indicators of margin, but the junction temperature sets the power output limit.
- Ruggedness - Will the transistor survive a bady mismatched loadz Do not use a fragile transistor! If a fragile transistor is the only one you can get then reduce the supply voltage until it is adequately rugged. Reducing the voltage is much more effective than reducing drive, although reducing drive a bit helps. For amplifiers that run open loop directly into an antenna the power transistors must be able to withstand an oo VSWR at the lowest frequency of operation, high line voltage and maximum drive. For an amplifier with a closed loop for gain control that drives a combiner or other system component the capability to deliver rated power Into a 3:1 load is a good test.
- Margin - Actual performance in a circuit is worth more than all the specifications and it is critical that the required performance is easily achieved with good margin. The easier you make it on your transistor manufacturer the easier you make it on yourself. One rule of thumb is, "Find out what the transistor manufacturer can make and find a way to use it".
- State-of-the-Ari Transistors - If your performance requirements are state-of-the-art then use the latest availabie transistor and accept the risk involved with anything new. If your performance requirements are simple, select a transistor that has been around for a few years and is made in volume. Stay away from one-of-akind laboratory curiosities completely.
- Reliability - Reliability is always important regardless of the end use. Transistor metalization is important and gold metal should be used for UHF and higher frequencies. At VHF and HF aluminum is fine. Other considerations are equally important.
1. Check a few devices for void free die attach.
2. Look at that the overall device assembly.
3. Make sure you have good package integrity.
4. Good wire bonds are very important. Excessive wirebond current and the resultant bond flex can become a major failure mode in some devices.
c Balanced or Single Ended - There is nothing magic about a balanced transistor. It is simply a very useful way to combine
a pair of transistors for twice the power without the decrease in impedance associated with direct paralleling. It is a particularly useful technique for wideband circuits.
- Package - The most important feature of any package is whether or not it is an industry standard. Try to select a package with minimum parasitic inductance, particularly the common lead.
- FET or BJT - There is nothing magic about either type of transistor and the choice should be made based on performance requirements. The most outstanding advantage of the FET is in its low transmitted noise. The BJT in general offers more power from a single device and is cheaper.
- The Subile Differences - There are some subtle differences in transistors from various manufacturers that at times are very important:
1. Ballast resistors can cause problems. Diffused resistors, while generally preferred for rugged performance, degrade noise, linearity and back IMD performance. They also perform poorly in high radiation environments.
2. Look at both input and output impedances over a wide bandwidth and make sure there are no sharp peaks or dips.

\section*{TRANSISTOR CHARACTERIZATION}

The first step is to quickly determine if the transistor you intend to use is suitable for the bandwidth that you require. First lets look at an output model assuming that the real load ( \(\mathbf{R}_{\mathbf{L}}\) ) needs to be:
\[
R_{L}=\frac{\left(V_{c c}-V_{\text {sat }}\right)^{2}}{2 \text { Pout }}
\]

Now add the transistor and package parasitics:


Figure 2 shows the effect of various values for \(C_{O B}\) and \(L_{C}\) on the value of the real series load impedance over a common UHF bandwidth. Note that the series real load impedance is not effected by the value of \(L_{C} \cdot L_{C}\) does, however, determine the value of the equivalent parallel resistanct at the package edge. If this value of parallel resistance \(\left(R_{p}\right)\) is higher than the geometric mean of the equivalent device series resistance \(\left(R_{s}\right)\) and the matching circuit final termination resistance \(\left(R_{T}\right)\), very wide bandwidths may not be possible.

Once you are satisfied that the load impedance is achievable, take a quick look at the input:



Fig. 1-Input \(z\) test circult

The simple test fixture shown in Figure 3 turns the transistor on, lozds the collector and allows the engineer to look at the input \(Z\) directly with a network analyzer. The values for \(\mathbf{Z}_{\text {in }}\) will not be precise, but the shape of the \(Z_{\text {in }}\) versus Frequency curve will be. By looking at the shape of the \(Z_{\text {in }}\) curve, the engineer can quickly determine if it is well behaved over a specific frequency range. Other advantages of this quick measurement are:
- It is easy to compare transistors from various vendors or transistors with different internal matches.
- it is also possible to vary the collector load slightly with capacitive Inductive loading to see how well the output is isolated from the input. The better the input loutput isolation the easier the final design will be.


Fig 4. - Input or Output \(\mathbf{z}\) Messurament

Once the transistor selection is made (based on the quick \(Z\) tests) exact \(Z\) measurements must be made. If measurements are made at low impedance points,(as just discussed) the instrumentation accuracy is poor and the parasitics associated with making contact to the device are large compared to the transistor impedance. The best solution to the problem is to build a portion of the circuit in close to the transistor where the impedances are low and make the measurement at a high impedance point. Construct a circuit similar to Figure 4 with chip caps and line lengths that bring \(\mathbf{z}\) values up to 25 to 50 ohms. Beyond the low \(Z\) line use a tuner to complete the impedance match. Tune the circuit for desired performance. If the expected performance cannot be achieved then too much of the impedance match is being required of the tuner and accurate values of \(Z\) 's cannot be measured. Once good performance is achieved, break the circuit at the dotted line and look back into the tuned section with a network analyzer. The impedance at this point should be in the 15 to 50 ohm range. Use the measured value as the termination for the transistor section of the circuit. By using the known values for the circuit components the actual transistor impedance can now be calculated (use CAD). The transistor input impedance is the conjugate of the calculated value.


Calculate
New \(Z\)
Value looking
into circtult here

BASIC DESIGN CONCEPTS
Think Low Impedance - A transistor is usually a low impedance device and in many cases an extremely low impedance device. Designing with low impedance active components requires that the engineer has the proper concept. He must think in a way that is, in many cases, opposite his previous experience:
- Current is more critical, than voltage. Components must be capable of carrying high RF currents with low loss.
- Lead inductance is important. Any lead inductance assoctated with the transistor or capacitors may severely degrade the amplifier performance.
- Ground paths must also be considered. In high impedance circuits the ground path is carried from component to component on a printed circuit run. This cannot be done with low impedance circuit design! A continuous groundplane on the back side of a printed circuit board is an ideal arrangement: Remember parasitic inductance in the ground path is of equal importance to the signal path.

The important thing to remember when working with low impedances is to keep all parasitic and loss terms an order of magnitude below the element being used.

Mounting the Transistor - The first step is to mount the transistor and the printed circuit board in such a way as to minimize parasitic inductances for the transistor and printed circuit board ground path. The transistor leads should be on an even plane with the printed circuit board (See Figure 6.). The space between the printed circuit board and the transistor body should be minimized.


Fig. 6 - Transistor Mounting

Grounds - When designing RF power amplifiers, the technique used to ground the various components is so important that it deserves special attention. Several tips listed below will help optimize your amplifiers. REMEMBER GROUNDING BECOMES MUCH MORE CRITICAL AT EITHER HIGH POWER LEVELS OR HIGH FREQUENCIES!
- Ground the transistor common leads at the body of the transistor. Not at the ends of the leads! Not \(1 / 8^{n}\) away from the body! (See Figure 7).
- The back side of the printed circuit board should be nearly a continuous ground plane. The top side ground should be connected to the bottom side ground using straps or plated through holes under each common lead. (See Figure 8).
- The contact between the printed circuit board and the heatsink (or mounting plate) must be continuous and intimate near the body of the transistor particularly if a common flange transistor is ued. If the contact is made away from the body of the transistor, the effective common lead inductance is increased.


Fig. 7-Common Lead Grounding at the Transistor Body


Fig. 8 - Topside Ground is Connected to the Backside Ground Usint Straps or Plated Through Holes
- Components in the matching networks have critical grounds also. The ground for capacitors used near the transistor is perhaps the most critical. Remember the shunt capacitance required here is of ten 1 or 2 ohms and therefore the total inductive impedance in the ground return to the common lead must be extremely small. Two capacitors in parallel, one back to each common lead, will reduce the inductive impedance ii) the ground return and divide the high RF currents.
- Capacitors in the matching networks, at a slightly higher impedance point, still require a good ground. A direct connection to the continuous back side ground using a strap through a hole in the board or a plated through hole is the best technique.
- Single plated through holes to reach the back side ground of a printed circuit board can provide mixed results. To improve effectiveness, use many holes together.

Component Location - It is very important when using high power transistors, to make the first impedance matching step ciose to the transistor. By using this simple approach the overall circuit bandwidth is greater and the effective common lead inductance is reduced (See Figure 9).


Fig. 9 Effective Common Lead Inductance May be Reduced by Proper Component Placement.

Circuit Stability - Circuit stability is one of the biggest problems an RF engineer faces. Generally a circuit/transistor combination will oscillate for three reasons:
- Excessive gain (particularly at low frequencies) combined with inphase feedback
- Varactor type oscillations at frequencies where the circuit provides the required lead.
- Various circuit or device resonances convert a stable common emitter stage to common collector or common base at the resonant frequencies.

By carefully designing the circuit and mechanical layout to avoid the above problems, most circuits can be stabilized. An example will describe how good circuit design can eliminate the stability problem for common emitter amplifier.


Fig. 11 - Collector to Base Feedback Reduces the Transistor Low Frequency Gain
- Any resistance or inductance in the transistor emitter provides negative feedback which decreases gain and makes the transistor more stable. A transistor with large emitter resistors is easier to stabilize. A transistor with very low emitter lead inductance (the best stripline packages) is slightly more difficult to stabilize. (But it has more gain.)
- A transistor built on higher resistivity material will have a
higher collector resistance and seems to be more stable.

Oscillations due to the varactor mode or resonant grounding are more difficult to eliminate. In most cases the transistor chip sees a zero or very low impedance at the frequency of oscillation. By carefully looking at the circuit near the device with a vector impedance meter or network analyzer, zeros can be spotted and eliminated. In many cases simply moving a component slightly or using two capacitors in parallel instead of one will solve the problem. One other check is of ten useful before beginning circuit design. Look at the transistor performance in a high quality test fixture to insure that there are no unusual ripples or negative resistance regions in the \(P_{\text {in }}\) versus \(P_{\text {out }}\) curve. The output power should also change smoothly with variations in \(V_{c c}\).

Low frequency spurious signal generation in common emitter RF power amplifiers is due primarily to the extremely high ( \(30-40 \mathrm{~dB}\) ) low frequency gain. Generally the transistor is merely oscillating in one of the classical modes rather than the more commonly discussed parametric modes. The input and output impedance required to sustain oscillation is provided by the dc feed networks, not the matching networks. There are two techniques to prevent these unwanted oscillations:
1. Present the device a source and load impedance which will not sustain any oscillation
2. Lower the low frequency gain of the transistor

The best source and load impedance to prevent low frequency spurious is low pure resistance. The following circuit provides this termination. (See Figure 10).


Fig. 10 - Resistive Loading of the Collector and Base Reduces the Tendency of the Transistor to Cenerate Spurious Signals.
- \(\quad L_{1}\) and \(L_{3}\) need to be small RF chokes at the carrier frequency.
\(L_{2}\) and \(L_{4}\) need to be as large as possible and still be able to handle the required current. (iquh is good value). \(C_{1}\) is a small bypass at the carrier frequency and should be as small as possible without cutting into the output power. \(\mathrm{C}_{2}\) and \(\mathrm{C}_{3}\) must provide a solid bypass at all frequencies including
the very low ones. (.23,f and \(10 \mu \mathrm{f}\) are good choices). At low frequencies the base will see \(R_{1}\) and the collector will see \(R_{2} . R_{1}\) and \(R_{2}\) should be some low value like 10 ohms to 50 ohms. In less stubborn cases, the base feed network may be used with the simplified collector network shown in Figure 11 with good results.

The second method irivolves using negative collector base feedback to lower the below some selected frequency. (See Figure i1) The values of the feedback network are selected as follows:
- L-make large enough so that the feedback network has no effect at the carrier frequency. The lead inductances of \(R\) and C are often enough without any additional L.
- C - make large enough for good coupling down to the lowest frequency of interest.
- R - a small value of about 10 ohms to 100 ohms is usually selected.

Both base and collector RFC's must be small to get the maximum benefit from the feedback. If either of these techniques is used, most transistors can be stabilized. However, a transistor can have several features that make it easier to stabilize.
- The low frequency gain of the transistor needs to be as low as possible. This is controlled mainly by \(h_{\text {FE }}\). A value of 20 to 30 is usually more stable than a value of 80 to 100

Impedance matching networks
Most circuit designs today utilize a combination of discrete component impedance matching and a transformer or balun. Figure' 12 shows a typical block diagram.


Fia. 13-Tyoteol imperinco Molctive Approech
Generally the collector match will be similar to the input.

Discrete matching network - The discrete portion of the matching network can be designed using any one of several basic networks. Figure 13 shows a few commonly used examples. (See Figure 13).

As an example consider matching a transistor to an intermediate \(\mathbf{Z}\) of \(\mathbf{1 2 . 5}\) ohms. The transistor input is shown, but the output \(\mathbf{2}\) can be matched in a similar way.


Fis in. - Input melating Neterork

Fig. 13-Bask Matching Networks


Selected microstrip, to have \(\mathrm{a}_{\mathrm{o}}\) that is equal to \(\mathrm{R}_{\mathrm{x}}\). By making this \(Z_{o}\) choice (even though it is not perfect from a bandwidth standpoint) the shunt capacitor may be moved along, in the final tracking of the circuit. If, turns out to be too long the extra length will have \(a z_{o}\) equivalent to the circuit impedance at that point and therefore have no effect.

The next step is to convert the transistor series input impedance to parallel equivalents. Ideally the resulting \(R_{p}\) should be the geometric mean between \(\mathrm{R}_{\text {IN }}\) and \(\mathrm{T}_{\mathrm{X}}\).
\[
R_{p}=\sqrt{R_{I N} \cdot R_{X}}
\]

If \(R_{p}\) is less than \(\sqrt{R_{1 N} \cdot R_{X}}\) a small series inductance ( \(L_{3}\) )* should be added to \(L_{I N}\) to increase \(R_{p^{\prime}}\), If \(R_{p}\) is higher than optimum, live with it. Actual values for \(C_{1}, C_{2}\) and the length of \(\ell\) can be obtained from a Smith chart or just estimated from experience. Once the preliminary values are selected, enter them into a suitable CAD program that optimizes the values over the appropriate bandwidth. The \(Z_{0}\) and \(\ell_{1}\) could also be entered as a variable if the bandwidth is extremely critical. If a transformer (a 4:1 as example) is to be used, any output parasitics can also be added to the circuit.

If the bandwidth cannot be achieved with the simple pi network, a multiple step match should be tried.
\({ }^{*} L_{s}\) is usually required on the transistor output. Generally \(C_{1}\) needs to be as cbse to the transistor body as possible on the input.


Fig. 15 - Series to Parallel and Paraltel to Series Conversion Example; if \(\mathbf{Z s}_{s}=4+j 8\) then \(\mathbf{Z p}=20+j 10\)


\section*{TRANSFORMERS AND BALUNS}

Transformers are extremely useful circuit elements because they can generally provide discrete predictable impedance transformation over very wide bandwidths. The 4:1 transformer is perhaps the most common of all. Several forms are shown in Figure 16.
\[
\text { (See Figure } 16 \text { ) }
\]

A quick look at currents and voltages in the 4:1 transformer explains how the impedance transformation occurs. Assume a resistive load \(R_{L}\) is added to the transformer as shown in Figure 17. Assume a current 1 is flowing through the load causing a voltage \(V\) across \(R_{L}\).


If \(V\) is present across \(R_{L}\), the same voltage will be impressed across the secondary of the transformer. Since the turns of the secondary and primary are the same, the voltage \(\mathbf{V}\) will be impressed across the transformer primary also. The polarity of the voltages is shown by the placement of the small dot on the transformer diagram. The voltage at the transformer input is the sum of the voltage across the transformer primary and \(\mathbf{R}_{\mathrm{L}}\), or \(\mathbf{2 V}\). If a total current \(I\) is to flow through \(R_{L}\), \(1 / 2\) must be provided from each transformer winding. Again since both primary and secondary have the same
number of turns (or the same voltage across them) the currents through each will be the same. Therefore, the input impedance will be \(2 V / 1 / 2=4 R_{L}\). More complex transformers provide other transformation ratios as shown in Figure 18.


Fro. 18- \(\begin{gathered}\text { Typtaral Configuration of 13:1 and 16:1 } \\ \text { Trantormers }\end{gathered}\)

Transmission line transformers of this type can be used over bandwidths of more than 2 decades. The ideal transformation ratios are, of course, for low frequencies, but with a few precautions the upper frequency limit can be quite high (UHF):
- Transformer interconnects must be as short and precise
as possible to avoid parasitics.
- Select a transmission line impedance ( \(Z_{0}\) ) that is the mean between input and output.
\[
Z_{o}=\sqrt{R_{\text {in }} R_{\text {out }}}
\]
- If the desired transmission line impedance is near 50 ohms a twisted pair of wires may be used. Multiple wires may be paralleled for a twisted pair impedance that is lower than 50 ohms. A coaxial cable is generally preferred at impedances much below 50 .ohms. Semi-rigid coax is excellent.
- The length of the transmission line is also important. If it is too long ( \(\lambda / 8\) is approximate maximum) the loss and phase shift will be excessive. If it is too short the impedance to cround (common or rejection mode impedance) will losd the input signal.
- Core materials of various permeabilities may be used to surround the transmission lines to improve the performance of the transformer.
a) Increases the series inductance of the transmission line conductors and thus extend the low frequency performance of the transformer.
b) Does not alter the characteristic impedance of the transmission line.
c) Allows the eiectrical length of the transmission line to remain relatively short.
d) Is not the medium used to couple power from input to output: thus small cross section ferrite can accommodate large power levels and still remain unsaturated.

A simple balun transformer also has many applications. Figure 19 shows a \(1: 1\) balun. The simple balun is usually used to connect a balanced load to an unbalanced system. It is also useful as a phase shift network.


You can also think of the balun as providing a pair of unbalanced outputs that are out of phase by \(180^{\circ}\).


Fig. \(20-\lambda / 4\) Transformer

Quarter wave transmission lines also make useful impedance transformers
A real impedance \(R_{1}\) can be transformed to a value \(R_{2}\) at a frequency \(f\) by using a transmission line such that the characteristic impedance
is equal to \(Z_{0}=\sqrt{R_{1} \quad R_{2}}\) and the line is electrically a quarter wave at the frequency f(see Figure 20).

The smaller the transformation ratio, the larger the achievable bandwidth.
A very common use of this technique is to match a 50 ohm system
down to approximately 12.5 ohms over an octave bandwidth by using a \(\mathbf{2 5}\) ohm transmission line that is a quarter wave long at the center frequency of the band.


Fig. 21
Matching Networks for Push-Pull

The quarter wave transformer can also be used as a balun. By using two such baluns a very simple push-pull amplifier can be constructed. See Figure 21.

The input quarter wave section provides:
- \(180^{\circ}\) phase shift between input signals to amplifiers \(A_{1}\) and \(A_{2}\).
\(\therefore 12.5\) ohms between \(A_{1}\) and \(A_{2}\), or \(\mathbf{6 . 2 5}\) ohms
for each amplifier and ground.

The output quarter wave section provides:
- In phase combining of signals through the entire amplifier system ( \(180^{\circ}\) phase shift between signals of \(A_{1}\) and \(A_{2}\) ).
- \(\mathbf{1 2 . 5}\) ohms between \(A_{1}\) and \(A_{2}\) or 6.25 ohms from each amplifier and ground.

Transformers that operate in the more classical transformer mode are quite useful at the lower frequencies (HF \& VHF). One common type is constructed using ferrite beads, hollow brass tubes (some silver plated) and a few turns of insulated wire. Two parallel sections are constructed where the brass sleeves fit snuggly through the center of a length of ferrite beads. A copper strap is used to interconnect the two brass sleeves at one end of the \(\operatorname{tr} \cdot\), former. This serves as a primary winding of the transformer. The secondary winding is formed by winding the appropriate number of turns of insulated wire through the center of the brass tubes. Use the largest possible wire size to improve performance. This construction places the current carrying surfaces
very close to each other and also very close to the ferrite materials, thus minimizing the amount of leakage flux which tends to limit upper frequency performance of a classic transformer. The impedance transformation ratio is equal to the square of the turns ratio. This technique works very well up through 30 MHz and has actually been used successfully in wideband amplifiers up to 90 MHz . A further advantage of this technique is that it provides a means to construct push-pull amplifier modules that can be very easily reproduced. One very common use is for a 28 volt 100 watt, \(2-30 \mathrm{MHz}\) push-pull, two transistor linear amplifier module.



Fig. 22- Classical Impedance Matching Transformer

The 50 ohms transmission is correctly transmitted at alf frequencies down to where the common mode impedance of the 25 ohm line is approaching 25 ohms. The operation of the network is as follows:
- The 25 ohm line is terminated at one end with 25 ohms.
- Then at the other end of the 25 ohm line, we have a
"floating" 25 ohm impedance.
- Consequently, if we connect a 25 ohm load from one conductor (it can be either) to ground, we now have a total impedance of 50 ohms from the other conductor to ground.

If points 2 and 3 are connected together, we now have the classic 4:1 impedance ratio transmission line transformer. From our description of how Figure 23 works, it should be immediately apparent that the \(4: 1\) transformer will only work well at frequencies where the phase shift between the voltages are 2 and 3 is small. This is true only at frequencies whose wave length is large compared to the length of the \(\mathbf{2 5}\) ohms line or frequencies where the length of the line is exactly one or more wave length.

Consider now the network shown in Figure 24.

When the widest bandwidth is important, another class of transformer may be the best choice. This type of transformer was first described in the CTC "Solid Circuits" handbook as an "Equal Delay Transformer". A brief theoretical discussion will clarify the advantages of the "Equal Delay Transformer". The basic principle of operation of transmission line transformers is that a terminated transmission line has a welldefined impedance to any differential signal applied to it and a much higher impedance to any common mode applied to it (which may be enhanced by coiling the transmission line or using a ferrite core). Consequently, one end of the line can be considered as "floating" or "elevated" relative to the other end.

To illustrate what we are discussing, consider Figure 23


Fig. 23 - Understanding Transformer Operation


Fig. 24 - Equal Delay Transformer

The two 25 ohms lines are exactly the same length. The circuit in Figure 24 behaves exactly the same as that in Figure 23 . However, there is no phase difference between the voltages across both 25 ohm loads at high frequencies. Consequently, if we connect points 3 and 4 together, we have a 4:1 impedance ratio unbalanced to unbalanced transformer whose high frequency cut off is essentially unrelated to the electrical length of the 25 ohm.

The transformer, as represented by Figure 24 with points 3 and 4 interconnected, represents the very simplest of this class of transformer. With suitable ingenuity and more lines and cores, transformers can be configured which will have different impedance ratios, and/or balanced output, or act as hybricls with similar hịg'frequency properties. (See Figure 25). This class of transformer should prove most useful when it is necessary to achieve extremely wide bandwidths.


Fig. 25 - An Example of on Equal Delay Transformer

\section*{Balanced Transistors}

Balanced transistors have become very popular throughout the industry since they were introduced by Lee Max at CTC in 1976 . A balanced transistor is simply a way of combining a pair of transistor chips that results in some very significant advantages. The two chips operate \(180^{\circ}\) out of phase with the other, with the midpoint being at RF ground. If good balance is maintained there will always be a zero RF potential at the midpoint (a virtual ground). The primary advantages are:
- Input \(Z\) is four times higher than a parallel combination of similar chips.
- Wider bandwidth is possible.
- A greater variety of impedance matching networks (internal to the transistor or external) is possible.
- Reduced even order harmonics.
- Better efficiency.
- The virtual ground that exists inside the transistor package reduces the effective common lead inductance.
- The internal structure of the transistor is simpler and less critical

Other parts of the matching network are usually calculated using measured values from one half of a balanced transistor as if it were a single ended device. (See Figure 27)


Fig. 27 - Converting Single Ended Impedances to Balanced Impedances

In a real circuit \(C\), is spread among 3 capacitors to reduce parasitic inductance and divide the first RF currents. It is important to notice that the RF current through a capacitor in a balanced circuit such as \(C_{2}\) is twice the value through \(C_{2}\) in the single ended model.

In general a balanced transistor should be used in applications requiring very high power or wide bandwidth. From a systems standpoint, an ideal building block for very high power amplifiers is a hybrid combined pair of balanced transistors. This combination provides several important advantages:
- Low even harmonics
- Good 50 ohms input and output match
- Good delivered power into mismatched load


Fig. 28 - Ideal System Building Block

\section*{WHICH IS THE BEST CLASS OF OPERATION?}
\(\mathrm{A}, \mathrm{B}\) or C . Most designers think of the Class C , zero bias, as the "normal" mode of operation. Class \(\mathbf{C}\) is generally used in FM transmitters, CW power and a variety of pulse applications (radar). Class \(C\) is the easiest to design and is very efficient. Disadvantages are lower gain and poor linearity. Linearity can be greatly improved with a small bias or Class B operation. Usually the quiesoant current of \(50-100 \mathrm{ma}\) is allowed to flow. An additional plus for Class B is about 2 dB improvement in gain. In many cases designers use Class B just to improve gain. If a bipolar transistor is used, some special precautions must be taken to achieve the appropriate bias over the temperature range. The bias voltage must track the change in the transistor VBE with temperature (approximately \(2 \mathrm{MV} /{ }^{\circ} \mathrm{C}\) ). Figure 29 shows a good bias circuit that can provide peak base currents of several amps depending on the exact output transistor used. The diode used to sense the temperature should be closely coupled thermally to the power transistor. A common stud rectifier mounted to the heatsink adjacent to the transistor works nicely.

If greater linearity is required, Class \(A\) is required. Class \(A\) improves gain an additional \(d B\) over Class \(B\), but the efficiency is reduced to 20-50\%. Class A may be biased in a way similar to Class B or by using emitter degeneration or collector base dc feedback. Figure 30 shows a general example. If the degeneration or feedback is adequate, no other adjustments are required.


Fig. 29 - Typical Bias Circuit for a Class B (or AB) Amplifier


Fig. 30 - Typical Ciass A Bias Technique

\section*{Thermal Considerations}

The one controlling factor in any high power RF design is the resulting transistor junction temperature under worst case conditions. Maximum permissible temperature will:
- Limit the power output
- Limit the allowed load mismatch
- Control the size of the heatsink

Generally, today's reliability considerations limit operating junction temperature to \(150^{\circ}\) to \(160^{\circ} \mathrm{C}\) with excursions to \(200^{\circ} \mathrm{C}\) under worst case load mismatch. This will vary, of course, depending on the Iransistor MTF and exact requirements.

The most important recommendation is that the design engineer measure the actual junction temperature and not depend on vendor supplied transistor data or calculations. Several important factors lead to this recommendation:
- Transistor manufacturers tend to publish thermal data that is measured under ideal conditions such as:
1) Using lower than maximum rated power.
2) Using dc power rather than RF power.
3) Heatsink held to lower than realistic temperature.
- Many thermal resistance values of materials change with temperature.
- The thermal resistance value of the interfaces between materials is difficult to calculate.

If you have no means to make actual measurements and must rely on calculations, make sure that every heat barrier is considered. Each thermal resistance may be combined with the other values as with a ordinary resistance network.


Fibg. 31- Levolz of Thermol Rocilcence in Typkal

The junction temperature may then be calculated as follows:
\[
\begin{aligned}
& \quad O_{T} \times P_{D}=T \\
& O_{T} \text { Combined total thermal resistance } \\
& P_{D} \text { Total power dissipated } \\
& T \text { Change in junction temperature }
\end{aligned}
\]

The transistor junction temperature changes rather drastically with temperature as shown in Figure 32.
\[
\begin{aligned}
& \text { Transistor that develops Hot Spots } \\
& \text { as temperature increases }
\end{aligned}
\]
\[
\underset{\substack{\text { Thermally Stabie } \\ \text { Transistor }}}{ }
\]

우 으 으 으 \&
8 anjen Josz of pasedun) ampis!say ןew.rวul

Time also plays an important part in thermal design as shown in
Figure 33 and Figure 34.


\section*{REFERENCES}
I. Johnson. J., "Balanced Transistors: A Look Inside Those Integrated Two-Chip Amplifiers," MicroWaves, Vol. 19, No.2, Feb. 1980.pp 54-59
2. Max, L.B.. "Balanced Transistors: Apply Wideband Techniques to Balanced Amplifiers," MicroWaves, Vol. 19, No.4, April, 1980, pp.83-88
3. Bailey. R.L., "Large-Signal Nonlinear Analysis of a High-Power HighFrequency Junction Transistor," IEEE Trans. on Electron Devices Vol. ED-17, No. 2
4. Johnson, J.H. . (Editor), Solid Circults: Circuit Techniques, Applications Book 2.2.8.0A, Communications Transistor Corporation, March, 1973
5. Wisherd, D., "900 MHz 12 Volt Applications". Applications Note 2.1.8.8A CTC, October, 1974
6. C.L. Ruthroff, "Some BroadBand Transformers", Proceedings of the IEEE, Vol. 47, pp. 1337-1342 (August 1959)
7. Octavius Pitzalis and T.P. Course, "Broadband Transformer Design for RF Proceedings (May 1968).
8. L.B. Max, "Balanced Transistors: A New Option for RF Design," Micro-Waves, Vol. 16, No. 6, pp. 42-46 (June 1977).
9. F.H. Raab, "Output Circuit Analysis of Class A and B Push-Pull RF Power Amplifiers," Paper prepared for Communications Transistor Corp. (March 1979)
10. M.V. Joyce and K.K. Clarke, Transistor Circuit Analysis, Addison-Wesley Publishing Company, Reading, MA (1961)
11. H.L. Krauss, C.W. Bostian and F.H. Raab, Solid-State Radio Engineering John Wiley and Sons, Inc. New York, NY, to be published
12. B.E. Rose, "Notes on Class D Transistor Amplifiers," IEEE Journal of Solid
State Circuits
13. R.L. Bailey, "Large-Signal Nonlinear Analysis of A High-Power High-Frequency Junction Transistor," IEEE Transactions on Electron Devices, Vol. ED-17. No. 2 pp. 108-119 (February 1970)
14. F.H. Raab, "The Class BD High-Efficiency RF Power Amplifier:, IEEE Journal of Solid State Circuits, Vol. SC-12, No. 3, pp. 291-298 (June 1977)
15. F.H. Raab, "Effects of Circuit Variations On The Class-E Tuned Power Amplifier", IEEE Journal of Solid State Circuits, Vol. SC-12, No. 2 (April 1978)
16. K.K. Clarke and D.T. Hess, Communications Circuits: Analysis and Design, Addison-Wesley Publishing Company, Reading, MA(1971)
17. C. Bowick, RF Circuit Design: Howard W. Sams \& Co, Inc. Indianapolis, Indiana, (1982)

\section*{Microsoncs \\ 60 WINTER ST. WEYMOUTH MA O2288-3336
(617) 337-42OO TWX TO- \(338-6833\)}

\section*{SSCILLATORS}

\section*{CRITICA, SYSTE}

\section*{MCROSONCS}

\section*{OSCILLATORS \\ CRITICAL SYSTEM - BUILDING BLOCKS}

\section*{Index}
1. introduction
2. background/applications
3. oscillator technical
- Definitions

Relaxation Oscillators
Design Criterion
Resonant Circuit Oscillators
Resonator Oscillators
Frequency stability
Frequency and Time
Oscillator Te
4. QUartZ CRystal oscillators
- Quartz Crystals/Oscillators
- Temperature Compensation
- Crystal Oscillator Vocabulary
5. OSCILLATOR SPECIFICATIONS

John R. Morton
Engineering Manager
Microsonics Incorporated 0 Winter Street
Weymouth MA 02188
6. another oscillator technology comparison chart

\section*{MCROSONCS}

\section*{INTRODUCTION}

Oscillator circuits are fundamental building blocks used in almost every electronic system developed; analog, R.F. or digital. Systems that we use everyday could not function without them. For example there is at least one oscillator in your digital watch or clock, television, radio, VCR, microwave oven, altomatic garage door opener, and personal computer.

Oscillators may be thought of as the heart of electronic systems since they provide the timing and synchronising for digital systems and they are used as frequency standards for RF and analog systems.

Since oscillators are critical system building blocks and the number of applications are increasing as systems become more complex, many engineers are finding themselves confronted with the challenge to design, specify and buy oscillators that provide optimum performance which is tailored
to their specific system requirements. For the new engineer especially this to their specific system requirements. For the new engineer especially this
can be a difficult task. It is indeed rare that oscillator circuts or devices reported in the literature can be used without modifications since detall, not described fully in the description, often are significant for optimum system performance.

It is the purpose of this paper to provide some insight into:
1) What an oscillator is and its applications.
2) Fundamental design conditions.
3) Commonly classified circuit examples.
4) Oscillator technolog comparisons.
5) Crystal oscillators.
5) Crystal oscillators.
6) Oscillator specifications and definitions of terms.
7) Performance trade-offs.

\section*{MCROSONCS}

\section*{BACKGROUND}

Electromagnetic wave theory shows that a signal can be radiated in space effectively only if the radiating antenna is on the order of one-tenth ( \(1 / 10\) ) or more of the wave length corresponding to the frequencies of the signals to be radiated. The first problem of wireless communications was that of transmitting low frequency information (i.e., voice) using practically small antennas. As an example: to radiate a maximum voice frequency of 10 kHz an antenna of approximately 30,000 meters in length would be required. Additionally multiple transmissions on a single channel create severe interference and signal distortion.

To solve this problem the process of frequency translation or modulation was developed. The process of shifting a low frequency information spectrum to a higher frequency, that can be radiated with a practical antenna, is accomplished by multiplying the low frequency information signal by a high frequency sinusoidal (carrier) signal at the transmitter. Recovery of the information signal at the receiver is then accomplished by the use of appropriate demodulation techniques that retranslate the information hack to its original position. This technique also allows multiple transmissions by shifting each one to a different assigned frequency or channel.

The techniques of modulation and demodulation demand very stable oscillators for generating the transwitter carrier signal and the local oscillator signals for demodulation at the receiver.

Several block diagrams of simplified communications systems are shown in Figures 2, 3 and 4.

Figure 2 SIMPLIFIF.D A.M. TRANSMITTER BLOCK DIAGFAM


Flgure 3 SIMPLIFTED F.M. TRANSMITTER BLOCK DJACRAM



DUAL CONVERSION
FJgure 4 SUPFRHFTRODYN: RFGFFIVFR BIתCK DIAGRAM


\section*{MCROSONCS}

Today, with an increasing number of users of a limited frequency spectrum, channel spacings are becoming narrower. This is in turn is increasing the need for improved oscillator stabilities to keep transmitted signals within their assigned channels. Also as the number of channels for each system has expanded; the need for seperate stable oscillator pairs, for each channel receiver and transmitter has multipled. This in turn has created a demand for frequency synthesizers to reduce the total number of oscillators per system. While frequency synthesizers provide a practical solution they have created even tougher requirements for oscillators including; tighter stabilities for the reference oscillator, improved phase noise, tighter control of oscillator output waveforms and power, and wide swing voltage controlled oscillators whose output frequency varies linearily with input control voltages.

A simplified block diagram of a frequency synthesizer is shown in Figure 5 . So far we have discusaed a variety of Frequency Division Multiplexed system requriements for oscillators. Here the signals are mixed in the time domain but maintain their identity in the frequency domain. Each channel occupies a different frequency band.

There is also an increasing use of Time Division Multiplexed systems where the frequency spectra of the sampled signals occupy the same frequency region and are mixed beyond recognition. However each signal occupies a distinct time interval and the information is received with the use of synchronous switching or gating circuits. In these systems highly stable
clock oscillators are required for the synchronous timing circuits. clock oscillators are required for the synchronous timing circuits.
Figure 6 shows a block diagram for a simplified Time Division Multipled system.

The proliferation of digital computers and digital circuits has also increased the need for stable ocsillators for use in timing and control. It is difficult to envision any digital system without at least one clock oscillator being used as a timing reference for controlling system functions. Most of us see timing reference for many wristwatches and real time clocks, both digital and timing \(r\)

Oscillators are commonly used in test equipment as frequency and time reference sources for frequency generators and signal analyzers. other applications include time interval peters, temperature and pressure gauges, navigation equipment, missile guidance, and electronic warfare systems.

Several applications for oscillators are shown in Figures \(7,8,9\) and 10.


Fipure 6
TMT DIVISION MULTTPIFRXING




Figure 8 HIGH SPFFDD 12-BTT ADC


\section*{MCrasoncs}

OSCILLATOR - TECHNICAL

Definitions:
1. Webster's New Collegiate Dictionary
"OS-CIL-LA-TOR
a) One that oscillates
b) A device for providing alternating current esp: A radio frequency or audio frequency generator."
2. J. Groszkowski Frequency of Self-Oscillations
"Self oscillations - electric oscillators in which electrical energy, usually d.c., is converted into electrical oscillations of a desired frequency."

OSCILLATOR CIRCUIT BLOCK

FICURE 11

\(\mid\) т
\(=100\) nec.

\section*{MICROSONCS}

\section*{oscillator technologies}

As many experienced R.F. amplifier designers will tell you the possible combinations of circuit elements that maybe used to create an oscillator are endless; even when you do not want one. Several types of oscillator
circuits will be discussed in this section including:
- Relaxation oscillators
- Resonant circuit and phase shift oscillators
- A variety of resonantor oscillators
- Laser/Maser oscillators
- Atomic Frequency Standards

\section*{MCROSONCS}

\section*{relaxation oscillators}

Relaxation oscillators generate a continuous output of pulses at a specific pulse repetition rate (PRR) without any external signal other than a D.C. supply voltage. In relaxation oscillators the utput frequency or PRR is determined by capacitor/resistor or inductor/resistor combinations rather than by a conventional inductorcapacitor tuned circuit. Energy builds up in the capacitor until the capacitor is charged to a certain voltage level. The circuit then relaxes" and the capacitor discharges; hence the term relaxation oscillator.

Figure 18 shows a collector coupled multivibrator circuit. The collector coupled multivibrator is a 2-stage R.C. coupled amplifier with the outputs of each collector being coupled to the opposite transistor base through the capacitors C1 and C2. The output frequency is controlled by the R.C. time constants of \(R_{3}, C_{2}\) and \(\mathrm{R}_{4}, \mathrm{C}_{1}\).

\section*{FIGURE 18}


\section*{MCROSONCS}

\section*{oscillator criterion}

An oscillator is a circuit that provides an output, usually with a specific frequency and waveform, without receiving any external signals; i.e., it is
a self-generating circuit. However an external power source, usually d.c. is required.

Figure 12 shows a feedback control block diagram model of an oscillator consisting of an amplifier, a feedback network and a summing junction. From the loop analysis we can see that:
\[
\begin{aligned}
S i+S_{f} & =(A B) S i \\
\text { or } A B & =1
\end{aligned}
\]

This is one of the first conditions of self-generation in an oscillator. That is: the loop gain (AB) must be equal to unity or

\section*{\(|A B|=1\)}

Also it is easy to see that if \(S_{f}\) were not in phase with \(S_{i}\) then \(S_{f}\) would cancel some of \(\mathrm{Si}^{\text {a }}\) and the output So would eventually stop. However when Si and \(S_{f}\) are identically in phase Si is increased and the output So will continue. This represents another condition of sustained oscillations that is: The total phase shift as the signal proceeds from the input through the amplifier and feedback network back to the input must be zero or stated another way when \(n\) is an integer:
\[
o_{f}=2 n=n \times 360^{\circ}
\] These two conditions are called the Barkhausen criterion 3. "Oscillations product of the open loop gain transfer function is unity. This implies teferred to as regenative or posirive feedback. In practice the feedback network, previously represented as B, usually contains actice the feedback made up of an equivalent inductance and capacitance that resonates at the desired operating frequency.

In practice it is ncessary to have the loop gain \(|A B|\) slightly larger than unity since the amplitude is generally limited by gain device nonlinearities (i.e., the amplifier self-limits to provide \(|A B|=12\). Also the feedback networks (B) phase shift usually requires adjustment to compensate for gain device parasitic reactances and circuit "stray" impedances.

Figure 12
OSCILLATOR TEEDBACK COMTPOL BLOCK DTAGPLM

\section*{MICROSONCS}

\section*{RESONANT CIRCUIT OSCILLATORS}

Figure 13 shows a resonant circuit oscillator using a single NPN transistor and Transformer Feedback. The operating frequency is determined by \(W^{\frac{2}{Z}} 1 / \mathrm{LC}\) with the transformer feedback being \(-180^{\circ} \mathrm{C}\) and the base to collector phase shift being \(+180^{\circ} \mathrm{C}\) such tht the total feedback phase difference is zero. Note that the amplifier is based in its active region initially and dynamic self bias results from \(\mathrm{R}_{3} \mathrm{C}_{3}\). This action results in Class C operation and unity gain at the operating frequency.

There are several common types of resonant LC circuit feedback oscillators, two of these are shown, without DC components in Figures 14 and 15. The general operating frequency equations are also shown.

The Hartley oscillator is shown of Figure 14. It is similar to the transformer coupled oscillator except that, instead of two seperate feedback by means of the mutual inductive coupling between the coils L1 and L2 formed by the tap.

The Colpitts oscillator of Figure 15 is similar to the Hartley oscillThe Colpitts oscillator of figure \(\frac{15}{}\) is similar to the Hartley oscillof the tapped inductor. Feedback from the collector to the base now occurs capacitively by means of the voltage divider effect of Cl and C2.

Notice that the resonant circuits provide an 180 degree phase shift that is opposite to that of the base to collector to provide a net phase shift of 0 degrees at the operating frequency.

TRANSFORMER COUPLED FEEDBACK OSCILLATOR

. PIpure 14
haptley nscillamp

\(\omega_{0}^{2}=\frac{1}{c(L I)+I 2+2 M)-\left(L L \cdot I 2-r^{2}\right)_{h_{1 b}}^{h} \frac{b}{b}}\)

\(\omega_{0}{ }^{2}=\frac{C 1+C ?}{1 C 1 \cdot C^{2}}+\frac{h_{c b}}{C 1 \cdot l 2 \cdot h_{1 b}}\)

\section*{\(\underset{\text { INCORPORATED }}{ } \operatorname{VRO}_{\sim} \bigcirc S \bigcirc \cap S\)}

A phase shift oscillator is shown in Figure 16. In this oscillator the RC networks provide the necessary feedback phase shift to sustain oscillators.

FIGURE 16
PHASE SHIFT OSCILLATOR

\(\omega o^{2}=\frac{1}{\left.C^{2}(L R \cdot R]+G R^{2}\right)}\)
\(\mathrm{h}_{\mathrm{f}}=23+\frac{29 \mathrm{R}}{\mathrm{KI}}+\frac{\mathrm{LQ1}}{\mathrm{~K}}\)

\section*{MCROSONCS}

\section*{RESONATOR OSCILLATORS}

It is easy to see that resonant LC circuits can be replaced with other electronic components that have equivalent circuits. Examples of such devices are discussed in the succeeding paragraphs annd they include:
- Mechanical Or electromechanical resonators

Crystals
S.A.W. Devices

Hicrowave Resonators
Surface Acoustic Wave Devices
- Transmission lines
\(\because\) Metallic cavity
Dielectric resonators

\section*{OSCILLATOR TECHNOLOGIES}

Oscillator technologies are of ten classified by the resonant structure used in the feedback network. These include:
Mechanical Resonators
One type of mechanical resonator uses a metal tuning fork with its resonant frequency dependent upon the length width, thickness and material used for the tuning fork tines. Energy is coupled in and out of the device with Piezo Electric ceramic transducers that convert electrical signals to a mechanical vibration at the input and the cunfor. requencies to approxinately 10 Hz . A requencies s shown in Figure 19.

\section*{Crystal Resonators}

Crystals are piezoelectric devices which mechanically vibrate when excited
with an alternating voltage. The device resonant frequencies and \(Q\) are dependent upon the crystal dimensions, how the crystal is orientated with espect with its axes, how the electrodes are applied, and how it is mounted in its holder.

An equivalent circuit crystal is shown in Figure 17. Crystal oscillators may be designed using piezoelectric crystals made from special ceramics or quartz.

Piezoelectric crystal oscillators are inherently very stable due to the high resonator circuit \(Q^{\prime}\) 's and their excellent time and temperature stability make then one of the better choices when tight stability performance is required

Quartz crystals may be used for frequencies from 10 kHz to over \(\mathbf{2 5 0 4 H z}\) with \(Q\) 's of 10000 to over l million. Ceramic resonators may be used for with \(Q\) 's of 10000 to over 1 million. Ceramic resonators may


\section*{MICROSONCS}


REACTAICE vs PPSUETCY


\section*{MICROSONCS}

Surface Acoustic Wave
(SAW) Devices
While crystal oscillators use the bulk properties of piezoelectric quartz and ceramic crystals, surface acoustic wave oscillators utilize the surface acoustic wave propogation properties of piezoelectric materials (quartz or lithium niobate) to convert electromagnetic wave energy into surface waves with lower wave velocities which allows small rugged, high frequency devices to be formed which are relativerly insensitive to mounting procedures. SAW devices usually require at least 2 sets of electrode patterms of carefully controlled interdigitated fingers to convert the electronic signal to a surface wave and back again. A block diagram is shown in Figure 21.
SAW oscillators provide size and cost advantage about 100 MHz to quartz crytal oscillators with frequency multipliers while providing improved frequency stabilities over LC circuit oscillators that operate in that frequency range.

Microwave Resonators
A wide variety of microwave oscillators are currently being used. Some of these include the use of conventional circuit topologies with special high frequency semiconductor devices and unique resonant feedback network structures such as:
- Transmission line or microstrip resonant structures as shown in Figure 19. Frequencies range from 300 MHz to over \(2 \overline{\mathrm{GHz}}\).
- Metal cavity oscillators as shown in Figure 20 The cavities correspond to tuned circuits with relativerly high \(Q\) 's. Frequencies range from 300 MHz to over 6 GHz .

Dielectric resonator oscillators use resonant structures that are made from dielectric materials of the barium titanate
variety with aluminia and fused quartz. These devices have been used to frequencies over 16 GHz . An example is shown in Figure 41

Other unique microwave device oscillators include:

\footnotetext{
Magnetron oscillators
- Klystron oscillators
- Traveling wave oscillators
- Masers
}


FIGURE 20


GUNN DIODE / CAVITY
OSCILLATOR

Figure 41
DIELECTRIC RESONATOR OSCILLATOR
 (Top View)
maGnetic field (Side View)


\section*{MCROSONCS}

\section*{Laser/maser - Light/microwave generating oscillator}
igure 22 shows a simplified construction of a laser system. The term Laser is an abbrevation for Light Amplification by Stimulated Emission f Radiation. The laser emitted radiation is at light frequencies usually the infrared or visible red spectrum and the radiation microwave frequences for Masers. The stimulas is made from ruby an input from radiation pump. Here the Laser is wade the radiation crystal for infrared output that utilizes a green 1 ght for the radiachgth pump to produce an output with a freque of \(1 \times 10^{-4} \mathrm{~cm}\).
The basis of the Laser/Maser action is the fact that the emitted radiation is a result of the electrons in the Laser/Maser atoms changing energy levels by first raising to a higher unstable level and then dropping back to the lower level frequency or wavelength

In the Laser of Figure 22 the radiation pump is the flash lamp which is similar to neon bulb. This radiation supplies energy to the solid ruby rata emission. The output is radiated through the partially silvered end or the right end of the ruby crystal.

The other end is coapletely silvered so that radiation can build up its intensity by repeated reflection between the ends. For a Maser the output aay be taken through a wavegulde and the ruby rod maybe replaced uith a gas mixture of helium and neon.


\section*{STABILITY}

Several factors must be carefully considered when specifying or selecting an oscillator function. Two of the most important factors are: the desired operating frequency and the overall frequency stability required We have already discussed examples for determining operating frequency but not frequency stability.

Generally the most stable oscillators are those whose resonant feedback networks have the highest \(Q\) making them less sensitive to variations of of other circuit components. Another way to compare oscillator circuit stablities is to determine the phase slope of the frequency determining networks. The circuit with the smallest df/do characteristic will be 100,000 are much more stable than LC networks with Q's of 10 to 50 . Figure 34 shows "Bode" plots of gain ahd phase characteristics for a LCR network with different \(Q\) 's. Notice that the frequency vs. phase slope decreases as the circuit \(Q\) increases.

The frequency stability (frequency error) of an oscillator is a measure of its ability to maintain as nearly a fixed frequency over as long a time interval as possible while being exposed to system environmental conditions. Usually when frequency stability is considered it is one of three (3) types: a) environmental - temperature, supply and load variations and mechanical shock and vibraton; b) long-term frequency drift referred to as aging; c) short-term frequency stability or phase stability.
often oscillator circuits are designed with temperature compensation networks that cancel the temperature drift characteristics of those circuit components to which the oscillator frequency is most sensitive. Another approach is to encase the oscillator in an oven that is controlled to maintain the oscillator at a constant temperature regardless of the outside ambient temperature.

Long tera aging drifts are usually dependent upon the mechancical, thermal and chemical properties of the frequency determining circuit elements used. Also components manufacturing process and process controls can play a critical role in their aging characteristics. As an example high temperature burn-in and temperature cycling can stress relieve and stabilize inductors to provide an order of magnitude improvement in their long-term aging characteristics and those effects upon oscillator drift.
As shown in figure \(\frac{5}{f}\) frequency synthesizer circuit techniques may be employed to frequency lock low stability sources to tight stability reference oscillators such as quartz crystal or atomic standards to provide improved system frequency stabilities. These approaches are especially useful for multiple frequency and microwave applications.

Oscillator stability will he discussed further in the Crystal Oscillator section.

FIGURE 34


\section*{MCROSONCS}

\section*{ATOMIC STANDARDS}

As the demand has increased for tight stability oscillators so has the demand for ultra stable standards to which these oscilllators can be compared and calibrated against. Generally the frequency standards stability must be at least one (1) order of magnitude better than the oscillator that is being calibrated.

Standards are one of two types: primary or secondary. The distinction between them is that the standard does not require any other reference for calibaration; whereas the secondary standard requires calibrations both during manufacturing and at intervals in the field.
The three most common types of frequency standards include:
Quartz crystal (usually ovenized) - Secondary Standard
Rubidium gas cell controlled oscillator - Secondary Standard
Cesium atomic beam controlled oscillator - Primary Standard
The Cesium beam standards are used where ultra high accuracy is required. In fact the NBS frequency standard is the Cesium beam type. The Cesium beam standard is a quantum electronic device that provides access to one of nature's invariant frequencles, that of the Cesium atom. The resonance of specified accuracy.

Ruhidium standards are similar to Cesium beam standards in that an atomic resonant element prevents drift of a quartz oscillator through a frequency lock loop. Yet the rubidium gas cell is dependent upon the gas mixture and presssure within the cell. Therefore it must be calibrated both during manufacturing and in the field.

Quartz crystal oscillators are used in virtually all frequency standards. However quartz crystal oscillators exhibit an aging rate (frequeny drift
over time) that must be periodically readjusted in the field. over time) that must be periodically readjusted in the field. In atomic standards the oscillator drift is constantly being corrected by the rubidiua or cesium beam devices through the use of an electronic frequency lock system as shown in Figure 30 . The crystal oscillator is multiplied and synthesized to the atomic resonance frequency ( \(6834+\mathrm{MHz}\) for rubidium
and \(9192+\mathrm{MHz}\) for cesium). The signal is frequency modulated to sweep through the atomic resonance frequency causing the beam intensity in cesium tube or tranmitted light through the rubidium cell to vary. The output signal is amplified and through a phase detector controls the frequency of a low noise crystal oscillator. Frequency dividers may also be applied to produce other outputs at lower frequencies. The table below compares the
relative long term drift of the three standards: relative long term drift of the three standards:
\begin{tabular}{ll} 
& Drift per year \\
& \\
Quartz crystal (ovenized) & \(1 \times 10^{-7}\) \\
Rubidium & \(1 \times 10^{-10}\) \\
Cesium & \(3 \times 10^{-12}\)
\end{tabular}


\section*{OSCILLATOR TECHNOLOGY COHPARISONS}

Oscillator Techonologies vs. Frequency Range
The chart in Figure 23 outlines the discussed oscillator technologies as function of the frequency range for which they may be used. It should be noted that several oscillator techniques may be employed to provide the output frequency. This highlights the question as to which oscillator echnology is best for your application. This question might be bette answered by evaluating your system stability, size, and input powe requirements and using the charts in Figures 23 and 24.

Oscillator Techonogies vs. Stability (temperature and aging) are charted in Figure 24. It is easy to notice that as tighter stabilities are required the number of oscillator techonology options are significantally reduced. When stabilities better than \(1 \times 10^{-5}\) are desired the choices must include the use of quartz crystal controlled oscillators either directiy, as a referenced oscillator or phase locked to an atomic standard depending upon the actual system stability that is required.


STABILIT: T.C. \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.85^{\circ} \mathrm{C}\right)+\) Dall: agisic

\section*{MCROSONCS}

\section*{QUARTZ CRYSTAL OSCILLATORS - THE LOGICAL Choice for most reasons}

The advantages of extremely high \(Q\), small size and excellent temperature tabif.


As stated earlier quartz crystals are piezoelectric devices that vibrate of this voltage is very close applied to the electrodes. If the frequency the amplitude of vibration will the natural frequency of the quartz crystal vibrations causes the quartz will become very large. The strain of these the crystal equivalent circuit impedance a sinusoidal field which controls dependent upon the crystal dimensions, The resonant frequency and \(Q\) are respect to its axes and how the crystans how the surfaces are oriented with a specific type of quartz crystal (AT) is cut from applied. An example of how in Figure 25. It is the orientation of the quartz quartz bar is shown to the atomic lattice 2 axis that also governs characteristic.

Adiagram of a typical quartz crystal is shown in Figure 26. Figure 27 shows the circuit symbol, an equivalent circuit schematic and impedance diagrams for a quartz crystal. Figure 28 shows frequency vs. temperature oscillator applications. figures 35 and 36 which are most common for R.F. characteristics for other frystal \(\frac{35}{\text { cuts, the }}\) at and SC cut. 36 show. Temperature AT"unt crystals "
AT-cut crystals may be operated on their fundamental mode as discussed earlier as well as on mechanical overtone ondoes which are odd multiples
(3rd, 5th, 7th, etc.) of the fundamental mode. Since these modes higher \(Q\) values they are more difficult to tune to exact frequency with external circuit reactances. The circuits shown previously can be made to operate with a higher frequency crystal mode by adding a tuned circuit to "trap" out the undesired lower frequency modes. An inductor may also added to tune out controls of the crystal hold to increase the circuit
ther
There are a number of crystal oscillator configurations. Three of these are show in Figure 29. The gate oscillator is used primarily in low stability logic applications. The modified Colpitts circuit is often used because of circuits. The Pierce circuit is used fetween the base and collector using quartz crystals circuit is used for high frequency applications sing quartz crystals operated on their overtone modes.
The circuit in figure \(\frac{37}{}\) is a Colpitts oscillator that will operate on is quartz crytal 3rd overtone mode due to the addition of Ll and Cl that

Block diagrans for typical Tex ang
voltage controlled oscillator rcuits are shown in Figures 38 and 40 .

Tigure 25

\(X O=\) Anfle Peference to Zaxis That. Coverns AT Cut Temn. Charactor
Thickness \(x\) netermines he rperating requency
froc fr\(\propto 1\)

\section*{QUARTZ CRYSTAL iDVARTRÚSS:}

Very High Q = Low Loss = Requires large circtit imedance chanen to creat small frequency errcr

Good Temperature Stability \(=\Delta f / f= \pm 10 \times 10^{-6} / 25^{\circ} \mathrm{C} \pm 55^{\circ} \mathrm{C}\) (inenmp=mestri)

Fygure 26
\(\xrightarrow{\text { AT }}\)
MODE
QUARTZ CPYSTAL

circuit equivalent


OUERTONE MODE IMPEDANCE DIAGRAMS





TYPICAL SC CUT TEMPERATURE/FREQUENCY CHARACTERISTICS


\(\underset{u}{u}\)

Figure \(38:\) TCXO CIRCUIT BLOCK DIAGRAM


 \(-\quad 1\)



\section*{MCROSONCS}

Temperature compensation of quartz crystal oscillators can be accomplish reactance that of temperature compensation networks. These provide oscillator frequency series with the quartz crystal which ideally varies \(t\) sign to that of the \(n\) opposite the operating variety of compensation netwarke. This is 8 hown in Figure 31. While use a varactor (voltage variable capacitor) be ing used today, most of thi sating voltage is applied. As the DC temperature temperature compei varies over temperature the varactor equivalent capacitance is varied effect a frequency change that cancels that of the quartzance is varied Depending upon the frequency vs. temperature stability desired al by itsel. ature compensating network must be individually adjusted to provide it proper voltage change for each crystal oscillator since no two crystal oscill ators are identical. Crystal oscillators that employ temperature compensatir networks are called TCXO's (Temperatue Compensated Xtal Oscillator). TCXO with frequency vs. temperature stabilities of \(1-2\) parts permillion ( \(1 \times 10^{-t}\) digital compensation networks. Usually echniques require the use of automatic test computer programs to accurately compensate Tcxo's and retwork synthes

Typical quartz crystal oscillator frequency vs. time (long term aging) characteristics are shown in Figure 32. Note that the characteristic primarily due to the quartz crystal and the aging can be positive or acs Quartz crystals are available that age at rates better phan or negative ome of the mechanisms that cause aging includes better than \(\times 10^{-11 / d a y}\)
1) Mass transfer due to contaninations within the quartz crystal enclosure. This can be minimized with proper process controls of cleaning and the environmental control including the crystal package sealing. deposition.
3) Ospilion.

Oscilator circuit effects such as crystal drive level, oven Materials outgassing and impurity diffusion.

\section*{Vocabulary}

Over the years a special vocabulary of quartz crystal controlled oscillatol erms has evolved. Some of these terms are listed on the next page for your convenience.

oricinal quartz cerstal and temperature compensated frequency vs.temperature cllaracteristics


\section*{NCORPORATED}

\section*{CRYSTAL OSCILLATOR STABILITY VOCABULARY}

Quartz crystal oscillators are often classified into one of four (4) types: crystal clock oscillaor (x0), ovenized crystal oscillators (OXO), voltage controlled crystal oscillators (VCXO), and temperature compensated crystal oscillators ( TCXO).

Clock oscillators ( x 0 ) are usually a loose stability ( 100 PPM 55 to \(+85^{\circ} \mathrm{C}\) ) crystal oscollators dependent primariy upon the specif ic quartz resonator for its frequency vs. temperature performance.

Ovenized quartz crystal oscillators provide much improved stabilities over clock oscillators (0XO) with stabilities of \(1 \times 10^{-10}\) being achieved when the crystal and/or oscillator temperature is controlled with the use of specially designed heaters and proportional controllers. Often multiple ovens and controllers may be designed with the total oscillator encased in a well insulated package using low-loss insulation or evacuated Dewar flasks.

Voltage controlled crystal oscillators (VCXO) are cyrstal oscillators that employ a varactor (voltage variable capacitor) network to provide a means of adjusting the frequency with an external control voltage. These oscillators are often used in autamatic frequency control ciccuits or phase locked loops similar to that of Figure 15 as well as for direct F.M. applications as shown previously in Figure 4 . The stability is dependent upon the specific crystal used and the external control voltage.
Temperature compensated crystal oscillators (XCX0) are similar to VCXO's in that a varactor is used to vary the frequency. However for TCXO's the varactor control voltage is generated internally by a temperature compensation network that uses themistors or diodes to provide a voltage that is proportional to the oscillator temperature. This voltage is then "shaped" through sophisticated analog or digital circuits to provide a temperature compensation voltage to the varactor The resulting vibration nearly cancels the natural quartz crystal frequency VS. temperature characteristic to prove a compensated frequency change that of ten is several orders of magnitude bet than the crystal without the compensation network. Frequency achieved using highly specialized varactor compensation circuits.

Voltage controlled temperature compensated crystal oscillators (VCTCO's) Voltage controlled temperature compensated crystal oscillators combine the performance attributes of an extermal voltage control of the voltage setting) of the Tcxo.

\section*{MCROSONCS}
ile we have discussed oscillator frequency and stability in some detall there are some other specifications that should be considered.

These, along with frequency and stability definitions are listed as follows:

\section*{OSCILLATOR SPECIFICATIONS}

Frequency Accuracy:
he frequency setting tolerance at room temperature at time of shipment. Often oscillators are designed ith tuning elements to allow periodic readjustment of the output frequency.

Stability:

Aging:
sually specified as a minimum/maximum change from the nowinal frequency as a \(+/-\) percentage, \(+/-\) part per million (PPM) or decimal factors \(10^{-6}, 10^{-7}\). \(10^{-10}\), etc.

Expressed as ppa or decimal portions per time from days to years. Example: \(<1.0 \times 10-6 /\) year for TCXO's and \(\leq 1 \times 10^{-9} / \mathrm{day}\) for \(\mathrm{OCXO}^{\prime} \mathrm{s}\)

Short Term Stability: Short term frequency stability usually is expressed as an Allen Variance (pp-10 per 10 ms ) or in terms of SSB phase noise in the frequency domain.

Frequency Stabilities
vs Supply Voltage and Load Variation:

Frequency change from nominal as the supply voltage or load are varied. These stabilities are met by the use of voltage regulation circuits and buffer stages. The tighter the stability requirements, the more sophisticated the design.

Frequency vs.
Temperature Stability: Usually expressed as \(+/-\) PPM ( \(\times 10^{-6}\) ) or decimal factors \(\left(1^{-7}, 10^{-8}, 10^{-10}\right)\) over an operating temperature reference to the nominal frequency desired. Expl: \(+/-1\) PPM \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).

WARM UP TIME: The length of time that elapses, after power is applied to the oscillator circuit, for the out put frequency and power to stabilize within specification limits. This is an important parameter for ovenized oscillators since the oven requires a finite time to reach its operating, temperature.

TURN ON POWER: The amount of power that an oscillator consumes initially when power is first applied. This is an important ovenized oscillator parameter since peak power is required at turn-on from a cold start until the oscillator oven reaches its operating temperature.

\section*{MCROSONCS}

Harmonfc Signals:

Subharmonfes:

Spurious Signals

Phase Noise:

Qutput Power

Output Wave Forms:
D.C. Voltage Inputs:

Size and Mechanical:

Enviornmental and Screening:
specified load for a sine wave output.
dit waveforms for digital logic output usually define the required logic levels " 0 ", " 1 ", duty to be connected in parallel as the oscillator load. scillators may require several different dc voltage supplies and currents depending upon the type of oscillator, logic families to be driven, and number of output signals. Ovenized oscillators usually require a high peak current supply seperate from that of the oscillator. as well as the type of packaging and input/output reminal locations.
Signals which are coherently related to the output frequency.

Harmonics of the actual oscillator (usually in oscillators that includes frequency multipliers) Signals, other than the nominal output, which ar not coherently related to the output frequency.

The short-term frequency variations in the output frequency which appear as energy at frequencies other than the carrier. It is usually expressed in terms of dBc or as a RMS frequency deviation in a specified bandwidth at a specifed frequency removed frow the carker. Phase pic from specifi \(t\) specific of output signal.

The output power is usually defined in dbm into a

Environmental operating specifications for oscillators are of course dependent upon the system applications. However these items are of ten omitted or not properly considered in the early system development phases ield.


\section*{NUROORORLED \(O S O N S\)}

\section*{OSCILLATOR PHASE NOISE}

Oscillator phase noise perfornance is becoming increasingly important as the frequency spectrum becomes more crowded and low level signal detection techniques are becoming more sophistcated.
The chart in Figure 42 shows:
- 10 MHz quartz crystal controlled oscillator phase
noise characteristic
- IOOMHz phase noise characteristic obtained by lox

100 MHz phase nolse charactern oscillator.
- multiplication of the multiplied by 100 X .
- multiplied by loox.
dielectric resonator and oscillator SAW oscillator.
s the chart shows; quartz crystal oscillators provide the optimum phase oise perfor俍 frequencies of less than 1 kHz . This is do to the However the other two (2) 5 kHz ) performance because they do not require noise floor (greater than SkHz) performance output; whereas the quartz frequency multiplication of provide 20 log of the crystal oscillator phase 40 db in this example.

In applications where an optimum phase noise floor performance is required In applite at high outpuis However if this requirement is combined with the need for the best colity an option may be to use the DRO or SAW oscillator as a VCO tight stabe locked loop is controlled by a stable in a frequety controlled oscillator. The properly designed phase locked quartz an also yield this benefit of the excellent close-in phase noise poop castilator and the noise floor of the DRO and SAW.

\section*{yCXO SPECIFICATIONS}

A quartz crystal controlled oscillator hich allows the frequency to be changed

A temperature compensated vcxo.
Frequency Deviation: The amount that the center frequency will change as a function of control voltage; usually specified in \(+/-\%\). As the deviation is wade larger, the other stabilities, temperature, aging will degrade. Example: +/-1\% f/ OVDC _5VDC

Linearity:

Response Slope:

Modulation Frequency: The maximum or minimum control input frequency usually less than 10 kHz .

Since most military specifications are comprehensive and organized they are of ten used vs. environmental testing standards even for industrial and consumer applications. Some of the most common are:
\begin{tabular}{|c|c|}
\hline Item & Specification \\
\hline General Crystal Oscillator
Specifiation & \\
\hline & M1L-0-55310 \\
\hline Thermal Shock & M1L-STD-202 \\
\hline Moisture & MIL-STD-202 \\
\hline Microelectronics & MIL-STD-202 \\
\hline Radiation/Hardening & MIL-STD-883 \\
\hline
\end{tabular}
\(\operatorname{VNCORPORATED}^{\sim} \bigcirc \bigcirc \bigcirc S\)
60 WINTER ST. WEYMOUTH MA O2R88-333 (617) 337-4200 TWX 70.338 .0833

CRYSTAL OSCILLATOR SPECIFICATION SHEET


IV A SUQSiDAR OI SGTAA TECIMCIOGY CORPORAION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Technology & Frequency Range & Aging & \[
\begin{aligned}
& \text { Temperature } \\
& \text { Stability } \\
& -40 \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Relative } \\
& \text { Size } \\
& \hline
\end{aligned}
\] & Input Power & Approx. Cost \\
\hline \begin{tabular}{l}
Mechanical \\
R/C Osillator
\end{tabular} & DC 20.100 kHz & \({ }^{+} 20 \%\) & 2\% & Small & 50 mw & <\$50 \\
\hline LC Oscillator & kHz to 500 MHz & \(\pm{ }^{+} 20 \%\) & 2\% & Small & 50 mw & \$20 to \$150 \\
\hline \begin{tabular}{l}
DRO (Dielectric \\
Resonator Oscillator)
\end{tabular} & 3 GHz to 16 GHz & \(?\) & \({ }^{+400 \mathrm{PPM}}\) & Small & 100 mm & \$200-\$300 \\
\hline SAW - Surface Acoustic Wave Oscillator & 25MHz to 200 MHz & 5PPM & \({ }^{+100 \mathrm{PPM}}\) & Small & 100mw & \$75-\$200 \\
\hline \begin{tabular}{l}
Quartz Xtal \\
Clock X0
\end{tabular} & 800 MHz to 200MHz & \[
\begin{aligned}
& 1 \text { to 5PPM/ } \\
& \text { year } \\
& \hline
\end{aligned}
\] & \({ }^{+}\)SPPM & & 25-50mw & \$5 to \$50 \\
\hline Quartz Temperature Compensated TCXO & 10MHz to 60MHz & \[
\begin{aligned}
& \text { - } 2 \text { to } 1 \mathrm{PPM} / \\
& \text { year } \\
& \hline
\end{aligned}
\] & \(\pm 2 \mathrm{PPM}\) & Small & 50mw & \$40-\$200 \\
\hline Quartz Ovenized OCXO or PCXO & 4MHz to 100 MHz & \[
\begin{aligned}
& .05 \text { to 1PPM/ } \\
& \text { year } \\
& \hline
\end{aligned}
\] & \(\pm .03 \mathrm{PPM}\) & Moderate to large & \[
\begin{aligned}
& 1 \\
& 6 \text { watt - } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \$ 200 \text { to } \\
& \$ 1000
\end{aligned}
\] \\
\hline Ces (um & 5M12 & \[
\begin{aligned}
& .000010 \mathrm{PPM} \\
& 1 \times 10^{-11} / \mathrm{year} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \times 10^{-11} \\
& \left(0-50^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Very large & 25 watts & >\$35K \\
\hline
\end{tabular}

TUTORIAL ON
SURFACE ACOUSTIC WAVE TECHNOLOGY PRESENTED AT

RF TECHNOLOGY EXPO '85
Disneyland Hotel Anaheim, CA

\section*{by}

Carl A. Erikson Jr Director of Processing Operations Andersen Laboratories 1280 Blue Hills Avenue Bloomfield, CT 06002

\section*{OUTLINE}
```

HHAT IS A S.A.W. DEVICE?

```

Parts of a SAW device
Terminology
Reasons for use
Types of devices
Applications
DESIGN CONSIDERATIONS
Substrate
Mask
Package
FABRICATION SCHEME
TESTING
FUTURE TRENDS


\section*{WAVE-RELATED TERMS}

\section*{1. Surface Acoustic Have (Sah Raleigh Wave)}

An acoustic wáve, propagating along a surface of an elastic SUBSTRATE, WHOSE AMPLITUDE DECAYS EXPONENTIALLY WITH SUBSTRATE DEPTH.

\section*{2. Power Flow Vector}

Vector giving magnitude and direction of power per unit AREA PROPAGATING IN A WAVE.

\section*{3. Propagation Vector}

VECTOR IN DIRECTION NORMAL TO LINES OF CONSTANT PHASE WITH MAGNITUDE PROPORTIONAL TO THE RECIPROCAL OF THE WAVELENGTH.

\section*{4. Power Flow Angle}

The angle between the direction of the power flow vector and the direction of the propagation vector.

\section*{5. Beam Steering}

SAW PROPAGATION PHENOMENA DESCRIBED BY A NON-ZERO ANGLE OF POWER FLOW.
6. SAh Diffraction

A Phenomenon analogous to optical diffraction due to the finite aperture of the source causing Saw beam spreading and WAVE-FRONT DISTORTION.

\section*{WAVE-RELATED TERMS (contd)}

\section*{7. SAh Coupling Coefficient ( Ks )}

SAW electromechanical coupling coefficient is defined as follows:
\[
k_{s}^{2}=2|\Delta v / v|
\]
where \(\Delta \mathrm{v} / \mathrm{v}\) is the fractional phase velocity change produced by short-circuiting the surface potential.
8. Acoustic Regeneration (for SAW)

The generation of a secondary acoustic wave by the potential variations of an electrode caused by primary Sal passing under 1 T .
9. Acoustic Propagation Loss

The ratio of the power transmitted in a Sal beam to the. power received in a cross-section of the same width, expressed in dB. Propagation loss includes power dissipation or scattering due to material damping, diffraction, defects and radiation into the alr above the substrate.

\section*{10. Mass Loading}

The change in phase velocity of a Sal produced by a thin layer on the substrate of higher density than that of the substrate, (Alternate definition) perturbations in reflections, velocity, dispersion, etc., due to loading effects of thin films on the substrate surface.

WAVE-RELATED TERMS (contd)

\section*{11. Beamwidth}

The spatial distance in units of wavelength which contain 50\% of the acoustic energy.
12. Surface Skimming (Shallow-Bulk) Acoustic Wave

A horizontally polarized bulk shear wave radiated almost parallel to the substrate surface. These waves are not a single mode as with the Sal but have many of the properties of a Sal.

\section*{TRANSDUCER-RELATED TERMS}
1. Interdigital Transducer (IDT)

A COMB Structure applied to the surface of a substrate CONSISTING OF INTERLEAVED METAL ELECTRODES WHOSE FUNCTION IS TO TRANSFORM ELECTRICAL ENERGY INTO ACOUSTIC ENERGY OR VICE VERSA BY MEANS OF THE PIEZOELECTRIC EFFECT.
2. Unidirectional Interdigital Transducer (UDT)

Transducer capable of radiating and receiving surface ACOUSTIC WAVES IN A SINGLE DIRECTION.
3. Multiphase Transducer

INTERDIGITAL TRAHSDUCER HAVING MORE THAN TWO INPUTS WHICH ARE DRIVEN IN DIFFERENT PHASES. USUALLY USED FOR UNIDIRECTIONAL TRANSDUCERS.
4. Phase Coded Transducer

An IDT in which the phase of the signal from an individual tap is determined simply by the polarity of the connections to the bus bars.
5. Heighted-Response Transducer

A TRANSDUCER INTENDED TO PRODUCE A SURFACE WAVE WITH SPATIAL DISTRIBUTION CORRESPONDING TO A WEIGHTED IMPULSE RESPONE.

\section*{TRANSDUCER-RELATED TERMS (CONTD)}
6. Focussing IDT

An IDT with curved electrodes to focus the launched acoustic wave to a narrower beam width.
7. Finger

An element of the idT comb electrode.
8. Dummy Finger

A passive finger which may be included in an IDT in order TO SUPPRESS WAVEFRONT DISTORTION,
9. Bus Bar

A common electrode which both connects individual fingers of an IDT together and the transducer to an external circuit.
10. APERTURE

Maximum IDT finger overlap length.
11. Finger Overlap (acoustic aperture)

The length of a finger pair between which electromechanical interaction is generated.

\section*{12. Apodization}

Response weighting due to the change of finger overlap along the length of the IDT.

\section*{13. Withdrahal Weighting}

Response weighting by removal of a finger or replacement of an active finger with a dumay finger in the ldt.

\section*{14. Capacitive Weighting}

Response weighting by including capacitance in series with the connection of each electrode as part of the IDT: the Capacitance value is varied from electrode to electrode.

\section*{15. SERIES WEIGHTING}

Response weighting by finger separation into individual ELEMENTS BY SEPARATION FROM BUS BAR.

\section*{16. Phase Neighting}

Response weighting by change in period or phase of finger arrangement inside the lDT.

\section*{17. Strip-to-Gab-Ratio}

The ratio of the metallized surface to the free surface within the IDT.

\section*{18. DOUBLE (SPLIT) ELECTRODE}

Quarter wavelength spaced (CENTER-TO-CENTER) fingers, TYPICALLY ONE-EIGHTH WAVELENGTH WIDE, USED TO REDUCE REFLECTIONS FROM TRANSDUCERS,

\section*{DEVICE-RELATED TERMS}
1. Surface Acoustic Wave Filter

A filter utilizing surface acoustic waves which are usually GENERATED BY AN INTERDIGITAL TRANSDUCER AND PROPAGATE ALONG A SUBSTRATE SURFACE TO A RECEIVING TRANSDUCER.

\section*{2. SAM Resonator Filter}

A type of SAW filter offering a high Q due to efficient reflectors in the Fabry-Perot resonator cavity structure.
3. Multistrip COupler (MSC)

An array of metal strips deposited on a piezoelectric substrate in a direction transverse to the propagation direction which can TRANSFER ACOUSTIC POWER FROM ONE ACOUSTIC TRACK TO AN ADJACENT TRACK.

\section*{4. Reflector}

A SAW reflecting component which normally makes use of the PERIODIC DISCONTINUITY PROVIDED BY AN ARRAY OF METAL STRIPS, DOTS OR GROOVES.

\section*{5. Shielding Electrode}

ELECTRODE INTENDED FOR THE REDUCTION OF ELECTROMAGNETIC INTERFERENCE SIGNALS.

\section*{DEVICE-RELATED TERMS (contd)}
6. Suppression Corrugation

Grooves in the non-active side of the substrate for suppressing bulk wave signals.

\section*{7. Acoustic Absorber}

Material with high acoustic loss at operating frequency placed on any part of substrate for acoustic absorption purposes.

\section*{8. Acoustic Haveguide}

A perturbation along the direction of propagation of a SAW to produce a decreased phase velocity and hence transverse concentration and guiding of the SAW.

\section*{9. Beam Compressors}

Structures on the surface of a susbstrate to increase the power density in a Sah by decreasing its lateral extent:
(a) Horn: Tapered structure of reduced velocity to produce gradual reduction of transverse width of beam.
(b) Multistrip Beam Compressor: A multistrip coupler with spacing of the strips chosen so that one track is appreciable wider than the other.
(c) Lenses: Regions of decreased phase velocity so shaped as to produce focussing of an incident Sal beam.

\section*{DEVICE-RELATED TERMS (contd)}

\section*{10. CONVOLVER}

A three port device whose output signal is the convolution of two signals applied simultaneously to the input ports.

\section*{11. Chirp Filter:}

A filter whose group delay is a non-constant function of the instantaneous frequency of the input signal.

\section*{12. Linear FM Chirp Filter}

A chirp filter which manifests a linear delay variation With frequency.
13. Reflective Array Compressor (RAC)

A type of device which uses reflections of the surface acoustic wave from oblique grooves or stripes to achieve the desired dispersive delay function.

\section*{14. Reflective Dot Array (RDA)}

A type of device which uses reflections of the surface acoustic wave from obligue rows of metallic dots.
15. SAM Oscillator

An oscillator that uses a Sal device (resonator or delay line) as the main frebuency controlling element.

\section*{DEVICE-RELATED TERMS (CONTD)}

\section*{16. Oscillator Mode}

Frequency or frequencies for which the total phase shift around the oscillator loop is an integer multiple of \(2 \pi\).

\section*{17. EXCESS GAIN}

The value of the positive gain (in decibels) at any SPECIfied frequency for the open oscillator loop measured under small. signal conditions (no limiting action). The source and load impedance must be specified.

\section*{18. Single-Mode Sah Oscillator}

A SAW oscillator in which there is only one frequency which satisfies the oscillation conditions of having positive excess gain and total phase shift of \(N \cdot 2 \pi\) (where \(N\) is a positive integer).

\section*{19. Multimode Sah Oscillator}

A SAW oscillator in which more than one frequency satisfies the oscillation conditions.

\section*{20. Delay Line}

A device which operates over some defined range of electrical and environmental conditions as a linear passive circuit element. The transfer characteristic has a modulus and argument (phase) which can be constant or a function of frequency.

\section*{DEVICE-RELATED TERMS (CONTD)}
21. Delay Line, Nondispersive

A delay line which nominally has constant delay over a specified frequency band. The argument (phase) of the transfer function is a linear function of freguency.

\section*{22. Delay Line, Dispersive}

A delay line which has a transfer chafacteristic with a CONStant modulus and an argument (phase) which is a nonlinear function of frequency. The phase characteristic of devices of common interest is a quadratic function of frequency, but in general may be represented by higher order polynomials or other nonlinear functions.

\section*{23. Delay Time: (nondispersive delay Line)}

The transit time of the envelope of an RF tone Burst.
24. Phase Shift: (dispersive and nondispersive delay lines)

The total number of degrees or radians between the phase of the CW input signal and the CW output signal as the delay device is operated at a given frequency within the band of operation: The phase shift is nominally a linear-function of frequency within the frequency band of operation for a nondispersive delay device.

\section*{25. Phase Delay: (dispersive and nondispersive delay lines)}

The ratio of total radian phase shift, \(\phi\), to the specified radian frequency, \(\omega\). Phase delay is nominally constant over the frequency band of operation for non-dispersive delay devices.

\section*{DEVICE-RELATED TERMS (CONTD)}
26. Group Delay: (nondispersivedelay line)

The derivative of radian phase with respect to radian frequency, \(2 \phi / 2 w\). It is egual to the phase delay for an ideal nóndispersive delay device, but may differ in actual devices where there is ripple in the phase vs, frequency characteristic.

\section*{27. Delay Dispersion: (dispersive delay line)}

The change in phase delay over a specified operating frequency range,
28. Dispersive Bandwidth: (dispersive delay line).

The operating frequency range over hhich the delay dispersion is defined.
29. Delay Slope: (dispersive delay line)
the ratio of the delay dispersion to the dispersive bandwidth.
30. Center Frequency Delay: (dispersive delay line)

The phase delay of the device at the center frequency, \(\mathrm{F}_{0}\), generally expressed in microseconds.

\section*{31. Bulk Have Signals}

Unwanted signals caused by bulk wave excitation existing
at the filter output.

32 Spurious Reflections
Unvanted signals caused ry reflection of SAW or bulk waves from substrate edges or electrodes.

\section*{DEVICE-RELATED TERMS (CONTD)}
33. Triple Transit Echo (TIE)

Unhanted signals in a Sal which have transversed 3 times the propagation path between input and output idt's caused by acoustic reflections at the IDT's.

\section*{34. Feedthrough Signal}

The undelayed signal resulting from direct coupling between the input and the output of the device

\section*{35. Multiple Transit Signals: (dispersive and nondispersive} DELAY LINES).

Spurious signals having delay time related to the main signal delay by small odd integers. Specific multiple transit signals may be labeled the third transit (triple transit), fifth transit, etc. There is often a tradeoff available between multiple transit signal levels and bandwidth, delay time, insertion loss, and VSWR.
36. Non-Multiple Transit Spurious Signals: (dispersive and nonDISPERSIVE DELAY LINES

Signals not related to the main signal delay by a simple integer may be labeled by the delay time of that signal.
37. Bandwidth: (dispersive and nondispersive delay lines).

A specified frequency range over which the amplitude response does not vary more than a defined amount, Note: Typically, amplitude variations to specify bandwidth are 1 dB and 3 dB.

\section*{DEVICE-RELATED TERMS (CONTD)}

\section*{38. Iime-Bandwidth Product}

The prodict of the device time duration and the chirf BANDWIDTH.
39. Compression Gain

10 Log of the ratio of the magnitude of the peak power of a compressed pulse to the rMS noise power measured. For an unweighted chirp pulse compression system, the value is 10 log (TB) where TB is the time bandwidth product.
40. Insertion Loss: (1) (pulse delay line)

The ratio of the inpist pulse power to the output power of the main pulse expressed in decibels.
(2) (CW delay line)

The ratio of input power to total output power, normally expressed in decibels.
(Note: Both the source impedance and load impedance must be specified.)

Insertion loss consists of the following components:
(1) Propagation loss due to Sah attenuation
(a) Interaction with thermally excited elastic waves
(temperature dependent)
(b) Scattering by crystalline defects, impurities, pits and scratches in the optical polish (temperature independent)

\section*{DFVICE-RELATED TERMS (CONTD)}
(c) Air loading loss (pressure dependent)
(d) Harmonic conversion loss (power level dependent)
(2) Losses due to transducer geometry
(a) Beam steering
(B) Diffraction
(3) Transducer losses
(a) Conduction losses
(b) Bulk wave excitation
(c) Impedance mismatch

\section*{41. INSERTIONLOSS RIPPLE:}

The peak-to-peak variation of the insertion loss, l.e., the difference between the maximum and minimum insertion loss, over a specified frequency range of the device.

\section*{Some Applications of 3AW Devices}

\section*{DELAY LINES}

Fusing, MTI Radar, communciations path length equalizer altivetry, tiae ordering, target simulation

\section*{WIDEBAND DELAY LINES}

Becirculating digital storage, nuclear experiments

\section*{DIFPERENTIAL DELAY LINES}

Data comounclations

\section*{BANDPASS FILTERS AND RESONATORS}

Color TV, radar, CATV, repeaters, transposers, ECM, frequency synthesis

\section*{OSCILLATORS}

Stable source VHF to merowave, local oscillators for conmunciations and coherent radar

\section*{TAPPED DELAY LINES}

Fourler transformation, acoustic inage scanning, clutter reference radar, ECM deception

\section*{DISPERSIVE DELAY LINES (CHIRP)}

Radar pulse compression/ expansion, variable delay
for target simulation, fourler trnasforma(spectral analysis), for target sinulation, fourier trnasformalspect
compressive receiver, group delay equalization

\section*{PSK PILTERS}

Spread spectrue comunciations, radar military ATC
CONVOLVERS
Synchronizer for spread spectru® communciators, fourier
transfornation


\section*{SAW OSCILLATORS}


\section*{OSCILLATORS}

\section*{SAW Oscillators 2}


NOISE POWER SPECTRUM
Short term stability \(=\frac{\sqrt{5_{1}}}{Q} \sim \frac{6 \times 10^{-8}}{Q}\) per sec.
Medium term stability \(\sim .03 \mathrm{ppm} / \mathrm{C}^{\circ 2}\) ref. \(25^{\circ} \mathrm{C}\) Long term stability \(\sim 10 \mathrm{ppm} /\) year fo 100 to \(1000 \mathrm{MHz} \quad Q\) to 30 fo \(T\) to \(10 \mu \mathrm{~S} \quad \Delta \mathrm{P}=\frac{1}{4 T}\)

Comparison of Properties of Varicus Oscillators
\begin{tabular}{|c|c|c|c|c|}
\hline Oscillator & Approx. Frequency Range & Effective Loaded Q & Max. Freq. Deviation ppm & \[
\begin{aligned}
& \text { Temp. Coeff } \\
& \text { In ppmi } i^{\circ} \mathrm{C} \\
& \left(-30^{\circ} \mathrm{to}\right. \\
& \left.+70^{\circ} \mathrm{C}\right)
\end{aligned}
\] \\
\hline Conventional Quartz XTAL & \(<10^{8} \mathrm{~Hz}\) & 5000-2.10 & \(\sim 500\) & \(<1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline LC (including cavity oscillators) & \(10^{3}-10^{11} \mathrm{~Hz}\) & Typically
\[
10-10^{4}
\] & as large as required & Typically \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline SAW & \(10^{7}-210^{9} \mathrm{~Hz}\) & \begin{tabular}{l}
200-104 \\
by choice of 1
\end{tabular} & \begin{tabular}{l}
\[
10^{2}-10^{4}
\] \\
by choice of 1
\end{tabular} & average value \(=1\) ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Comparison}

Some Physical Parameters which Can Be Measured:
Pressure
Force
Displacement
Acceleration
Vibration/Shock

\section*{Temperature}

Measurement is accomplished by noting the change in the transducer characteristics due to mechanically or thermally induced stress.

For SAW resonators and/or delay line oscillators, usually it is the frequency shift.

ADVANTAGES
Fast Response
High Sensitivity
Small Size
Good Dutput Signal
dI SADVANTAGES
Packaging (Environmental)
Sensitive to Shock/Vibration (mounting)


\section*{FILTER TRANSFER FUNCTION AS PRODUCT OF}

99227.19 (5.1.79)

Courtesy of W.R. Smith, Jr.

(a)

(b)

\section*{SECONDARY EFFECTS}

\(T T E=6+2 \times\) I.L. \(+2 \times\) Pr.op. loss

\section*{SECOND ORDER EFFECTS}

Time domain spurious
Edge reflections - angle, absorber Bulk waves - roughen Internal reflections - metal - adjust velocity
- mass - clever design


INPUT


TYPICAL TEST STATION FOP DISPERSIVE DELAY DEVICES

FIG I


FUTURE TRENDS

High Frequency SAW Devices ( \(>400 \mathrm{MHz}\) )
Surface Quality of Substrate Material
Metallization Techniques - "liftoff, plasma etching, ion beam etching"
Particulate Contamination
Resolution of Structures - exposure source, multi-layer resist techniques, direct write vs. contact or projection printing.

Handling - better assembly techniques
Inspecting - SEM

SAW/Hybrid Integration
Passive Tuning Networks
Active Amplification Circuits
High Frequency Devices
Packaging and Size Reduction
Programmability

SAW Materials
Lithium Tantalate
Zinc Oxide
Lithium Tetraborate
Berlinite
Gallium Arsenide
Devices and Systems
Grooved Devices
reflective array compressors (RAC's)
resonators
buried IOT
Convolvers
Channelized Receivers
Compressive Receivers
Automation
Automated Equipment
inspection of substrates
inspection of etched wafers
damping
wire bonding
testing
Automated SAW Device Factory
integration of CAD/CAM/CAT



FIGURE 2```


[^0]:    

[^1]:    Magnitude and group delay time of the transier function of a spectrum-shaping finer for the demodulator stape of a 140 Mbl/s digtal rado hank systiem

[^2]:    The noise figure results show good agreement with the predicted insertion of 2.5 dB when measured in 50 ohm system. The switching speed is limited primarily by the zener diodes, D5 and D6.

[^3]:    * It should be noted that thas ampifier was designed for
    base station applications where size is not as critical as in the case of mobile and hand-held units. In the case of reduction may be the overriding design consideration.

[^4]:    figure 2. varlable reactance phase modulator

[^5]:    Since we now know what we expect to come out of the receiver and the approximate gain distribution, bandwidth required (if) and the ine receiver

[^6]:    GREM B GMD E EDECTADNTCS

    | 10 FRINT $A$ ：TAE 8，＂RECEIUER $O$ ESIGN＂，AS TAB 29；MHZ＂Ḿ＂I；F FREDUEN <br> 15 INPUT R 2 ， 20 ； <br> 35 INPUT I 30 PRINT AT 30 ；I <br>  <br> SO ERINTHR <br> z＂ <br> 85 LET L L $=$ R－I <br>  100 INPUT <br>  130 TAE 30 INUT ${ }^{\circ}$ ${ }_{140}^{130}$ INPINT ${ }_{\text {AT }}$ <br> 150 PRINT ．15，20；N <br> ＂TAE $2 \exists_{j}$＂ĆÉM＂ <br> 150 INPUT C <br>  <br> 185 SLOU <br> $1 \ni 0$ IF IMKEY $\$=" Z$＂THEN CMPY <br> 195 IF IMKEY＝＂C．．THEN GDTO $=05$ －200 IF INKEYC？＂E＂THEN COTS 19 <br> E05 FRST <br>  MHE（HISH SIDE INJ）： <br>  |  |
    | :---: | :---: |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |


    | 10 PRIMT A 4 ，TAE S <br>  <br>  <br> 15 INFITT <br> 気 FRINT AT E．2e． F <br> こe ERINT GT 3．30．I <br> ELET LH＝O＋I <br> $z$ <br>  $\text { SE LET }=F-I$ Tas es, uHz <br> 100 INPIT 5 <br> 120 FRIMT AT <br> TAE 39：＂Ós <br> 120 INFMT N <br> 140 FRIIIT AT ． 15 EDOM <br>  1E゚ INFUT <br>  <br>  <br>  |  |
    | :---: | :---: |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |

    Although the super-reqenerative receiver (SRR) still has many useful applications in consumer electronics products, radio control and amateur radio, applications in consumer electronics products, radio control and amateur radio, may not be familiar with the concept. Also, most of the papers which have been written either assume outdated concepts such as the vacuum tube or concentrate on a specific solution to some of the many problems associated with this type of circuit. My primary purpose in this paper is not to reveal an eleaant solution to all these problems (I तon't have one) but to impart a basic understandina of how the circuit works so that the ingenious r-f desiqner will be able to apply those principles to present-day technology. However, for those who like formulas, a few of the more important equations are included, where applicable, and I also have included a biblioaraphy of all the sources that I have been able to uncover in my research on the subject. Of these, by far the most important is a 170 paqe book written just after the world war II:

    ## super-regenerative receivers <br> by J. R. Whitehead

    Cambridqe University Press, 1950
    This book is the definitive reference book on the subiect as it was understood at the time and appears to arrive at mathematically ricorous conclusions consistent with its basic premises, but, unfortunately, many of the assumptions it makes in arriving at its conclusions are based on the characteristics of vacuum tubes and do not readily apply to devices like bipolar transistors. Therefore, it is more important to understand the derivation and meaning of the equations than it is to try to use them for quantitative calculations.

    The first step in our understanding of this concept is to define it. In essence, the SRR consists of an r-f oscillator tuned to the carrier frequency of the desired signal. This oscillator is turned of $f$, or "quenched" periodically either by an external modulator or by an internal circuit modification which will cause it to squeq or self-quench at a rate much lower than the carrier frequency but higher than the highest modulation frequency of the received sianal. The quench frequency must be low enouah so that any residual sional in the oscillator tank circuit will be below the noise level before the next on-period starts. Operation of the circuit depends on the basic fact that the oscillator will restart more quickly in the presence of an externally introduced sianal than it would in the presence of low level random noise. This means that the following period of oscillation will either last longer (in the externally quenched case) or that the quench frequency will increase (in the self-quenched case)

    At this point, one is tempted to dr aw and analyze a typical r -f oscillator consistina of an rLC tank circuit driven by some active device but to do so would destroy the generality I am trying to convey at this time. So, in order to present the concept in a way which I also believe will be more intuitively ohvious, I have chosen the analogy of a pendulum modified in such a way that it will act as an externally quenched oscillator. This system is illustrated in Fiqure 1. The pen dulum consists of a mass $m$ attached to a liaht rod of lenath $l$ suspended from
    a fixed point by bearina $B$. We will assume that there is a small amount of friction associated with the system which results in a system $Q$ defined by:

    $$
    Q=2 \pi \frac{\text { maximum energy stored per cycle }}{\text { eneray dissipated per cycle }}
    $$

    If the pendulum moves an anale $\theta$ from vertical, the energy stored is $E=M a l \sin ^{2} \theta \approx M a l \theta^{2}$ if $\theta$ is not too larqe and is expressed in radians. The period of the pendulum or time to complete one oscillation is

    $$
    T=2 \pi \sqrt{\frac{l}{a}} \text { seconds. }
    $$

    Let us assume that the friction in the system is such that $Q$ is approx imately 100. It can be shown that if the pendulum is caused to start swinaing at some initial amplitude and then allowed to coast to a stop, the amplitude will decrease to $1 / \mathrm{e}$ ( 36.79 percent) of its initial value after $2 / \pi$ cycles and to $10^{-8}$ times its initial value after 5.860 cycles. (We will assume that this is below the noise level; if the initial displacement of the mass were one inch, the Final displacement would be about $10^{-8}$ inches and the stored eneray $10^{-16}$ times its initial value.)

    The pendulum is kept in motion by an electromechanical system consisting, first, of a motion sensor whose electrical output consists of a series of short positive pulses coinciding with the point where $M$ is nearest to the motion sensor and whose amplitude is proportional to the displacement of $M$ from its rest position.

    The output of the motion sensor is connected to an output pulse inteqrator and to a gain controlled amplifier. The output pulse integrator will provide a d-c output proportional to the total charqe contained in the pulses cominc from the motion sensor during what we will call the quench period. The output of the aif controlled amplifier is used to drive a solenoidal electromaanet ( $\mathrm{S}_{1}$ ) positioned near a soft iron sluq fastened to the pendulum shaft. The gain controlled amplifier can be qated on by an external signal generator whose waveshape we will assume here to be a square wave. Let us assume that the mass is initially at rest but that the aain controlled amplifier has just been turned on and has sufficient qain so that the system will slightly reinforce any motion of M. The motion of the pendulum will then build up exponentially as shown in Figure 2. It should be noted that the oriainal amplitude was the noise level which, in this case, we will define as being less than $10^{-8}$ inch displacement.

    The gain controlled amplifier has been designed to saturate before the mechanical system becomes non-linear. However, since we are illustratina what we will later call the linear externally quenched SRR, we will gate of the amplifier while it is still well below the limit of its linear gain reqion and the pendulum will never approach the limits of its swing. If we were illustrating the so-called logarithmic mode, the oscillation envelope would approach a fixed upper limit asymptotically. In elther case, after the amplifier is turned off, the motion of
    the pendulum will damp out exponentially aqain. The amplifier will not be turned on aqain for a period of at least 5.86 Q times the pendulum period so that the motion of the pendulum is again less than $10^{-8}$ inch.

    Now we will introauce another component into the system: an external pulse generator drivinc a second magnet, $\mathrm{S}_{2}$. This is analoqous to the introduction of a small external r-f signal in the case of the normal Spr. If the output of the external pulse qenerator is at the natural resonant frequency of the pendulum, and if the enerqy imparted to the system each cycle is greater than the eneray lost, the amplitude will increase with time until the eneray input per cycle is equal to the energy lost in friction, so that when the ain controlled amplifier is turned on aqain, the previous cycle will repeat, but will start at higher level as shown in the dashed line of Figure 2. The difference in area between the two envelopes represents the output of the system.

    We are now in a position to draw some conclusions that are applicable to an r-f system. First, let us consider the parameters of the pendulum itself, usina physical intuition as our quide. It is immediately obvious that the mass of the pendulum should be as small as possible for maximum sensitivity since the total eneray input required to accelerate the pendulum to a given fisplacement is directly proportional to its mass. If time is of no conseauence, we also will obtain maximum sensitivity if the friction in the system is very low, which implies that a high-o circuit is desirable; however, it should be very clear that high ก should not be obtained by increasing the penculum mass. Since the pulsations from the external aenerator must remain in phase, it is also clear that hiah o will result in narrower band width. Other conclusions can be drawn concerning the rate of chanae and the amount of feedback (in this case, the characteristics of the rate aain controll the amplifier gain is adjusted so that the eneray added to the system by $S_{1}$ is exactly twice the eneray dissipated by friction so that in electrical terms (whis we will discuss later) the absolute value of the net neqative resistance in the circuit during oscillation is the same as the positive resistance durino the quench period. This results in the symetrical buildup and decay of the ascillation shown in Fiaure 2.

    I am sure that we could do much more with the pendulum analoay, such as simulatina a self-quenched oscillator, installina a dampina system to shorten the recovery time and using multiple steps in the on-cycle to speed up the oscillation period, but time limitations dictate that we leave these variations to the r-f oriel. I wish to state aqain, however, that I believe the mechanical analoay makes cole clear some funca
    whitehead's book.

    Again, because of time, I will now start with the must fundamental elements of the SRR and built it into a workina unit, diaressina as $I$ ao to mention some less important variations and ending up with some theoretical formulas from Whitehead and my comments on them.

    ## World Radio Hisitory

    Fiqure 3 shows a standard parallel resonant circuit (or tank circuit as it is commonly called) with all the losses absorbed into the parallel conductance $G$. We use $G$ rather than $R$ because it is easier mathematically to qo from $+G$ thru 0 to $-G$ during circuit operation than to go from $+R$ thru $\infty$ to $-R$. Whitehead is very riaorous and develops complex equations concernina this circuit but for the time being I will content myself with referring to the resonant anqular frequency, $\omega_{0}$

    $$
    \omega_{0} \approx \sqrt{\frac{1}{L C}} \text { and } \rho=\frac{\omega c}{|G|}
    $$

    It is important to notice the absolute value sign around $G$ because a large neqative $G$, indicating strong feedback, will accelerate the buildup of oscillations in the tank circuit the same way that a large positive $G$ will cause rapid dampina.

    We could add a current qenerator at the resonant frequency to the circuit of Figure 3, but it can be shown that this is at least qualitively the same as adding a neqative $G$ in parallel with the existing positive G. To finish our model we must also add some means of introducina the r-f input siqnal to the circuit, but before discussing how this might actually be accomplished, we will just assume that the signal exists; for example, we can assume that $L$ is a ferrite rod antenna in an r-f field.

    The SRR mode which is easiest to analyze mathematically is called the slope-controlled externally quenched linear SRR. This mode is lllustrated in our Figure 4 which is taken from whitehead's book. In this example, the control siqnal is the grid voltage of a triode tube which is oriainally biased beyond cutoff: $G$ is positive. Next, the oscillator is gradually brought into conduction and g goes from positive to negative at a rate designated $G^{\prime}(t)$. This is called the regenerative period and any external sional existing in the circuit will be amplified, particularly ciaht acound the time labeled $t$, when $G$ becomes 0 . This is called particularly riant around the time labeled $t_{1}$ when g becomes o. This is called period the feedback is increased to a maximum value and then decreased so that at time $t_{2}$ the oscillation will have reached a peak value. The net value of $G$ has now returned to 0 . Then, for a still longer interval called the damping period, the active element is turned off and $G$ returns to its initial positive value. The active device must remain off until any residual oscillation in the tank cifcuit is below the noise level. The oscillation pulse shape is Gaussian as shown in figure 4.

    The siqnificant feature of this mode of operation is that the active device is turned on a relatively short time so that the circuit never saturates. It can be shown that under these conditions the peak r-f output voltaqe is a linear function of the signal input voltage so that the SRR can be used to receive an A.M. modulated siqnal with low distortion. However, there are at least two major disadvantaqes: extra circuit cost and complexity because of the required external quench circuit and, in some cases, an r-f detector circuit must be used to detect the r-f pulses, because if the active element is running Class a linear, the anode or collector curcent will not chanae as a function of $r-f$ level so selfdetection is not possible. Another mode, called the sinusoldally quenched SRR, can be analyzed by almost the same equations. It is most commonly used because the
    quench voltage is relatively easy to generate. I have found, however, that it is not feasible to use this method with some high freauency transistors because the base to emitter reverse breakdown voltaqe is too low. Whitehead also discusses, at almost equal lenath, the linear rectangular quench mode, but since this mode is not used as often and our time is limited, I will not discuss it in detail. It is similar to the slope controlled mode except that the active device is brought instantaneously from cutoff to the desired "on" state. The resulting pulse is not Gaussian but is like the shape shown in the pendulum analogy, figure 2. Aside from any other considerations this mode is seldom used because, at least at high frequencies, it is difficult to qenerate a pulse with the sharp transition times required.

    By using a longer on-time in the quench sequence, the SRR can be operated in what is called the logarithmic mode because an analysis will show that the output voltage from such a receiver is proportional to the logarithm of the input signal

    $$
    \frac{v_{2 \text { out }}}{v_{\text {lout }}}=\log _{e}\left[\frac{v_{2 \text { in }}}{v_{1 \text { in }}}\right]
    $$

    In cases where audio fidelity is not important this has several important advantages; better immunity to interference from other signals, better apparent qain for small siqnals and an apparent a.a.c. action.

    A receiver operating fully in the logarithmic more will reach saturation even when the oscillator starts from noise. However, if there is a sianal present, the oscillator will start sooner, so the r-f output from a receiver in this mode will appear as shown in Figure 5. Detection methods are the same as for the othe modes. It is also possible to adjust the recelver so that it operates in the linear mode for small signals and in the logarithmic mode for large signals. By far the most common mode at the present time is the self-quenched oscillator in which the blas circuit is deliberately desianed to operate somewhat like a blocking oscillator, that is, to bias itself to cutoff at the quench frequency. Since RC time constants are involved, it will operate in the slope-controlled mode and since the oscillator must saturate before it can turn itself off it will operate in the logatthmic mode. However, instead of increasing the width of the quench pulses the system operates by decreasing the distance between pulses and hence, increasing the pulse repetition rate or PRR. Since the active device will consume more current when it is on than when it is biased off, this system is self-detectina. An illustration of the quench pulses from this class of operation is shown in fiqure 6 .

    There are many other variations of the SRR principle that have been discussed in the literature, but 1 will have time to mention only a few. One class of these variations is a method of speeding up the quench cycle by using a more complex quench waveshape, but it requites so much more circuitry and requires such careful adjustment that it is probably not worth the effort. Figure 7 shows a typical quench cycle. Starting with the active device biased below cutoff, at time $t_{0}$ the bias voltage is rapidly made less neqative to a point where the loop gain of the circuit is slightly less than one. The voltage is then gradually made more
    positive so that it passes thru the point where oscillation starts to a point where the loop gain is slightly areater than one. The time from $t_{0}$ to $t_{1}$ is lona enouah for the oscillation amplitude to increase to fully encompass the sensitive reaion. At time $t_{2}$ the grid is made more positive so that the circuit has maximum ain, and so that at $t_{3}$ the $r-f$ envelope has reached its maximum value. At this point, the grid voltace is aoain dropped below cutoff. This system has all the advantaces of optimum slope control but shortens the total time the oscillator is on.

    A more modern improvement shunts a aood r-f diode across a portion of the tank circuit. At low voltages the diode acts like a lossless capacitor, but he diode will limit the amplitude of the peak r-f voltage developed in the circuit. This helps in two ways: it reduces $r$-f radiation and also reduces the requirec? quench time. Its main disadvantage is the cost of the diode which, for optimum performance, should have a low forward voltage, low capacitance and low loss at the síqnal frequencv.
    I will now present, without derivation, some of the more important
    equations from whitehead's book, and then aive you some of my own comments and conclusions. It will be up to each of you to decide whom to believe. In any case, where a tuned circuit is involved, the circuit of fiqure 3 will apply. If this circuit is excited with a sine wave current aenerator tuned to the resonant frequency of the circuit, the complete solution for the voltage across the circuit is

    $$
    \begin{equation*}
    v=\frac{A}{G} \frac{\omega_{0}}{\omega_{d}} e^{-G t / 2 C} \sin \left(\omega_{d} t\right)+\frac{A}{G} \sin \left(\omega_{0} t\right) \tag{1}
    \end{equation*}
    $$

    where $A$ is the amplitude of the excitina sianal, $W_{0}$ is the natural resonant frequency, $W_{d}$ is the frequency of the damped oscillator and $\alpha$ is the damping factor.

    $$
    \begin{aligned}
    \alpha & =G / 2 C \\
    \omega_{\mathrm{d}} & =\sqrt{\frac{1}{L C}-\left(\frac{G}{2 C}\right)^{2}}=\sqrt{\omega_{0}^{2}-\alpha^{2}}
    \end{aligned}
    $$

    The first term of Equation (1) is the transient term, which will be very small for most sianals. For the case of a vacuum tube used as the active element $G$ can be defined as

    $$
    \begin{equation*}
    G=G_{0}-K a_{m} \tag{2}
    \end{equation*}
    $$

    where $G_{0}$ represents the losses associated with the circuit with the tube turned of $f$ and $-\mathrm{Ka}_{\mathrm{m}}$ is the neaative conductance associater with positive feedback. The citcuit will oscillate whener $G$ is neqative. In the case of other active elements, $\mathrm{a}_{\mathrm{m}}$ can be replaced, at least in principle, by the appropriate aain parameter. Equation (2) may also be expressed in the form $G(t)=G_{o}[1-F(t) \mid$.

    He then qoes on at qreat lenath to solve the differential equations representing the operation of the circuit during the auench cycle, but the results are much too complicated to present here. One of the conclusions he draws, however, is that the connitions for the slope-controlled mode of operation are that

    $$
    \begin{equation*}
    t_{1}>\frac{120}{2 \pi} T_{0} \tag{3}
    \end{equation*}
    $$

    where $t_{1}$ is as shown in Figure 4, $T_{0}$ is the period of one oscillation, and

    $$
    \begin{aligned}
    Q & =\frac{\omega c}{G} \\
    Q_{0} & =\frac{W_{0} c}{r_{0}}
    \end{aligned}
    $$

    Equation (3) is important because it defines the maximum rate of chanqe of conductance, $G^{\prime}(t)$, for the circuit to be in the slope-controlled mode; the required active period must include more than $20 \mathrm{r}-\mathrm{f}$ cycles.

    He then goes on to derive expressions for the cain of the receiver operating in the slope controlled mode and divides it into two parts: The first part

    $$
    \text { Ns }=-\frac{1}{2 C} \int_{t_{1}}^{t_{2}} G(x) d x=\frac{a^{-}}{2 C} \text { nepers }
    $$

    he defines as the super-reqenerative qain which is expressed in nepers:
    1 neper $=8.7 \mathrm{db}$
    $a^{-}$is the area shown in Fiqure 4 where $G$ is neqative.
    ain is
    The other portion of the gain, called the slope aain, or reaenerative

    $$
    N_{0}=\frac{1}{2} 10 o_{e}\left[\frac{\pi \sigma_{0}^{2}}{c / G^{\prime}(t) \mid}\right] \text { nepers }
    $$

    or,

    $$
    4.35100_{e}\left[\frac{\pi \mathrm{G}_{n}^{2}}{\mathrm{C} / \mathrm{G}^{\prime}(t) \mid}\right] \mathrm{db}
    $$

    It is appropriate that $I$ stop at this point and male a few comments about Equation ( 6 ), which $I$ consider highly misleading. I acree thar the terms $C$ and $G^{\prime}(t)$ should he in the denominator, but 1 disaaree with the conclusions the casual reader may traw from the appearance of the term $\sigma_{0}{ }^{2}$ in the numerator. He mioht conclude that you will increase the ain (and therefore presumably improve the receiver) by deliherately increasinc the losses in the circuit. After some thouaht, $t$ have been able to resolve the conflict in twn steps.

    First, the author defines gain as the ratio of the r-f voltage in the tank circuit at the end of the period under consideration compared to the voltaae at the beginning of the period. Equation (6) refers only to the increase of voltage between $t$ and $t_{\text {, in Fiqure 4. It should first be recalled, from }}$ Equation (1), that the steady state voltage at time $t_{0}$ is inversely proportional to $G_{O}$. Hence, one of the factors of $G_{O}$ is immediately cancelled if we efine gain in terms of $A$ rather than $A / G$ ( $A$ is the amplitude of the siqnal current impressed on the tan; circuit). Secondly, the period $t_{\text {o }} t_{1}$ is defined as the time taken to go from $G=G_{0}$ to $G=0$ at the rate $G$ '( $t$ ). Hence, $G_{0} / G^{\prime}(t)$
     rewritten, dimensionally, as $\left(\mathrm{KT}_{1}\right) / C$, where K is a constant and gain is defined in terms of output voltaqe over input current. What the equation now says,
    dimensionally, is that gain is inversely proportional to the circuit capacitance and directly proportional to the time the external signal can influence the circuit before it is swamped by oscillation, both of which are reasonable conclusions. An equation found later in the book says that bandwidth is

    $$
    \begin{equation*}
    \mathrm{bs}=\frac{1}{\pi} \sqrt{\frac{\mathrm{G}^{\prime}\left(\mathrm{t}_{1}\right)}{c}} \quad \text { at }-8.7 \mathrm{db} \tag{7}
    \end{equation*}
    $$

    Equation (6) says that if you want to maintain a constant gain, and ncrease $G_{0}$, you must increase $G^{\prime}(t)$, but this will increase the bandwidth and hence increase the noise bandwidth of the receiver. Hence, the ultimate effect of ncreasing $G_{0}$ is to decrease the sensitivity (if not the qain) by increasina the oise in the receiver. It should also be noted that if we accept the proposition that we use normal r-f design rules about using low loss tuned circuits and hence do not make $G$ a variable in Equation (6) and if we also accept the idea that $C$ should be as small as possible, and therefore not variable, that the only variable left is $G^{\prime}(t)$ and we get back to the usual rule that there is a tradeoff between gain and bandwidth.

    Whitehead himself qoes on later in the chapter to show that the total voltage gain in the receiver is

    $$
    \begin{equation*}
    u_{t}=\frac{b_{e}}{b_{e s}} \exp \left(\frac{a^{-}}{2 c}\right) \tag{8}
    \end{equation*}
    $$

    where

    $$
    \begin{equation*}
    \frac{b_{e}}{b_{c s}}=G_{0} \sqrt{\frac{\pi}{c / G^{\prime}\left(t_{1}\right) /}} \tag{9}
    \end{equation*}
    $$

    Remembering that his definition of voltage qain is $\mathrm{v}_{2} / \mathrm{v}_{\mathrm{o}}$ and that $V_{0}=A / G_{0}$, where $A$ is the amplitude of the sianal current, then

    $$
    \begin{aligned}
    v_{2} & =u v_{o}=\frac{A}{G_{0}} \frac{b_{e}}{b_{e s}} \exp \left(\frac{a^{-}}{2 C}\right) \\
    & =\frac{A}{G_{0}} G_{0}\left[\sqrt{\frac{\pi}{C\left|G^{\prime}\left(t_{1}\right)\right|}}\right] \exp \left(\frac{a^{-}}{2 C}\right) \\
    & =A\left[\sqrt{\frac{\pi}{C\left|G^{\prime}\left(t_{1}\right)\right|}}\right] \exp \left(\frac{a^{-}}{2 C}\right)
    \end{aligned}
    $$

    It has been shown, therefore, that even using his own equations, $G_{0}$ does not appear as a factor in the final gain equation if qain is based on the ratio of the final output voltaqe to the oriainal exciting current.

    It will be noted that this qain expression depends only on $C$ and $G^{\prime}(t)$ as desiqn parameters, and that both of them should be made as small as possible. The area factor, $\exp \left(a^{-} / 2 C\right)$, relates only to how lona the oscillation is allowed to proceed before quenchina and has more to do with the required dynamic ranae than with receiver sensitivity. For example, if the receiver is required to have a linear dynamic range of 20 db , then the factor, $\exp \left(\mathrm{a}^{-} / 2 \mathrm{C}\right)$ must be 20 db smaller than it could be made in a receiver which would saturate on small signals.

    I will say very little about the step-controlled receiver except to say that the major gain factor, the super-reaenerative gain, is the same as for the slope-controlled receiver, $\exp \left(a^{-} / 2 C\right)$.

    The bandwidth is given by

    $$
    \begin{equation*}
    b_{s}=\frac{G_{0} G_{1}}{G_{0}+G_{1}} \frac{1}{\pi c} \quad \text { at }-6 d b \tag{10}
    \end{equation*}
    $$

    where $G_{1}$ is the neqative resistance durinq the oscillation period. The so-called natural bandwidth of the tuned circuit (passive state) is

    $$
    b=\frac{G_{0}}{2 \pi c}
    $$

    at -3 db

    He also shows that the step-qain factor is

    $$
    \begin{equation*}
    \mu_{c}=\frac{G_{0}+G_{1}}{G_{1}} \tag{111}
    \end{equation*}
    $$

    so that

    $$
    \begin{equation*}
    \mu_{0}=\frac{G_{0}+G_{1}}{G_{1}}=\frac{1}{2} \frac{b}{b_{s}} \tag{12}
    \end{equation*}
    $$

    This compares to the facto

    $$
    2 \sqrt{\pi\left(\frac{b}{b_{s}}\right)}
    $$

    already given for the slope-controlled case. Therefore, the additional aain attributable to using the slope-controlled mone is approximately $4 \sqrt{\pi}$, or approximately seven times better. This is an entirely reasonable conclusion based on the fact that in the slope-controlled mode the oriainal small signal can be gently amplified for a longer time before being jolted into full oscillation

    We will next consider the loaarithmic mode, which, since it includes the self-quenched type of SRR, is currently the most popular mode of operation. The output waveform of the externally auenched logarithmic mode SRR is shown in Fiaure 5. In this mode the amplitude of the $r-f$ sianal builds up to the saturation level, $\mathrm{v}_{\mathrm{e}}$, alona an exmenential curve from an initial voltage:

    $$
    \begin{equation*}
    v_{e}=v_{1} e^{a t} t_{1}=v_{2} e^{a t_{2}} \tag{13}
    \end{equation*}
    $$

    where $1 / a$ is the time constant of the buildup.
    It can be shown that the difference in area between these two envelopes

    $$
    \begin{equation*}
    \Delta A \approx \frac{v_{e}}{a} \log _{e}\left(\frac{v_{2}}{v_{1}}\right) \tag{14}
    \end{equation*}
    $$

    so that the aurio output, which is proportional to $\Delta A$, is logarithmically related to the sianal voltage. This is ideal for systems such as garage door openers, which use pulse modulation, since it provifes a sort of low cost AGC action, but is unsuitable for ordinary AM reception due to the severe distortion that would result. For signals near the noise level, Equation (14) becomes

    $$
    \begin{equation*}
    \Delta A \approx \frac{v_{e}}{a} \log _{e}\left[\frac{\sqrt{\overline{v_{n}^{2}}+v_{s}^{2}}}{\sqrt{v_{n}^{2}}}\right] \tag{15}
    \end{equation*}
    $$

    or, if the sianal is much larger than the noise

    $$
    \Delta A \approx \frac{v_{e}}{a} 10 o_{e}\left[\frac{v_{s}}{\sqrt{\overline{v_{n}^{2}}}}\right]
    $$

    $$
    \text { where } \quad \sqrt{\overline{v_{n}^{2}}} \text { is the rms noise voltaqe. }
    $$

    The apparent frequency response of a receiver is a rather complex function which depends on the siqnal to noise ratio, but, in general, is narrower at the nose and wider at the skirts than the same circuit operatina in the linear morle. A comparative plot showing the frequency response for various values of sianal to noise rates is shown in figure 8.

    Another useful equation is one for the maximum quench frequency which can be used while still stayina in the logarithmic morie. This is

    $$
    \begin{align*}
    & \mathrm{fq}=\boldsymbol{\pi} \mathrm{f}_{\mathrm{o}}  \tag{17}\\
    & 2010 e_{\mathrm{e}}\left(1 v_{d} \sqrt{\sqrt{v_{n}^{3}}}\right.
    \end{align*}
    $$

    ## where

    $f_{0}$ is the $r-f$ carrier frequency,
    $v_{e}$ is the limiting r-f voltaqe, and,
    $\overline{v_{n}^{2}}$ is the rms noise voltage at the input of the receiver.
    This equation should only be used as guide.
    An equation illustrating the relationship between the demodulated output voltage $\mathrm{V}_{\mathrm{m}}$ and some of the desian parameters is:

    $$
    \begin{equation*}
    v_{m} \propto \frac{2 v_{e} f_{q} c}{G_{1}}\left[10 o_{e}\left(1+M \cos w_{m} t\right)\right] \tag{18}
    \end{equation*}
    $$

    where $M$ is the dearee of modulation, and $G_{1}$ is the neqative conductance durina oscillation.

    This seeminaly contradictory equation ( $C$ is in the numerator) appears because $a$, the rate of buildup of the oscillation, appears in the denominator in the equation from which Equation (18) is derived and $a=G_{1} / 2 C$. Instead of considering $C$ a variable, it would be best to concentrate on makina $\sigma_{1}$ as small as possible. It should also be noted from Equation (17) that the maximum auench frequency will be lowered if C is made laraer (since $O$ is directly propoportional to $C$ ) so the factor $C$ will cancel out in Fauation (18).

    The most popular SRR system at this time (because of its simplicity and low cost) is the self-quenching receiver in which the bias system of the sinale active device is desioned to bias the device to cutoff perionically when it reaches saturation. This state has already been illustrated in Figure 6. Since the saturation. This state has already been will almost certainly involve time constants, the self-quenched self-biasing system will almost certainly involve time constants, itate. it also can be seen that it operates in the saturated or logarithmic mode, but, instead of prolonging its stay in the saturated state, as shown in Fiaure 5, it chanaes the auench frequency as shown in Fiqure 6 . The net current thru the system increases in the presence of an input siqnal because the duty cycle increases iust like in the externally quenched case. For slanals much greater than noise, the output voltaqe

    $$
    \begin{equation*}
    \Delta v \propto \frac{f_{a}^{2}}{a} A 1 \propto_{e} \frac{v_{s}}{\sqrt{\overline{v_{n}^{2}}}} \tag{19}
    \end{equation*}
    $$

    where $A$ is the area under the voltaqe-time envelope, $f_{q}$ is the auench frequency, and $1 / a$ is the time constant of buildup.

    Having covered the equations and conclusions in Whitehead's book as thoroughly as time will permit, I will end this paper with some thouahts of my own which $I$ am not in a position to prove mathematically, but which you miaht want to consider in liaht of what you have learned from the rest of the paper.

    My principal disagreement with whitehead is that he continually talks about gain instead $c \in$ sensitivity, altho all of his qain equations ultimately break down if the input signal is smaller than the noise level at the point where the signal is introduced. So my opinion is that the job of the designer is first of all to treat the system as a well desianed $r-f$ amplifier where the signal to noise ratio at the input of the amplifier is optimised as well as possible. Although at one point whitehead confronts this problem and effectively ends up saying that it doesn't matter, I think that if you are operating at a frequency low enough that significant gain can be obtained from the active device being used, and also if the device at that freauency has a high input impedance, that the best circuit desian plan would be to put the tuned circuit at the input of the amplifier and to use a low positive feedback factor to maintain high gain in the active device. Whitehead's comment on this is that high gain reauires high currents which leads to high shot noise, but I believe that the best compromise should be found so that the noise in the system compared to the input signal at that point is as low as possible.

    The other matter which Whitehead says very little about but which has a major effect on the gain of the system is to operate in such a way that the chanae of d-c current in the active device when going from a passive to oscillatory state is as areat as possible. This is especially true if the following audio amplifier is a bipolar transistor which is current driven. Another major problem for which Whitehead offers no solution except the use of an r-f amplifier is that of $r-f$ radiation. This is another opportunity for a clever desianer to show his ingenuity.

    I am sure that I have not covered all the questions which miaht arise on this topic, but 1 will have achieved my goal if, after studying the paper, you feel that you understand what parameters and methods are important in the desian in the same way that you understand how to design the more common types of r-f circuits.
    

    PENDULUM ANALOGY
    FIGURE 1 .
    

    QUENCH CYCLES: RECTANGULAR EXTERNAL QUENCH
    FIGURE 2.
    

    ## PARALLEL RESONANT CIRCUIT FIGURE 3.

    
    

    QUENCH CYCLES: LOGARITHMIC MODE, EXTERNALLY QUENCHED
    FIGURE 5.

    WITH EXTERNAL SIGNAL
    NO EXTERNAL SIGNAL
    
    

    COMPLEX QUENCH CYCLE
    FIGURE 7.

    IBLIOGRAPGy

    1. Harold A. Wheeler, A Simplifien Theory and Desiqn Pormulae for Superrenenerative Receivers. Wheeler Monograph 3, Wheeler Labs, Inc. Great Neck, N.Y., June 1948
    2. W.E. Bradley, Superreqenerative Detection Theory, Electronics, Vol. 21, Pages 96-89 septerber 194
    3. A. Hazeltine, D. Richman, and B.D. Loughlin, Superreqenerator Desian. Electronics Vol. 21, Pages 99-102, September T948
    4. Edwin H. Armstrona, Some Recent Developments in Reaenerative Circuits Proceedings of the I.R.E. August
    5. P.W. Prink, The Basic Principles of Superreqenerative Reception. Proceedings of the I.R.E., January 1938, Paqes 76-106
    6. G.G. MacParlane and J.R. Whitehead, The Theory of the Superregenerative Receiver Operated in the Linear Mode. Journal of the I.E.E. (London), Part III,
    
    R.W. Strafford, The Superregenerative Detector: An Analytical and Experimental
    B. F.R.W. Strafford, The Superreqenerative Detector: An Analytical and Experimental
    Investiaation. Journal of the I.E.E. (London Part III, No. 21, January 1946, $\frac{\text { Investiaation }}{\text { Pages 23-28. }}$
    7. E.P. Tilton, A Non-radiating Superreqenerative Receiver for Two Meters, QST, Pebruary 1946, Pages 53-56 and 108
    8. A. Easton, Superregenerative Detector Selectivity. Electronics volume 19.3 March 1946 Pace 154 and Eollowina
    9. H. Stockman Superreaenerative Circuit Applications Electronics, Volume 21.2 Pebruary 1948, Page 81 and following
    10. H.A. Robinson, Reqenerative Detectors, OST, Volume 17.2, Pebruary 1933, Paqe 264 and following
    11. H.P. Kalmus, Some Notes on Superreaeneration With Particular Emphasis on Its $\frac{\text { Possibilities For Frequency Modulation. Proceedings of the I.R.E. October } 1944}{\text { Pages 59t to } 600}$ Pages 591 to 600
    12. L.A. Hazeltine, Discussion on the Shielded Neutrodyne Receiver. Proceedinas of the I. $E$ June 1926, Pages 395-412
    13. Hazeltine PreModyne PM Circuit. Tele-Tech, December 1947, Paaes 41,85 and 86
    14. C.L. Rina, Diode Improves Performance in Superreqenerative Circuit. Electronic
    15. A. Iwakami, Improved Super regenerative Receiver. Ham Radio, December 1970, Pages 40-49
    16. C.L. Rina, Optimizina the Superregenerative Detector, Ham Radio, July 1972,
    Pages $32-35$
    17. H. Olson, Enter the Stranae But Useful Blackinc Oscillator, Ham Radio,
    18. W.S. Percival, Superreaenerative Receiver, U.S. Patent No. 2171148 Nov. 20, 1935 - $\frac{\text { Super reast } 29,1939}{\text { Ruaro Conductance for a Fraction of the Onench }}$ Period)
    19. R.C. Emerson, Super reqenerative Receiver, U.S. Patent No. 2398214, Feb. 14, 1944 - April 9, 1946 (2ero Conductance Eor a Praction of the Quench Period)

    Alan Victor: Computer Algorithin for Spurious Analyals

    Introduction

    This paper (article) discusses an approach to the calculation of mixer spurious. The analyais and the computer algorithim which follow allow the prediction of various mixer spurious including general harmonic analysis, cross-over spurious loacation, and self-quieting analyais. The insight gained by this analysis can save you future headaches and costly redesign. The approach outlined is applicable to receiver designs, synthesizers, and other aystams which use a multitude of mixers, oscillator sources, and intermediate frequencies, (I.F.'s.).

    In the deaign of recelvers or frequency synthesizers a number of mixer stages, fixed sources, or sweeping sources are present. In receiver design the selection of the (I.F.) la critical in minimizing unwented reaponses. In frequency synthesizers a similiar problem exists when a multiple loop approach is used. In this case the intermediate frequency is analogous to the synthesizer loop bandwidth. Just as in a receiver, if a spurious response is present in the I.F. no additional aelectivity will raduce the level of spurious. In a synthesizer one could be forced to narrou the loop banduidth or side-step around the interfering

    Alan Victor: Computer Algorithim for Spurious Analyais condition to reduce the level of spurioua, but this is at the expenae of increased lock time or V.C.O. phace noise degredation. Inatead the motivation ia to select the right cholce of oscillator frequency, I.F., and mixer type (1).

    ## Equatione Developed

    Aa an introduction, we shall define some of the most prevelent types of mixer apurioun as they occur in a communications receiver. The ideal ixer would behave as perfect product multiplier and if the input aignala (local oscillator and R.F. aource) are alnusoldal then the only I.F. components are the sum and difference frequency. Simple lowpasa or high pasa filtering removes the wanted I.F.
    frequency. Unfortunatly the sourcea are rarely perfect and the mixer is not a perfect product multiplier. Instead the mixer output consiats of harmonic multiples of the local oacillator source, the R.F. source, and any other fixed or sweeping source which might couple into the mixer inputs. The harmonic multiples at the mixer output follow an integer relation among the various mixer input agnala and the I.F. output can be expressed as
    f I.F.= Nof R.F. * Mof L.O. * K*f X

    In equation (1) $N, M$, and $K$ are integer values which are plus or minus and $N, M$, or $K$ can be zero. The term $f . X$ is any

    Alan Victor: Computer Algorithim for Spurious Analyeia third frequency present and might repreaent a fixed source or a sweeping one. Equation (1) can be extended to any number of sources and I.F.'s. Proper choice of the source coefficents $N, M$, and $K$ permit both high and low aide oscillator injection (local oacillator aurce is either above or below the R.F. signal) into theminer. Therefore, up conversion or down converaion can be anelyzed. Let'a consider the caae in Equation (1) where $f X$ ia absent. If $N$ ia +1 and $M=-1$ we have low aide injection ond the desired mixing term ia

    FI.F. = FR.F - L.O.
    (2)

    For $N=-1$ and $M=+1$ we have high side injection but $F$ I.F. remaina the ame. In one case Equation (1) gives the desired result: the other reault is the image frequency and vica-veraa. A particularly troublesome spurious is given by $M=N=2$ and is referred to as the $1 / 2$ I.F. apurious. This apurious lies one half I.F above or bel the desired R.F. frequency (depending on the whether high or low aide injection is used) and is difficult to filter if a wideband receiver is contemplated.

    Troublesome spurious occur for $\mathrm{M}=\mathrm{N}+/-1$ or $\mathrm{N}=\mathrm{M}+/-1$. when $N$ and $M$ differ by only an integer value close in spurious can occur. These undesired signals are again close to the desired R.F. receive frequency and are difficult to filter. Proper selection of the intermediate frequency as wall as the mixer type helps to reduce the level of these spurious.

    Equation (1) can be handled graphically (2.3): but quickly becomed a nightmare as the number of uweeping sources or I.F.'s increase. Instead a computer program is presented which handles the above equation and also allows all three sources to be swept. Two I.F.'s are checked in the computer routine, but any number of I.F.'s as well as any number of awept sources cin be accomodated. Figure (1) 1lluatrates the system under consideration. To keep the number of possible spurious to a reasonable level the I.F. bandwith or the search range is made adjustabls. Additional reduction in the number of $M, N$, and $K$ spurious esponse data pointa is possible if selectivity or mixir supression is factored into the program (4). Furthetmore, the starting and ending values for the coefficents of each source are independent and also adjuatable in range.

    Several problems sre addressed in the program which allow all possible spurious to be detected without causing an undue increase in computation time. Crossover apurious for example can be particularly troublesone especisily if swept sources are being used. These apurious can move through the I.F. and therefore, have zero offaet from the specified I.F. center frequency. Instead of trying to calculate where these crossovers precieely occur, wa need only determine that a crossover spurioue does exist. Reference to figure (2) illustrates the technique used. The program checks the sign of the calculated I.F. frequency, and notes if the aignal
    produced by the apurious lies within the I.F., above it. or below it. This calculation is tone for the extreme end frequanclea of each swept source. Clearly if the apurioun produces an I.F. signal within the spocified search range then the spurious condition is met. If the signal lies below the I.F. range then a negative flag is set, otherwise a positive flag is set. The state of the flag is checked on each calculation as the swept sources are moved to their next extreme frequency point. If any of these set flags change sign from one calculation to the next: the I.F. signal produced by the spurious must crossover the I.F. center frequency and a spurious condition exists. Note that equation (1) is really quite general. The algorithim does not care what the signal terms are, and it is up to the individual to determine what shall be identified as the R.F. signal, the L.O., and finally the I.F.

    As mentioned previously the program will handle a multitude of signal sources and I.F. frequencies. The present routine will handle three sources and two I.F. frequencies. All of the sources can be swept or they can be fixed. The program steps the sources in a Grey-Code sequence, given in Figure (3). Thus, each source is essentlally swept one at a time and the program looks for a valid spurious condition.

    Given three oscillators, we find thst 16 possible mixing conditions exist, refer to Appendix A. These conditions take into account the sweeping of the three oscillators as well is

    Alan Victor: Computer Algorithim for Spurious Analyaia the type of mixing, i.e. sum mixing or difference mixing. In addition wa need to consider both high and low side injection. Since we can take the absolute value of the result for high or low aide injection and arrive at the same spurious response, only 8 combinations se necceaary. In addition, 4 combinationa sre needed to account for the kind of mixing, l.e. sum or difference.

    Computer Routine Developed

    To ave computation time the 4 combinationa of mixing are presented as a menu and the user is asked to select the appropiate case type one thru four, or case five which selecta all combinations. The main subroutine in the program is SEARCH which increments the coefficents of the three oscillators: $f 1, f 2$, and $f 3$ using the alpha variables $N, M$, and $K$. The mixing "type" is selected by the variables $X, Y$, and 2 : and 1 a controlled by selecting the desired case routine.

    The spurlous analyaia does not actually sweep the three oscillators, but instead makes a apurious computation at both band edges for $f 1$. $\{2$, and $f 3$. The four subroutinea IFRANGE, FLAGTSET, FLAGTEST, and SPUR, compute if a spurious response falls exactly in our specified I.F. bandwidth. Not only is the I.F. bandwidth checked but so is the mirror image of the I.F. since this represents a valid reaponse. Since the I.F. band and the mirror image I.F. band are utilized in a

    Alan Victor: Computer Algorithim for Spurious Anslyais calculation we are able to check for spurious which could move through the I.F. for amall change in any one of the signal source frequencies. Crossover spurious are checked in this manner. The subroutine IFRANGE checis for in band spurious. The program requesta the deaired I.F. bandwidth or search range. The aubroutines FLAGSET and FLAGTEST monitor the movement of the I.F. spurious as the sign of the apurious changea from one side of the I.F. to the other: i.e. the spurious passes thru either the image I.F. or the I.F. The last major aubroutine is SPUR which outputs the final result. This routine recognizes wheather a single conversion analysis is being preformed or if a general harmonic analysis is requested. In the latter all three sources can be present and they may be awept or fixed in frequency.

    In aingle conversion analysis only one I.F. is allowed. A aingle conversion analyaie is possible uaing a swept R.f. source (fi), a swept L.O. source using f2, and a fixed I.F.. f I.F; (2). The analysis using the I.F. and the image I.F. detect spurious at the R.F. Image frequency, the half I.F. frequency and at many $M, N$ frequencies where $M$ and $N$ differ by only unity. The significance of these spurious is the fact that they occur close to the desired R.F. receive frequency. f1. Portions of the subroutine SPUR calculate the location of these spurious and the R.F. range over which they move. The designer is then presented with a good picture as too how much R.F. filtering is required.

    The computer routine discussed is written in BASIC and two

    Alan Victar: Computer Algorithim for Spurious Analysia versions are now complete. One is written for the aeries 200 HP desk top personal computer and the other on the APPLE II. Other versigna are running in DagCal and on a manframe are clearly faeter than the personal computer versions. Never-the-less a source, 30 th order spur search takes less than 60 seconda (and even faster if their are few spurious found) on a personal computer.

    As an add in underatanding the apurious problem, let us work some examplea which are ahown in Figure (4) and ahould help dllustrate the material covered.

    Consider a F.M. recelver covering 88-108 mhz. The first I.F. is 10.7 mhz and the second I.F. is 455 khz . A microprocessor is used to obtain a clock display function as well as controlling the tuning of the receiver. The up oscillator ia a 3.579545 ahz (f3) cryatal. Uaing the program we find that the general apur analysis points aut a self-quieting condition cthe recelver will easentlally be quieted by it's own internal oecillators) at $3-f 3$ which is 38.6 khz below our 10.7 I.F. Clearly this is a potential problem especialiy with the first I.F. over 100 khz wide. Other spurious are noted including some which also effect the eecond I.F.

    Consider a communicationa recelver for the 25-88 whz band. Low aide injection la uaed with up-conversion and the first I.F. is 90 mhz. A single conversion spurious analyais points up a number of harmonic related spurious, indicating the need for sub-octave bandpasa filtars. A low order $N, M$ spur exists

    Alan Victor: Computer Algorithim for Spurious Analysis (2.1) but is at least 25 miz away from the deaired recelve frequency. Also e ( 1,2 ) spur exista and is more trouble-some ad it is within 1 mhz of the deaired recelvo frequency. If high side injection is uaed then this apurioua ia no langer preaent.

    Finally a VHF receiver is contemplated. Several I.F Prequancles were chosen and low and high side injection tried. The resultanta ahown in Figure $\mathcal{F}, \boldsymbol{f}$ indicate the trend. An optimum I.F. is about $1 / 7$ the deaired recaive frequency when the ( $M, N$ ) spurious differ by unity. If a wideband receiver is contemplated then the image frequency and half I.F. frequency could be mare of a problem than the M,N, spurious. Higher I.F.'s allow these spurious to be moved out, while the $M, N$ spurious move in closer to the desired R.F. frequency. High side injection raises the order of the $(M+N)$ spurious and makea the filtering task easier.

    These, analysis can be re-evaluated as other sources are involved. Trade-off's will be required but the computer algorithim and approach outlined for handing theae conditions should make your job a bit easier.

    ## Concluaions

    An approach to the analysis of apurious signals present in a aystem with multiple mixers, and sources was outlined. This

    Alan Victor: Computer Algorithim for Spurioua Analyaia analysis along with a computer algorithim aid the deaigner in the proper selection of signal frequenciea in multiple conversion receivara or aimiliar devicea. The algorithim is general in nature and can be expanded to hande a multitude of sources . inera, and intermediate frequencies.

    Alan Victor: Computer Algorithim for Spurious Analysie Appendix A

    Equation (1) is expanded to consider all poasibla mixing situations and also to sccount for the sweeping of sources one, two, and three. Uaing variablea $N, M$, and $K$ a the multiple coefficents for the three sourcea and variables $X, Y$, 2 to account for the mixing type (sum mixing or difference mixing ) we have the following:
    
     of the 16 posaible sweeping casea need to be analyzed. So we have the following equationa: (A2)
    
    
    
    -
    *
    .
    and the remaining 5 terma follow the Grey-Code aequence generated by Figure (3).

    ## Reforences

    (1) Henderson, Bert, Mixer Design Considerations Improve Performance, Hicrowaye Newe Inc.. October 1981. vol 11. no 10. PP 103-118
    (2) Shores. M.N.. Chart Pinpoints Receiver Interference Problems. EDN. January 15. 1969. PP 43-46
    (3) Capraro. G.T. and Perini J.. A Graphical Approach to the Intermodulation and Spurioua Reaponae Problem, $\underline{I}=E_{i}, E_{i}$ E Electronagnetic cospatability. Febuary 1974 PP. $38-43$, vol 16 . no 1
    (4) Meixner, Raymond R.. Basic Computer Algorithim Spots Spurious Responsea, Microwaves, March 1977, PP 42-46
    

    Three source, dual I.F. (dual conversion) system
    

    Movement of $f$ I.F. which might constitute a crossover spurious is detected by monitoring the aign of $f$ I.F. and aetting and clearing flaga. Arrowa ahou poasible direction of movement for generating a epurious frequency detect.

    ## IF SPURIOUS DEVIATION

    Define the diffarence frequency $F_{I F}=F_{D}$ as:

    $$
    \begin{equation*}
    F_{D}=F_{I F}=\left|m F_{R X}-n F_{O S C}\right| \tag{1}
    \end{equation*}
    $$

    The difference between the desired receive freq $F_{R X}$ and the spurious receive frequency is $\triangle F$

    $$
    \begin{equation*}
    \triangle F=F_{R X}-F_{S P U R} \tag{2}
    \end{equation*}
    $$

    Using low side injection with $\triangle F=0$

    $$
    \begin{equation*}
    F_{D}=F_{I F}=F_{S P U R}-F_{J S C} \tag{3}
    \end{equation*}
    $$

    With $\triangle F$ not zero from (2)

    $$
    \begin{align*}
    & F_{R X}=\Delta F+F_{S P U R}  \tag{4}\\
    & F_{D}=\left|m\left(F_{S P U R}+\Delta F\right)-n F_{O S C}\right| \tag{5}
    \end{align*}
    $$

    Replacing the absolute value signs and with $m=n$

    $$
    \begin{aligned}
    & F_{D}= \pm\left[m\left(F_{S P U R}+\triangle F\right)-m F_{O S C}\right] \\
    & F_{D}= \pm\left[m\left(F_{S P U R}-F_{O S C}\right)+m \Delta F\right] \\
    & F_{I F}=F_{D}= \pm\left[m\left(F_{I F}\right)+m \Delta F\right] \\
    & F_{I F}=\left[ \pm m\left(F_{I F}\right)\right]=m \Delta F \\
    & \begin{array}{l}
    -F_{I F}(m \pm 1) / m=\triangle F \\
    L O W S I D E
    \end{array}
    \end{aligned}
    $$

    $$
    F_{\text {IF }}(m \pm 1) / m=\triangle F
    $$

    HIGH SIDE

    ## $\mathrm{H}, \mathrm{N}+1$ OR N, M + 1 SPURIOUS

    Define the difference frequency $F_{D}=F_{I F}$ (low side injection) $d s$ :

    $$
    \begin{equation*}
    F_{D}=F_{I F}=1 m F_{R X}-n F_{O S C} I \tag{1}
    \end{equation*}
    $$

    The difference between the desired receive frequency $F_{R X}$ and the spurious receive frequency $F_{S P U R}$ is $\triangle F$.

    $$
    \begin{equation*}
    \Delta F=F_{R X}-F_{S P U R} . \tag{2}
    \end{equation*}
    $$

    Now replacing $n=m+l$ in (1) and using (2)

    $$
    \begin{align*}
    & F_{D}=F_{1 F}= \pm\left[m\left(\triangle F+F_{S P U R}\right)-n F_{O S C}\right]  \tag{3a}\\
    & F_{I F}= \pm\left[m\left(F_{S P U R}+\triangle F\right)-m F_{O S C}-F_{O}\right.  \tag{3b}\\
    & = \pm\left[m F_{S P U R}+m \triangle F-m F_{O S C}-F_{O S C}\right]
    \end{align*}
    $$

    Substitute for $F_{O S C}, F_{O S C}=-F_{I F}+F_{\text {SPUR }}$
    $F_{I F}= \pm\left[m F / S P U R+m \Delta F+m F_{I F}-m F / S P U R+F_{I F}-F_{S P U R}\right]$
    $F_{I F}= \pm\left[m \Delta F+(1+m) \dot{F}_{1 F}-F_{S P U R}\right]$
    $-F_{1 F( \pm 1+m+1)+F_{\text {SPUR }}}=m / \Delta F$
    $\Delta F=F_{\text {SPUR }}-(m+1 \pm 1) F_{I F}$
    $m$
    $\triangle F=\left(F_{\text {SPUR }}-m F_{I F}\right) / m,\left(F_{\text {SPUR }}-(m+2) F_{I F}\right) / m$
    LOW SIOE
    A similar condition occurs for high side injection.
    Now ${ }^{\circ} F_{D}=\left|n F_{O S C}-m F_{R X}\right|$

    $$
    \begin{equation*}
    F_{D}=F_{I F}= \pm\left[-m\left(\Delta F+F_{S P U R}\right)+n F_{O S C}\right] \tag{10}
    \end{equation*}
    $$

    and $m=n+1$
    Solving as in (3) through (6), (10) yields

    $$
    \begin{gather*}
    \Delta F=(m-1 \pm 1) F_{I F}-F_{S P U R} / m \\
    \begin{array}{l}
    \text { ThUS, } \triangle F=m F_{I F}-F_{S P U R} / m,(m-2) F_{I F}-F_{S P U R} / m \\
    \text { HIGH SIDE }
    \end{array} \tag{11}
    \end{gather*}
    $$

    Equations (9) and (11) yield two different spurious responses associated with each odd value of $m$. Letting $\triangle f$ go to zero produces the crossover spurious since the spurious crosses over the operating frequency.
    If we let the spurious frequency or operating frequency be $x$ (times) the If frequency, then the order of the spurious for low side injection is $2 x-3$ and $2 x+1$. For high side injection, we obtain an order of $2 x-1$ and $2 x+3$. Thus, high side injection permits a higher IF frequency for a given RF opersting frequency.
    

    Figure (3)
    

    COMFUTING CAEE 1 i+,-.-

    | $\mathrm{N}+\mathrm{F}_{1}$ | $\mathrm{M}+\mathrm{F} 2$ | 1-FE |
    | :---: | :---: | :---: |
    | 9 | 0 | 3 |
    | DELTA IF1 |  | CELTA IF= |
    | $-38.0 \mathrm{kHz}$ |  | $-1000 \mathrm{ymz}$ |

    COMFUTED SFUFIOUS FIJF CASE 1 (+,-.,-)

    | $N+F_{1}$ | $\mathrm{M}+\mathrm{F} 2$ |  | k-r |
    | :---: | :---: | :---: | :---: |
    | 1 | 4 |  | 8 |
    | delta ifi |  | selta | IF= |
    | 16.4 kHz |  | -1020 | 00 kHz |

    COMFUTED SFURIOUS FDR CASE 1 \{+,-.,-)
    COMFUTED SFLLRIUUS FOF CAEE 1 (.,+-- )
    
    

    Every zero accompanied by a one indicates that the frequency term ( 1 i through $f$ ) is stepped from a minimum frequency to the maximum. If a 1 is accompanied by a zero then the The program routine includes 3 aources but any number is handled by this technique.

    Figure 4

    ## 25-88 MHz RECEIVER -

    LOW SIDE INJECTION
    
    high side injection
    

    VHF RECEIVER -
    

    - VHF RECEIVER -
    


    ## Strong signal overload of broadcast receivers - the problem defined

    By Don Jones, Mississippi Authority for Educational TeleivisonTelevision viewers living near broadcast transmitters operating in the television and FM services frequently experience interference to one or more television channels from strong signal overload. This condition may appear in the antenna preampinfiar or the receiver tuner. inis paper provides to resolve it and recommendations of technique to be applied in the futur it is intended for persons angaged in the design of receivisg systemo and particularly the rf front end portion of television receivers.

    ## Arief History of the Problem

    Ever since the first broadcast stations began operation, problems have been observed with respect to front end overload. Stations operating in the AM, FM, and television services are not the only operators affected by this difficulty. Interference has been observed due to strong signals completely out of the desired band of operation. In the 1950 s and 60 s , when two-way radio communication with taxicab and police services became popular, an increase was noted in the number of complaints received concerning interference of these services to television reception. Today we have many sources to contend with in the rf spectrum, from video games to cable television rf leakage from trunk line cables. A great number of complaints regarding television interference have been traced to users of the citizens band on 27 Mhz and the frequent use interference to television reception is greater today than in the past, and
     sometimes as an ffect of multiple interfering signals. Today we will look one portion of the rroblem and how it relates to receiver front end design.
    by Don Jones
    Mississippi Authority for
    Educational Television
    January 8, 1985

    Receiver overload from television transmitters is common in areas very near the offending transmitter site. It is important to note that the offending transmitter may be (and usually is) operating well within the spurious emisoroblem has been shown to be due to simple fundamental signal overioad of the receiver front end causing the transmitted picture and sound to appear on several, or all, channels on the television receiver nearby. The FCC recognizes this problem and has called the effect "blanketing." Broadcasters are required to relieve any cases of blanketing that occur near transmitter sites through the use of solutions appropriate to the specific case. Some of these solutions have been effective, and many have not. While it is true that reported cases of blanketing are usually eventually solved, it sometimes takes longer than desired to locate a workable remedy and apply it to the receiver affected Further, a change in receivers by the resident long near to cure the "new problem" that comes with a change in receivers.

    Blanketing most often occurs in the VHF portion of the spectrum where channels $2-13$ operate. Lower channels are affected more severely than the Uigher ones, and channels ${ }^{2-6}$ are affected more reting does sometimes occur, but it is relatively infrequent and usually easily solved by the installation of a directional antenna or simple trap on the receiver. UHF television transmitters have been observed to cause interference to other UHF services in the business radio portion of the spectrum and in a few specific cases to aircraft navigation equipment, but these are cases with some specific anamoly such as proximity to the transmitter site.

    Interference to television reception is also caused by transmitters in the FM broadcast band. The FM band runs from $88-108 \mathrm{MHz}$ and the lower portion of the allocated band is reserved for noncommercial broadcasters. Blanketing effects have been observed near stations operating on any frequency in the FM band, both commercial and noncommercial. Interference from FM stations is usually limited to one or two channels on the television receiver unless strong signal overload drives the receiver rf amp into saturation. When this occurs, interference is observed on all VHF channels on the receiver. Television channel 6 is most often affected by FM interference and is most severely affect by the noncommercial broadcaster. Interference can be classified into two types:

    1. Fundamental overload effects
    2. Adjacent channel effects

    Each type produces similar results on the screen of the receiver, and both can be relieved by a single solution applied to the receiver. The symptoms are must know and understand the difference in these kinds of interference in order to apply proper design techniques to relieve these symptoms.

    ## The Problem Defined

    One of the significant difficulties in dealing with broadcast interference problems is the lack of accurate information about the problem as it occurs in the typical residential installation. The FCC and the National Assochation of dies of interference threshold in various receivers and the effect of nearby interfering rf carriers. Most of these studies are quite dated and do not represent the performance of modern receivers in the residential environment. The study techniques which are used and the information gathered are valid and accurate, but it does not correlate with what is observed in the field, Because of this lack of useful data, the Mississippi Authority for Educational Television conducted an extensive series of field studies to determine the extent of the problem as it occurs in a viewer's home, and to gather and document the informa tion needed by rf engineers to design front end circuitry that would be relatively immune to interference from TV and FM broadcast operations. These studies were begun in late 1983 and are continuing at the present. The information
    rovided by these studies will define the observed residential receiving systen and the rf environment around it. Armed with accurate field data, designers should be able to improve front end circuitry only as necessary, and not to counter some laboratory defined threat that simly does not exist in the natural environment.

    Viewers affected by interference will usually suffer a degradation of the television picture that appears as a fine herringbone pattern on the screen. It is rare for interference to occur to the television sound unless the interference mechanism is fundamental overload. When fundamental overload occurs, garbled. Under this condition, the viewer will usually hear the offending station in the television audio. It is worthy to note that these effects occur from television transmitters also and not just FM operations. For viewers liv ing near enough the transmitter site to experience fundamental overload, the offending television picture and sound frequently appear on the screen and in the sound along with the desired channel.

    Received rf levels observed in the residential installation vary widely. The most significant factor in the level of interfering signal received by a viewer is simply his location with respect to the interfering transmitter. Levels in excess of +50 dB have been recorded in homes within one mile of the transmitter site. (Measured on a resonant dipole antenna, 30 feet high, and oriented for maximum signal strength of the offending transmitter. $0 \mathrm{~dB}=$ 1,000 microvolts in 75 ohms.) With such levels of rf present, problems occur with receiving systems picking up rf from sources not normally a factor. For example, 300 ohm downlead is commonly used in rural installations where manmade sources of noises are minimal. It is cheap and, when properiy installed, offers superior transmission characteristics over coaxial cable because it is a balanced system. Cormon mode noise or rf does not easily penetrate the line. However, it is rarely installed properly and consequenty the lance coaxial will pick up significant amounts of rf because it beconced system subject to line is only marginally better because it is an ground loop effects. Furner the conne allow a high resis. lers of coaxial line coaxial cable. This tance ground connectint rf ingress into the transmission line which cannot be reduced by proper orientation of the receiving antenna.

    Another difficulty encountered in homes is the use of consumer installed Another difficulty encountered in as antenna preamplifiers and multiple set couplers. Our experience in the field has been that most homes with interference problems have caused it themselves by improperly installing connectors, using the wrong preamp or splitter, and sometimes failing to use splitters at alll wires are just twisted together and insulated with "scotch" tape. All of these examples are typical of residential installations experi ucing interference. It may be difficult to see, for the moment, how the rif designer can account for these difficulties in front end design; but there are techniques that are effective in offsetting some of these receiving system defects, and they have been successfully applied in field studies. Although the rf designer
    cannot correct defects caused by improper antenna system installation, he can correct many of the results. The common denominator in interference cases is simply controlling the strength of the undesired interfering signal. It is unimportant how this signal gets into the receiving system; it is only necessary to control it once ingress has occurred.

    Control of fundamental signal overload effects is obtained by reducing the signal strength of the undesired signal prior to the first rf amplifier stage. The first rf amp may be in the television tuner itself or it may be the antenna preamplifier, if one is used in the installation. Notch filters, r traps as perle success rein ventional trap technology is not usually successful in relieving such overload ecause of the limited notch depth obtained with simple broadband traps or various hi-pass or lo-pass filters. A four pole notch filter, cut to the frequency to be controlled with a notch depth in excess of -70 dB and excellent insertion loss characteristics at other frequencies up through the UHF teleision band, has been successful. The difference is that these traps are not unable in the field. They are cut during manufacture so it is necessary to now the frequency of the signal to be controlled when the trap is ordered. since the traps are only about 200 kHz wide, minimal disruption of the spectrum ccurs on either side of the notch; and the viewer does not experience perceptible degradation of adjacent channel signals that are usually desired.

    One other type of fundamental overload has been observed which requires the use of more than one trap. In a receiving system where an antenna preamp is used, the preamp nearly always suffers from overload. Placing a trap ahead of the preany will prevent overload of the preaup ltself and will attenuate th trong (for example +50 dB ), the resulting residual signal through the trap e about -15 dB Most prose will give about +17 dB of gain vit the sighal sent down to the television tuner will be about +2 dB a level of +2 dB will at overloed a the not overload a normally functioning receiver and will not cause adjacent chaninside the house for distribution. Some distribution amplifiers have gains in inside the house for distribution. Some distribution amplifiers have gains in excess of +40 dB . Use of such an amplifier brings the interfering signal back
    up to +42 dB and sends it on to the receiver where overload occurs. The solution to this is simply to use an additional trap at the distribution amp input to retain control of the undesired signal. Our studies indicate that this is special case to be dealt with, because it has only been observed once in over 3,000 field tests. It is mentioned here because it is the only case observed that requires application of multiple traps in the system to correct the overload. All other cases to date have been corrected with the use of one single trap. (These traps are manufactured by PICO, Inc. and cost approximately $\$ 8.00$ each in quantities of 100 up.

    Selectivity effects caused by strong signal overload can be almost mystical in the symptoms that they cause. A selectivity effect is any undesirable interference to reception that is caused by lack of selectivity in the receiving equipment itself. Television signals occupy about 6 MHz of spectrum space. Tuners in most receivers are quite broad in response. In the early days of television, hen stations were few and far between, adjacent channel performance was not so mportant; there simply wasn't much to cause interference. The need for improve ment became apparent with the introduction of cable television systems using all 12 VHF channels. Adjacent channel performance became a necessity for those viewers connected to cable in order to adequately separate all those stations on the cable. Manufacturers did improve the selectivity somewhat, at least to the point that receivers would work adequately on cable systems. Many people thought hat such performance was all that was needed in television tuners. But what uned desigs and offer good sectivity at signal levels typical of those proided by a cable connection, about +6 dB . These tuners exhibit a characteristic t high signal strengths that has the effect of reducing selectivity. The rf ignal itself has a tendency to "swing" (for lack of a better term) the varactor signal itself has a tendency to "swing" (for lack of a better term) the varactor and broaden the response. This effect has been observed to occur well below the tion in selectivity when a strong signal is received off-the-air. We have not progressed far enough in our studies to accurately define the mechanism at work here, only far enough to report the phenomenon and call it to the attention of the rf community for further study.

    Selectivity effects manifest themselves as interference to the visual part f the television signal at relatively low signal strengths. For most receivers tested, interference appears as diagonal herringbone patterns in the picture. Interestingly enough, the sound portion of the television signal is rarely affected. We do not understand this effect well because the visual carrier is located 4.5 MHz further down in the spectrum than the aural carrier, and it would be expected that interference would oceur to the carrier closest to the undesired signal. it is the television signi is essentially aplitude modulate while the sound is requency modulad ffect of the audio $i-f$ in the receiver may aimely prevent the effects of the nearby carrier from appearing at the output of the audio chain. In any case, have not seen cases where interference occurs only to the sound. Levels of +20 dB of undesired signal are generally required to produce this kind of effect. In some cases where the desired television signal is very weak, around -20 dB , interference from selectivity effects has been observed to occur with as low as +5 dB of undesired signal. This happens because the automatic gain control circuits in most television receivers are quite nonlinear in response. For example, a given desired-to-undesired ratio of rf levels may be observed to produce interference when the desired signal is at +10 dB ; but, when the desired signal is reduced to +3 dB and the same ratio maintained, the observed effects are not the same. If the desired signal is increased in strength, a much larger ratio can be tolerated without visible interference appearing on the screen. For this reason, the use
    of desired-to-undesired ratios in establishing spectrum allocations for TV and FM services does not work. The FCC continues to predict possible interference on the basis of desired-to-undesired ratios even though the field results observed have never correlated with the predictions.

    A part of our continuing studies is to determine a better method for predicting possible interference from adjacent channels without using ratios as the sole basis of calculation. Many other effects occur in the field that are not taken into account by the comenission in their predictions, including the effects of local man-made noise, utility line noise, and the effects of co-chan
    interference from another distant television station. One of the surprises in our findings was that these other effects quite often mask any selectivity effects that may otherwise be observed. In other words, the desired signal already has enough degradation from other sources that selectivity effects cannot be seen on the screen of the receiver. It is worth remembering that the real test of interference is whether or not the viewer can perceive any degradation in the desired signal as it appears on the screen and comes out of the speaker of his television receiver. One can certainly observe undesired products after the first mixer using a spectrum analyzer, but most viewers don't watch spectrum analyzers. In that sense, the performance desired in the tuner is simply that level which provides an interference-free picture and sound on the television receiver. This is the practical and proper measure of recelver performance in its intended use environment and not as may be measured in the sterile rf spectrum of a laboratory test.

    ## Solutions to the Problem

    Past efforts at solving the TV-FM overload problem have largely been successful due to the persistence of those attempting to eliminate it. Broadband traps are almost universally applied as the remedy and, unfortunately, frequently are not reliable as installed. For most devices, such parameters as lead dress, tuning, proximity to metal objects, and temperature all affect the trap adversely and require some attention on the part of the viewer. Because these difficultie traps in calculating and predicting potential interference when spectrum is allocated. A secondary problem when using traps to relleve overload is that someone has to install them on the affected equipment. Historically, this has fallen at the feet of the of fending transmitter operator: and it has usually been the station technical staff that has actually done the field work of installing and adjusting traps. Once installed, maintenance of the trap becomes the responsibility of the viewer.

    Current successful approaches to control of overload and interference also make use of trap technology, but in a different manner. The trap devices in use are state-of-the-art, first manufactured about 1983 for interference control purposes. These devices are temperature compensated, enclosed in metal cases, fix tuned, inexpensive, and offer low insertion toss. They were originally devel-
    pay channels from receiving them. Since the technology to produce such devices In quantity was already in place, we made arrangements with the manufacturer to produce some of these cut to specific frequencies in the FM band to be used for interference control. The results have been consistent. Modern traps provide a level of interference control virtualiy not obtainable by any ather dollars. Hore the long-term solution to the problem at hand. dollars. However, traps are not the long-term solution to the selectivity dilema, but more work is needed by front end designers to produce tuners that are not susceptible to selectivity effects. Tuners with adequate performance are the essential long-term solution to this part of the problem. Strong signal overload, on the other hand, will continue to be with us for quite some time until someone makes an rf amp with a +60 dB intercept point at a price cheap enough to be used in consumer receivers. Since this isn't very likely to happen in the near future, the use of traps to control fundamental overload will continue to be the only effective means of dealing with very strong signals.

    ## Recommendations for RF Designers

    Rf designers working on receiver front ends will find that the following techniques are helpful for improving the ability of a tuner to reject undesired signals:

    1. Make the third order intercept point as high as practical. A third order point of +25 dB will achieve substantial improvement especially where the interfering signal is at VHF.
    2. Use a split band design for the rf amplifier. Television channels 2-6 are located in the spectrum from 54 to 88 MHz . Channels $7-13$ are located between 174 and 216 MHz . Most television tuners use a broadband rf stage that covers the entire band from $54-216 \mathrm{MHz}$. Some of the newer cable ready receivers go up to 300 MHz . Since most interference and overload problems are from transmitters in the FM broadcast band, a split band design inherently leaves this portion of the spectrum out and gains substantiai improvement over the broadband type. Observations of broadband versus split band designs in preamplifiers have shown at least an 18 dB improvement in ability to reject undesired strong signals when the split band design is used. In split band designs, the critical parameter is good selectivity at the low end of the FM band where noncommerclal stations operate. Since the television channel 6 sound carrier is located at 87.75 MHz and the noncomercial broadcaster may operate on 88.1 MHz , the slope of the response curve in the split band design is critical at the lower end of the FM band. Field tests to date have established that as much as -10 dB of attenuation is well tolerated by receivers of the channel 6 sound carrier without any perceptible degradation to the television audio. In fact, stuales reveal that as mus as $10 \mathrm{~d}^{-} 11 \mathrm{mit}$ is recommended to protect future use of the aural carrier by muiti-channel (stereo) sound television broadcasters.
    3. Provide adequate i-f filtering behind the mixer. Most receivers today are using a saw device at the input of the i-f string to establish the response of the receiveri-f. This works very well and, in particular, cleans up mo it of the genuine selectivity effects that are not due
    simple overload. The $1-\mathrm{f}$ saw device will not help in cases of fundamental overload; but, since these only occur to residents living very near the transmitter site, a relatively small number of viewers are affected.
    4. Provide coaxial inputs on the receiver. Even though traps are available in 75 ohm versions and are easily installed in 300 ohm systems using transformers, the 75 ohm system is the preferred method because it encourages the use of coaxial cable rather than twin lead with its
    attendant problems. The use of coaxial cable inputs has become almos attendant problems. The use of coaxial cable inputs has become almos mandatory because of widespread penetration of cable into American households. Designers can expediate the conversion to coaxial systems by including coaxial inputs on the receiver.
    5. Provide overload and selectivity specifications as a part of factory servicing information. Our studies have revealed that many television service technicians are not familiar with overload and selectivity service technicians are not familiar with overload and selectivity effects and do not know how to obtain information on dealing with them. of the receiver and a typical selectivity curve which will assist the technician in determining whether he has a genuine receiver defect (malfunction) or simply has a case of overload beyond the capability of the receiver. Similar specs would be extremely helpful from manufacturers of antenna preamplifiers and would assist the antenna installer in choosing a unit with sufficient dynamic range to tolerate the signal levels present at the site of installation.
    6. Manufacturers should include in the operating manual for their product a short description of overload effects and how they appear on the screen of the receiver. This will help the user of the receiver to determine whether he has a case of interference or not. Frequently, a complaint will be registered about interference that will turn out to be a receiver malfunction. When the unit is repaired, the interthe user is simply one additional step that can be taken to help educa the public about the interference phenomenon and how it can be resolved.
    7. Share what you learn with other rf designers that you know. The interference problem is likely to continue to worsen, because we continue to place more and more interfering signals in the spectrum. Earlier I mentioned video games. These have been a major problem because many people connect them directly to the receiver in parallel with the antenna lead; and, when the game is powered up, the receiving antenna now becomes a transsitting antenna. We have on file cases
    where one such arrangement caused interference for nearly a quarter mile in all directions. As devices such as this proliferate, we must provide front end designs that will reject out-of-band signals and handle strong signals nearby without causing perceptible degradation of the viewer's desired channel. The recommendations in this paper, if followed, will do much to provide the television industry with long-term solutions to a chronic problem.

    ## RF OPERATION OF 450 VOLT VERTICAL POERE MOS

    Robert W. Vreeland
    Senior Development Engineer
    Resesrchend Development Lsborstory
    San Francisco, Csilifornia 94143

    Modern solid state transceivers are idesl for bstery powered spplications. However, the extremely heavy power supplies required appitcations them unsuitsble for lightweight portable Ac powered use.

    We have taken s lesson from the AC-DC vacuum tube radios of the World War II era and have utilized high voltsge mos fers in a two
    pound RFamplifier for the $3.5,7.0$ and 14.0 MHz amateur bands. The transformerless power upply weighs an additional pound and runs on either 220 volts or 117 volts AC. The amplifier is driven by one pound dry battery powered heterodyne VFo. By using tuned push-pull operation we have reduced all harmonics sufficiently so that no low pass output filters are needed. We have used this transmitter to wor attache case or in a camera gadget bag.

    Traditionslly, AC-DC receivers have utilized a half wave rectifier in a transformerless unregulated power supply. The supply voltage is uaually in the 150 to 170 volt range. By utilizing a s possible to develop sufficient voltage to run a simple linear voltage regulator with an output of 200 volts.
     pair of 450 volt MOS FETs. The allowable drain to source volta Some of the older vertical power MOS FETs have a rise time as mateur band. Unfortunately, the present designtrend is towar (pher power lower frequency MOS FETs

    There are obvious safety problemi resulting from transformerles deaign. The amplifier must have RF link coupling in and out. All circuits must be insulatedifrom the metal panel and the pane must be grounded. Since the amplifier cannot be safely keyed, we must key power supply would add unnecesagry weight.
     grounded aluminumpanel. The box has a plastic cover which cloasa to 5-1/2 inch platic boxes contain the power supplyand the VFo which weigh pound each. The VFO is powered by a pair of nine volc MN1604 alkaline batteries. This three package configuration makes the
    transmitter easy to carry in variety of containers.

    The transmitter is designed to operate in the 7 and 14 MHz amateur bands using fourteen foot long inductively loaded dipoles
    ourteen foot length of RG-8/U cosxisi cable
    The foregoing looks like afsirly atraightforward deaign problem. et us now look st the resl world of power MOS FETs. They are arvelous devices when prtunstely their true identity has been shroud in a certain amount of mythology.

    ## Myt Muber One:

    "Due to the absence of econd breakdown and theral runavay, mos Pats are virtally indestructable. This may be true if one low in microseconds if the pesk current rating or the gate to source series regulscor shown in Fig. This is s good regulstor wich one percent regulation from no load to a full losd of seversilhundred dilliamperes. However, the pass transistor will blow, when the switch is moved from ${ }^{2}$ to S . The charging current of a bypasa capacitor simall as 0.02 microfarads exceeds the MOS FETs peak current rating Since the source is momentarily grounded through the capacitor, the punctured gate. Obviously some form of very high epeed current limiting is required. This is most essily done by the use of series
    limiting resistors as shown in Fig. 2. Excessive limiting will of course defeat the regulation for which the power supply was designed current portion which does not require much regulation does not current portion which does not require much regulation does not remember of course that the total peak charging current for all of the bypass capacitors must not exceed the MOS FETs peak rating. The everse diode (DO) is built into the MOS FET and need not concern us for normal drain to source voltage excuraions.
    

    Fig. 1. A bypass capacitor as smallas 0.02 Mfd will blow the pass transistor

    Fig. 2. By dividing the load, it is possible to stay within the peak current degradation of regulation.

    ## Myth Mumber Two

    "Due to their imenlated gate conatruction, mos fers require virtually no driving power. While this is true for dC operation, it cprtainly does not applytorfsoplifiers. Let us lookst figo ${ }^{3}$. source to drain through this channel ia controlled byanelectric field set up by the gate capscitor plate. As the driving generator frequency is increased, the capacitive reactance of the gate itructure goes down resulting in an increase in driving current into the losay at 14 MHz than on the lower frequency bands. The drive requirements are moderate, however, when compared to bipolar transistor amplifier.
    

    Fig. 3. The drive requirements for for MOS FETs increase with
    frequency. frequency.
    

    Fig. 4. Semiconductor manuls usually show normal ized transfer curve (Curve A).

    Myth Mumber Three:
    MDue to their aelf compeasatimg thermal characteristics, mos
    

    This is true only when the MOS FETs are selected in watched pairs. Actusllythegate threshold voltage may varyfrom one and a wanufacturers print normalized rather than actual transfer characteristics curves. In Fig. 4, curve A is the normalized transfer curve. The actual curve may fall anywhere in the shaded region
     at plus four volta, the curve B MOS FET Will cerrya current of about one and a third smperes whereas the curve c mos FET will not even turn on. Actually the manufacturer is probably over conservative in
     two to three volt region.
    -
    

    | 16.338 | 3.89 | 2.981 |
    | :---: | :---: | :---: |
    | 14.678 | 3.815 | 2.964 |
    | 14.219 | 3.804 | 2.898 |
    | + | 3.243 | 2.801 |
    | , | 3.199 | 2.748 |
    |  | 3.129 | 2.699 |
    | ! | 3.019 | 2.671 |
    | ! |  | 2.466 |
    | ! |  | 2.378 |
    | ! |  | 2.606 |
    | ! |  | 2.403 |
    | I |  |  |
    | I |  | 2.316 |
    | , |  | 2.069 |

    

    Fig. 5. The circuit used to messure gate to source threshold voltage.

    In our power supply we use a parallel pair of mos feta as pass trasig. 5. The gate to source voltage (vas) is gradually increased until the drain to source voltage (VDS) drops from 150 volts to 100 olta. The VGS meter is then read. This is then the gate threshold voltage; VGS(th).

    He did not select matched MOS FETb for our RF amplifier because individual bias voltage controls were provided. The amplifier wss designed so that 10,000 ohm load resistors could be plugged into the determine the gste threshold voltages of the transistor pair using the previously described technique.

    Drain to source voltage, drain current, rise time and input apacitance are perhaps the most important factors to be considered whenselecting mos mers for RF use the drain enough to sllow the drain to ing up to double the power supply voltsge with fifty volts or so to pare. The drain current rating should be sufficient for the desired power level. Also, dont overlook the peak drain current rating as exceeding thia alue will instantly destroy the MOS FET. The manufactureraprovi afe operating area curves whic

    Rise time is perhaps the wost critical factor sificting high requency operation. jt must be less than ten nanosecisnde for ourteen MHz operation.

    Input cspacitance is also extremely important. It can range nywherefromabout 200 to 300 picofarads for a good RF MOS FET such siywhe the iviromogint to more than tentianes that value for the low frequency awitching mos FETa. How to drive an input capacitance even si low as a couple of
    hundred picofarads canbe a resi problem if two or more MOS FETs are
    connected in parallel. In parallel operation, the input capacitances of course add as shown in Fig. 6A. If, however, we use a tuned series acrosa the tuning capacitor. This effectively cuts the input capacitance inhalf. Furthermore, the series combination becomes a part of the input tuning capacitor thereby serving a useful purpose Push-pull operation effectively reduces the input capacitance by a

    The gate to drain feedback capacilance (Cgd) is important becaus it introduces positive feedback which can lead to oscillation and transistor destruction. In a tuned push-pull circuit conventional tubes. Neutralization must be done with the full operating supply voltage applied becauae the gate to drain capacitance is afunction o drain to source voltage. Neutralization is done with an oscilloscope connected across a dummy load on the amplifier output. The gate to source voltages are reduced to that no drain current flows. A smal amountof rfexcitation is then applied and the neutralizing adjustment is unly approximate and must be touched up for stable operation at Eull output.
    

    Fig. 6. Tulled push-pull operation (ulle push-pull operatio
    the infectively rełuces
    int capacitance by afactor of fou over
    parallel operation $(A)$.
    

    Fig. 7. The power supply (left) and the vFo (right) The turas counting dial is connected via a bellows to the slug which tunes the VFO. A frequency counter plugs in "phone" jack is for the sideione output.

    Our power supply is packaged in a small covered plastic box (fig hunted for one amperefull fing and the miniature meter which is transmitter safety ground sre on the four pin connector. Separat grounded three wire power corda are used for 117 volt and 220 to 240 connetor makes the necesary chercuit changes

    Diodes Dimplified circuit of the power supply appears in Figif ${ }^{8}$. operation. For 220 volt operation, the pouer cord completes the bridge circuit via jumper Jl. The triangular gyabols represent a floating common (not ground). The safety ground is not shown. A pair of interail IVN6000KNT MOS FETe serve as pass transistors and the
    zener is an zener is all lis388. The regul

    Selecting diodes that would handle the inrush current into the 60 microfarad capacitors (C1 and C2) turned out to be a bit of a roblem. We finally chose RCA SKjos. It was necesaary to limit the Ac inrush current with series five ohm five watt resistor in
    order to prevent the on-off switch from burning out. changing the power cord selects a l-1/2 awperefuse (Fi) for 117 voltsorsa $3 / 4$ ampere fuse (f2) for 220 volt operation. Output current limiting is provided in the transmitter package.
    

    Fig. 8. A simplified circuit
    of the power upply. Regulation is one percent from no load
    to falliload of 500 milliamperes.

    For stability, we chose heterodyne vFo (fig. 7 right). It is powered by two nine valt alkaline transistor radio batteries (Fig. 9). crystal oaciliator to produce an output in mixed with one froma The mixer is followed by a tuned output amplifier. Also included is an audio aide tone oscillator.

    The ground returns for all VFo circuits except the variable oscillator are keyed. An R-c circuit was inserted in the positive aine volt lead to slow the rise of the keyed signal in order to reduce chirp probiems. Since none of the harmonics from this oscillator fall ery the bands used it is left on while receiving. It is, however very important to keep the harmonics low while transmitting as the
    

    Fig. 10. A simplified circuit of the neutralized push-pull transmitter. For safety
    it is link coupled in and out. The triangular symbols represent a motn floating common (not ground). Note (R2 and R3).
    

    Fig. 11. The two pound transmitter set up for 3.5
    mizoperation. Double banana plugs are used to select the tank thumbwher tuning controls and the rocker type sendreceive awitch. The power MOS FETs are mounted in aluminum cover.

    A simplificd circuit of the final amplifier is shown in Fig. 10. Since the power supply is transformerless, toroidal isolation transformers Ti and T3 are used for the amplifier input and the
    output. The triangular symols represent hot fioating common (not output, ground.

    The driver transistor (Q1) is an RCA SR3044. It is coupled via T2 to a push-pull pair of IVN6000KNT B (Q2 and Q3). Both the primary and the secondary of T2 are tuned. A separate transformer (T2) is used for each amateur band. The transformers are wound on toroidal cores and are selected by band suitich (not shown).

    The positive biss on Qlis increased slighty for fourteen wegahertz operation in order to compensate for the increased drive requirements on that band.

    The input of the push-pull pair ( $Q^{2}$ and $Q 3$ ) is tuned by a $365 p f$ plastic dialectric variable capacitor (c3). It is shunted by a fixed
    tunes the amplifier tank tranaformer (T3). Both C3 and C4 are thumbeher tuned. In Fig. li the thumbwheis are labeled "grid" an "plate".

    By tuning both the input and the output of the final amplifier we have reduced sill spurious signals to more thsn 40 dB below the carrier level. The effect of tuned push-pull operation on even harmonics can be seen in Fig. 12. The gecond harmonic is 56dB down the tank circuit $Q$ is slightly better. There, the second harmonic is $58 d B$ down and the third harmonic is $49^{\circ} d B$ down.

    Separate toroidsi output transformers (T3) are used for fourteen and seyen MHz operstion. They are selected by jumpers J2 and J3. The jumpers are on double bananaplugs. for simplicity only one pair of
    jumpers and one output transformer are shownin fig. 10 . on 3.5 MHz olystyrene fixed capacitor (C5) is plugged into another pair of anana jacks to bring the 7 MHz output transformer down to that requency.

    The jack at the center tap of the primary of $T 3$ is of special nterest. It is used to substitute a pair of 10,000 ohm, ten watt ixed resistors for T3. A dual trsce oscilloscope is connected to monitor the $D C$ levels on these resistors. The individual bias controls (R2 and R3) can then be used to find the gate threshold evels for $\mathrm{Q}^{2}$ and Q3. having determined these evers one can order to set the desired class c operating point. For safety, an insolation transformer should be used for the above adjustments.

    A pair of 15 pf air variable neutralizing cspacitors ( CN ) is used. The neutralizing procedure has already been covered.

    Additional stabilization is provided by swamping resistor (R4). A separate resistor is used for each amateur band.

    The negative feedback source resistors ( $R 5$ and R6) are each 3.3 hms, one watt

    As previousiy mentioned, the 0.02 microfarad bypass capacitor (6) is sufficient to blow a pass transistor in the power supply. This is prevented by the 100 ohm twenty-two watt resistor (Ri). The resistor is a pair of eleven watt units mounted on a double b
    plug. This arrangement permits free fiow of air to cool the plug. This arrangement permits free fow of alr to cool the afety. The one-half amperefuse protects the power supply in the event of failure of Q2 or Q3. It should be noted that the driver tage (Q1) derives ats power via a separate series resistor so that ts power current through Ri.

    The transmitter puta out about twenty to thirty watts as shown in Table II. The final, amplifier efficiency is typically about hirty-five percent. While this wight not be acceptable for high. power equipment it is not a problem for our transmitter which tequires with since the transmitter is not mismatch protected, ínion dummy ioad and antenna impedsnce bridge. This also
    prevents unnecesary radiation while tuning (l).
    We are indsbted to Frank fittiman of Intersil for bis assistance in gettins us started.
    

    Fig. 12. The spectrum of the 7 MHz aignal. Tuned push-pull operation haa reduced the second harmonic to level below the third harmonic. The vertical scale is lodb per divisionand the
    horizontal is 5My per division. Note the second harmonic of horizontal is 5 MHz per division. Note the second harmoni the var
    10 MHz .
    

    EEfEEEGCES
    (1) Volpe, J. Confidential; For Antenna Tuner Users only;

    ## LOW NOISE UHF TRANSMITTER DESIGN

    by<br>Dennis A. Sweeney / Judd O. Sheets<br>E-Systems ECI Division<br>P.O. Box 12248<br>St. Petersburg, Florida 33733

    ## ABSTRACT

    The increasing reliance on frequency agile transmitters and receivers as a means to defeat jamming has created new interference problems for platforms with multiple RT units. The problems can be solved by a variety of means but the most optimum way is by improved transmitter and receiver design. This paper RF output while mainaining a noise floor of less than 140 dBmHz and spurious levels greater the 120 dB below the carrier.

    ## PROBLEM

    The threat of jamming to military communications is real and has led to the development of many different anti-jamming (AN) systems. Many of these systems (such as HAVE QUICK, SINCGARS, JAGUAR (V), and others) employ frequency hopping as the technique to defeat the jamming threat. Frequency hopping is a very effective means of Ad, but does create problems that didn't previously exist, or were easily solvable with the old single channel radios when installed in facilities or platforms that have a need for multiple communication sets.

    The problem can best be illustrated by a simple example. For the installation shown in Figure 1A, a pair of R/T units are colocated, operating on separate antennas. The numbers shown are typical of present day UHF RT units. There are two primary forms of interference that must be eliminated - broadband noise and
    
    A. With Existing Equipment
    
    C. With Low Noise Transmitter

    Figure 1. Colocated Communications
    spurious outputs from the transmitter that are coupled into the receiver front end spurious outputs from the transmit out desired signals. There are other forms of interference that also exist such as transmiter receiver desensitization, but these won't be addressed here since they are basically associated with receiver performance.

    The numbers presented in Figure 1A show that the transmitter's broadband noise, as seen at the receiver's input, is $-135 \mathrm{dBm} / \mathrm{Hz}$, which is 29 dB higher than the receiver's noise floor. Since the broadband noise is present across the entire receiver's noise floor. Since the broadeand evise frequency to which the receiver is tuned. In addition to the broadband noise, there are spurious outputs from the transmitter that also interfere with the receiver. As shown in Figure 1A, the transmitter's spurious level at the receiver is $\mathbf{7 0} \mathrm{dBm}$ compared to a receiver sensitivity of -105 dBm . Thus, at every point at which a transmitter spurious occurs, that receiver channel will experience interference.

    ## SOLUTIONS

    The problem of interference between colocated transmitters and receivers has been shown to be real. The two best solutions to the interference problem are to filter the output of the transmitter or to improve the performance of the transmitter itself. Each of these solutions will be discussed and some of the advantages of each will be pointed out.

    The first approach to be considered is to filter the output of the transmitter to reduce the level of broadband noise and spurious. As can be seen from the signal how of Figure 1B, the transmitter broadband noise level, as seen by the receiver at its tuned frequency, is reduced to $-169 \mathrm{dBm} / \mathrm{Hz}$, which is below the receiver noise reduced to -104 dBm , which is equivalent to the minimum sensitivity of the receiver. This performance is acceptable and is achieved through the use of a low loss, high Q fixed tuned filter following the transmitter to reduce the level of broadband noise and spurious output.

    When existing single channel R/Ts are replaced by frequency hopping RTTs, the problem becomes more difficult. One approach is to maintain the same performance on the RT and to try to clean up its output with a frequency agile filter. However, to achieve the same characteristics as the fixed tuned filter requires a fairly large complicated frequency agile filter. Because the filter sections in a tunable filter are more lossy, they must be intermixed with amplifier sections to maintain the necessary low insertion loss. The result is a fiter that meets the requirement inct large and power consumptive. For some applications, this is a good approach since it
    works on both the transmit and receive signal paths and improves performance for works on both the trans

    However, when space, weight, and power are at a premium, the best solution is to improve the performance of the transmitter to the point where a separate filter is no longer required. As can be seen in Figure 1C, if the transmitter's broadband noise can be reduced to $140 \mathrm{dBm} / \mathrm{Hz}$, then the noise seen by the receiver is $-170 \mathrm{dBm} / \mathrm{Hz}$, spurious output of the transmitter is kept to -120 dBc , then the receiver will only see -110 dBm of spurious signal, which is also below the receiver's sensitivity.

    The remainder of this paper will describe the approach taken to achieve the above mentioned performance.

    ## APPROACH

    The transmitter developed derives its performance from a low noise synthesizer voltage controlled oscillator (VCO), a frequency agile bandpass filter, and a low noise gure power amplifier (PA) stage. Each of the stages must have characteristics output.

    Originally, it was proposed to use a recently developed high output power VCO driving a low noise power amplifier. The oscillator itself exhibited an SNR in excess of $185 \mathrm{dBc} / \mathrm{Hz}$, slightly better than the required performance of $180 \mathrm{dBc} / \mathrm{Hz}$ (all SNRs taken 7 MHz from center frequency). While this approach seemed feasible from a block diagram standpoint, the possibility of spurious signals from the phase locked loop (PLL) divider modulation and switching power supply ripple, led to the introduction of a bandpass filter module between the synthesizer and power amplifier.

    The low noise transmitter consists of four functional blocks, divided into five separate modules - power supply, control interface/synthesizer PLL, bandpass ilter, and power amplifier (PA). Each of the modules is contained in an individual plete transmitter. A simple block diagrarn and physical outline is shown in Figure 2.

    The electrical specifications imposed on each of these modules was chosen by beginning at the signal source, the VCO, and determining its output SNR, then the rejection necessary in the bandpass filter, and finally the required gain and noise figure of the PA.
    

    Figure 2. Low Noise Transmitter Block Diagram

    The VCO chosen for the transmitter was selected for its low noise and frequency hop characteristics. This VCO has an output signal-to-noise of $165 \mathrm{dBc} / \mathrm{Hz}$, while the required transmitter output signal-to-noise is $180 \mathrm{dBc} / \mathrm{Hz}$. Therefore a minimum of 15 dB filter rejection is required to reach the output noise requirement. A prototype of the filter provided in excess of 25 dB of rejection at a 7 MHz offset with an insertion loss of less than 4 dB . The performance of this filter is used in the overall analysis.

    The VCO output level is 0 dBm , requiring 40 dB of amplification to reach the necessary output power of 10 watts. Gain must be included as well to overcome bandpass filter loss, PA power control insertion loss, and output harmonic filter loss. Several stages are required to achieve this gain and an appropriate point must be
    found to insert the bandpass filter. The location selected must be at a level low enough to allow reasonable filter PIN bias voltages yet high enough so that the filter output noise level will be above thermal noise and its rejection not "wasted".

    A signal flow diagram showing the noise and signal levels, block interconnection, and block performance is presented in Figure 3. It can be best understood by following the signal level backward through the chain, dropping down in signal level by the SNR of the VCO and following the noise level forward. As shown on the output end of the diagram, the resultant SNR is in excess of the 180 $\mathrm{dBc} / \mathrm{Hz}$ requirement which, at 10 watts output level ( +40 dBm ), provides a noise floor of less than $-140 \mathrm{dBm} / \mathrm{Hz}$.
    

    Figure 3. Signal and Noise Level Analysis

    ## MODURE DESCRIPTTONS

    ## Power Supply

    The power supply is contained in the interface connector end of the trans mitter. It converts the 28 Vdc primary power to $+28,+12,+8$, and -12 for general use in the transmitter and +300 and -2 for PLN diode bias in the bandpass filter module. The two sections of the power supply each employ a flyback converter operating at over 200 kHz to ease filtering and reduce component size. Each of the outputs is always within $5 \%$ of nominal voltage and noise plus spurious levels are at least $-60 \mathrm{dBV}(+300$ and -2 Vdc outputs $-45 \mathrm{dBV})$. Of particular concern is the +28 Vde output noise as any ripple on this line can directly modulate the PA collector and increase the transmitters broadband noise. To meet transmitter output noise and spurious requirements, this output was constrained to a maximum of .90 dBV ripple.

    ## Synthesizer

    The Control Interface and PLL modules make up the synthesizer. The control interface module receives the balanced pair control lines. performs serial to parallel conversion of the frequency data, and converts the modulating data stream to a filtered analog voltage. The analog data stream is used to FM the PLL reference to provide FSK modulation of its output. The PLL uses a 100 kHz reference and achieves a 25 kHz channel spacing by SSB modulating the programmable divider input. Critical to noise pelformance, the maximize resout sields an osillator of cood noise gain device yields an oscillator of good naise performance and of 1.25 watts while maintaining the oscillator $165 \mathrm{dBc} / \mathrm{Hz}$ SNR.

    ## Hopping Filter

    A frequency agile bandpass filter is used to improve the output SNR of the PLL and remove any incidental spurious output. The filter selected to satisfy the design requirements is a two pole combline structure tuned via PIN diode switched capacitors. A maximum insertion loss of 4 dB and a minimum selectivity of $\pm 7 \mathrm{MHz}$ of -25 dB were the primary requirements and in large part determined the minimum size of the module. The filter module's cavity volume was designed to yield an unloaded cavity $Q$ of approzimately 1500 which, in conjunction with a tuning network $Q$ of greater than 500, provides ample design margin on the insertion loss and selectivity requirements. The loaded $Q$ of the filter was designed to be 108 at the high end of the band and varies from this value by less than $10 \%$ over the entire band. The general trend is that of decreasing $Q$ with decreasing frequency. A 7-bit, binary weighted electronic tuning network provides a tuning increment of 25 kH between adjacent taning codes. A 3 bend approximately 2.5 MHz , ensures that the fler is of its nose band in the module.

    ## Power Amplifier

    Gain is necessary after the hopping filter to boost the filtered output to the required output power. However, the gain, even at this high signal level, must exhibit a good noise figure to maintain the SNR of the drive signal. Filter output level must also be chosen high enough so that a reasonable PA noise figure does not result in signal-to-noise degradation at this point. At the 10 wath power level, gain of approximately 15 d coupled with a a the or this noise level from drain and bias supply noise contamination.

    Transmitter spurious output level is also dependent on this module. A 120 dBc output requirement and estimated - 25 dBc PA harmonic levels necessitate a output low pass filter with 100 dB of second harmonic rejection to allow 5 dB of margin. Alreased passband loss large size cond cost.

    The PA module also contains circuitry to level power output over a range of drive levels and a system for controlling power output rise and fall times.

    TEST RESULTS

    ## Broadband Noise

    To confirm the predicted performance of the transmitter chain, prototypes of the modules were used to assemble a nonhopping transmitter. A transmission line VCO, 31 dB gain buffer, hopping bandpass filter, and PA were cascaded and the resultant intermediate and output SNRs measured. An E-Systems manufactured cavity bandpass nilter was ased in these measurements to reject the carrier power and prevent spectrum analyzer front end overload and extend dynamic range. A bandpass filter approach is preferred in some cases over notching the carrier out with a band-reject filter to prevent analyzer overload from harmonic energy.

    At the input to the hopping bandpass filter, signal level was +31 dBm and noise 7 MHz away was $-135 \mathrm{dBm} / \mathrm{Hz}$, an SNR of $166 \mathrm{dBc} / \mathrm{Hz}$. Output signal level (including 2 dB additional loss from a circulator to prevent filter interaction) was +26 dBm and output noise -163 dBm , an SNR of $189 \mathrm{dBc} / \mathrm{Hz}$. The difference between the two SNRs ( 23 dB ) is the improvement due to the hopping filter. This noise measurement limit.

    The 15 dB gain PA, minus low-pass filter losses and automatic level control circuitry losses, yields a PA net gain of 13 dB . Power out of the PA module was $+41 \mathrm{dBm}, 1 \mathrm{~dB}$ over predicted because of less than expected nilter loss. Noise at this point measured $-146 \mathrm{dBm} / \mathrm{Hz}$, giving an SNR of $187 \mathrm{dBc} / \mathrm{Hz}$, well within requirements.

    ## Spurious

    To ensure that no spurious output levels would exceed -120 dBc , measurements were taken of harmonic levels of order 1-30. These were taken with a fundamental frequency at the lower band edge to simulate worst case low pass filter rejection. By the 10 th harmonic ( 2.25 GHz ), levels were down to -78 dBc and by the 20 th ( 4.5 GHz ) harmonic levels were below -100 dBc . The filter selected maintains 100 dB of attenuation to 1 GHz , but is allowed to have decreased rejection above this frequency to minimize size and passband insertion loss. Above 7 GHz no filter rejection is necessary as comparatively low PA switching speed prevents generation of significant energy and the PA output network reduces this level even further. The combination of the PA harmonic rolloff and output filter rejection guarantee an output spurious level of less than - 120 dBc at all frequencies as shown in Figure 4.

    ## SUMMARY

    The introduction of frequency hopping receivers and transmitters into platforms with multiple communications links has compounded an already severe mutual interference problem. Adding a frequency hopping filter on the output of the transmitter can solve the problem, but its sixe, weight, and power consumption prohibit it from being used in many applications. The use of a low noise transmitter can also solve the primary interference problem of broadband and spurious outputs. This paper has described the design of a low noise transmitter and has presented test results verifying its performance. A prototype of this transmitter is being built and a production version will be available in the near future.
    

    Figure 4. Spurious Output Levels

    ABSTRACT
    Thia paper deacribes a 2 uhz ampilfier which is uaedin a solar powered repeater. The amplifier also haa feature for the tranamiasion of alarm telemetry through the use of low level ah. the alara telemetry allowa the uaer to monitor the repeater' atatua and also varioua ate parameters. The piN diode circuit which functiona an amplitude modulator aleo performs temperature compenaetion of the amplifiers gain.

    ## INTRODUCTION

    The amp:ifier to be described was dealgned to be used in a 2 GHz aolar powered repeater. Solar powered repeaters are used in remote locations auch as mountain tops. deaerta snd slao in comercial power is not available. A golar powered repeater therefore. offera conaiderable advantage over a conventional terminal. which would require the inatallation of generators and terminal. which would require the inatallation of generatora and
    frequent maintenance tripa. The solar powered repeater also offers a algnificant advantage over a pasalve reflector in that offera a algnificant advantage over a pasaive reflector in that
    the repeater la $1 / 10$ the cost of a pasaive instaliation. A repeater, es diatinct from sadio terminal. uses no up convertera, down convertera, oacillstora or modulatora. The principal components are banapssa illtere. isolstors. circulatora, and amplifiers. The amplifieria, in fact, the only active component in the repester. Because of this. the repeater ia capable of withatanding large temperature variationa thuseliminating the need for ahelters and in some casea, active temperature control. 1.e.. heating or alr conditioning. Thus, the repeater is then atraight-through device which amplifies the RF aignal and then retranamita it. No proviaion ia allowed for acceasing the information which la being tranamitted.

    The amplifier are linear and the repeater is, therefore, capable of retranamitting any modulation format. A unique eaturetion the repeater ia a patented technique ueing a angle amplifier to simultaneouely amplify east and weat path signala. A block diagram of the repeater ab ahown in figure 1 .

    Based on ayatem requirementa, the amplifier has to meet the following requirementa:

    | Frequency Band | 1.7-2.3 GHz |
    | :---: | :---: |
    | Noise Figure | 4 dB |
    | Power Output (ldB compresaion) | $+23.5 \mathrm{dBm}$ |
    | Gain | 62 dB mın. |
    | Gain Flatnesa | $\pm 1.5 \mathrm{~dB}$ max. |
    | VSWR input/output | 2.1:1 max. |
    | AM/PM conversion | 40 dB max. |
    | Group Delay | lna max. |
    | Battery Voltage | $10 \mathrm{Vdc}-18 \mathrm{Vdc}$ |
    | Current Consumption | 300 mA ¢ 12.6 Vdc |
    | Temperature Range | -400 C to +600 C |
    | Alarm Telemetry | Low level M |

    ## THE OVERALL AMPLIFIER

    The amplifier ia a 7-atage bipolar tranaistor amplifier operating in the 1.7 to 2.3 GHz frequency band to provide a gain atagea are low nolse transiators which provide 40 dB of gain The fifth and aixth atagea are medium power transiators which provide 20 dB of gain. The aeventh poge conalata of a linear provide 20 dB of gain. The aeventh atage conalsta of a linear
    high power tranaiator to provide 8 dB of gain. The bia circuit is a voltage feedback and constant base current aource design to provide DC stability. The amplifier drawa nominally 300 ma of current and has a maximum noise figure of 4 dB .

    The modulator is placed between the third and fourth atages to provide a wideband ettenuation of 6 dB at room temperature giving the overall amplifier a nominal gain of 62 dB at roon cemperature. To compensate for the transistors. the modulator provides 4 dB of attenuation at $60^{\circ} \mathrm{C}$ and 8 dB attenuation at $-40^{\circ} \mathrm{C}$ which resulta in a constant output level over the emperature range.

    ## TELEMETRY

    Giving the amplifier a telemetry capability allowa users to monitor the atatua of variety of conditions at the repeater aite without an operator being present.

    This is a very important feature of the amplifier. As previoualy mentioned. repeaters tena to be in remote locations helicopter. A trip to a aite can, therefore, be expensive ana difficult and is to be avoided except when absolutely neceasary. Alarm telemetry, theretore, becomes essential.

    The telemetry syatem is a one-way syatem communicating information from the remote RF repeater by impressing low-level amplitude modulation on the microwave algnal as it pasaea through the repeater. The atatum information is retrieved at done ather with voltage. The atatua information voltage. The atatua information may thus be aent to the neareat conventional aupervisory ayateme. Statua information at the repeater is encoded in a repetitive equential format, the the repeater is encoded in a repetitive aequential format: the rate and bita/second. This data rate is atistactory for telemetry performance of an analog FM or PSK, OPRS, or other digital modulation format. Conditiona to be monitored can include:
    2) Battery voltage
    3) Battery temperstur
    3) RF output
    ) Battery charging
    6) Sow waveguide preasure

    A security alarm would indicate such things as a site gate that was open or alao an open repeater cabinet. Alarma can be programmed as necessary by the uaer.

    ## ENCODING FORMAT

    Alarm information 18 tranamitted by aequential frames. The baaic frame length is 16 bita. of theae, 7 bita are asaigned to for telemetry of battery voltages and temperature. Each valtage and temperature reading ia transmitted as an s-bit word. Two voltage worda. one for each battery, are transmitted in sequence over X9. The xs bit is used to identify the two voltages. Thus it takea 16 frames to update the voltage readinga and a frames for the temperature. Ther are 6 "F"-bita for frame synchronization of the receiver. The basic frame format, therefore. is

    F1FOX1F1X $2 \times 3$ FOX $4 \times 5 \times 6$ F1FOX $7 \times 8 \times 9 \times 10$.
    The encoded information is then uaed to control the attenuation of a PIN diode attenuator in aeriea with the RF path imparting a low level $A$ to the algnal.

    The telemetry transmitter as shown in figure 2 .

    The alarm inputa enter on the left. Alarms are allowed to have only two states, elther on or off. The alarms are buffered and then sent to a 16 channel multiplexer. Two battery inputa are thown as each site uaually hes two batteries for redundancy. The A/D converter converta the battery voltage into an 8 bit word for serial transilasion. The battery temperature ia also converted into an bit word for tranemiaion.

    As the 8 bit counter counts up, Fi through xio ia eequentialiy eelected. The multiplexer output assumes the aelected value and ausea the modulator to asame on attenuated or unattenuated re imparting AM to the microwav that have preaent to give visual alarm atatua TELEMETRY DECODER

    The telemetry decoder ia ahown in figure 3. Here the aignal ia shown coming from the IF atrip for envelope detection. The aignal could just at well have come from the AGC detector of the radio-in which case an envelope detector would not be necasary. The decoder is located at a terminal aite. Once yyc is achieved. the alarm data is read out of the 16 bit ahift regiater and latched. Decoded alarm date ia presented to the monitoring equipment as a PN open collector output. A nonalari condition 2 a agnified by an open carcuit while an alarm placea the output into a grounded condition.

    The temperature and battery words are sequentially read out of the ehift regiater, decoded and displayed. A D/A converter also voltage. This allowa for continued temperature and battexy analog service channel, or redigitized in the case of a overhead channel auch as ia typically used in PSK radios.

    ## PIN DIODE MODULATOR

    Aa previously stated, amplitude modulation 181 mpressed upon the microwave signal by varying the attenuation of a PIN diode attenustor which is in series with the aignal path.

    The attenuator is bhown achematically in Figure 4 . A balanced configuration of two AL67003-7 PlN diodes ia connected in seriea between two branch-line couplers. The couplers function in the following way. First, input power ia aplit evenly to psss into the diodes. Power passing through the diodes is recombined by the second coupier. This power reintorces at port 3 (output port) and cancels at port 4 (isolated port). When the diodes are fully turned on, neariy all of the input power goes to the output. At zero bias and points in between. power 18 reflected from each diode backinto the firat coupler. Because reflected power cancels at port 1 (input port) the coupler. the
    at port 2 (1eolated port). This enaures a good match at the at port 2 input for all attenuation aetijngs: eubject to good balance in the couplers and good match between the diodes. The two isolated ports (ports 2 and 4) are terminated with 50-ohm chip reaiatora. RF grounda for the reaiatora are provided by opencircuited atube a quarter-wavelength long at 2 GHz , the center frequency of the amplifier.

    ## temperature compensation - dc circuit

    TEMPERATURE COMPENSATION CIRCUIT PROVIDES THREE DEGREES OF EREEDOM

    Originally it was attempted to temperature compenate the amplifier by uaing a aingle thermiater to vary the current through PIN diode ettenuator aimilar to that ueed for tolemetry. Aftor much effort, $2 t$ was finally concluded that the thermiater could not track the amplifier gain variation over the entire temperature range ( 1000 C ). What was required was a characteristics of figure 5 . Furthermore, it was required that the individual temperature breakpointa, $T_{1}$, $T_{2}$ and $T_{3}$ to be set independently. A very ample and quite effective circuit to accomplish this ia shown in figure. 6. Below -300 C a minimum of current ( 0.05 mA ) is required in the PIN diode to produce an attenuation of approximately 8 dB . At temperatures below $-30{ }^{\circ} \mathrm{C}$, $V_{T}$ is below the reference voltages on inverting terminala of UiA and U1B. Thus the output voltages of U1A and U1B, are driven toward the negative rail ( 0 ( This leavea only Rio to provide a conatant current of 0.05 mA to the diodea. Ey uaing gain-lowering type feedback resistors. R4 and RS, tne actual tranatitiona were much amoother than hown in figure 5. At temperaturea above -300 C U1E 2 a turned on and 2 ta output voltage begras to move toward the positive rall and drives an additional artenuation of 6 dB . ha the temperature moves ebove 300 C conducta applying an additional 1.9 mA of current and rectucing the attenuation to 4 dB .

    The circuit of figure 5 can be modeled as shown in figure 7. Here, $V_{A}, K_{A}$, $V_{B}$, and $R_{B}$ are the Thavenin Equivalenta looking back from the op-amp inverting terminale. $V_{T 1}$ and $V_{T 3}$ are the voltages at which op-amp $B$ and $A$, reapectively begin aupplying current to the PIN diodea. We have asaumed here that the op-amp circuita do not load the voltage divider atring. As a practical matter. a voltage va. temperature curve bhould be generated so that $V_{T} w_{1 l}$ be well known. The preciae valtage which corresponds to desired trip temperature can then be aubatituted for $V_{T 1}$ and $V_{T 3}$. $V_{B}$ and $V_{A} s h o u i d$ then be eet equal to $V_{T 1}$ and VT3. reapectavely. Working backwarda then R1. R2. and R3 can be calcuiated. The Ru and RS can be chosen based upon how rapidiy one desires to make the transition from one attenuation state to the next: renember $T$ ia continuousiy varying wath temparature.
    but is more easily and accurately done emplrically. R10 sa made ary large to smulate a constont current acurce. Rio is als
    

    ## SOLAR POWERED REPEATER

    
    

    PIN DIODE ATTENUATOR

    Figure 4
    
    

    ATTENUATION CHARACTERISTIC
    

    Figure 5

    TEMP COMP EQUIVALENT CIRCUIT
    
    an integrated ka-band power amplifier

    Albert N. Pergande and Johnathan Ladd
    Martin Marietta Orlando Aerospace, Orlando, Florida, USA

    ## Abstract

    An integrated Ka-band pulse puwer amplifier consisting of a Gunn diode injection locked oscillator (1LO) with input and output ferrite isolators is described. The isolators and circulator used for injection locking of the Gunn diode oscillator are of a compact design, constructed on a single quartz substrate, and are biased by a common magnet. The pulsed Gunn diode ILO operates with pulsewidths of 40 nanoseconds to 12 microseconds, and provides minimum of 8 dB gain over $500-\mathrm{MHz}$.

    ## Incroduction

    Modern millimeter-wave radar guidance aystems require miniature radar hardware capable of being produced in large quantities at extremely low costs. Much work on miniaturization and cost reduction of millimeter-wave receivers has been reported. However, transmitter miniaturization has received limited attention to date.

    The amplifier described in this paper is a hybrid design employing combination of resonant cavicy and substrate designs. The goal was to develop a miniature ka-band pulsed-power amplifier capable of operating in either a shurt-ur lung-pulse mude. The building blucks for this amplifier are a thin-film hybrid circulators with common bias magnet and thin-film terminations, and a variable pulse-width Gunn diode oscillator. With these components, the amplifier takes up 1.8 cubic inches of space. The ampli fier has demonstrated a maximum of 8 dB gain over a $500-\mathrm{MHz}$ bandwidth at Ka-band when operated with a pulsewidth of 40 nanoseconds to 12 microseconds.

    The amplifier module uses a combination of a suspended stripline and E-plane split waveguide. Short runs of waveguide are used as connections between components, and to interface with the oustide world (i.e., test near-term or antennas). This E-plane split block construct can be develaped to operate in its ootimum transmission medium. For example, mixers and switches can be developed in finline, oscillators in waveguide cavities for low noise and high power, and ferrite devices can be created in stripline. Individual components can be tested separately prior to incorporation into the assembly. Finally, the system can have as much or as little integra tion as needed. As a result, the probability of having a working radar at any point in development is increased.
    *Mr. Ladd ie now with Sawtek, Inc., of Apopka, Florida

    The Ka-band amplifier takes advantage of the split block construction concept by using a compact suspended atripline circulator manifold and medium pouer cevity oscillator. The loss of the suspended stripline at Ka-band is 0.3 dB per inch. Waveguide has loss of betuéen 0.03 and 0.06 dB per inch, while microstrip has a loss of 0.38 dB per inch!. These results show that the loss of the suspended stripline is slighty better than that of the microstrip, but much worse than that of the uaveguide. partially compensates for the incressed loss.

    A probe transition from the WR-28 waveguide to the suspended utripline was developed. A quarter-wavelength probe was inserted into the E-plane of the waveguide at fixed distance from a waveguide short circuit. The return loss and insertion loss for pair of transitions and
    0.75 inch of line is shown in Figure 1. The line impedance is 70 ohms ${ }^{2}$. Suspended Stripline Circulator

    The design of the stripline junction circulator is based on the work of Wu and Rosenbaum ${ }^{3}$. By using their approach, the electrical performance can be predicted from such physical parameters as ferrite puck diameter, coupling angle, magnetization factor ( $4 \pi \mathrm{Ms}$ ), and bias field ce materials, while puck diameter and coupling angle are varied to achieve the desired frequency response.

    A cross-section view of the circulator is shown in Figure 2. Two ferrite pucks are attached to either side of the quartz substrate. Input lines and ground plane for the suspended stripline and the metal resonator for the ferrite junction are printed on quartz. The coupling angle and resonator size are designed so that the output line width is almost identical to that of a 70 -ohm line. A tapered transformer matches the impedance of the ferrite junction to that of the transition to waveguide. Figure 3 shows a disassembled view of a circulator substrate in a test housing.
    diagram.

    The stripline circulator uses ferrites that are 70 mil in diameter by 30 mil thick. The $4 \pi \mathrm{Ms}$ is 5250 Gauss (Trans-Tech TT2-111), and the coupling angle is 84 degrees. The measured response of the circulator is show in Figures 4 and 5 . Insertion loss is between 0.6 and 1 dB , with a 15 dB isolation over a $6-\mathrm{GHz}$ bandwidth.

    Three circulator junctions and two thin-film terminations were ince grated on a common substrate to form the circulator manifold. The junctions were spaced 0.2 inch apart. The junction proximity permits the use of single magnet for bias. As a result, the size of the manifold can be reduced. Two of the circulator junctions serve as isolators in conjunction with the thin-film terminations, while the third junction acts as the duplexer for the amplifier. Three transitions to the uaveguide allow
    interconnections to the reflection amplifier and to the outside world.

    The thin-film termination consists of lossy transmission lines 2 wave lengths long. The titanium-tungsten metal layer provides a loss of 5 dB n a total return loss of 20 dB for each load over the 26- to $40-\mathrm{GHz}$ frequency range.

    When the circulator was assembled in the module, there was a loss of 1.5 dB through two junctions. The isolation was better than 20 dB across
     ferrites fixed with respect to the substrate. Wax uas used for ferrite attachment in this prototype. However, cyano-acrylate adhesive is expected to be used in the future. The circulator was assembled and disassembled several times, showing that these actions are easily duplicated.

    ## Gunn Diode Injection Locked Oscillator (ILO) Design

    The Gunn diode (Microwave Associates Part 49837-138) is mounted on the diode pedestal, as shown in Figure 9. The pedestal is then press-fit into the coaxial cavity. The cavity couples to a standard height waveguide through a resonant iris. A de pulse is applied via the center conductor, which also serves as a dumbell radio frequency (RF) choke. The length of the inner conductor controls the center frequency of the pulsed RF signal, while the quality factor (Q) of the cavity can be adjusted by changing its cavity cavity muat be used. The locking bandwidth of the ilo is proportional ed to the ILO. The cavity 0 must be louered in order to incresse phesent locking bandwidth, which incresses the frequency chirp ${ }^{4}$.

    In order to achieve the aame amplifier characteristics for both long pulse and short pulse modes, the voltage pulae applied to the diode via the inner conductor is varied from approximately 7 volts for long pulse (up to 12 microseconds) to approximately 10 volts tor short pulse ( 40 nanoseconds) meters are required for long pulse/short pulse operation.

    The modulator used to drive the oscillator consisted of an integrated circuit clock driver (DS OO26) connected to the gate of a VMOS power FET (IRF 131) used in a source follower configuration. Thia combination exhibited extremely fast switching times (less than 5 nanoseconds) and good power handling capability.

    ## Integrated Power Amplifier Performance

    The power amplifier assembly was measured on the balanced phase bridg shown in Figure 10. This setup is useful for making intrapulse phase and amplitude measurements of an phase of the oscillator during the pulse relative to the locking source

    The phase characteristic is important in pulse compression systems, as well as in systems using power-combining techniques. Most of the change in phase relative to the locking source occurs during the first portion of th biss on the diode and the thermal environment of the oscillator. Normal bour variation 10 dicrosecond pulse at roo power variat

    The overall performance of the power amplifier is described in Table 1 No change in the tuning of the ILO or of the stripline circulators was required to achieve this range of pulsewidth, duty cycle, and bandwidth For in input power level of +20 dBm , peak output powers of +28 dBm for pulsewidths of 12 microseconds, and +31 dBm for pulsewidths of 40 nanoseconds were achieved. The locking bandwidth for an input signal of 20 dBm was 600 MHz for the range of duty cycle and pulsewidths stated in Table 1. The locking bandwidths for both long pulse and short pulse operation is 500 MHz .

    ## Conclusion

    The integrated power amplifier is a compact, relatively low-cos ircuit, with performance comparable to similar circuits using only wave uide. The E-plane split block techniques discussed yield an optiaun integration with other subtrate-based compone such as mixers, suitches couplers, and attenuators will result in flexible system to meet milli-eter-wave transmitter/receiver requirements.

    We would like to acknowledge the invaluable assistance of Gene Allard Tony Lazarski, and Jim Stonebraker in the assembling and testing of this device.

    ## references

    L Kajfez, D. and Tew, M., "Pocket Calculator Program for Analysis of Lossy Microstrip', Microwave Journal, pp 39-48, December 1980
    2 Yamashita, E. and Atsuki, K., "Stripline with Rectangular Outer Conductor and Three Dielectric Layers", IEEE Transactions Microwave Theory, Vol MTT-18 No. 5, pp 238-244, May 1970

    3 Wu, Y.S. and Rosenbaum, F.J., "wideband Operation of Microstrip Circulators", IEEE Transactions on Microwave Theory, Vol. MTT-22 No. 10. pp 849-856, October 1974

    4 Kurokowa, K., "Injection Locking of Microwave Solid State Oscillacors
    1973.
    
    

    Figure lb. Return Loss for T wo T remsitions mad 0.75 inch of Stripline
    

    Figure 2. Circulator Junction Cross Section
    

    Figure 5. Isolation werrus Frequencr of Single Sripline
    Circulation (Worti Cuer Any Two Por (s)
    
    
    
    

    Fiquere 10. Balanced Bridge Test Setup

    | table 1 |  |  |
    | :---: | :---: | :---: |
    | Ka Bund ITamuniter Pertormance |  |  |
    |  | 12 mucromecondi | 40 nanoweconds |
    | Input Pomer | -20 nam | +20 dim |
    | Ouput Pown | -23 d8m | -31 dem |
    | ourr crate | ${ }^{3} 3$ peucanl maumum | 5 percant mo |
    | Inuresule Amplitese Variation | 148 |  |
    | Ampliwich Vercticon over | 10.85 da | 20.35 d8 |
    | Intuspuls Phase Varsation Irom loniocted Signall | 40 dayreer | 40 degees |
    | Iniection Lecteod Bendurudt | 600 moartere | 600 maphercir |

    -shoar punse
    

    Figure 11. RF Wavelorms

    ## CLASS-D POWER-AMPLIFIER LOAD IMPEDANCE FOR MAXIMMM EFFICIENCY

    by
    Frederick H. Raab, Ph. D., Consultant Green Mountain Radio Research Company 50 Vermont Avenue, Fort Ethan Allen Winooski, Verinont 05404

    Presented at
    RF Technology Expo 85 Disneyland Hotel Anaheim, California January 23-25, 1985

    ## ABSTRACT

    The principal causes of inefficiency in a class-D power amplifier (PA) are (1) power dissipation due to output current flowing through the saturation voltage or on resistance of the transistors, and (2) power dissipation
    due to charging the transistor output capacitance. The desired power output due to charging the transistor output capacitance. The desired power outp
    can often be achieved by several different combinations of supply voltage and load resistance. A destgn trade-off exists because use of a higher supply voltage and load resistance reduces the saturation loss but increases the capacitor-charging loss. This paper derives formulas for power dissipation and the supply voltage and load resistance that produce the maximum efficiency for a given set of circuit parameters. Formulas are derived for both BJTs and FETs with etther linear or voltage-variable output capacitance.

    1. introduction

    The class-D RF power amplifier (PA) [1-3] employs a pair of transistors as switches to generate a squarewave voltage (Figure 1). The series-tuned
     loace, instantaneous switching and no shunt capacitance) achieves a dc-to-RF conversion efficiency of 100 percent. It is also capable of producting twenty seven percent more power output than a class-B PA with transistors of the same ratings.

    Recent developments in RF-power transistors (especially mOS FETs) have made practical high-frequency class-D amplifiers with power outputs in the 10- to 300-W range $[4,5]$. However, practical class-D PAs do not achieve the ideal 100 percent efficiency, primarily because of saturation voltage or on resistance and shunt capacttance. (There are, of course, many additional sources of power loss, including the inductor in the tuned output circuit.) The saturation voltage of a BJT or on resistance of an FET is always effectively in series with the load resistance, thus reducing the fraction of the input power delivered to the load. The collector or drain output capacitance must be charged once per RF cycle, resulting in additional dc input power.

    Many class-D power amplifiers use a matching network to convert the actual load impedance into a resistive load impedance suitable for the available transistors. The output power is a function of both the supply voltage and the effective load resistance. Consequently, the load resistance (or
    

    Figure 1. Complementary voltage-switching class-D PA.
    supply voltage) may be regarded as a design parameter when a specified power output is desired. Increasing the load resistance decreases the power dissipated in the BJT saturation voltage or FET on resistance. However, the associated increase in supply voltage that is required to maintain the specified power output produces an increase in the power dissipated in charging the shunt capacitance.

    This paper begins by presenting design equations for class-D PAs using both BJTs and FETs. The power dissipations associated with either fixed (linear) or voltage-variable output capacitance are then derived. The loa resistances and supply voltages for maximum efficiency are then determined for both BJT and FET PAs with either fixed or voltage-variable output capacitances.

    ## 2. DESIGN EQUATIONS

    Equivalent circuits for class-n power amplifiers using BJTs and FETs are shown in Figure 2. Saturation of a BJT produces a nearly constant collectorshitter voltage $V_{\text {at }}$, while saturation of an FET produces a nearly constant drain-source resistance $R_{o n}$. In both cases, the power $P_{d S}$ dissipated due to device saturation is the result of the output current flowing through the saturated transistors.

    The output capacitance from both transistors (as well an any other stray capacitance) is assembled into a single equivalent shunt capacitor $C_{S^{*}}$ This capacitor is charged when $Q_{1}$ switches on, and discharged when $Q_{2}$ switches on.
    If the transistors are capable of charging and discharging $C_{S}$ quickly, the switching and output waveforms are not affected by its presence (or value). However, additional dc input current is drawn to supply the required charge

    Since the shunt capacitance does not affect the output power, the supply voltage and load resistance can be related to the desired power output without regard to the shunt capacitance. The dissipation due to charging the shunt解 tage or load resistance, as is more convenient.

    The amplitude of the fundamental-frequency component of the output is $2 / \pi$ times the peak-to-peak voltage of the squarewave produced by the switching action of $Q_{1}$ and $Q_{2}$. The power output is therefore [3]

    $$
    \begin{equation*}
    P_{0}=\frac{2}{\pi^{2}} \frac{V_{e f f}^{2}}{R}, \tag{1}
    \end{equation*}
    $$

    where $V_{\text {eff }}$ is the effective supply voltage. The effective voltage required for a given power output into a given load is determined by rearranging (1)
    
    (b) With FETS

    Figure 2. Equivalent circuits

    ## Bipolar-Junction Iransistors

    The peak-to-peak voltage of the squarewave is reduced by saturation vol tage $V_{\text {sat }}$ at both the high and low ends. The effective supply voltage for a class-D PA with RJTs is therefore

    $$
    \begin{equation*}
    v_{e f f}=v_{C C^{\prime}}-2 v_{s a t} . \tag{2}
    \end{equation*}
    $$

    The true supply voltage is determined from the effective supply voltage and the saturation voltage by rearranging (2).

    The dc input power is divided into dissipated and output power according to the ratio of the saturation and effective-supply voltages, thus the power dissipated due to saturation is

    $$
    \begin{equation*}
    P_{d S}=\frac{2 V_{B a t}}{V_{B f f}} P_{o} \tag{3}
    \end{equation*}
    $$

    ## Field-Effect Transistors

    The equivalent series connection of load $R$ and FET on resistance $R_{\text {on }}$ acts as a voltage divider that reduces supply voltage $V_{D D}$ to the effective supply voltage

    $$
    \begin{equation*}
    v_{e f f}=\frac{R}{R+R_{o n}} V_{D D} \tag{4}
    \end{equation*}
    $$

    Given a specified power output and load resistance, $V_{\text {eff }}$ is determined from (1) and $V_{D D}$ is then determined from (3).

    However, the determination of $R$ given specified $P_{O}$ and $V_{D D}$ is somewhat more complicated. Insertion of (4) into (1) produces

    $$
    \begin{equation*}
    \left(R^{2}+2 R R_{o n}+R_{o n}^{2}\right) P_{o}=\frac{2 R}{\pi^{2}} V_{D D}^{2} \tag{5}
    \end{equation*}
    $$

    Rearrangement yields a quadratic equation in $R$, whose solution is

    $$
    \begin{equation*}
    R=\frac{1}{2}\left[-b+\left(b^{2}-4 R_{o n}^{2}\right)^{1 / 2}\right] \tag{6}
    \end{equation*}
    $$

    where

    $$
    \begin{equation*}
    b=2 R_{o n}-\frac{2 v_{D D}^{2}}{\pi^{2} P_{o}} \tag{7}
    \end{equation*}
    $$

    The dc input power is divided into dissipated and output power according to the ratio of the resistances, thus the power dissipation due to saturation is

    $$
    \begin{equation*}
    P_{d S}=\frac{R_{o n}}{R} P_{o} \tag{8}
    \end{equation*}
    $$

    ## 3. Limear output capacitance

    The energy $W_{i}$ required to charge a capacitor from 0 to $v$ volts is

    $$
    \begin{equation*}
    W_{i}=\int v i(t) d t=v \int i(t) d t=v Q=2 W_{B} \cdot \tag{9}
    \end{equation*}
    $$

    Note that $W_{i}$ is twice the stored energy $W_{B}$, regardless of the charying waveform or the dependence of capacitance upon voltage. Charging a capacitor through a resistance (e.g., the transistor) therefore requires twice the energy $\left(c_{5}^{2} \nu^{2} / 2\right)$ that is stored in the capacitor.

    In this section, $c_{S}$ is assumed to be independent of voltage. The power expended in charging $c_{S}$ to voltage $V_{D D}$ once per RF cycle is therefore

    $$
    \begin{equation*}
    P_{d C}=C_{S} v_{D D}^{2} f=\frac{v_{D D}^{2}}{2 \pi X}, \tag{10}
    \end{equation*}
    $$

    where $X=1 / 2 \pi f C_{S}$ is the reactance of the capacitor at the frequency $f$ of operation.

    The energy required to charge the capacitance is taken directly from the power supply, and therefore does not decrease the power output. The dc power input is therefore

    $$
    \begin{equation*}
    P_{i}=P_{o}+P_{d S}+P_{d C} \tag{11}
    \end{equation*}
    $$

    ## Bipolar-Junction Transistors

    In a class-D PA using BJTs, the voltage across $C_{S}$ is increased by $V_{B f f}$
    each time $Q$ turns on. The associated power dissipation is [by analogy to (10)]

    $$
    \begin{equation*}
    P_{d C}=\frac{V_{\theta f f}^{2}}{2 \pi x} \tag{12}
    \end{equation*}
    $$

    The dc power input is found by insertion of (12) and (3) into (11). The derivative of the dc power input with respect to the effective supply voltage is therefore

    $$
    \begin{equation*}
    \frac{\partial P_{i}}{\partial V_{e f f}}=-\frac{2 v_{B a t} P_{o}}{V_{e f f}^{2}}+\frac{V_{e f f}}{\pi x} . \tag{13}
    \end{equation*}
    $$

    Setting this derivative equal to zero yields

    $$
    \begin{equation*}
    v_{e f f_{0}}=\left(2 \pi \times v_{B a t} P_{o}\right)^{1 / 3} \tag{14}
    \end{equation*}
    $$

    for minimum power dissipation, hence maximum efficiency. Load resistance $R$ can now be found from (1), and the true supply voltage is obtained by adding ${ }^{2} v_{\text {sat }}$ to $v_{\text {eff }}$.

    Curves of efficiency and power dissipation for a "typical" 25-W PA are shown in Figure 3. The transistors have $V_{s a t}=1 \mathrm{~V}$ and together produce a shunt capacitance whose reactance is $100 \Omega$ at the frequency of operation (e.g.. $C_{S}=106 \mathrm{pF}, f=15 \mathrm{MHz}$ ). The benefits of the proper choice of $R$ and $V_{C C}$ are apparent.

    ## Field-Effect Transistors

    The voltage across the shunt capacitance in an FET PA is increased by $V_{D D}$ each time $Q$, turns on, hence the associated power dissipation is given by (10). However, $P_{d C}$ must be converted to a function of $B$ for compatibility with $P_{d S}$ as given by (8). To produce the desired output, the supply voitage must be

    $$
    \begin{equation*}
    V_{D D}=\frac{\pi}{2}\left(1+\frac{R_{o n}}{R}\right) v_{O M} \tag{15}
    \end{equation*}
    $$

    Since $P_{o}=V_{o m}^{2} / 2 R$, substitution of (15) into (10) yields
    

    Figure 3. Efficiency and dissipation of BJT PA with linear capacitance.

    $$
    \begin{equation*}
    P_{d C}=\frac{\pi}{8 X}\left(1+\frac{R_{o n}}{R}\right)^{2} V_{o m}^{2}=\frac{\pi}{4}\left(1+\frac{R_{o n}}{R}\right)^{2} \frac{R}{X} P_{0} . \tag{16}
    \end{equation*}
    $$

    Setting $\partial P_{i} / \partial v_{o m}=0$ then produces

    $$
    \begin{equation*}
    R_{0}^{2}=R_{o n}^{2}+\frac{4}{\pi} R_{o n} \tag{17}
    \end{equation*}
    $$

    The other circuit parameters can now be calculated from the equations given previously.

    Curves of efficiency and power dissipation for a "typical" 25-W PA are shown in Figure 4. The FET on resistance is $1 \Omega$ and the total shunt capacitance is again assumed to produce a reactance of $100 \Omega$ at the operating frequency.
    4. voltage-variable output capacitance

    Most of the output capacitance of RF-power transistors (whether bipolar or field-effect) is abrupt-junction capacitance. The variation of this capacitance with voltage is given $[6,7]$ by

    $$
    \begin{equation*}
    c(v)=c_{0}(1+v / \downarrow)^{-1 / 2}, v>0 \tag{18}
    \end{equation*}
    $$

    where $C_{0}$ is the zero-voltage capacitance and is the "barrier potential." The value of is easily determined from two small-signal impedance measure ments with different collector-emitter or drain-source bias voltages. For most RF-power transistors, $\quad=1 \mathrm{~V}$. Figure 5a depicts a typical variation of capacitance with voltage.

    Charge Stored
    The ac capacitance given by (18) is defined by $C(v)=d Q(v) / d v$, where $\vartheta(v)$ represents the total stored charge. The variation of total charge with voltage is therefore

    $$
    \begin{equation*}
    Q(v)=\int_{0}^{v} c(u) d u=2 c_{0}\left[(1+v / \phi)^{1 / 2}-1\right] \tag{19}
    \end{equation*}
    $$

    Figure 5b shows the variation of total charge with voltage for both linear and abrupt-junction capacitors. It is apparent that if the zero-voltage capacitance of the abrupt-junction capacitor is equal to the fixed capacitance, considerably less charge is stored in the abrupt-junction capacitance
    

    Parameters: $P_{0}=25 \mathrm{~W}, R_{o n}=1 \Omega, X_{0}=100 \Omega$.
    Figure 4. Efficiency and dissipation of FET PA with linear output capacitance.
    

    Figure 5. Normalized characteristics of capacitors.

    GMRR TP80-5
    as the voltage increases.
    The energy required to charge $C_{S}$ to voltage $v$ is obtained by insertion of (19) into (9). The power dissipated in charging $C_{S} f$ times per second is by analogy to (10)

    $$
    \begin{align*}
    { }^{{ }_{d C}} & =W_{i} f=2 f C_{0} v\left[(1+v / \phi)^{1 / 2-1]}\right.  \tag{20}\\
    & =\frac{v\left[(1+v / \phi)^{1 / 2}-1\right]}{x x_{0}}, \tag{21}
    \end{align*}
    $$

    where $X_{0}$ is the impedence of $C_{0}$ at frequency $f$.
    The relative power dissipated in linear and abrupt-junction capacitors is shown in Figure 5c. It is apparent that significantly more power is dissiand in a capacity at zero voltage.

    ## Bipolar-Junction Transistors

    The saturation loss in a complementary class-D PA using BUTs is given by (3), and the effective supply voltage is given by (2). Since the output capacitance must be charged from $V_{s a t}$ to $V_{C C}-V_{s a t}$. the associated power dissi pation is [from (20)]

    $$
    \begin{equation*}
    p_{d C}=\frac{v_{e f f}\left[\left(1+v_{e f f} / \phi\right)^{1 / 2}-1\right]}{\nabla X_{0}} \tag{22}
    \end{equation*}
    $$

    The relationships among the supply voltage, efficiency, and power dissipation of a typical 25-H RJT power amplifier are shown in Figure 6. A maximu efficiency of 92.8 -percent is obtained with $\psi_{C C}=44.3 \mathrm{~V}$ and $R=14.5 \%$.

    The total power dissipated is the sum of the powers dissipated due to saturation and output capacitance. The maximum-efficiency point can be found saturation and output capacitance,

    $$
    \begin{equation*}
    0=-\frac{2 v_{s a t} P_{0}}{v_{e f f}^{2}}+\frac{1}{\pi x_{0}}\left\{\left[\left(1+\frac{v_{e f f}}{\phi}\right)^{1 / 2}-1\right]+\frac{v_{e f f}}{2 \phi}\left(1+\frac{v_{e f f}}{\phi}\right)^{-1 / 2}\right\} \tag{23}
    \end{equation*}
    $$

    

    Parameters: $P_{0}=25 \mathrm{~W}, V_{B a t}=1 \mathrm{~V}, X_{0}=100 \Omega,=1.0 \mathrm{~V}$
    Figure 6. Efficiency and dissipation of BJT PA with voltage-variable capacitance.

    GMRR TP80-5

    Analytical solution of (23) is difficult or impossible. However, in most applications $V_{\text {eff }} \gg$, hence $1+v_{\text {eff }} / \nexists v_{\text {eff }} / \phi$ and $\left(v_{\text {eff }} / \phi\right)^{1 / 2}-1 \equiv$ $\left(V_{e f f} / \phi\right)^{1 / 2}$. Use of these approximations in (23) yields

    $$
    \begin{equation*}
    0=-\frac{2 v_{s a t} P_{0}}{v_{e f f}^{2}}+\frac{3 v_{e f f}^{1 / 2}}{2 \pi x_{U} \phi^{1 / 2}}, \tag{24}
    \end{equation*}
    $$

    and rearrangement produces

    $$
    \begin{equation*}
    v_{e f f} \geq\left(\frac{4 \pi}{3} x_{0} \phi^{1 / 2} v_{s a t} P_{0}\right)^{2 / s} \tag{25}
    \end{equation*}
    $$

    The value of $v_{\text {eff }}$ obtained from (25) is converted to supply voltage $V_{C C}$ by (2) and to load resistance $R$ by (1). The accuracy of (25) increases as $v_{C C}$ increases. For the example of Figure 6 , (25) predicts a 92.8 -percent maximum efficiency at $V_{C C}=42.5 V$ and $R=13.3 \Omega$, which are fairly close to the values $\left(v_{C C}=44.3 V, R=14.5 \Omega\right)$ obtained by numerical evaluation of $P_{d}$ via (3) and (22).

    ## Field-effect Transistors

    The saturation loss in a class-D PA using FETs is given by (8). Since the output capacitance is charged from 0 to $V_{D D^{\prime}}$, (20) gives

    $$
    \begin{equation*}
    P_{d C}=\frac{v_{D D}\left[\left(1+v_{D D} / \phi\right)^{1 / 2}-1\right]}{\pi X_{0}} . \tag{26}
    \end{equation*}
    $$

    for the related power dissipation.
    Curves showing the variation of efficiency and dissipation with voltage for a typical 25-W PA are shown in Figure 7. A maximum efficiency of 91.8 for a typical ${ }^{\text {percent }}$ is obtained with $V_{D D}=59.6 \mathrm{~V}$ and $R=26.8 \$$.

    To determine the maximum-efficiency operating point, it is necessary to convert ( 8 ) into a function of $V_{D D}$. Use of the exact relationship given by the quadratic formula (6) leads to unmanageable equations. It is therefore necessary to rearrange (1) and to assume $V_{D D} \cong V_{e f f}$ to obtain
    
    (a) Efficiency
    
    (b) Power dissipated

    Parameters: $P_{0}=25 \mathrm{~W}, R_{o n}=1 \Omega, x_{0}=100 \Omega, \phi=1 \mathrm{~V}$
    Figure 7. Efficiency and dissipation of FET PA with voltage-variable capacitance.

    $$
    \begin{equation*}
    \frac{1}{R} \equiv \frac{n^{2} P_{o}}{2 V_{D D}^{2}} \tag{27}
    \end{equation*}
    $$

    hence

    $$
    \begin{equation*}
    P_{d S} \cong \frac{m^{2} R_{o n} P_{o}^{2}}{2 V_{D D}^{2}} \tag{28}
    \end{equation*}
    $$

    The minimum power dissipation therefore occurs when

    $$
    0 \equiv-\frac{\pi^{2} R_{o n} P_{0}^{2}}{v_{D D}^{3}}+\frac{3 v_{D D}^{1 / 2}}{2 \pi x_{0} 1^{1 / 2}},
    $$

    hence

    $$
    \begin{equation*}
    v_{D D} \cong\left(\frac{2 \pi^{3}}{3} x_{0} \phi^{1 / 2} R_{o n} P_{o}^{2}\right)^{2 / 7} \tag{30}
    \end{equation*}
    $$

    Once $V_{D D}$ has been calculated from (30), $R$ can be calculated from (6). For the example of figure 7, (30) yields a maximum efficiency of 91.8 ; $V_{D D}=$ 55.7 V and $R=23.1 \Omega$, which are in fair agreement with the values obtained by numerical evaluation of (26) and (28).

    ## Effect of Frequency

    The power dissipated in charging the shunt capacitance varies directly with the frequency of operation. In contrast, the saturation losses remain relatively constant. Consequently, the maximum-efficiency operating point relatively constant. creases. Examples of efficiency and total power dissipation are shown in Figure 8.

    ## 5. COMMENTS AND CONCLIISIONS

    The efficiency of class $-D$ power amplifiers is reduced from the ideal of 100 percent primarily by power dissipation due to saturation and charging of the output capacitance of the transistors. When load resistance and supply altage can be varied to achieve a desired output power, a design trade-of
    

    Parameters: $P_{o}=25 \mathrm{~W}, \phi=1 \mathrm{~V}$
    Figure 8. Effect of frequency.
    is possible between the two principal power dissipations. Formulas have been derived for the load resistance and supply voltage that produce maximum effiderived for the load resistance BJTs and FETs and either linear or voltagevariable output capacitance.

    While the output capacitance of real class-D PAs is primarily abruptjunction capacitance, some linear capacitance and other types of voltagevariable capacitance are also present. Consequently, the maximum-efficiency point for a real PA is generally between the maximum-efficiency conditions predicted for fixed and abrupt-junction capacitances.

    In theory, it is possible to use the load network to charge and to discharge the shunt capacitance [8], thus eliminating all losses associated with the shunt capacitance, as in the ideal class-E amplifier [3]. However, it is in practice rather difficult to achieve the precise three-state switching and load impedance necessary for ideal "class-DE" operation. Nonetheless, a small improvement in efficiency can often be obtained by reducing drive
    tuning the output network for a slightly inductive net reactance.

    ## 6. REFERENCES

    1. P.J. Baxandall, "Transistor sinewave oscillators: Some general considerations and new developments," Proc. IEE, vol. 106, part B, suppl. 16, pp. tions and new
    748 - $758,1959$.
    2. F. H. Raab, "High efficiency amplifications techniques," IEEE Circuits and Systems Newsletter, vol. 7, no. 10, pp. 3-11, December 1975.
    3. H. L. Krauss, C. W. Bostian, and F. H. Raab, Solid State Radio Engineering, New York: Wiley, 1980 .
    4. F. H. Raab, "Get broadband dual-mode operation with this FET power amplifier." EDN, vol. 23, no. 19, pp. 117-124, October 20, 1978.
    5. H. O. Granberg, "Power MOS FETs versus bipolar transistors," R. P. Design, vol. 4, no. 6, pp. 11 - 15, November/December 1981.
    6. J. Costa-Freire, and P. Teixeira, "Modeling of epidrain effects in VMOS power transistors for CAD," IEE Design Automation Conference Abetract power transistors for Cad,
    (EDA), Brighton, UK, 1981 .
    7. S. M. Sze, Physice of Semiconductor Devices, New York: Wiley and Sons, 1969.
    8. S. A. Zhukov and V. B. Kozyrev, "Mouble-ended switching generator without commutating (switching) loss," Poluprovodnikovye Pribory $v$ Tekhnike Flektrosvyasi, vol.15, Moscow: Svyaz, 1975.
    

    CAD ME THODOLOGY FOR MICROWAVE OSCILLATORS

    Arturo Velazquez*, Jose Luis Medina*, Arturo Serrano** (*CICESE Resedrch Center, Ensenada, Baja California, Mexico **University of Baja California in Ensenada)

    ## ABSTRACT

    This paper describes a computer program implemented to obtain in a simple but effective way, microwave oscillators using bipolar or GaAs FET devices. The program uses a small signal approach to give a first order approximation of the selected device's capabilities to generate negative resistance for oscillation. Using this computer program several oscillator prototypes have been constructed and have given adequate characteristics for local oscillator applications in down conversion stages for satellite communications earth station systems.

    ## INTRODUCTIO

    In our computer program implemented to design microwave oscillators, the sinall signal $s$ parameters are used to know the oscillation capabilities for a given device in different circuit configurations. The main point in the stability analysis that is made with this purpose, consists in the evaluation of the instability areas both at the input and output ports of the active device in order to determine if it is convenient to add some kind of feedback element and try of maxinize those areas with the variation of the value for that feedback element.

    When the unstable area is maximized, a wider reflection coefficient area for oscillation is assured; this implies in,turn a larger number of conbinations of impedance values for resonance for both the output and input ports. (Oscillation conditions and the associated circuit are shown in fig. 1). Once the maximum unstable area is defined, the feedback element value is set and then the procedure for negative resistance generation is initiated by means of varying the reflection coefficient of the resonator port. With this reflection coefficient an output negative resistance is obtained to deliver maximum output power.

    In the following section of this paper we describe the main functions of the subroutine programs of the methodology.
    

    Fig1) Configuration of transistor oscillator

    ## microwave oscillator program

    This program uses a small signal approach to provide a first order approximation of the negative resistance generation capability of a given device to produce oscillations. The program is written in FORTRAN IV and has an interactive structure to assist the user in the design process. Fig. 2 shows a block diagram of the main program and associated subroutines which main functions are:
    a) Stability analysis of active device;
    b) Maximize unstable areas;
    c) Change circuit configuration;
    d) Adhere feedback element;
    e) Input and output matching network design;
    f) Microstrip circuit dimensions definition;

    The program's input data are: $S$ parameters of the active device, frequency of operation and required bandwidth, limits of the feedback element values. The corresponding output data are: Impedance and electrical length of the input and output matching circuit elements, resonator and feedback element dimensions.

    ## SUBROUTIME "ESTAB"

    Subroutine "ESTAB" is described in more detail because it is the most important part of the present design methodology. This subroutine is called each time stability analysis of the active device is required. Stability analysis is realized from a given circuit configuration that can be changed in order to obtain information about the instability characteristics of the device. Rollet's factor $k$ and stability circles equations are used in our analysis.
    

    For each circuit configurations is possible to include a feedback element and analyze the stability characteristics of the device varying the feedback element value and storing that one that gives the maximum unstable area.

    Unstable areas are calculated taking into account the different cases that could arise in the stability circles and on the Smith Chart. Figs. 3A) and 3B) show an example of unstable area calculation for two typical cases.
    

    Fig 3) Two typical cases of unstability areos

    The search for maximuin unstable area has the objective of having a larger number of reflection coefficient for oscillation. .

    To inaximize and unstable area, we use a routine called minmax that provides maximum and minimum values for an unidimensional array. In this case, three arrays are formed: Output unstable area, input unstable area and $K$ factor. All these three for each feedback element. value. Up to this point, the program user might choose among the three array elements the one that is more important for him and from here define the feedback element.

    ## SUPPORT SUBROUTINES

    a) Subroutine config. This subroutine provides circuit configuration change. From the initial common emitter configuration other configurations can be obtained from the unstable area point of view. The associated $S$ parameters for each configuration are also provided in this part of the program.
    b) Subroutine RETRO. This subroutine includes a series inductive or shunt capacitive feedback element in the circuit. This process is realized with appropiate matrix operations of the elements involved.
    c) Subroutine ACOPL. Matching network elements are calculated in this subroutine using Przedpelski's [1] equations. The output impedance seen by the active device is calculated using Maeda's formula $[2]$ :

    $$
    \begin{align*}
    & \operatorname{lm}\left(Z_{L}\right)=-\operatorname{lm}\left(Z_{\text {out }}\right) \\
    & \operatorname{Re}\left(Z_{L}\right)=1 / 3\left|\operatorname{Re}\left(Z_{\text {out }}\right)\right|
    \end{align*}
    $$

    2) 

    where $Z_{\text {out }}$ is the resultant impedance when a resonator reflection coefficient is set.
    d) Subroutine MICROS. In this subroutine, the physical dimensions of the circuit elements defined in the subroutine ACOPL are obtained. Input data for this subroutine are dielectric constant of the substrate, dielectric and metal thickness and frequency of operation. Hammerstaed's [ $\left.\begin{array}{l}3\end{array}\right]$ formulas are used to evaluate the physical dimensions of the circuit elements.
    e) Subroutine AREA. This subroutine has the specific function to calculate the intersection area between the Smith Chart and the stability circle defining in this way the unstable area concept described in figs 3a and 3 b .

    ## results and conclu sions

    The program described in this paper has been very helpful in the design and manufacturing of several oscillator prototypes. Fig. 4 shows the picture of one of the designed prototypes using a bipolar transistor. Fig. 5 shows the associated frequency response with 10 dbm output power for 3.95 GHz central frequency. We can conclude that the program provides useful results for the manufacturing of microwave oscillator circuits.
    

    FIg 41 Photogroph of onocillotor prototype
    

    Fig 5) Meosurement of output power ond frequency rasponse for the oscllotor of fig. 4.

    ## REFEREMCES

    1. A. Przedpelski; "Simple Transmission Line Matching Circuits"; RF Design; Summer 1980. pp 27-32.
    2. M. Maeda, K. Kimura and H. Kodera; "Oesign and Perfomance of X-band Oscillators with GaAs Schottky-gate Field-effect Transistors"; IEEE Trans. on MTT. Vol MTT-23, No. 8. pp 661-667, Aug. 1975.
    3. E. Hammestaed; "Equations for Microstrip Circuit Oesign"; Proc. of the $V$ European Microwave Conference. Hamburg, Germany. pp 268-272. 1975.
    

    # RF Design on a Small Computer 

    James Eagleson<br>IDX, Inc.<br>January 1985

    This paper is not designed for the experienced computer-aided-design whiz. I'm not one. Many RF engineers fall into the same "not a computer whiz" category.

    What this paper attempts to do is to allow those who currently use calculators for simple design tasks o use their home computer for similar tasks when the added flexability of the computer is desireable.

    The paper is also not going to deal with the more sophisticated programs and computers such as Apple, IBM, etc., but is keyed more towards the Atari, course, since BASIC is basic, much of what is covered here can be applied to the more sophisticated machines.

    ## computer versus calculator

    A Calculator can be an indispensable tool for the working engineer.

    A Computer, on the other hand, is not generally considered "indispensable" by many engineers.

    First, those who need a computer in their work are generally provided a computer by their company. It is also rare in most high tech companies not to have at least an Apple or IBM level computer
    available for which fairly sophisticated CAD programs are available (though access to the computer may be limited to times when accounting or inventory control isn't using the machine!)

    Second, if a $\$ 5000$ computer is not justifiable, programmable scientific calculators are readily available in the $\$ 50-250$ price range complete with printer and memory expansion. These are often adequate for most needs of an R. F. Engineer.

    Then again, a faikly sophisticated computer can purchased for as little as $\$ 100-200$ today... $\$ 600-800$ with disc drives, modem, and a printer, making the use of these "nome" computers printer, making the use of these parme cularly such notables as Osborne and other "fall out" systems can often be picked up complete with sophisicated software for $\$ 600-800$.

    Thus one must consider that a small computer may not be all that "dispensable", after all!

    ## CALCULATOR USES

    Calculators have the following strengths:

    1) Provide quick checks on New Ideas
    2) Provide quick conversions
    3) Provide a resource for simple iterration
    4) Provide straight forward programing
    5) Compact
    6) Portable
    7) Large selection of published program material

    ## COMPUTER USES

    A given Computer, on the other hand, may not be as portable, compact, or have as large a selection of specialized program material.

    A computer is generally much faster, more lexable, and can do things most calculators cannot do, on the other hand.

    Computers have the following strengths:

    1) Past execution time. The slowest computer is several times faster in execution than most hand calculators.
    2) More Memory. Even the smallest current home computer has 16 K of memory available. kind of power (and RPN machines are very
    memory efficient, to boot), most computers can store a group of related programs in one Integrated program which can can be selected (that is, a given program can be selected from a list of all programs in the set. to another, as well.)
    3) It is frequently more convenient to do multi-level iterrations on a computer than with the calculator. For example, data can be retrieved from a data base without physically attending the system (no magnetic cards, etc.)
    4) Most computers have much more Graphics and Formatting capability than the most sophisticated of the hand calculators. Some can provide high resolution graphs, charts, circuit diagrams, response curves,
    pictures beyond any of the calculators.
    5) Computers can be used for word Processing and Data Base Management. Most of the $\$ 150$, 64 K machines ( $\mathrm{C}-64$, Atari $800 \times \mathrm{L}$ ) have programs available in these areas that rival programs available in these areas that rival
    programs available for the more expensive programs available for the more expensive hardware and software, can provide reasonable performance in this area! This is certainly not available with calculators.
    6) Any computer (even the Timex) can be used for comunications with other systems. This can be to another, bigger computer via RS-232 ports, to data bases via telephone Modems, to A-to-D conversion interfaces for automatic testing, data gathering, or control, and other input/output configurations.

    ## THE PROBLEM WITH COMPUTERS

    The problem with computers, of course, is that you've got to program the things!

    While so-called "reverse-Polish" is hard enough to grasp so that some hand calculators have continued conceded to be slower and to require many more steps). BASIC and all other computer languages tend to be as bad as, if not worse than reverse-polish!

    Fortunately, many users of the newer Hewlett-Packard calculators will find the transistion somewhat easier since HP's adoption of BASIC-like structure in many of their newer machines. Users of arithmetic machines will find BASIC to be quite similar in use of parenthesis, etc.
    Unfortunately, there are differences, such as
    BASIC's insistence on Radians for Trig Functions,
    which remain to be dealt with as well as
    machine-sensitive commands relative to print
    functions, labels, stacks, input of data, etc. functions, labels, stacks, input of data, etc

    ## PROGRAM DEVELOPMENT

    As with a calculator, programming a computer requires some thought as to exactly what data you wish to input and what kind of answer(s) you wish to have come out.

    A simple program for determining Mixing Spurious outputs from a hetrodyne transmitters mixer demonstrates several programming techniques.

    ## FORMULAS

    The essential formula for Mixing Products is:

    $$
    F 1+F 2 \text { and } / F 1-F 2 /
    $$

    Where F1 = Frequency $\$ 1$ and F2 $=$ Frequency 2
    For convenience, we have taken the Absolute Value of F1 - F2 so that if F2 is the larger number it will come out as "positive frequency", not negative. (This is not necessary with Fl + F2, of course, since you'll never go negative adding two positive numbers together!)

    In BASIC, however, Absolute Value is generally taken as follows:

    ABS (F1 - F2)
    ( Note that the F1 - F2 is brackette so that the ABS function works on the result of F1 - F2 rather than on Fl, alone. Also note that for some functions a given computer will use a different commodore 64 than another computer...example, the commodore 64 ses LOG whereas the


    #### Abstract

    The above formula gives us the fundamental responses at the desired output frequency and the image frequency but these are not usually the ones we are concerning about．It is the higher order mixing


    products which concern us．Tus a little modification of the formula：

    $$
    \begin{gathered}
    \mathrm{nFl}+\mathrm{mF2} \text { and } / \mathrm{nFl}-\mathrm{mF} 2 / \\
    \text { in BASIC, } \operatorname{ABS}(\mathrm{nFl}-\mathrm{mF})
    \end{gathered}
    $$

    The $n$ and $m$ represent the harmonic of $P 1$ and $F 2$ for a given calculation．They will vary from l to the highest value you wish to set．

    We could just set an arbitrary value to $n$ and $m$ ， of course，but it would provide more flexability if we can set a limit on the number of harmonics we wish to use．

    Since it is likely that we won＇t be interested in harmonic numbers for $F^{2}$ higher than those for $F 1$ however，we can probably set the same limit for both e will call this limit $⿴$（for Harmonic number）

    ## VARIABLE NAMES

    At this point it would be wise to say a few words about the name of variables in computer programming．

    This is an area that varies from computer to computer even when using BASIC．

    Some computers would let you use ANTI－ESTABLISE AENTARIANISM if you wished to do so．Others require the use of only a few characters and／or numbers as names of variables．Anything else may show a SYNTA error or be automatically shortened（truncated）by the computer．

    It is probably a good practice to use one to three letters with appropriate numbers to nam variables．
    In that this is not unlike calculator orogramming，it should not be hard to get used to．

    ## SETTING LIMITS

    We may wish to look at all possible mixing products generated by our two frequencies in the sample program，but it is most likely that we are only interested in a limited range of possible output frequencies as determined by the Band Pass Filter being used on the output of the mixer．

    Therefore we will want to set and upper and lower frequency limit beyond which we don＇t care if there is a mixing product since the BPF will eliminate it．

    We＇ll call these limits fL for FREQUENCY LOWER limit and FU for $\operatorname{FREQURNCY}$ UPPER limit．

    ## INPUTTING DATA

    Here is where the computer has an additonal advantage over the calculator．．．it can tell you what advant it requires in plain English（that is，it is self－prompting）．

    A typical computer input programming sequence would be as follows：

    ## 1 REM ENTER DATA

    HD 5 PRINT TAB 11；＂SPURIOUS RESPONSES＂
    19 PRINT＂＜ENTER＞FREQUENCY $1=$－：
    F1 20 INPUT FI
    39 PRINT F1；${ }^{\circ}$ MHz
    
    50 INPUT F2
    69 PRINT F2；MHZ

    ## SPC 79 PRINT

    89 PRINT＂＜ENTER＞GARMONIC LIMIT＝＂；
    － 99 INPUT H
    180 PRINT H
    110 PRINT＂＜ENTER＞UPPER PREQUENCY LIMIT＝＊；
    FU 128 INPUT FU
    130 PRINT FU；＂MHz＝
    140 PRINT＂〈ENTER〉 LOWER FREQUENCY LIMIT＝＊
    FL 150 INPUT FL
    168 PRINT FL；＂MHZ＂

    This will ask you line by line for Frequency ${ }^{\text {ll }}$ Frequency i2, Harmonic, Upper Frequency Limit, and Lower frequency Limit. On most machines this will start in the upper left hand corner of the screen
    (sometimes refered to as mome") and go down one line (sometimes refered to as "home") and go down one line
    for each "PRINT" statement (line 70, for example, exists only to produce a blank line between the fi and F2 data and the Harmonic, FU, and FL data).

    Each line will prompt an input, say, it immediately upon your entering the data. It will then print the next prompt, "<ENTER>Prequency $2=$ ".

    ## SPURIOUS RESPONSES

    ## <ENTER> PREQUENCY $1=155.089 \mathrm{MHZ}$ <ENTER> PREQUENCY $2=10.700 \mathrm{mHz}$

    <ENTER> HARMONIC LIMIT= 5
    <ENTER UPPER FREQUENCY LIMIT= $175.0 日 B \mathrm{MHZ}$ <ENTER> UPPER FREQUENCY LIMIT= $=175.0 日 6 \mathrm{MHZ}$
    <ENTER> LOWER FREQUENCY LIMIT $=135.096 \mathrm{MHZ}$

    This is fine but doesn't fully utilize the computer's potential for graphically pleasing display of results.

    Formatting the data is one thing easily done on a computer but not as easily done on many calculators...even the printing variety.

    A more please way to display the above would simply reguire use of TAB funtions in the computer. Instead of just using the ";" to print the data immediately following the <ENTER) statement, we can

    The exact placement would depend on your computer's line length and the number of decimal
    points typically printed out (on input data we have some control over this, of course.) At any rate, using this techniques would make our data look like:

    | <ENTER> | FREQUENCY 1 | $=$ | 155.000 | MHz |
    | :---: | :---: | :---: | :---: | :---: |
    | <ENTER> | PREQUENCY \$2 |  | 10.768 | MHZ |
    | <ENTER> | HARMONIC LIMIT | $=$ | 5 |  |
    | <ENTER> | UPPER FREQUENCY | LIMIT= | 175.000 | MHZ |
    | <ENTER> | LOWER PREQUENCY | LIMIT $=$ | 135.000 | MHZ |

    . I've also moved the " $=$ " to line up at TAB 34.
    One could use a subroutine to align the decimal places as well, but $I$ think the blocking of data as shown provides sufficient neatness for most purposes.

    In some cases it is nice to be able to see all required inputs before inputting data. On my rather inputs as one massive PRINT statement is much faster than via the single line prompt method.

    With the TIMEX this is relatively simple to do. The machine uses PRINT AT statements with an $X, Y$ Coordinate system so that I can place the beginning of any line or word at a given number of lines down and/or a given number of columns in from the left edge. By judicious use of the TAB function, the basic input chart would print as follows:

    | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
    | :--- |
    | SPURIOUS |


    | RESPONSES |
    | :--- | :--- | :--- |

    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    The program for this is
    10 LET G $\$={ }^{*} \mathrm{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}$
    20 PRINT GS; TAB 6; "SPURIOUS RESPONSES": TAB ;GS; TAB 1; TAB 0; FREQ 1": TAB
    
     TAB 6: "PREQ MAX": TAB 18: "=": TAB 29: "MHZ". TAB 0: "PREO MIN", TAB 18 29: MHZ: TAB 29; MHZ": TAB 1; TAB 0; G§

    Of course I would use one of the TIMEX graphics characters rather than the " $x$ " for the border and the 32 character format is established by the screen and the printer limitations on that machine. The ${ }^{n}={ }^{\prime \prime}$ and "MHZ" are set in position by the TAB as are the line feeds (TAB D; TAB $D$ would move the $j$ gint location two lines down if the printing locati: was already past the TAB $\quad$ on the current line).

    This format allows input of up to 7 digits in the frequency which should allow for any typical set of frequencies up to 1000 MHz and up to thiee decimal places to 9999.999 MHz

    To get the entered data to print at the right
    location, the TIMEX "PRINT AT X,Y" statements are used after the INPUT statements

    |  | INPUT |  |  |
    | :---: | :---: | :---: | :---: |
    | 40 | PRINT | AT | 4,20; Fl |
    | 50 | INPUT | P2 |  |
    | 60 | PRINT | AT | 5,20; P 2 |
    | 78 | INPUT | 日 |  |
    | 80 | PRINT | AT | 6,24; H |
    | 90 | INPUT | FU |  |
    | 108 | PRINT | AT | 9,20; PU |

    What this does is to place the frequency, Fl at location 4,20. This would be 5 spaces down from the top (remember, computers count from 0, not 1) and 20 spaces over from the left. This is one space beyond our equals sign which is at 18 spaces over from the left. Providing we do not input a number longer than 8 digits (9999.999 including the decimal), we will not overwrite our "MHz" previously put at 29 spaces from the left.

    ## THE PROGRAM

    While all of the above is part of the program, THE PROGRAM, that is, the heart of the calculations we want to do, is the next module to set up.

    We know that we want to look at Fl and F2 with respect to their additive and subtractive products over a limited set of harmonics and (usually) limited set of possible frequencies. We have defined our variables: F1, F2, H, M, N, FU, and FL.

    Now we must determine how to put these into a calculation that will compute what we want to know.

    ## LOOPS WITHIN LOOPS

    It is obvious at once to a programmer that the thing to use to make the required calculations is a set of Nested Loops.

    If you want to repeat something, you go back to the beginning of that sequence by telling the computer to go back to the beginning and doing it over.

    Unfortunately, there is no way to get out of the loop once started unless some limitation is place on it inside the loop.

    In our case, we want to look at all values of $p$ up to its H harmonic in relationship to all values of F2 up to its $H$ harmonic... $H$ being the maximu harmonic of interest.

    In other words, if $H$ is 3 (the third harmonic) we want to look at:

    | 1F1+1F2 | ABS(1F1-1F2) |
    | :---: | :---: |
    | 2F1+1F2 | ABS (2F1-1F2) |
    | 3F1=1F2 | ABS(3F1-1F2) |
    | $1 \mathrm{Fl}+2 \mathrm{~F} 2$ | ABS(1F1-2F2) |
    | 2F1+2F2 | ABS (2F1-2F2) |
    | 3F1+2F2 | ABS (3F1-2F2) |
    | $1 \mathrm{Fl}+3 \mathrm{P} 2$ | ABS (1F1-3F2) |
    | 2F1+3F2 | ABS(2F1-3F2) |
    | $\mathbf{3 F 1 + 3 F 2}$ | ABS (3F1-3F2) |

    These are the 18 possible mixing products for $F$ and $F 2$ up to their third harmonic.

    We would use a very basic FOR-NEXT loop to do this job. The loop would be:

    ## 186 LET $N=1$ <br> 190 LET $M=1$ to $H$ <br>  <br> 210 LET $A=N^{*} \mathrm{~F} 1+\mathrm{H}^{*} \mathrm{~F} 2$ LET $\mathrm{B}=\mathrm{ABS}\left(\mathrm{N}^{*} \mathrm{Fl}-\mathrm{m}^{*} \mathrm{~F} 2\right.$ ) <br> 220 LET $B=A B S$ 230 PRINT A,B <br> 230 PRINT A

    I, by the way, is frequently used in FOR/NEXT loops since is conveniently stands for Increment.

    But, of course, this does not really do it for us, we want to have $N$ and $M$ change as in the chart above.

    As shown in the chart, we want to have $N$ change with each calculation, then step $M$ once, then have $N$ change through each harmonic again, etc.

    This is done with a nested loop.
    We want $N$ to be limited to $H$ as its highest harmonic number so we use:

    ## 298 FOR N=1 TO H <br> 230 NEXT N

    This will step the value of N from l to H (which
    we have set to 3) then go to the next step.
    Thus, this loop will give us the Fl, 2F1, 3Fl steps for $\mathrm{N}^{*}$ Fl.

    Each time we go through one of these $N=1$ to 3 cycles, we then would like to step $M$ by 1 and repeat this until $M$ becomes 3 (or $H$ ). To do this we place a second FOR-NEXT loop around the $N=1$ TO H loop.

    Thus $N$ will step from $l$ to $H$ (3), go to the next step in the program, which is to increment $M$ by 1 , then go through $N=1$ to $H$ again, increment $M$ by $i$ again, until both $N$ and $M$ are equal to $H$.

    This set of loops looks like:

    ```
 206 FOR M=1 TO 日
 228 LET A=N*F1+M*F2
 230 LET B=ABS (N*F1-M*F2)
 240 PRINT A,B
 240 NEXT N
 250 PRINT
 260 NEXT M
    ```

    This prints out all possible mixing products exactly a shown earlier in the chart. The 260 PRINT statement provides the space between each value for M.

    Next we want to limit what we print out on the screen to only those values that fall within our frequency limits.

    We merely state that if $A$ is greater than the Lower Frequency Limit and less than the Upper Frequency Limit, PRINT A. The same statement can be made concerning $B$.

    In BASIC this would be:
    IF A $>=$ FL AND A $<=$ PU THEN PRINT A
    IP B $>=$ PL AND B $<=$ PU THEN PRINT B
    So we can add these statements into our loops:

    ```
 200 FOR M=1 TO H
 210 FOR N=1 TO H
 220 LET \(A=N^{*} F 1+M * F 2\)
 230 LET \(B=A B S\left(N^{*} F 1-M * F 2\right)\)
 246 IF \(A>=\) FL AND A \(<=\) PU TGEN PRINT A
 250 IF B \(>=\) FL AND B \(<=\) FU THEN PRINT B
 260 NEXT N
 270 PRINT
 280 NEXT M
    ```


    ## MORE OUTPUT

    Actually, it would be nice if we could print out a bit more informetion than just what spurious frequencies will be generated.
    Ideally, the printout should give us more
    information than we get from the above statements.
    We have already calculated just exactly which
    harmonics of which input signals create which
    spurious outputs. We should have the computer
    print this information out for us, too.

    Here, then, is a set of PRINT statements that will accomplish this goal:

    ## 246 IF $A>=$ FL AND IF $A<=$ PU THEN PRINT TAB $0 ;$  <br> 250 IF B $>=$ FL AND IF B $\langle=$ FU THEN PRINT TAB 0; 

    This tells the computer to check the results of the calculation to see if it falls in our FL-FU range, print the the Graphics string (G\$), the harmonic number (N) " ${ }^{\prime \prime} \times F 1+{ }^{\prime} \quad(M) \quad n \times F 2={ }^{\prime}$ " then the result (A) "MHZ". A similar thing happens for (B):
    

    It might be good to eliminate the PRINT step between NEXT N and NEXT M unless it is desired that here will be a space (or one could use a graphics line) between printouts of $M=1, M=2$, etc.

    ## ENDING THE PROGRAM

    At the end of all calculations anci cimparisons the FOR/NEXT loop will, of course, go tc the next step in the program which will be either an ending statement of some $k i n d$ or a request for more data.

    To end the program the following line would be adequate:

    260 PRINT GS

    This, of course, would print a single Graphics string to close off the bottom of the last result of the program.

    Some may wish to change the frequencies, say, check the impact of a 21 MHz IF versus a 18.7 MHz IF. O. one might wish to look at the spurs over a wider a for would allow just one or two items to be changed.

    > One way to do this would be:

    $$
    260 \text { PRINT G\$ }
    $$

    270 PRINT "CHANGE VARIABLES? ( $\mathrm{Y} / \mathrm{N}$ )
    CHG? 289 INPUT C\$
    290 IF C $\${ }^{\circ}{ }^{\circ} \mathbf{Y}^{\prime \prime}$ THEN GOTO 35』
    STOP 300 STOP (END)
    CLS 350 CLS (CLEAR SCREEN)
    INSTR 360 PRINT "ENTER NEW VALUE OR $0^{*}$

    ```
 Fl llol
 g9 PRIMT -FREQ 2= =,F2
 410 INPUT PC2
 430 IF PC2 <> THEN LET F2 = PC2
 44 PRINT "HIGHEST HARM= "; H
 458 INPUT HC IF HC <> THEN LET H = HC
 470 PRINT "UPPER FREQ= ";FU
 4 8 9 ~ I N P U T ~ P C U ~
 490 IP FCU <> TAEN LET FU = PCU
 580 PRINT "LOWER FREQ= ";FL
 519 INPUT PCL
 520 IP FCL <> THEN LET FL = FCL
 CLS 530 CLS (CLEAR SCREEN)
    ```

    RESTART 540 GOTO 28


    this. Thus we will have:
    5 LET C $\$=$ "*
    30 IF $C \$\rangle$ " $Y$ " THEN INPUT FI
    50 IF C§ <> "Y" THEN INPUT F2
    70 IF C\$ <> "Y" TEEN INPUT H
    90 IF CS <> "Y" THEN INPUT FU
    100 IF C\$ 〈> "Y" THEN INPUT FL

    HP 25 PROGRAM
    Just to show the difference between computer implementation of this program and the same program on an HP 25 calculator, let's briefly look at the HP 25 version:
    SET-UP:

    | 1) | STO |  | 0 |  |
    | :---: | :---: | :---: | :---: | :---: |
    | 2) | STO 1 |  | 0 |  |
    | 3) | STO 2 |  | F1 | Frequency 1 |
    | 4) | STO 3 |  | F2 | Frequency 2 |
    | 5) | STO 4 |  | FL | Lower Limit |
    | 6) | STO 5 |  | PU | Upper Limit |
    | 7) | STO 6 |  | $B$ |  |
    | 8) | STO 7 |  | H | Harmonic Limit |
    | PROGRAM: |  |  |  |  |
    | 1) | RCL | 16) | $R \mathrm{~V}$ | 31) 8 |
    | 2) | RCL 2 | 17) | R/S | 32) STO X ${ }^{\text {3 }}$ |
    | 3) | x | 18) | NOP | 33) GTO 01 |
    | 4) | RCL 1 | 19) | 1 | 34) NOP |
    | 5) | RCL 3 | 20) | STO+ | 35) RCL 2 |
    | 6) | $x$ | 21) | RCL 9 | 36) RCL 3 |
    | 7) | - | 22) | RCL 7 | 37) + |
    | 8) | ABS | 23) | $\mathrm{X}>=\mathrm{Y}$ | 38) - |
    | 9) | RCL 4 | 24) | GTO 1 | 39) R/S |
    | 10) | $\mathrm{X}>=\mathrm{y}$ | 25) | 1 | 4e) CLX |
    | 11) | GTO 19 | 26) | STO+1 | 41) GTO 19 |
    | 12) | CLX | 27) | RCL 1 | 42) SIN -1 |
    | 13) | RCL 5 | 28) | RCL 7 |  |
    | 14) | $\mathrm{X}<\mathrm{Y}$ | 29) | $\mathbf{x}<\mathbf{Y}$ |  |
    | 15) | GTO 19 | 36) | GTO 42 | Change line 07 to + for other spurs. |

    ## MODIFICATION FOR OTHER PURPOSES

    It will often become apparent that one program can be used for a similar, but different purpose by minor modifications.

    Our Spurious Mixing Products program can be
    tied to Receiver Intermodulation products in a applied to Receiver Intermodulation products in a very similar program.

    Here, however, we are looking for possible input frequencies which could interfere with a given
    receiver channel, say in a Repeater system or FM or TV translator receiver.

    Thus we will want to step through all possible channels to find those that could mix together and fall within or adjacent to our receiver's passband.

    I won't go into full details, but FOR/NEXT loops can be used as follows:

    $$
    \begin{aligned}
    \text { FI } & =\text { Input Frequency (Desired Channel) } \\
    \text { CH } & =\text { Channel Spacing (for band being used) } \\
    \text { FU } & =\text { Upper Prequency Limit (RX Front End) } \\
    \text { FL } & =\text { Lower Frequency Limit (RX Front End) } \\
    \text { CU } & =\text { PI }+ \text { CH (Upper Adjacent Channel) } \\
    \text { CL } & =\text { FI }- \text { CH (Lower Adjacent Channel) } \\
    \text { H } & =\text { Haximum Harmonic (each frequency) }
    \end{aligned}
    $$

    10 INPUT FI
    DATA
    29 INPUT CB
    39 INPUT FU
    49 INPUT FI
    45 INPUT H
    46 LET CL=FI-CB
    LET CU=FI+CB
    50 FOR A=FL TO FU STEP CE 60 FOR B=FL TO FU STEP C
    79 FOR C=1 TO H
    89 POR $D=1$ TO H
    CALC 9 L LET $E=A B S(C * A-D * B)$
    COMP 100 IF E $>=$ CL AND <= CU THEN
    
    D; $X$, $=$ CaANNEL

    ## 110 NEXT D <br> END 148 PRINT GS <br> 180 NEXT A <br> 190 PRINT GS; GS <br> 206 STOP (END)

    CLOSE
    CLOSE
    AND

    This program would print out something like the following for $F I=101.5, \quad \mathrm{CH}=.2, \quad \mathrm{FU}=102.5, \quad \mathrm{FL}=100.5$ and $\mathrm{H}=3$ :

    ##  <br> $2 \times 180.5-3 \times 180.9=$ CBANNEL <br> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx <br> $1 \times 100.5-2 \times 101.1=$ CEANNEL <br>  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX $1 \times 109.7-2 \times 101.1=$ CHANNEL Xxxxxxxxxxxxuxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX etc.

    ## COMBINING PROGRAMS

    One problem with small computers is that they frequently lack a Disc Drive. That means that one are likely to be loading things from a cassette. Cassette data storage is notoriously slow.

    One answer to this is to buy a Disc Drive, of course, but another solution is to buy one of the specialized programs developed to speed up loading and saving with cassettes. There are several such programs for the TIMEX, some even on EPROM, and at least one for the COMMODORE 64.

    Since these quickloading programs can load 16 K of data from cassette in $30-60$ seconds, a combined large program made up of several related smaller programs may be an erfectif one program needs to be run prior cond program
    running a second program.
    The main consideration with interactive programs is to make sure that the correct program is run first and that the variables of one do not conflict with the variables of the other.

    Since our two spurious programs are somewhat related, we'll use them as an example of one method of combining programs:

    10 PRINT GS;TAB 15;TAB 13;"MENU:":
    TAB 3;"1) SPURIOUS MIXING OUTPUTS";
    TAB 3;"2) RECEIVER INTERMODULATION";
    TAB 1;TAB 0;G\$
    20 INPUT $S$
    30 IF $S \$=$ 1 $^{*}$ THEN GOTO 500
    

    This program MENU will be printed by 1 ine 10 and will go to 508 if ${ }^{\prime \prime} 1^{\prime \prime}$ is selected or to 1000 if " $2^{\prime \prime}$ is selected. The start of the Spurious Mixing Out puts program would, of course, need to be numbere between 586-999. The

    Fucthermore, at the end of each should be some means of either continuing with the same program or going back to the MENU. This is most easily of the earlier described SPURIOUS program with:

    ## 300 GOTO

    Thus, if the answer to "AGAIN ( $\mathrm{Y} / \mathrm{N}$ )" is not " Y " the computer will execute the next step, GOTO 0 , which prints out the MENU. It will do this regardless of the actual letter put in $\mathbf{S} \$$, of course, since only "Y" will restart the program currently in use.

    If you wish to be able to stop everything, add:
    295 IP C\$= ${ }^{-}{ }^{-}$- THEN STOP
    Then change line 278 to:

    ## 270 PRINT "CBANGE VARIABLE ( $\mathrm{Y} / \mathrm{N} / \mathrm{S}=\mathrm{STOP}$ )

    This way a "Y" restarts the program, "N" takes you to the MENU, and "S" stops the computer.

    ## SUB-ROUTINES

    The last thing we will look at is the use of subroutines.

    The simplest way to modify data... convert from dB to ratio, dBm to milliwatts or $u V$, and so forth, is to provide a subroutine which can be called upon in your program whenever necessary. several times during a program.

    Subroutines can be of great assistance in developing new programs by allowing use of old subroutines where appropriate. Those with UTILITY programs which allow combining programs by entering one, renumbering, then entering another and merging the two could save a lot of time by having a file of subroutines on tape (or disc) which you would then be
    able to call upon as required.
    This modular approach to programming isn't always the easiest technique to dis-assemble once the program is done, however. Trying to follow the logic of a BASIC program using sub-routines extensively i not my idea of great funi for simpler programs generally don't use sub-routines unless re-use of th routine warrants this.

    ## SOME RP / ELECTRONICS SUB-ROUTINES

    ## CAPACITIVE REACTANCE:

    ## 19 LET $\mathrm{F}=\mathrm{X}$ <br> 29 LET C=Y

    40 (Next steps using XC etc.)
    ( $\mathrm{X}, \mathrm{Y}$ and $10,20,30$ are in main program) ( $X=$ Frequency in $\mathrm{Hz}, \mathrm{Y}=$ Capacitance in F )

    ## 1009 LET XC=1/(2*PI*P*C)

    1905 RETURN10 LET $\mathbf{F}=\mathrm{X}$
    20 LET $X C=Y$
    38 GOSUB 1818
    40 (Next steps using C, etc.)
    ( $\mathrm{X}=\mathrm{Fr}$ requency in $\mathrm{Hz}, \mathrm{Y}=$ Capac. Reac. in Ohms)
    $1916 \mathrm{LET} C=1 /(2 * P 1 * P * X C * 1 \mathrm{E}-6)$
    1915 RETURN

    INDUCTIVE REACTANCE:

    1829 LET XL
    1825 RETURN in $H$
    $1036 \mathrm{LET} \mathrm{L}=\mathrm{XL} /(2 * \mathrm{PI}$ *P)
    ( F in HZ , XL in Ohms) 1035 RETVRN

    ## DECIBELS TO VOLTAGE

    1940 LET V=10**(DV/20)
    1845 RETURN

    ## VOLTAGE TO DECIBELS：

    ## 1850 LET DV＝2日＊LN V／LN 1

    1055 RETURN
    （NOTE：Timex uses LN for Natural Log．Many computers use LOG as in BASIC this denotes Natural Log．）

    DECIBELS TO POWER：
    1068 LET DP＝18＊LN V／LN 10 1065 RETURN

    POWER TO DECIBELS：
    1070 LET $\mathrm{P}=10$＊＊（DP／10）
    1075 RETURN

    DBM TO UV，V，HV
    1986 LET UV＝223607＊1日＊＊（DBM／2日）（50 OHMS） 1985 RETURN

    1098 LET UV＝273861＊10＊＊（DBM／29）（75 OHMS） 1095 RETURN
    1108 LET V $=.787197 * 10 * *(\mathrm{DBM} / 20) \quad$（ 566 OHMS ） 1185 RETURN
    1110 LET V＝1800＊18＊＊（DBAV／20）（75 OHMS） 1115 RETURN

    UV，V，MV TO DBM
    1120 LET DBM＝20＊LN（OV／223607）／LN 10 （5B）
    1125 RETURN
    1130 LET DBM＝2日＊LN（UV／273861）／LN 18 （75）
    1135 RETURN
    1140 LET DBM＝20＊LN（V／．787187）／LN 10 （500）
    1145 RETURN
    1150 LET DBHV＝28＊LN（AV／1000）／LN 18 （75）

    ## TURNS RATIO

    116 LET T＝SQR（Z1／zO）（or $\mathrm{Z} 1 / \mathrm{Z} 2$ ）
    1165 RETURN

    ## CONCLUSION

    Many of us have been confirmed calculator button pushers in the past．We will continue to be so in pushers the future．

    However，there are some things that can be done better on a computer and computers are so reasonably priced today that not owning one is difficult for an engineer to justify（unless he＇s got a $\$ 5000$ one at work，of coursel）

    I hope that this paper has given some insight for the beginning computer user into how programs can be put together for best utility．Many will go on to far exceed the level presented here．

    A book that I recommend for the Electronics tech or engineer is：

    ## BASIC COMPUTER PROGRAMS IN

    SCIENCE AND ENGINEERINGJules H．Gilder
    Hayden Book Company
    Rochelle Park，N．J．
    ISBN 0－8184－8761－2

    Aside from the usual technical publications such as RF Design，another good source of RF related programs on the simple to moderate level of complexity is HAM RADIO magazine．

    Table of Contents
    BSTRACT
    CIO's Analysis Capabilities
    CIAO's Optimization Capabilities ..... 1
    2
    3
    Magnitude Optimization

    Table Optimization ..... | 3 |
    | :--- |
    | 3 |

    $$
    \begin{aligned}
    & \text { Delay Optimization } \\
    & \text { The Optimization Method }
    \end{aligned}
    $$

    The Optimization Methad
    The Methods and Capabilities of DESIGN ..... 6
    DESIGN: What It Does ..... 6
    7
    Step 1.

    $$
    \begin{aligned}
    & \text { Step } 2 . \\
    & \text { Step } 3 .
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \text { Step } 3 . \\
    & \text { Step } 4 .
    \end{aligned}
    $$Entering Data for CIAO and DESIGNCIAO Sample Session${ }_{10}^{9}$

    The Circuil ..... 10
    13
    The Program Output: Initial Analysis, Optinization Results, and Execution Speed ..... 14
    dESIGN Sample Session ..... 17
    Statement of the Synthesis Problem ..... 17
    Data Input ..... 18The Resistance-Excursion Optimization andCurve-Fitting
    The Results of the Example
    DESIGN's Execution Speed
    30
    Conclusion ..... 30Appendix a ELEMENTS of a CIAO DATA FILE (Chart)Appendix B NOTES and REFERENCES

    ## abstract

    ### 1.1 ABSTRACT

    The CIrcuit Analysis and Optimization program CIAO (pronounced 'chow') and the Matching Network Synthesis program Desig are powerful Lools for RF and microwave linear circuit design that have been developed for personal computers. Versions of CIAO and DESIGN are avallable for the IBM-PC [1] and most other 16-bit MS-DOS [2] machines. A RAM of at least 256K is required to run CIAO, while 128K will suffice for DESIGN. Both programs will run under DOS version 1.0 or above; in addition, full support of the 8087 numeric data processor chip is optionally available. A sifghtly abbreviated version of 8-bit, 64R RAM, CP/M-80 [3] machines.

    CIAO provides the ability to analyze and optimize broad classes of passive and active networks. Both the magnitudes and phases of the scattering parameters of the networks - which may consist of arbitrary interconnections
    of $R$, $L$, $C$, controlled-source, gyrator, transmission-line, two-port, and three-port elements - can be optimized over a frequency band. DESIGN performs the truly automated synthesis of broadband, gain-sloped, lumped-element or distributed-parameter matching networks. DESIGN uses tabulated load data in its synthesis process; no equivalent circuit load-modeling is required. Both CIAO and DESIGN have been shown to work efficiently and accurately in a wide variety of cases.

    ### 2.1 CIAO's Analysis Capabilities

    CIAO performs the analysis and optimization of linear circuits in the frequency domain. Specifically, CIAO can calculate the complex scattering parameters, over a specified frequency range, of a one-port or two-port network which is described by a data file. The circuit elements recognized by CIAO (for both analysis and optimization) include:

    - Resistors
    - Capacitors
    - Inductors
    - Voltage-Control: i Current Sources (VCC) with optional Delay

    Gyrators

    - Two-port Transmission Lines with optional Loss
    - Open-Circuit Transmission-Line Stubs with optional Loss
    - Short-Circuit Transmission-Line Stubs with optional Loss
    - One-ports described by tables of scattering (S), admittance (Y), or impedance ( $Z$ ) parameters over frequency
    - Two-ports described by tables of S, Y, or 2 parameters over frequency
    - Three-ports described by tables of $S$ parameters over frequency.

    Each port-reference-impedance of the one-port or two-port may be characterized by either single real value or by a one-port $S$, $Y$, or $Z$ table description. All two-ports may have four independent terminals; the three-ports are common-terminal types. Appendix A shows how other circuit
    mutual inductance can be accurately modeled by simple interconnections of a few of the library elements.

    ### 2.2 CIAO's Optimization Capabilities

    Starting with an initial set of element values for a circuit design, CIAO can obtain, by means of an iterative optimization method, a new set of element alues which provides an improved frequenty response for the circuic. various modes and features of the optimization process will now be described.

    ### 2.2.1 Magnitude Optimization

    In the magnitude optiaization mode, CIAO attempts to match, over a specified requency band, any number of the four scatcering-parameter MnGNTUDES of the wo-port (or the single reflection-coefficient magnitude of the one-port) to target values or ranges specified in the data file. The program performs this task by optimally perturbing designated element values in the circuit. The target values or ranges may vary with frequency; in addition, weights may be specified to to achieve a better matc. With some $S$ par provides substantial with others at certain frequencies. The program provides substantial

    ### 2.2.2 Table Optiaization

    In the table optimization mode, CIAO attempts to match, over a given requency range, both the MAGNITUDE and PHASE of the network's scatterin parameters to values given in the data file's special optimizing table Separate weights nay be applied to the magnitude and phase of each S-parameter. By choosing the weighting factors appropriately, it is possible to optimize either the magnitude or phase separately, or to simultaneously the best match over the specified frequency band. In addition, a simple data-file command statement enables the conversion of the optimizing table target values to ranges of permissible values for the S -parameter magnitudes.

    ### 2.2.3 Delay Optimization

    In delay equalizer applications, it is necessary only to match the delay through a given network to a specified shape over a frequency range, rather han to a set of absolute values. (The magnitude response seral) since lay is the nesative derivative with respect to frequency of the phase of the
     network s $\mathrm{S}_{2}$, matching a network response to a oiven delay shape is
    equivalent to matching that response to the corresponding phase shape plus an arbitrary constant phase plus an arbitrary linear phase. CIAO optionally allows this type of phase optimization for $S_{21}$ if desired.

    It should be noted that COMPACT [4], the well-known microwave-circuits computer program, attempts to calculate delay directly. There are two problems with this approach. First, COMPACT uses numerical differentiation of the phase to approximate the delay of $S_{21}$, and numerical differentiation is a notoriously noisy and inaccurate process. The second problem is even more take account of the contribution to the delay of any circuit element which is described by a table of values at distinct frequencies. This is easy to see since an element described by a table of values has for its phase description a plecewise-linear curve, and the derivative of this piecewise-linear curve is discontinuous at just those frequency points where we would like to evaluate the derivative. In fact, COMPACT ignores the contribution to delay of any circuit element described by a table of values. We have confirmed that this causes substantial error in network-response calculations for all but very narrow-band applications or for those trivial cases where the phase of the table-described element remains constant over the given frequency range Furthermore, in some cases, COMPACT takes the absolute value of the computed phase before performing the numerical differentiation, resulting in a sign error for the delay [5]. Our approach, using phase calculations, avoids all o the aforementioned difficulties and provides consistently accurate result ver a wide range of circuit conditions.

    ### 2.2.4 The Optimization Method

    To perform the optimization, CIAO first constructs an error function consisting of the sum of the squares of the errors between the CALCULATED magnitudes (and phases) and the DESIRED magnitudes (and phases) of the network's scattering parameters over a given set of frequencies. Analytically, the most general form of the error function used by CIAO is given by

    $$
    \begin{aligned}
    & \text { Error Function }=\sum_{\mathbf{f}} \sum_{i, j}\left[W_{m_{i j}}(f) *\left[S_{m_{i j}}(f)(\text { calc. })-S_{m_{i j}}(f)(\text { des. })\right]^{2}\right. \\
    & \\
    & \text { where: }
    \end{aligned}
    $$

    f denotes frequency;
    $\mathrm{Sm}_{i j}$ and $\mathrm{Sa}_{1 j}$ denote the magnitudes and phase angles of the S -parameters; and
    $W_{i j}$ and $W_{i j}$ denote the magnitude and phase angle weighting factors.
    For a two-port, $i=1,2$ and $j=1,2$ in the above equation, while for a one-port only the $i=1, j=1$ case is considered. Special methods (that we shall not discuss here) are used to handle the cases where the desired S-parameter values are represented by ranges of permissible values.

    A modified version of the Fletcher-Reeves [6] optimization algorithm is then used to minimize the value of the error function by perturbing designated element values. The algorithm requires a knowledge of the partial derivative of the error function with respect to the optimizable element values, and it is here that CIAO provides a unique ability. We calculate the EXACT partial derivatives of ALL the optimizable elements - regardless of their number using just TWO circuit analyses. This is made possible by using adjoint network [7] techniques. The result is an extremely fast optimization process

    It should be noted that COMPACT, which employs a gradient-type optimizer similar to that of Fletcher and Reeves, uses the method of finite-differences circuit analyses per EACH optimizable circuit element, thus yielding much slower execution times than would otherwise be possible using adjoint techniques. Furthermore, the finite-difference approximation can sometimes be insufficiently accurate to obtain convergence to an acceptable solution. With CIAO, however, the optimization almost always proceeds rapidly and predictably towards satisfactory convergence; in addition, the program user may interrup and then continue or stop the optimization process at any time.

    Random-grid-search methods have sometimes proved effective in circuit optimization problems, particularly when the initial design is very far from the optimum. Typically, the error function is evaluated several times for a optimizable element values - and from this a "better" set of circuit parameters is deduced. When the grid is large enough, convergence to local parameters is deduced. When the grid is large enough, convergence to local
    minima can be avoided, but this often requires a relatively large number of error-function evaluations. A future version of CIAO will additionally include a random-grid search method for optimization. However, CIAO's specially-modified gradient optimizer already does indeed provide the
    capability to achieve convergence for some rather difficult circuit problems.

    ### 2.3 The Methods and Capabilities of DESIGN

    We now discuss the capabilities of the program DESIGN, which can automatically synthesize broadband, gain-sloped matching networks, and which requires only source and load impedance values as essential data. This program alone can design matching networks to meet basic system requirements. that are optimized in the face of non-ideal effects such as transmission-line loss and the non-unilateral-device assumption

    The synthesis method used in DESIGN is based upon the work of Carlin and Komiak [8]. It has been shown that matching networks designed by this technique are "simpler in structure and superior in frequency response to qual-ripple designs approaches the classical appro best of our knowledge, DESIGN is the only commercially available program that employs the superior Carlin-Romiak technique for matching network synthesis.

    ### 2.3.1 DESIGN: What It Does

    DESIGN synthesizes lossless matching networks to provide a specified $\mathrm{S}_{21}$ magnitude response $\left(\mathrm{Sm}_{21}\right)$ across a frequency band between a real source impedance and a complex load impedance. (The complex-source to complex-load case can be easily handled in conjunction with CIAO.) The program user interactively inputs the desired degree of the network, the source and load data, and the desired values for $\mathrm{Sm}_{21}$ across the passband. The frequenc points specified for the complex load define the passband of the network.

    ## Since the relationship

    $$
    \left(\mathrm{Sm}_{11}\right)^{2}=1-\left(\mathrm{Sm}_{21}\right)^{2}
    $$

    holds at any frequency for lossless two-ports, specifying " 1 " for $\mathrm{Sm}_{2}$ across the passband will generally produce a matching net work with ninimum reflection coefficient values at the source and load ports. (Recall that ine magnitudes of the reflection coefficients at the ports of a lossless recifrocal two-port
    are always equal.) Specifying a varying $\mathrm{Sm}_{\text {al }}(\langle=1)$ yields a gain-sloped matching network, with the accompanying tradeoff of higher reflection coefficients at the ports. Thus DESIGN affords substantial flexibility in its synthesis process.

    The design procedure is based on a lumped, shunt-capacitor, series-inductor, lowpass topology, with an optional shunt-inductor at the load end of the network providing a bandpass response, if so desired. The program indicates which topology is most appropriate for your particular load data, and the program user has she option to follow this sugsestion or not. If the bandpass structure is selut (a suggested value is supplied by DESIGN), and then this inductor is automatically "absorbed" by the original load to create a new complex load. The synthesis then proceeds on a lowpass basis, and ultimately provides the values for series-inductors and shunt-capacitors. The program also produces an equivalent distributed-parameter matching network consisting of
    open-circuit and short-circuit transmission-line stubs. No data file is required; all input to the program is requested interactively.
    2.3.2 DESIGN: The Method Briefly Explained
    2.3.2.1 Step 1.

    The Carlin-Komiak method, as implemented in DESIGN, begins with the construction of a piecewise-linear function of frequency, $R(f)$. This function is an initial approximation to the real part of the matching-network impedance looking back into the network at the complex-load end, with the network terminated at the other end in its real source impedance. To construct $R(f)$, a lowpass topology is assumed with $R(0)$ being the source impedance, and $R(f)$ ) being zero at some frequency $f$ above the highest frequency specified for the complex load. The frequency chosen for ${ }^{\text {lo }}$ will depend upon the degree
    selected for the network. Experience must dictate the degree to choose, with degrees of 3, 4, or 5 being coman for many applications. A number of break frequencies $f_{\text {, gust }}$ then be chosen in the passband between zero and $f_{n}$, along frequencies $f_{i}$ must then be chosen in the passband between zero and with the corresponding resistance values $R(f)$. The number of break frequencies is dependent upon the bandwidth of the network and the desired degree. It most cases it is sufficient to select fewer than 7 break frequencies which are more or less uniformly distributed across the passband. The $R\left(f_{i}\right)$ may initially be assumed to vary in a linear fashion between $R(0)$ and zero at $f_{n}$. It should be noted that DESIGN makes all the aforementioned decisions for ${ }^{\text {no }}$ the program user (except for the degree
    specification): generally, the sophisticated user is allowed to override specification); generally, the sophisticated
    certain default values generated by the program.
    2.3.2.2 Step 2.

    The program then calculates the reactance function $X(f)$, from $R(f)$, by the method of the Hilbert Transform. This calculation is extremely efficient by virtue of the piecewiae-linearity of $R(f)$. At this point, we note that the
    (non-optimal) matching network is completely defined by $R(f)$ and $X(f)$, and
    could be synthesized by standard network-theoretic techniques. The next step is to calculate $\mathrm{Sm}_{21}$ of the matching network from a knowledge of $R(f)$, $X(f)$, and the source and load impedances across the frequency passband. Then an
    error function is constructed as the squared-error between the calculated error function is constructed as the squared-error between the calculated values of $\mathrm{Sm}_{2}$, and those values of $\mathrm{Sm}_{21}$ that we wish the network to have in
    the passband. the passband.

    ### 2.3.2.3 Step 3.

    Finally, an iterative optimization procedure is employed to find the break-frequency resistance values $R\left(f_{i}\right)$ that minimize the error function. In other words, we seek an optimal $R(f)$ and corresponding $X(f)$ which will yield the desired $S_{21}$ magnitude response for the network. The optimization is numerically very well-conditioned because the error function, as consequently, shown, is only quadratically dependent upon the unknowns $R\left(f_{i}\right)$.
    in almost all cases, the optimization converges satisfactorily. DESIGN then performs the network synthesis steps necessary to yield the
    final element values for both the lumped and distributed versions of the desired matching network. This involves curve-fitting a rational polynomial to the optimized function $R(f)$, finding the left-hand plane roots of the to the optimized function $R(f)$, finding the left-hand plane roots of the
    corresponding function of the complex-frequency variable $s$, constructing the matching-network's transducer-loss function $H$ (s) $=1 / \mathrm{Sm}_{21}$ (s), and then expanding this function in an appropriate manner to find the actual element expanding Each step of the synthesis process is summarized in DESIGN's output.

    In those exceptional cases where DESIGN either initially fails to converge, or obtains physically unrealizable element values from the curve-fit, various strategies may be employed which almost always persuade DESIGN to eventually succeed in the synthesis. These include: (1) overriding certain default alues establice by the progran; (2) the network.

    ### 2.3.2.4 Step 4.

    CIAO can also be used with DESIGN to synthesize matching networks between a complex source and a complex load, or to compensate matching networks for a variety of non-ideal effects. In addition, CIAO can improve the response accuracy of any network synthesized by DEsign; this way be desirable, Carlin-Romiak method.

    The program CIAO always requires a disk data file, while DESIGN requests all data to be typed in at the keyboard at run-time. All data is entered for DESIGN in response to queries from the screen. Data entry is free-format. When more than one piece of data is entered on the same line, any number of
    spaces may separate the data fields. The program traps errors on data input, spaces may separate the data fields. The program t
    and allows revision of all data before proceeding.

    Input data for CIAO is taken from disk files. Certain options are specified by the user in response to screen queries. Both CIAO and DESIGN do not distinguish between upper or lower case characters, hence all alphabetic input or even mixed upper and lower case. Numeric input data for both programs may be entered in integer, floating-point, or scientific ("E") notation (e.g. be entered
    $1.23 e-7)$.

    For CIAO, a data file stored on disk needs to be constructed to describe the circuit to analyzed or optimized. Any ASCII editor may be used for this purpose, and almost any legal operating system file name may be used for the data file. (The only exception is that the file may never have the extension .BAS, as this would denote that the file has line numbers, as discussed presently.) It is also possible to use a BASIC editor to create disk data files for CIAO. One need only create a file, with BASIC's usual line numbers, according to the specification of the circuit, and then save that file in

    Save "b:CIRCIIT. BAS", A .
    For CIAO, data files are constructed line-by-line in free format, starting in any column, with any number of blanks delimiting the data fields. Any number of blank lines may be interspersed throughout the the data file. Comment lines are permitted; they are denoted by a single apostrophe (') being the first character on the line. Comments may also be appended to the end of any line of data as long as the comment is separated by at least one space from the last valid data field on the line, and the first character of the comment is neither an integer ( $0-9$ ), a plus sign ( + ), a minus sign ( - ), nor a period (.). In addition, CIAO will detect and identify many types of errors in the data file, and will instruct the user to return to the operating system to edit the file.

    ### 3.1.1 The Circuit

    The circuit shown in Fig. 1 will be used to demonstrate some of the basic features of CIAO. The circuit has been discussed in [14] and [15]. In [14], a optimization of the circuit was performed using SUPER-COMPACT; we show here performance of this well-known program.

    The circuit is a single-stage aicrowave transistor amplifier whose circuit response is to be improved by perturbing the nominal element values shown in Fig. 1. Specifically, new element values are to be found to achieve the smallest values for $S_{11}$ and $S_{22}$ while achieving a f1at gain for $S_{21}$ of 3.162
    $(10 \mathrm{~dB})$ across the frequency band $10 \mathrm{MHz}-250 \mathrm{MHz}$. The CIAO data file to achieve this is shown immediately following Fig. 1.

    Fig. 1: CIAO Optimlzation Example

    Lalliol velues os chown laptialzed volues in perentheeses).

    Units: PF. aH, end ohas.
    

    ## CIAO Data Flle for Clrcult of F!g. 1

    -CIRCUIT OESCRIPTION SECTIOH (* means optimize?
    cap* 1 3e-12
    ind 12 18e-9
    res: 24208
    ind* $4328 e-9$
    res 30308
    
    ind* 35 iee-9
    two $20 \quad 30$ tablel
    port1 18050
    port2 5 - 50
    perform twoport optimization magnitudes

    The frequencies section (freq (Hz) visiji-weight/isisi-goal)
     and
    'The tables section
    taplel sparan
    50
    $\begin{array}{lllllllll}.95 & -2 & .003 & 34.3 & 7.35 & 174.6 & 1.81 & -1\end{array}$
    $\begin{array}{llllllll}.92 & -11 & .097 & 79.0 & 7.15 & 108.0 & .99 & -4\end{array}$
    $\begin{array}{llllllll}.92 & -11 & .087 & 79.8 & 7.15 & 108.8 & .99 & -4 \\ .87 & -28 & .015 & 69.2 & 6.33 & 154.5 & .96 & -18\end{array}$
    $\begin{array}{llllllll}.87 & -28 & .015 & 69.2 & 6.33 & 154.5 & .96 & -18 \\ .78 & -54 & .026 & 54.0 & 3.28 & 135.8 & .98 & -18\end{array}$
    $\begin{array}{llllllll}.78 & -54 & .026 & 54.0 & 0.28 & 135.8 & .98 & -18 \\ .68 & -78 & .833 & 41.4 & 5.67 & 123.0 & .84 & -25 \\ .63 & -98 & .037 & 33.6 & 5.04 & 113.8 & .79 & -30\end{array}$
    $\begin{array}{llllllll}.63 & -98 & .037 & 33.6 & 5.04 & 113.0 & .79 & -30 \\ .68 & -114 & .038 & 29.3 & 4.42 & 98.9 & .79 & -33\end{array}$
    $\begin{array}{llllllll}.68 & -114 & .038 & 29.3 & 4.42 & 99.9 & .75 & -33 \\ .58 & -127 & .839 & 28.8 & 3.88 & 87.8 & .75 & -35\end{array}$

    ### 3.1.2 The Data File

    The CIAO data file for this example is typical of the data file format for any circuit. The file contains three sections: circuit description, frequencies, and (optionally) tables.
    The circuit description is given in the familiar nodal interconnect format; nodes are numbered sequentially from zero, with node to being the ground
    node. Circuit elements are described by three-letter codes; in the present node. "circuit elements are described by three-letter codes; in the present respectively. An asterisk appended to a code indicates that the element value is optimizable. The element code "two" defines a two-port circuit element which is specified by a table of $S$, $Y$, or $Z$ parameters in the data file. In the present example, "two" is described by a table of scattering parameters.

    The circuit description section also contains the port specifications and the analysis options. In the given example, port 1 is between nodes 1 and 0 with a 50 ohm reference impedance. The port 2 description is obvious from the file. The "perform" statement says here that the circuit is to be optimized to S-parameter magnitudes siven in the frequencies section. Only the first three letters of each word in the "perform" statement are significant, hence, in the data file, this statement could have been written as "per two opt mag".
    CIAO will detect errors arising from invalid element types, missing or incomplete "port" or "perform" statements, and the like.

    Each line of the frequency section contains frequency data, S-parameter weighting factors, and $S$-parameter goals. In the present example, $S_{11}$ and $S_{22}$ are given the weight/goal specification $1 / 0$, which means that for these parameters the error function weighting factors are 1 and the desired values are $0 . \mathrm{S}_{12}$ is given the weighting 0 , which means that its value does not contribute to the error function. $S_{21}$ is given the weighting $1 / 3.162$, which means that the error function weighting is 1 and the desired absolute magnitude is $3.162(10 \mathrm{~dB})$. Note that weights are defined for every frequency band, i.e. every line of frequency data. Frequencies themselves are specified in ascending order or by a first-frequency, last-frequency, frequency-increment format. The frequencies are separated from the weight data by a backslash (V) as shown, or alternatively, by a senicolon (i). At
    least one space must precede and follow the backslash or semicolon. Errors in this format or incomplete weight specifications are flagged and identified by CIAO at run-time.

    The tables section gives the data for tables referenced in the circuit description section. There is only one table in the present case, but in
    general, up to 10 tables may be referenced. The order of appearance of the tables in the tables section is immaterial. A given table may be referenced any number of times by different circuit elements. Only the first letter of the table type is significant. In the present case, where tablel contains scattering parameters, the first entry (which must begin on a new line after
    the table statement) is the reference impedance, and subsequent entries correspond to the magnitude and phase (in degrees) for $\mathrm{S}_{11}, \mathrm{~S}_{12}, \mathrm{~S}_{21}$, and $\mathrm{S}_{22}$ at the successive frequencies given in the previous data section. In the table, any number of entries may be placed on a given line; we have grouped the entries here by frequency for easy readability. If a circuit element references a table that does not exist in the data file, CIAO will detect this error at run-time.
    3.1.3 The Program Output: Initial Analysis, Optimization Results, and Execution Speed
    As mentioned earlier, CIAO is executed by typing in, at the keyboard, CIAO plus a carriage return. The user then enters responses concerning the name of the data file and the output device (either the screen or the printer). At this point, CIAO asks whether a summary of the input data should be output,
    and afterwards, it performs the initial analysis of the circuit. If optimization of the circuit is indicated in the "perform" statement, the number of iterations desired is requested, and then the optimization begins. The user may interrupt the optimization at any time by holding down any key. The program has internal criteria for stopping the optimization; the user is queried from the screen as to whether the optimization should continue or stop.

    CIAO's output for the example of Fig. 1 is shown on the next two pages Note that the initial and final analyses print, at each frequency, the network's scattering parameters (magnitude and phase in degrees), and stablity factor R. The iniciai ainaly hish [14, p. 224], shows input and output reflection coefficients that are as high
     $\begin{array}{ll}\text { maximum value of } 0.18, ~ & S_{22} \text { has a maximum value of } 0.11 \text {, and } S_{21} \text { vafies from } \\ 9.7 \text { to } 10.1 \text { dB across the frequency band. These results compare quite }\end{array}$ favorably with those of SUPER-COMPACT from [14], where, after optimization, the maximum values for $S_{11}$ and $S_{22}$ are 0.19 and 0.17 , respectively, and $S_{21}$ varies from 9.8 to 10.1 dB .

    CIAO Program Dutput for Circuit of Fig． 1
    incial Anaiygis

    | Frea． | 311 |  | 512 |  | S21 |  | 322 |  | S21 | $K$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | （Hz） | Mag． | ting． | t1ag． | ting． | Mag． | ang． | Mag． | ring． | dB | Fact |
    | 1． $\mathrm{ABQE+HA7}$ | 0.08 | 17 | 4.124 | －0．2 | 2.384 | 175．7 | 0.84 | 138 | 8.0 | ：． 2 |
    | ：． $000 \mathrm{E}+0.83$ | 0.88 | 11 | 0.182 | －15．5 | 2.005 | 103.0 | 0.08 | 183 | 8.5 | ：． 3 |
    | $2.500 \varepsilon+808$ | 0.10 | 5 | 0.178 | －41．8 | 2.711 | $1+0.1$ | 0.15 | 78 | 8.7 | 1．2 |
    | $5.800 \mathrm{E}+888$ | －． 22 | －5 | 0.168 | －83．7 | 2.954 | 180.4 | 0.19 | 63 | 3.4 | i． |
    | ？．500E＋408 | 0.44 | －34 | 0.146 | －130．5 | 3.200 | 58.7 | 0． 23 | 83 | 18.1 | ： |
    | 1．80日E＋089 | 0.03 | －71 | 0.119 | －178．： | 3.260 | 11.7 | 0.37 | 83 | 10.3 | ： 1 |
    | 1．250E＋089 | 0．49 | －109 | 0.184 | 125.8 | 3.528 | －51．7 | 0.36 | 94 | 11.0 | 1.1 |
    | $1.508 \mathrm{E}+889$ | 0.63 | －67 | 0.047 | 42.3 | 1.999 | －144．1 | 8.87 | 89 | 6.8 | ： .1 |
    | iterstion Error func | number | ${ }_{0}^{8.582-u s i n g ~}$ | －using 1 function evaluation（s）． |  |  |  |  |  | function evaluation（s）． |  |
    | Magnitude | errors | 111， | 21，22］ | 1．31E | 10.00 | E＋080 | 2．77E | 81 | 43E－ |  |


    | Variable | Value | Gradient |
    | :---: | :---: | :---: |
    | 1 | 3．00008E－012 | 3．04153E－881 |
    | 2 | 1．00808E－808 | $1.60701 \mathrm{E}+808$ |
    | 3 | 2．08000E＋002 | －5．6843E－001 |
    | 4 | 2．80009E－808 | $4.56580 \mathrm{E}-881$ |
    | 5 | 3．0000日E－612 | 9．37410E－001 |
    | \％ | $1.08000 \mathrm{E}-808$ | 6．42941E－801 |

    Iteration number： 1 －using d function evaluation（s）．
    Error function：0．172
    Magnitude errors（11，12，21，22）：6．94E－002 0．08E＋0日 $5.24 \mathrm{E}-0 \theta 2 \quad 5.00 \mathrm{E}-002$

    | y／ariable | Value | Gradient |
    | :---: | :---: | :---: |
    | ： | 2．72409E－812 | －1．7291E－002 |
    | 2 | $7.26567 \mathrm{E}-809$ | －5．6132E－002 |
    | 3 | 2．57125E＋082 | －1．0394E－881 |
    | 4 | $2.42247 \mathrm{E}-808$ | 3．20011E－801 |
    | 5 | 2．22836E－812 | －3．3608E－903 |
    |  | 8．15510E－889 | 2．77998E－882 |

    

    | Uariable | Value | Gradient |
    | :---: | :---: | :---: |
    | ： | 2．73287E－013 | 2．80956E－802 |
    | 3 | 7．338．＇̇E－809 | －3．0728E－082 |
    | 3 | $2.73082 \mathrm{E}+002$ | i．49998E－081 |
    | 4 | 2．28093E－808 | 2．22470E－801 |
    | 5 | 2．19309E－012 | 4．41039E－002 |
    | 6 | 7．91213E－899 | 5．74532E－082 |

    It should be noted that SUPER-COMPACT used both random-grid and gradient optimization, with a total of at least 37 error-function evaluations (21 function evaluations for the grid search plus allowing 2 function evaluations for each of 8 gradient iterations), while CIAO was able to achieve its results with gradient optimization alone, using only 23 function evaluations over its
    10 iterations.
    CIAO's execution-time (including printout) for the 10 iterations was approximately 4 minutes on a Corona 16 -bit, MS-DDS microcomputer equipped with an 8087 co-processor chip. Each of the 23 function evaluations corresponds to an analysis of the network, as well as derivative and error-function
    calculations at 8 frequency points. A simple calculation yields cino's "optimization speed" in this example of about 1 frequency point per 1.3 seconds. (CIAO's speed in analyzing the network-i.e. without derivative or error-function calculations - is about 1 frequency point per 0.65 seconds.) error-function calculations - is about frequency point per 0.65 seconds.) factor of about 4.5. The run-times on a Kaypro II 8-bit, CP/M-80 microcomputer were found to be Just about the same as the times on the Corona without the 8087 chip.

    ### 3.2 A DESIGN Sample Session

    ### 3.2.1 Statement of the Synthesis Problem

    We present here a realistic matching network synthesis problem that can outinely be handled by the DESIGN program. The specific task is stated as follows:

    The input reflection coefficient, $\mathrm{S}_{11}$ of a Plessey GAT6
    GaAs FET chip (comon-source configuration) is shown in the table GaAs FET chip (common-source configuration) is shown in the table below. A network is to be designed to match this $S$, as a
    complex load, to a 50 ohm source across the given frequency' band. complex load, to a 50 ohm source across the given frequency' band.
    The matching network must provide the indicated gain-sloped $S_{21}$
    magnitude response between the real source and the complex load.
    Both a lumped and a distributed version of the network is required.

    | FREQ. | COMPLEX LOAD |  |  |
    | ---: | :---: | :---: | :---: |
    | $(\mathrm{GHz}$ ) | S11 (mag) | S11 (phase-deg) | (Desired S21 of matching network) |
    | 8.0 | 0.775 | -107 | 0.732 |
    | 9.0 | 0.750 | -118 | 0.809 |
    | 10.0 | 0.730 | -128 | 0.875 |
    | 11.0 | 0.710 | -136 | 0.943 |
    | 12.0 | 0.695 | -145 | 1.000 |

    PROBLEM: Match the complex load to 50 ohms with the prescribed gain slope.

    NOTES: 1. The complex load (S11 of the GAT6 chip) is defined with respect to a 50 ohm reference.
    2. The desired S2l of the matching network is defined with respect to the prescribed 50 ohm source and the indicated Sll complex load.

    Note that prescribing the $S_{21}$ magnitude response of the matching network also determines the magnitudes of the input and output reflection coefficients

    ### 3.2.2 Data Input

    The data for DESIGN is entered interactively at the keyboard. The transcript of the data entry for the specific problem at hand is given the next two pages. The data required by DESIGN is mostly self-explanatory, except for a few items that we now discuss.

    The Degree. The user must select a degree for the matching network. This may require some trial-and-error to achieve the most efficient design.
    The Match at DC . The program asks whether the "DC input resistance... be kept fixed at the $\frac{\mathrm{D}}{\mathrm{D} C}$ source resistance value". If the frequency band for the match starts at $D C$, then the appropriate reply would be "Y". Otherwise, if the frequency band is of the bandpass variety, " $N^{\prime}$ is the better answer, since frequency usady no need to enforce Lmpedance matchag outside the specin fatching at DC - even if' the desired response is bandpass - in order to achieve a satisfactory design.

    Bandpass or Lowpass Response. The program indicates that either a lowpass or
    
    
    
    
    
    
    
    $\overline{\text { A. }}:(N / f)$ swo -- $010-3000^{\circ} \mathrm{s}$ ivo poor ompon soviofonpul
    
    
    
    
    
    

    $$
    \bar{n}:(N / f) \text { swo }-\cdots \text {, ivo poon mondal }
    $$

    
    
    
    
    
    
    $\bar{\pi}:(N / \hbar)$ t10 - $0608^{\circ} 0 \quad 200+386^{\circ} 1-\quad 100-3005^{\circ} \mathrm{L} \quad 600+3000 \% 6$
    
    
    
    
    
    
     sporropep poot of mo

    A (N/K) s\% -- 5 ivo poor roprombery fo sogum
    s :pooy rof (sz "xow) ipurad Avyontory to roymurn ropus
    
    

    Fipnotno vopursed nof d vo pnotino worser nof 5 rozus
    
    NפISヨO 10f 2nduI an! 200və 2uI
    bandpass matching－network structure is possible．Then，the program indicates which choice will most likely lead to a successful synthesis by DESIGN．In the present case，DESIGN says that either a lowpass or bandpass topology would be suitable．The program offers this suggestion based upon the location of the load data on the Smith Chart，and upon the capabilities of the Carlin－Romiak synthesis algorithm．We choose the bandpass option here．The program then suggests a possible value for the added inductor；we select a somewhat larger value，as shown in the data input．Note that in the present example we initially specify a matching network degree of 4 ，but that selecting

    Number of Break Frequencies．The program asks whether the＂default number of break frequencies be used＂．In most broadband cases，the default value will to override the default to a larger value to achieve a satisfactory design．

    Curve－Fit Factor．Finally，the program asks whether the default value for the＂curve－fit factor＂should be used．This parameter，which may be adjusted between 0.2 and 1.5 ，varies the curve－fit weighting used in approximating the optimized piecewise－linear real－part function $R(f)$ ．The default value of 1.0 distributes the curve－fit points in a proportional way between the passband and stopband of the matching network；in most instances，this is adequate．In cases of convergence to non－physically realizable element values，changing the default value can often be beneficial

    3．2．3 The Resistance－Excursion Optimization and Curve－Fitting
    After the data input in completed，a summary of the（normalized）load and frequency data is output，and then the two－part design process begins．The first part involves finding the optimum piecewise－linear real－part function $R(f)$ ，and the second part involves fitting a rational polynomial to $R(f)$ and then decomposing this polynomial in the proper way to find the actual lumped
    and distributed matching networks．The DESIGN program output for the current and distributed matching networks．The

    Uegree nt network to of gesigned：
    Source resistance ohms：S．HOE＋B日：
    Note：Units of freouency in orogram zutput are rad＇sect
    Frequencizs are normalized so that the ias：load frea．＝ $1 \mathrm{rad} / \mathrm{sec}$
    Frequency scale factor used（rad／sec）：？．5：E＋G： $\mathrm{g}_{\mathrm{c}}$
    immittances are normalized so that source resistance becomes 1 ohm．

    | Normalized Load Frequencies， | Furyload）． | Imiyload）； | jesires ：321： | ars： |
    | :---: | :---: | :---: | :---: | :---: |
    | 9．66\％ | 3．48E－90： | －－．9E－091 | 9．732 |  |
    | 3.750 | 5．10E－901 | －2．3E－0日1 | 0.809 |  |
    | 0.833 | 7．3．E－80： | 2．23E－991 | 0.875 |  |
    | 9.917 |  | 5． $3.5 \mathrm{E}-\mathrm{A日1}$ | 0.743 |  |
    | 1.000 | $1.50 E+099$ | －．39E－091 | 1.890 |  |

    Note：load impedance values include effect of inductor of yalue $5.00 \mathrm{E}-\mathrm{a}: 0 \mathrm{H}$ shunted across original load．

    RESISTANLE EXCURSION OPTIMIZATIOK
    teration number：－using 1 function evaiuationis）．
    RHS Percentage ERROR of Transducer Power Galn across Dassband：26．763

    | Variable | Norm．Break－Freq． | pesisiante value | Gradient |
    | :---: | :---: | :---: | :---: |
    | 1 | 0.0000 | 1.0090 | －2．90E－0日1 |
    | 2 | 0.3725 | 0.7506 | －3．02E－001 |
    | 3 | 0.7458 | 0.5088 | －3．33E－981 |
    | 4 | 1.1174 | 0.2500 | －1．48E－981 |
    |  RMS Percentage ERROR of Transducer Power Gain across passband： 13.639 |  |  |  |
    |  |  |  |  |
    | $\begin{aligned} & \text { Jar:able } \\ & \vdots \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | idorm．Break－freo． | gesisinate talue | Gradient |
    |  | 0.0008 | 1.1393 | －2．36E－802 |
    |  | 0.3725 | 1．1309 | $-2.3 \mathrm{E}-\mathrm{BQ} 2$ |
    |  | 0.7450 | 1.1056 | －3．4aE－002 |
    |  | 1.1174 | 3.2528 | 5．390E－H02 |

    leeration number： $2 \quad-\quad$ sing 3 function evaluation zi．
    2.5 .2

    | yar．able | Norm． $\mathrm{Breah}-\mathrm{Freq}$ ． | PESISTARICE M，MLUE | Gradiont |
    | :---: | :---: | :---: | :---: |
    | 1 | 9.0800 | 1．309\％ | 1．146E－902 |
    | 2 | 0.3725 |  | 5．0日1E－083 |
    | 3 | 3． 3.450 | 1．3．95 | －1．32E－812 |
    | 4 | 1．1174 | 1．195： | －－．3PE－803 |

    ## DESIGN Program Output (cont'd)

    **Convergence Achieved, final sumary follows.
    Iteration number: 12 - using 2 function evaluation(s). RMS Percentage E ROR of Transducer Power Gain across passband: 1.815

    | Variable | Norm. Break-frea. | resistance malue | Gradient |
    | :---: | :---: | :---: | :---: |
    | 1 | 0.0988 | 0.9812 | -1.72E-984 |
    | 2 | 0.3725 | 0.8295 | -1.66E-904 |
    | 3 | 0.7450 | 1.9954 | -1.72E-094 |
    | 4 | 1.1174 | 2.0637 | -3.44E-895 |

    CONSTRUCTION OF THE IMPEDANCE 2(s)

    The even part of the $z(s)$ of the matching network looking back from the complex load (with the network terninated in the real source impedance) is given by Eu[2(s)]=a0 ( $\left.1+b 2 * s^{\wedge} 2+b 4 * s^{\wedge} 4+b 6 * s^{\wedge} 6+\ldots\right)$
    By curve-fitting, the coefficients of Eu[z(s)] are obtaineds
    $a 8=6.564 E-981$
    $b 2=2.713 E+808$
    $b 4=3.947 E+988$
    $b 6=2.598 E+908$
    $b 8=6.097 E-081$

    The left-nalf s-plane roots of the denominator of Eu[z(s)] are:

    | Root | 1: | Re | Part $=-3.79 \mathrm{E}-981$ | Imagin | Part $=-7.65 E-801$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Root | 21 | Real | Part $=-2.48 \mathrm{E}-801$ | Imaginary | Part $=1.307 \mathrm{E}+808$ |
    | Root | 31 | Real | Part $=-3.79 \mathrm{E}-091$ | Inaginary | Part $=7.654 \mathrm{E}-081$ |
    | Root | 41 | Real | Part $=-2.48 \mathrm{E}-801$ | Imagina | Part $=-1.31 \mathrm{E}$ |

    The transducer function $H(s)$ of the matching network, with port 1 at the real source and port 2 at the conplex load, is constructed fron the LKP roots of Eulz(s)). The result is $H(s)=A 8+A 1 * s+A 2 * s \wedge 2+A 3 * s \wedge 3+\ldots$ where
    
    final resultis: matching network element values from real-source sioe to COMPLEX-LOAD SIDE.
    (All values in Henries or Farads, unnormalized.)
    Shunt Capacitor $=1.389 \mathrm{E}-013$
    Series Inductor $=8.356 \mathrm{E}-818$
    Shunt Capacitor $=4.154 \mathrm{E}-013$
    Series Inductor $=4.975 \mathrm{E}-918$

    The last element is the Shunt Inductor added at the start of the synthesis, of value $5.000 \mathrm{E}-010$ Henries.

    A corresponding DISTRIBUTED EQUIVALENT CIRCUIT for the matching network is: OST, $20=25.8$ ohms, length $=12.06$ degrees at 9.798E+009 Hz

    TRL, $20=120.0$ ohms, length $=31.67$ degrees at $1.298 \mathrm{E}+818 \mathrm{~Hz}$
    OST, $20=25.0$ ohns, length $=32.59$ degrees at 9.798E+009 Hz
    TRL, $20=120.0$ ohns, length $=18.21$ degrees at $1.200 \mathrm{E}+010 \mathrm{~Hz}$
    SST, $20=120.0$ ohms, length $=14.39$ degrees at $9.798 \mathrm{E}+899 \mathrm{~Hz}$

    Optimization. At each iteration in the resistance-excursion optimization, e description of the normalized function $R(f)$ is given, and more importantiy, the percentage error in the transducer gain (i.e. the square of the magnitude of $S_{21}$ ) is given for the matching network that would result if $R(f)$ could be realized exacty. The program user is able to interrupt the optimization by he error the program has internal features to stop the holding down any key; the program has internal features tization as well. The optimization is numerically well-conditioned, and therefore almost always succeeds in reducing the error to a small value. Curve-Fitting. After the optimal, piecewise-linear, resistance function $R(f)$
    found, the (normalized) function Ev[Z(s)] is obtained as a
    is rational-polynomial, curve-fitting approximation to $R(f)$. A successful curve-fit causes the left-hand plane roots of $\mathrm{Ev}[\mathrm{Z}(\mathrm{s})]$ to appear on the rea axis, or, to appear as complex conjugates, with no roots on the tmaginary axis. Then the function is decomposed and denormalized to yield the actua element values of the desired matching network (both lumped and distributed ersions), as shown in the program output.
    3.2.4 The Results of the Example

    Fig. 2 shows the circuits which result from the design requirements of the present example. The results of a CIAO analysis of these networks are shown in Fig. 3, which illustrates that DESIGN has provided a reasonable approximation to the desired $S_{21}$ magnitude response for each matching network approximation between the real source and the complex load. For many cases these results would be adequate. For precision applications, a better match may be required, so we used CIAO to vary the elements of both the lemped and distributed versions of the matching network to obtain cimponenization, results were excellent, as indicated in Fig. . After values for the matching the error between the desired and calculated Shlo data files to achieve ets are shown following Fig. 3.

    It should be noted that DESIGN alone can often produce matching networks that meet requirements with great accuracy. In other cases, DESIGN gets close enough to the requirements that CIAO can then be used to reduce any remaining error to negligible values. Convergence with DESIGN occurs in the large majority of cases, although certain problematic data may require resetting some of the DESIGN's default data values.

    Fig. 2: Lumped and Distributed Matching Nefworks from DESIGN
    
    

    CIAO Data File for Optimlzatlon of

    ```
 LUMPED-ELEMENT Matching Network
    ```

    Flg. 3: LUMPED AND DISTRIBUTED
    
    ath order bandpass + load inductor
    oftimized element values

    ## Variable Value <br> $-1$

    1.23900E-813
    $6.78662 \mathrm{E}-818$
     $5.68760 \mathrm{E}-110$ $5.66760 E-018$
    $7.19564 E-018$

    CIAO Data File for Optlmization of
    DISTRIBUTED-ELEMENT Matching Network
    -4th order bandpass plus load inductor

    - (_. means optimize length but keep 20 constant
    (*- would mean optimize 20 but kepp length constant)
    (*\# would mean optimize both 20 and length)
    (Note: default length type is electrical degrees
    
    perform twoport optimization tablel
    port1 1050
    ort2 30 tables
    3e9 12.9 le9 $\quad$ o $1 / 0 \quad 0$
    end
    ables Sparaneters
    50 (char. impedance)
    $.775-187$
    $.75-118$
    $\begin{array}{ll}.75 & -118 \\ 73 & -128\end{array}$
    $73-128$
    $\begin{array}{ll}.71 & -136 \\ .695 & -145\end{array}$


    ## tablel Sparan

    |  | (no | cha |  | impedance | needed | d for opt. table |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 8 | $\theta$ | - | 0 | 9.732 日 | 8 8 |  |
    | 1 | $\theta$ | $\bigcirc$ | $\theta$ | 0.889 | $\theta 8$ |  |
    | 0 | 0 | 0 | 0 | 0.875 | $\theta$ |  |
    | 1 | 8 | 8 | 0 | 8.9430 | 00 |  |
    | $\theta$ | 0 | 0 | 0 | 1.80 | 8 |  |

    end

    ### 3.2.5 DESIGN's Execution Speed

    OESIGN's execution speed is quite rapid. On a Corona 16-bit MS-DOS crocomputer equipped with an 8087 coprocessor, the output for the example iscussed above was virtually instantaneous. Without the coprocessor, or on a Kaypro II 8-bit CP/M-80 machine, each iteration of the resistance optimization took a few seconds, with a somewhat longer delay for the construction of the matrix needed in the curve-fitting process.

    ## CONCLUSION

    ## 4. 1 Conclusion

    Only some of the capabilities of CLAO and DESIGN have been described herein. The User's Guide for CIAO and DESIGN contains many more involved examples illustrating the power of these programs. CIAO and DESIGN have been expertly developed and thoroughly tested, and represent, we believe, th
    performance to price ratio of any software of its type in the industry

    ### 4.2 PRICING and AVAILABILITY of the CIAO and DESIGN PROGRAMS

    The CIAO and DESIGN programs for personal computers are currently available for immediate purchase, at a price of $\$ 1900.00$ each.
    Versions of CIAO are available for IBM-PCs and compatibles with at least 256 K RAM, with or without the 8087 co-processor chip. (A version can be obtained that will run, with overlays, in as little as 128K of RAM.) DESIGN is available for IBM-PCs and compatibles with a minimum of 128K of RAM, again with or without 8087 support. Full-featured versions of
    also available for $\mathrm{CP} / \mathrm{M}-80,8$-bit, 64 R RAM microcomputers.

    The source codes for both CIAO and DESIGN are available at an additional charge. Please contact the author for further details.

    | Circult Element Summary |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Elomont Type | Codo | Schomatic Examplo | Data Examplo | Commonts |
    | RESISTOR | RES | 1 mmus 2 ...m- | RES 12150 | RES* for optimization |
    | CAPACITOR | CAP | $7{ }^{7}$ | CAP 7 9 2e-12 | CAP* for optimization |
    | inductor | IND | ${ }^{2} \mathrm{~mm}^{8} \mathrm{~mm}$ | IND 288 7e-9 | IND* for optimization |
    | voltageCONTROLLED CURRENT SOURCE | vcc |  | vCC $3972.120-12$ | T defaults to zero if not specified. <br> VCC*, VCC_, and VCC** optimizes gm, $\tau$, and both gm and $\mathrm{T}_{1}$ regp. |
    | GYRATOR | GYR | ${ }_{2} \overbrace{\square}^{r} \overbrace{4}^{3} \ldots, \ldots$ | GYR 12345.2 | GYR* for optimization |
    | TWO-PORT <br> transmission <br> LINE | TRL |  | TRI 10205034.5 de <br> TRI $1020{ }_{50}^{\text {or }} 245 \mathrm{mil}$ <br> Loss defaults 10 zer | $\begin{aligned} & 509.1 \\ & 2.55 .01 \\ & \text { o ir not specified } \end{aligned}$ |
    | OPEN-CIRCUIT | OST | $\mathrm{O}_{\frac{1}{1}}^{1}$ | OST 105042.5 deg 5 <br> OST $1050 \underset{120 \mathrm{mile}}{\text { or }} 2$. | ${ }^{.1}$ |
    | SHORT-CIRCUIT STUB LINE | SST |  | SST ... format same For all transmission $2 \overline{0}$ \& length e.g. | for OST <br> inegi "\#"optimizes 20, <br> T*, OST_*, TRL"*. |


    | Clrcuit Element Summary |  |  |  |  | |
|---|---|---|---|---|---|
    | Elament Type | Code | Schamatic Example | Data Examplo | Commonts |
    | ONE-PORT ElEMENT | ONE |  | ONE 17 Table 5 | References either an S, Y, or Z table |
    | TWO-PORT ElemEnT | TWO |  | Two 1736 Table 3 | A true 4-terminal netwk <br> References either an S, Y, or $Z$ table |
    | Three-port ELEment | THR |  | THR 123 Table2 | Common terminal 3-port References an S-param. table |
    | IDEAL transformer | - | $2{\stackrel{B}{3}-\vec{\xi} \\| \dot{\varepsilon}_{n}^{3}}^{3}$ |  | $\underbrace{\text { cascaded gyrators }}_{r 2}$ |
    | CURRENT- <br> CONTROLLED <br> CURRENT <br> SOURCE | - |  |  | $\begin{aligned} & \text { VCC elements } \\ & \frac{3}{4} \cdot V_{54} \\ & 4 \end{aligned}$ |


    | Circult Element Summary |  |  |  |
    | :---: | :---: | :---: | :---: |
    | Elament Type | Code | Schematic Example | Data Example Comments |
    | VOLTAGECONTROLLED VOLTAGE SOURC | - | 1. |  |
    | CURRENTCONTROLLED vol tage SOURCE | - |  |  |
    | mutual inductance | - |  |  |
    |  |  |  |  |

    Appendix B NOTES and REFERENCES
    13. D. J. Mellor and J. G. Linvill, "Synthesis of Interstage Networks of Prescribed Gain Versus Frequency Slopes, " IEEE Trans. Microwave Theory and
    Techniques. vol. MTT-23, no. 12, pp. 1013-1020, Dec. 1975 .
    14. G. Gonzalez, Microwave Transistor Aaplifiers, Prentice-Hall, Englewood
    15. L. Besser, "Microwave Circuit Design," Electronic Engineering, Oct. 1980.

    1. IBM is a registered trademark of International Business Machines, Inc.
    2. MS-DOS is a registered trademark of the Microsoft Corp.
    3. CP/M is a registered trademark of Digital Research, Inc.
    4. COMPACT and SUPER-COMPACT are registered trademarks of COMPACT Software, Inc.
    5. Documentation of these phenomena are available upon written request to SPEFCO Software, 18 Bennett Lane, Stony Brook, NY 11790.
    6. R. Fletcher and C. M. Reeves, "Function Minimization by Conjugate Gradients," Computer Journal, vol. 7, pp. 149-154, 1964.
    7. S. W. Director and R. A. Rohrer, "The Generalized Adjoint Network and Network Sensitivities," IEEE Trans. Circuit Theory, vol. CT-16, pp. 318-323, 1969.
    8. H. J. Carlin and J. J. Komiak, " $A$ New Method of Broad-Band Equalization Applied to M1crowave Anplifiers," IEEE Trans. Microwave Theory ant Techniques,
    vol. MTT-27, no. 2, pp. 93-99, Feb. $\frac{1979 .}{}$
    9. H. J. Carlin and P. Amstutz, "On Optimum Broad-Band Matching," IEEE Trans. Circuits and Systems, vol. CAS-28, no. 5, pp. 401-405, May 1981.
    10. R. M. Fano, "Theoretical Linitations on the Broadband Matching of Arbitrary Impedances," J. Franklin Institute, vol. 249, Pp. 52-83, Jan. 1950; vol. 249, pp.129-155, reb. 1950 .
    11. D. C. Youla, "A New Theory of Broadband Matching," IEEE Trans. Circuit Theory, vol. CT-11, Pp. 30-50, Mar. 1964.
    12. W. X. Chen, "Synthesis of Optimuz Butterworth and Chebyshev Broadband Impedance Matchins Networks," IEEE Trans. Circuits and Systems, vol. CAS-24. pp.152-169, Apr. 1977.

    MATCHING NETWORK DESIGN USING HP-41, HP-71 AND HP-75 COMPUTERS

    The Smith Chart is most probably the oldest surviving 'slide rule' still in common use. This graphical aid has served a countless number of RF engineers in the design of impedance matching number of RF engineers inthe forki antennas, interstage couplers, amplifiers and transnetworks for antennas, interstage couplers, amplifiers and trans held and portable (now lap held!) calculator/computers of the Hewlett-Packard 40 and 70 Series. The computational power of these machines with their specialized plug-in modules (MATH, STATISTICS, CURVE FIT, AC ANALYSIS, FORTH, FINANCE, PLOTTER, SURVEYing, TIMER, I/O and even VISICALC to name just a few pale the capabilities of the desk top computer of a decade ago; and those of us who started out with vacuum tube design fondly remember our retired sliderules as venerable antiques.
    The aim of this paper is the introduce the basic features of the Smith Chart applicable to the design of impedance matching networks for newcomers to the RF domain
    smith chart
    The Smith Chart is basically a plot of the reflection coefficient ( ;
    where $\rho=\frac{2 n-1}{2 n+1}$
    Zn is the normalized impedance, $2 / 2$ o where 2 is the load network impedance and $z_{0}$ is the characteristic impedance represented by the scaled value at the center of the Smith Chart ( $1, \theta$ ). The ablility to normalize the working impedances permit the Smith The range of values for (utilizing passive networks only) lie between 0 and 1 .

    If we now write $2 n=R n+j X_{n}$
    we have: $U_{+} j V=\frac{R n+j X_{n-1}}{R n+j X_{n+1}}$
    After some additional algebra we get: (elimination of $\mathrm{Xn}_{\mathrm{n}}$ )

    $$
    \left[\frac{U-R n}{R n+1}\right]^{2}+v^{2}=\frac{1}{(R n+1)^{2}}
    $$

    On rectangular coordinates of $U$ and $V$ this is the equation of a circle whose center, for any value of $R n$ is located at $U=R n /$ eliminating Rn instead of $\mathrm{Xn}_{\mathrm{n}}$, the following equation

    $$
    (u-1)^{2}+\left(v-1 / X_{n}\right)^{2}=\left(1 / X_{n}\right)^{2}
    $$

    is the locus of the circle defining constant values for $\mathrm{Xn}_{\mathrm{n}}$. In Figs. 1 and 2 we can see the construction for the family of curves that make up the Smith Chart. Note that the outer boundary for the Smith Chart can be contained within a square whose side is

    Page Two
    January 1985
    unity. This will become important later when we discuss the plotter setup.
    In the $U, V$ rectangular coordinate system the center of the Smith Chart is ( 0,0 ) and the "compass" points are (North first) ( 0,1 ), ( 1,0 ), $(0,-1)$ and $(-1,0)$. $V\left(R_{n}\right)$ and $V=f\left(R_{n}, X_{n}\right)$, the resulting equations give us a transform between a given $2 \mathrm{n}=\mathrm{Rn}+\mathrm{j} \mathrm{Xn}_{\mathrm{n}}$ and $\mathcal{F}=\mathrm{U}+\mathrm{j} \mathrm{V}$. This ransits us to map (in actuality, to plor) $R n_{\text {, }} X_{n}$ in $U^{j} V_{\text {; operare }}$ on $U, V$ and return the new values of $R n$, $X_{n}$.
    a) $R n=\left(1-u^{2}-v^{2}\right) /\left\{v^{2}+(u-1)^{2} \mid\right.$
    b) $x_{n}=2 v /\left[v^{2}+(u-1)^{2}\right]$
    c) $u=\left(R n^{2}+X_{n}{ }^{2}-1\right) /\left\{X_{n}{ }^{2}+(R n+1)^{2} \mid\right.$
    d) $\quad v=2 x n /\left[X_{n}{ }^{2}+(R n+1)^{2}\right]$

    The absolute magnitude of the reflection coefficient may be used to calculate the transmission efficiency of power; i.e., z Power Reflected $=|\mathrm{P}| \times 100$. The VSWR of "voltage standing wave ratio" is an indicator of this power loss aince VSWR $=(|+|E|) /(|-|\in|)$. The locus of the magnitude of the reflection coefficient is a circle whose center is at the origin of the Smith Chart $(2 n, 0)$, the larger he VSWR or diameter of such circle the greater the power loas. tis the goal of tmpedach ing opering SWh or for spectal needs a prescribed vSw over the frequency range The 'operations' referred to fnvolve the addition of reactive and resistive elements placed in series or shunt within the network. reactive elements employed can be capacitors, inductors, sections of ransmission line or combinations of such. Again, the goal is to manipulate the original network locus to an optimized or prescribed locus. This is the function of the computer calculator program.
    the program
    The Program contained in this paper permits the designer to graphically isplay the impedance or admittance data versus frequency for a given network. The data display can be to a CRT monitor, printer or both. The graphic display is to a ploter; the nrograms included permit output to a HP7470, 7475, Radio Shack Lui- - 115, or to a standard analog plotter using the HP-82166, 82165 IL . Converter and a peripheral pair of D-A converters. The actual plotting can be done directly on pre-printed Smith Charts or on sheets of plain paper used in conjunction with Smith Chart overlays. This is a very convenient approach when many trials are to be made and the line work starts to get messy. The primary effort willity control. The abillty to change scale under program control permits the user to expand or 'zoom' into a repion of interest for greater

    Page Three
    January 1985
    accuracy. The user can prepare plastic overlays for this region using the defining equations of the Smith Chart; this technique in conjunction with plain paper or Xeroxes of the overlays can yleld ery prectse graphits hetwork fimpedance analyzer or from the technical literature. The use of a two dimensional Cubic Spline interpolation program (HP4l user 11435C) can add addtition data points to the data set.

    Upon executing the program the user is reminded to reset the scale points P1, P2; this is done only if Xerox chart coples of a new reduction are used or if the user has chosen to alter the chart scale factor. The next two prompts requests the number of data points and the need to create new files. If the number of data not if you are modifying the values of the present data set. The two following prompts requests the device to indicate data output; D1 is HP Video Interface (82169A or 82163) connected to a Video monitor, Pl is the HP82162 thermal printer. Selecting the Autoplot Mode produces a plot and data printout automatically after initializing and each component trial. The alternate choice nermits manual selection of ploting and printing. Next, the user is prompted to input each point in the data set as follows: Frequency, Real, Reactive.

    After entry of the data set and assuming manual mode the user is prompted to make a menu selection:

    Next (1) - select next component for trial.
    init (2) - initialize to original data set (or start again)
    Print (3) - Print original data or results
    Plot (4) - Plot original data or results
    If Next is chosen you will be prompted 'Delete Previous Element'; this permits the user to negate or accept a previous component trial.

    The subsequent menu driven prompts are self-explanatory; after entering the 'next' component information the computer will be "Working" to get the results. The components presently avallable for use are transmission line Xfmr is available from the main menu dud a scaling transformer is avallable from the utilities file. In adition, the utilities files contain routines for digitizing, printing and/or plotting the admittance data during the session. This is strictly convenience feature for conceptualizing the selection of the "next" element and does not at this time place the $U-V$ plane into an admitt ance' mode. The routine permitting plots of selected VSWR Circle is also present in the utilities file and is invaluable when plotting on plain paper. The algorithm for handing series elements (except for the line Xfmr) is simple:

    Page Four
    January 1985

    ## Znew $=$ Rold + Xold + Rnext or $\pm ;$ Xnext

    Computaty is made in the p-Z plane and converted to the U-V plane for plotting by the init-kesult routine.

    The algorithm for handing shunt elements is similar:

    $$
    \begin{aligned}
    & \text { Rold }+j \text { Xold } \Rightarrow \text { Gold } \pm j \text { Sold }=\text { Yold } \\
    & \text { Rnext }+j \text { Xnext } \Rightarrow \text { Gnext } \pm j \text { Snext }=\text { Ynext } \\
    & \text { Ynext }=\text { Yold }+ \text { Ynext }
    \end{aligned}
    $$

    The $R, X$ data is transformed from the impedance plane to the admittance plane and summed by parts in the R,X plane, As before, the Init-Result routine effects conversion to the $U-V$ plane.
    The use of a series line transformer consisting of a section of transmission line effectively rotates each point in the data set about the origin of the U-V plane by an angular displacement that is proportional on directly by the classical algebraic equations for rotationtranslation and read back into file 2. The U-V data is simultaneously converted into the $R$, $X$ plane for printout.

    Additional network elements to be incorporated include shunt transmission lines or stubs. The ability for the program to handle double stubs with variable lengths and spacing would be an invaluable design aid. An additional utility not incorporated due to the pressure of time would minimize the number of Plots accumulating on the worksheet from repeated trials.

    ## Example:

    Fig. 3 illustrates a siaple application of this program. It is desired to optimize the VSWR of the ORIGINAL load such that the resultant network exhiblts a reasonable and constant value for VSWR for the frequency range almost symetrical about the real axis. The addition of a series resistance of 0.2 moves the network impedance downard so that it is almost symetrical about the origin. A VSWR circle of 2 drawn on the plot by the program circuascribes the major portion of the load plot and the matching network is accepted.

    Page Five

    ## Appendix

    a. There is an additional convenience utility contained in the program that is not part of the operating system. This utility enabling the reading of the 5 working data files is located at lines $9000-9010$ and is useful for debugging when program changes are made. The function of each file is:

    | FILE \#1 | ORIGINAL data | R, X |
    | :---: | :---: | :---: |
    | FILE 2 | Smith Map | Unew, Vnew |
    | FILE 3 | Working/Result | Rnew, Xnew |
    | FILE 4 | Previous Result | Rold, Xold |
    | FILE 5 | Previous Smith Map | Vold, Vold |

    b. NOTE: The Math Pack for the HP71 and HP75 contain powerful, complex function and complex variable instructions that can simpluded in this presentation in order to maintain universality with the typical Basic instruction sets in common use.

    ## References

    P. Solth Electronic Applications of the Saith Chart,
    R. Thomas A Practical Introduction To Impedance Matching, Artech House 1976
    T. Cuthbert Circuit Design Using Personal Computers, Wiley 1983
    R. Chipaan Transmission Lines,

    McGraw-Hill-Schaum
    L. Gerig Computer Interface For Smith Chart Calculations, RF Design, January-February 1982
    
    

    Smith Chart Defining Equations

    1) $e=\frac{z_{n}-1}{Z_{n}+1}=u+j V$ complex reflection coefficient
    2) $Z_{n}=R_{n}+j X_{n}$ network impedance normalized
    3) $u+j v=\frac{R_{n}+j x_{n}-1}{R_{n}+j x_{n}+1}$
    4) eliminating $X_{n} \quad\left[u-\frac{R_{n}}{R_{n}+1}\right]+V^{2}=\frac{1}{\left(R_{n}+1\right)^{2}}$
    circle: center at $\frac{R_{n}}{R_{n}+1}, V=0 \quad$ radius $=\frac{1}{R_{n}+1}$
    5) Eliminating $R_{n} \quad(u-1)^{2}+\left(V-\frac{1}{x_{n}}\right)^{2}=\left(\frac{1}{x_{n}}\right)^{2}$ circle: center at $\frac{1}{x_{n}}, U=1$ radius $=\frac{1}{x_{n}}$ Note symmetry of positive and negative reactance circles.
    Transform Equations

    $$
    \begin{aligned}
    & (R, x) \Rightarrow\left(u^{0}, v\right) \\
    & R_{n}=\left(1-u^{2}-v^{2}\right) /\left[v^{2}+(u-1)^{2}\right] \\
    & x_{n}=2 V /\left[v^{2}+(u-1)^{2}\right] \\
    & (u, v) \Rightarrow(R, x) \\
    & u=\left(R_{n}^{2}+x_{n}^{2}-1\right) /\left[x_{n}^{2}+\left(R_{n}+1\right)^{2}\right] \\
    & V=2 x_{n} /\left[x_{n}^{2}+\left(R_{n}+1\right)^{2}\right] \\
    & V S W R=\frac{1+|e|}{1-|e|} \quad \text { circle: center at } U=0, V=0 \\
    & \text { radius }=V S W R
    \end{aligned}
    $$

    

    T: SMITH CHART OT HP71 DIGIPLOT
    HP7 I Digrplot
    
    
    26 ! PRIMIER IS ':61' \& PRIMI 'IP7631,355,1045,6997' 1 'SC-1,1,-1,1'! phil's ovrly
    
    
    
    
    
    50 cosve 9128
    
    6e FOR Mal TO MI
    
    76 MEII M
    
    
    
    515 PLabe 'filef' ecopy 'files' 10 'filet' - pot old vesult $\rightarrow 4$
    524 IF $5 J=1$ THEN OW SI soto $304,2201,25 \%$
    535 IF se Tuew ou 516010 sem tive, 4e9
    
    102 DISP 'Morking!
    
    1H18 OM a BOIO $550,1615,1114,1314$
    
    
    
    
    
    114 wert o e sti if 82 TMET METURN ELSE IMA
    ISBE RESTURE 12 EPRIMER IS ':GI' EPAINT 'PU'I'SPI' ! Plot Data HP
    
    
    
    1439 Wext of olsp 'Plot bone' e DEEP e Priut 'spe'; 'PU
    
    
    
    
    
    1530 If
    
    1535 Bato 144
    
    2026 FDO $D=1$ TO WI $Q$ READ $B 3 F F, R, x$ vend work $<3$
    
    2440 PRINT is, $\mathrm{I}-1 \mathrm{i} F, \mathrm{R}, \mathrm{x}+11 \quad$ put result $\rightarrow 3$
    
    25if! Scries Resistor
    
    
    
    301 ! Series lime Xfor
    
    3087 PLRSC 'files' e CDPY 'file2' TO 'file5' - put S.ih $\rightarrow 5$ (save2)
    
    
    
    

    ## MP7I Disiplot

    4008! Smat Resistor
    
    
    
    put result
    
    I5A ! Shunt Resctance
    
    
    
    S51 -
    
    
    641 DISP ' (1)Adaittance (2) vsim (3) Digitize (1)1fer?
    
    bus nisp ' amirtice Calcs!'
    
    
    
    
    
    G14 PAIMT SSPA'I'PN' © GOTO 19W
    disi ! meno plotita coopds: 1,y
    
    
    
    bls If A4te' $388^{\circ}$ Then bin else
    
    199 cato 17
    619090106170
    
    
    
    

    - 204 ! Read but filen
    
    
    
    
    0118 PUREE 'itile3' Copy 'filed' To 'files
    
    

    HP75
    
    
    4 Bin ulls), vils)
    3 sument $F, R, R 2, I, I 1,12, u 1, v 1, M, M 1, u, v$
    Imput Printer is: Diddisp) Pl(pratl?'; PI \& Pls':'Lp

    - assien i 4 To 'iilet' assicu as to 'files
    
    
    
    25 Fon Mla! TO M
    
    31 Wert MI
    4 AESTOAE 1 : 1 : 6070 150
    
    
    515 Tisp 'inetlamect '
    sha If sta
    
    
    1016 OM a 6010 Sen, 1815, 1164, 13M
    
    
    
    
    
    
    
    
    
    
    
    
    La35 IF 12 TheM reTupn Elge ICH
    
    
    
    $1525 \mathrm{u}=\mathrm{U}(\mathrm{D}): \mathrm{E}=\mathrm{y}(\mathrm{B})$ \& PRIMT: 2 ; F.U.V
    1534 If ial them paime is; Fir,i
    1548 int
    1554 IF 12 THEM GOSUE IIM : GOSUS I3E0
    1553 E010 LCH
    
    
    
    2941 Pallit i 3,1 : F, R, 1 +11
    
    zan! Series mesister
    
    
    
    3 m : Sories lime lier
    
    3017 Ruas 'rites' © COPY 'file2' To 'files'
    
    
    
    
    
    tan ! Mot meristor
    
    
    
    
    651 ! Sment Reactance
    
    
    
    
    
    
    55 C OIS 'mo shant lines ret' i STop
    0888! SnITH Cment Me mot scme
    999 Imput 'Copy filel? to filed?'; A1.A2 \& IMPUT 'Hire Scalez?';A3
    ant resture for t Restone int
    9999 If Dis='Linelfw' TMEN PURBE 'file2' \& CDPY 'files' 10 'file?
    9999 PUREE 'fileJ' \& COPY 'filef' to 'files' E RETURN! recall previous status

    CALCULATOF- ANI COMFUTEK-AIDEI DESIGN TOOLS FOR THE RF ENGINEER
    Steven L. March
    Compact Software, Inc, 1314 Sam Hass Circle, Round Rock, Texas 78664

    ## INTRODUCTION

    For yeors, the virginio slims cigarette advertisement extolled, "You've come a lons way, boby! . The same can be said obout software for the RF and wicrowave desisn ensineer. "You ve come a lons way, ensineer! This poper will examine just how far the for prospammins information that he/she has available for circuit and/ or system desisn today. It will also examine the question of make or buy as it applies to software for the kif designer.

    ## the neeli for liesign ailis (some history)

    In the early years of KF and microwave design, one of the features of microwove components and KF circuits had been the amount of engineering labor that went into each desisn. The ensineer designed the component or circuit, sketched out a preliminary drawing for mechanical fabrication, made a second drowing of the circuit for electrical design andfor layout, and waited for the ports to be delivered to him for assembly. He probably even assembled the first piece himself. When the circuit did not perform as expected, optimization was required. The empirical adjustment or tuning of the characteristics was performed by inserting screws at judicious locations or by the introduction of dielectric inserts ot the proper points. In some waveguide circuits, "hand optimization* meant reachins into the tool box, retrievins o ball-pien homer, and denting the waveguide in the correct place so as to limprove its performance! C-clamps were also very popular. for and successful Microwave and KF design was black magic and each successful engineer was o Harry Houdini.

    Enter the computer. Enter computer-aided desisn. Much has been written about the value of computer-aided desisn os an ensineering tool. The first Special Issue of an IEEE publication devoted to computer-aided design was the November 1967 Proceedings of the IEEE since then, there have been ten additional Special Issues of the Froceedinss of the IEEE or one of the IEEE Transuctions devoted to computer-aided design, analysis, modeling, or computational methods. Even its most severe critics now concede that computer-aided desisn
    hos brought about significant improvements in circuit performance
    and producibility. Ferhaps the most important contribution made by the existence and utilizotion of CAl is the vast reduction in the mount of time requird compared to the amount of time the

    CAII - MAKE OR RUY

    Lio I need CALi? What CAD do I need? Do I buy a prosram already Qvailoble or do 1 write my own? Mainframe, supermini-computer, minicomputer, desktop computer, personal computer, or handheldcolculator - which do I need? These can be very comple\% issues. However, if the only thins that your company currently manufactures and anticipates producing in the future is 225 MHz to 400 MHz twoway lumped-element power dividers, the same as it has been making for the past decade, then you do not need CALI, and probably never will, On the other hand, if you are stretching the state-of-the-art in dc to 40 GHz distributed FET omplifiers, you definitely do need CAII.

    Buying "canned" software or developing your own depends on several factors. Furchasing a software product from a canpany such as Compact Software requires a capital outlay. In-house development means that the expense is spread out over o period of time. Furchased software is available today (maybe tomorrow, in some cases) and has been tested, verified, and debusged, An internally developed prosram may require research, the development of many lines of code, verification, documentation, and probubly extensive dobusging. Con your company wait that long, do you haveld they be designing if they were not developing software, what is the effort soing to cost me in terms of fully-looded labor dollars? These questions all have to be onswered before on intelligent make or bily decision can be rendered.

    LET'S DEVELOF IT HERE

    If you have decided to develop your own software for a specific application, you will find an abundance of printed and piblished material to aid you. There are books, magazines articles, reports from Government agencies, Government contractors, and inniversities, theses, informative information from companys that make and sell camputers and/or calculators, and software directories available to ake the job easier. Many of these sources contain well developed and tested software thot can be eusily copied and incorporated in any new product.

    ## Gooks

    There are at least two dozen excellent books on the market or in many libraries which deal with prosromming techniques and languases Additionally, there are at least another two dozen books concerned with numerical and mothematical techniques (matrix manipulations, integration, differentiation, curve-fitting, solution of equations, etc.') when performed on a compiuter. There ore at least thirteen books dedicated to optimization and an equal number devoted to the topic of graphics. The computer-aided desisn of electronic circuits and components is the theme of another dozen books, while there are twice as many written about the seneral topic of compiternalof this author) are listed in the bibliosraphy. In fact, the soon to be published Antenna Hesion Using Fersonal Computers i I.M. Fozar, Artech House) will include diskettes containins severol prosriams.

    Reports
    Another evcellent source for written and tested software on a
    variety of topics is reports and technical memoranda senerated by Government asencies and those written by commercial organizations and universities, especially when produced under Governmental contract. There are documents available that deal with surface acoustic waves, optimization, test equipment calibration, noise and and semiconductor device analysis, antenna and electronic component desisn, the characterization of various transmission media, network synthesis, and seneral circuit analysis and desisn. Several representative reports, which contain prosram listings, have been included in the bibliography.

    Articles

    Magazine articles represent an eacellent source of abundant and free software, especially short prosrams and subroutines for the calculation, desisn, or analysis of individual electronic devices, components, and techniques. Over the past decade, over forty-eight, articles, intished in Mir been publish in contain softuare listings for calculators or larser computing equipment include Electronic Ilesign (28), Electronic Iesisn News (27), Electronics (16), Microwave Journal (13), RF Ilesign (12), and Microwave Systew News (4). There have also been at least one-half Microwave System News dozen prosrams or subroutines published in the froceedings of the IEEE, various IEEE Transactions, and records from IEEE-sponsored conferences. This author has located at least 154 masazine articles which contain software of probable interest to the RF or microwave ensineer.

    For many years, the Microwave Journal pablished The Micrownve Ensineers. Technical and Ruyers Guide. The editions published in 1974, 1975, and 1976 contained 36 subroutines, written in FORTRAN or gASIC, and of interest to the RF designer. Fifteen of the programs appared in 1974, seventeen in 1975, and four in 1976.

    The vast majority of the articles dealt with the design of specific devices and components such as helical antennas. Fin diode switches, power dividers, phase-locked loops, inductors, and transformers. ofer a dozen articles dealt with the characterizatoulers, eishteen of mers with transistor amplifier desisn, onalysis, and performance, and a dozen more with the characterization andor desisn of filters. There were over a half-dozen articles that contained various transforms (FFT or fast Hartley transform, for example) for timedransforms (FFT or fast or waveform analysis. An equal number contained listings forman or waveform analysis. Ansisn of matchins networks. There were also several which dealt with EMI and RFI characterization. Finally, there have been a number of magazine articles which contained subroutines for mathematical operations such as interpolation, convolution, matrix inversion, and Laplace transformations.

    MTT Transactions
    Eeginning in Ausust 1969, a new section was udded to the IEEE

    Transactions on Microwave theory and Techniques. The new section, Computer frosram lescriptions, was introduced for the dissemination of software relative to the field of microwaves and available to the general public from the author of the prosram or the ASIS/NAFS service (ASIS/NAFS, c/o Microfiche Fublications, F. O. Eow 3513 Grand Central Station, New York, NY 10017). The last Computer
    Frosram Description appeared in the March 1980 MTT Transactions. In that time frame, thirty-eight issues of the IEEE Transactions on Microwne Theory and Techniques contained fifty-eight listinss of computer-prosram descriptions.

    Lurectories and Catoloss

    Computer manufacturers bros about the abundance of internally senerated or third-party developed software that is available to risn on their hardware. Hewlett-Fackard Company has developed and sells applications paks, solutions handbooks, and code applicable to their entire ranse of products - desktop computers, hand-held calculators, and minicomputers. There are applications paks for electronics, mathematics, statistics, and circuit analysis. Also, solutions handbooks have been published for antenna ensineering, hish level mathematics, statistics, and electrical ensineering. The Hewlett-Fackard Software Solutions Catalos the contains complete descriptions Computer Users. Cotolos [2] lists over 1500 entries for programs which have been developed to run on HF computers. And it's FREE! HewlettFackard also publishes a Third Farty Technical Software Solutions Catalos [3] for its Series 200 desktop computers. In addition, Digital Equipment Corporation's "FIf-11 Software Sourcebook. [4] lists more than 1200 applications packases from over 250 sources. Probably only a small number of these programs will actually be of interest to the fF engineer.

    The fields of computer programinins and computer software have grown so rupidy anid so larse in the past decade that there is now in "International Hirectory of Software" [5], being published. It lists over 5100 software packages for mainframes, minicomputers, and microcomputers. On the other side of the Atlantic Dcean, Futterworth Fublishers in Surrey, Ensland have pist together the 'Computer-Aided liesisn IIirectory/Kuyer's Guide [ [G].

    Therefore, if the decision is made to develop, in-house, some CAll software for RF andfor microwave circuit or component desisn, analysis, synthesis, or optimization, there are more than ample Before. of previously-written and tested of these sources should be consulted. The sovings in time and effort could be considerable THE LIECISION TO RUY

    If you have a need for KF CAII tools, if it is more general than if you have a need for Re to design one or two specific components and if you can not wait the months cor yearsp dependins on the complexity of the program) that an in-house development effort would take, then you probably have decided that yous should purchase an already developed compater-aided desisn program from software vendor

    There already exist at least sixty-one (61) prosrams, libraries of subroutines, and "design kits" that can be purchased from thirty four different companies. Most of these companies have only one commercially-available prosram or design aid. There are five firms
    that offer two Call products and another five companies that have ot that offer two CAI products and another five companies that have at least three different prosrams available for purchase. These are listed in Table I.

    ## tafle I

    COMFANIES WITH THREE OK MORE SOFTWARE PROIIUCTS


    #### Abstract

    COMFACT SOFTWARE, INC. (5)


    BU Ensineerins (5)
    Commanications Consultins Corporation
    (8)

    Jensen Transformers (4)
    Optimization System Assaciates (3)
    COMPANIES WITH TWO SOFTWARE FFROLUCTS

    AE Associates
    EEsof, Inc.
    I K : II Electronics
    Made-It Associates
    Spefco Software

    In the past six months, there have been several orticles [7-12] that have dealt with comarercially-available computer-aided desisn and development software for microwave and KF circuits. The most recent and comprehensive of these was the one by Furry Manz [7], whach appeared in microwaves and RF masazine, Manz presented an avoiloble from nineteen componies. In componion article, Merch [8] presented sone additional descriptive informotion on software available for circuit layout and mask generation. The compilation prepared by Trubitt and Fodell [10] was concerned primarily with six software packages for fF circuit analysis that runs on either personal computers or desktop computers. The article compores the performance, features, and shortcomings of the six prosrams. The addendum briefly lists five other anolysis prosrams.

    ## What is Available

    The sixty-one comerciolly-available software products can be placed into seven seneral classifications. These are: ac smallsisnal, linear onolysis; prosrams for the desisn or analysis of o porticular type of circuit element (except filters): prosrams for filter design and analysis; mathematical subroutine packages; slaphics and layout; oc/dc linear/nonlinear circuit analysis; all in each of these catesories.
    $\frac{\text { TABLE II }}{\text { AUAILAELE KF CAIU SOFTWARE GY CATEGORY }}$

    AC. SHALL-SIGNAL LINEAK ANALYSIS --- 20

    AC/IIC LINEAR/NONLINEAK ANALYSIS --- 8
    LEUICE (EXCEFT FILTERS) IIESIGN ---- 6
    GRAPHICS ANI CIRCUIT LAYOUT --.-.-- 6
    FILTEK IIESIGN ANI ANALYSIS ....-...-
    MATHEMATICAL SUBROUTINES -......-----
    
    SYNTHESIS, OPTIMIZATION, IIC-ONL. ANALYSIS, SCHEMATIC GENEFA

    Another way of catelosing the available software is by the type of equipment upon which it is desisned to be operated Somewhat arbitrarily, prosrammable computational equipment can be divided IBM 370 and the CNC Cyber) super-minicomputers (such as the FRIME and the IUEC UAX units); minicomputers (such os the H-F 9000 series and the Apollo Ilomioin nodes) : desktop computers (such as the H-F. 200 series and the Tektronio $405 x$ series); personal computers (such as the IHM PC, the APPle IIE, and the Tandy TRS-80); handheld calculators (such as the H-F 41CV). Table III shows how many of the commercially-available KF CAI software packases are available to operote on each cotesory of computing equipment.

    It should be noted that many Call coftware suppliers are willins to send o prospective purchaser or licensee o demonstration diskette, Cassette, or tope for o nominal fee which can usually be credited toward the purchase price of the actuol product.

    ## TAFLE III

    ## AMOUNT OF SOFTWARE AUAILAELE EY COMFUTER TYFE

    

    NOTE: The nismber of items exceeds the 61, because some of the commercial software is available for more than one catesory of equipment

    It would require more pases than were used by Garry Manz to detail all of the commercially-available software packases of interest to the FF ensineer. Instead, only somplins of the uvailable prosrams will be sescribed below. Additional prosrams will be discussed during the actual conference presentation.

    AC Small-Sisnal Linear Circuit Analysis -- SUPER-COMFACT

    SUFER-COMFACT is still the premier product for the analysis, synthesis, anad optimization of smull-sisnal, linear networks. The prosram is intended for lumped-element or distributed $\quad$ from do well into the microwave ronse. The prosram supports from dc to well into the microwave range, The program supports
    user-interactive sraphics on a variety of raster-scan terminals having a true sraphics capability. The prosramperforms analysis usins either AECI chain matrices or the indefinite admittance matrix, dependins on the complexity of the ciruit and the number of occessible ports. A transmission media desisn section (TRL), an extensive transistor databank, a line editor, and a Lanse coupler desisn subprosram (LANG) are internal to Super-Compact. The total capabilities are shown in fisure 1.
    Circuit optimization can be performed using either a randomized pattern search procedure or sradient methods. These methods can be combined by the user for maximum efficiency and the hishest probability of truly locating the slobal include sroup delay, phase, error function. Ferformance objec

    Additionally, a device modeling capability allows input and output
    impedances to be semi-automatically calculated for any octive two port and provides reasonably accurate values which can be used directly for synthesizins input and output matching networks. Foth network synthesis and tolerance analysis capabilities are contained in the prosram.
    Output data may beplotted on polar, rectansular, or Smith charts for any of the available 2-, 3-, or 4-port parameters. Performance limits and frequency coverase can be expanded or compressed in order to more closely examine performance details. In addition, constant sain, noise, and stability circles can be calculated.
    With the TIME DOMAIN option, the step, romp, or impulse response of almost any circuit can be calculated and plotted. The time-domain response is calculated usins o Fast Fourier Transform alsorithm. Super-Compact contains about 93,000 lines of FORTRAN code. The prosram is available for large mainframe computers, super-minicomputer version which incorporates a flexible report writer, a full-screen editor, and a tune-mode capability, but does not have the transistor databank or the synthesis and device modelins capabilities.

    Prosrams such as Touchstone and SUGAR contain several feotures not incorporated to date in Super-Compact. These include the capiability to calculate internal node voltages, to plot constant sain or constant noise circles, to plot performance as the optimizer is improvins the result, and to optimize differential mensurements, such as directivity.

    ## AC/IIC Linear/Nonlinear Analysis -- IG-SFTICE

    SFICE is a general purpose circuit simulation prosram. It can simulate and analyze circuits composed of active and passive elements. SFICE Will calculate circuit's dc operating point, will calculate its de transfer function, will determine its determination. In addition, SFIICE has the ability to calculate a network's ac transfer function and to perform a distortion analysis.

    Usins the time-domain, fast fourier Transform, analysis capability in SPICE, the transient response of a network can be evaluated as ofisction of time. With the sensitivity analysis, the sensitivity of any frequency-domain network performance calculotion with respect to any network component chanses can be evaluated. With the statistical anolysis, worst case performance and tolerance analysis can be evaluated for the circuit. This analysis option is based on a Monte Carlo technique for component vaiue variation.

    In its latest implementation, IG-SFICE features afully interactive mode of operation usins CRT terminals such os the JEC UT 125 and the Tektronix $40 \times x$ series, instead of the batch mode in which
    the orisinal SFICE was implemented. IG-sfice allows inputs in free-format and supports both tabular and graphical displays of the results. There is also a zoom capability for the output plots. IG-SFICE also allows the inclusion of user-defined FORTRAN subroutines. This allows new models to be added quickly and conveniently.
    In addition, IG-SFICE contains a very extensive element library. When IG-SFICE s purchosed from AH Associates, the user also receives a 250 rage applications handbook and a 12 hour video cassette training saminar.

    In addition to IG-SPICE which is available for mainframe and super minicomputers. M-SFICE is available from Mentor Graphics for the can be purchased for the HP 9000 series of minicomputers, and SFICE-II is the desktop computer version which can be purchased from Cromemco.
    Filter Design and Analysis -- S/FILSYN
    Most computer prosrams for the desisn of complex RF, Hicrowave or low-frequency filters are saddled with drawbacks. Not only do approximutions. Niesigners who use such programs, assumuns that their results will lead to circuits havins realistic filter dimensions and component values, wisht very well be disappointed. And while more practical prosrams than S/FILSYN exist, most are obscure and not readily available to the ensineerins community.
    S/FILSYN was orisinally conceived by Georse Szentirmai in 1963. It was started in 1967 and the first 5000 lines of code required five years of [ir. Szentirmai's free time and weekends. In 1977, the prosram contained 99 FORTKAN subroutines and more thin 10,000

    S/FILSYN is a seneral purpose filter design prosram that offers exact synthesis of commensurate transmission line networks as well os lumped L-C circuits. The filter types include lowposs, linear phase lowpass, hishpass, bandstop, and both conventional ind Chebyshev, flat or sloped, with various stopband specifications. Both single and double terminated networks are offered; the former type is particularly suited for multiplexer desisn. Users can specify their own topology or the prosram can provide a suitable one. Predistorted desisn is available for lossy filter strilctures.

    In addition, the prosram synthesizes, desisns, and analyzes recursive (infinite impulse response) and nonrecursive (finite impulse response) disital filters, active RC filters, switched-
    capacitor filters, and crystal filters. Alllifilters can be up to
    fiftieth desree. The structure of S/FILSYN is shown in Fisure 2 . Group delay equalization is offered in two ways: all-pass equalizer sections may be incorporated in the filter or they can be proscam ton provide up to 20 sections of all-pass equalization. Elepent values for the equalizer sections are computed alonswith the values of the ras delay deviation from constant.

    S/FILSYN is conversational with feotures for both the novice and the experienced filter desisner. The interactive nature of the prosram permits experimentation and movement between prosram sesments. All filters can be analyzed in either the frequencydomain or the time-domaln. hesults SAFILYM offers on interfare or plotted sraphically. In uddition, S/FILSYM offers on interface to Super-Compact

    Network Synthesis -- MICKO-AMFSYN

    Micro-Ampsyn is a prosram availuble for the HF 200 series of desktop computers which is used for synthesizing RF matching networks including input, output, and interstoge circuits. The topolosy can include up to ten reactive elements. The program allows for the adjustment of the frequency response to praper ar loud elements (reactances associated with either in order to obtain impedances) and for impedance transformation in order to obtain the desired termination values.

    Time-Ilomain Analysis -- mama

    MAMA (Meosurement And Microwave Anolysis) is on HF series 200 based desktop computer prosram developed by Harold Stinehelfer, $S$ which is used to convert frequency-domain data as measured on on HF8409C uutomatic network analyzer to a time-domain output. The conversion is perforaed with a Fust Fourier Transform (FFT). The prosram
    the ANA.

    The impulse and square-wove response can be analyzed with mamas haraonic series analysis driver, and measurements can be subtracted from each other for de-embeddins purposes. Mama behaves very much like a computerized time-domain reflectometer (tirk), and os such can help to pinpoint and characterize individual circuit discontinuities.
    There are a variety of prosrams within the mama family, includins a directory prosram, o master cotalog prosram, and a MAMA to Micro-Compact file conversion program.

    Layout and Mask Production -- AUTOAlit

    AUTOART is an interactive, two-dimensional draftins prosramifor microwave and RF planar circuits. Autoart translates microwave circuit descriptions, given by physical dimensions, to mask layouts used in the fabrication of hybrid and monolithic microwave and FF integrated circuits.
    In the AuTO mode, a Super-Compact circuit file is converted semioutomatically (depending, on the type of circuit elements encounteredin the circuit file, to a layout. The layout is displayed on the user's terminal. by using Noul mode commads. the desisne can edit the desisn usins nodal microwave terminolosy. Componentas rapobility, the displayed layout is redraun as the changes are
    made. Final changes are performed using the GEOMetric mode. The board or a sraphics cursor. This registration targets and lettering, if desired. the inclusion of Autoart is shown in Figure 3 .
    Autoart provides the capability of interfacing directly with precision flatbed plottins tables manufactured by Hild Hee with with autamatic coordinatographs monufactured by Aristo Grophics; Corporation, with photoplotters produced by Gerber Scientific Instruments, Inc., with an Applicon 860 drafting machine, and throush an IGES post-processor with pattern senerators and mechanical drafting equipment manufactured by CalComp and Computervision CONCLUSION

    In case anyone reading this article is not completely convinced of the necessity for computer-aided desisn softwarefor aicrowave and RF ensineerins, consider the 10 MHz to 2.0 GHz feedback amplifier OMplifier design that has been used for the post few years in the Wenzel and Steven March. The circuit is taught by Les Eesser, Rob in Fisure 4. Figure 5 gives the initial responsehematically in with Super-Compact and usins calculoted values. After optimization for lods flat suesses for the element is shown in fisure 6. In another flat gain, the final response Optimization System Associotes has applied sradient John Randler of a twelve channel multiplexer to achieve the performance shoun in Figure 7. The filters are assumed lossy and dispersive shown in junctions are assumed to be non-ideal throushout.

    Computeraided desisn tools, either purchased prosrams or in-house developments, are not supposed to replace the design engineer, only ousment his copabilities. Remember, no matter how sophisticated a computer program is, the user must at least have a reasonable idea of what is goins on in the design process to be able to utilize any computer prosram to its fillest.

    ## REFERENCES

    [1] --. Hewlett-Fackard Software Solutions Catalog. HewlettCA 94088, number 5953-5880, $\$ 10.95$
    [2] -- Hewlett-Fackard Computer User's Catalos, Autumn/Winter F.0. 1985 edition, Hewlett-Packard Company, Computer Supplies, or (408) 738-4133, part number 5953-2450 (D)
    [3] F-, Third Forty Technical Software Solutions Catalos, HewlettFackard Company, Computer Supplies, F.O. Eox 60008, Sunnyvale, CA 94088, telephone (800) 538-8787 or (408) 738-4133, part
    number 5957-4315, 525.00
    --, PLIF-11 Software Sourcebook, Second Edition, Vol. I: Applications Software and Vol. II: Systems Software, Iifital Equipment Corporation, 146 Main Street, Maynard, MA 01754 telephone (800) 343-8321, part number EF25775IF, \$17.00
    [5] -- International [ifrectory of Software, Computing fublications, Inc. $\mathcal{C}$
    Princeton, $\mathrm{N}, ~ 08540$
    [6] - --, Computer-Aided Liesign IIirectory/Euyer's Guide, Butterworth Fublishers, Ltd., Surrey, United Kingdom, 1982
    [7] F, Manz, The Software Selector: A Guide to RF and Microwave
    [8] S.L. March, Microwave Circuit Layout: A Iynomic Plot Emerses, Microwaves and KF , Vol. 23, Ilec. 1984, PP. 59-62, 158-161
    [9] L. Hesser, Hish-Frequency Call Comes out of the Lab and onto the Shelf, Microwaves and RF , Vol. 23, liec. 1984, pp, 65-69
    [10] II. Trubitt and A. Fodell, Iesktop Call Offers Alternotives to the Microwave Desisn Engineer, Microwave System liesign
    Handbook, July 1984,
    K. AKimo, Softwore Strenmlines RF Engineering, RF Llesign Vol. 8, Jon. 1985, PP. 22-23
    [12] L. Resser, Microwave Circuit Itesisn Enhanced Through Use of CALI/CAM, Microwave System Ilesign Handbook, July 1984,
    [13] J. Frowne, Rounding up the Latest Computer llesign Frograms, Microwaves and KF, Vol. 23, Aus. 1984, pp. 161-162
    [14] R. Mittra, "Thou Shalt not Use the Computer Flindly" - A Golden Kule for the Computer-Oriented Microwave Proctitioner Proc. 3rd European Microwave Conf., Sept. 1973, paper 88, 1
    

    ELEMENTS OF SUF'ER-COMF'ACT
    

    S/FILSYN STRUCTURE
    

    Autoakt flowchaft
    

    FEELBACK AMFLIFIER SCHEMATIC
    

    INITIAL AMFLIFIER RESFONSE
    
    

    ## Latroduction

    Microwave Cal has become the accepted way to perform modern Ry/microvave design. Factore that have generated this acceptance are the nontuneability of thin-film and monolithic integrated circuita and the growing availability of microwave cas prograns on minframe computers.
    Microvave CAD for mak lajout has considerably less acceptance, but there is a growiag avarenes of ite utility and desireablility. Comercial and private minframe conputer programs provided uatul but costiy and non conaiderable sums of money (typically $\$ 300,000$ for a VAI 780 plus softvare), only to find excesaive reaponce times as more and more usera veighted down the time-abare syatem. Though it isa t videly understood, a truly profesional RP/aicrowave design chair in this environment coste close to $\$ 100,000$.

    ## maimyrane performance for ry/micronaye cas

    ## OM PERSOHAL COMPUTER8

    By Willian A. Childs
    EE eof, lac.
    31194 La Baya Drive

    Reprint of atalk at the Ry Technology Expo Jemuary 24, 1985
    Dianegland Iotel
    Ansbeim, CA

    ## ABSTRACT

    A new RF/micruwave CAE program, Touchstone, has delivered remarkable performance on micro-processor-based personal computers. The factors processor-based personal computers. architecture that influenced program design and architecture
    are reviewed. Benchmarks for interactive response and optimization are reported. These resulta, obtained on an IBM AT, indicate performance directly comparable to a VAX-based microwave CAE program on a single-user VAX 750. As a result, the cost of a professional $\mathrm{RF} /$ microwave design station is lowered by nearly an order of magnitude.

    Workatation and the Personal Copputer an Nork Station
    The aicroprocessor-based computer that gains videspread acceptance (the Apple II, 280 CPM computers, and the IBM PC) approachea the atatua of a comodity. Manafacturiag coste becone eo lov that the harduare cont: become incidental to the tank at band. It is fairly easy, today, to purchase an Intel $8088 / 8087$-baned computer with 0.5 Megabyte of RandonAccess Menory (RAN) and agraphics diaplay for lesa then $\$ 2500$.
    The acceptance of microprocenar-based computere had been growing aince the mid-1970 ${ }^{\circ}$. These early machines had limited applicability to engineering use, since the addreas apace vas liaited to 64 Kbyte and floating-point calculations had to be perforned in coftware. The advent of the de facto atanderd created by the IBM PC based on the Intel 8088 nicroproceseor changed this cituation inace the 8088 can addreas 1 fbyte of ant and the microprocessor to perform floating point calculations in hardvare.

    In addition, IBM' presence atabilized the marketplace and encouraged coftvare entrepreneur: to introduce new and frequently inaovative conputer programe.

    The properties of generic engineering vorkatationa are oumarized in Table 1. Aa recently at four yeara ago, having auch bardware dedicated to a aiagle user was only becoming coaceivable.

    ## Table 1. Properties of an Engineering Workstation

    - Dedicated to asingle Deer
    - 0.5 Mbjte RAM or More
    - Meaory Mapped Screens
    - Bit-mapped Graphica
    - Dedicated Input Devices
    -Resboard
    - Kouse
    --Pad
    - Bua Architecture
    - Provision for Floating Point Calculatione
    - Capable of Being Netvorked
    roday, siven the coumodity-like nature of sone computers, it is not only accepted but cost-effective. Sone specific examples of engineering vorkstations are given in Table 2.

    Table 2. Some Specific Engineering Morkatationg

    IBM PC and Conpatibles
    IDM PC-AT
    BP 200 series
    8un
    Apollo
    pax 8tation:
    Daisy Logician

    ## A Nev RF/Microvave CAs Program

    Touchotone vas designed to meet four general deaign objectiver. (see Table
    3.) The first vab to offer a full and complete bet of scientific
    features. The second wat to achieve ney level of interactivenean and
    responaivenes. And the third wai to design the program to be eanily
    integrated into an $\boldsymbol{x p}$ /aicrovave CAD progran (mask layout and dravias preparation).
    The fourth goal var to integrate the progran vith the lab environment so that it could interact in real time with measurement besin taken in the lab. It is believed that in the nert 2-3 jears, the hr /aicrowave industry vill be integrating the CAE, CAD, and CAT functions into a single-ucer vorkatation. The impetur for this vill cone primarily from reduced design tines and intenaified conpetition.

    ## Table 3. Genersl Design Objectives for a Modern RF/Microwave Car Prograz

    - Complete set of 8cientific Feature:
    - Bighly Interactive
    - Integrated vith $\mathrm{kF} /$ aicrowave CAD
    - Integrated vith RF/aicrowave Cat


    ## Scientific Feature:

    The needed technical fentures of amern RF/aicrovave CAE progran are sumarized in Table 4. The early RP/aicrovave Cas programs of the niddle to late $70^{\circ}$ s vere box prograna. The advent of complex feedback and distributed mplifier denigne neceniteted true nodal programa--so that nodal analyais is listed firet on the feature list.
    A set of cizcuit elementa that ie rich in phyical models allove the modern uF/nicrovave designer to achieve success vith hia firat mok.

    Optimizers are taken for grapted today and their value is greatly enhanced by general goal and veight epecification as function of frequency. Likevise, modera denign requirel aoice
    present and for arbitrary topologies.

    A modern RP/aicrdvave CAE progran should allow the eagiaeer to perform calculations on defined netvorks; the phane abifter is the claseical example vere "on" and "OMF" conditions can be deacribed in the net liat and then a derived network defined that diaplays the true quantity of interent-the net phase ohift.

    Finally, modern Caz progran should provide the capability for yield predictions given expected atatistical variatione in production components.

    Table 4. Scientific Features of a Modern RF/Microvave CAE Program

    - Model Analyais
    - Complete and Accurate Model 8et
    - Optimizer vith General Coal specification
    - Versetile Measurements and Output
    - Doise Figure Calculation
    - Ueer-defided Variablee
    - Derived Metwork:
    - Tield Predictione


    ## User Peatures

    The required user features of amorn Ry/microvave progran are sumanized in Table 5. It is emphaised that thie desired enviroment can best be obtained on a workstation.

    For example, the rapid presentation of graphica or acreens is a greatly facilitated with the bit-mpped acreene of a vorkatetion, as opposed to the traditional graphica terminal attached to a minframe over a limited rate serial link on mainframe computer.

    Likevise, user inputa on a vorkatation can easily be processed to interrupt optiaizers and the like; such interrupte are difficult to procese on a

    It is aidely beld belief that interactiveness in an engineeriag progran contributer to the engineer: insight into the design, and that a lack of interactivenese contributes to an over-dependence on optiaizer..
    speed and the resulting remponaiveness to the user have a firat-order effect on the cont of the hardvare needed to operate the progran. Very early in the development of Touchstone, apeed teate vere performed on the IBM PC; if the outcome of those teata had not been eatisfactory, more powerful engine would have been elected.

    Table 5. User-Priendly Festures of a Modern RY/Microvaye CAE Program

    - speed and Reaporsivenesa
    - Interactiveaces
    - Instrument-like Enviroment
    - Logical and Consistent Syntax
    - Lab-like Graphice
    - Meдus
    - Help Mesazger
    - Reliability


    ## Implementation Specifica

    Touchatone van initially targeting on computer: using the latel 808s/8086 icroprocessor along yith the Intel 8087 math coprocesior. The target operating aystem vat the highly popular hicronoft ks-DOs ayatem.

    ## The eecondary target machine was the Hewlett-Packard 200 serien computer based on the Motorola 68000 vicroproceosor. The progran is vritten in

    pancal vith key portiona in arcembly language. One of the reasone that pascal was relected was to facilitate porting of the prograie onto the BP 200 neriet conputer, under the H pascal operating ayatem.The selection of compilera is a crucial one in realizing the ultimate opeed of the computer. The realisation of the progran under hs-D0s in

    15 rolut 2 MB-DOs mechine such at the Texa: Instrument Profentional Computer.

    ## Speed and Hov to Find It

    uy/aicrovave car prograns are ricb, vith floating point calculations. Careful attention to the concept: in Table 6 allow surpriniag apeed to be obtained in a caz program. having compute-intensive portions of code vith no junp: keepz the inatruction queue of the 8088/8086 nieroprocesior filled.
    It if vital that all floating point operatione be hended over to the 8087 coprocesior for greatest apeed. It if important that the mechine language generated by the compiler be optimum in compute-intensive portions of the prograna. If it inn't, atepu must be taken to correct the dituation.

    It is neceasary that the progran be all oMM reaident. Touchatode hat achieved sucb outatanding apeed becaune it poasesses memory-intenaive
    algorithma. This ret of algorithas io called a circuit compiler-it io algorithas. rais set of algorithas is called a circuit compiler--it it technique for performing nodal analyain.

    Finally, apeed is obtained by the implementation of program architecture in both general and apecific wayn. Tor example, Touchatone separatea the taske of file proceacing, circoit cimulation, and dioplay of output. sverything posible if done to preveat unnecessary performance of these functiona.

    Por example, if the circuit file hea been proceased and only a circuit date value io changed, then the file vill not be proceased. likevise, if a nev diaplay is requeated but there io no need to simulate the circuit, then it is not reprocested. The atored resulta are nerely diaplayed in a different manner.
    A more specific example of the interaction of progran apeed and architecture comea in the calculation of phyical models. It is a coman practice in $\mathrm{Ry} / \mathrm{microvave}$ Car prograns to perfore the whole phyaical model is divided into calculated only oace and the frequency-dependeat portiona are calculated througb the balance of the frequency sweep.

    As a reault, in a typical problem, the apeed difference between uning ideal transmianion lines and aicrostrip transmenion lines io elight.

    Table 6. How to Achieve Speed on Intel 8088/8086/8087-based Computer:

    - In-line Code
    - Tailored for 8087 Coprocessor
    - Eiy Portioas in Aseenbly Laguage
    - Close Dnderatanding of Machine Language Generated by Compiler
    - Close Daderstandiag of Linker
    - $4 l l$ ram Resideat
    - Circuit Conpiler-Mesory-Inteasive Algorithan
    - Progra Arcbitecture - General
    - Prograll Arcbitecture - 8pecific


    ## Benchmarks

    A schematic for a simple $6-18 \mathrm{CHz}$ amplifier is shown in Pigure 1 A and the Touchatone circuit file is shown in Figure 1B. The performance reaults for this example are aummarized in Table 7. The results are separated because with Touchstone, the engineer can separate theae effects.

    In particular, the Tune mode in Touchstone eliminated file processing and shortens graphice output to about 0.2 aeconds.

    The effect to the designer of tuning this circuit is almost like a realtime response and fully comparable to hia lab tuning experience.

    This aplifier is put into balanced configuration in Figure 2 and the performance reaults are sumarized in Table 8. This problem wa simulated using a major VAX-based program on a VAX 780 (accelerator plus 2 Megabytes ram). It was reported that output did not begin until 8 seconds after the comand; output preaentation was limited by the aerial port to an additional 4 seconds.

    Optimization times for a compute intensive filter diplexer are shown in Table 9. The comparison is for Touchatone on an IBM-AT and a VAX based aainframe program on a Vax favorably with the VAX 750 based program result of 1073 seconds.

    Pigure 14.
    

    ## igure 18.

    

    | CRT |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | TLOC | 1 | 0 | 2^zan | E164 | F ${ }^{\text {P1 }}$ |
    | TLSC | 1 | 0 | 2=70 | g=141 | F^r1 |
    | TLIM | 1 | 2 | 2^2気 | E-23 | F*「1 |
    | 82PA | 2 | 3 | 0 | Inc700 |  |
    | TLIM | 3 | 4 | $2^{\wedge}$ Emax | z-16 | F^1 |
    | TLSC | 4 | 0 | 2\$40 51 | 100 | 8-70 |
    | DEP2P | 1 | 4 | ATP |  |  |

    OUT
    AMP DB[821] GRI
    AMP DR [811] GR2 $\begin{array}{ll}\text { AMP } & \mathrm{DB}[822] \\ \text { ARP } & \text { CR2 } \\ \text { [812] } & \text { GR2 }\end{array}$ $\begin{array}{lll}\text { ArP } & \text { DB[812] } & \text { CR2 } \\ \text { ARP } & \text { Ang [821] } & \text { GR3 }\end{array}$ AMP AHG[821] GR3 APP 811
    ARP 822
    PREQ
    $\begin{array}{cccc}\text { SHEEP } & 6 & 18 & 2\end{array}$
    GRI
    $\begin{array}{llll}\text { GR2 } & -30 & 0 & 5 \\ \text { GR3 } & -180 & 180 & 30\end{array}$
    OPT RAFGE 618
    RASGE 6
    AAP DS $\{821]^{2}<8$
    AKP DS $[821]$
    ARP $\operatorname{DB}[821]>8$
    $>8.5$

    $$
    \begin{gathered}
    \text { Table 7. Touchatone Performance } \\
    \text { of the Example in Fisure 1. }
    \end{gathered}
    $$

    ## Example Run on IBM AT

    File Processing < 2 seconds
    Circuit 8imulation < 0.5 eeconda
    Graphice Output < 0.5 eeconds
    

    Tigure 2A.
    rigure 28.
    

    |  | Touchstone 1.2 | VAX-based Program |
    | :--- | :--- | :--- |
    | Test <br> Machine | IBM AT | VAX 750 |
    | RaM | 512 Kbyte | 2.0 Mbyte |
    | Time for <br> 250 Trials | 1352 seconds |  |
    | System <br> Cost | $\$ 13,500$ | $\$ 150,000$ |

    The engineering workstation environment is so attractive that it is believed that over a very short period, almost all engineering work will be done on a workstation instead of the traditional mainframe with attached terminals. (This transition is already very advanced among digital designers.) A modern RF/microwave CAE program shou be tailored to take advantage of the attractive features workstation environment. By careful attention to program
    architecture and by the application of innovacive nodal analysis algorithms, it is possible to exceed industry standard performance on VAX class machines in interactive design and be fully comp etitive with CPU-intensive performance such as optimization.

    These results are obtained by a new RF/microwave program, Touchsto on IBM AT, PC, and compatibles as well as HP 200 series workstations.

    Not only do these results decrease the cost of a professional RF/ tcrowave design chair by nearly an order of magnitude, they show that personal computers can be used as a truly professional
    F/microwave workstation.
    

    ## COMPUTER-AIDED DESIGN OF PHASE-LOCKED LOOPS

    Ulrich Rohde

    ## SUMMARY

    The design of phase-locked loops, while following certain mathematical guidelines, has largely been done empirically. In many cases, important data like reference suppression, locked-up time, or phase zoise have been determined experimentally rather than predicted mathematically. This paper shows how wodern computers can be used to reduce time and increase accuracy in calculating loop performance.

    ## (1) Design Disk

    Let us assume a phase-locked loop synthesizer operating from 110 to 210 MHz has to be designed. A reference frequency of 10 KHz is given and the tuning diode with a minimum capacitance of 6 pF is given and the tuning diode with a minimum capacitance of 6 p formance, we will choose a type 2 third-order loop as developed and described by Andy Przedpelski and reprinted in my book, DIGITAL PLL FREQUENCY SYNTHESIZERS, THEORY AND DESIGN, published by Prentice-Hall. ISBN 0-13-21-4239-2.
    The phase noise calculations use Leeson's model and the following equation with the following abbreviations:

    $$
    \begin{aligned}
    & \mathcal{L}\left(f_{m}\right)=10 \log _{10}\left(\operatorname { S Q R } \left(\left(\frac{3}{2}\left[1+\frac{1}{\omega_{m}^{2}}\left(\frac{\omega_{0}}{2 Q I_{\text {oad }}}\right)^{2}\right]_{\overline{\mathrm{P}}}^{\mathrm{FkT}}\left(1+\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{m}}}\right)^{2}+\right.\right.\right. \\
    & \left.\left.+\frac{\left(\operatorname{SQR}\left(4 k T_{o} R d F\right) K_{o} \sqrt{2}\right)^{4}}{f_{m}}\right)\right) \\
    & \omega_{n}=2 \pi x \text { offset } \\
    & \omega_{0} \quad-2 \pi \text { center frequency } \\
    & Q_{\text {load }}=\text { loaded figure of merit } Q \text { of the tuned circuit } \\
    & \text { F } \quad \text { noise figure } \\
    & \mathrm{kT}=4.2 \mathrm{E}-21 \text { at } 300^{\circ} \mathrm{K} \text { (room temperature) } \\
    & f_{c}=f l i c k e r \text { frequency of semiconductor } \\
    & f_{i n} \text { - frequency offset } \\
    & R \quad \text { - equivalent noise resistor of tuning diode } \\
    & \mathrm{dF}=\text { integration bandwidth } \\
    & K_{\text {o }} \quad \text { - oscillator voltage gain }
    \end{aligned}
    $$

    Please note that the equation determining the mean square value has to use the power 4 for the second term.

    Using the mathematical model on pages 400-404 describing oscillator oscillator depending upon the normalized Fourier coefficients can be determined.

    The lock-up time of a phase-locked loop can be defined in many ways. In the digital loop $I$ prefer to define it by separating frequency lock or pull-in and phase lock. Both numbers have to be added. To determine the pull-in time, a new statistical approach has been used as described on pages 53-55 of wy book defining a new gain constant

    $$
    K^{\prime}=V_{B} / \omega_{0}
    $$

    with $V_{B}=$ supply voltage and $\omega_{0}=$ frequency offset. The phase-locked time has to be determined from the Laplace transform of the transfer function shown on pages 32-36 of my book.

    ## Actual Design

    A set of programs was written around the equations mentioned above and is being marketed under "PLL Design Kit." This program is used in the actual design using the above-mentioned equations and/or assumptions. Table 1 shows the input data and information of lock-up time and reference suppression.

    INPUT DATA:
    REFERENCE FREQUENCY IN Hz $=1000$
    NATURAL LOOP FREQUENCY IN Hz $=50$
    PHASE DETECTOR GAIN IN U/rad -1
    UCO GAIN CONSTANT IN Hz/U $=1.00 \mathrm{E}+07$
    DIUIDER RATIO $=160000$
    CD FREQUENCY IN Hz =
    $1.6 \mathrm{E}+8$
    PHASE MARGIN IN deg $=45$
    THE LOCK-UP TIME CONTANT IS: $\quad 1.73 \mathrm{E}-02 \mathrm{sec}$
    REFERENCE SUPPRESSION IS:

    Table
    Based on the frequency range and the tuning diode, a wideband VCO is required. The computer program interactively determines the values shown in Table 2.

    ## UCO DESIGN

    CALCULATION OF TUNING RANGE：
    Fmin＊ 110 Mhz Fmax＝ 210 Mtiz
    CENTER RANGE is $160{ }^{\text {Fmax }} \mathrm{Mhz}$ TUNING RATIO－ 1.909
    Cmin（at Umax）OF TUNING DIODE＝ 6 pF Cmax（at Umin）OF TUNING DIODE 60 pF FET CHOSEN：
    CISS＝ 2 pF ；TRANISTOR IS OPERATED AT Id＝ $12 \mathrm{~mA} / 12 \mathrm{~V}$ ；Gm＝ 17 mS
    CUT－OFF FREQUENCY OF FET＝ 1.4 Ghz ；OUTPUT POUNER 1528.8 mW OR 15 dbm
    BOARD STRAY CAPACITANCE－ 1.2 Pf
    min OF DIODE COMEINATION＝ 5.44 pF ；Cmax OF DIODE COMEINATION＝ 29.6 pF
    COUPLING CAPACITOR Cs＝ 58.5 pF ；REQUIRED INDUCTANCE IS ．0628 uH
    FEEDEACK CAPACTIOR OF 1 pF CHOSEN
    PARALLEL TRIMMING CAPACITANCE CT＝ 2.5

    Table 2
    Depending upon the frequency range，the PLL Design Kit has four different recommended circuits．it covers a narrowband and a wideband vco for lumped elements and a halfwave and quarterwave oscillator for UHF．The circuit configuration shown in figure has been chosen：
    

    Based on the description of the circuit components，the computer then calculates the SSB phase noise as show in Tables 3 and 4 ：

    SSE PHASE NOISE CALCULATION

    LO－POWER－ 0 d日M，LO NF 10 d日
    The rms noise voltage per sqr（1 Hz ）bandwidth＝1．30E．0日 U Rne 10000
    F＝ 10
    UCO GAIN（Hz／U）－1．00E＋0＞
    FREQUENCY OFFSET IN Hz＝ 10000
    CENTER FREQUENCY＝ 160 Mhz
    LOADED Q－ 120
    FLICKER FREQUENCY IS 150 Hz
    The ssb phase noise in 10000 Hz offset is $-100.76 \mathrm{dBc} / \mathrm{HZ}$

    ## Table 3

    SSE NOISE TA日LE

    | FREDUENCY $(\mathrm{Hz})$ | PHASE NOISE（dBc． Hz ） |
    | :--- | :---: |
    | $1.00 \mathrm{E}+00$ | -25.50 |
    | $3.16 \mathrm{E}+00$ | -40.44 |
    | $1.00 \mathrm{E}+01$ | -55.25 |
    | $3.16 \mathrm{E}+01$ | -69.70 |
    | $1.00 \mathrm{E}+02$ | -83.31 |
    | $3.16 \mathrm{E}+02$ | -95.60 |
    | $1.00 \mathrm{E}+03$ | -106.68 |
    | $3.16 \mathrm{E}+03$ | -117.09 |
    | $1.00 \mathrm{E}+04$ | -127.22 |
    | $3.16 \mathrm{E}+04$ | -137.26 |
    | $1.00 \mathrm{E}+05$ | -147.19 |
    | $3.16 \mathrm{E}+05$ | -156.41 |
    | $1.00 \mathrm{E}+06$ | -162.17 |
    | $3.16 \mathrm{E}+06$ |  |
    | $1.00 \mathrm{E}+07$ |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |

    As tables in wany cases are not very revealing, the phase noise is then plotted. This is shown in Figure 2:
    

    Figure 2

    The free-running oscillator phase noise close-in has to be poor and can be improved by embedding it in a type 2 third-order loop, as shown in Figure 3:
    

    Figure 3

    It is apparent that the close-in noise now has become better and that the phase noise of both graphs meets at approximately 4 KHz . The type 2 third-order loop, if properly designed, gives excellent lock-up rime and reference suppression. This can be seen from the plot shown in Figure 4:
    

    Figure 4

    LOCK-IN FUNCTION :

    | T1ME/3 | PHASE DET.DEU. $/$ deg |
    | :--- | ---: |
    | 0 | $3.60 \mathrm{E}+02$ |
    | .0016 | $2.58 \mathrm{E}+02$ |
    | .0032 | $1.16 \mathrm{E}+02$ |
    | .0048 | $2.94 \mathrm{E}+00$ |
    | .0064 | $-7.36 \mathrm{E}+01$ |
    | .008 | $-1.12 \mathrm{E}+02$ |
    | .0096 | $-1.20 \mathrm{E}+02$ |
    | .0112 | $-1.07 \mathrm{E}+02$ |
    | .0128 | $-8.40 \mathrm{E}+01$ |
    | .0144 | $-5.95 \mathrm{E}+01$ |
    | .016 | $-3.79 \mathrm{E}+01$ |
    | .0176 | $-2.12 \mathrm{E}+01$ |
    | .0192 | $-9.55 \mathrm{E}+00$ |
    | .0208 | $-2.37 \mathrm{E}+00$ |
    | .0224 | $1.45 \mathrm{E}+00$ |
    | .024 | $2.99 \mathrm{E}+00$ |
    | .0256 | $3.17 \mathrm{E}+00$ |
    | .0272 | $2.67 \mathrm{E}+00$ |
    | .0288 | $1.93 \mathrm{E}+00$ |
    | .0304 | $1.22 \mathrm{E}+00$ |
    | .032 | $6.45 \mathrm{E}-01$ |
    | .0336 | $2.45 \mathrm{E}-01$ |
    | .0352 | $3.35 \mathrm{E}-03$ |
    | .0368 | $-1.17 \mathrm{E}-01$ |
    | .0384 | $-1.57 \mathrm{E}-01$ |
    | .04 | $-1.49 \mathrm{E}-01$ |
    | .0416 | $-1.19 \mathrm{E}-01$ |
    | .0432 | $-8.34 \mathrm{E}-02$ |
    | .0448 | $-5.13 \mathrm{E}-02$ |
    | .0464 | $-2.65 \mathrm{E}-02$ |

    The phase-lock time can be obtained frow Table 5. It is good practice to define the lock-up time as the point where the phase error is less than 1 . Based on the 50 Hz loop frequency, this value is 32 mS . For the total lock-up time, we have to add the lock-up time, for both frequency and phase lock is required:

    Finally, Figure 5 shows the active integrator for the type 2 third-order loop.
    

    Figure 5

    SUMMARY
    Having a sufficiently accurate mathematical model allows the development of highly interactive conputer programs taking some of the non-linearities of the phase-locked loop into consideration. The above-described analysis progran is being used by many domestic and international companies with great success and reproducibility.

    ## REFERENCES

    [1] A. Przedpelski. "Analyze, Don't Eatimate Phase-Locked Loop Performance of Type 2 Third Order Systems," ELECTRONIC DESIGN, May $10,1978$.
    [2] A. Przedpelski, "Optimized Phase Locked Loop to Meet Your Needs or Determine Why You Can'r." ELECTRONIC DESIGN, September 1978.
    [3] A. Przedpelski, "Suppress Phase Locked Loop Sidebands A. Przedpelski, "Suppress Phase
    without Introducing Instability," ELECTRONIC Didebands
    DESIGN, September 1978

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,INC. 1/85

    ABSTRACI

    This paper describes the mounting lectiniques end thermel considerstions for ver ious plastic molded peckeges used in RF low power applications. Infrered scan dete , taken under RF aperating conditions, is presented to empiricalty demonstrate the tredeofls of mounting techniques versus thermal performance. A thermal resistance model is derived to predict the thermal performance besed on the mounting tectnique design and peckeged device thermal specifications.

    ## INTRODUCTION

    ## This peper comperes four plestic molded peckeyes frequently used in RF applications:

    1. SOT23 (see figure 1)
    2. SOI 143 (see Figure 2)
    3. Mecro- X (see Figure 3)
    4. PowerMacro ( see F lgure 4).

    The PowerMacro package is analyzed for thermal resistance comparing verious mounting tectiniques. The experimental RF scan results are compered to a bosic thermal resistence model and conclusions are mede regeraing the valloity of the model.

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRYJ. SWANSON MOTOROLA,INC. 1/85
    

    FGGURE 1 - CASE OUTLLNE DRAWMG FOR sOt23 PACKAGE
    

    FIGURE 2 - CASE OUTLINE DRAWMG FOR THE SOT143 PACKAGE

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,INC. I/85
    
    figure 3 - Case outline drawing of the macro-x package
    

    FIGURE 4 - CASE OUTLINE DRAWING OF THE POWERMACRO PACKAGE

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,IMC. 1/85

    ## COMPARISON OE PACKAGES

    Many RF low power plastic packages are available to the designer for RF applicotions. Table I comperes the properties of four of these peckepes:

    TABLE 1 - PACKAQE COMPARISON

    | Packuge | Combector Leod |  |  |  | $\begin{gathered} \text { Thormen } \\ \text { Anolitunce } \\ \text { fectin } \end{gathered}$ |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\begin{gathered} \text { Theckness } \\ \text { (minis) } \end{gathered}$ | $\begin{aligned} & \text { Whoth } \\ & \text { (minis) } \end{aligned}$ |  |  |  |  |
    | 807-23 | 3.4105 .1 | 1.51017 .7 | amoy 42 | 200 mm | 235 | - |
    | sot-143 | 3.0.000.0 | 301038 | alloy 42 | 350 mm | 337 | - |
    | merox | 0.01012. | 338 10.38 | coppee | 2.0 | - | $\infty$ |
    | Powormecro | 0.01012. | 17710104 | Coppen | 3.0 | - | 25 |

    - $T_{A}=25^{\circ} \mathrm{C}$ WITH DEVICE MOUNTED W FREE ARR.
    - TC IS SPECIFIED ON THE DEVICE DATA SHEET. THE PACKAGE IS MOUNTED TD PROVIDE Case temperature less than or equal to the given tc at the given power DISSIPATIOK, PD.

    DESCRIPTION OF TYPICAL BE LOW POWER PACKAGES

    The SOT23 surfece mount peckege is similier to the SOT 143 except for the number of common leeds and the with of the collector leed. Figure 5 is a cut oway view showing the internal construction of the SOI23 package. The peckege cansists of a molded Alloy 42 leatfreme which is nominally 4 mil thick. The SOT 23 hes 3 leads all the same witth of nominelly 16 mlls while the SOT 143 hes an additional common lead placed diagonally from the other one. The SOT 143 collector leed is twice the wheth of the SOT 23 collector leed. The Iransistor chip is silicon-gold eutectic die bonded to the collerf, a lead and is wirebonded for various pinouts to the other leats. Completion of the sesemb.y process is sccomplished by molding the leatrame and lin plating the leads.

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HURRY J. SWANSON MOTOROLA,INC. 1/85

    ## figure 5

    SOT-23 Internal Construction
    

    The PowerMecro pectage is similer to the Mecro-X package except for the wider collecter leed. Figure 6 is 0 cut owoy view showing the compenent perts of en epary molded copper leedrame which hes an 100 mil with collector leed. A Mecro-X hes a 35 mil wide collector leed. The trensistor chip is silicon-gold eutectic die bonded to the collector leed and is wirebonded in a manner similer to the Stripline Opposed Emitter ceramic peckoge. Completion of the assembly process is cccomplished by molding the copper leadr ame and tin plating the four leeds.
    

    FIGURE 6 - CUT AWAY VIEW OF THE POWERMACRO PACKAGE

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,INC. 1/85

    ## GENERAL MOUNTING CONSIDERATIONS

    The SOT 23 and SOT 143 peckages are often mounted to both sides of a circuit boerd with other surface mount components. Usually no heet sink is used end the mejority of the heet trensfer is accomplished by convection and ratiation from the surfaces of the peckege and the circutt boord it is typical for a ventor to spec the $0_{A}$ in free air at $T_{A}=25^{\circ} \mathrm{C}$

    Electrical and mectenical mounting of the 50 T 23 and 50 T143 surface mount peckeges are justified by the automated, low cost manufacturing, and generalty confines itself to lower power epplications. The leck of power dissipetion cepebility mey prove to be a limitotion when attempting to substitute for a Macro-X packege.

    The electrical performance of a RF device is difficult to maintoin without practicing sound principles of circuit construction and matching tectniques. The frequency and banowith requirements usually determine the network topology used to ensure good input and ortput VSWR. Lumped components ere often used at lower frequencies, wherees, at higher frequencies, distributed components are effective. It is importent to provide good RF grounding on the circuit boord close to common leads of the pert.

    The thermal performence of an RF plestic trensistor is dependent upon the mounting tectinique. The collector lead of the pleatic peckege should offer a low thermal resistence poth from the transistor chip. This lead should be utilizad effectively to provide the best thermal interfece. Since this leed is the output lood of the device, it is necessery to consider RF motching and biesing. The collector leed is usualy mounted to a circuit board material such as $0-10$, gless Teflon, olumina, or beryllium axide ( 800 ). The circuit boerd material is chosen to provide both a low thermal interface resistance and a gaod output match to the collector

    The thermal per ameters of a devica are specified on its deta sheet. For exemple, an RF plestic trensistor is quarenteed to have a certain thermal performance defined by the totel device dissipation, $P_{D}$ of a cortain cese temperature, $T_{C}$ which is messured on the collector leed immediately adfecent to the body of the peckege. The perameters are defined

    Teflon is a registered trademark of DuPont Corp.

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,INC. 1/85
    for a condition of a maximum junction temperoture, $T_{j}$ of $150^{\circ} \mathrm{C}$. Thus, the task of the designer is to provide a low thermal resistence peth for the heat to flow from the collector leed A practical solution is cherscterized by a certein tempersture rise, $\Delta$ T for a given ambient condition with a known amount of heet inpul or power dissipelion, $\mathrm{P}_{\mathrm{D}}$. Table 2 lists the thermal perameters and their electrical enalogs used to derived the thermal resistence model.
    table 2. thermal parameter and their electrical analogs

    | srmaol | TMENMAL PARAMETE | UNITS: | Electinical analog |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | 3YMaOL | PAMAMETEW |
    | AT | TEmPERATUAE DFFERENCE | ${ }^{\circ}$ | v | Voltage |
    | H | HEAT FLOW | watts | 1 | CURRENT |
    | - | THERMAL RESHSTANCE | $\begin{gathered} \mathrm{c} \\ \text { watts } \end{gathered}$ | - | RESIStance |
    | $r$ | heat capacity | $\frac{\text { watt-SEC }}{c}$ | c | capactiy |
    | K | THERAAL CONOUCTIVITY | $\frac{\mathrm{CAL}}{\sec -\mathrm{Cm}} \cdot \mathrm{C}$ | - | COnductivir |
    | 0 | $\begin{aligned} & \text { OUANTITY OF } \\ & \text { HEAT } \end{aligned}$ | cal | 4 | charge |
    | 1 | TME | SEC | 1 | TIME |
    | or | $\begin{aligned} & \text { THERMAL TME } \\ & \text { COHSTANT } \end{aligned}$ | SEC | AC | TIME COMSTANT |

    The thermal resistancs model shown in figure 7 leads to the equation 1

    $$
    T_{J}=P_{D}\left(\theta_{J C}+\theta_{C S}+\theta_{S A}\right)+T_{A}
    $$

    Where: $\quad P_{D}=P_{\text {ower olissipeted in the trensistor in watts }}$
    $\theta_{\mathrm{JC}}=$ Published ther mal resistence - junction to cose;
    $\theta_{\text {Cs }}=$ Interface thermal resistance - cose to heot sink
    ${ }^{\theta_{S A}}$ = Heot sink thermal resistence - heet sink to embient.

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,INC. 1/85
    
    fIGURE 7 - THERMAL RESISTANCE MODEL FOR THE RF LOW POWER TRANSISTOR

    The thermal resistance of the transistor (junction to case thermal resistance), $\theta_{\mathrm{JC}}$ is not constent; it is a function of biesing end tempereture es given on the dete sheet.

    The interface thermal resistance, ${ }^{0}$ cs is affected by mounting tectinique and interface material used

    The power dissipotion requirements of en RF low power trensistor moy dictote special mounting consiterations to reatuce Ocs. The thermal resistance, $\theta$ to heat flow between parallel surfaces in a bar of conduct ing mater ial (see Figure 8) is:

    ## $\theta=h / K W L=h / K A$

    where: $\quad h=$ Length of thermal pelh
    $A=$ Cross sectional eree of thermal path, $A=W L$
    $K=$ Thermal conductivity

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,IMC. 1/85
    

    FIGURE 8 - BAR OF CONDUCTING MATERIAL
    Thus, the interfece thermal resistence is reduced by:

    1. Decreesing the length of the thermel peth
    2. Incressing the cross sectional aree of the thermal poth
    3. Using en interface meteriol of high thermal conductivity (Table $A 2$ lists the thermal praperties of various hed sinking materials).

    The experimentol IR scen results of the MRF553 PowerMecro trensistor in the next section comperes the interface thermal rosistance, ECS using two circuit boerd materials.

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON

    ## IR SCAM RESULIS

    RF applicalions of a pleatic transistor utilize microstrip techniques to obtain a good case to heeisink, $\theta_{\text {CS }}$ and to oblain good RF input and outpul motching

    The experimental results of an IR scan of the MRFS53 (1.5W, YHF, 12.5Y PowerMecro trensistor) represented in Figure 9 shows the comperison of two circuit boerd moter ials using three mounting techniques:

    1. B-10 circuit boerd mounled to oluminum heed sink (see Figure AI, circuit used in IR Scen 1)
    2. Alumina/Copper Socket to aluminum neet sink (see Figures $A 2$ and $A 3$, circuit used in IR Scen II)
    3. $\theta-10$ circuilt boerd with no heot sink ( $D C$ only scan - see Figure $A 4$ for details of circuit used in IR Scen III).
    Table AI in the Appendix lists the typical thermal deta from the IR scans for various operating canditions of $P_{\text {out }}, P_{D}, T_{J}$ (div junction lemperature). $T_{C}$ (collector leed temperature), and $\mathrm{T}_{\mathrm{S}}$ (heot sink temperature) and $\mathrm{T}_{\mathrm{A}}$ (ambient temperdure).
    

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES

    Figure A1 shows the circuit used to provite the thermal dote of the MRF553 device mounted to e 62 mil thick 0-10 circuit boerd with laz. copper on both sides. The devics is soldered to the circuit boerd which is mounted to 03 inch $\times 5$ inch $\times 3 / 4$ inch aluminum heot sink.

    Figure A2 shows the circuit used to provide the thermal dete for the MRF553 device mounted with an alumine interfece. The device is soldered into a specially constructed socket (see figure A3) which is mounted to a 3 inch $\times 5$ inch $\times 3 / 4$ inch oluminum heot sink. The socket is copper and uses 28 mils thick olumine substrotes ( $195 \mathrm{mils} x$ 250 mlls ) with 62 mils thick copper lebs ( $125 \mathrm{mlis} \times 250 \mathrm{mils}$ ) on the input end output. These compenents are soldered logether using high tempersture solder.

    Acomperison of dete in Teble AI shows the relative performance of the two mounting techniques. IR Scan II of the alumina/copper mounting tectinlque cleerly shows its superior thermel performence. Compering the dete of $P_{D} \sim 1.9$ wetts for IR Scen I ( $0-10$ circuit boerd mounting) and IR Scen II (alumine/copper mounling) demonstrote the better thermal interfsce using olumina/copper. OUS for the alumina/copper mounting is $30.7^{\circ} \mathrm{C} / \mathrm{W}$ while $\theta_{\mathrm{JS}}$ for $\theta-10$ circuit boerd is $39^{\circ} \mathrm{CN}$.

    As expected, the $\theta_{V}$ is epproximately the same for the two mounting lectiniques. The difference in $\theta_{\text {JS }}$ is dependent on the mounting tectinique used. The resulting $\theta_{\text {CS }}$ is calculated from the IR scen dete by:

    $$
    \theta_{C S}=\theta_{U S}-\theta_{\Omega}
    $$

    Thus, for IR Scan i ( $\theta$ - 10 mounting):

    $$
    \theta_{C S}=(39-23.2) \mathrm{c} / \mathrm{W}=15.8{ }^{\circ} \mathrm{C} / \mathrm{W}
    $$

    Wheress, for IR Scen II (olumine/copper mounting):

    $$
    \theta_{\mathrm{CS}}=(30.7-24.4) \mathrm{c} / \mathrm{W}=6.3^{\circ} \mathrm{C} / \mathrm{W}
    $$

    Therefore, the IR scan results stow a marked improvement in thermal performance when using the olumine/copper.

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,IMC. 1/85

    ## COMPARISON OF IR SCAN RESULTS WIIH IHERMAL BESISTANCE MODEL

    The thermal resistance model represented in Figure 7 and the besic equation, $\theta=$ h/KWL, which relates the thermal resistence to the heet flow belween perallel surfeces will be used to verify the IR scen results of IR Scan I and II in the following exemples. The foltowing assumptions are made to simplify the approech:
    I. The calculations deal only with uni-directional heot flow
    2. Heot spreating ts sssumed to be of o 45 degree angle
    3. Parallel hool flow peths are considered.

    In IR Scen I, the thermal resistence network is preticted by consider ing the heot flow peths from the collector leed (immedietaly affacent to the peckege booy):

    1. $\theta_{1}$, directly through the eircuit board (spreoting of a 45 degree angle) to the neot sink
    2. $\theta_{2}$ and $\theta_{3}$, by spreating along the collector leed end then through the circuit board end to the heot sink.
    The following illustration in figure 10 shows the thermal paths and resulting model in deteil:
    
    $a_{c s}=a_{1}(1)_{2}+\left(a_{3}\right)$

    FIGURE 10 - G-10 CIRCUIT BOARD MOUNTING THERMAL MODEL
    Where: $h_{1}=.062$ inches, $K=0.022 \mathrm{cal} / \mathrm{sec}-\mathrm{cm}^{-}{ }^{\circ} \mathrm{C}$ ( sees Teble A2),
    $W=0.10$ incties, $L=0.031$ inches. Similerly.

    MOUNTING CONSIDERATIONS FOR RF LOW POWER PLASTIC PACKAGES HARRY J. SWANSON MOTOROLA,IMC. 1/85

    ```
 02```

